diff options
35 files changed, 21135 insertions, 33227 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index ba5d04ec..ed3f4b88 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,3 +1,35 @@ +2011-09-19 Gabriel Dos Reis <gdr@cs.tamu.edu> + + * algebra/asp.spad.pamphlet: Remove. + * algebra/c02.spad.pamphlet: Likewise. + * algebra/c05.spad.pamphlet: Likewise. + * algebra/c06.spad.pamphlet: Likewise. + * algebra/d01.spad.pamphlet: Likewise. + * algebra/d02.spad.pamphlet: Likewise. + * algebra/d03.spad.pamphlet: Likewise. + * algebra/e01.spad.pamphlet: Likewise. + * algebra/e02.spad.pamphlet: Likewise. + * algebra/e04.spad.pamphlet: Likewise. + * algebra/f01.spad.pamphlet: Likewise. + * algebra/f02.spad.pamphlet: Likewise. + * algebra/f04.spad.pamphlet: Likewise. + * algebra/f07.spad.pamphlet: Likewise. + * algebra/s.spad.pamphlet: Likewise. + * algebra/d01Package.spad.pamphlet: Likewise. + * algebra/d02Package.spad.pamphlet: Likewise. + * algebra/d03Package.spad.pamphlet: Likewise. + * algebra/e04Package.spad.pamphlet: Likewise. + * algebra/d01agents.spad.pamphlet: Likewise. + * algebra/d01routine.spad.pamphlet: Likewise. + * algebra/d01transform.spad.pamphlet: Likewise. + * algebra/d01weights.spad.pamphlet: Likewise. + * algebra/d02agents.spad.pamphlet: Likewise. + * algebra/d02routine.spad.pamphlet: Likewise. + * algebra/d03agents.spad.pamphlet: Likewise. + * algebra/d03routine.spad.pamphlet: Likewise. + * algebra/e04agents.spad.pamphlet: Likewise. + * algebra/e04routine.spad.pamphlet: Likewise. + 2011-09-15 Gabriel Dos Reis <gdr@cs.tamu.edu> * algebra/axtimer.as.pamphlet: Remove. diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index dd588899..cb018420 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -1092,7 +1092,6 @@ axiom_algebra_layer_8_nrlibs = \ axiom_algebra_layer_8_objects = \ $(addprefix $(OUT)/, \ $(addsuffix .$(FASLEXT),$(axiom_algebra_layer_8))) -$(OUT)/ODEIFTBL.$(FASLEXT): $(OUT)/TABLE.$(FASLEXT) $(OUT)/INTABL.$(FASLEXT) $(OUT)/FT.$(FASLEXT): $(OUT)/FST.$(FASLEXT) axiom_algebra_layer_9 = \ @@ -1102,7 +1101,7 @@ axiom_algebra_layer_9 = \ OMLO ORTHPOL PRODUCT PADICCT PMPRED PMASS \ PTFUNC2 RATRET RADUTIL UPXS2 \ XFALG ZLINDEP BBTREE TABLE INTABL \ - ODEIFTBL NIPROB ODEPROB OPTPROB \ + NIPROB ODEPROB OPTPROB \ PDEPROB SIG FMONCAT FST @@ -1112,8 +1111,6 @@ axiom_algebra_layer_9_nrlibs = \ axiom_algebra_layer_9_objects = \ $(addprefix $(OUT)/, \ $(addsuffix .$(FASLEXT),$(axiom_algebra_layer_9))) -$(OUT)/D01GBFA.$(FASLEXT): $(OUT)/RESULT.$(FASLEXT) $(OUT)/ANY.$(FASLEXT) \ - $(OUT)/SEX.$(FASLEXT) $(OUT)/HASHTBL.$(FASLEXT) $(OUT)/ANY.$(FASLEXT): $(OUT)/SEX.$(FASLEXT) $(OUT)/SEX.$(FASLEXT): $(OUT)/SEXOF.$(FASLEXT) @@ -1134,7 +1131,7 @@ $(OUT)/PATLRES.$(FASLEXT): $(OUT)/PATRES.$(FASLEXT) axiom_algebra_layer_10 = \ RESULT BFUNCT BPADIC ANY \ SEXOF CRAPACK DEQUEUE DLIST \ - DRAWCX D01GBFA D02EJFA D03FAFA \ + DRAWCX \ DRAWPT FAMR FAMR- FLASORT \ FLAGG2 FGROUP FM FM1 \ FPC FPC- FMONOID INDE \ @@ -1172,7 +1169,7 @@ $(OUT)/ARRAY2.$(FASLEXT): $(OUT)/IFARRAY.$(FASLEXT) axiom_algebra_layer_11 = \ APPLYORE ARRAY1 ARRAY12 ARRAY2 \ ASTACK COMBINAT \ - CSTTOOLS D01FCFA E04MBFA FARRAY \ + CSTTOOLS FARRAY \ FLALG GALUTIL HEAP \ IARRAY2 IFARRAY INTCAT INTHEORY \ IRREDFFX LFCAT LODOCAT LODOCAT- \ @@ -1210,8 +1207,7 @@ axiom_algebra_layer_13 = \ ASSOCEQ CARTEN CLIF CLIP \ UPOLYC UPOLYC- \ COORDSYS DBASE DHMATRIX DIOSP \ - D02BBFA D02BHFA \ - D02CJFA FAXF FAXF- FFPOLY2 \ + FAXF FAXF- FFPOLY2 \ FNLA GRAY HB IRSN \ MCALCFN MHROWRED NUMODE NUMQUAD \ ODESYS ODETOOLS ORDFUNS PERMAN \ @@ -1236,11 +1232,8 @@ axiom_algebra_layer_14 = \ BPADICRT BRILL CDEN CHVAR \ COMMUPC CONTFRAC CVMP CYCLOTOM \ CYCLES DDFACT DECIMAL DISPLAY DMP \ - DPMO DPOLCAT DPOLCAT- D01AJFA \ - D01AKFA D01ALFA D01AMFA D01APFA \ - D01AQFA EMR EQ ERROR \ - EVALCYC E04DGFA E04FDFA E04GCFA \ - E04JAFA FACUTIL FF FFCG \ + DPMO DPOLCAT DPOLCAT- EMR EQ ERROR \ + EVALCYC FACUTIL FF FFCG \ FFCGX FFHOM FFNB FFNBX \ FFPOLY FFX FFSLPE FGLMICPK \ FILE FINAALG FINAALG- FINRALG \ @@ -1285,7 +1278,7 @@ axiom_algebra_layer_14 = \ UPXSCAT UPSQFREE VIEWDEF VIEW2D \ WEIER WP \ EQTBL GSTBL \ - INTFTBL STBL STRTBL\ + STBL STRTBL\ SYMS SYMTAB \ IOBCON @@ -1350,7 +1343,7 @@ axiom_algebra_layer_17_objects = \ $(OUT)/PSETCAT.$(FASLEXT): $(OUT)/RPOLCAT.$(FASLEXT) axiom_algebra_layer_18 = \ - INTPACK IPF CATCTOR DOMCTOR CTORCALL \ + IPF CATCTOR DOMCTOR CTORCALL \ KAFILE PATRES TBCMPPK PSETCAT PSETCAT- \ RPOLCAT RPOLCAT- @@ -1368,8 +1361,7 @@ axiom_algebra_layer_19 = \ ACPLOT ANTISYM ATTRBUT \ COMPCAT \ COMPCAT- DRAW DRAWCFUN DROPT \ - DROPT0 D01ANFA D01ASFA D03AGNT \ - EP E04AGNT FCPAK1 FEXPR \ + DROPT0 EP FCPAK1 FEXPR \ FFCAT FFCAT- FFCGP FFNBP \ FFP FLOAT FPARFRAC FR \ FRNAALG FRNAALG- EXPR \ @@ -1377,12 +1369,10 @@ axiom_algebra_layer_19 = \ IDEAL INFORM INFORM1 IPRNTPK \ IR ISUPS LIB \ LMDICT LODOOPS MKFLCFN \ - MSET M3D NAGC02 NAGC05 \ - NAGC06 NAGD03 NAGE01 NAGE02 \ - NAGE04 NAGF07 NAGS NAGSP \ + MSET M3D \ NREP NUMFMT OC OC- \ - ODEPACK ODERAT \ - OPTPACK PATTERN OVAR \ + ODERAT \ + PATTERN OVAR \ PMKERNEL PMSYM PRIMELT \ QALGSET2 QEQUAT RECLOS REP1 \ QUATCAT QUATCAT- RFFACT \ @@ -1408,9 +1398,9 @@ axiom_algebra_layer_20 = \ AF ALGFACT ALGFF ALGMANIP ALGMFACT ALGPKG \ ALGSC AN APPRULE CINTSLPE COMPFACT COMPLEX \ COMPLPAT CMPLXRT CPMATCH CRFP \ - CTRIGMNP D01WGTS D02AGNT D03EEFA \ + CTRIGMNP \ DBLRESP DERHAM DFSFUN DRAWCURV \ - E04NAFA E04UCFA EF EFSTRUC \ + EF EFSTRUC \ ELFUTS ESTOOLS EXPEXPAN EXPRODE \ EXPRTUBE EXPR2 FC FDIVCAT \ FDIVCAT- FDIV2 FFCAT2 FLOATCP \ @@ -1423,11 +1413,10 @@ axiom_algebra_layer_20 = \ INTHERAL INTPAF INTPM INTTOOLS \ ITRIGMNP JORDAN KOVACIC LF \ LIE LODOF LSQM \ - MCMPLX MULTFACT NAGD01 NAGD02 \ - NAGF01 NAGF02 NAGF04 NCEP \ + MCMPLX MULTFACT NCEP \ NLINSOL NSMP NUMERIC OCT \ OCTCT2 ODEPAL ODERTRIC PADE \ - PAN2EXPR PDEPACK PFO PFOQ \ + PAN2EXPR PFO PFOQ \ PICOERCE PMASSFS PMFS PMPREDFS \ PSETPK QUAT QUATCT2 RADFF \ RDEEF RDEEFS RDIV RSETCAT \ @@ -1449,7 +1438,7 @@ $(OUT)/SULS.$(FASLEXT): $(OUT)/PDDOM.$(FASLEXT) $(OUT)/SUPXS.$(FASLEXT): $(OUT)/PDDOM.$(FASLEXT) axiom_algebra_layer_21 = \ - DEFINTEF DFINTTLS DEFINTRF D01TRNS \ + DEFINTEF DFINTTLS DEFINTRF \ EFULS ESCONT EXPR2UPS \ FDIV FSCINT FSINT FS2EXPXP \ GSERIES HELLFDIV INVLAPLA IR2F \ @@ -1465,7 +1454,7 @@ axiom_algebra_layer_21_objects = \ $(addprefix $(OUT)/, \ $(addsuffix .$(FASLEXT),$(axiom_algebra_layer_21))) axiom_algebra_layer_22 = \ - COMBF D01AGNT FSPRMELT \ + COMBF FSPRMELT \ INBFF LODO LODO1 LODO2 \ NTSCAT REGSET RGCHAIN RSETGCD \ RSDCMPK SFRTCAT SIGNEF SNTSCAT \ @@ -1499,12 +1488,7 @@ axiom_algebra_layer_user = \ QQUTAST DEFAST MACROAST SPADXPT SPADAST PARAMAST \ INBFILE OUTBFILE IOBFILE RGBCMDL RGBCSPC STEPAST \ CTOR IP4ADDR NETCLT INETCLTS \ - FMC FMFUN FORTFN FVC FVFUN ASP34 \ - ASP1 ASP10 ASP24 ASP4 ASP50 ASP6 \ - ASP73 ASP27 ASP28 ASP33 ASP49 ASP7 \ - ASP78 ASP9 ASP12 ASP55 ASP8 ASP19 \ - ASP20 ASP30 ASP31 ASP35 ASP41 ASP42 \ - ASP74 ASP77 ASP80 ASP29 IRFORM COMPILER \ + FMC FMFUN FORTFN FVC FVFUN IRFORM COMPILER \ ITFORM ELABOR TALGOP YDIAGRAM LINELT DBASIS \ LINFORM LINBASIS JVMOP JVMCFACC JVMFDACC JVMMDACC \ JVMCSTTG @@ -1579,8 +1563,6 @@ $(OUT)/NETCLT.$(FASLEXT): $(OUT)/IOBCON.$(FASLEXT) $(OUT)/INETCLTS.$(FASLEXT): $(OUT)/NETCLT.$(FASLEXT) -$(OUT)/ASP34.$(FASLEXT): $(OUT)/FMC.$(FASLEXT) - $(OUT)/IRFORM.$(FASLEXT): $(OUT)/SYNTAX.$(FASLEXT) $(OUT)/COMPILER.$(FASLEXT): $(OUT)/SYNTAX.$(FASLEXT) $(OUT)/ENV.$(FASLEXT) $(OUT)/ITFORM.$(FASLEXT): $(OUT)/IRFORM.$(FASLEXT) diff --git a/src/algebra/c02.spad.pamphlet b/src/algebra/c02.spad.pamphlet deleted file mode 100644 index f20f2e9f..00000000 --- a/src/algebra/c02.spad.pamphlet +++ /dev/null @@ -1,131 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra c02.spad} -\author{Godfrey Nolan, Mike Dewar} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package NAGC02 NagPolynomialRootsPackage} -<<package NAGC02 NagPolynomialRootsPackage>>= -)abbrev package NAGC02 NagPolynomialRootsPackage -++ Author: Godfrey Nolan and Mike Dewar -++ Date Created: Jan 1994 -++ Date Last Updated: Thu May 12 17:44:27 1994 -++Description: -++This package uses the NAG Library to compute the zeros of a -++polynomial with real or complex coefficients. -++See \downlink{Manual Page}{manpageXXc02}. - -NagPolynomialRootsPackage(): Exports == Implementation where - S ==> Symbol - FOP ==> FortranOutputStackPackage - - Exports ==> with - c02aff : (Matrix DoubleFloat,Integer,Boolean,Integer) -> Result - ++ c02aff(a,n,scale,ifail) - ++ finds all the roots of a complex polynomial equation, - ++ using a variant of Laguerre's Method. - ++ See \downlink{Manual Page}{manpageXXc02aff}. - c02agf : (Matrix DoubleFloat,Integer,Boolean,Integer) -> Result - ++ c02agf(a,n,scale,ifail) - ++ finds all the roots of a real polynomial equation, using a - ++ variant of Laguerre's Method. - ++ See \downlink{Manual Page}{manpageXXc02agf}. - Implementation ==> add - - import Lisp - import DoubleFloat - import Matrix DoubleFloat - import Any - import Record - import Integer - import Boolean - import NAGLinkSupportPackage - import AnyFunctions1(Matrix DoubleFloat) - import AnyFunctions1(Integer) - import AnyFunctions1(Boolean) - macro I == Integer - - - c02aff(aArg:Matrix DoubleFloat,nArg:Integer,scaleArg:Boolean,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "c02aff",_ - ["n"::S,"scale"::S,"ifail"::S,"a"::S,"z"::S,"w"::S]$Lisp,_ - ["z"::S,"w"::S]$Lisp,_ - [["double"::S,["a"::S,2$Lisp,["+"::S,"n"::S,1@I]$Lisp]$Lisp_ - ,["z"::S,2$Lisp,"n"::S]$Lisp,["w"::S,["*"::S,["+"::S,"n"::S,1@I]$Lisp,4$Lisp]$Lisp]$Lisp]$Lisp_ - ,["integer"::S,"n"::S,"ifail"::S]$Lisp_ - ,["logical"::S,"scale"::S]$Lisp_ - ]$Lisp,_ - ["z"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,scaleArg::Any,ifailArg::Any,aArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - - - c02agf(aArg:Matrix DoubleFloat,nArg:Integer,scaleArg:Boolean,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "c02agf",_ - ["n"::S,"scale"::S,"ifail"::S,"a"::S,"z"::S,"w"::S]$Lisp,_ - ["z"::S,"w"::S]$Lisp,_ - [["double"::S,["a"::S,["+"::S,"n"::S,1@I]$Lisp]$Lisp_ - ,["z"::S,2$Lisp,"n"::S]$Lisp,["w"::S,["*"::S,["+"::S,"n"::S,1@I]$Lisp,2$Lisp]$Lisp]$Lisp]$Lisp_ - ,["integer"::S,"n"::S,"ifail"::S]$Lisp_ - ,["logical"::S,"scale"::S]$Lisp_ - ]$Lisp,_ - ["z"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,scaleArg::Any,ifailArg::Any,aArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package NAGC02 NagPolynomialRootsPackage>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/c05.spad.pamphlet b/src/algebra/c05.spad.pamphlet deleted file mode 100644 index 70a9a4f9..00000000 --- a/src/algebra/c05.spad.pamphlet +++ /dev/null @@ -1,176 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra c05.spad} -\author{Godfrey Nolan, Mike Dewar} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package NAGC05 NagRootFindingPackage} -<<package NAGC05 NagRootFindingPackage>>= -)abbrev package NAGC05 NagRootFindingPackage -++ Author: Godfrey Nolan and Mike Dewar -++ Date Created: Jan 1994 -++ Date Last Updated: Thu May 12 17:44:28 1994 -++Description: -++This package uses the NAG Library to calculate real zeros of -++continuous real functions of one or more variables. (Complex -++equations must be expressed in terms of the equivalent larger -++system of real equations.) -++See \downlink{Manual Page}{manpageXXc05}. - -NagRootFindingPackage(): Exports == Implementation where - S ==> Symbol - FOP ==> FortranOutputStackPackage - - Exports ==> with - c05adf : (DoubleFloat,DoubleFloat,DoubleFloat,DoubleFloat,_ - Integer,Union(fn:FileName,fp:Asp1(F))) -> Result - ++ c05adf(a,b,eps,eta,ifail,f) - ++ locates a zero of a continuous function in a given - ++ interval by a combination of the methods of linear interpolation, - ++ extrapolation and bisection. - ++ See \downlink{Manual Page}{manpageXXc05adf}. - c05nbf : (Integer,Integer,Matrix DoubleFloat,DoubleFloat,_ - Integer,Union(fn:FileName,fp:Asp6(FCN))) -> Result - ++ c05nbf(n,lwa,x,xtol,ifail,fcn) - ++ is an easy-to-use routine to find a solution of a system - ++ of nonlinear equations by a modification of the Powell hybrid - ++ method. - ++ See \downlink{Manual Page}{manpageXXc05nbf}. - c05pbf : (Integer,Integer,Integer,Matrix DoubleFloat,_ - DoubleFloat,Integer,Union(fn:FileName,fp:Asp35(FCN))) -> Result - ++ c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn) - ++ is an easy-to-use routine to find a solution of a system - ++ of nonlinear equations by a modification of the Powell hybrid - ++ method. The user must provide the Jacobian. - ++ See \downlink{Manual Page}{manpageXXc05pbf}. - Implementation ==> add - - import Lisp - import DoubleFloat - import Any - import Record - import Integer - import Matrix DoubleFloat - import Boolean - import NAGLinkSupportPackage - import FortranPackage - import Union(fn:FileName,fp:Asp1(F)) - import AnyFunctions1(DoubleFloat) - import AnyFunctions1(Matrix DoubleFloat) - import AnyFunctions1(Integer) - - - c05adf(aArg:DoubleFloat,bArg:DoubleFloat,epsArg:DoubleFloat,_ - etaArg:DoubleFloat,ifailArg:Integer,fArg:Union(fn:FileName,fp:Asp1(F))): Result == - pushFortranOutputStack(fFilename := aspFilename "f")$FOP - if fArg case fn - then outputAsFortran(fArg.fn) - else outputAsFortran(fArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([fFilename]$Lisp,_ - "c05adf",_ - ["a"::S,"b"::S,"eps"::S,"eta"::S,"x"::S_ - ,"ifail"::S,"f"::S]$Lisp,_ - ["x"::S,"f"::S]$Lisp,_ - [["double"::S,"a"::S,"b"::S,"eps"::S,"eta"::S_ - ,"x"::S,"f"::S]$Lisp_ - ,["integer"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["x"::S,"ifail"::S]$Lisp,_ - [([aArg::Any,bArg::Any,epsArg::Any,etaArg::Any,ifailArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - c05nbf(nArg:Integer,lwaArg:Integer,xArg:Matrix DoubleFloat,_ - xtolArg:DoubleFloat,ifailArg:Integer,fcnArg:Union(fn:FileName,fp:Asp6(FCN))): Result == - pushFortranOutputStack(fcnFilename := aspFilename "fcn")$FOP - if fcnArg case fn - then outputAsFortran(fcnArg.fn) - else outputAsFortran(fcnArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([fcnFilename]$Lisp,_ - "c05nbf",_ - ["n"::S,"lwa"::S,"xtol"::S,"ifail"::S,"fcn"::S_ - ,"fvec"::S,"x"::S,"wa"::S]$Lisp,_ - ["fvec"::S,"wa"::S,"fcn"::S]$Lisp,_ - [["double"::S,["fvec"::S,"n"::S]$Lisp,["x"::S,"n"::S]$Lisp_ - ,"xtol"::S,["wa"::S,"lwa"::S]$Lisp,"fcn"::S]$Lisp_ - ,["integer"::S,"n"::S,"lwa"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["fvec"::S,"x"::S,"xtol"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,lwaArg::Any,xtolArg::Any,ifailArg::Any,xArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - c05pbf(nArg:Integer,ldfjacArg:Integer,lwaArg:Integer,_ - xArg:Matrix DoubleFloat,xtolArg:DoubleFloat,ifailArg:Integer,_ - fcnArg:Union(fn:FileName,fp:Asp35(FCN))): Result == - pushFortranOutputStack(fcnFilename := aspFilename "fcn")$FOP - if fcnArg case fn - then outputAsFortran(fcnArg.fn) - else outputAsFortran(fcnArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([fcnFilename]$Lisp,_ - "c05pbf",_ - ["n"::S,"ldfjac"::S,"lwa"::S,"xtol"::S,"ifail"::S_ - ,"fcn"::S,"fvec"::S,"fjac"::S,"x"::S,"wa"::S]$Lisp,_ - ["fvec"::S,"fjac"::S,"wa"::S,"fcn"::S]$Lisp,_ - [["double"::S,["fvec"::S,"n"::S]$Lisp,["fjac"::S,"ldfjac"::S,"n"::S]$Lisp_ - ,["x"::S,"n"::S]$Lisp,"xtol"::S,["wa"::S,"lwa"::S]$Lisp,"fcn"::S]$Lisp_ - ,["integer"::S,"n"::S,"ldfjac"::S,"lwa"::S_ - ,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["fvec"::S,"fjac"::S,"x"::S,"xtol"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,ldfjacArg::Any,lwaArg::Any,xtolArg::Any,ifailArg::Any,xArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package NAGC05 NagRootFindingPackage>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/c06.spad.pamphlet b/src/algebra/c06.spad.pamphlet deleted file mode 100644 index 939d5294..00000000 --- a/src/algebra/c06.spad.pamphlet +++ /dev/null @@ -1,339 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra c06.spad} -\author{Godfrey Nolan, Mike Dewar} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package NAGC06 NagSeriesSummationPackage} -<<package NAGC06 NagSeriesSummationPackage>>= -)abbrev package NAGC06 NagSeriesSummationPackage -++ Author: Godfrey Nolan and Mike Dewar -++ Date Created: Jan 1994 -++ Date Last Updated: Thu May 12 17:44:30 1994 -++Description: -++This package uses the NAG Library to calculate the discrete Fourier -++transform of a sequence of real or complex data values, and -++applies it to calculate convolutions and correlations. -++See \downlink{Manual Page}{manpageXXc06}. - -NagSeriesSummationPackage(): Exports == Implementation where - S ==> Symbol - FOP ==> FortranOutputStackPackage - - Exports ==> with - c06eaf : (Integer,Matrix DoubleFloat,Integer) -> Result - ++ c06eaf(n,x,ifail) - ++ calculates the discrete Fourier transform of a sequence of - ++ n real data values. (No extra workspace required.) - ++ See \downlink{Manual Page}{manpageXXc06eaf}. - c06ebf : (Integer,Matrix DoubleFloat,Integer) -> Result - ++ c06ebf(n,x,ifail) - ++ calculates the discrete Fourier transform of a Hermitian - ++ sequence of n complex data values. (No extra workspace required.) - ++ See \downlink{Manual Page}{manpageXXc06ebf}. - c06ecf : (Integer,Matrix DoubleFloat,Matrix DoubleFloat,Integer) -> Result - ++ c06ecf(n,x,y,ifail) - ++ calculates the discrete Fourier transform of a sequence of - ++ n complex data values. (No extra workspace required.) - ++ See \downlink{Manual Page}{manpageXXc06ecf}. - c06ekf : (Integer,Integer,Matrix DoubleFloat,Matrix DoubleFloat,_ - Integer) -> Result - ++ c06ekf(job,n,x,y,ifail) - ++ calculates the circular convolution of two - ++ real vectors of period n. No extra workspace is required. - ++ See \downlink{Manual Page}{manpageXXc06ekf}. - c06fpf : (Integer,Integer,String,Matrix DoubleFloat,_ - Matrix DoubleFloat,Integer) -> Result - ++ c06fpf(m,n,init,x,trig,ifail) - ++ computes the discrete Fourier transforms of m sequences, - ++ each containing n real data values. This routine is designed to - ++ be particularly efficient on vector processors. - ++ See \downlink{Manual Page}{manpageXXc06fpf}. - c06fqf : (Integer,Integer,String,Matrix DoubleFloat,_ - Matrix DoubleFloat,Integer) -> Result - ++ c06fqf(m,n,init,x,trig,ifail) - ++ computes the discrete Fourier transforms of m Hermitian - ++ sequences, each containing n complex data values. This routine is - ++ designed to be particularly efficient on vector processors. - ++ See \downlink{Manual Page}{manpageXXc06fqf}. - c06frf : (Integer,Integer,String,Matrix DoubleFloat,_ - Matrix DoubleFloat,Matrix DoubleFloat,Integer) -> Result - ++ c06frf(m,n,init,x,y,trig,ifail) - ++ computes the discrete Fourier transforms of m sequences, - ++ each containing n complex data values. This routine is designed - ++ to be particularly efficient on vector processors. - ++ See \downlink{Manual Page}{manpageXXc06frf}. - c06fuf : (Integer,Integer,String,Matrix DoubleFloat,_ - Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Integer) -> Result - ++ c06fuf(m,n,init,x,y,trigm,trign,ifail) - ++ computes the two-dimensional discrete Fourier transform of - ++ a bivariate sequence of complex data values. This routine is - ++ designed to be particularly efficient on vector processors. - ++ See \downlink{Manual Page}{manpageXXc06fuf}. - c06gbf : (Integer,Matrix DoubleFloat,Integer) -> Result - ++ c06gbf(n,x,ifail) - ++ forms the complex conjugate of n - ++ data values. - ++ See \downlink{Manual Page}{manpageXXc06gbf}. - c06gcf : (Integer,Matrix DoubleFloat,Integer) -> Result - ++ c06gcf(n,y,ifail) - ++ forms the complex conjugate of a sequence of n data - ++ values. - ++ See \downlink{Manual Page}{manpageXXc06gcf}. - c06gqf : (Integer,Integer,Matrix DoubleFloat,Integer) -> Result - ++ c06gqf(m,n,x,ifail) - ++ forms the complex conjugates, - ++ each containing n data values. - ++ See \downlink{Manual Page}{manpageXXc06gqf}. - c06gsf : (Integer,Integer,Matrix DoubleFloat,Integer) -> Result - ++ c06gsf(m,n,x,ifail) - ++ takes m Hermitian sequences, each containing n data - ++ values, and forms the real and imaginary parts of the m - ++ corresponding complex sequences. - ++ See \downlink{Manual Page}{manpageXXc06gsf}. - Implementation ==> add - - import Lisp - import DoubleFloat - import Any - import Record - import Integer - import Matrix DoubleFloat - import Boolean - import NAGLinkSupportPackage - import AnyFunctions1(Integer) - import AnyFunctions1(String) - import AnyFunctions1(Matrix DoubleFloat) - - - c06eaf(nArg:Integer,xArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "c06eaf",_ - ["n"::S,"ifail"::S,"x"::S]$Lisp,_ - []$Lisp,_ - [["double"::S,["x"::S,"n"::S]$Lisp]$Lisp_ - ,["integer"::S,"n"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["x"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,ifailArg::Any,xArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - - c06ebf(nArg:Integer,xArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "c06ebf",_ - ["n"::S,"ifail"::S,"x"::S]$Lisp,_ - []$Lisp,_ - [["double"::S,["x"::S,"n"::S]$Lisp]$Lisp_ - ,["integer"::S,"n"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["x"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,ifailArg::Any,xArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - c06ecf(nArg:Integer,xArg:Matrix DoubleFloat,yArg:Matrix DoubleFloat,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "c06ecf",_ - ["n"::S,"ifail"::S,"x"::S,"y"::S]$Lisp,_ - []$Lisp,_ - [["double"::S,["x"::S,"n"::S]$Lisp,["y"::S,"n"::S]$Lisp_ - ]$Lisp_ - ,["integer"::S,"n"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["x"::S,"y"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,ifailArg::Any,xArg::Any,yArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - c06ekf(jobArg:Integer,nArg:Integer,xArg:Matrix DoubleFloat,_ - yArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "c06ekf",_ - ["job"::S,"n"::S,"ifail"::S,"x"::S,"y"::S]$Lisp,_ - []$Lisp,_ - [["double"::S,["x"::S,"n"::S]$Lisp,["y"::S,"n"::S]$Lisp_ - ]$Lisp_ - ,["integer"::S,"job"::S,"n"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["x"::S,"y"::S,"ifail"::S]$Lisp,_ - [([jobArg::Any,nArg::Any,ifailArg::Any,xArg::Any,yArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - c06fpf(mArg:Integer,nArg:Integer,initArg:String,_ - xArg:Matrix DoubleFloat,trigArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "c06fpf",_ - ["m"::S,"n"::S,"init"::S,"ifail"::S,"x"::S,"trig"::S,"work"::S]$Lisp,_ - ["work"::S]$Lisp,_ - [["double"::S,["x"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp_ - ,["trig"::S,["*"::S,2$Lisp,"n"::S]$Lisp]$Lisp,["work"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp]$Lisp_ - ,["integer"::S,"m"::S,"n"::S,"ifail"::S]$Lisp_ - ,["character"::S,"init"::S]$Lisp_ - ]$Lisp,_ - ["x"::S,"trig"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,nArg::Any,initArg::Any,ifailArg::Any,xArg::Any,trigArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - c06fqf(mArg:Integer,nArg:Integer,initArg:String,_ - xArg:Matrix DoubleFloat,trigArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "c06fqf",_ - ["m"::S,"n"::S,"init"::S,"ifail"::S,"x"::S,"trig"::S,"work"::S]$Lisp,_ - ["work"::S]$Lisp,_ - [["double"::S,["x"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp_ - ,["trig"::S,["*"::S,2$Lisp,"n"::S]$Lisp]$Lisp,["work"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp]$Lisp_ - ,["integer"::S,"m"::S,"n"::S,"ifail"::S]$Lisp_ - ,["character"::S,"init"::S]$Lisp_ - ]$Lisp,_ - ["x"::S,"trig"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,nArg::Any,initArg::Any,ifailArg::Any,xArg::Any,trigArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - c06frf(mArg:Integer,nArg:Integer,initArg:String,_ - xArg:Matrix DoubleFloat,yArg:Matrix DoubleFloat,trigArg:Matrix DoubleFloat,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "c06frf",_ - ["m"::S,"n"::S,"init"::S,"ifail"::S,"x"::S,"y"::S,"trig"::S,"work"::S]$Lisp,_ - ["work"::S]$Lisp,_ - [["double"::S,["x"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp_ - ,["y"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp,["trig"::S,["*"::S,2$Lisp,"n"::S]$Lisp]$Lisp,["work"::S,["*"::S,["*"::S,2$Lisp,"m"::S]$Lisp,"n"::S]$Lisp]$Lisp_ - ]$Lisp_ - ,["integer"::S,"m"::S,"n"::S,"ifail"::S]$Lisp_ - ,["character"::S,"init"::S]$Lisp_ - ]$Lisp,_ - ["x"::S,"y"::S,"trig"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,nArg::Any,initArg::Any,ifailArg::Any,xArg::Any,yArg::Any,trigArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - c06fuf(mArg:Integer,nArg:Integer,initArg:String,_ - xArg:Matrix DoubleFloat,yArg:Matrix DoubleFloat,trigmArg:Matrix DoubleFloat,_ - trignArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "c06fuf",_ - ["m"::S,"n"::S,"init"::S,"ifail"::S,"x"::S,"y"::S,"trigm"::S,"trign"::S,"work"::S_ - ]$Lisp,_ - ["work"::S]$Lisp,_ - [["double"::S,["x"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp_ - ,["y"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp,["trigm"::S,["*"::S,2$Lisp,"m"::S]$Lisp]$Lisp,["trign"::S,["*"::S,2$Lisp,"n"::S]$Lisp]$Lisp_ - ,["work"::S,["*"::S,["*"::S,2$Lisp,"m"::S]$Lisp,"n"::S]$Lisp]$Lisp]$Lisp_ - ,["integer"::S,"m"::S,"n"::S,"ifail"::S]$Lisp_ - ,["character"::S,"init"::S]$Lisp_ - ]$Lisp,_ - ["x"::S,"y"::S,"trigm"::S,"trign"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,nArg::Any,initArg::Any,ifailArg::Any,xArg::Any,yArg::Any,trigmArg::Any,trignArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - c06gbf(nArg:Integer,xArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "c06gbf",_ - ["n"::S,"ifail"::S,"x"::S]$Lisp,_ - []$Lisp,_ - [["double"::S,["x"::S,"n"::S]$Lisp]$Lisp_ - ,["integer"::S,"n"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["x"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,ifailArg::Any,xArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - c06gcf(nArg:Integer,yArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "c06gcf",_ - ["n"::S,"ifail"::S,"y"::S]$Lisp,_ - []$Lisp,_ - [["double"::S,["y"::S,"n"::S]$Lisp]$Lisp_ - ,["integer"::S,"n"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["y"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,ifailArg::Any,yArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - c06gqf(mArg:Integer,nArg:Integer,xArg:Matrix DoubleFloat,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "c06gqf",_ - ["m"::S,"n"::S,"ifail"::S,"x"::S]$Lisp,_ - []$Lisp,_ - [["double"::S,["x"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp_ - ]$Lisp_ - ,["integer"::S,"m"::S,"n"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["x"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,nArg::Any,ifailArg::Any,xArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - c06gsf(mArg:Integer,nArg:Integer,xArg:Matrix DoubleFloat,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "c06gsf",_ - ["m"::S,"n"::S,"ifail"::S,"x"::S,"u"::S,"v"::S]$Lisp,_ - ["u"::S,"v"::S]$Lisp,_ - [["double"::S,["x"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp_ - ,["u"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp,["v"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp]$Lisp_ - ,["integer"::S,"m"::S,"n"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["u"::S,"v"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,nArg::Any,ifailArg::Any,xArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package NAGC06 NagSeriesSummationPackage>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/d01.spad.pamphlet b/src/algebra/d01.spad.pamphlet deleted file mode 100644 index 0226aba8..00000000 --- a/src/algebra/d01.spad.pamphlet +++ /dev/null @@ -1,447 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra d01.spad} -\author{Godfrey Nolan, Mike Dewar} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package NAGD01 NagIntegrationPackage} -<<package NAGD01 NagIntegrationPackage>>= -)abbrev package NAGD01 NagIntegrationPackage -++ Author: Godfrey Nolan and Mike Dewar -++ Date Created: Jan 1994 -++ Date Last Updated: Thu May 12 17:44:37 1994 -++Description: -++This package uses the NAG Library to calculate the numerical value of -++definite integrals in one or more dimensions and to evaluate -++weights and abscissae of integration rules. -++See \downlink{Manual Page}{manpageXXd01}. - -NagIntegrationPackage(): Exports == Implementation where - S ==> Symbol - FOP ==> FortranOutputStackPackage - - Exports ==> with - d01ajf : (DoubleFloat,DoubleFloat,DoubleFloat,DoubleFloat,_ - Integer,Integer,Integer,Union(fn:FileName,fp:Asp1(F))) -> Result - ++ d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f) - ++ is a general-purpose integrator which calculates an - ++ approximation to the integral of a function f(x) over a finite - ++ interval [a,b]: - ++ See \downlink{Manual Page}{manpageXXd01ajf}. - d01akf : (DoubleFloat,DoubleFloat,DoubleFloat,DoubleFloat,_ - Integer,Integer,Integer,Union(fn:FileName,fp:Asp1(F))) -> Result - ++ d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f) - ++ is an adaptive integrator, especially suited to - ++ oscillating, non-singular integrands, which calculates an - ++ approximation to the integral of a function f(x) over a finite - ++ interval [a,b]: - ++ See \downlink{Manual Page}{manpageXXd01akf}. - d01alf : (DoubleFloat,DoubleFloat,Integer,Matrix DoubleFloat,_ - DoubleFloat,DoubleFloat,Integer,Integer,Integer,Union(fn:FileName,fp:Asp1(F))) -> Result - ++ d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f) - ++ is a general purpose integrator which calculates an - ++ approximation to the integral of a function f(x) over a finite - ++ interval [a,b]: - ++ See \downlink{Manual Page}{manpageXXd01alf}. - d01amf : (DoubleFloat,Integer,DoubleFloat,DoubleFloat,_ - Integer,Integer,Integer,Union(fn:FileName,fp:Asp1(F))) -> Result - ++ d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f) - ++ calculates an approximation to the integral of a function - ++ f(x) over an infinite or semi-infinite interval [a,b]: - ++ See \downlink{Manual Page}{manpageXXd01amf}. - d01anf : (DoubleFloat,DoubleFloat,DoubleFloat,Integer,_ - DoubleFloat,DoubleFloat,Integer,Integer,Integer,Union(fn:FileName,fp:Asp1(G))) -> Result - ++ d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g) - ++ calculates an approximation to the sine or the cosine - ++ transform of a function g over [a,b]: - ++ See \downlink{Manual Page}{manpageXXd01anf}. - d01apf : (DoubleFloat,DoubleFloat,DoubleFloat,DoubleFloat,_ - Integer,DoubleFloat,DoubleFloat,Integer,Integer,Integer,Union(fn:FileName,fp:Asp1(G))) -> Result - ++ d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g) - ++ is an adaptive integrator which calculates an - ++ approximation to the integral of a function g(x)w(x) over a - ++ finite interval [a,b]: - ++ See \downlink{Manual Page}{manpageXXd01apf}. - d01aqf : (DoubleFloat,DoubleFloat,DoubleFloat,DoubleFloat,_ - DoubleFloat,Integer,Integer,Integer,Union(fn:FileName,fp:Asp1(G))) -> Result - ++ d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g) - ++ calculates an approximation to the Hilbert transform of a - ++ function g(x) over [a,b]: - ++ See \downlink{Manual Page}{manpageXXd01aqf}. - d01asf : (DoubleFloat,DoubleFloat,Integer,DoubleFloat,_ - Integer,Integer,Integer,Integer,Union(fn:FileName,fp:Asp1(G))) -> Result - ++ d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g) - ++ calculates an approximation to the sine or the cosine - ++ transform of a function g over [a,infty): - ++ See \downlink{Manual Page}{manpageXXd01asf}. - d01bbf : (DoubleFloat,DoubleFloat,Integer,Integer,_ - Integer,Integer) -> Result - ++ d01bbf(a,b,itype,n,gtype,ifail) - ++ returns the weight appropriate to a - ++ Gaussian quadrature. - ++ The formulae provided are Gauss-Legendre, Gauss-Rational, Gauss- - ++ Laguerre and Gauss-Hermite. - ++ See \downlink{Manual Page}{manpageXXd01bbf}. - d01fcf : (Integer,Matrix DoubleFloat,Matrix DoubleFloat,Integer,_ - DoubleFloat,Integer,Integer,Integer,Union(fn:FileName,fp:Asp4(FUNCTN))) -> Result - ++ d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn) - ++ attempts to evaluate a multi-dimensional integral (up to - ++ 15 dimensions), with constant and finite limits, to a specified - ++ relative accuracy, using an adaptive subdivision strategy. - ++ See \downlink{Manual Page}{manpageXXd01fcf}. - d01gaf : (Matrix DoubleFloat,Matrix DoubleFloat,Integer,Integer) -> Result - ++ d01gaf(x,y,n,ifail) - ++ integrates a function which is specified numerically at - ++ four or more points, over the whole of its specified range, using - ++ third-order finite-difference formulae with error estimates, - ++ according to a method due to Gill and Miller. - ++ See \downlink{Manual Page}{manpageXXd01gaf}. - d01gbf : (Integer,Matrix DoubleFloat,Matrix DoubleFloat,Integer,_ - DoubleFloat,Integer,Integer,Matrix DoubleFloat,Integer,Union(fn:FileName,fp:Asp4(FUNCTN))) -> Result - ++ d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn) - ++ returns an approximation to the integral of a function - ++ over a hyper-rectangular region, using a Monte Carlo method. An - ++ approximate relative error estimate is also returned. This - ++ routine is suitable for low accuracy work. - ++ See \downlink{Manual Page}{manpageXXd01gbf}. - Implementation ==> add - - import Lisp - import DoubleFloat - import Any - import Record - import Integer - import Matrix DoubleFloat - import Boolean - import NAGLinkSupportPackage - import FortranPackage - import Union(fn:FileName,fp:Asp1(F)) - import AnyFunctions1(DoubleFloat) - import AnyFunctions1(Integer) - import AnyFunctions1(Matrix DoubleFloat) - - - d01ajf(aArg:DoubleFloat,bArg:DoubleFloat,epsabsArg:DoubleFloat,_ - epsrelArg:DoubleFloat,lwArg:Integer,liwArg:Integer,_ - ifailArg:Integer,fArg:Union(fn:FileName,fp:Asp1(F))): Result == - pushFortranOutputStack(fFilename := aspFilename "f")$FOP - if fArg case fn - then outputAsFortran(fArg.fn) - else outputAsFortran(fArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([fFilename]$Lisp,_ - "d01ajf",_ - ["a"::S,"b"::S,"epsabs"::S,"epsrel"::S,"lw"::S_ - ,"liw"::S,"result"::S,"abserr"::S,"ifail"::S,"f"::S_ - ,"w"::S,"iw"::S]$Lisp,_ - ["result"::S,"abserr"::S,"w"::S,"iw"::S,"f"::S]$Lisp,_ - [["double"::S,"a"::S,"b"::S,"epsabs"::S,"epsrel"::S_ - ,"result"::S,"abserr"::S,["w"::S,"lw"::S]$Lisp,"f"::S]$Lisp_ - ,["integer"::S,"lw"::S,"liw"::S,["iw"::S,"liw"::S]$Lisp_ - ,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["result"::S,"abserr"::S,"w"::S,"iw"::S,"ifail"::S]$Lisp,_ - [([aArg::Any,bArg::Any,epsabsArg::Any,epsrelArg::Any,lwArg::Any,liwArg::Any,ifailArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - d01akf(aArg:DoubleFloat,bArg:DoubleFloat,epsabsArg:DoubleFloat,_ - epsrelArg:DoubleFloat,lwArg:Integer,liwArg:Integer,_ - ifailArg:Integer,fArg:Union(fn:FileName,fp:Asp1(F))): Result == - pushFortranOutputStack(fFilename := aspFilename "f")$FOP - if fArg case fn - then outputAsFortran(fArg.fn) - else outputAsFortran(fArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([fFilename]$Lisp,_ - "d01akf",_ - ["a"::S,"b"::S,"epsabs"::S,"epsrel"::S,"lw"::S_ - ,"liw"::S,"result"::S,"abserr"::S,"ifail"::S,"f"::S_ - ,"w"::S,"iw"::S]$Lisp,_ - ["result"::S,"abserr"::S,"w"::S,"iw"::S,"f"::S]$Lisp,_ - [["double"::S,"a"::S,"b"::S,"epsabs"::S,"epsrel"::S_ - ,"result"::S,"abserr"::S,["w"::S,"lw"::S]$Lisp,"f"::S]$Lisp_ - ,["integer"::S,"lw"::S,"liw"::S,["iw"::S,"liw"::S]$Lisp_ - ,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["result"::S,"abserr"::S,"w"::S,"iw"::S,"ifail"::S]$Lisp,_ - [([aArg::Any,bArg::Any,epsabsArg::Any,epsrelArg::Any,lwArg::Any,liwArg::Any,ifailArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - d01alf(aArg:DoubleFloat,bArg:DoubleFloat,nptsArg:Integer,_ - pointsArg:Matrix DoubleFloat,epsabsArg:DoubleFloat,epsrelArg:DoubleFloat,_ - lwArg:Integer,liwArg:Integer,ifailArg:Integer,_ - fArg:Union(fn:FileName,fp:Asp1(F))): Result == - pushFortranOutputStack(fFilename := aspFilename "f")$FOP - if fArg case fn - then outputAsFortran(fArg.fn) - else outputAsFortran(fArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([fFilename]$Lisp,_ - "d01alf",_ - ["a"::S,"b"::S,"npts"::S,"epsabs"::S,"epsrel"::S_ - ,"lw"::S,"liw"::S,"result"::S,"abserr"::S,"ifail"::S_ - ,"f"::S,"points"::S,"w"::S,"iw"::S]$Lisp,_ - ["result"::S,"abserr"::S,"w"::S,"iw"::S,"f"::S]$Lisp,_ - [["double"::S,"a"::S,"b"::S,["points"::S,"*"::S]$Lisp_ - ,"epsabs"::S,"epsrel"::S,"result"::S,"abserr"::S,["w"::S,"lw"::S]$Lisp,"f"::S]$Lisp_ - ,["integer"::S,"npts"::S,"lw"::S,"liw"::S,["iw"::S,"liw"::S]$Lisp_ - ,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["result"::S,"abserr"::S,"w"::S,"iw"::S,"ifail"::S]$Lisp,_ - [([aArg::Any,bArg::Any,nptsArg::Any,epsabsArg::Any,epsrelArg::Any,lwArg::Any,liwArg::Any,ifailArg::Any,pointsArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - d01amf(boundArg:DoubleFloat,infArg:Integer,epsabsArg:DoubleFloat,_ - epsrelArg:DoubleFloat,lwArg:Integer,liwArg:Integer,_ - ifailArg:Integer,fArg:Union(fn:FileName,fp:Asp1(F))): Result == - pushFortranOutputStack(fFilename := aspFilename "f")$FOP - if fArg case fn - then outputAsFortran(fArg.fn) - else outputAsFortran(fArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([fFilename]$Lisp,_ - "d01amf",_ - ["bound"::S,"inf"::S,"epsabs"::S,"epsrel"::S,"lw"::S_ - ,"liw"::S,"result"::S,"abserr"::S,"ifail"::S,"f"::S_ - ,"w"::S,"iw"::S]$Lisp,_ - ["result"::S,"abserr"::S,"w"::S,"iw"::S,"f"::S]$Lisp,_ - [["double"::S,"bound"::S,"epsabs"::S,"epsrel"::S_ - ,"result"::S,"abserr"::S,["w"::S,"lw"::S]$Lisp,"f"::S]$Lisp_ - ,["integer"::S,"inf"::S,"lw"::S,"liw"::S,["iw"::S,"liw"::S]$Lisp_ - ,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["result"::S,"abserr"::S,"w"::S,"iw"::S,"ifail"::S]$Lisp,_ - [([boundArg::Any,infArg::Any,epsabsArg::Any,epsrelArg::Any,lwArg::Any,liwArg::Any,ifailArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - d01anf(aArg:DoubleFloat,bArg:DoubleFloat,omegaArg:DoubleFloat,_ - keyArg:Integer,epsabsArg:DoubleFloat,epsrelArg:DoubleFloat,_ - lwArg:Integer,liwArg:Integer,ifailArg:Integer,_ - gArg:Union(fn:FileName,fp:Asp1(G))): Result == - pushFortranOutputStack(gFilename := aspFilename "g")$FOP - if gArg case fn - then outputAsFortran(gArg.fn) - else outputAsFortran(gArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([gFilename]$Lisp,_ - "d01anf",_ - ["a"::S,"b"::S,"omega"::S,"key"::S,"epsabs"::S_ - ,"epsrel"::S,"lw"::S,"liw"::S,"result"::S,"abserr"::S_ - ,"ifail"::S,"g"::S,"w"::S,"iw"::S]$Lisp,_ - ["result"::S,"abserr"::S,"w"::S,"iw"::S,"g"::S]$Lisp,_ - [["double"::S,"a"::S,"b"::S,"omega"::S,"epsabs"::S_ - ,"epsrel"::S,"result"::S,"abserr"::S,["w"::S,"lw"::S]$Lisp,"g"::S]$Lisp_ - ,["integer"::S,"key"::S,"lw"::S,"liw"::S,["iw"::S,"liw"::S]$Lisp_ - ,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["result"::S,"abserr"::S,"w"::S,"iw"::S,"ifail"::S]$Lisp,_ - [([aArg::Any,bArg::Any,omegaArg::Any,keyArg::Any,epsabsArg::Any,epsrelArg::Any,lwArg::Any,liwArg::Any,ifailArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - d01apf(aArg:DoubleFloat,bArg:DoubleFloat,alfaArg:DoubleFloat,_ - betaArg:DoubleFloat,keyArg:Integer,epsabsArg:DoubleFloat,_ - epsrelArg:DoubleFloat,lwArg:Integer,liwArg:Integer,_ - ifailArg:Integer,gArg:Union(fn:FileName,fp:Asp1(G))): Result == - pushFortranOutputStack(gFilename := aspFilename "g")$FOP - if gArg case fn - then outputAsFortran(gArg.fn) - else outputAsFortran(gArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([gFilename]$Lisp,_ - "d01apf",_ - ["a"::S,"b"::S,"alfa"::S,"beta"::S,"key"::S_ - ,"epsabs"::S,"epsrel"::S,"lw"::S,"liw"::S,"result"::S_ - ,"abserr"::S,"ifail"::S,"g"::S,"w"::S,"iw"::S]$Lisp,_ - ["result"::S,"abserr"::S,"w"::S,"iw"::S,"g"::S]$Lisp,_ - [["double"::S,"a"::S,"b"::S,"alfa"::S,"beta"::S_ - ,"epsabs"::S,"epsrel"::S,"result"::S,"abserr"::S,["w"::S,"lw"::S]$Lisp,"g"::S]$Lisp_ - ,["integer"::S,"key"::S,"lw"::S,"liw"::S,["iw"::S,"liw"::S]$Lisp_ - ,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["result"::S,"abserr"::S,"w"::S,"iw"::S,"ifail"::S]$Lisp,_ - [([aArg::Any,bArg::Any,alfaArg::Any,betaArg::Any,keyArg::Any,epsabsArg::Any,epsrelArg::Any,lwArg::Any,liwArg::Any,ifailArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - d01aqf(aArg:DoubleFloat,bArg:DoubleFloat,cArg:DoubleFloat,_ - epsabsArg:DoubleFloat,epsrelArg:DoubleFloat,lwArg:Integer,_ - liwArg:Integer,ifailArg:Integer,gArg:Union(fn:FileName,fp:Asp1(G))): Result == - pushFortranOutputStack(gFilename := aspFilename "g")$FOP - if gArg case fn - then outputAsFortran(gArg.fn) - else outputAsFortran(gArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([gFilename]$Lisp,_ - "d01aqf",_ - ["a"::S,"b"::S,"c"::S,"epsabs"::S,"epsrel"::S_ - ,"lw"::S,"liw"::S,"result"::S,"abserr"::S,"ifail"::S_ - ,"g"::S,"w"::S,"iw"::S]$Lisp,_ - ["result"::S,"abserr"::S,"w"::S,"iw"::S,"g"::S]$Lisp,_ - [["double"::S,"a"::S,"b"::S,"c"::S,"epsabs"::S_ - ,"epsrel"::S,"result"::S,"abserr"::S,["w"::S,"lw"::S]$Lisp,"g"::S]$Lisp_ - ,["integer"::S,"lw"::S,"liw"::S,["iw"::S,"liw"::S]$Lisp_ - ,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["result"::S,"abserr"::S,"w"::S,"iw"::S,"ifail"::S]$Lisp,_ - [([aArg::Any,bArg::Any,cArg::Any,epsabsArg::Any,epsrelArg::Any,lwArg::Any,liwArg::Any,ifailArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - d01asf(aArg:DoubleFloat,omegaArg:DoubleFloat,keyArg:Integer,_ - epsabsArg:DoubleFloat,limlstArg:Integer,lwArg:Integer,_ - liwArg:Integer,ifailArg:Integer,gArg:Union(fn:FileName,fp:Asp1(G))): Result == - pushFortranOutputStack(gFilename := aspFilename "g")$FOP - if gArg case fn - then outputAsFortran(gArg.fn) - else outputAsFortran(gArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([gFilename]$Lisp,_ - "d01asf",_ - ["a"::S,"omega"::S,"key"::S,"epsabs"::S,"limlst"::S_ - ,"lw"::S,"liw"::S,"result"::S,"abserr"::S,"lst"::S_ - ,"ifail"::S,"g"::S,"erlst"::S,"rslst"::S,"ierlst"::S,"iw"::S,"w"::S_ - ]$Lisp,_ - ["result"::S,"abserr"::S,"lst"::S,"erlst"::S,"rslst"::S,"ierlst"::S,"iw"::S,"w"::S,"g"::S]$Lisp,_ - [["double"::S,"a"::S,"omega"::S,"epsabs"::S_ - ,"result"::S,"abserr"::S,["erlst"::S,"limlst"::S]$Lisp,["rslst"::S,"limlst"::S]$Lisp,["w"::S,"lw"::S]$Lisp,"g"::S]$Lisp_ - ,["integer"::S,"key"::S,"limlst"::S,"lw"::S_ - ,"liw"::S,"lst"::S,["ierlst"::S,"limlst"::S]$Lisp,["iw"::S,"liw"::S]$Lisp,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["result"::S,"abserr"::S,"lst"::S,"erlst"::S,"rslst"::S,"ierlst"::S,"iw"::S,"ifail"::S]$Lisp,_ - [([aArg::Any,omegaArg::Any,keyArg::Any,epsabsArg::Any,limlstArg::Any,lwArg::Any,liwArg::Any,ifailArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - d01bbf(aArg:DoubleFloat,bArg:DoubleFloat,itypeArg:Integer,_ - nArg:Integer,gtypeArg:Integer,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "d01bbf",_ - ["a"::S,"b"::S,"itype"::S,"n"::S,"gtype"::S_ - ,"ifail"::S,"weight"::S,"abscis"::S]$Lisp,_ - ["weight"::S,"abscis"::S]$Lisp,_ - [["double"::S,"a"::S,"b"::S,["weight"::S,"n"::S]$Lisp_ - ,["abscis"::S,"n"::S]$Lisp]$Lisp_ - ,["integer"::S,"itype"::S,"n"::S,"gtype"::S_ - ,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["weight"::S,"abscis"::S,"ifail"::S]$Lisp,_ - [([aArg::Any,bArg::Any,itypeArg::Any,nArg::Any,gtypeArg::Any,ifailArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - d01fcf(ndimArg:Integer,aArg:Matrix DoubleFloat,bArg:Matrix DoubleFloat,_ - maxptsArg:Integer,epsArg:DoubleFloat,lenwrkArg:Integer,_ - minptsArg:Integer,ifailArg:Integer,functnArg:Union(fn:FileName,fp:Asp4(FUNCTN))): Result == - pushFortranOutputStack(functnFilename := aspFilename "functn")$FOP - if functnArg case fn - then outputAsFortran(functnArg.fn) - else outputAsFortran(functnArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([functnFilename]$Lisp,_ - "d01fcf",_ - ["ndim"::S,"maxpts"::S,"eps"::S,"lenwrk"::S,"acc"::S_ - ,"finval"::S,"minpts"::S,"ifail"::S,"functn"::S,"a"::S,"b"::S,"wrkstr"::S]$Lisp,_ - ["acc"::S,"finval"::S,"wrkstr"::S,"functn"::S]$Lisp,_ - [["double"::S,["a"::S,"ndim"::S]$Lisp,["b"::S,"ndim"::S]$Lisp_ - ,"eps"::S,"acc"::S,"finval"::S,["wrkstr"::S,"lenwrk"::S]$Lisp,"functn"::S]$Lisp_ - ,["integer"::S,"ndim"::S,"maxpts"::S,"lenwrk"::S_ - ,"minpts"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["acc"::S,"finval"::S,"minpts"::S,"ifail"::S]$Lisp,_ - [([ndimArg::Any,maxptsArg::Any,epsArg::Any,lenwrkArg::Any,minptsArg::Any,ifailArg::Any,aArg::Any,bArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - d01gaf(xArg:Matrix DoubleFloat,yArg:Matrix DoubleFloat,nArg:Integer,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "d01gaf",_ - ["n"::S,"ans"::S,"er"::S,"ifail"::S,"x"::S,"y"::S]$Lisp,_ - ["ans"::S,"er"::S]$Lisp,_ - [["double"::S,["x"::S,"n"::S]$Lisp,["y"::S,"n"::S]$Lisp_ - ,"ans"::S,"er"::S]$Lisp_ - ,["integer"::S,"n"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["ans"::S,"er"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,ifailArg::Any,xArg::Any,yArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - d01gbf(ndimArg:Integer,aArg:Matrix DoubleFloat,bArg:Matrix DoubleFloat,_ - maxclsArg:Integer,epsArg:DoubleFloat,lenwrkArg:Integer,_ - minclsArg:Integer,wrkstrArg:Matrix DoubleFloat,ifailArg:Integer,_ - functnArg:Union(fn:FileName,fp:Asp4(FUNCTN))): Result == - pushFortranOutputStack(functnFilename := aspFilename "functn")$FOP - if functnArg case fn - then outputAsFortran(functnArg.fn) - else outputAsFortran(functnArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([functnFilename]$Lisp,_ - "d01gbf",_ - ["ndim"::S,"maxcls"::S,"eps"::S,"lenwrk"::S,"acc"::S_ - ,"finest"::S,"mincls"::S,"ifail"::S,"functn"::S,"a"::S,"b"::S,"wrkstr"::S]$Lisp,_ - ["acc"::S,"finest"::S,"functn"::S]$Lisp,_ - [["double"::S,["a"::S,"ndim"::S]$Lisp,["b"::S,"ndim"::S]$Lisp_ - ,"eps"::S,"acc"::S,"finest"::S,["wrkstr"::S,"lenwrk"::S]$Lisp,"functn"::S]$Lisp_ - ,["integer"::S,"ndim"::S,"maxcls"::S,"lenwrk"::S_ - ,"mincls"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["acc"::S,"finest"::S,"mincls"::S,"wrkstr"::S,"ifail"::S]$Lisp,_ - [([ndimArg::Any,maxclsArg::Any,epsArg::Any,lenwrkArg::Any,minclsArg::Any,ifailArg::Any,aArg::Any,bArg::Any,wrkstrArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package NAGD01 NagIntegrationPackage>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/d01Package.spad.pamphlet b/src/algebra/d01Package.spad.pamphlet deleted file mode 100644 index 131e00be..00000000 --- a/src/algebra/d01Package.spad.pamphlet +++ /dev/null @@ -1,559 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra d01Package.spad} -\author{Brian Dupee} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package INTPACK AnnaNumericalIntegrationPackage} -<<package INTPACK AnnaNumericalIntegrationPackage>>= -)abbrev package INTPACK AnnaNumericalIntegrationPackage -++ Author: Brian Dupee -++ Date Created: August 1994 -++ Date Last Updated: December 1997 -++ Basic Operations: integrate, measure -++ Related Constructors: Result, RoutinesTable -++ Also See: -++ AMS Classifications: -++ Keywords: -++ References: -++ Description: -++ \axiomType{AnnaNumericalIntegrationPackage} is a \axiom{package} -++ of functions for the \axiom{category} \axiomType{NumericalIntegrationCategory} -++ with \axiom{measure}, and \axiom{integrate}. -EDF ==> Expression DoubleFloat -DF ==> DoubleFloat -EF ==> Expression Float -F ==> Float -INT ==> Integer -SOCDF ==> Segment OrderedCompletion DoubleFloat -OCDF ==> OrderedCompletion DoubleFloat -SBOCF ==> SegmentBinding OrderedCompletion Float -LSOCF ==> List Segment OrderedCompletion Float -SOCF ==> Segment OrderedCompletion Float -OCF ==> OrderedCompletion Float -LS ==> List Symbol -S ==> Symbol -LST ==> List String -ST ==> String -RT ==> RoutinesTable -NIA ==> Record(var:S, fn:EDF, range:SOCDF, abserr:DF, relerr:DF) -MDNIA ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF) -IFL ==> List(Record(ifail:Integer,instruction:String)) -Entry ==> Record(chapter:String, type:String, domainName: String, - defaultMin:F, measure:F, failList:IFL, explList:List String) -Measure ==> Record(measure:F, name:ST, explanations:LST, extra:Result) - - -AnnaNumericalIntegrationPackage(): with - - integrate: (EF,SOCF,F,F,RT) -> Result - ++ integrate(exp, a..b, epsrel, routines) is a top level ANNA function - ++ to integrate an expression, {\tt exp}, over a given range {\tt a} - ++ to {\tt b} to the required absolute and relative accuracy using - ++ the routines available in the RoutinesTable provided. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{NumericalIntegrationCategory} - ++ to get the name and other - ++ relevant information of the the (domain of the) numerical - ++ routine likely to be the most appropriate, - ++ i.e. have the best \axiom{measure}. - ++ - ++ It then performs the integration of the given expression - ++ on that \axiom{domain}. - integrate: NumericalIntegrationProblem -> Result - ++ integrate(IntegrationProblem) is a top level ANNA function - ++ to integrate an expression over a given range or ranges - ++ to the required absolute and relative accuracy. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{NumericalIntegrationCategory} to get the name and other - ++ relevant information of the the (domain of the) numerical - ++ routine likely to be the most appropriate, - ++ i.e. have the best \axiom{measure}. - ++ - ++ It then performs the integration of the given expression - ++ on that \axiom{domain}. - - integrate: (EF,SOCF,F,F) -> Result - ++ integrate(exp, a..b, epsabs, epsrel) is a top level ANNA function - ++ to integrate an expression, {\tt exp}, over a given range {\tt a} - ++ to {\tt b} to the required absolute and relative accuracy. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{NumericalIntegrationCategory} to get the name and other - ++ relevant information of the the (domain of the) numerical - ++ routine likely to be the most appropriate, - ++ i.e. have the best \axiom{measure}. - ++ - ++ It then performs the integration of the given expression - ++ on that \axiom{domain}. - - integrate: (EF,SOCF,F) -> Result - ++ integrate(exp, a..b, epsrel) is a top level ANNA - ++ function to integrate an expression, {\tt exp}, over a given - ++ range {\tt a} to {\tt b} to the required relative accuracy. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{NumericalIntegrationCategory} to get the name and other - ++ relevant information of the the (domain of the) numerical - ++ routine likely to be the most appropriate, - ++ i.e. have the best \axiom{measure}. - ++ - ++ It then performs the integration of the given expression - ++ on that \axiom{domain}. - ++ - ++ If epsrel = 0, a default absolute accuracy is used. - - integrate: (EF,SOCF) -> Result - ++ integrate(exp, a..b) is a top - ++ level ANNA function to integrate an expression, {\tt exp}, - ++ over a given range {\tt a} to {\tt b}. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{NumericalIntegrationCategory} to get the name and other - ++ relevant information of the the (domain of the) numerical - ++ routine likely to be the most appropriate, - ++ i.e. have the best \axiom{measure}. - ++ - ++ It then performs the integration of the given expression - ++ on that \axiom{domain}. - ++ - ++ Default values for the absolute and relative error are used. - - integrate:(EF,LSOCF) -> Result - ++ integrate(exp, [a..b,c..d,...]) is a top - ++ level ANNA function to integrate a multivariate expression, {\tt exp}, - ++ over a given set of ranges. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{NumericalIntegrationCategory} to get the name and other - ++ relevant information of the the (domain of the) numerical - ++ routine likely to be the most appropriate, - ++ i.e. have the best \axiom{measure}. - ++ - ++ It then performs the integration of the given expression - ++ on that \axiom{domain}. - ++ - ++ Default values for the absolute and relative error are used. - - integrate:(EF,LSOCF,F) -> Result - ++ integrate(exp, [a..b,c..d,...], epsrel) is a top - ++ level ANNA function to integrate a multivariate expression, {\tt exp}, - ++ over a given set of ranges to the required relative - ++ accuracy. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{NumericalIntegrationCategory} to get the name and other - ++ relevant information of the the (domain of the) numerical - ++ routine likely to be the most appropriate, - ++ i.e. have the best \axiom{measure}. - ++ - ++ It then performs the integration of the given expression - ++ on that \axiom{domain}. - ++ - ++ If epsrel = 0, a default absolute accuracy is used. - - integrate:(EF,LSOCF,F,F) -> Result - ++ integrate(exp, [a..b,c..d,...], epsabs, epsrel) is a top - ++ level ANNA function to integrate a multivariate expression, {\tt exp}, - ++ over a given set of ranges to the required absolute and relative - ++ accuracy. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{NumericalIntegrationCategory} to get the name and other - ++ relevant information of the the (domain of the) numerical - ++ routine likely to be the most appropriate, - ++ i.e. have the best \axiom{measure}. - ++ - ++ It then performs the integration of the given expression - ++ on that \axiom{domain}. - - integrate:(EF,LSOCF,F,F,RT) -> Result - ++ integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines) is a top - ++ level ANNA function to integrate a multivariate expression, {\tt exp}, - ++ over a given set of ranges to the required absolute and relative - ++ accuracy, using the routines available in the RoutinesTable provided. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{NumericalIntegrationCategory} to get the name and other - ++ relevant information of the the (domain of the) numerical - ++ routine likely to be the most appropriate, - ++ i.e. have the best \axiom{measure}. - ++ - ++ It then performs the integration of the given expression - ++ on that \axiom{domain}. - - measure:NumericalIntegrationProblem -> Measure - ++ measure(prob) is a top level ANNA function for identifying the most - ++ appropriate numerical routine for solving the numerical integration - ++ problem defined by \axiom{prob}. - ++ - ++ It calls each \axiom{domain} of \axiom{category} - ++ \axiomType{NumericalIntegrationCategory} in turn to calculate all measures - ++ and returns the best - ++ i.e. the name of the most appropriate domain and any other relevant - ++ information. - measure:(NumericalIntegrationProblem,RT) -> Measure - ++ measure(prob,R) is a top level ANNA function for identifying the most - ++ appropriate numerical routine from those in the routines table - ++ provided for solving the numerical integration - ++ problem defined by \axiom{prob}. - ++ - ++ It calls each \axiom{domain} listed in \axiom{R} of \axiom{category} - ++ \axiomType{NumericalIntegrationCategory} in turn to calculate all measures - ++ and returns the best - ++ i.e. the name of the most appropriate domain and any other relevant - ++ information. - integrate:(EF,SBOCF,ST) -> Union(Result,"failed") - ++ integrate(exp, x = a..b, "numerical") is a top level ANNA function to - ++ integrate an expression, {\tt exp}, over a given range, {\tt a} - ++ to {\tt b}. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{NumericalIntegrationCategory} to get the name and other - ++ relevant information of the the (domain of the) numerical - ++ routine likely to be the most appropriate, - ++ i.e. have the best \axiom{measure}. - ++ - ++ It then performs the integration of the given expression - ++ on that \axiom{domain}.\newline - ++ - ++ Default values for the absolute and relative error are used. - ++ - ++ It is an error of the last argument is not {\tt "numerical"}. - integrate:(EF,SBOCF,S) -> Union(Result,"failed") - ++ integrate(exp, x = a..b, numerical) is a top level ANNA function to - ++ integrate an expression, {\tt exp}, over a given range, {\tt a} - ++ to {\tt b}. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{NumericalIntegrationCategory} to get the name and other - ++ relevant information of the the (domain of the) numerical - ++ routine likely to be the most appropriate, - ++ i.e. have the best \axiom{measure}. - ++ - ++ It then performs the integration of the given expression - ++ on that \axiom{domain}.\newline - ++ - ++ Default values for the absolute and relative error are used. - ++ - ++ It is an error if the last argument is not {\tt numerical}. - - == add - - zeroMeasure: Measure -> Result - scriptedVariables?: MDNIA -> Boolean - preAnalysis:(Union(nia:NIA,mdnia:MDNIA),RT) -> RT - measureSpecific:(ST,RT,Union(nia:NIA,mdnia:MDNIA)) -> Record(measure:F,explanations:LST,extra:Result) - changeName:(Result,ST) -> Result - recoverAfterFail:(Union(nia:NIA,mdnia:MDNIA),RT,Measure,INT,Result) -> Record(a:Result,b:Measure) - better?:(Result,Result) -> Boolean - integrateConstant:(EF,SOCF) -> Result - integrateConstantList: (EF,LSOCF) -> Result - integrateArgs:(NumericalIntegrationProblem,RT) -> Result - integrateSpecific:(Union(nia:NIA,mdnia:MDNIA),ST,Result) -> Result - - import ExpertSystemToolsPackage - - integrateConstantList(exp:EF,ras:LSOCF):Result == - c:OCF := ((retract(exp)@F)$EF)::OCF - b := [hi(j)-lo(j) for j in ras] - c := c*reduce((#1)*(#2),b) - a := coerce(c)$AnyFunctions1(OCF) - text := coerce("Constant Function")$AnyFunctions1(ST) - construct([[result@S,a],[method@S,text]])$Result - - integrateConstant(exp:EF,ra:SOCF):Result == - c := (retract(exp)@F)$EF - r:OCF := (c::OCF)*(hi(ra)-lo(ra)) - a := coerce(r)$AnyFunctions1(OCF) - text := coerce("Constant Function")$AnyFunctions1(ST) - construct([[result@S,a],[method@S,text]])$Result - - zeroMeasure(m:Measure):Result == - a := coerce(0$DF)$AnyFunctions1(DF) - text := coerce("Constant Function")$AnyFunctions1(String) - r := construct([[result@Symbol,a],[method@Symbol,text]])$Result - concat(measure2Result m,r)$ExpertSystemToolsPackage - - scriptedVariables?(mdnia:MDNIA):Boolean == - vars:List Symbol := variables(mdnia.fn)$EDF - var1 := first(vars)$(List Symbol) - not scripted?(var1) => false - name1 := name(var1)$Symbol - for i in 2..# vars repeat - not ((scripted?(vars.i)$Symbol) and (name1 = name(vars.i)$Symbol)) => - return false - true - - preAnalysis(args:Union(nia:NIA,mdnia:MDNIA),t:RT):RT == - import RT - r:RT := selectIntegrationRoutines t - args case nia => - arg:NIA := args.nia - rangeIsFinite(arg)$d01AgentsPackage case finite => - selectFiniteRoutines r - selectNonFiniteRoutines r - selectMultiDimensionalRoutines r - - changeName(ans:Result,name:ST):Result == - sy:S := coerce(name "Answer")$S - anyAns:Any := coerce(ans)$AnyFunctions1(Result) - construct([[sy,anyAns]])$Result - - measureSpecific(name:ST,R:RT,args:Union(nia:NIA,mdnia:MDNIA)): - Record(measure:F,explanations:ST,extra:Result) == - args case nia => - arg:NIA := args.nia - name = "d01ajfAnnaType" => measure(R,arg)$d01ajfAnnaType - name = "d01akfAnnaType" => measure(R,arg)$d01akfAnnaType - name = "d01alfAnnaType" => measure(R,arg)$d01alfAnnaType - name = "d01amfAnnaType" => measure(R,arg)$d01amfAnnaType - name = "d01anfAnnaType" => measure(R,arg)$d01anfAnnaType - name = "d01apfAnnaType" => measure(R,arg)$d01apfAnnaType - name = "d01aqfAnnaType" => measure(R,arg)$d01aqfAnnaType - name = "d01asfAnnaType" => measure(R,arg)$d01asfAnnaType - name = "d01TransformFunctionType" => - measure(R,arg)$d01TransformFunctionType - error("measureSpecific","invalid type name: " name)$ErrorFunctions - args case mdnia => - arg2:MDNIA := args.mdnia - name = "d01gbfAnnaType" => measure(R,arg2)$d01gbfAnnaType - name = "d01fcfAnnaType" => measure(R,arg2)$d01fcfAnnaType - error("measureSpecific","invalid type name: " name)$ErrorFunctions - error("measureSpecific","invalid type name")$ErrorFunctions - - measure(a:NumericalIntegrationProblem,R:RT):Measure == - args:Union(nia:NIA,mdnia:MDNIA) := retract(a)$NumericalIntegrationProblem - sofar := 0$F - best := "none" :: ST - routs := copy R - routs := preAnalysis(args,routs) - empty?(routs)$RT => - error("measure", "no routines found")$ErrorFunctions - rout := inspect(routs)$RT - e := retract(rout.entry)$AnyFunctions1(Entry) - meth:LST := ["Trying " e.type " integration routines"] - ext := empty()$Result - for i in 1..# routs repeat - rout := extract!(routs)$RT - e := retract(rout.entry)$AnyFunctions1(Entry) - n := e.domainName - if e.defaultMin > sofar then - m := measureSpecific(n,R,args) - if m.measure > sofar then - sofar := m.measure - best := n - ext := concat(m.extra,ext)$ExpertSystemToolsPackage - str:LST := [string(rout.key)$S "measure: " outputMeasure(m.measure) - " - " m.explanations] - else - str:LST := [string(rout.key)$S " is no better than other routines"] - meth := append(meth,str)$LST - [sofar,best,meth,ext] - - measure(a:NumericalIntegrationProblem):Measure == - measure(a,routines()$RT) - - integrateSpecific(args:Union(nia:NIA,mdnia:MDNIA),n:ST,ex:Result):Result == - args case nia => - arg:NIA := args.nia - n = "d01ajfAnnaType" => numericalIntegration(arg,ex)$d01ajfAnnaType - n = "d01TransformFunctionType" => - numericalIntegration(arg,ex)$d01TransformFunctionType - n = "d01amfAnnaType" => numericalIntegration(arg,ex)$d01amfAnnaType - n = "d01apfAnnaType" => numericalIntegration(arg,ex)$d01apfAnnaType - n = "d01aqfAnnaType" => numericalIntegration(arg,ex)$d01aqfAnnaType - n = "d01alfAnnaType" => numericalIntegration(arg,ex)$d01alfAnnaType - n = "d01akfAnnaType" => numericalIntegration(arg,ex)$d01akfAnnaType - n = "d01anfAnnaType" => numericalIntegration(arg,ex)$d01anfAnnaType - n = "d01asfAnnaType" => numericalIntegration(arg,ex)$d01asfAnnaType - error("integrateSpecific","invalid type name: " n)$ErrorFunctions - args case mdnia => - arg2:MDNIA := args.mdnia - n = "d01gbfAnnaType" => numericalIntegration(arg2,ex)$d01gbfAnnaType - n = "d01fcfAnnaType" => numericalIntegration(arg2,ex)$d01fcfAnnaType - error("integrateSpecific","invalid type name: " n)$ErrorFunctions - error("integrateSpecific","invalid type name: " n)$ErrorFunctions - - better?(r:Result,s:Result):Boolean == - a1 := search("abserr"::S,r)$Result - a1 case "failed" => false - abserr1 := retract(a1)$AnyFunctions1(DF) - negative?(abserr1) => false - a2 := search("abserr"::S,s)$Result - a2 case "failed" => true - abserr2 := retract(a2)$AnyFunctions1(DF) - negative?(abserr2) => true - (abserr1 < abserr2) -- true if r.abserr better than s.abserr - - recoverAfterFail(n:Union(nia:NIA,mdnia:MDNIA),routs:RT,m:Measure,iint:INT, - r:Result):Record(a:Result,b:Measure) == - bestName := m.name - while positive?(iint) repeat - routineName := m.name - s := recoverAfterFail(routs,routineName(1..6),iint)$RoutinesTable - s case "failed" => iint := 0 - if s = "changeEps" then - nn := n.nia - zero?(nn.abserr) => - nn.abserr := 1.0e-8 :: DF - m := measure(n::NumericalIntegrationProblem,routs) - zero?(m.measure) => iint := 0 - r := integrateSpecific(n,m.name,m.extra) - iint := 0 - rn := routineName(1..6) - buttVal := getButtonValue(rn,"functionEvaluations")$AttributeButtons - if (s = "incrFunEvals") and (buttVal < 0.8) then - increase(rn,"functionEvaluations")$AttributeButtons - if s = "increase tolerance" then - (n.nia).relerr := (n.nia).relerr*(10.0::DF) - if s = "decrease tolerance" then - (n.nia).relerr := (n.nia).relerr/(10.0::DF) - fl := coerce(s)$AnyFunctions1(ST) - flrec:Record(key:S,entry:Any):=[failure@S,fl] - m2 := measure(n::NumericalIntegrationProblem,routs) - zero?(m2.measure) => iint := 0 - r2:Result := integrateSpecific(n,m2.name,m2.extra) - better?(r,r2) => - m.name := m2.name - insert!(flrec,r)$Result - bestName := m2.name - m := m2 - insert!(flrec,r2)$Result - r := concat(r2,changeName(r,routineName))$ExpertSystemToolsPackage - iany := search(ifail@S,r2)$Result - iany case "failed" => iint := 0 - iint := retract(iany)$AnyFunctions1(INT) - m.name := bestName - [r,m] - - integrateArgs(prob:NumericalIntegrationProblem,t:RT):Result == - args:Union(nia:NIA,mdnia:MDNIA) := retract(prob)$NumericalIntegrationProblem - routs := copy(t)$RT - if args case mdnia then - arg := args.mdnia - v := (# variables(arg.fn)) - not scriptedVariables?(arg) => - error("MultiDimensionalNumericalIntegrationPackage", - "invalid variable names")$ErrorFunctions - (v ~= # arg.range)@Boolean => - error("MultiDimensionalNumericalIntegrationPackage", - "number of variables do not match number of ranges")$ErrorFunctions - m := measure(prob,routs) - zero?(m.measure) => zeroMeasure m - r := integrateSpecific(args,m.name,m.extra) - iany := search(ifail@S,r)$Result - iint := 0$INT - if (iany case Any) then - iint := retract(iany)$AnyFunctions1(INT) - if positive?(iint) then - tu:Record(a:Result,b:Measure) := recoverAfterFail(args,routs,m,iint,r) - r := tu.a - m := tu.b - r := concat(measure2Result m,r)$ExpertSystemToolsPackage - n := m.name - nn:ST := - (# n > 14) => "d01transform" - n(1..6) - expl := getExplanations(routs,nn)$RoutinesTable - expla := coerce(expl)$AnyFunctions1(LST) - explaa:Record(key:Symbol,entry:Any) := ["explanations"::Symbol,expla] - r := concat(construct([explaa]),r) - args case nia => - att := showAttributes(args.nia)$IntegrationFunctionsTable - att case "failed" => r - concat(att2Result att,r)$ExpertSystemToolsPackage - r - - integrate(args:NumericalIntegrationProblem):Result == - integrateArgs(args,routines()$RT) - - integrate(exp:EF,ra:SOCF,epsabs:F,epsrel:F,r:RT):Result == - Var:LS := variables(exp)$EF - empty?(Var)$LS => integrateConstant(exp,ra) - args:NIA := [first(Var)$LS,ef2edf exp,socf2socdf ra,f2df epsabs,f2df epsrel] - integrateArgs(args::NumericalIntegrationProblem,r) - - integrate(exp:EF,ra:SOCF,epsabs:F,epsrel:F):Result == - integrate(exp,ra,epsabs,epsrel,routines()$RT) - - integrate(exp:EF,ra:SOCF,err:F):Result == - positive?(err)$F => integrate(exp,ra,0$F,err) - integrate(exp,ra,1.0E-5,err) - - integrate(exp:EF,ra:SOCF):Result == integrate(exp,ra,0$F,1.0E-5) - - integrate(exp:EF,sb:SBOCF, st:ST) == - st = "numerical" => integrate(exp,segment sb) - "failed" - - integrate(exp:EF,sb:SBOCF, s:S) == - s = (numerical::Symbol) => integrate(exp,segment sb) - "failed" - - integrate(exp:EF,ra:LSOCF,epsabs:F,epsrel:F,r:RT):Result == - vars := variables(exp)$EF - empty?(vars)$LS => integrateConstantList(exp,ra) - args:MDNIA := [ef2edf exp,convert ra,f2df epsabs,f2df epsrel] - integrateArgs(args::NumericalIntegrationProblem,r) - - integrate(exp:EF,ra:LSOCF,epsabs:F,epsrel:F):Result == - integrate(exp,ra,epsabs,epsrel,routines()$RT) - - integrate(exp:EF,ra:LSOCF,epsrel:F):Result == - zero? epsrel => integrate(exp,ra,1.0e-6,epsrel) - integrate(exp,ra,0$F,epsrel) - - integrate(exp:EF,ra:LSOCF):Result == integrate(exp,ra,1.0e-4) - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package INTPACK AnnaNumericalIntegrationPackage>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/d01agents.spad.pamphlet b/src/algebra/d01agents.spad.pamphlet deleted file mode 100644 index eadc8a14..00000000 --- a/src/algebra/d01agents.spad.pamphlet +++ /dev/null @@ -1,428 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra d01agents.spad} -\author{Brian Dupee} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{domain INTFTBL IntegrationFunctionsTable} -<<domain INTFTBL IntegrationFunctionsTable>>= -)abbrev domain INTFTBL IntegrationFunctionsTable -++ Author: Brian Dupee -++ Date Created: March 1995 -++ Date Last Updated: June 1995 -++ Description: -++ -IntegrationFunctionsTable(): E == I where - EF2 ==> ExpressionFunctions2 - EFI ==> Expression Fraction Integer - FI ==> Fraction Integer - LEDF ==> List Expression DoubleFloat - KEDF ==> Kernel Expression DoubleFloat - EEDF ==> Equation Expression DoubleFloat - EDF ==> Expression DoubleFloat - PDF ==> Polynomial DoubleFloat - LDF ==> List DoubleFloat - SDF ==> Stream DoubleFloat - DF ==> DoubleFloat - F ==> Float - ST ==> String - LST ==> List String - SI ==> SingleInteger - SOCDF ==> Segment OrderedCompletion DoubleFloat - OCDF ==> OrderedCompletion DoubleFloat - OCEDF ==> OrderedCompletion Expression DoubleFloat - EOCEFI ==> Equation OrderedCompletion Expression Fraction Integer - OCEFI ==> OrderedCompletion Expression Fraction Integer - OCFI ==> OrderedCompletion Fraction Integer - NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) - INT ==> Integer - CTYPE ==> Union(continuous: "Continuous at the end points", - lowerSingular: "There is a singularity at the lower end point", - upperSingular: "There is a singularity at the upper end point", - bothSingular: "There are singularities at both end points", - notEvaluated: "End point continuity not yet evaluated") - RTYPE ==> Union(finite: "The range is finite", - lowerInfinite: "The bottom of range is infinite", - upperInfinite: "The top of range is infinite", - bothInfinite: "Both top and bottom points are infinite", - notEvaluated: "Range not yet evaluated") - STYPE ==> Union(str:SDF, - notEvaluated:"Internal singularities not yet evaluated") - ATT ==> Record(endPointContinuity:CTYPE, - singularitiesStream:STYPE,range:RTYPE) - ROA ==> Record(key:NIA,entry:ATT) - - E ==> with - - showTheFTable:() -> $ - ++ showTheFTable() returns the current table of functions. - clearTheFTable : () -> Void - ++ clearTheFTable() clears the current table of functions. - keys : $ -> List(NIA) - ++ keys(f) returns the list of keys of f - fTable: List Record(key:NIA,entry:ATT) -> $ - ++ fTable(l) creates a functions table from the elements of l. - insert!:Record(key:NIA,entry:ATT) -> $ - ++ insert!(r) inserts an entry r into theIFTable - showAttributes:NIA -> Union(ATT,"failed") - ++ showAttributes(x) \undocumented{} - entries : $ -> List Record(key:NIA,entry:ATT) - ++ entries(x) \undocumented{} - entry:NIA -> ATT - ++ entry(n) \undocumented{} - I ==> add - - Rep := Table(NIA,ATT) - import Rep - - theFTable:$ := empty()$Rep - - showTheFTable():$ == - theFTable - - clearTheFTable():Void == - theFTable := empty()$Rep - - fTable(l:List Record(key:NIA,entry:ATT)):$ == - theFTable := table(l)$Rep - - insert!(r:Record(key:NIA,entry:ATT)):$ == - insert!(r,theFTable)$Rep - - keys(t:$):List NIA == - keys(t)$Rep - - showAttributes(k:NIA):Union(ATT,"failed") == - search(k,theFTable)$Rep - - entries(t:$):List Record(key:NIA,entry:ATT) == - members(t)$Rep - - entry(k:NIA):ATT == - qelt(theFTable,k)$Rep - -@ -\section{package D01AGNT d01AgentsPackage} -<<package D01AGNT d01AgentsPackage>>= -)abbrev package D01AGNT d01AgentsPackage -++ Author: Brian Dupee -++ Date Created: March 1994 -++ Date Last Updated: December 1997 -++ Basic Operations: rangeIsFinite, functionIsContinuousAtEndPoints, -++ functionIsOscillatory -++ Description: -++ \axiomType{d01AgentsPackage} is a package of numerical agents to be used -++ to investigate attributes of an input function so as to decide the -++ \axiomFun{measure} of an appropriate numerical integration routine. -++ It contains functions \axiomFun{rangeIsFinite} to test the input range and -++ \axiomFun{functionIsContinuousAtEndPoints} to check for continuity at -++ the end points of the range. - - -d01AgentsPackage(): E == I where - EF2 ==> ExpressionFunctions2 - EFI ==> Expression Fraction Integer - FI ==> Fraction Integer - LEDF ==> List Expression DoubleFloat - KEDF ==> Kernel Expression DoubleFloat - EEDF ==> Equation Expression DoubleFloat - EDF ==> Expression DoubleFloat - PDF ==> Polynomial DoubleFloat - LDF ==> List DoubleFloat - SDF ==> Stream DoubleFloat - DF ==> DoubleFloat - F ==> Float - ST ==> String - LST ==> List String - SI ==> SingleInteger - SOCDF ==> Segment OrderedCompletion DoubleFloat - OCDF ==> OrderedCompletion DoubleFloat - OCEDF ==> OrderedCompletion Expression DoubleFloat - EOCEFI ==> Equation OrderedCompletion Expression Fraction Integer - OCEFI ==> OrderedCompletion Expression Fraction Integer - OCFI ==> OrderedCompletion Fraction Integer - NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) - INT ==> Integer - CTYPE ==> Union(continuous: "Continuous at the end points", - lowerSingular: "There is a singularity at the lower end point", - upperSingular: "There is a singularity at the upper end point", - bothSingular: "There are singularities at both end points", - notEvaluated: "End point continuity not yet evaluated") - RTYPE ==> Union(finite: "The range is finite", - lowerInfinite: "The bottom of range is infinite", - upperInfinite: "The top of range is infinite", - bothInfinite: "Both top and bottom points are infinite", - notEvaluated: "Range not yet evaluated") - STYPE ==> Union(str:SDF, - notEvaluated:"Internal singularities not yet evaluated") - ATT ==> Record(endPointContinuity:CTYPE, - singularitiesStream:STYPE,range:RTYPE) - ROA ==> Record(key:NIA,entry:ATT) - - E ==> with - - rangeIsFinite : NIA -> RTYPE - ++ rangeIsFinite(args) tests the endpoints of \spad{args.range} for - ++ infinite end points. - functionIsContinuousAtEndPoints: NIA -> CTYPE - ++ functionIsContinuousAtEndPoints(args) uses power series limits - ++ to check for problems at the end points of the range of \spad{args}. - getlo : SOCDF -> DF - ++ getlo(x) gets the \axiomType{DoubleFloat} equivalent of - ++ the first endpoint of the range \axiom{x} - gethi : SOCDF -> DF - ++ gethi(x) gets the \axiomType{DoubleFloat} equivalent of - ++ the second endpoint of the range \axiom{x} - functionIsOscillatory:NIA -> F - ++ functionIsOscillatory(a) tests whether the function \spad{a.fn} - ++ has many zeros of its derivative. - problemPoints: (EDF, Symbol, SOCDF) -> List DF - ++ problemPoints(f,var,range) returns a list of possible problem points - ++ by looking at the zeros of the denominator of the function if it - ++ can be retracted to \axiomType{Polynomial DoubleFloat}. - singularitiesOf:NIA -> SDF - ++ singularitiesOf(args) returns a list of potential - ++ singularities of the function within the given range - df2st:DF -> String - ++ df2st(n) coerces a \axiomType{DoubleFloat} to \axiomType{String} - ldf2lst:LDF -> LST - ++ ldf2lst(ln) coerces a List of \axiomType{DoubleFloat} to \axiomType{List String} - sdf2lst:SDF -> LST - ++ sdf2lst(ln) coerces a Stream of \axiomType{DoubleFloat} to \axiomType{List String} - commaSeparate:LST -> ST - ++ commaSeparate(l) produces a comma separated string from a - ++ list of strings. - changeName:(Symbol,Symbol,Result) -> Result - ++ changeName(s,t,r) changes the name of item \axiom{s} in \axiom{r} - ++ to \axiom{t}. - - I ==> ExpertSystemContinuityPackage add - - import ExpertSystemToolsPackage - import ExpertSystemContinuityPackage - - -- local functions - ocdf2ocefi : OCDF -> OCEFI - rangeOfArgument : (KEDF, NIA) -> DF - continuousAtPoint? : (EFI,EOCEFI) -> Boolean - rand:(SOCDF,INT) -> LDF - eval:(EDF,Symbol,LDF) -> LDF - numberOfSignChanges:LDF -> INT - rangeIsFiniteFunction:NIA -> RTYPE - functionIsContinuousAtEndPointsFunction:NIA -> CTYPE - - changeName(s:Symbol,t:Symbol,r:Result):Result == - a := remove!(s,r)$Result - a case Any => - insert!([t,a],r)$Result - r - r - - commaSeparate(l:LST):ST == - empty?(l)$LST => "" - one?(#(l)) => concat(l)$ST - f := first(l)$LST - t := [concat([", ",l.i])$ST for i in 2..#(l)] - concat(f,concat(t)$ST)$ST - - rand(seg:SOCDF,n:INT):LDF == - -- produced a sorted list of random numbers in the given range - l:DF := getlo seg - s:DF := (gethi seg) - l - seed:INT := random()$INT - dseed:DF := seed :: DF - r:LDF := [(((random(seed)$INT) :: DF)*s/dseed + l) for i in 1..n] - sort(r)$LDF - - eval(f:EDF,var:Symbol,l:LDF):LDF == - empty?(l)$LDF => [0$DF] - ve := var::EDF - [retract(eval(f,equation(ve,u::EDF)$EEDF)$EDF)@DF for u in l] - - numberOfSignChanges(l:LDF):INT == - -- calculates the number of sign changes in a list - a := 0$INT - empty?(l)$LDF => 0 - for i in 2..# l repeat - if negative?(l.i*l.(i-1)) then - a := a + 1 - a - - rangeOfArgument(k: KEDF, args:NIA): DF == - Args := copy args - Args.fn := arg := first(argument(k)$KEDF)$LEDF - functionIsContinuousAtEndPoints(Args) case continuous => - r:SOCDF := args.range - low:EDF := (getlo r) :: EDF - high:EDF := (gethi r) :: EDF - eql := equation(a := args.var :: EDF, low)$EEDF - eqh := equation(a, high)$EEDF - e1 := (numeric(eval(arg,eql)$EDF)$Numeric(DF)) :: DF - e2 := (numeric(eval(arg,eqh)$EDF)$Numeric(DF)) :: DF - e2-e1 - 0$DF - - ocdf2ocefi(r:OCDF):OCEFI == - finite?(r)$OCDF => (edf2efi(((retract(r)@DF)$OCDF)::EDF))::OCEFI - r pretend OCEFI - - continuousAtPoint?(f:EFI,e:EOCEFI):Boolean == - (l := limit(f,e)$PowerSeriesLimitPackage(FI,EFI)) case OCEFI => - finite?(l :: OCEFI) - -- if the left hand limit equals the right hand limit, or if neither - -- side has a limit at this point, the return type of limit() is - -- Union(Ordered Completion Expression Fraction Integer,"failed") - false - - -- exported functions - - rangeIsFiniteFunction(args:NIA): RTYPE == - -- rangeIsFinite(x) tests the endpoints of x.range for infinite - -- end points. - -- [-inf, inf] => 4 - -- [ x , inf] => 3 - -- [-inf, x ] => 1 - -- [ x , y ] => 0 - fr:SI := (3::SI * whatInfinity(hi(args.range))$OCDF - - whatInfinity(lo(args.range))$OCDF) - fr = 0 => ["The range is finite"] - fr = 1 => ["The bottom of range is infinite"] - fr = 3 => ["The top of range is infinite"] - fr = 4 => ["Both top and bottom points are infinite"] - error("rangeIsFinite",["this is not a valid range"])$ErrorFunctions - - rangeIsFinite(args:NIA): RTYPE == - nia := copy args - (t := showAttributes(nia)$IntegrationFunctionsTable) case ATT => - s := coerce(t)@ATT - s.range case notEvaluated => - s.range := rangeIsFiniteFunction(nia) - r:ROA := [nia,s] - insert!(r)$IntegrationFunctionsTable - s.range - s.range - a:ATT := [["End point continuity not yet evaluated"], - ["Internal singularities not yet evaluated"], - e:=rangeIsFiniteFunction(nia)] - r:ROA := [nia,a] - insert!(r)$IntegrationFunctionsTable - e - - functionIsContinuousAtEndPointsFunction(args:NIA):CTYPE == - - v := args.var :: EFI :: OCEFI - high:OCEFI := ocdf2ocefi(hi(args.range)) - low:OCEFI := ocdf2ocefi(lo(args.range)) - f := edf2efi(args.fn) - l:Boolean := continuousAtPoint?(f,equation(v,low)$EOCEFI) - h:Boolean := continuousAtPoint?(f,equation(v,high)$EOCEFI) - l and h => ["Continuous at the end points"] - l => ["There is a singularity at the upper end point"] - h => ["There is a singularity at the lower end point"] - ["There are singularities at both end points"] - - functionIsContinuousAtEndPoints(args:NIA): CTYPE == - nia := copy args - (t := showAttributes(nia)$IntegrationFunctionsTable) case ATT => - s := coerce(t)@ATT - s.endPointContinuity case notEvaluated => - s.endPointContinuity := functionIsContinuousAtEndPointsFunction(nia) - r:ROA := [nia,s] - insert!(r)$IntegrationFunctionsTable - s.endPointContinuity - s.endPointContinuity - a:ATT := [e:=functionIsContinuousAtEndPointsFunction(nia), - ["Internal singularities not yet evaluated"], - ["Range not yet evaluated"]] - r:ROA := [nia,a] - insert!(r)$IntegrationFunctionsTable - e - - functionIsOscillatory(a:NIA):F == - - args := copy a - k := tower(numerator args.fn)$EDF - p:F := pi()$F - for i in 1..# k repeat - is?(ker := k.i, sin :: Symbol) => - ra := convert(rangeOfArgument(ker,args))@F - ra > 2*p => return (ra/p) - is?(ker, cos :: Symbol) => - ra := convert(rangeOfArgument(ker,args))@F - ra > 2*p => return (ra/p) - l:LDF := rand(args.range,30) - l := eval(args.fn,args.var,l) - numberOfSignChanges(l) :: F - - singularitiesOf(args:NIA):SDF == - nia := copy args - (t := showAttributes(nia)$IntegrationFunctionsTable) case ATT => - s:ATT := coerce(t)@ATT - p:STYPE := s.singularitiesStream - p case str => p.str - e:SDF := singularitiesOf(nia.fn,[nia.var],nia.range) - if not empty?(e) then - if less?(e,10)$SDF then extend(e,10)$SDF - s.singularitiesStream := [e] - r:ROA := [nia,s] - insert!(r)$IntegrationFunctionsTable - e - e:=singularitiesOf(nia.fn,[nia.var],nia.range) - if not empty?(e) then - if less?(e,10)$SDF then extend(e,10)$SDF - a:ATT := [["End point continuity not yet evaluated"],[e], - ["Range not yet evaluated"]] - r:ROA := [nia,a] - insert!(r)$IntegrationFunctionsTable - e - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<domain INTFTBL IntegrationFunctionsTable>> -<<package D01AGNT d01AgentsPackage>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/d01routine.spad.pamphlet b/src/algebra/d01routine.spad.pamphlet deleted file mode 100644 index 66dbccf8..00000000 --- a/src/algebra/d01routine.spad.pamphlet +++ /dev/null @@ -1,746 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra d01routine.spad} -\author{Brian Dupee} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{domain D01AJFA d01ajfAnnaType} -<<domain D01AJFA d01ajfAnnaType>>= -)abbrev domain D01AJFA d01ajfAnnaType -++ Author: Brian Dupee -++ Date Created: March 1994 -++ Date Last Updated: December 1997 -++ Basic Operations: measure, numericalIntegration -++ Related Constructors: Result, RoutinesTable -++ Description: -++ \axiomType{d01ajfAnnaType} is a domain of \axiomType{NumericalIntegrationCategory} -++ for the NAG routine D01AJF, a general numerical integration routine which -++ can handle some singularities in the input function. The function -++ \axiomFun{measure} measures the usefulness of the routine D01AJF -++ for the given problem. The function \axiomFun{numericalIntegration} -++ performs the integration by using \axiomType{NagIntegrationPackage}. - -d01ajfAnnaType(): NumericalIntegrationCategory == Result add - EF2 ==> ExpressionFunctions2 - EDF ==> Expression DoubleFloat - LDF ==> List DoubleFloat - SDF ==> Stream DoubleFloat - DF ==> DoubleFloat - FI ==> Fraction Integer - EFI ==> Expression Fraction Integer - SOCDF ==> Segment OrderedCompletion DoubleFloat - NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) - MDNIA ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF) - INT ==> Integer - BOP ==> BasicOperator - S ==> Symbol - ST ==> String - LST ==> List String - RT ==> RoutinesTable - Rep:=Result - import Rep, NagIntegrationPackage, d01AgentsPackage - - measure(R:RT,args:NIA) == - ext:Result := empty()$Result - pp:SDF := singularitiesOf(args) - not (empty?(pp)$SDF) => - [0.1,"d01ajf: There is a possible problem at the following point(s): " - commaSeparate(sdf2lst(pp)) ,ext] - [getMeasure(R,d01ajf :: S)$RT, - "The general routine d01ajf is our default",ext] - - numericalIntegration(args:NIA,hints:Result) == - ArgsFn := map(convert(#1)$DF,args.fn)$EF2(DF,Float) - b:Float := getButtonValue("d01ajf","functionEvaluations")$AttributeButtons - fEvals:INT := wholePart exp(1.1513*(1.0/(2.0*(1.0-b)))) - iw:INT := 75*fEvals - f : Union(fn:FileName,fp:Asp1(F)) := [retract(ArgsFn)$Asp1(F)] - d01ajf(getlo(args.range),gethi(args.range),args.abserr,args.relerr,4*iw,iw,-1,f) - -@ -\section{domain D01AKFA d01akfAnnaType} -<<domain D01AKFA d01akfAnnaType>>= -)abbrev domain D01AKFA d01akfAnnaType -++ Author: Brian Dupee -++ Date Created: March 1994 -++ Date Last Updated: December 1997 -++ Basic Operations: measure, numericalIntegration -++ Related Constructors: Result, RoutinesTable -++ Description: -++ \axiomType{d01akfAnnaType} is a domain of \axiomType{NumericalIntegrationCategory} -++ for the NAG routine D01AKF, a numerical integration routine which is -++ is suitable for oscillating, non-singular functions. The function -++ \axiomFun{measure} measures the usefulness of the routine D01AKF -++ for the given problem. The function \axiomFun{numericalIntegration} -++ performs the integration by using \axiomType{NagIntegrationPackage}. - -d01akfAnnaType(): NumericalIntegrationCategory == Result add - EF2 ==> ExpressionFunctions2 - EDF ==> Expression DoubleFloat - LDF ==> List DoubleFloat - SDF ==> Stream DoubleFloat - DF ==> DoubleFloat - FI ==> Fraction Integer - EFI ==> Expression Fraction Integer - SOCDF ==> Segment OrderedCompletion DoubleFloat - NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) - MDNIA ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF) - INT ==> Integer - BOP ==> BasicOperator - S ==> Symbol - ST ==> String - LST ==> List String - RT ==> RoutinesTable - Rep:=Result - import Rep, d01AgentsPackage, NagIntegrationPackage - - measure(R:RT,args:NIA) == - ext:Result := empty()$Result - pp:SDF := singularitiesOf(args) - not (empty?(pp)$SDF) => - [0.0,"d01akf: There is a possible problem at the following point(s): " - commaSeparate(sdf2lst(pp)) ,ext] - o:Float := functionIsOscillatory(args) - one := 1.0 - m:Float := (getMeasure(R,d01akf@S)$RT)*(one-one/(one+sqrt(o)))**2 - m > 0.8 => [m,"d01akf: The expression shows much oscillation",ext] - m > 0.6 => [m,"d01akf: The expression shows some oscillation",ext] - m > 0.5 => [m,"d01akf: The expression shows little oscillation",ext] - [m,"d01akf: The expression shows little or no oscillation",ext] - - numericalIntegration(args:NIA,hints:Result) == - ArgsFn := map(convert(#1)$DF,args.fn)$EF2(DF,Float) - b:Float := getButtonValue("d01akf","functionEvaluations")$AttributeButtons - fEvals:INT := wholePart exp(1.1513*(1.0/(2.0*(1.0-b)))) - iw:INT := 75*fEvals - f : Union(fn:FileName,fp:Asp1(F)) := [retract(ArgsFn)$Asp1(F)] - d01akf(getlo(args.range),gethi(args.range),args.abserr,args.relerr,4*iw,iw,-1,f) - -@ -\section{domain D01AMFA d01amfAnnaType} -<<domain D01AMFA d01amfAnnaType>>= -)abbrev domain D01AMFA d01amfAnnaType -++ Author: Brian Dupee -++ Date Created: March 1994 -++ Date Last Updated: December 1997 -++ Basic Operations: measure, numericalIntegration -++ Related Constructors: Result, RoutinesTable -++ Description: -++ \axiomType{d01amfAnnaType} is a domain of \axiomType{NumericalIntegrationCategory} -++ for the NAG routine D01AMF, a general numerical integration routine which -++ can handle infinite or semi-infinite range of the input function. The -++ function \axiomFun{measure} measures the usefulness of the routine D01AMF -++ for the given problem. The function \axiomFun{numericalIntegration} -++ performs the integration by using \axiomType{NagIntegrationPackage}. - -d01amfAnnaType(): NumericalIntegrationCategory == Result add - EF2 ==> ExpressionFunctions2 - EDF ==> Expression DoubleFloat - LDF ==> List DoubleFloat - SDF ==> Stream DoubleFloat - DF ==> DoubleFloat - FI ==> Fraction Integer - EFI ==> Expression Fraction Integer - SOCDF ==> Segment OrderedCompletion DoubleFloat - NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) - MDNIA ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF) - INT ==> Integer - BOP ==> BasicOperator - S ==> Symbol - ST ==> String - LST ==> List String - RT ==> RoutinesTable - Rep:=Result - import Rep, d01AgentsPackage, NagIntegrationPackage - - measure(R:RT,args:NIA) == - ext:Result := empty()$Result - Range:=rangeIsFinite(args) - pp:SDF := singularitiesOf(args) - not (empty?(pp)$SDF) => - [0.0,"d01amf: There is a possible problem at the following point(s): " - commaSeparate(sdf2lst(pp)), ext] - [getMeasure(R,d01amf@S)$RT, "d01amf is a reasonable choice if the " - "integral is infinite or semi-infinite and d01transform cannot " - "do better than using general routines",ext] - - numericalIntegration(args:NIA,hints:Result) == - r:INT - bound:DF - ArgsFn := map(convert(#1)$DF,args.fn)$EF2(DF,Float) - b:Float := getButtonValue("d01amf","functionEvaluations")$AttributeButtons - fEvals:INT := wholePart exp(1.1513*(1.0/(2.0*(1.0-b)))) - iw:INT := 150*fEvals - f : Union(fn:FileName,fp:Asp1(F)) := [retract(ArgsFn)$Asp1(F)] - Range:=rangeIsFinite(args) - if (Range case upperInfinite) then - bound := getlo(args.range) - r := 1 - else if (Range case lowerInfinite) then - bound := gethi(args.range) - r := -1 - else - bound := 0$DF - r := 2 - d01amf(bound,r,args.abserr,args.relerr,4*iw,iw,-1,f) - -@ -\section{domain D01APFA d01apfAnnaType} -<<domain D01APFA d01apfAnnaType>>= -)abbrev domain D01APFA d01apfAnnaType -++ Author: Brian Dupee -++ Date Created: March 1994 -++ Date Last Updated: December 1997 -++ Basic Operations: measure, numericalIntegration -++ Related Constructors: Result, RoutinesTable -++ Description: -++ \axiomType{d01apfAnnaType} is a domain of \axiomType{NumericalIntegrationCategory} -++ for the NAG routine D01APF, a general numerical integration routine which -++ can handle end point singularities of the algebraico-logarithmic form -++ w(x) = (x-a)^c * (b-x)^d. The -++ function \axiomFun{measure} measures the usefulness of the routine D01APF -++ for the given problem. The function \axiomFun{numericalIntegration} -++ performs the integration by using \axiomType{NagIntegrationPackage}. - -d01apfAnnaType(): NumericalIntegrationCategory == Result add - EF2 ==> ExpressionFunctions2 - EDF ==> Expression DoubleFloat - LDF ==> List DoubleFloat - SDF ==> Stream DoubleFloat - DF ==> DoubleFloat - FI ==> Fraction Integer - EFI ==> Expression Fraction Integer - SOCDF ==> Segment OrderedCompletion DoubleFloat - NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) - MDNIA ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF) - INT ==> Integer - BOP ==> BasicOperator - S ==> Symbol - ST ==> String - LST ==> List String - RT ==> RoutinesTable - Rep:=Result - import Rep, NagIntegrationPackage, d01AgentsPackage, d01WeightsPackage - - measure(R:RT,args:NIA) == - ext:Result := empty()$Result - d := (c := 0$DF) - if ((a := exprHasAlgebraicWeight(args)) case LDF) then - if (a.1 > -1) then c := a.1 - if (a.2 > -1) then d := a.2 - l:INT := exprHasLogarithmicWeights(args) - (zero? c) and (zero? d) and (one? l) => - [0.0,"d01apf: A suitable singularity has not been found", ext] - out:LDF := [c,d,l :: DF] - outany:Any := coerce(out)$AnyFunctions1(LDF) - ex:Record(key:S,entry:Any) := [d01apfextra@S,outany] - ext := insert!(ex,ext)$Result - st:ST := "Recommended is d01apf with c = " df2st(c) ", d = " - df2st(d) " and l = " string(l)$ST - [getMeasure(R,d01apf@S)$RT, st, ext] - - numericalIntegration(args:NIA,hints:Result) == - - Var:EDF := coerce(args.var)$EDF - la:Any := coerce(search((d01apfextra@S),hints)$Result)@Any - list:LDF := retract(la)$AnyFunctions1(LDF) - Fac1:EDF := (Var - (getlo(args.range) :: EDF))$EDF - Fac2:EDF := ((gethi(args.range) :: EDF) - Var)$EDF - c := first(list)$LDF - d := second(list)$LDF - l := (retract(third(list)$LDF)@INT)$DF - thebiz:EDF := (Fac1**(c :: EDF))*(Fac2**(d :: EDF)) - if l > 1 then - if l = 2 then - thebiz := thebiz*log(Fac1) - else if l = 3 then - thebiz := thebiz*log(Fac2) - else - thebiz := thebiz*log(Fac1)*log(Fac2) - Fn := (args.fn/thebiz)$EDF - ArgsFn := map(convert(#1)$DF,Fn)$EF2(DF,Float) - b:Float := getButtonValue("d01apf","functionEvaluations")$AttributeButtons - fEvals:INT := wholePart exp(1.1513*(1.0/(2.0*(1.0-b)))) - iw:INT := 75*fEvals - f : Union(fn:FileName,fp:Asp1(G)) := [retract(ArgsFn)$Asp1(G)] - d01apf(getlo(args.range),gethi(args.range),c,d,l,args.abserr,args.relerr,4*iw,iw,-1,f) - -@ -\section{domain D01AQFA d01aqfAnnaType} -<<domain D01AQFA d01aqfAnnaType>>= -)abbrev domain D01AQFA d01aqfAnnaType -++ Author: Brian Dupee -++ Date Created: March 1994 -++ Date Last Updated: December 1997 -++ Basic Operations: measure, numericalIntegration -++ Related Constructors: Result, RoutinesTable -++ Description: -++ \axiomType{d01aqfAnnaType} is a domain of \axiomType{NumericalIntegrationCategory} -++ for the NAG routine D01AQF, a general numerical integration routine which -++ can solve an integral of the form \newline -++ \centerline{\inputbitmap{/home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.xbm}} -++ The function \axiomFun{measure} measures the usefulness of the routine -++ D01AQF for the given problem. The function \axiomFun{numericalIntegration} -++ performs the integration by using \axiomType{NagIntegrationPackage}. - -d01aqfAnnaType(): NumericalIntegrationCategory == Result add - EF2 ==> ExpressionFunctions2 - EDF ==> Expression DoubleFloat - LDF ==> List DoubleFloat - SDF ==> Stream DoubleFloat - DF ==> DoubleFloat - FI ==> Fraction Integer - EFI ==> Expression Fraction Integer - SOCDF ==> Segment OrderedCompletion DoubleFloat - NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) - MDNIA ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF) - INT ==> Integer - BOP ==> BasicOperator - S ==> Symbol - ST ==> String - LST ==> List String - RT ==> RoutinesTable - Rep:=Result - import Rep, d01AgentsPackage, NagIntegrationPackage - - measure(R:RT,args:NIA) == - ext:Result := empty()$Result - Den := denominator(args.fn) - one? Den => - [0.0,"d01aqf: A suitable weight function has not been found", ext] - listOfZeros:LDF := problemPoints(args.fn,args.var,args.range) - numberOfZeros := (#(listOfZeros))$LDF - zero?(numberOfZeros) => - [0.0,"d01aqf: A suitable weight function has not been found", ext] - numberOfZeros = 1 => - s:SDF := singularitiesOf(args) - more?(s,1)$SDF => - [0.0,"d01aqf: Too many singularities have been found", ext] - cFloat:Float := (convert(first(listOfZeros)$LDF)@Float)$DF - cString:ST := (convert(cFloat)@ST)$Float - lany:Any := coerce(listOfZeros)$AnyFunctions1(LDF) - ex:Record(key:S,entry:Any) := [d01aqfextra@S,lany] - ext := insert!(ex,ext)$Result - [getMeasure(R,d01aqf@S)$RT, "Recommended is d01aqf with the " - "hilbertian weight function of 1/(x-c) where c = " cString, ext] - [0.0,"d01aqf: More than one factor has been found and so does not " - "have a suitable weight function",ext] - - numericalIntegration(args:NIA,hints:Result) == - Args := copy args - ca:Any := coerce(search((d01aqfextra@S),hints)$Result)@Any - c:DF := first(retract(ca)$AnyFunctions1(LDF))$LDF - ci:FI := df2fi(c)$ExpertSystemToolsPackage - Var:EFI := Args.var :: EFI - Gx:EFI := (Var-(ci::EFI))*(edf2efi(Args.fn)$ExpertSystemToolsPackage) - ArgsFn := map(convert(#1)$FI,Gx)$EF2(FI,Float) - b:Float := getButtonValue("d01aqf","functionEvaluations")$AttributeButtons - fEvals:INT := wholePart exp(1.1513*(1.0/(2.0*(1.0-b)))) - iw:INT := 75*fEvals - f : Union(fn:FileName,fp:Asp1(G)) := [retract(ArgsFn)$Asp1(G)] - d01aqf(getlo(Args.range),gethi(Args.range),c,Args.abserr,Args.relerr,4*iw,iw,-1,f) - -@ -\section{domain D01ALFA d01alfAnnaType} -<<domain D01ALFA d01alfAnnaType>>= -)abbrev domain D01ALFA d01alfAnnaType -++ Author: Brian Dupee -++ Date Created: March 1994 -++ Date Last Updated: December 1997 -++ Basic Operations: measure, numericalIntegration -++ Related Constructors: Result, RoutinesTable -++ Description: -++ \axiomType{d01alfAnnaType} is a domain of \axiomType{NumericalIntegrationCategory} -++ for the NAG routine D01ALF, a general numerical integration routine which -++ can handle a list of singularities. The -++ function \axiomFun{measure} measures the usefulness of the routine D01ALF -++ for the given problem. The function \axiomFun{numericalIntegration} -++ performs the integration by using \axiomType{NagIntegrationPackage}. - -d01alfAnnaType(): NumericalIntegrationCategory == Result add - EF2 ==> ExpressionFunctions2 - EDF ==> Expression DoubleFloat - LDF ==> List DoubleFloat - SDF ==> Stream DoubleFloat - DF ==> DoubleFloat - FI ==> Fraction Integer - EFI ==> Expression Fraction Integer - SOCDF ==> Segment OrderedCompletion DoubleFloat - NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) - MDNIA ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF) - INT ==> Integer - BOP ==> BasicOperator - S ==> Symbol - ST ==> String - LST ==> List String - RT ==> RoutinesTable - Rep:=Result - import Rep, d01AgentsPackage, NagIntegrationPackage - - measure(R:RT,args:NIA) == - ext:Result := empty()$Result - streamOfZeros:SDF := singularitiesOf(args) - listOfZeros:LST := removeDuplicates!(sdf2lst(streamOfZeros)) - numberOfZeros:INT := # listOfZeros - (numberOfZeros > 15)@Boolean => - [0.0,"d01alf: The list of singularities is too long", ext] - positive?(numberOfZeros) => - l:LDF := entries(complete(streamOfZeros)$SDF)$SDF - lany:Any := coerce(l)$AnyFunctions1(LDF) - ex:Record(key:S,entry:Any) := [d01alfextra@S,lany] - ext := insert!(ex,ext)$Result - st:ST := "Recommended is d01alf with the singularities " - commaSeparate(listOfZeros) - m := - one?(numberOfZeros) => 0.4 - getMeasure(R,d01alf@S)$RT - [m, st, ext] - [0.0, "d01alf: A list of suitable singularities has not been found", ext] - - numericalIntegration(args:NIA,hints:Result) == - la:Any := coerce(search((d01alfextra@S),hints)$Result)@Any - listOfZeros:LDF := retract(la)$AnyFunctions1(LDF) - l:= removeDuplicates(listOfZeros)$LDF - n:Integer := (#(l))$List(DF) - M:Matrix DF := matrix([l])$(Matrix DF) - b:Float := getButtonValue("d01alf","functionEvaluations")$AttributeButtons - fEvals:INT := wholePart exp(1.1513*(1.0/(2.0*(1.0-b)))) - iw:INT := 75*fEvals - ArgsFn := map(convert(#1)$DF,args.fn)$EF2(DF,Float) - f : Union(fn:FileName,fp:Asp1(F)) := [retract(ArgsFn)$Asp1(F)] - d01alf(getlo(args.range),gethi(args.range),n,M,args.abserr,args.relerr,2*n*iw,n*iw,-1,f) - -@ -\section{domain D01ANFA d01anfAnnaType} -<<domain D01ANFA d01anfAnnaType>>= -)abbrev domain D01ANFA d01anfAnnaType -++ Author: Brian Dupee -++ Date Created: March 1994 -++ Date Last Updated: December 1997 -++ Basic Operations: measure, numericalIntegration -++ Related Constructors: Result, RoutinesTable -++ Description: -++ \axiomType{d01anfAnnaType} is a domain of \axiomType{NumericalIntegrationCategory} -++ for the NAG routine D01ANF, a numerical integration routine which can -++ handle weight functions of the form cos(\omega x) or sin(\omega x). The -++ function \axiomFun{measure} measures the usefulness of the routine D01ANF -++ for the given problem. The function \axiomFun{numericalIntegration} -++ performs the integration by using \axiomType{NagIntegrationPackage}. - -d01anfAnnaType(): NumericalIntegrationCategory == Result add - EF2 ==> ExpressionFunctions2 - EDF ==> Expression DoubleFloat - LDF ==> List DoubleFloat - SDF ==> Stream DoubleFloat - DF ==> DoubleFloat - FI ==> Fraction Integer - EFI ==> Expression Fraction Integer - SOCDF ==> Segment OrderedCompletion DoubleFloat - NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) - MDNIA ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF) - INT ==> Integer - BOP ==> BasicOperator - S ==> Symbol - ST ==> String - LST ==> List String - RT ==> RoutinesTable - Rep:=Result - import Rep, d01WeightsPackage, d01AgentsPackage, NagIntegrationPackage - - measure(R:RT,args:NIA) == - ext:Result := empty()$Result - weight:Union(Record(op:BOP,w:DF),"failed") := - exprHasWeightCosWXorSinWX(args) - weight case Record(op:BOP,w:DF) => - wany := coerce(weight)$AnyFunctions1(Record(op:BOP,w:DF)) - ex:Record(key:S,entry:Any) := [d01anfextra@S,wany] - ext := insert!(ex,ext)$Result - ws:ST := string(name(weight.op)$BOP)$S "(" df2st(weight.w) - string(args.var)$S ")" - [getMeasure(R,d01anf@S)$RT, - "d01anf: The expression has a suitable weight:- " ws, ext] - [0.0,"d01anf: A suitable weight has not been found", ext] - - numericalIntegration(args:NIA,hints:Result) == - a:INT - r:Any := coerce(search((d01anfextra@S),hints)$Result)@Any - rec:Record(op:BOP,w:DF) := retract(r)$AnyFunctions1(Record(op:BOP,w:DF)) - Var := args.var :: EDF - o:BOP := rec.op - den:EDF := o((rec.w*Var)$EDF) - Argsfn:EDF := args.fn/den - if (name(o) = cos@S)@Boolean then a := 1 - else a := 2 - b:Float := getButtonValue("d01anf","functionEvaluations")$AttributeButtons - fEvals:INT := wholePart exp(1.1513*(1.0/(2.0*(1.0-b)))) - iw:INT := 75*fEvals - ArgsFn := map(convert(#1)$DF,Argsfn)$EF2(DF,Float) - f : Union(fn:FileName,fp:Asp1(G)) := [retract(ArgsFn)$Asp1(G)] - d01anf(getlo(args.range),gethi(args.range),rec.w,a,args.abserr,args.relerr,4*iw,iw,-1,f) - -@ -\section{domain D01ASFA d01asfAnnaType} -<<domain D01ASFA d01asfAnnaType>>= -)abbrev domain D01ASFA d01asfAnnaType -++ Author: Brian Dupee -++ Date Created: March 1994 -++ Date Last Updated: December 1997 -++ Basic Operations: measure, numericalIntegration -++ Related Constructors: Result, RoutinesTable -++ Description: -++ \axiomType{d01asfAnnaType} is a domain of \axiomType{NumericalIntegrationCategory} -++ for the NAG routine D01ASF, a numerical integration routine which can -++ handle weight functions of the form cos(\omega x) or sin(\omega x) on an -++ semi-infinite range. The -++ function \axiomFun{measure} measures the usefulness of the routine D01ASF -++ for the given problem. The function \axiomFun{numericalIntegration} -++ performs the integration by using \axiomType{NagIntegrationPackage}. - -d01asfAnnaType(): NumericalIntegrationCategory == Result add - EF2 ==> ExpressionFunctions2 - EDF ==> Expression DoubleFloat - LDF ==> List DoubleFloat - SDF ==> Stream DoubleFloat - DF ==> DoubleFloat - FI ==> Fraction Integer - EFI ==> Expression Fraction Integer - SOCDF ==> Segment OrderedCompletion DoubleFloat - NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) - MDNIA ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF) - INT ==> Integer - BOP ==> BasicOperator - S ==> Symbol - ST ==> String - LST ==> List String - RT ==> RoutinesTable - Rep:=Result - import Rep, d01WeightsPackage, d01AgentsPackage, NagIntegrationPackage - - measure(R:RT,args:NIA) == - ext:Result := empty()$Result - Range := rangeIsFinite(args) - not(Range case upperInfinite) => - [0.0,"d01asf is not a suitable routine for infinite integrals",ext] - weight: Union(Record(op:BOP,w:DF),"failed") := - exprHasWeightCosWXorSinWX(args) - weight case Record(op:BOP,w:DF) => - wany := coerce(weight)$AnyFunctions1(Record(op:BOP,w:DF)) - ex:Record(key:S,entry:Any) := [d01asfextra@S,wany] - ext := insert!(ex,ext)$Result - ws:ST := string(name(weight.op)$BOP)$S "(" df2st(weight.w) - string(args.var)$S ")" - [getMeasure(R,d01asf@S)$RT, - "d01asf: A suitable weight has been found:- " ws, ext] - [0.0,"d01asf: A suitable weight has not been found", ext] - - numericalIntegration(args:NIA,hints:Result) == - i:INT - r:Any := coerce(search((d01asfextra@S),hints)$Result)@Any - rec:Record(op:BOP,w:DF) := retract(r)$AnyFunctions1(Record(op:BOP,w:DF)) - Var := args.var :: EDF - o:BOP := rec.op - den:EDF := o((rec.w*Var)$EDF) - Argsfn:EDF := args.fn/den - if (name(o) = cos@S)@Boolean then i := 1 - else i := 2 - b:Float := getButtonValue("d01asf","functionEvaluations")$AttributeButtons - fEvals:INT := wholePart exp(1.1513*(1.0/(2.0*(1.0-b)))) - iw:INT := 75*fEvals - ArgsFn := map(convert(#1)$DF,Argsfn)$EF2(DF,Float) - f : Union(fn:FileName,fp:Asp1(G)) := [retract(ArgsFn)$Asp1(G)] - err := - positive?(args.abserr) => args.abserr - args.relerr - d01asf(getlo(args.range),rec.w,i,err,50,4*iw,2*iw,-1,f) - -@ -\section{domain D01GBFA d01gbfAnnaType} -<<domain D01GBFA d01gbfAnnaType>>= -)abbrev domain D01GBFA d01gbfAnnaType -++ Author: Brian Dupee -++ Date Created: March 1994 -++ Date Last Updated: December 1997 -++ Basic Operations: measure, numericalIntegration -++ Related Constructors: Result, RoutinesTable -++ Description: -++ \axiomType{d01gbfAnnaType} is a domain of \axiomType{NumericalIntegrationCategory} -++ for the NAG routine D01GBF, a numerical integration routine which can -++ handle multi-dimensional quadrature over a finite region. The -++ function \axiomFun{measure} measures the usefulness of the routine D01GBF -++ for the given problem. The function \axiomFun{numericalIntegration} -++ performs the integration by using \axiomType{NagIntegrationPackage}. - -d01gbfAnnaType(): NumericalIntegrationCategory == Result add - EF2 ==> ExpressionFunctions2 - EDF ==> Expression DoubleFloat - LDF ==> List DoubleFloat - SDF ==> Stream DoubleFloat - DF ==> DoubleFloat - FI ==> Fraction Integer - EFI ==> Expression Fraction Integer - SOCDF ==> Segment OrderedCompletion DoubleFloat - NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) - MDNIA ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF) - INT ==> Integer - BOP ==> BasicOperator - S ==> Symbol - ST ==> String - LST ==> List String - RT ==> RoutinesTable - Rep:=Result - import Rep, d01AgentsPackage, NagIntegrationPackage - - measure(R:RT,args:MDNIA) == - ext:Result := empty()$Result - (rel := args.relerr) < 0.01 :: DF => - [0.1, "d01gbf: The relative error requirement is too small",ext] - segs := args.range - vars := variables(args.fn)$EDF - for i in 1..# vars repeat - nia:NIA := [vars.i,args.fn,segs.i,args.abserr,rel] - not rangeIsFinite(nia) case finite => return - [0.0,"d01gbf is not a suitable routine for infinite integrals",ext] - [getMeasure(R,'d01gbf)$RT, "Recommended is d01gbf", ext] - - numericalIntegration(args:MDNIA,hints:Result) == - import Integer - segs := args.range - dim:INT := # segs - low:Matrix DF := matrix([[getlo(segs.i) for i in 1..dim]])$(Matrix DF) - high:Matrix DF := matrix([[gethi(segs.i) for i in 1..dim]])$(Matrix DF) - b:Float := getButtonValue("d01gbf","functionEvaluations")$AttributeButtons - a:Float:= exp(1.1513*(1.0/(2.0*(1.0-b)))) - maxcls:INT := 1500*(dim+1)*(fEvals:INT := wholePart(a)) - mincls:INT := 300*fEvals - c:Float := nthRoot((maxcls::Float)/4.0,dim)$Float - lenwrk:INT := 3*dim*(d:INT := wholePart(c))+10*dim - wrkstr:Matrix DF := matrix([[0$DF for i in 1..lenwrk]])$(Matrix DF) - ArgsFn := map(convert(#1)$DF,args.fn)$EF2(DF,Float) - f : Union(fn:FileName,fp:Asp4(FUNCTN)) := [retract(ArgsFn)$Asp4(FUNCTN)] - out:Result := d01gbf(dim,low,high,maxcls,args.relerr,lenwrk,mincls,wrkstr,-1,f) - changeName(finest@Symbol,result@Symbol,out) - -@ -\section{domain D01FCFA d01fcfAnnaType} -<<domain D01FCFA d01fcfAnnaType>>= -)abbrev domain D01FCFA d01fcfAnnaType -++ Author: Brian Dupee -++ Date Created: March 1994 -++ Date Last Updated: December 1997 -++ Basic Operations: measure, numericalIntegration -++ Related Constructors: Result, RoutinesTable -++ Description: -++ \axiomType{d01fcfAnnaType} is a domain of \axiomType{NumericalIntegrationCategory} -++ for the NAG routine D01FCF, a numerical integration routine which can -++ handle multi-dimensional quadrature over a finite region. The -++ function \axiomFun{measure} measures the usefulness of the routine D01GBF -++ for the given problem. The function \axiomFun{numericalIntegration} -++ performs the integration by using \axiomType{NagIntegrationPackage}. - -d01fcfAnnaType(): NumericalIntegrationCategory == Result add - EF2 ==> ExpressionFunctions2 - EDF ==> Expression DoubleFloat - LDF ==> List DoubleFloat - SDF ==> Stream DoubleFloat - DF ==> DoubleFloat - FI ==> Fraction Integer - EFI ==> Expression Fraction Integer - SOCDF ==> Segment OrderedCompletion DoubleFloat - NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) - MDNIA ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF) - INT ==> Integer - BOP ==> BasicOperator - S ==> Symbol - ST ==> String - LST ==> List String - RT ==> RoutinesTable - Rep:=Result - import Rep, d01AgentsPackage, NagIntegrationPackage - - measure(R:RT,args:MDNIA) == - ext:Result := empty()$Result - segs := args.range - vars := variables(args.fn)$EDF - for i in 1..# vars repeat - nia:NIA := [vars.i,args.fn,segs.i,args.abserr,args.relerr] - not rangeIsFinite(nia) case finite => return - [0.0,"d01fcf is not a suitable routine for infinite integrals",ext] - [getMeasure(R,d01fcf@S)$RT, "Recommended is d01fcf", ext] - - numericalIntegration(args:MDNIA,hints:Result) == - import Integer - segs := args.range - dim := # segs - err := args.relerr - low:Matrix DF := matrix([[getlo(segs.i) for i in 1..dim]])$(Matrix DF) - high:Matrix DF := matrix([[gethi(segs.i) for i in 1..dim]])$(Matrix DF) - b:Float := getButtonValue("d01fcf","functionEvaluations")$AttributeButtons - a:Float:= exp(1.1513*(1.0/(2.0*(1.0-b)))) - alpha:INT := 2**dim+2*dim**2+2*dim+1 - d:Float := max(1.e-3,nthRoot(convert(err)@Float,4))$Float - minpts:INT := (fEvals := wholePart(a))*wholePart(alpha::Float/d) - maxpts:INT := 5*minpts - lenwrk:INT := (dim+2)*(1+(33*fEvals)) - ArgsFn := map(convert(#1)$DF,args.fn)$EF2(DF,Float) - f : Union(fn:FileName,fp:Asp4(FUNCTN)) := [retract(ArgsFn)$Asp4(FUNCTN)] - out:Result := d01fcf(dim,low,high,maxpts,err,lenwrk,minpts,-1,f) - changeName(finval@Symbol,result@Symbol,out) - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<domain D01AJFA d01ajfAnnaType>> -<<domain D01AKFA d01akfAnnaType>> -<<domain D01AMFA d01amfAnnaType>> -<<domain D01AQFA d01aqfAnnaType>> -<<domain D01APFA d01apfAnnaType>> -<<domain D01ALFA d01alfAnnaType>> -<<domain D01ANFA d01anfAnnaType>> -<<domain D01ASFA d01asfAnnaType>> -<<domain D01GBFA d01gbfAnnaType>> -<<domain D01FCFA d01fcfAnnaType>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/d01transform.spad.pamphlet b/src/algebra/d01transform.spad.pamphlet deleted file mode 100644 index 29cd588f..00000000 --- a/src/algebra/d01transform.spad.pamphlet +++ /dev/null @@ -1,212 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra d01transform.spad} -\author{Brian Dupee} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{domain D01TRNS d01TransformFunctionType} -<<domain D01TRNS d01TransformFunctionType>>= -)abbrev domain D01TRNS d01TransformFunctionType -++ Author: Brian Dupee -++ Date Created: April 1994 -++ Date Last Updated: December 1997 -++ Basic Operations: measure, numericalIntegration -++ Related Constructors: Result, RoutinesTable -++ Description: -++ Since an infinite integral cannot be evaluated numerically -++ it is necessary to transform the integral onto finite ranges. -++ \axiomType{d01TransformFunctionType} uses the mapping \spad{x -> 1/x} -++ and contains the functions \axiomFun{measure} and -++ \axiomFun{numericalIntegration}. -EDF ==> Expression DoubleFloat -EEDF ==> Equation Expression DoubleFloat -FI ==> Fraction Integer -EFI ==> Expression Fraction Integer -EEFI ==> Equation Expression Fraction Integer -EF2 ==> ExpressionFunctions2 -DF ==> DoubleFloat -F ==> Float -SOCDF ==> Segment OrderedCompletion DoubleFloat -OCDF ==> OrderedCompletion DoubleFloat -NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) -INT ==> Integer -PI ==> PositiveInteger -HINT ==> Record(str:String,fn:EDF,range:SOCDF,ext:Result) -S ==> Symbol -ST ==> String -LST ==> List String -Measure ==> Record(measure:F,explanations:ST,extra:Result) -MS ==> Record(measure:F,name:ST,explanations:LST,extra:Result) - -d01TransformFunctionType():NumericalIntegrationCategory == Result add - Rep:=Result - import d01AgentsPackage,Rep - - rec2any(re:Record(str:ST,fn:EDF,range:SOCDF)):Any == - coerce(re)$AnyFunctions1(Record(str:ST,fn:EDF,range:SOCDF)) - - changeName(ans:Result,name:ST):Result == - sy:S := coerce(name "Answer")$S - anyAns:Any := coerce(ans)$AnyFunctions1(Result) - construct([[sy,anyAns]])$Result - - getIntegral(args:NIA,hint:HINT) : Result == - Args := copy args - Args.fn := hint.fn - Args.range := hint.range - integrate(Args::NumericalIntegrationProblem)$AnnaNumericalIntegrationPackage - - transformFunction(args:NIA) : NIA == - Args := copy args - Var := Args.var :: EFI -- coerce Symbol to EFI - NewVar:EFI := inv(Var)$EFI -- invert it - VarEqn:EEFI:=equation(Var,NewVar)$EEFI -- turn it into an equation - Afn:EFI := edf2efi(Args.fn)$ExpertSystemToolsPackage - Afn := subst(Afn,VarEqn)$EFI -- substitute into function - Var2:EFI := Var**2 - Afn:= simplify(Afn/Var2)$TranscendentalManipulations(FI,EFI) - Args.fn:= map(convert(#1)$FI,Afn)$EF2(FI,DF) - Args - - doit(seg:SOCDF,args:NIA):MS == - Args := copy args - Args.range := seg - measure(Args::NumericalIntegrationProblem)$AnnaNumericalIntegrationPackage - - transform(c:Boolean,args:NIA):Measure == - if c then - l := coerce(recip(lo(args.range)))@OCDF - Seg:SOCDF := segment(0$OCDF,l) - else - h := coerce(recip(hi(args.range)))@OCDF - Seg:SOCDF := segment(h,0$OCDF) - Args := transformFunction(args) - m:MS := doit(Seg,Args) - out1:ST := - "The recommendation is to transform the function and use " m.name - out2:List(HINT) := [[m.name,Args.fn,Seg,m.extra]] - out2Any:Any := coerce(out2)$AnyFunctions1(List(HINT)) - ex:Record(key:S,entry:Any) := [d01transformextra@S,out2Any] - extr:Result := construct([ex])$Result - [m.measure,out1,extr] - - split(c:PI,args:NIA):Measure == - Args := copy args - Args.relerr := Args.relerr/2 - Args.abserr := Args.abserr/2 - if (c = 1)@Boolean then - seg1:SOCDF := segment(-1$OCDF,1$OCDF) - else if (c = 2)@Boolean then - seg1 := segment(lo(Args.range),1$OCDF) - else - seg1 := segment(-1$OCDF,hi(Args.range)) - m1:MS := doit(seg1,Args) - Args := transformFunction Args - if (c = 2)@Boolean then - seg2:SOCDF := segment(0$OCDF,1$OCDF) - else if (c = 3)@Boolean then - seg2 := segment(-1$OCDF,0$OCDF) - else seg2 := seg1 - m2:MS := doit(seg2,Args) - m1m:F := m1.measure - m2m:F := m2.measure - m:F := m1m*m2m/((m1m*m2m)+(1.0-m1m)*(1.0-m2m)) - out1:ST := "The recommendation is to transform the function and use " - m1.name " and " m2.name - out2:List(HINT) := - [[m1.name,args.fn,seg1,m1.extra],[m2.name,Args.fn,seg2,m2.extra]] - out2Any:Any := coerce(out2)$AnyFunctions1(List(HINT)) - ex:Record(key:S,entry:Any) := [d01transformextra@S,out2Any] - extr:Result := construct([ex])$Result - [m,out1,extr] - - measure(R:RoutinesTable,args:NIA) == - Range:=rangeIsFinite(args) - Range case upperInfinite => - positive?(lo(args.range))$OCDF => - transform(true,args) - split(2,args) - Range case lowerInfinite => - negative?(hi(args.range))$OCDF => - transform(false,args) - split(3,args) - split(1,args) - - numericalIntegration(args:NIA,hints:Result) == - mainResult:DF := mainAbserr:DF := 0$DF - ans:Result := empty()$Result - hla:Any := coerce(search((d01transformextra@S),hints)$Result)@Any - hintList := retract(hla)$AnyFunctions1(List(HINT)) - methodName:ST := empty()$ST - repeat - if (empty?(hintList)$(List(HINT))) - then leave - item := first(hintList)$List(HINT) - a:Result := getIntegral(args,item) - anyRes := coerce(search((result@S),a)$Result)@Any - midResult := retract(anyRes)$AnyFunctions1(DF) - anyErr := coerce(search((abserr pretend S),a)$Result)@Any - midAbserr := retract(anyErr)$AnyFunctions1(DF) - mainResult := mainResult+midResult - mainAbserr := mainAbserr+midAbserr - if (methodName = item.str)@Boolean then - methodName := concat([item.str,"1"])$ST - else - methodName := item.str - ans := concat(ans,changeName(a,methodName))$ExpertSystemToolsPackage - hintList := rest(hintList)$(List(HINT)) - anyResult := coerce(mainResult)$AnyFunctions1(DF) - anyAbserr := coerce(mainAbserr)$AnyFunctions1(DF) - recResult:Record(key:S,entry:Any):=[result@S,anyResult] - recAbserr:Record(key:S,entry:Any):=[abserr pretend S,anyAbserr] - insert!(recAbserr,insert!(recResult,ans))$Result - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<domain D01TRNS d01TransformFunctionType>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/d01weights.spad.pamphlet b/src/algebra/d01weights.spad.pamphlet deleted file mode 100644 index dc0f1b2b..00000000 --- a/src/algebra/d01weights.spad.pamphlet +++ /dev/null @@ -1,309 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra d01weights.spad} -\author{Brian Dupee} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package D01WGTS d01WeightsPackage} -<<package D01WGTS d01WeightsPackage>>= -)abbrev package D01WGTS d01WeightsPackage -++ Author: Brian Dupee -++ Date Created: July 1994 -++ Date Last Updated: January 1998 (Bug fix - exprHasListOfWeightsCosWXorSinWX) -++ Basic Operations: exprHasWeightCosWXorSinWX, exprHasAlgebraicWeight, -++ exprHasLogarithmicWeights -++ Description: -++ \axiom{d01WeightsPackage} is a package for functions used to investigate -++ whether a function can be divided into a simpler function and a weight -++ function. The types of weights investigated are those giving rise to -++ end-point singularities of the algebraico-logarithmic type, and -++ trigonometric weights. -d01WeightsPackage(): E == I where - LEDF ==> List Expression DoubleFloat - KEDF ==> Kernel Expression DoubleFloat - LKEDF ==> List Kernel Expression DoubleFloat - EDF ==> Expression DoubleFloat - PDF ==> Polynomial DoubleFloat - FI ==> Fraction Integer - LDF ==> List DoubleFloat - DF ==> DoubleFloat - SOCDF ==> Segment OrderedCompletion DoubleFloat - OCDF ==> OrderedCompletion DoubleFloat - NIA ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF) - INT ==> Integer - BOP ==> BasicOperator - URBODF ==> Union(Record(op:BasicOperator,w:DF),"failed") - LURBODF ==> List(Union(Record(op:BasicOperator,w:DF), "failed")) - - E ==> with - exprHasWeightCosWXorSinWX:NIA -> URBODF - ++ \axiom{exprHasWeightCosWXorSinWX} looks for trigonometric - ++ weights in an expression of the form \axiom{cos \omega x} or - ++ \axiom{sin \omega x}, returning the value of \omega - ++ (\notequal 1) and the operator. - exprHasAlgebraicWeight:NIA -> Union(LDF,"failed") - ++ \axiom{exprHasAlgebraicWeight} looks for algebraic weights - ++ giving rise to singularities of the function at the end-points. - exprHasLogarithmicWeights:NIA -> INT - ++ \axiom{exprHasLogarithmicWeights} looks for logarithmic weights - ++ giving rise to singularities of the function at the end-points. - - - - I ==> add - score:(EDF,EDF) -> FI - kernelIsLog:KEDF -> Boolean - functionIsPolynomial?:EDF -> Boolean - functionIsNthRoot?:(EDF,EDF) -> Boolean - functionIsQuotient:EDF -> Union(EDF,"failed") - findCommonFactor:LEDF -> Union(LEDF,"failed") - findAlgebraicWeight:(NIA,EDF) -> Union(DF,"failed") - exprHasListOfWeightsCosWXorSinWX:(EDF,Symbol) -> LURBODF - exprOfFormCosWXorSinWX:(EDF,Symbol) -> URBODF - bestWeight:LURBODF -> URBODF - weightIn?:(URBODF,LURBODF) -> Boolean - inRest?:(EDF,LEDF)->Boolean - factorIn?:(EDF,LEDF)->Boolean - voo?:(EDF,EDF)->Boolean - - kernelIsLog(k:KEDF):Boolean == - (name operator k = (log :: Symbol))@Boolean - - factorIn?(a:EDF,l:LEDF):Boolean == - for i in 1..# l repeat - (a = l.i)@Boolean => return true - false - - voo?(b:EDF,a:EDF):Boolean == - (voo:=isTimes(b)) case LEDF and factorIn?(a,voo) - - inRest?(a:EDF,l:LEDF):Boolean == - every?( voo?(#1,a) ,l) - - findCommonFactor(l:LEDF):Union(LEDF,"failed") == - empty?(l)$LEDF => "failed" - f := first(l)$LEDF - r := rest(l)$LEDF - (t := isTimes(f)$EDF) case LEDF => - pos:=select(inRest?(#1,r),t) - empty?(pos) => "failed" - pos - "failed" - - exprIsLogarithmicWeight(f:EDF,Var:EDF,a:EDF,b:EDF):INT == - ans := 0$INT - k := tower(f)$EDF - lf := select(kernelIsLog,k)$LKEDF - empty?(lf)$LKEDF => ans - for i in 1..# lf repeat - arg := argument lf.i - if (arg.1 = (Var - a)) then - ans := ans + 1 - else if (arg.1 = (b - Var)) then - ans := ans + 2 - ans - - exprHasLogarithmicWeights(args:NIA):INT == - ans := 1$INT - a := getlo(args.range)$d01AgentsPackage :: EDF - b := gethi(args.range)$d01AgentsPackage :: EDF - Var := args.var :: EDF - (l := isPlus numerator args.fn) case LEDF => - (cf := findCommonFactor l) case LEDF => - for j in 1..# cf repeat - ans := ans + exprIsLogarithmicWeight(cf.j,Var,a,b) - ans - ans - ans := ans + exprIsLogarithmicWeight(args.fn,Var,a,b) - - functionIsQuotient(expr:EDF):Union(EDF,"failed") == - (k := mainKernel expr) case KEDF => - expr = inv(f := k :: KEDF :: EDF)$EDF => f - one?(numerator expr) => denominator expr - "failed" - "failed" - - functionIsPolynomial?(f:EDF):Boolean == - (retractIfCan(f)@Union(PDF,"failed"))$EDF case PDF - - functionIsNthRoot?(f:EDF,e:EDF):Boolean == - (m := mainKernel f) case "failed" => false - (one?(# (kernels f))) - and (name operator m = (nthRoot :: Symbol))@Boolean - and (((argument m).1 = e)@Boolean) - - score(f:EDF,e:EDF):FI == - ans := 0$FI - (t := isTimes f) case LEDF => - for i in 1..# t repeat - ans := ans + score(t.i,e) - ans - (q := functionIsQuotient f) case EDF => - ans := ans - score(q,e) - functionIsPolynomial? f => - g:EDF := f/e - if functionIsPolynomial? g then - ans := 1+score(g,e) - else - ans - (l := isPlus f) case LEDF => - (cf := findCommonFactor l) case LEDF => - factor := 1$EDF - for i in 1..# cf repeat - factor := factor*cf.i - ans := ans + score(f/factor,e) + score(factor,e) - ans - functionIsNthRoot?(f,e) => - (p := isPower f) case "failed" => ans - exp := p.exponent - m := mainKernel f - m case KEDF => - arg := argument m - a:INT := (retract(arg.2)@INT)$EDF - exp / a - ans - ans - - findAlgebraicWeight(args:NIA,e:EDF):Union(DF,"failed") == - zero?(s := score(args.fn,e)) => "failed" - s :: DF - - exprHasAlgebraicWeight(args:NIA):Union(LDF,"failed") == - (f := functionIsContinuousAtEndPoints(args)$d01AgentsPackage) - case continuous =>"failed" - Var := args.var :: EDF - a := getlo(args.range)$d01AgentsPackage :: EDF - b := gethi(args.range)$d01AgentsPackage :: EDF - A := Var - a - B := b - Var - f case lowerSingular => - (h := findAlgebraicWeight(args,A)) case "failed" => "failed" - [h,0] - f case upperSingular => - (g := findAlgebraicWeight(args,B)) case "failed" => "failed" - [0,g] - h := findAlgebraicWeight(args,A) - g := findAlgebraicWeight(args,B) - r := (h case "failed") - s := (g case "failed") - (r) and (s) => "failed" - r => [0,coerce(g)@DF] - s => [coerce(h)@DF,0] - [coerce(h)@DF,coerce(g)@DF] - - exprOfFormCosWXorSinWX(f:EDF,var:Symbol): URBODF == - l:LKEDF := kernels(f)$EDF - one?((# l)$LKEDF)$INT => - a:LEDF := argument(e:KEDF := first(l)$LKEDF)$KEDF - empty?(a) => "failed" - m:Union(LEDF,"failed") := isTimes(first(a)$LEDF)$EDF - m case LEDF => -- if it is a list, it will have at least two elements - is?(second(m)$LEDF,var)$EDF => - omega:DF := retract(first(m)$LEDF)@DF - o:BOP := operator(n:Symbol:=name operator(e)$KEDF)$BOP - (n = cos@Symbol)@Boolean => [o,omega] - (n = sin@Symbol)@Boolean => [o,omega] - "failed" - "failed" - "failed" - "failed" - - exprHasListOfWeightsCosWXorSinWX(f:EDF,var:Symbol): LURBODF == - (e := isTimes(f)$EDF) case LEDF => - [exprOfFormCosWXorSinWX(u,var) for u in e] - empty?(k := kernels f) => ["failed"] - ((first(k)::EDF) = f) => - [exprOfFormCosWXorSinWX(f,var)] - ["failed"] - - bestWeight(l:LURBODF): URBODF == - empty?(l)$LURBODF => "failed" - best := first(l)$LURBODF -- best is first in list - empty?(rest(l)$LURBODF) => best - for i in 2..# l repeat -- unless next is better - r:URBODF := l.i - if r case "failed" then leave - else if best case "failed" then - best := r - else if r.w > best.w then - best := r - best - - weightIn?(weight:URBODF,listOfWeights:LURBODF):Boolean == - n := # listOfWeights - for i in 1..n repeat -- cycle through list - (weight = listOfWeights.i)@Boolean => return true -- return when found - false - - exprHasWeightCosWXorSinWX(args:NIA):URBODF == - ans := empty()$LURBODF - f:EDF := numerator(args.fn)$EDF - (t:Union(LEDF,"failed") := isPlus(f)) case "failed" => - bestWeight(exprHasListOfWeightsCosWXorSinWX(f,args.var)) - if t case LEDF then - e1 := first(t)$LEDF - le1:LURBODF := exprHasListOfWeightsCosWXorSinWX(e1,args.var) - le1 := [u for u in le1 | (not (u case "failed"))] - empty?(le1)$LURBODF => "failed" - test := true - for i in 1..# le1 repeat - le1i:URBODF := le1.i - for j in 2..# t repeat - if test then - tj:LURBODF := exprHasListOfWeightsCosWXorSinWX(t.j,args.var) - test := weightIn?(le1i,tj) - if test then - ans := concat([le1i],ans) - bestWeight ans - else "failed" - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. ---Copyright (C) 2007-2009, Gabriel Dos Reis. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package D01WGTS d01WeightsPackage>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/d02.spad.pamphlet b/src/algebra/d02.spad.pamphlet deleted file mode 100644 index 79b845f2..00000000 --- a/src/algebra/d02.spad.pamphlet +++ /dev/null @@ -1,483 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra d02.spad} -\author{Godfrey Nolan, Mike Dewar} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package NAGD02 NagOrdinaryDifferentialEquationsPackage} -<<package NAGD02 NagOrdinaryDifferentialEquationsPackage>>= -)abbrev package NAGD02 NagOrdinaryDifferentialEquationsPackage -++ Author: Godfrey Nolan and Mike Dewar -++ Date Created: Jan 1994 -++ Date Last Updated: Mon Jun 20 17:56:33 1994 -++Description: -++This package uses the NAG Library to calculate the numerical solution of ordinary -++differential equations. There are two main types of problem, -++those in which all boundary conditions are specified at one point -++(initial-value problems), and those in which the boundary -++conditions are distributed between two or more points (boundary- -++value problems and eigenvalue problems). Routines are available -++for initial-value problems, two-point boundary-value problems and -++Sturm-Liouville eigenvalue problems. -++See \downlink{Manual Page}{manpageXXd02}. -NagOrdinaryDifferentialEquationsPackage(): Exports == Implementation where - S ==> Symbol - FOP ==> FortranOutputStackPackage - - Exports ==> with - d02bbf : (DoubleFloat,Integer,Integer,Integer,_ - DoubleFloat,Matrix DoubleFloat,DoubleFloat,Integer,Union(fn:FileName,fp:Asp7(FCN)),Union(fn:FileName,fp:Asp8(OUTPUT))) -> Result - ++ d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output) - ++ integrates a system of first-order ordinary differential - ++ equations over an interval with suitable initial conditions, - ++ using a Runge-Kutta-Merson method, and returns the solution at - ++ points specified by the user. - ++ See \downlink{Manual Page}{manpageXXd02bbf}. - d02bhf : (DoubleFloat,Integer,Integer,DoubleFloat,_ - DoubleFloat,Matrix DoubleFloat,DoubleFloat,Integer,Union(fn:FileName,fp:Asp9(G)),Union(fn:FileName,fp:Asp7(FCN))) -> Result - ++ d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn) - ++ integrates a system of first-order ordinary differential - ++ equations over an interval with suitable initial conditions, - ++ using a Runge-Kutta-Merson method, until a user-specified - ++ function of the solution is zero. - ++ See \downlink{Manual Page}{manpageXXd02bhf}. - d02cjf : (DoubleFloat,Integer,Integer,DoubleFloat,_ - String,DoubleFloat,Matrix DoubleFloat,Integer,Union(fn:FileName,fp:Asp9(G)),Union(fn:FileName,fp:Asp7(FCN)),Union(fn:FileName,fp:Asp8(OUTPUT))) -> Result - ++ d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output) - ++ integrates a system of first-order ordinary differential - ++ equations over a range with suitable initial conditions, using a - ++ variable-order, variable-step Adams method until a user-specified - ++ function, if supplied, of the solution is zero, and returns the - ++ solution at points specified by the user, if desired. - ++ See \downlink{Manual Page}{manpageXXd02cjf}. - d02ejf : (DoubleFloat,Integer,Integer,String,_ - Integer,DoubleFloat,Matrix DoubleFloat,DoubleFloat,Integer,Union(fn:FileName,fp:Asp9(G)),Union(fn:FileName,fp:Asp7(FCN)),Union(fn:FileName,fp:Asp31(PEDERV)),Union(fn:FileName,fp:Asp8(OUTPUT))) -> Result - ++ d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output) - ++ integrates a stiff system of first-order ordinary - ++ differential equations over an interval with suitable initial - ++ conditions, using a variable-order, variable-step method - ++ implementing the Backward Differentiation Formulae (BDF), until a - ++ user-specified function, if supplied, of the solution is zero, - ++ and returns the solution at points specified by the user, if - ++ desired. - ++ See \downlink{Manual Page}{manpageXXd02ejf}. - d02gaf : (Matrix DoubleFloat,Matrix DoubleFloat,Integer,DoubleFloat,_ - DoubleFloat,DoubleFloat,Integer,Integer,Integer,Matrix DoubleFloat,Integer,Integer,Union(fn:FileName,fp:Asp7(FCN))) -> Result - ++ d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn) - ++ solves the two-point boundary-value problem with assigned - ++ boundary values for a system of ordinary differential equations, - ++ using a deferred correction technique and a Newton iteration. - ++ See \downlink{Manual Page}{manpageXXd02gaf}. - d02gbf : (DoubleFloat,DoubleFloat,Integer,DoubleFloat,_ - Integer,Integer,Integer,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Integer,Integer,Union(fn:FileName,fp:Asp77(FCNF)),Union(fn:FileName,fp:Asp78(FCNG))) -> Result - ++ d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng) - ++ solves a general linear two-point boundary value problem - ++ for a system of ordinary differential equations using a deferred - ++ correction technique. - ++ See \downlink{Manual Page}{manpageXXd02gbf}. - d02kef : (Matrix DoubleFloat,Integer,Integer,DoubleFloat,_ - Integer,Integer,DoubleFloat,DoubleFloat,Matrix DoubleFloat,Integer,Integer,Union(fn:FileName,fp:Asp10(COEFFN)),Union(fn:FileName,fp:Asp80(BDYVAL))) -> Result - ++ d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval) - ++ finds a specified eigenvalue of a regular singular second- - ++ order Sturm-Liouville system on a finite or infinite range, using - ++ a Pruefer transformation and a shooting method. It also reports - ++ values of the eigenfunction and its derivatives. Provision is - ++ made for discontinuities in the coefficient functions or their - ++ derivatives. - ++ See \downlink{Manual Page}{manpageXXd02kef}. - ++ ASP domains Asp12 and Asp33 are used to supply default - ++ subroutines for the MONIT and REPORT arguments via their \axiomOp{outputAsFortran} operation. - d02kef : (Matrix DoubleFloat,Integer,Integer,DoubleFloat,_ - Integer,Integer,DoubleFloat,DoubleFloat,Matrix DoubleFloat,Integer,Integer,Union(fn:FileName,fp:Asp10(COEFFN)),Union(fn:FileName,fp:Asp80(BDYVAL)),FileName,FileName) -> Result - ++ d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report) - ++ finds a specified eigenvalue of a regular singular second- - ++ order Sturm-Liouville system on a finite or infinite range, using - ++ a Pruefer transformation and a shooting method. It also reports - ++ values of the eigenfunction and its derivatives. Provision is - ++ made for discontinuities in the coefficient functions or their - ++ derivatives. - ++ See \downlink{Manual Page}{manpageXXd02kef}. - ++ Files \spad{monit} and \spad{report} will be used to define the subroutines for the - ++ MONIT and REPORT arguments. - ++ See \downlink{Manual Page}{manpageXXd02gbf}. - d02raf : (Integer,Integer,Integer,Integer,_ - DoubleFloat,Integer,Integer,Integer,Integer,Integer,Integer,Matrix DoubleFloat,Matrix DoubleFloat,DoubleFloat,Integer,Union(fn:FileName,fp:Asp41(FCN,JACOBF,JACEPS)),Union(fn:FileName,fp:Asp42(G,JACOBG,JACGEP))) -> Result - ++ d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g) - ++ solves the two-point boundary-value problem with general - ++ boundary conditions for a system of ordinary differential - ++ equations, using a deferred correction technique and Newton - ++ iteration. - ++ See \downlink{Manual Page}{manpageXXd02raf}. - Implementation ==> add - - import Lisp - import DoubleFloat - import Any - import Record - import Integer - import Matrix DoubleFloat - import Boolean - import NAGLinkSupportPackage - import FortranPackage - import Union(fn:FileName,fp:Asp7(FCN)) - import Union(fn:FileName,fp:Asp8(OUTPUT)) - import AnyFunctions1(DoubleFloat) - import AnyFunctions1(Integer) - import AnyFunctions1(String) - import AnyFunctions1(Matrix DoubleFloat) - - - d02bbf(xendArg:DoubleFloat,mArg:Integer,nArg:Integer,_ - irelabArg:Integer,xArg:DoubleFloat,yArg:Matrix DoubleFloat,_ - tolArg:DoubleFloat,ifailArg:Integer,fcnArg:Union(fn:FileName,fp:Asp7(FCN)),_ - outputArg:Union(fn:FileName,fp:Asp8(OUTPUT))): Result == - pushFortranOutputStack(fcnFilename := aspFilename "fcn")$FOP - if fcnArg case fn - then outputAsFortran(fcnArg.fn) - else outputAsFortran(fcnArg.fp) - popFortranOutputStack()$FOP - pushFortranOutputStack(outputFilename := aspFilename "output")$FOP - if outputArg case fn - then outputAsFortran(outputArg.fn) - else outputAsFortran(outputArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([fcnFilename, outputFilename]$Lisp,_ - "d02bbf",_ - ["xend"::S,"m"::S,"n"::S,"irelab"::S,"x"::S_ - ,"tol"::S,"ifail"::S,"fcn"::S,"output"::S,"result"::S,"y"::S,"w"::S]$Lisp,_ - ["result"::S,"w"::S,"fcn"::S,"output"::S]$Lisp,_ - [["double"::S,"xend"::S,["result"::S,"m"::S,"n"::S]$Lisp_ - ,"x"::S,["y"::S,"n"::S]$Lisp,"tol"::S,["w"::S,"n"::S,7$Lisp]$Lisp,"fcn"::S,"output"::S]$Lisp_ - ,["integer"::S,"m"::S,"n"::S,"irelab"::S,"ifail"::S_ - ]$Lisp_ - ]$Lisp,_ - ["result"::S,"x"::S,"y"::S,"tol"::S,"ifail"::S]$Lisp,_ - [([xendArg::Any,mArg::Any,nArg::Any,irelabArg::Any,xArg::Any,tolArg::Any,ifailArg::Any,yArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - d02bhf(xendArg:DoubleFloat,nArg:Integer,irelabArg:Integer,_ - hmaxArg:DoubleFloat,xArg:DoubleFloat,yArg:Matrix DoubleFloat,_ - tolArg:DoubleFloat,ifailArg:Integer,gArg:Union(fn:FileName,fp:Asp9(G)),_ - fcnArg:Union(fn:FileName,fp:Asp7(FCN))): Result == - pushFortranOutputStack(gFilename := aspFilename "g")$FOP - if gArg case fn - then outputAsFortran(gArg.fn) - else outputAsFortran(gArg.fp) - popFortranOutputStack()$FOP - pushFortranOutputStack(fcnFilename := aspFilename "fcn")$FOP - if fcnArg case fn - then outputAsFortran(fcnArg.fn) - else outputAsFortran(fcnArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([gFilename,fcnFilename]$Lisp,_ - "d02bhf",_ - ["xend"::S,"n"::S,"irelab"::S,"hmax"::S,"x"::S_ - ,"tol"::S,"ifail"::S,"g"::S,"fcn"::S,"y"::S,"w"::S]$Lisp,_ - ["w"::S,"g"::S,"fcn"::S]$Lisp,_ - [["double"::S,"xend"::S,"hmax"::S,"x"::S,["y"::S,"n"::S]$Lisp_ - ,"tol"::S,["w"::S,"n"::S,7$Lisp]$Lisp,"g"::S,"fcn"::S]$Lisp_ - ,["integer"::S,"n"::S,"irelab"::S,"ifail"::S_ - ]$Lisp_ - ]$Lisp,_ - ["x"::S,"y"::S,"tol"::S,"ifail"::S]$Lisp,_ - [([xendArg::Any,nArg::Any,irelabArg::Any,hmaxArg::Any,xArg::Any,tolArg::Any,ifailArg::Any,yArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - d02cjf(xendArg:DoubleFloat,mArg:Integer,nArg:Integer,_ - tolArg:DoubleFloat,relabsArg:String,xArg:DoubleFloat,_ - yArg:Matrix DoubleFloat,ifailArg:Integer,gArg:Union(fn:FileName,fp:Asp9(G)),_ - fcnArg:Union(fn:FileName,fp:Asp7(FCN)),outputArg:Union(fn:FileName,fp:Asp8(OUTPUT))): Result == - pushFortranOutputStack(gFilename := aspFilename "g")$FOP - if gArg case fn - then outputAsFortran(gArg.fn) - else outputAsFortran(gArg.fp) - popFortranOutputStack()$FOP - pushFortranOutputStack(fcnFilename := aspFilename "fcn")$FOP - if fcnArg case fn - then outputAsFortran(fcnArg.fn) - else outputAsFortran(fcnArg.fp) - popFortranOutputStack()$FOP - pushFortranOutputStack(outputFilename := aspFilename "output")$FOP - if outputArg case fn - then outputAsFortran(outputArg.fn) - else outputAsFortran(outputArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([gFilename,fcnFilename,outputFilename]$Lisp,_ - "d02cjf",_ - ["xend"::S,"m"::S,"n"::S,"tol"::S,"relabs"::S_ - ,"x"::S,"ifail"::S,"g"::S,"fcn"::S,"output"::S_ - ,"result"::S,"y"::S,"w"::S]$Lisp,_ - ["result"::S,"w"::S,"g"::S,"fcn"::S,"output"::S]$Lisp,_ - [["double"::S,"xend"::S,"tol"::S,["result"::S,"m"::S,"n"::S]$Lisp_ - ,"x"::S,["y"::S,"n"::S]$Lisp,["w"::S,["+"::S,["*"::S,21$Lisp,"n"::S]$Lisp,28$Lisp]$Lisp]$Lisp,"g"::S_ - ,"fcn"::S,"output"::S]$Lisp_ - ,["integer"::S,"m"::S,"n"::S,"ifail"::S]$Lisp_ - ,["character"::S,"relabs"::S]$Lisp_ - ]$Lisp,_ - ["result"::S,"x"::S,"y"::S,"ifail"::S]$Lisp,_ - [([xendArg::Any,mArg::Any,nArg::Any,tolArg::Any,relabsArg::Any,xArg::Any,ifailArg::Any,yArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - d02ejf(xendArg:DoubleFloat,mArg:Integer,nArg:Integer,_ - relabsArg:String,iwArg:Integer,xArg:DoubleFloat,_ - yArg:Matrix DoubleFloat,tolArg:DoubleFloat,ifailArg:Integer,_ - gArg:Union(fn:FileName,fp:Asp9(G)),fcnArg:Union(fn:FileName,fp:Asp7(FCN)),pedervArg:Union(fn:FileName,fp:Asp31(PEDERV)),_ - outputArg:Union(fn:FileName,fp:Asp8(OUTPUT))): Result == - pushFortranOutputStack(gFilename := aspFilename "g")$FOP - if gArg case fn - then outputAsFortran(gArg.fn) - else outputAsFortran(gArg.fp) - popFortranOutputStack()$FOP - pushFortranOutputStack(fcnFilename := aspFilename "fcn")$FOP - if fcnArg case fn - then outputAsFortran(fcnArg.fn) - else outputAsFortran(fcnArg.fp) - popFortranOutputStack()$FOP - pushFortranOutputStack(pedervFilename := aspFilename "pederv")$FOP - if pedervArg case fn - then outputAsFortran(pedervArg.fn) - else outputAsFortran(pedervArg.fp) - popFortranOutputStack()$FOP - pushFortranOutputStack(outputFilename := aspFilename "output")$FOP - if outputArg case fn - then outputAsFortran(outputArg.fn) - else outputAsFortran(outputArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([gFilename,fcnFilename,pedervFilename,outputFilename]$Lisp,_ - "d02ejf",_ - ["xend"::S,"m"::S,"n"::S,"relabs"::S,"iw"::S_ - ,"x"::S,"tol"::S,"ifail"::S,"g"::S,"fcn"::S_ - ,"pederv"::S,"output"::S,"result"::S,"y"::S,"w"::S]$Lisp,_ - ["result"::S,"w"::S,"g"::S,"fcn"::S,"pederv"::S,"output"::S]$Lisp,_ - [["double"::S,"xend"::S,["result"::S,"m"::S,"n"::S]$Lisp_ - ,"x"::S,["y"::S,"n"::S]$Lisp,"tol"::S,["w"::S,"iw"::S]$Lisp,"g"::S,"fcn"::S,"pederv"::S,"output"::S]$Lisp_ - ,["integer"::S,"m"::S,"n"::S,"iw"::S,"ifail"::S_ - ]$Lisp_ - ,["character"::S,"relabs"::S]$Lisp_ - ]$Lisp,_ - ["result"::S,"x"::S,"y"::S,"tol"::S,"ifail"::S]$Lisp,_ - [([xendArg::Any,mArg::Any,nArg::Any,relabsArg::Any,iwArg::Any,xArg::Any,tolArg::Any,ifailArg::Any,yArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - d02gaf(uArg:Matrix DoubleFloat,vArg:Matrix DoubleFloat,nArg:Integer,_ - aArg:DoubleFloat,bArg:DoubleFloat,tolArg:DoubleFloat,_ - mnpArg:Integer,lwArg:Integer,liwArg:Integer,_ - xArg:Matrix DoubleFloat,npArg:Integer,ifailArg:Integer,_ - fcnArg:Union(fn:FileName,fp:Asp7(FCN))): Result == - pushFortranOutputStack(fcnFilename := aspFilename "fcn")$FOP - if fcnArg case fn - then outputAsFortran(fcnArg.fn) - else outputAsFortran(fcnArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([fcnFilename]$Lisp,_ - "d02gaf",_ - ["n"::S,"a"::S,"b"::S,"tol"::S,"mnp"::S_ - ,"lw"::S,"liw"::S,"np"::S,"ifail"::S,"fcn"::S_ - ,"u"::S,"v"::S,"y"::S,"x"::S,"w"::S_ - ,"iw"::S]$Lisp,_ - ["y"::S,"w"::S,"iw"::S,"fcn"::S]$Lisp,_ - [["double"::S,["u"::S,"n"::S,2$Lisp]$Lisp,["v"::S,"n"::S,2$Lisp]$Lisp_ - ,"a"::S,"b"::S,"tol"::S,["y"::S,"n"::S,"mnp"::S]$Lisp,["x"::S,"mnp"::S]$Lisp,["w"::S,"lw"::S]$Lisp_ - ,"fcn"::S]$Lisp_ - ,["integer"::S,"n"::S,"mnp"::S,"lw"::S,"liw"::S_ - ,"np"::S,"ifail"::S,["iw"::S,"liw"::S]$Lisp]$Lisp_ - ]$Lisp,_ - ["y"::S,"x"::S,"np"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,aArg::Any,bArg::Any,tolArg::Any,mnpArg::Any,lwArg::Any,liwArg::Any,npArg::Any,ifailArg::Any,uArg::Any,vArg::Any,xArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - d02gbf(aArg:DoubleFloat,bArg:DoubleFloat,nArg:Integer,_ - tolArg:DoubleFloat,mnpArg:Integer,lwArg:Integer,_ - liwArg:Integer,cArg:Matrix DoubleFloat,dArg:Matrix DoubleFloat,_ - gamArg:Matrix DoubleFloat,xArg:Matrix DoubleFloat,npArg:Integer,_ - ifailArg:Integer,fcnfArg:Union(fn:FileName,fp:Asp77(FCNF)),fcngArg:Union(fn:FileName,fp:Asp78(FCNG))): Result == - pushFortranOutputStack(fcnfFilename := aspFilename "fcnf")$FOP - if fcnfArg case fn - then outputAsFortran(fcnfArg.fn) - else outputAsFortran(fcnfArg.fp) - popFortranOutputStack()$FOP - pushFortranOutputStack(fcngFilename := aspFilename "fcng")$FOP - if fcngArg case fn - then outputAsFortran(fcngArg.fn) - else outputAsFortran(fcngArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([fcnfFilename,fcngFilename]$Lisp,_ - "d02gbf",_ - ["a"::S,"b"::S,"n"::S,"tol"::S,"mnp"::S_ - ,"lw"::S,"liw"::S,"np"::S,"ifail"::S,"fcnf"::S_ - ,"fcng"::S,"y"::S,"c"::S,"d"::S,"gam"::S,"x"::S_ - ,"w"::S,"iw"::S]$Lisp,_ - ["y"::S,"w"::S,"iw"::S,"fcnf"::S,"fcng"::S]$Lisp,_ - [["double"::S,"a"::S,"b"::S,"tol"::S,["y"::S,"n"::S,"mnp"::S]$Lisp_ - ,["c"::S,"n"::S,"n"::S]$Lisp,["d"::S,"n"::S,"n"::S]$Lisp,["gam"::S,"n"::S]$Lisp,["x"::S,"mnp"::S]$Lisp_ - ,["w"::S,"lw"::S]$Lisp,"fcnf"::S,"fcng"::S]$Lisp_ - ,["integer"::S,"n"::S,"mnp"::S,"lw"::S,"liw"::S_ - ,"np"::S,"ifail"::S,["iw"::S,"liw"::S]$Lisp]$Lisp_ - ]$Lisp,_ - ["y"::S,"c"::S,"d"::S,"gam"::S,"x"::S,"np"::S,"ifail"::S]$Lisp,_ - [([aArg::Any,bArg::Any,nArg::Any,tolArg::Any,mnpArg::Any,lwArg::Any,liwArg::Any,npArg::Any,ifailArg::Any,cArg::Any,dArg::Any,gamArg::Any,xArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - d02kef(xpointArg:Matrix DoubleFloat,mArg:Integer,kArg:Integer,_ - tolArg:DoubleFloat,maxfunArg:Integer,matchArg:Integer,_ - elamArg:DoubleFloat,delamArg:DoubleFloat,hmaxArg:Matrix DoubleFloat,_ - maxitArg:Integer,ifailArg:Integer,coeffnArg:Union(fn:FileName,fp:Asp10(COEFFN)),_ - bdyvalArg:Union(fn:FileName,fp:Asp80(BDYVAL))): Result == - pushFortranOutputStack(coeffnFilename := aspFilename "coeffn")$FOP - if coeffnArg case fn - then outputAsFortran(coeffnArg.fn) - else outputAsFortran(coeffnArg.fp) - popFortranOutputStack()$FOP - pushFortranOutputStack(bdyvalFilename := aspFilename "bdyval")$FOP - if bdyvalArg case fn - then outputAsFortran(bdyvalArg.fn) - else outputAsFortran(bdyvalArg.fp) - popFortranOutputStack()$FOP - pushFortranOutputStack(monitFilename := aspFilename "monit")$FOP - outputAsFortran()$Asp12(MONIT) - popFortranOutputStack()$FOP - pushFortranOutputStack(reportFilename := aspFilename "report")$FOP - outputAsFortran()$Asp33(REPORT) - popFortranOutputStack()$FOP - [(invokeNagman([coeffnFilename,bdyvalFilename,monitFilename,reportFilename]$Lisp,_ - "d02kef",_ - ["m"::S,"k"::S,"tol"::S,"maxfun"::S,"match"::S_ - ,"elam"::S,"delam"::S,"maxit"::S,"ifail"::S,"coeffn"::S_ - ,"bdyval"::S,"monit"::S,"report"::S,"xpoint"::S,"hmax"::S]$Lisp,_ - ["coeffn"::S,"bdyval"::S,"monit"::S,"report"::S]$Lisp,_ - [["double"::S,["xpoint"::S,"m"::S]$Lisp,"tol"::S_ - ,"elam"::S,"delam"::S,["hmax"::S,2$Lisp,"m"::S]$Lisp,"coeffn"::S,"bdyval"::S,"monit"::S,"report"::S]$Lisp_ - ,["integer"::S,"m"::S,"k"::S,"maxfun"::S,"match"::S_ - ,"maxit"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["match"::S,"elam"::S,"delam"::S,"hmax"::S,"maxit"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,kArg::Any,tolArg::Any,maxfunArg::Any,matchArg::Any,elamArg::Any,delamArg::Any,maxitArg::Any,ifailArg::Any,xpointArg::Any,hmaxArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - d02kef(xpointArg:Matrix DoubleFloat,mArg:Integer,kArg:Integer,_ - tolArg:DoubleFloat,maxfunArg:Integer,matchArg:Integer,_ - elamArg:DoubleFloat,delamArg:DoubleFloat,hmaxArg:Matrix DoubleFloat,_ - maxitArg:Integer,ifailArg:Integer,coeffnArg:Union(fn:FileName,fp:Asp10(COEFFN)),_ - bdyvalArg:Union(fn:FileName,fp:Asp80(BDYVAL)),monitArg:FileName,reportArg:FileName): Result == - pushFortranOutputStack(coeffnFilename := aspFilename "coeffn")$FOP - if coeffnArg case fn - then outputAsFortran(coeffnArg.fn) - else outputAsFortran(coeffnArg.fp) - popFortranOutputStack()$FOP - pushFortranOutputStack(bdyvalFilename := aspFilename "bdyval")$FOP - if bdyvalArg case fn - then outputAsFortran(bdyvalArg.fn) - else outputAsFortran(bdyvalArg.fp) - popFortranOutputStack()$FOP - pushFortranOutputStack(monitFilename := aspFilename "monit")$FOP - outputAsFortran(monitArg) - popFortranOutputStack()$FOP - pushFortranOutputStack(reportFilename := aspFilename "report")$FOP - outputAsFortran(reportArg) - popFortranOutputStack()$FOP - [(invokeNagman([coeffnFilename,bdyvalFilename,monitFilename,reportFilename]$Lisp,_ - "d02kef",_ - ["m"::S,"k"::S,"tol"::S,"maxfun"::S,"match"::S_ - ,"elam"::S,"delam"::S,"maxit"::S,"ifail"::S,"coeffn"::S_ - ,"bdyval"::S,"monit"::S,"report"::S,"xpoint"::S,"hmax"::S]$Lisp,_ - ["coeffn"::S,"bdyval"::S,"monit"::S,"report"::S]$Lisp,_ - [["double"::S,["xpoint"::S,"m"::S]$Lisp,"tol"::S_ - ,"elam"::S,"delam"::S,["hmax"::S,2$Lisp,"m"::S]$Lisp,"coeffn"::S,"bdyval"::S,"monit"::S,"report"::S]$Lisp_ - ,["integer"::S,"m"::S,"k"::S,"maxfun"::S,"match"::S_ - ,"maxit"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["match"::S,"elam"::S,"delam"::S,"hmax"::S,"maxit"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,kArg::Any,tolArg::Any,maxfunArg::Any,matchArg::Any,elamArg::Any,delamArg::Any,maxitArg::Any,ifailArg::Any,xpointArg::Any,hmaxArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - d02raf(nArg:Integer,mnpArg:Integer,numbegArg:Integer,_ - nummixArg:Integer,tolArg:DoubleFloat,initArg:Integer,_ - iyArg:Integer,ijacArg:Integer,lworkArg:Integer,_ - liworkArg:Integer,npArg:Integer,xArg:Matrix DoubleFloat,_ - yArg:Matrix DoubleFloat,delepsArg:DoubleFloat,ifailArg:Integer,_ - fcnArg:Union(fn:FileName,fp:Asp41(FCN,JACOBF,JACEPS)),gArg:Union(fn:FileName,fp:Asp42(G,JACOBG,JACGEP))): Result == - pushFortranOutputStack(fcnFilename := aspFilename "fcn")$FOP - if fcnArg case fn - then outputAsFortran(fcnArg.fn) - else outputAsFortran(fcnArg.fp) - popFortranOutputStack()$FOP - pushFortranOutputStack(gFilename := aspFilename "g")$FOP - if gArg case fn - then outputAsFortran(gArg.fn) - else outputAsFortran(gArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([fcnFilename,gFilename]$Lisp,_ - "d02raf",_ - ["n"::S,"mnp"::S,"numbeg"::S,"nummix"::S,"tol"::S_ - ,"init"::S,"iy"::S,"ijac"::S,"lwork"::S,"liwork"::S_ - ,"np"::S,"deleps"::S,"ifail"::S,"fcn"::S,"g"::S_ - ,"abt"::S,"x"::S,"y"::S,"work"::S,"iwork"::S_ - ]$Lisp,_ - ["abt"::S,"work"::S,"iwork"::S,"fcn"::S,"g"::S]$Lisp,_ - [["double"::S,"tol"::S,["abt"::S,"n"::S]$Lisp_ - ,["x"::S,"mnp"::S]$Lisp,["y"::S,"iy"::S,"mnp"::S]$Lisp,"deleps"::S,["work"::S,"lwork"::S]$Lisp,"fcn"::S,"g"::S]$Lisp_ - ,["integer"::S,"n"::S,"mnp"::S,"numbeg"::S_ - ,"nummix"::S,"init"::S,"iy"::S,"ijac"::S,"lwork"::S,"liwork"::S,"np"::S,"ifail"::S,["iwork"::S,"liwork"::S]$Lisp]$Lisp_ - ]$Lisp,_ - ["abt"::S,"np"::S,"x"::S,"y"::S,"deleps"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,mnpArg::Any,numbegArg::Any,nummixArg::Any,tolArg::Any,initArg::Any,iyArg::Any,ijacArg::Any,lworkArg::Any,liworkArg::Any,npArg::Any,delepsArg::Any,ifailArg::Any,xArg::Any,yArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package NAGD02 NagOrdinaryDifferentialEquationsPackage>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/d02Package.spad.pamphlet b/src/algebra/d02Package.spad.pamphlet deleted file mode 100644 index d346bab9..00000000 --- a/src/algebra/d02Package.spad.pamphlet +++ /dev/null @@ -1,457 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra d02Package.spad} -\author{Brian Dupee} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package ODEPACK AnnaOrdinaryDifferentialEquationPackage} -<<package ODEPACK AnnaOrdinaryDifferentialEquationPackage>>= -)abbrev package ODEPACK AnnaOrdinaryDifferentialEquationPackage -++ Author: Brian Dupee -++ Date Created: February 1995 -++ Date Last Updated: December 1997 -++ Basic Operations: solve, measure -++ Description: -++ \axiomType{AnnaOrdinaryDifferentialEquationPackage} is a \axiom{package} -++ of functions for the \axiom{category} \axiomType{OrdinaryDifferentialEquationsSolverCategory} -++ with \axiom{measure}, and \axiom{solve}. -++ -EDF ==> Expression DoubleFloat -LDF ==> List DoubleFloat -MDF ==> Matrix DoubleFloat -DF ==> DoubleFloat -FI ==> Fraction Integer -EFI ==> Expression Fraction Integer -SOCDF ==> Segment OrderedCompletion DoubleFloat -VEDF ==> Vector Expression DoubleFloat -VEF ==> Vector Expression Float -EF ==> Expression Float -LF ==> List Float -F ==> Float -VDF ==> Vector DoubleFloat -VMF ==> Vector MachineFloat -MF ==> MachineFloat -LS ==> List Symbol -ST ==> String -LST ==> List String -INT ==> Integer -RT ==> RoutinesTable -ODEA ==> Record(xinit:DF,xend:DF,fn:VEDF,yinit:LDF,intvals:LDF,_ - g:EDF,abserr:DF,relerr:DF) -IFL ==> List(Record(ifail:Integer,instruction:String)) -Entry ==> Record(chapter:String, type:String, domainName: String, - defaultMin:F, measure:F, failList:IFL, explList:LST) -Measure ==> Record(measure:F,name:String, explanations:List String) - -AnnaOrdinaryDifferentialEquationPackage(): with - solve:(NumericalODEProblem) -> Result - ++ solve(odeProblem) is a top level ANNA function to solve numerically a - ++ system of ordinary differential equations i.e. equations for the - ++ derivatives Y[1]'..Y[n]' defined in terms of X,Y[1]..Y[n], together - ++ with starting values for X and Y[1]..Y[n] (called the initial - ++ conditions), a final value of X, an accuracy requirement and any - ++ intermediate points at which the result is required. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{OrdinaryDifferentialEquationsSolverCategory} - ++ to get the name and other - ++ relevant information of the the (domain of the) numerical - ++ routine likely to be the most appropriate, - ++ i.e. have the best \axiom{measure}. - ++ - ++ The method used to perform the numerical - ++ process will be one of the routines contained in the NAG numerical - ++ Library. The function predicts the likely most effective routine - ++ by checking various attributes of the system of ODE's and calculating - ++ a measure of compatibility of each routine to these attributes. - ++ - ++ It then calls the resulting `best' routine. - solve:(NumericalODEProblem,RT) -> Result - ++ solve(odeProblem,R) is a top level ANNA function to solve numerically a - ++ system of ordinary differential equations i.e. equations for the - ++ derivatives Y[1]'..Y[n]' defined in terms of X,Y[1]..Y[n], together - ++ with starting values for X and Y[1]..Y[n] (called the initial - ++ conditions), a final value of X, an accuracy requirement and any - ++ intermediate points at which the result is required. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in - ++ the table of routines \axiom{R} to get the name and other - ++ relevant information of the the (domain of the) numerical - ++ routine likely to be the most appropriate, - ++ i.e. have the best \axiom{measure}. - ++ - ++ The method used to perform the numerical - ++ process will be one of the routines contained in the NAG numerical - ++ Library. The function predicts the likely most effective routine - ++ by checking various attributes of the system of ODE's and calculating - ++ a measure of compatibility of each routine to these attributes. - ++ - ++ It then calls the resulting `best' routine. - solve:(VEF,F,F,LF) -> Result - ++ solve(f,xStart,xEnd,yInitial) is a top level ANNA function to solve numerically a - ++ system of ordinary differential equations i.e. equations for the - ++ derivatives Y[1]'..Y[n]' defined in terms of X,Y[1]..Y[n], together - ++ with a starting value for X and Y[1]..Y[n] (called the initial - ++ conditions) and a final value of X. A default value - ++ is used for the accuracy requirement. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in - ++ the table of routines \axiom{R} to get the name and other - ++ relevant information of the the (domain of the) numerical - ++ routine likely to be the most appropriate, - ++ i.e. have the best \axiom{measure}. - ++ - ++ The method used to perform the numerical - ++ process will be one of the routines contained in the NAG numerical - ++ Library. The function predicts the likely most effective routine - ++ by checking various attributes of the system of ODE's and calculating - ++ a measure of compatibility of each routine to these attributes. - ++ - ++ It then calls the resulting `best' routine. - solve:(VEF,F,F,LF,F) -> Result - ++ solve(f,xStart,xEnd,yInitial,tol) is a top level ANNA function to solve - ++ numerically a system of ordinary differential equations, \axiom{f}, i.e. - ++ equations for the derivatives Y[1]'..Y[n]' defined in terms - ++ of X,Y[1]..Y[n] from \axiom{xStart} to \axiom{xEnd} with the initial - ++ values for Y[1]..Y[n] (\axiom{yInitial}) to a tolerance \axiom{tol}. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in - ++ the table of routines \axiom{R} to get the name and other - ++ relevant information of the the (domain of the) numerical - ++ routine likely to be the most appropriate, - ++ i.e. have the best \axiom{measure}. - ++ - ++ The method used to perform the numerical - ++ process will be one of the routines contained in the NAG numerical - ++ Library. The function predicts the likely most effective routine - ++ by checking various attributes of the system of ODE's and calculating - ++ a measure of compatibility of each routine to these attributes. - ++ - ++ It then calls the resulting `best' routine. - solve:(VEF,F,F,LF,EF,F) -> Result - ++ solve(f,xStart,xEnd,yInitial,G,tol) is a top level ANNA function to solve - ++ numerically a system of ordinary differential equations, \axiom{f}, i.e. - ++ equations for the derivatives Y[1]'..Y[n]' defined in terms - ++ of X,Y[1]..Y[n] from \axiom{xStart} to \axiom{xEnd} with the initial - ++ values for Y[1]..Y[n] (\axiom{yInitial}) to a tolerance \axiom{tol}. - ++ The calculation will stop if the function G(X,Y[1],..,Y[n]) evaluates to zero before - ++ X = xEnd. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in - ++ the table of routines \axiom{R} to get the name and other - ++ relevant information of the the (domain of the) numerical - ++ routine likely to be the most appropriate, - ++ i.e. have the best \axiom{measure}. - ++ - ++ The method used to perform the numerical - ++ process will be one of the routines contained in the NAG numerical - ++ Library. The function predicts the likely most effective routine - ++ by checking various attributes of the system of ODE's and calculating - ++ a measure of compatibility of each routine to these attributes. - ++ - ++ It then calls the resulting `best' routine. - solve:(VEF,F,F,LF,LF,F) -> Result - ++ solve(f,xStart,xEnd,yInitial,intVals,tol) is a top level ANNA function to solve - ++ numerically a system of ordinary differential equations, \axiom{f}, i.e. - ++ equations for the derivatives Y[1]'..Y[n]' defined in terms - ++ of X,Y[1]..Y[n] from \axiom{xStart} to \axiom{xEnd} with the initial - ++ values for Y[1]..Y[n] (\axiom{yInitial}) to a tolerance \axiom{tol}. - ++ The values of Y[1]..Y[n] will be output for the values of X in - ++ \axiom{intVals}. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in - ++ the table of routines \axiom{R} to get the name and other - ++ relevant information of the the (domain of the) numerical - ++ routine likely to be the most appropriate, - ++ i.e. have the best \axiom{measure}. - ++ - ++ The method used to perform the numerical - ++ process will be one of the routines contained in the NAG numerical - ++ Library. The function predicts the likely most effective routine - ++ by checking various attributes of the system of ODE's and calculating - ++ a measure of compatibility of each routine to these attributes. - ++ - ++ It then calls the resulting `best' routine. - solve:(VEF,F,F,LF,EF,LF,F) -> Result - ++ solve(f,xStart,xEnd,yInitial,G,intVals,tol) is a top level ANNA function to solve - ++ numerically a system of ordinary differential equations, \axiom{f}, i.e. - ++ equations for the derivatives Y[1]'..Y[n]' defined in terms - ++ of X,Y[1]..Y[n] from \axiom{xStart} to \axiom{xEnd} with the initial - ++ values for Y[1]..Y[n] (\axiom{yInitial}) to a tolerance \axiom{tol}. - ++ The values of Y[1]..Y[n] will be output for the values of X in - ++ \axiom{intVals}. The calculation will stop if the function - ++ G(X,Y[1],..,Y[n]) evaluates to zero before X = xEnd. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in - ++ the table of routines \axiom{R} to get the name and other - ++ relevant information of the the (domain of the) numerical - ++ routine likely to be the most appropriate, - ++ i.e. have the best \axiom{measure}. - ++ - ++ The method used to perform the numerical - ++ process will be one of the routines contained in the NAG numerical - ++ Library. The function predicts the likely most effective routine - ++ by checking various attributes of the system of ODE's and calculating - ++ a measure of compatibility of each routine to these attributes. - ++ - ++ It then calls the resulting `best' routine. - solve:(VEF,F,F,LF,EF,LF,F,F) -> Result - ++ solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel) is a top level ANNA function to solve - ++ numerically a system of ordinary differential equations, \axiom{f}, i.e. - ++ equations for the derivatives Y[1]'..Y[n]' defined in terms - ++ of X,Y[1]..Y[n] from \axiom{xStart} to \axiom{xEnd} with the initial - ++ values for Y[1]..Y[n] (\axiom{yInitial}) to an absolute error - ++ requirement \axiom{epsabs} and relative error \axiom{epsrel}. - ++ The values of Y[1]..Y[n] will be output for the values of X in - ++ \axiom{intVals}. The calculation will stop if the function - ++ G(X,Y[1],..,Y[n]) evaluates to zero before X = xEnd. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in - ++ the table of routines \axiom{R} to get the name and other - ++ relevant information of the the (domain of the) numerical - ++ routine likely to be the most appropriate, - ++ i.e. have the best \axiom{measure}. - ++ - ++ The method used to perform the numerical - ++ process will be one of the routines contained in the NAG numerical - ++ Library. The function predicts the likely most effective routine - ++ by checking various attributes of the system of ODE's and calculating - ++ a measure of compatibility of each routine to these attributes. - ++ - ++ It then calls the resulting `best' routine. - measure:(NumericalODEProblem) -> Measure - ++ measure(prob) is a top level ANNA function for identifying the most - ++ appropriate numerical routine from those in the routines table - ++ provided for solving the numerical ODE - ++ problem defined by \axiom{prob}. - ++ - ++ It calls each \axiom{domain} of \axiom{category} - ++ \axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to - ++ calculate all measures and returns the best i.e. the name of - ++ the most appropriate domain and any other relevant information. - ++ It predicts the likely most effective NAG numerical - ++ Library routine to solve the input set of ODEs - ++ by checking various attributes of the system of ODEs and calculating - ++ a measure of compatibility of each routine to these attributes. - measure:(NumericalODEProblem,RT) -> Measure - ++ measure(prob,R) is a top level ANNA function for identifying the most - ++ appropriate numerical routine from those in the routines table - ++ provided for solving the numerical ODE - ++ problem defined by \axiom{prob}. - ++ - ++ It calls each \axiom{domain} listed in \axiom{R} of \axiom{category} - ++ \axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to - ++ calculate all measures and returns the best i.e. the name of - ++ the most appropriate domain and any other relevant information. - ++ It predicts the likely most effective NAG numerical - ++ Library routine to solve the input set of ODEs - ++ by checking various attributes of the system of ODEs and calculating - ++ a measure of compatibility of each routine to these attributes. - - == add - - import ODEA,NumericalODEProblem - - f2df:F -> DF - ef2edf:EF -> EDF - preAnalysis:(ODEA,RT) -> RT - zeroMeasure:Measure -> Result - measureSpecific:(ST,RT,ODEA) -> Record(measure:F,explanations:ST) - solveSpecific:(ODEA,ST) -> Result - changeName:(Result,ST) -> Result - recoverAfterFail:(ODEA,RT,Measure,Integer,Result) -> Record(a:Result,b:Measure) - - f2df(f:F):DF == (convert(f)@DF)$F - - ef2edf(f:EF):EDF == map(f2df,f)$ExpressionFunctions2(F,DF) - - preAnalysis(args:ODEA,t:RT):RT == - rt := selectODEIVPRoutines(t)$RT - if positive?(# variables(args.g)) then - changeMeasure(rt,d02bbf@Symbol,getMeasure(rt,d02bbf@Symbol)*0.8) - if positive?(# args.intvals) then - changeMeasure(rt,d02bhf@Symbol,getMeasure(rt,d02bhf@Symbol)*0.8) - rt - - zeroMeasure(m:Measure):Result == - a := coerce(0$F)$AnyFunctions1(F) - text := coerce("Zero Measure")$AnyFunctions1(ST) - r := construct([[result@Symbol,a],[method@Symbol,text]])$Result - concat(measure2Result m,r)$ExpertSystemToolsPackage - - measureSpecific(name:ST,R:RT,ode:ODEA):Record(measure:F,explanations:ST) == - name = "d02bbfAnnaType" => measure(R,ode)$d02bbfAnnaType - name = "d02bhfAnnaType" => measure(R,ode)$d02bhfAnnaType - name = "d02cjfAnnaType" => measure(R,ode)$d02cjfAnnaType - name = "d02ejfAnnaType" => measure(R,ode)$d02ejfAnnaType - error("measureSpecific","invalid type name: " name)$ErrorFunctions - - measure(Ode:NumericalODEProblem,R:RT):Measure == - ode:ODEA := retract(Ode)$NumericalODEProblem - sofar := 0$F - best := "none" :: ST - routs := copy R - routs := preAnalysis(ode,routs) - empty?(routs)$RT => - error("measure", "no routines found")$ErrorFunctions - rout := inspect(routs)$RT - e := retract(rout.entry)$AnyFunctions1(Entry) - meth := empty()$LST - for i in 1..# routs repeat - rout := extract!(routs)$RT - e := retract(rout.entry)$AnyFunctions1(Entry) - n := e.domainName - if e.defaultMin > sofar then - m := measureSpecific(n,R,ode) - if m.measure > sofar then - sofar := m.measure - best := n - str:LST := [string(rout.key)$Symbol "measure: " - outputMeasure(m.measure)$ExpertSystemToolsPackage " - " - m.explanations] - else - str := [string(rout.key)$Symbol " is no better than other routines"] - meth := append(meth,str)$LST - [sofar,best,meth] - - measure(ode:NumericalODEProblem):Measure == measure(ode,routines()$RT) - - solveSpecific(ode:ODEA,n:ST):Result == - n = "d02bbfAnnaType" => ODESolve(ode)$d02bbfAnnaType - n = "d02bhfAnnaType" => ODESolve(ode)$d02bhfAnnaType - n = "d02cjfAnnaType" => ODESolve(ode)$d02cjfAnnaType - n = "d02ejfAnnaType" => ODESolve(ode)$d02ejfAnnaType - error("solveSpecific","invalid type name: " n)$ErrorFunctions - - changeName(ans:Result,name:ST):Result == - sy:Symbol := coerce(name "Answer")$Symbol - anyAns:Any := coerce(ans)$AnyFunctions1(Result) - construct([[sy,anyAns]])$Result - - recoverAfterFail(ode:ODEA,routs:RT,m:Measure,iint:Integer,r:Result): - Record(a:Result,b:Measure) == - while positive?(iint) repeat - routineName := m.name - s := recoverAfterFail(routs,routineName(1..6),iint)$RT - s case "failed" => iint := 0 - if s = "increase tolerance" then - ode.relerr := ode.relerr*(10.0::DF) - ode.abserr := ode.abserr*(10.0::DF) - if s = "decrease tolerance" then - ode.relerr := ode.relerr/(10.0::DF) - ode.abserr := ode.abserr/(10.0::DF) - (s = "no action")@Boolean => iint := 0 - fl := coerce(s)$AnyFunctions1(ST) - flrec:Record(key:Symbol,entry:Any):=[failure@Symbol,fl] - m2 := measure(ode::NumericalODEProblem,routs) - zero?(m2.measure) => iint := 0 - r2:Result := solveSpecific(ode,m2.name) - m := m2 - insert!(flrec,r2)$Result - r := concat(r2,changeName(r,routineName))$ExpertSystemToolsPackage - iany := search(ifail@Symbol,r2)$Result - iany case "failed" => iint := 0 - iint := retract(iany)$AnyFunctions1(Integer) - [r,m] - - solve(Ode:NumericalODEProblem,t:RT):Result == - ode:ODEA := retract(Ode)$NumericalODEProblem - routs := copy(t)$RT - m := measure(Ode,routs) - zero?(m.measure) => zeroMeasure m - r := solveSpecific(ode,n := m.name) - iany := search(ifail@Symbol,r)$Result - iint := 0$Integer - if (iany case Any) then - iint := retract(iany)$AnyFunctions1(Integer) - if positive?(iint) then - tu:Record(a:Result,b:Measure) := recoverAfterFail(ode,routs,m,iint,r) - r := tu.a - m := tu.b - r := concat(measure2Result m,r)$ExpertSystemToolsPackage - expl := getExplanations(routs,n(1..6))$RoutinesTable - expla := coerce(expl)$AnyFunctions1(LST) - explaa:Record(key:Symbol,entry:Any) := ["explanations"::Symbol,expla] - r := concat(construct([explaa]),r) - iflist := showIntensityFunctions(ode)$ODEIntensityFunctionsTable - iflist case "failed" => r - concat(iflist2Result iflist, r)$ExpertSystemToolsPackage - - solve(ode:NumericalODEProblem):Result == solve(ode,routines()$RT) - - solve(f:VEF,xStart:F,xEnd:F,yInitial:LF,G:EF,intVals:LF,epsabs:F,epsrel:F):Result == - d:ODEA := [f2df xStart,f2df xEnd,vector([ef2edf e for e in members f])$VEDF, - [f2df i for i in yInitial], [f2df j for j in intVals], - ef2edf G,f2df epsabs,f2df epsrel] - solve(d::NumericalODEProblem,routines()$RT) - - solve(f:VEF,xStart:F,xEnd:F,yInitial:LF,G:EF,intVals:LF,tol:F):Result == - solve(f,xStart,xEnd,yInitial,G,intVals,tol,tol) - - solve(f:VEF,xStart:F,xEnd:F,yInitial:LF,intVals:LF,tol:F):Result == - solve(f,xStart,xEnd,yInitial,1$EF,intVals,tol) - - solve(f:VEF,xStart:F,xEnd:F,y:LF,G:EF,tol:F):Result == - solve(f,xStart,xEnd,y,G,empty()$LF,tol) - - solve(f:VEF,xStart:F,xEnd:F,yInitial:LF,tol:F):Result == - solve(f,xStart,xEnd,yInitial,1$EF,empty()$LF,tol) - - solve(f:VEF,xStart:F,xEnd:F,yInitial:LF):Result == solve(f,xStart,xEnd,yInitial,1.0e-4) - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package ODEPACK AnnaOrdinaryDifferentialEquationPackage>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/d02agents.spad.pamphlet b/src/algebra/d02agents.spad.pamphlet deleted file mode 100644 index e315970a..00000000 --- a/src/algebra/d02agents.spad.pamphlet +++ /dev/null @@ -1,423 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra d02agents.spad} -\author{Brian Dupee} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{domain ODEIFTBL ODEIntensityFunctionsTable} -<<domain ODEIFTBL ODEIntensityFunctionsTable>>= -)abbrev domain ODEIFTBL ODEIntensityFunctionsTable -++ Author: Brian Dupee -++ Date Created: May 1994 -++ Date Last Updated: January 1996 -++ Basic Operations: showTheIFTable, insert! -++ Description: -++ \axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of -++ functions to store details found out about sets of ODE's. - -ODEIntensityFunctionsTable(): E == I where - LEDF ==> List Expression DoubleFloat - LEEDF ==> List Equation Expression DoubleFloat - EEDF ==> Equation Expression DoubleFloat - VEDF ==> Vector Expression DoubleFloat - MEDF ==> Matrix Expression DoubleFloat - MDF ==> Matrix DoubleFloat - EDF ==> Expression DoubleFloat - DF ==> DoubleFloat - F ==> Float - INT ==> Integer - CDF ==> Complex DoubleFloat - LDF ==> List DoubleFloat - LF ==> List Float - S ==> Symbol - LS ==> List Symbol - MFI ==> Matrix Fraction Integer - LFI ==> List Fraction Integer - FI ==> Fraction Integer - ODEA ==> Record(xinit:DF,xend:DF,fn:VEDF,yinit:LDF,intvals:LDF,g:EDF,abserr:DF,relerr:DF) - ON ==> Record(additions:INT,multiplications:INT,exponentiations:INT,functionCalls:INT) - RVE ==> Record(val:EDF,exponent:INT) - RSS ==> Record(stiffnessFactor:F,stabilityFactor:F) - ATT ==> Record(stiffness:F,stability:F,expense:F,accuracy:F,intermediateResults:F) - ROA ==> Record(key:ODEA,entry:ATT) - - E ==> with - showTheIFTable:() -> $ - ++ showTheIFTable() returns the current table of intensity functions. - clearTheIFTable : () -> Void - ++ clearTheIFTable() clears the current table of intensity functions. - keys : $ -> List(ODEA) - ++ keys(tab) returns the list of keys of f - iFTable: List Record(key:ODEA,entry:ATT) -> $ - ++ iFTable(l) creates an intensity-functions table from the elements - ++ of l. - insert!:Record(key:ODEA,entry:ATT) -> $ - ++ insert!(r) inserts an entry r into theIFTable - showIntensityFunctions:ODEA -> Union(ATT,"failed") - ++ showIntensityFunctions(k) returns the entries in the - ++ table of intensity functions k. - - I ==> add - Rep := Table(ODEA,ATT) - import Rep - - theIFTable:$ := empty()$Rep - - showTheIFTable():$ == - theIFTable - - clearTheIFTable():Void == - theIFTable := empty()$Rep - - iFTable(l:List Record(key:ODEA,entry:ATT)):$ == - theIFTable := table(l)$Rep - - insert!(r:Record(key:ODEA,entry:ATT)):$ == - insert!(r,theIFTable)$Rep - - keys(t:$):List ODEA == - keys(t)$Rep - - showIntensityFunctions(k:ODEA):Union(ATT,"failed") == - search(k,theIFTable)$Rep - -@ -\section{package D02AGNT d02AgentsPackage} -<<package D02AGNT d02AgentsPackage>>= -)abbrev package D02AGNT d02AgentsPackage -++ Author: Brian Dupee -++ Date Created: May 1994 -++ Date Last Updated: January 1997 -++ Basic Operations: stiffnessFactor, jacobian -++ Description: -++ \axiom{d02AgentsPackage} contains a set of computational agents -++ for use with Ordinary Differential Equation solvers. -d02AgentsPackage(): E == I where - LEDF ==> List Expression DoubleFloat - LEEDF ==> List Equation Expression DoubleFloat - EEDF ==> Equation Expression DoubleFloat - VEDF ==> Vector Expression DoubleFloat - MEDF ==> Matrix Expression DoubleFloat - MDF ==> Matrix DoubleFloat - EDF ==> Expression DoubleFloat - DF ==> DoubleFloat - F ==> Float - INT ==> Integer - CDF ==> Complex DoubleFloat - LDF ==> List DoubleFloat - LF ==> List Float - S ==> Symbol - LS ==> List Symbol - MFI ==> Matrix Fraction Integer - LFI ==> List Fraction Integer - FI ==> Fraction Integer - ODEA ==> Record(xinit:DF,xend:DF,fn:VEDF,yinit:LDF,intvals:LDF,g:EDF,abserr:DF,relerr:DF) - ON ==> Record(additions:INT,multiplications:INT,exponentiations:INT,functionCalls:INT) - RVE ==> Record(val:EDF,exponent:INT) - RSS ==> Record(stiffnessFactor:F,stabilityFactor:F) - ATT ==> Record(stiffness:F,stability:F,expense:F,accuracy:F,intermediateResults:F) - ROA ==> Record(key:ODEA,entry:ATT) - - E ==> with - combineFeatureCompatibility: (F,F) -> F - ++ combineFeatureCompatibility(C1,C2) is for interacting attributes - combineFeatureCompatibility: (F,LF) -> F - ++ combineFeatureCompatibility(C1,L) is for interacting attributes - sparsityIF: MEDF -> F - ++ sparsityIF(m) calculates the sparsity of a jacobian matrix - jacobian: (VEDF,LS) -> MEDF - ++ jacobian(v,w) is a local function to make a jacobian matrix - eval: (MEDF,LS,VEDF) -> MEDF - ++ eval(mat,symbols,values) evaluates a multivariable matrix at given values - ++ for each of a list of variables - stiffnessAndStabilityFactor: MEDF -> RSS - ++ stiffnessAndStabilityFactor(me) calculates the stability and - ++ stiffness factor of a system of first-order differential equations - ++ (by evaluating the maximum difference in the real parts of the - ++ negative eigenvalues of the jacobian of the system for which O(10) - ++ equates to mildly stiff wheras stiffness ratios of O(10^6) are not - ++ uncommon) and whether the system is likely to show any oscillations - ++ (identified by the closeness to the imaginary axis of the complex - ++ eigenvalues of the jacobian). - stiffnessAndStabilityOfODEIF:ODEA -> RSS - ++ stiffnessAndStabilityOfODEIF(ode) calculates the intensity values - ++ of stiffness of a system of first-order differential equations - ++ (by evaluating the maximum difference in the real parts of the - ++ negative eigenvalues of the jacobian of the system for which O(10) - ++ equates to mildly stiff wheras stiffness ratios of O(10^6) are not - ++ uncommon) and whether the system is likely to show any oscillations - ++ (identified by the closeness to the imaginary axis of the complex - ++ eigenvalues of the jacobian). - ++ - ++ It returns two values in the range [0,1]. - systemSizeIF:ODEA -> F - ++ systemSizeIF(ode) returns the intensity value of the size of - ++ the system of ODEs. 20 equations corresponds to the neutral - ++ value. It returns a value in the range [0,1]. - expenseOfEvaluationIF:ODEA -> F - ++ expenseOfEvaluationIF(o) returns the intensity value of the - ++ cost of evaluating the input ODE. This is in terms of the number - ++ of ``operational units''. It returns a value in the range - ++ [0,1].\newline\indent{20} - ++ 400 ``operation units'' -> 0.75 \newline - ++ 200 ``operation units'' -> 0.5 \newline - ++ 83 ``operation units'' -> 0.25 \newline\indent{15} - ++ exponentiation = 4 units , function calls = 10 units. - accuracyIF:ODEA -> F - ++ accuracyIF(o) returns the intensity value of the accuracy - ++ requirements of the input ODE. A request of accuracy of 10^-6 - ++ corresponds to the neutral intensity. It returns a value - ++ in the range [0,1]. - intermediateResultsIF:ODEA -> F - ++ intermediateResultsIF(o) returns a value corresponding to the - ++ required number of intermediate results required and, therefore, - ++ an indication of how much this would affect the step-length of the - ++ calculation. It returns a value in the range [0,1]. - - I ==> add - - import ExpertSystemToolsPackage - - accuracyFactor:ODEA -> F - expenseOfEvaluation:ODEA -> F - eval1:(LEDF,LEEDF) -> LEDF - stiffnessAndStabilityOfODE:ODEA -> RSS - intermediateResultsFactor:ODEA -> F - leastStabilityAngle:(LDF,LDF) -> F - - intermediateResultsFactor(ode:ODEA):F == - resultsRequirement := #(ode.intvals) - (1.0-exp(-(resultsRequirement::F)/50.0)$F) - - intermediateResultsIF(o:ODEA):F == - ode := copy o - (t := showIntensityFunctions(ode)$ODEIntensityFunctionsTable) case ATT => - s := coerce(t)@ATT - negative?(s.intermediateResults)$F => - s.intermediateResults := intermediateResultsFactor(ode) - r:ROA := [ode,s] - insert!(r)$ODEIntensityFunctionsTable - s.intermediateResults - s.intermediateResults - a:ATT := [-1.0,-1.0,-1.0,-1.0,e:=intermediateResultsFactor(ode)] - r:ROA := [ode,a] - insert!(r)$ODEIntensityFunctionsTable - e - - accuracyFactor(ode:ODEA):F == - accuracyRequirements := convert(ode.abserr)@F - if zero?(accuracyRequirements) then - accuracyRequirements := convert(ode.relerr)@F - val := inv(accuracyRequirements)$F - n := log10(val)$F - (1.0-exp(-(n/(2.0))**2/(15.0))$F) - - accuracyIF(o:ODEA):F == - ode := copy o - (t := showIntensityFunctions(ode)$ODEIntensityFunctionsTable) case ATT => - s := coerce(t)@ATT - negative?(s.accuracy)$F => - s.accuracy := accuracyFactor(ode) - r:ROA := [ode,s] - insert!(r)$ODEIntensityFunctionsTable - s.accuracy - s.accuracy - a:ATT := [-1.0,-1.0,-1.0,e:=accuracyFactor(ode),-1.0] - r:ROA := [ode,a] - insert!(r)$ODEIntensityFunctionsTable - e - - systemSizeIF(ode:ODEA):F == - n := #(ode.fn) - (1.0-exp((-n::F/75.0))$F) - - expenseOfEvaluation(o:ODEA):F == - -- expense of evaluation of an ODE -- <0.3 inexpensive - 0.5 neutral - >0.7 very expensive - -- 400 `operation units' -> 0.75 - -- 200 `operation units' -> 0.5 - -- 83 `operation units' -> 0.25 - -- ** = 4 units , function calls = 10 units. - ode := copy o.fn - expenseOfEvaluation(ode) - - expenseOfEvaluationIF(o:ODEA):F == - ode := copy o - (t := showIntensityFunctions(ode)$ODEIntensityFunctionsTable) case ATT => - s := coerce(t)@ATT - negative?(s.expense)$F => - s.expense := expenseOfEvaluation(ode) - r:ROA := [ode,s] - insert!(r)$ODEIntensityFunctionsTable - s.expense - s.expense - a:ATT := [-1.0,-1.0,e:=expenseOfEvaluation(ode),-1.0,-1.0] - r:ROA := [ode,a] - insert!(r)$ODEIntensityFunctionsTable - e - - leastStabilityAngle(realPartsList:LDF,imagPartsList:LDF):F == - complexList := [complex(u,v)$CDF for u in realPartsList for v in imagPartsList] - argumentList := [abs((abs(argument(u)$CDF)$DF)-(pi()$DF)/2)$DF for u in complexList] - sortedArgumentList := sort(argumentList)$LDF - list := [u for u in sortedArgumentList | not zero?(u) ] - empty?(list)$LDF => 0$F - convert(first(list)$LDF)@F - - stiffnessAndStabilityFactor(me:MEDF):RSS == - - -- search first for real eigenvalues of the jacobian (symbolically) - -- if the system isn't too big - r:INT := ncols(me)$MEDF - b:Boolean := ((# me) < 150) - if b then - mc:MFI := map(edf2fi,me)$ExpertSystemToolsPackage2(EDF,FI) - e:LFI := realEigenvalues(mc,1/100)$NumericRealEigenPackage(FI) - b := ((# e) >= r-1)@Boolean - b => - -- if all the eigenvalues are real, find negative ones - e := sort(neglist(e)$ExpertSystemToolsPackage1(FI)) - -- if there are two or more, calculate stiffness ratio - ((n:=#e)>1)@Boolean => [coerce(e.1/e.n)@F,0$F] - -- otherwise stiffness not present - [0$F,0$F] - - md:MDF := map(edf2df,me)$ExpertSystemToolsPackage2(EDF,DF) - - -- otherwise calculate numerically the complex eigenvalues - -- using NAG routine f02aff. - - res:Result := f02aff(r,r,md,-1)$NagEigenPackage - realParts:Union(Any,"failed") := search(rr::Symbol,res)$Result - realParts case "failed" => [0$F,0$F] - realPartsMatrix:MDF := retract(realParts)$AnyFunctions1(MDF) -- array === matrix - imagParts:Union(Any,"failed") := search(ri::Symbol,res)$Result - imagParts case "failed" => [0$F,0$F] - imagPartsMatrix:MDF := retract(imagParts)$AnyFunctions1(MDF) -- array === matrix - imagPartsList:LDF := members(imagPartsMatrix)$MDF - realPartsList:LDF := members(realPartsMatrix)$MDF - stabilityAngle := leastStabilityAngle(realPartsList,imagPartsList) - negRealPartsList := sort(neglist(realPartsList)$ExpertSystemToolsPackage1(DF)) - empty?(negRealPartsList)$LDF => [0$F,stabilityAngle] - ((n:=#negRealPartsList)>1)@Boolean => - out := convert(negRealPartsList.1/negRealPartsList.n)@F - [out,stabilityAngle] -- calculate stiffness ratio - [-convert(negRealPartsList.1)@F,stabilityAngle] - - eval1(l:LEDF,e:LEEDF):LEDF == - [eval(u,e)$EDF for u in l] - - eval(mat:MEDF,symbols:LS,values:VEDF):MEDF == - l := listOfLists(mat) - ledf := entries(values)$VEDF - e := [equation(u::EDF,v)$EEDF for u in symbols for v in ledf] - l := [eval1(w,e) for w in l] - matrix l - - combineFeatureCompatibility(C1:F,C2:F):F == - - -- C1 C2 - -- s(C1,C2) = ----------------------- - -- C1 C2 + (1 - C1)(1 - C2) - - C1*C2/((C1*C2)+(1$F-C1)*(1$F-C2)) - - combineFeatureCompatibility(C1:F,L:LF):F == - - empty?(L)$LF => C1 - C2 := combineFeatureCompatibility(C1,first(L)$LF) - combineFeatureCompatibility(C2,rest(L)$LF) - - jacobian(v:VEDF,w:LS):Matrix EDF == - jacobian(v,w)$MultiVariableCalculusFunctions(S,EDF,VEDF,LS) - - sparsityIF(m:Matrix EDF):F == - l:LEDF :=parts m - z:LEDF := [u for u in l | zero?(u)$EDF] - ((#z)::F/(#l)::F) - - sum(a:EDF,b:EDF):EDF == a+b - - stiffnessAndStabilityOfODE(ode:ODEA):RSS == - odefns := copy ode.fn - ls:LS := [subscript(Y,[coerce(n)])$Symbol for n in 1..# odefns] - yvals := copy ode.yinit - for i in 1..#yvals repeat - zero?(yvals.i) => yvals.i := 0.1::DF - yexpr := [coerce(v)@EDF for v in yvals] - yv:VEDF := vector(yexpr) - j1:MEDF := jacobian(odefns,ls) - ej1:MEDF := eval(j1,ls,yv) - ej1 := eval(ej1,variables(reduce(sum,members(ej1)$MEDF)),vector([(ode.xinit)::EDF])) - ssf := stiffnessAndStabilityFactor(ej1) - stability := 1.0-sqrt((ssf.stabilityFactor)*(2.0)/(pi()$F)) - stiffness := (1.0)-exp(-(ssf.stiffnessFactor)/(500.0)) - [stiffness,stability] - - stiffnessAndStabilityOfODEIF(ode:ODEA):RSS == - odefn := copy ode - (t := showIntensityFunctions(odefn)$ODEIntensityFunctionsTable) case ATT => - s:ATT := coerce(t)@ATT - negative?(s.stiffness)$F => - ssf:RSS := stiffnessAndStabilityOfODE(odefn) - s := [ssf.stiffnessFactor,ssf.stabilityFactor,s.expense, - s.accuracy,s.intermediateResults] - r:ROA := [odefn,s] - insert!(r)$ODEIntensityFunctionsTable - ssf - [s.stiffness,s.stability] - ssf:RSS := stiffnessAndStabilityOfODE(odefn) - s:ATT := [ssf.stiffnessFactor,ssf.stabilityFactor,-1.0,-1.0,-1.0] - r:ROA := [odefn,s] - insert!(r)$ODEIntensityFunctionsTable - ssf - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<domain ODEIFTBL ODEIntensityFunctionsTable>> -<<package D02AGNT d02AgentsPackage>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/d02routine.spad.pamphlet b/src/algebra/d02routine.spad.pamphlet deleted file mode 100644 index 0f30183d..00000000 --- a/src/algebra/d02routine.spad.pamphlet +++ /dev/null @@ -1,424 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra d02routine.spad} -\author{Brian Dupee} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{domain D02BBFA d02bbfAnnaType} -<<domain D02BBFA d02bbfAnnaType>>= -)abbrev domain D02BBFA d02bbfAnnaType -++ Author: Brian Dupee -++ Date Created: February 1995 -++ Date Last Updated: January 1996 -++ Basic Operations: -++ Description: -++ \axiomType{d02bbfAnnaType} is a domain of -++ \axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} -++ for the NAG routine D02BBF, a ODE routine which uses an -++ Runge-Kutta method to solve a system of differential -++ equations. The function \axiomFun{measure} measures the -++ usefulness of the routine D02BBF for the given problem. The -++ function \axiomFun{ODESolve} performs the integration by using -++ \axiomType{NagOrdinaryDifferentialEquationsPackage}. - - -d02bbfAnnaType():OrdinaryDifferentialEquationsSolverCategory == Result add -- Runge Kutta - - EDF ==> Expression DoubleFloat - LDF ==> List DoubleFloat - MDF ==> Matrix DoubleFloat - DF ==> DoubleFloat - F ==> Float - FI ==> Fraction Integer - EFI ==> Expression Fraction Integer - SOCDF ==> Segment OrderedCompletion DoubleFloat - VEDF ==> Vector Expression DoubleFloat - VEF ==> Vector Expression Float - EF ==> Expression Float - VDF ==> Vector DoubleFloat - VMF ==> Vector MachineFloat - MF ==> MachineFloat - ODEA ==> Record(xinit:DF,xend:DF,fn:VEDF,yinit:LDF,intvals:LDF,_ - g:EDF,abserr:DF,relerr:DF) - RSS ==> Record(stiffnessFactor:F,stabilityFactor:F) - INT ==> Integer - EF2 ==> ExpressionFunctions2 - - import d02AgentsPackage, NagOrdinaryDifferentialEquationsPackage - import AttributeButtons - - accuracyCF(ode:ODEA):F == - b := getButtonValue("d02bbf","accuracy")$AttributeButtons - accuracyIntensityValue := combineFeatureCompatibility(b,accuracyIF(ode)) - accuracyIntensityValue > 0.999 => 0$F - 0.8*exp(-((10*accuracyIntensityValue)**3)$F/266)$F - - stiffnessCF(stiffnessIntensityValue:F):F == - b := getButtonValue("d02bbf","stiffness")$AttributeButtons - 0.5*exp(-(2*combineFeatureCompatibility(b,stiffnessIntensityValue))**2)$F - - stabilityCF(stabilityIntensityValue:F):F == - b := getButtonValue("d02bbf","stability")$AttributeButtons - 0.5 * cos(combineFeatureCompatibility(b,stabilityIntensityValue))$F - - expenseOfEvaluationCF(ode:ODEA):F == - b := getButtonValue("d02bbf","expense")$AttributeButtons - expenseOfEvaluationIntensityValue := - combineFeatureCompatibility(b,expenseOfEvaluationIF(ode)) - 0.35+0.2*exp(-(2.0*expenseOfEvaluationIntensityValue)**3)$F - - measure(R:RoutinesTable,args:ODEA) == - m := getMeasure(R,d02bbf :: Symbol)$RoutinesTable - ssf := stiffnessAndStabilityOfODEIF args - m := combineFeatureCompatibility(m,[accuracyCF(args), - stiffnessCF(ssf.stiffnessFactor), - expenseOfEvaluationCF(args), - stabilityCF(ssf.stabilityFactor)]) - [m,"Runge-Kutta Merson method"] - - ODESolve(ode:ODEA) == - i:LDF := ode.intvals - M := inc(# i)$INT - irelab := 0$INT - if positive?(a := ode.abserr) then - inc(irelab)$INT - if positive?(r := ode.relerr) then - inc(irelab)$INT - if positive?(a+r) then - tol:DF := a + r - else - tol := float(1,-4,10)$DF - asp7:Union(fn:FileName,fp:Asp7(FCN)) := - [retract(vedf2vef(ode.fn)$ExpertSystemToolsPackage)$Asp7(FCN)] - asp8:Union(fn:FileName,fp:Asp8(OUTPUT)) := - [coerce(ldf2vmf(i)$ExpertSystemToolsPackage)$Asp8(OUTPUT)] - d02bbf(ode.xend,M,# ode.fn,irelab,ode.xinit,matrix([ode.yinit])$MDF, - tol,-1,asp7,asp8) - -@ -\section{domain D02BHFA d02bhfAnnaType} -<<domain D02BHFA d02bhfAnnaType>>= -)abbrev domain D02BHFA d02bhfAnnaType -++ Author: Brian Dupee -++ Date Created: February 1995 -++ Date Last Updated: January 1996 -++ Basic Operations: -++ Description: -++ \axiomType{d02bhfAnnaType} is a domain of -++ \axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} -++ for the NAG routine D02BHF, a ODE routine which uses an -++ Runge-Kutta method to solve a system of differential -++ equations. The function \axiomFun{measure} measures the -++ usefulness of the routine D02BHF for the given problem. The -++ function \axiomFun{ODESolve} performs the integration by using -++ \axiomType{NagOrdinaryDifferentialEquationsPackage}. - -d02bhfAnnaType():OrdinaryDifferentialEquationsSolverCategory == Result add -- Runge Kutta - EDF ==> Expression DoubleFloat - LDF ==> List DoubleFloat - MDF ==> Matrix DoubleFloat - DF ==> DoubleFloat - F ==> Float - FI ==> Fraction Integer - EFI ==> Expression Fraction Integer - SOCDF ==> Segment OrderedCompletion DoubleFloat - VEDF ==> Vector Expression DoubleFloat - VEF ==> Vector Expression Float - EF ==> Expression Float - VDF ==> Vector DoubleFloat - VMF ==> Vector MachineFloat - MF ==> MachineFloat - ODEA ==> Record(xinit:DF,xend:DF,fn:VEDF,yinit:LDF,intvals:LDF,_ - g:EDF,abserr:DF,relerr:DF) - RSS ==> Record(stiffnessFactor:F,stabilityFactor:F) - INT ==> Integer - EF2 ==> ExpressionFunctions2 - - import d02AgentsPackage, NagOrdinaryDifferentialEquationsPackage - import AttributeButtons - - accuracyCF(ode:ODEA):F == - b := getButtonValue("d02bhf","accuracy")$AttributeButtons - accuracyIntensityValue := combineFeatureCompatibility(b,accuracyIF(ode)) - accuracyIntensityValue > 0.999 => 0$F - 0.8*exp(-((10*accuracyIntensityValue)**3)$F/266)$F - - stiffnessCF(stiffnessIntensityValue:F):F == - b := getButtonValue("d02bhf","stiffness")$AttributeButtons - 0.5*exp(-(2*combineFeatureCompatibility(b,stiffnessIntensityValue))**2)$F - - stabilityCF(stabilityIntensityValue:F):F == - b := getButtonValue("d02bhf","stability")$AttributeButtons - 0.5 * cos(combineFeatureCompatibility(b,stabilityIntensityValue))$F - - expenseOfEvaluationCF(ode:ODEA):F == - b := getButtonValue("d02bhf","expense")$AttributeButtons - expenseOfEvaluationIntensityValue := - combineFeatureCompatibility(b,expenseOfEvaluationIF(ode)) - 0.35+0.2*exp(-(2.0*expenseOfEvaluationIntensityValue)**3)$F - - measure(R:RoutinesTable,args:ODEA) == - m := getMeasure(R,d02bhf :: Symbol)$RoutinesTable - ssf := stiffnessAndStabilityOfODEIF args - m := combineFeatureCompatibility(m,[accuracyCF(args), - stiffnessCF(ssf.stiffnessFactor), - expenseOfEvaluationCF(args), - stabilityCF(ssf.stabilityFactor)]) - [m,"Runge-Kutta Merson method"] - - ODESolve(ode:ODEA) == - irelab := 0$INT - if positive?(a := ode.abserr) then - inc(irelab)$INT - if positive?(r := ode.relerr) then - inc(irelab)$INT - if positive?(a+r) then - tol := max(a,r)$DF - else - tol:DF := float(1,-4,10)$DF - asp7:Union(fn:FileName,fp:Asp7(FCN)) := - [retract(e:VEF := vedf2vef(ode.fn)$ExpertSystemToolsPackage)$Asp7(FCN)] - asp9:Union(fn:FileName,fp:Asp9(G)) := - [retract(edf2ef(ode.g)$ExpertSystemToolsPackage)$Asp9(G)] - d02bhf(ode.xend,# e,irelab,0$DF,ode.xinit,matrix([ode.yinit])$MDF, - tol,-1,asp9,asp7) - -@ -\section{domain D02CJFA d02cjfAnnaType} -<<domain D02CJFA d02cjfAnnaType>>= -)abbrev domain D02CJFA d02cjfAnnaType -++ Author: Brian Dupee -++ Date Created: February 1995 -++ Date Last Updated: January 1996 -++ Basic Operations: -++ Description: -++ \axiomType{d02cjfAnnaType} is a domain of -++ \axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} -++ for the NAG routine D02CJF, a ODE routine which uses an -++ Adams-Moulton-Bashworth method to solve a system of differential -++ equations. The function \axiomFun{measure} measures the -++ usefulness of the routine D02CJF for the given problem. The -++ function \axiomFun{ODESolve} performs the integration by using -++ \axiomType{NagOrdinaryDifferentialEquationsPackage}. - -d02cjfAnnaType():OrdinaryDifferentialEquationsSolverCategory == Result add -- Adams - EDF ==> Expression DoubleFloat - LDF ==> List DoubleFloat - MDF ==> Matrix DoubleFloat - DF ==> DoubleFloat - F ==> Float - FI ==> Fraction Integer - EFI ==> Expression Fraction Integer - SOCDF ==> Segment OrderedCompletion DoubleFloat - VEDF ==> Vector Expression DoubleFloat - VEF ==> Vector Expression Float - EF ==> Expression Float - VDF ==> Vector DoubleFloat - VMF ==> Vector MachineFloat - MF ==> MachineFloat - ODEA ==> Record(xinit:DF,xend:DF,fn:VEDF,yinit:LDF,intvals:LDF,_ - g:EDF,abserr:DF,relerr:DF) - RSS ==> Record(stiffnessFactor:F,stabilityFactor:F) - INT ==> Integer - EF2 ==> ExpressionFunctions2 - - import d02AgentsPackage, NagOrdinaryDifferentialEquationsPackage - - accuracyCF(ode:ODEA):F == - b := getButtonValue("d02cjf","accuracy")$AttributeButtons - accuracyIntensityValue := combineFeatureCompatibility(b,accuracyIF(ode)) - accuracyIntensityValue > 0.9999 => 0$F - 0.6*(cos(accuracyIntensityValue*(pi()$F)/2)$F)**0.755 - - stiffnessCF(ode:ODEA):F == - b := getButtonValue("d02cjf","stiffness")$AttributeButtons - ssf := stiffnessAndStabilityOfODEIF ode - stiffnessIntensityValue := - combineFeatureCompatibility(b,ssf.stiffnessFactor) - 0.5*exp(-(1.1*stiffnessIntensityValue)**3)$F - - measure(R:RoutinesTable,args:ODEA) == - m := getMeasure(R,d02cjf :: Symbol)$RoutinesTable - m := combineFeatureCompatibility(m,[accuracyCF(args), stiffnessCF(args)]) - [m,"Adams method"] - - ODESolve(ode:ODEA) == - i:LDF := ode.intvals - if empty?(i) then - i := [ode.xend] - M := inc(# i)$INT - if positive?((a := ode.abserr)*(r := ode.relerr))$DF then - ire:String := "D" - else - if positive?(a) then - ire:String := "A" - else - ire:String := "R" - tol := max(a,r)$DF - asp7:Union(fn:FileName,fp:Asp7(FCN)) := - [retract(e:VEF := vedf2vef(ode.fn)$ExpertSystemToolsPackage)$Asp7(FCN)] - asp8:Union(fn:FileName,fp:Asp8(OUTPUT)) := - [coerce(ldf2vmf(i)$ExpertSystemToolsPackage)$Asp8(OUTPUT)] - asp9:Union(fn:FileName,fp:Asp9(G)) := - [retract(edf2ef(ode.g)$ExpertSystemToolsPackage)$Asp9(G)] - d02cjf(ode.xend,M,# e,tol,ire,ode.xinit,matrix([ode.yinit])$MDF, - -1,asp9,asp7,asp8) - -@ -\section{domain D02EJFA d02ejfAnnaType} -<<domain D02EJFA d02ejfAnnaType>>= -)abbrev domain D02EJFA d02ejfAnnaType -++ Author: Brian Dupee -++ Date Created: February 1995 -++ Date Last Updated: January 1996 -++ Basic Operations: -++ Description: -++ \axiomType{d02ejfAnnaType} is a domain of -++ \axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} -++ for the NAG routine D02EJF, a ODE routine which uses a backward -++ differentiation formulae method to handle a stiff system -++ of differential equations. The function \axiomFun{measure} measures -++ the usefulness of the routine D02EJF for the given problem. The -++ function \axiomFun{ODESolve} performs the integration by using -++ \axiomType{NagOrdinaryDifferentialEquationsPackage}. - -d02ejfAnnaType():OrdinaryDifferentialEquationsSolverCategory == Result add -- BDF "Stiff" - EDF ==> Expression DoubleFloat - LDF ==> List DoubleFloat - MDF ==> Matrix DoubleFloat - DF ==> DoubleFloat - F ==> Float - FI ==> Fraction Integer - EFI ==> Expression Fraction Integer - SOCDF ==> Segment OrderedCompletion DoubleFloat - VEDF ==> Vector Expression DoubleFloat - VEF ==> Vector Expression Float - EF ==> Expression Float - VDF ==> Vector DoubleFloat - VMF ==> Vector MachineFloat - MF ==> MachineFloat - ODEA ==> Record(xinit:DF,xend:DF,fn:VEDF,yinit:LDF,intvals:LDF,_ - g:EDF,abserr:DF,relerr:DF) - RSS ==> Record(stiffnessFactor:F,stabilityFactor:F) - INT ==> Integer - EF2 ==> ExpressionFunctions2 - - import d02AgentsPackage, NagOrdinaryDifferentialEquationsPackage - - accuracyCF(ode:ODEA):F == - b := getButtonValue("d02ejf","accuracy")$AttributeButtons - accuracyIntensityValue := combineFeatureCompatibility(b,accuracyIF(ode)) - accuracyIntensityValue > 0.999 => 0$F - 0.5*exp(-((10*accuracyIntensityValue)**3)$F/250)$F - - intermediateResultsCF(ode:ODEA):F == - intermediateResultsIntensityValue := intermediateResultsIF(ode) - i := 0.5 * exp(-(intermediateResultsIntensityValue/1.649)**3)$F - a := accuracyCF(ode) - i+(0.5-i)*(0.5-a) - - stabilityCF(ode:ODEA):F == - b := getButtonValue("d02ejf","stability")$AttributeButtons - ssf := stiffnessAndStabilityOfODEIF ode - stabilityIntensityValue := - combineFeatureCompatibility(b,ssf.stabilityFactor) - 0.68 - 0.5 * exp(-(stabilityIntensityValue)**3)$F - - expenseOfEvaluationCF(ode:ODEA):F == - b := getButtonValue("d02ejf","expense")$AttributeButtons - expenseOfEvaluationIntensityValue := - combineFeatureCompatibility(b,expenseOfEvaluationIF(ode)) - 0.5 * exp(-(1.7*expenseOfEvaluationIntensityValue)**3)$F - - systemSizeCF(args:ODEA):F == - (1$F - systemSizeIF(args))/2.0 - - measure(R:RoutinesTable,args:ODEA) == - arg := copy args - m := getMeasure(R,d02ejf :: Symbol)$RoutinesTable - m := combineFeatureCompatibility(m,[intermediateResultsCF(arg), - accuracyCF(arg), - systemSizeCF(arg), - expenseOfEvaluationCF(arg), - stabilityCF(arg)]) - [m,"BDF method for Stiff Systems"] - - ODESolve(ode:ODEA) == - i:LDF := ode.intvals - m := inc(# i)$INT - if positive?((a := ode.abserr)*(r := ode.relerr))$DF then - ire:String := "D" - else - if positive?(a) then - ire:String := "A" - else - ire:String := "R" - if positive?(a+r)$DF then - tol := max(a,r)$DF - else - tol := float(1,-4,10)$DF - asp7:Union(fn:FileName,fp:Asp7(FCN)) := - [retract(e:VEF := vedf2vef(ode.fn)$ExpertSystemToolsPackage)$Asp7(FCN)] - asp31:Union(fn:FileName,fp:Asp31(PEDERV)) := - [retract(e)$Asp31(PEDERV)] - asp8:Union(fn:FileName,fp:Asp8(OUTPUT)) := - [coerce(ldf2vmf(i)$ExpertSystemToolsPackage)$Asp8(OUTPUT)] - asp9:Union(fn:FileName,fp:Asp9(G)) := - [retract(edf2ef(ode.g)$ExpertSystemToolsPackage)$Asp9(G)] - n:INT := # ode.yinit - iw:INT := (12+n)*n+50 - ans := d02ejf(ode.xend,m,n,ire,iw,ode.xinit,matrix([ode.yinit])$MDF, - tol,-1,asp9,asp7,asp31,asp8) - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<domain D02BBFA d02bbfAnnaType>> -<<domain D02BHFA d02bhfAnnaType>> -<<domain D02CJFA d02cjfAnnaType>> -<<domain D02EJFA d02ejfAnnaType>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/d03.spad.pamphlet b/src/algebra/d03.spad.pamphlet deleted file mode 100644 index 81aca02b..00000000 --- a/src/algebra/d03.spad.pamphlet +++ /dev/null @@ -1,196 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra d03.spad} -\author{Godfrey Nolan, Mike Dewar} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package NAGD03 NagPartialDifferentialEquationsPackage} -<<package NAGD03 NagPartialDifferentialEquationsPackage>>= -)abbrev package NAGD03 NagPartialDifferentialEquationsPackage -++ Author: Godfrey Nolan and Mike Dewar -++ Date Created: Jan 1994 -++ Date Last Updated: Thu May 12 17:44:51 1994 -++Description: -++This package uses the NAG Library to solve partial -++differential equations. -++See \downlink{Manual Page}{manpageXXd03}. -NagPartialDifferentialEquationsPackage(): Exports == Implementation where - S ==> Symbol - FOP ==> FortranOutputStackPackage - - Exports ==> with - d03edf : (Integer,Integer,Integer,Integer,_ - DoubleFloat,Integer,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Integer) -> Result - ++ d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail) - ++ solves seven-diagonal systems of linear equations which - ++ arise from the discretization of an elliptic partial differential - ++ equation on a rectangular region. This routine uses a multigrid - ++ technique. - ++ See \downlink{Manual Page}{manpageXXd03edf}. - d03eef : (DoubleFloat,DoubleFloat,DoubleFloat,DoubleFloat,_ - Integer,Integer,Integer,String,Integer,Union(fn:FileName,fp:Asp73(PDEF)),Union(fn:FileName,fp:Asp74(BNDY))) -> Result - ++ d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy) - ++ discretizes a second order elliptic partial differential - ++ equation (PDE) on a rectangular region. - ++ See \downlink{Manual Page}{manpageXXd03eef}. - d03faf : (DoubleFloat,DoubleFloat,Integer,Integer,_ - Matrix DoubleFloat,Matrix DoubleFloat,DoubleFloat,DoubleFloat,Integer,Integer,Matrix DoubleFloat,Matrix DoubleFloat,DoubleFloat,DoubleFloat,Integer,Integer,Matrix DoubleFloat,Matrix DoubleFloat,DoubleFloat,Integer,Integer,Integer,ThreeDimensionalMatrix DoubleFloat,Integer) -> Result - ++ d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail) - ++ solves the Helmholtz equation in Cartesian co-ordinates in - ++ three dimensions using the standard seven-point finite difference - ++ approximation. This routine is designed to be particularly - ++ efficient on vector processors. - ++ See \downlink{Manual Page}{manpageXXd03faf}. - Implementation ==> add - - import Lisp - import DoubleFloat - import Any - import Record - import Integer - import Matrix DoubleFloat - import Boolean - import NAGLinkSupportPackage - import AnyFunctions1(Integer) - import AnyFunctions1(String) - import AnyFunctions1(DoubleFloat) - import AnyFunctions1(Matrix DoubleFloat) - import AnyFunctions1(ThreeDimensionalMatrix DoubleFloat) - import FortranPackage - import Union(fn:FileName,fp:Asp73(PDEF)) - import Union(fn:FileName,fp:Asp74(BNDY)) - macro I == Integer - - - - - d03edf(ngxArg:Integer,ngyArg:Integer,ldaArg:Integer,_ - maxitArg:Integer,accArg:DoubleFloat,ioutArg:Integer,_ - aArg:Matrix DoubleFloat,rhsArg:Matrix DoubleFloat,ubArg:Matrix DoubleFloat,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "d03edf",_ - ["ngx"::S,"ngy"::S,"lda"::S,"maxit"::S,"acc"::S_ - ,"iout"::S,"numit"::S,"ifail"::S,"us"::S,"u"::S,"a"::S,"rhs"::S,"ub"::S_ - ]$Lisp,_ - ["us"::S,"u"::S,"numit"::S]$Lisp,_ - [["double"::S,"acc"::S,["us"::S,"lda"::S]$Lisp_ - ,["u"::S,"lda"::S]$Lisp,["a"::S,"lda"::S,7$Lisp]$Lisp,["rhs"::S,"lda"::S]$Lisp,["ub"::S,["*"::S,"ngx"::S,"ngy"::S]$Lisp]$Lisp_ - ]$Lisp_ - ,["integer"::S,"ngx"::S,"ngy"::S,"lda"::S,"maxit"::S_ - ,"iout"::S,"numit"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["us"::S,"u"::S,"numit"::S,"a"::S,"rhs"::S,"ub"::S,"ifail"::S]$Lisp,_ - [([ngxArg::Any,ngyArg::Any,ldaArg::Any,maxitArg::Any,accArg::Any,ioutArg::Any,ifailArg::Any,aArg::Any,rhsArg::Any,ubArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - d03eef(xminArg:DoubleFloat,xmaxArg:DoubleFloat,yminArg:DoubleFloat,_ - ymaxArg:DoubleFloat,ngxArg:Integer,ngyArg:Integer,_ - ldaArg:Integer,schemeArg:String,ifailArg:Integer,_ - pdefArg:Union(fn:FileName,fp:Asp73(PDEF)),bndyArg:Union(fn:FileName,fp:Asp74(BNDY))): Result == - pushFortranOutputStack(pdefFilename := aspFilename "pdef")$FOP - if pdefArg case fn - then outputAsFortran(pdefArg.fn) - else outputAsFortran(pdefArg.fp) - popFortranOutputStack()$FOP - pushFortranOutputStack(bndyFilename := aspFilename "bndy")$FOP - if bndyArg case fn - then outputAsFortran(bndyArg.fn) - else outputAsFortran(bndyArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([pdefFilename,bndyFilename]$Lisp,_ - "d03eef",_ - ["xmin"::S,"xmax"::S,"ymin"::S,"ymax"::S,"ngx"::S_ - ,"ngy"::S,"lda"::S,"scheme"::S,"ifail"::S,"pdef"::S_ - ,"bndy"::S,"a"::S,"rhs"::S]$Lisp,_ - ["a"::S,"rhs"::S,"pdef"::S,"bndy"::S]$Lisp,_ - [["double"::S,"xmin"::S,"xmax"::S,"ymin"::S_ - ,"ymax"::S,["a"::S,"lda"::S,7$Lisp]$Lisp,["rhs"::S,"lda"::S]$Lisp,"pdef"::S,"bndy"::S]$Lisp_ - ,["integer"::S,"ngx"::S,"ngy"::S,"lda"::S,"ifail"::S_ - ]$Lisp_ - ,["character"::S,"scheme"::S]$Lisp_ - ]$Lisp,_ - ["a"::S,"rhs"::S,"ifail"::S]$Lisp,_ - [([xminArg::Any,xmaxArg::Any,yminArg::Any,ymaxArg::Any,ngxArg::Any,ngyArg::Any,ldaArg::Any,schemeArg::Any,ifailArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - d03faf(xsArg:DoubleFloat,xfArg:DoubleFloat,lArg:Integer,_ - lbdcndArg:Integer,bdxsArg:Matrix DoubleFloat,bdxfArg:Matrix DoubleFloat,_ - ysArg:DoubleFloat,yfArg:DoubleFloat,mArg:Integer,_ - mbdcndArg:Integer,bdysArg:Matrix DoubleFloat,bdyfArg:Matrix DoubleFloat,_ - zsArg:DoubleFloat,zfArg:DoubleFloat,nArg:Integer,_ - nbdcndArg:Integer,bdzsArg:Matrix DoubleFloat,bdzfArg:Matrix DoubleFloat,_ - lambdaArg:DoubleFloat,ldimfArg:Integer,mdimfArg:Integer,_ - lwrkArg:Integer,fArg:ThreeDimensionalMatrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "d03faf",_ - ["xs"::S,"xf"::S,"l"::S,"lbdcnd"::S,"ys"::S_ - ,"yf"::S,"m"::S,"mbdcnd"::S,"zs"::S,"zf"::S_ - ,"n"::S,"nbdcnd"::S,"lambda"::S,"ldimf"::S,"mdimf"::S_ - ,"lwrk"::S,"pertrb"::S,"ifail"::S,"bdxs"::S,"bdxf"::S,"bdys"::S,"bdyf"::S,"bdzs"::S_ - ,"bdzf"::S,"f"::S,"w"::S]$Lisp,_ - ["pertrb"::S,"w"::S]$Lisp,_ - [["double"::S,"xs"::S,"xf"::S,["bdxs"::S,"mdimf"::S,["+"::S,"n"::S,1@I]$Lisp]$Lisp_ - ,["bdxf"::S,"mdimf"::S,["+"::S,"n"::S,1@I]$Lisp]$Lisp,"ys"::S,"yf"::S,["bdys"::S,"ldimf"::S,["+"::S,"n"::S,1$Lisp]$Lisp]$Lisp_ - ,["bdyf"::S,"ldimf"::S,["+"::S,"n"::S,1@I]$Lisp]$Lisp,"zs"::S_ - ,"zf"::S,["bdzs"::S,"ldimf"::S,["+"::S,"m"::S,1@I]$Lisp]$Lisp,["bdzf"::S,"ldimf"::S,["+"::S,"m"::S,1$Lisp]$Lisp]$Lisp_ - ,"lambda"::S,"pertrb"::S,["f"::S,"ldimf"::S,"mdimf"::S,["+"::S,"n"::S,1@I]$Lisp]$Lisp,["w"::S,"lwrk"::S]$Lisp]$Lisp_ - ,["integer"::S,"l"::S,"lbdcnd"::S,"m"::S,"mbdcnd"::S_ - ,"n"::S,"nbdcnd"::S,"ldimf"::S,"mdimf"::S,"lwrk"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["pertrb"::S,"f"::S,"ifail"::S]$Lisp,_ - [([xsArg::Any,xfArg::Any,lArg::Any,lbdcndArg::Any,ysArg::Any,yfArg::Any,mArg::Any,mbdcndArg::Any,zsArg::Any,zfArg::Any,nArg::Any,nbdcndArg::Any,lambdaArg::Any,ldimfArg::Any,mdimfArg::Any,lwrkArg::Any,ifailArg::Any,bdxsArg::Any,bdxfArg::Any,bdysArg::Any,bdyfArg::Any,bdzsArg::Any,bdzfArg::Any,fArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package NAGD03 NagPartialDifferentialEquationsPackage>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/d03Package.spad.pamphlet b/src/algebra/d03Package.spad.pamphlet deleted file mode 100644 index 3cb2a692..00000000 --- a/src/algebra/d03Package.spad.pamphlet +++ /dev/null @@ -1,307 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra d03Package.spad} -\author{Brian Dupee} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package PDEPACK AnnaPartialDifferentialEquationPackage} -<<package PDEPACK AnnaPartialDifferentialEquationPackage>>= -)abbrev package PDEPACK AnnaPartialDifferentialEquationPackage -++ Author: Brian Dupee -++ Date Created: June 1996 -++ Date Last Updated: December 1997 -++ Basic Operations: -++ Description: AnnaPartialDifferentialEquationPackage is an uncompleted -++ package for the interface to NAG PDE routines. It has been realised that -++ a new approach to solving PDEs will need to be created. -++ -LEDF ==> List Expression DoubleFloat -EDF ==> Expression DoubleFloat -LDF ==> List DoubleFloat -MDF ==> Matrix DoubleFloat -DF ==> DoubleFloat -LEF ==> List Expression Float -EF ==> Expression Float -MEF ==> Matrix Expression Float -LF ==> List Float -F ==> Float -LS ==> List Symbol -ST ==> String -LST ==> List String -INT ==> Integer -NNI ==> NonNegativeInteger -RT ==> RoutinesTable -PDEC ==> Record(start:DF, finish:DF, grid:NNI, boundaryType:INT, - dStart:MDF, dFinish:MDF) -PDEB ==> Record(pde:LEDF, constraints:List PDEC, - f:List LEDF, st:ST, tol:DF) -IFL ==> List(Record(ifail:INT,instruction:ST)) -Entry ==> Record(chapter:ST, type:ST, domainName: ST, - defaultMin:F, measure:F, failList:IFL, explList:LST) -Measure ==> Record(measure:F,name:ST, explanations:LST) - -AnnaPartialDifferentialEquationPackage(): with - solve:(NumericalPDEProblem) -> Result - ++ solve(PDEProblem) is a top level ANNA function to solve numerically a system - ++ of partial differential equations. - ++ - ++ The method used to perform the numerical - ++ process will be one of the routines contained in the NAG numerical - ++ Library. The function predicts the likely most effective routine - ++ by checking various attributes of the system of PDE's and calculating - ++ a measure of compatibility of each routine to these attributes. - ++ - ++ It then calls the resulting `best' routine. - ++ - ++ ** At the moment, only Second Order Elliptic Partial Differential - ++ Equations are solved ** - solve:(NumericalPDEProblem,RT) -> Result - ++ solve(PDEProblem,routines) is a top level ANNA function to solve numerically a system - ++ of partial differential equations. - ++ - ++ The method used to perform the numerical - ++ process will be one of the routines contained in the NAG numerical - ++ Library. The function predicts the likely most effective routine - ++ by checking various attributes of the system of PDE's and calculating - ++ a measure of compatibility of each routine to these attributes. - ++ - ++ It then calls the resulting `best' routine. - ++ - ++ ** At the moment, only Second Order Elliptic Partial Differential - ++ Equations are solved ** - solve:(F,F,F,F,NNI,NNI,LEF,List LEF,ST,DF) -> Result - ++ solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol) is a top level - ++ ANNA function to solve numerically a system of partial differential - ++ equations. This is defined as a list of coefficients (\axiom{pde}), - ++ a grid (\axiom{xmin}, \axiom{ymin}, \axiom{xmax}, \axiom{ymax}, - ++ \axiom{ngx}, \axiom{ngy}), the boundary values (\axiom{bounds}) and a - ++ tolerance requirement (\axiom{tol}). There is also a parameter - ++ (\axiom{st}) which should contain the value "elliptic" if the PDE is - ++ known to be elliptic, or "unknown" if it is uncertain. This causes the - ++ routine to check whether the PDE is elliptic. - ++ - ++ The method used to perform the numerical - ++ process will be one of the routines contained in the NAG numerical - ++ Library. The function predicts the likely most effective routine - ++ by checking various attributes of the system of PDE's and calculating - ++ a measure of compatibility of each routine to these attributes. - ++ - ++ It then calls the resulting `best' routine. - ++ - ++ ** At the moment, only Second Order Elliptic Partial Differential - ++ Equations are solved ** - solve:(F,F,F,F,NNI,NNI,LEF,List LEF,ST) -> Result - ++ solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st) is a top level - ++ ANNA function to solve numerically a system of partial differential - ++ equations. This is defined as a list of coefficients (\axiom{pde}), - ++ a grid (\axiom{xmin}, \axiom{ymin}, \axiom{xmax}, \axiom{ymax}, - ++ \axiom{ngx}, \axiom{ngy}) and the boundary values (\axiom{bounds}). - ++ A default value for tolerance is used. There is also a parameter - ++ (\axiom{st}) which should contain the value "elliptic" if the PDE is - ++ known to be elliptic, or "unknown" if it is uncertain. This causes the - ++ routine to check whether the PDE is elliptic. - ++ - ++ The method used to perform the numerical - ++ process will be one of the routines contained in the NAG numerical - ++ Library. The function predicts the likely most effective routine - ++ by checking various attributes of the system of PDE's and calculating - ++ a measure of compatibility of each routine to these attributes. - ++ - ++ It then calls the resulting `best' routine. - ++ - ++ ** At the moment, only Second Order Elliptic Partial Differential - ++ Equations are solved ** - measure:(NumericalPDEProblem) -> Measure - ++ measure(prob) is a top level ANNA function for identifying the most - ++ appropriate numerical routine from those in the routines table - ++ provided for solving the numerical PDE - ++ problem defined by \axiom{prob}. - ++ - ++ It calls each \axiom{domain} of \axiom{category} - ++ \axiomType{PartialDifferentialEquationsSolverCategory} in turn to - ++ calculate all measures and returns the best i.e. the name of - ++ the most appropriate domain and any other relevant information. - ++ It predicts the likely most effective NAG numerical - ++ Library routine to solve the input set of PDEs - ++ by checking various attributes of the system of PDEs and calculating - ++ a measure of compatibility of each routine to these attributes. - measure:(NumericalPDEProblem,RT) -> Measure - ++ measure(prob,R) is a top level ANNA function for identifying the most - ++ appropriate numerical routine from those in the routines table - ++ provided for solving the numerical PDE - ++ problem defined by \axiom{prob}. - ++ - ++ It calls each \axiom{domain} listed in \axiom{R} of \axiom{category} - ++ \axiomType{PartialDifferentialEquationsSolverCategory} in turn to - ++ calculate all measures and returns the best i.e. the name of - ++ the most appropriate domain and any other relevant information. - ++ It predicts the likely most effective NAG numerical - ++ Library routine to solve the input set of PDEs - ++ by checking various attributes of the system of PDEs and calculating - ++ a measure of compatibility of each routine to these attributes. - - - == add - - import PDEB, d03AgentsPackage, ExpertSystemToolsPackage, NumericalPDEProblem - - zeroMeasure:Measure -> Result - measureSpecific:(ST,RT,PDEB) -> Record(measure:F,explanations:ST) - solveSpecific:(PDEB,ST) -> Result - changeName:(Result,ST) -> Result - recoverAfterFail:(PDEB,RT,Measure,Integer,Result) -> Record(a:Result,b:Measure) - - zeroMeasure(m:Measure):Result == - a := coerce(0$F)$AnyFunctions1(F) - text := coerce("No available routine appears appropriate")$AnyFunctions1(ST) - r := construct([[result@Symbol,a],[method@Symbol,text]])$Result - concat(measure2Result m,r)$ExpertSystemToolsPackage - - measureSpecific(name:ST,R:RT,p:PDEB):Record(measure:F,explanations:ST) == - name = "d03eefAnnaType" => measure(R,p)$d03eefAnnaType - --name = "d03fafAnnaType" => measure(R,p)$d03fafAnnaType - error("measureSpecific","invalid type name: " name)$ErrorFunctions - - measure(P:NumericalPDEProblem,R:RT):Measure == - p:PDEB := retract(P)$NumericalPDEProblem - sofar := 0$F - best := "none" :: ST - routs := copy R - routs := selectPDERoutines(routs)$RT - empty?(routs)$RT => - error("measure", "no routines found")$ErrorFunctions - rout := inspect(routs)$RT - e := retract(rout.entry)$AnyFunctions1(Entry) - meth := empty()$LST - for i in 1..# routs repeat - rout := extract!(routs)$RT - e := retract(rout.entry)$AnyFunctions1(Entry) - n := e.domainName - if e.defaultMin > sofar then - m := measureSpecific(n,R,p) - if m.measure > sofar then - sofar := m.measure - best := n - str:LST := [string(rout.key)$Symbol "measure: " - outputMeasure(m.measure)$ExpertSystemToolsPackage " - " - m.explanations] - else - str := [string(rout.key)$Symbol " is no better than other routines"] - meth := append(meth,str)$LST - [sofar,best,meth] - - measure(P:NumericalPDEProblem):Measure == measure(P,routines()$RT) - - solveSpecific(p:PDEB,n:ST):Result == - n = "d03eefAnnaType" => PDESolve(p)$d03eefAnnaType - --n = "d03fafAnnaType" => PDESolve(p)$d03fafAnnaType - error("solveSpecific","invalid type name: " n)$ErrorFunctions - - changeName(ans:Result,name:ST):Result == - sy:Symbol := coerce(name "Answer")$Symbol - anyAns:Any := coerce(ans)$AnyFunctions1(Result) - construct([[sy,anyAns]])$Result - - recoverAfterFail(p:PDEB,routs:RT,m:Measure,iint:Integer,r:Result): - Record(a:Result,b:Measure) == - while positive?(iint) repeat - routineName := m.name - s := recoverAfterFail(routs,routineName(1..6),iint)$RT - s case "failed" => iint := 0 - (s = "no action")@Boolean => iint := 0 - fl := coerce(s)$AnyFunctions1(ST) - flrec:Record(key:Symbol,entry:Any):=[failure@Symbol,fl] - m2 := measure(p::NumericalPDEProblem,routs) - zero?(m2.measure) => iint := 0 - r2:Result := solveSpecific(p,m2.name) - m := m2 - insert!(flrec,r2)$Result - r := concat(r2,changeName(r,routineName))$ExpertSystemToolsPackage - iany := search(ifail@Symbol,r2)$Result - iany case "failed" => iint := 0 - iint := retract(iany)$AnyFunctions1(Integer) - [r,m] - - solve(P:NumericalPDEProblem,t:RT):Result == - routs := copy(t)$RT - m := measure(P,routs) - p:PDEB := retract(P)$NumericalPDEProblem - zero?(m.measure) => zeroMeasure m - r := solveSpecific(p,n := m.name) - iany := search(ifail@Symbol,r)$Result - iint := 0$Integer - if (iany case Any) then - iint := retract(iany)$AnyFunctions1(Integer) - if positive?(iint) then - tu:Record(a:Result,b:Measure) := recoverAfterFail(p,routs,m,iint,r) - r := tu.a - m := tu.b - expl := getExplanations(routs,n(1..6))$RoutinesTable - expla := coerce(expl)$AnyFunctions1(LST) - explaa:Record(key:Symbol,entry:Any) := ["explanations"::Symbol,expla] - r := concat(construct([explaa]),r) - concat(measure2Result m,r)$ExpertSystemToolsPackage - - solve(P:NumericalPDEProblem):Result == solve(P,routines()$RT) - - solve(xmi:F,xma:F,ymi:F,yma:F,nx:NNI,ny:NNI,pe:LEF,bo:List - LEF,s:ST,to:DF):Result == - cx:PDEC := [f2df xmi, f2df xma, nx, 1, empty()$MDF, empty()$MDF] - cy:PDEC := [f2df ymi, f2df yma, ny, 1, empty()$MDF, empty()$MDF] - p:PDEB := [[ef2edf e for e in pe],[cx,cy], - [[ef2edf u for u in w] for w in bo],s,to] - solve(p::NumericalPDEProblem,routines()$RT) - - solve(xmi:F,xma:F,ymi:F,yma:F,nx:NNI,ny:NNI,pe:LEF,bo:List - LEF,s:ST):Result == - solve(xmi,xma,ymi,yma,nx,ny,pe,bo,s,0.0001::DF) - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package PDEPACK AnnaPartialDifferentialEquationPackage>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/d03agents.spad.pamphlet b/src/algebra/d03agents.spad.pamphlet deleted file mode 100644 index 8019832e..00000000 --- a/src/algebra/d03agents.spad.pamphlet +++ /dev/null @@ -1,150 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra d03agents.spad} -\author{Brian Dupee} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package D03AGNT d03AgentsPackage} -<<package D03AGNT d03AgentsPackage>>= -)abbrev package D03AGNT d03AgentsPackage -++ Author: Brian Dupee -++ Date Created: May 1994 -++ Date Last Updated: December 1997 -++ Basic Operations: -++ Description: -++ \axiom{d03AgentsPackage} contains a set of computational agents -++ for use with Partial Differential Equation solvers. -LEDF ==> List Expression DoubleFloat -EDF ==> Expression DoubleFloat -MDF ==> Matrix DoubleFloat -DF ==> DoubleFloat -F ==> Float -INT ==> Integer -NNI ==> NonNegativeInteger -EEDF ==> Equation Expression DoubleFloat -LEEDF ==> List Equation Expression DoubleFloat -LDF ==> List DoubleFloat -LOCDF ==> List OrderedCompletion DoubleFloat -OCDF ==> OrderedCompletion DoubleFloat -LS ==> List Symbol -PDEC ==> Record(start:DF, finish:DF, grid:NNI, boundaryType:INT, - dStart:MDF, dFinish:MDF) -PDEB ==> Record(pde:LEDF, constraints:List PDEC, - f:List LEDF, st:String, tol:DF) -NOA ==> Record(fn:EDF, init:LDF, lb:LOCDF, cf:LEDF, ub:LOCDF) - -d03AgentsPackage(): E == I where - E ==> with - varList:(Symbol,NonNegativeInteger) -> LS - ++ varList(s,n) \undocumented{} - subscriptedVariables:EDF -> EDF - ++ subscriptedVariables(e) \undocumented{} - central?:(DF,DF,LEDF) -> Boolean - ++ central?(f,g,l) \undocumented{} - elliptic?:PDEB -> Boolean - ++ elliptic?(r) \undocumented{} - - I ==> add - - import ExpertSystemToolsPackage - - sum(a:EDF,b:EDF):EDF == a+b - - greater(x: EDF, y: EDF): EDF == - before?(x,y) => y - x - - varList(s:Symbol,n:NonNegativeInteger):LS == - [subscript(s,[t::OutputForm]) for t in expand([1..n])$Segment(Integer)] - - subscriptedVariables(e:EDF):EDF == - oldVars:List Symbol := variables(e) - o := [a :: EDF for a in oldVars] - newVars := varList(X::Symbol,# oldVars) - n := [b :: EDF for b in newVars] - subst(e,[a=b for a in o for b in n]) - - central?(x:DF,y:DF,p:LEDF):Boolean == - ls := variables(reduce(sum,p)) - le := [equation(u::EDF,v)$EEDF for u in ls for v in [x::EDF,y::EDF]] - l := [eval(u,le)$EDF for u in p] - before?(greater(l.4,l.5), 20 * greater(l.1,greater(l.2,l.3))) - - elliptic?(args:PDEB):Boolean == - (args.st)="elliptic" => true - p := args.pde - xcon:PDEC := first(args.constraints) - ycon:PDEC := second(args.constraints) - xs := xcon.start - ys := ycon.start - xf := xcon.finish - yf := ycon.finish - xstart:DF := ((xf-xs)/2)$DF - ystart:DF := ((yf-ys)/2)$DF - optStart:LDF := [xstart,ystart] - lower:LOCDF := [xs::OCDF,ys::OCDF] - upper:LOCDF := [xf::OCDF,yf::OCDF] - v := variables(e := 4*first(p)*third(p)-(second(p))**2) - eq := subscriptedVariables(e) - noa:NOA := - one?(# v) => - ((first v) = X@Symbol) => - [eq,[xstart],[xs::OCDF],empty()$LEDF,[xf::OCDF]] - [eq,[ystart],[ys::OCDF],empty()$LEDF,[yf::OCDF]] - [eq,optStart,lower,empty()$LEDF,upper] - ell := optimize(noa::NumericalOptimizationProblem)$AnnaNumericalOptimizationPackage - o:Union(Any,"failed") := search(objf::Symbol,ell)$Result - o case "failed" => false - ob := o :: Any - obj:DF := retract(ob)$AnyFunctions1(DF) - positive?(obj) - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package D03AGNT d03AgentsPackage>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/d03routine.spad.pamphlet b/src/algebra/d03routine.spad.pamphlet deleted file mode 100644 index bc090fb3..00000000 --- a/src/algebra/d03routine.spad.pamphlet +++ /dev/null @@ -1,164 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra d03routine.spad} -\author{Brian Dupee} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{domain D03EEFA d03eefAnnaType} -<<domain D03EEFA d03eefAnnaType>>= -)abbrev domain D03EEFA d03eefAnnaType -++ Author: Brian Dupee -++ Date Created: June 1996 -++ Date Last Updated: June 1996 -++ Basic Operations: -++ Description: -++ \axiomType{d03eefAnnaType} is a domain of -++ \axiomType{PartialDifferentialEquationsSolverCategory} -++ for the NAG routines D03EEF/D03EDF. -d03eefAnnaType():PartialDifferentialEquationsSolverCategory == Result add -- 2D Elliptic PDE - LEDF ==> List Expression DoubleFloat - EDF ==> Expression DoubleFloat - LDF ==> List DoubleFloat - MDF ==> Matrix DoubleFloat - DF ==> DoubleFloat - F ==> Float - FI ==> Fraction Integer - VEF ==> Vector Expression Float - EF ==> Expression Float - MEF ==> Matrix Expression Float - NNI ==> NonNegativeInteger - INT ==> Integer - PDEC ==> Record(start:DF, finish:DF, grid:NNI, boundaryType:INT, - dStart:MDF, dFinish:MDF) - PDEB ==> Record(pde:LEDF, constraints:List PDEC, - f:List LEDF, st:String, tol:DF) - - import d03AgentsPackage, NagPartialDifferentialEquationsPackage - import ExpertSystemToolsPackage - - measure(R:RoutinesTable,args:PDEB) == - (# (args.constraints) > 2)@Boolean => - [0$F,"d03eef/d03edf is unsuitable for PDEs of order more than 2"] - elliptic?(args) => - m := getMeasure(R,d03eef :: Symbol)$RoutinesTable - [m,"d03eef/d03edf is suitable"] - [0$F,"d03eef/d03edf is unsuitable for hyperbolic or parabolic PDEs"] - - PDESolve(args:PDEB) == - xcon := first(args.constraints) - ycon := second(args.constraints) - nx := xcon.grid - ny := ycon.grid - p := args.pde - x1 := xcon.start - x2 := xcon.finish - y1 := ycon.start - y2 := ycon.finish - lda := ((4*(nx+1)*(ny+1)+2) quo 3)$INT - scheme:String := - central?((x2-x1)/2,(y2-y1)/2,args.pde) => "C" - "U" - asp73:Union(fn:FileName,fp:Asp73(PDEF)) := - [retract(vector([edf2ef u for u in p])$VEF)$Asp73(PDEF)] - asp74:Union(fn:FileName,fp:Asp74(BNDY)) := - [retract(matrix([[edf2ef v for v in w] for w in args.f])$MEF)$Asp74(BNDY)] - fde := d03eef(x1,x2,y1,y2,nx,ny,lda,scheme,-1,asp73,asp74) - ub := new(1,nx*ny,0$DF)$MDF - A := search(a::Symbol,fde)$Result - A case "failed" => empty()$Result - AA := A::Any - fdea := retract(AA)$AnyFunctions1(MDF) - r := search(rhs::Symbol,fde)$Result - r case "failed" => empty()$Result - rh := r::Any - fderhs := retract(rh)$AnyFunctions1(MDF) - d03edf(nx,ny,lda,15,args.tol,0,fdea,fderhs,ub,-1) - -@ -\section{domain D03FAFA d03fafAnnaType} -<<domain D03FAFA d03fafAnnaType>>= -)abbrev domain D03FAFA d03fafAnnaType -++ Author: Brian Dupee -++ Date Created: July 1996 -++ Date Last Updated: July 1996 -++ Basic Operations: -++ Description: -++ \axiomType{d03fafAnnaType} is a domain of -++ \axiomType{PartialDifferentialEquationsSolverCategory} -++ for the NAG routine D03FAF. -d03fafAnnaType():PartialDifferentialEquationsSolverCategory == Result add -- 3D Helmholtz PDE - LEDF ==> List Expression DoubleFloat - EDF ==> Expression DoubleFloat - LDF ==> List DoubleFloat - MDF ==> Matrix DoubleFloat - DF ==> DoubleFloat - F ==> Float - FI ==> Fraction Integer - VEF ==> Vector Expression Float - EF ==> Expression Float - MEF ==> Matrix Expression Float - NNI ==> NonNegativeInteger - INT ==> Integer - PDEC ==> Record(start:DF, finish:DF, grid:NNI, boundaryType:INT, - dStart:MDF, dFinish:MDF) - PDEB ==> Record(pde:LEDF, constraints:List PDEC, - f:List LEDF, st:String, tol:DF) - - import d03AgentsPackage, NagPartialDifferentialEquationsPackage - import ExpertSystemToolsPackage - - measure(R:RoutinesTable,args:PDEB) == - (# (args.constraints) < 3)@Boolean => - [0$F,"d03faf is unsuitable for PDEs of order other than 3"] - [0$F,"d03faf isn't finished"] - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<domain D03EEFA d03eefAnnaType>> -<<domain D03FAFA d03fafAnnaType>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/e01.spad.pamphlet b/src/algebra/e01.spad.pamphlet deleted file mode 100644 index 8cea0282..00000000 --- a/src/algebra/e01.spad.pamphlet +++ /dev/null @@ -1,329 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra e01.spad} -\author{Godfrey Nolan, Mike Dewar} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package NAGE01 NagInterpolationPackage} -<<package NAGE01 NagInterpolationPackage>>= -)abbrev package NAGE01 NagInterpolationPackage -++ Author: Godfrey Nolan and Mike Dewar -++ Date Created: Jan 1994 -++ Date Last Updated: Thu May 12 17:44:53 1994 -++Description: -++This package uses the NAG Library to calculate the interpolation of a function of -++one or two variables. When provided with the value of the -++function (and possibly one or more of its lowest-order -++derivatives) at each of a number of values of the variable(s), -++the routines provide either an interpolating function or an -++interpolated value. For some of the interpolating functions, -++there are supporting routines to evaluate, differentiate or -++integrate them. -++See \downlink{Manual Page}{manpageXXe01}. - - -NagInterpolationPackage(): Exports == Implementation where - S ==> Symbol - FOP ==> FortranOutputStackPackage - - Exports ==> with - e01baf : (Integer,Matrix DoubleFloat,Matrix DoubleFloat,Integer,_ - Integer,Integer) -> Result - ++ e01baf(m,x,y,lck,lwrk,ifail) - ++ determines a cubic spline to a given set of - ++ data. - ++ See \downlink{Manual Page}{manpageXXe01baf}. - e01bef : (Integer,Matrix DoubleFloat,Matrix DoubleFloat,Integer) -> Result - ++ e01bef(n,x,f,ifail) - ++ computes a monotonicity-preserving piecewise cubic Hermite - ++ interpolant to a set of data points. - ++ See \downlink{Manual Page}{manpageXXe01bef}. - e01bff : (Integer,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,_ - Integer,Matrix DoubleFloat,Integer) -> Result - ++ e01bff(n,x,f,d,m,px,ifail) - ++ evaluates a piecewise cubic Hermite interpolant at a set - ++ of points. - ++ See \downlink{Manual Page}{manpageXXe01bff}. - e01bgf : (Integer,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,_ - Integer,Matrix DoubleFloat,Integer) -> Result - ++ e01bgf(n,x,f,d,m,px,ifail) - ++ evaluates a piecewise cubic Hermite interpolant and its - ++ first derivative at a set of points. - ++ See \downlink{Manual Page}{manpageXXe01bgf}. - e01bhf : (Integer,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,_ - DoubleFloat,DoubleFloat,Integer) -> Result - ++ e01bhf(n,x,f,d,a,b,ifail) - ++ evaluates the definite integral of a piecewise cubic - ++ Hermite interpolant over the interval [a,b]. - ++ See \downlink{Manual Page}{manpageXXe01bhf}. - e01daf : (Integer,Integer,Matrix DoubleFloat,Matrix DoubleFloat,_ - Matrix DoubleFloat,Integer) -> Result - ++ e01daf(mx,my,x,y,f,ifail) - ++ computes a bicubic spline interpolating surface through a - ++ set of data values, given on a rectangular grid in the x-y plane. - ++ See \downlink{Manual Page}{manpageXXe01daf}. - e01saf : (Integer,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,_ - Integer) -> Result - ++ e01saf(m,x,y,f,ifail) - ++ generates a two-dimensional surface interpolating a set of - ++ scattered data points, using the method of Renka and Cline. - ++ See \downlink{Manual Page}{manpageXXe01saf}. - e01sbf : (Integer,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,_ - Matrix Integer,Matrix DoubleFloat,DoubleFloat,DoubleFloat,Integer) -> Result - ++ e01sbf(m,x,y,f,triang,grads,px,py,ifail) - ++ evaluates at a given point the two-dimensional interpolant - ++ function computed by E01SAF. - ++ See \downlink{Manual Page}{manpageXXe01sbf}. - e01sef : (Integer,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,_ - Integer,Integer,DoubleFloat,DoubleFloat,Integer) -> Result - ++ e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail) - ++ generates a two-dimensional surface interpolating a set of - ++ scattered data points, using a modified Shepard method. - ++ See \downlink{Manual Page}{manpageXXe01sef}. - e01sff : (Integer,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,_ - DoubleFloat,Matrix DoubleFloat,DoubleFloat,DoubleFloat,Integer) -> Result - ++ e01sff(m,x,y,f,rnw,fnodes,px,py,ifail) - ++ evaluates at a given point the two-dimensional - ++ interpolating function computed by E01SEF. - ++ See \downlink{Manual Page}{manpageXXe01sff}. - Implementation ==> add - - import Lisp - import DoubleFloat - import Any - import Record - import Integer - import Matrix DoubleFloat - import Boolean - import NAGLinkSupportPackage - import AnyFunctions1(Integer) - import AnyFunctions1(Matrix DoubleFloat) - import AnyFunctions1(Matrix Integer) - import AnyFunctions1(DoubleFloat) - - - e01baf(mArg:Integer,xArg:Matrix DoubleFloat,yArg:Matrix DoubleFloat,_ - lckArg:Integer,lwrkArg:Integer,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e01baf",_ - ["m"::S,"lck"::S,"lwrk"::S,"ifail"::S,"x"::S,"y"::S,"lamda"::S,"c"::S,"wrk"::S_ - ]$Lisp,_ - ["lamda"::S,"c"::S,"wrk"::S]$Lisp,_ - [["double"::S,["x"::S,"m"::S]$Lisp,["y"::S,"m"::S]$Lisp_ - ,["lamda"::S,"lck"::S]$Lisp,["c"::S,"lck"::S]$Lisp,["wrk"::S,"lwrk"::S]$Lisp]$Lisp_ - ,["integer"::S,"m"::S,"lck"::S,"lwrk"::S,"ifail"::S_ - ]$Lisp_ - ]$Lisp,_ - ["lamda"::S,"c"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,lckArg::Any,lwrkArg::Any,ifailArg::Any,xArg::Any,yArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e01bef(nArg:Integer,xArg:Matrix DoubleFloat,fArg:Matrix DoubleFloat,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e01bef",_ - ["n"::S,"ifail"::S,"x"::S,"f"::S,"d"::S]$Lisp,_ - ["d"::S]$Lisp,_ - [["double"::S,["x"::S,"n"::S]$Lisp,["f"::S,"n"::S]$Lisp_ - ,["d"::S,"n"::S]$Lisp]$Lisp_ - ,["integer"::S,"n"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["d"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,ifailArg::Any,xArg::Any,fArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e01bff(nArg:Integer,xArg:Matrix DoubleFloat,fArg:Matrix DoubleFloat,_ - dArg:Matrix DoubleFloat,mArg:Integer,pxArg:Matrix DoubleFloat,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e01bff",_ - ["n"::S,"m"::S,"ifail"::S,"x"::S,"f"::S,"d"::S,"px"::S,"pf"::S_ - ]$Lisp,_ - ["pf"::S]$Lisp,_ - [["double"::S,["x"::S,"n"::S]$Lisp,["f"::S,"n"::S]$Lisp_ - ,["d"::S,"n"::S]$Lisp,["px"::S,"m"::S]$Lisp,["pf"::S,"m"::S]$Lisp]$Lisp_ - ,["integer"::S,"n"::S,"m"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["pf"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,mArg::Any,ifailArg::Any,xArg::Any,fArg::Any,dArg::Any,pxArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e01bgf(nArg:Integer,xArg:Matrix DoubleFloat,fArg:Matrix DoubleFloat,_ - dArg:Matrix DoubleFloat,mArg:Integer,pxArg:Matrix DoubleFloat,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e01bgf",_ - ["n"::S,"m"::S,"ifail"::S,"x"::S,"f"::S,"d"::S,"px"::S,"pf"::S_ - ,"pd"::S]$Lisp,_ - ["pf"::S,"pd"::S]$Lisp,_ - [["double"::S,["x"::S,"n"::S]$Lisp,["f"::S,"n"::S]$Lisp_ - ,["d"::S,"n"::S]$Lisp,["px"::S,"m"::S]$Lisp,["pf"::S,"m"::S]$Lisp,["pd"::S,"m"::S]$Lisp]$Lisp_ - ,["integer"::S,"n"::S,"m"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["pf"::S,"pd"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,mArg::Any,ifailArg::Any,xArg::Any,fArg::Any,dArg::Any,pxArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e01bhf(nArg:Integer,xArg:Matrix DoubleFloat,fArg:Matrix DoubleFloat,_ - dArg:Matrix DoubleFloat,aArg:DoubleFloat,bArg:DoubleFloat,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e01bhf",_ - ["n"::S,"a"::S,"b"::S,"pint"::S,"ifail"::S_ - ,"x"::S,"f"::S,"d"::S]$Lisp,_ - ["pint"::S]$Lisp,_ - [["double"::S,["x"::S,"n"::S]$Lisp,["f"::S,"n"::S]$Lisp_ - ,["d"::S,"n"::S]$Lisp,"a"::S,"b"::S,"pint"::S]$Lisp_ - ,["integer"::S,"n"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["pint"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,aArg::Any,bArg::Any,ifailArg::Any,xArg::Any,fArg::Any,dArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e01daf(mxArg:Integer,myArg:Integer,xArg:Matrix DoubleFloat,_ - yArg:Matrix DoubleFloat,fArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e01daf",_ - ["mx"::S,"my"::S,"px"::S,"py"::S,"ifail"::S_ - ,"x"::S,"y"::S,"f"::S,"lamda"::S,"mu"::S_ - ,"c"::S,"wrk"::S]$Lisp,_ - ["px"::S,"py"::S,"lamda"::S,"mu"::S,"c"::S,"wrk"::S]$Lisp,_ - [["double"::S,["x"::S,"mx"::S]$Lisp,["y"::S,"my"::S]$Lisp_ - ,["f"::S,["*"::S,"mx"::S,"my"::S]$Lisp]$Lisp,["lamda"::S,["+"::S,"mx"::S,4$Lisp]$Lisp]$Lisp,["mu"::S,["+"::S,"mx"::S,4$Lisp]$Lisp]$Lisp_ - ,["c"::S,["*"::S,"mx"::S,"my"::S]$Lisp]$Lisp,["wrk"::S,["*"::S,["+"::S,"mx"::S,6$Lisp]$Lisp,["+"::S,"my"::S,6$Lisp]$Lisp]$Lisp]$Lisp_ - ]$Lisp_ - ,["integer"::S,"mx"::S,"my"::S,"px"::S,"py"::S_ - ,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["px"::S,"py"::S,"lamda"::S,"mu"::S,"c"::S,"ifail"::S]$Lisp,_ - [([mxArg::Any,myArg::Any,ifailArg::Any,xArg::Any,yArg::Any,fArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e01saf(mArg:Integer,xArg:Matrix DoubleFloat,yArg:Matrix DoubleFloat,_ - fArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e01saf",_ - ["m"::S,"ifail"::S,"x"::S,"y"::S,"f"::S,"triang"::S,"grads"::S_ - ]$Lisp,_ - ["triang"::S,"grads"::S]$Lisp,_ - [["double"::S,["x"::S,"m"::S]$Lisp,["y"::S,"m"::S]$Lisp_ - ,["f"::S,"m"::S]$Lisp,["grads"::S,2$Lisp,"m"::S]$Lisp]$Lisp_ - ,["integer"::S,"m"::S,["triang"::S,["*"::S,7$Lisp,"m"::S]$Lisp]$Lisp_ - ,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["triang"::S,"grads"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,ifailArg::Any,xArg::Any,yArg::Any,fArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e01sbf(mArg:Integer,xArg:Matrix DoubleFloat,yArg:Matrix DoubleFloat,_ - fArg:Matrix DoubleFloat,triangArg:Matrix Integer,gradsArg:Matrix DoubleFloat,_ - pxArg:DoubleFloat,pyArg:DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e01sbf",_ - ["m"::S,"px"::S,"py"::S,"pf"::S,"ifail"::S_ - ,"x"::S,"y"::S,"f"::S,"triang"::S,"grads"::S_ - ]$Lisp,_ - ["pf"::S]$Lisp,_ - [["double"::S,["x"::S,"m"::S]$Lisp,["y"::S,"m"::S]$Lisp_ - ,["f"::S,"m"::S]$Lisp,["grads"::S,2$Lisp,"m"::S]$Lisp,"px"::S,"py"::S,"pf"::S]$Lisp_ - ,["integer"::S,"m"::S,["triang"::S,["*"::S,7$Lisp,"m"::S]$Lisp]$Lisp_ - ,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["pf"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,pxArg::Any,pyArg::Any,ifailArg::Any,xArg::Any,yArg::Any,fArg::Any,triangArg::Any,gradsArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e01sef(mArg:Integer,xArg:Matrix DoubleFloat,yArg:Matrix DoubleFloat,_ - fArg:Matrix DoubleFloat,nwArg:Integer,nqArg:Integer,_ - rnwArg:DoubleFloat,rnqArg:DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e01sef",_ - ["m"::S,"nw"::S,"nq"::S,"minnq"::S,"rnw"::S_ - ,"rnq"::S,"ifail"::S,"x"::S,"y"::S,"f"::S,"fnodes"::S,"wrk"::S_ - ]$Lisp,_ - ["fnodes"::S,"minnq"::S,"wrk"::S]$Lisp,_ - [["double"::S,["x"::S,"m"::S]$Lisp,["y"::S,"m"::S]$Lisp_ - ,["f"::S,"m"::S]$Lisp,["fnodes"::S,["*"::S,5$Lisp,"m"::S]$Lisp]$Lisp,"rnw"::S,"rnq"::S,["wrk"::S,["*"::S,6$Lisp,"m"::S]$Lisp]$Lisp_ - ]$Lisp_ - ,["integer"::S,"m"::S,"nw"::S,"nq"::S,"minnq"::S_ - ,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["fnodes"::S,"minnq"::S,"rnw"::S,"rnq"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,nwArg::Any,nqArg::Any,rnwArg::Any,rnqArg::Any,ifailArg::Any,xArg::Any,yArg::Any,fArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e01sff(mArg:Integer,xArg:Matrix DoubleFloat,yArg:Matrix DoubleFloat,_ - fArg:Matrix DoubleFloat,rnwArg:DoubleFloat,fnodesArg:Matrix DoubleFloat,_ - pxArg:DoubleFloat,pyArg:DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e01sff",_ - ["m"::S,"rnw"::S,"px"::S,"py"::S,"pf"::S_ - ,"ifail"::S,"x"::S,"y"::S,"f"::S,"fnodes"::S]$Lisp,_ - ["pf"::S]$Lisp,_ - [["double"::S,["x"::S,"m"::S]$Lisp,["y"::S,"m"::S]$Lisp_ - ,["f"::S,"m"::S]$Lisp,"rnw"::S,["fnodes"::S,["*"::S,5$Lisp,"m"::S]$Lisp]$Lisp,"px"::S,"py"::S,"pf"::S]$Lisp_ - ,["integer"::S,"m"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["pf"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,rnwArg::Any,pxArg::Any,pyArg::Any,ifailArg::Any,xArg::Any,yArg::Any,fArg::Any,fnodesArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package NAGE01 NagInterpolationPackage>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/e02.spad.pamphlet b/src/algebra/e02.spad.pamphlet deleted file mode 100644 index 3a06e977..00000000 --- a/src/algebra/e02.spad.pamphlet +++ /dev/null @@ -1,588 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra e02.spad} -\author{Godfrey Nolan, Mike Dewar} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package NAGE02 NagFittingPackage} -<<package NAGE02 NagFittingPackage>>= -)abbrev package NAGE02 NagFittingPackage -++ Author: Godfrey Nolan and Mike Dewar -++ Date Created: Jan 1994 -++ Date Last Updated: Thu May 12 17:44:59 1994 -++Description: -++This package uses the NAG Library to find a -++function which approximates a set of data points. Typically the -++data contain random errors, as of experimental measurement, which -++need to be smoothed out. To seek an approximation to the data, it -++is first necessary to specify for the approximating function a -++mathematical form (a polynomial, for example) which contains a -++number of unspecified coefficients: the appropriate fitting -++routine then derives for the coefficients the values which -++provide the best fit of that particular form. The package deals -++mainly with curve and surface fitting (i.e., fitting with -++functions of one and of two variables) when a polynomial or a -++cubic spline is used as the fitting function, since these cover -++the most common needs. However, fitting with other functions -++and/or more variables can be undertaken by means of general -++linear or nonlinear routines (some of which are contained in -++other packages) depending on whether the coefficients in the -++function occur linearly or nonlinearly. Cases where a graph -++rather than a set of data points is given can be treated simply -++by first reading a suitable set of points from the graph. -++The package also contains routines for evaluating, -++differentiating and integrating polynomial and spline curves and -++surfaces, once the numerical values of their coefficients have -++been determined. -++See \downlink{Manual Page}{manpageXXe02}. - - -NagFittingPackage(): Exports == Implementation where - S ==> Symbol - FOP ==> FortranOutputStackPackage - - Exports ==> with - e02adf : (Integer,Integer,Integer,Matrix DoubleFloat,_ - Matrix DoubleFloat,Matrix DoubleFloat,Integer) -> Result - ++ e02adf(m,kplus1,nrows,x,y,w,ifail) - ++ computes weighted least-squares polynomial approximations - ++ to an arbitrary set of data points. - ++ See \downlink{Manual Page}{manpageXXe02adf}. - e02aef : (Integer,Matrix DoubleFloat,DoubleFloat,Integer) -> Result - ++ e02aef(nplus1,a,xcap,ifail) - ++ evaluates a polynomial from its Chebyshev-series - ++ representation. - ++ See \downlink{Manual Page}{manpageXXe02aef}. - e02agf : (Integer,Integer,Integer,DoubleFloat,_ - DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Integer,Matrix DoubleFloat,Matrix DoubleFloat,Integer,Matrix Integer,Integer,Integer,Integer) -> Result - ++ e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail) - ++ computes constrained weighted least-squares polynomial - ++ approximations in Chebyshev-series form to an arbitrary set of - ++ data points. The values of the approximations and any number of - ++ their derivatives can be specified at selected points. - ++ See \downlink{Manual Page}{manpageXXe02agf}. - e02ahf : (Integer,DoubleFloat,DoubleFloat,Matrix DoubleFloat,_ - Integer,Integer,Integer,Integer,Integer) -> Result - ++ e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail) - ++ determines the coefficients in the Chebyshev-series - ++ representation of the derivative of a polynomial given in - ++ Chebyshev-series form. - ++ See \downlink{Manual Page}{manpageXXe02ahf}. - e02ajf : (Integer,DoubleFloat,DoubleFloat,Matrix DoubleFloat,_ - Integer,Integer,DoubleFloat,Integer,Integer,Integer) -> Result - ++ e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail) - ++ determines the coefficients in the Chebyshev-series - ++ representation of the indefinite integral of a polynomial given - ++ in Chebyshev-series form. - ++ See \downlink{Manual Page}{manpageXXe02ajf}. - e02akf : (Integer,DoubleFloat,DoubleFloat,Matrix DoubleFloat,_ - Integer,Integer,DoubleFloat,Integer) -> Result - ++ e02akf(np1,xmin,xmax,a,ia1,la,x,ifail) - ++ evaluates a polynomial from its Chebyshev-series - ++ representation, allowing an arbitrary index increment for - ++ accessing the array of coefficients. - ++ See \downlink{Manual Page}{manpageXXe02akf}. - e02baf : (Integer,Integer,Matrix DoubleFloat,Matrix DoubleFloat,_ - Matrix DoubleFloat,Matrix DoubleFloat,Integer) -> Result - ++ e02baf(m,ncap7,x,y,w,lamda,ifail) - ++ computes a weighted least-squares approximation to an - ++ arbitrary set of data points by a cubic splines - ++ prescribed by the user. Cubic spline can also be - ++ carried out. - ++ See \downlink{Manual Page}{manpageXXe02baf}. - e02bbf : (Integer,Matrix DoubleFloat,Matrix DoubleFloat,DoubleFloat,_ - Integer) -> Result - ++ e02bbf(ncap7,lamda,c,x,ifail) - ++ evaluates a cubic spline representation. - ++ See \downlink{Manual Page}{manpageXXe02bbf}. - e02bcf : (Integer,Matrix DoubleFloat,Matrix DoubleFloat,DoubleFloat,_ - Integer,Integer) -> Result - ++ e02bcf(ncap7,lamda,c,x,left,ifail) - ++ evaluates a cubic spline and its first three derivatives - ++ from its B-spline representation. - ++ See \downlink{Manual Page}{manpageXXe02bcf}. - e02bdf : (Integer,Matrix DoubleFloat,Matrix DoubleFloat,Integer) -> Result - ++ e02bdf(ncap7,lamda,c,ifail) - ++ computes the definite integral from its - ++ B-spline representation. - ++ See \downlink{Manual Page}{manpageXXe02bdf}. - e02bef : (String,Integer,Matrix DoubleFloat,Matrix DoubleFloat,_ - Matrix DoubleFloat,DoubleFloat,Integer,Integer,Integer,Matrix DoubleFloat,Integer,Matrix DoubleFloat,Matrix Integer) -> Result - ++ e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk) - ++ computes a cubic spline approximation to an arbitrary set - ++ of data points. The knot are located - ++ automatically, but a single parameter must be specified to - ++ control the trade-off between closeness of fit and smoothness of - ++ fit. - ++ See \downlink{Manual Page}{manpageXXe02bef}. - e02daf : (Integer,Integer,Integer,Matrix DoubleFloat,_ - Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Matrix Integer,Integer,Integer,Integer,DoubleFloat,Matrix DoubleFloat,Integer) -> Result - ++ e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail) - ++ forms a minimal, weighted least-squares bicubic spline - ++ surface fit with prescribed knots to a given set of data points. - ++ See \downlink{Manual Page}{manpageXXe02daf}. - e02dcf : (String,Integer,Matrix DoubleFloat,Integer,_ - Matrix DoubleFloat,Matrix DoubleFloat,DoubleFloat,Integer,Integer,Integer,Integer,Integer,Matrix DoubleFloat,Integer,Matrix DoubleFloat,Matrix DoubleFloat,Matrix Integer,Integer) -> Result - ++ e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail) - ++ computes a bicubic spline approximation to a set of data - ++ values, given on a rectangular grid in the x-y plane. The knots - ++ of the spline are located automatically, but a single parameter - ++ must be specified to control the trade-off between closeness of - ++ fit and smoothness of fit. - ++ See \downlink{Manual Page}{manpageXXe02dcf}. - e02ddf : (String,Integer,Matrix DoubleFloat,Matrix DoubleFloat,_ - Matrix DoubleFloat,Matrix DoubleFloat,DoubleFloat,Integer,Integer,Integer,Integer,Integer,Matrix DoubleFloat,Integer,Matrix DoubleFloat,Matrix DoubleFloat,Integer) -> Result - ++ e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail) - ++ computes a bicubic spline approximation to a set of - ++ scattered data are located - ++ automatically, but a single parameter must be specified to - ++ control the trade-off between closeness of fit and smoothness of - ++ fit. - ++ See \downlink{Manual Page}{manpageXXe02ddf}. - e02def : (Integer,Integer,Integer,Matrix DoubleFloat,_ - Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Integer) -> Result - ++ e02def(m,px,py,x,y,lamda,mu,c,ifail) - ++ calculates values of a bicubic spline - ++ representation. - ++ See \downlink{Manual Page}{manpageXXe02def}. - e02dff : (Integer,Integer,Integer,Integer,_ - Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Integer,Integer,Integer) -> Result - ++ e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail) - ++ calculates values of a bicubic spline - ++ representation. The spline is evaluated at all points on a - ++ rectangular grid. - ++ See \downlink{Manual Page}{manpageXXe02dff}. - e02gaf : (Integer,Integer,Integer,DoubleFloat,_ - Matrix DoubleFloat,Matrix DoubleFloat,Integer) -> Result - ++ e02gaf(m,la,nplus2,toler,a,b,ifail) - ++ calculates an l solution to an over-determined system of - ++ 1 - ++ linear equations. - ++ See \downlink{Manual Page}{manpageXXe02gaf}. - e02zaf : (Integer,Integer,Matrix DoubleFloat,Matrix DoubleFloat,_ - Integer,Matrix DoubleFloat,Matrix DoubleFloat,Integer,Integer,Integer) -> Result - ++ e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail) - ++ sorts two-dimensional data into rectangular panels. - ++ See \downlink{Manual Page}{manpageXXe02zaf}. - Implementation ==> add - - import Lisp - import DoubleFloat - import Any - import Record - import Integer - import Matrix DoubleFloat - import Boolean - import NAGLinkSupportPackage - import AnyFunctions1(Integer) - import AnyFunctions1(Matrix DoubleFloat) - import AnyFunctions1(DoubleFloat) - import AnyFunctions1(Matrix Integer) - import AnyFunctions1(String) - - - e02adf(mArg:Integer,kplus1Arg:Integer,nrowsArg:Integer,_ - xArg:Matrix DoubleFloat,yArg:Matrix DoubleFloat,wArg:Matrix DoubleFloat,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e02adf",_ - ["m"::S,"kplus1"::S,"nrows"::S,"ifail"::S,"x"::S,"y"::S,"w"::S,"a"::S,"s"::S_ - ,"work1"::S,"work2"::S]$Lisp,_ - ["a"::S,"s"::S,"work1"::S,"work2"::S]$Lisp,_ - [["double"::S,["x"::S,"m"::S]$Lisp,["y"::S,"m"::S]$Lisp_ - ,["w"::S,"m"::S]$Lisp,["a"::S,"nrows"::S,"kplus1"::S]$Lisp,["s"::S,"kplus1"::S]$Lisp,["work1"::S,["*"::S,3$Lisp,"m"::S]$Lisp]$Lisp_ - ,["work2"::S,["*"::S,2$Lisp,"kplus1"::S]$Lisp]$Lisp]$Lisp_ - ,["integer"::S,"m"::S,"kplus1"::S,"nrows"::S_ - ,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["a"::S,"s"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,kplus1Arg::Any,nrowsArg::Any,ifailArg::Any,xArg::Any,yArg::Any,wArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e02aef(nplus1Arg:Integer,aArg:Matrix DoubleFloat,xcapArg:DoubleFloat,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e02aef",_ - ["nplus1"::S,"xcap"::S,"p"::S,"ifail"::S,"a"::S]$Lisp,_ - ["p"::S]$Lisp,_ - [["double"::S,["a"::S,"nplus1"::S]$Lisp,"xcap"::S_ - ,"p"::S]$Lisp_ - ,["integer"::S,"nplus1"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["p"::S,"ifail"::S]$Lisp,_ - [([nplus1Arg::Any,xcapArg::Any,ifailArg::Any,aArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e02agf(mArg:Integer,kplus1Arg:Integer,nrowsArg:Integer,_ - xminArg:DoubleFloat,xmaxArg:DoubleFloat,xArg:Matrix DoubleFloat,_ - yArg:Matrix DoubleFloat,wArg:Matrix DoubleFloat,mfArg:Integer,_ - xfArg:Matrix DoubleFloat,yfArg:Matrix DoubleFloat,lyfArg:Integer,_ - ipArg:Matrix Integer,lwrkArg:Integer,liwrkArg:Integer,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e02agf",_ - ["m"::S,"kplus1"::S,"nrows"::S,"xmin"::S,"xmax"::S_ - ,"mf"::S,"lyf"::S,"lwrk"::S,"liwrk"::S,"np1"::S_ - ,"ifail"::S,"x"::S,"y"::S,"w"::S,"xf"::S,"yf"::S_ - ,"ip"::S,"a"::S,"s"::S,"wrk"::S,"iwrk"::S_ - ]$Lisp,_ - ["a"::S,"s"::S,"np1"::S,"wrk"::S,"iwrk"::S]$Lisp,_ - [["double"::S,"xmin"::S,"xmax"::S,["x"::S,"m"::S]$Lisp_ - ,["y"::S,"m"::S]$Lisp,["w"::S,"m"::S]$Lisp,["xf"::S,"mf"::S]$Lisp,["yf"::S,"lyf"::S]$Lisp,["a"::S,"nrows"::S,"kplus1"::S]$Lisp_ - ,["s"::S,"kplus1"::S]$Lisp,["wrk"::S,"lwrk"::S]$Lisp]$Lisp_ - ,["integer"::S,"m"::S,"kplus1"::S,"nrows"::S_ - ,"mf"::S,"lyf"::S,["ip"::S,"mf"::S]$Lisp,"lwrk"::S,"liwrk"::S,"np1"::S,"ifail"::S,["iwrk"::S,"liwrk"::S]$Lisp]$Lisp_ - ]$Lisp,_ - ["a"::S,"s"::S,"np1"::S,"wrk"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,kplus1Arg::Any,nrowsArg::Any,xminArg::Any,xmaxArg::Any,mfArg::Any,lyfArg::Any,lwrkArg::Any,liwrkArg::Any,ifailArg::Any,xArg::Any,yArg::Any,wArg::Any,xfArg::Any,yfArg::Any,ipArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e02ahf(np1Arg:Integer,xminArg:DoubleFloat,xmaxArg:DoubleFloat,_ - aArg:Matrix DoubleFloat,ia1Arg:Integer,laArg:Integer,_ - iadif1Arg:Integer,ladifArg:Integer,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e02ahf",_ - ["np1"::S,"xmin"::S,"xmax"::S,"ia1"::S,"la"::S_ - ,"iadif1"::S,"ladif"::S,"patm1"::S,"ifail"::S,"a"::S,"adif"::S]$Lisp,_ - ["patm1"::S,"adif"::S]$Lisp,_ - [["double"::S,"xmin"::S,"xmax"::S,["a"::S,"la"::S]$Lisp_ - ,"patm1"::S,["adif"::S,"ladif"::S]$Lisp]$Lisp_ - ,["integer"::S,"np1"::S,"ia1"::S,"la"::S,"iadif1"::S_ - ,"ladif"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["patm1"::S,"adif"::S,"ifail"::S]$Lisp,_ - [([np1Arg::Any,xminArg::Any,xmaxArg::Any,ia1Arg::Any,laArg::Any,iadif1Arg::Any,ladifArg::Any,ifailArg::Any,aArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e02ajf(np1Arg:Integer,xminArg:DoubleFloat,xmaxArg:DoubleFloat,_ - aArg:Matrix DoubleFloat,ia1Arg:Integer,laArg:Integer,_ - qatm1Arg:DoubleFloat,iaint1Arg:Integer,laintArg:Integer,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e02ajf",_ - ["np1"::S,"xmin"::S,"xmax"::S,"ia1"::S,"la"::S_ - ,"qatm1"::S,"iaint1"::S,"laint"::S,"ifail"::S,"a"::S,"aint"::S]$Lisp,_ - ["aint"::S]$Lisp,_ - [["double"::S,"xmin"::S,"xmax"::S,["a"::S,"la"::S]$Lisp_ - ,"qatm1"::S,["aint"::S,"laint"::S]$Lisp]$Lisp_ - ,["integer"::S,"np1"::S,"ia1"::S,"la"::S,"iaint1"::S_ - ,"laint"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["aint"::S,"ifail"::S]$Lisp,_ - [([np1Arg::Any,xminArg::Any,xmaxArg::Any,ia1Arg::Any,laArg::Any,qatm1Arg::Any,iaint1Arg::Any,laintArg::Any,ifailArg::Any,aArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e02akf(np1Arg:Integer,xminArg:DoubleFloat,xmaxArg:DoubleFloat,_ - aArg:Matrix DoubleFloat,ia1Arg:Integer,laArg:Integer,_ - xArg:DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e02akf",_ - ["np1"::S,"xmin"::S,"xmax"::S,"ia1"::S,"la"::S_ - ,"x"::S,"result"::S,"ifail"::S,"a"::S]$Lisp,_ - ["result"::S]$Lisp,_ - [["double"::S,"xmin"::S,"xmax"::S,["a"::S,"la"::S]$Lisp_ - ,"x"::S,"result"::S]$Lisp_ - ,["integer"::S,"np1"::S,"ia1"::S,"la"::S,"ifail"::S_ - ]$Lisp_ - ]$Lisp,_ - ["result"::S,"ifail"::S]$Lisp,_ - [([np1Arg::Any,xminArg::Any,xmaxArg::Any,ia1Arg::Any,laArg::Any,xArg::Any,ifailArg::Any,aArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e02baf(mArg:Integer,ncap7Arg:Integer,xArg:Matrix DoubleFloat,_ - yArg:Matrix DoubleFloat,wArg:Matrix DoubleFloat,lamdaArg:Matrix DoubleFloat,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e02baf",_ - ["m"::S,"ncap7"::S,"ss"::S,"ifail"::S,"x"::S,"y"::S,"w"::S,"c"::S,"lamda"::S_ - ,"work1"::S,"work2"::S]$Lisp,_ - ["c"::S,"ss"::S,"work1"::S,"work2"::S]$Lisp,_ - [["double"::S,["x"::S,"m"::S]$Lisp,["y"::S,"m"::S]$Lisp_ - ,["w"::S,"m"::S]$Lisp,["c"::S,"ncap7"::S]$Lisp,"ss"::S,["lamda"::S,"ncap7"::S]$Lisp,["work1"::S,"m"::S]$Lisp_ - ,["work2"::S,["*"::S,4$Lisp,"ncap7"::S]$Lisp]$Lisp]$Lisp_ - ,["integer"::S,"m"::S,"ncap7"::S,"ifail"::S_ - ]$Lisp_ - ]$Lisp,_ - ["c"::S,"ss"::S,"lamda"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,ncap7Arg::Any,ifailArg::Any,xArg::Any,yArg::Any,wArg::Any,lamdaArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e02bbf(ncap7Arg:Integer,lamdaArg:Matrix DoubleFloat,cArg:Matrix DoubleFloat,_ - xArg:DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e02bbf",_ - ["ncap7"::S,"x"::S,"s"::S,"ifail"::S,"lamda"::S,"c"::S]$Lisp,_ - ["s"::S]$Lisp,_ - [["double"::S,["lamda"::S,"ncap7"::S]$Lisp_ - ,["c"::S,"ncap7"::S]$Lisp,"x"::S,"s"::S]$Lisp_ - ,["integer"::S,"ncap7"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["s"::S,"ifail"::S]$Lisp,_ - [([ncap7Arg::Any,xArg::Any,ifailArg::Any,lamdaArg::Any,cArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e02bcf(ncap7Arg:Integer,lamdaArg:Matrix DoubleFloat,cArg:Matrix DoubleFloat,_ - xArg:DoubleFloat,leftArg:Integer,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e02bcf",_ - ["ncap7"::S,"x"::S,"left"::S,"ifail"::S,"lamda"::S,"c"::S,"s"::S]$Lisp,_ - ["s"::S]$Lisp,_ - [["double"::S,["lamda"::S,"ncap7"::S]$Lisp_ - ,["c"::S,"ncap7"::S]$Lisp,"x"::S,["s"::S,4$Lisp]$Lisp]$Lisp_ - ,["integer"::S,"ncap7"::S,"left"::S,"ifail"::S_ - ]$Lisp_ - ]$Lisp,_ - ["s"::S,"ifail"::S]$Lisp,_ - [([ncap7Arg::Any,xArg::Any,leftArg::Any,ifailArg::Any,lamdaArg::Any,cArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e02bdf(ncap7Arg:Integer,lamdaArg:Matrix DoubleFloat,cArg:Matrix DoubleFloat,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e02bdf",_ - ["ncap7"::S,"defint"::S,"ifail"::S,"lamda"::S,"c"::S]$Lisp,_ - ["defint"::S]$Lisp,_ - [["double"::S,["lamda"::S,"ncap7"::S]$Lisp_ - ,["c"::S,"ncap7"::S]$Lisp,"defint"::S]$Lisp_ - ,["integer"::S,"ncap7"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["defint"::S,"ifail"::S]$Lisp,_ - [([ncap7Arg::Any,ifailArg::Any,lamdaArg::Any,cArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e02bef(startArg:String,mArg:Integer,xArg:Matrix DoubleFloat,_ - yArg:Matrix DoubleFloat,wArg:Matrix DoubleFloat,sArg:DoubleFloat,_ - nestArg:Integer,lwrkArg:Integer,nArg:Integer,_ - lamdaArg:Matrix DoubleFloat,ifailArg:Integer,wrkArg:Matrix DoubleFloat,_ - iwrkArg:Matrix Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e02bef",_ - ["start"::S,"m"::S,"s"::S,"nest"::S,"lwrk"::S_ - ,"fp"::S,"n"::S,"ifail"::S,"x"::S,"y"::S,"w"::S,"c"::S,"lamda"::S_ - ,"wrk"::S,"iwrk"::S]$Lisp,_ - ["c"::S,"fp"::S]$Lisp,_ - [["double"::S,["x"::S,"m"::S]$Lisp,["y"::S,"m"::S]$Lisp_ - ,["w"::S,"m"::S]$Lisp,"s"::S,["c"::S,"nest"::S]$Lisp,"fp"::S,["lamda"::S,"nest"::S]$Lisp,["wrk"::S,"lwrk"::S]$Lisp_ - ]$Lisp_ - ,["integer"::S,"m"::S,"nest"::S,"lwrk"::S,"n"::S_ - ,"ifail"::S,["iwrk"::S,"nest"::S]$Lisp]$Lisp_ - ,["character"::S,"start"::S]$Lisp_ - ]$Lisp,_ - ["c"::S,"fp"::S,"n"::S,"lamda"::S,"ifail"::S,"wrk"::S,"iwrk"::S]$Lisp,_ - [([startArg::Any,mArg::Any,sArg::Any,nestArg::Any,lwrkArg::Any,nArg::Any,ifailArg::Any,xArg::Any,yArg::Any,wArg::Any,lamdaArg::Any,wrkArg::Any,iwrkArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e02daf(mArg:Integer,pxArg:Integer,pyArg:Integer,_ - xArg:Matrix DoubleFloat,yArg:Matrix DoubleFloat,fArg:Matrix DoubleFloat,_ - wArg:Matrix DoubleFloat,muArg:Matrix DoubleFloat,pointArg:Matrix Integer,_ - npointArg:Integer,ncArg:Integer,nwsArg:Integer,_ - epsArg:DoubleFloat,lamdaArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e02daf",_ - ["m"::S,"px"::S,"py"::S,"npoint"::S,"nc"::S_ - ,"nws"::S,"eps"::S,"sigma"::S,"rank"::S,"ifail"::S_ - ,"x"::S,"y"::S,"f"::S,"w"::S,"mu"::S_ - ,"point"::S,"dl"::S,"c"::S,"lamda"::S,"ws"::S_ - ]$Lisp,_ - ["dl"::S,"c"::S,"sigma"::S,"rank"::S,"ws"::S]$Lisp,_ - [["double"::S,["x"::S,"m"::S]$Lisp,["y"::S,"m"::S]$Lisp_ - ,["f"::S,"m"::S]$Lisp,["w"::S,"m"::S]$Lisp,["mu"::S,"py"::S]$Lisp,"eps"::S,["dl"::S,"nc"::S]$Lisp,["c"::S,"nc"::S]$Lisp_ - ,"sigma"::S,["lamda"::S,"px"::S]$Lisp,["ws"::S,"nws"::S]$Lisp]$Lisp_ - ,["integer"::S,"m"::S,"px"::S,"py"::S,["point"::S,"npoint"::S]$Lisp_ - ,"npoint"::S,"nc"::S,"nws"::S,"rank"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["dl"::S,"c"::S,"sigma"::S,"rank"::S,"lamda"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,pxArg::Any,pyArg::Any,npointArg::Any,ncArg::Any,nwsArg::Any,epsArg::Any,ifailArg::Any,xArg::Any,yArg::Any,fArg::Any,wArg::Any,muArg::Any,pointArg::Any,lamdaArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e02dcf(startArg:String,mxArg:Integer,xArg:Matrix DoubleFloat,_ - myArg:Integer,yArg:Matrix DoubleFloat,fArg:Matrix DoubleFloat,_ - sArg:DoubleFloat,nxestArg:Integer,nyestArg:Integer,_ - lwrkArg:Integer,liwrkArg:Integer,nxArg:Integer,_ - lamdaArg:Matrix DoubleFloat,nyArg:Integer,muArg:Matrix DoubleFloat,_ - wrkArg:Matrix DoubleFloat,iwrkArg:Matrix Integer,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e02dcf",_ - ["start"::S,"mx"::S,"my"::S,"s"::S,"nxest"::S_ - ,"nyest"::S,"lwrk"::S,"liwrk"::S,"fp"::S,"nx"::S_ - ,"ny"::S,"ifail"::S,"x"::S,"y"::S,"f"::S,"c"::S,"lamda"::S_ - ,"mu"::S,"wrk"::S,"iwrk"::S]$Lisp,_ - ["c"::S,"fp"::S]$Lisp,_ - [["double"::S,["x"::S,"mx"::S]$Lisp,["y"::S,"my"::S]$Lisp_ - ,["f"::S,["*"::S,"mx"::S,"my"::S]$Lisp]$Lisp,"s"::S,["c"::S,["*"::S,["-"::S,"nxest"::S,4$Lisp]$Lisp,["-"::S,"nyest"::S,4$Lisp]$Lisp]$Lisp]$Lisp_ - ,"fp"::S,["lamda"::S,"nxest"::S]$Lisp,["mu"::S,"nyest"::S]$Lisp,["wrk"::S,"lwrk"::S]$Lisp_ - ]$Lisp_ - ,["integer"::S,"mx"::S,"my"::S,"nxest"::S,"nyest"::S_ - ,"lwrk"::S,"liwrk"::S,"nx"::S,"ny"::S,["iwrk"::S,"liwrk"::S]$Lisp,"ifail"::S]$Lisp_ - ,["character"::S,"start"::S]$Lisp_ - ]$Lisp,_ - ["c"::S,"fp"::S,"nx"::S,"lamda"::S,"ny"::S,"mu"::S,"wrk"::S,"iwrk"::S,"ifail"::S]$Lisp,_ - [([startArg::Any,mxArg::Any,myArg::Any,sArg::Any,nxestArg::Any,nyestArg::Any,lwrkArg::Any,liwrkArg::Any,nxArg::Any,nyArg::Any,ifailArg::Any,xArg::Any,yArg::Any,fArg::Any,lamdaArg::Any,muArg::Any,wrkArg::Any,iwrkArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e02ddf(startArg:String,mArg:Integer,xArg:Matrix DoubleFloat,_ - yArg:Matrix DoubleFloat,fArg:Matrix DoubleFloat,wArg:Matrix DoubleFloat,_ - sArg:DoubleFloat,nxestArg:Integer,nyestArg:Integer,_ - lwrkArg:Integer,liwrkArg:Integer,nxArg:Integer,_ - lamdaArg:Matrix DoubleFloat,nyArg:Integer,muArg:Matrix DoubleFloat,_ - wrkArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e02ddf",_ - ["start"::S,"m"::S,"s"::S,"nxest"::S,"nyest"::S_ - ,"lwrk"::S,"liwrk"::S,"fp"::S,"rank"::S,"nx"::S_ - ,"ny"::S,"ifail"::S,"x"::S,"y"::S,"f"::S,"w"::S,"c"::S_ - ,"iwrk"::S,"lamda"::S,"mu"::S,"wrk"::S]$Lisp,_ - ["c"::S,"fp"::S,"rank"::S,"iwrk"::S]$Lisp,_ - [["double"::S,["x"::S,"m"::S]$Lisp,["y"::S,"m"::S]$Lisp_ - ,["f"::S,"m"::S]$Lisp,["w"::S,"m"::S]$Lisp,"s"::S,["c"::S,["*"::S,["-"::S,"nxest"::S,4$Lisp]$Lisp,["-"::S,"nyest"::S,4$Lisp]$Lisp]$Lisp]$Lisp_ - ,"fp"::S,["lamda"::S,"nxest"::S]$Lisp,["mu"::S,"nyest"::S]$Lisp,["wrk"::S,"lwrk"::S]$Lisp_ - ]$Lisp_ - ,["integer"::S,"m"::S,"nxest"::S,"nyest"::S_ - ,"lwrk"::S,"liwrk"::S,"rank"::S,["iwrk"::S,"liwrk"::S]$Lisp,"nx"::S,"ny"::S,"ifail"::S]$Lisp_ - ,["character"::S,"start"::S]$Lisp_ - ]$Lisp,_ - ["c"::S,"fp"::S,"rank"::S,"iwrk"::S,"nx"::S,"lamda"::S,"ny"::S,"mu"::S,"wrk"::S,"ifail"::S]$Lisp,_ - [([startArg::Any,mArg::Any,sArg::Any,nxestArg::Any,nyestArg::Any,lwrkArg::Any,liwrkArg::Any,nxArg::Any,nyArg::Any,ifailArg::Any,xArg::Any,yArg::Any,fArg::Any,wArg::Any,lamdaArg::Any,muArg::Any,wrkArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e02def(mArg:Integer,pxArg:Integer,pyArg:Integer,_ - xArg:Matrix DoubleFloat,yArg:Matrix DoubleFloat,lamdaArg:Matrix DoubleFloat,_ - muArg:Matrix DoubleFloat,cArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e02def",_ - ["m"::S,"px"::S,"py"::S,"ifail"::S,"x"::S,"y"::S,"lamda"::S,"mu"::S,"c"::S_ - ,"ff"::S,"wrk"::S,"iwrk"::S]$Lisp,_ - ["ff"::S,"wrk"::S,"iwrk"::S]$Lisp,_ - [["double"::S,["x"::S,"m"::S]$Lisp,["y"::S,"m"::S]$Lisp_ - ,["lamda"::S,"px"::S]$Lisp,["mu"::S,"py"::S]$Lisp,["c"::S,["*"::S,["-"::S,"px"::S,4$Lisp]$Lisp,["-"::S,"py"::S,4$Lisp]$Lisp]$Lisp]$Lisp_ - ,["ff"::S,"m"::S]$Lisp,["wrk"::S,["-"::S,"py"::S,4$Lisp]$Lisp]$Lisp]$Lisp_ - ,["integer"::S,"m"::S,"px"::S,"py"::S,"ifail"::S_ - ,["iwrk"::S,["-"::S,"py"::S,4$Lisp]$Lisp]$Lisp]$Lisp_ - ]$Lisp,_ - ["ff"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,pxArg::Any,pyArg::Any,ifailArg::Any,xArg::Any,yArg::Any,lamdaArg::Any,muArg::Any,cArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e02dff(mxArg:Integer,myArg:Integer,pxArg:Integer,_ - pyArg:Integer,xArg:Matrix DoubleFloat,yArg:Matrix DoubleFloat,_ - lamdaArg:Matrix DoubleFloat,muArg:Matrix DoubleFloat,cArg:Matrix DoubleFloat,_ - lwrkArg:Integer,liwrkArg:Integer,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e02dff",_ - ["mx"::S,"my"::S,"px"::S,"py"::S,"lwrk"::S_ - ,"liwrk"::S,"ifail"::S,"x"::S,"y"::S,"lamda"::S,"mu"::S,"c"::S_ - ,"ff"::S,"wrk"::S,"iwrk"::S]$Lisp,_ - ["ff"::S,"wrk"::S,"iwrk"::S]$Lisp,_ - [["double"::S,["x"::S,"mx"::S]$Lisp,["y"::S,"my"::S]$Lisp_ - ,["lamda"::S,"px"::S]$Lisp,["mu"::S,"py"::S]$Lisp,["c"::S,["*"::S,["-"::S,"px"::S,4$Lisp]$Lisp,["-"::S,"py"::S,4$Lisp]$Lisp]$Lisp]$Lisp_ - ,["ff"::S,["*"::S,"mx"::S,"my"::S]$Lisp]$Lisp,["wrk"::S,"lwrk"::S]$Lisp]$Lisp_ - ,["integer"::S,"mx"::S,"my"::S,"px"::S,"py"::S_ - ,"lwrk"::S,"liwrk"::S,"ifail"::S,["iwrk"::S,"liwrk"::S]$Lisp]$Lisp_ - ]$Lisp,_ - ["ff"::S,"ifail"::S]$Lisp,_ - [([mxArg::Any,myArg::Any,pxArg::Any,pyArg::Any,lwrkArg::Any,liwrkArg::Any,ifailArg::Any,xArg::Any,yArg::Any,lamdaArg::Any,muArg::Any,cArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e02gaf(mArg:Integer,laArg:Integer,nplus2Arg:Integer,_ - tolerArg:DoubleFloat,aArg:Matrix DoubleFloat,bArg:Matrix DoubleFloat,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e02gaf",_ - ["m"::S,"la"::S,"nplus2"::S,"toler"::S,"resid"::S_ - ,"irank"::S,"iter"::S,"ifail"::S,"x"::S,"a"::S,"b"::S,"iwork"::S]$Lisp,_ - ["x"::S,"resid"::S,"irank"::S,"iter"::S,"iwork"::S]$Lisp,_ - [["double"::S,"toler"::S,["x"::S,"nplus2"::S]$Lisp_ - ,"resid"::S,["a"::S,"la"::S,"nplus2"::S]$Lisp,["b"::S,"m"::S]$Lisp]$Lisp_ - ,["integer"::S,"m"::S,"la"::S,"nplus2"::S,"irank"::S_ - ,"iter"::S,"ifail"::S,["iwork"::S,"m"::S]$Lisp]$Lisp_ - ]$Lisp,_ - ["x"::S,"resid"::S,"irank"::S,"iter"::S,"a"::S,"b"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,laArg::Any,nplus2Arg::Any,tolerArg::Any,ifailArg::Any,aArg::Any,bArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e02zaf(pxArg:Integer,pyArg:Integer,lamdaArg:Matrix DoubleFloat,_ - muArg:Matrix DoubleFloat,mArg:Integer,xArg:Matrix DoubleFloat,_ - yArg:Matrix DoubleFloat,npointArg:Integer,nadresArg:Integer,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e02zaf",_ - ["px"::S,"py"::S,"m"::S,"npoint"::S,"nadres"::S_ - ,"ifail"::S,"lamda"::S,"mu"::S,"x"::S,"y"::S,"point"::S_ - ,"adres"::S]$Lisp,_ - ["point"::S,"adres"::S]$Lisp,_ - [["double"::S,["lamda"::S,"px"::S]$Lisp,["mu"::S,"py"::S]$Lisp_ - ,["x"::S,"m"::S]$Lisp,["y"::S,"m"::S]$Lisp]$Lisp_ - ,["integer"::S,"px"::S,"py"::S,"m"::S,"npoint"::S_ - ,"nadres"::S,["point"::S,"npoint"::S]$Lisp,"ifail"::S,["adres"::S,"nadres"::S]$Lisp]$Lisp_ - ]$Lisp,_ - ["point"::S,"ifail"::S]$Lisp,_ - [([pxArg::Any,pyArg::Any,mArg::Any,npointArg::Any,nadresArg::Any,ifailArg::Any,lamdaArg::Any,muArg::Any,xArg::Any,yArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package NAGE02 NagFittingPackage>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/e04.spad.pamphlet b/src/algebra/e04.spad.pamphlet deleted file mode 100644 index df9853f8..00000000 --- a/src/algebra/e04.spad.pamphlet +++ /dev/null @@ -1,398 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra e04.spad} -\author{Godfrey Nolan, Mike Dewar} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package NAGE04 NagOptimisationPackage} -<<package NAGE04 NagOptimisationPackage>>= -)abbrev package NAGE04 NagOptimisationPackage -++ Author: Godfrey Nolan and Mike Dewar -++ Date Created: Jan 1994 -++ Date Last Updated: Thu May 12 17:45:09 1994 -++Description: -++This package uses the NAG Library to perform optimization. -++An optimization problem involves minimizing a function (called -++the objective function) of several variables, possibly subject to -++restrictions on the values of the variables defined by a set of -++constraint functions. The routines in the NAG Foundation Library -++are concerned with function minimization only, since the problem -++of maximizing a given function can be transformed into a -++minimization problem simply by multiplying the function by -1. -++See \downlink{Manual Page}{manpageXXe04}. -NagOptimisationPackage(): Exports == Implementation where - S ==> Symbol - FOP ==> FortranOutputStackPackage - - Exports ==> with - e04dgf : (Integer,DoubleFloat,DoubleFloat,Integer,_ - DoubleFloat,Boolean,DoubleFloat,DoubleFloat,Integer,Integer,Integer,Integer,Matrix DoubleFloat,Integer,Union(fn:FileName,fp:Asp49(OBJFUN))) -> Result - ++ e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun) - ++ minimizes an unconstrained nonlinear function of several - ++ variables using a pre-conditioned, limited memory quasi-Newton - ++ conjugate gradient method. First derivatives are required. The - ++ routine is intended for use on large scale problems. - ++ See \downlink{Manual Page}{manpageXXe04dgf}. - e04fdf : (Integer,Integer,Integer,Integer,_ - Matrix DoubleFloat,Integer,Union(fn:FileName,fp:Asp50(LSFUN1))) -> Result - ++ e04fdf(m,n,liw,lw,x,ifail,lsfun1) - ++ is an easy-to-use algorithm for finding an unconstrained - ++ minimum of a sum of squares of m nonlinear functions in n - ++ variables (m>=n). No derivatives are required. - ++ See \downlink{Manual Page}{manpageXXe04fdf}. - e04gcf : (Integer,Integer,Integer,Integer,_ - Matrix DoubleFloat,Integer,Union(fn:FileName,fp:Asp19(LSFUN2))) -> Result - ++ e04gcf(m,n,liw,lw,x,ifail,lsfun2) - ++ is an easy-to-use quasi-Newton algorithm for finding an - ++ unconstrained minimum of m nonlinear - ++ functions in n variables (m>=n). First derivatives are required. - ++ See \downlink{Manual Page}{manpageXXe04gcf}. - e04jaf : (Integer,Integer,Integer,Integer,_ - Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Integer,Union(fn:FileName,fp:Asp24(FUNCT1))) -> Result - ++ e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1) - ++ is an easy-to-use quasi-Newton algorithm for finding a - ++ minimum of a function F(x ,x ,...,x ), subject to fixed upper and - ++ 1 2 n - ++ lower bounds of the independent variables x ,x ,...,x , using - ++ 1 2 n - ++ function values only. - ++ See \downlink{Manual Page}{manpageXXe04jaf}. - e04mbf : (Integer,Integer,Integer,Integer,_ - Integer,Integer,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Boolean,Integer,Integer,Matrix DoubleFloat,Integer) -> Result - ++ e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail) - ++ is an easy-to-use routine for solving linear programming - ++ problems, or for finding a feasible point for such problems. It - ++ is not intended for large sparse problems. - ++ See \downlink{Manual Page}{manpageXXe04mbf}. - e04naf : (Integer,Integer,Integer,Integer,_ - Integer,Integer,Integer,Integer,DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Boolean,Boolean,Boolean,Integer,Integer,Matrix DoubleFloat,Matrix Integer,Integer,Union(fn:FileName,fp:Asp20(QPHESS))) -> Result - ++ e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess) - ++ is a comprehensive - ++ programming (QP) or linear programming (LP) problems. It is not - ++ intended for large sparse problems. - ++ See \downlink{Manual Page}{manpageXXe04naf}. - e04ucf : (Integer,Integer,Integer,Integer,_ - Integer,Integer,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Integer,Integer,Boolean,DoubleFloat,Integer,DoubleFloat,DoubleFloat,Boolean,DoubleFloat,DoubleFloat,DoubleFloat,DoubleFloat,Boolean,Integer,Integer,Integer,Integer,Integer,DoubleFloat,DoubleFloat,DoubleFloat,Integer,Integer,Integer,Integer,Integer,Matrix Integer,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,Integer,Union(fn:FileName,fp:Asp55(CONFUN)),Union(fn:FileName,fp:Asp49(OBJFUN))) -> Result - ++ e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun) - ++ is designed to minimize an arbitrary smooth function - ++ subject to constraints on the - ++ variables, linear constraints. - ++ (E04UCF may be used for unconstrained, bound-constrained and - ++ linearly constrained optimization.) The user must provide - ++ subroutines that define the objective and constraint functions - ++ and as many of their first partial derivatives as possible. - ++ Unspecified derivatives are approximated by finite differences. - ++ All matrices are treated as dense, and hence E04UCF is not - ++ intended for large sparse problems. - ++ See \downlink{Manual Page}{manpageXXe04ucf}. - e04ycf : (Integer,Integer,Integer,DoubleFloat,_ - Matrix DoubleFloat,Integer,Matrix DoubleFloat,Integer) -> Result - ++ e04ycf(job,m,n,fsumsq,s,lv,v,ifail) - ++ returns estimates of elements of the variance - ++ matrix of the estimated regression coefficients for a nonlinear - ++ least squares problem. The estimates are derived from the - ++ Jacobian of the function f(x) at the solution. - ++ See \downlink{Manual Page}{manpageXXe04ycf}. - Implementation ==> add - - import Lisp - import DoubleFloat - import Any - import Record - import Integer - import Matrix DoubleFloat - import Boolean - import NAGLinkSupportPackage - import FortranPackage - import Union(fn:FileName,fp:Asp49(OBJFUN)) - import AnyFunctions1(Integer) - import AnyFunctions1(DoubleFloat) - import AnyFunctions1(Boolean) - import AnyFunctions1(Matrix DoubleFloat) - import AnyFunctions1(Matrix Integer) - macro I == Integer - - - e04dgf(nArg:Integer,esArg:DoubleFloat,fuArg:DoubleFloat,_ - itArg:Integer,linArg:DoubleFloat,listArg:Boolean,_ - maArg:DoubleFloat,opArg:DoubleFloat,prArg:Integer,_ - staArg:Integer,stoArg:Integer,veArg:Integer,_ - xArg:Matrix DoubleFloat,ifailArg:Integer,objfunArg:Union(fn:FileName,fp:Asp49(OBJFUN))): Result == - pushFortranOutputStack(objfunFilename := aspFilename "objfun")$FOP - if objfunArg case fn - then outputAsFortran(objfunArg.fn) - else outputAsFortran(objfunArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([objfunFilename]$Lisp,_ - "e04dgf",_ - ["n"::S,"es"::S,"fu"::S,"it"::S,"lin"::S_ - ,"list"::S,"ma"::S,"op"::S,"pr"::S,"sta"::S_ - ,"sto"::S,"ve"::S,"iter"::S,"objf"::S,"ifail"::S_ - ,"objfun"::S,"objgrd"::S,"x"::S,"iwork"::S,"work"::S,"iuser"::S_ - ,"user"::S]$Lisp,_ - ["iter"::S,"objf"::S,"objgrd"::S,"iwork"::S,"work"::S,"iuser"::S,"user"::S,"objfun"::S]$Lisp,_ - [["double"::S,"es"::S,"fu"::S,"lin"::S,"ma"::S_ - ,"op"::S,"objf"::S,["objgrd"::S,"n"::S]$Lisp,["x"::S,"n"::S]$Lisp,["work"::S,["*"::S,13$Lisp,"n"::S]$Lisp]$Lisp,["user"::S,"*"::S]$Lisp_ - ,"objfun"::S]$Lisp_ - ,["integer"::S,"n"::S,"it"::S,"pr"::S,"sta"::S_ - ,"sto"::S,"ve"::S,"iter"::S,"ifail"::S,["iwork"::S,["+"::S,"n"::S,1@I]$Lisp]$Lisp,["iuser"::S,"*"::S]$Lisp]$Lisp_ - ,["logical"::S,"list"::S]$Lisp_ - ]$Lisp,_ - ["iter"::S,"objf"::S,"objgrd"::S,"x"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,esArg::Any,fuArg::Any,itArg::Any,linArg::Any,listArg::Any,maArg::Any,opArg::Any,prArg::Any,staArg::Any,stoArg::Any,veArg::Any,ifailArg::Any,xArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e04fdf(mArg:Integer,nArg:Integer,liwArg:Integer,_ - lwArg:Integer,xArg:Matrix DoubleFloat,ifailArg:Integer,_ - lsfun1Arg:Union(fn:FileName,fp:Asp50(LSFUN1))): Result == - pushFortranOutputStack(lsfun1Filename := aspFilename "lsfun1")$FOP - if lsfun1Arg case fn - then outputAsFortran(lsfun1Arg.fn) - else outputAsFortran(lsfun1Arg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([lsfun1Filename]$Lisp,_ - "e04fdf",_ - ["m"::S,"n"::S,"liw"::S,"lw"::S,"fsumsq"::S_ - ,"ifail"::S,"lsfun1"::S,"w"::S,"x"::S,"iw"::S]$Lisp,_ - ["fsumsq"::S,"w"::S,"iw"::S,"lsfun1"::S]$Lisp,_ - [["double"::S,"fsumsq"::S,["w"::S,"lw"::S]$Lisp_ - ,["x"::S,"n"::S]$Lisp,"lsfun1"::S]$Lisp_ - ,["integer"::S,"m"::S,"n"::S,"liw"::S,"lw"::S_ - ,"ifail"::S,["iw"::S,"liw"::S]$Lisp]$Lisp_ - ]$Lisp,_ - ["fsumsq"::S,"w"::S,"x"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,nArg::Any,liwArg::Any,lwArg::Any,ifailArg::Any,xArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e04gcf(mArg:Integer,nArg:Integer,liwArg:Integer,_ - lwArg:Integer,xArg:Matrix DoubleFloat,ifailArg:Integer,_ - lsfun2Arg:Union(fn:FileName,fp:Asp19(LSFUN2))): Result == - pushFortranOutputStack(lsfun2Filename := aspFilename "lsfun2")$FOP - if lsfun2Arg case fn - then outputAsFortran(lsfun2Arg.fn) - else outputAsFortran(lsfun2Arg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([lsfun2Filename]$Lisp,_ - "e04gcf",_ - ["m"::S,"n"::S,"liw"::S,"lw"::S,"fsumsq"::S_ - ,"ifail"::S,"lsfun2"::S,"w"::S,"x"::S,"iw"::S]$Lisp,_ - ["fsumsq"::S,"w"::S,"iw"::S,"lsfun2"::S]$Lisp,_ - [["double"::S,"fsumsq"::S,["w"::S,"lw"::S]$Lisp_ - ,["x"::S,"n"::S]$Lisp,"lsfun2"::S]$Lisp_ - ,["integer"::S,"m"::S,"n"::S,"liw"::S,"lw"::S_ - ,"ifail"::S,["iw"::S,"liw"::S]$Lisp]$Lisp_ - ]$Lisp,_ - ["fsumsq"::S,"w"::S,"x"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,nArg::Any,liwArg::Any,lwArg::Any,ifailArg::Any,xArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e04jaf(nArg:Integer,iboundArg:Integer,liwArg:Integer,_ - lwArg:Integer,blArg:Matrix DoubleFloat,buArg:Matrix DoubleFloat,_ - xArg:Matrix DoubleFloat,ifailArg:Integer,funct1Arg:Union(fn:FileName,fp:Asp24(FUNCT1))): Result == - pushFortranOutputStack(funct1Filename := aspFilename "funct1")$FOP - if funct1Arg case fn - then outputAsFortran(funct1Arg.fn) - else outputAsFortran(funct1Arg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([funct1Filename]$Lisp,_ - "e04jaf",_ - ["n"::S,"ibound"::S,"liw"::S,"lw"::S,"f"::S_ - ,"ifail"::S,"funct1"::S,"bl"::S,"bu"::S,"x"::S,"iw"::S,"w"::S_ - ]$Lisp,_ - ["f"::S,"iw"::S,"w"::S,"funct1"::S]$Lisp,_ - [["double"::S,"f"::S,["bl"::S,"n"::S]$Lisp_ - ,["bu"::S,"n"::S]$Lisp,["x"::S,"n"::S]$Lisp,["w"::S,"lw"::S]$Lisp,"funct1"::S]$Lisp_ - ,["integer"::S,"n"::S,"ibound"::S,"liw"::S_ - ,"lw"::S,"ifail"::S,["iw"::S,"liw"::S]$Lisp]$Lisp_ - ]$Lisp,_ - ["f"::S,"bl"::S,"bu"::S,"x"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,iboundArg::Any,liwArg::Any,lwArg::Any,ifailArg::Any,blArg::Any,buArg::Any,xArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e04mbf(itmaxArg:Integer,msglvlArg:Integer,nArg:Integer,_ - nclinArg:Integer,nctotlArg:Integer,nrowaArg:Integer,_ - aArg:Matrix DoubleFloat,blArg:Matrix DoubleFloat,buArg:Matrix DoubleFloat,_ - cvecArg:Matrix DoubleFloat,linobjArg:Boolean,liworkArg:Integer,_ - lworkArg:Integer,xArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e04mbf",_ - ["itmax"::S,"msglvl"::S,"n"::S,"nclin"::S,"nctotl"::S_ - ,"nrowa"::S,"linobj"::S,"liwork"::S,"lwork"::S,"objlp"::S_ - ,"ifail"::S,"a"::S,"bl"::S,"bu"::S,"cvec"::S,"istate"::S_ - ,"clamda"::S,"x"::S,"iwork"::S,"work"::S]$Lisp,_ - ["istate"::S,"objlp"::S,"clamda"::S,"iwork"::S,"work"::S]$Lisp,_ - [["double"::S,["a"::S,"nrowa"::S,"n"::S]$Lisp_ - ,["bl"::S,"nctotl"::S]$Lisp,["bu"::S,"nctotl"::S]$Lisp,["cvec"::S,"n"::S]$Lisp,"objlp"::S,["clamda"::S,"nctotl"::S]$Lisp_ - ,["x"::S,"n"::S]$Lisp,["work"::S,"lwork"::S]$Lisp]$Lisp_ - ,["integer"::S,"itmax"::S,"msglvl"::S,"n"::S_ - ,"nclin"::S,"nctotl"::S,"nrowa"::S,"liwork"::S,"lwork"::S,["istate"::S,"nctotl"::S]$Lisp,"ifail"::S,["iwork"::S,"liwork"::S]$Lisp_ - ]$Lisp_ - ,["logical"::S,"linobj"::S]$Lisp_ - ]$Lisp,_ - ["istate"::S,"objlp"::S,"clamda"::S,"x"::S,"ifail"::S]$Lisp,_ - [([itmaxArg::Any,msglvlArg::Any,nArg::Any,nclinArg::Any,nctotlArg::Any,nrowaArg::Any,linobjArg::Any,liworkArg::Any,lworkArg::Any,ifailArg::Any,aArg::Any,blArg::Any,buArg::Any,cvecArg::Any,xArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e04naf(itmaxArg:Integer,msglvlArg:Integer,nArg:Integer,_ - nclinArg:Integer,nctotlArg:Integer,nrowaArg:Integer,_ - nrowhArg:Integer,ncolhArg:Integer,bigbndArg:DoubleFloat,_ - aArg:Matrix DoubleFloat,blArg:Matrix DoubleFloat,buArg:Matrix DoubleFloat,_ - cvecArg:Matrix DoubleFloat,featolArg:Matrix DoubleFloat,hessArg:Matrix DoubleFloat,_ - coldArg:Boolean,lppArg:Boolean,orthogArg:Boolean,_ - liworkArg:Integer,lworkArg:Integer,xArg:Matrix DoubleFloat,_ - istateArg:Matrix Integer,ifailArg:Integer,qphessArg:Union(fn:FileName,fp:Asp20(QPHESS))): Result == - pushFortranOutputStack(qphessFilename := aspFilename "qphess")$FOP - if qphessArg case fn - then outputAsFortran(qphessArg.fn) - else outputAsFortran(qphessArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([qphessFilename]$Lisp,_ - "e04naf",_ - ["itmax"::S,"msglvl"::S,"n"::S,"nclin"::S,"nctotl"::S_ - ,"nrowa"::S,"nrowh"::S,"ncolh"::S,"bigbnd"::S,"cold"::S_ - ,"lpp"::S,"orthog"::S,"liwork"::S,"lwork"::S,"iter"::S_ - ,"obj"::S,"ifail"::S,"qphess"::S,"a"::S,"bl"::S,"bu"::S,"cvec"::S,"featol"::S_ - ,"hess"::S,"clamda"::S,"x"::S,"istate"::S,"iwork"::S_ - ,"work"::S]$Lisp,_ - ["iter"::S,"obj"::S,"clamda"::S,"iwork"::S,"work"::S,"qphess"::S]$Lisp,_ - [["double"::S,"bigbnd"::S,["a"::S,"nrowa"::S,"n"::S]$Lisp_ - ,["bl"::S,"nctotl"::S]$Lisp,["bu"::S,"nctotl"::S]$Lisp,["cvec"::S,"n"::S]$Lisp,["featol"::S,"nctotl"::S]$Lisp_ - ,["hess"::S,"nrowh"::S,"ncolh"::S]$Lisp,"obj"::S,["clamda"::S,"nctotl"::S]$Lisp,["x"::S,"n"::S]$Lisp,["work"::S,"lwork"::S]$Lisp_ - ,"qphess"::S]$Lisp_ - ,["integer"::S,"itmax"::S,"msglvl"::S,"n"::S_ - ,"nclin"::S,"nctotl"::S,"nrowa"::S,"nrowh"::S,"ncolh"::S,"liwork"::S,"lwork"::S,"iter"::S,["istate"::S,"nctotl"::S]$Lisp_ - ,"ifail"::S,["iwork"::S,"liwork"::S]$Lisp]$Lisp_ - ,["logical"::S,"cold"::S,"lpp"::S,"orthog"::S]$Lisp_ - ]$Lisp,_ - ["iter"::S,"obj"::S,"clamda"::S,"x"::S,"istate"::S,"ifail"::S]$Lisp,_ - [([itmaxArg::Any,msglvlArg::Any,nArg::Any,nclinArg::Any,nctotlArg::Any,nrowaArg::Any,nrowhArg::Any,ncolhArg::Any,bigbndArg::Any,coldArg::Any,lppArg::Any,orthogArg::Any,liworkArg::Any,lworkArg::Any,ifailArg::Any,aArg::Any,blArg::Any,buArg::Any,cvecArg::Any,featolArg::Any,hessArg::Any,xArg::Any,istateArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e04ucf(nArg:Integer,nclinArg:Integer,ncnlnArg:Integer,_ - nrowaArg:Integer,nrowjArg:Integer,nrowrArg:Integer,_ - aArg:Matrix DoubleFloat,blArg:Matrix DoubleFloat,buArg:Matrix DoubleFloat,_ - liworkArg:Integer,lworkArg:Integer,staArg:Boolean,_ - craArg:DoubleFloat,derArg:Integer,feaArg:DoubleFloat,_ - funArg:DoubleFloat,hesArg:Boolean,infbArg:DoubleFloat,_ - infsArg:DoubleFloat,linfArg:DoubleFloat,lintArg:DoubleFloat,_ - listArg:Boolean,majiArg:Integer,majpArg:Integer,_ - miniArg:Integer,minpArg:Integer,monArg:Integer,_ - nonfArg:DoubleFloat,optArg:DoubleFloat,steArg:DoubleFloat,_ - staoArg:Integer,stacArg:Integer,stooArg:Integer,_ - stocArg:Integer,veArg:Integer,istateArg:Matrix Integer,_ - cjacArg:Matrix DoubleFloat,clamdaArg:Matrix DoubleFloat,rArg:Matrix DoubleFloat,_ - xArg:Matrix DoubleFloat,ifailArg:Integer,confunArg:Union(fn:FileName,fp:Asp55(CONFUN)),_ - objfunArg:Union(fn:FileName,fp:Asp49(OBJFUN))): Result == - pushFortranOutputStack(confunFilename := aspFilename "confun")$FOP - if confunArg case fn - then outputAsFortran(confunArg.fn) - else outputAsFortran(confunArg.fp) - popFortranOutputStack()$FOP - pushFortranOutputStack(objfunFilename := aspFilename "objfun")$FOP - if objfunArg case fn - then outputAsFortran(objfunArg.fn) - else outputAsFortran(objfunArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([confunFilename,objfunFilename]$Lisp,_ - "e04ucf",_ - ["n"::S,"nclin"::S,"ncnln"::S,"nrowa"::S,"nrowj"::S_ - ,"nrowr"::S,"liwork"::S,"lwork"::S,"sta"::S,"cra"::S_ - ,"der"::S,"fea"::S,"fun"::S,"hes"::S,"infb"::S_ - ,"infs"::S,"linf"::S,"lint"::S,"list"::S,"maji"::S_ - ,"majp"::S,"mini"::S,"minp"::S,"mon"::S,"nonf"::S_ - ,"opt"::S,"ste"::S,"stao"::S,"stac"::S,"stoo"::S_ - ,"stoc"::S,"ve"::S,"iter"::S,"objf"::S,"ifail"::S_ - ,"confun"::S,"objfun"::S,"a"::S,"bl"::S,"bu"::S,"c"::S,"objgrd"::S_ - ,"istate"::S,"cjac"::S,"clamda"::S,"r"::S,"x"::S_ - ,"iwork"::S,"work"::S,"iuser"::S,"user"::S]$Lisp,_ - ["iter"::S,"c"::S,"objf"::S,"objgrd"::S,"iwork"::S,"work"::S,"iuser"::S,"user"::S,"confun"::S,"objfun"::S]$Lisp,_ - [["double"::S,["a"::S,"nrowa"::S,"n"::S]$Lisp_ - ,["bl"::S,["+"::S,["+"::S,"nclin"::S,"ncnln"::S]$Lisp,"n"::S]$Lisp]$Lisp,["bu"::S,["+"::S,["+"::S,"nclin"::S,"ncnln"::S]$Lisp,"n"::S]$Lisp]$Lisp_ - ,"cra"::S,"fea"::S,"fun"::S,"infb"::S,"infs"::S,"linf"::S,"lint"::S,"nonf"::S,"opt"::S,"ste"::S_ - ,["c"::S,"ncnln"::S]$Lisp,"objf"::S,["objgrd"::S,"n"::S]$Lisp,["cjac"::S,"nrowj"::S,"n"::S]$Lisp,["clamda"::S,["+"::S,["+"::S,"nclin"::S,"ncnln"::S]$Lisp,"n"::S]$Lisp]$Lisp_ - ,["r"::S,"nrowr"::S,"n"::S]$Lisp,["x"::S,"n"::S]$Lisp,["work"::S,"lwork"::S]$Lisp_ - ,["user"::S,1@I]$Lisp,"confun"::S,"objfun"::S]$Lisp_ - ,["integer"::S,"n"::S,"nclin"::S,"ncnln"::S_ - ,"nrowa"::S,"nrowj"::S,"nrowr"::S,"liwork"::S,"lwork"::S,"der"::S,"maji"::S,"majp"::S,"mini"::S,"minp"::S,"mon"::S,"stao"::S_ - ,"stac"::S,"stoo"::S,"stoc"::S,"ve"::S,"iter"::S,["istate"::S,["+"::S,["+"::S,"nclin"::S,"ncnln"::S]$Lisp,"n"::S]$Lisp]$Lisp_ - ,"ifail"::S,["iwork"::S,"liwork"::S]$Lisp,["iuser"::S,1@I]$Lisp]$Lisp_ - ,["logical"::S,"sta"::S,"hes"::S,"list"::S]$Lisp_ - ]$Lisp,_ - ["iter"::S,"c"::S,"objf"::S,"objgrd"::S,"istate"::S,"cjac"::S,"clamda"::S,"r"::S,"x"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,nclinArg::Any,ncnlnArg::Any,nrowaArg::Any,nrowjArg::Any,nrowrArg::Any,liworkArg::Any,lworkArg::Any,staArg::Any,craArg::Any,derArg::Any,feaArg::Any,funArg::Any,hesArg::Any,infbArg::Any,infsArg::Any,linfArg::Any,lintArg::Any,listArg::Any,majiArg::Any,majpArg::Any,miniArg::Any,minpArg::Any,monArg::Any,nonfArg::Any,optArg::Any,steArg::Any,staoArg::Any,stacArg::Any,stooArg::Any,stocArg::Any,veArg::Any,ifailArg::Any,aArg::Any,blArg::Any,buArg::Any,istateArg::Any,cjacArg::Any,clamdaArg::Any,rArg::Any,xArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - e04ycf(jobArg:Integer,mArg:Integer,nArg:Integer,_ - fsumsqArg:DoubleFloat,sArg:Matrix DoubleFloat,lvArg:Integer,_ - vArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "e04ycf",_ - ["job"::S,"m"::S,"n"::S,"fsumsq"::S,"lv"::S_ - ,"ifail"::S,"s"::S,"cj"::S,"v"::S,"work"::S]$Lisp,_ - ["cj"::S,"work"::S]$Lisp,_ - [["double"::S,"fsumsq"::S,["s"::S,"n"::S]$Lisp_ - ,["cj"::S,"n"::S]$Lisp,["v"::S,"lv"::S,"n"::S]$Lisp,["work"::S,"n"::S]$Lisp]$Lisp_ - ,["integer"::S,"job"::S,"m"::S,"n"::S,"lv"::S_ - ,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["cj"::S,"v"::S,"ifail"::S]$Lisp,_ - [([jobArg::Any,mArg::Any,nArg::Any,fsumsqArg::Any,lvArg::Any,ifailArg::Any,sArg::Any,vArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package NAGE04 NagOptimisationPackage>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/e04Package.spad.pamphlet b/src/algebra/e04Package.spad.pamphlet deleted file mode 100644 index 452e62db..00000000 --- a/src/algebra/e04Package.spad.pamphlet +++ /dev/null @@ -1,448 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra e04Package.spad} -\author{Brian Dupee} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package OPTPACK AnnaNumericalOptimizationPackage} -<<package OPTPACK AnnaNumericalOptimizationPackage>>= -)abbrev package OPTPACK AnnaNumericalOptimizationPackage -++ Author: Brian Dupee -++ Date Created: February 1995 -++ Date Last Updated: December 1997 -++ Basic Operations: measure, optimize, goodnessOfFit. -++ Description: -++ \axiomType{AnnaNumericalOptimizationPackage} is a \axiom{package} of -++ functions for the \axiomType{NumericalOptimizationCategory} -++ with \axiom{measure} and \axiom{optimize}. -EDF ==> Expression DoubleFloat -LEDF ==> List Expression DoubleFloat -LDF ==> List DoubleFloat -MDF ==> Matrix DoubleFloat -DF ==> DoubleFloat -LOCDF ==> List OrderedCompletion DoubleFloat -OCDF ==> OrderedCompletion DoubleFloat -LOCF ==> List OrderedCompletion Float -OCF ==> OrderedCompletion Float -LEF ==> List Expression Float -EF ==> Expression Float -LF ==> List Float -F ==> Float -LS ==> List Symbol -LST ==> List String -INT ==> Integer -NOA ==> Record(fn:EDF, init:LDF, lb:LOCDF, cf:LEDF, ub:LOCDF) -LSA ==> Record(lfn:LEDF, init:LDF) -IFL ==> List(Record(ifail:Integer,instruction:String)) -Entry ==> Record(chapter:String, type:String, domainName: String, - defaultMin:F, measure:F, failList:IFL, explList:LST) -Measure ==> Record(measure:F,name:String, explanations:List String) -Measure2 ==> Record(measure:F,explanations:String) -RT ==> RoutinesTable -UNOALSA ==> Union(noa:NOA,lsa:LSA) - -AnnaNumericalOptimizationPackage(): with - measure:NumericalOptimizationProblem -> Measure - ++ measure(prob) is a top level ANNA function for identifying the most - ++ appropriate numerical routine from those in the routines table - ++ provided for solving the numerical optimization problem defined by - ++ \axiom{prob} by checking various attributes of the functions and - ++ calculating a measure of compatibility of each routine to these - ++ attributes. - ++ - ++ It calls each \axiom{domain} of \axiom{category} - ++ \axiomType{NumericalOptimizationCategory} in turn to calculate all - ++ measures and returns the best i.e. the name of the most - ++ appropriate domain and any other relevant information. - - measure:(NumericalOptimizationProblem,RT) -> Measure - ++ measure(prob,R) is a top level ANNA function for identifying the most - ++ appropriate numerical routine from those in the routines table - ++ provided for solving the numerical optimization problem defined by - ++ \axiom{prob} by checking various attributes of the functions and - ++ calculating a measure of compatibility of each routine to these - ++ attributes. - ++ - ++ It calls each \axiom{domain} listed in \axiom{R} of \axiom{category} - ++ \axiomType{NumericalOptimizationCategory} in turn to calculate all - ++ measures and returns the best i.e. the name of the most - ++ appropriate domain and any other relevant information. - - optimize:(NumericalOptimizationProblem,RT) -> Result - ++ optimize(prob,routines) is a top level ANNA function to - ++ minimize a function or a set of functions with any constraints - ++ as defined within \axiom{prob}. - ++ - ++ It iterates over the \axiom{domains} listed in \axiom{routines} of - ++ \axiomType{NumericalOptimizationCategory} - ++ to get the name and other relevant information of the best - ++ \axiom{measure} and then optimize the function on that \axiom{domain}. - - optimize:NumericalOptimizationProblem -> Result - ++ optimize(prob) is a top level ANNA function to - ++ minimize a function or a set of functions with any constraints - ++ as defined within \axiom{prob}. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{NumericalOptimizationCategory} - ++ to get the name and other relevant information of the best - ++ \axiom{measure} and then optimize the function on that \axiom{domain}. - - goodnessOfFit:NumericalOptimizationProblem -> Result - ++ goodnessOfFit(prob) is a top level ANNA function to - ++ check to goodness of fit of a least squares model - ++ as defined within \axiom{prob}. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{NumericalOptimizationCategory} - ++ to get the name and other relevant information of the best - ++ \axiom{measure} and then optimize the function on that \axiom{domain}. - ++ It then calls the numerical routine \axiomType{E04YCF} to get estimates - ++ of the variance-covariance matrix of the regression coefficients of - ++ the least-squares problem. - ++ - ++ It thus returns both the results of the optimization and the - ++ variance-covariance calculation. - - optimize:(EF,LF,LOCF,LEF,LOCF) -> Result - ++ optimize(f,start,lower,cons,upper) is a top level ANNA function to - ++ minimize a function, \axiom{f}, of one or more variables with the - ++ given constraints. - ++ - ++ These constraints may be simple constraints on the variables - ++ in which case \axiom{cons} would be an empty list and the bounds on - ++ those variables defined in \axiom{lower} and \axiom{upper}, or a - ++ mixture of simple, linear and non-linear constraints, where - ++ \axiom{cons} contains the linear and non-linear constraints and - ++ the bounds on these are added to \axiom{upper} and \axiom{lower}. - ++ - ++ The parameter \axiom{start} is a list of the initial guesses of the - ++ values of the variables. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{NumericalOptimizationCategory} - ++ to get the name and other relevant information of the best - ++ \axiom{measure} and then optimize the function on that \axiom{domain}. - - optimize:(EF,LF,LOCF,LOCF) -> Result - ++ optimize(f,start,lower,upper) is a top level ANNA function to - ++ minimize a function, \axiom{f}, of one or more variables with - ++ simple constraints. The bounds on - ++ the variables are defined in \axiom{lower} and \axiom{upper}. - ++ - ++ The parameter \axiom{start} is a list of the initial guesses of the - ++ values of the variables. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{NumericalOptimizationCategory} - ++ to get the name and other relevant information of the best - ++ \axiom{measure} and then optimize the function on that \axiom{domain}. - - optimize:(EF,LF) -> Result - ++ optimize(f,start) is a top level ANNA function to - ++ minimize a function, \axiom{f}, of one or more variables without - ++ constraints. - ++ - ++ The parameter \axiom{start} is a list of the initial guesses of the - ++ values of the variables. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{NumericalOptimizationCategory} - ++ to get the name and other relevant information of the best - ++ \axiom{measure} and then optimize the function on that \axiom{domain}. - - optimize:(LEF,LF) -> Result - ++ optimize(lf,start) is a top level ANNA function to - ++ minimize a set of functions, \axiom{lf}, of one or more variables - ++ without constraints i.e. a least-squares problem. - ++ - ++ The parameter \axiom{start} is a list of the initial guesses of the - ++ values of the variables. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{NumericalOptimizationCategory} - ++ to get the name and other relevant information of the best - ++ \axiom{measure} and then optimize the function on that \axiom{domain}. - - goodnessOfFit:(LEF,LF) -> Result - ++ goodnessOfFit(lf,start) is a top level ANNA function to - ++ check to goodness of fit of a least squares model i.e. the minimization - ++ of a set of functions, \axiom{lf}, of one or more variables without - ++ constraints. - ++ - ++ The parameter \axiom{start} is a list of the initial guesses of the - ++ values of the variables. - ++ - ++ It iterates over the \axiom{domains} of - ++ \axiomType{NumericalOptimizationCategory} - ++ to get the name and other relevant information of the best - ++ \axiom{measure} and then optimize the function on that \axiom{domain}. - ++ It then calls the numerical routine \axiomType{E04YCF} to get estimates - ++ of the variance-covariance matrix of the regression coefficients of - ++ the least-squares problem. - ++ - ++ It thus returns both the results of the optimization and the - ++ variance-covariance calculation. - - ++ goodnessOfFit(lf,start) is a top level function to iterate over - ++ the \axiom{domains} of \axiomType{NumericalOptimizationCategory} - ++ to get the name and other relevant information of the best - ++ \axiom{measure} and then optimize the function on that \axiom{domain}. - ++ It then checks the goodness of fit of the least squares model. - - == add - - preAnalysis:RT -> RT - zeroMeasure:Measure -> Result - optimizeSpecific:(UNOALSA,String) -> Result - measureSpecific:(String,RT,UNOALSA) -> Measure2 - changeName:(Result,String) -> Result - recoverAfterFail:(UNOALSA,RT,Measure,INT,Result) -> Record(a:Result,b:Measure) - constant:UNOALSA -> Union(DF, "failed") - optimizeConstant:DF -> Result - - import ExpertSystemToolsPackage,e04AgentsPackage,NumericalOptimizationProblem - - constant(args:UNOALSA):Union(DF,"failed") == - args case noa => - Args := args.noa - f := Args.fn - retractIfCan(f)@Union(DoubleFloat,"failed") - "failed" - - optimizeConstant(c:DF): Result == - a := coerce(c)$AnyFunctions1(DF) - text := coerce("Constant Function")$AnyFunctions1(String) - construct([[objf@Symbol,a],[method@Symbol,text]])$Result - - preAnalysis(args:UNOALSA,t:RT):RT == - r := selectOptimizationRoutines(t)$RT - args case lsa => - selectSumOfSquaresRoutines(r)$RT - r - - zeroMeasure(m:Measure):Result == - a := coerce(0$F)$AnyFunctions1(F) - text := coerce("Zero Measure")$AnyFunctions1(String) - r := construct([[objf@Symbol,a],[method@Symbol,text]])$Result - concat(measure2Result m,r) - - measureSpecific(name:String,R:RT,args:UNOALSA): Measure2 == - args case noa => - arg:NOA := args.noa - name = "e04dgfAnnaType" => measure(R,arg)$e04dgfAnnaType - name = "e04fdfAnnaType" => measure(R,arg)$e04fdfAnnaType - name = "e04gcfAnnaType" => measure(R,arg)$e04gcfAnnaType - name = "e04jafAnnaType" => measure(R,arg)$e04jafAnnaType - name = "e04mbfAnnaType" => measure(R,arg)$e04mbfAnnaType - name = "e04nafAnnaType" => measure(R,arg)$e04nafAnnaType - name = "e04ucfAnnaType" => measure(R,arg)$e04ucfAnnaType - error("measureSpecific","invalid type name: " name)$ErrorFunctions - args case lsa => - arg2:LSA := args.lsa - name = "e04fdfAnnaType" => measure(R,arg2)$e04fdfAnnaType - name = "e04gcfAnnaType" => measure(R,arg2)$e04gcfAnnaType - error("measureSpecific","invalid type name: " name)$ErrorFunctions - error("measureSpecific","invalid argument type")$ErrorFunctions - - measure(Args:NumericalOptimizationProblem,R:RT):Measure == - args:UNOALSA := retract(Args)$NumericalOptimizationProblem - sofar := 0$F - best := "none" :: String - routs := copy R - routs := preAnalysis(args,routs) - empty?(routs)$RT => - error("measure", "no routines found")$ErrorFunctions - rout := inspect(routs)$RT - e := retract(rout.entry)$AnyFunctions1(Entry) - meth := empty()$(List String) - for i in 1..# routs repeat - rout := extract!(routs)$RT - e := retract(rout.entry)$AnyFunctions1(Entry) - n := e.domainName - if e.defaultMin > sofar then - m := measureSpecific(n,R,args) - if m.measure > sofar then - sofar := m.measure - best := n - str := [concat(concat([string(rout.key)$Symbol,"measure: ", - outputMeasure(m.measure)," - "], - m.explanations)$(List String))$String] - else - str := [concat([string(rout.key)$Symbol - ," is no better than other routines"])$String] - meth := append(meth,str)$(List String) - [sofar,best,meth] - - measure(args:NumericalOptimizationProblem):Measure == measure(args,routines()$RT) - - optimizeSpecific(args:UNOALSA,name:String):Result == - args case noa => - arg:NOA := args.noa - name = "e04dgfAnnaType" => numericalOptimization(arg)$e04dgfAnnaType - name = "e04fdfAnnaType" => numericalOptimization(arg)$e04fdfAnnaType - name = "e04gcfAnnaType" => numericalOptimization(arg)$e04gcfAnnaType - name = "e04jafAnnaType" => numericalOptimization(arg)$e04jafAnnaType - name = "e04mbfAnnaType" => numericalOptimization(arg)$e04mbfAnnaType - name = "e04nafAnnaType" => numericalOptimization(arg)$e04nafAnnaType - name = "e04ucfAnnaType" => numericalOptimization(arg)$e04ucfAnnaType - error("optimizeSpecific","invalid type name: " name)$ErrorFunctions - args case lsa => - arg2:LSA := args.lsa - name = "e04fdfAnnaType" => numericalOptimization(arg2)$e04fdfAnnaType - name = "e04gcfAnnaType" => numericalOptimization(arg2)$e04gcfAnnaType - error("optimizeSpecific","invalid type name: " name)$ErrorFunctions - error("optimizeSpecific","invalid type name: " name)$ErrorFunctions - - changeName(ans:Result,name:String):Result == - st:String := concat([name,"Answer"])$String - sy:Symbol := coerce(st)$Symbol - anyAns:Any := coerce(ans)$AnyFunctions1(Result) - construct([[sy,anyAns]])$Result - - recoverAfterFail(args:UNOALSA,routs:RT,m:Measure, - iint:INT,r:Result):Record(a:Result,b:Measure) == - while positive?(iint) repeat - routineName := m.name - s := recoverAfterFail(routs,routineName(1..6),iint)$RT - s case "failed" => iint := 0 - (s = "no action")@Boolean => iint := 0 - fl := coerce(s)$AnyFunctions1(String) - flrec:Record(key:Symbol,entry:Any):=[failure@Symbol,fl] - m2 := measure(args::NumericalOptimizationProblem,routs) - zero?(m2.measure) => iint := 0 - r2:Result := optimizeSpecific(args,m2.name) - m := m2 - insert!(flrec,r2)$Result - r := concat(r2,changeName(r,routineName)) - iany := search(ifail@Symbol,r2)$Result - iany case "failed" => iint := 0 - iint := retract(iany)$AnyFunctions1(INT) - [r,m] - - optimize(Args:NumericalOptimizationProblem,t:RT):Result == - args:UNOALSA := retract(Args)$NumericalOptimizationProblem - routs := copy(t)$RT - c:Union(DF,"failed") := constant(args) - c case DF => optimizeConstant(c) - m := measure(Args,routs) - zero?(m.measure) => zeroMeasure m - r := optimizeSpecific(args,n := m.name) - iany := search(ifail@Symbol,r)$Result - iint := 0$INT - if (iany case Any) then - iint := retract(iany)$AnyFunctions1(INT) - if positive?(iint) then - tu:Record(a:Result,b:Measure) := recoverAfterFail(args,routs,m,iint,r) - r := tu.a - m := tu.b - r := concat(measure2Result m,r) - expl := getExplanations(routs,n(1..6))$RoutinesTable - expla := coerce(expl)$AnyFunctions1(LST) - explaa:Record(key:Symbol,entry:Any) := ["explanations"::Symbol,expla] - r := concat(construct([explaa]),r) - att:List String := optAttributes(args) - atta := coerce(att)$AnyFunctions1(List String) - attr:Record(key:Symbol,entry:Any) := [attributes@Symbol,atta] - insert!(attr,r)$Result - - optimize(args:NumericalOptimizationProblem):Result == optimize(args,routines()$RT) - - goodnessOfFit(Args:NumericalOptimizationProblem):Result == - r := optimize(Args) - args1:UNOALSA := retract(Args)$NumericalOptimizationProblem - args1 case noa => error("goodnessOfFit","Not an appropriate problem")$ErrorFunctions - args:LSA := args1.lsa - lf := args.lfn - n:INT := #(variables(args)) - m:INT := # lf - me := search(method,r)$Result - me case "failed" => r - meth := retract(me)$AnyFunctions1(Result) - na := search(nameOfRoutine,meth)$Result - na case "failed" => r - name := retract(na)$AnyFunctions1(String) - temp:INT := (n*(n-1)) quo 2 - ns:INT := - name = "e04fdfAnnaType" => 6*n+(2+n)*m+1+max(1,temp) - 8*n+(n+2)*m+temp+1+max(1,temp) - nv:INT := ns+n - ww := search(w,r)$Result - ww case "failed" => r - ws:MDF := retract(ww)$AnyFunctions1(MDF) - fr := search(objf,r)$Result - fr case "failed" => r - f := retract(fr)$AnyFunctions1(DF) - s := subMatrix(ws,1,1,ns,nv-1)$MDF - v := subMatrix(ws,1,1,nv,nv+n*n-1)$MDF - r2 := e04ycf(0,m,n,f,s,n,v,-1)$NagOptimisationPackage - concat(r,r2) - - optimize(f:EF,start:LF,lower:LOCF,cons:LEF,upper:LOCF):Result == - args:NOA := [ef2edf(f),[f2df i for i in start],[ocf2ocdf j for j in lower], - [ef2edf k for k in cons], [ocf2ocdf l for l in upper]] - optimize(args::NumericalOptimizationProblem) - - optimize(f:EF,start:LF,lower:LOCF,upper:LOCF):Result == - optimize(f,start,lower,empty()$LEF,upper) - - optimize(f:EF,start:LF):Result == - optimize(f,start,empty()$LOCF,empty()$LOCF) - - optimize(lf:LEF,start:LF):Result == - args:LSA := [[ef2edf i for i in lf],[f2df j for j in start]] - optimize(args::NumericalOptimizationProblem) - - goodnessOfFit(lf:LEF,start:LF):Result == - args:LSA := [[ef2edf i for i in lf],[f2df j for j in start]] - goodnessOfFit(args::NumericalOptimizationProblem) - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package OPTPACK AnnaNumericalOptimizationPackage>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/e04agents.spad.pamphlet b/src/algebra/e04agents.spad.pamphlet deleted file mode 100644 index 238fba19..00000000 --- a/src/algebra/e04agents.spad.pamphlet +++ /dev/null @@ -1,311 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra e04agents.spad} -\author{Brian Dupee} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package E04AGNT e04AgentsPackage} -<<package E04AGNT e04AgentsPackage>>= -)abbrev package E04AGNT e04AgentsPackage -++ Author: Brian Dupee -++ Date Created: February 1996 -++ Date Last Updated: June 1996 -++ Basic Operations: simple? linear?, quadratic?, nonLinear? -++ Description: -++ \axiomType{e04AgentsPackage} is a package of numerical agents to be used -++ to investigate attributes of an input function so as to decide the -++ \axiomFun{measure} of an appropriate numerical optimization routine. -MDF ==> Matrix DoubleFloat -VEDF ==> Vector Expression DoubleFloat -EDF ==> Expression DoubleFloat -EFI ==> Expression Fraction Integer -PFI ==> Polynomial Fraction Integer -FI ==> Fraction Integer -F ==> Float -DF ==> DoubleFloat -OCDF ==> OrderedCompletion DoubleFloat -LOCDF ==> List OrderedCompletion DoubleFloat -LEDF ==> List Expression DoubleFloat -PDF ==> Polynomial DoubleFloat -LDF ==> List DoubleFloat -INT ==> Integer -NNI ==> NonNegativeInteger -LS ==> List Symbol -EF2 ==> ExpressionFunctions2 -NOA ==> Record(fn:EDF, init:LDF, lb:LOCDF, cf:LEDF, ub:LOCDF) -LSA ==> Record(lfn:LEDF, init:LDF) - -e04AgentsPackage(): E == I where - E ==> with - finiteBound:(LOCDF,DF) -> LDF - ++ finiteBound(l,b) repaces all instances of an infinite entry in - ++ \axiom{l} by a finite entry \axiom{b} or \axiom{-b}. - sortConstraints:NOA -> NOA - ++ sortConstraints(args) uses a simple bubblesort on the list of - ++ constraints using the degree of the expression on which to sort. - ++ Of course, it must match the bounds to the constraints. - sumOfSquares:EDF -> Union(EDF,"failed") - ++ sumOfSquares(f) returns either an expression for which the square is - ++ the original function of "failed". - splitLinear:EDF -> EDF - ++ splitLinear(f) splits the linear part from an expression which it - ++ returns. - simpleBounds?:LEDF -> Boolean - ++ simpleBounds?(l) returns true if the list of expressions l are - ++ simple. - linear?:LEDF -> Boolean - ++ linear?(l) returns true if all the bounds l are either linear or - ++ simple. - linear?:EDF -> Boolean - ++ linear?(e) tests if \axiom{e} is a linear function. - linearMatrix:(LEDF, NNI) -> MDF - ++ linearMatrix(l,n) returns a matrix of coefficients of the linear - ++ functions in \axiom{l}. If l is empty, the matrix has at least one - ++ row. - linearPart:LEDF -> LEDF - ++ linearPart(l) returns the list of linear functions of \axiom{l}. - nonLinearPart:LEDF -> LEDF - ++ nonLinearPart(l) returns the list of non-linear functions of \axiom{l}. - quadratic?:EDF -> Boolean - ++ quadratic?(e) tests if \axiom{e} is a quadratic function. - variables:LSA -> LS - ++ variables(args) returns the list of variables in \axiom{args.lfn} - varList:(EDF,NNI) -> LS - ++ varList(e,n) returns a list of \axiom{n} indexed variables with name - ++ as in \axiom{e}. - changeNameToObjf:(Symbol,Result) -> Result - ++ changeNameToObjf(s,r) changes the name of item \axiom{s} in \axiom{r} - ++ to objf. - expenseOfEvaluation:LSA -> F - ++ expenseOfEvaluation(o) returns the intensity value of the - ++ cost of evaluating the input set of functions. This is in terms - ++ of the number of ``operational units''. It returns a value - ++ in the range [0,1]. - optAttributes:Union(noa:NOA,lsa:LSA) -> List String - ++ optAttributes(o) is a function for supplying a list of attributes - ++ of an optimization problem. - - I ==> add - - import ExpertSystemToolsPackage, ExpertSystemContinuityPackage - - sumOfSquares2:EFI -> Union(EFI,"failed") - nonLinear?:EDF -> Boolean - finiteBound2:(OCDF,DF) -> DF - functionType:EDF -> String - - finiteBound2(a:OCDF,b:DF):DF == - not finite?(a) => - positive?(a) => b - -b - retract(a)@DF - - finiteBound(l:LOCDF,b:DF):LDF == [finiteBound2(i,b) for i in l] - - sortConstraints(args:NOA):NOA == - Args := copy args - c:LEDF := Args.cf - l:LOCDF := Args.lb - u:LOCDF := Args.ub - m:INT := (# c) - 1 - n:INT := (# l) - m - for j in m..1 by -1 repeat - for i in 1..j repeat - s:EDF := c.i - t:EDF := c.(i+1) - if linear?(t) and (nonLinear?(s) or quadratic?(s)) then - swap!(c,i,i+1)$LEDF - swap!(l,n+i-1,n+i)$LOCDF - swap!(u,n+i-1,n+i)$LOCDF - Args - - changeNameToObjf(s:Symbol,r:Result):Result == - a := remove!(s,r)$Result - a case Any => - insert!([objf@Symbol,a],r)$Result - r - r - - sum(a:EDF,b:EDF):EDF == a+b - - variables(args:LSA): LS == variables(reduce(sum,(args.lfn))) - - sumOfSquares(f:EDF):Union(EDF,"failed") == - e := edf2efi(f) - s:Union(EFI,"failed") := sumOfSquares2(e) - s case EFI => - map(fi2df,s)$EF2(FI,DF) - "failed" - - sumOfSquares2(f:EFI):Union(EFI,"failed") == - p := retractIfCan(f)@Union(PFI,"failed") - p case PFI => - r := squareFreePart(p)$PFI - (p=r)@Boolean => "failed" - tp := totalDegree(p)$PFI - tr := totalDegree(r)$PFI - t := tp quo tr - found := false - q := r - for i in 2..t by 2 repeat - s := q**2 - (s=p)@Boolean => - found := true - leave - q := r**i - if found then - q :: EFI - else - "failed" - "failed" - - splitLinear(f:EDF):EDF == - out := 0$EDF - (l := isPlus(f)$EDF) case LEDF => - for i in l repeat - if not quadratic? i then - out := out + i - out - out - - edf2pdf(f:EDF):PDF == (retract(f)@PDF)$EDF - - varList(e:EDF,n:NNI):LS == - s := name(first(variables(edf2pdf(e))$PDF)$LS)$Symbol - [subscript(s,[t::OutputForm]) for t in expand([1..n])$Segment(Integer)] - - functionType(f:EDF):String == - n := #(variables(f))$EDF - p := (retractIfCan(f)@Union(PDF,"failed"))$EDF - p case PDF => - d := totalDegree(p)$PDF - one?(n*d) => "simple" - one?(d) => "linear" - (d=2)@Boolean => "quadratic" - "non-linear" - "non-linear" - - simpleBounds?(l: LEDF):Boolean == - a := true - for e in l repeat - not (functionType(e) = "simple")@Boolean => - a := false - leave - a - - simple?(e:EDF):Boolean == (functionType(e) = "simple")@Boolean - - linear?(e:EDF):Boolean == (functionType(e) = "linear")@Boolean - - quadratic?(e:EDF):Boolean == (functionType(e) = "quadratic")@Boolean - - nonLinear?(e:EDF):Boolean == (functionType(e) = "non-linear")@Boolean - - linear?(l: LEDF):Boolean == - a := true - for e in l repeat - s := functionType(e) - (s = "quadratic")@Boolean or (s = "non-linear")@Boolean => - a := false - leave - a - - simplePart(l:LEDF):LEDF == [i for i in l | simple?(i)] - - linearPart(l:LEDF):LEDF == [i for i in l | linear?(i)] - - nonLinearPart(l:LEDF):LEDF == - [i for i in l | not linear?(i) and not simple?(i)] - - linearMatrix(l:LEDF, n:NNI):MDF == - empty?(l) => mat([],n) - L := linearPart l - M := zero(max(1,# L)$NNI,n)$MDF - vars := varList(first(l)$LEDF,n) - row:INT := 1 - for a in L repeat - for j in monomials(edf2pdf(a))$PDF repeat - col:INT := 1 - for c in vars repeat - if ((first(variables(j)$PDF)$LS)=c)@Boolean then - M(row,col):= first(coefficients(j)$PDF)$LDF - col := col+1 - row := row + 1 - M - - expenseOfEvaluation(o:LSA):F == - expenseOfEvaluation(vector(copy o.lfn)$VEDF) - - optAttributes(o:Union(noa:NOA,lsa:LSA)):List String == - o case noa => - n := o.noa - s1:String := "The object function is " functionType(n.fn) - if empty?(n.lb) then - s2:String := "There are no bounds on the variables" - else - s2:String := "There are simple bounds on the variables" - c := n.cf - if empty?(c) then - s3:String := "There are no constraint functions" - else - t := #(c) - lin := #(linearPart(c)) - nonlin := #(nonLinearPart(c)) - s3:String := "There are " string(lin)$String " linear and "_ - string(nonlin)$String " non-linear constraints" - [s1,s2,s3] - l := o.lsa - s:String := "non-linear" - if linear?(l.lfn) then - s := "linear" - ["The object functions are " s] - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package E04AGNT e04AgentsPackage>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/e04routine.spad.pamphlet b/src/algebra/e04routine.spad.pamphlet deleted file mode 100644 index 59fc81c3..00000000 --- a/src/algebra/e04routine.spad.pamphlet +++ /dev/null @@ -1,687 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra e04routine.spad} -\author{Brian Dupee} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{domain E04DGFA e04dgfAnnaType} -<<domain E04DGFA e04dgfAnnaType>>= -)abbrev domain E04DGFA e04dgfAnnaType -++ Author: Brian Dupee -++ Date Created: February 1996 -++ Date Last Updated: February 1996 -++ Basic Operations: measure, numericalOptimization -++ Related Constructors: Result, RoutinesTable -++ Description: -++ \axiomType{e04dgfAnnaType} is a domain of \axiomType{NumericalOptimization} -++ for the NAG routine E04DGF, a general optimization routine which -++ can handle some singularities in the input function. The function -++ \axiomFun{measure} measures the usefulness of the routine E04DGF -++ for the given problem. The function \axiomFun{numericalOptimization} -++ performs the optimization by using \axiomType{NagOptimisationPackage}. - -e04dgfAnnaType(): NumericalOptimizationCategory == Result add - DF ==> DoubleFloat - EF ==> Expression Float - EDF ==> Expression DoubleFloat - PDF ==> Polynomial DoubleFloat - VPDF ==> Vector Polynomial DoubleFloat - LDF ==> List DoubleFloat - LOCDF ==> List OrderedCompletion DoubleFloat - MDF ==> Matrix DoubleFloat - MPDF ==> Matrix Polynomial DoubleFloat - MF ==> Matrix Float - MEF ==> Matrix Expression Float - LEDF ==> List Expression DoubleFloat - VEF ==> Vector Expression Float - NOA ==> Record(fn:EDF, init:LDF, lb:LOCDF, cf:LEDF, ub:LOCDF) - LSA ==> Record(lfn:LEDF, init:LDF) - EF2 ==> ExpressionFunctions2 - MI ==> Matrix Integer - INT ==> Integer - F ==> Float - NNI ==> NonNegativeInteger - S ==> Symbol - LS ==> List Symbol - MVCF ==> MultiVariableCalculusFunctions - ESTOOLS2 ==> ExpertSystemToolsPackage2 - SDF ==> Stream DoubleFloat - LSDF ==> List Stream DoubleFloat - SOCDF ==> Segment OrderedCompletion DoubleFloat - OCDF ==> OrderedCompletion DoubleFloat - - Rep:=Result - import Rep, NagOptimisationPackage, ExpertSystemToolsPackage - - measure(R:RoutinesTable,args:NOA) == - string:String := "e04dgf is " - positive?(#(args.cf) + #(args.lb) + #(args.ub)) => - string := concat(string,"unsuitable for constrained problems. ") - [0.0,string] - string := concat(string,"recommended") - [getMeasure(R,e04dgf@Symbol)$RoutinesTable, string] - - numericalOptimization(args:NOA) == - argsFn:EDF := args.fn - n:NNI := #(variables(argsFn)$EDF) - fu:DF := float(4373903597,-24,10)$DF - it:INT := max(50,5*n) - lin:DF := float(9,-1,10)$DF - ma:DF := float(1,20,10)$DF - op:DF := float(326,-14,10)$DF - x:MDF := mat(args.init,n) - ArgsFn:Expression Float := edf2ef(argsFn) - f:Union(fn:FileName,fp:Asp49(OBJFUN)) := [retract(ArgsFn)$Asp49(OBJFUN)] - e04dgf(n,1$DF,fu,it,lin,true,ma,op,1,1,n,0,x,-1,f) - -@ -\section{domain E04FDFA e04fdfAnnaType} -<<domain E04FDFA e04fdfAnnaType>>= -)abbrev domain E04FDFA e04fdfAnnaType -++ Author: Brian Dupee -++ Date Created: February 1996 -++ Date Last Updated: February 1996 -++ Basic Operations: measure, numericalOptimization -++ Related Constructors: Result, RoutinesTable -++ Description: -++ \axiomType{e04fdfAnnaType} is a domain of \axiomType{NumericalOptimization} -++ for the NAG routine E04FDF, a general optimization routine which -++ can handle some singularities in the input function. The function -++ \axiomFun{measure} measures the usefulness of the routine E04FDF -++ for the given problem. The function \axiomFun{numericalOptimization} -++ performs the optimization by using \axiomType{NagOptimisationPackage}. -e04fdfAnnaType(): NumericalOptimizationCategory == Result add - DF ==> DoubleFloat - EF ==> Expression Float - EDF ==> Expression DoubleFloat - PDF ==> Polynomial DoubleFloat - VPDF ==> Vector Polynomial DoubleFloat - LDF ==> List DoubleFloat - LOCDF ==> List OrderedCompletion DoubleFloat - MDF ==> Matrix DoubleFloat - MPDF ==> Matrix Polynomial DoubleFloat - MF ==> Matrix Float - MEF ==> Matrix Expression Float - LEDF ==> List Expression DoubleFloat - VEF ==> Vector Expression Float - NOA ==> Record(fn:EDF, init:LDF, lb:LOCDF, cf:LEDF, ub:LOCDF) - LSA ==> Record(lfn:LEDF, init:LDF) - EF2 ==> ExpressionFunctions2 - MI ==> Matrix Integer - INT ==> Integer - F ==> Float - NNI ==> NonNegativeInteger - S ==> Symbol - LS ==> List Symbol - MVCF ==> MultiVariableCalculusFunctions - ESTOOLS2 ==> ExpertSystemToolsPackage2 - SDF ==> Stream DoubleFloat - LSDF ==> List Stream DoubleFloat - SOCDF ==> Segment OrderedCompletion DoubleFloat - OCDF ==> OrderedCompletion DoubleFloat - - Rep:=Result - import Rep, NagOptimisationPackage - import e04AgentsPackage,ExpertSystemToolsPackage - - measure(R:RoutinesTable,args:NOA) == - argsFn := args.fn - string:String := "e04fdf is " - positive?(#(args.cf) + #(args.lb) + #(args.ub)) => - string := concat(string,"unsuitable for constrained problems. ") - [0.0,string] - n:NNI := #(variables(argsFn)$EDF) - (n>1)@Boolean => - string := concat(string,"unsuitable for single instances of multivariate problems. ") - [0.0,string] - sumOfSquares(argsFn) case "failed" => - string := concat(string,"unsuitable.") - [0.0,string] - string := concat(string,"recommended since the function is a sum of squares.") - [getMeasure(R,e04fdf@Symbol)$RoutinesTable, string] - - measure(R:RoutinesTable,args:LSA) == - string:String := "e04fdf is recommended" - [getMeasure(R,e04fdf@Symbol)$RoutinesTable, string] - - numericalOptimization(args:NOA) == - argsFn := args.fn - lw:INT := 14 - x := mat(args.init,1) - (a := sumOfSquares(argsFn)) case EDF => - ArgsFn := vector([edf2ef(a)])$VEF - f : Union(fn:FileName,fp:Asp50(LSFUN1)) := [retract(ArgsFn)$Asp50(LSFUN1)] - out:Result := e04fdf(1,1,1,lw,x,-1,f) - changeNameToObjf(fsumsq@Symbol,out) - empty()$Result - - numericalOptimization(args:LSA) == - argsFn := copy args.lfn - m:INT := #(argsFn) - n:NNI := #(variables(args)) - nn:INT := n - lw:INT := - one?(nn) => 9+5*m - nn*(7+n+2*m+((nn-1) quo 2)$INT)+3*m - x := mat(args.init,n) - ArgsFn := vector([edf2ef(i)$ExpertSystemToolsPackage for i in argsFn])$VEF - f : Union(fn:FileName,fp:Asp50(LSFUN1)) := [retract(ArgsFn)$Asp50(LSFUN1)] - out:Result := e04fdf(m,n,1,lw,x,-1,f) - changeNameToObjf(fsumsq@Symbol,out) - -@ -\section{domain E04GCFA e04gcfAnnaType} -<<domain E04GCFA e04gcfAnnaType>>= -)abbrev domain E04GCFA e04gcfAnnaType -++ Author: Brian Dupee -++ Date Created: February 1996 -++ Date Last Updated: February 1996 -++ Basic Operations: measure, numericalOptimization -++ Related Constructors: Result, RoutinesTable -++ Description: -++ \axiomType{e04gcfAnnaType} is a domain of \axiomType{NumericalOptimization} -++ for the NAG routine E04GCF, a general optimization routine which -++ can handle some singularities in the input function. The function -++ \axiomFun{measure} measures the usefulness of the routine E04GCF -++ for the given problem. The function \axiomFun{numericalOptimization} -++ performs the optimization by using \axiomType{NagOptimisationPackage}. -e04gcfAnnaType(): NumericalOptimizationCategory == Result add - DF ==> DoubleFloat - EF ==> Expression Float - EDF ==> Expression DoubleFloat - PDF ==> Polynomial DoubleFloat - VPDF ==> Vector Polynomial DoubleFloat - LDF ==> List DoubleFloat - LOCDF ==> List OrderedCompletion DoubleFloat - MDF ==> Matrix DoubleFloat - MPDF ==> Matrix Polynomial DoubleFloat - MF ==> Matrix Float - MEF ==> Matrix Expression Float - LEDF ==> List Expression DoubleFloat - VEF ==> Vector Expression Float - NOA ==> Record(fn:EDF, init:LDF, lb:LOCDF, cf:LEDF, ub:LOCDF) - LSA ==> Record(lfn:LEDF, init:LDF) - EF2 ==> ExpressionFunctions2 - MI ==> Matrix Integer - INT ==> Integer - F ==> Float - NNI ==> NonNegativeInteger - S ==> Symbol - LS ==> List Symbol - MVCF ==> MultiVariableCalculusFunctions - ESTOOLS2 ==> ExpertSystemToolsPackage2 - SDF ==> Stream DoubleFloat - LSDF ==> List Stream DoubleFloat - SOCDF ==> Segment OrderedCompletion DoubleFloat - OCDF ==> OrderedCompletion DoubleFloat - - Rep:=Result - import Rep, NagOptimisationPackage,ExpertSystemContinuityPackage - import e04AgentsPackage,ExpertSystemToolsPackage - - measure(R:RoutinesTable,args:NOA) == - argsFn:EDF := args.fn - string:String := "e04gcf is " - positive?(#(args.cf) + #(args.lb) + #(args.ub)) => - string := concat(string,"unsuitable for constrained problems. ") - [0.0,string] - n:NNI := #(variables(argsFn)$EDF) - (n>1)@Boolean => - string := concat(string,"unsuitable for single instances of multivariate problems. ") - [0.0,string] - a := coerce(float(10,0,10))$OCDF - seg:SOCDF := -a..a - sings := singularitiesOf(argsFn,variables(argsFn)$EDF,seg) - s := #(sdf2lst(sings)) - positive? s => - string := concat(string,"not recommended for discontinuous functions.") - [0.0,string] - sumOfSquares(args.fn) case "failed" => - string := concat(string,"unsuitable.") - [0.0,string] - string := concat(string,"recommended since the function is a sum of squares.") - [getMeasure(R,e04gcf@Symbol)$RoutinesTable, string] - - measure(R:RoutinesTable,args:LSA) == - string:String := "e04gcf is " - a := coerce(float(10,0,10))$OCDF - seg:SOCDF := -a..a - sings := concat([singularitiesOf(i,variables(args),seg) for i in args.lfn])$SDF - s := #(sdf2lst(sings)) - positive? s => - string := concat(string,"not recommended for discontinuous functions.") - [0.0,string] - string := concat(string,"recommended.") - m := getMeasure(R,e04gcf@Symbol)$RoutinesTable - m := m-(1-exp(-(expenseOfEvaluation(args))**3)) - [m, string] - - numericalOptimization(args:NOA) == - argsFn:EDF := args.fn - lw:INT := 16 - x := mat(args.init,1) - (a := sumOfSquares(argsFn)) case EDF => - ArgsFn := vector([edf2ef(a)$ExpertSystemToolsPackage])$VEF - f : Union(fn:FileName,fp:Asp19(LSFUN2)) := [retract(ArgsFn)$Asp19(LSFUN2)] - out:Result := e04gcf(1,1,1,lw,x,-1,f) - changeNameToObjf(fsumsq@Symbol,out) - empty()$Result - - numericalOptimization(args:LSA) == - argsFn := copy args.lfn - m:NNI := #(argsFn) - n:NNI := #(variables(args)) - lw:INT := - one?(n) => 11+5*m - 2*n*(4+n+m)+3*m - x := mat(args.init,n) - ArgsFn := vector([edf2ef(i)$ExpertSystemToolsPackage for i in argsFn])$VEF - f : Union(fn:FileName,fp:Asp19(LSFUN2)) := [retract(ArgsFn)$Asp19(LSFUN2)] - out:Result := e04gcf(m,n,1,lw,x,-1,f) - changeNameToObjf(fsumsq@Symbol,out) - -@ -\section{domain E04JAFA e04jafAnnaType} -<<domain E04JAFA e04jafAnnaType>>= -)abbrev domain E04JAFA e04jafAnnaType -++ Author: Brian Dupee -++ Date Created: February 1996 -++ Date Last Updated: February 1996 -++ Basic Operations: measure, numericalOptimization -++ Related Constructors: Result, RoutinesTable -++ Description: -++ \axiomType{e04jafAnnaType} is a domain of \axiomType{NumericalOptimization} -++ for the NAG routine E04JAF, a general optimization routine which -++ can handle some singularities in the input function. The function -++ \axiomFun{measure} measures the usefulness of the routine E04JAF -++ for the given problem. The function \axiomFun{numericalOptimization} -++ performs the optimization by using \axiomType{NagOptimisationPackage}. -e04jafAnnaType(): NumericalOptimizationCategory == Result add - DF ==> DoubleFloat - EF ==> Expression Float - EDF ==> Expression DoubleFloat - PDF ==> Polynomial DoubleFloat - VPDF ==> Vector Polynomial DoubleFloat - LDF ==> List DoubleFloat - LOCDF ==> List OrderedCompletion DoubleFloat - MDF ==> Matrix DoubleFloat - MPDF ==> Matrix Polynomial DoubleFloat - MF ==> Matrix Float - MEF ==> Matrix Expression Float - LEDF ==> List Expression DoubleFloat - VEF ==> Vector Expression Float - NOA ==> Record(fn:EDF, init:LDF, lb:LOCDF, cf:LEDF, ub:LOCDF) - LSA ==> Record(lfn:LEDF, init:LDF) - EF2 ==> ExpressionFunctions2 - MI ==> Matrix Integer - INT ==> Integer - F ==> Float - NNI ==> NonNegativeInteger - S ==> Symbol - LS ==> List Symbol - MVCF ==> MultiVariableCalculusFunctions - ESTOOLS2 ==> ExpertSystemToolsPackage2 - SDF ==> Stream DoubleFloat - LSDF ==> List Stream DoubleFloat - SOCDF ==> Segment OrderedCompletion DoubleFloat - OCDF ==> OrderedCompletion DoubleFloat - - Rep:=Result - import Rep, NagOptimisationPackage - import e04AgentsPackage,ExpertSystemToolsPackage - - bound(a:LOCDF,b:LOCDF):Integer == - empty?(concat(a,b)) => 1 - one?(#(removeDuplicates(a))) and zero?(first(a)) => 2 - one?(#(removeDuplicates(a))) and one?(#(removeDuplicates(b))) => 3 - 0 - - measure(R:RoutinesTable,args:NOA) == - string:String := "e04jaf is " - if positive?(#(args.cf)) then - if not simpleBounds?(args.cf) then - string := - concat(string,"suitable for simple bounds only, not constraint functions.") - (# string) < 20 => - if zero?(#(args.lb) + #(args.ub)) then - string := concat(string, "usable if there are no constraints") - [getMeasure(R,e04jaf@Symbol)$RoutinesTable*0.5,string] - else - string := concat(string,"recommended") - [getMeasure(R,e04jaf@Symbol)$RoutinesTable, string] - [0.0,string] - - numericalOptimization(args:NOA) == - argsFn:EDF := args.fn - n:NNI := #(variables(argsFn)$EDF) - ibound:INT := bound(args.lb,args.ub) - m:INT := n - lw:INT := max(13,12 * m + ((m * (m - 1)) quo 2)$INT)$INT - bl := mat(finiteBound(args.lb,float(1,6,10)$DF),n) - bu := mat(finiteBound(args.ub,float(1,6,10)$DF),n) - x := mat(args.init,n) - ArgsFn:EF := edf2ef(argsFn) - fr:Union(fn:FileName,fp:Asp24(FUNCT1)) := [retract(ArgsFn)$Asp24(FUNCT1)] - out:Result := e04jaf(n,ibound,n+2,lw,bl,bu,x,-1,fr) - changeNameToObjf(f@Symbol,out) - -@ -\section{domain E04MBFA e04mbfAnnaType} -<<domain E04MBFA e04mbfAnnaType>>= -)abbrev domain E04MBFA e04mbfAnnaType -++ Author: Brian Dupee -++ Date Created: February 1996 -++ Date Last Updated: February 1996 -++ Basic Operations: measure, numericalOptimization -++ Related Constructors: Result, RoutinesTable -++ Description: -++ \axiomType{e04mbfAnnaType} is a domain of \axiomType{NumericalOptimization} -++ for the NAG routine E04MBF, an optimization routine for Linear functions. -++ The function -++ \axiomFun{measure} measures the usefulness of the routine E04MBF -++ for the given problem. The function \axiomFun{numericalOptimization} -++ performs the optimization by using \axiomType{NagOptimisationPackage}. -e04mbfAnnaType(): NumericalOptimizationCategory == Result add - DF ==> DoubleFloat - EF ==> Expression Float - EDF ==> Expression DoubleFloat - PDF ==> Polynomial DoubleFloat - VPDF ==> Vector Polynomial DoubleFloat - LDF ==> List DoubleFloat - LOCDF ==> List OrderedCompletion DoubleFloat - MDF ==> Matrix DoubleFloat - MPDF ==> Matrix Polynomial DoubleFloat - MF ==> Matrix Float - MEF ==> Matrix Expression Float - LEDF ==> List Expression DoubleFloat - VEF ==> Vector Expression Float - NOA ==> Record(fn:EDF, init:LDF, lb:LOCDF, cf:LEDF, ub:LOCDF) - LSA ==> Record(lfn:LEDF, init:LDF) - EF2 ==> ExpressionFunctions2 - MI ==> Matrix Integer - INT ==> Integer - F ==> Float - NNI ==> NonNegativeInteger - S ==> Symbol - LS ==> List Symbol - MVCF ==> MultiVariableCalculusFunctions - ESTOOLS2 ==> ExpertSystemToolsPackage2 - SDF ==> Stream DoubleFloat - LSDF ==> List Stream DoubleFloat - SOCDF ==> Segment OrderedCompletion DoubleFloat - OCDF ==> OrderedCompletion DoubleFloat - - Rep:=Result - import Rep, NagOptimisationPackage - import e04AgentsPackage,ExpertSystemToolsPackage - - measure(R:RoutinesTable,args:NOA) == - (not linear?([args.fn])) or (not linear?(args.cf)) => - [0.0,"e04mbf is for a linear objective function and constraints only."] - [getMeasure(R,e04mbf@Symbol)$RoutinesTable,"e04mbf is recommended" ] - - numericalOptimization(args:NOA) == - argsFn:EDF := args.fn - c := args.cf - listVars:List LS := concat(variables(argsFn)$EDF,[variables(z)$EDF for z in c]) - n:NNI := #(v := removeDuplicates(concat(listVars)$LS)$LS) - A:MDF := linearMatrix(args.cf,n) - nclin:NNI := # linearPart(c) - nrowa:NNI := max(1,nclin) - bl:MDF := mat(finiteBound(args.lb,float(1,21,10)$DF),n) - bu:MDF := mat(finiteBound(args.ub,float(1,21,10)$DF),n) - cvec:MDF := mat(coefficients(retract(argsFn)@PDF)$PDF,n) - x := mat(args.init,n) - lwork:INT := - nclin < n => 2*nclin*(nclin+4)+2+6*n+nrowa - 2*(n+3)*n+4*nclin+nrowa - out:Result := e04mbf(20,1,n,nclin,n+nclin,nrowa,A,bl,bu,cvec,true,2*n,lwork,x,-1) - changeNameToObjf(objlp@Symbol,out) - -@ -\section{domain E04NAFA e04nafAnnaType} -<<domain E04NAFA e04nafAnnaType>>= -)abbrev domain E04NAFA e04nafAnnaType -++ Author: Brian Dupee -++ Date Created: February 1996 -++ Date Last Updated: February 1996 -++ Basic Operations: measure, numericalOptimization -++ Related Constructors: Result, RoutinesTable -++ Description: -++ \axiomType{e04nafAnnaType} is a domain of \axiomType{NumericalOptimization} -++ for the NAG routine E04NAF, an optimization routine for Quadratic functions. -++ The function -++ \axiomFun{measure} measures the usefulness of the routine E04NAF -++ for the given problem. The function \axiomFun{numericalOptimization} -++ performs the optimization by using \axiomType{NagOptimisationPackage}. -e04nafAnnaType(): NumericalOptimizationCategory == Result add - DF ==> DoubleFloat - EF ==> Expression Float - EDF ==> Expression DoubleFloat - PDF ==> Polynomial DoubleFloat - VPDF ==> Vector Polynomial DoubleFloat - LDF ==> List DoubleFloat - LOCDF ==> List OrderedCompletion DoubleFloat - MDF ==> Matrix DoubleFloat - MPDF ==> Matrix Polynomial DoubleFloat - MF ==> Matrix Float - MEF ==> Matrix Expression Float - LEDF ==> List Expression DoubleFloat - VEF ==> Vector Expression Float - NOA ==> Record(fn:EDF, init:LDF, lb:LOCDF, cf:LEDF, ub:LOCDF) - LSA ==> Record(lfn:LEDF, init:LDF) - EF2 ==> ExpressionFunctions2 - MI ==> Matrix Integer - INT ==> Integer - F ==> Float - NNI ==> NonNegativeInteger - S ==> Symbol - LS ==> List Symbol - MVCF ==> MultiVariableCalculusFunctions - ESTOOLS2 ==> ExpertSystemToolsPackage2 - SDF ==> Stream DoubleFloat - LSDF ==> List Stream DoubleFloat - SOCDF ==> Segment OrderedCompletion DoubleFloat - OCDF ==> OrderedCompletion DoubleFloat - - Rep:=Result - import Rep, NagOptimisationPackage - import e04AgentsPackage,ExpertSystemToolsPackage - - measure(R:RoutinesTable,args:NOA) == - string:String := "e04naf is " - argsFn:EDF := args.fn - if not (quadratic?(argsFn) and linear?(args.cf)) then - string := - concat(string,"for a quadratic function with linear constraints only.") - (# string) < 20 => - string := concat(string,"recommended") - [getMeasure(R,e04naf@Symbol)$RoutinesTable, string] - [0.0,string] - - numericalOptimization(args:NOA) == - argsFn:EDF := args.fn - c := args.cf - listVars:List LS := concat(variables(argsFn)$EDF,[variables(z)$EDF for z in c]) - n:NNI := #(v := sort(removeDuplicates(concat(listVars)$LS)$LS)$LS) - A:MDF := linearMatrix(c,n) - nclin:NNI := # linearPart(c) - nrowa:NNI := max(1,nclin) - big:DF := float(1,10,10)$DF - fea:MDF := new(1,n+nclin,float(1053,-11,10)$DF)$MDF - bl:MDF := mat(finiteBound(args.lb,float(1,21,10)$DF),n) - bu:MDF := mat(finiteBound(args.ub,float(1,21,10)$DF),n) - alin:EDF := splitLinear(argsFn) - p:PDF := retract(alin)@PDF - pl:List PDF := [coefficient(p,i,1)$PDF for i in v] - cvec:MDF := mat([pdf2df j for j in pl],n) - h1:MPDF := hessian(p,v)$MVCF(S,PDF,VPDF,LS) - hess:MDF := map(pdf2df,h1)$ESTOOLS2(PDF,DF) - h2:MEF := map(df2ef,hess)$ESTOOLS2(DF,EF) - x := mat(args.init,n) - istate:MI := zero(1,n+nclin)$MI - lwork:INT := 2*n*(n+2*nclin)+nrowa - qphess:Union(fn:FileName,fp:Asp20(QPHESS)) := [retract(h2)$Asp20(QPHESS)] - out:Result := e04naf(20,1,n,nclin,n+nclin,nrowa,n,n,big,A,bl,bu,cvec,fea, - hess,true,false,true,2*n,lwork,x,istate,-1,qphess) - changeNameToObjf(obj@Symbol,out) - -@ -\section{domain E04UCFA e04ucfAnnaType} -<<domain E04UCFA e04ucfAnnaType>>= -)abbrev domain E04UCFA e04ucfAnnaType -++ Author: Brian Dupee -++ Date Created: February 1996 -++ Date Last Updated: November 1997 -++ Basic Operations: measure, numericalOptimization -++ Related Constructors: Result, RoutinesTable -++ Description: -++ \axiomType{e04ucfAnnaType} is a domain of \axiomType{NumericalOptimization} -++ for the NAG routine E04UCF, a general optimization routine which -++ can handle some singularities in the input function. The function -++ \axiomFun{measure} measures the usefulness of the routine E04UCF -++ for the given problem. The function \axiomFun{numericalOptimization} -++ performs the optimization by using \axiomType{NagOptimisationPackage}. -e04ucfAnnaType(): NumericalOptimizationCategory == Result add - DF ==> DoubleFloat - EF ==> Expression Float - EDF ==> Expression DoubleFloat - PDF ==> Polynomial DoubleFloat - VPDF ==> Vector Polynomial DoubleFloat - LDF ==> List DoubleFloat - LOCDF ==> List OrderedCompletion DoubleFloat - MDF ==> Matrix DoubleFloat - MPDF ==> Matrix Polynomial DoubleFloat - MF ==> Matrix Float - MEF ==> Matrix Expression Float - LEDF ==> List Expression DoubleFloat - VEF ==> Vector Expression Float - NOA ==> Record(fn:EDF, init:LDF, lb:LOCDF, cf:LEDF, ub:LOCDF) - LSA ==> Record(lfn:LEDF, init:LDF) - EF2 ==> ExpressionFunctions2 - MI ==> Matrix Integer - INT ==> Integer - F ==> Float - NNI ==> NonNegativeInteger - S ==> Symbol - LS ==> List Symbol - MVCF ==> MultiVariableCalculusFunctions - ESTOOLS2 ==> ExpertSystemToolsPackage2 - SDF ==> Stream DoubleFloat - LSDF ==> List Stream DoubleFloat - SOCDF ==> Segment OrderedCompletion DoubleFloat - OCDF ==> OrderedCompletion DoubleFloat - - Rep:=Result - import Rep,NagOptimisationPackage - import e04AgentsPackage,ExpertSystemToolsPackage - - measure(R:RoutinesTable,args:NOA) == - zero?(#(args.lb) + #(args.ub)) => - [0.0,"e04ucf is not recommended if there are no bounds specified"] - zero?(#(args.cf)) => - string:String := "e04ucf is usable but not always recommended if there are no constraints" - [getMeasure(R,e04ucf@Symbol)$RoutinesTable*0.5,string] - [getMeasure(R,e04ucf@Symbol)$RoutinesTable,"e04ucf is recommended"] - - numericalOptimization(args:NOA) == - Args := sortConstraints(args) - argsFn := Args.fn - c := Args.cf - listVars:List LS := concat(variables(argsFn)$EDF,[variables(z)$EDF for z in c]) - n:NNI := #(v := sort(removeDuplicates(concat(listVars)$LS)$LS)$LS) - lin:NNI := #(linearPart(c)) - nlcf := nonLinearPart(c) - nonlin:NNI := #(nlcf) - if empty?(nlcf) then - nlcf := new(n,coerce(first(v)$LS)$EDF)$LEDF - nrowa:NNI := max(1,lin) - nrowj:NNI := max(1,nonlin) - A:MDF := linearMatrix(c,n) - bl:MDF := mat(finiteBound(Args.lb,float(1,25,10)$DF),n) - bu:MDF := mat(finiteBound(Args.ub,float(1,25,10)$DF),n) - liwork:INT := 3*n+lin+2*nonlin - lwork:INT := - zero?(lin+nonlin) => 20*n - zero?(nonlin) => 2*n*(n+10)+11*lin - 2*n*(n+nonlin+10)+(11+n)*lin + 21*nonlin - cra:DF := float(1,-2,10)$DF - fea:DF := float(1053671201,-17,10)$DF - fun:DF := float(4373903597,-24,10)$DF - infb:DF := float(1,15,10)$DF - lint:DF := float(9,-1,10)$DF - maji:INT := max(50,3*(n+lin)+10*nonlin) - mini:INT := max(50,3*(n+lin+nonlin)) - nonf:DF := float(105,-10,10)$DF - opt:DF := float(326,-10,10)$DF - ste:DF := float(2,0,10)$DF - istate:MI := zero(1,n+lin+nonlin)$MI - cjac:MDF := - positive?(nonlin) => zero(nrowj,n)$MDF - zero(nrowj,1)$MDF - clambda:MDF := zero(1,n+lin+nonlin)$MDF - r:MDF := zero(n,n)$MDF - x:MDF := mat(Args.init,n) - VectCF:VEF := vector([edf2ef e for e in nlcf])$VEF - ArgsFn:EF := edf2ef(argsFn) - fasp : Union(fn:FileName,fp:Asp49(OBJFUN)) := [retract(ArgsFn)$Asp49(OBJFUN)] - casp : Union(fn:FileName,fp:Asp55(CONFUN)) := [retract(VectCF)$Asp55(CONFUN)] - e04ucf(n,lin,nonlin,nrowa,nrowj,n,A,bl,bu,liwork,lwork,false,cra,3,fea, - fun,true,infb,infb,fea,lint,true,maji,1,mini,0,-1,nonf,opt,ste,1, - 1,n,n,3,istate,cjac,clambda,r,x,-1,casp,fasp) - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<domain E04DGFA e04dgfAnnaType>> -<<domain E04FDFA e04fdfAnnaType>> -<<domain E04GCFA e04gcfAnnaType>> -<<domain E04JAFA e04jafAnnaType>> -<<domain E04MBFA e04mbfAnnaType>> -<<domain E04NAFA e04nafAnnaType>> -<<domain E04UCFA e04ucfAnnaType>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/exposed.lsp.pamphlet b/src/algebra/exposed.lsp.pamphlet index 4fde0560..5108f68d 100644 --- a/src/algebra/exposed.lsp.pamphlet +++ b/src/algebra/exposed.lsp.pamphlet @@ -452,35 +452,6 @@ (|WuWenTsunTriangularSet| . WUTSET) ) (|naglink| - (|Asp1| . ASP1) - (|Asp4| . ASP4) - (|Asp6| . ASP6) - (|Asp7| . ASP7) - (|Asp8| . ASP8) - (|Asp9| . ASP9) - (|Asp10| . ASP10) - (|Asp12| . ASP12) - (|Asp19| . ASP19) - (|Asp20| . ASP20) - (|Asp24| . ASP24) - (|Asp27| . ASP27) - (|Asp28| . ASP28) - (|Asp29| . ASP29) - (|Asp30| . ASP30) - (|Asp31| . ASP31) - (|Asp33| . ASP33) - (|Asp34| . ASP34) - (|Asp35| . ASP35) - (|Asp41| . ASP41) - (|Asp42| . ASP42) - (|Asp49| . ASP49) - (|Asp50| . ASP50) - (|Asp55| . ASP55) - (|Asp73| . ASP73) - (|Asp74| . ASP74) - (|Asp77| . ASP77) - (|Asp78| . ASP78) - (|Asp80| . ASP80) (|FortranCode| . FC) (|FortranCodePackage1| . FCPAK1) (|FortranExpression| . FEXPR) @@ -501,27 +472,6 @@ (|MachineFloat| . MFLOAT) (|MachineInteger| . MINT) (|MultiVariableCalculusFunctions| . MCALCFN) - (|NagDiscreteFourierTransformInterfacePackage| . NAGDIS) - (|NagEigenInterfacePackage| . NAGEIG) - (|NAGLinkSupportPackage| . NAGSP) - (|NagOptimisationInterfacePackage| . NAGOPT) - (|NagQuadratureInterfacePackage| . NAGQUA) - (|NagResultChecks| . NAGRES) - (|NagSpecialFunctionsInterfacePackage| . NAGSPE) - (|NagPolynomialRootsPackage| . NAGC02) - (|NagRootFindingPackage| . NAGC05) - (|NagSeriesSummationPackage| . NAGC06) - (|NagIntegrationPackage| . NAGD01) - (|NagOrdinaryDifferentialEquationsPackage| . NAGD02) - (|NagPartialDifferentialEquationsPackage| . NAGD03) - (|NagInterpolationPackage| . NAGE01) - (|NagFittingPackage| . NAGE02) - (|NagOptimisationPackage| . NAGE04) - (|NagMatrixOperationsPackage| . NAGF01) - (|NagEigenPackage| . NAGF02) - (|NagLinearEquationSolvingPackage| . NAGF04) - (|NagLapack| . NAGF07) - (|NagSpecialFunctionsPackage| . NAGS) (|PackedHermitianSequence| . PACKED) (|Result| . RESULT) (|SimpleFortranProgram| . SFORT) @@ -531,41 +481,8 @@ (|TheSymbolTable| . SYMS) (|ThreeDimensionalMatrix| . M3D)) (|anna| - (|AnnaNumericalIntegrationPackage| . INTPACK) - (|AnnaNumericalOptimizationPackage| . OPTPACK) - (|AnnaOrdinaryDifferentialEquationPackage| . ODEPACK) - (|AnnaPartialDifferentialEquationPackage| . PDEPACK) (|AttributeButtons| . ATTRBUT) (|BasicFunctions| . BFUNCT) - (|d01ajfAnnaType| . D01AJFA) - (|d01akfAnnaType| . D01AKFA) - (|d01alfAnnaType| . D01ALFA) - (|d01amfAnnaType| . D01AMFA) - (|d01anfAnnaType| . D01ANFA) - (|d01apfAnnaType| . D01APFA) - (|d01aqfAnnaType| . D01AQFA) - (|d01asfAnnaType| . D01ASFA) - (|d01fcfAnnaType| . D01FCFA) - (|d01gbfAnnaType| . D01GBFA) - (|d01AgentsPackage| . D01AGNT) - (|d01TransformFunctionType| . D01TRNS) - (|d01WeightsPackage| . D01WGTS) - (|d02AgentsPackage| . D02AGNT) - (|d02bbfAnnaType| . D02BBFA) - (|d02bhfAnnaType| . D02BHFA) - (|d02cjfAnnaType| . D02CJFA) - (|d02ejfAnnaType| . D02EJFA) - (|d03AgentsPackage| . D03AGNT) - (|d03eefAnnaType| . D03EEFA) - (|d03fafAnnaType| . D03FAFA) - (|e04AgentsPackage| . E04AGNT) - (|e04dgfAnnaType| . E04DGFA) - (|e04fdfAnnaType| . E04FDFA) - (|e04gcfAnnaType| . E04GCFA) - (|e04jafAnnaType| . E04JAFA) - (|e04mbfAnnaType| . E04MBFA) - (|e04nafAnnaType| . E04NAFA) - (|e04ucfAnnaType| . E04UCFA) (|ExpertSystemContinuityPackage| . ESCONT) (|ExpertSystemContinuityPackage1| . ESCONT1) (|ExpertSystemToolsPackage| . ESTOOLS) @@ -577,8 +494,6 @@ (|NumericalOptimizationCategory| . OPTCAT) (|NumericalOptimizationProblem| . OPTPROB) (|NumericalPDEProblem| . PDEPROB) - (|ODEIntensityFunctionsTable| . ODEIFTBL) - (|IntegrationFunctionsTable| . INTFTBL) (|OrdinaryDifferentialEquationsSolverCategory| . ODECAT) (|PartialDifferentialEquationsSolverCategory| . PDECAT) (|RoutinesTable| . ROUTINE)) diff --git a/src/algebra/f01.spad.pamphlet b/src/algebra/f01.spad.pamphlet deleted file mode 100644 index c2146298..00000000 --- a/src/algebra/f01.spad.pamphlet +++ /dev/null @@ -1,343 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra f01.spad} -\author{Godfrey Nolan, Mike Dewar} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package NAGF01 NagMatrixOperationsPackage} -<<package NAGF01 NagMatrixOperationsPackage>>= -)abbrev package NAGF01 NagMatrixOperationsPackage -++ Author: Godfrey Nolan and Mike Dewar -++ Date Created: Jan 1994 -++ Date Last Updated: Thu May 12 17:45:15 1994 -++Description: -++This package uses the NAG Library to provide facilities for matrix factorizations and -++associated transformations. -++See \downlink{Manual Page}{manpageXXf01}. -NagMatrixOperationsPackage(): Exports == Implementation where - S ==> Symbol - FOP ==> FortranOutputStackPackage - - Exports ==> with - f01brf : (Integer,Integer,Integer,Integer,_ - DoubleFloat,Boolean,Boolean,List Boolean,Matrix DoubleFloat,Matrix Integer,Matrix Integer,Integer) -> Result - ++ f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail) - ++ factorizes a real sparse matrix. The routine either forms - ++ the LU factorization of a permutation of the entire matrix, or, - ++ optionally, first permutes the matrix to block lower triangular - ++ form and then only factorizes the diagonal blocks. - ++ See \downlink{Manual Page}{manpageXXf01brf}. - f01bsf : (Integer,Integer,Integer,Matrix Integer,_ - Matrix Integer,Matrix Integer,Matrix Integer,Boolean,DoubleFloat,Boolean,Matrix Integer,Matrix DoubleFloat,Integer) -> Result - ++ f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail) - ++ factorizes a real sparse matrix using the pivotal sequence - ++ previously obtained by F01BRF when a matrix of the same sparsity - ++ pattern was factorized. - ++ See \downlink{Manual Page}{manpageXXf01bsf}. - f01maf : (Integer,Integer,Integer,Integer,_ - List Boolean,Matrix DoubleFloat,Matrix Integer,Matrix Integer,DoubleFloat,DoubleFloat,Integer) -> Result - ++ f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail) - ++ computes an incomplete Cholesky factorization of a real - ++ sparse symmetric positive-definite matrix A. - ++ See \downlink{Manual Page}{manpageXXf01maf}. - f01mcf : (Integer,Matrix DoubleFloat,Integer,Matrix Integer,_ - Integer) -> Result - ++ f01mcf(n,avals,lal,nrow,ifail) - ++ computes the Cholesky factorization of a real symmetric - ++ positive-definite variable-bandwidth matrix. - ++ See \downlink{Manual Page}{manpageXXf01mcf}. - f01qcf : (Integer,Integer,Integer,Matrix DoubleFloat,_ - Integer) -> Result - ++ f01qcf(m,n,lda,a,ifail) - ++ finds the QR factorization of the real m by n matrix A, - ++ where m>=n. - ++ See \downlink{Manual Page}{manpageXXf01qcf}. - f01qdf : (String,String,Integer,Integer,_ - Matrix DoubleFloat,Integer,Matrix DoubleFloat,Integer,Integer,Matrix DoubleFloat,Integer) -> Result - ++ f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail) - ++ performs one of the transformations - ++ See \downlink{Manual Page}{manpageXXf01qdf}. - f01qef : (String,Integer,Integer,Integer,_ - Integer,Matrix DoubleFloat,Matrix DoubleFloat,Integer) -> Result - ++ f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail) - ++ returns the first ncolq columns of the real m by m - ++ orthogonal matrix Q, where Q is given as the product of - ++ Householder transformation matrices. - ++ See \downlink{Manual Page}{manpageXXf01qef}. - f01rcf : (Integer,Integer,Integer,Matrix Complex DoubleFloat,_ - Integer) -> Result - ++ f01rcf(m,n,lda,a,ifail) - ++ finds the QR factorization of the complex m by n matrix A, - ++ where m>=n. - ++ See \downlink{Manual Page}{manpageXXf01rcf}. - f01rdf : (String,String,Integer,Integer,_ - Matrix Complex DoubleFloat,Integer,Matrix Complex DoubleFloat,Integer,Integer,Matrix Complex DoubleFloat,Integer) -> Result - ++ f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail) - ++ performs one of the transformations - ++ See \downlink{Manual Page}{manpageXXf01rdf}. - f01ref : (String,Integer,Integer,Integer,_ - Integer,Matrix Complex DoubleFloat,Matrix Complex DoubleFloat,Integer) -> Result - ++ f01ref(wheret,m,n,ncolq,lda,theta,a,ifail) - ++ returns the first ncolq columns of the complex m by m - ++ unitary matrix Q, where Q is given as the product of Householder - ++ transformation matrices. - ++ See \downlink{Manual Page}{manpageXXf01ref}. - Implementation ==> add - - import Lisp - import DoubleFloat - import Any - import Record - import Integer - import Matrix DoubleFloat - import Boolean - import NAGLinkSupportPackage - import AnyFunctions1(Integer) - import AnyFunctions1(DoubleFloat) - import AnyFunctions1(Boolean) - import AnyFunctions1(String) - import AnyFunctions1(List Boolean) - import AnyFunctions1(Matrix DoubleFloat) - import AnyFunctions1(Matrix Complex DoubleFloat) - import AnyFunctions1(Matrix Integer) - - - f01brf(nArg:Integer,nzArg:Integer,licnArg:Integer,_ - lirnArg:Integer,pivotArg:DoubleFloat,lblockArg:Boolean,_ - growArg:Boolean,abortArg:List Boolean,aArg:Matrix DoubleFloat,_ - irnArg:Matrix Integer,icnArg:Matrix Integer,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f01brf",_ - ["n"::S,"nz"::S,"licn"::S,"lirn"::S,"pivot"::S_ - ,"lblock"::S,"grow"::S,"ifail"::S,"abort"::S,"ikeep"::S,"w"::S,"idisp"::S,"a"::S_ - ,"irn"::S,"icn"::S,"iw"::S]$Lisp,_ - ["ikeep"::S,"w"::S,"idisp"::S,"iw"::S]$Lisp,_ - [["double"::S,"pivot"::S,["w"::S,"n"::S]$Lisp_ - ,["a"::S,"licn"::S]$Lisp]$Lisp_ - ,["integer"::S,"n"::S,"nz"::S,"licn"::S,"lirn"::S_ - ,["ikeep"::S,["*"::S,5$Lisp,"n"::S]$Lisp]$Lisp,["idisp"::S,10$Lisp]$Lisp,["irn"::S,"lirn"::S]$Lisp,["icn"::S,"licn"::S]$Lisp_ - ,"ifail"::S,["iw"::S,["*"::S,8$Lisp,"n"::S]$Lisp]$Lisp]$Lisp_ - ,["logical"::S,"lblock"::S,"grow"::S,["abort"::S,4$Lisp]$Lisp]$Lisp_ - ]$Lisp,_ - ["ikeep"::S,"w"::S,"idisp"::S,"a"::S,"irn"::S,"icn"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,nzArg::Any,licnArg::Any,lirnArg::Any,pivotArg::Any,lblockArg::Any,growArg::Any,ifailArg::Any,abortArg::Any,aArg::Any,irnArg::Any,icnArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f01bsf(nArg:Integer,nzArg:Integer,licnArg:Integer,_ - ivectArg:Matrix Integer,jvectArg:Matrix Integer,icnArg:Matrix Integer,_ - ikeepArg:Matrix Integer,growArg:Boolean,etaArg:DoubleFloat,_ - abortArg:Boolean,idispArg:Matrix Integer,avalsArg:Matrix DoubleFloat,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f01bsf",_ - ["n"::S,"nz"::S,"licn"::S,"grow"::S,"eta"::S_ - ,"abort"::S,"rpmin"::S,"ifail"::S,"ivect"::S,"jvect"::S,"icn"::S,"ikeep"::S,"idisp"::S_ - ,"w"::S,"avals"::S,"iw"::S]$Lisp,_ - ["w"::S,"rpmin"::S,"iw"::S]$Lisp,_ - [["double"::S,"eta"::S,["w"::S,"n"::S]$Lisp_ - ,"rpmin"::S,["avals"::S,"licn"::S]$Lisp]$Lisp_ - ,["integer"::S,"n"::S,"nz"::S,"licn"::S,["ivect"::S,"nz"::S]$Lisp_ - ,["jvect"::S,"nz"::S]$Lisp,["icn"::S,"licn"::S]$Lisp,["ikeep"::S,["*"::S,5$Lisp,"n"::S]$Lisp]$Lisp_ - ,["idisp"::S,2$Lisp]$Lisp,"ifail"::S,["iw"::S,["*"::S,8$Lisp,"n"::S]$Lisp]$Lisp]$Lisp_ - ,["logical"::S,"grow"::S,"abort"::S]$Lisp_ - ]$Lisp,_ - ["w"::S,"rpmin"::S,"avals"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,nzArg::Any,licnArg::Any,growArg::Any,etaArg::Any,abortArg::Any,ifailArg::Any,ivectArg::Any,jvectArg::Any,icnArg::Any,ikeepArg::Any,idispArg::Any,avalsArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f01maf(nArg:Integer,nzArg:Integer,licnArg:Integer,_ - lirnArg:Integer,abortArg:List Boolean,avalsArg:Matrix DoubleFloat,_ - irnArg:Matrix Integer,icnArg:Matrix Integer,droptlArg:DoubleFloat,_ - denswArg:DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f01maf",_ - ["n"::S,"nz"::S,"licn"::S,"lirn"::S,"droptl"::S_ - ,"densw"::S,"ifail"::S,"abort"::S,"wkeep"::S,"ikeep"::S,"inform"::S,"avals"::S_ - ,"irn"::S,"icn"::S,"iwork"::S]$Lisp,_ - ["wkeep"::S,"ikeep"::S,"inform"::S,"iwork"::S]$Lisp,_ - [["double"::S,["wkeep"::S,["*"::S,3$Lisp,"n"::S]$Lisp]$Lisp_ - ,["avals"::S,"licn"::S]$Lisp,"droptl"::S,"densw"::S]$Lisp_ - ,["integer"::S,"n"::S,"nz"::S,"licn"::S,"lirn"::S_ - ,["ikeep"::S,["*"::S,2$Lisp,"n"::S]$Lisp]$Lisp,["inform"::S,4$Lisp]$Lisp,["irn"::S,"lirn"::S]$Lisp,["icn"::S,"licn"::S]$Lisp_ - ,"ifail"::S,["iwork"::S,["*"::S,6$Lisp,"n"::S]$Lisp]$Lisp]$Lisp_ - ,["logical"::S,["abort"::S,3$Lisp]$Lisp]$Lisp_ - ]$Lisp,_ - ["wkeep"::S,"ikeep"::S,"inform"::S,"avals"::S,"irn"::S,"icn"::S,"droptl"::S,"densw"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,nzArg::Any,licnArg::Any,lirnArg::Any,droptlArg::Any,denswArg::Any,ifailArg::Any,abortArg::Any,avalsArg::Any,irnArg::Any,icnArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f01mcf(nArg:Integer,avalsArg:Matrix DoubleFloat,lalArg:Integer,_ - nrowArg:Matrix Integer,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f01mcf",_ - ["n"::S,"lal"::S,"ifail"::S,"avals"::S,"nrow"::S,"al"::S,"d"::S]$Lisp,_ - ["al"::S,"d"::S]$Lisp,_ - [["double"::S,["avals"::S,"lal"::S]$Lisp,["al"::S,"lal"::S]$Lisp_ - ,["d"::S,"n"::S]$Lisp]$Lisp_ - ,["integer"::S,"n"::S,"lal"::S,["nrow"::S,"n"::S]$Lisp_ - ,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["al"::S,"d"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,lalArg::Any,ifailArg::Any,avalsArg::Any,nrowArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f01qcf(mArg:Integer,nArg:Integer,ldaArg:Integer,_ - aArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f01qcf",_ - ["m"::S,"n"::S,"lda"::S,"ifail"::S,"zeta"::S,"a"::S]$Lisp,_ - ["zeta"::S]$Lisp,_ - [["double"::S,["zeta"::S,"n"::S]$Lisp,["a"::S,"lda"::S,"n"::S]$Lisp_ - ]$Lisp_ - ,["integer"::S,"m"::S,"n"::S,"lda"::S,"ifail"::S_ - ]$Lisp_ - ]$Lisp,_ - ["zeta"::S,"a"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,nArg::Any,ldaArg::Any,ifailArg::Any,aArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f01qdf(transArg:String,wheretArg:String,mArg:Integer,_ - nArg:Integer,aArg:Matrix DoubleFloat,ldaArg:Integer,_ - zetaArg:Matrix DoubleFloat,ncolbArg:Integer,ldbArg:Integer,_ - bArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f01qdf",_ - ["trans"::S,"wheret"::S,"m"::S,"n"::S,"lda"::S_ - ,"ncolb"::S,"ldb"::S,"ifail"::S,"a"::S,"zeta"::S,"b"::S,"work"::S]$Lisp,_ - ["work"::S]$Lisp,_ - [["double"::S,["a"::S,"lda"::S,"n"::S]$Lisp_ - ,["zeta"::S,"n"::S]$Lisp,["b"::S,"ldb"::S,"ncolb"::S]$Lisp,["work"::S,"ncolb"::S]$Lisp]$Lisp_ - ,["integer"::S,"m"::S,"n"::S,"lda"::S,"ncolb"::S_ - ,"ldb"::S,"ifail"::S]$Lisp_ - ,["character"::S,"trans"::S,"wheret"::S]$Lisp_ - ]$Lisp,_ - ["b"::S,"ifail"::S]$Lisp,_ - [([transArg::Any,wheretArg::Any,mArg::Any,nArg::Any,ldaArg::Any,ncolbArg::Any,ldbArg::Any,ifailArg::Any,aArg::Any,zetaArg::Any,bArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f01qef(wheretArg:String,mArg:Integer,nArg:Integer,_ - ncolqArg:Integer,ldaArg:Integer,zetaArg:Matrix DoubleFloat,_ - aArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f01qef",_ - ["wheret"::S,"m"::S,"n"::S,"ncolq"::S,"lda"::S_ - ,"ifail"::S,"zeta"::S,"a"::S,"work"::S]$Lisp,_ - ["work"::S]$Lisp,_ - [["double"::S,["zeta"::S,"n"::S]$Lisp,["a"::S,"lda"::S,"ncolq"::S]$Lisp_ - ,["work"::S,"ncolq"::S]$Lisp]$Lisp_ - ,["integer"::S,"m"::S,"n"::S,"ncolq"::S,"lda"::S_ - ,"ifail"::S]$Lisp_ - ,["character"::S,"wheret"::S]$Lisp_ - ]$Lisp,_ - ["a"::S,"ifail"::S]$Lisp,_ - [([wheretArg::Any,mArg::Any,nArg::Any,ncolqArg::Any,ldaArg::Any,ifailArg::Any,zetaArg::Any,aArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f01rcf(mArg:Integer,nArg:Integer,ldaArg:Integer,_ - aArg:Matrix Complex DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f01rcf",_ - ["m"::S,"n"::S,"lda"::S,"ifail"::S,"theta"::S,"a"::S]$Lisp,_ - ["theta"::S]$Lisp,_ - [["integer"::S,"m"::S,"n"::S,"lda"::S,"ifail"::S_ - ]$Lisp_ - ,["double complex"::S,["theta"::S,"n"::S]$Lisp,["a"::S,"lda"::S,"n"::S]$Lisp]$Lisp_ - ]$Lisp,_ - ["theta"::S,"a"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,nArg::Any,ldaArg::Any,ifailArg::Any,aArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f01rdf(transArg:String,wheretArg:String,mArg:Integer,_ - nArg:Integer,aArg:Matrix Complex DoubleFloat,ldaArg:Integer,_ - thetaArg:Matrix Complex DoubleFloat,ncolbArg:Integer,ldbArg:Integer,_ - bArg:Matrix Complex DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f01rdf",_ - ["trans"::S,"wheret"::S,"m"::S,"n"::S,"lda"::S_ - ,"ncolb"::S,"ldb"::S,"ifail"::S,"a"::S,"theta"::S,"b"::S,"work"::S]$Lisp,_ - ["work"::S]$Lisp,_ - [["integer"::S,"m"::S,"n"::S,"lda"::S,"ncolb"::S_ - ,"ldb"::S,"ifail"::S]$Lisp_ - ,["character"::S,"trans"::S,"wheret"::S]$Lisp_ - ,["double complex"::S,["a"::S,"lda"::S,"n"::S]$Lisp,["theta"::S,"n"::S]$Lisp,["b"::S,"ldb"::S,"ncolb"::S]$Lisp,["work"::S,"ncolb"::S]$Lisp]$Lisp_ - ]$Lisp,_ - ["b"::S,"ifail"::S]$Lisp,_ - [([transArg::Any,wheretArg::Any,mArg::Any,nArg::Any,ldaArg::Any,ncolbArg::Any,ldbArg::Any,ifailArg::Any,aArg::Any,thetaArg::Any,bArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f01ref(wheretArg:String,mArg:Integer,nArg:Integer,_ - ncolqArg:Integer,ldaArg:Integer,thetaArg:Matrix Complex DoubleFloat,_ - aArg:Matrix Complex DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f01ref",_ - ["wheret"::S,"m"::S,"n"::S,"ncolq"::S,"lda"::S_ - ,"ifail"::S,"theta"::S,"a"::S,"work"::S]$Lisp,_ - ["work"::S]$Lisp,_ - [["integer"::S,"m"::S,"n"::S,"ncolq"::S,"lda"::S_ - ,"ifail"::S]$Lisp_ - ,["character"::S,"wheret"::S]$Lisp_ - ,["double complex"::S,["theta"::S,"n"::S]$Lisp,["a"::S,"lda"::S,"n"::S]$Lisp,["work"::S,"ncolq"::S]$Lisp]$Lisp_ - ]$Lisp,_ - ["a"::S,"ifail"::S]$Lisp,_ - [([wheretArg::Any,mArg::Any,nArg::Any,ncolqArg::Any,ldaArg::Any,ifailArg::Any,thetaArg::Any,aArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package NAGF01 NagMatrixOperationsPackage>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/f02.spad.pamphlet b/src/algebra/f02.spad.pamphlet deleted file mode 100644 index 3a9be77d..00000000 --- a/src/algebra/f02.spad.pamphlet +++ /dev/null @@ -1,565 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra f02.spad} -\author{Godfrey Nolan, Mike Dewar} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package NAGF02 NagEigenPackage} -<<package NAGF02 NagEigenPackage>>= -)abbrev package NAGF02 NagEigenPackage -++ Author: Godfrey Nolan and Mike Dewar -++ Date Created: Jan 1994 -++ Date Last Updated: Thu May 12 17:45:20 1994 -++Description: -++This package uses the NAG Library to compute -++\begin{items} -++\item eigenvalues and eigenvectors of a matrix -++\item eigenvalues and eigenvectors of generalized matrix -++eigenvalue problems -++\item singular values and singular vectors of a matrix. -++\end{items} -++See \downlink{Manual Page}{manpageXXf02}. - -NagEigenPackage(): Exports == Implementation where - S ==> Symbol - FOP ==> FortranOutputStackPackage - - Exports ==> with - f02aaf : (Integer,Integer,Matrix DoubleFloat,Integer) -> Result - ++ f02aaf(ia,n,a,ifail) - ++ calculates all the eigenvalue. - ++ See \downlink{Manual Page}{manpageXXf02aaf}. - f02abf : (Matrix DoubleFloat,Integer,Integer,Integer,_ - Integer) -> Result - ++ f02abf(a,ia,n,iv,ifail) - ++ calculates all the eigenvalues of a real - ++ symmetric matrix. - ++ See \downlink{Manual Page}{manpageXXf02abf}. - f02adf : (Integer,Integer,Integer,Matrix DoubleFloat,_ - Matrix DoubleFloat,Integer) -> Result - ++ f02adf(ia,ib,n,a,b,ifail) - ++ calculates all the eigenvalues of Ax=(lambda)Bx, where A - ++ is a real symmetric matrix and B is a real symmetric positive- - ++ definite matrix. - ++ See \downlink{Manual Page}{manpageXXf02adf}. - f02aef : (Integer,Integer,Integer,Integer,_ - Matrix DoubleFloat,Matrix DoubleFloat,Integer) -> Result - ++ f02aef(ia,ib,n,iv,a,b,ifail) - ++ calculates all the eigenvalues of - ++ Ax=(lambda)Bx, where A is a real symmetric matrix and B is a - ++ real symmetric positive-definite matrix. - ++ See \downlink{Manual Page}{manpageXXf02aef}. - f02aff : (Integer,Integer,Matrix DoubleFloat,Integer) -> Result - ++ f02aff(ia,n,a,ifail) - ++ calculates all the eigenvalues of a real unsymmetric - ++ matrix. - ++ See \downlink{Manual Page}{manpageXXf02aff}. - f02agf : (Integer,Integer,Integer,Integer,_ - Matrix DoubleFloat,Integer) -> Result - ++ f02agf(ia,n,ivr,ivi,a,ifail) - ++ calculates all the eigenvalues of a real - ++ unsymmetric matrix. - ++ See \downlink{Manual Page}{manpageXXf02agf}. - f02ajf : (Integer,Integer,Integer,Matrix DoubleFloat,_ - Matrix DoubleFloat,Integer) -> Result - ++ f02ajf(iar,iai,n,ar,ai,ifail) - ++ calculates all the eigenvalue. - ++ See \downlink{Manual Page}{manpageXXf02ajf}. - f02akf : (Integer,Integer,Integer,Integer,_ - Integer,Matrix DoubleFloat,Matrix DoubleFloat,Integer) -> Result - ++ f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail) - ++ calculates all the eigenvalues of a - ++ complex matrix. - ++ See \downlink{Manual Page}{manpageXXf02akf}. - f02awf : (Integer,Integer,Integer,Matrix DoubleFloat,_ - Matrix DoubleFloat,Integer) -> Result - ++ f02awf(iar,iai,n,ar,ai,ifail) - ++ calculates all the eigenvalues of a complex Hermitian - ++ matrix. - ++ See \downlink{Manual Page}{manpageXXf02awf}. - f02axf : (Matrix DoubleFloat,Integer,Matrix DoubleFloat,Integer,_ - Integer,Integer,Integer,Integer) -> Result - ++ f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail) - ++ calculates all the eigenvalues of a - ++ complex Hermitian matrix. - ++ See \downlink{Manual Page}{manpageXXf02axf}. - f02bbf : (Integer,Integer,DoubleFloat,DoubleFloat,_ - Integer,Integer,Matrix DoubleFloat,Integer) -> Result - ++ f02bbf(ia,n,alb,ub,m,iv,a,ifail) - ++ calculates selected eigenvalues of a real - ++ symmetric matrix by reduction to tridiagonal form, bisection and - ++ inverse iteration, where the selected eigenvalues lie within a - ++ given interval. - ++ See \downlink{Manual Page}{manpageXXf02bbf}. - f02bjf : (Integer,Integer,Integer,DoubleFloat,_ - Boolean,Integer,Matrix DoubleFloat,Matrix DoubleFloat,Integer) -> Result - ++ f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail) - ++ calculates all the eigenvalues and, if required, all the - ++ eigenvectors of the generalized eigenproblem Ax=(lambda)Bx - ++ where A and B are real, square matrices, using the QZ algorithm. - ++ See \downlink{Manual Page}{manpageXXf02bjf}. - f02fjf : (Integer,Integer,DoubleFloat,Integer,_ - Integer,Integer,Integer,Integer,Integer,Integer,Matrix DoubleFloat,Integer,Union(fn:FileName,fp:Asp27(DOT)),Union(fn:FileName,fp:Asp28(IMAGE))) -> Result - ++ f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image) - ++ finds eigenvalues of a real sparse symmetric - ++ or generalized symmetric eigenvalue problem. - ++ See \downlink{Manual Page}{manpageXXf02fjf}. - f02fjf : (Integer,Integer,DoubleFloat,Integer,_ - Integer,Integer,Integer,Integer,Integer,Integer,Matrix DoubleFloat,Integer,Union(fn:FileName,fp:Asp27(DOT)),Union(fn:FileName,fp:Asp28(IMAGE)),FileName) -> Result - ++ f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit) - ++ finds eigenvalues of a real sparse symmetric - ++ or generalized symmetric eigenvalue problem. - ++ See \downlink{Manual Page}{manpageXXf02fjf}. - f02wef : (Integer,Integer,Integer,Integer,_ - Integer,Boolean,Integer,Boolean,Integer,Matrix DoubleFloat,Matrix DoubleFloat,Integer) -> Result - ++ f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail) - ++ returns all, or part, of the singular value decomposition - ++ of a general real matrix. - ++ See \downlink{Manual Page}{manpageXXf02wef}. - f02xef : (Integer,Integer,Integer,Integer,_ - Integer,Boolean,Integer,Boolean,Integer,Matrix Complex DoubleFloat,Matrix Complex DoubleFloat,Integer) -> Result - ++ f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail) - ++ returns all, or part, of the singular value decomposition - ++ of a general complex matrix. - ++ See \downlink{Manual Page}{manpageXXf02xef}. - Implementation ==> add - - import Lisp - import DoubleFloat - import Any - import Record - import Integer - import Matrix DoubleFloat - import Boolean - import NAGLinkSupportPackage - import FortranPackage - import AnyFunctions1(Integer) - import AnyFunctions1(Boolean) - import AnyFunctions1(Matrix DoubleFloat) - import AnyFunctions1(Matrix Complex DoubleFloat) - import AnyFunctions1(DoubleFloat) - - - f02aaf(iaArg:Integer,nArg:Integer,aArg:Matrix DoubleFloat,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f02aaf",_ - ["ia"::S,"n"::S,"ifail"::S,"r"::S,"a"::S,"e"::S]$Lisp,_ - ["r"::S,"e"::S]$Lisp,_ - [["double"::S,["r"::S,"n"::S]$Lisp,["a"::S,"ia"::S,"n"::S]$Lisp_ - ,["e"::S,"n"::S]$Lisp]$Lisp_ - ,["integer"::S,"ia"::S,"n"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["r"::S,"a"::S,"ifail"::S]$Lisp,_ - [([iaArg::Any,nArg::Any,ifailArg::Any,aArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f02abf(aArg:Matrix DoubleFloat,iaArg:Integer,nArg:Integer,_ - ivArg:Integer,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f02abf",_ - ["ia"::S,"n"::S,"iv"::S,"ifail"::S,"a"::S,"r"::S,"v"::S,"e"::S]$Lisp,_ - ["r"::S,"v"::S,"e"::S]$Lisp,_ - [["double"::S,["a"::S,"ia"::S,"n"::S]$Lisp_ - ,["r"::S,"n"::S]$Lisp,["v"::S,"iv"::S,"n"::S]$Lisp,["e"::S,"n"::S]$Lisp]$Lisp_ - ,["integer"::S,"ia"::S,"n"::S,"iv"::S,"ifail"::S_ - ]$Lisp_ - ]$Lisp,_ - ["r"::S,"v"::S,"ifail"::S]$Lisp,_ - [([iaArg::Any,nArg::Any,ivArg::Any,ifailArg::Any,aArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f02adf(iaArg:Integer,ibArg:Integer,nArg:Integer,_ - aArg:Matrix DoubleFloat,bArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f02adf",_ - ["ia"::S,"ib"::S,"n"::S,"ifail"::S,"r"::S,"a"::S,"b"::S,"de"::S]$Lisp,_ - ["r"::S,"de"::S]$Lisp,_ - [["double"::S,["r"::S,"n"::S]$Lisp,["a"::S,"ia"::S,"n"::S]$Lisp_ - ,["b"::S,"ib"::S,"n"::S]$Lisp,["de"::S,"n"::S]$Lisp]$Lisp_ - ,["integer"::S,"ia"::S,"ib"::S,"n"::S,"ifail"::S_ - ]$Lisp_ - ]$Lisp,_ - ["r"::S,"a"::S,"b"::S,"ifail"::S]$Lisp,_ - [([iaArg::Any,ibArg::Any,nArg::Any,ifailArg::Any,aArg::Any,bArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f02aef(iaArg:Integer,ibArg:Integer,nArg:Integer,_ - ivArg:Integer,aArg:Matrix DoubleFloat,bArg:Matrix DoubleFloat,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f02aef",_ - ["ia"::S,"ib"::S,"n"::S,"iv"::S,"ifail"::S_ - ,"r"::S,"v"::S,"a"::S,"b"::S,"dl"::S_ - ,"e"::S]$Lisp,_ - ["r"::S,"v"::S,"dl"::S,"e"::S]$Lisp,_ - [["double"::S,["r"::S,"n"::S]$Lisp,["v"::S,"iv"::S,"n"::S]$Lisp_ - ,["a"::S,"ia"::S,"n"::S]$Lisp,["b"::S,"ib"::S,"n"::S]$Lisp,["dl"::S,"n"::S]$Lisp,["e"::S,"n"::S]$Lisp_ - ]$Lisp_ - ,["integer"::S,"ia"::S,"ib"::S,"n"::S,"iv"::S_ - ,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["r"::S,"v"::S,"a"::S,"b"::S,"ifail"::S]$Lisp,_ - [([iaArg::Any,ibArg::Any,nArg::Any,ivArg::Any,ifailArg::Any,aArg::Any,bArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f02aff(iaArg:Integer,nArg:Integer,aArg:Matrix DoubleFloat,_ - ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f02aff",_ - ["ia"::S,"n"::S,"ifail"::S,"rr"::S,"ri"::S,"intger"::S,"a"::S]$Lisp,_ - ["rr"::S,"ri"::S,"intger"::S]$Lisp,_ - [["double"::S,["rr"::S,"n"::S]$Lisp,["ri"::S,"n"::S]$Lisp_ - ,["a"::S,"ia"::S,"n"::S]$Lisp]$Lisp_ - ,["integer"::S,"ia"::S,"n"::S,["intger"::S,"n"::S]$Lisp_ - ,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["rr"::S,"ri"::S,"intger"::S,"a"::S,"ifail"::S]$Lisp,_ - [([iaArg::Any,nArg::Any,ifailArg::Any,aArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f02agf(iaArg:Integer,nArg:Integer,ivrArg:Integer,_ - iviArg:Integer,aArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f02agf",_ - ["ia"::S,"n"::S,"ivr"::S,"ivi"::S,"ifail"::S_ - ,"rr"::S,"ri"::S,"vr"::S,"vi"::S,"intger"::S_ - ,"a"::S]$Lisp,_ - ["rr"::S,"ri"::S,"vr"::S,"vi"::S,"intger"::S]$Lisp,_ - [["double"::S,["rr"::S,"n"::S]$Lisp,["ri"::S,"n"::S]$Lisp_ - ,["vr"::S,"ivr"::S,"n"::S]$Lisp,["vi"::S,"ivi"::S,"n"::S]$Lisp,["a"::S,"ia"::S,"n"::S]$Lisp]$Lisp_ - ,["integer"::S,"ia"::S,"n"::S,"ivr"::S,"ivi"::S_ - ,["intger"::S,"n"::S]$Lisp,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["rr"::S,"ri"::S,"vr"::S,"vi"::S,"intger"::S,"a"::S,"ifail"::S]$Lisp,_ - [([iaArg::Any,nArg::Any,ivrArg::Any,iviArg::Any,ifailArg::Any,aArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f02ajf(iarArg:Integer,iaiArg:Integer,nArg:Integer,_ - arArg:Matrix DoubleFloat,aiArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f02ajf",_ - ["iar"::S,"iai"::S,"n"::S,"ifail"::S,"rr"::S,"ri"::S,"ar"::S,"ai"::S,"intger"::S_ - ]$Lisp,_ - ["rr"::S,"ri"::S,"intger"::S]$Lisp,_ - [["double"::S,["rr"::S,"n"::S]$Lisp,["ri"::S,"n"::S]$Lisp_ - ,["ar"::S,"iar"::S,"n"::S]$Lisp,["ai"::S,"iai"::S,"n"::S]$Lisp]$Lisp_ - ,["integer"::S,"iar"::S,"iai"::S,"n"::S,"ifail"::S_ - ,["intger"::S,"n"::S]$Lisp]$Lisp_ - ]$Lisp,_ - ["rr"::S,"ri"::S,"ar"::S,"ai"::S,"ifail"::S]$Lisp,_ - [([iarArg::Any,iaiArg::Any,nArg::Any,ifailArg::Any,arArg::Any,aiArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f02akf(iarArg:Integer,iaiArg:Integer,nArg:Integer,_ - ivrArg:Integer,iviArg:Integer,arArg:Matrix DoubleFloat,_ - aiArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f02akf",_ - ["iar"::S,"iai"::S,"n"::S,"ivr"::S,"ivi"::S_ - ,"ifail"::S,"rr"::S,"ri"::S,"vr"::S,"vi"::S,"ar"::S_ - ,"ai"::S,"intger"::S]$Lisp,_ - ["rr"::S,"ri"::S,"vr"::S,"vi"::S,"intger"::S]$Lisp,_ - [["double"::S,["rr"::S,"n"::S]$Lisp,["ri"::S,"n"::S]$Lisp_ - ,["vr"::S,"ivr"::S,"n"::S]$Lisp,["vi"::S,"ivi"::S,"n"::S]$Lisp,["ar"::S,"iar"::S,"n"::S]$Lisp,["ai"::S,"iai"::S,"n"::S]$Lisp_ - ]$Lisp_ - ,["integer"::S,"iar"::S,"iai"::S,"n"::S,"ivr"::S_ - ,"ivi"::S,"ifail"::S,["intger"::S,"n"::S]$Lisp]$Lisp_ - ]$Lisp,_ - ["rr"::S,"ri"::S,"vr"::S,"vi"::S,"ar"::S,"ai"::S,"ifail"::S]$Lisp,_ - [([iarArg::Any,iaiArg::Any,nArg::Any,ivrArg::Any,iviArg::Any,ifailArg::Any,arArg::Any,aiArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f02awf(iarArg:Integer,iaiArg:Integer,nArg:Integer,_ - arArg:Matrix DoubleFloat,aiArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f02awf",_ - ["iar"::S,"iai"::S,"n"::S,"ifail"::S,"r"::S,"ar"::S,"ai"::S,"wk1"::S,"wk2"::S_ - ,"wk3"::S]$Lisp,_ - ["r"::S,"wk1"::S,"wk2"::S,"wk3"::S]$Lisp,_ - [["double"::S,["r"::S,"n"::S]$Lisp,["ar"::S,"iar"::S,"n"::S]$Lisp_ - ,["ai"::S,"iai"::S,"n"::S]$Lisp,["wk1"::S,"n"::S]$Lisp,["wk2"::S,"n"::S]$Lisp,["wk3"::S,"n"::S]$Lisp_ - ]$Lisp_ - ,["integer"::S,"iar"::S,"iai"::S,"n"::S,"ifail"::S_ - ]$Lisp_ - ]$Lisp,_ - ["r"::S,"ar"::S,"ai"::S,"ifail"::S]$Lisp,_ - [([iarArg::Any,iaiArg::Any,nArg::Any,ifailArg::Any,arArg::Any,aiArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f02axf(arArg:Matrix DoubleFloat,iarArg:Integer,aiArg:Matrix DoubleFloat,_ - iaiArg:Integer,nArg:Integer,ivrArg:Integer,_ - iviArg:Integer,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f02axf",_ - ["iar"::S,"iai"::S,"n"::S,"ivr"::S,"ivi"::S_ - ,"ifail"::S,"ar"::S,"ai"::S,"r"::S,"vr"::S,"vi"::S_ - ,"wk1"::S,"wk2"::S,"wk3"::S]$Lisp,_ - ["r"::S,"vr"::S,"vi"::S,"wk1"::S,"wk2"::S,"wk3"::S]$Lisp,_ - [["double"::S,["ar"::S,"iar"::S,"n"::S]$Lisp_ - ,["ai"::S,"iai"::S,"n"::S]$Lisp,["r"::S,"n"::S]$Lisp,["vr"::S,"ivr"::S,"n"::S]$Lisp,["vi"::S,"ivi"::S,"n"::S]$Lisp,["wk1"::S,"n"::S]$Lisp_ - ,["wk2"::S,"n"::S]$Lisp,["wk3"::S,"n"::S]$Lisp]$Lisp_ - ,["integer"::S,"iar"::S,"iai"::S,"n"::S,"ivr"::S_ - ,"ivi"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["r"::S,"vr"::S,"vi"::S,"ifail"::S]$Lisp,_ - [([iarArg::Any,iaiArg::Any,nArg::Any,ivrArg::Any,iviArg::Any,ifailArg::Any,arArg::Any,aiArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f02bbf(iaArg:Integer,nArg:Integer,albArg:DoubleFloat,_ - ubArg:DoubleFloat,mArg:Integer,ivArg:Integer,_ - aArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f02bbf",_ - ["ia"::S,"n"::S,"alb"::S,"ub"::S,"m"::S_ - ,"iv"::S,"mm"::S,"ifail"::S,"r"::S,"v"::S,"icount"::S,"a"::S,"d"::S_ - ,"e"::S,"e2"::S,"x"::S,"g"::S,"c"::S_ - ]$Lisp,_ - ["mm"::S,"r"::S,"v"::S,"icount"::S,"d"::S,"e"::S,"e2"::S,"x"::S,"g"::S,"c"::S]$Lisp,_ - [["double"::S,"alb"::S,"ub"::S,["r"::S,"m"::S]$Lisp_ - ,["v"::S,"iv"::S,"m"::S]$Lisp,["a"::S,"ia"::S,"n"::S]$Lisp,["d"::S,"n"::S]$Lisp,["e"::S,"n"::S]$Lisp,["e2"::S,"n"::S]$Lisp_ - ,["x"::S,"n"::S,7$Lisp]$Lisp,["g"::S,"n"::S]$Lisp]$Lisp_ - ,["integer"::S,"ia"::S,"n"::S,"m"::S,"iv"::S_ - ,"mm"::S,["icount"::S,"m"::S]$Lisp,"ifail"::S]$Lisp_ - ,["logical"::S,["c"::S,"n"::S]$Lisp]$Lisp_ - ]$Lisp,_ - ["mm"::S,"r"::S,"v"::S,"icount"::S,"a"::S,"ifail"::S]$Lisp,_ - [([iaArg::Any,nArg::Any,albArg::Any,ubArg::Any,mArg::Any,ivArg::Any,ifailArg::Any,aArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f02bjf(nArg:Integer,iaArg:Integer,ibArg:Integer,_ - eps1Arg:DoubleFloat,matvArg:Boolean,ivArg:Integer,_ - aArg:Matrix DoubleFloat,bArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f02bjf",_ - ["n"::S,"ia"::S,"ib"::S,"eps1"::S,"matv"::S_ - ,"iv"::S,"ifail"::S,"alfr"::S,"alfi"::S,"beta"::S,"v"::S,"iter"::S_ - ,"a"::S,"b"::S]$Lisp,_ - ["alfr"::S,"alfi"::S,"beta"::S,"v"::S,"iter"::S]$Lisp,_ - [["double"::S,"eps1"::S,["alfr"::S,"n"::S]$Lisp_ - ,["alfi"::S,"n"::S]$Lisp,["beta"::S,"n"::S]$Lisp,["v"::S,"iv"::S,"n"::S]$Lisp,["a"::S,"ia"::S,"n"::S]$Lisp,["b"::S,"ib"::S,"n"::S]$Lisp_ - ]$Lisp_ - ,["integer"::S,"n"::S,"ia"::S,"ib"::S,"iv"::S_ - ,["iter"::S,"n"::S]$Lisp,"ifail"::S]$Lisp_ - ,["logical"::S,"matv"::S]$Lisp_ - ]$Lisp,_ - ["alfr"::S,"alfi"::S,"beta"::S,"v"::S,"iter"::S,"a"::S,"b"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,iaArg::Any,ibArg::Any,eps1Arg::Any,matvArg::Any,ivArg::Any,ifailArg::Any,aArg::Any,bArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f02fjf(nArg:Integer,kArg:Integer,tolArg:DoubleFloat,_ - novecsArg:Integer,nrxArg:Integer,lworkArg:Integer,_ - lrworkArg:Integer,liworkArg:Integer,mArg:Integer,_ - noitsArg:Integer,xArg:Matrix DoubleFloat,ifailArg:Integer,_ - dotArg:Union(fn:FileName,fp:Asp27(DOT)),imageArg:Union(fn:FileName,fp:Asp28(IMAGE))): Result == - pushFortranOutputStack(dotFilename := aspFilename "dot")$FOP - if dotArg case fn - then outputAsFortran(dotArg.fn) - else outputAsFortran(dotArg.fp) - popFortranOutputStack()$FOP - pushFortranOutputStack(imageFilename := aspFilename "image")$FOP - if imageArg case fn - then outputAsFortran(imageArg.fn) - else outputAsFortran(imageArg.fp) - popFortranOutputStack()$FOP - pushFortranOutputStack(monitFilename := aspFilename "monit")$FOP - outputAsFortran()$Asp29(MONIT) - popFortranOutputStack()$FOP - [(invokeNagman([dotFilename,imageFilename,monitFilename]$Lisp,_ - "f02fjf",_ - ["n"::S,"k"::S,"tol"::S,"novecs"::S,"nrx"::S_ - ,"lwork"::S,"lrwork"::S,"liwork"::S,"m"::S,"noits"::S_ - ,"ifail"::S,"dot"::S,"image"::S,"monit"::S,"d"::S,"x"::S,"work"::S,"rwork"::S,"iwork"::S_ - ]$Lisp,_ - ["d"::S,"work"::S,"rwork"::S,"iwork"::S,"dot"::S,"image"::S,"monit"::S]$Lisp,_ - [["double"::S,"tol"::S,["d"::S,"k"::S]$Lisp_ - ,["x"::S,"nrx"::S,"k"::S]$Lisp,["work"::S,"lwork"::S]$Lisp,["rwork"::S,"lrwork"::S]$Lisp,"dot"::S,"image"::S,"monit"::S_ - ]$Lisp_ - ,["integer"::S,"n"::S,"k"::S,"novecs"::S,"nrx"::S_ - ,"lwork"::S,"lrwork"::S,"liwork"::S,"m"::S,"noits"::S,"ifail"::S,["iwork"::S,"liwork"::S]$Lisp]$Lisp_ - ]$Lisp,_ - ["d"::S,"m"::S,"noits"::S,"x"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,kArg::Any,tolArg::Any,novecsArg::Any,nrxArg::Any,lworkArg::Any,lrworkArg::Any,liworkArg::Any,mArg::Any,noitsArg::Any,ifailArg::Any,xArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f02fjf(nArg:Integer,kArg:Integer,tolArg:DoubleFloat,_ - novecsArg:Integer,nrxArg:Integer,lworkArg:Integer,_ - lrworkArg:Integer,liworkArg:Integer,mArg:Integer,_ - noitsArg:Integer,xArg:Matrix DoubleFloat,ifailArg:Integer,_ - dotArg:Union(fn:FileName,fp:Asp27(DOT)),imageArg:Union(fn:FileName,fp:Asp28(IMAGE)),monitArg:FileName): Result == - pushFortranOutputStack(dotFilename := aspFilename "dot")$FOP - if dotArg case fn - then outputAsFortran(dotArg.fn) - else outputAsFortran(dotArg.fp) - popFortranOutputStack()$FOP - pushFortranOutputStack(imageFilename := aspFilename "image")$FOP - if imageArg case fn - then outputAsFortran(imageArg.fn) - else outputAsFortran(imageArg.fp) - popFortranOutputStack()$FOP - pushFortranOutputStack(monitFilename := aspFilename "monit")$FOP - outputAsFortran(monitArg) - [(invokeNagman([dotFilename,imageFilename,monitFilename]$Lisp,_ - "f02fjf",_ - ["n"::S,"k"::S,"tol"::S,"novecs"::S,"nrx"::S_ - ,"lwork"::S,"lrwork"::S,"liwork"::S,"m"::S,"noits"::S_ - ,"ifail"::S,"dot"::S,"image"::S,"monit"::S,"d"::S,"x"::S,"work"::S,"rwork"::S,"iwork"::S_ - ]$Lisp,_ - ["d"::S,"work"::S,"rwork"::S,"iwork"::S,"dot"::S,"image"::S,"monit"::S]$Lisp,_ - [["double"::S,"tol"::S,["d"::S,"k"::S]$Lisp_ - ,["x"::S,"nrx"::S,"k"::S]$Lisp,["work"::S,"lwork"::S]$Lisp,["rwork"::S,"lrwork"::S]$Lisp,"dot"::S,"image"::S,"monit"::S_ - ]$Lisp_ - ,["integer"::S,"n"::S,"k"::S,"novecs"::S,"nrx"::S_ - ,"lwork"::S,"lrwork"::S,"liwork"::S,"m"::S,"noits"::S,"ifail"::S,["iwork"::S,"liwork"::S]$Lisp]$Lisp_ - ]$Lisp,_ - ["d"::S,"m"::S,"noits"::S,"x"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,kArg::Any,tolArg::Any,novecsArg::Any,nrxArg::Any,lworkArg::Any,lrworkArg::Any,liworkArg::Any,mArg::Any,noitsArg::Any,ifailArg::Any,xArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f02wef(mArg:Integer,nArg:Integer,ldaArg:Integer,_ - ncolbArg:Integer,ldbArg:Integer,wantqArg:Boolean,_ - ldqArg:Integer,wantpArg:Boolean,ldptArg:Integer,_ - aArg:Matrix DoubleFloat,bArg:Matrix DoubleFloat,ifailArg:Integer): Result == - workLength : Integer := - mArg >= nArg => - wantqArg and wantpArg => - max(max(nArg**2 + 5*(nArg - 1),nArg + ncolbArg),4) - wantqArg => - max(max(nArg**2 + 4*(nArg - 1),nArg + ncolbArg),4) - wantpArg => - zero? ncolbArg => max(3*(nArg - 1),2) - max(5*(nArg - 1),2) - zero? ncolbArg => max(2*(nArg - 1),2) - max(3*(nArg - 1),2) - wantqArg and wantpArg => - max(mArg**2 + 5*(mArg - 1),2) - wantqArg => - max(3*(mArg - 1),1) - wantpArg => - zero? ncolbArg => max(mArg**2+3*(mArg - 1),2) - max(mArg**2+5*(mArg - 1),2) - zero? ncolbArg => max(2*(mArg - 1),1) - max(3*(mArg - 1),1) - - [(invokeNagman(NIL$Lisp,_ - "f02wef",_ - ["m"::S,"n"::S,"lda"::S,"ncolb"::S,"ldb"::S_ - ,"wantq"::S,"ldq"::S,"wantp"::S,"ldpt"::S,"ifail"::S_ - ,"q"::S,"sv"::S,"pt"::S,"work"::S,"a"::S_ - ,"b"::S]$Lisp,_ - ["q"::S,"sv"::S,"pt"::S,"work"::S]$Lisp,_ - [["double"::S,["q"::S,"ldq"::S,"m"::S]$Lisp_ - ,["sv"::S,"m"::S]$Lisp,["pt"::S,"ldpt"::S,"n"::S]$Lisp,["work"::S,workLength]$Lisp,["a"::S,"lda"::S,"n"::S]$Lisp,["b"::S,"ldb"::S,"ncolb"::S]$Lisp_ - ]$Lisp_ - ,["integer"::S,"m"::S,"n"::S,"lda"::S,"ncolb"::S_ - ,"ldb"::S,"ldq"::S,"ldpt"::S,"ifail"::S]$Lisp_ - ,["logical"::S,"wantq"::S,"wantp"::S]$Lisp_ - ]$Lisp,_ - ["q"::S,"sv"::S,"pt"::S,"work"::S,"a"::S,"b"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,nArg::Any,ldaArg::Any,ncolbArg::Any,ldbArg::Any,wantqArg::Any,ldqArg::Any,wantpArg::Any,ldptArg::Any,ifailArg::Any,aArg::Any,bArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f02xef(mArg:Integer,nArg:Integer,ldaArg:Integer,_ - ncolbArg:Integer,ldbArg:Integer,wantqArg:Boolean,_ - ldqArg:Integer,wantpArg:Boolean,ldphArg:Integer,_ - aArg:Matrix Complex DoubleFloat,bArg:Matrix Complex DoubleFloat,ifailArg:Integer): Result == - -- This segment added by hand, to deal with an assumed size array GDN - tem : Integer := (min(mArg,nArg)-1) - rLen : Integer := - zero? ncolbArg and not wantqArg and not wantpArg => 2*tem - zero? ncolbArg and wantpArg and not wantqArg => 3*tem - not wantpArg => - positive? ncolbArg or wantqArg => 3*tem - 5*tem - cLen : Integer := - mArg >= nArg => - wantqArg and wantpArg => 2*(nArg + max(nArg**2,ncolbArg)) - wantqArg and not wantpArg => 2*(nArg + max(nArg**2+nArg,ncolbArg)) - 2*(nArg + max(nArg,ncolbArg)) - wantpArg => 2*(mArg**2 + mArg) - 2*mArg - svLength : Integer := - min(mArg,nArg) - [(invokeNagman(NIL$Lisp,_ - "f02xef",_ - ["m"::S,"n"::S,"lda"::S,"ncolb"::S,"ldb"::S_ - ,"wantq"::S,"ldq"::S,"wantp"::S,"ldph"::S,"ifail"::S_ - ,"q"::S,"sv"::S,"ph"::S,"rwork"::S,"a"::S_ - ,"b"::S,"cwork"::S]$Lisp,_ - ["q"::S,"sv"::S,"ph"::S,"rwork"::S,"cwork"::S]$Lisp,_ - [["double"::S,["sv"::S,svLength]$Lisp,["rwork"::S,rLen]$Lisp_ - ]$Lisp_ - ,["integer"::S,"m"::S,"n"::S,"lda"::S,"ncolb"::S_ - ,"ldb"::S,"ldq"::S,"ldph"::S,"ifail"::S]$Lisp_ - ,["logical"::S,"wantq"::S,"wantp"::S]$Lisp_ - ,["double complex"::S,["q"::S,"ldq"::S,"m"::S]$Lisp,["ph"::S,"ldph"::S,"n"::S]$Lisp,["a"::S,"lda"::S,"n"::S]$Lisp,["b"::S,"ldb"::S,"ncolb"::S]$Lisp,["cwork"::S,cLen]$Lisp]$Lisp_ - ]$Lisp,_ - ["q"::S,"sv"::S,"ph"::S,"rwork"::S,"a"::S,"b"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,nArg::Any,ldaArg::Any,ncolbArg::Any,ldbArg::Any,wantqArg::Any,ldqArg::Any,wantpArg::Any,ldphArg::Any,ifailArg::Any,aArg::Any,bArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package NAGF02 NagEigenPackage>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/f04.spad.pamphlet b/src/algebra/f04.spad.pamphlet deleted file mode 100644 index 8220f040..00000000 --- a/src/algebra/f04.spad.pamphlet +++ /dev/null @@ -1,408 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra f04.spad} -\author{Godfrey Nolan, Mike Dewar} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package NAGF04 NagLinearEquationSolvingPackage} -<<package NAGF04 NagLinearEquationSolvingPackage>>= -)abbrev package NAGF04 NagLinearEquationSolvingPackage -++ Author: Godfrey Nolan and Mike Dewar -++ Date Created: Jan 1994 -++ Date Last Updated: Thu May 12 17:45:31 1994 -++Description: -++This package uses the NAG Library to solve the matrix equation \axiom{AX=B}, where \axiom{B} -++may be a single vector or a matrix of multiple right-hand sides. -++The matrix \axiom{A} may be real, complex, symmetric, Hermitian positive- -++definite, or sparse. It may also be rectangular, in which case a -++least-squares solution is obtained. -++See \downlink{Manual Page}{manpageXXf04}. -NagLinearEquationSolvingPackage(): Exports == Implementation where - S ==> Symbol - FOP ==> FortranOutputStackPackage - - Exports ==> with - f04adf : (Integer,Matrix Complex DoubleFloat,Integer,Integer,_ - Integer,Integer,Matrix Complex DoubleFloat,Integer) -> Result - ++ f04adf(ia,b,ib,n,m,ic,a,ifail) - ++ calculates the approximate solution of a set of complex - ++ linear equations with multiple right-hand sides, using an LU - ++ factorization with partial pivoting. - ++ See \downlink{Manual Page}{manpageXXf04adf}. - f04arf : (Integer,Matrix DoubleFloat,Integer,Matrix DoubleFloat,_ - Integer) -> Result - ++ f04arf(ia,b,n,a,ifail) - ++ calculates the approximate solution of a set of real - ++ linear equations with a single right-hand side, using an LU - ++ factorization with partial pivoting. - ++ See \downlink{Manual Page}{manpageXXf04arf}. - f04asf : (Integer,Matrix DoubleFloat,Integer,Matrix DoubleFloat,_ - Integer) -> Result - ++ f04asf(ia,b,n,a,ifail) - ++ calculates the accurate solution of a set of real - ++ symmetric positive-definite linear equations with a single right- - ++ hand side, Ax=b, using a Cholesky factorization and iterative - ++ refinement. - ++ See \downlink{Manual Page}{manpageXXf04asf}. - f04atf : (Matrix DoubleFloat,Integer,Matrix DoubleFloat,Integer,_ - Integer,Integer) -> Result - ++ f04atf(a,ia,b,n,iaa,ifail) - ++ calculates the accurate solution of a set of real linear - ++ equations with a single right-hand side, using an LU - ++ factorization with partial pivoting, and iterative refinement. - ++ See \downlink{Manual Page}{manpageXXf04atf}. - f04axf : (Integer,Matrix DoubleFloat,Integer,Matrix Integer,_ - Matrix Integer,Integer,Matrix Integer,Matrix DoubleFloat) -> Result - ++ f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs) - ++ calculates the approximate solution of a set of real - ++ sparse linear equations with a single right-hand side, Ax=b or - ++ T - ++ A x=b, where A has been factorized by F01BRF or F01BSF. - ++ See \downlink{Manual Page}{manpageXXf04axf}. - f04faf : (Integer,Integer,Matrix DoubleFloat,Matrix DoubleFloat,_ - Matrix DoubleFloat,Integer) -> Result - ++ f04faf(job,n,d,e,b,ifail) - ++ calculates the approximate solution of a set of real - ++ symmetric positive-definite tridiagonal linear equations. - ++ See \downlink{Manual Page}{manpageXXf04faf}. - f04jgf : (Integer,Integer,Integer,DoubleFloat,_ - Integer,Matrix DoubleFloat,Matrix DoubleFloat,Integer) -> Result - ++ f04jgf(m,n,nra,tol,lwork,a,b,ifail) - ++ finds the solution of a linear least-squares problem, Ax=b - ++ , where A is a real m by n (m>=n) matrix and b is an m element - ++ vector. If the matrix of observations is not of full rank, then - ++ the minimal least-squares solution is returned. - ++ See \downlink{Manual Page}{manpageXXf04jgf}. - f04maf : (Integer,Integer,Matrix DoubleFloat,Integer,_ - Matrix Integer,Integer,Matrix Integer,Matrix DoubleFloat,Matrix Integer,Matrix Integer,Matrix DoubleFloat,Matrix DoubleFloat,Matrix Integer,Integer) -> Result - ++ f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail) - ++ e a sparse symmetric positive-definite system of linear - ++ equations, Ax=b, using a pre-conditioned conjugate gradient - ++ method, where A has been factorized by F01MAF. - ++ See \downlink{Manual Page}{manpageXXf04maf}. - f04mbf : (Integer,Matrix DoubleFloat,Boolean,DoubleFloat,_ - Integer,Integer,Integer,Integer,DoubleFloat,Integer,Union(fn:FileName,fp:Asp28(APROD)),Union(fn:FileName,fp:Asp34(MSOLVE))) -> Result - ++ f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve) - ++ solves a system of real sparse symmetric linear equations - ++ using a Lanczos algorithm. - ++ See \downlink{Manual Page}{manpageXXf04mbf}. - f04mcf : (Integer,Matrix DoubleFloat,Integer,Matrix DoubleFloat,_ - Matrix Integer,Integer,Matrix DoubleFloat,Integer,Integer,Integer,Integer) -> Result - ++ f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail) - ++ computes the approximate solution of a system of real - ++ linear equations with multiple right-hand sides, AX=B, where A - ++ is a symmetric positive-definite variable-bandwidth matrix, which - ++ has previously been factorized by F01MCF. Related systems may - ++ also be solved. - ++ See \downlink{Manual Page}{manpageXXf04mcf}. - f04qaf : (Integer,Integer,DoubleFloat,DoubleFloat,_ - DoubleFloat,DoubleFloat,Integer,Integer,Integer,Integer,Matrix DoubleFloat,Integer,Union(fn:FileName,fp:Asp30(APROD))) -> Result - ++ f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod) - ++ solves sparse unsymmetric equations, sparse linear least- - ++ squares problems and sparse damped linear least-squares problems, - ++ using a Lanczos algorithm. - ++ See \downlink{Manual Page}{manpageXXf04qaf}. - Implementation ==> add - - import Lisp - import DoubleFloat - import Any - import Record - import Integer - import Matrix DoubleFloat - import Boolean - import NAGLinkSupportPackage - import FortranPackage - import AnyFunctions1(Integer) - import AnyFunctions1(DoubleFloat) - import AnyFunctions1(Boolean) - import AnyFunctions1(Matrix Complex DoubleFloat) - import AnyFunctions1(Matrix DoubleFloat) - import AnyFunctions1(Matrix Integer) - - - f04adf(iaArg:Integer,bArg:Matrix Complex DoubleFloat,ibArg:Integer,_ - nArg:Integer,mArg:Integer,icArg:Integer,_ - aArg:Matrix Complex DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f04adf",_ - ["ia"::S,"ib"::S,"n"::S,"m"::S,"ic"::S_ - ,"ifail"::S,"b"::S,"c"::S,"a"::S,"wkspce"::S]$Lisp,_ - ["c"::S,"wkspce"::S]$Lisp,_ - [["double"::S,["wkspce"::S,"n"::S]$Lisp]$Lisp_ - ,["integer"::S,"ia"::S,"ib"::S,"n"::S,"m"::S_ - ,"ic"::S,"ifail"::S]$Lisp_ - ,["double complex"::S,["b"::S,"ib"::S,"m"::S]$Lisp,["c"::S,"ic"::S,"m"::S]$Lisp,["a"::S,"ia"::S,"n"::S]$Lisp]$Lisp_ - ]$Lisp,_ - ["c"::S,"a"::S,"ifail"::S]$Lisp,_ - [([iaArg::Any,ibArg::Any,nArg::Any,mArg::Any,icArg::Any,ifailArg::Any,bArg::Any,aArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f04arf(iaArg:Integer,bArg:Matrix DoubleFloat,nArg:Integer,_ - aArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f04arf",_ - ["ia"::S,"n"::S,"ifail"::S,"b"::S,"c"::S,"a"::S,"wkspce"::S]$Lisp,_ - ["c"::S,"wkspce"::S]$Lisp,_ - [["double"::S,["b"::S,"n"::S]$Lisp,["c"::S,"n"::S]$Lisp_ - ,["a"::S,"ia"::S,"n"::S]$Lisp,["wkspce"::S,"n"::S]$Lisp]$Lisp_ - ,["integer"::S,"ia"::S,"n"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["c"::S,"a"::S,"ifail"::S]$Lisp,_ - [([iaArg::Any,nArg::Any,ifailArg::Any,bArg::Any,aArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f04asf(iaArg:Integer,bArg:Matrix DoubleFloat,nArg:Integer,_ - aArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f04asf",_ - ["ia"::S,"n"::S,"ifail"::S,"b"::S,"c"::S,"a"::S,"wk1"::S,"wk2"::S_ - ]$Lisp,_ - ["c"::S,"wk1"::S,"wk2"::S]$Lisp,_ - [["double"::S,["b"::S,"n"::S]$Lisp,["c"::S,"n"::S]$Lisp_ - ,["a"::S,"ia"::S,"n"::S]$Lisp,["wk1"::S,"n"::S]$Lisp,["wk2"::S,"n"::S]$Lisp]$Lisp_ - ,["integer"::S,"ia"::S,"n"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["c"::S,"a"::S,"ifail"::S]$Lisp,_ - [([iaArg::Any,nArg::Any,ifailArg::Any,bArg::Any,aArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f04atf(aArg:Matrix DoubleFloat,iaArg:Integer,bArg:Matrix DoubleFloat,_ - nArg:Integer,iaaArg:Integer,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f04atf",_ - ["ia"::S,"n"::S,"iaa"::S,"ifail"::S,"a"::S,"b"::S,"c"::S,"aa"::S,"wks1"::S_ - ,"wks2"::S]$Lisp,_ - ["c"::S,"aa"::S,"wks1"::S,"wks2"::S]$Lisp,_ - [["double"::S,["a"::S,"ia"::S,"n"::S]$Lisp_ - ,["b"::S,"n"::S]$Lisp,["c"::S,"n"::S]$Lisp,["aa"::S,"iaa"::S,"n"::S]$Lisp,["wks1"::S,"n"::S]$Lisp,["wks2"::S,"n"::S]$Lisp_ - ]$Lisp_ - ,["integer"::S,"ia"::S,"n"::S,"iaa"::S,"ifail"::S_ - ]$Lisp_ - ]$Lisp,_ - ["c"::S,"aa"::S,"ifail"::S]$Lisp,_ - [([iaArg::Any,nArg::Any,iaaArg::Any,ifailArg::Any,aArg::Any,bArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f04axf(nArg:Integer,aArg:Matrix DoubleFloat,licnArg:Integer,_ - icnArg:Matrix Integer,ikeepArg:Matrix Integer,mtypeArg:Integer,_ - idispArg:Matrix Integer,rhsArg:Matrix DoubleFloat): Result == - [(invokeNagman(NIL$Lisp,_ - "f04axf",_ - ["n"::S,"licn"::S,"mtype"::S,"resid"::S,"a"::S,"icn"::S,"ikeep"::S,"idisp"::S,"rhs"::S_ - ,"w"::S]$Lisp,_ - ["resid"::S,"w"::S]$Lisp,_ - [["double"::S,["a"::S,"licn"::S]$Lisp,"resid"::S_ - ,["rhs"::S,"n"::S]$Lisp,["w"::S,"n"::S]$Lisp]$Lisp_ - ,["integer"::S,"n"::S,"licn"::S,["icn"::S,"licn"::S]$Lisp_ - ,["ikeep"::S,["*"::S,"n"::S,5$Lisp]$Lisp]$Lisp,"mtype"::S,["idisp"::S,2$Lisp]$Lisp]$Lisp_ - ]$Lisp,_ - ["resid"::S,"rhs"::S]$Lisp,_ - [([nArg::Any,licnArg::Any,mtypeArg::Any,aArg::Any,icnArg::Any,ikeepArg::Any,idispArg::Any,rhsArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f04faf(jobArg:Integer,nArg:Integer,dArg:Matrix DoubleFloat,_ - eArg:Matrix DoubleFloat,bArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f04faf",_ - ["job"::S,"n"::S,"ifail"::S,"d"::S,"e"::S,"b"::S]$Lisp,_ - []$Lisp,_ - [["double"::S,["d"::S,"n"::S]$Lisp,["e"::S,"n"::S]$Lisp_ - ,["b"::S,"n"::S]$Lisp]$Lisp_ - ,["integer"::S,"job"::S,"n"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["d"::S,"e"::S,"b"::S,"ifail"::S]$Lisp,_ - [([jobArg::Any,nArg::Any,ifailArg::Any,dArg::Any,eArg::Any,bArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f04jgf(mArg:Integer,nArg:Integer,nraArg:Integer,_ - tolArg:DoubleFloat,lworkArg:Integer,aArg:Matrix DoubleFloat,_ - bArg:Matrix DoubleFloat,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f04jgf",_ - ["m"::S,"n"::S,"nra"::S,"tol"::S,"lwork"::S_ - ,"svd"::S,"sigma"::S,"irank"::S,"ifail"::S,"work"::S,"a"::S,"b"::S]$Lisp,_ - ["svd"::S,"sigma"::S,"irank"::S,"work"::S]$Lisp,_ - [["double"::S,"tol"::S,"sigma"::S,["work"::S,"lwork"::S]$Lisp_ - ,["a"::S,"nra"::S,"n"::S]$Lisp,["b"::S,"m"::S]$Lisp]$Lisp_ - ,["integer"::S,"m"::S,"n"::S,"nra"::S,"lwork"::S_ - ,"irank"::S,"ifail"::S]$Lisp_ - ,["logical"::S,"svd"::S]$Lisp_ - ]$Lisp,_ - ["svd"::S,"sigma"::S,"irank"::S,"work"::S,"a"::S,"b"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,nArg::Any,nraArg::Any,tolArg::Any,lworkArg::Any,ifailArg::Any,aArg::Any,bArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f04maf(nArg:Integer,nzArg:Integer,avalsArg:Matrix DoubleFloat,_ - licnArg:Integer,irnArg:Matrix Integer,lirnArg:Integer,_ - icnArg:Matrix Integer,wkeepArg:Matrix DoubleFloat,ikeepArg:Matrix Integer,_ - informArg:Matrix Integer,bArg:Matrix DoubleFloat,accArg:Matrix DoubleFloat,_ - noitsArg:Matrix Integer,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f04maf",_ - ["n"::S,"nz"::S,"licn"::S,"lirn"::S,"ifail"::S_ - ,"avals"::S,"irn"::S,"icn"::S,"wkeep"::S,"ikeep"::S_ - ,"inform"::S,"work"::S,"b"::S,"acc"::S,"noits"::S_ - ]$Lisp,_ - ["work"::S]$Lisp,_ - [["double"::S,["avals"::S,"licn"::S]$Lisp,["wkeep"::S,["*"::S,3$Lisp,"n"::S]$Lisp]$Lisp_ - ,["work"::S,["*"::S,3$Lisp,"n"::S]$Lisp]$Lisp,["b"::S,"n"::S]$Lisp,["acc"::S,2$Lisp]$Lisp_ - ]$Lisp_ - ,["integer"::S,"n"::S,"nz"::S,"licn"::S,["irn"::S,"lirn"::S]$Lisp_ - ,"lirn"::S,["icn"::S,"licn"::S]$Lisp,["ikeep"::S,["*"::S,2$Lisp,"n"::S]$Lisp]$Lisp,["inform"::S,4$Lisp]$Lisp_ - ,["noits"::S,2$Lisp]$Lisp,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["work"::S,"b"::S,"acc"::S,"noits"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,nzArg::Any,licnArg::Any,lirnArg::Any,ifailArg::Any,avalsArg::Any,irnArg::Any,icnArg::Any,wkeepArg::Any,ikeepArg::Any,informArg::Any,bArg::Any,accArg::Any,noitsArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f04mbf(nArg:Integer,bArg:Matrix DoubleFloat,preconArg:Boolean,_ - shiftArg:DoubleFloat,itnlimArg:Integer,msglvlArg:Integer,_ - lrworkArg:Integer,liworkArg:Integer,rtolArg:DoubleFloat,_ - ifailArg:Integer,aprodArg:Union(fn:FileName,fp:Asp28(APROD)),msolveArg:Union(fn:FileName,fp:Asp34(MSOLVE))): Result == --- if both asps are AXIOM generated we do not need lrwork liwork --- and will set to 1. --- else believe the user but check that they are >0. - if (aprodArg case fp) and (msolveArg case fp) - then - lrworkArg:=1 - liworkArg:=1 - else - lrworkArg:=max(1,lrworkArg) - liworkArg:=max(1,liworkArg) - pushFortranOutputStack(aprodFilename := aspFilename "aprod")$FOP - if aprodArg case fn - then outputAsFortran(aprodArg.fn) - else outputAsFortran(aprodArg.fp) - popFortranOutputStack()$FOP - pushFortranOutputStack(msolveFilename := aspFilename "msolve")$FOP - if msolveArg case fn - then outputAsFortran(msolveArg.fn) - else outputAsFortran(msolveArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([aprodFilename,msolveFilename]$Lisp,_ - "f04mbf",_ - ["n"::S,"precon"::S,"shift"::S,"itnlim"::S,"msglvl"::S_ - ,"lrwork"::S,"liwork"::S,"itn"::S,"anorm"::S,"acond"::S_ - ,"rnorm"::S,"xnorm"::S,"inform"::S,"rtol"::S,"ifail"::S_ - ,"aprod"::S,"msolve"::S,"b"::S,"x"::S,"work"::S,"rwork"::S,"iwork"::S_ - ]$Lisp,_ - ["x"::S,"itn"::S,"anorm"::S,"acond"::S,"rnorm"::S,"xnorm"::S,"inform"::S,"work"::S,"rwork"::S,"iwork"::S,"aprod"::S,"msolve"::S]$Lisp,_ - [["double"::S,["b"::S,"n"::S]$Lisp,"shift"::S_ - ,["x"::S,"n"::S]$Lisp,"anorm"::S,"acond"::S,"rnorm"::S,"xnorm"::S,"rtol"::S,["work"::S,"n"::S,5$Lisp]$Lisp,["rwork"::S,"lrwork"::S]$Lisp_ - ,"aprod"::S,"msolve"::S]$Lisp_ - ,["integer"::S,"n"::S,"itnlim"::S,"msglvl"::S_ - ,"lrwork"::S,"liwork"::S,"itn"::S,"inform"::S,"ifail"::S,["iwork"::S,"liwork"::S]$Lisp]$Lisp_ - ,["logical"::S,"precon"::S]$Lisp_ - ]$Lisp,_ - ["x"::S,"itn"::S,"anorm"::S,"acond"::S,"rnorm"::S,"xnorm"::S,"inform"::S,"rtol"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,preconArg::Any,shiftArg::Any,itnlimArg::Any,msglvlArg::Any,lrworkArg::Any,liworkArg::Any,rtolArg::Any,ifailArg::Any,bArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f04mcf(nArg:Integer,alArg:Matrix DoubleFloat,lalArg:Integer,_ - dArg:Matrix DoubleFloat,nrowArg:Matrix Integer,irArg:Integer,_ - bArg:Matrix DoubleFloat,nrbArg:Integer,iselctArg:Integer,_ - nrxArg:Integer,ifailArg:Integer): Result == - [(invokeNagman(NIL$Lisp,_ - "f04mcf",_ - ["n"::S,"lal"::S,"ir"::S,"nrb"::S,"iselct"::S_ - ,"nrx"::S,"ifail"::S,"al"::S,"d"::S,"nrow"::S,"b"::S,"x"::S_ - ]$Lisp,_ - ["x"::S]$Lisp,_ - [["double"::S,["al"::S,"lal"::S]$Lisp,["d"::S,"n"::S]$Lisp_ - ,["b"::S,"nrb"::S,"ir"::S]$Lisp,["x"::S,"nrx"::S,"ir"::S]$Lisp]$Lisp_ - ,["integer"::S,"n"::S,"lal"::S,["nrow"::S,"n"::S]$Lisp_ - ,"ir"::S,"nrb"::S,"iselct"::S,"nrx"::S,"ifail"::S]$Lisp_ - ]$Lisp,_ - ["x"::S,"ifail"::S]$Lisp,_ - [([nArg::Any,lalArg::Any,irArg::Any,nrbArg::Any,iselctArg::Any,nrxArg::Any,ifailArg::Any,alArg::Any,dArg::Any,nrowArg::Any,bArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f04qaf(mArg:Integer,nArg:Integer,dampArg:DoubleFloat,_ - atolArg:DoubleFloat,btolArg:DoubleFloat,conlimArg:DoubleFloat,_ - itnlimArg:Integer,msglvlArg:Integer,lrworkArg:Integer,_ - liworkArg:Integer,bArg:Matrix DoubleFloat,ifailArg:Integer,_ - aprodArg:Union(fn:FileName,fp:Asp30(APROD))): Result == - pushFortranOutputStack(aprodFilename := aspFilename "aprod")$FOP - if aprodArg case fn - then outputAsFortran(aprodArg.fn) - else outputAsFortran(aprodArg.fp) - popFortranOutputStack()$FOP - [(invokeNagman([aprodFilename]$Lisp,_ - "f04qaf",_ - ["m"::S,"n"::S,"damp"::S,"atol"::S,"btol"::S_ - ,"conlim"::S,"itnlim"::S,"msglvl"::S,"lrwork"::S,"liwork"::S_ - ,"itn"::S,"anorm"::S,"acond"::S,"rnorm"::S,"arnorm"::S_ - ,"xnorm"::S,"inform"::S,"ifail"::S,"aprod"::S,"x"::S,"se"::S,"b"::S,"work"::S,"rwork"::S_ - ,"iwork"::S]$Lisp,_ - ["x"::S,"se"::S,"itn"::S,"anorm"::S,"acond"::S,"rnorm"::S,"arnorm"::S,"xnorm"::S,"inform"::S,"work"::S,"rwork"::S,"iwork"::S,"aprod"::S]$Lisp,_ - [["double"::S,"damp"::S,"atol"::S,"btol"::S_ - ,"conlim"::S,["x"::S,"n"::S]$Lisp,["se"::S,"n"::S]$Lisp,"anorm"::S,"acond"::S,"rnorm"::S,"arnorm"::S,"xnorm"::S,["b"::S,"m"::S]$Lisp_ - ,["work"::S,"n"::S,2$Lisp]$Lisp,["rwork"::S,"lrwork"::S]$Lisp,"aprod"::S]$Lisp_ - ,["integer"::S,"m"::S,"n"::S,"itnlim"::S,"msglvl"::S_ - ,"lrwork"::S,"liwork"::S,"itn"::S,"inform"::S,"ifail"::S,["iwork"::S,"liwork"::S]$Lisp]$Lisp_ - ]$Lisp,_ - ["x"::S,"se"::S,"itn"::S,"anorm"::S,"acond"::S,"rnorm"::S,"arnorm"::S,"xnorm"::S,"inform"::S,"b"::S,"ifail"::S]$Lisp,_ - [([mArg::Any,nArg::Any,dampArg::Any,atolArg::Any,btolArg::Any,conlimArg::Any,itnlimArg::Any,msglvlArg::Any,lrworkArg::Any,liworkArg::Any,ifailArg::Any,bArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package NAGF04 NagLinearEquationSolvingPackage>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/f07.spad.pamphlet b/src/algebra/f07.spad.pamphlet deleted file mode 100644 index b8f03e94..00000000 --- a/src/algebra/f07.spad.pamphlet +++ /dev/null @@ -1,182 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra f07.spad} -\author{Godfrey Nolan, Mike Dewar} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{package NAGF07 NagLapack} -<<package NAGF07 NagLapack>>= -)abbrev package NAGF07 NagLapack -++ Author: Godfrey Nolan and Mike Dewar -++ Date Created: Jan 1994 -++ Date Last Updated: Thu May 12 17:45:42 1994 -++Description: -++This package uses the NAG Library to compute matrix -++factorizations, and to solve systems of linear equations -++following the matrix factorizations. -++See \downlink{Manual Page}{manpageXXf07}. -NagLapack(): Exports == Implementation where - S ==> Symbol - FOP ==> FortranOutputStackPackage - - Exports ==> with - f07adf : (Integer,Integer,Integer,Matrix DoubleFloat) -> Result - ++ f07adf(m,n,lda,a) - ++ (DGETRF) computes the LU factorization of a real m by n - ++ matrix. - ++ See \downlink{Manual Page}{manpageXXf07adf}. - f07aef : (String,Integer,Integer,Matrix DoubleFloat,_ - Integer,Matrix Integer,Integer,Matrix DoubleFloat) -> Result - ++ f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b) - ++ (DGETRS) solves a real system of linear equations with - ++ T - ++ multiple right-hand sides, AX=B or A X=B, where A has been - ++ factorized by F07ADF (DGETRF). - ++ See \downlink{Manual Page}{manpageXXf07aef}. - f07fdf : (String,Integer,Integer,Matrix DoubleFloat) -> Result - ++ f07fdf(uplo,n,lda,a) - ++ (DPOTRF) computes the Cholesky factorization of a real - ++ symmetric positive-definite matrix. - ++ See \downlink{Manual Page}{manpageXXf07fdf}. - f07fef : (String,Integer,Integer,Matrix DoubleFloat,_ - Integer,Integer,Matrix DoubleFloat) -> Result - ++ f07fef(uplo,n,nrhs,a,lda,ldb,b) - ++ (DPOTRS) solves a real symmetric positive-definite system - ++ of linear equations with multiple right-hand sides, AX=B, where A - ++ has been factorized by F07FDF (DPOTRF). - ++ See \downlink{Manual Page}{manpageXXf07fef}. - Implementation ==> add - - import Lisp - import DoubleFloat - import Any - import Record - import Integer - import Matrix DoubleFloat - import Boolean - import NAGLinkSupportPackage - import AnyFunctions1(Integer) - import AnyFunctions1(Matrix DoubleFloat) - import AnyFunctions1(String) - import AnyFunctions1(Matrix Integer) - - - f07adf(mArg:Integer,nArg:Integer,ldaArg:Integer,_ - aArg:Matrix DoubleFloat): Result == - [(invokeNagman(NIL$Lisp,_ - "f07adf",_ - ["m"::S,"n"::S,"lda"::S,"info"::S,"ipiv"::S,"a"::S]$Lisp,_ - ["ipiv"::S,"info"::S]$Lisp,_ - [["double"::S,["a"::S,"lda"::S,"n"::S]$Lisp_ - ]$Lisp_ - ,["integer"::S,"m"::S,"n"::S,"lda"::S,["ipiv"::S,"m"::S]$Lisp_ - ,"info"::S]$Lisp_ - ]$Lisp,_ - ["ipiv"::S,"info"::S,"a"::S]$Lisp,_ - [([mArg::Any,nArg::Any,ldaArg::Any,aArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f07aef(transArg:String,nArg:Integer,nrhsArg:Integer,_ - aArg:Matrix DoubleFloat,ldaArg:Integer,ipivArg:Matrix Integer,_ - ldbArg:Integer,bArg:Matrix DoubleFloat): Result == - [(invokeNagman(NIL$Lisp,_ - "f07aef",_ - ["trans"::S,"n"::S,"nrhs"::S,"lda"::S,"ldb"::S_ - ,"info"::S,"a"::S,"ipiv"::S,"b"::S]$Lisp,_ - ["info"::S]$Lisp,_ - [["double"::S,["a"::S,"lda"::S,"n"::S]$Lisp_ - ,["b"::S,"ldb"::S,"nrhs"::S]$Lisp]$Lisp_ - ,["integer"::S,"n"::S,"nrhs"::S,"lda"::S,["ipiv"::S,"n"::S]$Lisp_ - ,"ldb"::S,"info"::S]$Lisp_ - ,["character"::S,"trans"::S]$Lisp_ - ]$Lisp,_ - ["info"::S,"b"::S]$Lisp,_ - [([transArg::Any,nArg::Any,nrhsArg::Any,ldaArg::Any,ldbArg::Any,aArg::Any,ipivArg::Any,bArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f07fdf(uploArg:String,nArg:Integer,ldaArg:Integer,_ - aArg:Matrix DoubleFloat): Result == - [(invokeNagman(NIL$Lisp,_ - "f07fdf",_ - ["uplo"::S,"n"::S,"lda"::S,"info"::S,"a"::S]$Lisp,_ - ["info"::S]$Lisp,_ - [["double"::S,["a"::S,"lda"::S,"n"::S]$Lisp_ - ]$Lisp_ - ,["integer"::S,"n"::S,"lda"::S,"info"::S]$Lisp_ - ,["character"::S,"uplo"::S]$Lisp_ - ]$Lisp,_ - ["info"::S,"a"::S]$Lisp,_ - [([uploArg::Any,nArg::Any,ldaArg::Any,aArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - - f07fef(uploArg:String,nArg:Integer,nrhsArg:Integer,_ - aArg:Matrix DoubleFloat,ldaArg:Integer,ldbArg:Integer,_ - bArg:Matrix DoubleFloat): Result == - [(invokeNagman(NIL$Lisp,_ - "f07fef",_ - ["uplo"::S,"n"::S,"nrhs"::S,"lda"::S,"ldb"::S_ - ,"info"::S,"a"::S,"b"::S]$Lisp,_ - ["info"::S]$Lisp,_ - [["double"::S,["a"::S,"lda"::S,"n"::S]$Lisp_ - ,["b"::S,"ldb"::S,"nrhs"::S]$Lisp]$Lisp_ - ,["integer"::S,"n"::S,"nrhs"::S,"lda"::S,"ldb"::S_ - ,"info"::S]$Lisp_ - ,["character"::S,"uplo"::S]$Lisp_ - ]$Lisp,_ - ["info"::S,"b"::S]$Lisp,_ - [([uploArg::Any,nArg::Any,nrhsArg::Any,ldaArg::Any,ldbArg::Any,aArg::Any,bArg::Any ])_ - @List Any]$Lisp)$Lisp)_ - pretend List (Record(key:Symbol,entry:Any))]$Result - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<package NAGF07 NagLapack>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index a091ed4c..5bbe29bd 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2273155 . 3525059669) +(2094401 . 3525483391) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4424 . T) (-4423 . T)) +((-4146 . T) (-4145 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4420 . T) (-4418 . T) (-4417 . T) ((-4425 "*") . T) (-4416 . T) (-4421 . T) (-4415 . T)) +((-4142 . T) (-4140 . T) (-4139 . T) ((-4147 "*") . T) (-4138 . T) (-4143 . T) (-4137 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression `d'.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3493) +(-32 R -3215) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557))))) +((|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4423))) +((|HasAttribute| |#1| (QUOTE -4145))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4423 . T) (-4424 . T)) +((-4145 . T) (-4146 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4417 . T) (-4418 . T) (-4420 . T)) +((-4139 . T) (-4140 . T) (-4142 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an."))) NIL NIL -(-40 -3493 UP UPUP -3011) +(-40 -3215 UP UPUP -2733) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4416 |has| (-419 |#2|) (-376)) (-4421 |has| (-419 |#2|) (-376)) (-4415 |has| (-419 |#2|) (-376)) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| (-419 |#2|) (QUOTE (-147))) (|HasCategory| (-419 |#2|) (QUOTE (-149))) (|HasCategory| (-419 |#2|) (QUOTE (-363))) (-3955 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-381))) (-3955 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-3955 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-3955 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-363))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -915) (QUOTE (-1196)))))) (-3955 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -917) (QUOTE (-1196)))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -656) (QUOTE (-557)))) (-3955 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -917) (QUOTE (-1196))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -915) (QUOTE (-1196)))))) -(-41 R -3493) +((-4138 |has| (-361 |#2|) (-318)) (-4143 |has| (-361 |#2|) (-318)) (-4137 |has| (-361 |#2|) (-318)) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| (-361 |#2|) (QUOTE (-118))) (|HasCategory| (-361 |#2|) (QUOTE (-120))) (|HasCategory| (-361 |#2|) (QUOTE (-305))) (-3677 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (QUOTE (-305)))) (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (QUOTE (-323))) (-3677 (-12 (|HasCategory| (-361 |#2|) (QUOTE (-190))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (|HasCategory| (-361 |#2|) (QUOTE (-305)))) (-3677 (-12 (|HasCategory| (-361 |#2|) (QUOTE (-190))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-189))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (|HasCategory| (-361 |#2|) (QUOTE (-305)))) (-3677 (-12 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-305))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -836) (QUOTE (-1117)))))) (-3677 (-12 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -838) (QUOTE (-1117)))))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -596) (QUOTE (-499)))) (-3677 (|HasCategory| (-361 |#2|) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-323))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-189))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-190))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -836) (QUOTE (-1117)))))) +(-41 R -3215) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#2| (|%list| (QUOTE -433) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -375) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -103,34 +103,34 @@ NIL (-43 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,a) = 0} and \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,x,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,b,x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,a,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-319)))) +((|HasCategory| |#1| (QUOTE (-261)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4420 |has| |#1| (-568)) (-4418 . T) (-4417 . T)) -((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-568)))) +((-4142 |has| |#1| (-510)) (-4140 . T) (-4139 . T)) +((|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4423 . T) (-4424 . T)) -((-3955 (-12 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4288) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2284) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-859)))) (-12 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4288) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2284) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120))))) (-3955 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-859))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -629) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-3955 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-859))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-859))) (-3955 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-859))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| (-557) (QUOTE (-859))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120))) (-3955 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (-3955 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875))))) (-3955 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4288) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2284) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120))))) +((-4145 . T) (-4146 . T)) +((-3677 (-12 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-781)))) (-12 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041))))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-781))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-3677 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-781))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-781))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-781))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041))) (-3677 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73))) (-12 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) +((|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-318)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4417 . T) (-4418 . T) (-4420 . T)) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4139 . T) (-4140 . T) (-4142 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| $ (QUOTE (-1068))) (|HasCategory| $ (|%list| (QUOTE -1057) (QUOTE (-557))))) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| $ (QUOTE (-989))) (|HasCategory| $ (|%list| (QUOTE -978) (QUOTE (-499))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function `f'.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by `f'."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4420 . T)) +((-4142 . T)) NIL (-51) ((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and \\spad{AnyFunctions1}.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3493) +(-54 |Base| R -3215) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}rn is applicable to the expression."))) NIL NIL @@ -158,5043 +158,4727 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4423 . T) (-4424 . T)) +((-4145 . T) (-4146 . T)) NIL (-58 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4424 . T) (-4423 . T)) -((-3955 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (-3955 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-859))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| (-557) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-4146 . T) (-4145 . T)) +((-3677 (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (-59 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray's."))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-61 -3968) -((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) -NIL -NIL -(-62 -3968) -((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) -NIL -NIL -(-63 -3968) -((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) -NIL -NIL -(-64 -3968) -((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) -NIL -NIL -(-65 -3968) -((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) -NIL -NIL -(-66 -3968) -((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) -NIL -NIL -(-67 -3968) -((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) -NIL -NIL -(-68 -3968) -((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) -NIL -NIL -(-69 -3968) -((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) -NIL -NIL -(-70 -3968) -((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) -NIL -NIL -(-71 -3968) -((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) -NIL -NIL -(-72 -3968) -((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) -NIL -NIL -(-73 -3968) -((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) -NIL -NIL -(-74 -3968) -((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) -NIL -NIL -(-75 -3968) -((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) -NIL -NIL -(-76 |nameOne| |nameTwo| |nameThree|) -((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives wrt \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) -NIL -NIL -(-77 |nameOne| |nameTwo| |nameThree|) -((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives wrt \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) -NIL -NIL -(-78 -3968) -((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) -NIL -NIL -(-79 -3968) -((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) -NIL -NIL -(-80 -3968) -((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) -NIL -NIL -(-81 -3968) -((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) -NIL -NIL -(-82 -3968) -((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) -NIL -NIL -(-83 -3968) -((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) -NIL -NIL -(-84 -3968) -((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) -NIL -NIL -(-85 -3968) -((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) -NIL -NIL -(-86 -3968) -((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) -NIL -NIL -(-87 -3968) -((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) -NIL -NIL -(-88 -3968) -((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) -NIL -NIL -(-89 -3968) -((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) -NIL -NIL -(-90 R L) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) +(-61 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}'s.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-376)))) -(-91 S) +((|HasCategory| |#1| (QUOTE (-318)))) +(-62 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-92 S) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) +(-63 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL NIL -(-93) +(-64) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL NIL -(-94 S) +(-65 S) ((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}."))) NIL NIL -(-95) +(-66) ((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}."))) NIL NIL -(-96) +(-67) ((|constructor| (NIL "This domain represents the syntax of an attribute in \\indented{2}{a category expression.}")) (|name| (((|SpadAst|) $) "\\spad{name(a)} returns the name of the attribute `a'. Note,{} this name may be domain name,{} not just an identifier."))) NIL NIL -(-97) +(-68) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4423 . T)) +((-4145 . T)) NIL -(-98) +(-69) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4423 . T) ((-4425 "*") . T) (-4424 . T) (-4420 . T) (-4418 . T) (-4417 . T) (-4416 . T) (-4421 . T) (-4415 . T) (-4414 . T) (-4413 . T) (-4412 . T) (-4411 . T) (-4419 . T) (-4422 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4410 . T)) +((-4145 . T) ((-4147 "*") . T) (-4146 . T) (-4142 . T) (-4140 . T) (-4139 . T) (-4138 . T) (-4143 . T) (-4137 . T) (-4136 . T) (-4135 . T) (-4134 . T) (-4133 . T) (-4141 . T) (-4144 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4132 . T)) NIL -(-99 R) +(-70 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4420 . T)) +((-4142 . T)) NIL -(-100 R UP) +(-71 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) NIL NIL -(-101 S) +(-72 S) ((|constructor| (NIL "\\spadtype{BasicType} is the basic category for describing a collection of elements with \\spadop{=} (equality).")) (|before?| (((|Boolean|) $ $) "\\spad{before?(x,y)} holds if the system representation of \\spad{x} comes before that of \\spad{y} in a an implementation defined manner.")) (~= (((|Boolean|) $ $) "\\spad{x~=y} tests if \\spad{x} and \\spad{y} are not equal.")) (= (((|Boolean|) $ $) "\\spad{x=y} tests if \\spad{x} and \\spad{y} are equal."))) NIL NIL -(-102) +(-73) ((|constructor| (NIL "\\spadtype{BasicType} is the basic category for describing a collection of elements with \\spadop{=} (equality).")) (|before?| (((|Boolean|) $ $) "\\spad{before?(x,y)} holds if the system representation of \\spad{x} comes before that of \\spad{y} in a an implementation defined manner.")) (~= (((|Boolean|) $ $) "\\spad{x~=y} tests if \\spad{x} and \\spad{y} are not equal.")) (= (((|Boolean|) $ $) "\\spad{x=y} tests if \\spad{x} and \\spad{y} are equal."))) NIL NIL -(-103 S) +(-74 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-104 R UP M |Row| |Col|) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) +(-75 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4425 "*")))) -(-105) +((|HasAttribute| |#1| (QUOTE (-4147 "*")))) +(-76) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4423 . T)) +((-4145 . T)) NIL -(-106 A S) +(-77 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) NIL NIL -(-107 S) +(-78 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4424 . T)) +((-4146 . T)) NIL -(-108) +(-79) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| (-557) (QUOTE (-927))) (|HasCategory| (-557) (|%list| (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| (-557) (QUOTE (-147))) (|HasCategory| (-557) (QUOTE (-149))) (|HasCategory| (-557) (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-557) (QUOTE (-1039))) (|HasCategory| (-557) (QUOTE (-840))) (|HasCategory| (-557) (QUOTE (-859))) (-3955 (|HasCategory| (-557) (QUOTE (-840))) (|HasCategory| (-557) (QUOTE (-859)))) (|HasCategory| (-557) (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| (-557) (QUOTE (-1171))) (|HasCategory| (-557) (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| (-557) (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| (-557) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| (-557) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| (-557) (QUOTE (-239))) (|HasCategory| (-557) (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-557) (QUOTE (-240))) (|HasCategory| (-557) (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-557) (|%list| (QUOTE -526) (QUOTE (-1196)) (QUOTE (-557)))) (|HasCategory| (-557) (|%list| (QUOTE -321) (QUOTE (-557)))) (|HasCategory| (-557) (|%list| (QUOTE -298) (QUOTE (-557)) (QUOTE (-557)))) (|HasCategory| (-557) (QUOTE (-319))) (|HasCategory| (-557) (QUOTE (-556))) (|HasCategory| (-557) (|%list| (QUOTE -656) (QUOTE (-557)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-557) (QUOTE (-927)))) (-3955 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-557) (QUOTE (-927)))) (|HasCategory| (-557) (QUOTE (-147))))) -(-109) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| (-499) (QUOTE (-848))) (|HasCategory| (-499) (|%list| (QUOTE -978) (QUOTE (-1117)))) (|HasCategory| (-499) (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-120))) (|HasCategory| (-499) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-499) (QUOTE (-960))) (|HasCategory| (-499) (QUOTE (-763))) (|HasCategory| (-499) (QUOTE (-781))) (-3677 (|HasCategory| (-499) (QUOTE (-763))) (|HasCategory| (-499) (QUOTE (-781)))) (|HasCategory| (-499) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-499) (QUOTE (-1092))) (|HasCategory| (-499) (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-499) (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-499) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-499) (QUOTE (-189))) (|HasCategory| (-499) (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| (-499) (QUOTE (-190))) (|HasCategory| (-499) (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| (-499) (|%list| (QUOTE -468) (QUOTE (-1117)) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -263) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -240) (QUOTE (-499)) (QUOTE (-499)))) (|HasCategory| (-499) (QUOTE (-261))) (|HasCategory| (-499) (QUOTE (-498))) (|HasCategory| (-499) (|%list| (QUOTE -596) (QUOTE (-499)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-848)))) (-3677 (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-848)))) (|HasCategory| (-499) (QUOTE (-118))))) +(-80) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name `n' and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL -(-110) +(-81) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4424 . T) (-4423 . T)) -((-12 (|HasCategory| (-114) (QUOTE (-1120))) (|HasCategory| (-114) (|%list| (QUOTE -321) (QUOTE (-114))))) (|HasCategory| (-114) (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-114) (QUOTE (-859))) (|HasCategory| (-557) (QUOTE (-859))) (|HasCategory| (-114) (QUOTE (-1120))) (|HasCategory| (-114) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-114) (QUOTE (-102)))) -(-111 R S) +((-4146 . T) (-4145 . T)) +((-12 (|HasCategory| (-85) (QUOTE (-1041))) (|HasCategory| (-85) (|%list| (QUOTE -263) (QUOTE (-85))))) (|HasCategory| (-85) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-85) (QUOTE (-781))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| (-85) (QUOTE (-1041))) (|HasCategory| (-85) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-85) (QUOTE (-73)))) +(-82 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4418 . T) (-4417 . T)) +((-4140 . T) (-4139 . T)) NIL -(-112 S) +(-83 S) ((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}."))) NIL NIL -(-113) +(-84) ((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}."))) NIL NIL -(-114) +(-85) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}."))) NIL NIL -(-115) +(-86) ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Maybe| (|Mapping| (|InputForm|) (|List| (|InputForm|)))) $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \\spad{nothing} otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Maybe| (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \\spad{nothing} otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If \\spad{op1} and \\spad{op2} have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If \\spad{op1} and \\spad{op2} have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1} and \\spad{op2} should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-116 A) +(-87 A) ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [\\spad{foo1},{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise."))) NIL NIL -(-117 -3493 UP) +(-88 -3215 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL -(-118 |p|) +(-89 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-119 |p|) +(-90 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| (-118 |#1|) (QUOTE (-927))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-149))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-118 |#1|) (QUOTE (-1039))) (|HasCategory| (-118 |#1|) (QUOTE (-840))) (|HasCategory| (-118 |#1|) (QUOTE (-859))) (-3955 (|HasCategory| (-118 |#1|) (QUOTE (-840))) (|HasCategory| (-118 |#1|) (QUOTE (-859)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| (-118 |#1|) (QUOTE (-1171))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| (-118 |#1|) (QUOTE (-239))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-118 |#1|) (QUOTE (-240))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -526) (QUOTE (-1196)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -118) (|devaluate| |#1|)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (QUOTE (-319))) (|HasCategory| (-118 |#1|) (QUOTE (-556))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-927)))) (-3955 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-927)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))))) -(-120 A S) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| (-89 |#1|) (QUOTE (-848))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -978) (QUOTE (-1117)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-120))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-89 |#1|) (QUOTE (-960))) (|HasCategory| (-89 |#1|) (QUOTE (-763))) (|HasCategory| (-89 |#1|) (QUOTE (-781))) (-3677 (|HasCategory| (-89 |#1|) (QUOTE (-763))) (|HasCategory| (-89 |#1|) (QUOTE (-781)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-89 |#1|) (QUOTE (-1092))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| (-89 |#1|) (QUOTE (-189))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| (-89 |#1|) (QUOTE (-190))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -468) (QUOTE (-1117)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -263) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -240) (|%list| (QUOTE -89) (|devaluate| |#1|)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (QUOTE (-261))) (|HasCategory| (-89 |#1|) (QUOTE (-498))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-848)))) (-3677 (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-848)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))))) +(-91 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4424))) -(-121 S) +((|HasAttribute| |#1| (QUOTE -4146))) +(-92 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL NIL -(-122 UP) +(-93 UP) ((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} pp. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) NIL NIL -(-123 S) +(-94 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-124 S) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) +(-95 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL NIL -(-125) +(-96) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) -((-4424 . T) (-4423 . T)) +((-4146 . T) (-4145 . T)) NIL -(-126 A S) +(-97 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) NIL NIL -(-127 S) +(-98 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4423 . T) (-4424 . T)) +((-4145 . T) (-4146 . T)) NIL -(-128 S) +(-99 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-129 S) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) +(-100 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-130) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) +(-101) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256."))) NIL NIL -(-131) +(-102) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4424 . T) (-4423 . T)) -((-3955 (-12 (|HasCategory| (-130) (QUOTE (-859))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1120))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) (-3955 (-12 (|HasCategory| (-130) (QUOTE (-1120))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (|HasCategory| (-130) (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| (-130) (|%list| (QUOTE -629) (QUOTE (-546)))) (-3955 (|HasCategory| (-130) (QUOTE (-859))) (|HasCategory| (-130) (QUOTE (-1120)))) (|HasCategory| (-130) (QUOTE (-859))) (-3955 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-859))) (|HasCategory| (-130) (QUOTE (-1120)))) (|HasCategory| (-557) (QUOTE (-859))) (|HasCategory| (-130) (QUOTE (-1120))) (|HasCategory| (-130) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1120))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) -(-132) +((-4146 . T) (-4145 . T)) +((-3677 (-12 (|HasCategory| (-101) (QUOTE (-781))) (|HasCategory| (-101) (|%list| (QUOTE -263) (QUOTE (-101))))) (-12 (|HasCategory| (-101) (QUOTE (-1041))) (|HasCategory| (-101) (|%list| (QUOTE -263) (QUOTE (-101)))))) (-3677 (-12 (|HasCategory| (-101) (QUOTE (-1041))) (|HasCategory| (-101) (|%list| (QUOTE -263) (QUOTE (-101))))) (|HasCategory| (-101) (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| (-101) (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| (-101) (QUOTE (-781))) (|HasCategory| (-101) (QUOTE (-1041)))) (|HasCategory| (-101) (QUOTE (-781))) (-3677 (|HasCategory| (-101) (QUOTE (-73))) (|HasCategory| (-101) (QUOTE (-781))) (|HasCategory| (-101) (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| (-101) (QUOTE (-1041))) (|HasCategory| (-101) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-101) (QUOTE (-73))) (-12 (|HasCategory| (-101) (QUOTE (-1041))) (|HasCategory| (-101) (|%list| (QUOTE -263) (QUOTE (-101)))))) +(-103) ((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host"))) NIL NIL -(-133) +(-104) ((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x, y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) NIL NIL -(-134) +(-105) ((|constructor| (NIL "A cachable set is a set whose elements keep an integer as part of their structure.")) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) "\\spad{setPosition(x, n)} associates the integer \\spad{n} to \\spad{x}.")) (|position| (((|NonNegativeInteger|) $) "\\spad{position(x)} returns the integer \\spad{n} associated to \\spad{x}."))) NIL NIL -(-135) +(-106) ((|constructor| (NIL "This domain represents the capsule of a domain definition.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of top level expressions appearing in `c'."))) NIL NIL -(-136) +(-107) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-4425 "*") . T)) +(((-4147 "*") . T)) NIL -(-137 |minix| -3018 R) +(-108 |minix| -2740 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree."))) NIL NIL -(-138 |minix| -3018 S T$) +(-109 |minix| -2740 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-139) +(-110) ((|constructor| (NIL "This domain represents a `case' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the case expression `e'."))) NIL NIL -(-140) +(-111) ((|constructor| (NIL "This domain represents the unnamed category defined \\indented{2}{by a list of exported signatures}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of exports in category syntax `c'.")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(c)} returns the kind of unnamed category,{} either 'domain' or 'package'."))) NIL NIL -(-141) +(-112) ((|constructor| (NIL "This domain provides representations for category constructors."))) NIL NIL -(-142) +(-113) ((|parents| (((|List| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{parents(c)} returns the list of all category forms directly extended by the category `c'.")) (|principalAncestors| (((|List| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{principalAncestors(c)} returns the list of all category forms that are principal ancestors of the the category `c'.")) (|exportedOperators| (((|List| (|OperatorSignature|)) $) "\\spad{exportedOperators(c)} returns the list of all operator signatures exported by the category `c',{} along with their predicates.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: December 20,{} 2008. Date Last Updated: February 16,{} 2008. Basic Operations: coerce Related Constructors: Also See: Type") (((|CategoryConstructor|) $) "\\spad{constructor(c)} returns the category constructor used to instantiate the category object `c'."))) NIL NIL -(-143) +(-114) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4423 . T) (-4413 . T) (-4424 . T)) -((-3955 (-12 (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1120))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (QUOTE (-859))) (|HasCategory| (-146) (QUOTE (-1120))) (|HasCategory| (-146) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1120))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) -(-144 R Q A) +((-4145 . T) (-4135 . T) (-4146 . T)) +((-3677 (-12 (|HasCategory| (-117) (QUOTE (-323))) (|HasCategory| (-117) (|%list| (QUOTE -263) (QUOTE (-117))))) (-12 (|HasCategory| (-117) (QUOTE (-1041))) (|HasCategory| (-117) (|%list| (QUOTE -263) (QUOTE (-117)))))) (|HasCategory| (-117) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-117) (QUOTE (-323))) (|HasCategory| (-117) (QUOTE (-781))) (|HasCategory| (-117) (QUOTE (-1041))) (|HasCategory| (-117) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-117) (QUOTE (-73))) (-12 (|HasCategory| (-117) (QUOTE (-1041))) (|HasCategory| (-117) (|%list| (QUOTE -263) (QUOTE (-117)))))) +(-115 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL NIL -(-145) +(-116) ((|constructor| (NIL "Category for the usual combinatorial functions.")) (|permutation| (($ $ $) "\\spad{permutation(n, m)} returns the number of permutations of \\spad{n} objects taken \\spad{m} at a time. Note: \\spad{permutation(n,m) = n!/(n-m)!}.")) (|factorial| (($ $) "\\spad{factorial(n)} computes the factorial of \\spad{n} (denoted in the literature by \\spad{n!}) Note: \\spad{n! = n (n-1)! when n > 0}; also,{} \\spad{0! = 1}.")) (|binomial| (($ $ $) "\\spad{binomial(n,r)} returns the \\spad{(n,r)} binomial coefficient (often denoted in the literature by \\spad{C(n,r)}). Note: \\spad{C(n,r) = n!/(r!(n-r)!)} where \\spad{n >= r >= 0}."))) NIL NIL -(-146) +(-117) ((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape} designate the escape character.")) (|verticalTab| (($) "\\spad{verticalTab} designates vertical tab.")) (|horizontalTab| (($) "\\spad{horizontalTab} designates horizontal tab.")) (|backspace| (($) "\\spad{backspace} designates the backspace character.")) (|formfeed| (($) "\\spad{formfeed} designates the form feed character.")) (|linefeed| (($) "\\spad{linefeed} designates the line feed character.")) (|carriageReturn| (($) "\\spad{carriageReturn} designates carriage return.")) (|newline| (($) "\\spad{newline} designates the new line character.")) (|underscore| (($) "\\spad{underscore} designates the underbar character.")) (|quote| (($) "\\spad{quote} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|NonNegativeInteger|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|NonNegativeInteger|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}."))) NIL NIL -(-147) +(-118) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4420 . T)) +((-4142 . T)) NIL -(-148 R) +(-119 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial 'x,{} then it returns the characteristic polynomial expressed as a polynomial in 'x."))) NIL NIL -(-149) +(-120) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4420 . T)) +((-4142 . T)) NIL -(-150 -3493 UP UPUP) +(-121 -3215 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL -(-151 R CR) +(-122 R CR) ((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod fj (\\spad{j} \\= \\spad{i}) or equivalently g/prod fj = sum (ai/fi) or returns \"failed\" if no such list exists"))) NIL NIL -(-152 A S) +(-123 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasAttribute| |#1| (QUOTE -4423))) -(-153 S) +((|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasAttribute| |#1| (QUOTE -4145))) +(-124 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL -(-154 |n| K Q) +(-125 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4418 . T) (-4417 . T) (-4420 . T)) +((-4140 . T) (-4139 . T) (-4142 . T)) NIL -(-155) +(-126) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) NIL NIL -(-156) +(-127) ((|constructor| (NIL "This domain represents list comprehension syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the expression being collected by the list comprehension `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of the iterators of the list comprehension `e'."))) NIL NIL -(-157 UP |Par|) +(-128 UP |Par|) ((|complexZeros| (((|List| (|Complex| |#2|)) |#1| |#2|) "\\spad{complexZeros(poly, eps)} finds the complex zeros of the univariate polynomial \\spad{poly} to precision eps with solutions returned as complex floats or rationals depending on the type of eps."))) NIL NIL -(-158) +(-129) ((|constructor| (NIL "This domain represents type specification \\indented{2}{for an identifier or expression.}")) (|rhs| (((|TypeAst|) $) "\\spad{rhs(e)} returns the right hand side of the colon expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the colon expression `e'."))) NIL NIL -(-159) +(-130) ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-160 R -3493) +(-131 R -3215) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} n!.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} n!/(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} n!/(r! * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL -(-161 I) +(-132 I) ((|stirling2| ((|#1| |#1| |#1|) "\\spad{stirling2(n,m)} returns the Stirling number of the second kind denoted \\spad{SS[n,m]}.")) (|stirling1| ((|#1| |#1| |#1|) "\\spad{stirling1(n,m)} returns the Stirling number of the first kind denoted \\spad{S[n,m]}.")) (|permutation| ((|#1| |#1| |#1|) "\\spad{permutation(n)} returns \\spad{!P(n,r) = n!/(n-r)!}. This is the number of permutations of \\spad{n} objects taken \\spad{r} at a time.")) (|partition| ((|#1| |#1|) "\\spad{partition(n)} returns the number of partitions of the integer \\spad{n}. This is the number of distinct ways that \\spad{n} can be written as a sum of positive integers.")) (|multinomial| ((|#1| |#1| (|List| |#1|)) "\\spad{multinomial(n,[m1,m2,...,mk])} returns the multinomial coefficient \\spad{n!/(m1! m2! ... mk!)}.")) (|factorial| ((|#1| |#1|) "\\spad{factorial(n)} returns \\spad{n!}. this is the product of all integers between 1 and \\spad{n} (inclusive). Note: \\spad{0!} is defined to be 1.")) (|binomial| ((|#1| |#1| |#1|) "\\spad{binomial(n,r)} returns the binomial coefficient \\spad{C(n,r) = n!/(r! (n-r)!)},{} where \\spad{n >= r >= 0}. This is the number of combinations of \\spad{n} objects taken \\spad{r} at a time."))) NIL NIL -(-162) +(-133) ((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials."))) NIL NIL -(-163) +(-134) ((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) NIL NIL -(-164) +(-135) ((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'."))) NIL NIL -(-165) +(-136) ((|constructor| (NIL "This package exports the elementary operators,{} with some semantics already attached to them. The semantics that is attached here is not dependent on the set in which the operators will be applied.")) (|operator| (((|BasicOperator|) (|Symbol|)) "\\spad{operator(s)} returns an operator with name \\spad{s},{} with the appropriate semantics if \\spad{s} is known. If \\spad{s} is not known,{} the result has no semantics."))) NIL NIL -(-166 R UP UPUP) +(-137 R UP UPUP) ((|constructor| (NIL "A package for swapping the order of two variables in a tower of two UnivariatePolynomialCategory extensions.")) (|swap| ((|#3| |#3|) "\\spad{swap(p(x,y))} returns \\spad{p}(\\spad{y},{}\\spad{x})."))) NIL NIL -(-167 S R) +(-138 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (QUOTE (-1222))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4419)) (|HasAttribute| |#2| (QUOTE -4422)) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-568)))) -(-168 R) +((|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-498))) (|HasCategory| |#2| (QUOTE (-942))) (|HasCategory| |#2| (QUOTE (-1143))) (|HasCategory| |#2| (QUOTE (-1000))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#2| (QUOTE (-318))) (|HasAttribute| |#2| (QUOTE -4141)) (|HasAttribute| |#2| (QUOTE -4144)) (|HasCategory| |#2| (QUOTE (-261))) (|HasCategory| |#2| (QUOTE (-510)))) +(-139 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4416 -3955 (|has| |#1| (-568)) (-12 (|has| |#1| (-319)) (|has| |#1| (-927)))) (-4421 |has| |#1| (-376)) (-4415 |has| |#1| (-376)) (-4419 |has| |#1| (-6 -4419)) (-4422 |has| |#1| (-6 -4422)) (-1488 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4138 -3677 (|has| |#1| (-510)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4141 |has| |#1| (-6 -4141)) (-4144 |has| |#1| (-6 -4144)) (-1409 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-169 RR PR) +(-140 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) NIL NIL -(-170) +(-141) ((|constructor| (NIL "This package implements a Spad compiler.")) (|elaborate| (((|Maybe| (|Elaboration|)) (|SpadAst|)) "\\spad{elaborate(s)} returns the elaboration of the syntax object \\spad{s} in the empty environement.")) (|macroExpand| (((|SpadAst|) (|SpadAst|) (|Environment|)) "\\spad{macroExpand(s,e)} traverses the syntax object \\spad{s} replacing all (niladic) macro invokations with the corresponding substitution."))) NIL NIL -(-171 R) +(-142 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4416 -3955 (|has| |#1| (-568)) (-12 (|has| |#1| (-319)) (|has| |#1| (-927)))) (-4421 |has| |#1| (-376)) (-4415 |has| |#1| (-376)) (-4419 |has| |#1| (-6 -4419)) (-4422 |has| |#1| (-6 -4422)) (-1488 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-3955 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-3955 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-363)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1196))))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557)))) (-3955 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-927)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-376)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-927)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-927)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-927))))) (-3955 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-1222)))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (-3955 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-568)))) (-3955 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-1222)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-927))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-376)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-568)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-240))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasAttribute| |#1| (QUOTE -4419)) (|HasAttribute| |#1| (QUOTE -4422)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-363)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-172 R S) +((-4138 -3677 (|has| |#1| (-510)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4141 |has| |#1| (-6 -4141)) (-4144 |has| |#1| (-6 -4144)) (-1409 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-305))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-305)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-323))) (-3677 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-305)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-305)))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-305))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-318)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-305))) (|HasCategory| |#1| (QUOTE (-848))))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (QUOTE (-942))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-305))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-305)))) (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#1| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -240) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1000))) (-12 (|HasCategory| |#1| (QUOTE (-1000))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-498))) (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-848))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-318)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-189)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-190))) (-12 (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasAttribute| |#1| (QUOTE -4141)) (|HasAttribute| |#1| (QUOTE -4144)) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-305)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-143 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL NIL -(-173 R S CS) +(-144 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL NIL -(-174) +(-145) ((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} \\undocumented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,b)} \\undocumented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,b)} \\undocumented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} \\undocumented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented"))) NIL NIL -(-175) +(-146) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +(((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-176) +(-147) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) NIL NIL -(-177 R) +(-148 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4425 "*") . T) (-4416 . T) (-4421 . T) (-4415 . T) (-4417 . T) (-4418 . T) (-4420 . T)) +(((-4147 "*") . T) (-4138 . T) (-4143 . T) (-4137 . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-178) +(-149) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with `n'. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding `b'.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) NIL NIL -(-179 R) +(-150 R) ((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,b)} is a function which will map the point \\spad{(lambda,mu,nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,v,phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\spad{x = a*sinh(xi)*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(xi)*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(xi)*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\spad{x = a*sinh(xi)*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(xi)*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(xi)*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}."))) NIL NIL -(-180 R |PolR| E) +(-151 R |PolR| E) ((|constructor| (NIL "This package implements characteristicPolynomials for monogenic algebras using resultants")) (|characteristicPolynomial| ((|#2| |#3|) "\\spad{characteristicPolynomial(e)} returns the characteristic polynomial of \\spad{e} using resultants"))) NIL NIL -(-181 R S CS) +(-152 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-963 |#2|) (|%list| (QUOTE -899) (|devaluate| |#1|)))) -(-182 R) +((|HasCategory| (-884 |#2|) (|%list| (QUOTE -821) (|devaluate| |#1|)))) +(-153 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)*lm(2)*...*lm(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL NIL -(-183) +(-154) ((|constructor| (NIL "This domain represents `coerce' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-184 R UP) +(-155 R UP) ((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken's idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user's responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage's variant of Graeffe's method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly, eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} -1\". Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,eps,info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} -1\". Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p, eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p, eps, info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p, eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}."))) NIL NIL -(-185 S ST) +(-156 S ST) ((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic"))) NIL NIL -(-186) +(-157) ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-187 C) +(-158 C) ((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") ((|#1| $) "\\spad{constructor(t)} returns the name of the constructor used to make the call."))) NIL NIL -(-188 S) +(-159 S) ((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(\\spad{i+1}) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL -(-189) +(-160) ((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(\\spad{i+1}) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL -(-190) +(-161) ((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors"))) NIL NIL -(-191 R -3493) +(-162 R -3215) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-192 R) +(-163 R) ((|constructor| (NIL "CoerceVectorMatrixPackage: an unexposed,{} technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Fraction Polynomial R}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Polynomial R}"))) NIL NIL -(-193) +(-164) ((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{SFunction(li)} is the \\spad{S}-function of the partition \\spad{li} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}"))) NIL NIL -(-194) +(-165) ((|constructor| (NIL "This package \\undocumented{}")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}"))) NIL NIL -(-195) -((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,t,r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to \\axiom{\\spad{t}}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{x}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{x}}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points."))) -NIL -NIL -(-196) -((|constructor| (NIL "\\axiomType{d01ajfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AJF,{} a general numerical integration routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AJF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) -NIL -NIL -(-197) -((|constructor| (NIL "\\axiomType{d01akfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AKF,{} a numerical integration routine which is is suitable for oscillating,{} non-singular functions. The function \\axiomFun{measure} measures the usefulness of the routine D01AKF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) -NIL -NIL -(-198) -((|constructor| (NIL "\\axiomType{d01alfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ALF,{} a general numerical integration routine which can handle a list of singularities. The function \\axiomFun{measure} measures the usefulness of the routine D01ALF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) -NIL -NIL -(-199) -((|constructor| (NIL "\\axiomType{d01amfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AMF,{} a general numerical integration routine which can handle infinite or semi-infinite range of the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AMF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) -NIL -NIL -(-200) -((|constructor| (NIL "\\axiomType{d01anfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ANF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}). The function \\axiomFun{measure} measures the usefulness of the routine D01ANF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) -NIL -NIL -(-201) -((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF,{} a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form \\spad{w}(\\spad{x}) = (\\spad{x}-a)^c * (\\spad{b}-\\spad{x})^d. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) -NIL -NIL -(-202) -((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF,{} a general numerical integration routine which can solve an integral of the form \\newline \\centerline{\\inputbitmap{/home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.xbm}} The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) -NIL -NIL -(-203) -((|constructor| (NIL "\\axiomType{d01asfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ASF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}) on an semi-infinite range. The function \\axiomFun{measure} measures the usefulness of the routine D01ASF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) -NIL -NIL -(-204) -((|constructor| (NIL "\\axiomType{d01fcfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01FCF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) -NIL -NIL -(-205) -((|constructor| (NIL "\\axiomType{d01gbfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01GBF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) -NIL -NIL -(-206) -NIL -NIL -NIL -(-207) -((|constructor| (NIL "\\axiom{d01WeightsPackage} is a package for functions used to investigate whether a function can be divided into a simpler function and a weight function. The types of weights investigated are those giving rise to end-point singularities of the algebraico-logarithmic type,{} and trigonometric weights.")) (|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasLogarithmicWeights} looks for logarithmic weights giving rise to singularities of the function at the end-points.")) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasAlgebraicWeight} looks for algebraic weights giving rise to singularities of the function at the end-points.")) (|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasWeightCosWXorSinWX} looks for trigonometric weights in an expression of the form \\axiom{cos \\omega \\spad{x}} or \\axiom{sin \\omega \\spad{x}},{} returning the value of \\omega (\\notequal 1) and the operator."))) -NIL -NIL -(-208) -((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units''. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units'' -> 0.75 \\newline 200 ``operation units'' -> 0.5 \\newline 83 ``operation units'' -> 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,symbols,values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,C2)} is for interacting attributes"))) -NIL -NIL -(-209) -((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) -NIL -NIL -(-210) -((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) -NIL -NIL -(-211) -((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF,{} a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) -NIL -NIL -(-212) -((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF,{} a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) -NIL -NIL -(-213) -((|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,g,l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,n)} \\undocumented{}"))) -NIL -NIL -(-214) -((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF."))) -NIL -NIL -(-215) -((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF."))) -NIL -NIL -(-216 N T$) +(-166 N T$) ((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|qsetelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "setelt(\\spad{b},{}\\spad{i},{}\\spad{x}) sets the \\spad{i}th entry of data buffer `b' to `x'. Indexing is 0-based.")) (|qelt| ((|#2| $ (|NonNegativeInteger|)) "elt(\\spad{b},{}\\spad{i}) returns the \\spad{i}th element in buffer `b'. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}."))) NIL NIL -(-217 S) +(-167 S) ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-218 |vars|) +(-168 |vars|) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis."))) NIL NIL -(-219 -3493 UP UPUP R) +(-169 -3215 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-220 -3493 FP) +(-170 -3215 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and q= size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL -(-221) +(-171) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| (-557) (QUOTE (-927))) (|HasCategory| (-557) (|%list| (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| (-557) (QUOTE (-147))) (|HasCategory| (-557) (QUOTE (-149))) (|HasCategory| (-557) (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-557) (QUOTE (-1039))) (|HasCategory| (-557) (QUOTE (-840))) (|HasCategory| (-557) (QUOTE (-859))) (-3955 (|HasCategory| (-557) (QUOTE (-840))) (|HasCategory| (-557) (QUOTE (-859)))) (|HasCategory| (-557) (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| (-557) (QUOTE (-1171))) (|HasCategory| (-557) (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| (-557) (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| (-557) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| (-557) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| (-557) (QUOTE (-239))) (|HasCategory| (-557) (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-557) (QUOTE (-240))) (|HasCategory| (-557) (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-557) (|%list| (QUOTE -526) (QUOTE (-1196)) (QUOTE (-557)))) (|HasCategory| (-557) (|%list| (QUOTE -321) (QUOTE (-557)))) (|HasCategory| (-557) (|%list| (QUOTE -298) (QUOTE (-557)) (QUOTE (-557)))) (|HasCategory| (-557) (QUOTE (-319))) (|HasCategory| (-557) (QUOTE (-556))) (|HasCategory| (-557) (|%list| (QUOTE -656) (QUOTE (-557)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-557) (QUOTE (-927)))) (-3955 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-557) (QUOTE (-927)))) (|HasCategory| (-557) (QUOTE (-147))))) -(-222) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| (-499) (QUOTE (-848))) (|HasCategory| (-499) (|%list| (QUOTE -978) (QUOTE (-1117)))) (|HasCategory| (-499) (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-120))) (|HasCategory| (-499) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-499) (QUOTE (-960))) (|HasCategory| (-499) (QUOTE (-763))) (|HasCategory| (-499) (QUOTE (-781))) (-3677 (|HasCategory| (-499) (QUOTE (-763))) (|HasCategory| (-499) (QUOTE (-781)))) (|HasCategory| (-499) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-499) (QUOTE (-1092))) (|HasCategory| (-499) (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-499) (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-499) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-499) (QUOTE (-189))) (|HasCategory| (-499) (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| (-499) (QUOTE (-190))) (|HasCategory| (-499) (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| (-499) (|%list| (QUOTE -468) (QUOTE (-1117)) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -263) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -240) (QUOTE (-499)) (QUOTE (-499)))) (|HasCategory| (-499) (QUOTE (-261))) (|HasCategory| (-499) (QUOTE (-498))) (|HasCategory| (-499) (|%list| (QUOTE -596) (QUOTE (-499)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-848)))) (-3677 (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-848)))) (|HasCategory| (-499) (QUOTE (-118))))) +(-172) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition `d'.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition `d'. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-223 R -3493) +(-173 R -3215) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-224 R) +(-174 R) ((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-225 R1 R2) +(-175 R1 R2) ((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) NIL NIL -(-226 S) +(-176 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-227 |CoefRing| |listIndVar|) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) +(-177 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4420 . T)) +((-4142 . T)) NIL -(-228 R -3493) +(-178 R -3215) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL -(-229) +(-179) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|nan?| (((|Boolean|) $) "\\spad{nan? x} holds if \\spad{x} is a Not a Number floating point data in the IEEE 754 sense.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4198 . T) (-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-3920 . T) (-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-230) +(-180) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) NIL NIL -(-231 R) +(-181 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4425 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-232 A S) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-510))) (|HasAttribute| |#1| (QUOTE (-4147 "*"))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) +(-182 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL -(-233 S) +(-183 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4424 . T)) +((-4146 . T)) NIL -(-234 R) +(-184 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%."))) -((-4420 . T)) +((-4142 . T)) NIL -(-235 S T$) +(-185 S T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) NIL NIL -(-236 T$) +(-186 T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#1| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#1| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) NIL NIL -(-237 R) +(-187 R) ((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline"))) -((-4418 . T) (-4417 . T)) +((-4140 . T) (-4139 . T)) NIL -(-238 S) +(-188 S) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) NIL NIL -(-239) +(-189) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) NIL NIL -(-240) +(-190) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline"))) -((-4420 . T)) +((-4142 . T)) NIL -(-241 A S) +(-191 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4423))) -(-242 S) +((|HasAttribute| |#1| (QUOTE -4145))) +(-192 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4424 . T)) +((-4146 . T)) NIL -(-243) +(-193) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-244 S -3018 R) +(-194 S -2740 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-813))) (|HasCategory| |#3| (QUOTE (-859))) (|HasAttribute| |#3| (QUOTE -4420)) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-744))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (QUOTE (-1120)))) -(-245 -3018 R) +((|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-781))) (|HasAttribute| |#3| (QUOTE -4142)) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (QUOTE (-1041)))) +(-195 -2740 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4417 |has| |#2| (-1068)) (-4418 |has| |#2| (-1068)) (-4420 |has| |#2| (-6 -4420)) (-4423 . T)) +((-4139 |has| |#2| (-989)) (-4140 |has| |#2| (-989)) (-4142 |has| |#2| (-6 -4142)) (-4145 . T)) NIL -(-246 -3018 R) +(-196 -2740 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4417 |has| |#2| (-1068)) (-4418 |has| |#2| (-1068)) (-4420 |has| |#2| (-6 -4420)) (-4423 . T)) -((-3955 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-813))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1068)))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#2| (QUOTE (-376))) (-3955 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3955 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (QUOTE (-813))) (-3955 (|HasCategory| |#2| (QUOTE (-813))) (|HasCategory| |#2| (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-381))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))) (-3955 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (QUOTE (-813))) (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (QUOTE (-813))) (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#2| (QUOTE (-240))) (-3955 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1068))))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1196))))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#2| (QUOTE (-1120))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-813))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-813))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-813))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557)))))) (|HasCategory| (-557) (QUOTE (-859))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1196))))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasAttribute| |#2| (QUOTE -4420)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) -(-247 -3018 A B) +((-4139 |has| |#2| (-989)) (-4140 |has| |#2| (-989)) (-4142 |has| |#2| (-6 -4142)) (-4145 . T)) +((-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-989)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#2| (QUOTE (-318))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989)))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-318)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-738))) (-3677 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-781)))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-323))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (QUOTE (-190))) (-3677 (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-989))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117))))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (QUOTE (-1041))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-989)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))))) (|HasCategory| (-499) (QUOTE (-781))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-989)))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-989)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasAttribute| |#2| (QUOTE -4142)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-989)))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-73))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))))) +(-197 -2740 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-248) +(-198) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-249 S) +(-199 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-250) +(-200) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4416 . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4138 . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-251 S) +(-201 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) NIL NIL -(-252 S) +(-202 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4424 . T) (-4423 . T)) -((-3955 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (-3955 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-859))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| (-557) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-253 M) +((-4146 . T) (-4145 . T)) +((-3677 (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) +(-203 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-254 R) +(-204 R) ((|constructor| (NIL "Category of modules that extend differential rings. \\blankline"))) -((-4418 . T) (-4417 . T)) +((-4140 . T) (-4139 . T)) NIL -(-255 |vl| R) +(-205 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4425 "*") |has| |#2| (-175)) (-4416 |has| |#2| (-568)) (-4421 |has| |#2| (-6 -4421)) (-4418 . T) (-4417 . T) (-4420 . T)) -((|HasCategory| |#2| (QUOTE (-927))) (-3955 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-927)))) (-3955 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-927)))) (-3955 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-927)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-175))) (-3955 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| (-876 |#1|) (|%list| (QUOTE -899) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| (-876 |#1|) (|%list| (QUOTE -899) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| (-876 |#1|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| (-876 |#1|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-876 |#1|) (|%list| (QUOTE -629) (QUOTE (-546))))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557)))) (-3955 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4421)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) -(-256) +(((-4147 "*") |has| |#2| (-146)) (-4138 |has| |#2| (-510)) (-4143 |has| |#2| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) +((|HasCategory| |#2| (QUOTE (-848))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-848)))) (-3677 (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-848)))) (-3677 (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-146))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-510)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-318))) (|HasAttribute| |#2| (QUOTE -4143)) (|HasCategory| |#2| (QUOTE (-406))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-206) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain `d'.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain `x'.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object `d'."))) NIL NIL -(-257) +(-207) ((|constructor| (NIL "This domain provides representations for domains constructors.")) (|functorData| (((|FunctorData|) $) "\\spad{functorData x} returns the functor data associated with the domain constructor \\spad{x}."))) NIL NIL -(-258) +(-208) ((|constructor| (NIL "Represntation of domain templates resulting from compiling a domain constructor")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# x} returns the length of the domain template \\spad{x}."))) NIL NIL -(-259 |n| R M S) +(-209 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4420 -3955 (-2959 (|has| |#4| (-1068)) (|has| |#4| (-240))) (|has| |#4| (-6 -4420)) (-2959 (|has| |#4| (-1068)) (|has| |#4| (-915 (-1196))))) (-4417 |has| |#4| (-1068)) (-4418 |has| |#4| (-1068)) (-4423 . T)) -((-3955 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-744))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-813))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-859))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))) (|HasCategory| |#4| (|%list| (QUOTE -915) (QUOTE (-1196)))))) (|HasCategory| |#4| (QUOTE (-376))) (-3955 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-1068)))) (-3955 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376)))) (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (QUOTE (-744))) (|HasCategory| |#4| (QUOTE (-813))) (-3955 (|HasCategory| |#4| (QUOTE (-813))) (|HasCategory| |#4| (QUOTE (-859)))) (|HasCategory| |#4| (QUOTE (-859))) (|HasCategory| |#4| (QUOTE (-381))) (-3955 (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#4| (|%list| (QUOTE -915) (QUOTE (-1196)))))) (|HasCategory| |#4| (|%list| (QUOTE -915) (QUOTE (-1196)))) (-3955 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#4| (QUOTE (-240))) (-3955 (|HasCategory| |#4| (QUOTE (-240))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1068))))) (-3955 (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (|%list| (QUOTE -917) (QUOTE (-1196))))) (|HasCategory| |#4| (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#4| (QUOTE (-1120))) (-3955 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#4| (QUOTE (-744))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#4| (QUOTE (-813))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#4| (QUOTE (-859))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))))) (-3955 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (QUOTE (-744))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (QUOTE (-813))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (QUOTE (-859))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (|HasCategory| |#4| (QUOTE (-1068)))) (-3955 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (QUOTE (-744))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (QUOTE (-813))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (QUOTE (-859))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557)))))) (|HasCategory| (-557) (QUOTE (-859))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (|%list| (QUOTE -656) (QUOTE (-557))))) (-3955 (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (|%list| (QUOTE -917) (QUOTE (-1196)))))) (-3955 (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1068)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1068))))) (-12 (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-3955 (-12 (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (QUOTE (-557))))) (|HasCategory| |#4| (QUOTE (-1068)))) (-12 (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#4| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-3955 (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasAttribute| |#4| (QUOTE -4420)) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1068))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1068)))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (|%list| (QUOTE -917) (QUOTE (-1196))))) (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-133))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))))) -(-260 |n| R S) +((-4142 -3677 (-2681 (|has| |#4| (-989)) (|has| |#4| (-190))) (|has| |#4| (-6 -4142)) (-2681 (|has| |#4| (-989)) (|has| |#4| (-836 (-1117))))) (-4139 |has| |#4| (-989)) (-4140 |has| |#4| (-989)) (-4145 . T)) +((-3677 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-323))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-684))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-781))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|))) (|HasCategory| |#4| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (|HasCategory| |#4| (QUOTE (-318))) (-3677 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (QUOTE (-989)))) (-3677 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-318)))) (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (QUOTE (-684))) (|HasCategory| |#4| (QUOTE (-738))) (-3677 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (QUOTE (-781)))) (|HasCategory| |#4| (QUOTE (-781))) (|HasCategory| |#4| (QUOTE (-323))) (-3677 (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#4| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (|HasCategory| |#4| (|%list| (QUOTE -836) (QUOTE (-1117)))) (-3677 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#4| (QUOTE (-190))) (-3677 (|HasCategory| |#4| (QUOTE (-190))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-989))))) (-3677 (-12 (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -838) (QUOTE (-1117))))) (|HasCategory| |#4| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#4| (QUOTE (-1041))) (-3677 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#4| (QUOTE (-323))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#4| (QUOTE (-684))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#4| (QUOTE (-781))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))))) (-3677 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-323))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-684))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-781))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#4| (QUOTE (-989)))) (-3677 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-323))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-684))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-781))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499)))))) (|HasCategory| (-499) (QUOTE (-781))) (-12 (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -596) (QUOTE (-499))))) (-3677 (-12 (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -838) (QUOTE (-1117)))))) (-3677 (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-989)))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-989))))) (-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (-3677 (-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#4| (QUOTE (-989)))) (-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-3677 (-12 (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasAttribute| |#4| (QUOTE -4142)) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-989))))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-989)))) (-12 (|HasCategory| |#4| (QUOTE (-989))) (|HasCategory| |#4| (|%list| (QUOTE -838) (QUOTE (-1117))))) (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#4| (QUOTE (-73))) (-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|))))) +(-210 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4420 -3955 (-2959 (|has| |#3| (-1068)) (|has| |#3| (-240))) (|has| |#3| (-6 -4420)) (-2959 (|has| |#3| (-1068)) (|has| |#3| (-915 (-1196))))) (-4417 |has| |#3| (-1068)) (-4418 |has| |#3| (-1068)) (-4423 . T)) -((-3955 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-744))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-813))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-859))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196)))))) (|HasCategory| |#3| (QUOTE (-376))) (-3955 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1068)))) (-3955 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (QUOTE (-744))) (|HasCategory| |#3| (QUOTE (-813))) (-3955 (|HasCategory| |#3| (QUOTE (-813))) (|HasCategory| |#3| (QUOTE (-859)))) (|HasCategory| |#3| (QUOTE (-859))) (|HasCategory| |#3| (QUOTE (-381))) (-3955 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196)))))) (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196)))) (-3955 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#3| (QUOTE (-240))) (-3955 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1068))))) (-3955 (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1196))))) (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#3| (QUOTE (-1120))) (-3955 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-744))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-813))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-859))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))))) (-3955 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-744))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-813))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-859))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (|HasCategory| |#3| (QUOTE (-1068)))) (-3955 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-744))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-813))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-859))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557)))))) (|HasCategory| (-557) (QUOTE (-859))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -656) (QUOTE (-557))))) (-3955 (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1196)))))) (-3955 (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1068))))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-3955 (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-3955 (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasAttribute| |#3| (QUOTE -4420)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1068))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1196))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) -(-261 A R S V E) +((-4142 -3677 (-2681 (|has| |#3| (-989)) (|has| |#3| (-190))) (|has| |#3| (-6 -4142)) (-2681 (|has| |#3| (-989)) (|has| |#3| (-836 (-1117))))) (-4139 |has| |#3| (-989)) (-4140 |has| |#3| (-989)) (-4145 . T)) +((-3677 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (|HasCategory| |#3| (QUOTE (-318))) (-3677 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-989)))) (-3677 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-318)))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (QUOTE (-738))) (-3677 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-781)))) (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (QUOTE (-323))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))) (-3677 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#3| (QUOTE (-190))) (-3677 (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-989))))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -838) (QUOTE (-1117))))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#3| (QUOTE (-1041))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#3| (QUOTE (-989)))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499)))))) (|HasCategory| (-499) (QUOTE (-781))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -838) (QUOTE (-1117)))))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-989)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-989))))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#3| (QUOTE (-989)))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasAttribute| |#3| (QUOTE -4142)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-989))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-989)))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -838) (QUOTE (-1117))))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#3| (QUOTE (-73))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|))))) +(-211 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-240)))) -(-262 R S V E) +((|HasCategory| |#2| (QUOTE (-190)))) +(-212 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-6 -4421)) (-4418 . T) (-4417 . T) (-4420 . T)) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) NIL -(-263 S) +(-213 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4423 . T) (-4424 . T)) +((-4145 . T) (-4146 . T)) NIL -(-264 |Ex|) +(-214 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-265) +(-215) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-266 R |Ex|) +(-216 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,y) = g(x,y),x,y,l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-267) +(-217) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*\\%pi, false)}} Parameter descriptions: \\indented{2}{f:\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-268 R) +(-218 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-269) +(-219) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,lz,l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly,lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-270) +(-220) ((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-271) +(-221) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn't exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-272 S) +(-222 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-273 S R) +(-223 S R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-239)))) -(-274 R) +((|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-189)))) +(-224 R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL NIL -(-275 R S V) +(-225 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-6 -4421)) (-4418 . T) (-4417 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-927))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3955 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3955 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-175))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| |#3| (|%list| (QUOTE -899) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| |#3| (|%list| (QUOTE -899) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| |#3| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| |#3| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#3| (|%list| (QUOTE -629) (QUOTE (-546))))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (-3955 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4421)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-276 A S) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-848))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| |#3| (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#3| (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| |#3| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#3| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#3| (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasAttribute| |#1| (QUOTE -4143)) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-226 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-277 S) +(-227 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-278) -((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units''. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.lfn}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{-b}."))) -NIL -NIL -(-279) -((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) -NIL -NIL -(-280) -((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) -NIL -NIL -(-281) -((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) -NIL -NIL -(-282) -((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) -NIL -NIL -(-283) -((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) -NIL -NIL -(-284) -((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) -NIL -NIL -(-285) -((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) -NIL -NIL -(-286) +(-228) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1's in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0's and 1's into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-287 R -3493) +(-229 R -3215) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-288 R -3493) +(-230 R -3215) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-289 |Coef| UTS ULS) +(-231 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-376)))) -(-290 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-318)))) +(-232 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-376)))) -(-291) +((|HasCategory| |#1| (QUOTE (-318)))) +(-233) ((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Identifier|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Identifier|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|Syntax|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL NIL -(-292) +(-234) ((|environment| (((|Environment|) $) "\\spad{environment(x)} returns the environment of the elaboration \\spad{x}.")) (|typeForm| (((|InternalTypeForm|) $) "\\spad{typeForm(x)} returns the type form of the elaboration \\spad{x}.")) (|irForm| (((|InternalRepresentationForm|) $) "\\spad{irForm(x)} returns the internal representation form of the elaboration \\spad{x}.")) (|elaboration| (($ (|InternalRepresentationForm|) (|InternalTypeForm|) (|Environment|)) "\\spad{elaboration(ir,ty,env)} construct an elaboration object for for the internal representation form \\spad{ir},{} with type \\spad{ty},{} and environment \\spad{env}."))) NIL NIL -(-293 A S) +(-235 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1120)))) -(-294 S) +((|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-1041)))) +(-236 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4424 . T)) +((-4146 . T)) NIL -(-295 S) +(-237 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-296) +(-238) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-297 |Coef| UTS) +(-239 |Coef| UTS) ((|constructor| (NIL "The elliptic functions sn,{} sc and dn are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function dn as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function cn as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function sn as a Taylor \\indented{1}{series.}"))) NIL NIL -(-298 S T$) +(-240 S T$) ((|constructor| (NIL "An eltable over domains \\spad{S} and \\spad{T} is a structure which can be viewed as a function from \\spad{S} to \\spad{T}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,s)} (also written: \\spad{u.s}) returns the value of \\spad{u} at \\spad{s}. Error: if \\spad{u} is not defined at \\spad{s}."))) NIL NIL -(-299 S |Dom| |Im|) +(-241 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4424))) -(-300 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -4146))) +(-242 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-301 S R |Mod| -2245 -3936 |exactQuo|) +(-243 S R |Mod| -2138 -3658 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-302) +(-244) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4416 . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4138 . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-303) +(-245) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-304 R) +(-246 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-305 S) +(-247 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the lhs of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4420 -3955 (|has| |#1| (-1068)) (|has| |#1| (-485))) (-4417 |has| |#1| (-1068)) (-4418 |has| |#1| (-1068))) -((|HasCategory| |#1| (QUOTE (-376))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1068)))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (-3955 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1068)))) (-3955 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-744)))) (|HasCategory| |#1| (QUOTE (-485))) (-3955 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-744))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-744))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-310))) (-3955 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-485)))) (-3955 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-744)))) (-3955 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-744)))) -(-306 S R) +((-4142 -3677 (|has| |#1| (-989)) (|has| |#1| (-427))) (-4139 |has| |#1| (-989)) (-4140 |has| |#1| (-989))) +((|HasCategory| |#1| (QUOTE (-318))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-989)))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (-3677 (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-989)))) (-3677 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-684)))) (|HasCategory| |#1| (QUOTE (-427))) (-3677 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-684))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-684))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-252))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-427)))) (-3677 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-684)))) (-3677 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-989)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-684)))) +(-248 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-307 |Key| |Entry|) +(-249 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4288) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2284) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (-3955 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (-3955 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (-3955 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -629) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1120))) (-3955 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875))))) (-3955 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-102)))) -(-308) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-1041))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) +(-250) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-309 S) +(-251 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-1068)))) -(-310) +((|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-989)))) +(-252) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-311 -3493 S) +(-253 -3215 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-312 E -3493) +(-254 E -3215) ((|constructor| (NIL "This package allows a mapping \\spad{E} -> \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL -(-313) +(-255) ((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,var,range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-314 A B) +(-256 A B) ((|constructor| (NIL "\\spad{ExpertSystemContinuityPackage1} exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL NIL -(-315) +(-257) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' -> 0.75 200 `operation units' -> 0.5 83 `operation units' -> 0.25 ** = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-316 R1) +(-258 R1) ((|constructor| (NIL "\\axiom{\\spad{ExpertSystemToolsPackage1}} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-317 R1 R2) +(-259 R1 R2) ((|constructor| (NIL "\\axiom{\\spad{ExpertSystemToolsPackage2}} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,m)} applies a mapping \\spad{f:R1} -> \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-318 S) +(-260 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-319) +(-261) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-320 S R) +(-262 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-321 R) +(-263 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-322 -3493) +(-264 -3215) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-323) +(-265) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-324) +(-266) ((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL -(-325 R FE |var| |cen|) +(-267 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-927))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-1039))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-840))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-859))) (-3955 (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-840))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-859)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-1171))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-240))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -526) (QUOTE (-1196)) (|%list| (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -321) (|%list| (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -298) (|%list| (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-319))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-556))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-927)))) (-3955 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-927)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-147))))) -(-326 R) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-848))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -978) (QUOTE (-1117)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-960))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-763))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-781))) (-3677 (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-763))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-781)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-1092))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-189))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-190))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -468) (QUOTE (-1117)) (|%list| (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -263) (|%list| (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -240) (|%list| (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-261))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-498))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-848)))) (-3677 (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-848)))) (|HasCategory| (-1194 |#1| |#2| |#3| |#4|) (QUOTE (-118))))) +(-268 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4420 -3955 (-12 (|has| |#1| (-568)) (-3955 (|has| |#1| (-1068)) (|has| |#1| (-485)))) (|has| |#1| (-1068)) (|has| |#1| (-485))) (-4418 |has| |#1| (-175)) (-4417 |has| |#1| (-175)) ((-4425 "*") |has| |#1| (-568)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-568)) (-4415 |has| |#1| (-568))) -((-3955 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#1| (QUOTE (-568))) (-3955 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-21))) (-3955 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-1068))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557)))))) (-3955 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (-3955 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-3955 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1068)))) (-3955 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1068)))) (-3955 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1068)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568)))) (-3955 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1131)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3955 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1068)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| $ (QUOTE (-1068))) (|HasCategory| $ (|%list| (QUOTE -1057) (QUOTE (-557))))) -(-327 R S) +((-4142 -3677 (-12 (|has| |#1| (-510)) (-3677 (|has| |#1| (-989)) (|has| |#1| (-427)))) (|has| |#1| (-989)) (|has| |#1| (-427))) (-4140 |has| |#1| (-146)) (-4139 |has| |#1| (-146)) ((-4147 "*") |has| |#1| (-510)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-510)) (-4137 |has| |#1| (-510))) +((-3677 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (QUOTE (-510))) (-3677 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-989)))) (|HasCategory| |#1| (QUOTE (-21))) (-3677 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-989)))) (|HasCategory| |#1| (QUOTE (-989))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))))) (-3677 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499))))) (-3677 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-989)))) (-3677 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-989)))) (-3677 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-989)))) (-12 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1052)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3677 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-989)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| $ (QUOTE (-989))) (|HasCategory| $ (|%list| (QUOTE -978) (QUOTE (-499))))) +(-269 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-328 R FE) +(-270 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-329 R -3493) +(-271 R -3215) ((|constructor| (NIL "Taylor series solutions of explicit ODE's.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL -(-330) +(-272) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-331 FE |var| |cen|) +(-273 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-376)) (-4415 |has| |#1| (-376)) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-175))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-557))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-557))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-557)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-376))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-568)))) (-3955 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasSignature| |#1| (|%list| (QUOTE -4374) (|%list| (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasSignature| |#1| (|%list| (QUOTE -4240) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (|%list| (QUOTE -3482) (|%list| (|%list| (QUOTE -659) (QUOTE (-1196))) (|devaluate| |#1|))))))) -(-332 M) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499))) (|devaluate| |#1|)))) (|HasCategory| (-361 (-499)) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-318))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-898))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#1|))))))) +(-274 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}rm are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-333 E OV R P) +(-275 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between -k and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-334 S) +(-276 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The operation is commutative."))) -((-4418 . T) (-4417 . T)) -((|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-557) (QUOTE (-812)))) -(-335 S E) +((-4140 . T) (-4139 . T)) +((|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| (-499) (QUOTE (-737)))) +(-277 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}'s.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} \\spad{a1}\\^\\spad{e1} ... an\\^en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-336 S) +(-278 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-789) (QUOTE (-812)))) -(-337 S R E) +((|HasCategory| (-714) (QUOTE (-737)))) +(-279 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-175)))) -(-338 R E) +((|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-146)))) +(-280 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4417 . T) (-4418 . T) (-4420 . T)) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-339 S) +(-281 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4424 . T) (-4423 . T)) -((-3955 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (-3955 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-859))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| (-557) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-340 S -3493) +((-4146 . T) (-4145 . T)) +((-3677 (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) +(-282 S -3215) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-381)))) -(-341 -3493) +((|HasCategory| |#2| (QUOTE (-323)))) +(-283 -3215) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-342) +(-284) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) NIL NIL -(-343 E) +(-285 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-344) +(-286) ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables \\spad{I1},{} \\spad{I2},{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,b,d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,p,q)} uses loop variables in the Fortran,{} \\spad{I1} and \\spad{I2}")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,p)} \\undocumented{}"))) NIL NIL -(-345) +(-287) ((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}."))) NIL NIL -(-346 -3493 UP UPUP R) +(-288 -3215 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL -(-347 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-289 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-348 S -3493 UP UPUP R) +(-290 S -3215 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-349 -3493 UP UPUP R) +(-291 -3215 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-350 S R) +(-292 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-351 R) +((|HasCategory| |#2| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -240) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-293 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-352 |basicSymbols| |subscriptedSymbols| R) +(-294 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function \\spad{LOG10}")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-391)))) (|HasCategory| $ (QUOTE (-1068))) (|HasCategory| $ (|%list| (QUOTE -1057) (QUOTE (-557))))) -(-353 |p| |n|) +((-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-333)))) (|HasCategory| $ (QUOTE (-989))) (|HasCategory| $ (|%list| (QUOTE -978) (QUOTE (-499))))) +(-295 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((-3955 (|HasCategory| (-923 |#1|) (QUOTE (-147))) (|HasCategory| (-923 |#1|) (QUOTE (-381)))) (|HasCategory| (-923 |#1|) (QUOTE (-149))) (|HasCategory| (-923 |#1|) (QUOTE (-381))) (|HasCategory| (-923 |#1|) (QUOTE (-147)))) -(-354 S -3493 UP UPUP) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3677 (|HasCategory| (-844 |#1|) (QUOTE (-118))) (|HasCategory| (-844 |#1|) (QUOTE (-323)))) (|HasCategory| (-844 |#1|) (QUOTE (-120))) (|HasCategory| (-844 |#1|) (QUOTE (-323))) (|HasCategory| (-844 |#1|) (QUOTE (-118)))) +(-296 S -3215 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-376)))) -(-355 -3493 UP UPUP) +((|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-318)))) +(-297 -3215 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4416 |has| (-419 |#2|) (-376)) (-4421 |has| (-419 |#2|) (-376)) (-4415 |has| (-419 |#2|) (-376)) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4138 |has| (-361 |#2|) (-318)) (-4143 |has| (-361 |#2|) (-318)) (-4137 |has| (-361 |#2|) (-318)) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-356 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-298 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-357 |p| |extdeg|) +(-299 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((-3955 (|HasCategory| (-923 |#1|) (QUOTE (-147))) (|HasCategory| (-923 |#1|) (QUOTE (-381)))) (|HasCategory| (-923 |#1|) (QUOTE (-149))) (|HasCategory| (-923 |#1|) (QUOTE (-381))) (|HasCategory| (-923 |#1|) (QUOTE (-147)))) -(-358 GF |defpol|) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3677 (|HasCategory| (-844 |#1|) (QUOTE (-118))) (|HasCategory| (-844 |#1|) (QUOTE (-323)))) (|HasCategory| (-844 |#1|) (QUOTE (-120))) (|HasCategory| (-844 |#1|) (QUOTE (-323))) (|HasCategory| (-844 |#1|) (QUOTE (-118)))) +(-300 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((-3955 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) -(-359 GF |extdeg|) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3677 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-118)))) +(-301 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((-3955 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) -(-360 GF) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3677 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-118)))) +(-302 GF) ((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-361 F1 GF F2) +(-303 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}GF,{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn't divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn't divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-362 S) +(-304 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-363) +(-305) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-364 R UP -3493) +(-306 R UP -3215) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-365 |p| |extdeg|) +(-307 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((-3955 (|HasCategory| (-923 |#1|) (QUOTE (-147))) (|HasCategory| (-923 |#1|) (QUOTE (-381)))) (|HasCategory| (-923 |#1|) (QUOTE (-149))) (|HasCategory| (-923 |#1|) (QUOTE (-381))) (|HasCategory| (-923 |#1|) (QUOTE (-147)))) -(-366 GF |uni|) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3677 (|HasCategory| (-844 |#1|) (QUOTE (-118))) (|HasCategory| (-844 |#1|) (QUOTE (-323)))) (|HasCategory| (-844 |#1|) (QUOTE (-120))) (|HasCategory| (-844 |#1|) (QUOTE (-323))) (|HasCategory| (-844 |#1|) (QUOTE (-118)))) +(-308 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((-3955 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) -(-367 GF |extdeg|) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3677 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-118)))) +(-309 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((-3955 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) -(-368 GF |defpol|) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3677 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-118)))) +(-310 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((-3955 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) -(-369 GF) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3677 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-118)))) +(-311 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-370 -3493 GF) +(-312 -3215 GF) ((|constructor| (NIL "\\spad{FiniteFieldPolynomialPackage2}(\\spad{F},{}GF) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-371 -3493 FP FPP) +(-313 -3215 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL -(-372 GF |n|) +(-314 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((-3955 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) -(-373 R |ls|) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3677 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-118)))) +(-315 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{ls}."))) NIL NIL -(-374 S) +(-316 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4420 . T)) +((-4142 . T)) NIL -(-375 S) +(-317 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-376) +(-318) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-377 S) +(-319 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-378 |Name| S) +(-320 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer's file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-379 S R) +(-321 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-568)))) -(-380 R) +((|HasCategory| |#2| (QUOTE (-510)))) +(-322 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4420 |has| |#1| (-568)) (-4418 . T) (-4417 . T)) +((-4142 |has| |#1| (-510)) (-4140 . T) (-4139 . T)) NIL -(-381) +(-323) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-382 S R UP) +(-324 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-376)))) -(-383 R UP) +((|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-318)))) +(-325 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4417 . T) (-4418 . T) (-4420 . T)) +((-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-384 A S) +(-326 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4424)) (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1120)))) -(-385 S) +((|HasAttribute| |#1| (QUOTE -4146)) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-1041)))) +(-327 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4423 . T)) +((-4145 . T)) NIL -(-386 S A R B) +(-328 S A R B) ((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-387 |VarSet| R) +(-329 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr)")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}xn],{} [\\spad{v1},{}...,{}vn])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4418 . T) (-4417 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4140 . T) (-4139 . T)) NIL -(-388 S V) +(-330 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-389 S R) +(-331 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) -(-390 R) +((|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) +(-332 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL NIL -(-391) +(-333) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4406 . T) (-4414 . T) (-4198 . T) (-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4128 . T) (-4136 . T) (-3920 . T) (-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-392 |Par|) +(-334 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in lp.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-393 |Par|) +(-335 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in lp,{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-394 R S) +(-336 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4418 . T) (-4417 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-1120))))) -(-395 R S) +((-4140 . T) (-4139 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-1041))))) +(-337 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.fr)")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4418 . T) (-4417 . T)) -((|HasCategory| |#1| (QUOTE (-175)))) -(-396) +((-4140 . T) (-4139 . T)) +((|HasCategory| |#1| (QUOTE (-146)))) +(-338) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-397 R |Basis|) +(-339 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.fr)")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4418 . T) (-4417 . T)) +((-4140 . T) (-4139 . T)) NIL -(-398) +(-340) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-399 S) +(-341 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-400 S) +(-342 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative."))) NIL -((|HasCategory| |#1| (QUOTE (-859)))) -(-401) +((|HasCategory| |#1| (QUOTE (-781)))) +(-343) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-402) +(-344) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-403) +(-345) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used."))) NIL NIL -(-404 |n| |class| R) +(-346 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4418 . T) (-4417 . T)) +((-4140 . T) (-4139 . T)) NIL -(-405) +(-347) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-406 -3493 UP UPUP R) +(-348 -3215 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-407) +(-349) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL -(-408) +(-350) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) NIL NIL -(-409) +(-351) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-410 -3968 |returnType| -1535 |symbols|) +(-352 -3690 |returnType| -1456 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-411 -3493 UP) +(-353 -3215 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of \\spad{ISSAC'93},{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-412 R) +(-354 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) NIL NIL -(-413 S) +(-355 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-414) +(-356) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-415 S) +(-357 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4406)) (|HasAttribute| |#1| (QUOTE -4414))) -(-416) +((|HasAttribute| |#1| (QUOTE -4128)) (|HasAttribute| |#1| (QUOTE -4136))) +(-358) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-4198 . T) (-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-3920 . T) (-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-417 R) +(-359 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1196)) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -321) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -298) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-1241))) (-3955 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1241)))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-464)))) -(-418 R S) +((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -468) (QUOTE (-1117)) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -263) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -240) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#1| (QUOTE (-1162))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-1162)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -240) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-498))) (|HasCategory| |#1| (QUOTE (-406)))) +(-360 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-419 S) +(-361 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4410 -12 (|has| |#1| (-6 -4421)) (|has| |#1| (-464)) (|has| |#1| (-6 -4410))) (-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-859))) (-3955 (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-859)))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-556))) (-12 (|HasAttribute| |#1| (QUOTE -4410)) (|HasAttribute| |#1| (QUOTE -4421)) (|HasCategory| |#1| (QUOTE (-464)))) (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-420 A B) +((-4132 -12 (|has| |#1| (-6 -4143)) (|has| |#1| (-406)) (|has| |#1| (-6 -4132))) (-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-763))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-763))) (|HasCategory| |#1| (QUOTE (-781)))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#1| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -240) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-498))) (-12 (|HasAttribute| |#1| (QUOTE -4132)) (|HasAttribute| |#1| (QUOTE -4143)) (|HasCategory| |#1| (QUOTE (-406)))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-362 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-421 S R UP) +(-363 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-422 R UP) +(-364 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4417 . T) (-4418 . T) (-4420 . T)) +((-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-423 A S) +(-365 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) -(-424 S) +((|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) +(-366 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-425 R -3493 UP A) +(-367 R -3215 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-4420 . T)) +((-4142 . T)) NIL -(-426 R1 F1 U1 A1 R2 F2 U2 A2) +(-368 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-427 R -3493 UP A |ibasis|) +(-369 R -3215 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (|%list| (QUOTE -1057) (|devaluate| |#2|)))) -(-428 AR R AS S) +((|HasCategory| |#4| (|%list| (QUOTE -978) (|devaluate| |#2|)))) +(-370 AR R AS S) ((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-429 S R) +(-371 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-376)))) -(-430 R) +((|HasCategory| |#2| (QUOTE (-318)))) +(-372 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4420 |has| |#1| (-568)) (-4418 . T) (-4417 . T)) +((-4142 |has| |#1| (-510)) (-4140 . T) (-4139 . T)) NIL -(-431 R) +(-373 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL NIL -(-432 S R) +(-374 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-546))))) -(-433 R) +((|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488))))) +(-375 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4420 -3955 (|has| |#1| (-1068)) (|has| |#1| (-485))) (-4418 |has| |#1| (-175)) (-4417 |has| |#1| (-175)) ((-4425 "*") |has| |#1| (-568)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-568)) (-4415 |has| |#1| (-568))) +((-4142 -3677 (|has| |#1| (-989)) (|has| |#1| (-427))) (-4140 |has| |#1| (-146)) (-4139 |has| |#1| (-146)) ((-4147 "*") |has| |#1| (-510)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-510)) (-4137 |has| |#1| (-510))) NIL -(-434 R A S B) +(-376 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} -> \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-435 R FE |x| |cen|) +(-377 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-436 R FE |Expon| UPS TRAN |x|) +(-378 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) NIL NIL -(-437 A S) +(-379 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-381)))) -(-438 S) +((|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-323)))) +(-380 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4423 . T) (-4413 . T) (-4424 . T)) +((-4145 . T) (-4135 . T) (-4146 . T)) NIL -(-439 S A R B) +(-381 S A R B) ((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-440 R -3493) +(-382 R -3215) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-441 R E) +(-383 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4410 -12 (|has| |#1| (-6 -4410)) (|has| |#2| (-6 -4410))) (-4417 . T) (-4418 . T) (-4420 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4410)) (|HasAttribute| |#2| (QUOTE -4410)))) -(-442 R -3493) +((-4132 -12 (|has| |#1| (-6 -4132)) (|has| |#2| (-6 -4132))) (-4139 . T) (-4140 . T) (-4142 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4132)) (|HasAttribute| |#2| (QUOTE -4132)))) +(-384 R -3215) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-443 R -3493) +(-385 R -3215) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-444 R -3493) +(-386 R -3215) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve \\spad{a2}; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-445 R -3493) +(-387 R -3215) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-446) +(-388) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-447 R -3493 UP) +(-389 R -3215 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-48))))) -(-448) +((|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-48))))) +(-390) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL NIL -(-449) +(-391) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-450 |f|) +(-392 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-451) +(-393) ((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}."))) NIL NIL -(-452) +(-394) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-453) +(-395) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-454 UP) +(-396 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein's criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein's criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein's criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-455 R UP -3493) +(-397 R UP -3215) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the lp norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri's norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri's norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-456 R UP) +(-398 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-457 R) +(-399 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-416)))) -(-458) +((|HasCategory| |#1| (QUOTE (-358)))) +(-400) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-459 |Dom| |Expon| |VarSet| |Dpol|) +(-401 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL -((|HasCategory| |#1| (QUOTE (-376)))) -(-460 |Dom| |Expon| |VarSet| |Dpol|) +((|HasCategory| |#1| (QUOTE (-318)))) +(-402 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-461 |Dom| |Expon| |VarSet| |Dpol|) +(-403 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-462 |Dom| |Expon| |VarSet| |Dpol|) +(-404 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-463 S) +(-405 S) ((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-464) +(-406) ((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-465 R |n| |ls| |gamma|) +(-407 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4420 |has| (-419 (-963 |#1|)) (-568)) (-4418 . T) (-4417 . T)) -((|HasCategory| (-419 (-963 |#1|)) (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-419 (-963 |#1|)) (QUOTE (-568)))) -(-466 |vl| R E) +((-4142 |has| (-361 (-884 |#1|)) (-510)) (-4140 . T) (-4139 . T)) +((|HasCategory| (-361 (-884 |#1|)) (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| (-361 (-884 |#1|)) (QUOTE (-510)))) +(-408 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4425 "*") |has| |#2| (-175)) (-4416 |has| |#2| (-568)) (-4421 |has| |#2| (-6 -4421)) (-4418 . T) (-4417 . T) (-4420 . T)) -((|HasCategory| |#2| (QUOTE (-927))) (-3955 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-927)))) (-3955 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-927)))) (-3955 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-927)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-175))) (-3955 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| (-876 |#1|) (|%list| (QUOTE -899) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| (-876 |#1|) (|%list| (QUOTE -899) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| (-876 |#1|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| (-876 |#1|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-876 |#1|) (|%list| (QUOTE -629) (QUOTE (-546))))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557)))) (-3955 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4421)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) -(-467 R BP) +(((-4147 "*") |has| |#2| (-146)) (-4138 |has| |#2| (-510)) (-4143 |has| |#2| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) +((|HasCategory| |#2| (QUOTE (-848))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-848)))) (-3677 (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-848)))) (-3677 (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-146))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-510)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-318))) (|HasAttribute| |#2| (QUOTE -4143)) (|HasCategory| |#2| (QUOTE (-406))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-409 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it's conditional."))) NIL NIL -(-468 OV E S R P) +(-410 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-469 E OV R P) +(-411 E OV R P) ((|constructor| (NIL "This package provides operations for GCD computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the GCD of \\spad{p} and \\spad{q}"))) NIL NIL -(-470 R) +(-412 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-471 R FE) +(-413 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}."))) NIL NIL -(-472 RP TP) +(-414 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-473 |vl| R IS E |ff| P) +(-415 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4418 . T) (-4417 . T)) +((-4140 . T) (-4139 . T)) NIL -(-474 E V R P Q) +(-416 E V R P Q) ((|constructor| (NIL "Gosper's summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-475 R E |VarSet| P) +(-417 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}."))) -((-4424 . T) (-4423 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#4| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-476 S R E) +((-4146 . T) (-4145 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#4| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#4| (QUOTE (-73)))) +(-418 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-477 R E) +(-419 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-478) +(-420) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(vv) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-479) +(-421) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-480) +(-422) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}pt) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it's data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it's elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-481 S R E) +(-423 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-482 R E) +(-424 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-483 |lv| -3493 R) +(-425 |lv| -3215 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-484 S) +(-426 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-485) +(-427) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4420 . T)) +((-4142 . T)) NIL -(-486 |Coef| |var| |cen|) +(-428 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-376)) (-4415 |has| |#1| (-376)) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-175))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-557))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-557))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-557)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-376))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-568)))) (-3955 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasSignature| |#1| (|%list| (QUOTE -4374) (|%list| (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasSignature| |#1| (|%list| (QUOTE -4240) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (|%list| (QUOTE -3482) (|%list| (|%list| (QUOTE -659) (QUOTE (-1196))) (|devaluate| |#1|))))))) -(-487 |Key| |Entry| |Tbl| |dent|) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499))) (|devaluate| |#1|)))) (|HasCategory| (-361 (-499)) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-318))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-898))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#1|))))))) +(-429 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4424 . T)) -((-12 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4288) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2284) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (-3955 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (-3955 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (-3955 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -629) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-859))) (-3955 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-102)))) (-3955 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) -(-488 R E V P) +((-4146 . T)) +((-12 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) +(-430 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4424 . T) (-4423 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-489) +((-4146 . T) (-4145 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#4| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#4| (QUOTE (-73)))) +(-431) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-490) +(-432) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-491 |Key| |Entry| |hashfn|) +(-433 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4288) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2284) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (-3955 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (-3955 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (-3955 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -629) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1120))) (-3955 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875))))) (-3955 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-102)))) -(-492) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-1041))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) +(-434) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-493 |vl| R) +(-435 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4425 "*") |has| |#2| (-175)) (-4416 |has| |#2| (-568)) (-4421 |has| |#2| (-6 -4421)) (-4418 . T) (-4417 . T) (-4420 . T)) -((|HasCategory| |#2| (QUOTE (-927))) (-3955 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-927)))) (-3955 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-927)))) (-3955 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-927)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-175))) (-3955 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| (-876 |#1|) (|%list| (QUOTE -899) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| (-876 |#1|) (|%list| (QUOTE -899) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| (-876 |#1|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| (-876 |#1|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-876 |#1|) (|%list| (QUOTE -629) (QUOTE (-546))))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557)))) (-3955 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4421)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) -(-494 -3018 S) +(((-4147 "*") |has| |#2| (-146)) (-4138 |has| |#2| (-510)) (-4143 |has| |#2| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) +((|HasCategory| |#2| (QUOTE (-848))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-848)))) (-3677 (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-848)))) (-3677 (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-146))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-510)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-318))) (|HasAttribute| |#2| (QUOTE -4143)) (|HasCategory| |#2| (QUOTE (-406))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-436 -2740 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4417 |has| |#2| (-1068)) (-4418 |has| |#2| (-1068)) (-4420 |has| |#2| (-6 -4420)) (-4423 . T)) -((-3955 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-813))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1068)))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#2| (QUOTE (-376))) (-3955 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3955 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (QUOTE (-813))) (-3955 (|HasCategory| |#2| (QUOTE (-813))) (|HasCategory| |#2| (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-381))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))) (-3955 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (QUOTE (-813))) (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (QUOTE (-813))) (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#2| (QUOTE (-240))) (-3955 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1068))))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1196))))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#2| (QUOTE (-1120))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-813))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-813))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-813))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557)))))) (|HasCategory| (-557) (QUOTE (-859))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1196))))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasAttribute| |#2| (QUOTE -4420)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) -(-495) +((-4139 |has| |#2| (-989)) (-4140 |has| |#2| (-989)) (-4142 |has| |#2| (-6 -4142)) (-4145 . T)) +((-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-989)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#2| (QUOTE (-318))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989)))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-318)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-738))) (-3677 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-781)))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-323))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (QUOTE (-190))) (-3677 (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-989))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117))))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (QUOTE (-1041))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-989)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))))) (|HasCategory| (-499) (QUOTE (-781))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-989)))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-989)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasAttribute| |#2| (QUOTE -4142)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-989)))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-73))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))))) +(-437) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL -(-496 S) +(-438 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-497 -3493 UP UPUP R) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) +(-439 -3215 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-498 BP) +(-440 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer gcd. Geddes's algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = gcd of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = gcd and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = gcd and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = gcd of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = gcd of the polynomials \\spad{fi}."))) NIL NIL -(-499) +(-441) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| (-557) (QUOTE (-927))) (|HasCategory| (-557) (|%list| (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| (-557) (QUOTE (-147))) (|HasCategory| (-557) (QUOTE (-149))) (|HasCategory| (-557) (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-557) (QUOTE (-1039))) (|HasCategory| (-557) (QUOTE (-840))) (|HasCategory| (-557) (QUOTE (-859))) (-3955 (|HasCategory| (-557) (QUOTE (-840))) (|HasCategory| (-557) (QUOTE (-859)))) (|HasCategory| (-557) (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| (-557) (QUOTE (-1171))) (|HasCategory| (-557) (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| (-557) (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| (-557) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| (-557) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| (-557) (QUOTE (-239))) (|HasCategory| (-557) (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-557) (QUOTE (-240))) (|HasCategory| (-557) (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-557) (|%list| (QUOTE -526) (QUOTE (-1196)) (QUOTE (-557)))) (|HasCategory| (-557) (|%list| (QUOTE -321) (QUOTE (-557)))) (|HasCategory| (-557) (|%list| (QUOTE -298) (QUOTE (-557)) (QUOTE (-557)))) (|HasCategory| (-557) (QUOTE (-319))) (|HasCategory| (-557) (QUOTE (-556))) (|HasCategory| (-557) (|%list| (QUOTE -656) (QUOTE (-557)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-557) (QUOTE (-927)))) (-3955 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-557) (QUOTE (-927)))) (|HasCategory| (-557) (QUOTE (-147))))) -(-500 A S) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| (-499) (QUOTE (-848))) (|HasCategory| (-499) (|%list| (QUOTE -978) (QUOTE (-1117)))) (|HasCategory| (-499) (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-120))) (|HasCategory| (-499) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-499) (QUOTE (-960))) (|HasCategory| (-499) (QUOTE (-763))) (|HasCategory| (-499) (QUOTE (-781))) (-3677 (|HasCategory| (-499) (QUOTE (-763))) (|HasCategory| (-499) (QUOTE (-781)))) (|HasCategory| (-499) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-499) (QUOTE (-1092))) (|HasCategory| (-499) (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-499) (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-499) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-499) (QUOTE (-189))) (|HasCategory| (-499) (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| (-499) (QUOTE (-190))) (|HasCategory| (-499) (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| (-499) (|%list| (QUOTE -468) (QUOTE (-1117)) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -263) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -240) (QUOTE (-499)) (QUOTE (-499)))) (|HasCategory| (-499) (QUOTE (-261))) (|HasCategory| (-499) (QUOTE (-498))) (|HasCategory| (-499) (|%list| (QUOTE -596) (QUOTE (-499)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-848)))) (-3677 (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-848)))) (|HasCategory| (-499) (QUOTE (-118))))) +(-442 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4423)) (|HasAttribute| |#1| (QUOTE -4424)) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875))))) -(-501 S) +((|HasAttribute| |#1| (QUOTE -4145)) (|HasAttribute| |#1| (QUOTE -4146)) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) +(-443 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL NIL -(-502 S) +(-444 S) ((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A."))) NIL NIL -(-503) +(-445) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name `n'."))) NIL NIL -(-504 S) +(-446 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-505) +(-447) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-506 -3493 UP |AlExt| |AlPol|) +(-448 -3215 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP's.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-507) +(-449) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| $ (QUOTE (-1068))) (|HasCategory| $ (|%list| (QUOTE -1057) (QUOTE (-557))))) -(-508 S |mn|) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| $ (QUOTE (-989))) (|HasCategory| $ (|%list| (QUOTE -978) (QUOTE (-499))))) +(-450 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type."))) -((-4424 . T) (-4423 . T)) -((-3955 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (-3955 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-859))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| (-557) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-509 R |mnRow| |mnCol|) +((-4146 . T) (-4145 . T)) +((-3677 (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) +(-451 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray's with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-510 K R UP) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) +(-452 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-511 R UP -3493) +(-453 R UP -3215) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the gcd of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-512 |mn|) +(-454 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4424 . T) (-4423 . T)) -((-12 (|HasCategory| (-114) (QUOTE (-1120))) (|HasCategory| (-114) (|%list| (QUOTE -321) (QUOTE (-114))))) (|HasCategory| (-114) (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-114) (QUOTE (-859))) (|HasCategory| (-557) (QUOTE (-859))) (|HasCategory| (-114) (QUOTE (-1120))) (|HasCategory| (-114) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-114) (QUOTE (-102)))) -(-513 K R UP L) +((-4146 . T) (-4145 . T)) +((-12 (|HasCategory| (-85) (QUOTE (-1041))) (|HasCategory| (-85) (|%list| (QUOTE -263) (QUOTE (-85))))) (|HasCategory| (-85) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-85) (QUOTE (-781))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| (-85) (QUOTE (-1041))) (|HasCategory| (-85) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-85) (QUOTE (-73)))) +(-455 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-514) +(-456) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-515 R Q A B) +(-457 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL NIL -(-516 -3493 |Expon| |VarSet| |DPoly|) +(-458 -3215 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -629) (QUOTE (-1196))))) -(-517 |vl| |nv|) +((|HasCategory| |#3| (|%list| (QUOTE -569) (QUOTE (-1117))))) +(-459 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-518) +(-460) ((|constructor| (NIL "This domain provides representation for plain identifiers. It differs from Symbol in that it does not support any form of scripting. It is a plain basic data structure. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system"))) NIL NIL -(-519 A S) +(-461 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-1120))))) -(-520 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-1041))))) +(-462 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-1120))))) -(-521 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-1041))))) +(-463 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|terms| (((|List| (|Pair| |#2| |#1|)) $) "\\spad{terms x} returns the list of terms in \\spad{x}. Each term is a pair of a support (the first component) and the corresponding value (the second component).")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-522 A S) +(-464 A S) ((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-1120))))) -(-523 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-1041))))) +(-465 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-1120))))) -(-524 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-1041))))) +(-466 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-1120))))) -(-525 S A B) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-1041))))) +(-467 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-526 A B) +(-468 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-527 S E |un|) +(-469 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-812)))) -(-528 S |mn|) +((|HasCategory| |#2| (QUOTE (-737)))) +(-470 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4424 . T) (-4423 . T)) -((-3955 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (-3955 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-859))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| (-557) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-529) +((-4146 . T) (-4145 . T)) +((-3677 (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) +(-471) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-530 |p| |n|) +(-472 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((-3955 (|HasCategory| (-592 |#1|) (QUOTE (-147))) (|HasCategory| (-592 |#1|) (QUOTE (-381)))) (|HasCategory| (-592 |#1|) (QUOTE (-149))) (|HasCategory| (-592 |#1|) (QUOTE (-381))) (|HasCategory| (-592 |#1|) (QUOTE (-147)))) -(-531 R |mnRow| |mnCol| |Row| |Col|) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3677 (|HasCategory| (-532 |#1|) (QUOTE (-118))) (|HasCategory| (-532 |#1|) (QUOTE (-323)))) (|HasCategory| (-532 |#1|) (QUOTE (-120))) (|HasCategory| (-532 |#1|) (QUOTE (-323))) (|HasCategory| (-532 |#1|) (QUOTE (-118)))) +(-473 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's."))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-532 R |Row| |Col| M) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) +(-474 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} m*h and h*m are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4424))) -(-533 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4146))) +(-475 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4424))) -(-534 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4146))) +(-476 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4425 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-535) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-510))) (|HasAttribute| |#1| (QUOTE (-4147 "*"))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) +(-477) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-536) +(-478) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-537 S) +(-479 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-538) +(-480) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-539 GF) +(-481 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(GF) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{**}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in GF(2^m) using normal bases\",{} Information and Computation 78,{} pp.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in GF(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} pp.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field GF."))) NIL NIL -(-540) +(-482) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file `f'.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file."))) NIL NIL -(-541 R) +(-483 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} := increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} := increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-542 |Varset|) +(-484 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| (-789) (QUOTE (-1120))))) -(-543 K -3493 |Par|) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| (-714) (QUOTE (-1041))))) +(-485 K -3215 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to br used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-544) +(-486) NIL NIL NIL -(-545) +(-487) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-546) +(-488) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}'s are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-547 R) +(-489 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-548 |Coef| UTS) +(-490 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-549 K -3493 |Par|) +(-491 K -3215 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-550 R BP |pMod| |nextMod|) +(-492 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the gcd of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the gcd of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-551 OV E R P) +(-493 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-552 K UP |Coef| UTS) +(-494 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-553 |Coef| UTS) +(-495 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-554 R UP) +(-496 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) NIL NIL -(-555 S) +(-497 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-556) +(-498) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4421 . T) (-4422 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4143 . T) (-4144 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-557) +(-499) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4411 . T) (-4415 . T) (-4410 . T) (-4421 . T) (-4422 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4133 . T) (-4137 . T) (-4132 . T) (-4143 . T) (-4144 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-558) +(-500) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) NIL NIL -(-559) +(-501) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits."))) NIL NIL -(-560) +(-502) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits."))) NIL NIL -(-561) +(-503) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits."))) NIL NIL -(-562 |Key| |Entry| |addDom|) +(-504 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4288) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2284) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (-3955 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (-3955 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (-3955 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -629) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1120))) (-3955 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875))))) (-3955 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-102)))) -(-563 R -3493) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-1041))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) +(-505 R -3215) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-564 R0 -3493 UP UPUP R) +(-506 R0 -3215 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-565) +(-507) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-566 R) +(-508 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} <= \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-4198 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-3920 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-567 S) +(-509 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-568) +(-510) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-569 R -3493) +(-511 R -3215) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}kn (the \\spad{ki}'s must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-570 I) +(-512 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra's eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-571) -((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) -NIL -NIL -(-572 R -3493 L) +(-513 R -3215 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -676) (|devaluate| |#2|)))) -(-573) +((|HasCategory| |#3| (|%list| (QUOTE -616) (|devaluate| |#2|)))) +(-514) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-574 -3493 UP UPUP R) +(-515 -3215 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-575 -3493 UP) +(-516 -3215 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-576) -((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range,{} {\\tt a} to {\\tt \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\tt numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range,{} {\\tt a} to {\\tt \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\tt \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) -NIL -NIL -(-577 R -3493 L) +(-517 R -3215 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -676) (|devaluate| |#2|)))) -(-578 R -3493) +((|HasCategory| |#3| (|%list| (QUOTE -616) (|devaluate| |#2|)))) +(-518 R -3215) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| |#2| (QUOTE (-1158)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| |#2| (QUOTE (-645))))) -(-579 -3493 UP) +((-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-585))))) +(-519 -3215 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-580 S) +(-520 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-581 -3493) +(-521 -3215) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-582 R) +(-522 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-4198 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-3920 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-583) +(-523) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL -(-584 R -3493) +(-524 R -3215) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| |#2| (QUOTE (-296))) (|HasCategory| |#2| (QUOTE (-645))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-296)))) (|HasCategory| |#1| (QUOTE (-568)))) -(-585 -3493 UP) +((-12 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-585))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#1| (QUOTE (-510)))) +(-525 -3215 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-586 R -3493) +(-526 R -3215) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-587) +(-527) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-588) +(-528) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if `f' is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by `f' as a binary file."))) NIL NIL -(-589) +(-529) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input."))) NIL NIL -(-590) +(-530) ((|constructor| (NIL "This domain provides representation for ARPA Internet \\spad{IP4} addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the \\spad{IP4} address of host `h'.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address `x'.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-591 |p| |unBalanced?|) +(-531 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements Zp,{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-592 |p|) +(-532 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| $ (QUOTE (-149))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-381)))) -(-593) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-323)))) +(-533) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-594 -3493) +(-534 -3215) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over F?")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4418 . T) (-4417 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-1196))))) -(-595 E -3493) +((-4140 . T) (-4139 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-1117))))) +(-535 E -3215) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL -(-596 R -3493) +(-536 R -3215) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL NIL -(-597) +(-537) ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-598 I) +(-538 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-599 GF) +(-539 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-600 R) +(-540 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL -((|HasCategory| |#1| (QUOTE (-149)))) -(-601) +((|HasCategory| |#1| (QUOTE (-120)))) +(-541) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young's natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young's natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young's natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young's natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-602 R E V P TS) +(-542 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-603) +(-543) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-604 E V R P) +(-544 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-605 |Coef|) +(-545 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (QUOTE (-568))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-557)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-557)) (|devaluate| |#1|)))) (|HasCategory| (-557) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-557))))) (|HasSignature| |#1| (|%list| (QUOTE -4374) (|%list| (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-557)))))) -(-606 |Coef|) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-510))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))) (|HasCategory| (-499) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-318))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-499)))))) +(-546 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-4425 "*") |has| |#1| (-568)) (-4416 |has| |#1| (-568)) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-568)))) -(-607) +(((-4147 "*") |has| |#1| (-510)) (-4138 |has| |#1| (-510)) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-510)))) +(-547) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) NIL NIL -(-608 A B) +(-548 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-609 A B C) +(-549 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-610 R -3493 FG) +(-550 R -3215 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and FG should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-611 S) +(-551 S) ((|constructor| (NIL "This package implements 'infinite tuples' for the interpreter. The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-612 R |mn|) +(-552 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4424 . T) (-4423 . T)) -((-3955 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (-3955 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-859))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| (-557) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-744))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-613 S |Index| |Entry|) +((-4146 . T) (-4145 . T)) +((-3677 (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-684))) (|HasCategory| |#1| (QUOTE (-989))) (-12 (|HasCategory| |#1| (QUOTE (-942))) (|HasCategory| |#1| (QUOTE (-989)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) +(-553 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4424)) (|HasCategory| |#2| (QUOTE (-859))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#3| (QUOTE (-1120)))) -(-614 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4146)) (|HasCategory| |#2| (QUOTE (-781))) (|HasAttribute| |#1| (QUOTE -4145)) (|HasCategory| |#3| (QUOTE (-1041)))) +(-554 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-615) +(-555) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join `x'.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-616 R A) +(-556 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4420 -3955 (-2959 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) (-4418 . T) (-4417 . T)) -((-3955 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) -(-617) +((-4142 -3677 (-2681 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) (-4140 . T) (-4139 . T)) +((-3677 (|HasCategory| |#2| (|%list| (QUOTE -322) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -372) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -372) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -372) (|devaluate| |#1|)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#2| (|%list| (QUOTE -322) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#2| (|%list| (QUOTE -372) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -322) (|devaluate| |#1|)))) +(-557) ((|constructor| (NIL "This is the datatype for the JVM bytecodes."))) NIL NIL -(-618) +(-558) ((|constructor| (NIL "JVM class file access bitmask and values.")) (|jvmAbstract| (($) "The class was declared abstract; therefore object of this class may not be created.")) (|jvmInterface| (($) "The class file represents an interface,{} not a class.")) (|jvmSuper| (($) "Instruct the JVM to treat base clss method invokation specially.")) (|jvmFinal| (($) "The class was declared final; therefore no derived class allowed.")) (|jvmPublic| (($) "The class was declared public,{} therefore may be accessed from outside its package"))) NIL NIL -(-619) +(-559) ((|constructor| (NIL "JVM class file constant pool tags.")) (|jvmNameAndTypeConstantTag| (($) "The correspondong constant pool entry represents the name and type of a field or method info.")) (|jvmInterfaceMethodConstantTag| (($) "The correspondong constant pool entry represents an interface method info.")) (|jvmMethodrefConstantTag| (($) "The correspondong constant pool entry represents a class method info.")) (|jvmFieldrefConstantTag| (($) "The corresponding constant pool entry represents a class field info.")) (|jvmStringConstantTag| (($) "The corresponding constant pool entry is a string constant info.")) (|jvmClassConstantTag| (($) "The corresponding constant pool entry represents a class or and interface.")) (|jvmDoubleConstantTag| (($) "The corresponding constant pool entry is a double constant info.")) (|jvmLongConstantTag| (($) "The corresponding constant pool entry is a long constant info.")) (|jvmFloatConstantTag| (($) "The corresponding constant pool entry is a float constant info.")) (|jvmIntegerConstantTag| (($) "The corresponding constant pool entry is an integer constant info.")) (|jvmUTF8ConstantTag| (($) "The corresponding constant pool entry is sequence of bytes representing Java \\spad{UTF8} string constant."))) NIL NIL -(-620) +(-560) ((|constructor| (NIL "JVM class field access bitmask and values.")) (|jvmTransient| (($) "The field was declared transient.")) (|jvmVolatile| (($) "The field was declared volatile.")) (|jvmFinal| (($) "The field was declared final; therefore may not be modified after initialization.")) (|jvmStatic| (($) "The field was declared static.")) (|jvmProtected| (($) "The field was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The field was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The field was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-621) +(-561) ((|constructor| (NIL "JVM class method access bitmask and values.")) (|jvmStrict| (($) "The method was declared fpstrict; therefore floating-point mode is FP-strict.")) (|jvmAbstract| (($) "The method was declared abstract; therefore no implementation is provided.")) (|jvmNative| (($) "The method was declared native; therefore implemented in a language other than Java.")) (|jvmSynchronized| (($) "The method was declared synchronized.")) (|jvmFinal| (($) "The method was declared final; therefore may not be overriden. in derived classes.")) (|jvmStatic| (($) "The method was declared static.")) (|jvmProtected| (($) "The method was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The method was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The method was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-622) +(-562) ((|constructor| (NIL "This is the datatype for the JVM opcodes."))) NIL NIL -(-623 |Entry|) +(-563 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4288) (QUOTE (-1178))) (|%list| (QUOTE |:|) (QUOTE -2284) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (QUOTE (-1120)))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (|%list| (QUOTE -629) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| (-1178) (QUOTE (-859))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (QUOTE (-102)))) -(-624 S |Key| |Entry|) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (QUOTE (-1099))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| (-1099) (QUOTE (-781))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-73)))) +(-564 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-625 |Key| |Entry|) +(-565 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4424 . T)) +((-4146 . T)) NIL -(-626 S) +(-566 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557)))))) -(-627 R S) +((|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) +(-567 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-628 S) +(-568 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-629 S) +(-569 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-630 -3493 UP) +(-570 -3215 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic's algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-631 S) +(-571 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-632) +(-572) ((|constructor| (NIL "This domain implements Kleene's 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of `x' is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of `x' is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of `x' is `false'")) (|unknown| (($) "the indefinite `unknown'"))) NIL NIL -(-633 S) +(-573 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-634 A R S) +(-574 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-858)))) -(-635 S R) +((-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-780)))) +(-575 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-636 R) +(-576 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4420 . T)) +((-4142 . T)) NIL -(-637 R -3493) +(-577 R -3215) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL -(-638 R UP) +(-578 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4418 . T) (-4417 . T) ((-4425 "*") . T) (-4416 . T) (-4420 . T)) -((|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557))))) -(-639 R E V P TS ST) +((-4140 . T) (-4139 . T) ((-4147 "*") . T) (-4138 . T) (-4142 . T)) +((|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499))))) +(-579 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(lp,{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(ts)} returns \\axiom{ts} in an normalized shape if \\axiom{ts} is zero-dimensional."))) NIL NIL -(-640 OV E Z P) +(-580 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \"F\".")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-641) +(-581) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-642 |VarSet| R |Order|) +(-582 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(lv)} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4420 . T)) +((-4142 . T)) NIL -(-643 R |ls|) +(-583 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(lp)} returns the lexicographical Groebner basis of \\axiom{lp}. If \\axiom{lp} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(lp)} returns the lexicographical Groebner basis of \\axiom{lp} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(lp)} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(lp)} returns \\spad{true} iff \\axiom{lp} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{lp}."))) NIL NIL -(-644 R -3493) +(-584 R -3215) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-645) +(-585) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-646 |lv| -3493) +(-586 |lv| -3215) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-647) +(-587) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4424 . T)) -((-12 (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4288) (QUOTE (-1178))) (|%list| (QUOTE |:|) (QUOTE -2284) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (QUOTE (-1120)))) (-3955 (|HasCategory| (-51) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (QUOTE (-1120)))) (-3955 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (QUOTE (-1120)))) (-3955 (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-51) (QUOTE (-1120))) (|HasCategory| (-51) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (QUOTE (-1120)))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (|%list| (QUOTE -629) (QUOTE (-546)))) (-12 (|HasCategory| (-51) (QUOTE (-1120))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-1178) (QUOTE (-859))) (-3955 (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-51) (|%list| (QUOTE -628) (QUOTE (-875))))) (-3955 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-1120))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (QUOTE (-1120)))) -(-648 R A) +((-4146 . T)) +((-12 (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (QUOTE (-1099))) (|%list| (QUOTE |:|) (QUOTE |entry|) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (QUOTE (-1041)))) (-3677 (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (QUOTE (-1041)))) (-3677 (|HasCategory| (-51) (QUOTE (-73))) (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-51) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-51) (|%list| (QUOTE -263) (QUOTE (-51))))) (|HasCategory| (-1099) (QUOTE (-781))) (-3677 (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-51) (|%list| (QUOTE -568) (QUOTE (-797))))) (-3677 (|HasCategory| (-51) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (QUOTE (-73)))) (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-51) (QUOTE (-73))) (|HasCategory| (-51) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (QUOTE (-1041)))) +(-588 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4420 -3955 (-2959 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) (-4418 . T) (-4417 . T)) -((-3955 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) -(-649 S R) +((-4142 -3677 (-2681 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) (-4140 . T) (-4139 . T)) +((-3677 (|HasCategory| |#2| (|%list| (QUOTE -322) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -372) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -372) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -372) (|devaluate| |#1|)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#2| (|%list| (QUOTE -322) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#2| (|%list| (QUOTE -372) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -322) (|devaluate| |#1|)))) +(-589 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-376)))) -(-650 R) +((|HasCategory| |#2| (QUOTE (-318)))) +(-590 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4418 . T) (-4417 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4140 . T) (-4139 . T)) NIL -(-651 R FE) +(-591 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL NIL -(-652 R) +(-592 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-653 |vars|) +(-593 |vars|) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a vector space basis,{} given by symbols.}")) (|dual| (($ (|DualBasis| |#1|)) "\\spad{dual f} constructs the dual vector of a linear form which is part of a basis."))) NIL NIL -(-654 S R) +(-594 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2957 (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-376)))) -(-655 K B) +((-2679 (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-318)))) +(-595 K B) ((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}."))) -((-4418 . T) (-4417 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| (-653 |#2|) (QUOTE (-1120))))) -(-656 R) +((-4140 . T) (-4139 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| (-593 |#2|) (QUOTE (-1041))))) +(-596 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL NIL -(-657 K B) +(-597 K B) ((|constructor| (NIL "A simple data structure for linear forms on a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear form with respect to the basis \\spad{DualBasis B}.")) (|linearForm| (($ (|List| |#1|)) "\\spad{linearForm [x1,..,xn]} constructs a linear form with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{DualBasis B}."))) -((-4418 . T) (-4417 . T)) +((-4140 . T) (-4139 . T)) NIL -(-658 S) +(-598 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-659 S) +(-599 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-4424 . T) (-4423 . T)) -((-3955 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (-3955 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-859))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| (-557) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-660 A B) +((-4146 . T) (-4145 . T)) +((-3677 (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) +(-600 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL -(-661 A B) +(-601 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and lb of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index lb. Error: if \\spad{la} and lb are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-662 A B C) +(-602 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-663 T$) +(-603 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-664 S) +(-604 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-665 S) +(-605 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-666 R) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) +(-606 R) ((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline"))) NIL NIL -(-667 S E |un|) +(-607 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-668 A S) +(-608 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4424))) -(-669 S) +((|HasAttribute| |#1| (QUOTE -4146))) +(-609 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-670 M R S) +(-610 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4418 . T) (-4417 . T)) -((|HasCategory| |#1| (QUOTE (-810)))) -(-671 R -3493 L) +((-4140 . T) (-4139 . T)) +((|HasCategory| |#1| (QUOTE (-735)))) +(-611 R -3215 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-672 A -2886) +(-612 A -2610) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376)))) -(-673 A) +((-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-318)))) +(-613 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376)))) -(-674 A M) +((-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-318)))) +(-614 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376)))) -(-675 S A) +((-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-318)))) +(-615 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-376)))) -(-676 A) +((|HasCategory| |#2| (QUOTE (-318)))) +(-616 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4417 . T) (-4418 . T) (-4420 . T)) +((-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-677 -3493 UP) +(-617 -3215 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-678 A L) +(-618 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-679 S) +(-619 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-680) +(-620) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-681 R) +(-621 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-682 |VarSet| R) +(-622 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4418 . T) (-4417 . T)) -((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-175)))) -(-683 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4140 . T) (-4139 . T)) +((|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-146)))) +(-623 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-684 S) +(-624 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4424 . T) (-4423 . T)) +((-4146 . T) (-4145 . T)) NIL -(-685 -3493 |Row| |Col| M) +(-625 -3215 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-686 -3493) +(-626 -3215) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package's existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-687 R E OV P) +(-627 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-688 |n| R) +(-628 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4420 . T) (-4423 . T) (-4417 . T) (-4418 . T)) -((|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4425 #1="*"))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557)))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-568))) (-3955 (|HasAttribute| |#2| (QUOTE (-4425 #1#))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) -(-689) +((-4142 . T) (-4145 . T) (-4139 . T) (-4140 . T)) +((|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-4147 #1="*"))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (|HasCategory| |#2| (QUOTE (-261))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-510))) (-3677 (|HasAttribute| |#2| (QUOTE (-4147 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-73))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) +(-629) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-690 |VarSet|) +(-630 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} <= \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.fr).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(vl,{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{\\spad{LyndonWordsList1}(vl,{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-691 A S) +(-631 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-692 S) +(-632 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-693 R) +(-633 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-3955 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1120))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-694) +((-3677 (-12 (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) +(-634) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition `m'.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition `m'. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-695 |VarSet|) +(-635 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{y*z}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-696 A) +(-636 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-697 A C) +(-637 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL -(-698 A B C) +(-638 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL -(-699) +(-639) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for `s'.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of `s'.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} -> \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-700 A) +(-640 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-701 A C) +(-641 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-702 A B C) +(-642 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL -(-703 S R |Row| |Col|) +(-643 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4425 "*"))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-568)))) -(-704 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4147 "*"))) (|HasCategory| |#2| (QUOTE (-261))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-510)))) +(-644 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4423 . T) (-4424 . T)) +((-4145 . T) (-4146 . T)) NIL -(-705 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-645 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-706 R |Row| |Col| M) +(-646 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that m*n = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-568)))) -(-707 R) +((|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-510)))) +(-647 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4423 . T) (-4424 . T)) -((-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1120))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4425 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-708 R) +((-4145 . T) (-4146 . T)) +((-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#1| (QUOTE (-261))) (|HasCategory| |#1| (QUOTE (-510))) (|HasAttribute| |#1| (QUOTE (-4147 "*"))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) +(-648 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-709 T$) +(-649 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that `x' really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value `x' into \\%."))) NIL NIL -(-710 S -3493 FLAF FLAS) +(-650 S -3215 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} \\spad{kl+ku+1} being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions \\spad{kl+ku+1} by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row \\spad{ku+1},{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-711 R Q) +(-651 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-712) +(-652) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4416 . T) (-4421 |has| (-717) (-376)) (-4415 |has| (-717) (-376)) (-1488 . T) (-4422 |has| (-717) (-6 -4422)) (-4419 |has| (-717) (-6 -4419)) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| (-717) (QUOTE (-149))) (|HasCategory| (-717) (QUOTE (-147))) (|HasCategory| (-717) (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| (-717) (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| (-717) (QUOTE (-381))) (|HasCategory| (-717) (QUOTE (-376))) (-3955 (|HasCategory| (-717) (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| (-717) (QUOTE (-376)))) (|HasCategory| (-717) (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-717) (QUOTE (-240))) (|HasCategory| (-717) (QUOTE (-239))) (-3955 (-12 (|HasCategory| (-717) (QUOTE (-376))) (|HasCategory| (-717) (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| (-717) (|%list| (QUOTE -917) (QUOTE (-1196))))) (-3955 (|HasCategory| (-717) (QUOTE (-376))) (|HasCategory| (-717) (QUOTE (-363)))) (|HasCategory| (-717) (QUOTE (-363))) (|HasCategory| (-717) (|%list| (QUOTE -298) (QUOTE (-717)) (QUOTE (-717)))) (|HasCategory| (-717) (|%list| (QUOTE -321) (QUOTE (-717)))) (|HasCategory| (-717) (|%list| (QUOTE -526) (QUOTE (-1196)) (QUOTE (-717)))) (|HasCategory| (-717) (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| (-717) (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| (-717) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| (-717) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (-3955 (|HasCategory| (-717) (QUOTE (-319))) (|HasCategory| (-717) (QUOTE (-376))) (|HasCategory| (-717) (QUOTE (-363)))) (|HasCategory| (-717) (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-717) (QUOTE (-1039))) (|HasCategory| (-717) (QUOTE (-1222))) (-12 (|HasCategory| (-717) (QUOTE (-1021))) (|HasCategory| (-717) (QUOTE (-1222)))) (-3955 (-12 (|HasCategory| (-717) (QUOTE (-319))) (|HasCategory| (-717) (QUOTE (-927)))) (-12 (|HasCategory| (-717) (QUOTE (-363))) (|HasCategory| (-717) (QUOTE (-927)))) (|HasCategory| (-717) (QUOTE (-376)))) (-3955 (-12 (|HasCategory| (-717) (QUOTE (-319))) (|HasCategory| (-717) (QUOTE (-927)))) (-12 (|HasCategory| (-717) (QUOTE (-376))) (|HasCategory| (-717) (QUOTE (-927)))) (-12 (|HasCategory| (-717) (QUOTE (-363))) (|HasCategory| (-717) (QUOTE (-927))))) (|HasCategory| (-717) (QUOTE (-556))) (-12 (|HasCategory| (-717) (QUOTE (-1079))) (|HasCategory| (-717) (QUOTE (-1222)))) (|HasCategory| (-717) (QUOTE (-1079))) (|HasCategory| (-717) (QUOTE (-319))) (|HasCategory| (-717) (QUOTE (-927))) (-3955 (-12 (|HasCategory| (-717) (QUOTE (-319))) (|HasCategory| (-717) (QUOTE (-927)))) (|HasCategory| (-717) (QUOTE (-376)))) (-3955 (-12 (|HasCategory| (-717) (QUOTE (-240))) (|HasCategory| (-717) (QUOTE (-376)))) (|HasCategory| (-717) (QUOTE (-239)))) (-3955 (-12 (|HasCategory| (-717) (QUOTE (-319))) (|HasCategory| (-717) (QUOTE (-927)))) (|HasCategory| (-717) (QUOTE (-568)))) (-12 (|HasCategory| (-717) (QUOTE (-239))) (|HasCategory| (-717) (QUOTE (-376)))) (-12 (|HasCategory| (-717) (QUOTE (-376))) (|HasCategory| (-717) (|%list| (QUOTE -917) (QUOTE (-1196))))) (-12 (|HasCategory| (-717) (QUOTE (-240))) (|HasCategory| (-717) (QUOTE (-376)))) (-12 (|HasCategory| (-717) (QUOTE (-376))) (|HasCategory| (-717) (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| (-717) (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| (-717) (QUOTE (-568))) (|HasAttribute| (-717) (QUOTE -4422)) (|HasAttribute| (-717) (QUOTE -4419)) (-12 (|HasCategory| (-717) (QUOTE (-319))) (|HasCategory| (-717) (QUOTE (-927)))) (|HasCategory| (-717) (|%list| (QUOTE -917) (QUOTE (-1196)))) (-3955 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-717) (QUOTE (-319))) (|HasCategory| (-717) (QUOTE (-927)))) (|HasCategory| (-717) (QUOTE (-147)))) (-3955 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-717) (QUOTE (-319))) (|HasCategory| (-717) (QUOTE (-927)))) (|HasCategory| (-717) (QUOTE (-363))))) -(-713 S) +((-4138 . T) (-4143 |has| (-657) (-318)) (-4137 |has| (-657) (-318)) (-1409 . T) (-4144 |has| (-657) (-6 -4144)) (-4141 |has| (-657) (-6 -4141)) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| (-657) (QUOTE (-120))) (|HasCategory| (-657) (QUOTE (-118))) (|HasCategory| (-657) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-657) (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| (-657) (QUOTE (-323))) (|HasCategory| (-657) (QUOTE (-318))) (-3677 (|HasCategory| (-657) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-657) (QUOTE (-318)))) (|HasCategory| (-657) (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| (-657) (QUOTE (-190))) (|HasCategory| (-657) (QUOTE (-189))) (-3677 (-12 (|HasCategory| (-657) (QUOTE (-318))) (|HasCategory| (-657) (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| (-657) (|%list| (QUOTE -838) (QUOTE (-1117))))) (-3677 (|HasCategory| (-657) (QUOTE (-318))) (|HasCategory| (-657) (QUOTE (-305)))) (|HasCategory| (-657) (QUOTE (-305))) (|HasCategory| (-657) (|%list| (QUOTE -240) (QUOTE (-657)) (QUOTE (-657)))) (|HasCategory| (-657) (|%list| (QUOTE -263) (QUOTE (-657)))) (|HasCategory| (-657) (|%list| (QUOTE -468) (QUOTE (-1117)) (QUOTE (-657)))) (|HasCategory| (-657) (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-657) (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-657) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-657) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (-3677 (|HasCategory| (-657) (QUOTE (-261))) (|HasCategory| (-657) (QUOTE (-318))) (|HasCategory| (-657) (QUOTE (-305)))) (|HasCategory| (-657) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-657) (QUOTE (-960))) (|HasCategory| (-657) (QUOTE (-1143))) (-12 (|HasCategory| (-657) (QUOTE (-942))) (|HasCategory| (-657) (QUOTE (-1143)))) (-3677 (-12 (|HasCategory| (-657) (QUOTE (-261))) (|HasCategory| (-657) (QUOTE (-848)))) (-12 (|HasCategory| (-657) (QUOTE (-305))) (|HasCategory| (-657) (QUOTE (-848)))) (|HasCategory| (-657) (QUOTE (-318)))) (-3677 (-12 (|HasCategory| (-657) (QUOTE (-261))) (|HasCategory| (-657) (QUOTE (-848)))) (-12 (|HasCategory| (-657) (QUOTE (-318))) (|HasCategory| (-657) (QUOTE (-848)))) (-12 (|HasCategory| (-657) (QUOTE (-305))) (|HasCategory| (-657) (QUOTE (-848))))) (|HasCategory| (-657) (QUOTE (-498))) (-12 (|HasCategory| (-657) (QUOTE (-1000))) (|HasCategory| (-657) (QUOTE (-1143)))) (|HasCategory| (-657) (QUOTE (-1000))) (|HasCategory| (-657) (QUOTE (-261))) (|HasCategory| (-657) (QUOTE (-848))) (-3677 (-12 (|HasCategory| (-657) (QUOTE (-261))) (|HasCategory| (-657) (QUOTE (-848)))) (|HasCategory| (-657) (QUOTE (-318)))) (-3677 (-12 (|HasCategory| (-657) (QUOTE (-190))) (|HasCategory| (-657) (QUOTE (-318)))) (|HasCategory| (-657) (QUOTE (-189)))) (-3677 (-12 (|HasCategory| (-657) (QUOTE (-261))) (|HasCategory| (-657) (QUOTE (-848)))) (|HasCategory| (-657) (QUOTE (-510)))) (-12 (|HasCategory| (-657) (QUOTE (-189))) (|HasCategory| (-657) (QUOTE (-318)))) (-12 (|HasCategory| (-657) (QUOTE (-318))) (|HasCategory| (-657) (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| (-657) (QUOTE (-190))) (|HasCategory| (-657) (QUOTE (-318)))) (-12 (|HasCategory| (-657) (QUOTE (-318))) (|HasCategory| (-657) (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| (-657) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-657) (QUOTE (-510))) (|HasAttribute| (-657) (QUOTE -4144)) (|HasAttribute| (-657) (QUOTE -4141)) (-12 (|HasCategory| (-657) (QUOTE (-261))) (|HasCategory| (-657) (QUOTE (-848)))) (|HasCategory| (-657) (|%list| (QUOTE -838) (QUOTE (-1117)))) (-3677 (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-657) (QUOTE (-261))) (|HasCategory| (-657) (QUOTE (-848)))) (|HasCategory| (-657) (QUOTE (-118)))) (-3677 (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-657) (QUOTE (-261))) (|HasCategory| (-657) (QUOTE (-848)))) (|HasCategory| (-657) (QUOTE (-305))))) +(-653 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4424 . T)) +((-4146 . T)) NIL -(-714 U) +(-654 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the gcd of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-715) +(-655) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: ?? Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-716 OV E -3493 PG) +(-656 OV E -3215 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-717) +(-657) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-4198 . T) (-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-3920 . T) (-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-718 R) +(-658 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-719) +(-659) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4422 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4144 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-720 S D1 D2 I) +(-660 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-721 S) +(-661 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-722 S) +(-662 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-723 S T$) +(-663 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}."))) NIL NIL -(-724 S -3068 I) +(-664 S -2790 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-725 E OV R P) +(-665 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL -(-726 R) +(-666 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4417 . T) (-4418 . T) (-4420 . T)) +((-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-727 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-667 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-728) +(-668) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-729 R |Mod| -2245 -3936 |exactQuo|) +(-669 R |Mod| -2138 -3658 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-730 R |Rep|) +(-670 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4419 |has| |#1| (-376)) (-4421 |has| |#1| (-6 -4421)) (-4418 . T) (-4417 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-175))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| (-1101) (|%list| (QUOTE -899) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| (-1101) (|%list| (QUOTE -899) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| (-1101) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| (-1101) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-1101) (|%list| (QUOTE -629) (QUOTE (-546))))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (-3955 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3955 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3955 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4421)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-731 IS E |ff|) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4141 |has| |#1| (-318)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-1022) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-1022) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-305))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -4143)) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-671 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-732 R M) +(-672 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4418 |has| |#1| (-175)) (-4417 |has| |#1| (-175)) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149)))) -(-733 R |Mod| -2245 -3936 |exactQuo|) +((-4140 |has| |#1| (-146)) (-4139 |has| |#1| (-146)) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120)))) +(-673 R |Mod| -2138 -3658 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4420 . T)) +((-4142 . T)) NIL -(-734 S R) +(-674 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-735 R) +(-675 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4418 . T) (-4417 . T)) +((-4140 . T) (-4139 . T)) NIL -(-736 -3493) +(-676 -3215) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-4420 . T)) +((-4142 . T)) NIL -(-737 S) +(-677 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-738) +(-678) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-739 S) +(-679 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-740) +(-680) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-741 S R UP) +(-681 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381)))) -(-742 R UP) +((|HasCategory| |#2| (QUOTE (-305))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-323)))) +(-682 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4416 |has| |#1| (-376)) (-4421 |has| |#1| (-376)) (-4415 |has| |#1| (-376)) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4138 |has| |#1| (-318)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-743 S) +(-683 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-744) +(-684) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-745 -3493 UP) +(-685 -3215 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-746 |VarSet| E1 E2 R S PR PS) +(-686 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (PG)")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented "))) NIL NIL -(-747 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-687 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-748 E OV R PPR) +(-688 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-749 |vl| R) +(-689 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4425 "*") |has| |#2| (-175)) (-4416 |has| |#2| (-568)) (-4421 |has| |#2| (-6 -4421)) (-4418 . T) (-4417 . T) (-4420 . T)) -((|HasCategory| |#2| (QUOTE (-927))) (-3955 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-927)))) (-3955 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-927)))) (-3955 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-927)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-175))) (-3955 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| (-876 |#1|) (|%list| (QUOTE -899) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| (-876 |#1|) (|%list| (QUOTE -899) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| (-876 |#1|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| (-876 |#1|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-876 |#1|) (|%list| (QUOTE -629) (QUOTE (-546))))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557)))) (-3955 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4421)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) -(-750 E OV R PRF) +(((-4147 "*") |has| |#2| (-146)) (-4138 |has| |#2| (-510)) (-4143 |has| |#2| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) +((|HasCategory| |#2| (QUOTE (-848))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-848)))) (-3677 (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-848)))) (-3677 (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-146))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-510)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-798 |#1|) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-318))) (|HasAttribute| |#2| (QUOTE -4143)) (|HasCategory| |#2| (QUOTE (-406))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-690 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-751 E OV R P) +(-691 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-752 R S M) +(-692 R S M) ((|constructor| (NIL "\\spad{MonoidRingFunctions2} implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-753 R M) +(-693 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4418 |has| |#1| (-175)) (-4417 |has| |#1| (-175)) (-4420 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-859)))) -(-754 S) +((-4140 |has| |#1| (-146)) (-4139 |has| |#1| (-146)) (-4142 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-781)))) +(-694 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4423 . T) (-4413 . T) (-4424 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-755 S) +((-4145 . T) (-4135 . T) (-4146 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) +(-695 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4413 . T) (-4424 . T)) +((-4135 . T) (-4146 . T)) NIL -(-756) +(-696) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-757 S) +(-697 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-758 |Coef| |Var|) +(-698 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4418 . T) (-4417 . T) (-4420 . T)) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4140 . T) (-4139 . T) (-4142 . T)) NIL -(-759 OV E R P) +(-699 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-760 E OV R P) +(-700 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-761 S R) +(-701 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-762 R) +(-702 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4418 . T) (-4417 . T)) -NIL -(-763) -((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{\\spad{manpageXXc02}}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre's Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre's Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) -NIL -NIL -(-764) -((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{\\spad{manpageXXc05}}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) -NIL -NIL -(-765) -((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{\\spad{manpageXXc06}}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) -NIL -NIL -(-766) -((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{\\spad{manpageXXd01}}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) -NIL -NIL -(-767) -((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{\\spad{manpageXXd02}}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains \\spad{Asp12} and \\spad{Asp33} are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (BDF),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) -NIL -NIL -(-768) -((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{\\spad{manpageXXd03}}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) -NIL -NIL -(-769) -((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{\\spad{manpageXXe01}}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) -NIL -NIL -(-770) -((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{\\spad{manpageXXe02}}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) -NIL -NIL -(-771) -((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{\\spad{manpageXXe04}}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess)} is a comprehensive programming (QP) or linear programming (LP) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) -NIL -NIL -(-772) -((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{\\spad{manpageXXf01}}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the QR factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the QR factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) +((-4140 . T) (-4139 . T)) NIL -NIL -(-773) -((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{\\spad{manpageXXf02}}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)Bx where A and \\spad{B} are real,{} square matrices,{} using the QZ algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)Bx,{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)Bx,{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) -NIL -NIL -(-774) -((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{\\spad{manpageXXf04}}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A x=b,{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) -NIL -NIL -(-775) -((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{\\spad{manpageXXf07}}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A X=B,{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) -NIL -NIL -(-776) -((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)+n} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)+n} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)+n\\space{8}(nu)+n} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)+n} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)+n} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log,{} ln(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) -NIL -NIL -(-777) -((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) -NIL -NIL -(-778 S) +(-703 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-779) +(-704) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-780 S) +(-705 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-781) +(-706) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-782 |Par|) +(-707 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-783 -3493) +(-708 -3215) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-784 P -3493) +(-709 P -3215) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''."))) NIL NIL -(-785 T$) +(-710 T$) NIL NIL NIL -(-786 UP -3493) +(-711 UP -3215) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-787) +(-712) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-788 R) +(-713 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-789) +(-714) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4425 "*") . T)) +(((-4147 "*") . T)) NIL -(-790 R -3493) +(-715 R -3215) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-791) +(-716) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-792 S) +(-717 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-793 R |PolR| E |PolE|) +(-718 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-794 R E V P TS) +(-719 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}ts)} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}ts)} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}ts)} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-795 -3493 |ExtF| |SUEx| |ExtP| |n|) +(-720 -3215 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-796 BP E OV R P) +(-721 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-797 |Par|) +(-722 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with variable \\spad{x}. Fraction \\spad{P} RN.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with a new symbol as variable."))) NIL NIL -(-798 R |VarSet|) +(-723 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-6 -4421)) (-4418 . T) (-4417 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-927))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3955 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3955 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-175))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-546))))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (-3955 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-1196))))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-1196))))) (-3955 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-557)))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-1196)))) (-2957 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-1196)))))) (-3955 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-557)))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-1196)))) (-2957 (|HasCategory| |#1| (QUOTE (-556)))) (-2957 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-1196)))) (-2957 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-557))))) (-2957 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-1196)))) (-2957 (|HasCategory| |#1| (|%list| (QUOTE -1010) (QUOTE (-557))))))) (|HasAttribute| |#1| (QUOTE -4421)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-799 R) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-848))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-1117))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-318))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-1117))))) (-3677 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-1117)))) (-2679 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-1117)))))) (-3677 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-1117)))) (-2679 (|HasCategory| |#1| (QUOTE (-498)))) (-2679 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-1117)))) (-2679 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-499))))) (-2679 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-1117)))) (-2679 (|HasCategory| |#1| (|%list| (QUOTE -931) (QUOTE (-499))))))) (|HasAttribute| |#1| (QUOTE -4143)) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-724 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and gcd for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}cb]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + cb * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]} such that \\axiom{\\spad{g}} is a gcd of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + cb * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial gcd in \\axiom{R^(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{c^n * a = q*b +r} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a -r} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4419 |has| |#1| (-376)) (-4421 |has| |#1| (-6 -4421)) (-4418 . T) (-4417 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-175))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| (-1101) (|%list| (QUOTE -899) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| (-1101) (|%list| (QUOTE -899) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| (-1101) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| (-1101) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-1101) (|%list| (QUOTE -629) (QUOTE (-546))))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (-3955 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3955 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3955 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4421)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-800 R S) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4141 |has| |#1| (-318)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-1022) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-1022) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -4143)) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-725 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-801 R) +(-726 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557)))))) -(-802 R E V P) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499)))))) +(-727 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4424 . T) (-4423 . T)) +((-4146 . T) (-4145 . T)) NIL -(-803 S) +(-728 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-859)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-175)))) -(-804) +((-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-781)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-146)))) +(-729) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-805) +(-730) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-806) +(-731) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})**(\\spad{-1/5})}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation's right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-807) +(-732) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-808 |Curve|) +(-733 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-809 S) +(-734 S) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-810) +(-735) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-811 S) +(-736 S) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-812) +(-737) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-813) +(-738) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-814) +(-739) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-815 S R) +(-740 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-381)))) -(-816 R) +((|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-498))) (|HasCategory| |#2| (QUOTE (-1000))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-323)))) +(-741 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4417 . T) (-4418 . T) (-4420 . T)) +((-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-817) +(-742) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-818 R) +(-743 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-3955 (|HasCategory| (-1015 |#1|) (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-3955 (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| (-1015 |#1|) (|%list| (QUOTE -1057) (QUOTE (-557))))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1015 |#1|) (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| (-1015 |#1|) (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557))))) -(-819 -3955 R OS S) +((-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -240) (|devaluate| |#1|) (|devaluate| |#1|))) (-3677 (|HasCategory| (-936 |#1|) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-936 |#1|) (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-1000))) (|HasCategory| |#1| (QUOTE (-498))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-936 |#1|) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-936 |#1|) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499))))) +(-744 -3677 R OS S) ((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-820) +(-745) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-821 R -3493 L) +(-746 R -3215 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}'s form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-822 R -3493) +(-747 R -3215) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-823) -((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE's.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) -NIL -NIL -(-824 R -3493) +(-748 R -3215) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-825) -((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) -NIL -NIL -(-826 -3493 UP UPUP R) +(-749 -3215 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-827 -3493 UP L LQ) +(-750 -3215 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-828) +(-751) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-829 -3493 UP L LQ) +(-752 -3215 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}'s such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}'s in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree mj for some \\spad{j},{} and its leading coefficient is then a zero of pj. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {gcd(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-830 -3493 UP) +(-753 -3215 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-831 -3493 L UP A LO) +(-754 -3215 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-832 -3493 UP) +(-755 -3215 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular ++ part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-833 -3493 LO) +(-756 -3215 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-834 -3493 LODO) +(-757 -3215 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-835 -3018 S |f|) +(-758 -2740 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4417 |has| |#2| (-1068)) (-4418 |has| |#2| (-1068)) (-4420 |has| |#2| (-6 -4420)) (-4423 . T)) -((-3955 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-813))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1068)))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#2| (QUOTE (-376))) (-3955 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3955 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (QUOTE (-813))) (-3955 (|HasCategory| |#2| (QUOTE (-813))) (|HasCategory| |#2| (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-381))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))) (-3955 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (QUOTE (-813))) (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (QUOTE (-813))) (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#2| (QUOTE (-240))) (-3955 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1068))))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1196))))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#2| (QUOTE (-1120))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-813))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-813))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-813))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557)))))) (|HasCategory| (-557) (QUOTE (-859))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1196))))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasAttribute| |#2| (QUOTE -4420)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) -(-836 R) +((-4139 |has| |#2| (-989)) (-4140 |has| |#2| (-989)) (-4142 |has| |#2| (-6 -4142)) (-4145 . T)) +((-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-989)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#2| (QUOTE (-318))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989)))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-318)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-738))) (-3677 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-781)))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-323))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (QUOTE (-190))) (-3677 (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-989))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117))))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (QUOTE (-1041))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-989)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))))) (|HasCategory| (-499) (QUOTE (-781))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-989)))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117))))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-989)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasAttribute| |#2| (QUOTE -4142)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-989)))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-73))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))))) +(-759 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-6 -4421)) (-4418 . T) (-4417 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-927))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3955 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3955 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-175))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| (-838 (-1196)) (|%list| (QUOTE -899) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| (-838 (-1196)) (|%list| (QUOTE -899) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| (-838 (-1196)) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| (-838 (-1196)) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-838 (-1196)) (|%list| (QUOTE -629) (QUOTE (-546))))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (-3955 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4421)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-837 |Kernels| R |var|) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-848))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-761 (-1117)) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-761 (-1117)) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-761 (-1117)) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-761 (-1117)) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-761 (-1117)) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasAttribute| |#1| (QUOTE -4143)) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-760 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4425 "*") |has| |#2| (-376)) (-4416 |has| |#2| (-376)) (-4421 |has| |#2| (-376)) (-4415 |has| |#2| (-376)) (-4420 . T) (-4418 . T) (-4417 . T)) -((|HasCategory| |#2| (QUOTE (-376)))) -(-838 S) +(((-4147 "*") |has| |#2| (-318)) (-4138 |has| |#2| (-318)) (-4143 |has| |#2| (-318)) (-4137 |has| |#2| (-318)) (-4142 . T) (-4140 . T) (-4139 . T)) +((|HasCategory| |#2| (QUOTE (-318)))) +(-761 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-839 S) +(-762 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-859)))) -(-840) +((|HasCategory| |#1| (QUOTE (-781)))) +(-763) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-841 P R) +(-764 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite'' in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-240)))) -(-842 S) +((-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-190)))) +(-765 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4423 . T) (-4413 . T) (-4424 . T)) +((-4145 . T) (-4135 . T) (-4146 . T)) NIL -(-843 R) +(-766 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4420 |has| |#1| (-858))) -((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-21))) (-3955 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (-3955 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-556)))) -(-844 R S) +((-4142 |has| |#1| (-780))) +((|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-21))) (-3677 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-780)))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (-3677 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-498)))) +(-767 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-845 R) +(-768 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4418 |has| |#1| (-175)) (-4417 |has| |#1| (-175)) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149)))) -(-846 A S) +((-4140 |has| |#1| (-146)) (-4139 |has| |#1| (-146)) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120)))) +(-769 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-847 S) +(-770 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-848) +(-771) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \"k\" (constructors),{} \"d\" (domains),{} \"c\" (categories) or \"p\" (packages)."))) NIL NIL -(-849) +(-772) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of `x'."))) NIL NIL -(-850) +(-773) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-851) -((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) -NIL -NIL -(-852) +(-774) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-853 R) +(-775 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4420 |has| |#1| (-858))) -((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-21))) (-3955 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (-3955 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-556)))) -(-854 R S) +((-4142 |has| |#1| (-780))) +((|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-21))) (-3677 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-780)))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (-3677 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-498)))) +(-776 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-855) +(-777) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-856 -3018 S) +(-778 -2740 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-857) +(-779) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-858) +(-780) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline"))) -((-4420 . T)) +((-4142 . T)) NIL -(-859) +(-781) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}."))) NIL NIL -(-860 T$ |f|) +(-782 T$ |f|) ((|constructor| (NIL "This domain turns any total ordering \\spad{f} on a type \\spad{T} into a model of the category \\spadtype{OrderedType}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) -(-861 S) +((|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) +(-783 S) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-862) +(-784) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-863 S R) +(-785 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-175)))) -(-864 R) +((|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-146)))) +(-786 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4417 . T) (-4418 . T) (-4420 . T)) +((-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-865 R C) +(-787 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-568)))) -(-866 R |sigma| -3660) +((|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) +(-788 R |sigma| -3382) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376)))) -(-867 |x| R |sigma| -3660) +((-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-318)))) +(-789 |x| R |sigma| -3382) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-376)))) -(-868 R) +((-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-318)))) +(-790 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557)))))) -(-869) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499)))))) +(-791) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-870) +(-792) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-871) +(-793) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-872 S) +(-794 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-873) +(-795) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-874) +(-796) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file."))) NIL NIL -(-875) +(-797) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \"x overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \"f super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-876 |VariableList|) +(-798 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-877) +(-799) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-878 R |vl| |wl| |wtlevel|) +(-800 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4418 |has| |#1| (-175)) (-4417 |has| |#1| (-175)) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) -(-879 R PS UP) +((-4140 |has| |#1| (-146)) (-4139 |has| |#1| (-146)) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318)))) +(-801 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-880 R |x| |pt|) +(-802 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-881 |p|) +(-803 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-882 |p|) +(-804 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-883 |p|) +(-805 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| (-881 |#1|) (QUOTE (-927))) (|HasCategory| (-881 |#1|) (|%list| (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| (-881 |#1|) (QUOTE (-147))) (|HasCategory| (-881 |#1|) (QUOTE (-149))) (|HasCategory| (-881 |#1|) (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-881 |#1|) (QUOTE (-1039))) (|HasCategory| (-881 |#1|) (QUOTE (-840))) (|HasCategory| (-881 |#1|) (QUOTE (-859))) (-3955 (|HasCategory| (-881 |#1|) (QUOTE (-840))) (|HasCategory| (-881 |#1|) (QUOTE (-859)))) (|HasCategory| (-881 |#1|) (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| (-881 |#1|) (QUOTE (-1171))) (|HasCategory| (-881 |#1|) (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| (-881 |#1|) (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| (-881 |#1|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| (-881 |#1|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| (-881 |#1|) (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| (-881 |#1|) (QUOTE (-239))) (|HasCategory| (-881 |#1|) (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-881 |#1|) (QUOTE (-240))) (|HasCategory| (-881 |#1|) (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-881 |#1|) (|%list| (QUOTE -526) (QUOTE (-1196)) (|%list| (QUOTE -881) (|devaluate| |#1|)))) (|HasCategory| (-881 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -881) (|devaluate| |#1|)))) (|HasCategory| (-881 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -881) (|devaluate| |#1|)) (|%list| (QUOTE -881) (|devaluate| |#1|)))) (|HasCategory| (-881 |#1|) (QUOTE (-319))) (|HasCategory| (-881 |#1|) (QUOTE (-556))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-881 |#1|) (QUOTE (-927)))) (-3955 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-881 |#1|) (QUOTE (-927)))) (|HasCategory| (-881 |#1|) (QUOTE (-147))))) -(-884 |p| PADIC) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| (-803 |#1|) (QUOTE (-848))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -978) (QUOTE (-1117)))) (|HasCategory| (-803 |#1|) (QUOTE (-118))) (|HasCategory| (-803 |#1|) (QUOTE (-120))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-803 |#1|) (QUOTE (-960))) (|HasCategory| (-803 |#1|) (QUOTE (-763))) (|HasCategory| (-803 |#1|) (QUOTE (-781))) (-3677 (|HasCategory| (-803 |#1|) (QUOTE (-763))) (|HasCategory| (-803 |#1|) (QUOTE (-781)))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-803 |#1|) (QUOTE (-1092))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| (-803 |#1|) (QUOTE (-189))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| (-803 |#1|) (QUOTE (-190))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -468) (QUOTE (-1117)) (|%list| (QUOTE -803) (|devaluate| |#1|)))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -263) (|%list| (QUOTE -803) (|devaluate| |#1|)))) (|HasCategory| (-803 |#1|) (|%list| (QUOTE -240) (|%list| (QUOTE -803) (|devaluate| |#1|)) (|%list| (QUOTE -803) (|devaluate| |#1|)))) (|HasCategory| (-803 |#1|) (QUOTE (-261))) (|HasCategory| (-803 |#1|) (QUOTE (-498))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-803 |#1|) (QUOTE (-848)))) (-3677 (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-803 |#1|) (QUOTE (-848)))) (|HasCategory| (-803 |#1|) (QUOTE (-118))))) +(-806 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of Qp.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-840))) (|HasCategory| |#2| (QUOTE (-859))) (-3955 (|HasCategory| |#2| (QUOTE (-840))) (|HasCategory| |#2| (QUOTE (-859)))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#2| (QUOTE (-1171))) (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-556))) (-12 (|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) -(-885 S T$) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-763))) (|HasCategory| |#2| (QUOTE (-781))) (-3677 (|HasCategory| |#2| (QUOTE (-763))) (|HasCategory| |#2| (QUOTE (-781)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -240) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-261))) (|HasCategory| |#2| (QUOTE (-498))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-807 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of `p'.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of `p'.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of `s' and `t'."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875))))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-1120))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875)))))) -(-886) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-1041))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))))) +(-808) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value."))) NIL NIL -(-887) +(-809) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-888) +(-810) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-889 CF1 CF2) +(-811 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-890 |ComponentFunction|) +(-812 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-891 CF1 CF2) +(-813 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-892 |ComponentFunction|) +(-814 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-893) +(-815) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-894 CF1 CF2) +(-816 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-895 |ComponentFunction|) +(-817 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-896) +(-818) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0's,{}\\spad{l1} 1's,{}\\spad{l2} 2's,{}...,{}\\spad{ln} \\spad{n}'s.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}'s,{} and 4 \\spad{5}'s.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}."))) NIL NIL -(-897 R) +(-819 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-898 R S L) +(-820 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-899 S) +(-821 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-900 |Base| |Subject| |Pat|) +(-822 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2957 (|HasCategory| |#2| (QUOTE (-1068)))) (-2957 (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-1196)))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (-2957 (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-1196)))))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-1196))))) -(-901 R S) +((-12 (-2679 (|HasCategory| |#2| (QUOTE (-989)))) (-2679 (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-1117)))))) (-12 (|HasCategory| |#2| (QUOTE (-989))) (-2679 (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-1117)))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-1117))))) +(-823 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don't,{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(vn,{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-902 R A B) +(-824 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(\\spad{a1})),{}...,{}(vn,{}\\spad{f}(an))]."))) NIL NIL -(-903 R) +(-825 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and pn to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and pn to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and pn.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form 's for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-904 R -3068) +(-826 R -2790) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and fn to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-905 R S) +(-827 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-906 |VarSet|) +(-828 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-907 UP R) +(-829 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-908 A T$ S) +(-830 A T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-909 T$ S) +(-831 T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-910) +(-832) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-911 UP -3493) +(-833 UP -3215) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-912) -((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline ** At the moment,{} only Second Order Elliptic Partial Differential Equations are solved **") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline ** At the moment,{} only Second Order Elliptic Partial Differential Equations are solved **") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline ** At the moment,{} only Second Order Elliptic Partial Differential Equations are solved **") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline ** At the moment,{} only Second Order Elliptic Partial Differential Equations are solved **"))) -NIL -NIL -(-913) +(-834) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-914 R S) +(-835 R S) ((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4418 . T) (-4417 . T)) +((-4140 . T) (-4139 . T)) NIL -(-915 S) +(-836 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4420 . T)) +((-4142 . T)) NIL -(-916 A S) +(-837 A S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-917 S) +(-838 S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-918 S) +(-839 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})'s")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-919 S) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) +(-840 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4420 . T)) -((-3955 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-859)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-859)))) -(-920 |n| R) +((-4142 . T)) +((-3677 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-781)))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-781)))) +(-841 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} Ch. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of x:\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} ch.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-921 S) +(-842 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4420 . T)) +((-4142 . T)) NIL -(-922 S) +(-843 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-923 |p|) +(-844 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| $ (QUOTE (-149))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-381)))) -(-924 R E |VarSet| S) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-323)))) +(-845 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-925 R S) +(-846 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-926 S) +(-847 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL -((|HasCategory| |#1| (QUOTE (-147)))) -(-927) +((|HasCategory| |#1| (QUOTE (-118)))) +(-848) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-928 R0 -3493 UP UPUP R) +(-849 R0 -3215 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-929 UP UPUP R) +(-850 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-930 UP UPUP) +(-851 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-931 R) +(-852 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact'' form has only one fractional term per prime in the denominator,{} while the ``p-adic'' form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} ``p-adically'' in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-932 R) +(-853 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-933 E OV R P) +(-854 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the gcd of the list of primitive polynomials lp.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-934) +(-855) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik's group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic's Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik's Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic's Cube acting on integers 10*i+j for 1 <= \\spad{i} <= 6,{} 1 <= \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-935 -3493) +(-856 -3215) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any gcd domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-936) +(-857) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = y*x")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4425 "*") . T)) +(((-4147 "*") . T)) NIL -(-937 R) +(-858 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-938) +(-859) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Maybe| (|List| $)) (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \\spad{nothing} if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-939 |xx| -3493) +(-860 |xx| -3215) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-940 -3493 P) +(-861 -3215 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-941 R |Var| |Expon| GR) +(-862 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank >= \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} ~= 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-942) +(-863) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-943 S) +(-864 S) ((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions SF -> SF are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-944) +(-865) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-945) +(-866) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-946) +(-867) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-947 R -3493) +(-868 R -3215) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-948 S A B) +(-869 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-949 S R -3493) +(-870 S R -3215) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-950 I) +(-871 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-951 S E) +(-872 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-952 S R L) +(-873 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-953 S E V R P) +(-874 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -899) (|devaluate| |#1|)))) -(-954 -3068) +((|HasCategory| |#3| (|%list| (QUOTE -821) (|devaluate| |#1|)))) +(-875 -2790) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-955 R -3493 -3068) +(-876 R -3215 -2790) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-956 S R Q) +(-877 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-957 S) +(-878 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-958 S R P) +(-879 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-959) +(-880) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-960 R) +(-881 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4424 . T) (-4423 . T)) -((-3955 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (-3955 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-859))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| (-557) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-744))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-961 |lv| R) +((-4146 . T) (-4145 . T)) +((-3677 (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-684))) (|HasCategory| |#1| (QUOTE (-989))) (-12 (|HasCategory| |#1| (QUOTE (-942))) (|HasCategory| |#1| (QUOTE (-989)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) +(-882 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-962 |TheField| |ThePols|) +(-883 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}sn)} is the number of sign variations in the list of non null numbers [s1::l]@sn,{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}p')}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-858)))) -(-963 R) +((|HasCategory| |#1| (QUOTE (-780)))) +(-884 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-6 -4421)) (-4418 . T) (-4417 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-927))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3955 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3955 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-175))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| (-1196) (|%list| (QUOTE -899) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| (-1196) (|%list| (QUOTE -899) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| (-1196) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| (-1196) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-1196) (|%list| (QUOTE -629) (QUOTE (-546))))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (-3955 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4421)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-964 R S) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-848))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-1117) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-1117) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-1117) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-1117) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-1117) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-318))) (|HasAttribute| |#1| (QUOTE -4143)) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-885 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-965 |x| R) +(-886 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-966 S R E |VarSet|) +(-887 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-927))) (|HasAttribute| |#2| (QUOTE -4421)) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| |#4| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| |#4| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| |#4| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| |#4| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-546))))) -(-967 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-848))) (|HasAttribute| |#2| (QUOTE -4143)) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| |#4| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#4| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| |#4| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#4| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488))))) +(-888 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-6 -4421)) (-4418 . T) (-4417 . T) (-4420 . T)) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) NIL -(-968 E V R P -3493) +(-889 E V R P -3215) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}mn] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-969 E |Vars| R P S) +(-890 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-970 E V R P -3493) +(-891 E V R P -3215) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-464)))) -(-971) +((|HasCategory| |#3| (QUOTE (-406)))) +(-892) ((|constructor| (NIL "This domain represents network port numbers (notable TCP and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer `n'."))) NIL NIL -(-972) +(-893) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-973 R E) +(-894 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-6 -4421)) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (QUOTE (-568))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-3955 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4421))) -(-974 R L) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-510))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -4143))) +(-895 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-975 S) +(-896 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4424 . T) (-4423 . T)) -((-3955 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (-3955 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-859))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| (-557) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-976 A B) +((-4146 . T) (-4145 . T)) +((-3677 (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) +(-897 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-977) +(-898) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} dx for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} dx."))) NIL NIL -(-978 -3493) +(-899 -3215) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve \\spad{a2}. This operation uses \\spadfun{resultant}."))) NIL NIL -(-979 I) +(-900 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin's probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin's probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for \\spad{n<10**20}. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-980) +(-901) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-981 A B) +(-902 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-4420 -12 (|has| |#2| (-485)) (|has| |#1| (-485)))) -((-3955 (-12 (|HasCategory| |#1| (QUOTE (-813))) (|HasCategory| |#2| (QUOTE (-813)))) (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-859))))) (-12 (|HasCategory| |#1| (QUOTE (-813))) (|HasCategory| |#2| (QUOTE (-813)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-813))) (|HasCategory| |#2| (QUOTE (-813)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-813))) (|HasCategory| |#2| (QUOTE (-813)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-744))) (|HasCategory| |#2| (QUOTE (-744))))) (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-813))) (|HasCategory| |#2| (QUOTE (-813)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-744))) (|HasCategory| |#2| (QUOTE (-744))))) (-12 (|HasCategory| |#1| (QUOTE (-744))) (|HasCategory| |#2| (QUOTE (-744)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-859))))) -(-982) +((-4142 -12 (|has| |#2| (-427)) (|has| |#1| (-427)))) +((-3677 (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-781))))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-427)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-427)))) (-12 (|HasCategory| |#1| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-684))))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-323)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-427)))) (-12 (|HasCategory| |#1| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-684))))) (-12 (|HasCategory| |#1| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-684)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-781))))) +(-903) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name `n' and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-983 T$) +(-904 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-984 T$) +(-905 T$) ((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} ++ returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}."))) NIL NIL -(-985 S T$) +(-906 S T$) ((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them."))) NIL NIL -(-986) +(-907) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of `p',{} `q'.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of `q' by `p'.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-987 S) +(-908 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4423 . T) (-4424 . T)) +((-4145 . T) (-4146 . T)) NIL -(-988 R |polR|) +(-909 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean1}}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean2}}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.fr}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{S_{\\spad{e}-1}} where \\axiom{\\spad{P} ~ S_d,{} \\spad{Q} = S_{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = lc(S_d)}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)**(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{gcd(\\spad{P},{} \\spad{Q})} returns the gcd of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the gcd of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-464)))) -(-989) +((|HasCategory| |#1| (QUOTE (-406)))) +(-910) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-990) +(-911) ((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-991 S |Coef| |Expon| |Var|) +(-912 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-992 |Coef| |Expon| |Var|) +(-913 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4417 . T) (-4418 . T) (-4420 . T)) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-993) +(-914) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the x-,{} y-,{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-994 S R E |VarSet| P) +(-915 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#4| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-568)))) -(-995 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-510)))) +(-916 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#3| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4423 . T)) +((-4145 . T)) NIL -(-996 R E V P) +(-917 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(lp,{}lq)} returns the same as \\axiom{irreducibleFactors(concat(lp,{}lq))} assuming that \\axiom{irreducibleFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of gcd techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{lp}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(lp,{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(lp)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(lp)} returns \\axiom{lg} where \\axiom{lg} is a list of the gcds of every pair in \\axiom{lp} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(lp,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} and \\axiom{lp} generate the same ideal in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{lq} has rank not higher than the one of \\axiom{lp}. Moreover,{} \\axiom{lq} is computed by reducing \\axiom{lp} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{lp}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(lp,{}pred?,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(lp)} returns \\axiom{lq} such that \\axiom{lp} and and \\axiom{lq} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{lq}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{lp}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(lp)} returns \\axiom{lq} such that \\axiom{lp} and \\axiom{lq} generate the same ideal and no polynomial in \\axiom{lq} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}lf)} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}lf,{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf,{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(lp)} returns \\axiom{bps,{}nbps} where \\axiom{bps} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(lp)} returns \\axiom{lps,{}nlps} where \\axiom{lps} is a list of the linear polynomials in lp,{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(lp)} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(lp)} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{lp} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{bps} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(lp)} returns \\spad{true} iff the number of polynomials in \\axiom{lp} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}llp)} returns \\spad{true} iff for every \\axiom{lp} in \\axiom{llp} certainlySubVariety?(newlp,{}lp) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}lp)} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{lp} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is gcd-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(lp)} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in lp]} if \\axiom{\\spad{R}} is gcd-domain else returns \\axiom{lp}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(lp,{}lq,{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,{}lq)),{}lq)} assuming that \\axiom{remOp(lq)} returns \\axiom{lq} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp,{}lq)} returns the same as \\axiom{removeRedundantFactors(concat(lp,{}lq))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(lp,{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}lp))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp)} returns \\axiom{lq} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lq = [\\spad{q1},{}...,{}qm]} then the product \\axiom{p1*p2*...*pn} vanishes iff the product \\axiom{q1*q2*...*qm} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{pj},{} and no polynomial in \\axiom{lq} divides another polynomial in \\axiom{lq}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{lq} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is gcd-domain,{} the polynomials in \\axiom{lq} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-464)))) -(-997 K) +((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-261)))) (|HasCategory| |#1| (QUOTE (-406)))) +(-918 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-998 |VarSet| E RC P) +(-919 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary gcd domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-999 R) +(-920 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4424 . T) (-4423 . T)) +((-4146 . T) (-4145 . T)) NIL -(-1000 R1 R2) +(-921 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-1001 R) +(-922 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-1002 K) +(-923 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns csc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-1003 R E OV PPR) +(-924 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-1004 K R UP -3493) +(-925 K R UP -3215) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1005 R |Var| |Expon| |Dpoly|) +(-926 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger's algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don't know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} ~= 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-319))))) -(-1006 |vl| |nv|) +((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-261))))) +(-927 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-1007 R E V P TS) +(-928 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1008) +(-929) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-1009 A S) +(-930 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-840))) (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#2| (QUOTE (-1171)))) -(-1010 S) +((|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-498))) (|HasCategory| |#2| (QUOTE (-261))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-763))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-1092)))) +(-931 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-1011 A B R S) +(-932 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-1012 |n| K) +(-933 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-1013) +(-934) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-1014 S) +(-935 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\#q}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4423 . T) (-4424 . T)) +((-4145 . T) (-4146 . T)) NIL -(-1015 R) +(-936 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4416 |has| |#1| (-302)) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-376))) (-3955 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (-3955 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-556)))) -(-1016 S R) +((-4138 |has| |#1| (-244)) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#1| (QUOTE (-318))) (-3677 (|HasCategory| |#1| (QUOTE (-244))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-244))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -240) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-1000))) (|HasCategory| |#1| (QUOTE (-498)))) +(-937 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-302)))) -(-1017 R) +((|HasCategory| |#2| (QUOTE (-498))) (|HasCategory| |#2| (QUOTE (-1000))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-244)))) +(-938 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4416 |has| |#1| (-302)) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4138 |has| |#1| (-244)) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-1018 QR R QS S) +(-939 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-1019 S) +(-940 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1020 S) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) +(-941 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1021) +(-942) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1022 -3493 UP UPUP |radicnd| |n|) +(-943 -3215 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4416 |has| (-419 |#2|) (-376)) (-4421 |has| (-419 |#2|) (-376)) (-4415 |has| (-419 |#2|) (-376)) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| (-419 |#2|) (QUOTE (-147))) (|HasCategory| (-419 |#2|) (QUOTE (-149))) (|HasCategory| (-419 |#2|) (QUOTE (-363))) (-3955 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-381))) (-3955 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-3955 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-3955 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-363))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -915) (QUOTE (-1196)))))) (-3955 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -917) (QUOTE (-1196)))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -656) (QUOTE (-557)))) (-3955 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -917) (QUOTE (-1196))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -915) (QUOTE (-1196)))))) -(-1023 |bb|) +((-4138 |has| (-361 |#2|) (-318)) (-4143 |has| (-361 |#2|) (-318)) (-4137 |has| (-361 |#2|) (-318)) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| (-361 |#2|) (QUOTE (-118))) (|HasCategory| (-361 |#2|) (QUOTE (-120))) (|HasCategory| (-361 |#2|) (QUOTE (-305))) (-3677 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (QUOTE (-305)))) (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (QUOTE (-323))) (-3677 (-12 (|HasCategory| (-361 |#2|) (QUOTE (-190))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (|HasCategory| (-361 |#2|) (QUOTE (-305)))) (-3677 (-12 (|HasCategory| (-361 |#2|) (QUOTE (-190))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-189))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (|HasCategory| (-361 |#2|) (QUOTE (-305)))) (-3677 (-12 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-305))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -836) (QUOTE (-1117)))))) (-3677 (-12 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -838) (QUOTE (-1117)))))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -596) (QUOTE (-499)))) (-3677 (|HasCategory| (-361 |#2|) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-323))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-189))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-190))) (|HasCategory| (-361 |#2|) (QUOTE (-318)))) (-12 (|HasCategory| (-361 |#2|) (QUOTE (-318))) (|HasCategory| (-361 |#2|) (|%list| (QUOTE -836) (QUOTE (-1117)))))) +(-944 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| (-557) (QUOTE (-927))) (|HasCategory| (-557) (|%list| (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| (-557) (QUOTE (-147))) (|HasCategory| (-557) (QUOTE (-149))) (|HasCategory| (-557) (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-557) (QUOTE (-1039))) (|HasCategory| (-557) (QUOTE (-840))) (|HasCategory| (-557) (QUOTE (-859))) (-3955 (|HasCategory| (-557) (QUOTE (-840))) (|HasCategory| (-557) (QUOTE (-859)))) (|HasCategory| (-557) (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| (-557) (QUOTE (-1171))) (|HasCategory| (-557) (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| (-557) (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| (-557) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| (-557) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| (-557) (QUOTE (-239))) (|HasCategory| (-557) (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-557) (QUOTE (-240))) (|HasCategory| (-557) (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-557) (|%list| (QUOTE -526) (QUOTE (-1196)) (QUOTE (-557)))) (|HasCategory| (-557) (|%list| (QUOTE -321) (QUOTE (-557)))) (|HasCategory| (-557) (|%list| (QUOTE -298) (QUOTE (-557)) (QUOTE (-557)))) (|HasCategory| (-557) (QUOTE (-319))) (|HasCategory| (-557) (QUOTE (-556))) (|HasCategory| (-557) (|%list| (QUOTE -656) (QUOTE (-557)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-557) (QUOTE (-927)))) (-3955 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-557) (QUOTE (-927)))) (|HasCategory| (-557) (QUOTE (-147))))) -(-1024) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| (-499) (QUOTE (-848))) (|HasCategory| (-499) (|%list| (QUOTE -978) (QUOTE (-1117)))) (|HasCategory| (-499) (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-120))) (|HasCategory| (-499) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-499) (QUOTE (-960))) (|HasCategory| (-499) (QUOTE (-763))) (|HasCategory| (-499) (QUOTE (-781))) (-3677 (|HasCategory| (-499) (QUOTE (-763))) (|HasCategory| (-499) (QUOTE (-781)))) (|HasCategory| (-499) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-499) (QUOTE (-1092))) (|HasCategory| (-499) (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-499) (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-499) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-499) (QUOTE (-189))) (|HasCategory| (-499) (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| (-499) (QUOTE (-190))) (|HasCategory| (-499) (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| (-499) (|%list| (QUOTE -468) (QUOTE (-1117)) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -263) (QUOTE (-499)))) (|HasCategory| (-499) (|%list| (QUOTE -240) (QUOTE (-499)) (QUOTE (-499)))) (|HasCategory| (-499) (QUOTE (-261))) (|HasCategory| (-499) (QUOTE (-498))) (|HasCategory| (-499) (|%list| (QUOTE -596) (QUOTE (-499)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-848)))) (-3677 (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-499) (QUOTE (-848)))) (|HasCategory| (-499) (QUOTE (-118))))) +(-945) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-1025) +(-946) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-1026 RP) +(-947 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1027 S) +(-948 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1028 A S) +(-949 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4424)) (|HasCategory| |#2| (QUOTE (-1120)))) -(-1029 S) +((|HasAttribute| |#1| (QUOTE -4146)) (|HasCategory| |#2| (QUOTE (-1041)))) +(-950 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-1030 S) +(-951 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1031) +(-952) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4416 . T) (-4421 . T) (-4415 . T) (-4418 . T) (-4417 . T) ((-4425 "*") . T) (-4420 . T)) +((-4138 . T) (-4143 . T) (-4137 . T) (-4140 . T) (-4139 . T) ((-4147 "*") . T) (-4142 . T)) NIL -(-1032 R -3493) +(-953 R -3215) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1033 R -3493) +(-954 R -3215) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1034 -3493 UP) +(-955 -3215 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1035 -3493 UP) +(-956 -3215 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1036 S) +(-957 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1037 F1 UP UPUP R F2) +(-958 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-1038) +(-959) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1039) +(-960) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1040 |Pol|) +(-961 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1041 |Pol|) +(-962 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1042) +(-963) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1043 |TheField|) +(-964 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4416 . T) (-4421 . T) (-4415 . T) (-4418 . T) (-4417 . T) ((-4425 "*") . T) (-4420 . T)) -((-3955 (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| (-419 (-557)) (|%list| (QUOTE -1057) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| (-419 (-557)) (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| (-419 (-557)) (|%list| (QUOTE -1057) (QUOTE (-557))))) -(-1044 -3493 L) +((-4138 . T) (-4143 . T) (-4137 . T) (-4140 . T) (-4139 . T) ((-4147 "*") . T) (-4142 . T)) +((-3677 (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-361 (-499)) (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-361 (-499)) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-361 (-499)) (|%list| (QUOTE -978) (QUOTE (-499))))) +(-965 -3215 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1045 S) +(-966 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1120)))) -(-1046 R E V P) +((|HasCategory| |#1| (QUOTE (-1041)))) +(-967 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4424 . T) (-4423 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1047) +((-4146 . T) (-4145 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#4| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#4| (QUOTE (-73)))) +(-968) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1048 R) +(-969 R) ((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 <= \\spad{i} <= \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 <= \\spad{i} <= \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4425 "*")))) -(-1049 R) +((|HasAttribute| |#1| (QUOTE (-4147 "*")))) +(-970 R) ((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker's fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker's fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker's fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton's irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-319)))) -(-1050 S) +((-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-261)))) +(-971 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1051 S) +(-972 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1052 S) +(-973 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1053 -3493 |Expon| |VarSet| |FPol| |LFPol|) +(-974 -3215 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +(((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-1054) +(-975) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4288) (QUOTE (-1196))) (|%list| (QUOTE |:|) (QUOTE -2284) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (QUOTE (-1120)))) (-3955 (|HasCategory| (-51) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (QUOTE (-1120)))) (-3955 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (QUOTE (-1120)))) (-3955 (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-51) (QUOTE (-1120))) (|HasCategory| (-51) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (QUOTE (-1120)))) (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (|%list| (QUOTE -629) (QUOTE (-546)))) (-12 (|HasCategory| (-51) (QUOTE (-1120))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (QUOTE (-1120))) (|HasCategory| (-1196) (QUOTE (-859))) (|HasCategory| (-51) (QUOTE (-1120))) (-3955 (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-51) (|%list| (QUOTE -628) (QUOTE (-875))))) (-3955 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (QUOTE (-102)))) -(-1055) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (QUOTE (-1117))) (|%list| (QUOTE |:|) (QUOTE |entry|) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-1041)))) (-3677 (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-1041)))) (-3677 (|HasCategory| (-51) (QUOTE (-73))) (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-51) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-51) (|%list| (QUOTE -263) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-1041))) (|HasCategory| (-1117) (QUOTE (-781))) (|HasCategory| (-51) (QUOTE (-1041))) (-3677 (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-51) (|%list| (QUOTE -568) (QUOTE (-797))))) (-3677 (|HasCategory| (-51) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-73)))) (|HasCategory| (-51) (QUOTE (-73))) (|HasCategory| (-51) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-73)))) +(-976) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1056 A S) +(-977 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1057 S) +(-978 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1058 Q R) +(-979 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1059 R) +(-980 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1060) +(-981) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1061 UP) +(-982 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1062 R) +(-983 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1063 T$) +(-984 T$) ((|constructor| (NIL "This category defines the common interface for RGB color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of `c'.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of `c'.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of `c'."))) NIL NIL -(-1064 T$) +(-985 T$) ((|constructor| (NIL "This category defines the common interface for RGB color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1065 R |ls|) +(-986 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4424 . T) (-4423 . T)) -((-12 (|HasCategory| (-798 |#1| (-876 |#2|)) (QUOTE (-1120))) (|HasCategory| (-798 |#1| (-876 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -798) (|devaluate| |#1|) (|%list| (QUOTE -876) (|devaluate| |#2|)))))) (|HasCategory| (-798 |#1| (-876 |#2|)) (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-798 |#1| (-876 |#2|)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-876 |#2|) (QUOTE (-381))) (|HasCategory| (-798 |#1| (-876 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-798 |#1| (-876 |#2|)) (QUOTE (-102)))) -(-1066) +((-4146 . T) (-4145 . T)) +((-12 (|HasCategory| (-723 |#1| (-798 |#2|)) (QUOTE (-1041))) (|HasCategory| (-723 |#1| (-798 |#2|)) (|%list| (QUOTE -263) (|%list| (QUOTE -723) (|devaluate| |#1|) (|%list| (QUOTE -798) (|devaluate| |#2|)))))) (|HasCategory| (-723 |#1| (-798 |#2|)) (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-723 |#1| (-798 |#2|)) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| (-798 |#2|) (QUOTE (-323))) (|HasCategory| (-723 |#1| (-798 |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-723 |#1| (-798 |#2|)) (QUOTE (-73)))) +(-987) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1067 S) +(-988 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1068) +(-989) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4420 . T)) +((-4142 . T)) NIL -(-1069 |xx| -3493) +(-990 |xx| -3215) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1070 S) +(-991 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-1071 S |m| |n| R |Row| |Col|) +(-992 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-568))) (|HasCategory| |#4| (QUOTE (-175)))) -(-1072 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-261))) (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (QUOTE (-510))) (|HasCategory| |#4| (QUOTE (-146)))) +(-993 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4423 . T) (-4418 . T) (-4417 . T)) +((-4145 . T) (-4140 . T) (-4139 . T)) NIL -(-1073 |m| |n| R) +(-994 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4423 . T) (-4418 . T) (-4417 . T)) -((|HasCategory| |#3| (QUOTE (-175))) (-3955 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) (|HasCategory| |#3| (|%list| (QUOTE -629) (QUOTE (-546)))) (-3955 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-568))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (|%list| (QUOTE -628) (QUOTE (-875))))) -(-1074 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4145 . T) (-4140 . T) (-4139 . T)) +((|HasCategory| |#3| (QUOTE (-146))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|))))) (|HasCategory| |#3| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-318)))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (QUOTE (-261))) (|HasCategory| |#3| (QUOTE (-510))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-73))) (|HasCategory| |#3| (|%list| (QUOTE -568) (QUOTE (-797))))) +(-995 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1075 R) +(-996 R) ((|constructor| (NIL "The category of right modules over an rng (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the rng. \\blankline"))) NIL NIL -(-1076) +(-997) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1077 S T$) +(-998 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1120)))) -(-1078 S) +((|HasCategory| |#1| (QUOTE (-1041)))) +(-999 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1079) +(-1000) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-1080 |TheField| |ThePolDom|) +(-1001 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1081) +(-1002) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4411 . T) (-4415 . T) (-4410 . T) (-4421 . T) (-4422 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4133 . T) (-4137 . T) (-4132 . T) (-4143 . T) (-4144 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-1082) +(-1003) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE's")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE's")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4288) (QUOTE (-1196))) (|%list| (QUOTE |:|) (QUOTE -2284) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (QUOTE (-1120)))) (-3955 (|HasCategory| (-51) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (QUOTE (-1120)))) (-3955 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (QUOTE (-1120)))) (-3955 (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-51) (QUOTE (-1120))) (|HasCategory| (-51) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (QUOTE (-1120)))) (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (|%list| (QUOTE -629) (QUOTE (-546)))) (-12 (|HasCategory| (-51) (QUOTE (-1120))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (QUOTE (-1120))) (|HasCategory| (-1196) (QUOTE (-859))) (|HasCategory| (-51) (QUOTE (-1120))) (-3955 (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-51) (|%list| (QUOTE -628) (QUOTE (-875))))) (-3955 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (QUOTE (-102)))) -(-1083 S R E V) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (QUOTE (-1117))) (|%list| (QUOTE |:|) (QUOTE |entry|) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-1041)))) (-3677 (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-1041)))) (-3677 (|HasCategory| (-51) (QUOTE (-73))) (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-51) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| (-51) (QUOTE (-1041))) (|HasCategory| (-51) (|%list| (QUOTE -263) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-1041))) (|HasCategory| (-1117) (QUOTE (-781))) (|HasCategory| (-51) (QUOTE (-1041))) (-3677 (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-51) (|%list| (QUOTE -568) (QUOTE (-797))))) (-3677 (|HasCategory| (-51) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-73)))) (|HasCategory| (-51) (QUOTE (-73))) (|HasCategory| (-51) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (QUOTE (-73)))) +(-1004 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (|%list| (QUOTE -38) (QUOTE (-557)))) (|HasCategory| |#2| (|%list| (QUOTE -1010) (QUOTE (-557)))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#4| (|%list| (QUOTE -629) (QUOTE (-1196))))) -(-1084 R E V) +((|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-498))) (|HasCategory| |#2| (|%list| (QUOTE -38) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -931) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#4| (|%list| (QUOTE -569) (QUOTE (-1117))))) +(-1005 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-6 -4421)) (-4418 . T) (-4417 . T) (-4420 . T)) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) NIL -(-1085) +(-1006) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1086 S |TheField| |ThePols|) +(-1007 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1087 |TheField| |ThePols|) +(-1008 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1088 R E V P TS) +(-1009 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS). The same way it does not care about the way univariate polynomial gcd (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcd need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1089 S R E V P) +(-1010 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1090 R E V P) +(-1011 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4424 . T) (-4423 . T)) +((-4146 . T) (-4145 . T)) NIL -(-1091 R E V P TS) +(-1012 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}ts)} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts,{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1092) +(-1013) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1093) +(-1014) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-1094 |Base| R -3493) +(-1015 |Base| R -3215) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}fn are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1095 |f|) +(-1016 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1096 |Base| R -3493) +(-1017 |Base| R -3215) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-1097 R |ls|) +(-1018 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1098 R UP M) +(-1019 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4416 |has| |#1| (-376)) (-4421 |has| |#1| (-376)) (-4415 |has| |#1| (-376)) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-3955 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1196)))))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557)))) (-3955 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))))) -(-1099 UP SAE UPA) +((-4138 |has| |#1| (-318)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-305))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-305)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-323))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-305)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-305)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-305))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-305)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))))) +(-1020 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1100 UP SAE UPA) +(-1021 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1101) +(-1022) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1102) +(-1023) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1103 S) +(-1024 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1104) +(-1025) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding `b'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of `n' in `s'; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1105 R) +(-1026 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1106 R) +(-1027 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-6 -4421)) (-4418 . T) (-4417 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-927))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3955 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3955 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-175))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| (-1107 (-1196)) (|%list| (QUOTE -899) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| (-1107 (-1196)) (|%list| (QUOTE -899) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| (-1107 (-1196)) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| (-1107 (-1196)) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-1107 (-1196)) (|%list| (QUOTE -629) (QUOTE (-546))))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (-3955 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4421)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-1107 S) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-848))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-1028 (-1117)) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-1028 (-1117)) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-1028 (-1117)) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-1028 (-1117)) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-1028 (-1117)) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasAttribute| |#1| (QUOTE -4143)) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1028 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1108 S) +(-1029 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1120)))) -(-1109 R S) +((|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-1041)))) +(-1030 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-858)))) -(-1110) +((|HasCategory| |#1| (QUOTE (-780)))) +(-1031) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment `s'. If `s' designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1111 S) +(-1032 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1108 |#1|) (QUOTE (-1120)))) -(-1112 R S) +((|HasCategory| (-1029 |#1|) (QUOTE (-1041)))) +(-1033 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1113 S) +(-1034 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1114 S L) +(-1035 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1115) +(-1036) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1116 S) +(-1037 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-4423 . T) (-4413 . T) (-4424 . T)) -((-3955 (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-1117 A S) +((-4145 . T) (-4135 . T) (-4146 . T)) +((-3677 (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) +(-1038 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1118 S) +(-1039 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4413 . T)) +((-4135 . T)) NIL -(-1119 S) +(-1040 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1120) +(-1041) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1121 |m| |n|) +(-1042 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the k^{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {\\spad{a_1},{}...,{}a_m}. Error if {\\spad{a_1},{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the k^{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the k^{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1122) +(-1043) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1123 |Str| |Sym| |Int| |Flt| |Expr|) +(-1044 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns \\spad{a1}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of Flt; Error: if \\spad{s} is not an atom that also belongs to Flt.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of Sym. Error: if \\spad{s} is not an atom that also belongs to Sym.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of Str. Error: if \\spad{s} is not an atom that also belongs to Str.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [\\spad{a1},{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Flt.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Sym.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Str.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers."))) NIL NIL -(-1124 |Str| |Sym| |Int| |Flt| |Expr|) +(-1045 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1125 R FS) +(-1046 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1126 R E V P TS) +(-1047 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(ts,{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1127 R E V P TS) +(-1048 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1128 R E V P) +(-1049 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the gcd of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(ts,{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4424 . T) (-4423 . T)) +((-4146 . T) (-4145 . T)) NIL -(-1129) +(-1050) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1130 S) +(-1051 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1131) +(-1052) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1132 |dimtot| |dim1| S) +(-1053 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4417 |has| |#3| (-1068)) (-4418 |has| |#3| (-1068)) (-4420 |has| |#3| (-6 -4420)) (-4423 . T)) -((-3955 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-744))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-813))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-859))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196)))))) (-3955 (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1068)))) (|HasCategory| |#3| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#3| (QUOTE (-376))) (-3955 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1068)))) (-3955 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (QUOTE (-744))) (|HasCategory| |#3| (QUOTE (-813))) (-3955 (|HasCategory| |#3| (QUOTE (-813))) (|HasCategory| |#3| (QUOTE (-859)))) (|HasCategory| |#3| (QUOTE (-859))) (|HasCategory| |#3| (QUOTE (-381))) (-3955 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196)))))) (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196)))) (-3955 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-744))) (|HasCategory| |#3| (QUOTE (-813))) (|HasCategory| |#3| (QUOTE (-859))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-744))) (|HasCategory| |#3| (QUOTE (-813))) (|HasCategory| |#3| (QUOTE (-859))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-3955 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#3| (QUOTE (-240))) (-3955 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1068))))) (-3955 (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1196))))) (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#3| (QUOTE (-1120))) (-3955 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-744))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-813))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-859))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))))) (-3955 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-744))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-813))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-859))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (|HasCategory| |#3| (QUOTE (-1068)))) (-3955 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-744))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-813))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-859))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557)))))) (|HasCategory| (-557) (QUOTE (-859))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1196))))) (-3955 (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasAttribute| |#3| (QUOTE -4420)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1120))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) -(-1133 R |x|) +((-4139 |has| |#3| (-989)) (-4140 |has| |#3| (-989)) (-4142 |has| |#3| (-6 -4142)) (-4145 . T)) +((-3677 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-989)))) (|HasCategory| |#3| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#3| (QUOTE (-318))) (-3677 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-989)))) (-3677 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-318)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (QUOTE (-738))) (-3677 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-781)))) (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (QUOTE (-323))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))) (-3677 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-73))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-3677 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#3| (QUOTE (-190))) (-3677 (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-989))))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -838) (QUOTE (-1117))))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#3| (QUOTE (-1041))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#3| (QUOTE (-989)))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-684))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499)))))) (|HasCategory| (-499) (QUOTE (-781))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-989)))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -838) (QUOTE (-1117))))) (-3677 (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#3| (QUOTE (-989)))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasAttribute| |#3| (QUOTE -4142)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-989)))) (-12 (|HasCategory| |#3| (QUOTE (-989))) (|HasCategory| |#3| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#3| (QUOTE (-73))) (-12 (|HasCategory| |#3| (QUOTE (-1041))) (|HasCategory| |#3| (|%list| (QUOTE -263) (|devaluate| |#3|))))) +(-1054 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-464)))) -(-1134) +((|HasCategory| |#1| (QUOTE (-406)))) +(-1055) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of `s'.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature `s'.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by `s',{} and return type indicated by `t'."))) NIL NIL -(-1135) +(-1056) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for `s'.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature `s'.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST n: \\spad{s} -> \\spad{t}"))) NIL NIL -(-1136 R -3493) +(-1057 R -3215) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1137 R) +(-1058 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1138) +(-1059) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1139) +(-1060) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4411 . T) (-4415 . T) (-4410 . T) (-4421 . T) (-4422 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4133 . T) (-4137 . T) (-4132 . T) (-4143 . T) (-4144 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-1140 S) +(-1061 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\#s}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4423 . T) (-4424 . T)) +((-4145 . T) (-4146 . T)) NIL -(-1141 S |ndim| R |Row| |Col|) +(-1062 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-376))) (|HasAttribute| |#3| (QUOTE (-4425 "*"))) (|HasCategory| |#3| (QUOTE (-175)))) -(-1142 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-318))) (|HasAttribute| |#3| (QUOTE (-4147 "*"))) (|HasCategory| |#3| (QUOTE (-146)))) +(-1063 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) -((-4423 . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4145 . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-1143 R |Row| |Col| M) +(-1064 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1144 R |VarSet|) +(-1065 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-6 -4421)) (-4418 . T) (-4417 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-927))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3955 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3955 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-175))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-546))))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (-3955 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4421)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-1145 |Coef| |Var| SMP) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-848))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-318))) (|HasAttribute| |#1| (QUOTE -4143)) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1066 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4418 . T) (-4417 . T) (-4420 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-376)))) -(-1146 R E V P) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4140 . T) (-4139 . T) (-4142 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-318)))) +(-1067 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4424 . T) (-4423 . T)) +((-4146 . T) (-4145 . T)) NIL -(-1147 UP -3493) +(-1068 UP -3215) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1148 R) +(-1069 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1149 R) +(-1070 R) ((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} \\indented{1}{are given and\\space{2}\\spad{func1} = \\spad{func3}(\\spad{func2}) .\\space{2}If there is no solution then} \\indented{1}{function \\spad{func1} will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function \\spad{func3} where \\spad{func1} = \\spad{func3}(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1150 R) +(-1071 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1151 S A) +(-1072 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-859)))) -(-1152 R) +((|HasCategory| |#1| (QUOTE (-781)))) +(-1073 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1153 R) +(-1074 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through pn,{} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through pn,{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if \\spad{close2} is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through pn,{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught pn,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through pn defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through pn to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1154) +(-1075) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1155) +(-1076) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1156) +(-1077) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of `s'. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of `s'. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of `s'. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of `s'. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of `s'. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of `s'. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of `s'. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of `s'. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of `s'. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of `s'. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of `s'. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of `s'. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of `s'. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of `s'. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of `s'. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of `s'. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of `s'. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of `s'. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of `s'. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of `s'. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of `s'. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of `s'. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of `s'. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of `s'. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of `s'. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of `s'. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of `s'. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of `s'. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of `s'. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of `s'. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of `s'. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if `s' represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if `s' represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if `s' represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if `s' represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if `s' represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if `s' represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if `s' represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if `s' represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if `s' represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if `s' represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if `s' represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if `s' represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if `s' represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if `s' represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if `s' represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if `s' represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if `s' represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if `s' represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if `s' represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if `s' represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if `s' represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if `s' represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if `s' represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if `s' represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if `s' represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if `s' represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if `s' represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if `s' represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if `s' represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if `s' represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if `s' represents an `import' statement."))) NIL NIL -(-1157) +(-1078) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1158) +(-1079) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1159 V C) +(-1080 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}\\spad{o2})} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}\\spad{o1},{}\\spad{o2})} returns \\spad{true} iff \\axiom{\\spad{o1}(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}lt)} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in lt]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(lvt)} returns the same as \\axiom{[construct(vt.val,{}vt.tower) for vt in lvt]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(vt)} returns the same as \\axiom{construct(vt.val,{}vt.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1160 V C) +(-1081 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| (-1159 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1159 |#1| |#2|) (QUOTE (-1120)))) (|HasCategory| (-1159 |#1| |#2|) (QUOTE (-1120))) (-3955 (|HasCategory| (-1159 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1159 |#1| |#2|) (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| (-1159 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1159 |#1| |#2|) (QUOTE (-1120)))) (|HasCategory| (-1159 |#1| |#2|) (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| (-1159 |#1| |#2|) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-1159 |#1| |#2|) (QUOTE (-102)))) -(-1161 |ndim| R) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| (-1080 |#1| |#2|) (|%list| (QUOTE -263) (|%list| (QUOTE -1080) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1080 |#1| |#2|) (QUOTE (-1041)))) (|HasCategory| (-1080 |#1| |#2|) (QUOTE (-1041))) (-3677 (|HasCategory| (-1080 |#1| |#2|) (QUOTE (-73))) (|HasCategory| (-1080 |#1| |#2|) (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| (-1080 |#1| |#2|) (|%list| (QUOTE -263) (|%list| (QUOTE -1080) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1080 |#1| |#2|) (QUOTE (-1041)))) (|HasCategory| (-1080 |#1| |#2|) (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| (-1080 |#1| |#2|) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-1080 |#1| |#2|) (QUOTE (-73)))) +(-1082 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4420 . T) (-4412 |has| |#2| (-6 (-4425 "*"))) (-4423 . T) (-4417 . T) (-4418 . T)) -((|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4425 #1="*"))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557)))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-376))) (-3955 (|HasAttribute| |#2| (QUOTE (-4425 #1#))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) -(-1162 S) +((-4142 . T) (-4134 |has| |#2| (-6 (-4147 "*"))) (-4145 . T) (-4139 . T) (-4140 . T)) +((|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-4147 #1="*"))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#2| (QUOTE (-261))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-318))) (-3677 (|HasAttribute| |#2| (QUOTE (-4147 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-73))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) +(-1083 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1163) +(-1084) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4424 . T) (-4423 . T)) +((-4146 . T) (-4145 . T)) NIL -(-1164 R E V P TS) +(-1085 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1165 R E V P) +(-1086 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4424 . T) (-4423 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1166) +((-4146 . T) (-4145 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#4| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#4| (QUOTE (-73)))) +(-1087) ((|constructor| (NIL "The category of all semiring structures,{} \\spadignore{e.g.} triples (\\spad{D},{}+,{}*) such that (\\spad{D},{}+) is an Abelian monoid and (\\spad{D},{}*) is a monoid with the following laws:"))) NIL NIL -(-1167 S) +(-1088 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1168 A S) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) +(-1089 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1169 S) +(-1090 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1170 |Key| |Ent| |dent|) +(-1091 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4424 . T)) -((-12 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4288) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2284) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (-3955 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (-3955 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (-3955 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -629) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-859))) (-3955 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-102)))) (-3955 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) -(-1171) +((-4146 . T)) +((-12 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) +(-1092) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For non-fiinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline")) (|nextItem| (((|Maybe| $) $) "\\spad{nextItem(x)} returns the next item,{} or \\spad{failed} if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1172) +(-1093) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1173 |Coef|) +(-1094 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1174 S) +(-1095 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4424 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-557) (QUOTE (-859))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1175 S) +((-4146 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) +(-1096 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1176 A B) +(-1097 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1177 A B C) +(-1098 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1178) +(-1099) ((|constructor| (NIL "This is the domain of character strings.")) (|string| (($ (|Identifier|)) "\\spad{string id} is the string representation of the identifier \\spad{id}") (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) -((-4424 . T) (-4423 . T)) -((-3955 (-12 (|HasCategory| (-146) (QUOTE (-859))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1120))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-3955 (-12 (|HasCategory| (-146) (QUOTE (-1120))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (|HasCategory| (-146) (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| (-146) (|%list| (QUOTE -629) (QUOTE (-546)))) (-3955 (|HasCategory| (-146) (QUOTE (-859))) (|HasCategory| (-146) (QUOTE (-1120)))) (|HasCategory| (-146) (QUOTE (-859))) (-3955 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-859))) (|HasCategory| (-146) (QUOTE (-1120)))) (|HasCategory| (-557) (QUOTE (-859))) (|HasCategory| (-146) (QUOTE (-1120))) (|HasCategory| (-146) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1120))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) -(-1179 |Entry|) +((-4146 . T) (-4145 . T)) +((-3677 (-12 (|HasCategory| (-117) (QUOTE (-781))) (|HasCategory| (-117) (|%list| (QUOTE -263) (QUOTE (-117))))) (-12 (|HasCategory| (-117) (QUOTE (-1041))) (|HasCategory| (-117) (|%list| (QUOTE -263) (QUOTE (-117)))))) (-3677 (-12 (|HasCategory| (-117) (QUOTE (-1041))) (|HasCategory| (-117) (|%list| (QUOTE -263) (QUOTE (-117))))) (|HasCategory| (-117) (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| (-117) (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| (-117) (QUOTE (-781))) (|HasCategory| (-117) (QUOTE (-1041)))) (|HasCategory| (-117) (QUOTE (-781))) (-3677 (|HasCategory| (-117) (QUOTE (-73))) (|HasCategory| (-117) (QUOTE (-781))) (|HasCategory| (-117) (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| (-117) (QUOTE (-1041))) (|HasCategory| (-117) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-117) (QUOTE (-73))) (-12 (|HasCategory| (-117) (QUOTE (-1041))) (|HasCategory| (-117) (|%list| (QUOTE -263) (QUOTE (-117)))))) +(-1100 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4288) (QUOTE (-1178))) (|%list| (QUOTE |:|) (QUOTE -2284) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (QUOTE (-1120)))) (-3955 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (QUOTE (-1120)))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (QUOTE (-1120)))) (-3955 (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (QUOTE (-1120)))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (|%list| (QUOTE -629) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (QUOTE (-1120))) (|HasCategory| (-1178) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120))) (-3955 (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (QUOTE (-102)))) -(-1180 A) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (QUOTE (-1099))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-1041))) (|HasCategory| (-1099) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-73)))) (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (QUOTE (-73)))) +(-1101 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557)))))) -(-1181 |Coef|) +((|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499)))))) +(-1102 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1182 |Coef|) +(-1103 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1183 R UP) +(-1104 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-319)))) -(-1184 |n| R) +((|HasCategory| |#1| (QUOTE (-261)))) +(-1105 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1185 S1 S2) +(-1106 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form s:t"))) NIL NIL -(-1186) +(-1107) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1187 |Coef| |var| |cen|) +(-1108 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4425 "*") -3955 (-2959 (|has| |#1| (-376)) (|has| (-1194 |#1| |#2| |#3|) (-840))) (|has| |#1| (-175)) (-2959 (|has| |#1| (-376)) (|has| (-1194 |#1| |#2| |#3|) (-927)))) (-4416 -3955 (-2959 (|has| |#1| (-376)) (|has| (-1194 |#1| |#2| |#3|) (-840))) (|has| |#1| (-568)) (-2959 (|has| |#1| (-376)) (|has| (-1194 |#1| |#2| |#3|) (-927)))) (-4421 |has| |#1| (-376)) (-4415 |has| |#1| (-376)) (-4417 . T) (-4418 . T) (-4420 . T)) -((-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-927)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -629) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1196)) (|%list| (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -899) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -899) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -1057) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1039)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1171)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-175))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-149)))) (|HasCategory| |#1| (QUOTE (-149)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-557)) (|devaluate| |#1|)))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -917) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-557)) (|devaluate| |#1|)))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-240)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-557)) (|devaluate| |#1|))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-239)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-557)) (|devaluate| |#1|))))) (|HasCategory| (-557) (QUOTE (-1131))) (-3955 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-927)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -1057) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -629) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1039)))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-840)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-859))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1196)) (|%list| (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -899) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -899) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-557))))) (|HasSignature| |#1| (|%list| (QUOTE -4374) (|%list| (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-557))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasSignature| |#1| (|%list| (QUOTE -4240) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (|%list| (QUOTE -3482) (|%list| (|%list| (QUOTE -659) (QUOTE (-1196))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-319)))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-927))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-568)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -1057) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (|%list| (QUOTE -917) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-239)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-859)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-927)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-147)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-1188 R -3493) +(((-4147 "*") -3677 (-2681 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-763))) (|has| |#1| (-146)) (-2681 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-848)))) (-4138 -3677 (-2681 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-763))) (|has| |#1| (-510)) (-2681 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-848)))) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-763)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -569) (QUOTE (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -240) (|%list| (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -263) (|%list| (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -468) (QUOTE (-1117)) (|%list| (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -978) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-781)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-960)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-1092)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|))))) (|HasCategory| (-499) (QUOTE (-1052))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-318))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -978) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -569) (QUOTE (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-960)))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-763)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-763)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-781))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-1092)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -240) (|%list| (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -263) (|%list| (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -468) (QUOTE (-1117)) (|%list| (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-499))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-898))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-498)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-261)))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-763)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-763)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-781)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-848)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1109 R -3215) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1189 R) +(-1110 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1190 R) +(-1111 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4419 |has| |#1| (-376)) (-4421 |has| |#1| (-6 -4421)) (-4418 . T) (-4417 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-175))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| (-1101) (|%list| (QUOTE -899) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| (-1101) (|%list| (QUOTE -899) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| (-1101) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| (-1101) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-1101) (|%list| (QUOTE -629) (QUOTE (-546))))) (|HasCategory| |#1| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (-3955 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3955 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-927)))) (-3955 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4421)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-1191 R S) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4141 |has| |#1| (-318)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-1022) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-1022) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#1| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-848)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -4143)) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1112 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1192 E OV R P) +(-1113 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1193 |Coef| |var| |cen|) +(-1114 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-376)) (-4415 |has| |#1| (-376)) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-175))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-557))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-557))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-557)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-376))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-568)))) (-3955 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasSignature| |#1| (|%list| (QUOTE -4374) (|%list| (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasSignature| |#1| (|%list| (QUOTE -4240) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (|%list| (QUOTE -3482) (|%list| (|%list| (QUOTE -659) (QUOTE (-1196))) (|devaluate| |#1|))))))) -(-1194 |Coef| |var| |cen|) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499))) (|devaluate| |#1|)))) (|HasCategory| (-361 (-499)) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-318))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-898))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#1|))))))) +(-1115 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (QUOTE (-568))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-789)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-789)) (|devaluate| |#1|)))) (|HasCategory| (-789) (QUOTE (-1131))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-789))))) (|HasSignature| |#1| (|%list| (QUOTE -4374) (|%list| (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-789))))) (|HasCategory| |#1| (QUOTE (-376))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasSignature| |#1| (|%list| (QUOTE -4240) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (|%list| (QUOTE -3482) (|%list| (|%list| (QUOTE -659) (QUOTE (-1196))) (|devaluate| |#1|))))))) -(-1195) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-510))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-714)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-714)) (|devaluate| |#1|)))) (|HasCategory| (-714) (QUOTE (-1052))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-714))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-714))))) (|HasCategory| |#1| (QUOTE (-318))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-898))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#1|))))))) +(-1116) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1196) +(-1117) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([\\spad{a1},{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1197 R) +(-1118 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1198 R) +(-1119 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-6 -4421)) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (QUOTE (-568))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-3955 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-990) (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4421))) -(-1199) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-6 -4143)) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-510))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-3677 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-406))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| (-911) (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -4143))) +(-1120) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1200) +(-1121) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1201) +(-1122) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if `x' really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if `x' really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if `x' really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if `x' really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when `x' is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in `x'.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax `x'. The value returned is itself a syntax if `x' really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when `s' is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain `s'; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax `s'; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax `s'.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax `s'.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax `s'.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax `s'")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when `s' is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1202 N) +(-1123 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1203 N) +(-1124 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "\\spad{bitior(x,y)} returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'."))) NIL NIL -(-1204) +(-1125) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1205 R) +(-1126 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1206) +(-1127) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1207 S) +(-1128 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for mr")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{\\spad{ListFunctions3}}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{\\spad{tab1}}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation \\spad{bat1} is the inverse of \\spad{tab1}.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1208 |Key| |Entry|) +(-1129 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4423 . T) (-4424 . T)) -((-12 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4288) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2284) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (-3955 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (-3955 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (-3955 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -629) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1120))) (-3955 (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875))))) (-3955 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (QUOTE (-102)))) -(-1209 S) +((-4145 . T) (-4146 . T)) +((-12 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -263) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4010) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -569) (QUOTE (-488)))) (-12 (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-1041))) (-3677 (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797))))) (-3677 (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) (|HasCategory| |#2| (QUOTE (-73))) (|HasCategory| |#2| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (QUOTE (-73)))) +(-1130 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1210 S) +(-1131 S) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}."))) NIL NIL -(-1211 R) +(-1132 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1212 S |Key| |Entry|) +(-1133 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1213 |Key| |Entry|) +(-1134 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4424 . T)) +((-4146 . T)) NIL -(-1214 |Key| |Entry|) +(-1135 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key -> Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1215) +(-1136) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1216) +(-1137) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain ``\\verb+\\[+'' and ``\\verb+\\]+'',{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1217 S) +(-1138 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1218) +(-1139) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1219 R) +(-1140 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1220) +(-1141) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1221 S) +(-1142 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1222) +(-1143) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1223 S) +(-1144 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4424 . T) (-4423 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1120))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1120)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1224 S) +((-4146 . T) (-4145 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1041))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-1041)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73)))) +(-1145 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1225) +(-1146) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1226 R -3493) +(-1147 R -3215) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1227 R |Row| |Col| M) +(-1148 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1228 R -3493) +(-1149 R -3215) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on f:\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on f:\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -899) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -899) (|devaluate| |#1|))))) -(-1229 |Coef|) +((-12 (|HasCategory| |#1| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -821) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -821) (|devaluate| |#1|))))) +(-1150 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4418 . T) (-4417 . T) (-4420 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-376)))) -(-1230 S R E V P) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4140 . T) (-4139 . T) (-4142 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-318)))) +(-1151 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#5|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-381)))) -(-1231 R E V P) +((|HasCategory| |#4| (QUOTE (-323)))) +(-1152 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#4|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4424 . T) (-4423 . T)) +((-4146 . T) (-4145 . T)) NIL -(-1232 |Curve|) +(-1153 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1233) +(-1154) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1234 S) +(-1155 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter's notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) -(-1235 -3493) +((|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) +(-1156 -3215) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1236) +(-1157) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1237) +(-1158) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1238 S) +(-1159 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by fn.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}'s and bj's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}'s,{}bj's.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}'s.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}'s.}"))) NIL -((|HasCategory| |#1| (QUOTE (-859)))) -(-1239) +((|HasCategory| |#1| (QUOTE (-781)))) +(-1160) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1240 S) +(-1161 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1241) +(-1162) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-1242) +(-1163) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1243) +(-1164) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1244) +(-1165) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1245) +(-1166) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1246 |Coef| |var| |cen|) +(-1167 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4425 "*") -3955 (-2959 (|has| |#1| (-376)) (|has| (-1276 |#1| |#2| |#3|) (-840))) (|has| |#1| (-175)) (-2959 (|has| |#1| (-376)) (|has| (-1276 |#1| |#2| |#3|) (-927)))) (-4416 -3955 (-2959 (|has| |#1| (-376)) (|has| (-1276 |#1| |#2| |#3|) (-840))) (|has| |#1| (-568)) (-2959 (|has| |#1| (-376)) (|has| (-1276 |#1| |#2| |#3|) (-927)))) (-4421 |has| |#1| (-376)) (-4415 |has| |#1| (-376)) (-4417 . T) (-4418 . T) (-4420 . T)) -((-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-927)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -629) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1196)) (|%list| (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -899) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -899) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -1057) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-1039)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-1171)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-175))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-149)))) (|HasCategory| |#1| (QUOTE (-149)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-557)) (|devaluate| |#1|)))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -917) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-557)) (|devaluate| |#1|)))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-240)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-557)) (|devaluate| |#1|))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-239)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-557)) (|devaluate| |#1|))))) (|HasCategory| (-557) (QUOTE (-1131))) (-3955 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-927)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -1057) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -629) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-1039)))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-840)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-859))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1196)) (|%list| (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -899) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -899) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-557))))) (|HasSignature| |#1| (|%list| (QUOTE -4374) (|%list| (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-557))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasSignature| |#1| (|%list| (QUOTE -4240) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (|%list| (QUOTE -3482) (|%list| (|%list| (QUOTE -659) (QUOTE (-1196))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-319)))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-927))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-927)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-568)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -1057) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-927)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (|%list| (QUOTE -917) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-239)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-859)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-927)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-147)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-927)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-1247 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-4147 "*") -3677 (-2681 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-763))) (|has| |#1| (-146)) (-2681 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-848)))) (-4138 -3677 (-2681 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-763))) (|has| |#1| (-510)) (-2681 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-848)))) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -569) (QUOTE (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -240) (|%list| (QUOTE -1197) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1197) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -263) (|%list| (QUOTE -1197) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -468) (QUOTE (-1117)) (|%list| (QUOTE -1197) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -978) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-763)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-781)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-960)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-1092)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|))))) (|HasCategory| (-499) (QUOTE (-1052))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-318))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -978) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -569) (QUOTE (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-960)))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-763)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-763)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-781))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-1092)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -240) (|%list| (QUOTE -1197) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1197) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -263) (|%list| (QUOTE -1197) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -468) (QUOTE (-1117)) (|%list| (QUOTE -1197) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-499))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-898))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-498)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-261)))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-763)))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -978) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-763)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-781)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-848)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1197 |#1| |#2| |#3|) (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1168 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1248 |Coef|) +(-1169 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree <= \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-376)) (-4415 |has| |#1| (-376)) (-4417 . T) (-4418 . T) (-4420 . T)) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-1249 S |Coef| UTS) +(-1170 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-376)))) -(-1250 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-318)))) +(-1171 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-376)) (-4415 |has| |#1| (-376)) (-4417 . T) (-4418 . T) (-4420 . T)) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-1251 |Coef| UTS) +(-1172 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-376)) (-4415 |has| |#1| (-376)) (-4417 . T) (-4418 . T) (-4420 . T)) -((-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-927)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1171)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-175))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (-3955 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))) (-3955 (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-149))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-557)) (|devaluate| |#1|)))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-557)) (|devaluate| |#1|)))))) (-3955 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-557)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240))))) (-3955 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-557)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239))))) (|HasCategory| (-557) (QUOTE (-1131))) (-3955 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-927)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-840)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-859))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-927)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1171)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-557))))) (|HasSignature| |#1| (|%list| (QUOTE -4374) (|%list| (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-557))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasSignature| |#1| (|%list| (QUOTE -4240) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (|%list| (QUOTE -3482) (|%list| (|%list| (QUOTE -659) (QUOTE (-1196))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-927))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-147))) (-3955 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-557)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-557)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147)))))) -(-1252 ZP) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) +((-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -240) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-763)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-781)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-118))))) (-3677 (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-120))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))))) (-3677 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-190))))) (-3677 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-189))))) (|HasCategory| (-499) (QUOTE (-1052))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-318))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-960)))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-763)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-763)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-781))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -240) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-763)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-781)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-1092)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -240) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -263) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -468) (QUOTE (-1117)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-499))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-898))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-781)))) (|HasCategory| |#2| (QUOTE (-848))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-498)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-261)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-118))) (-3677 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-189))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-499)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-189)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-118)))))) +(-1173 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1253 S) +(-1174 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1120)))) -(-1254 R S) +((|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-1041)))) +(-1175 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-858)))) -(-1255 |x| R) +((|HasCategory| |#1| (QUOTE (-780)))) +(-1176 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4425 "*") |has| |#2| (-175)) (-4416 |has| |#2| (-568)) (-4419 |has| |#2| (-376)) (-4421 |has| |#2| (-6 -4421)) (-4418 . T) (-4417 . T) (-4420 . T)) -((|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-175))) (-3955 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-391)))) (|HasCategory| (-1101) (|%list| (QUOTE -899) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -899) (QUOTE (-557)))) (|HasCategory| (-1101) (|%list| (QUOTE -899) (QUOTE (-557))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391))))) (|HasCategory| (-1101) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557))))) (|HasCategory| (-1101) (|%list| (QUOTE -629) (|%list| (QUOTE -903) (QUOTE (-557)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| (-1101) (|%list| (QUOTE -629) (QUOTE (-546))))) (|HasCategory| |#2| (|%list| (QUOTE -656) (QUOTE (-557)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (QUOTE (-557)))) (-3955 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| |#2| (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (-3955 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-927)))) (-3955 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-927)))) (-3955 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-927)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1171))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-240))) (|HasAttribute| |#2| (QUOTE -4421)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (-3955 (-12 (|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) -(-1256 |x| R |y| S) +(((-4147 "*") |has| |#2| (-146)) (-4138 |has| |#2| (-510)) (-4141 |has| |#2| (-318)) (-4143 |has| |#2| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) +((|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-146))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-510)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-333)))) (|HasCategory| (-1022) (|%list| (QUOTE -821) (QUOTE (-333))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -821) (QUOTE (-499)))) (|HasCategory| (-1022) (|%list| (QUOTE -821) (QUOTE (-499))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333))))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-333)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499))))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (|%list| (QUOTE -825) (QUOTE (-499)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| (-1022) (|%list| (QUOTE -569) (QUOTE (-488))))) (|HasCategory| |#2| (|%list| (QUOTE -596) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (QUOTE (-499)))) (-3677 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| |#2| (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (-3677 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-848)))) (-3677 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-848)))) (-3677 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (|%list| (QUOTE -838) (QUOTE (-1117)))) (|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-190))) (|HasAttribute| |#2| (QUOTE -4143)) (|HasCategory| |#2| (QUOTE (-406))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (-3677 (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-1177 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1257 R Q UP) +(-1178 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a gcd domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1258 R UP) +(-1179 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} fn ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} fn).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1259 R UP) +(-1180 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1260 R U) +(-1181 R U) ((|constructor| (NIL "This package implements Karatsuba's trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba's trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba's trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba's trick at all."))) NIL NIL -(-1261 S R) +(-1182 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-1171)))) -(-1262 R) +((|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1092)))) +(-1183 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4419 |has| |#1| (-376)) (-4421 |has| |#1| (-6 -4421)) (-4418 . T) (-4417 . T) (-4420 . T)) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4141 |has| |#1| (-318)) (-4143 |has| |#1| (-6 -4143)) (-4140 . T) (-4139 . T) (-4142 . T)) NIL -(-1263 R PR S PS) +(-1184 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1264 S |Coef| |Expon|) +(-1185 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1131))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -4374) (|%list| (|devaluate| |#2|) (QUOTE (-1196)))))) -(-1265 |Coef| |Expon|) +((|HasCategory| |#2| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#2|) (QUOTE (-1117)))))) +(-1186 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4417 . T) (-4418 . T) (-4420 . T)) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-1266 RC P) +(-1187 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1267 |Coef| |var| |cen|) +(-1188 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-376)) (-4415 |has| |#1| (-376)) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-175))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-557))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-557))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-557)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-376))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-568)))) (-3955 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasSignature| |#1| (|%list| (QUOTE -4374) (|%list| (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasSignature| |#1| (|%list| (QUOTE -4240) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (|%list| (QUOTE -3482) (|%list| (|%list| (QUOTE -659) (QUOTE (-1196))) (|devaluate| |#1|))))))) -(-1268 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499))) (|devaluate| |#1|)))) (|HasCategory| (-361 (-499)) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-318))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-898))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#1|))))))) +(-1189 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1269 |Coef|) +(-1190 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-376)) (-4415 |has| |#1| (-376)) (-4417 . T) (-4418 . T) (-4420 . T)) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-1270 S |Coef| ULS) +(-1191 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1271 |Coef| ULS) +(-1192 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-376)) (-4415 |has| |#1| (-376)) (-4417 . T) (-4418 . T) (-4420 . T)) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-1272 |Coef| ULS) +(-1193 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4421 |has| |#1| (-376)) (-4415 |has| |#1| (-376)) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-175))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-557))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-557))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-557)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-376))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-568)))) (-3955 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasSignature| |#1| (|%list| (QUOTE -4374) (|%list| (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-557)))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasSignature| |#1| (|%list| (QUOTE -4240) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (|%list| (QUOTE -3482) (|%list| (|%list| (QUOTE -659) (QUOTE (-1196))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557)))))) -(-1273 R FE |var| |cen|) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4143 |has| |#1| (-318)) (-4137 |has| |#1| (-318)) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-146))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499))) (|devaluate| |#1|)))) (|HasCategory| (-361 (-499)) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-318))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-3677 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-510)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -361) (QUOTE (-499)))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-898))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499)))))) +(-1194 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-4425 "*") |has| (-1267 |#2| |#3| |#4|) (-175)) (-4416 |has| (-1267 |#2| |#3| |#4|) (-568)) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| (-1267 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| (-1267 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1267 |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1267 |#2| |#3| |#4|) (QUOTE (-175))) (-3955 (|HasCategory| (-1267 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| (-1267 |#2| |#3| |#4|) (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557)))))) (|HasCategory| (-1267 |#2| |#3| |#4|) (|%list| (QUOTE -1057) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| (-1267 |#2| |#3| |#4|) (|%list| (QUOTE -1057) (QUOTE (-557)))) (|HasCategory| (-1267 |#2| |#3| |#4|) (QUOTE (-376))) (|HasCategory| (-1267 |#2| |#3| |#4|) (QUOTE (-464))) (|HasCategory| (-1267 |#2| |#3| |#4|) (QUOTE (-568)))) -(-1274 A S) +(((-4147 "*") |has| (-1188 |#2| |#3| |#4|) (-146)) (-4138 |has| (-1188 |#2| |#3| |#4|) (-510)) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| (-1188 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-1188 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1188 |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1188 |#2| |#3| |#4|) (QUOTE (-146))) (-3677 (|HasCategory| (-1188 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-1188 |#2| |#3| |#4|) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499)))))) (|HasCategory| (-1188 |#2| |#3| |#4|) (|%list| (QUOTE -978) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| (-1188 |#2| |#3| |#4|) (|%list| (QUOTE -978) (QUOTE (-499)))) (|HasCategory| (-1188 |#2| |#3| |#4|) (QUOTE (-318))) (|HasCategory| (-1188 |#2| |#3| |#4|) (QUOTE (-406))) (|HasCategory| (-1188 |#2| |#3| |#4|) (QUOTE (-510)))) +(-1195 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4424))) -(-1275 S) +((|HasAttribute| |#1| (QUOTE -4146))) +(-1196 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1276 |Coef| |var| |cen|) +(-1197 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4417 . T) (-4418 . T) (-4420 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (QUOTE (-568))) (-3955 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-789)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-789)) (|devaluate| |#1|)))) (|HasCategory| (-789) (QUOTE (-1131))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-789))))) (|HasSignature| |#1| (|%list| (QUOTE -4374) (|%list| (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-789))))) (|HasCategory| |#1| (QUOTE (-376))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-557))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasSignature| |#1| (|%list| (QUOTE -4240) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (|%list| (QUOTE -3482) (|%list| (|%list| (QUOTE -659) (QUOTE (-1196))) (|devaluate| |#1|))))))) -(-1277 |Coef1| |Coef2| UTS1 UTS2) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4139 . T) (-4140 . T) (-4142 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-510))) (-3677 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-510)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -836) (QUOTE (-1117)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-714)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-714)) (|devaluate| |#1|)))) (|HasCategory| (-714) (QUOTE (-1052))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-714))))) (|HasSignature| |#1| (|%list| (QUOTE -4096) (|%list| (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-714))))) (|HasCategory| |#1| (QUOTE (-318))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-898))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasSignature| |#1| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#1|))))))) +(-1198 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1278 S |Coef|) +(-1199 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -29) (QUOTE (-557)))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-1222))) (|HasSignature| |#2| (|%list| (QUOTE -3482) (|%list| (|%list| (QUOTE -659) (QUOTE (-1196))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -4240) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1196))))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasCategory| |#2| (QUOTE (-376)))) -(-1279 |Coef|) +((|HasCategory| |#2| (|%list| (QUOTE -29) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-898))) (|HasCategory| |#2| (QUOTE (-1143))) (|HasSignature| |#2| (|%list| (QUOTE -3204) (|%list| (|%list| (QUOTE -599) (QUOTE (-1117))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3962) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1117))))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-318)))) +(-1200 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4425 "*") |has| |#1| (-175)) (-4416 |has| |#1| (-568)) (-4417 . T) (-4418 . T) (-4420 . T)) +(((-4147 "*") |has| |#1| (-146)) (-4138 |has| |#1| (-510)) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-1280 |Coef| UTS) +(-1201 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1281 -3493 UP L UTS) +(-1202 -3215 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-568)))) -(-1282) +((|HasCategory| |#1| (QUOTE (-510)))) +(-1203) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1283 |sym|) +(-1204 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1284 S R) +(-1205 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-744))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1285 R) +((|HasCategory| |#2| (QUOTE (-942))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-684))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1206 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4424 . T) (-4423 . T)) +((-4146 . T) (-4145 . T)) NIL -(-1286 R) +(-1207 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4424 . T) (-4423 . T)) -((-3955 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3955 (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-546)))) (-3955 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-859))) (-3955 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| (-557) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-744))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-1287 A B) +((-4146 . T) (-4145 . T)) +((-3677 (-12 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) (-3677 (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797))))) (|HasCategory| |#1| (|%list| (QUOTE -569) (QUOTE (-488)))) (-3677 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| |#1| (QUOTE (-781))) (-3677 (|HasCategory| |#1| (QUOTE (-73))) (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041)))) (|HasCategory| (-499) (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-684))) (|HasCategory| |#1| (QUOTE (-989))) (-12 (|HasCategory| |#1| (QUOTE (-942))) (|HasCategory| |#1| (QUOTE (-989)))) (|HasCategory| |#1| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-73))) (-12 (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -263) (|devaluate| |#1|))))) +(-1208 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1288) +(-1209) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through pn.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1289) +(-1210) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it's draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1290) +(-1211) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1291) +(-1212) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1292) +(-1213) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1293 A S) +(-1214 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1294 S) +(-1215 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4418 . T) (-4417 . T)) +((-4140 . T) (-4139 . T)) NIL -(-1295 R) +(-1216 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]*v + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1296 K R UP -3493) +(-1217 K R UP -3215) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1297) +(-1218) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1298) +(-1219) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1299 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1220 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4418 |has| |#1| (-175)) (-4417 |has| |#1| (-175)) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) -(-1300 R E V P) +((-4140 |has| |#1| (-146)) (-4139 |has| |#1| (-146)) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318)))) +(-1221 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{MM Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,{}redOp?,{}redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,{}redOp?,{}redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm,{} \\axiom{bs} is simply a basic set of \\axiom{ps}."))) -((-4424 . T) (-4423 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -629) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -628) (QUOTE (-875)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1301 R) +((-4146 . T) (-4145 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#4| (|%list| (QUOTE -263) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -569) (QUOTE (-488)))) (|HasCategory| |#4| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#3| (QUOTE (-323))) (|HasCategory| |#4| (|%list| (QUOTE -568) (QUOTE (-797)))) (|HasCategory| |#4| (QUOTE (-73)))) +(-1222 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.fr)"))) -((-4417 . T) (-4418 . T) (-4420 . T)) +((-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-1302 |vl| R) +(-1223 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4420 . T) (-4416 |has| |#2| (-6 -4416)) (-4418 . T) (-4417 . T)) -((|HasCategory| |#2| (QUOTE (-175))) (|HasAttribute| |#2| (QUOTE -4416))) -(-1303 R |VarSet| XPOLY) +((-4142 . T) (-4138 |has| |#2| (-6 -4138)) (-4140 . T) (-4139 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -4138))) +(-1224 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1304 S -3493) +(-1225 S -3215) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149)))) -(-1305 -3493) +((|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120)))) +(-1226 -3215) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4415 . T) (-4421 . T) (-4416 . T) ((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +((-4137 . T) (-4143 . T) (-4138 . T) ((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL -(-1306 |vl| R) +(-1227 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4416 |has| |#2| (-6 -4416)) (-4418 . T) (-4417 . T) (-4420 . T)) +((-4138 |has| |#2| (-6 -4138)) (-4140 . T) (-4139 . T) (-4142 . T)) NIL -(-1307 |VarSet| R) +(-1228 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4416 |has| |#2| (-6 -4416)) (-4418 . T) (-4417 . T) (-4420 . T)) -((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -735) (|%list| (QUOTE -419) (QUOTE (-557))))) (|HasAttribute| |#2| (QUOTE -4416))) -(-1308 R) +((-4138 |has| |#2| (-6 -4138)) (-4140 . T) (-4139 . T) (-4142 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -675) (|%list| (QUOTE -361) (QUOTE (-499))))) (|HasAttribute| |#2| (QUOTE -4138))) +(-1229 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4416 |has| |#1| (-6 -4416)) (-4418 . T) (-4417 . T) (-4420 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasAttribute| |#1| (QUOTE -4416))) -(-1309 |vl| R) +((-4138 |has| |#1| (-6 -4138)) (-4140 . T) (-4139 . T) (-4142 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasAttribute| |#1| (QUOTE -4138))) +(-1230 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4416 |has| |#2| (-6 -4416)) (-4418 . T) (-4417 . T) (-4420 . T)) +((-4138 |has| |#2| (-6 -4138)) (-4140 . T) (-4139 . T) (-4142 . T)) NIL -(-1310 R E) +(-1231 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4420 . T) (-4421 |has| |#1| (-6 -4421)) (-4416 |has| |#1| (-6 -4416)) (-4418 . T) (-4417 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4420)) (|HasAttribute| |#1| (QUOTE -4421)) (|HasAttribute| |#1| (QUOTE -4416))) -(-1311 |VarSet| R) +((-4142 . T) (-4143 |has| |#1| (-6 -4143)) (-4138 |has| |#1| (-6 -4138)) (-4140 . T) (-4139 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasAttribute| |#1| (QUOTE -4142)) (|HasAttribute| |#1| (QUOTE -4143)) (|HasAttribute| |#1| (QUOTE -4138))) +(-1232 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4416 |has| |#2| (-6 -4416)) (-4418 . T) (-4417 . T) (-4420 . T)) -((|HasCategory| |#2| (QUOTE (-175))) (|HasAttribute| |#2| (QUOTE -4416))) -(-1312) +((-4138 |has| |#2| (-6 -4138)) (-4140 . T) (-4139 . T) (-4142 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -4138))) +(-1233) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL NIL -(-1313 A) +(-1234 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1314 R |ls| |ls2|) +(-1235 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}. ") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(lp,{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1315 R) +(-1236 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}'s exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1316 |p|) +(-1237 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4425 "*") . T) (-4417 . T) (-4418 . T) (-4420 . T)) +(((-4147 "*") . T) (-4139 . T) (-4140 . T) (-4142 . T)) NIL NIL NIL @@ -5212,4 +4896,4 @@ NIL NIL NIL NIL -((-3 NIL 2273135 2273140 2273145 2273150) (-2 NIL 2273115 2273120 2273125 2273130) (-1 NIL 2273095 2273100 2273105 2273110) (0 NIL 2273075 2273080 2273085 2273090) (-1316 "ZMOD.spad" 2272884 2272897 2273013 2273070) (-1315 "ZLINDEP.spad" 2271982 2271993 2272874 2272879) (-1314 "ZDSOLVE.spad" 2261942 2261964 2271972 2271977) (-1313 "YSTREAM.spad" 2261437 2261448 2261932 2261937) (-1312 "YDIAGRAM.spad" 2261071 2261080 2261427 2261432) (-1311 "XRPOLY.spad" 2260291 2260311 2260927 2260996) (-1310 "XPR.spad" 2258086 2258099 2260009 2260108) (-1309 "XPOLYC.spad" 2257405 2257421 2258012 2258081) (-1308 "XPOLY.spad" 2256960 2256971 2257261 2257330) (-1307 "XPBWPOLY.spad" 2255399 2255419 2256734 2256803) (-1306 "XFALG.spad" 2252447 2252463 2255325 2255394) (-1305 "XF.spad" 2250910 2250925 2252349 2252442) (-1304 "XF.spad" 2249353 2249370 2250794 2250799) (-1303 "XEXPPKG.spad" 2248612 2248638 2249343 2249348) (-1302 "XDPOLY.spad" 2248226 2248242 2248468 2248537) (-1301 "XALG.spad" 2247894 2247905 2248182 2248221) (-1300 "WUTSET.spad" 2243864 2243881 2247495 2247522) (-1299 "WP.spad" 2243071 2243115 2243722 2243789) (-1298 "WHILEAST.spad" 2242869 2242878 2243061 2243066) (-1297 "WHEREAST.spad" 2242540 2242549 2242859 2242864) (-1296 "WFFINTBS.spad" 2240203 2240225 2242530 2242535) (-1295 "WEIER.spad" 2238425 2238436 2240193 2240198) (-1294 "VSPACE.spad" 2238098 2238109 2238393 2238420) (-1293 "VSPACE.spad" 2237791 2237804 2238088 2238093) (-1292 "VOID.spad" 2237468 2237477 2237781 2237786) (-1291 "VIEWDEF.spad" 2232669 2232678 2237458 2237463) (-1290 "VIEW3D.spad" 2216630 2216639 2232659 2232664) (-1289 "VIEW2D.spad" 2204529 2204538 2216620 2216625) (-1288 "VIEW.spad" 2202249 2202258 2204519 2204524) (-1287 "VECTOR2.spad" 2200888 2200901 2202239 2202244) (-1286 "VECTOR.spad" 2199388 2199399 2199639 2199666) (-1285 "VECTCAT.spad" 2197300 2197311 2199356 2199383) (-1284 "VECTCAT.spad" 2195019 2195032 2197077 2197082) (-1283 "VARIABLE.spad" 2194799 2194814 2195009 2195014) (-1282 "UTYPE.spad" 2194443 2194452 2194789 2194794) (-1281 "UTSODETL.spad" 2193738 2193762 2194399 2194404) (-1280 "UTSODE.spad" 2191954 2191974 2193728 2193733) (-1279 "UTSCAT.spad" 2189433 2189449 2191852 2191949) (-1278 "UTSCAT.spad" 2186532 2186550 2188953 2188958) (-1277 "UTS2.spad" 2186127 2186162 2186522 2186527) (-1276 "UTS.spad" 2181005 2181033 2184525 2184622) (-1275 "URAGG.spad" 2175726 2175737 2180995 2181000) (-1274 "URAGG.spad" 2170411 2170424 2175682 2175687) (-1273 "UPXSSING.spad" 2168029 2168055 2169465 2169598) (-1272 "UPXSCONS.spad" 2165707 2165727 2166080 2166229) (-1271 "UPXSCCA.spad" 2164278 2164298 2165553 2165702) (-1270 "UPXSCCA.spad" 2162991 2163013 2164268 2164273) (-1269 "UPXSCAT.spad" 2161580 2161596 2162837 2162986) (-1268 "UPXS2.spad" 2161123 2161176 2161570 2161575) (-1267 "UPXS.spad" 2158338 2158366 2159174 2159323) (-1266 "UPSQFREE.spad" 2156753 2156767 2158328 2158333) (-1265 "UPSCAT.spad" 2154548 2154572 2156651 2156748) (-1264 "UPSCAT.spad" 2152028 2152054 2154133 2154138) (-1263 "UPOLYC2.spad" 2151499 2151518 2152018 2152023) (-1262 "UPOLYC.spad" 2146579 2146590 2151341 2151494) (-1261 "UPOLYC.spad" 2141545 2141558 2146309 2146314) (-1260 "UPMP.spad" 2140477 2140490 2141535 2141540) (-1259 "UPDIVP.spad" 2140042 2140056 2140467 2140472) (-1258 "UPDECOMP.spad" 2138303 2138317 2140032 2140037) (-1257 "UPCDEN.spad" 2137520 2137536 2138293 2138298) (-1256 "UP2.spad" 2136884 2136905 2137510 2137515) (-1255 "UP.spad" 2133912 2133927 2134299 2134452) (-1254 "UNISEG2.spad" 2133409 2133422 2133868 2133873) (-1253 "UNISEG.spad" 2132762 2132773 2133328 2133333) (-1252 "UNIFACT.spad" 2131865 2131877 2132752 2132757) (-1251 "ULSCONS.spad" 2122777 2122797 2123147 2123296) (-1250 "ULSCCAT.spad" 2120514 2120534 2122623 2122772) (-1249 "ULSCCAT.spad" 2118359 2118381 2120470 2120475) (-1248 "ULSCAT.spad" 2116599 2116615 2118205 2118354) (-1247 "ULS2.spad" 2116113 2116166 2116589 2116594) (-1246 "ULS.spad" 2105684 2105712 2106629 2107058) (-1245 "UINT8.spad" 2105561 2105570 2105674 2105679) (-1244 "UINT64.spad" 2105437 2105446 2105551 2105556) (-1243 "UINT32.spad" 2105313 2105322 2105427 2105432) (-1242 "UINT16.spad" 2105189 2105198 2105303 2105308) (-1241 "UFD.spad" 2104254 2104263 2105115 2105184) (-1240 "UFD.spad" 2103381 2103392 2104244 2104249) (-1239 "UDVO.spad" 2102262 2102271 2103371 2103376) (-1238 "UDPO.spad" 2099843 2099854 2102218 2102223) (-1237 "TYPEAST.spad" 2099762 2099771 2099833 2099838) (-1236 "TYPE.spad" 2099694 2099703 2099752 2099757) (-1235 "TWOFACT.spad" 2098346 2098361 2099684 2099689) (-1234 "TUPLE.spad" 2097837 2097848 2098242 2098247) (-1233 "TUBETOOL.spad" 2094704 2094713 2097827 2097832) (-1232 "TUBE.spad" 2093351 2093368 2094694 2094699) (-1231 "TSETCAT.spad" 2081422 2081439 2093319 2093346) (-1230 "TSETCAT.spad" 2069479 2069498 2081378 2081383) (-1229 "TS.spad" 2068072 2068088 2069038 2069135) (-1228 "TRMANIP.spad" 2062436 2062453 2067760 2067765) (-1227 "TRIMAT.spad" 2061399 2061424 2062426 2062431) (-1226 "TRIGMNIP.spad" 2059926 2059943 2061389 2061394) (-1225 "TRIGCAT.spad" 2059438 2059447 2059916 2059921) (-1224 "TRIGCAT.spad" 2058948 2058959 2059428 2059433) (-1223 "TREE.spad" 2057394 2057405 2058426 2058453) (-1222 "TRANFUN.spad" 2057233 2057242 2057384 2057389) (-1221 "TRANFUN.spad" 2057070 2057081 2057223 2057228) (-1220 "TOPSP.spad" 2056744 2056753 2057060 2057065) (-1219 "TOOLSIGN.spad" 2056407 2056418 2056734 2056739) (-1218 "TEXTFILE.spad" 2054968 2054977 2056397 2056402) (-1217 "TEX1.spad" 2054524 2054535 2054958 2054963) (-1216 "TEX.spad" 2051718 2051727 2054514 2054519) (-1215 "TEMUTL.spad" 2051273 2051282 2051708 2051713) (-1214 "TBCMPPK.spad" 2049374 2049397 2051263 2051268) (-1213 "TBAGG.spad" 2048432 2048455 2049354 2049369) (-1212 "TBAGG.spad" 2047498 2047523 2048422 2048427) (-1211 "TANEXP.spad" 2046906 2046917 2047488 2047493) (-1210 "TALGOP.spad" 2046630 2046641 2046896 2046901) (-1209 "TABLEAU.spad" 2046111 2046122 2046620 2046625) (-1208 "TABLE.spad" 2044044 2044067 2044314 2044341) (-1207 "TABLBUMP.spad" 2040823 2040834 2044034 2044039) (-1206 "SYSTEM.spad" 2040051 2040060 2040813 2040818) (-1205 "SYSSOLP.spad" 2037534 2037545 2040041 2040046) (-1204 "SYSPTR.spad" 2037433 2037442 2037524 2037529) (-1203 "SYSNNI.spad" 2036656 2036667 2037423 2037428) (-1202 "SYSINT.spad" 2036060 2036071 2036646 2036651) (-1201 "SYNTAX.spad" 2032394 2032403 2036050 2036055) (-1200 "SYMTAB.spad" 2030462 2030471 2032384 2032389) (-1199 "SYMS.spad" 2026491 2026500 2030452 2030457) (-1198 "SYMPOLY.spad" 2025471 2025482 2025553 2025680) (-1197 "SYMFUNC.spad" 2024972 2024983 2025461 2025466) (-1196 "SYMBOL.spad" 2022467 2022476 2024962 2024967) (-1195 "SWITCH.spad" 2019238 2019247 2022457 2022462) (-1194 "SUTS.spad" 2016217 2016245 2017636 2017733) (-1193 "SUPXS.spad" 2013419 2013447 2014268 2014417) (-1192 "SUPFRACF.spad" 2012524 2012542 2013409 2013414) (-1191 "SUP2.spad" 2011916 2011929 2012514 2012519) (-1190 "SUP.spad" 2008558 2008569 2009331 2009484) (-1189 "SUMRF.spad" 2007532 2007543 2008548 2008553) (-1188 "SUMFS.spad" 2007161 2007178 2007522 2007527) (-1187 "SULS.spad" 1996719 1996747 1997677 1998106) (-1186 "SUCHTAST.spad" 1996488 1996497 1996709 1996714) (-1185 "SUCH.spad" 1996178 1996193 1996478 1996483) (-1184 "SUBSPACE.spad" 1988309 1988324 1996168 1996173) (-1183 "SUBRESP.spad" 1987479 1987493 1988265 1988270) (-1182 "STTFNC.spad" 1983947 1983963 1987469 1987474) (-1181 "STTF.spad" 1980046 1980062 1983937 1983942) (-1180 "STTAYLOR.spad" 1972691 1972702 1979921 1979926) (-1179 "STRTBL.spad" 1970706 1970723 1970855 1970882) (-1178 "STRING.spad" 1969308 1969317 1969693 1969720) (-1177 "STREAM3.spad" 1968881 1968896 1969298 1969303) (-1176 "STREAM2.spad" 1968009 1968022 1968871 1968876) (-1175 "STREAM1.spad" 1967715 1967726 1967999 1968004) (-1174 "STREAM.spad" 1964501 1964512 1967108 1967123) (-1173 "STINPROD.spad" 1963437 1963453 1964491 1964496) (-1172 "STEPAST.spad" 1962671 1962680 1963427 1963432) (-1171 "STEP.spad" 1961988 1961997 1962661 1962666) (-1170 "STBL.spad" 1960036 1960064 1960203 1960218) (-1169 "STAGG.spad" 1958735 1958746 1960026 1960031) (-1168 "STAGG.spad" 1957432 1957445 1958725 1958730) (-1167 "STACK.spad" 1956660 1956671 1956910 1956937) (-1166 "SRING.spad" 1956420 1956429 1956650 1956655) (-1165 "SREGSET.spad" 1954119 1954136 1956021 1956048) (-1164 "SRDCMPK.spad" 1952696 1952716 1954109 1954114) (-1163 "SRAGG.spad" 1947879 1947888 1952664 1952691) (-1162 "SRAGG.spad" 1943082 1943093 1947869 1947874) (-1161 "SQMATRIX.spad" 1940574 1940592 1941490 1941577) (-1160 "SPLTREE.spad" 1935040 1935053 1939836 1939863) (-1159 "SPLNODE.spad" 1931660 1931673 1935030 1935035) (-1158 "SPFCAT.spad" 1930469 1930478 1931650 1931655) (-1157 "SPECOUT.spad" 1929021 1929030 1930459 1930464) (-1156 "SPADXPT.spad" 1921112 1921121 1929011 1929016) (-1155 "spad-parser.spad" 1920577 1920586 1921102 1921107) (-1154 "SPADAST.spad" 1920278 1920287 1920567 1920572) (-1153 "SPACEC.spad" 1904493 1904504 1920268 1920273) (-1152 "SPACE3.spad" 1904269 1904280 1904483 1904488) (-1151 "SORTPAK.spad" 1903818 1903831 1904225 1904230) (-1150 "SOLVETRA.spad" 1901581 1901592 1903808 1903813) (-1149 "SOLVESER.spad" 1900037 1900048 1901571 1901576) (-1148 "SOLVERAD.spad" 1896063 1896074 1900027 1900032) (-1147 "SOLVEFOR.spad" 1894525 1894543 1896053 1896058) (-1146 "SNTSCAT.spad" 1894125 1894142 1894493 1894520) (-1145 "SMTS.spad" 1892407 1892433 1893684 1893781) (-1144 "SMP.spad" 1889810 1889830 1890200 1890327) (-1143 "SMITH.spad" 1888655 1888680 1889800 1889805) (-1142 "SMATCAT.spad" 1886773 1886803 1888599 1888650) (-1141 "SMATCAT.spad" 1884823 1884855 1886651 1886656) (-1140 "SKAGG.spad" 1883792 1883803 1884791 1884818) (-1139 "SINT.spad" 1882732 1882741 1883658 1883787) (-1138 "SIMPAN.spad" 1882460 1882469 1882722 1882727) (-1137 "SIGNRF.spad" 1881585 1881596 1882450 1882455) (-1136 "SIGNEF.spad" 1880871 1880888 1881575 1881580) (-1135 "SIGAST.spad" 1880288 1880297 1880861 1880866) (-1134 "SIG.spad" 1879650 1879659 1880278 1880283) (-1133 "SHP.spad" 1877594 1877609 1879606 1879611) (-1132 "SHDP.spad" 1864949 1864976 1865466 1865565) (-1131 "SGROUP.spad" 1864557 1864566 1864939 1864944) (-1130 "SGROUP.spad" 1864163 1864174 1864547 1864552) (-1129 "SGCF.spad" 1857302 1857311 1864153 1864158) (-1128 "SFRTCAT.spad" 1856248 1856265 1857270 1857297) (-1127 "SFRGCD.spad" 1855311 1855331 1856238 1856243) (-1126 "SFQCMPK.spad" 1850124 1850144 1855301 1855306) (-1125 "SFORT.spad" 1849563 1849577 1850114 1850119) (-1124 "SEXOF.spad" 1849406 1849446 1849553 1849558) (-1123 "SEXCAT.spad" 1847234 1847274 1849396 1849401) (-1122 "SEX.spad" 1847126 1847135 1847224 1847229) (-1121 "SETMN.spad" 1845586 1845603 1847116 1847121) (-1120 "SETCAT.spad" 1845071 1845080 1845576 1845581) (-1119 "SETCAT.spad" 1844554 1844565 1845061 1845066) (-1118 "SETAGG.spad" 1841103 1841114 1844534 1844549) (-1117 "SETAGG.spad" 1837660 1837673 1841093 1841098) (-1116 "SET.spad" 1835933 1835944 1837030 1837069) (-1115 "SEQAST.spad" 1835636 1835645 1835923 1835928) (-1114 "SEGXCAT.spad" 1834792 1834805 1835626 1835631) (-1113 "SEGCAT.spad" 1833717 1833728 1834782 1834787) (-1112 "SEGBIND2.spad" 1833415 1833428 1833707 1833712) (-1111 "SEGBIND.spad" 1833173 1833184 1833362 1833367) (-1110 "SEGAST.spad" 1832903 1832912 1833163 1833168) (-1109 "SEG2.spad" 1832338 1832351 1832859 1832864) (-1108 "SEG.spad" 1832151 1832162 1832257 1832262) (-1107 "SDVAR.spad" 1831427 1831438 1832141 1832146) (-1106 "SDPOL.spad" 1828682 1828693 1828973 1829100) (-1105 "SCPKG.spad" 1826771 1826782 1828672 1828677) (-1104 "SCOPE.spad" 1825948 1825957 1826761 1826766) (-1103 "SCACHE.spad" 1824644 1824655 1825938 1825943) (-1102 "SASTCAT.spad" 1824553 1824562 1824634 1824639) (-1101 "SAOS.spad" 1824425 1824434 1824543 1824548) (-1100 "SAERFFC.spad" 1824138 1824158 1824415 1824420) (-1099 "SAEFACT.spad" 1823839 1823859 1824128 1824133) (-1098 "SAE.spad" 1821273 1821289 1821884 1822019) (-1097 "RURPK.spad" 1818932 1818948 1821263 1821268) (-1096 "RULESET.spad" 1818385 1818409 1818922 1818927) (-1095 "RULECOLD.spad" 1818237 1818250 1818375 1818380) (-1094 "RULE.spad" 1816485 1816509 1818227 1818232) (-1093 "RTVALUE.spad" 1816220 1816229 1816475 1816480) (-1092 "RSTRCAST.spad" 1815937 1815946 1816210 1816215) (-1091 "RSETGCD.spad" 1812379 1812399 1815927 1815932) (-1090 "RSETCAT.spad" 1802347 1802364 1812347 1812374) (-1089 "RSETCAT.spad" 1792335 1792354 1802337 1802342) (-1088 "RSDCMPK.spad" 1790835 1790855 1792325 1792330) (-1087 "RRCC.spad" 1789219 1789249 1790825 1790830) (-1086 "RRCC.spad" 1787601 1787633 1789209 1789214) (-1085 "RPTAST.spad" 1787303 1787312 1787591 1787596) (-1084 "RPOLCAT.spad" 1766807 1766822 1787171 1787298) (-1083 "RPOLCAT.spad" 1746006 1746023 1766372 1766377) (-1082 "ROUTINE.spad" 1741407 1741416 1744155 1744182) (-1081 "ROMAN.spad" 1740735 1740744 1741273 1741402) (-1080 "ROIRC.spad" 1739815 1739847 1740725 1740730) (-1079 "RNS.spad" 1738791 1738800 1739717 1739810) (-1078 "RNS.spad" 1737853 1737864 1738781 1738786) (-1077 "RNGBIND.spad" 1737013 1737027 1737808 1737813) (-1076 "RNG.spad" 1736748 1736757 1737003 1737008) (-1075 "RMODULE.spad" 1736529 1736540 1736738 1736743) (-1074 "RMCAT2.spad" 1735949 1736006 1736519 1736524) (-1073 "RMATRIX.spad" 1734719 1734738 1735062 1735101) (-1072 "RMATCAT.spad" 1730298 1730329 1734675 1734714) (-1071 "RMATCAT.spad" 1725767 1725800 1730146 1730151) (-1070 "RLINSET.spad" 1725471 1725482 1725757 1725762) (-1069 "RINTERP.spad" 1725359 1725379 1725461 1725466) (-1068 "RING.spad" 1724829 1724838 1725339 1725354) (-1067 "RING.spad" 1724307 1724318 1724819 1724824) (-1066 "RIDIST.spad" 1723699 1723708 1724297 1724302) (-1065 "RGCHAIN.spad" 1722220 1722236 1723114 1723141) (-1064 "RGBCSPC.spad" 1722009 1722021 1722210 1722215) (-1063 "RGBCMDL.spad" 1721571 1721583 1721999 1722004) (-1062 "RFFACTOR.spad" 1721033 1721044 1721561 1721566) (-1061 "RFFACT.spad" 1720768 1720780 1721023 1721028) (-1060 "RFDIST.spad" 1719764 1719773 1720758 1720763) (-1059 "RF.spad" 1717438 1717449 1719754 1719759) (-1058 "RETSOL.spad" 1716857 1716870 1717428 1717433) (-1057 "RETRACT.spad" 1716285 1716296 1716847 1716852) (-1056 "RETRACT.spad" 1715711 1715724 1716275 1716280) (-1055 "RETAST.spad" 1715523 1715532 1715701 1715706) (-1054 "RESULT.spad" 1713085 1713094 1713672 1713699) (-1053 "RESRING.spad" 1712432 1712479 1713023 1713080) (-1052 "RESLATC.spad" 1711756 1711767 1712422 1712427) (-1051 "REPSQ.spad" 1711487 1711498 1711746 1711751) (-1050 "REPDB.spad" 1711194 1711205 1711477 1711482) (-1049 "REP2.spad" 1700908 1700919 1711036 1711041) (-1048 "REP1.spad" 1695128 1695139 1700858 1700863) (-1047 "REP.spad" 1692682 1692691 1695118 1695123) (-1046 "REGSET.spad" 1690474 1690491 1692283 1692310) (-1045 "REF.spad" 1689809 1689820 1690429 1690434) (-1044 "REDORDER.spad" 1689015 1689032 1689799 1689804) (-1043 "RECLOS.spad" 1687774 1687794 1688478 1688571) (-1042 "REALSOLV.spad" 1686914 1686923 1687764 1687769) (-1041 "REAL0Q.spad" 1684212 1684227 1686904 1686909) (-1040 "REAL0.spad" 1681056 1681071 1684202 1684207) (-1039 "REAL.spad" 1680928 1680937 1681046 1681051) (-1038 "RDUCEAST.spad" 1680649 1680658 1680918 1680923) (-1037 "RDIV.spad" 1680304 1680329 1680639 1680644) (-1036 "RDIST.spad" 1679871 1679882 1680294 1680299) (-1035 "RDETRS.spad" 1678735 1678753 1679861 1679866) (-1034 "RDETR.spad" 1676874 1676892 1678725 1678730) (-1033 "RDEEFS.spad" 1675973 1675990 1676864 1676869) (-1032 "RDEEF.spad" 1674983 1675000 1675963 1675968) (-1031 "RCFIELD.spad" 1672201 1672210 1674885 1674978) (-1030 "RCFIELD.spad" 1669505 1669516 1672191 1672196) (-1029 "RCAGG.spad" 1667441 1667452 1669495 1669500) (-1028 "RCAGG.spad" 1665304 1665317 1667360 1667365) (-1027 "RATRET.spad" 1664664 1664675 1665294 1665299) (-1026 "RATFACT.spad" 1664356 1664368 1664654 1664659) (-1025 "RANDSRC.spad" 1663675 1663684 1664346 1664351) (-1024 "RADUTIL.spad" 1663431 1663440 1663665 1663670) (-1023 "RADIX.spad" 1660210 1660224 1661756 1661849) (-1022 "RADFF.spad" 1657913 1657950 1658032 1658188) (-1021 "RADCAT.spad" 1657508 1657517 1657903 1657908) (-1020 "RADCAT.spad" 1657101 1657112 1657498 1657503) (-1019 "QUEUE.spad" 1656320 1656331 1656579 1656606) (-1018 "QUATCT2.spad" 1655940 1655959 1656310 1656315) (-1017 "QUATCAT.spad" 1654110 1654121 1655870 1655935) (-1016 "QUATCAT.spad" 1652028 1652041 1653790 1653795) (-1015 "QUAT.spad" 1650480 1650491 1650823 1650888) (-1014 "QUAGG.spad" 1649313 1649324 1650448 1650475) (-1013 "QQUTAST.spad" 1649081 1649090 1649303 1649308) (-1012 "QFORM.spad" 1648699 1648714 1649071 1649076) (-1011 "QFCAT2.spad" 1648391 1648408 1648689 1648694) (-1010 "QFCAT.spad" 1647093 1647104 1648293 1648386) (-1009 "QFCAT.spad" 1645377 1645390 1646579 1646584) (-1008 "QEQUAT.spad" 1644935 1644944 1645367 1645372) (-1007 "QCMPACK.spad" 1639849 1639869 1644925 1644930) (-1006 "QALGSET2.spad" 1637844 1637863 1639839 1639844) (-1005 "QALGSET.spad" 1633948 1633981 1637758 1637763) (-1004 "PWFFINTB.spad" 1631363 1631385 1633938 1633943) (-1003 "PUSHVAR.spad" 1630701 1630721 1631353 1631358) (-1002 "PTRANFN.spad" 1626836 1626847 1630691 1630696) (-1001 "PTPACK.spad" 1623923 1623934 1626826 1626831) (-1000 "PTFUNC2.spad" 1623745 1623760 1623913 1623918) (-999 "PTCAT.spad" 1623000 1623010 1623713 1623740) (-998 "PSQFR.spad" 1622315 1622339 1622990 1622995) (-997 "PSEUDLIN.spad" 1621201 1621211 1622305 1622310) (-996 "PSETPK.spad" 1607906 1607922 1621079 1621084) (-995 "PSETCAT.spad" 1602306 1602329 1607886 1607901) (-994 "PSETCAT.spad" 1596680 1596705 1602262 1602267) (-993 "PSCURVE.spad" 1595679 1595687 1596670 1596675) (-992 "PSCAT.spad" 1594462 1594491 1595577 1595674) (-991 "PSCAT.spad" 1593335 1593366 1594452 1594457) (-990 "PRTITION.spad" 1592033 1592041 1593325 1593330) (-989 "PRTDAST.spad" 1591752 1591760 1592023 1592028) (-988 "PRS.spad" 1581370 1581387 1591708 1591713) (-987 "PRQAGG.spad" 1580805 1580815 1581338 1581365) (-986 "PROPLOG.spad" 1580409 1580417 1580795 1580800) (-985 "PROPFUN2.spad" 1580032 1580045 1580399 1580404) (-984 "PROPFUN1.spad" 1579438 1579449 1580022 1580027) (-983 "PROPFRML.spad" 1578006 1578017 1579428 1579433) (-982 "PROPERTY.spad" 1577502 1577510 1577996 1578001) (-981 "PRODUCT.spad" 1575184 1575196 1575468 1575523) (-980 "PRINT.spad" 1574936 1574944 1575174 1575179) (-979 "PRIMES.spad" 1573197 1573207 1574926 1574931) (-978 "PRIMELT.spad" 1571318 1571332 1573187 1573192) (-977 "PRIMCAT.spad" 1570961 1570969 1571308 1571313) (-976 "PRIMARR2.spad" 1569728 1569740 1570951 1570956) (-975 "PRIMARR.spad" 1568567 1568577 1568737 1568764) (-974 "PREASSOC.spad" 1567949 1567961 1568557 1568562) (-973 "PR.spad" 1566314 1566326 1567013 1567140) (-972 "PPCURVE.spad" 1565451 1565459 1566304 1566309) (-971 "PORTNUM.spad" 1565242 1565250 1565441 1565446) (-970 "POLYROOT.spad" 1564091 1564113 1565198 1565203) (-969 "POLYLIFT.spad" 1563356 1563379 1564081 1564086) (-968 "POLYCATQ.spad" 1561482 1561504 1563346 1563351) (-967 "POLYCAT.spad" 1554984 1555005 1561350 1561477) (-966 "POLYCAT.spad" 1547782 1547805 1554150 1554155) (-965 "POLY2UP.spad" 1547234 1547248 1547772 1547777) (-964 "POLY2.spad" 1546831 1546843 1547224 1547229) (-963 "POLY.spad" 1544094 1544104 1544609 1544736) (-962 "POLUTIL.spad" 1543059 1543088 1544050 1544055) (-961 "POLTOPOL.spad" 1541807 1541822 1543049 1543054) (-960 "POINT.spad" 1540471 1540481 1540558 1540585) (-959 "PNTHEORY.spad" 1537173 1537181 1540461 1540466) (-958 "PMTOOLS.spad" 1535948 1535962 1537163 1537168) (-957 "PMSYM.spad" 1535497 1535507 1535938 1535943) (-956 "PMQFCAT.spad" 1535088 1535102 1535487 1535492) (-955 "PMPREDFS.spad" 1534550 1534572 1535078 1535083) (-954 "PMPRED.spad" 1534037 1534051 1534540 1534545) (-953 "PMPLCAT.spad" 1533114 1533132 1533966 1533971) (-952 "PMLSAGG.spad" 1532699 1532713 1533104 1533109) (-951 "PMKERNEL.spad" 1532278 1532290 1532689 1532694) (-950 "PMINS.spad" 1531858 1531868 1532268 1532273) (-949 "PMFS.spad" 1531435 1531453 1531848 1531853) (-948 "PMDOWN.spad" 1530725 1530739 1531425 1531430) (-947 "PMASSFS.spad" 1529700 1529716 1530715 1530720) (-946 "PMASS.spad" 1528718 1528726 1529690 1529695) (-945 "PLOTTOOL.spad" 1528498 1528506 1528708 1528713) (-944 "PLOT3D.spad" 1524962 1524970 1528488 1528493) (-943 "PLOT1.spad" 1524135 1524145 1524952 1524957) (-942 "PLOT.spad" 1519058 1519066 1524125 1524130) (-941 "PLEQN.spad" 1506460 1506487 1519048 1519053) (-940 "PINTERPA.spad" 1506244 1506260 1506450 1506455) (-939 "PINTERP.spad" 1505866 1505885 1506234 1506239) (-938 "PID.spad" 1504840 1504848 1505792 1505861) (-937 "PICOERCE.spad" 1504497 1504507 1504830 1504835) (-936 "PI.spad" 1504114 1504122 1504471 1504492) (-935 "PGROEB.spad" 1502723 1502737 1504104 1504109) (-934 "PGE.spad" 1494396 1494404 1502713 1502718) (-933 "PGCD.spad" 1493350 1493367 1494386 1494391) (-932 "PFRPAC.spad" 1492499 1492509 1493340 1493345) (-931 "PFR.spad" 1489202 1489212 1492401 1492494) (-930 "PFOTOOLS.spad" 1488460 1488476 1489192 1489197) (-929 "PFOQ.spad" 1487830 1487848 1488450 1488455) (-928 "PFO.spad" 1487249 1487276 1487820 1487825) (-927 "PFECAT.spad" 1484959 1484967 1487175 1487244) (-926 "PFECAT.spad" 1482697 1482707 1484915 1484920) (-925 "PFBRU.spad" 1480585 1480597 1482687 1482692) (-924 "PFBR.spad" 1478145 1478168 1480575 1480580) (-923 "PF.spad" 1477719 1477731 1477950 1478043) (-922 "PERMGRP.spad" 1472489 1472499 1477709 1477714) (-921 "PERMCAT.spad" 1471150 1471160 1472469 1472484) (-920 "PERMAN.spad" 1469706 1469720 1471140 1471145) (-919 "PERM.spad" 1465513 1465523 1469536 1469551) (-918 "PENDTREE.spad" 1464733 1464743 1465013 1465018) (-917 "PDSPC.spad" 1463546 1463556 1464723 1464728) (-916 "PDSPC.spad" 1462357 1462369 1463536 1463541) (-915 "PDRING.spad" 1462199 1462209 1462337 1462352) (-914 "PDMOD.spad" 1462015 1462027 1462167 1462194) (-913 "PDEPROB.spad" 1461030 1461038 1462005 1462010) (-912 "PDEPACK.spad" 1455166 1455174 1461020 1461025) (-911 "PDECOMP.spad" 1454636 1454653 1455156 1455161) (-910 "PDECAT.spad" 1452992 1453000 1454626 1454631) (-909 "PDDOM.spad" 1452430 1452443 1452982 1452987) (-908 "PDDOM.spad" 1451866 1451881 1452420 1452425) (-907 "PCOMP.spad" 1451719 1451732 1451856 1451861) (-906 "PBWLB.spad" 1450315 1450332 1451709 1451714) (-905 "PATTERN2.spad" 1450053 1450065 1450305 1450310) (-904 "PATTERN1.spad" 1448397 1448413 1450043 1450048) (-903 "PATTERN.spad" 1442968 1442978 1448387 1448392) (-902 "PATRES2.spad" 1442640 1442654 1442958 1442963) (-901 "PATRES.spad" 1440223 1440235 1442630 1442635) (-900 "PATMATCH.spad" 1438411 1438442 1439922 1439927) (-899 "PATMAB.spad" 1437840 1437850 1438401 1438406) (-898 "PATLRES.spad" 1436926 1436940 1437830 1437835) (-897 "PATAB.spad" 1436690 1436700 1436916 1436921) (-896 "PARTPERM.spad" 1434746 1434754 1436680 1436685) (-895 "PARSURF.spad" 1434180 1434208 1434736 1434741) (-894 "PARSU2.spad" 1433977 1433993 1434170 1434175) (-893 "script-parser.spad" 1433497 1433505 1433967 1433972) (-892 "PARSCURV.spad" 1432931 1432959 1433487 1433492) (-891 "PARSC2.spad" 1432722 1432738 1432921 1432926) (-890 "PARPCURV.spad" 1432184 1432212 1432712 1432717) (-889 "PARPC2.spad" 1431975 1431991 1432174 1432179) (-888 "PARAMAST.spad" 1431103 1431111 1431965 1431970) (-887 "PAN2EXPR.spad" 1430515 1430523 1431093 1431098) (-886 "PALETTE.spad" 1429629 1429637 1430505 1430510) (-885 "PAIR.spad" 1428636 1428649 1429205 1429210) (-884 "PADICRC.spad" 1425840 1425858 1427003 1427096) (-883 "PADICRAT.spad" 1423699 1423711 1423912 1424005) (-882 "PADICCT.spad" 1422248 1422260 1423625 1423694) (-881 "PADIC.spad" 1421951 1421963 1422174 1422243) (-880 "PADEPAC.spad" 1420640 1420659 1421941 1421946) (-879 "PADE.spad" 1419392 1419408 1420630 1420635) (-878 "OWP.spad" 1418640 1418670 1419250 1419317) (-877 "OVERSET.spad" 1418213 1418221 1418630 1418635) (-876 "OVAR.spad" 1417994 1418017 1418203 1418208) (-875 "OUTFORM.spad" 1407402 1407410 1417984 1417989) (-874 "OUTBFILE.spad" 1406836 1406844 1407392 1407397) (-873 "OUTBCON.spad" 1405906 1405914 1406826 1406831) (-872 "OUTBCON.spad" 1404974 1404984 1405896 1405901) (-871 "OUT.spad" 1404092 1404100 1404964 1404969) (-870 "OSI.spad" 1403567 1403575 1404082 1404087) (-869 "OSGROUP.spad" 1403485 1403493 1403557 1403562) (-868 "ORTHPOL.spad" 1401964 1401974 1403396 1403401) (-867 "OREUP.spad" 1401408 1401436 1401635 1401674) (-866 "ORESUP.spad" 1400700 1400724 1401079 1401118) (-865 "OREPCTO.spad" 1398589 1398601 1400620 1400625) (-864 "OREPCAT.spad" 1392776 1392786 1398545 1398584) (-863 "OREPCAT.spad" 1386853 1386865 1392624 1392629) (-862 "ORDTYPE.spad" 1386090 1386098 1386843 1386848) (-861 "ORDTYPE.spad" 1385325 1385335 1386080 1386085) (-860 "ORDSTRCT.spad" 1385095 1385110 1385258 1385263) (-859 "ORDSET.spad" 1384795 1384803 1385085 1385090) (-858 "ORDRING.spad" 1384612 1384620 1384775 1384790) (-857 "ORDMON.spad" 1384467 1384475 1384602 1384607) (-856 "ORDFUNS.spad" 1383599 1383615 1384457 1384462) (-855 "ORDFIN.spad" 1383419 1383427 1383589 1383594) (-854 "ORDCOMP2.spad" 1382712 1382724 1383409 1383414) (-853 "ORDCOMP.spad" 1381165 1381175 1382247 1382276) (-852 "OPTPROB.spad" 1379803 1379811 1381155 1381160) (-851 "OPTPACK.spad" 1372212 1372220 1379793 1379798) (-850 "OPTCAT.spad" 1369891 1369899 1372202 1372207) (-849 "OPSIG.spad" 1369553 1369561 1369881 1369886) (-848 "OPQUERY.spad" 1369134 1369142 1369543 1369548) (-847 "OPERCAT.spad" 1368600 1368610 1369124 1369129) (-846 "OPERCAT.spad" 1368064 1368076 1368590 1368595) (-845 "OP.spad" 1367806 1367816 1367886 1367953) (-844 "ONECOMP2.spad" 1367230 1367242 1367796 1367801) (-843 "ONECOMP.spad" 1365963 1365973 1366765 1366794) (-842 "OMSAGG.spad" 1365751 1365761 1365919 1365958) (-841 "OMLO.spad" 1365184 1365196 1365637 1365676) (-840 "OINTDOM.spad" 1364947 1364955 1365110 1365179) (-839 "OFMONOID.spad" 1363086 1363096 1364903 1364908) (-838 "ODVAR.spad" 1362347 1362357 1363076 1363081) (-837 "ODR.spad" 1361991 1362017 1362159 1362308) (-836 "ODPOL.spad" 1359202 1359212 1359542 1359669) (-835 "ODP.spad" 1346701 1346721 1347074 1347173) (-834 "ODETOOLS.spad" 1345350 1345369 1346691 1346696) (-833 "ODESYS.spad" 1343044 1343061 1345340 1345345) (-832 "ODERTRIC.spad" 1339077 1339094 1343001 1343006) (-831 "ODERED.spad" 1338476 1338500 1339067 1339072) (-830 "ODERAT.spad" 1336109 1336126 1338466 1338471) (-829 "ODEPRRIC.spad" 1333202 1333224 1336099 1336104) (-828 "ODEPROB.spad" 1332459 1332467 1333192 1333197) (-827 "ODEPRIM.spad" 1329857 1329879 1332449 1332454) (-826 "ODEPAL.spad" 1329243 1329267 1329847 1329852) (-825 "ODEPACK.spad" 1315973 1315981 1329233 1329238) (-824 "ODEINT.spad" 1315408 1315424 1315963 1315968) (-823 "ODEIFTBL.spad" 1312811 1312819 1315398 1315403) (-822 "ODEEF.spad" 1308306 1308322 1312801 1312806) (-821 "ODECONST.spad" 1307851 1307869 1308296 1308301) (-820 "ODECAT.spad" 1306449 1306457 1307841 1307846) (-819 "OCTCT2.spad" 1306087 1306108 1306439 1306444) (-818 "OCT.spad" 1304175 1304185 1304889 1304928) (-817 "OCAMON.spad" 1304023 1304031 1304165 1304170) (-816 "OC.spad" 1301819 1301829 1303979 1304018) (-815 "OC.spad" 1299337 1299349 1301499 1301504) (-814 "OASGP.spad" 1299152 1299160 1299327 1299332) (-813 "OAMONS.spad" 1298674 1298682 1299142 1299147) (-812 "OAMON.spad" 1298432 1298440 1298664 1298669) (-811 "OAMON.spad" 1298188 1298198 1298422 1298427) (-810 "OAGROUP.spad" 1297726 1297734 1298178 1298183) (-809 "OAGROUP.spad" 1297262 1297272 1297716 1297721) (-808 "NUMTUBE.spad" 1296853 1296869 1297252 1297257) (-807 "NUMQUAD.spad" 1284829 1284837 1296843 1296848) (-806 "NUMODE.spad" 1276181 1276189 1284819 1284824) (-805 "NUMINT.spad" 1273747 1273755 1276171 1276176) (-804 "NUMFMT.spad" 1272587 1272595 1273737 1273742) (-803 "NUMERIC.spad" 1264701 1264711 1272392 1272397) (-802 "NTSCAT.spad" 1263209 1263225 1264669 1264696) (-801 "NTPOLFN.spad" 1262754 1262764 1263120 1263125) (-800 "NSUP2.spad" 1262146 1262158 1262744 1262749) (-799 "NSUP.spad" 1255141 1255151 1259561 1259714) (-798 "NSMP.spad" 1251240 1251259 1251532 1251659) (-797 "NREP.spad" 1249642 1249656 1251230 1251235) (-796 "NPCOEF.spad" 1248888 1248908 1249632 1249637) (-795 "NORMRETR.spad" 1248486 1248525 1248878 1248883) (-794 "NORMPK.spad" 1246428 1246447 1248476 1248481) (-793 "NORMMA.spad" 1246116 1246142 1246418 1246423) (-792 "NONE1.spad" 1245792 1245802 1246106 1246111) (-791 "NONE.spad" 1245533 1245541 1245782 1245787) (-790 "NODE1.spad" 1245020 1245036 1245523 1245528) (-789 "NNI.spad" 1243915 1243923 1244994 1245015) (-788 "NLINSOL.spad" 1242541 1242551 1243905 1243910) (-787 "NIPROB.spad" 1241082 1241090 1242531 1242536) (-786 "NFINTBAS.spad" 1238642 1238659 1241072 1241077) (-785 "NETCLT.spad" 1238616 1238627 1238632 1238637) (-784 "NCODIV.spad" 1236840 1236856 1238606 1238611) (-783 "NCNTFRAC.spad" 1236482 1236496 1236830 1236835) (-782 "NCEP.spad" 1234648 1234662 1236472 1236477) (-781 "NASRING.spad" 1234252 1234260 1234638 1234643) (-780 "NASRING.spad" 1233854 1233864 1234242 1234247) (-779 "NARNG.spad" 1233254 1233262 1233844 1233849) (-778 "NARNG.spad" 1232652 1232662 1233244 1233249) (-777 "NAGSP.spad" 1231729 1231737 1232642 1232647) (-776 "NAGS.spad" 1221446 1221454 1231719 1231724) (-775 "NAGF07.spad" 1219877 1219885 1221436 1221441) (-774 "NAGF04.spad" 1214279 1214287 1219867 1219872) (-773 "NAGF02.spad" 1208372 1208380 1214269 1214274) (-772 "NAGF01.spad" 1204141 1204149 1208362 1208367) (-771 "NAGE04.spad" 1197849 1197857 1204131 1204136) (-770 "NAGE02.spad" 1188501 1188509 1197839 1197844) (-769 "NAGE01.spad" 1184495 1184503 1188491 1188496) (-768 "NAGD03.spad" 1182491 1182499 1184485 1184490) (-767 "NAGD02.spad" 1175222 1175230 1182481 1182486) (-766 "NAGD01.spad" 1169507 1169515 1175212 1175217) (-765 "NAGC06.spad" 1165374 1165382 1169497 1169502) (-764 "NAGC05.spad" 1163867 1163875 1165364 1165369) (-763 "NAGC02.spad" 1163142 1163150 1163857 1163862) (-762 "NAALG.spad" 1162707 1162717 1163110 1163137) (-761 "NAALG.spad" 1162292 1162304 1162697 1162702) (-760 "MULTSQFR.spad" 1159250 1159267 1162282 1162287) (-759 "MULTFACT.spad" 1158633 1158650 1159240 1159245) (-758 "MTSCAT.spad" 1156727 1156748 1158531 1158628) (-757 "MTHING.spad" 1156386 1156396 1156717 1156722) (-756 "MSYSCMD.spad" 1155820 1155828 1156376 1156381) (-755 "MSETAGG.spad" 1155665 1155675 1155788 1155815) (-754 "MSET.spad" 1153578 1153588 1155326 1155365) (-753 "MRING.spad" 1150555 1150567 1153286 1153353) (-752 "MRF2.spad" 1150117 1150131 1150545 1150550) (-751 "MRATFAC.spad" 1149663 1149680 1150107 1150112) (-750 "MPRFF.spad" 1147703 1147722 1149653 1149658) (-749 "MPOLY.spad" 1145102 1145117 1145461 1145588) (-748 "MPCPF.spad" 1144366 1144385 1145092 1145097) (-747 "MPC3.spad" 1144183 1144223 1144356 1144361) (-746 "MPC2.spad" 1143836 1143869 1144173 1144178) (-745 "MONOTOOL.spad" 1142187 1142204 1143826 1143831) (-744 "MONOID.spad" 1141506 1141514 1142177 1142182) (-743 "MONOID.spad" 1140823 1140833 1141496 1141501) (-742 "MONOGEN.spad" 1139571 1139584 1140683 1140818) (-741 "MONOGEN.spad" 1138341 1138356 1139455 1139460) (-740 "MONADWU.spad" 1136419 1136427 1138331 1138336) (-739 "MONADWU.spad" 1134495 1134505 1136409 1136414) (-738 "MONAD.spad" 1133655 1133663 1134485 1134490) (-737 "MONAD.spad" 1132813 1132823 1133645 1133650) (-736 "MOEBIUS.spad" 1131549 1131563 1132793 1132808) (-735 "MODULE.spad" 1131419 1131429 1131517 1131544) (-734 "MODULE.spad" 1131309 1131321 1131409 1131414) (-733 "MODRING.spad" 1130644 1130683 1131289 1131304) (-732 "MODOP.spad" 1129301 1129313 1130466 1130533) (-731 "MODMONOM.spad" 1129032 1129050 1129291 1129296) (-730 "MODMON.spad" 1125656 1125672 1126375 1126528) (-729 "MODFIELD.spad" 1125018 1125057 1125558 1125651) (-728 "MMLFORM.spad" 1123878 1123886 1125008 1125013) (-727 "MMAP.spad" 1123620 1123654 1123868 1123873) (-726 "MLO.spad" 1122079 1122089 1123576 1123615) (-725 "MLIFT.spad" 1120691 1120708 1122069 1122074) (-724 "MKUCFUNC.spad" 1120226 1120244 1120681 1120686) (-723 "MKRECORD.spad" 1119814 1119827 1120216 1120221) (-722 "MKFUNC.spad" 1119221 1119231 1119804 1119809) (-721 "MKFLCFN.spad" 1118189 1118199 1119211 1119216) (-720 "MKBCFUNC.spad" 1117684 1117702 1118179 1118184) (-719 "MINT.spad" 1117123 1117131 1117586 1117679) (-718 "MHROWRED.spad" 1115634 1115644 1117113 1117118) (-717 "MFLOAT.spad" 1114154 1114162 1115524 1115629) (-716 "MFINFACT.spad" 1113554 1113576 1114144 1114149) (-715 "MESH.spad" 1111349 1111357 1113544 1113549) (-714 "MDDFACT.spad" 1109568 1109578 1111339 1111344) (-713 "MDAGG.spad" 1108859 1108869 1109548 1109563) (-712 "MCMPLX.spad" 1104224 1104232 1104838 1105039) (-711 "MCDEN.spad" 1103434 1103446 1104214 1104219) (-710 "MCALCFN.spad" 1100532 1100558 1103424 1103429) (-709 "MAYBE.spad" 1099832 1099843 1100522 1100527) (-708 "MATSTOR.spad" 1097148 1097158 1099822 1099827) (-707 "MATRIX.spad" 1095714 1095724 1096198 1096225) (-706 "MATLIN.spad" 1093082 1093106 1095598 1095603) (-705 "MATCAT2.spad" 1092364 1092412 1093072 1093077) (-704 "MATCAT.spad" 1083926 1083948 1092332 1092359) (-703 "MATCAT.spad" 1075360 1075384 1083768 1083773) (-702 "MAPPKG3.spad" 1074275 1074289 1075350 1075355) (-701 "MAPPKG2.spad" 1073613 1073625 1074265 1074270) (-700 "MAPPKG1.spad" 1072441 1072451 1073603 1073608) (-699 "MAPPAST.spad" 1071780 1071788 1072431 1072436) (-698 "MAPHACK3.spad" 1071592 1071606 1071770 1071775) (-697 "MAPHACK2.spad" 1071361 1071373 1071582 1071587) (-696 "MAPHACK1.spad" 1071005 1071015 1071351 1071356) (-695 "MAGMA.spad" 1068811 1068828 1070995 1071000) (-694 "MACROAST.spad" 1068406 1068414 1068801 1068806) (-693 "M3D.spad" 1065991 1066001 1067649 1067654) (-692 "LZSTAGG.spad" 1063245 1063255 1065981 1065986) (-691 "LZSTAGG.spad" 1060497 1060509 1063235 1063240) (-690 "LWORD.spad" 1057242 1057259 1060487 1060492) (-689 "LSTAST.spad" 1057026 1057034 1057232 1057237) (-688 "LSQM.spad" 1055135 1055149 1055529 1055580) (-687 "LSPP.spad" 1054670 1054687 1055125 1055130) (-686 "LSMP1.spad" 1052513 1052527 1054660 1054665) (-685 "LSMP.spad" 1051370 1051398 1052503 1052508) (-684 "LSAGG.spad" 1051039 1051049 1051338 1051365) (-683 "LSAGG.spad" 1050728 1050740 1051029 1051034) (-682 "LPOLY.spad" 1049690 1049709 1050584 1050653) (-681 "LPEFRAC.spad" 1048961 1048971 1049680 1049685) (-680 "LOGIC.spad" 1048563 1048571 1048951 1048956) (-679 "LOGIC.spad" 1048163 1048173 1048553 1048558) (-678 "LODOOPS.spad" 1047093 1047105 1048153 1048158) (-677 "LODOF.spad" 1046139 1046156 1047050 1047055) (-676 "LODOCAT.spad" 1044805 1044815 1046095 1046134) (-675 "LODOCAT.spad" 1043469 1043481 1044761 1044766) (-674 "LODO2.spad" 1042733 1042745 1043140 1043179) (-673 "LODO1.spad" 1042124 1042134 1042404 1042443) (-672 "LODO.spad" 1041499 1041515 1041795 1041834) (-671 "LODEEF.spad" 1040301 1040319 1041489 1041494) (-670 "LO.spad" 1039702 1039716 1040235 1040262) (-669 "LNAGG.spad" 1035889 1035899 1039692 1039697) (-668 "LNAGG.spad" 1032040 1032052 1035845 1035850) (-667 "LMOPS.spad" 1028808 1028825 1032030 1032035) (-666 "LMODULE.spad" 1028592 1028602 1028798 1028803) (-665 "LMDICT.spad" 1027763 1027773 1028011 1028038) (-664 "LLINSET.spad" 1027470 1027480 1027753 1027758) (-663 "LITERAL.spad" 1027376 1027387 1027460 1027465) (-662 "LIST3.spad" 1026687 1026701 1027366 1027371) (-661 "LIST2MAP.spad" 1023614 1023626 1026677 1026682) (-660 "LIST2.spad" 1022316 1022328 1023604 1023609) (-659 "LIST.spad" 1019982 1019992 1021325 1021352) (-658 "LINSET.spad" 1019761 1019771 1019972 1019977) (-657 "LINFORM.spad" 1019224 1019236 1019729 1019756) (-656 "LINEXP.spad" 1017967 1017977 1019214 1019219) (-655 "LINELT.spad" 1017338 1017350 1017850 1017877) (-654 "LINDEP.spad" 1016187 1016199 1017250 1017255) (-653 "LINBASIS.spad" 1015823 1015838 1016177 1016182) (-652 "LIMITRF.spad" 1013770 1013780 1015813 1015818) (-651 "LIMITPS.spad" 1012680 1012693 1013760 1013765) (-650 "LIECAT.spad" 1012164 1012174 1012606 1012675) (-649 "LIECAT.spad" 1011676 1011688 1012120 1012125) (-648 "LIE.spad" 1009671 1009683 1010945 1011090) (-647 "LIB.spad" 1007386 1007394 1007832 1007847) (-646 "LGROBP.spad" 1004739 1004758 1007376 1007381) (-645 "LFCAT.spad" 1003798 1003806 1004729 1004734) (-644 "LF.spad" 1002753 1002769 1003788 1003793) (-643 "LEXTRIPK.spad" 998376 998391 1002743 1002748) (-642 "LEXP.spad" 996395 996422 998356 998371) (-641 "LETAST.spad" 996094 996102 996385 996390) (-640 "LEADCDET.spad" 994500 994517 996084 996089) (-639 "LAZM3PK.spad" 993244 993266 994490 994495) (-638 "LAUPOL.spad" 991829 991842 992729 992798) (-637 "LAPLACE.spad" 991412 991428 991819 991824) (-636 "LALG.spad" 991188 991198 991392 991407) (-635 "LALG.spad" 990972 990984 991178 991183) (-634 "LA.spad" 990412 990426 990894 990933) (-633 "KVTFROM.spad" 990155 990165 990402 990407) (-632 "KTVLOGIC.spad" 989699 989707 990145 990150) (-631 "KRCFROM.spad" 989445 989455 989689 989694) (-630 "KOVACIC.spad" 988176 988193 989435 989440) (-629 "KONVERT.spad" 987898 987908 988166 988171) (-628 "KOERCE.spad" 987635 987645 987888 987893) (-627 "KERNEL2.spad" 987338 987350 987625 987630) (-626 "KERNEL.spad" 985978 985988 987107 987112) (-625 "KDAGG.spad" 985087 985109 985958 985973) (-624 "KDAGG.spad" 984204 984228 985077 985082) (-623 "KAFILE.spad" 983034 983050 983269 983296) (-622 "JVMOP.spad" 982947 982955 983024 983029) (-621 "JVMMDACC.spad" 982001 982009 982937 982942) (-620 "JVMFDACC.spad" 981317 981325 981991 981996) (-619 "JVMCSTTG.spad" 980046 980054 981307 981312) (-618 "JVMCFACC.spad" 979492 979500 980036 980041) (-617 "JVMBCODE.spad" 979403 979411 979482 979487) (-616 "JORDAN.spad" 977211 977223 978672 978817) (-615 "JOINAST.spad" 976913 976921 977201 977206) (-614 "IXAGG.spad" 975046 975070 976903 976908) (-613 "IXAGG.spad" 973034 973060 974893 974898) (-612 "IVECTOR.spad" 971630 971645 971785 971812) (-611 "ITUPLE.spad" 970806 970816 971620 971625) (-610 "ITRIGMNP.spad" 969653 969672 970796 970801) (-609 "ITFUN3.spad" 969159 969173 969643 969648) (-608 "ITFUN2.spad" 968903 968915 969149 969154) (-607 "ITFORM.spad" 968258 968266 968893 968898) (-606 "ITAYLOR.spad" 966252 966267 968122 968219) (-605 "ISUPS.spad" 958650 958665 965187 965284) (-604 "ISUMP.spad" 958151 958167 958640 958645) (-603 "ISAST.spad" 957870 957878 958141 958146) (-602 "IRURPK.spad" 956587 956606 957860 957865) (-601 "IRSN.spad" 954591 954599 956577 956582) (-600 "IRRF2F.spad" 953084 953094 954547 954552) (-599 "IRREDFFX.spad" 952685 952696 953074 953079) (-598 "IROOT.spad" 951024 951034 952675 952680) (-597 "IRFORM.spad" 950348 950356 951014 951019) (-596 "IR2F.spad" 949562 949578 950338 950343) (-595 "IR2.spad" 948590 948606 949552 949557) (-594 "IR.spad" 946393 946407 948439 948466) (-593 "IPRNTPK.spad" 946153 946161 946383 946388) (-592 "IPF.spad" 945718 945730 945958 946051) (-591 "IPADIC.spad" 945487 945513 945644 945713) (-590 "IP4ADDR.spad" 945044 945052 945477 945482) (-589 "IOMODE.spad" 944566 944574 945034 945039) (-588 "IOBFILE.spad" 943951 943959 944556 944561) (-587 "IOBCON.spad" 943816 943824 943941 943946) (-586 "INVLAPLA.spad" 943465 943481 943806 943811) (-585 "INTTR.spad" 936859 936876 943455 943460) (-584 "INTTOOLS.spad" 934602 934618 936421 936426) (-583 "INTSLPE.spad" 933930 933938 934592 934597) (-582 "INTRVL.spad" 933496 933506 933844 933925) (-581 "INTRF.spad" 931928 931942 933486 933491) (-580 "INTRET.spad" 931360 931370 931918 931923) (-579 "INTRAT.spad" 930095 930112 931350 931355) (-578 "INTPM.spad" 928462 928478 929720 929725) (-577 "INTPAF.spad" 926338 926356 928391 928396) (-576 "INTPACK.spad" 916904 916912 926328 926333) (-575 "INTHERTR.spad" 916178 916195 916894 916899) (-574 "INTHERAL.spad" 915848 915872 916168 916173) (-573 "INTHEORY.spad" 912287 912295 915838 915843) (-572 "INTG0.spad" 906051 906069 912216 912221) (-571 "INTFTBL.spad" 901505 901513 906041 906046) (-570 "INTFACT.spad" 900572 900582 901495 901500) (-569 "INTEF.spad" 898983 898999 900562 900567) (-568 "INTDOM.spad" 897606 897614 898909 898978) (-567 "INTDOM.spad" 896291 896301 897596 897601) (-566 "INTCAT.spad" 894558 894568 896205 896286) (-565 "INTBIT.spad" 894065 894073 894548 894553) (-564 "INTALG.spad" 893253 893280 894055 894060) (-563 "INTAF.spad" 892753 892769 893243 893248) (-562 "INTABL.spad" 890793 890824 890956 890983) (-561 "INT8.spad" 890673 890681 890783 890788) (-560 "INT64.spad" 890552 890560 890663 890668) (-559 "INT32.spad" 890431 890439 890542 890547) (-558 "INT16.spad" 890310 890318 890421 890426) (-557 "INT.spad" 889836 889844 890176 890305) (-556 "INS.spad" 887339 887347 889738 889831) (-555 "INS.spad" 884928 884938 887329 887334) (-554 "INPSIGN.spad" 884398 884411 884918 884923) (-553 "INPRODPF.spad" 883494 883513 884388 884393) (-552 "INPRODFF.spad" 882582 882606 883484 883489) (-551 "INNMFACT.spad" 881557 881574 882572 882577) (-550 "INMODGCD.spad" 881061 881091 881547 881552) (-549 "INFSP.spad" 879358 879380 881051 881056) (-548 "INFPROD0.spad" 878438 878457 879348 879353) (-547 "INFORM1.spad" 878063 878073 878428 878433) (-546 "INFORM.spad" 875270 875278 878053 878058) (-545 "INFINITY.spad" 874822 874830 875260 875265) (-544 "INETCLTS.spad" 874799 874807 874812 874817) (-543 "INEP.spad" 873345 873367 874789 874794) (-542 "INDE.spad" 872994 873011 873255 873260) (-541 "INCRMAPS.spad" 872431 872441 872984 872989) (-540 "INBFILE.spad" 871527 871535 872421 872426) (-539 "INBFF.spad" 867377 867388 871517 871522) (-538 "INBCON.spad" 865643 865651 867367 867372) (-537 "INBCON.spad" 863907 863917 865633 865638) (-536 "INAST.spad" 863568 863576 863897 863902) (-535 "IMPTAST.spad" 863276 863284 863558 863563) (-534 "IMATRIX.spad" 862092 862118 862604 862631) (-533 "IMATQF.spad" 861186 861230 862048 862053) (-532 "IMATLIN.spad" 859807 859831 861142 861147) (-531 "IIARRAY2.spad" 859082 859120 859285 859312) (-530 "IFF.spad" 858492 858508 858763 858856) (-529 "IFAST.spad" 858106 858114 858482 858487) (-528 "IFARRAY.spad" 855417 855432 857115 857142) (-527 "IFAMON.spad" 855279 855296 855373 855378) (-526 "IEVALAB.spad" 854692 854704 855269 855274) (-525 "IEVALAB.spad" 854103 854117 854682 854687) (-524 "IDPOAMS.spad" 853781 853793 854015 854020) (-523 "IDPOAM.spad" 853423 853435 853693 853698) (-522 "IDPO.spad" 853158 853170 853335 853340) (-521 "IDPC.spad" 851887 851899 853148 853153) (-520 "IDPAM.spad" 851554 851566 851799 851804) (-519 "IDPAG.spad" 851223 851235 851466 851471) (-518 "IDENT.spad" 850875 850883 851213 851218) (-517 "IDECOMP.spad" 848114 848132 850865 850870) (-516 "IDEAL.spad" 843060 843099 848046 848051) (-515 "ICDEN.spad" 842273 842289 843050 843055) (-514 "ICARD.spad" 841666 841674 842263 842268) (-513 "IBPTOOLS.spad" 840273 840290 841656 841661) (-512 "IBITS.spad" 839429 839442 839862 839889) (-511 "IBATOOL.spad" 836414 836433 839419 839424) (-510 "IBACHIN.spad" 834921 834936 836404 836409) (-509 "IARRAY2.spad" 833788 833814 834399 834426) (-508 "IARRAY1.spad" 832651 832666 832797 832824) (-507 "IAN.spad" 831015 831023 832464 832557) (-506 "IALGFACT.spad" 830626 830659 831005 831010) (-505 "HYPCAT.spad" 830050 830058 830616 830621) (-504 "HYPCAT.spad" 829472 829482 830040 830045) (-503 "HOSTNAME.spad" 829288 829296 829462 829467) (-502 "HOMOTOP.spad" 829031 829041 829278 829283) (-501 "HOAGG.spad" 826313 826323 829021 829026) (-500 "HOAGG.spad" 823328 823340 826038 826043) (-499 "HEXADEC.spad" 821288 821296 821653 821746) (-498 "HEUGCD.spad" 820379 820390 821278 821283) (-497 "HELLFDIV.spad" 819985 820009 820369 820374) (-496 "HEAP.spad" 819248 819258 819463 819490) (-495 "HEADAST.spad" 818789 818797 819238 819243) (-494 "HDP.spad" 806284 806300 806661 806760) (-493 "HDMP.spad" 803426 803441 804042 804169) (-492 "HB.spad" 801701 801709 803416 803421) (-491 "HASHTBL.spad" 799693 799724 799904 799931) (-490 "HASAST.spad" 799409 799417 799683 799688) (-489 "HACKPI.spad" 798900 798908 799311 799404) (-488 "GTSET.spad" 797794 797810 798501 798528) (-487 "GSTBL.spad" 795835 795870 796009 796024) (-486 "GSERIES.spad" 793067 793094 793886 794035) (-485 "GROUP.spad" 792340 792348 793047 793062) (-484 "GROUP.spad" 791621 791631 792330 792335) (-483 "GROEBSOL.spad" 790115 790136 791611 791616) (-482 "GRMOD.spad" 788694 788706 790105 790110) (-481 "GRMOD.spad" 787271 787285 788684 788689) (-480 "GRIMAGE.spad" 780184 780192 787261 787266) (-479 "GRDEF.spad" 778563 778571 780174 780179) (-478 "GRAY.spad" 777034 777042 778553 778558) (-477 "GRALG.spad" 776127 776139 777024 777029) (-476 "GRALG.spad" 775218 775232 776117 776122) (-475 "GPOLSET.spad" 774643 774666 774855 774882) (-474 "GOSPER.spad" 773920 773938 774633 774638) (-473 "GMODPOL.spad" 773068 773095 773888 773915) (-472 "GHENSEL.spad" 772151 772165 773058 773063) (-471 "GENUPS.spad" 768444 768457 772141 772146) (-470 "GENUFACT.spad" 768021 768031 768434 768439) (-469 "GENPGCD.spad" 767623 767640 768011 768016) (-468 "GENMFACT.spad" 767075 767094 767613 767618) (-467 "GENEEZ.spad" 765034 765047 767065 767070) (-466 "GDMP.spad" 762018 762035 762792 762919) (-465 "GCNAALG.spad" 755941 755968 761812 761879) (-464 "GCDDOM.spad" 755133 755141 755867 755936) (-463 "GCDDOM.spad" 754387 754397 755123 755128) (-462 "GBINTERN.spad" 750407 750445 754377 754382) (-461 "GBF.spad" 746190 746228 750397 750402) (-460 "GBEUCLID.spad" 744072 744110 746180 746185) (-459 "GB.spad" 741598 741636 744028 744033) (-458 "GAUSSFAC.spad" 740911 740919 741588 741593) (-457 "GALUTIL.spad" 739237 739247 740867 740872) (-456 "GALPOLYU.spad" 737691 737704 739227 739232) (-455 "GALFACTU.spad" 735904 735923 737681 737686) (-454 "GALFACT.spad" 726117 726128 735894 735899) (-453 "FVFUN.spad" 723140 723148 726107 726112) (-452 "FVC.spad" 722192 722200 723130 723135) (-451 "FUNDESC.spad" 721870 721878 722182 722187) (-450 "FUNCTION.spad" 721719 721731 721860 721865) (-449 "FTEM.spad" 720884 720892 721709 721714) (-448 "FT.spad" 719184 719192 720874 720879) (-447 "FSUPFACT.spad" 718081 718100 719117 719122) (-446 "FST.spad" 716167 716175 718071 718076) (-445 "FSRED.spad" 715647 715663 716157 716162) (-444 "FSPRMELT.spad" 714513 714529 715604 715609) (-443 "FSPECF.spad" 712604 712620 714503 714508) (-442 "FSINT.spad" 712264 712280 712594 712599) (-441 "FSERIES.spad" 711455 711467 712084 712183) (-440 "FSCINT.spad" 710772 710788 711445 711450) (-439 "FSAGG2.spad" 709507 709523 710762 710767) (-438 "FSAGG.spad" 708624 708634 709463 709502) (-437 "FSAGG.spad" 707703 707715 708544 708549) (-436 "FS2UPS.spad" 702218 702252 707693 707698) (-435 "FS2EXPXP.spad" 701359 701382 702208 702213) (-434 "FS2.spad" 701014 701030 701349 701354) (-433 "FS.spad" 695282 695292 700789 701009) (-432 "FS.spad" 689322 689334 694831 694836) (-431 "FRUTIL.spad" 688276 688286 689312 689317) (-430 "FRNAALG.spad" 683553 683563 688218 688271) (-429 "FRNAALG.spad" 678842 678854 683509 683514) (-428 "FRNAAF2.spad" 678290 678308 678832 678837) (-427 "FRMOD.spad" 677697 677727 678218 678223) (-426 "FRIDEAL2.spad" 677301 677333 677687 677692) (-425 "FRIDEAL.spad" 676526 676547 677281 677296) (-424 "FRETRCT.spad" 676045 676055 676516 676521) (-423 "FRETRCT.spad" 675421 675433 675894 675899) (-422 "FRAMALG.spad" 673801 673814 675377 675416) (-421 "FRAMALG.spad" 672213 672228 673791 673796) (-420 "FRAC2.spad" 671818 671830 672203 672208) (-419 "FRAC.spad" 669604 669614 669991 670164) (-418 "FR2.spad" 668940 668952 669594 669599) (-417 "FR.spad" 662562 662572 667835 667904) (-416 "FPS.spad" 659401 659409 662452 662557) (-415 "FPS.spad" 656268 656278 659321 659326) (-414 "FPC.spad" 655314 655322 656170 656263) (-413 "FPC.spad" 654446 654456 655304 655309) (-412 "FPATMAB.spad" 654208 654218 654436 654441) (-411 "FPARFRAC.spad" 653050 653067 654198 654203) (-410 "FORTRAN.spad" 651556 651599 653040 653045) (-409 "FORTFN.spad" 648726 648734 651546 651551) (-408 "FORTCAT.spad" 648410 648418 648716 648721) (-407 "FORT.spad" 647359 647367 648400 648405) (-406 "FORDER.spad" 647050 647074 647349 647354) (-405 "FOP.spad" 646251 646259 647040 647045) (-404 "FNLA.spad" 645675 645697 646219 646246) (-403 "FNCAT.spad" 644270 644278 645665 645670) (-402 "FNAME.spad" 644162 644170 644260 644265) (-401 "FMTC.spad" 643960 643968 644088 644157) (-400 "FMONOID.spad" 643641 643651 643916 643921) (-399 "FMONCAT.spad" 640810 640820 643631 643636) (-398 "FMFUN.spad" 637840 637848 640800 640805) (-397 "FMCAT.spad" 635516 635534 637808 637835) (-396 "FMC.spad" 634568 634576 635506 635511) (-395 "FM1.spad" 633933 633945 634502 634529) (-394 "FM.spad" 633548 633560 633787 633814) (-393 "FLOATRP.spad" 631291 631305 633538 633543) (-392 "FLOATCP.spad" 628730 628744 631281 631286) (-391 "FLOAT.spad" 622044 622052 628596 628725) (-390 "FLINEXP.spad" 621766 621776 622034 622039) (-389 "FLINEXP.spad" 621429 621441 621699 621704) (-388 "FLASORT.spad" 620755 620767 621419 621424) (-387 "FLALG.spad" 618425 618444 620681 620750) (-386 "FLAGG2.spad" 617142 617158 618415 618420) (-385 "FLAGG.spad" 614208 614218 617122 617137) (-384 "FLAGG.spad" 611175 611187 614091 614096) (-383 "FINRALG.spad" 609260 609273 611131 611170) (-382 "FINRALG.spad" 607271 607286 609144 609149) (-381 "FINITE.spad" 606423 606431 607261 607266) (-380 "FINAALG.spad" 595608 595618 606365 606418) (-379 "FINAALG.spad" 584805 584817 595564 595569) (-378 "FILECAT.spad" 583339 583356 584795 584800) (-377 "FILE.spad" 582922 582932 583329 583334) (-376 "FIELD.spad" 582328 582336 582824 582917) (-375 "FIELD.spad" 581820 581830 582318 582323) (-374 "FGROUP.spad" 580483 580493 581800 581815) (-373 "FGLMICPK.spad" 579278 579293 580473 580478) (-372 "FFX.spad" 578661 578676 578994 579087) (-371 "FFSLPE.spad" 578172 578193 578651 578656) (-370 "FFPOLY2.spad" 577232 577249 578162 578167) (-369 "FFPOLY.spad" 568574 568585 577222 577227) (-368 "FFP.spad" 567979 567999 568290 568383) (-367 "FFNBX.spad" 566499 566519 567695 567788) (-366 "FFNBP.spad" 565020 565037 566215 566308) (-365 "FFNB.spad" 563485 563506 564701 564794) (-364 "FFINTBAS.spad" 560999 561018 563475 563480) (-363 "FFIELDC.spad" 558584 558592 560901 560994) (-362 "FFIELDC.spad" 556255 556265 558574 558579) (-361 "FFHOM.spad" 555027 555044 556245 556250) (-360 "FFF.spad" 552470 552481 555017 555022) (-359 "FFCGX.spad" 551325 551345 552186 552279) (-358 "FFCGP.spad" 550222 550242 551041 551134) (-357 "FFCG.spad" 549014 549035 549903 549996) (-356 "FFCAT2.spad" 548761 548801 549004 549009) (-355 "FFCAT.spad" 541926 541948 548600 548756) (-354 "FFCAT.spad" 535170 535194 541846 541851) (-353 "FF.spad" 534618 534634 534851 534944) (-352 "FEXPR.spad" 526318 526364 534365 534404) (-351 "FEVALAB.spad" 526026 526036 526308 526313) (-350 "FEVALAB.spad" 525510 525522 525794 525799) (-349 "FDIVCAT.spad" 523606 523630 525500 525505) (-348 "FDIVCAT.spad" 521700 521726 523596 523601) (-347 "FDIV2.spad" 521356 521396 521690 521695) (-346 "FDIV.spad" 520814 520838 521346 521351) (-345 "FCTRDATA.spad" 519822 519830 520804 520809) (-344 "FCPAK1.spad" 518357 518365 519812 519817) (-343 "FCOMP.spad" 517736 517746 518347 518352) (-342 "FC.spad" 507743 507751 517726 517731) (-341 "FAXF.spad" 500778 500792 507645 507738) (-340 "FAXF.spad" 493865 493881 500734 500739) (-339 "FARRAY.spad" 491841 491851 492874 492901) (-338 "FAMR.spad" 489985 489997 491739 491836) (-337 "FAMR.spad" 488113 488127 489869 489874) (-336 "FAMONOID.spad" 487797 487807 488067 488072) (-335 "FAMONC.spad" 486117 486129 487787 487792) (-334 "FAGROUP.spad" 485757 485767 486013 486040) (-333 "FACUTIL.spad" 483969 483986 485747 485752) (-332 "FACTFUNC.spad" 483171 483181 483959 483964) (-331 "EXPUPXS.spad" 479923 479946 481222 481371) (-330 "EXPRTUBE.spad" 477211 477219 479913 479918) (-329 "EXPRODE.spad" 474379 474395 477201 477206) (-328 "EXPR2UPS.spad" 470501 470514 474369 474374) (-327 "EXPR2.spad" 470206 470218 470491 470496) (-326 "EXPR.spad" 465291 465301 466005 466300) (-325 "EXPEXPAN.spad" 462035 462060 462667 462760) (-324 "EXITAST.spad" 461771 461779 462025 462030) (-323 "EXIT.spad" 461442 461450 461761 461766) (-322 "EVALCYC.spad" 460902 460916 461432 461437) (-321 "EVALAB.spad" 460482 460492 460892 460897) (-320 "EVALAB.spad" 460060 460072 460472 460477) (-319 "EUCDOM.spad" 457650 457658 459986 460055) (-318 "EUCDOM.spad" 455302 455312 457640 457645) (-317 "ESTOOLS2.spad" 454897 454911 455292 455297) (-316 "ESTOOLS1.spad" 454574 454585 454887 454892) (-315 "ESTOOLS.spad" 446452 446460 454564 454569) (-314 "ESCONT1.spad" 446193 446205 446442 446447) (-313 "ESCONT.spad" 442986 442994 446183 446188) (-312 "ES2.spad" 442499 442515 442976 442981) (-311 "ES1.spad" 442069 442085 442489 442494) (-310 "ES.spad" 434940 434948 442059 442064) (-309 "ES.spad" 427714 427724 434835 434840) (-308 "ERROR.spad" 425041 425049 427704 427709) (-307 "EQTBL.spad" 423035 423057 423244 423271) (-306 "EQ2.spad" 422753 422765 423025 423030) (-305 "EQ.spad" 417529 417539 420324 420436) (-304 "EP.spad" 413855 413865 417519 417524) (-303 "ENV.spad" 412533 412541 413845 413850) (-302 "ENTIRER.spad" 412201 412209 412477 412528) (-301 "EMR.spad" 411489 411530 412127 412196) (-300 "ELTAGG.spad" 409743 409762 411479 411484) (-299 "ELTAGG.spad" 407961 407982 409699 409704) (-298 "ELTAB.spad" 407436 407449 407951 407956) (-297 "ELFUTS.spad" 406871 406890 407426 407431) (-296 "ELEMFUN.spad" 406560 406568 406861 406866) (-295 "ELEMFUN.spad" 406247 406257 406550 406555) (-294 "ELAGG.spad" 404218 404228 406227 406242) (-293 "ELAGG.spad" 402126 402138 404137 404142) (-292 "ELABOR.spad" 401472 401480 402116 402121) (-291 "ELABEXPR.spad" 400404 400412 401462 401467) (-290 "EFUPXS.spad" 397180 397210 400360 400365) (-289 "EFULS.spad" 394016 394039 397136 397141) (-288 "EFSTRUC.spad" 392031 392047 394006 394011) (-287 "EF.spad" 386807 386823 392021 392026) (-286 "EAB.spad" 385107 385115 386797 386802) (-285 "E04UCFA.spad" 384643 384651 385097 385102) (-284 "E04NAFA.spad" 384220 384228 384633 384638) (-283 "E04MBFA.spad" 383800 383808 384210 384215) (-282 "E04JAFA.spad" 383336 383344 383790 383795) (-281 "E04GCFA.spad" 382872 382880 383326 383331) (-280 "E04FDFA.spad" 382408 382416 382862 382867) (-279 "E04DGFA.spad" 381944 381952 382398 382403) (-278 "E04AGNT.spad" 377818 377826 381934 381939) (-277 "DVARCAT.spad" 374824 374834 377808 377813) (-276 "DVARCAT.spad" 371828 371840 374814 374819) (-275 "DSMP.spad" 369124 369138 369429 369556) (-274 "DSEXT.spad" 368426 368436 369114 369119) (-273 "DSEXT.spad" 367632 367644 368322 368327) (-272 "DROPT1.spad" 367297 367307 367622 367627) (-271 "DROPT0.spad" 362162 362170 367287 367292) (-270 "DROPT.spad" 356121 356129 362152 362157) (-269 "DRAWPT.spad" 354294 354302 356111 356116) (-268 "DRAWHACK.spad" 353602 353612 354284 354289) (-267 "DRAWCX.spad" 351080 351088 353592 353597) (-266 "DRAWCURV.spad" 350627 350642 351070 351075) (-265 "DRAWCFUN.spad" 340159 340167 350617 350622) (-264 "DRAW.spad" 333035 333048 340149 340154) (-263 "DQAGG.spad" 331213 331223 333003 333030) (-262 "DPOLCAT.spad" 326570 326586 331081 331208) (-261 "DPOLCAT.spad" 322013 322031 326526 326531) (-260 "DPMO.spad" 313536 313552 313674 313887) (-259 "DPMM.spad" 305072 305090 305197 305410) (-258 "DOMTMPLT.spad" 304843 304851 305062 305067) (-257 "DOMCTOR.spad" 304598 304606 304833 304838) (-256 "DOMAIN.spad" 303709 303717 304588 304593) (-255 "DMP.spad" 300897 300912 301467 301594) (-254 "DMEXT.spad" 300764 300774 300865 300892) (-253 "DLP.spad" 300124 300134 300754 300759) (-252 "DLIST.spad" 298529 298539 299133 299160) (-251 "DLAGG.spad" 296946 296956 298519 298524) (-250 "DIVRING.spad" 296488 296496 296890 296941) (-249 "DIVRING.spad" 296074 296084 296478 296483) (-248 "DISPLAY.spad" 294264 294272 296064 296069) (-247 "DIRPROD2.spad" 293082 293100 294254 294259) (-246 "DIRPROD.spad" 280314 280330 280954 281053) (-245 "DIRPCAT.spad" 279507 279523 280210 280309) (-244 "DIRPCAT.spad" 278327 278345 279032 279037) (-243 "DIOSP.spad" 277152 277160 278317 278322) (-242 "DIOPS.spad" 276148 276158 277132 277147) (-241 "DIOPS.spad" 275118 275130 276104 276109) (-240 "DIFRING.spad" 274956 274964 275098 275113) (-239 "DIFFSPC.spad" 274535 274543 274946 274951) (-238 "DIFFSPC.spad" 274112 274122 274525 274530) (-237 "DIFFMOD.spad" 273601 273611 274080 274107) (-236 "DIFFDOM.spad" 272766 272777 273591 273596) (-235 "DIFFDOM.spad" 271929 271942 272756 272761) (-234 "DIFEXT.spad" 271748 271758 271909 271924) (-233 "DIAGG.spad" 271378 271388 271728 271743) (-232 "DIAGG.spad" 271016 271028 271368 271373) (-231 "DHMATRIX.spad" 269199 269209 270344 270371) (-230 "DFSFUN.spad" 262839 262847 269189 269194) (-229 "DFLOAT.spad" 259446 259454 262729 262834) (-228 "DFINTTLS.spad" 257677 257693 259436 259441) (-227 "DERHAM.spad" 255591 255623 257657 257672) (-226 "DEQUEUE.spad" 254786 254796 255069 255096) (-225 "DEGRED.spad" 254403 254417 254776 254781) (-224 "DEFINTRF.spad" 251985 251995 254393 254398) (-223 "DEFINTEF.spad" 250523 250539 251975 251980) (-222 "DEFAST.spad" 249907 249915 250513 250518) (-221 "DECIMAL.spad" 247871 247879 248232 248325) (-220 "DDFACT.spad" 245692 245709 247861 247866) (-219 "DBLRESP.spad" 245292 245316 245682 245687) (-218 "DBASIS.spad" 244918 244933 245282 245287) (-217 "DBASE.spad" 243582 243592 244908 244913) (-216 "DATAARY.spad" 243068 243081 243572 243577) (-215 "D03FAFA.spad" 242896 242904 243058 243063) (-214 "D03EEFA.spad" 242716 242724 242886 242891) (-213 "D03AGNT.spad" 241802 241810 242706 242711) (-212 "D02EJFA.spad" 241264 241272 241792 241797) (-211 "D02CJFA.spad" 240742 240750 241254 241259) (-210 "D02BHFA.spad" 240232 240240 240732 240737) (-209 "D02BBFA.spad" 239722 239730 240222 240227) (-208 "D02AGNT.spad" 234592 234600 239712 239717) (-207 "D01WGTS.spad" 232911 232919 234582 234587) (-206 "D01TRNS.spad" 232888 232896 232901 232906) (-205 "D01GBFA.spad" 232410 232418 232878 232883) (-204 "D01FCFA.spad" 231932 231940 232400 232405) (-203 "D01ASFA.spad" 231400 231408 231922 231927) (-202 "D01AQFA.spad" 230854 230862 231390 231395) (-201 "D01APFA.spad" 230294 230302 230844 230849) (-200 "D01ANFA.spad" 229788 229796 230284 230289) (-199 "D01AMFA.spad" 229298 229306 229778 229783) (-198 "D01ALFA.spad" 228838 228846 229288 229293) (-197 "D01AKFA.spad" 228364 228372 228828 228833) (-196 "D01AJFA.spad" 227887 227895 228354 228359) (-195 "D01AGNT.spad" 223954 223962 227877 227882) (-194 "CYCLOTOM.spad" 223460 223468 223944 223949) (-193 "CYCLES.spad" 220252 220260 223450 223455) (-192 "CVMP.spad" 219669 219679 220242 220247) (-191 "CTRIGMNP.spad" 218169 218185 219659 219664) (-190 "CTORKIND.spad" 217772 217780 218159 218164) (-189 "CTORCAT.spad" 217013 217021 217762 217767) (-188 "CTORCAT.spad" 216252 216262 217003 217008) (-187 "CTORCALL.spad" 215841 215851 216242 216247) (-186 "CTOR.spad" 215532 215540 215831 215836) (-185 "CSTTOOLS.spad" 214777 214790 215522 215527) (-184 "CRFP.spad" 208549 208562 214767 214772) (-183 "CRCEAST.spad" 208269 208277 208539 208544) (-182 "CRAPACK.spad" 207336 207346 208259 208264) (-181 "CPMATCH.spad" 206837 206852 207258 207263) (-180 "CPIMA.spad" 206542 206561 206827 206832) (-179 "COORDSYS.spad" 201551 201561 206532 206537) (-178 "CONTOUR.spad" 200978 200986 201541 201546) (-177 "CONTFRAC.spad" 196728 196738 200880 200973) (-176 "CONDUIT.spad" 196486 196494 196718 196723) (-175 "COMRING.spad" 196160 196168 196424 196481) (-174 "COMPPROP.spad" 195678 195686 196150 196155) (-173 "COMPLPAT.spad" 195445 195460 195668 195673) (-172 "COMPLEX2.spad" 195160 195172 195435 195440) (-171 "COMPLEX.spad" 190507 190517 190751 191012) (-170 "COMPILER.spad" 190056 190064 190497 190502) (-169 "COMPFACT.spad" 189658 189672 190046 190051) (-168 "COMPCAT.spad" 187730 187740 189392 189653) (-167 "COMPCAT.spad" 185527 185539 187191 187196) (-166 "COMMUPC.spad" 185275 185293 185517 185522) (-165 "COMMONOP.spad" 184808 184816 185265 185270) (-164 "COMMAAST.spad" 184571 184579 184798 184803) (-163 "COMM.spad" 184382 184390 184561 184566) (-162 "COMBOPC.spad" 183305 183313 184372 184377) (-161 "COMBINAT.spad" 182072 182082 183295 183300) (-160 "COMBF.spad" 179494 179510 182062 182067) (-159 "COLOR.spad" 178331 178339 179484 179489) (-158 "COLONAST.spad" 177997 178005 178321 178326) (-157 "CMPLXRT.spad" 177708 177725 177987 177992) (-156 "CLLCTAST.spad" 177370 177378 177698 177703) (-155 "CLIP.spad" 173478 173486 177360 177365) (-154 "CLIF.spad" 172133 172149 173434 173473) (-153 "CLAGG.spad" 168670 168680 172123 172128) (-152 "CLAGG.spad" 165075 165087 168530 168535) (-151 "CINTSLPE.spad" 164430 164443 165065 165070) (-150 "CHVAR.spad" 162568 162590 164420 164425) (-149 "CHARZ.spad" 162483 162491 162548 162563) (-148 "CHARPOL.spad" 162009 162019 162473 162478) (-147 "CHARNZ.spad" 161771 161779 161989 162004) (-146 "CHAR.spad" 159139 159147 161761 161766) (-145 "CFCAT.spad" 158467 158475 159129 159134) (-144 "CDEN.spad" 157687 157701 158457 158462) (-143 "CCLASS.spad" 155783 155791 157045 157084) (-142 "CATEGORY.spad" 154857 154865 155773 155778) (-141 "CATCTOR.spad" 154748 154756 154847 154852) (-140 "CATAST.spad" 154374 154382 154738 154743) (-139 "CASEAST.spad" 154088 154096 154364 154369) (-138 "CARTEN2.spad" 153478 153505 154078 154083) (-137 "CARTEN.spad" 149230 149254 153468 153473) (-136 "CARD.spad" 146525 146533 149204 149225) (-135 "CAPSLAST.spad" 146307 146315 146515 146520) (-134 "CACHSET.spad" 145931 145939 146297 146302) (-133 "CABMON.spad" 145486 145494 145921 145926) (-132 "BYTEORD.spad" 145161 145169 145476 145481) (-131 "BYTEBUF.spad" 142862 142870 144148 144175) (-130 "BYTE.spad" 142337 142345 142852 142857) (-129 "BTREE.spad" 141281 141291 141815 141842) (-128 "BTOURN.spad" 140157 140167 140759 140786) (-127 "BTCAT.spad" 139549 139559 140125 140152) (-126 "BTCAT.spad" 138961 138973 139539 139544) (-125 "BTAGG.spad" 138427 138435 138929 138956) (-124 "BTAGG.spad" 137913 137923 138417 138422) (-123 "BSTREE.spad" 136525 136535 137391 137418) (-122 "BRILL.spad" 134730 134741 136515 136520) (-121 "BRAGG.spad" 133686 133696 134720 134725) (-120 "BRAGG.spad" 132606 132618 133642 133647) (-119 "BPADICRT.spad" 130431 130443 130678 130771) (-118 "BPADIC.spad" 130103 130115 130357 130426) (-117 "BOUNDZRO.spad" 129759 129776 130093 130098) (-116 "BOP1.spad" 127217 127227 129749 129754) (-115 "BOP.spad" 122359 122367 127207 127212) (-114 "BOOLEAN.spad" 121907 121915 122349 122354) (-113 "BOOLE.spad" 121557 121565 121897 121902) (-112 "BOOLE.spad" 121205 121215 121547 121552) (-111 "BMODULE.spad" 120917 120929 121173 121200) (-110 "BITS.spad" 120291 120299 120506 120533) (-109 "BINDING.spad" 119712 119720 120281 120286) (-108 "BINARY.spad" 117681 117689 118037 118130) (-107 "BGAGG.spad" 116886 116896 117661 117676) (-106 "BGAGG.spad" 116099 116111 116876 116881) (-105 "BFUNCT.spad" 115663 115671 116079 116094) (-104 "BEZOUT.spad" 114803 114830 115613 115618) (-103 "BBTREE.spad" 111551 111561 114281 114308) (-102 "BASTYPE.spad" 111050 111058 111541 111546) (-101 "BASTYPE.spad" 110547 110557 111040 111045) (-100 "BALFACT.spad" 110006 110019 110537 110542) (-99 "AUTOMOR.spad" 109457 109466 109986 110001) (-98 "ATTREG.spad" 106180 106187 109209 109452) (-97 "ATTRBUT.spad" 102203 102210 106160 106175) (-96 "ATTRAST.spad" 101920 101927 102193 102198) (-95 "ATRIG.spad" 101390 101397 101910 101915) (-94 "ATRIG.spad" 100858 100867 101380 101385) (-93 "ASTCAT.spad" 100762 100769 100848 100853) (-92 "ASTCAT.spad" 100664 100673 100752 100757) (-91 "ASTACK.spad" 99874 99883 100142 100169) (-90 "ASSOCEQ.spad" 98708 98719 99830 99835) (-89 "ASP9.spad" 97789 97802 98698 98703) (-88 "ASP80.spad" 97111 97124 97779 97784) (-87 "ASP8.spad" 96154 96167 97101 97106) (-86 "ASP78.spad" 95605 95618 96144 96149) (-85 "ASP77.spad" 94974 94987 95595 95600) (-84 "ASP74.spad" 94066 94079 94964 94969) (-83 "ASP73.spad" 93337 93350 94056 94061) (-82 "ASP7.spad" 92497 92510 93327 93332) (-81 "ASP6.spad" 91364 91377 92487 92492) (-80 "ASP55.spad" 89873 89886 91354 91359) (-79 "ASP50.spad" 87690 87703 89863 89868) (-78 "ASP49.spad" 86689 86702 87680 87685) (-77 "ASP42.spad" 85104 85143 86679 86684) (-76 "ASP41.spad" 83691 83730 85094 85099) (-75 "ASP4.spad" 82986 82999 83681 83686) (-74 "ASP35.spad" 81974 81987 82976 82981) (-73 "ASP34.spad" 81275 81288 81964 81969) (-72 "ASP33.spad" 80835 80848 81265 81270) (-71 "ASP31.spad" 79975 79988 80825 80830) (-70 "ASP30.spad" 78867 78880 79965 79970) (-69 "ASP29.spad" 78333 78346 78857 78862) (-68 "ASP28.spad" 69606 69619 78323 78328) (-67 "ASP27.spad" 68503 68516 69596 69601) (-66 "ASP24.spad" 67590 67603 68493 68498) (-65 "ASP20.spad" 67054 67067 67580 67585) (-64 "ASP19.spad" 61740 61753 67044 67049) (-63 "ASP12.spad" 61154 61167 61730 61735) (-62 "ASP10.spad" 60425 60438 61144 61149) (-61 "ASP1.spad" 59806 59819 60415 60420) (-60 "ARRAY2.spad" 59045 59054 59284 59311) (-59 "ARRAY12.spad" 57758 57769 59035 59040) (-58 "ARRAY1.spad" 56421 56430 56767 56794) (-57 "ARR2CAT.spad" 52203 52224 56389 56416) (-56 "ARR2CAT.spad" 48005 48028 52193 52198) (-55 "ARITY.spad" 47377 47384 47995 48000) (-54 "APPRULE.spad" 46661 46683 47367 47372) (-53 "APPLYORE.spad" 46280 46293 46651 46656) (-52 "ANY1.spad" 45351 45360 46270 46275) (-51 "ANY.spad" 44202 44209 45341 45346) (-50 "ANTISYM.spad" 42647 42663 44182 44197) (-49 "ANON.spad" 42356 42363 42637 42642) (-48 "AN.spad" 40806 40813 42169 42262) (-47 "AMR.spad" 38991 39002 40704 40801) (-46 "AMR.spad" 37007 37020 38722 38727) (-45 "ALIST.spad" 33847 33868 34197 34224) (-44 "ALGSC.spad" 32982 33008 33719 33772) (-43 "ALGPKG.spad" 28765 28776 32938 32943) (-42 "ALGMFACT.spad" 27958 27972 28755 28760) (-41 "ALGMANIP.spad" 25442 25457 27785 27790) (-40 "ALGFF.spad" 23047 23074 23264 23420) (-39 "ALGFACT.spad" 22166 22176 23037 23042) (-38 "ALGEBRA.spad" 21999 22008 22122 22161) (-37 "ALGEBRA.spad" 21864 21875 21989 21994) (-36 "ALAGG.spad" 21376 21397 21832 21859) (-35 "AHYP.spad" 20757 20764 21366 21371) (-34 "AGG.spad" 19466 19473 20747 20752) (-33 "AGG.spad" 18139 18148 19422 19427) (-32 "AF.spad" 16567 16582 18071 18076) (-31 "ADDAST.spad" 16253 16260 16557 16562) (-30 "ACPLOT.spad" 14844 14851 16243 16248) (-29 "ACFS.spad" 12701 12710 14746 14839) (-28 "ACFS.spad" 10644 10655 12691 12696) (-27 "ACF.spad" 7398 7405 10546 10639) (-26 "ACF.spad" 4238 4247 7388 7393) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2094381 2094386 2094391 2094396) (-2 NIL 2094361 2094366 2094371 2094376) (-1 NIL 2094341 2094346 2094351 2094356) (0 NIL 2094321 2094326 2094331 2094336) (-1237 "ZMOD.spad" 2094130 2094143 2094259 2094316) (-1236 "ZLINDEP.spad" 2093228 2093239 2094120 2094125) (-1235 "ZDSOLVE.spad" 2083188 2083210 2093218 2093223) (-1234 "YSTREAM.spad" 2082683 2082694 2083178 2083183) (-1233 "YDIAGRAM.spad" 2082317 2082326 2082673 2082678) (-1232 "XRPOLY.spad" 2081537 2081557 2082173 2082242) (-1231 "XPR.spad" 2079332 2079345 2081255 2081354) (-1230 "XPOLYC.spad" 2078651 2078667 2079258 2079327) (-1229 "XPOLY.spad" 2078206 2078217 2078507 2078576) (-1228 "XPBWPOLY.spad" 2076645 2076665 2077980 2078049) (-1227 "XFALG.spad" 2073693 2073709 2076571 2076640) (-1226 "XF.spad" 2072156 2072171 2073595 2073688) (-1225 "XF.spad" 2070599 2070616 2072040 2072045) (-1224 "XEXPPKG.spad" 2069858 2069884 2070589 2070594) (-1223 "XDPOLY.spad" 2069472 2069488 2069714 2069783) (-1222 "XALG.spad" 2069140 2069151 2069428 2069467) (-1221 "WUTSET.spad" 2065111 2065128 2068742 2068769) (-1220 "WP.spad" 2064318 2064362 2064969 2065036) (-1219 "WHILEAST.spad" 2064116 2064125 2064308 2064313) (-1218 "WHEREAST.spad" 2063787 2063796 2064106 2064111) (-1217 "WFFINTBS.spad" 2061450 2061472 2063777 2063782) (-1216 "WEIER.spad" 2059672 2059683 2061440 2061445) (-1215 "VSPACE.spad" 2059345 2059356 2059640 2059667) (-1214 "VSPACE.spad" 2059038 2059051 2059335 2059340) (-1213 "VOID.spad" 2058715 2058724 2059028 2059033) (-1212 "VIEWDEF.spad" 2053916 2053925 2058705 2058710) (-1211 "VIEW3D.spad" 2037877 2037886 2053906 2053911) (-1210 "VIEW2D.spad" 2025776 2025785 2037867 2037872) (-1209 "VIEW.spad" 2023496 2023505 2025766 2025771) (-1208 "VECTOR2.spad" 2022135 2022148 2023486 2023491) (-1207 "VECTOR.spad" 2020640 2020651 2020891 2020918) (-1206 "VECTCAT.spad" 2018552 2018563 2020608 2020635) (-1205 "VECTCAT.spad" 2016273 2016286 2018331 2018336) (-1204 "VARIABLE.spad" 2016053 2016068 2016263 2016268) (-1203 "UTYPE.spad" 2015697 2015706 2016043 2016048) (-1202 "UTSODETL.spad" 2014992 2015016 2015653 2015658) (-1201 "UTSODE.spad" 2013208 2013228 2014982 2014987) (-1200 "UTSCAT.spad" 2010687 2010703 2013106 2013203) (-1199 "UTSCAT.spad" 2007786 2007804 2010207 2010212) (-1198 "UTS2.spad" 2007381 2007416 2007776 2007781) (-1197 "UTS.spad" 2002259 2002287 2005779 2005876) (-1196 "URAGG.spad" 1996980 1996991 2002249 2002254) (-1195 "URAGG.spad" 1991665 1991678 1996936 1996941) (-1194 "UPXSSING.spad" 1989286 1989312 1990722 1990855) (-1193 "UPXSCONS.spad" 1986964 1986984 1987337 1987486) (-1192 "UPXSCCA.spad" 1985535 1985555 1986810 1986959) (-1191 "UPXSCCA.spad" 1984248 1984270 1985525 1985530) (-1190 "UPXSCAT.spad" 1982837 1982853 1984094 1984243) (-1189 "UPXS2.spad" 1982380 1982433 1982827 1982832) (-1188 "UPXS.spad" 1979595 1979623 1980431 1980580) (-1187 "UPSQFREE.spad" 1978010 1978024 1979585 1979590) (-1186 "UPSCAT.spad" 1975805 1975829 1977908 1978005) (-1185 "UPSCAT.spad" 1973285 1973311 1975390 1975395) (-1184 "UPOLYC2.spad" 1972756 1972775 1973275 1973280) (-1183 "UPOLYC.spad" 1967836 1967847 1972598 1972751) (-1182 "UPOLYC.spad" 1962802 1962815 1967566 1967571) (-1181 "UPMP.spad" 1961734 1961747 1962792 1962797) (-1180 "UPDIVP.spad" 1961299 1961313 1961724 1961729) (-1179 "UPDECOMP.spad" 1959560 1959574 1961289 1961294) (-1178 "UPCDEN.spad" 1958777 1958793 1959550 1959555) (-1177 "UP2.spad" 1958141 1958162 1958767 1958772) (-1176 "UP.spad" 1955172 1955187 1955559 1955712) (-1175 "UNISEG2.spad" 1954669 1954682 1955128 1955133) (-1174 "UNISEG.spad" 1954022 1954033 1954588 1954593) (-1173 "UNIFACT.spad" 1953125 1953137 1954012 1954017) (-1172 "ULSCONS.spad" 1944046 1944066 1944416 1944565) (-1171 "ULSCCAT.spad" 1941783 1941803 1943892 1944041) (-1170 "ULSCCAT.spad" 1939628 1939650 1941739 1941744) (-1169 "ULSCAT.spad" 1937868 1937884 1939474 1939623) (-1168 "ULS2.spad" 1937382 1937435 1937858 1937863) (-1167 "ULS.spad" 1926960 1926988 1927905 1928334) (-1166 "UINT8.spad" 1926837 1926846 1926950 1926955) (-1165 "UINT64.spad" 1926713 1926722 1926827 1926832) (-1164 "UINT32.spad" 1926589 1926598 1926703 1926708) (-1163 "UINT16.spad" 1926465 1926474 1926579 1926584) (-1162 "UFD.spad" 1925530 1925539 1926391 1926460) (-1161 "UFD.spad" 1924657 1924668 1925520 1925525) (-1160 "UDVO.spad" 1923538 1923547 1924647 1924652) (-1159 "UDPO.spad" 1921119 1921130 1923494 1923499) (-1158 "TYPEAST.spad" 1921038 1921047 1921109 1921114) (-1157 "TYPE.spad" 1920970 1920979 1921028 1921033) (-1156 "TWOFACT.spad" 1919622 1919637 1920960 1920965) (-1155 "TUPLE.spad" 1919113 1919124 1919518 1919523) (-1154 "TUBETOOL.spad" 1915980 1915989 1919103 1919108) (-1153 "TUBE.spad" 1914627 1914644 1915970 1915975) (-1152 "TSETCAT.spad" 1902698 1902715 1914595 1914622) (-1151 "TSETCAT.spad" 1890755 1890774 1902654 1902659) (-1150 "TS.spad" 1889348 1889364 1890314 1890411) (-1149 "TRMANIP.spad" 1883712 1883729 1889036 1889041) (-1148 "TRIMAT.spad" 1882675 1882700 1883702 1883707) (-1147 "TRIGMNIP.spad" 1881202 1881219 1882665 1882670) (-1146 "TRIGCAT.spad" 1880714 1880723 1881192 1881197) (-1145 "TRIGCAT.spad" 1880224 1880235 1880704 1880709) (-1144 "TREE.spad" 1878672 1878683 1879704 1879731) (-1143 "TRANFUN.spad" 1878511 1878520 1878662 1878667) (-1142 "TRANFUN.spad" 1878348 1878359 1878501 1878506) (-1141 "TOPSP.spad" 1878022 1878031 1878338 1878343) (-1140 "TOOLSIGN.spad" 1877685 1877696 1878012 1878017) (-1139 "TEXTFILE.spad" 1876246 1876255 1877675 1877680) (-1138 "TEX1.spad" 1875802 1875813 1876236 1876241) (-1137 "TEX.spad" 1872996 1873005 1875792 1875797) (-1136 "TEMUTL.spad" 1872551 1872560 1872986 1872991) (-1135 "TBCMPPK.spad" 1870652 1870675 1872541 1872546) (-1134 "TBAGG.spad" 1869710 1869733 1870632 1870647) (-1133 "TBAGG.spad" 1868776 1868801 1869700 1869705) (-1132 "TANEXP.spad" 1868184 1868195 1868766 1868771) (-1131 "TALGOP.spad" 1867908 1867919 1868174 1868179) (-1130 "TABLEAU.spad" 1867389 1867400 1867898 1867903) (-1129 "TABLE.spad" 1865300 1865323 1865570 1865597) (-1128 "TABLBUMP.spad" 1862079 1862090 1865290 1865295) (-1127 "SYSTEM.spad" 1861307 1861316 1862069 1862074) (-1126 "SYSSOLP.spad" 1858790 1858801 1861297 1861302) (-1125 "SYSPTR.spad" 1858689 1858698 1858780 1858785) (-1124 "SYSNNI.spad" 1857912 1857923 1858679 1858684) (-1123 "SYSINT.spad" 1857316 1857327 1857902 1857907) (-1122 "SYNTAX.spad" 1853650 1853659 1857306 1857311) (-1121 "SYMTAB.spad" 1851718 1851727 1853640 1853645) (-1120 "SYMS.spad" 1847747 1847756 1851708 1851713) (-1119 "SYMPOLY.spad" 1846730 1846741 1846812 1846939) (-1118 "SYMFUNC.spad" 1846231 1846242 1846720 1846725) (-1117 "SYMBOL.spad" 1843726 1843735 1846221 1846226) (-1116 "SWITCH.spad" 1840497 1840506 1843716 1843721) (-1115 "SUTS.spad" 1837476 1837504 1838895 1838992) (-1114 "SUPXS.spad" 1834678 1834706 1835527 1835676) (-1113 "SUPFRACF.spad" 1833783 1833801 1834668 1834673) (-1112 "SUP2.spad" 1833175 1833188 1833773 1833778) (-1111 "SUP.spad" 1829820 1829831 1830593 1830746) (-1110 "SUMRF.spad" 1828794 1828805 1829810 1829815) (-1109 "SUMFS.spad" 1828423 1828440 1828784 1828789) (-1108 "SULS.spad" 1817988 1818016 1818946 1819375) (-1107 "SUCHTAST.spad" 1817757 1817766 1817978 1817983) (-1106 "SUCH.spad" 1817447 1817462 1817747 1817752) (-1105 "SUBSPACE.spad" 1809578 1809593 1817437 1817442) (-1104 "SUBRESP.spad" 1808748 1808762 1809534 1809539) (-1103 "STTFNC.spad" 1805216 1805232 1808738 1808743) (-1102 "STTF.spad" 1801315 1801331 1805206 1805211) (-1101 "STTAYLOR.spad" 1793960 1793971 1801190 1801195) (-1100 "STRTBL.spad" 1791953 1791970 1792102 1792129) (-1099 "STRING.spad" 1790557 1790566 1790942 1790969) (-1098 "STREAM3.spad" 1790130 1790145 1790547 1790552) (-1097 "STREAM2.spad" 1789258 1789271 1790120 1790125) (-1096 "STREAM1.spad" 1788964 1788975 1789248 1789253) (-1095 "STREAM.spad" 1785752 1785763 1788359 1788374) (-1094 "STINPROD.spad" 1784688 1784704 1785742 1785747) (-1093 "STEPAST.spad" 1783922 1783931 1784678 1784683) (-1092 "STEP.spad" 1783239 1783248 1783912 1783917) (-1091 "STBL.spad" 1781265 1781293 1781432 1781447) (-1090 "STAGG.spad" 1779964 1779975 1781255 1781260) (-1089 "STAGG.spad" 1778661 1778674 1779954 1779959) (-1088 "STACK.spad" 1777891 1777902 1778141 1778168) (-1087 "SRING.spad" 1777651 1777660 1777881 1777886) (-1086 "SREGSET.spad" 1775351 1775368 1777253 1777280) (-1085 "SRDCMPK.spad" 1773928 1773948 1775341 1775346) (-1084 "SRAGG.spad" 1769111 1769120 1773896 1773923) (-1083 "SRAGG.spad" 1764314 1764325 1769101 1769106) (-1082 "SQMATRIX.spad" 1761809 1761827 1762725 1762812) (-1081 "SPLTREE.spad" 1756277 1756290 1761073 1761100) (-1080 "SPLNODE.spad" 1752897 1752910 1756267 1756272) (-1079 "SPFCAT.spad" 1751706 1751715 1752887 1752892) (-1078 "SPECOUT.spad" 1750258 1750267 1751696 1751701) (-1077 "SPADXPT.spad" 1742349 1742358 1750248 1750253) (-1076 "spad-parser.spad" 1741814 1741823 1742339 1742344) (-1075 "SPADAST.spad" 1741515 1741524 1741804 1741809) (-1074 "SPACEC.spad" 1725730 1725741 1741505 1741510) (-1073 "SPACE3.spad" 1725506 1725517 1725720 1725725) (-1072 "SORTPAK.spad" 1725055 1725068 1725462 1725467) (-1071 "SOLVETRA.spad" 1722818 1722829 1725045 1725050) (-1070 "SOLVESER.spad" 1721274 1721285 1722808 1722813) (-1069 "SOLVERAD.spad" 1717300 1717311 1721264 1721269) (-1068 "SOLVEFOR.spad" 1715762 1715780 1717290 1717295) (-1067 "SNTSCAT.spad" 1715362 1715379 1715730 1715757) (-1066 "SMTS.spad" 1713644 1713670 1714921 1715018) (-1065 "SMP.spad" 1711050 1711070 1711440 1711567) (-1064 "SMITH.spad" 1709895 1709920 1711040 1711045) (-1063 "SMATCAT.spad" 1708013 1708043 1709839 1709890) (-1062 "SMATCAT.spad" 1706063 1706095 1707891 1707896) (-1061 "SKAGG.spad" 1705032 1705043 1706031 1706058) (-1060 "SINT.spad" 1703972 1703981 1704898 1705027) (-1059 "SIMPAN.spad" 1703700 1703709 1703962 1703967) (-1058 "SIGNRF.spad" 1702825 1702836 1703690 1703695) (-1057 "SIGNEF.spad" 1702111 1702128 1702815 1702820) (-1056 "SIGAST.spad" 1701528 1701537 1702101 1702106) (-1055 "SIG.spad" 1700890 1700899 1701518 1701523) (-1054 "SHP.spad" 1698834 1698849 1700846 1700851) (-1053 "SHDP.spad" 1686264 1686291 1686781 1686878) (-1052 "SGROUP.spad" 1685872 1685881 1686254 1686259) (-1051 "SGROUP.spad" 1685478 1685489 1685862 1685867) (-1050 "SGCF.spad" 1678617 1678626 1685468 1685473) (-1049 "SFRTCAT.spad" 1677563 1677580 1678585 1678612) (-1048 "SFRGCD.spad" 1676626 1676646 1677553 1677558) (-1047 "SFQCMPK.spad" 1671439 1671459 1676616 1676621) (-1046 "SFORT.spad" 1670878 1670892 1671429 1671434) (-1045 "SEXOF.spad" 1670721 1670761 1670868 1670873) (-1044 "SEXCAT.spad" 1668549 1668589 1670711 1670716) (-1043 "SEX.spad" 1668441 1668450 1668539 1668544) (-1042 "SETMN.spad" 1666901 1666918 1668431 1668436) (-1041 "SETCAT.spad" 1666386 1666395 1666891 1666896) (-1040 "SETCAT.spad" 1665869 1665880 1666376 1666381) (-1039 "SETAGG.spad" 1662418 1662429 1665849 1665864) (-1038 "SETAGG.spad" 1658975 1658988 1662408 1662413) (-1037 "SET.spad" 1657249 1657260 1658346 1658385) (-1036 "SEQAST.spad" 1656952 1656961 1657239 1657244) (-1035 "SEGXCAT.spad" 1656108 1656121 1656942 1656947) (-1034 "SEGCAT.spad" 1655033 1655044 1656098 1656103) (-1033 "SEGBIND2.spad" 1654731 1654744 1655023 1655028) (-1032 "SEGBIND.spad" 1654489 1654500 1654678 1654683) (-1031 "SEGAST.spad" 1654219 1654228 1654479 1654484) (-1030 "SEG2.spad" 1653654 1653667 1654175 1654180) (-1029 "SEG.spad" 1653467 1653478 1653573 1653578) (-1028 "SDVAR.spad" 1652743 1652754 1653457 1653462) (-1027 "SDPOL.spad" 1650001 1650012 1650292 1650419) (-1026 "SCPKG.spad" 1648090 1648101 1649991 1649996) (-1025 "SCOPE.spad" 1647267 1647276 1648080 1648085) (-1024 "SCACHE.spad" 1645963 1645974 1647257 1647262) (-1023 "SASTCAT.spad" 1645872 1645881 1645953 1645958) (-1022 "SAOS.spad" 1645744 1645753 1645862 1645867) (-1021 "SAERFFC.spad" 1645457 1645477 1645734 1645739) (-1020 "SAEFACT.spad" 1645158 1645178 1645447 1645452) (-1019 "SAE.spad" 1642595 1642611 1643206 1643341) (-1018 "RURPK.spad" 1640254 1640270 1642585 1642590) (-1017 "RULESET.spad" 1639707 1639731 1640244 1640249) (-1016 "RULECOLD.spad" 1639559 1639572 1639697 1639702) (-1015 "RULE.spad" 1637807 1637831 1639549 1639554) (-1014 "RTVALUE.spad" 1637542 1637551 1637797 1637802) (-1013 "RSTRCAST.spad" 1637259 1637268 1637532 1637537) (-1012 "RSETGCD.spad" 1633701 1633721 1637249 1637254) (-1011 "RSETCAT.spad" 1623669 1623686 1633669 1633696) (-1010 "RSETCAT.spad" 1613657 1613676 1623659 1623664) (-1009 "RSDCMPK.spad" 1612157 1612177 1613647 1613652) (-1008 "RRCC.spad" 1610541 1610571 1612147 1612152) (-1007 "RRCC.spad" 1608923 1608955 1610531 1610536) (-1006 "RPTAST.spad" 1608625 1608634 1608913 1608918) (-1005 "RPOLCAT.spad" 1588129 1588144 1608493 1608620) (-1004 "RPOLCAT.spad" 1567330 1567347 1587696 1587701) (-1003 "ROUTINE.spad" 1562709 1562718 1565457 1565484) (-1002 "ROMAN.spad" 1562037 1562046 1562575 1562704) (-1001 "ROIRC.spad" 1561117 1561149 1562027 1562032) (-1000 "RNS.spad" 1560093 1560102 1561019 1561112) (-999 "RNS.spad" 1559156 1559166 1560083 1560088) (-998 "RNGBIND.spad" 1558317 1558330 1559111 1559116) (-997 "RNG.spad" 1558053 1558061 1558307 1558312) (-996 "RMODULE.spad" 1557835 1557845 1558043 1558048) (-995 "RMCAT2.spad" 1557256 1557312 1557825 1557830) (-994 "RMATRIX.spad" 1556028 1556046 1556370 1556409) (-993 "RMATCAT.spad" 1551608 1551638 1555984 1556023) (-992 "RMATCAT.spad" 1547078 1547110 1551456 1551461) (-991 "RLINSET.spad" 1546783 1546793 1547068 1547073) (-990 "RINTERP.spad" 1546672 1546691 1546773 1546778) (-989 "RING.spad" 1546143 1546151 1546652 1546667) (-988 "RING.spad" 1545622 1545632 1546133 1546138) (-987 "RIDIST.spad" 1545015 1545023 1545612 1545617) (-986 "RGCHAIN.spad" 1543538 1543553 1544431 1544458) (-985 "RGBCSPC.spad" 1543328 1543339 1543528 1543533) (-984 "RGBCMDL.spad" 1542891 1542902 1543318 1543323) (-983 "RFFACTOR.spad" 1542354 1542364 1542881 1542886) (-982 "RFFACT.spad" 1542090 1542101 1542344 1542349) (-981 "RFDIST.spad" 1541087 1541095 1542080 1542085) (-980 "RF.spad" 1538762 1538772 1541077 1541082) (-979 "RETSOL.spad" 1538182 1538194 1538752 1538757) (-978 "RETRACT.spad" 1537611 1537621 1538172 1538177) (-977 "RETRACT.spad" 1537038 1537050 1537601 1537606) (-976 "RETAST.spad" 1536851 1536859 1537028 1537033) (-975 "RESULT.spad" 1534392 1534400 1534978 1535005) (-974 "RESRING.spad" 1533740 1533786 1534330 1534387) (-973 "RESLATC.spad" 1533065 1533075 1533730 1533735) (-972 "REPSQ.spad" 1532797 1532807 1533055 1533060) (-971 "REPDB.spad" 1532505 1532515 1532787 1532792) (-970 "REP2.spad" 1522220 1522230 1532347 1532352) (-969 "REP1.spad" 1516441 1516451 1522170 1522175) (-968 "REP.spad" 1513996 1514004 1516431 1516436) (-967 "REGSET.spad" 1511790 1511806 1513598 1513625) (-966 "REF.spad" 1511126 1511136 1511745 1511750) (-965 "REDORDER.spad" 1510333 1510349 1511116 1511121) (-964 "RECLOS.spad" 1509099 1509118 1509802 1509895) (-963 "REALSOLV.spad" 1508240 1508248 1509089 1509094) (-962 "REAL0Q.spad" 1505539 1505553 1508230 1508235) (-961 "REAL0.spad" 1502384 1502398 1505529 1505534) (-960 "REAL.spad" 1502257 1502265 1502374 1502379) (-959 "RDUCEAST.spad" 1501979 1501987 1502247 1502252) (-958 "RDIV.spad" 1501635 1501659 1501969 1501974) (-957 "RDIST.spad" 1501203 1501213 1501625 1501630) (-956 "RDETRS.spad" 1500068 1500085 1501193 1501198) (-955 "RDETR.spad" 1498208 1498225 1500058 1500063) (-954 "RDEEFS.spad" 1497308 1497324 1498198 1498203) (-953 "RDEEF.spad" 1496319 1496335 1497298 1497303) (-952 "RCFIELD.spad" 1493538 1493546 1496221 1496314) (-951 "RCFIELD.spad" 1490843 1490853 1493528 1493533) (-950 "RCAGG.spad" 1488780 1488790 1490833 1490838) (-949 "RCAGG.spad" 1486644 1486656 1488699 1488704) (-948 "RATRET.spad" 1486005 1486015 1486634 1486639) (-947 "RATFACT.spad" 1485698 1485709 1485995 1486000) (-946 "RANDSRC.spad" 1485018 1485026 1485688 1485693) (-945 "RADUTIL.spad" 1484775 1484783 1485008 1485013) (-944 "RADIX.spad" 1481558 1481571 1483103 1483196) (-943 "RADFF.spad" 1479265 1479301 1479383 1479539) (-942 "RADCAT.spad" 1478861 1478869 1479255 1479260) (-941 "RADCAT.spad" 1478455 1478465 1478851 1478856) (-940 "QUEUE.spad" 1477677 1477687 1477935 1477962) (-939 "QUATCT2.spad" 1477298 1477316 1477667 1477672) (-938 "QUATCAT.spad" 1475469 1475479 1477228 1477293) (-937 "QUATCAT.spad" 1473388 1473400 1475149 1475154) (-936 "QUAT.spad" 1471844 1471854 1472186 1472251) (-935 "QUAGG.spad" 1470678 1470688 1471812 1471839) (-934 "QQUTAST.spad" 1470447 1470455 1470668 1470673) (-933 "QFORM.spad" 1470066 1470080 1470437 1470442) (-932 "QFCAT2.spad" 1469759 1469775 1470056 1470061) (-931 "QFCAT.spad" 1468462 1468472 1469661 1469754) (-930 "QFCAT.spad" 1466750 1466762 1467951 1467956) (-929 "QEQUAT.spad" 1466309 1466317 1466740 1466745) (-928 "QCMPACK.spad" 1461224 1461243 1466299 1466304) (-927 "QALGSET2.spad" 1459220 1459238 1461214 1461219) (-926 "QALGSET.spad" 1455325 1455357 1459134 1459139) (-925 "PWFFINTB.spad" 1452741 1452762 1455315 1455320) (-924 "PUSHVAR.spad" 1452080 1452099 1452731 1452736) (-923 "PTRANFN.spad" 1448216 1448226 1452070 1452075) (-922 "PTPACK.spad" 1445304 1445314 1448206 1448211) (-921 "PTFUNC2.spad" 1445127 1445141 1445294 1445299) (-920 "PTCAT.spad" 1444382 1444392 1445095 1445122) (-919 "PSQFR.spad" 1443697 1443721 1444372 1444377) (-918 "PSEUDLIN.spad" 1442583 1442593 1443687 1443692) (-917 "PSETPK.spad" 1429288 1429304 1442461 1442466) (-916 "PSETCAT.spad" 1423688 1423711 1429268 1429283) (-915 "PSETCAT.spad" 1418062 1418087 1423644 1423649) (-914 "PSCURVE.spad" 1417061 1417069 1418052 1418057) (-913 "PSCAT.spad" 1415844 1415873 1416959 1417056) (-912 "PSCAT.spad" 1414717 1414748 1415834 1415839) (-911 "PRTITION.spad" 1413415 1413423 1414707 1414712) (-910 "PRTDAST.spad" 1413134 1413142 1413405 1413410) (-909 "PRS.spad" 1402752 1402769 1413090 1413095) (-908 "PRQAGG.spad" 1402187 1402197 1402720 1402747) (-907 "PROPLOG.spad" 1401791 1401799 1402177 1402182) (-906 "PROPFUN2.spad" 1401414 1401427 1401781 1401786) (-905 "PROPFUN1.spad" 1400820 1400831 1401404 1401409) (-904 "PROPFRML.spad" 1399388 1399399 1400810 1400815) (-903 "PROPERTY.spad" 1398884 1398892 1399378 1399383) (-902 "PRODUCT.spad" 1396566 1396578 1396850 1396905) (-901 "PRINT.spad" 1396318 1396326 1396556 1396561) (-900 "PRIMES.spad" 1394579 1394589 1396308 1396313) (-899 "PRIMELT.spad" 1392700 1392714 1394569 1394574) (-898 "PRIMCAT.spad" 1392343 1392351 1392690 1392695) (-897 "PRIMARR2.spad" 1391110 1391122 1392333 1392338) (-896 "PRIMARR.spad" 1389951 1389961 1390121 1390148) (-895 "PREASSOC.spad" 1389333 1389345 1389941 1389946) (-894 "PR.spad" 1387701 1387713 1388400 1388527) (-893 "PPCURVE.spad" 1386838 1386846 1387691 1387696) (-892 "PORTNUM.spad" 1386629 1386637 1386828 1386833) (-891 "POLYROOT.spad" 1385478 1385500 1386585 1386590) (-890 "POLYLIFT.spad" 1384743 1384766 1385468 1385473) (-889 "POLYCATQ.spad" 1382869 1382891 1384733 1384738) (-888 "POLYCAT.spad" 1376371 1376392 1382737 1382864) (-887 "POLYCAT.spad" 1369169 1369192 1375537 1375542) (-886 "POLY2UP.spad" 1368621 1368635 1369159 1369164) (-885 "POLY2.spad" 1368218 1368230 1368611 1368616) (-884 "POLY.spad" 1365484 1365494 1365999 1366126) (-883 "POLUTIL.spad" 1364449 1364478 1365440 1365445) (-882 "POLTOPOL.spad" 1363197 1363212 1364439 1364444) (-881 "POINT.spad" 1361866 1361876 1361953 1361980) (-880 "PNTHEORY.spad" 1358568 1358576 1361856 1361861) (-879 "PMTOOLS.spad" 1357343 1357357 1358558 1358563) (-878 "PMSYM.spad" 1356892 1356902 1357333 1357338) (-877 "PMQFCAT.spad" 1356483 1356497 1356882 1356887) (-876 "PMPREDFS.spad" 1355945 1355967 1356473 1356478) (-875 "PMPRED.spad" 1355432 1355446 1355935 1355940) (-874 "PMPLCAT.spad" 1354509 1354527 1355361 1355366) (-873 "PMLSAGG.spad" 1354094 1354108 1354499 1354504) (-872 "PMKERNEL.spad" 1353673 1353685 1354084 1354089) (-871 "PMINS.spad" 1353253 1353263 1353663 1353668) (-870 "PMFS.spad" 1352830 1352848 1353243 1353248) (-869 "PMDOWN.spad" 1352120 1352134 1352820 1352825) (-868 "PMASSFS.spad" 1351095 1351111 1352110 1352115) (-867 "PMASS.spad" 1350113 1350121 1351085 1351090) (-866 "PLOTTOOL.spad" 1349893 1349901 1350103 1350108) (-865 "PLOT3D.spad" 1346357 1346365 1349883 1349888) (-864 "PLOT1.spad" 1345530 1345540 1346347 1346352) (-863 "PLOT.spad" 1340453 1340461 1345520 1345525) (-862 "PLEQN.spad" 1327855 1327882 1340443 1340448) (-861 "PINTERPA.spad" 1327639 1327655 1327845 1327850) (-860 "PINTERP.spad" 1327261 1327280 1327629 1327634) (-859 "PID.spad" 1326235 1326243 1327187 1327256) (-858 "PICOERCE.spad" 1325892 1325902 1326225 1326230) (-857 "PI.spad" 1325509 1325517 1325866 1325887) (-856 "PGROEB.spad" 1324118 1324132 1325499 1325504) (-855 "PGE.spad" 1315791 1315799 1324108 1324113) (-854 "PGCD.spad" 1314745 1314762 1315781 1315786) (-853 "PFRPAC.spad" 1313894 1313904 1314735 1314740) (-852 "PFR.spad" 1310597 1310607 1313796 1313889) (-851 "PFOTOOLS.spad" 1309855 1309871 1310587 1310592) (-850 "PFOQ.spad" 1309225 1309243 1309845 1309850) (-849 "PFO.spad" 1308644 1308671 1309215 1309220) (-848 "PFECAT.spad" 1306354 1306362 1308570 1308639) (-847 "PFECAT.spad" 1304092 1304102 1306310 1306315) (-846 "PFBRU.spad" 1301980 1301992 1304082 1304087) (-845 "PFBR.spad" 1299540 1299563 1301970 1301975) (-844 "PF.spad" 1299114 1299126 1299345 1299438) (-843 "PERMGRP.spad" 1293884 1293894 1299104 1299109) (-842 "PERMCAT.spad" 1292545 1292555 1293864 1293879) (-841 "PERMAN.spad" 1291101 1291115 1292535 1292540) (-840 "PERM.spad" 1286908 1286918 1290931 1290946) (-839 "PENDTREE.spad" 1286130 1286140 1286410 1286415) (-838 "PDSPC.spad" 1284943 1284953 1286120 1286125) (-837 "PDSPC.spad" 1283754 1283766 1284933 1284938) (-836 "PDRING.spad" 1283596 1283606 1283734 1283749) (-835 "PDMOD.spad" 1283412 1283424 1283564 1283591) (-834 "PDEPROB.spad" 1282427 1282435 1283402 1283407) (-833 "PDECOMP.spad" 1281897 1281914 1282417 1282422) (-832 "PDECAT.spad" 1280253 1280261 1281887 1281892) (-831 "PDDOM.spad" 1279691 1279704 1280243 1280248) (-830 "PDDOM.spad" 1279127 1279142 1279681 1279686) (-829 "PCOMP.spad" 1278980 1278993 1279117 1279122) (-828 "PBWLB.spad" 1277576 1277593 1278970 1278975) (-827 "PATTERN2.spad" 1277314 1277326 1277566 1277571) (-826 "PATTERN1.spad" 1275658 1275674 1277304 1277309) (-825 "PATTERN.spad" 1270229 1270239 1275648 1275653) (-824 "PATRES2.spad" 1269901 1269915 1270219 1270224) (-823 "PATRES.spad" 1267484 1267496 1269891 1269896) (-822 "PATMATCH.spad" 1265677 1265708 1267188 1267193) (-821 "PATMAB.spad" 1265106 1265116 1265667 1265672) (-820 "PATLRES.spad" 1264192 1264206 1265096 1265101) (-819 "PATAB.spad" 1263956 1263966 1264182 1264187) (-818 "PARTPERM.spad" 1262012 1262020 1263946 1263951) (-817 "PARSURF.spad" 1261446 1261474 1262002 1262007) (-816 "PARSU2.spad" 1261243 1261259 1261436 1261441) (-815 "script-parser.spad" 1260763 1260771 1261233 1261238) (-814 "PARSCURV.spad" 1260197 1260225 1260753 1260758) (-813 "PARSC2.spad" 1259988 1260004 1260187 1260192) (-812 "PARPCURV.spad" 1259450 1259478 1259978 1259983) (-811 "PARPC2.spad" 1259241 1259257 1259440 1259445) (-810 "PARAMAST.spad" 1258369 1258377 1259231 1259236) (-809 "PAN2EXPR.spad" 1257781 1257789 1258359 1258364) (-808 "PALETTE.spad" 1256895 1256903 1257771 1257776) (-807 "PAIR.spad" 1255902 1255915 1256471 1256476) (-806 "PADICRC.spad" 1253109 1253127 1254272 1254365) (-805 "PADICRAT.spad" 1250971 1250983 1251184 1251277) (-804 "PADICCT.spad" 1249520 1249532 1250897 1250966) (-803 "PADIC.spad" 1249223 1249235 1249446 1249515) (-802 "PADEPAC.spad" 1247912 1247931 1249213 1249218) (-801 "PADE.spad" 1246664 1246680 1247902 1247907) (-800 "OWP.spad" 1245912 1245942 1246522 1246589) (-799 "OVERSET.spad" 1245485 1245493 1245902 1245907) (-798 "OVAR.spad" 1245266 1245289 1245475 1245480) (-797 "OUTFORM.spad" 1234674 1234682 1245256 1245261) (-796 "OUTBFILE.spad" 1234108 1234116 1234664 1234669) (-795 "OUTBCON.spad" 1233178 1233186 1234098 1234103) (-794 "OUTBCON.spad" 1232246 1232256 1233168 1233173) (-793 "OUT.spad" 1231364 1231372 1232236 1232241) (-792 "OSI.spad" 1230839 1230847 1231354 1231359) (-791 "OSGROUP.spad" 1230757 1230765 1230829 1230834) (-790 "ORTHPOL.spad" 1229236 1229246 1230668 1230673) (-789 "OREUP.spad" 1228682 1228710 1228909 1228948) (-788 "ORESUP.spad" 1227976 1228000 1228355 1228394) (-787 "OREPCTO.spad" 1225865 1225877 1227896 1227901) (-786 "OREPCAT.spad" 1220052 1220062 1225821 1225860) (-785 "OREPCAT.spad" 1214129 1214141 1219900 1219905) (-784 "ORDTYPE.spad" 1213366 1213374 1214119 1214124) (-783 "ORDTYPE.spad" 1212601 1212611 1213356 1213361) (-782 "ORDSTRCT.spad" 1212371 1212386 1212534 1212539) (-781 "ORDSET.spad" 1212071 1212079 1212361 1212366) (-780 "ORDRING.spad" 1211888 1211896 1212051 1212066) (-779 "ORDMON.spad" 1211743 1211751 1211878 1211883) (-778 "ORDFUNS.spad" 1210875 1210891 1211733 1211738) (-777 "ORDFIN.spad" 1210695 1210703 1210865 1210870) (-776 "ORDCOMP2.spad" 1209988 1210000 1210685 1210690) (-775 "ORDCOMP.spad" 1208444 1208454 1209526 1209555) (-774 "OPTPROB.spad" 1207082 1207090 1208434 1208439) (-773 "OPTCAT.spad" 1204761 1204769 1207072 1207077) (-772 "OPSIG.spad" 1204423 1204431 1204751 1204756) (-771 "OPQUERY.spad" 1204004 1204012 1204413 1204418) (-770 "OPERCAT.spad" 1203470 1203480 1203994 1203999) (-769 "OPERCAT.spad" 1202934 1202946 1203460 1203465) (-768 "OP.spad" 1202676 1202686 1202756 1202823) (-767 "ONECOMP2.spad" 1202100 1202112 1202666 1202671) (-766 "ONECOMP.spad" 1200836 1200846 1201638 1201667) (-765 "OMSAGG.spad" 1200624 1200634 1200792 1200831) (-764 "OMLO.spad" 1200057 1200069 1200510 1200549) (-763 "OINTDOM.spad" 1199820 1199828 1199983 1200052) (-762 "OFMONOID.spad" 1197959 1197969 1199776 1199781) (-761 "ODVAR.spad" 1197220 1197230 1197949 1197954) (-760 "ODR.spad" 1196864 1196890 1197032 1197181) (-759 "ODPOL.spad" 1194078 1194088 1194418 1194545) (-758 "ODP.spad" 1181652 1181672 1182025 1182122) (-757 "ODETOOLS.spad" 1180301 1180320 1181642 1181647) (-756 "ODESYS.spad" 1177995 1178012 1180291 1180296) (-755 "ODERTRIC.spad" 1174028 1174045 1177952 1177957) (-754 "ODERED.spad" 1173427 1173451 1174018 1174023) (-753 "ODERAT.spad" 1171060 1171077 1173417 1173422) (-752 "ODEPRRIC.spad" 1168153 1168175 1171050 1171055) (-751 "ODEPROB.spad" 1167410 1167418 1168143 1168148) (-750 "ODEPRIM.spad" 1164808 1164830 1167400 1167405) (-749 "ODEPAL.spad" 1164194 1164218 1164798 1164803) (-748 "ODEINT.spad" 1163629 1163645 1164184 1164189) (-747 "ODEEF.spad" 1159124 1159140 1163619 1163624) (-746 "ODECONST.spad" 1158669 1158687 1159114 1159119) (-745 "ODECAT.spad" 1157267 1157275 1158659 1158664) (-744 "OCTCT2.spad" 1156905 1156926 1157257 1157262) (-743 "OCT.spad" 1155005 1155015 1155719 1155758) (-742 "OCAMON.spad" 1154853 1154861 1154995 1155000) (-741 "OC.spad" 1152649 1152659 1154809 1154848) (-740 "OC.spad" 1150167 1150179 1152329 1152334) (-739 "OASGP.spad" 1149982 1149990 1150157 1150162) (-738 "OAMONS.spad" 1149504 1149512 1149972 1149977) (-737 "OAMON.spad" 1149262 1149270 1149494 1149499) (-736 "OAMON.spad" 1149018 1149028 1149252 1149257) (-735 "OAGROUP.spad" 1148556 1148564 1149008 1149013) (-734 "OAGROUP.spad" 1148092 1148102 1148546 1148551) (-733 "NUMTUBE.spad" 1147683 1147699 1148082 1148087) (-732 "NUMQUAD.spad" 1135659 1135667 1147673 1147678) (-731 "NUMODE.spad" 1127011 1127019 1135649 1135654) (-730 "NUMINT.spad" 1124577 1124585 1127001 1127006) (-729 "NUMFMT.spad" 1123417 1123425 1124567 1124572) (-728 "NUMERIC.spad" 1115532 1115542 1123223 1123228) (-727 "NTSCAT.spad" 1114040 1114056 1115500 1115527) (-726 "NTPOLFN.spad" 1113585 1113595 1113951 1113956) (-725 "NSUP2.spad" 1112977 1112989 1113575 1113580) (-724 "NSUP.spad" 1105975 1105985 1110395 1110548) (-723 "NSMP.spad" 1102079 1102098 1102371 1102498) (-722 "NREP.spad" 1100481 1100495 1102069 1102074) (-721 "NPCOEF.spad" 1099727 1099747 1100471 1100476) (-720 "NORMRETR.spad" 1099325 1099364 1099717 1099722) (-719 "NORMPK.spad" 1097267 1097286 1099315 1099320) (-718 "NORMMA.spad" 1096955 1096981 1097257 1097262) (-717 "NONE1.spad" 1096631 1096641 1096945 1096950) (-716 "NONE.spad" 1096372 1096380 1096621 1096626) (-715 "NODE1.spad" 1095859 1095875 1096362 1096367) (-714 "NNI.spad" 1094754 1094762 1095833 1095854) (-713 "NLINSOL.spad" 1093380 1093390 1094744 1094749) (-712 "NIPROB.spad" 1091921 1091929 1093370 1093375) (-711 "NFINTBAS.spad" 1089481 1089498 1091911 1091916) (-710 "NETCLT.spad" 1089455 1089466 1089471 1089476) (-709 "NCODIV.spad" 1087679 1087695 1089445 1089450) (-708 "NCNTFRAC.spad" 1087321 1087335 1087669 1087674) (-707 "NCEP.spad" 1085487 1085501 1087311 1087316) (-706 "NASRING.spad" 1085091 1085099 1085477 1085482) (-705 "NASRING.spad" 1084693 1084703 1085081 1085086) (-704 "NARNG.spad" 1084093 1084101 1084683 1084688) (-703 "NARNG.spad" 1083491 1083501 1084083 1084088) (-702 "NAALG.spad" 1083056 1083066 1083459 1083486) (-701 "NAALG.spad" 1082641 1082653 1083046 1083051) (-700 "MULTSQFR.spad" 1079599 1079616 1082631 1082636) (-699 "MULTFACT.spad" 1078982 1078999 1079589 1079594) (-698 "MTSCAT.spad" 1077076 1077097 1078880 1078977) (-697 "MTHING.spad" 1076735 1076745 1077066 1077071) (-696 "MSYSCMD.spad" 1076169 1076177 1076725 1076730) (-695 "MSETAGG.spad" 1076014 1076024 1076137 1076164) (-694 "MSET.spad" 1073928 1073938 1075676 1075715) (-693 "MRING.spad" 1070905 1070917 1073636 1073703) (-692 "MRF2.spad" 1070467 1070481 1070895 1070900) (-691 "MRATFAC.spad" 1070013 1070030 1070457 1070462) (-690 "MPRFF.spad" 1068053 1068072 1070003 1070008) (-689 "MPOLY.spad" 1065455 1065470 1065814 1065941) (-688 "MPCPF.spad" 1064719 1064738 1065445 1065450) (-687 "MPC3.spad" 1064536 1064576 1064709 1064714) (-686 "MPC2.spad" 1064189 1064222 1064526 1064531) (-685 "MONOTOOL.spad" 1062540 1062557 1064179 1064184) (-684 "MONOID.spad" 1061859 1061867 1062530 1062535) (-683 "MONOID.spad" 1061176 1061186 1061849 1061854) (-682 "MONOGEN.spad" 1059924 1059937 1061036 1061171) (-681 "MONOGEN.spad" 1058694 1058709 1059808 1059813) (-680 "MONADWU.spad" 1056772 1056780 1058684 1058689) (-679 "MONADWU.spad" 1054848 1054858 1056762 1056767) (-678 "MONAD.spad" 1054008 1054016 1054838 1054843) (-677 "MONAD.spad" 1053166 1053176 1053998 1054003) (-676 "MOEBIUS.spad" 1051902 1051916 1053146 1053161) (-675 "MODULE.spad" 1051772 1051782 1051870 1051897) (-674 "MODULE.spad" 1051662 1051674 1051762 1051767) (-673 "MODRING.spad" 1050997 1051036 1051642 1051657) (-672 "MODOP.spad" 1049654 1049666 1050819 1050886) (-671 "MODMONOM.spad" 1049385 1049403 1049644 1049649) (-670 "MODMON.spad" 1046012 1046028 1046731 1046884) (-669 "MODFIELD.spad" 1045374 1045413 1045914 1046007) (-668 "MMLFORM.spad" 1044234 1044242 1045364 1045369) (-667 "MMAP.spad" 1043976 1044010 1044224 1044229) (-666 "MLO.spad" 1042435 1042445 1043932 1043971) (-665 "MLIFT.spad" 1041047 1041064 1042425 1042430) (-664 "MKUCFUNC.spad" 1040582 1040600 1041037 1041042) (-663 "MKRECORD.spad" 1040170 1040183 1040572 1040577) (-662 "MKFUNC.spad" 1039577 1039587 1040160 1040165) (-661 "MKFLCFN.spad" 1038545 1038555 1039567 1039572) (-660 "MKBCFUNC.spad" 1038040 1038058 1038535 1038540) (-659 "MINT.spad" 1037479 1037487 1037942 1038035) (-658 "MHROWRED.spad" 1035990 1036000 1037469 1037474) (-657 "MFLOAT.spad" 1034510 1034518 1035880 1035985) (-656 "MFINFACT.spad" 1033910 1033932 1034500 1034505) (-655 "MESH.spad" 1031705 1031713 1033900 1033905) (-654 "MDDFACT.spad" 1029924 1029934 1031695 1031700) (-653 "MDAGG.spad" 1029215 1029225 1029904 1029919) (-652 "MCMPLX.spad" 1024585 1024593 1025199 1025400) (-651 "MCDEN.spad" 1023795 1023807 1024575 1024580) (-650 "MCALCFN.spad" 1020893 1020919 1023785 1023790) (-649 "MAYBE.spad" 1020193 1020204 1020883 1020888) (-648 "MATSTOR.spad" 1017509 1017519 1020183 1020188) (-647 "MATRIX.spad" 1016077 1016087 1016561 1016588) (-646 "MATLIN.spad" 1013445 1013469 1015961 1015966) (-645 "MATCAT2.spad" 1012727 1012775 1013435 1013440) (-644 "MATCAT.spad" 1004289 1004311 1012695 1012722) (-643 "MATCAT.spad" 995723 995747 1004131 1004136) (-642 "MAPPKG3.spad" 994638 994652 995713 995718) (-641 "MAPPKG2.spad" 993976 993988 994628 994633) (-640 "MAPPKG1.spad" 992804 992814 993966 993971) (-639 "MAPPAST.spad" 992143 992151 992794 992799) (-638 "MAPHACK3.spad" 991955 991969 992133 992138) (-637 "MAPHACK2.spad" 991724 991736 991945 991950) (-636 "MAPHACK1.spad" 991368 991378 991714 991719) (-635 "MAGMA.spad" 989174 989191 991358 991363) (-634 "MACROAST.spad" 988769 988777 989164 989169) (-633 "M3D.spad" 986358 986368 988016 988021) (-632 "LZSTAGG.spad" 983612 983622 986348 986353) (-631 "LZSTAGG.spad" 980864 980876 983602 983607) (-630 "LWORD.spad" 977609 977626 980854 980859) (-629 "LSTAST.spad" 977393 977401 977599 977604) (-628 "LSQM.spad" 975505 975519 975899 975950) (-627 "LSPP.spad" 975040 975057 975495 975500) (-626 "LSMP1.spad" 972883 972897 975030 975035) (-625 "LSMP.spad" 971740 971768 972873 972878) (-624 "LSAGG.spad" 971409 971419 971708 971735) (-623 "LSAGG.spad" 971098 971110 971399 971404) (-622 "LPOLY.spad" 970060 970079 970954 971023) (-621 "LPEFRAC.spad" 969331 969341 970050 970055) (-620 "LOGIC.spad" 968933 968941 969321 969326) (-619 "LOGIC.spad" 968533 968543 968923 968928) (-618 "LODOOPS.spad" 967463 967475 968523 968528) (-617 "LODOF.spad" 966509 966526 967420 967425) (-616 "LODOCAT.spad" 965175 965185 966465 966504) (-615 "LODOCAT.spad" 963839 963851 965131 965136) (-614 "LODO2.spad" 963105 963117 963512 963551) (-613 "LODO1.spad" 962498 962508 962778 962817) (-612 "LODO.spad" 961875 961891 962171 962210) (-611 "LODEEF.spad" 960677 960695 961865 961870) (-610 "LO.spad" 960078 960092 960611 960638) (-609 "LNAGG.spad" 956265 956275 960068 960073) (-608 "LNAGG.spad" 952416 952428 956221 956226) (-607 "LMOPS.spad" 949184 949201 952406 952411) (-606 "LMODULE.spad" 948968 948978 949174 949179) (-605 "LMDICT.spad" 948141 948151 948389 948416) (-604 "LLINSET.spad" 947848 947858 948131 948136) (-603 "LITERAL.spad" 947754 947765 947838 947843) (-602 "LIST3.spad" 947065 947079 947744 947749) (-601 "LIST2MAP.spad" 943992 944004 947055 947060) (-600 "LIST2.spad" 942694 942706 943982 943987) (-599 "LIST.spad" 940362 940372 941705 941732) (-598 "LINSET.spad" 940141 940151 940352 940357) (-597 "LINFORM.spad" 939604 939616 940109 940136) (-596 "LINEXP.spad" 938347 938357 939594 939599) (-595 "LINELT.spad" 937718 937730 938230 938257) (-594 "LINDEP.spad" 936567 936579 937630 937635) (-593 "LINBASIS.spad" 936203 936218 936557 936562) (-592 "LIMITRF.spad" 934150 934160 936193 936198) (-591 "LIMITPS.spad" 933060 933073 934140 934145) (-590 "LIECAT.spad" 932544 932554 932986 933055) (-589 "LIECAT.spad" 932056 932068 932500 932505) (-588 "LIE.spad" 930051 930063 931325 931470) (-587 "LIB.spad" 927744 927752 928190 928205) (-586 "LGROBP.spad" 925097 925116 927734 927739) (-585 "LFCAT.spad" 924156 924164 925087 925092) (-584 "LF.spad" 923111 923127 924146 924151) (-583 "LEXTRIPK.spad" 918734 918749 923101 923106) (-582 "LEXP.spad" 916753 916780 918714 918729) (-581 "LETAST.spad" 916452 916460 916743 916748) (-580 "LEADCDET.spad" 914858 914875 916442 916447) (-579 "LAZM3PK.spad" 913602 913624 914848 914853) (-578 "LAUPOL.spad" 912189 912202 913089 913158) (-577 "LAPLACE.spad" 911772 911788 912179 912184) (-576 "LALG.spad" 911548 911558 911752 911767) (-575 "LALG.spad" 911332 911344 911538 911543) (-574 "LA.spad" 910772 910786 911254 911293) (-573 "KVTFROM.spad" 910515 910525 910762 910767) (-572 "KTVLOGIC.spad" 910059 910067 910505 910510) (-571 "KRCFROM.spad" 909805 909815 910049 910054) (-570 "KOVACIC.spad" 908536 908553 909795 909800) (-569 "KONVERT.spad" 908258 908268 908526 908531) (-568 "KOERCE.spad" 907995 908005 908248 908253) (-567 "KERNEL2.spad" 907698 907710 907985 907990) (-566 "KERNEL.spad" 906338 906348 907467 907472) (-565 "KDAGG.spad" 905447 905469 906318 906333) (-564 "KDAGG.spad" 904564 904588 905437 905442) (-563 "KAFILE.spad" 903382 903398 903617 903644) (-562 "JVMOP.spad" 903295 903303 903372 903377) (-561 "JVMMDACC.spad" 902349 902357 903285 903290) (-560 "JVMFDACC.spad" 901665 901673 902339 902344) (-559 "JVMCSTTG.spad" 900394 900402 901655 901660) (-558 "JVMCFACC.spad" 899840 899848 900384 900389) (-557 "JVMBCODE.spad" 899751 899759 899830 899835) (-556 "JORDAN.spad" 897559 897571 899020 899165) (-555 "JOINAST.spad" 897261 897269 897549 897554) (-554 "IXAGG.spad" 895394 895418 897251 897256) (-553 "IXAGG.spad" 893382 893408 895241 895246) (-552 "IVECTOR.spad" 891983 891998 892138 892165) (-551 "ITUPLE.spad" 891159 891169 891973 891978) (-550 "ITRIGMNP.spad" 890006 890025 891149 891154) (-549 "ITFUN3.spad" 889512 889526 889996 890001) (-548 "ITFUN2.spad" 889256 889268 889502 889507) (-547 "ITFORM.spad" 888611 888619 889246 889251) (-546 "ITAYLOR.spad" 886605 886620 888475 888572) (-545 "ISUPS.spad" 879003 879018 885540 885637) (-544 "ISUMP.spad" 878504 878520 878993 878998) (-543 "ISAST.spad" 878223 878231 878494 878499) (-542 "IRURPK.spad" 876940 876959 878213 878218) (-541 "IRSN.spad" 874944 874952 876930 876935) (-540 "IRRF2F.spad" 873437 873447 874900 874905) (-539 "IRREDFFX.spad" 873038 873049 873427 873432) (-538 "IROOT.spad" 871377 871387 873028 873033) (-537 "IRFORM.spad" 870701 870709 871367 871372) (-536 "IR2F.spad" 869915 869931 870691 870696) (-535 "IR2.spad" 868943 868959 869905 869910) (-534 "IR.spad" 866747 866761 868793 868820) (-533 "IPRNTPK.spad" 866507 866515 866737 866742) (-532 "IPF.spad" 866072 866084 866312 866405) (-531 "IPADIC.spad" 865841 865867 865998 866067) (-530 "IP4ADDR.spad" 865398 865406 865831 865836) (-529 "IOMODE.spad" 864920 864928 865388 865393) (-528 "IOBFILE.spad" 864305 864313 864910 864915) (-527 "IOBCON.spad" 864170 864178 864295 864300) (-526 "INVLAPLA.spad" 863819 863835 864160 864165) (-525 "INTTR.spad" 857213 857230 863809 863814) (-524 "INTTOOLS.spad" 854957 854973 856776 856781) (-523 "INTSLPE.spad" 854285 854293 854947 854952) (-522 "INTRVL.spad" 853851 853861 854199 854280) (-521 "INTRF.spad" 852283 852297 853841 853846) (-520 "INTRET.spad" 851715 851725 852273 852278) (-519 "INTRAT.spad" 850450 850467 851705 851710) (-518 "INTPM.spad" 848817 848833 850075 850080) (-517 "INTPAF.spad" 846693 846711 848746 848751) (-516 "INTHERTR.spad" 845967 845984 846683 846688) (-515 "INTHERAL.spad" 845637 845661 845957 845962) (-514 "INTHEORY.spad" 842076 842084 845627 845632) (-513 "INTG0.spad" 835840 835858 842005 842010) (-512 "INTFACT.spad" 834907 834917 835830 835835) (-511 "INTEF.spad" 833318 833334 834897 834902) (-510 "INTDOM.spad" 831941 831949 833244 833313) (-509 "INTDOM.spad" 830626 830636 831931 831936) (-508 "INTCAT.spad" 828893 828903 830540 830621) (-507 "INTBIT.spad" 828400 828408 828883 828888) (-506 "INTALG.spad" 827588 827615 828390 828395) (-505 "INTAF.spad" 827088 827104 827578 827583) (-504 "INTABL.spad" 825106 825137 825269 825296) (-503 "INT8.spad" 824986 824994 825096 825101) (-502 "INT64.spad" 824865 824873 824976 824981) (-501 "INT32.spad" 824744 824752 824855 824860) (-500 "INT16.spad" 824623 824631 824734 824739) (-499 "INT.spad" 824149 824157 824489 824618) (-498 "INS.spad" 821652 821660 824051 824144) (-497 "INS.spad" 819241 819251 821642 821647) (-496 "INPSIGN.spad" 818711 818724 819231 819236) (-495 "INPRODPF.spad" 817807 817826 818701 818706) (-494 "INPRODFF.spad" 816895 816919 817797 817802) (-493 "INNMFACT.spad" 815870 815887 816885 816890) (-492 "INMODGCD.spad" 815374 815404 815860 815865) (-491 "INFSP.spad" 813671 813693 815364 815369) (-490 "INFPROD0.spad" 812751 812770 813661 813666) (-489 "INFORM1.spad" 812376 812386 812741 812746) (-488 "INFORM.spad" 809583 809591 812366 812371) (-487 "INFINITY.spad" 809135 809143 809573 809578) (-486 "INETCLTS.spad" 809112 809120 809125 809130) (-485 "INEP.spad" 807658 807680 809102 809107) (-484 "INDE.spad" 807307 807324 807568 807573) (-483 "INCRMAPS.spad" 806744 806754 807297 807302) (-482 "INBFILE.spad" 805840 805848 806734 806739) (-481 "INBFF.spad" 801690 801701 805830 805835) (-480 "INBCON.spad" 799956 799964 801680 801685) (-479 "INBCON.spad" 798220 798230 799946 799951) (-478 "INAST.spad" 797881 797889 798210 798215) (-477 "IMPTAST.spad" 797589 797597 797871 797876) (-476 "IMATRIX.spad" 796407 796433 796919 796946) (-475 "IMATQF.spad" 795501 795545 796363 796368) (-474 "IMATLIN.spad" 794122 794146 795457 795462) (-473 "IIARRAY2.spad" 793399 793437 793602 793629) (-472 "IFF.spad" 792809 792825 793080 793173) (-471 "IFAST.spad" 792423 792431 792799 792804) (-470 "IFARRAY.spad" 789736 789751 791434 791461) (-469 "IFAMON.spad" 789598 789615 789692 789697) (-468 "IEVALAB.spad" 789011 789023 789588 789593) (-467 "IEVALAB.spad" 788422 788436 789001 789006) (-466 "IDPOAMS.spad" 788100 788112 788334 788339) (-465 "IDPOAM.spad" 787742 787754 788012 788017) (-464 "IDPO.spad" 787477 787489 787654 787659) (-463 "IDPC.spad" 786206 786218 787467 787472) (-462 "IDPAM.spad" 785873 785885 786118 786123) (-461 "IDPAG.spad" 785542 785554 785785 785790) (-460 "IDENT.spad" 785194 785202 785532 785537) (-459 "IDECOMP.spad" 782433 782451 785184 785189) (-458 "IDEAL.spad" 777379 777418 782365 782370) (-457 "ICDEN.spad" 776592 776608 777369 777374) (-456 "ICARD.spad" 775985 775993 776582 776587) (-455 "IBPTOOLS.spad" 774592 774609 775975 775980) (-454 "IBITS.spad" 773757 773770 774190 774217) (-453 "IBATOOL.spad" 770742 770761 773747 773752) (-452 "IBACHIN.spad" 769249 769264 770732 770737) (-451 "IARRAY2.spad" 768118 768144 768729 768756) (-450 "IARRAY1.spad" 766983 766998 767129 767156) (-449 "IAN.spad" 765349 765357 766798 766891) (-448 "IALGFACT.spad" 764960 764993 765339 765344) (-447 "HYPCAT.spad" 764384 764392 764950 764955) (-446 "HYPCAT.spad" 763806 763816 764374 764379) (-445 "HOSTNAME.spad" 763622 763630 763796 763801) (-444 "HOMOTOP.spad" 763365 763375 763612 763617) (-443 "HOAGG.spad" 760647 760657 763355 763360) (-442 "HOAGG.spad" 757663 757675 760373 760378) (-441 "HEXADEC.spad" 755626 755634 755991 756084) (-440 "HEUGCD.spad" 754717 754728 755616 755621) (-439 "HELLFDIV.spad" 754323 754347 754707 754712) (-438 "HEAP.spad" 753588 753598 753803 753830) (-437 "HEADAST.spad" 753129 753137 753578 753583) (-436 "HDP.spad" 740699 740715 741076 741173) (-435 "HDMP.spad" 737844 737859 738460 738587) (-434 "HB.spad" 736119 736127 737834 737839) (-433 "HASHTBL.spad" 734089 734120 734300 734327) (-432 "HASAST.spad" 733805 733813 734079 734084) (-431 "HACKPI.spad" 733296 733304 733707 733800) (-430 "GTSET.spad" 732191 732207 732898 732925) (-429 "GSTBL.spad" 730210 730245 730384 730399) (-428 "GSERIES.spad" 727442 727469 728261 728410) (-427 "GROUP.spad" 726715 726723 727422 727437) (-426 "GROUP.spad" 725996 726006 726705 726710) (-425 "GROEBSOL.spad" 724490 724511 725986 725991) (-424 "GRMOD.spad" 723069 723081 724480 724485) (-423 "GRMOD.spad" 721646 721660 723059 723064) (-422 "GRIMAGE.spad" 714559 714567 721636 721641) (-421 "GRDEF.spad" 712938 712946 714549 714554) (-420 "GRAY.spad" 711409 711417 712928 712933) (-419 "GRALG.spad" 710502 710514 711399 711404) (-418 "GRALG.spad" 709593 709607 710492 710497) (-417 "GPOLSET.spad" 709019 709042 709231 709258) (-416 "GOSPER.spad" 708296 708314 709009 709014) (-415 "GMODPOL.spad" 707444 707471 708264 708291) (-414 "GHENSEL.spad" 706527 706541 707434 707439) (-413 "GENUPS.spad" 702820 702833 706517 706522) (-412 "GENUFACT.spad" 702397 702407 702810 702815) (-411 "GENPGCD.spad" 701999 702016 702387 702392) (-410 "GENMFACT.spad" 701451 701470 701989 701994) (-409 "GENEEZ.spad" 699410 699423 701441 701446) (-408 "GDMP.spad" 696397 696414 697171 697298) (-407 "GCNAALG.spad" 690320 690347 696191 696258) (-406 "GCDDOM.spad" 689512 689520 690246 690315) (-405 "GCDDOM.spad" 688766 688776 689502 689507) (-404 "GBINTERN.spad" 684786 684824 688756 688761) (-403 "GBF.spad" 680569 680607 684776 684781) (-402 "GBEUCLID.spad" 678451 678489 680559 680564) (-401 "GB.spad" 675977 676015 678407 678412) (-400 "GAUSSFAC.spad" 675290 675298 675967 675972) (-399 "GALUTIL.spad" 673616 673626 675246 675251) (-398 "GALPOLYU.spad" 672070 672083 673606 673611) (-397 "GALFACTU.spad" 670283 670302 672060 672065) (-396 "GALFACT.spad" 660496 660507 670273 670278) (-395 "FVFUN.spad" 657519 657527 660486 660491) (-394 "FVC.spad" 656571 656579 657509 657514) (-393 "FUNDESC.spad" 656249 656257 656561 656566) (-392 "FUNCTION.spad" 656098 656110 656239 656244) (-391 "FTEM.spad" 655263 655271 656088 656093) (-390 "FT.spad" 653563 653571 655253 655258) (-389 "FSUPFACT.spad" 652461 652480 653497 653502) (-388 "FST.spad" 650547 650555 652451 652456) (-387 "FSRED.spad" 650027 650043 650537 650542) (-386 "FSPRMELT.spad" 648893 648909 649984 649989) (-385 "FSPECF.spad" 646984 647000 648883 648888) (-384 "FSINT.spad" 646644 646660 646974 646979) (-383 "FSERIES.spad" 645835 645847 646464 646563) (-382 "FSCINT.spad" 645152 645168 645825 645830) (-381 "FSAGG2.spad" 643887 643903 645142 645147) (-380 "FSAGG.spad" 643004 643014 643843 643882) (-379 "FSAGG.spad" 642083 642095 642924 642929) (-378 "FS2UPS.spad" 636598 636632 642073 642078) (-377 "FS2EXPXP.spad" 635739 635762 636588 636593) (-376 "FS2.spad" 635394 635410 635729 635734) (-375 "FS.spad" 629663 629673 635170 635389) (-374 "FS.spad" 623705 623717 629214 629219) (-373 "FRUTIL.spad" 622659 622669 623695 623700) (-372 "FRNAALG.spad" 617936 617946 622601 622654) (-371 "FRNAALG.spad" 613225 613237 617892 617897) (-370 "FRNAAF2.spad" 612673 612691 613215 613220) (-369 "FRMOD.spad" 612081 612111 612602 612607) (-368 "FRIDEAL2.spad" 611685 611717 612071 612076) (-367 "FRIDEAL.spad" 610910 610931 611665 611680) (-366 "FRETRCT.spad" 610429 610439 610900 610905) (-365 "FRETRCT.spad" 609807 609819 610280 610285) (-364 "FRAMALG.spad" 608187 608200 609763 609802) (-363 "FRAMALG.spad" 606599 606614 608177 608182) (-362 "FRAC2.spad" 606204 606216 606589 606594) (-361 "FRAC.spad" 603993 604003 604380 604553) (-360 "FR2.spad" 603329 603341 603983 603988) (-359 "FR.spad" 596954 596964 602227 602296) (-358 "FPS.spad" 593793 593801 596844 596949) (-357 "FPS.spad" 590660 590670 593713 593718) (-356 "FPC.spad" 589706 589714 590562 590655) (-355 "FPC.spad" 588838 588848 589696 589701) (-354 "FPATMAB.spad" 588600 588610 588828 588833) (-353 "FPARFRAC.spad" 587442 587459 588590 588595) (-352 "FORTRAN.spad" 585948 585991 587432 587437) (-351 "FORTFN.spad" 583118 583126 585938 585943) (-350 "FORTCAT.spad" 582802 582810 583108 583113) (-349 "FORT.spad" 581751 581759 582792 582797) (-348 "FORDER.spad" 581442 581466 581741 581746) (-347 "FOP.spad" 580643 580651 581432 581437) (-346 "FNLA.spad" 580067 580089 580611 580638) (-345 "FNCAT.spad" 578662 578670 580057 580062) (-344 "FNAME.spad" 578554 578562 578652 578657) (-343 "FMTC.spad" 578352 578360 578480 578549) (-342 "FMONOID.spad" 578033 578043 578308 578313) (-341 "FMONCAT.spad" 575202 575212 578023 578028) (-340 "FMFUN.spad" 572232 572240 575192 575197) (-339 "FMCAT.spad" 569908 569926 572200 572227) (-338 "FMC.spad" 568960 568968 569898 569903) (-337 "FM1.spad" 568325 568337 568894 568921) (-336 "FM.spad" 567940 567952 568179 568206) (-335 "FLOATRP.spad" 565683 565697 567930 567935) (-334 "FLOATCP.spad" 563122 563136 565673 565678) (-333 "FLOAT.spad" 556436 556444 562988 563117) (-332 "FLINEXP.spad" 556158 556168 556426 556431) (-331 "FLINEXP.spad" 555821 555833 556091 556096) (-330 "FLASORT.spad" 555147 555159 555811 555816) (-329 "FLALG.spad" 552817 552836 555073 555142) (-328 "FLAGG2.spad" 551534 551550 552807 552812) (-327 "FLAGG.spad" 548600 548610 551514 551529) (-326 "FLAGG.spad" 545567 545579 548483 548488) (-325 "FINRALG.spad" 543652 543665 545523 545562) (-324 "FINRALG.spad" 541663 541678 543536 543541) (-323 "FINITE.spad" 540815 540823 541653 541658) (-322 "FINAALG.spad" 530000 530010 540757 540810) (-321 "FINAALG.spad" 519197 519209 529956 529961) (-320 "FILECAT.spad" 517731 517748 519187 519192) (-319 "FILE.spad" 517314 517324 517721 517726) (-318 "FIELD.spad" 516720 516728 517216 517309) (-317 "FIELD.spad" 516212 516222 516710 516715) (-316 "FGROUP.spad" 514875 514885 516192 516207) (-315 "FGLMICPK.spad" 513670 513685 514865 514870) (-314 "FFX.spad" 513053 513068 513386 513479) (-313 "FFSLPE.spad" 512564 512585 513043 513048) (-312 "FFPOLY2.spad" 511624 511641 512554 512559) (-311 "FFPOLY.spad" 502966 502977 511614 511619) (-310 "FFP.spad" 502371 502391 502682 502775) (-309 "FFNBX.spad" 500891 500911 502087 502180) (-308 "FFNBP.spad" 499412 499429 500607 500700) (-307 "FFNB.spad" 497877 497898 499093 499186) (-306 "FFINTBAS.spad" 495391 495410 497867 497872) (-305 "FFIELDC.spad" 492976 492984 495293 495386) (-304 "FFIELDC.spad" 490647 490657 492966 492971) (-303 "FFHOM.spad" 489419 489436 490637 490642) (-302 "FFF.spad" 486862 486873 489409 489414) (-301 "FFCGX.spad" 485717 485737 486578 486671) (-300 "FFCGP.spad" 484614 484634 485433 485526) (-299 "FFCG.spad" 483406 483427 484295 484388) (-298 "FFCAT2.spad" 483153 483193 483396 483401) (-297 "FFCAT.spad" 476318 476340 482992 483148) (-296 "FFCAT.spad" 469562 469586 476238 476243) (-295 "FF.spad" 469010 469026 469243 469336) (-294 "FEXPR.spad" 460714 460760 468761 468800) (-293 "FEVALAB.spad" 460422 460432 460704 460709) (-292 "FEVALAB.spad" 459906 459918 460190 460195) (-291 "FDIVCAT.spad" 458002 458026 459896 459901) (-290 "FDIVCAT.spad" 456096 456122 457992 457997) (-289 "FDIV2.spad" 455752 455792 456086 456091) (-288 "FDIV.spad" 455210 455234 455742 455747) (-287 "FCTRDATA.spad" 454218 454226 455200 455205) (-286 "FCPAK1.spad" 452753 452761 454208 454213) (-285 "FCOMP.spad" 452132 452142 452743 452748) (-284 "FC.spad" 442139 442147 452122 452127) (-283 "FAXF.spad" 435174 435188 442041 442134) (-282 "FAXF.spad" 428261 428277 435130 435135) (-281 "FARRAY.spad" 426239 426249 427272 427299) (-280 "FAMR.spad" 424383 424395 426137 426234) (-279 "FAMR.spad" 422511 422525 424267 424272) (-278 "FAMONOID.spad" 422195 422205 422465 422470) (-277 "FAMONC.spad" 420515 420527 422185 422190) (-276 "FAGROUP.spad" 420155 420165 420411 420438) (-275 "FACUTIL.spad" 418367 418384 420145 420150) (-274 "FACTFUNC.spad" 417569 417579 418357 418362) (-273 "EXPUPXS.spad" 414321 414344 415620 415769) (-272 "EXPRTUBE.spad" 411609 411617 414311 414316) (-271 "EXPRODE.spad" 408777 408793 411599 411604) (-270 "EXPR2UPS.spad" 404899 404912 408767 408772) (-269 "EXPR2.spad" 404604 404616 404889 404894) (-268 "EXPR.spad" 399715 399725 400429 400722) (-267 "EXPEXPAN.spad" 396462 396487 397094 397187) (-266 "EXITAST.spad" 396198 396206 396452 396457) (-265 "EXIT.spad" 395869 395877 396188 396193) (-264 "EVALCYC.spad" 395329 395343 395859 395864) (-263 "EVALAB.spad" 394909 394919 395319 395324) (-262 "EVALAB.spad" 394487 394499 394899 394904) (-261 "EUCDOM.spad" 392077 392085 394413 394482) (-260 "EUCDOM.spad" 389729 389739 392067 392072) (-259 "ESTOOLS2.spad" 389324 389338 389719 389724) (-258 "ESTOOLS1.spad" 389001 389012 389314 389319) (-257 "ESTOOLS.spad" 380879 380887 388991 388996) (-256 "ESCONT1.spad" 380620 380632 380869 380874) (-255 "ESCONT.spad" 377413 377421 380610 380615) (-254 "ES2.spad" 376926 376942 377403 377408) (-253 "ES1.spad" 376496 376512 376916 376921) (-252 "ES.spad" 369367 369375 376486 376491) (-251 "ES.spad" 362143 362153 369264 369269) (-250 "ERROR.spad" 359470 359478 362133 362138) (-249 "EQTBL.spad" 357442 357464 357651 357678) (-248 "EQ2.spad" 357160 357172 357432 357437) (-247 "EQ.spad" 351947 351957 354742 354851) (-246 "EP.spad" 348273 348283 351937 351942) (-245 "ENV.spad" 346951 346959 348263 348268) (-244 "ENTIRER.spad" 346619 346627 346895 346946) (-243 "EMR.spad" 345907 345948 346545 346614) (-242 "ELTAGG.spad" 344161 344180 345897 345902) (-241 "ELTAGG.spad" 342379 342400 344117 344122) (-240 "ELTAB.spad" 341854 341867 342369 342374) (-239 "ELFUTS.spad" 341289 341308 341844 341849) (-238 "ELEMFUN.spad" 340978 340986 341279 341284) (-237 "ELEMFUN.spad" 340665 340675 340968 340973) (-236 "ELAGG.spad" 338636 338646 340645 340660) (-235 "ELAGG.spad" 336544 336556 338555 338560) (-234 "ELABOR.spad" 335890 335898 336534 336539) (-233 "ELABEXPR.spad" 334822 334830 335880 335885) (-232 "EFUPXS.spad" 331598 331628 334778 334783) (-231 "EFULS.spad" 328434 328457 331554 331559) (-230 "EFSTRUC.spad" 326449 326465 328424 328429) (-229 "EF.spad" 321225 321241 326439 326444) (-228 "EAB.spad" 319525 319533 321215 321220) (-227 "DVARCAT.spad" 316531 316541 319515 319520) (-226 "DVARCAT.spad" 313535 313547 316521 316526) (-225 "DSMP.spad" 310834 310848 311139 311266) (-224 "DSEXT.spad" 310136 310146 310824 310829) (-223 "DSEXT.spad" 309342 309354 310032 310037) (-222 "DROPT1.spad" 309007 309017 309332 309337) (-221 "DROPT0.spad" 303872 303880 308997 309002) (-220 "DROPT.spad" 297831 297839 303862 303867) (-219 "DRAWPT.spad" 296004 296012 297821 297826) (-218 "DRAWHACK.spad" 295312 295322 295994 295999) (-217 "DRAWCX.spad" 292790 292798 295302 295307) (-216 "DRAWCURV.spad" 292337 292352 292780 292785) (-215 "DRAWCFUN.spad" 281869 281877 292327 292332) (-214 "DRAW.spad" 274745 274758 281859 281864) (-213 "DQAGG.spad" 272923 272933 274713 274740) (-212 "DPOLCAT.spad" 268280 268296 272791 272918) (-211 "DPOLCAT.spad" 263723 263741 268236 268241) (-210 "DPMO.spad" 255306 255322 255444 255653) (-209 "DPMM.spad" 246902 246920 247027 247236) (-208 "DOMTMPLT.spad" 246673 246681 246892 246897) (-207 "DOMCTOR.spad" 246428 246436 246663 246668) (-206 "DOMAIN.spad" 245539 245547 246418 246423) (-205 "DMP.spad" 242730 242745 243300 243427) (-204 "DMEXT.spad" 242597 242607 242698 242725) (-203 "DLP.spad" 241957 241967 242587 242592) (-202 "DLIST.spad" 240364 240374 240968 240995) (-201 "DLAGG.spad" 238781 238791 240354 240359) (-200 "DIVRING.spad" 238323 238331 238725 238776) (-199 "DIVRING.spad" 237909 237919 238313 238318) (-198 "DISPLAY.spad" 236099 236107 237899 237904) (-197 "DIRPROD2.spad" 234917 234935 236089 236094) (-196 "DIRPROD.spad" 222224 222240 222864 222961) (-195 "DIRPCAT.spad" 221419 221435 222122 222219) (-194 "DIRPCAT.spad" 220240 220258 220945 220950) (-193 "DIOSP.spad" 219065 219073 220230 220235) (-192 "DIOPS.spad" 218061 218071 219045 219060) (-191 "DIOPS.spad" 217031 217043 218017 218022) (-190 "DIFRING.spad" 216869 216877 217011 217026) (-189 "DIFFSPC.spad" 216448 216456 216859 216864) (-188 "DIFFSPC.spad" 216025 216035 216438 216443) (-187 "DIFFMOD.spad" 215514 215524 215993 216020) (-186 "DIFFDOM.spad" 214679 214690 215504 215509) (-185 "DIFFDOM.spad" 213842 213855 214669 214674) (-184 "DIFEXT.spad" 213661 213671 213822 213837) (-183 "DIAGG.spad" 213291 213301 213641 213656) (-182 "DIAGG.spad" 212929 212941 213281 213286) (-181 "DHMATRIX.spad" 211114 211124 212259 212286) (-180 "DFSFUN.spad" 204754 204762 211104 211109) (-179 "DFLOAT.spad" 201361 201369 204644 204749) (-178 "DFINTTLS.spad" 199592 199608 201351 201356) (-177 "DERHAM.spad" 197506 197538 199572 199587) (-176 "DEQUEUE.spad" 196703 196713 196986 197013) (-175 "DEGRED.spad" 196320 196334 196693 196698) (-174 "DEFINTRF.spad" 193902 193912 196310 196315) (-173 "DEFINTEF.spad" 192440 192456 193892 193897) (-172 "DEFAST.spad" 191824 191832 192430 192435) (-171 "DECIMAL.spad" 189791 189799 190152 190245) (-170 "DDFACT.spad" 187612 187629 189781 189786) (-169 "DBLRESP.spad" 187212 187236 187602 187607) (-168 "DBASIS.spad" 186838 186853 187202 187207) (-167 "DBASE.spad" 185502 185512 186828 186833) (-166 "DATAARY.spad" 184988 185001 185492 185497) (-165 "CYCLOTOM.spad" 184494 184502 184978 184983) (-164 "CYCLES.spad" 181286 181294 184484 184489) (-163 "CVMP.spad" 180703 180713 181276 181281) (-162 "CTRIGMNP.spad" 179203 179219 180693 180698) (-161 "CTORKIND.spad" 178806 178814 179193 179198) (-160 "CTORCAT.spad" 178047 178055 178796 178801) (-159 "CTORCAT.spad" 177286 177296 178037 178042) (-158 "CTORCALL.spad" 176875 176885 177276 177281) (-157 "CTOR.spad" 176566 176574 176865 176870) (-156 "CSTTOOLS.spad" 175811 175824 176556 176561) (-155 "CRFP.spad" 169583 169596 175801 175806) (-154 "CRCEAST.spad" 169303 169311 169573 169578) (-153 "CRAPACK.spad" 168370 168380 169293 169298) (-152 "CPMATCH.spad" 167871 167886 168292 168297) (-151 "CPIMA.spad" 167576 167595 167861 167866) (-150 "COORDSYS.spad" 162585 162595 167566 167571) (-149 "CONTOUR.spad" 162012 162020 162575 162580) (-148 "CONTFRAC.spad" 157762 157772 161914 162007) (-147 "CONDUIT.spad" 157520 157528 157752 157757) (-146 "COMRING.spad" 157194 157202 157458 157515) (-145 "COMPPROP.spad" 156712 156720 157184 157189) (-144 "COMPLPAT.spad" 156479 156494 156702 156707) (-143 "COMPLEX2.spad" 156194 156206 156469 156474) (-142 "COMPLEX.spad" 151546 151556 151790 152051) (-141 "COMPILER.spad" 151095 151103 151536 151541) (-140 "COMPFACT.spad" 150697 150711 151085 151090) (-139 "COMPCAT.spad" 148769 148779 150431 150692) (-138 "COMPCAT.spad" 146568 146580 148232 148237) (-137 "COMMUPC.spad" 146316 146334 146558 146563) (-136 "COMMONOP.spad" 145849 145857 146306 146311) (-135 "COMMAAST.spad" 145612 145620 145839 145844) (-134 "COMM.spad" 145423 145431 145602 145607) (-133 "COMBOPC.spad" 144346 144354 145413 145418) (-132 "COMBINAT.spad" 143113 143123 144336 144341) (-131 "COMBF.spad" 140535 140551 143103 143108) (-130 "COLOR.spad" 139372 139380 140525 140530) (-129 "COLONAST.spad" 139038 139046 139362 139367) (-128 "CMPLXRT.spad" 138749 138766 139028 139033) (-127 "CLLCTAST.spad" 138411 138419 138739 138744) (-126 "CLIP.spad" 134519 134527 138401 138406) (-125 "CLIF.spad" 133174 133190 134475 134514) (-124 "CLAGG.spad" 129711 129721 133164 133169) (-123 "CLAGG.spad" 126116 126128 129571 129576) (-122 "CINTSLPE.spad" 125471 125484 126106 126111) (-121 "CHVAR.spad" 123609 123631 125461 125466) (-120 "CHARZ.spad" 123524 123532 123589 123604) (-119 "CHARPOL.spad" 123050 123060 123514 123519) (-118 "CHARNZ.spad" 122812 122820 123030 123045) (-117 "CHAR.spad" 120180 120188 122802 122807) (-116 "CFCAT.spad" 119508 119516 120170 120175) (-115 "CDEN.spad" 118728 118742 119498 119503) (-114 "CCLASS.spad" 116825 116833 118087 118126) (-113 "CATEGORY.spad" 115899 115907 116815 116820) (-112 "CATCTOR.spad" 115790 115798 115889 115894) (-111 "CATAST.spad" 115416 115424 115780 115785) (-110 "CASEAST.spad" 115130 115138 115406 115411) (-109 "CARTEN2.spad" 114520 114547 115120 115125) (-108 "CARTEN.spad" 110272 110296 114510 114515) (-107 "CARD.spad" 107567 107575 110246 110267) (-106 "CAPSLAST.spad" 107349 107357 107557 107562) (-105 "CACHSET.spad" 106973 106981 107339 107344) (-104 "CABMON.spad" 106528 106536 106963 106968) (-103 "BYTEORD.spad" 106203 106211 106518 106523) (-102 "BYTEBUF.spad" 103906 103914 105192 105219) (-101 "BYTE.spad" 103381 103389 103896 103901) (-100 "BTREE.spad" 102327 102337 102861 102888) (-99 "BTOURN.spad" 101206 101215 101807 101834) (-98 "BTCAT.spad" 100599 100608 101174 101201) (-97 "BTCAT.spad" 100012 100023 100589 100594) (-96 "BTAGG.spad" 99479 99486 99980 100007) (-95 "BTAGG.spad" 98966 98975 99469 99474) (-94 "BSTREE.spad" 97581 97590 98446 98473) (-93 "BRILL.spad" 95787 95797 97571 97576) (-92 "BRAGG.spad" 94744 94753 95777 95782) (-91 "BRAGG.spad" 93665 93676 94700 94705) (-90 "BPADICRT.spad" 91527 91538 91773 91866) (-89 "BPADIC.spad" 91200 91211 91453 91522) (-88 "BOUNDZRO.spad" 90857 90873 91190 91195) (-87 "BOP1.spad" 88316 88325 90847 90852) (-86 "BOP.spad" 83459 83466 88306 88311) (-85 "BOOLEAN.spad" 83008 83015 83449 83454) (-84 "BOOLE.spad" 82659 82666 82998 83003) (-83 "BOOLE.spad" 82308 82317 82649 82654) (-82 "BMODULE.spad" 82021 82032 82276 82303) (-81 "BITS.spad" 81405 81412 81619 81646) (-80 "BINDING.spad" 80827 80834 81395 81400) (-79 "BINARY.spad" 78800 78807 79155 79248) (-78 "BGAGG.spad" 78006 78015 78780 78795) (-77 "BGAGG.spad" 77220 77231 77996 78001) (-76 "BFUNCT.spad" 76785 76792 77200 77215) (-75 "BEZOUT.spad" 75926 75952 76735 76740) (-74 "BBTREE.spad" 72677 72686 75406 75433) (-73 "BASTYPE.spad" 72177 72184 72667 72672) (-72 "BASTYPE.spad" 71675 71684 72167 72172) (-71 "BALFACT.spad" 71135 71147 71665 71670) (-70 "AUTOMOR.spad" 70586 70595 71115 71130) (-69 "ATTREG.spad" 67309 67316 70338 70581) (-68 "ATTRBUT.spad" 63332 63339 67289 67304) (-67 "ATTRAST.spad" 63049 63056 63322 63327) (-66 "ATRIG.spad" 62519 62526 63039 63044) (-65 "ATRIG.spad" 61987 61996 62509 62514) (-64 "ASTCAT.spad" 61891 61898 61977 61982) (-63 "ASTCAT.spad" 61793 61802 61881 61886) (-62 "ASTACK.spad" 61005 61014 61273 61300) (-61 "ASSOCEQ.spad" 59839 59850 60961 60966) (-60 "ARRAY2.spad" 59080 59089 59319 59346) (-59 "ARRAY12.spad" 57793 57804 59070 59075) (-58 "ARRAY1.spad" 56458 56467 56804 56831) (-57 "ARR2CAT.spad" 52240 52261 56426 56453) (-56 "ARR2CAT.spad" 48042 48065 52230 52235) (-55 "ARITY.spad" 47414 47421 48032 48037) (-54 "APPRULE.spad" 46698 46720 47404 47409) (-53 "APPLYORE.spad" 46317 46330 46688 46693) (-52 "ANY1.spad" 45388 45397 46307 46312) (-51 "ANY.spad" 44239 44246 45378 45383) (-50 "ANTISYM.spad" 42684 42700 44219 44234) (-49 "ANON.spad" 42393 42400 42674 42679) (-48 "AN.spad" 40845 40852 42208 42301) (-47 "AMR.spad" 39030 39041 40743 40840) (-46 "AMR.spad" 37046 37059 38761 38766) (-45 "ALIST.spad" 33842 33863 34192 34219) (-44 "ALGSC.spad" 32977 33003 33714 33767) (-43 "ALGPKG.spad" 28760 28771 32933 32938) (-42 "ALGMFACT.spad" 27953 27967 28750 28755) (-41 "ALGMANIP.spad" 25438 25453 27781 27786) (-40 "ALGFF.spad" 23046 23073 23263 23419) (-39 "ALGFACT.spad" 22165 22175 23036 23041) (-38 "ALGEBRA.spad" 21998 22007 22121 22160) (-37 "ALGEBRA.spad" 21863 21874 21988 21993) (-36 "ALAGG.spad" 21375 21396 21831 21858) (-35 "AHYP.spad" 20756 20763 21365 21370) (-34 "AGG.spad" 19465 19472 20746 20751) (-33 "AGG.spad" 18138 18147 19421 19426) (-32 "AF.spad" 16567 16582 18071 18076) (-31 "ADDAST.spad" 16253 16260 16557 16562) (-30 "ACPLOT.spad" 14844 14851 16243 16248) (-29 "ACFS.spad" 12701 12710 14746 14839) (-28 "ACFS.spad" 10644 10655 12691 12696) (-27 "ACF.spad" 7398 7405 10546 10639) (-26 "ACF.spad" 4238 4247 7388 7393) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index acd2cb8b..79c7b45e 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,319 +1,288 @@ -(206589 . 3525059673) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-419 |#2|) |#3|) . T)) -((((-419 (-557))) |has| (-419 |#2|) (-1057 (-419 (-557)))) (((-557)) |has| (-419 |#2|) (-1057 (-557))) (((-419 |#2|)) . T)) -((((-419 |#2|)) . T)) -((((-557)) |has| (-419 |#2|) (-656 (-557))) (((-419 |#2|)) . T)) -((((-419 |#2|)) . T)) -((((-419 |#2|) |#3|) . T)) -(|has| (-419 |#2|) (-149)) -((((-419 |#2|) |#3|) . T)) -(|has| (-419 |#2|) (-147)) -((((-419 |#2|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-419 |#2|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-419 |#2|)) . T) (((-419 (-557))) . T) (($) . T)) -(|has| (-419 |#2|) (-240)) -((($) -3955 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-239)))) -(-3955 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-239))) -((((-419 |#2|)) . T)) -((($ (-1196)) -3955 (|has| (-419 |#2|) (-915 (-1196))) (|has| (-419 |#2|) (-917 (-1196))))) -((((-1196)) -3955 (|has| (-419 |#2|) (-915 (-1196))) (|has| (-419 |#2|) (-917 (-1196))))) -((((-1196)) |has| (-419 |#2|) (-915 (-1196)))) -((((-419 |#2|)) . T)) +(205312 . 3525483396) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-361 |#2|) |#3|) . T)) +((((-361 (-499))) |has| (-361 |#2|) (-978 (-361 (-499)))) (((-499)) |has| (-361 |#2|) (-978 (-499))) (((-361 |#2|)) . T)) +((((-361 |#2|)) . T)) +((((-499)) |has| (-361 |#2|) (-596 (-499))) (((-361 |#2|)) . T)) +((((-361 |#2|)) . T)) +((((-361 |#2|) |#3|) . T)) +(|has| (-361 |#2|) (-120)) +((((-361 |#2|) |#3|) . T)) +(|has| (-361 |#2|) (-118)) +((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) +(|has| (-361 |#2|) (-190)) +((($) -3677 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-189)))) +(-3677 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-189))) +((((-361 |#2|)) . T)) +((($ (-1117)) -3677 (|has| (-361 |#2|) (-836 (-1117))) (|has| (-361 |#2|) (-838 (-1117))))) +((((-1117)) -3677 (|has| (-361 |#2|) (-836 (-1117))) (|has| (-361 |#2|) (-838 (-1117))))) +((((-1117)) |has| (-361 |#2|) (-836 (-1117)))) +((((-361 |#2|)) . T)) (((|#3|) . T)) -((((-419 |#2|) (-419 |#2|)) . T) (((-419 (-557)) (-419 (-557))) . T) (($ $) . T)) -((((-419 |#2|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-419 |#2|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-875)) . T)) -((((-419 |#2|)) . T) (((-419 (-557))) . T) (((-557)) . T) (($) . T)) -((((-557)) |has| (-419 |#2|) (-656 (-557))) (((-419 |#2|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-419 |#2|)) . T) (((-419 (-557))) . T) (($) . T) (((-557)) . T)) +((((-361 |#2|) (-361 |#2|)) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) +((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-797)) . T)) +((((-361 |#2|)) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) +((((-499)) |has| (-361 |#2|) (-596 (-499))) (((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) (((|#1| |#2| |#3|) . T)) -((((-557) |#1|) . T)) +((((-499) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1161 |#2| |#1|)) . T) ((|#1|) . T)) -((((-875)) . T)) -((((-1161 |#2| |#1|)) . T) ((|#1|) . T) (((-557)) . T)) +((((-1082 |#2| |#1|)) . T) ((|#1|) . T)) +((((-797)) . T)) +((((-1082 |#2| |#1|)) . T) ((|#1|) . T) (((-499)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((((-875)) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-797)) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-557) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((|#1| |#2|) . T)) -((((-557) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) (((-1253 (-557)) $) . T) ((|#1| |#2|) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) |has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120)))) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) |has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) ((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120)))) -((((-557) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((|#1| |#2|) . T)) +((((-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) +((((-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) (((-1174 (-499)) $) . T) ((|#1| |#2|) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) +((((-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) (((|#1| |#2|) . T)) ((($) . T)) -((((-171 (-391))) . T) (((-229)) . T) (((-391)) . T)) -((((-419 (-557))) . T) (((-557)) . T)) -((($) . T) (((-419 (-557))) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) . T)) -((((-557)) . T) (($) . T) (((-419 (-557))) . T)) -((($) . T) (((-419 (-557))) . T)) -((($) . T) (((-419 (-557))) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557)) (-419 (-557))) . T) (($ $) . T)) +((((-142 (-333))) . T) (((-179)) . T) (((-333)) . T)) +((((-361 (-499))) . T) (((-499)) . T)) +((($) . T) (((-361 (-499))) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) . T)) +((((-499)) . T) (($) . T) (((-361 (-499))) . T)) +((($) . T) (((-361 (-499))) . T)) +((($) . T) (((-361 (-499))) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) ((($) . T)) -((($ $) . T) (((-626 $) $) . T)) -((((-419 (-557))) . T) (((-557)) . T) (((-626 $)) . T)) -((((-1144 (-557) (-626 $))) . T) (($) . T) (((-557)) . T) (((-419 (-557))) . T) (((-626 $)) . T)) -((((-875)) . T)) -((((-875)) . T)) -(((|#1|) . T)) -((((-875)) . T)) -(((|#1|) . T) (((-557)) . T) (($) . T)) +((($ $) . T) (((-566 $) $) . T)) +((((-361 (-499))) . T) (((-499)) . T) (((-566 $)) . T)) +((((-1065 (-499) (-566 $))) . T) (($) . T) (((-499)) . T) (((-361 (-499))) . T) (((-566 $)) . T)) +((((-797)) . T)) +((((-797)) . T)) +(((|#1|) . T)) +((((-797)) . T)) +(((|#1|) . T) (((-499)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-557)) . T)) +(((|#1|) . T) (((-499)) . T)) (((|#1|) . T)) -((((-875)) . T)) -((((-789)) . T)) -((((-789)) . T)) -((((-875)) . T)) +((((-797)) . T)) +((((-714)) . T)) +((((-714)) . T)) +((((-797)) . T)) (((|#1|) . T)) -(|has| |#1| (-859)) -(|has| |#1| (-859)) +(|has| |#1| (-781)) +(|has| |#1| (-781)) (((|#1|) . T)) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-859)) (|has| |#1| (-1120))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-859)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(-3955 (|has| |#1| (-859)) (|has| |#1| (-1120))) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-781)) (|has| |#1| (-1041))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-781)) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(-3677 (|has| |#1| (-781)) (|has| |#1| (-1041))) (((|#1|) . T)) -((((-546)) |has| |#1| (-629 (-546)))) -((((-557) |#1|) . T)) -((((-1253 (-557)) $) . T) (((-557) |#1|) . T)) -((((-557) |#1|) . T)) +((((-488)) |has| |#1| (-569 (-488)))) +((((-499) |#1|) . T)) +((((-1174 (-499)) $) . T) (((-499) |#1|) . T)) +((((-499) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1120)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-1120)))) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-1120))) +(|has| |#1| (-1041)) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) (((|#1| (-58 |#1|) (-58 |#1|)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-707 (-352 (-3948) (-3948 (QUOTE X) (QUOTE HESS)) (-717)))) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-1286 (-352 (-3948) (-3948 (QUOTE X)) (-717)))) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -(((|#1|) . T)) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-1120))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(|has| |#1| (-1120)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T)) +(((|#1|) . T)) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(|has| |#1| (-1041)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-797)) . T)) (((|#1| |#1|) . T)) -((((-875)) . T)) +((((-797)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1120)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-1120)))) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-1120))) +(|has| |#1| (-1041)) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) (((|#1|) . T)) (((|#1|) . T)) -((((-875)) . T)) -((((-1023 2)) . T) (((-419 (-557))) . T) (((-875)) . T)) -((((-557)) . T)) -((((-557)) . T)) +((((-797)) . T)) +((((-944 2)) . T) (((-361 (-499))) . T) (((-797)) . T)) +((((-499)) . T)) +((((-499)) . T)) ((($) . T)) -((((-557)) . T) (($) . T) (((-419 (-557))) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) . T)) -((((-557)) . T) (($) . T) (((-419 (-557))) . T)) -((((-557)) . T) (($) . T) (((-419 (-557))) . T)) -((((-557)) . T) (((-419 (-557))) . T) (($) . T)) -((((-557)) . T) (((-419 (-557))) . T) (($) . T)) -((((-557) (-557)) . T) (((-419 (-557)) (-419 (-557))) . T) (($ $) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-546)) . T) (((-903 (-557))) . T) (((-391)) . T) (((-229)) . T)) -((((-419 (-557))) . T) (((-557)) . T)) -((((-557)) . T) (($) . T) (((-419 (-557))) . T)) -((((-557)) . T)) -((((-875)) . T)) -((((-114)) . T)) -((((-114)) . T)) -((((-557) (-114)) . T)) -((((-557) (-114)) . T)) -((((-557) (-114)) . T) (((-1253 (-557)) $) . T)) -((((-546)) . T)) -((((-114)) . T)) -((((-875)) . T)) -((((-114)) . T)) -((((-114)) . T)) -((((-546)) . T)) -((((-875)) . T)) -((((-1196)) . T)) -((((-875)) . T)) +((((-499)) . T) (($) . T) (((-361 (-499))) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) . T)) +((((-499)) . T) (($) . T) (((-361 (-499))) . T)) +((((-499)) . T) (($) . T) (((-361 (-499))) . T)) +((((-499)) . T) (((-361 (-499))) . T) (($) . T)) +((((-499)) . T) (((-361 (-499))) . T) (($) . T)) +((((-499) (-499)) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-488)) . T) (((-825 (-499))) . T) (((-333)) . T) (((-179)) . T)) +((((-361 (-499))) . T) (((-499)) . T)) +((((-499)) . T) (($) . T) (((-361 (-499))) . T)) +((((-499)) . T)) +((((-797)) . T)) +((((-85)) . T)) +((((-85)) . T)) +((((-499) (-85)) . T)) +((((-499) (-85)) . T)) +((((-499) (-85)) . T) (((-1174 (-499)) $) . T)) +((((-488)) . T)) +((((-85)) . T)) +((((-797)) . T)) +((((-85)) . T)) +((((-85)) . T)) +((((-488)) . T)) +((((-797)) . T)) +((((-1117)) . T)) +((((-797)) . T)) ((($) . T)) -((((-875)) . T)) -((($) . T) (((-557)) . T)) +((((-797)) . T)) +((($) . T) (((-499)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-557)) . T) (($) . T)) -(((|#1|) . T)) -((((-875)) . T)) -((((-118 |#1|)) . T)) -((((-118 |#1|)) . T)) -((((-118 |#1|)) . T) (($) . T) (((-419 (-557))) . T)) -((($) . T) (((-557)) . T) (((-118 |#1|)) . T) (((-419 (-557))) . T)) -((((-118 |#1|)) . T) (($) . T) (((-419 (-557))) . T)) -((((-118 |#1|)) . T) (($) . T) (((-419 (-557))) . T)) -((((-118 |#1|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-118 |#1|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-118 |#1|) (-118 |#1|)) . T) (((-419 (-557)) (-419 (-557))) . T) (($ $) . T)) -((((-118 |#1|)) . T)) -((((-1196) (-118 |#1|)) |has| (-118 |#1|) (-526 (-1196) (-118 |#1|))) (((-118 |#1|) (-118 |#1|)) |has| (-118 |#1|) (-321 (-118 |#1|)))) -((((-118 |#1|)) |has| (-118 |#1|) (-321 (-118 |#1|)))) -((((-118 |#1|) $) |has| (-118 |#1|) (-298 (-118 |#1|) (-118 |#1|)))) -((((-118 |#1|)) . T)) -((($) . T) (((-118 |#1|)) . T) (((-419 (-557))) . T)) -((((-118 |#1|)) . T)) -((((-118 |#1|)) . T)) -((((-118 |#1|)) . T)) -((((-557)) . T) (((-118 |#1|)) . T) (($) . T) (((-419 (-557))) . T)) -((((-118 |#1|)) . T)) -((((-118 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1120)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-1120)))) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-1120))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1120)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-1120)))) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-1120))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1120)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-1120)))) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-1120))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-875)) . T)) -((((-130)) . T)) -((((-130)) . T)) -((((-1178)) . T) (((-975 (-130))) . T) (((-875)) . T)) -((((-130)) . T)) -((((-557) (-130)) . T)) -((((-1253 (-557)) $) . T) (((-557) (-130)) . T)) -((((-557) (-130)) . T)) -((((-130)) . T)) -((((-130)) . T)) -((((-875)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-789)) . T)) -((((-789)) . T)) -((((-875)) . T)) -((((-557) |#3|) . T)) -((((-557) (-789)) . T) ((|#3| (-789)) . T)) -((((-875)) . T)) +((((-499)) . T) (($) . T)) +(((|#1|) . T)) +((((-797)) . T)) +((((-89 |#1|)) . T)) +((((-89 |#1|)) . T)) +((((-89 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) +((($) . T) (((-499)) . T) (((-89 |#1|)) . T) (((-361 (-499))) . T)) +((((-89 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) +((((-89 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) +((((-89 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-89 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-89 |#1|) (-89 |#1|)) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) +((((-89 |#1|)) . T)) +((((-1117) (-89 |#1|)) |has| (-89 |#1|) (-468 (-1117) (-89 |#1|))) (((-89 |#1|) (-89 |#1|)) |has| (-89 |#1|) (-263 (-89 |#1|)))) +((((-89 |#1|)) |has| (-89 |#1|) (-263 (-89 |#1|)))) +((((-89 |#1|) $) |has| (-89 |#1|) (-240 (-89 |#1|) (-89 |#1|)))) +((((-89 |#1|)) . T)) +((($) . T) (((-89 |#1|)) . T) (((-361 (-499))) . T)) +((((-89 |#1|)) . T)) +((((-89 |#1|)) . T)) +((((-89 |#1|)) . T)) +((((-499)) . T) (((-89 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) +((((-89 |#1|)) . T)) +((((-89 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1041)) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1041)) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1041)) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-797)) . T)) +((((-101)) . T)) +((((-101)) . T)) +((((-1099)) . T) (((-896 (-101))) . T) (((-797)) . T)) +((((-101)) . T)) +((((-499) (-101)) . T)) +((((-1174 (-499)) $) . T) (((-499) (-101)) . T)) +((((-499) (-101)) . T)) +((((-101)) . T)) +((((-101)) . T)) +((((-797)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-714)) . T)) +((((-714)) . T)) +((((-797)) . T)) +((((-499) |#3|) . T)) +((((-499) (-714)) . T) ((|#3| (-714)) . T)) +((((-797)) . T)) (((|#3|) . T)) -((((-659 $)) . T) (((-659 |#3|)) . T) (((-1161 |#2| |#3|)) . T) (((-246 |#2| |#3|)) . T) ((|#3|) . T)) -(((|#3| (-789)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-518)) . T)) -((((-186)) . T) (((-875)) . T)) -((((-875)) . T)) -((((-146)) . T)) -((((-146)) . T)) -((((-146)) . T)) -((((-146)) . T)) -((((-146)) . T)) -((((-146)) . T)) -((((-146)) . T)) -((((-659 (-146))) . T) (((-1178)) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-599 $)) . T) (((-599 |#3|)) . T) (((-1082 |#2| |#3|)) . T) (((-196 |#2| |#3|)) . T) ((|#3|) . T)) +(((|#3| (-714)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-460)) . T)) +((((-157)) . T) (((-797)) . T)) +((((-797)) . T)) +((((-117)) . T)) +((((-117)) . T)) +((((-117)) . T)) +((((-117)) . T)) +((((-117)) . T)) +((((-117)) . T)) +((((-117)) . T)) +((((-599 (-117))) . T) (((-1099)) . T)) +((((-797)) . T)) +((((-797)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) @@ -321,1380 +290,1356 @@ (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) -(((|#2|) . T) (((-557)) . T)) +(((|#2|) . T) (((-499)) . T)) (((|#2|) . T) (($) . T)) -((((-875)) . T)) -(((|#2|) . T) (($) . T) (((-557)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -(-3955 (|has| |#1| (-147)) (|has| |#1| (-363))) -((((-875)) . T)) -(|has| |#1| (-149)) -(((|#1|) . T)) -((((-1196)) |has| |#1| (-915 (-1196)))) -((((-1196)) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196))))) -((($ (-1196)) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196))))) -(((|#1|) . T)) -(-3955 (|has| |#1| (-240)) (|has| |#1| (-239)) (|has| |#1| (-363))) -((($) -3955 (|has| |#1| (-240)) (|has| |#1| (-239)) (|has| |#1| (-363)))) -(-3955 (|has| |#1| (-240)) (|has| |#1| (-363))) -(-3955 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3955 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3955 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-568))) -(-3955 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-568))) -(-3955 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3955 (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-363))) -(((|#1|) . T)) -((((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) -(((|#1|) |has| |#1| (-321 |#1|))) -(((|#1| $) |has| |#1| (-298 |#1| |#1|))) -(((|#1|) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) . T) (((-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T) (((-557)) |has| |#1| (-656 (-557)))) -(((|#1|) . T) (((-557)) |has| |#1| (-656 (-557)))) -(((|#1|) . T)) -((((-557)) |has| |#1| (-899 (-557))) (((-391)) |has| |#1| (-899 (-391)))) -(((|#1|) . T)) -((((-557)) . T) (($) -3955 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-1057 (-419 (-557))))) ((|#1|) . T)) -(((|#1|) . T) (((-557)) |has| |#1| (-1057 (-557))) (((-419 (-557))) |has| |#1| (-1057 (-419 (-557))))) -(((|#1| (-1190 |#1|)) . T)) -(((|#1| (-1190 |#1|)) . T)) -((($) -3955 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) -3955 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) . T) (((-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) . T) (((-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($ $) . T) (((-419 (-557)) (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1| |#1|) . T)) -((($) -3955 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -(((|#1| (-1190 |#1|)) . T)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -(-3955 (|has| |#1| (-381)) (|has| |#1| (-363))) -(((|#1|) . T)) -((((-171 (-229))) |has| |#1| (-1039)) (((-171 (-391))) |has| |#1| (-1039)) (((-546)) |has| |#1| (-629 (-546))) (((-1190 |#1|)) . T) (((-903 (-557))) |has| |#1| (-629 (-903 (-557)))) (((-903 (-391))) |has| |#1| (-629 (-903 (-391))))) -(-12 (|has| |#1| (-319)) (|has| |#1| (-927))) -(-12 (|has| |#1| (-1021)) (|has| |#1| (-1222))) -(|has| |#1| (-1222)) -(|has| |#1| (-1222)) -(|has| |#1| (-1222)) -(|has| |#1| (-1222)) -(|has| |#1| (-1222)) -(|has| |#1| (-1222)) -(((|#1|) . T)) -((((-875)) . T)) -((((-419 (-557))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) -((((-419 (-557))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) -((((-875)) . T)) -((($) . T) (((-419 (-557))) . T) (((-419 |#1|)) . T) ((|#1|) . T)) -((($) . T) (((-419 (-557))) . T) (((-419 |#1|)) . T) ((|#1|) . T)) -((($ $) . T) (((-419 (-557)) (-419 (-557))) . T) (((-419 |#1|) (-419 |#1|)) . T) ((|#1| |#1|) . T)) -((((-419 (-557))) . T) (((-419 |#1|)) . T) ((|#1|) . T) (((-557)) . T) (($) . T)) -((((-419 (-557))) . T) (((-419 |#1|)) . T) ((|#1|) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T) (((-557)) . T)) -((((-419 (-557))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) -((((-875)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-518)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-659 |#1|)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-1023 10)) . T) (((-419 (-557))) . T) (((-875)) . T)) -((((-557)) . T)) -((((-557)) . T)) +((((-797)) . T)) +(((|#2|) . T) (($) . T) (((-499)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +(-3677 (|has| |#1| (-118)) (|has| |#1| (-305))) +((((-797)) . T)) +(|has| |#1| (-120)) +(((|#1|) . T)) +((((-1117)) |has| |#1| (-836 (-1117)))) +((((-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117))))) +((($ (-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117))))) +(((|#1|) . T)) +(-3677 (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-305))) +((($) -3677 (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-305)))) +(-3677 (|has| |#1| (-190)) (|has| |#1| (-305))) +(-3677 (|has| |#1| (-261)) (|has| |#1| (-318)) (|has| |#1| (-305))) +(-3677 (|has| |#1| (-261)) (|has| |#1| (-318)) (|has| |#1| (-305))) +(-3677 (|has| |#1| (-261)) (|has| |#1| (-318)) (|has| |#1| (-305)) (|has| |#1| (-510))) +(-3677 (|has| |#1| (-261)) (|has| |#1| (-318)) (|has| |#1| (-305)) (|has| |#1| (-510))) +(-3677 (|has| |#1| (-261)) (|has| |#1| (-318)) (|has| |#1| (-305))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-305))) +(-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-318)) (|has| |#1| (-305))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-305))) +(((|#1|) . T)) +((((-1117) |#1|) |has| |#1| (-468 (-1117) |#1|)) ((|#1| |#1|) |has| |#1| (-263 |#1|))) +(((|#1|) |has| |#1| (-263 |#1|))) +(((|#1| $) |has| |#1| (-240 |#1| |#1|))) +(((|#1|) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) +((($) . T) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T) (((-499)) |has| |#1| (-596 (-499)))) +(((|#1|) . T) (((-499)) |has| |#1| (-596 (-499)))) +(((|#1|) . T)) +((((-499)) |has| |#1| (-821 (-499))) (((-333)) |has| |#1| (-821 (-333)))) +(((|#1|) . T)) +((((-499)) . T) (($) -3677 (|has| |#1| (-261)) (|has| |#1| (-318)) (|has| |#1| (-305)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305)) (|has| |#1| (-978 (-361 (-499))))) ((|#1|) . T)) +(((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) +(((|#1| (-1111 |#1|)) . T)) +(((|#1| (-1111 |#1|)) . T)) +((($) -3677 (|has| |#1| (-261)) (|has| |#1| (-318)) (|has| |#1| (-305)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) +((($) -3677 (|has| |#1| (-261)) (|has| |#1| (-318)) (|has| |#1| (-305)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) +((($) . T) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) +((($) . T) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) +((($ $) . T) (((-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1| |#1|) . T)) +((($) -3677 (|has| |#1| (-261)) (|has| |#1| (-318)) (|has| |#1| (-305)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) +(((|#1| (-1111 |#1|)) . T)) +(|has| |#1| (-305)) +(|has| |#1| (-305)) +(|has| |#1| (-305)) +(-3677 (|has| |#1| (-323)) (|has| |#1| (-305))) +(((|#1|) . T)) +((((-142 (-179))) |has| |#1| (-960)) (((-142 (-333))) |has| |#1| (-960)) (((-488)) |has| |#1| (-569 (-488))) (((-1111 |#1|)) . T) (((-825 (-499))) |has| |#1| (-569 (-825 (-499)))) (((-825 (-333))) |has| |#1| (-569 (-825 (-333))))) +(-12 (|has| |#1| (-261)) (|has| |#1| (-848))) +(-12 (|has| |#1| (-942)) (|has| |#1| (-1143))) +(|has| |#1| (-1143)) +(|has| |#1| (-1143)) +(|has| |#1| (-1143)) +(|has| |#1| (-1143)) +(|has| |#1| (-1143)) +(|has| |#1| (-1143)) +(((|#1|) . T)) +((((-797)) . T)) +((((-361 (-499))) . T) (($) . T) (((-361 |#1|)) . T) ((|#1|) . T)) +((((-361 (-499))) . T) (($) . T) (((-361 |#1|)) . T) ((|#1|) . T)) +((((-797)) . T)) +((($) . T) (((-361 (-499))) . T) (((-361 |#1|)) . T) ((|#1|) . T)) +((($) . T) (((-361 (-499))) . T) (((-361 |#1|)) . T) ((|#1|) . T)) +((($ $) . T) (((-361 (-499)) (-361 (-499))) . T) (((-361 |#1|) (-361 |#1|)) . T) ((|#1| |#1|) . T)) +((((-361 (-499))) . T) (((-361 |#1|)) . T) ((|#1|) . T) (((-499)) . T) (($) . T)) +((((-361 (-499))) . T) (((-361 |#1|)) . T) ((|#1|) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T) (((-361 |#1|)) . T) ((|#1|) . T) (((-499)) . T)) +((((-361 (-499))) . T) (($) . T) (((-361 |#1|)) . T) ((|#1|) . T)) +((((-797)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-460)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-599 |#1|)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-944 10)) . T) (((-361 (-499))) . T) (((-797)) . T)) +((((-499)) . T)) +((((-499)) . T)) ((($) . T)) -((((-557)) . T) (($) . T) (((-419 (-557))) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) . T)) -((((-557)) . T) (($) . T) (((-419 (-557))) . T)) -((((-557)) . T) (($) . T) (((-419 (-557))) . T)) -((((-557)) . T) (((-419 (-557))) . T) (($) . T)) -((((-557)) . T) (((-419 (-557))) . T) (($) . T)) -((((-557) (-557)) . T) (((-419 (-557)) (-419 (-557))) . T) (($ $) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-546)) . T) (((-903 (-557))) . T) (((-391)) . T) (((-229)) . T)) -((((-419 (-557))) . T) (((-557)) . T)) -((((-557)) . T) (($) . T) (((-419 (-557))) . T)) -((((-557)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1120)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-1120)))) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-1120))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-326 |#1|)) . T)) -((((-875)) . T)) -((((-326 |#1|)) . T) (((-557)) . T) (($) . T)) -((((-326 |#1|)) . T) (($) . T)) -((((-326 |#1|)) . T) (((-557)) . T)) -((((-326 |#1|)) . T)) +((((-499)) . T) (($) . T) (((-361 (-499))) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) . T)) +((((-499)) . T) (($) . T) (((-361 (-499))) . T)) +((((-499)) . T) (($) . T) (((-361 (-499))) . T)) +((((-499)) . T) (((-361 (-499))) . T) (($) . T)) +((((-499)) . T) (((-361 (-499))) . T) (($) . T)) +((((-499) (-499)) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-488)) . T) (((-825 (-499))) . T) (((-333)) . T) (((-179)) . T)) +((((-361 (-499))) . T) (((-499)) . T)) +((((-499)) . T) (($) . T) (((-361 (-499))) . T)) +((((-499)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1041)) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-268 |#1|)) . T)) +((((-797)) . T)) +((((-268 |#1|)) . T) (((-499)) . T) (($) . T)) +((((-268 |#1|)) . T) (($) . T)) +((((-268 |#1|)) . T) (((-499)) . T)) +((((-268 |#1|)) . T)) ((($) . T)) -((((-557)) . T) (((-419 (-557))) . T)) -((((-391)) . T)) -((($) . T) (((-419 (-557))) . T)) -((($) . T) (((-419 (-557))) . T)) -((($ $) . T) (((-419 (-557)) (-419 (-557))) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-546)) . T) (((-229)) . T) (((-391)) . T) (((-903 (-391))) . T)) -((((-875)) . T)) -((((-419 (-557))) . T) (((-557)) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T) (((-557)) . T)) -(((|#1| (-1286 |#1|) (-1286 |#1|)) . T)) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-1120))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(|has| |#1| (-1120)) -(((|#1|) . T)) -(((|#1| (-1286 |#1|) (-1286 |#1|)) . T)) -(-3955 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1068))) -(-3955 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-813)) (|has| |#2| (-1068))) -(-3955 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-744)) (|has| |#2| (-813)) (|has| |#2| (-859)) (|has| |#2| (-1068)) (|has| |#2| (-1120))) -(-3955 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-744)) (|has| |#2| (-813)) (|has| |#2| (-859)) (|has| |#2| (-1068)) (|has| |#2| (-1120))) -(-3955 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-813)) (|has| |#2| (-1068))) -(-3955 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-813)) (|has| |#2| (-1068))) -(((|#2| |#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1068)))) -(((|#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-744)) (|has| |#2| (-1068)))) -(((|#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1068)))) -((((-875)) -3955 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-628 (-875))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-744)) (|has| |#2| (-813)) (|has| |#2| (-859)) (|has| |#2| (-1068)) (|has| |#2| (-1120))) (((-1286 |#2|)) . T)) -(((|#2|) |has| |#2| (-1068))) -((((-1196)) -12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068)))) -((((-1196)) -3955 (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))))) -((($ (-1196)) -3955 (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))))) -(((|#2|) |has| |#2| (-1068))) -(-3955 (-12 (|has| |#2| (-240)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1068)))) -((($) -3955 (-12 (|has| |#2| (-240)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1068))))) -(|has| |#2| (-1068)) -(|has| |#2| (-1068)) -(|has| |#2| (-1068)) -(|has| |#2| (-1068)) -((((-557)) -3955 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1068))) ((|#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-744)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068))) -(-12 (|has| |#2| (-240)) (|has| |#2| (-1068))) -(|has| |#2| (-381)) -(((|#2|) |has| |#2| (-1068))) -(((|#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068)) (((-557)) -12 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068)))) -(((|#2|) |has| |#2| (-1068)) (((-557)) -12 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068)))) -(((|#2|) |has| |#2| (-1120))) -((((-557)) -3955 (-12 (|has| |#2| (-1057 (-557))) (|has| |#2| (-1120))) (|has| |#2| (-1068))) ((|#2|) |has| |#2| (-1120)) (((-419 (-557))) -12 (|has| |#2| (-1057 (-419 (-557)))) (|has| |#2| (-1120)))) -(((|#2|) |has| |#2| (-1120)) (((-557)) -12 (|has| |#2| (-1057 (-557))) (|has| |#2| (-1120))) (((-419 (-557))) -12 (|has| |#2| (-1057 (-419 (-557)))) (|has| |#2| (-1120)))) -((((-557) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120)))) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120)))) +((((-499)) . T) (((-361 (-499))) . T)) +((((-333)) . T)) +((($) . T) (((-361 (-499))) . T)) +((($) . T) (((-361 (-499))) . T)) +((($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-488)) . T) (((-179)) . T) (((-333)) . T) (((-825 (-333))) . T)) +((((-797)) . T)) +((((-361 (-499))) . T) (((-499)) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T) (((-499)) . T)) +(((|#1| (-1207 |#1|) (-1207 |#1|)) . T)) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(|has| |#1| (-1041)) +(((|#1|) . T)) +(((|#1| (-1207 |#1|) (-1207 |#1|)) . T)) +(-3677 (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989))) +(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-738)) (|has| |#2| (-989))) +(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-323)) (|has| |#2| (-684)) (|has| |#2| (-738)) (|has| |#2| (-781)) (|has| |#2| (-989)) (|has| |#2| (-1041))) +(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-73)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-323)) (|has| |#2| (-684)) (|has| |#2| (-738)) (|has| |#2| (-781)) (|has| |#2| (-989)) (|has| |#2| (-1041))) +(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-738)) (|has| |#2| (-989))) +(-3677 (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-738)) (|has| |#2| (-989))) +(((|#2| |#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989)))) +(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-684)) (|has| |#2| (-989)))) +(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989)))) +((((-797)) -3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-568 (-797))) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-323)) (|has| |#2| (-684)) (|has| |#2| (-738)) (|has| |#2| (-781)) (|has| |#2| (-989)) (|has| |#2| (-1041))) (((-1207 |#2|)) . T)) +(((|#2|) |has| |#2| (-989))) +((((-1117)) -12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989)))) +((((-1117)) -3677 (-12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989))) (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))))) +((($ (-1117)) -3677 (-12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989))) (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))))) +(((|#2|) |has| |#2| (-989))) +(-3677 (-12 (|has| |#2| (-190)) (|has| |#2| (-989))) (-12 (|has| |#2| (-189)) (|has| |#2| (-989)))) +((($) -3677 (-12 (|has| |#2| (-190)) (|has| |#2| (-989))) (-12 (|has| |#2| (-189)) (|has| |#2| (-989))))) +(|has| |#2| (-989)) +(|has| |#2| (-989)) +(|has| |#2| (-989)) +(|has| |#2| (-989)) +((((-499)) -3677 (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989))) ((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-684)) (|has| |#2| (-989))) (($) |has| |#2| (-989))) +(-12 (|has| |#2| (-190)) (|has| |#2| (-989))) +(|has| |#2| (-323)) +(((|#2|) |has| |#2| (-989))) +(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989))) (($) |has| |#2| (-989)) (((-499)) -12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989)))) +(((|#2|) |has| |#2| (-989)) (((-499)) -12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989)))) +(((|#2|) |has| |#2| (-1041))) +((((-499)) -3677 (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) (|has| |#2| (-989))) ((|#2|) |has| |#2| (-1041)) (((-361 (-499))) -12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041)))) +(((|#2|) |has| |#2| (-1041)) (((-499)) -12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) (((-361 (-499))) -12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041)))) +((((-499) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) +(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) (((|#2|) . T)) -((((-557) |#2|) . T)) -((((-557) |#2|) . T)) -(((|#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-744)))) -(((|#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)))) -(|has| |#2| (-813)) -(|has| |#2| (-813)) -(-3955 (|has| |#2| (-813)) (|has| |#2| (-859))) -(-3955 (|has| |#2| (-813)) (|has| |#2| (-859))) -(|has| |#2| (-813)) -(|has| |#2| (-813)) -(((|#2|) |has| |#2| (-376))) +((((-499) |#2|) . T)) +((((-499) |#2|) . T)) +(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-684)))) +(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)))) +(|has| |#2| (-738)) +(|has| |#2| (-738)) +(-3677 (|has| |#2| (-738)) (|has| |#2| (-781))) +(-3677 (|has| |#2| (-738)) (|has| |#2| (-781))) +(|has| |#2| (-738)) +(|has| |#2| (-738)) +(((|#2|) |has| |#2| (-318))) (((|#1| |#2|) . T)) -((((-659 |#1|)) . T)) -((((-659 |#1|)) . T)) +((((-599 |#1|)) . T)) +((((-599 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-859)) (|has| |#1| (-1120))) -((((-659 |#1|)) . T) (((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-859)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(-3955 (|has| |#1| (-859)) (|has| |#1| (-1120))) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-781)) (|has| |#1| (-1041))) +((((-599 |#1|)) . T) (((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-781)) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(-3677 (|has| |#1| (-781)) (|has| |#1| (-1041))) (((|#1|) . T)) -((((-546)) |has| |#1| (-629 (-546)))) -((((-557) |#1|) . T)) -((((-1253 (-557)) $) . T) (((-557) |#1|) . T)) -((((-557) |#1|) . T)) +((((-488)) |has| |#1| (-569 (-488)))) +((((-499) |#1|) . T)) +((((-1174 (-499)) $) . T) (((-499) |#1|) . T)) +((((-499) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-859)) -(|has| |#1| (-859)) +(|has| |#1| (-781)) +(|has| |#1| (-781)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-546)) |has| |#2| (-629 (-546))) (((-903 (-391))) |has| |#2| (-629 (-903 (-391)))) (((-903 (-557))) |has| |#2| (-629 (-903 (-557))))) +((((-488)) |has| |#2| (-569 (-488))) (((-825 (-333))) |has| |#2| (-569 (-825 (-333)))) (((-825 (-499))) |has| |#2| (-569 (-825 (-499))))) ((($) . T)) -(((|#2| (-246 (-4385 |#1|) (-789))) . T)) +(((|#2| (-196 (-4107 |#1|) (-714))) . T)) (((|#2|) . T)) -((((-875)) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) . T)) -(|has| |#2| (-147)) -(|has| |#2| (-149)) -(-3955 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -((((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) . T) (($) -3955 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) . T) (($) -3955 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-419 (-557)) (-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2| |#2|) . T) (($ $) -3955 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -(-3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -(-3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -((((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) |has| |#2| (-175)) (($) -3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) |has| |#2| (-175)) (($) -3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) |has| |#2| (-175)) (($) -3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -(((|#2| (-246 (-4385 |#1|) (-789))) . T)) +((((-797)) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T)) +(|has| |#2| (-118)) +(|has| |#2| (-120)) +(-3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) +((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (($) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (($) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +((((-361 (-499)) (-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2| |#2|) . T) (($ $) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +(-3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) +(-3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) +((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +(((|#2| (-196 (-4107 |#1|) (-714))) . T)) (((|#2|) . T)) -((($) . T) (((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) . T) (((-557)) |has| |#2| (-656 (-557)))) -(((|#2|) . T) (((-557)) |has| |#2| (-656 (-557)))) -(-3955 (|has| |#2| (-464)) (|has| |#2| (-927))) -((($ $) . T) (((-876 |#1|) $) . T) (((-876 |#1|) |#2|) . T)) -((((-876 |#1|)) . T)) -((($ (-876 |#1|)) . T)) -((((-876 |#1|)) . T)) -(|has| |#2| (-927)) -(|has| |#2| (-927)) -((((-419 (-557))) |has| |#2| (-1057 (-419 (-557)))) (((-557)) |has| |#2| (-1057 (-557))) ((|#2|) . T) (((-876 |#1|)) . T)) -((((-557)) . T) (((-419 (-557))) -3955 (|has| |#2| (-38 (-419 (-557)))) (|has| |#2| (-1057 (-419 (-557))))) ((|#2|) . T) (($) -3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) (((-876 |#1|)) . T)) -(((|#2| (-246 (-4385 |#1|) (-789)) (-876 |#1|)) . T)) -((((-875)) . T)) -((((-518)) . T)) -((((-186)) . T) (((-875)) . T)) -((((-789) (-1201)) . T)) -((((-875)) . T)) -(((|#4| |#4|) -3955 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1068)))) -(((|#4|) -3955 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-744)) (|has| |#4| (-1068)))) -(((|#4|) -3955 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1068)))) -((((-875)) . T) (((-1286 |#4|)) . T)) -(((|#4|) |has| |#4| (-1068))) -((((-1196)) -12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068)))) -((((-1196)) -3955 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068))))) -((($ (-1196)) -3955 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068))))) -(((|#4|) |has| |#4| (-1068))) -(-3955 (-12 (|has| |#4| (-240)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1068)))) -((($) -3955 (-12 (|has| |#4| (-240)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1068))))) -(|has| |#4| (-1068)) -(|has| |#4| (-1068)) -(|has| |#4| (-1068)) -(|has| |#4| (-1068)) -(((|#3|) . T) ((|#2|) . T) (((-557)) . T) ((|#4|) -3955 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-744)) (|has| |#4| (-1068))) (($) |has| |#4| (-1068))) -(-12 (|has| |#4| (-240)) (|has| |#4| (-1068))) -(|has| |#4| (-381)) -(((|#4|) |has| |#4| (-1068))) -(((|#3|) . T) ((|#2|) . T) ((|#4|) -3955 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1068))) (($) |has| |#4| (-1068)) (((-557)) -12 (|has| |#4| (-656 (-557))) (|has| |#4| (-1068)))) -(((|#4|) |has| |#4| (-1068)) (((-557)) -12 (|has| |#4| (-656 (-557))) (|has| |#4| (-1068)))) -(((|#4|) |has| |#4| (-1120))) -((((-557)) -3955 (-12 (|has| |#4| (-1057 (-557))) (|has| |#4| (-1120))) (|has| |#4| (-1068))) ((|#4|) |has| |#4| (-1120)) (((-419 (-557))) -12 (|has| |#4| (-1057 (-419 (-557)))) (|has| |#4| (-1120)))) -(((|#4|) |has| |#4| (-1120)) (((-557)) -12 (|has| |#4| (-1057 (-557))) (|has| |#4| (-1120))) (((-419 (-557))) -12 (|has| |#4| (-1057 (-419 (-557)))) (|has| |#4| (-1120)))) -((((-557) |#4|) . T)) -(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120)))) -(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120)))) +((($) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) +(((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) +(-3677 (|has| |#2| (-406)) (|has| |#2| (-848))) +((($ $) . T) (((-798 |#1|) $) . T) (((-798 |#1|) |#2|) . T)) +((((-798 |#1|)) . T)) +((($ (-798 |#1|)) . T)) +((((-798 |#1|)) . T)) +(|has| |#2| (-848)) +(|has| |#2| (-848)) +((((-361 (-499))) |has| |#2| (-978 (-361 (-499)))) (((-499)) |has| |#2| (-978 (-499))) ((|#2|) . T) (((-798 |#1|)) . T)) +((((-499)) . T) (((-361 (-499))) -3677 (|has| |#2| (-38 (-361 (-499)))) (|has| |#2| (-978 (-361 (-499))))) ((|#2|) . T) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) (((-798 |#1|)) . T)) +(((|#2| (-196 (-4107 |#1|) (-714)) (-798 |#1|)) . T)) +((((-797)) . T)) +((((-460)) . T)) +((((-157)) . T) (((-797)) . T)) +((((-714) (-1122)) . T)) +((((-797)) . T)) +(((|#4| |#4|) -3677 (|has| |#4| (-146)) (|has| |#4| (-318)) (|has| |#4| (-989)))) +(((|#4|) -3677 (|has| |#4| (-146)) (|has| |#4| (-318)) (|has| |#4| (-684)) (|has| |#4| (-989)))) +(((|#4|) -3677 (|has| |#4| (-146)) (|has| |#4| (-318)) (|has| |#4| (-989)))) +((((-797)) . T) (((-1207 |#4|)) . T)) +(((|#4|) |has| |#4| (-989))) +((((-1117)) -12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989)))) +((((-1117)) -3677 (-12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989))) (-12 (|has| |#4| (-838 (-1117))) (|has| |#4| (-989))))) +((($ (-1117)) -3677 (-12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989))) (-12 (|has| |#4| (-838 (-1117))) (|has| |#4| (-989))))) +(((|#4|) |has| |#4| (-989))) +(-3677 (-12 (|has| |#4| (-190)) (|has| |#4| (-989))) (-12 (|has| |#4| (-189)) (|has| |#4| (-989)))) +((($) -3677 (-12 (|has| |#4| (-190)) (|has| |#4| (-989))) (-12 (|has| |#4| (-189)) (|has| |#4| (-989))))) +(|has| |#4| (-989)) +(|has| |#4| (-989)) +(|has| |#4| (-989)) +(|has| |#4| (-989)) +(((|#3|) . T) ((|#2|) . T) (((-499)) . T) ((|#4|) -3677 (|has| |#4| (-146)) (|has| |#4| (-318)) (|has| |#4| (-684)) (|has| |#4| (-989))) (($) |has| |#4| (-989))) +(-12 (|has| |#4| (-190)) (|has| |#4| (-989))) +(|has| |#4| (-323)) +(((|#4|) |has| |#4| (-989))) +(((|#3|) . T) ((|#2|) . T) ((|#4|) -3677 (|has| |#4| (-146)) (|has| |#4| (-318)) (|has| |#4| (-989))) (($) |has| |#4| (-989)) (((-499)) -12 (|has| |#4| (-596 (-499))) (|has| |#4| (-989)))) +(((|#4|) |has| |#4| (-989)) (((-499)) -12 (|has| |#4| (-596 (-499))) (|has| |#4| (-989)))) +(((|#4|) |has| |#4| (-1041))) +((((-499)) -3677 (-12 (|has| |#4| (-978 (-499))) (|has| |#4| (-1041))) (|has| |#4| (-989))) ((|#4|) |has| |#4| (-1041)) (((-361 (-499))) -12 (|has| |#4| (-978 (-361 (-499)))) (|has| |#4| (-1041)))) +(((|#4|) |has| |#4| (-1041)) (((-499)) -12 (|has| |#4| (-978 (-499))) (|has| |#4| (-1041))) (((-361 (-499))) -12 (|has| |#4| (-978 (-361 (-499)))) (|has| |#4| (-1041)))) +((((-499) |#4|) . T)) +(((|#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) +(((|#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) (((|#4|) . T)) -((((-557) |#4|) . T)) -((((-557) |#4|) . T)) -(((|#4|) -3955 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-744)))) -(((|#4|) -3955 (|has| |#4| (-175)) (|has| |#4| (-376)))) -(|has| |#4| (-813)) -(|has| |#4| (-813)) -(-3955 (|has| |#4| (-813)) (|has| |#4| (-859))) -(-3955 (|has| |#4| (-813)) (|has| |#4| (-859))) -(|has| |#4| (-813)) -(|has| |#4| (-813)) -(((|#4|) |has| |#4| (-376))) +((((-499) |#4|) . T)) +((((-499) |#4|) . T)) +(((|#4|) -3677 (|has| |#4| (-146)) (|has| |#4| (-318)) (|has| |#4| (-684)))) +(((|#4|) -3677 (|has| |#4| (-146)) (|has| |#4| (-318)))) +(|has| |#4| (-738)) +(|has| |#4| (-738)) +(-3677 (|has| |#4| (-738)) (|has| |#4| (-781))) +(-3677 (|has| |#4| (-738)) (|has| |#4| (-781))) +(|has| |#4| (-738)) +(|has| |#4| (-738)) +(((|#4|) |has| |#4| (-318))) (((|#1| |#4|) . T)) -(((|#3| |#3|) -3955 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1068)))) -(((|#3|) -3955 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-744)) (|has| |#3| (-1068)))) -(((|#3|) -3955 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1068)))) -((((-875)) . T) (((-1286 |#3|)) . T)) -(((|#3|) |has| |#3| (-1068))) -((((-1196)) -12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068)))) -((((-1196)) -3955 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) -((($ (-1196)) -3955 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) -(((|#3|) |has| |#3| (-1068))) -(-3955 (-12 (|has| |#3| (-240)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1068)))) -((($) -3955 (-12 (|has| |#3| (-240)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1068))))) -(|has| |#3| (-1068)) -(|has| |#3| (-1068)) -(|has| |#3| (-1068)) -(|has| |#3| (-1068)) -(((|#2|) . T) (((-557)) . T) ((|#3|) -3955 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-744)) (|has| |#3| (-1068))) (($) |has| |#3| (-1068))) -(-12 (|has| |#3| (-240)) (|has| |#3| (-1068))) -(|has| |#3| (-381)) -(((|#3|) |has| |#3| (-1068))) -(((|#2|) . T) ((|#3|) -3955 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1068))) (($) |has| |#3| (-1068)) (((-557)) -12 (|has| |#3| (-656 (-557))) (|has| |#3| (-1068)))) -(((|#3|) |has| |#3| (-1068)) (((-557)) -12 (|has| |#3| (-656 (-557))) (|has| |#3| (-1068)))) -(((|#3|) |has| |#3| (-1120))) -((((-557)) -3955 (-12 (|has| |#3| (-1057 (-557))) (|has| |#3| (-1120))) (|has| |#3| (-1068))) ((|#3|) |has| |#3| (-1120)) (((-419 (-557))) -12 (|has| |#3| (-1057 (-419 (-557)))) (|has| |#3| (-1120)))) -(((|#3|) |has| |#3| (-1120)) (((-557)) -12 (|has| |#3| (-1057 (-557))) (|has| |#3| (-1120))) (((-419 (-557))) -12 (|has| |#3| (-1057 (-419 (-557)))) (|has| |#3| (-1120)))) -((((-557) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120)))) -(((|#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120)))) +(((|#3| |#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-989)))) +(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-684)) (|has| |#3| (-989)))) +(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-989)))) +((((-797)) . T) (((-1207 |#3|)) . T)) +(((|#3|) |has| |#3| (-989))) +((((-1117)) -12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989)))) +((((-1117)) -3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))))) +((($ (-1117)) -3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))))) +(((|#3|) |has| |#3| (-989))) +(-3677 (-12 (|has| |#3| (-190)) (|has| |#3| (-989))) (-12 (|has| |#3| (-189)) (|has| |#3| (-989)))) +((($) -3677 (-12 (|has| |#3| (-190)) (|has| |#3| (-989))) (-12 (|has| |#3| (-189)) (|has| |#3| (-989))))) +(|has| |#3| (-989)) +(|has| |#3| (-989)) +(|has| |#3| (-989)) +(|has| |#3| (-989)) +(((|#2|) . T) (((-499)) . T) ((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-684)) (|has| |#3| (-989))) (($) |has| |#3| (-989))) +(-12 (|has| |#3| (-190)) (|has| |#3| (-989))) +(|has| |#3| (-323)) +(((|#3|) |has| |#3| (-989))) +(((|#2|) . T) ((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-989))) (($) |has| |#3| (-989)) (((-499)) -12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989)))) +(((|#3|) |has| |#3| (-989)) (((-499)) -12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989)))) +(((|#3|) |has| |#3| (-1041))) +((((-499)) -3677 (-12 (|has| |#3| (-978 (-499))) (|has| |#3| (-1041))) (|has| |#3| (-989))) ((|#3|) |has| |#3| (-1041)) (((-361 (-499))) -12 (|has| |#3| (-978 (-361 (-499)))) (|has| |#3| (-1041)))) +(((|#3|) |has| |#3| (-1041)) (((-499)) -12 (|has| |#3| (-978 (-499))) (|has| |#3| (-1041))) (((-361 (-499))) -12 (|has| |#3| (-978 (-361 (-499)))) (|has| |#3| (-1041)))) +((((-499) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041)))) +(((|#3| |#3|) -12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041)))) (((|#3|) . T)) -((((-557) |#3|) . T)) -((((-557) |#3|) . T)) -(((|#3|) -3955 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-744)))) -(((|#3|) -3955 (|has| |#3| (-175)) (|has| |#3| (-376)))) -(|has| |#3| (-813)) -(|has| |#3| (-813)) -(-3955 (|has| |#3| (-813)) (|has| |#3| (-859))) -(-3955 (|has| |#3| (-813)) (|has| |#3| (-859))) -(|has| |#3| (-813)) -(|has| |#3| (-813)) -(((|#3|) |has| |#3| (-376))) +((((-499) |#3|) . T)) +((((-499) |#3|) . T)) +(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-684)))) +(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)))) +(|has| |#3| (-738)) +(|has| |#3| (-738)) +(-3677 (|has| |#3| (-738)) (|has| |#3| (-781))) +(-3677 (|has| |#3| (-738)) (|has| |#3| (-781))) +(|has| |#3| (-738)) +(|has| |#3| (-738)) +(((|#3|) |has| |#3| (-318))) (((|#1| |#3|) . T)) -((((-875)) . T)) +((((-797)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3955 (|has| |#1| (-240)) (|has| |#1| (-239))) -((($) -3955 (|has| |#1| (-240)) (|has| |#1| (-239)))) -((((-875)) . T)) -(|has| |#1| (-240)) +(-3677 (|has| |#1| (-190)) (|has| |#1| (-189))) +((($) -3677 (|has| |#1| (-190)) (|has| |#1| (-189)))) +((((-797)) . T)) +(|has| |#1| (-190)) ((($) . T)) -(((|#1| (-542 |#3|) |#3|) . T)) -(|has| |#1| (-927)) -(|has| |#1| (-927)) -((((-557)) -12 (|has| |#1| (-899 (-557))) (|has| |#3| (-899 (-557)))) (((-391)) -12 (|has| |#1| (-899 (-391))) (|has| |#3| (-899 (-391))))) -((((-1196)) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) ((|#3|) . T)) -((($ (-1196)) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (($ |#3|) . T)) -((((-1196)) |has| |#1| (-915 (-1196))) ((|#3|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-240)) ((|#2| |#1|) |has| |#1| (-240)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(-3955 (|has| |#1| (-464)) (|has| |#1| (-927))) -((((-557)) |has| |#1| (-656 (-557))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-542 |#3|)) . T)) -(-3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(|has| |#1| (-149)) -(|has| |#1| (-147)) -((($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) . T) (((-557)) |has| |#1| (-656 (-557))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((((-557)) . T) (($) . T) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1| |#1|) . T) (((-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -(((|#1|) . T)) -(((|#1| (-542 |#3|)) . T)) -((((-903 (-557))) -12 (|has| |#1| (-629 (-903 (-557)))) (|has| |#3| (-629 (-903 (-557))))) (((-903 (-391))) -12 (|has| |#1| (-629 (-903 (-391)))) (|has| |#3| (-629 (-903 (-391))))) (((-546)) -12 (|has| |#1| (-629 (-546))) (|has| |#3| (-629 (-546))))) -((((-1144 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-557)) |has| |#1| (-1057 (-557))) (((-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((|#2|) . T)) -((((-1144 |#1| |#2|)) . T) (((-557)) . T) ((|#3|) . T) (($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) ((|#2|) . T)) -(((|#1| |#2| |#3| (-542 |#3|)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) +(((|#1| (-484 |#3|) |#3|) . T)) +(|has| |#1| (-848)) +(|has| |#1| (-848)) +((((-499)) -12 (|has| |#1| (-821 (-499))) (|has| |#3| (-821 (-499)))) (((-333)) -12 (|has| |#1| (-821 (-333))) (|has| |#3| (-821 (-333))))) +((((-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) ((|#3|) . T)) +((($ (-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (($ |#3|) . T)) +((((-1117)) |has| |#1| (-836 (-1117))) ((|#3|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| (-190)) ((|#2| |#1|) |has| |#1| (-190)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(-3677 (|has| |#1| (-406)) (|has| |#1| (-848))) +((((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-484 |#3|)) . T)) +(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(|has| |#1| (-120)) +(|has| |#1| (-118)) +((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) . T) (((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((((-499)) . T) (($) . T) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +(((|#1|) . T)) +(((|#1| (-484 |#3|)) . T)) +((((-825 (-499))) -12 (|has| |#1| (-569 (-825 (-499)))) (|has| |#3| (-569 (-825 (-499))))) (((-825 (-333))) -12 (|has| |#1| (-569 (-825 (-333)))) (|has| |#3| (-569 (-825 (-333))))) (((-488)) -12 (|has| |#1| (-569 (-488))) (|has| |#3| (-569 (-488))))) +((((-1065 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((|#2|) . T)) +((((-1065 |#1| |#2|)) . T) (((-499)) . T) ((|#3|) . T) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ((|#2|) . T)) +(((|#1| |#2| |#3| (-484 |#3|)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) (((|#2| |#2|) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-875)) . T)) -((($) . T) (((-557)) . T)) +((((-797)) . T)) +((($) . T) (((-499)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) -((($) . T) (((-557)) . T)) +((($) . T) (((-499)) . T)) ((($) . T)) -((((-875)) . T)) -(((|#1|) |has| |#1| (-376))) -((((-1196)) |has| |#1| (-915 (-1196)))) -((($ (-1196)) |has| |#1| (-915 (-1196)))) -((((-1196)) |has| |#1| (-915 (-1196)))) -(((|#1|) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)))) -(((|#1|) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)))) -(((|#1|) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1068)))) -(((|#1|) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1068)))) -(((|#1| |#1|) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1068)))) -((((-557)) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)))) -(((|#1|) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1068))) (($) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)))) -(-3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068))) -(-3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068))) -(|has| |#1| (-485)) -(-3955 (|has| |#1| (-485)) (|has| |#1| (-744)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068))) -(-3955 (|has| |#1| (-485)) (|has| |#1| (-744)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)) (|has| |#1| (-1131))) -(-3955 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068))) -(-3955 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068))) -(((|#1|) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1068))) (($) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068))) (((-557)) -3955 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)))) -(-3955 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068))) -(-3955 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068))) -(-3955 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-485)) (|has| |#1| (-744)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)) (|has| |#1| (-1131)) (|has| |#1| (-1120))) -((((-114)) |has| |#1| (-1120)) (((-875)) -3955 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-485)) (|has| |#1| (-744)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)) (|has| |#1| (-1131)) (|has| |#1| (-1120)))) -(-3955 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-485)) (|has| |#1| (-744)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)) (|has| |#1| (-1131)) (|has| |#1| (-1120))) -((((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|))) +((((-797)) . T)) +(((|#1|) |has| |#1| (-318))) +((((-1117)) |has| |#1| (-836 (-1117)))) +((($ (-1117)) |has| |#1| (-836 (-1117)))) +((((-1117)) |has| |#1| (-836 (-1117)))) +(((|#1|) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)))) +(((|#1|) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)))) +(((|#1|) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-989)))) +(((|#1|) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-989)))) +(((|#1| |#1|) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-989)))) +((((-499)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-989)))) +(((|#1|) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-989))) (($) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-989)))) +(-3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-989))) +(-3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-989))) +(|has| |#1| (-427)) +(-3677 (|has| |#1| (-427)) (|has| |#1| (-684)) (|has| |#1| (-836 (-1117))) (|has| |#1| (-989))) +(-3677 (|has| |#1| (-427)) (|has| |#1| (-684)) (|has| |#1| (-836 (-1117))) (|has| |#1| (-989)) (|has| |#1| (-1052))) +(-3677 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-836 (-1117))) (|has| |#1| (-989))) +(-3677 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-836 (-1117))) (|has| |#1| (-989))) +(((|#1|) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-989))) (($) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-989))) (((-499)) -3677 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-836 (-1117))) (|has| |#1| (-989)))) +(-3677 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-836 (-1117))) (|has| |#1| (-989))) +(-3677 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-836 (-1117))) (|has| |#1| (-989))) +(-3677 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-427)) (|has| |#1| (-684)) (|has| |#1| (-836 (-1117))) (|has| |#1| (-989)) (|has| |#1| (-1052)) (|has| |#1| (-1041))) +((((-85)) |has| |#1| (-1041)) (((-797)) -3677 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-427)) (|has| |#1| (-684)) (|has| |#1| (-836 (-1117))) (|has| |#1| (-989)) (|has| |#1| (-1052)) (|has| |#1| (-1041)))) +(-3677 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-427)) (|has| |#1| (-684)) (|has| |#1| (-836 (-1117))) (|has| |#1| (-989)) (|has| |#1| (-1052)) (|has| |#1| (-1041))) +((((-1117) |#1|) |has| |#1| (-468 (-1117) |#1|))) (((|#1| |#2|) . T)) -((((-875)) . T)) +((((-797)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) |has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) |has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-875)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T)) -(|has| (-1273 |#1| |#2| |#3| |#4|) (-147)) -(|has| (-1273 |#1| |#2| |#3| |#4|) (-149)) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-557))) . T)) -((($) . T) (((-557)) . T) (((-1273 |#1| |#2| |#3| |#4|)) . T) (((-419 (-557))) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-557))) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-557))) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) . T) (((-419 (-557)) (-419 (-557))) . T) (($ $) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) -((((-1196) (-1273 |#1| |#2| |#3| |#4|)) |has| (-1273 |#1| |#2| |#3| |#4|) (-526 (-1196) (-1273 |#1| |#2| |#3| |#4|))) (((-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) |has| (-1273 |#1| |#2| |#3| |#4|) (-321 (-1273 |#1| |#2| |#3| |#4|)))) -((((-1273 |#1| |#2| |#3| |#4|)) |has| (-1273 |#1| |#2| |#3| |#4|) (-321 (-1273 |#1| |#2| |#3| |#4|)))) -((((-1273 |#1| |#2| |#3| |#4|) $) |has| (-1273 |#1| |#2| |#3| |#4|) (-298 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)))) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) -((($) . T) (((-1273 |#1| |#2| |#3| |#4|)) . T) (((-419 (-557))) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) -((((-1267 |#2| |#3| |#4|)) . T) (((-557)) . T) (((-1273 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-557))) . T)) -((((-1267 |#2| |#3| |#4|)) . T) (((-1273 |#1| |#2| |#3| |#4|)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(((|#1|) |has| |#1| (-568))) -(-3955 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-568)) (|has| |#1| (-1068))) -(-3955 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-568)) (|has| |#1| (-1068))) -((((-875)) . T)) -(-3955 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-568)) (|has| |#1| (-1068))) -(-3955 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-568)) (|has| |#1| (-1068))) -(-3955 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1068)) (|has| |#1| (-1131))) -(-3955 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1068)) (|has| |#1| (-1131))) -(-3955 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-568)) (|has| |#1| (-1068))) -(-3955 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-568)) (|has| |#1| (-1068))) -(|has| |#1| (-147)) -(|has| |#1| (-149)) -((((-626 $) $) . T) (($ $) . T)) +((((-797)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-797)) . T)) +(|has| (-1194 |#1| |#2| |#3| |#4|) (-118)) +(|has| (-1194 |#1| |#2| |#3| |#4|) (-120)) +((((-1194 |#1| |#2| |#3| |#4|)) . T)) +((((-1194 |#1| |#2| |#3| |#4|)) . T)) +((((-1194 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-361 (-499))) . T)) +((($) . T) (((-499)) . T) (((-1194 |#1| |#2| |#3| |#4|)) . T) (((-361 (-499))) . T)) +((((-1194 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-361 (-499))) . T)) +((((-1194 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-361 (-499))) . T)) +((((-1194 |#1| |#2| |#3| |#4|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-1194 |#1| |#2| |#3| |#4|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|)) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) +((((-1194 |#1| |#2| |#3| |#4|)) . T)) +((((-1117) (-1194 |#1| |#2| |#3| |#4|)) |has| (-1194 |#1| |#2| |#3| |#4|) (-468 (-1117) (-1194 |#1| |#2| |#3| |#4|))) (((-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|)) |has| (-1194 |#1| |#2| |#3| |#4|) (-263 (-1194 |#1| |#2| |#3| |#4|)))) +((((-1194 |#1| |#2| |#3| |#4|)) |has| (-1194 |#1| |#2| |#3| |#4|) (-263 (-1194 |#1| |#2| |#3| |#4|)))) +((((-1194 |#1| |#2| |#3| |#4|) $) |has| (-1194 |#1| |#2| |#3| |#4|) (-240 (-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|)))) +((((-1194 |#1| |#2| |#3| |#4|)) . T)) +((($) . T) (((-1194 |#1| |#2| |#3| |#4|)) . T) (((-361 (-499))) . T)) +((((-1194 |#1| |#2| |#3| |#4|)) . T)) +((((-1194 |#1| |#2| |#3| |#4|)) . T)) +((((-1194 |#1| |#2| |#3| |#4|)) . T)) +((((-1188 |#2| |#3| |#4|)) . T) (((-499)) . T) (((-1194 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-361 (-499))) . T)) +((((-1188 |#2| |#3| |#4|)) . T) (((-1194 |#1| |#2| |#3| |#4|)) . T)) +((((-1194 |#1| |#2| |#3| |#4|)) . T)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(((|#1|) |has| |#1| (-510))) +(-3677 (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-510)) (|has| |#1| (-989))) +(-3677 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-510)) (|has| |#1| (-989))) +((((-797)) . T)) +(-3677 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-510)) (|has| |#1| (-989))) +(-3677 (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-510)) (|has| |#1| (-989))) +(-3677 (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-427)) (|has| |#1| (-510)) (|has| |#1| (-989)) (|has| |#1| (-1052))) +(-3677 (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-427)) (|has| |#1| (-510)) (|has| |#1| (-989)) (|has| |#1| (-1052))) +(-3677 (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-510)) (|has| |#1| (-989))) +(-3677 (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-510)) (|has| |#1| (-989))) +(|has| |#1| (-118)) +(|has| |#1| (-120)) +((((-566 $) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-568)) (((-419 (-557))) |has| |#1| (-568))) -((((-557)) -3955 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-568)) (|has| |#1| (-1068))) (($) -3955 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-568)) (|has| |#1| (-1068))) ((|#1|) -3955 (|has| |#1| (-175)) (|has| |#1| (-1068))) (((-419 (-557))) |has| |#1| (-568))) -(((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-568)) (((-419 (-557))) |has| |#1| (-568))) -(((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-568)) (((-419 (-557))) |has| |#1| (-568))) -(|has| |#1| (-568)) -(((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-568)) (($) |has| |#1| (-568))) -(((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-568)) (($) |has| |#1| (-568))) -(((|#1| |#1|) |has| |#1| (-175)) (((-419 (-557)) (-419 (-557))) |has| |#1| (-568)) (($ $) |has| |#1| (-568))) -(|has| |#1| (-568)) -(((|#1|) |has| |#1| (-1068))) -((($) -3955 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-568)) (|has| |#1| (-1068))) ((|#1|) -3955 (|has| |#1| (-175)) (|has| |#1| (-1068))) (((-419 (-557))) |has| |#1| (-568)) (((-557)) -12 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068)))) -(((|#1|) |has| |#1| (-1068)) (((-557)) -12 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068)))) -(((|#1|) . T)) -((((-557)) |has| |#1| (-899 (-557))) (((-391)) |has| |#1| (-899 (-391)))) -(((|#1|) . T)) -(|has| |#1| (-485)) -((((-1196)) |has| |#1| (-1068))) -((($ (-1196)) |has| |#1| (-1068))) -((((-1196)) |has| |#1| (-1068))) -(((|#1|) . T)) -((((-546)) |has| |#1| (-629 (-546))) (((-903 (-557))) |has| |#1| (-629 (-903 (-557)))) (((-903 (-391))) |has| |#1| (-629 (-903 (-391))))) -((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-557)))) (((-626 $)) . T) ((|#1|) . T) (((-557)) |has| |#1| (-1057 (-557))) (((-419 (-557))) -3955 (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) (((-419 (-963 |#1|))) |has| |#1| (-568)) (((-963 |#1|)) |has| |#1| (-1068)) (((-1196)) . T)) -((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-557)))) (((-557)) -3955 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-568)) (|has| |#1| (-1057 (-557))) (|has| |#1| (-1068))) ((|#1|) . T) (((-626 $)) . T) (($) |has| |#1| (-568)) (((-419 (-557))) -3955 (|has| |#1| (-568)) (|has| |#1| (-1057 (-419 (-557))))) (((-419 (-963 |#1|))) |has| |#1| (-568)) (((-963 |#1|)) |has| |#1| (-1068)) (((-1196)) . T)) -(((|#1|) . T)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-568))) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -((((-875)) . T)) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-568))) -(|has| |#1| (-376)) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(((|#1| (-419 (-557))) . T)) -(((|#1| (-419 (-557))) . T)) -(|has| |#1| (-149)) -(|has| |#1| (-147)) -((($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568))) (((-557)) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -((($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -((($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -((($) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) ((|#1|) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) ((|#1|) . T)) -((((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) ((|#1|) . T)) -((((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) ((|#1|) . T)) -((((-419 (-557)) (-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) -((($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -(((|#1| (-419 (-557)) (-1101)) . T)) -((((-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))))) -((($ (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))))) -((((-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))))) -((((-419 (-557)) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) -(((|#1|) . T)) -(|has| |#1| (-859)) -(|has| |#1| (-859)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-557)) . T)) -((((-557) (-557)) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-875)) . T)) -((((-557)) . T)) -((((-875)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-789)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-859)) -(|has| |#1| (-859)) -(((|#1|) . T)) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-859)) (|has| |#1| (-1120))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-859)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(-3955 (|has| |#1| (-859)) (|has| |#1| (-1120))) -(((|#1|) . T)) -((((-546)) |has| |#1| (-629 (-546)))) -((((-557) |#1|) . T)) -((((-1253 (-557)) $) . T) (((-557) |#1|) . T)) -((((-557) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-557)) . T)) -((((-875)) . T)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510)) (((-361 (-499))) |has| |#1| (-510))) +((((-499)) -3677 (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-510)) (|has| |#1| (-989))) (($) -3677 (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-510)) (|has| |#1| (-989))) ((|#1|) -3677 (|has| |#1| (-146)) (|has| |#1| (-989))) (((-361 (-499))) |has| |#1| (-510))) +(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510)) (((-361 (-499))) |has| |#1| (-510))) +(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510)) (((-361 (-499))) |has| |#1| (-510))) +(|has| |#1| (-510)) +(((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-510)) (($) |has| |#1| (-510))) +(((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-510)) (($) |has| |#1| (-510))) +(((|#1| |#1|) |has| |#1| (-146)) (((-361 (-499)) (-361 (-499))) |has| |#1| (-510)) (($ $) |has| |#1| (-510))) +(|has| |#1| (-510)) +(((|#1|) |has| |#1| (-989))) +((($) -3677 (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-510)) (|has| |#1| (-989))) ((|#1|) -3677 (|has| |#1| (-146)) (|has| |#1| (-989))) (((-361 (-499))) |has| |#1| (-510)) (((-499)) -12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) +(((|#1|) |has| |#1| (-989)) (((-499)) -12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) +(((|#1|) . T)) +((((-499)) |has| |#1| (-821 (-499))) (((-333)) |has| |#1| (-821 (-333)))) +(((|#1|) . T)) +(|has| |#1| (-427)) +((((-1117)) |has| |#1| (-989))) +((($ (-1117)) |has| |#1| (-989))) +((((-1117)) |has| |#1| (-989))) +(((|#1|) . T)) +((((-488)) |has| |#1| (-569 (-488))) (((-825 (-499))) |has| |#1| (-569 (-825 (-499)))) (((-825 (-333))) |has| |#1| (-569 (-825 (-333))))) +((((-48)) -12 (|has| |#1| (-510)) (|has| |#1| (-978 (-499)))) (((-566 $)) . T) ((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) -3677 (-12 (|has| |#1| (-510)) (|has| |#1| (-978 (-499)))) (|has| |#1| (-978 (-361 (-499))))) (((-361 (-884 |#1|))) |has| |#1| (-510)) (((-884 |#1|)) |has| |#1| (-989)) (((-1117)) . T)) +((((-48)) -12 (|has| |#1| (-510)) (|has| |#1| (-978 (-499)))) (((-499)) -3677 (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-510)) (|has| |#1| (-978 (-499))) (|has| |#1| (-989))) ((|#1|) . T) (((-566 $)) . T) (($) |has| |#1| (-510)) (((-361 (-499))) -3677 (|has| |#1| (-510)) (|has| |#1| (-978 (-361 (-499))))) (((-361 (-884 |#1|))) |has| |#1| (-510)) (((-884 |#1|)) |has| |#1| (-989)) (((-1117)) . T)) +(((|#1|) . T)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +((((-797)) . T)) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) +(|has| |#1| (-318)) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(((|#1| (-361 (-499))) . T)) +(((|#1| (-361 (-499))) . T)) +(|has| |#1| (-120)) +(|has| |#1| (-118)) +((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-499)) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) |has| |#1| (-146))) +((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) |has| |#1| (-146))) +((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) |has| |#1| (-146))) +((($) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) . T)) +((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) ((|#1|) . T)) +((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) ((|#1|) . T)) +((((-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) ((|#1| |#1|) . T)) +((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) |has| |#1| (-146))) +(((|#1| (-361 (-499)) (-1022)) . T)) +((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) +((($ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) +((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) +((((-361 (-499)) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) +(((|#1|) . T)) +(|has| |#1| (-781)) +(|has| |#1| (-781)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-499)) . T)) +((((-499) (-499)) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-797)) . T)) +((((-499)) . T)) +((((-797)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-714)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-781)) +(|has| |#1| (-781)) +(((|#1|) . T)) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-781)) (|has| |#1| (-1041))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-781)) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(-3677 (|has| |#1| (-781)) (|has| |#1| (-1041))) +(((|#1|) . T)) +((((-488)) |has| |#1| (-569 (-488)))) +((((-499) |#1|) . T)) +((((-1174 (-499)) $) . T) (((-499) |#1|) . T)) +((((-499) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-499)) . T)) +((((-797)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-1196)) . T)) -((($ (-1196)) . T)) -((((-1196)) . T)) +((((-1117)) . T)) +((($ (-1117)) . T)) +((((-1117)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3| |#3|) . T)) -(((|#3|) . T) (((-557)) . T) (($) . T)) +(((|#3|) . T) (((-499)) . T) (($) . T)) (((|#3|) . T) (($) . T)) (((|#3|) . T)) ((($) . T)) -((($ $) . T) (((-626 $) $) . T)) -(((|#3|) . T) (((-626 $)) . T)) -(((|#3|) . T) (((-557)) . T) (((-626 $)) . T)) -((((-875)) . T)) -((((-923 |#1|)) . T)) -((((-923 |#1|)) . T)) -((((-923 |#1|)) . T)) -((((-923 |#1|)) . T) (($) . T) (((-419 (-557))) . T)) -((((-923 |#1|)) . T) (($) . T) (((-419 (-557))) . T)) -((((-923 |#1|) (-923 |#1|)) . T) (($ $) . T) (((-419 (-557)) (-419 (-557))) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-923 |#1|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-923 |#1|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-875)) . T)) -((((-923 |#1|)) . T) (((-419 (-557))) . T) (((-557)) . T) (($) . T)) -((((-923 |#1|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-923 |#1|)) . T) (((-419 (-557))) . T) (($) . T) (((-557)) . T)) -(|has| $ (-149)) +((($ $) . T) (((-566 $) $) . T)) +(((|#3|) . T) (((-566 $)) . T)) +(((|#3|) . T) (((-499)) . T) (((-566 $)) . T)) +((((-797)) . T)) +((((-844 |#1|)) . T)) +((((-844 |#1|)) . T)) +((((-844 |#1|)) . T)) +((((-844 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) +((((-844 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) +((((-844 |#1|) (-844 |#1|)) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-797)) . T)) +((((-844 |#1|)) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) +((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) +(|has| $ (-120)) ((($) . T)) -((((-923 |#1|)) . T)) -((((-923 |#1|)) . T)) -((((-923 |#1|)) . T)) -((((-923 |#1|)) . T)) -((((-923 |#1|)) . T) (($) . T) (((-419 (-557))) . T)) -((((-923 |#1|)) . T) (($) . T) (((-419 (-557))) . T)) -((((-923 |#1|) (-923 |#1|)) . T) (($ $) . T) (((-419 (-557)) (-419 (-557))) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-923 |#1|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-923 |#1|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-875)) . T)) -((((-923 |#1|)) . T) (((-419 (-557))) . T) (((-557)) . T) (($) . T)) -((((-923 |#1|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-923 |#1|)) . T) (((-419 (-557))) . T) (($) . T) (((-557)) . T)) -(|has| $ (-149)) +((((-844 |#1|)) . T)) +((((-844 |#1|)) . T)) +((((-844 |#1|)) . T)) +((((-844 |#1|)) . T)) +((((-844 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) +((((-844 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) +((((-844 |#1|) (-844 |#1|)) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-797)) . T)) +((((-844 |#1|)) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) +((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) +(|has| $ (-120)) ((($) . T)) -((((-923 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) -(-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) -(((|#1|) . T) (($) . T) (((-419 (-557))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-557))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-419 (-557)) (-419 (-557))) . T)) -((((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -((((-875)) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (((-557)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T) (((-557)) . T)) -(|has| |#1| (-149)) -(|has| |#1| (-381)) -(|has| |#1| (-381)) -(|has| |#1| (-381)) -(|has| |#1| (-381)) -((($) |has| |#1| (-381))) -(|has| |#1| (-381)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) -(-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) -(((|#1|) . T) (($) . T) (((-419 (-557))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-557))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-419 (-557)) (-419 (-557))) . T)) -((((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -((((-875)) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (((-557)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T) (((-557)) . T)) -(|has| |#1| (-149)) -(|has| |#1| (-381)) -(|has| |#1| (-381)) -(|has| |#1| (-381)) -(|has| |#1| (-381)) -((($) |has| |#1| (-381))) -(|has| |#1| (-381)) -(((|#1|) . T)) -((((-923 |#1|)) . T)) -((((-923 |#1|)) . T)) -((((-923 |#1|)) . T)) -((((-923 |#1|)) . T) (($) . T) (((-419 (-557))) . T)) -((((-923 |#1|)) . T) (($) . T) (((-419 (-557))) . T)) -((((-923 |#1|) (-923 |#1|)) . T) (($ $) . T) (((-419 (-557)) (-419 (-557))) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-923 |#1|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-923 |#1|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-875)) . T)) -((((-923 |#1|)) . T) (((-419 (-557))) . T) (((-557)) . T) (($) . T)) -((((-923 |#1|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-923 |#1|)) . T) (((-419 (-557))) . T) (($) . T) (((-557)) . T)) -(|has| $ (-149)) +((((-844 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) +(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) +(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) +(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) +((((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +((((-797)) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) +(|has| |#1| (-120)) +(|has| |#1| (-323)) +(|has| |#1| (-323)) +(|has| |#1| (-323)) +(|has| |#1| (-323)) +((($) |has| |#1| (-323))) +(|has| |#1| (-323)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) +(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) +(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) +(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) +((((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +((((-797)) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) +(|has| |#1| (-120)) +(|has| |#1| (-323)) +(|has| |#1| (-323)) +(|has| |#1| (-323)) +(|has| |#1| (-323)) +((($) |has| |#1| (-323))) +(|has| |#1| (-323)) +(((|#1|) . T)) +((((-844 |#1|)) . T)) +((((-844 |#1|)) . T)) +((((-844 |#1|)) . T)) +((((-844 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) +((((-844 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) +((((-844 |#1|) (-844 |#1|)) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-797)) . T)) +((((-844 |#1|)) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) +((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-844 |#1|)) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) +(|has| $ (-120)) ((($) . T)) -((((-923 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) -(-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) -(((|#1|) . T) (($) . T) (((-419 (-557))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-557))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-419 (-557)) (-419 (-557))) . T)) -((((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -((((-875)) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (((-557)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T) (((-557)) . T)) -(|has| |#1| (-149)) -(|has| |#1| (-381)) -(|has| |#1| (-381)) -(|has| |#1| (-381)) -(|has| |#1| (-381)) -((($) |has| |#1| (-381))) -(|has| |#1| (-381)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) -(-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) -(((|#1|) . T) (($) . T) (((-419 (-557))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-557))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-419 (-557)) (-419 (-557))) . T)) -((((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -((((-875)) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (((-557)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T) (((-557)) . T)) -(|has| |#1| (-149)) -(|has| |#1| (-381)) -(|has| |#1| (-381)) -(|has| |#1| (-381)) -(|has| |#1| (-381)) -((($) |has| |#1| (-381))) -(|has| |#1| (-381)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) -(-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) -(((|#1|) . T) (($) . T) (((-419 (-557))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-557))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-419 (-557)) (-419 (-557))) . T)) -((((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -((((-875)) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (((-557)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T) (((-557)) . T)) -(|has| |#1| (-149)) -(|has| |#1| (-381)) -(|has| |#1| (-381)) -(|has| |#1| (-381)) -(|has| |#1| (-381)) -((($) |has| |#1| (-381))) -(|has| |#1| (-381)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) -(-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) -(((|#1|) . T) (($) . T) (((-419 (-557))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-557))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-419 (-557)) (-419 (-557))) . T)) -((((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -((((-875)) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (((-557)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T) (((-557)) . T)) -(|has| |#1| (-149)) -(|has| |#1| (-381)) -(|has| |#1| (-381)) -(|has| |#1| (-381)) -(|has| |#1| (-381)) -((($) |has| |#1| (-381))) -(|has| |#1| (-381)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-402) |#1|) . T)) -((((-229)) . T)) +((((-844 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) +(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) +(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) +(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) +((((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +((((-797)) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) +(|has| |#1| (-120)) +(|has| |#1| (-323)) +(|has| |#1| (-323)) +(|has| |#1| (-323)) +(|has| |#1| (-323)) +((($) |has| |#1| (-323))) +(|has| |#1| (-323)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) +(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) +(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) +(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) +((((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +((((-797)) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) +(|has| |#1| (-120)) +(|has| |#1| (-323)) +(|has| |#1| (-323)) +(|has| |#1| (-323)) +(|has| |#1| (-323)) +((($) |has| |#1| (-323))) +(|has| |#1| (-323)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) +(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) +(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) +(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) +((((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +((((-797)) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) +(|has| |#1| (-120)) +(|has| |#1| (-323)) +(|has| |#1| (-323)) +(|has| |#1| (-323)) +(|has| |#1| (-323)) +((($) |has| |#1| (-323))) +(|has| |#1| (-323)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) +(-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) +(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) +(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) +((((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +((((-797)) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) +(|has| |#1| (-120)) +(|has| |#1| (-323)) +(|has| |#1| (-323)) +(|has| |#1| (-323)) +(|has| |#1| (-323)) +((($) |has| |#1| (-323))) +(|has| |#1| (-323)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-344) |#1|) . T)) +((((-179)) . T)) ((($) . T)) -((((-557)) . T) (((-419 (-557))) . T)) -((((-391)) . T)) -((($) . T) (((-419 (-557))) . T)) -((($) . T) (((-419 (-557))) . T)) -((($ $) . T) (((-419 (-557)) (-419 (-557))) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-546)) . T) (((-1178)) . T) (((-229)) . T) (((-391)) . T) (((-903 (-391))) . T)) -((((-229)) . T) (((-875)) . T)) -((((-419 (-557))) . T) (((-557)) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T) (((-557)) . T)) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) +((((-499)) . T) (((-361 (-499))) . T)) +((((-333)) . T)) +((($) . T) (((-361 (-499))) . T)) +((($) . T) (((-361 (-499))) . T)) +((($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-488)) . T) (((-1099)) . T) (((-179)) . T) (((-333)) . T) (((-825 (-333))) . T)) +((((-179)) . T) (((-797)) . T)) +((((-361 (-499))) . T) (((-499)) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T) (((-499)) . T)) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-875)) . T)) -(((|#1|) . T) (((-557)) . T)) +((((-797)) . T)) +(((|#1|) . T) (((-499)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-875)) . T)) -((((-557)) . T) ((|#1|) . T)) +((((-797)) . T)) +((((-499)) . T) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-875)) . T)) -(|has| |#1| (-859)) -(|has| |#1| (-859)) +((((-797)) . T)) +(|has| |#1| (-781)) +(|has| |#1| (-781)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1178)) . T)) -((((-1178)) . T)) -((((-1178)) . T) (((-875)) . T)) +((((-1099)) . T)) +((((-1099)) . T)) +((((-1099)) . T) (((-797)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-875)) . T)) -(((|#3|) . T) (((-557)) . T)) +((((-797)) . T)) +(((|#3|) . T) (((-499)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3| |#3|) . T)) (((|#3|) . T)) -((((-875)) . T)) -((((-419 |#2|)) . T)) +((((-797)) . T)) +((((-361 |#2|)) . T)) ((($) . T)) -((((-875)) . T)) -(|has| |#1| (-1241)) -((((-546)) |has| |#1| (-629 (-546))) (((-229)) |has| |#1| (-1039)) (((-391)) |has| |#1| (-1039))) -(|has| |#1| (-1039)) -(-3955 (|has| |#1| (-464)) (|has| |#1| (-1241))) -((((-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) (((-557)) |has| |#1| (-1057 (-557))) ((|#1|) . T)) +((((-797)) . T)) +(|has| |#1| (-1162)) +((((-488)) |has| |#1| (-569 (-488))) (((-179)) |has| |#1| (-960)) (((-333)) |has| |#1| (-960))) +(|has| |#1| (-960)) +(-3677 (|has| |#1| (-406)) (|has| |#1| (-1162))) +((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) |has| |#1| (-978 (-499))) ((|#1|) . T)) (((|#1|) . T)) -((($ $) |has| |#1| (-298 $ $)) ((|#1| $) |has| |#1| (-298 |#1| |#1|))) -((($) |has| |#1| (-321 $)) ((|#1|) |has| |#1| (-321 |#1|))) -((((-1196) $) |has| |#1| (-526 (-1196) $)) (($ $) |has| |#1| (-321 $)) ((|#1| |#1|) |has| |#1| (-321 |#1|)) (((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|))) +((($ $) |has| |#1| (-240 $ $)) ((|#1| $) |has| |#1| (-240 |#1| |#1|))) +((($) |has| |#1| (-263 $)) ((|#1|) |has| |#1| (-263 |#1|))) +((((-1117) $) |has| |#1| (-468 (-1117) $)) (($ $) |has| |#1| (-263 $)) ((|#1| |#1|) |has| |#1| (-263 |#1|)) (((-1117) |#1|) |has| |#1| (-468 (-1117) |#1|))) (((|#1|) . T)) -(|has| |#1| (-240)) -((($) -3955 (|has| |#1| (-240)) (|has| |#1| (-239)))) -(-3955 (|has| |#1| (-240)) (|has| |#1| (-239))) +(|has| |#1| (-190)) +((($) -3677 (|has| |#1| (-190)) (|has| |#1| (-189)))) +(-3677 (|has| |#1| (-190)) (|has| |#1| (-189))) (((|#1|) . T)) -((($ (-1196)) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196))))) -((((-1196)) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196))))) -((((-1196)) |has| |#1| (-915 (-1196)))) +((($ (-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117))))) +((((-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117))))) +((((-1117)) |has| |#1| (-836 (-1117)))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-875)) . T)) -(((|#1|) . T) (((-557)) . T) (($) . T)) +((((-797)) . T)) +(((|#1|) . T) (((-499)) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((|#1|) . T) (((-557)) . T) (($) . T)) -((((-875)) . T)) -(|has| |#1| (-147)) -(|has| |#1| (-149)) -(((|#1|) . T)) -((((-1196)) |has| |#1| (-915 (-1196)))) -((((-1196)) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196))))) -((($ (-1196)) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196))))) -(((|#1|) . T)) -(-3955 (|has| |#1| (-240)) (|has| |#1| (-239))) -((($) -3955 (|has| |#1| (-240)) (|has| |#1| (-239)))) -(|has| |#1| (-240)) -(((|#1|) . T) (($) . T) (((-419 (-557))) . T)) -((($) . T) (((-557)) . T) ((|#1|) . T) (((-419 (-557))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-557))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-557))) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -(((|#1| |#1|) . T) (((-419 (-557)) (-419 (-557))) . T) (($ $) . T)) -(((|#1|) . T)) -((((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) -(((|#1|) |has| |#1| (-321 |#1|))) -(((|#1| $) |has| |#1| (-298 |#1| |#1|))) -(((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-419 (-557))) . T) (((-557)) |has| |#1| (-656 (-557)))) -(((|#1|) . T) (((-557)) |has| |#1| (-656 (-557)))) -(((|#1|) . T)) -((((-557)) |has| |#1| (-899 (-557))) (((-391)) |has| |#1| (-899 (-391)))) -(|has| |#1| (-840)) -(|has| |#1| (-840)) -(|has| |#1| (-840)) -(-3955 (|has| |#1| (-840)) (|has| |#1| (-859))) -(-3955 (|has| |#1| (-840)) (|has| |#1| (-859))) -(|has| |#1| (-840)) -(|has| |#1| (-840)) -(|has| |#1| (-840)) -(((|#1|) . T)) -(|has| |#1| (-927)) -(|has| |#1| (-1039)) -((((-546)) |has| |#1| (-629 (-546))) (((-903 (-557))) |has| |#1| (-629 (-903 (-557)))) (((-903 (-391))) |has| |#1| (-629 (-903 (-391)))) (((-391)) |has| |#1| (-1039)) (((-229)) |has| |#1| (-1039))) -((((-557)) . T) ((|#1|) . T) (($) . T) (((-419 (-557))) . T) (((-1196)) |has| |#1| (-1057 (-1196)))) -((((-419 (-557))) |has| |#1| (-1057 (-557))) (((-557)) |has| |#1| (-1057 (-557))) (((-1196)) |has| |#1| (-1057 (-1196))) ((|#1|) . T)) -(|has| |#1| (-1171)) -(((|#1|) . T)) -((((-875)) . T)) -((((-875)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-875)) . T)) +((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((|#1|) . T) (((-499)) . T) (($) . T)) +((((-797)) . T)) +(|has| |#1| (-118)) +(|has| |#1| (-120)) +(((|#1|) . T)) +((((-1117)) |has| |#1| (-836 (-1117)))) +((((-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117))))) +((($ (-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117))))) +(((|#1|) . T)) +(-3677 (|has| |#1| (-190)) (|has| |#1| (-189))) +((($) -3677 (|has| |#1| (-190)) (|has| |#1| (-189)))) +(|has| |#1| (-190)) +(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) +((($) . T) (((-499)) . T) ((|#1|) . T) (((-361 (-499))) . T)) +(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) +(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +(((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) +(((|#1|) . T)) +((((-1117) |#1|) |has| |#1| (-468 (-1117) |#1|)) ((|#1| |#1|) |has| |#1| (-263 |#1|))) +(((|#1|) |has| |#1| (-263 |#1|))) +(((|#1| $) |has| |#1| (-240 |#1| |#1|))) +(((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-361 (-499))) . T) (((-499)) |has| |#1| (-596 (-499)))) +(((|#1|) . T) (((-499)) |has| |#1| (-596 (-499)))) +(((|#1|) . T)) +((((-499)) |has| |#1| (-821 (-499))) (((-333)) |has| |#1| (-821 (-333)))) +(|has| |#1| (-763)) +(|has| |#1| (-763)) +(|has| |#1| (-763)) +(-3677 (|has| |#1| (-763)) (|has| |#1| (-781))) +(-3677 (|has| |#1| (-763)) (|has| |#1| (-781))) +(|has| |#1| (-763)) +(|has| |#1| (-763)) +(|has| |#1| (-763)) +(((|#1|) . T)) +(|has| |#1| (-848)) +(|has| |#1| (-960)) +((((-488)) |has| |#1| (-569 (-488))) (((-825 (-499))) |has| |#1| (-569 (-825 (-499)))) (((-825 (-333))) |has| |#1| (-569 (-825 (-333)))) (((-333)) |has| |#1| (-960)) (((-179)) |has| |#1| (-960))) +((((-499)) . T) ((|#1|) . T) (($) . T) (((-361 (-499))) . T) (((-1117)) |has| |#1| (-978 (-1117)))) +((((-361 (-499))) |has| |#1| (-978 (-499))) (((-499)) |has| |#1| (-978 (-499))) (((-1117)) |has| |#1| (-978 (-1117))) ((|#1|) . T)) +(|has| |#1| (-1092)) +(((|#1|) . T)) +((((-797)) . T)) +((((-797)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-797)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-557)) . T) (($) . T)) +(((|#1|) . T) (((-499)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-557)) . T)) -(((|#1|) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-402) (-1178)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-557) (-419 (-963 |#1|))) . T)) -((((-419 (-963 |#1|))) . T)) -((((-419 (-963 |#1|))) . T)) -((((-419 (-963 |#1|))) . T)) -((((-1161 |#2| (-419 (-963 |#1|)))) . T) (((-419 (-963 |#1|))) . T)) -((((-875)) . T)) -((((-1161 |#2| (-419 (-963 |#1|)))) . T) (((-419 (-963 |#1|))) . T) (((-557)) . T)) -((((-419 (-963 |#1|))) . T)) -((((-419 (-963 |#1|))) . T)) -((((-419 (-963 |#1|)) (-419 (-963 |#1|))) . T)) -((((-419 (-963 |#1|))) . T)) -((((-419 (-963 |#1|))) . T)) -((((-546)) |has| |#2| (-629 (-546))) (((-903 (-391))) |has| |#2| (-629 (-903 (-391)))) (((-903 (-557))) |has| |#2| (-629 (-903 (-557))))) +(((|#1|) . T) (((-499)) . T)) +(((|#1|) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-344) (-1099)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-499) (-361 (-884 |#1|))) . T)) +((((-361 (-884 |#1|))) . T)) +((((-361 (-884 |#1|))) . T)) +((((-361 (-884 |#1|))) . T)) +((((-1082 |#2| (-361 (-884 |#1|)))) . T) (((-361 (-884 |#1|))) . T)) +((((-797)) . T)) +((((-1082 |#2| (-361 (-884 |#1|)))) . T) (((-361 (-884 |#1|))) . T) (((-499)) . T)) +((((-361 (-884 |#1|))) . T)) +((((-361 (-884 |#1|))) . T)) +((((-361 (-884 |#1|)) (-361 (-884 |#1|))) . T)) +((((-361 (-884 |#1|))) . T)) +((((-361 (-884 |#1|))) . T)) +((((-488)) |has| |#2| (-569 (-488))) (((-825 (-333))) |has| |#2| (-569 (-825 (-333)))) (((-825 (-499))) |has| |#2| (-569 (-825 (-499))))) ((($) . T)) (((|#2| |#3|) . T)) (((|#2|) . T)) -((((-875)) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) . T)) -(|has| |#2| (-147)) -(|has| |#2| (-149)) -(-3955 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -((((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) . T) (($) -3955 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) . T) (($) -3955 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-419 (-557)) (-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2| |#2|) . T) (($ $) -3955 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -(-3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -(-3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -((((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) |has| |#2| (-175)) (($) -3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) |has| |#2| (-175)) (($) -3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) |has| |#2| (-175)) (($) -3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) +((((-797)) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T)) +(|has| |#2| (-118)) +(|has| |#2| (-120)) +(-3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) +((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (($) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (($) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +((((-361 (-499)) (-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2| |#2|) . T) (($ $) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +(-3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) +(-3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) +((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) (((|#2| |#3|) . T)) (((|#2|) . T)) -((($) . T) (((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) . T) (((-557)) |has| |#2| (-656 (-557)))) -(((|#2|) . T) (((-557)) |has| |#2| (-656 (-557)))) -(-3955 (|has| |#2| (-464)) (|has| |#2| (-927))) -((($ $) . T) (((-876 |#1|) $) . T) (((-876 |#1|) |#2|) . T)) -((((-876 |#1|)) . T)) -((($ (-876 |#1|)) . T)) -((((-876 |#1|)) . T)) -(|has| |#2| (-927)) -(|has| |#2| (-927)) -((((-419 (-557))) |has| |#2| (-1057 (-419 (-557)))) (((-557)) |has| |#2| (-1057 (-557))) ((|#2|) . T) (((-876 |#1|)) . T)) -((((-557)) . T) (((-419 (-557))) -3955 (|has| |#2| (-38 (-419 (-557)))) (|has| |#2| (-1057 (-419 (-557))))) ((|#2|) . T) (($) -3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) (((-876 |#1|)) . T)) -(((|#2| |#3| (-876 |#1|)) . T)) +((($) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) +(((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) +(-3677 (|has| |#2| (-406)) (|has| |#2| (-848))) +((($ $) . T) (((-798 |#1|) $) . T) (((-798 |#1|) |#2|) . T)) +((((-798 |#1|)) . T)) +((($ (-798 |#1|)) . T)) +((((-798 |#1|)) . T)) +(|has| |#2| (-848)) +(|has| |#2| (-848)) +((((-361 (-499))) |has| |#2| (-978 (-361 (-499)))) (((-499)) |has| |#2| (-978 (-499))) ((|#2|) . T) (((-798 |#1|)) . T)) +((((-499)) . T) (((-361 (-499))) -3677 (|has| |#2| (-38 (-361 (-499)))) (|has| |#2| (-978 (-361 (-499))))) ((|#2|) . T) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) (((-798 |#1|)) . T)) +(((|#2| |#3| (-798 |#1|)) . T)) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) -((((-875)) . T)) -(((|#2|) . T) (((-557)) . T) ((|#6|) . T)) +((((-797)) . T)) +(((|#2|) . T) (((-499)) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#4|) . T)) -((((-659 |#4|)) . T) (((-875)) . T)) -(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120)))) -(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120)))) +((((-599 |#4|)) . T) (((-797)) . T)) +(((|#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) +(((|#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) (((|#4|) . T)) -((((-546)) |has| |#4| (-629 (-546)))) +((((-488)) |has| |#4| (-569 (-488)))) (((|#1| |#2| |#3| |#4|) . T)) -((((-875)) . T)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-568))) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -((((-875)) . T)) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-568))) -(|has| |#1| (-376)) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(((|#1| (-419 (-557))) . T)) -(((|#1| (-419 (-557))) . T)) -(|has| |#1| (-149)) -(|has| |#1| (-147)) -((($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568))) (((-557)) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -((($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -((($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -((($) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) ((|#1|) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) ((|#1|) . T)) -((((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) ((|#1|) . T)) -((((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) ((|#1|) . T)) -((((-419 (-557)) (-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) -((($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -(((|#1| (-419 (-557)) (-1101)) . T)) -((((-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))))) -((($ (-1283 |#2|)) . T) (($ (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))))) -((((-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))))) -((((-419 (-557)) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) +((((-797)) . T)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +((((-797)) . T)) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) +(|has| |#1| (-318)) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(((|#1| (-361 (-499))) . T)) +(((|#1| (-361 (-499))) . T)) +(|has| |#1| (-120)) +(|has| |#1| (-118)) +((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-499)) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) |has| |#1| (-146))) +((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) |has| |#1| (-146))) +((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) |has| |#1| (-146))) +((($) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) . T)) +((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) ((|#1|) . T)) +((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) ((|#1|) . T)) +((((-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) ((|#1| |#1|) . T)) +((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#1|) |has| |#1| (-146))) +(((|#1| (-361 (-499)) (-1022)) . T)) +((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) +((($ (-1204 |#2|)) . T) (($ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) +((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) +((((-361 (-499)) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-875)) . T)) +((((-797)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) |has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) |has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-546)) |has| |#4| (-629 (-546)))) +((((-488)) |has| |#4| (-569 (-488)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120)))) -(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120)))) +(((|#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) +(((|#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) (((|#4|) . T)) -((((-875)) . T) (((-659 |#4|)) . T)) +((((-797)) . T) (((-599 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-546)) . T) (((-419 (-1190 (-557)))) . T) (((-229)) . T) (((-391)) . T)) -((((-419 (-557))) . T) (((-557)) . T)) -((((-391)) . T) (((-229)) . T) (((-875)) . T)) -((($) . T) (((-419 (-557))) . T)) -((($) . T) (((-419 (-557))) . T)) -((($ $) . T) (((-419 (-557)) (-419 (-557))) . T)) -((((-419 (-557))) . T) (((-557)) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (((-557)) . T) (($) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) +((((-488)) . T) (((-361 (-1111 (-499)))) . T) (((-179)) . T) (((-333)) . T)) +((((-361 (-499))) . T) (((-499)) . T)) +((((-333)) . T) (((-179)) . T) (((-797)) . T)) +((($) . T) (((-361 (-499))) . T)) +((($) . T) (((-361 (-499))) . T)) +((($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) +((((-361 (-499))) . T) (((-499)) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (((-499)) . T) (($) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) (((|#1| |#2|) . T)) -((((-875)) . T)) +((((-797)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) |has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) |has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-546)) |has| |#2| (-629 (-546))) (((-903 (-391))) |has| |#2| (-629 (-903 (-391)))) (((-903 (-557))) |has| |#2| (-629 (-903 (-557))))) +((((-488)) |has| |#2| (-569 (-488))) (((-825 (-333))) |has| |#2| (-569 (-825 (-333)))) (((-825 (-499))) |has| |#2| (-569 (-825 (-499))))) ((($) . T)) -(((|#2| (-494 (-4385 |#1|) (-789))) . T)) +(((|#2| (-436 (-4107 |#1|) (-714))) . T)) (((|#2|) . T)) -((((-875)) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) . T)) -(|has| |#2| (-147)) -(|has| |#2| (-149)) -(-3955 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -((((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) . T) (($) -3955 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) . T) (($) -3955 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-419 (-557)) (-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2| |#2|) . T) (($ $) -3955 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -(-3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -(-3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -((((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) |has| |#2| (-175)) (($) -3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) |has| |#2| (-175)) (($) -3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) |has| |#2| (-175)) (($) -3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -(((|#2| (-494 (-4385 |#1|) (-789))) . T)) +((((-797)) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T)) +(|has| |#2| (-118)) +(|has| |#2| (-120)) +(-3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) +((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (($) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (($) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +((((-361 (-499)) (-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2| |#2|) . T) (($ $) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +(-3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) +(-3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) +((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +(((|#2| (-436 (-4107 |#1|) (-714))) . T)) (((|#2|) . T)) -((($) . T) (((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) . T) (((-557)) |has| |#2| (-656 (-557)))) -(((|#2|) . T) (((-557)) |has| |#2| (-656 (-557)))) -(-3955 (|has| |#2| (-464)) (|has| |#2| (-927))) -((($ $) . T) (((-876 |#1|) $) . T) (((-876 |#1|) |#2|) . T)) -((((-876 |#1|)) . T)) -((($ (-876 |#1|)) . T)) -((((-876 |#1|)) . T)) -(|has| |#2| (-927)) -(|has| |#2| (-927)) -((((-419 (-557))) |has| |#2| (-1057 (-419 (-557)))) (((-557)) |has| |#2| (-1057 (-557))) ((|#2|) . T) (((-876 |#1|)) . T)) -((((-557)) . T) (((-419 (-557))) -3955 (|has| |#2| (-38 (-419 (-557)))) (|has| |#2| (-1057 (-419 (-557))))) ((|#2|) . T) (($) -3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) (((-876 |#1|)) . T)) -(((|#2| (-494 (-4385 |#1|) (-789)) (-876 |#1|)) . T)) -(-3955 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1068))) -(-3955 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-813)) (|has| |#2| (-1068))) -(-3955 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-744)) (|has| |#2| (-813)) (|has| |#2| (-859)) (|has| |#2| (-1068)) (|has| |#2| (-1120))) -(-3955 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-744)) (|has| |#2| (-813)) (|has| |#2| (-859)) (|has| |#2| (-1068)) (|has| |#2| (-1120))) -(-3955 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-813)) (|has| |#2| (-1068))) -(-3955 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-813)) (|has| |#2| (-1068))) -(((|#2| |#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1068)))) -(((|#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-744)) (|has| |#2| (-1068)))) -(((|#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1068)))) -((((-875)) -3955 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-628 (-875))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-744)) (|has| |#2| (-813)) (|has| |#2| (-859)) (|has| |#2| (-1068)) (|has| |#2| (-1120))) (((-1286 |#2|)) . T)) -(((|#2|) |has| |#2| (-1068))) -((((-1196)) -12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068)))) -((((-1196)) -3955 (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))))) -((($ (-1196)) -3955 (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))))) -(((|#2|) |has| |#2| (-1068))) -(-3955 (-12 (|has| |#2| (-240)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1068)))) -((($) -3955 (-12 (|has| |#2| (-240)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1068))))) -(|has| |#2| (-1068)) -(|has| |#2| (-1068)) -(|has| |#2| (-1068)) -(|has| |#2| (-1068)) -((((-557)) -3955 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1068))) ((|#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-744)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068))) -(-12 (|has| |#2| (-240)) (|has| |#2| (-1068))) -(|has| |#2| (-381)) -(((|#2|) |has| |#2| (-1068))) -(((|#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068)) (((-557)) -12 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068)))) -(((|#2|) |has| |#2| (-1068)) (((-557)) -12 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068)))) -(((|#2|) |has| |#2| (-1120))) -((((-557)) -3955 (-12 (|has| |#2| (-1057 (-557))) (|has| |#2| (-1120))) (|has| |#2| (-1068))) ((|#2|) |has| |#2| (-1120)) (((-419 (-557))) -12 (|has| |#2| (-1057 (-419 (-557)))) (|has| |#2| (-1120)))) -(((|#2|) |has| |#2| (-1120)) (((-557)) -12 (|has| |#2| (-1057 (-557))) (|has| |#2| (-1120))) (((-419 (-557))) -12 (|has| |#2| (-1057 (-419 (-557)))) (|has| |#2| (-1120)))) -((((-557) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120)))) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120)))) +((($) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) +(((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) +(-3677 (|has| |#2| (-406)) (|has| |#2| (-848))) +((($ $) . T) (((-798 |#1|) $) . T) (((-798 |#1|) |#2|) . T)) +((((-798 |#1|)) . T)) +((($ (-798 |#1|)) . T)) +((((-798 |#1|)) . T)) +(|has| |#2| (-848)) +(|has| |#2| (-848)) +((((-361 (-499))) |has| |#2| (-978 (-361 (-499)))) (((-499)) |has| |#2| (-978 (-499))) ((|#2|) . T) (((-798 |#1|)) . T)) +((((-499)) . T) (((-361 (-499))) -3677 (|has| |#2| (-38 (-361 (-499)))) (|has| |#2| (-978 (-361 (-499))))) ((|#2|) . T) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) (((-798 |#1|)) . T)) +(((|#2| (-436 (-4107 |#1|) (-714)) (-798 |#1|)) . T)) +(-3677 (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989))) +(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-738)) (|has| |#2| (-989))) +(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-323)) (|has| |#2| (-684)) (|has| |#2| (-738)) (|has| |#2| (-781)) (|has| |#2| (-989)) (|has| |#2| (-1041))) +(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-73)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-323)) (|has| |#2| (-684)) (|has| |#2| (-738)) (|has| |#2| (-781)) (|has| |#2| (-989)) (|has| |#2| (-1041))) +(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-738)) (|has| |#2| (-989))) +(-3677 (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-738)) (|has| |#2| (-989))) +(((|#2| |#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989)))) +(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-684)) (|has| |#2| (-989)))) +(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989)))) +((((-797)) -3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-568 (-797))) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-323)) (|has| |#2| (-684)) (|has| |#2| (-738)) (|has| |#2| (-781)) (|has| |#2| (-989)) (|has| |#2| (-1041))) (((-1207 |#2|)) . T)) +(((|#2|) |has| |#2| (-989))) +((((-1117)) -12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989)))) +((((-1117)) -3677 (-12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989))) (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))))) +((($ (-1117)) -3677 (-12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989))) (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))))) +(((|#2|) |has| |#2| (-989))) +(-3677 (-12 (|has| |#2| (-190)) (|has| |#2| (-989))) (-12 (|has| |#2| (-189)) (|has| |#2| (-989)))) +((($) -3677 (-12 (|has| |#2| (-190)) (|has| |#2| (-989))) (-12 (|has| |#2| (-189)) (|has| |#2| (-989))))) +(|has| |#2| (-989)) +(|has| |#2| (-989)) +(|has| |#2| (-989)) +(|has| |#2| (-989)) +((((-499)) -3677 (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989))) ((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-684)) (|has| |#2| (-989))) (($) |has| |#2| (-989))) +(-12 (|has| |#2| (-190)) (|has| |#2| (-989))) +(|has| |#2| (-323)) +(((|#2|) |has| |#2| (-989))) +(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989))) (($) |has| |#2| (-989)) (((-499)) -12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989)))) +(((|#2|) |has| |#2| (-989)) (((-499)) -12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989)))) +(((|#2|) |has| |#2| (-1041))) +((((-499)) -3677 (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) (|has| |#2| (-989))) ((|#2|) |has| |#2| (-1041)) (((-361 (-499))) -12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041)))) +(((|#2|) |has| |#2| (-1041)) (((-499)) -12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) (((-361 (-499))) -12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041)))) +((((-499) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) +(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) (((|#2|) . T)) -((((-557) |#2|) . T)) -((((-557) |#2|) . T)) -(((|#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-744)))) -(((|#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)))) -(|has| |#2| (-813)) -(|has| |#2| (-813)) -(-3955 (|has| |#2| (-813)) (|has| |#2| (-859))) -(-3955 (|has| |#2| (-813)) (|has| |#2| (-859))) -(|has| |#2| (-813)) -(|has| |#2| (-813)) -(((|#2|) |has| |#2| (-376))) +((((-499) |#2|) . T)) +((((-499) |#2|) . T)) +(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-684)))) +(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)))) +(|has| |#2| (-738)) +(|has| |#2| (-738)) +(-3677 (|has| |#2| (-738)) (|has| |#2| (-781))) +(-3677 (|has| |#2| (-738)) (|has| |#2| (-781))) +(|has| |#2| (-738)) +(|has| |#2| (-738)) +(((|#2|) |has| |#2| (-318))) (((|#1| |#2|) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) (((|#1|) . T)) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-1120))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(|has| |#1| (-1120)) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(|has| |#1| (-1041)) (((|#1|) . T)) (((|#1|) . T)) -((((-557)) . T)) -((((-875)) . T)) +((((-499)) . T)) +((((-797)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-1023 16)) . T) (((-419 (-557))) . T) (((-875)) . T)) -((((-557)) . T)) -((((-557)) . T)) +((((-944 16)) . T) (((-361 (-499))) . T) (((-797)) . T)) +((((-499)) . T)) +((((-499)) . T)) ((($) . T)) -((((-557)) . T) (($) . T) (((-419 (-557))) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) . T)) -((((-557)) . T) (($) . T) (((-419 (-557))) . T)) -((((-557)) . T) (($) . T) (((-419 (-557))) . T)) -((((-557)) . T) (((-419 (-557))) . T) (($) . T)) -((((-557)) . T) (((-419 (-557))) . T) (($) . T)) -((((-557) (-557)) . T) (((-419 (-557)) (-419 (-557))) . T) (($ $) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-546)) . T) (((-903 (-557))) . T) (((-391)) . T) (((-229)) . T)) -((((-419 (-557))) . T) (((-557)) . T)) -((((-557)) . T) (($) . T) (((-419 (-557))) . T)) -((((-557)) . T)) -((((-1178)) . T) (((-875)) . T)) +((((-499)) . T) (($) . T) (((-361 (-499))) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) . T)) +((((-499)) . T) (($) . T) (((-361 (-499))) . T)) +((((-499)) . T) (($) . T) (((-361 (-499))) . T)) +((((-499)) . T) (((-361 (-499))) . T) (($) . T)) +((((-499)) . T) (((-361 (-499))) . T) (($) . T)) +((((-499) (-499)) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-488)) . T) (((-825 (-499))) . T) (((-333)) . T) (((-179)) . T)) +((((-361 (-499))) . T) (((-499)) . T)) +((((-499)) . T) (($) . T) (((-361 (-499))) . T)) +((((-499)) . T)) +((((-1099)) . T) (((-797)) . T)) ((($) . T)) -((((-171 (-391))) . T) (((-229)) . T) (((-391)) . T)) -((((-419 (-557))) . T) (((-557)) . T)) -((($) . T) (((-419 (-557))) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) . T)) -((((-557)) . T) (($) . T) (((-419 (-557))) . T)) -((($) . T) (((-419 (-557))) . T)) -((($) . T) (((-419 (-557))) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557)) (-419 (-557))) . T) (($ $) . T)) +((((-142 (-333))) . T) (((-179)) . T) (((-333)) . T)) +((((-361 (-499))) . T) (((-499)) . T)) +((($) . T) (((-361 (-499))) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) . T)) +((((-499)) . T) (($) . T) (((-361 (-499))) . T)) +((($) . T) (((-361 (-499))) . T)) +((($) . T) (((-361 (-499))) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) ((($) . T)) -((($ $) . T) (((-626 $) $) . T)) -((((-419 (-557))) . T) (((-557)) . T) (((-626 $)) . T)) -((((-1144 (-557) (-626 $))) . T) (($) . T) (((-557)) . T) (((-419 (-557))) . T) (((-626 $)) . T)) -((((-875)) . T)) -(((|#1|) . T)) -(|has| |#1| (-859)) -(|has| |#1| (-859)) -(((|#1|) . T)) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-859)) (|has| |#1| (-1120))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-859)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(-3955 (|has| |#1| (-859)) (|has| |#1| (-1120))) -(((|#1|) . T)) -((((-546)) |has| |#1| (-629 (-546)))) -((((-557) |#1|) . T)) -((((-1253 (-557)) $) . T) (((-557) |#1|) . T)) -((((-557) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1120)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-1120)))) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-1120))) -(((|#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) . T)) -((((-114)) . T)) -((((-114)) . T)) -((((-557) (-114)) . T)) -((((-557) (-114)) . T)) -((((-557) (-114)) . T) (((-1253 (-557)) $) . T)) -((((-546)) . T)) -((((-114)) . T)) -((((-875)) . T)) -((((-114)) . T)) -((((-114)) . T)) -((((-1178)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) +((($ $) . T) (((-566 $) $) . T)) +((((-361 (-499))) . T) (((-499)) . T) (((-566 $)) . T)) +((((-1065 (-499) (-566 $))) . T) (($) . T) (((-499)) . T) (((-361 (-499))) . T) (((-566 $)) . T)) +((((-797)) . T)) +(((|#1|) . T)) +(|has| |#1| (-781)) +(|has| |#1| (-781)) +(((|#1|) . T)) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-781)) (|has| |#1| (-1041))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-781)) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(-3677 (|has| |#1| (-781)) (|has| |#1| (-1041))) +(((|#1|) . T)) +((((-488)) |has| |#1| (-569 (-488)))) +((((-499) |#1|) . T)) +((((-1174 (-499)) $) . T) (((-499) |#1|) . T)) +((((-499) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1041)) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) +(((|#1| (-450 |#1| |#3|) (-450 |#1| |#2|)) . T)) +((((-85)) . T)) +((((-85)) . T)) +((((-499) (-85)) . T)) +((((-499) (-85)) . T)) +((((-499) (-85)) . T) (((-1174 (-499)) $) . T)) +((((-488)) . T)) +((((-85)) . T)) +((((-797)) . T)) +((((-85)) . T)) +((((-85)) . T)) +((((-1099)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) (((|#1| |#2|) . T)) -((((-875)) . T)) -((((-557)) . T)) +((((-797)) . T)) +((((-499)) . T)) (((|#1| |#2|) . T)) -((((-875)) . T)) -(-12 (|has| |#1| (-1120)) (|has| |#2| (-1120))) -((((-875)) -12 (|has| |#1| (-1120)) (|has| |#2| (-1120)))) +((((-797)) . T)) +(-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) +((((-797)) -12 (|has| |#1| (-1041)) (|has| |#2| (-1041)))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-875)) . T)) +((((-797)) . T)) (((|#1| |#2|) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-797)) . T)) +((((-797)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-859)) -(|has| |#1| (-859)) -(((|#1|) . T)) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-859)) (|has| |#1| (-1120))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-859)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(-3955 (|has| |#1| (-859)) (|has| |#1| (-1120))) -(((|#1|) . T)) -((((-546)) |has| |#1| (-629 (-546)))) -((((-557) |#1|) . T)) -((((-1253 (-557)) $) . T) (((-557) |#1|) . T)) -((((-557) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-592 |#1|)) . T)) -((((-592 |#1|)) . T)) -((((-592 |#1|)) . T)) -((((-592 |#1|)) . T) (($) . T) (((-419 (-557))) . T)) -((((-592 |#1|)) . T) (($) . T) (((-419 (-557))) . T)) -((((-592 |#1|) (-592 |#1|)) . T) (($ $) . T) (((-419 (-557)) (-419 (-557))) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-592 |#1|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-592 |#1|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-875)) . T)) -((((-592 |#1|)) . T) (((-419 (-557))) . T) (((-557)) . T) (($) . T)) -((((-592 |#1|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-592 |#1|)) . T) (((-419 (-557))) . T) (($) . T) (((-557)) . T)) -(|has| $ (-149)) +(|has| |#1| (-781)) +(|has| |#1| (-781)) +(((|#1|) . T)) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-781)) (|has| |#1| (-1041))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-781)) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(-3677 (|has| |#1| (-781)) (|has| |#1| (-1041))) +(((|#1|) . T)) +((((-488)) |has| |#1| (-569 (-488)))) +((((-499) |#1|) . T)) +((((-1174 (-499)) $) . T) (((-499) |#1|) . T)) +((((-499) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-532 |#1|)) . T)) +((((-532 |#1|)) . T)) +((((-532 |#1|)) . T)) +((((-532 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) +((((-532 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) +((((-532 |#1|) (-532 |#1|)) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-532 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-532 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-797)) . T)) +((((-532 |#1|)) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) +((((-532 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-532 |#1|)) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) +(|has| $ (-120)) ((($) . T)) -((((-592 |#1|)) . T)) +((((-532 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-1120)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-1120)))) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-1120))) +(|has| |#1| (-1041)) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) (((|#1| |#4| |#5|) . T)) -(((|#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) . T)) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-1120))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(|has| |#1| (-1120)) -(((|#1|) . T)) -(((|#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T)) -((((-789) |#1|) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-590)) . T)) +(((|#1| (-552 |#1| |#3|) (-552 |#1| |#2|)) . T)) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(|has| |#1| (-1041)) +(((|#1|) . T)) +(((|#1| (-552 |#1| |#3|) (-552 |#1| |#2|)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) ((((-1122)) . T)) -((((-659 $)) . T) (((-1178)) . T) (((-1196)) . T) (((-557)) . T) (((-229)) . T) (((-875)) . T)) -((((-557) $) . T) (((-659 (-557)) $) . T)) -((((-875)) . T)) -((((-1178) (-1196) (-557) (-229) (-875)) . T)) -((((-875)) . T)) -((($) . T) (((-557)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-797)) . T)) +((((-714) |#1|) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-530)) . T)) +((((-1043)) . T)) +((((-599 $)) . T) (((-1099)) . T) (((-1117)) . T) (((-499)) . T) (((-179)) . T) (((-797)) . T)) +((((-499) $) . T) (((-599 (-499)) $) . T)) +((((-797)) . T)) +((((-1099) (-1117) (-499) (-179) (-797)) . T)) +((((-797)) . T)) +((($) . T) (((-499)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -1702,1341 +1647,1341 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-557)) . T) (($) . T)) -((((-557)) . T)) -((($) . T) (((-557)) . T)) -((((-557)) . T)) -((((-546)) . T) (((-557)) . T) (((-903 (-557))) . T) (((-391)) . T) (((-229)) . T)) -((((-557)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-499)) . T) (($) . T)) +((((-499)) . T)) +((($) . T) (((-499)) . T)) +((((-499)) . T)) +((((-488)) . T) (((-499)) . T) (((-825 (-499))) . T) (((-333)) . T) (((-179)) . T)) +((((-499)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) (((|#1| |#2|) . T)) -((((-875)) . T)) +((((-797)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) |has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) |has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-875)) . T)) -((((-557)) . T) (($) . T)) +((((-797)) . T)) +((((-499)) . T) (($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-557)) . T) (($) . T)) -((((-557)) . T)) +((((-499)) . T) (($) . T)) +((((-499)) . T)) (((|#1|) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) ((($) . T)) -((((-875)) . T)) -((($) . T) (((-557)) . T)) +((((-797)) . T)) +((($) . T) (((-499)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-557)) . T) (($) . T)) +((((-499)) . T) (($) . T)) (((|#1|) . T)) -((((-557)) . T)) +((((-499)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -(|has| $ (-149)) +(|has| $ (-120)) ((($) . T)) -((((-875)) . T)) +((((-797)) . T)) ((($) . T)) -((($) . T) (((-419 (-557))) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) . T)) -((($) . T) (((-419 (-557))) . T)) -((($) . T) (((-419 (-557))) . T)) -((($ $) . T) (((-419 (-557)) (-419 (-557))) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-557)) . T) (((-419 (-557))) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-419 (-557)) (-419 (-557))) . T)) -((((-419 (-557))) . T)) -((((-419 (-557))) . T)) -((((-875)) . T)) -((((-557)) . T) (((-419 (-557))) . T)) -((((-419 (-557))) . T)) -((((-419 (-557))) . T)) -((((-419 (-557))) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T) (((-875)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -(|has| |#1| (-15 * (|#1| (-557) |#1|))) -((((-875)) . T)) -((($) |has| |#1| (-15 * (|#1| (-557) |#1|)))) -(|has| |#1| (-15 * (|#1| (-557) |#1|))) -((($ $) . T) (((-557) |#1|) . T)) -((((-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) -((($ (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) -((((-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) -(((|#1| (-557) (-1101)) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) . T)) -((($) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) . T)) -(|has| |#1| (-147)) -(|has| |#1| (-149)) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-568))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) . T) (($) -3955 (|has| |#1| (-175)) (|has| |#1| (-568)))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) . T) (($) -3955 (|has| |#1| (-175)) (|has| |#1| (-568)))) -((((-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1| |#1|) . T) (($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-568)))) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -((((-557)) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-568))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-568))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-568))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-568))) -(((|#1| (-557)) . T)) -(((|#1| (-557)) . T)) -((($) |has| |#1| (-568))) -((($) |has| |#1| (-568))) -((($) |has| |#1| (-568))) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -((($) |has| |#1| (-568)) ((|#1|) . T)) -((($) |has| |#1| (-568)) ((|#1|) . T)) -((($ $) |has| |#1| (-568)) ((|#1| |#1|) . T)) -((($) |has| |#1| (-568)) (((-557)) . T)) +((($) . T) (((-361 (-499))) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) . T)) +((($) . T) (((-361 (-499))) . T)) +((($) . T) (((-361 (-499))) . T)) +((($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-499)) . T) (((-361 (-499))) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-361 (-499)) (-361 (-499))) . T)) +((((-361 (-499))) . T)) +((((-361 (-499))) . T)) +((((-797)) . T)) +((((-499)) . T) (((-361 (-499))) . T)) +((((-361 (-499))) . T)) +((((-361 (-499))) . T)) +((((-361 (-499))) . T)) +((((-1122)) . T)) +((((-1122)) . T)) +((((-1122)) . T) (((-797)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +(|has| |#1| (-15 * (|#1| (-499) |#1|))) +((((-797)) . T)) +((($) |has| |#1| (-15 * (|#1| (-499) |#1|)))) +(|has| |#1| (-15 * (|#1| (-499) |#1|))) +((($ $) . T) (((-499) |#1|) . T)) +((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) +((($ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) +((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) +(((|#1| (-499) (-1022)) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T)) +((($) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T)) +(|has| |#1| (-118)) +(|has| |#1| (-120)) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-510))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510)))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510)))) +((((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1| |#1|) . T) (($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-510)))) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +((((-499)) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) +(((|#1| (-499)) . T)) +(((|#1| (-499)) . T)) +((($) |has| |#1| (-510))) +((($) |has| |#1| (-510))) +((($) |has| |#1| (-510))) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +((($) |has| |#1| (-510)) ((|#1|) . T)) +((($) |has| |#1| (-510)) ((|#1|) . T)) +((($ $) |has| |#1| (-510)) ((|#1| |#1|) . T)) +((($) |has| |#1| (-510)) (((-499)) . T)) (((|#1|) . T) (($) . T)) -((((-875)) . T)) -(((|#1|) . T) (($) . T) (((-557)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T) (((-875)) . T)) -((((-875)) . T)) +((((-797)) . T)) +(((|#1|) . T) (($) . T) (((-499)) . T)) +((((-1122)) . T)) +((((-1122)) . T)) +((((-1122)) . T) (((-797)) . T)) +((((-797)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-557) |#1|) . T)) -((((-557) |#1|) . T)) -((((-557) |#1|) . T) (((-1253 (-557)) $) . T)) -((((-546)) |has| |#1| (-629 (-546)))) +((((-499) |#1|) . T)) +((((-499) |#1|) . T)) +((((-499) |#1|) . T) (((-1174 (-499)) $) . T)) +((((-488)) |has| |#1| (-569 (-488)))) (((|#1|) . T)) -(-3955 (|has| |#1| (-859)) (|has| |#1| (-1120))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-859)) (|has| |#1| (-1120)))) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-859)) (|has| |#1| (-1120))) +(-3677 (|has| |#1| (-781)) (|has| |#1| (-1041))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-781)) (|has| |#1| (-1041)))) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-781)) (|has| |#1| (-1041))) (((|#1|) . T)) -(|has| |#1| (-859)) -(|has| |#1| (-859)) +(|has| |#1| (-781)) +(|has| |#1| (-781)) (((|#1|) . T)) (((|#1|) . T)) -((((-1201)) . T)) -((((-1237)) . T) (((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-557) |#1|) |has| |#2| (-430 |#1|))) -(((|#1|) -3955 (|has| |#2| (-380 |#1|)) (|has| |#2| (-430 |#1|)))) -(((|#1|) |has| |#2| (-430 |#1|))) +((((-1122)) . T)) +((((-1158)) . T) (((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-499) |#1|) |has| |#2| (-372 |#1|))) +(((|#1|) -3677 (|has| |#2| (-322 |#1|)) (|has| |#2| (-372 |#1|)))) +(((|#1|) |has| |#2| (-372 |#1|))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-875)) . T)) -(((|#1|) . T) (((-557)) . T)) +(((|#2|) . T) (((-797)) . T)) +(((|#1|) . T) (((-499)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-130)) . T)) -((((-130)) . T)) -((((-130)) . T) (((-875)) . T)) -((((-875)) . T)) -((((-130)) . T) (((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-130)) . T) (((-617)) . T)) -((((-130)) . T) (((-617)) . T)) -((((-130)) . T) (((-617)) . T) (((-875)) . T)) -((((-1178) |#1|) . T)) -((((-1178) |#1|) . T)) -((((-1178) |#1|) . T)) -((((-1178) |#1|) . T)) -((((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) . T)) -((((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) (((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) |has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-321 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) (((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) |has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-321 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))))) -((((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) . T)) -((((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) . T)) -((((-1178) |#1|) . T)) -((((-875)) . T)) -((((-402) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) . T)) -((((-546)) |has| |#1| (-629 (-546))) (((-903 (-391))) |has| |#1| (-629 (-903 (-391)))) (((-903 (-557))) |has| |#1| (-629 (-903 (-557))))) -(((|#1|) . T)) -((((-875)) . T)) -((((-875)) . T)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) +((((-101)) . T)) +((((-101)) . T)) +((((-101)) . T) (((-797)) . T)) +((((-797)) . T)) +((((-101)) . T) (((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-101)) . T) (((-557)) . T)) +((((-101)) . T) (((-557)) . T)) +((((-101)) . T) (((-557)) . T) (((-797)) . T)) +((((-1099) |#1|) . T)) +((((-1099) |#1|) . T)) +((((-1099) |#1|) . T)) +((((-1099) |#1|) . T)) +((((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) |has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) |has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))))) +((((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) +((((-1099) |#1|) . T)) +((((-797)) . T)) +((((-344) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) +((((-488)) |has| |#1| (-569 (-488))) (((-825 (-333))) |has| |#1| (-569 (-825 (-333)))) (((-825 (-499))) |has| |#1| (-569 (-825 (-499))))) +(((|#1|) . T)) +((((-797)) . T)) +((((-797)) . T)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) (((|#2|) . T)) (((|#2|) . T)) -((((-875)) . T)) +((((-797)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) -(((|#2|) . T) (((-557)) . T) (($) . T)) +(((|#2|) . T) (((-499)) . T) (($) . T)) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-557)) . T)) +(((|#2|) . T) (((-499)) . T)) (((|#2|) . T)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-147)) -(|has| |#1| (-149)) -(((|#2|) . T) (((-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) (((-557)) |has| |#1| (-1057 (-557))) ((|#1|) . T)) -(((|#1|) . T)) -((((-419 |#2|)) . T)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-118)) +(|has| |#1| (-120)) +(((|#2|) . T) (((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) |has| |#1| (-978 (-499))) ((|#1|) . T)) +(((|#1|) . T)) +((((-361 |#2|)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -(|has| |#2| (-240)) -(((|#2|) . T) (((-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((|#1|) . T) (($) . T) (((-557)) . T)) +(|has| |#2| (-190)) +(((|#2|) . T) (((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((|#1|) . T) (($) . T) (((-499)) . T)) ((($) . T)) -((((-875)) . T)) -((($) . T) (((-557)) . T)) -((($) -3955 (|has| |#2| (-240)) (|has| |#2| (-239)))) -(-3955 (|has| |#2| (-240)) (|has| |#2| (-239))) +((((-797)) . T)) +((($) . T) (((-499)) . T)) +((($) -3677 (|has| |#2| (-190)) (|has| |#2| (-189)))) +(-3677 (|has| |#2| (-190)) (|has| |#2| (-189))) (((|#2|) . T)) -((($ (-1196)) -3955 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196))))) -((((-1196)) -3955 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196))))) -((((-1196)) |has| |#2| (-915 (-1196)))) +((($ (-1117)) -3677 (|has| |#2| (-836 (-1117))) (|has| |#2| (-838 (-1117))))) +((((-1117)) -3677 (|has| |#2| (-836 (-1117))) (|has| |#2| (-838 (-1117))))) +((((-1117)) |has| |#2| (-836 (-1117)))) (((|#2|) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T)) -((((-1178) (-51)) . T)) -((((-875)) . T)) -((((-1196) (-51)) . T) (((-1178) (-51)) . T)) -((((-1178) (-51)) . T)) -((((-1178) (-51)) . T)) -((((-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) . T)) -((((-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) . T)) -((((-51)) . T) (((-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) . T)) -((((-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) |has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-321 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))))) -((((-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) |has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-321 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))))) -((((-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) . T)) -((((-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) . T)) -((((-1178) (-51)) . T)) -((((-557) |#1|) |has| |#2| (-430 |#1|))) -(((|#1|) -3955 (|has| |#2| (-380 |#1|)) (|has| |#2| (-430 |#1|)))) -(((|#1|) |has| |#2| (-430 |#1|))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-875)) . T)) -(((|#1|) . T) (((-557)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-797)) . T)) +((((-1099) (-51)) . T)) +((((-797)) . T)) +((((-1117) (-51)) . T) (((-1099) (-51)) . T)) +((((-1099) (-51)) . T)) +((((-1099) (-51)) . T)) +((((-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) . T)) +((((-51)) . T) (((-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) |has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))))) +((((-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) |has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))))) +((((-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) . T)) +((((-1099) (-51)) . T)) +((((-499) |#1|) |has| |#2| (-372 |#1|))) +(((|#1|) -3677 (|has| |#2| (-322 |#1|)) (|has| |#2| (-372 |#1|)))) +(((|#1|) |has| |#2| (-372 |#1|))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#2|) . T) (((-797)) . T)) +(((|#1|) . T) (((-499)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-876 |#1|)) . T)) -((((-875)) . T)) -(((|#1| (-653 |#2|)) . T)) -((((-653 |#2|)) . T)) +((((-798 |#1|)) . T)) +((((-797)) . T)) +(((|#1| (-593 |#2|)) . T)) +((((-593 |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-875)) . T)) -(((|#1|) . T) (((-557)) . T)) +((((-797)) . T)) +(((|#1|) . T) (((-499)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-655 |#1| |#2|) |#1|) . T)) +((((-595 |#1| |#2|) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-875)) . T)) -(((|#1|) . T) (((-557)) . T)) +((((-797)) . T)) +(((|#1|) . T) (((-499)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-859)) (|has| |#1| (-1120))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-859)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(-3955 (|has| |#1| (-859)) (|has| |#1| (-1120))) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-781)) (|has| |#1| (-1041))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-781)) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(-3677 (|has| |#1| (-781)) (|has| |#1| (-1041))) (((|#1|) . T)) -((((-546)) |has| |#1| (-629 (-546)))) -((((-557) |#1|) . T)) -((((-1253 (-557)) $) . T) (((-557) |#1|) . T)) -((((-557) |#1|) . T)) +((((-488)) |has| |#1| (-569 (-488)))) +((((-499) |#1|) . T)) +((((-1174 (-499)) $) . T) (((-499) |#1|) . T)) +((((-499) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-859)) -(|has| |#1| (-859)) +(|has| |#1| (-781)) +(|has| |#1| (-781)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1201)) . T)) -(((|#1|) . T) (((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) +((((-1122)) . T)) +(((|#1|) . T) (((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) (((|#1|) . T)) -((((-546)) |has| |#1| (-629 (-546)))) +((((-488)) |has| |#1| (-569 (-488)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1120)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-1120)))) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-1120))) +(|has| |#1| (-1041)) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-875)) . T)) -(|has| |#1| (-810)) -(|has| |#1| (-810)) -(|has| |#1| (-810)) -(|has| |#1| (-810)) -(|has| |#1| (-810)) -(|has| |#1| (-810)) +((((-797)) . T)) +(|has| |#1| (-735)) +(|has| |#1| (-735)) +(|has| |#1| (-735)) +(|has| |#1| (-735)) +(|has| |#1| (-735)) +(|has| |#1| (-735)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-875)) . T)) -((((-557)) . T) ((|#2|) . T)) +((((-797)) . T)) +((((-499)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) (((-557)) |has| |#1| (-1057 (-557))) ((|#1|) . T)) +((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) |has| |#1| (-978 (-499))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -((((-875)) . T)) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +((((-797)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-557)) . T) (($) . T)) +(((|#1|) . T) (((-499)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((|#1|) . T) (((-557)) . T)) -(((|#1|) |has| |#1| (-175))) +((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((|#1|) . T) (((-499)) . T)) +(((|#1|) |has| |#1| (-146))) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) (((-557)) |has| |#1| (-1057 (-557))) ((|#1|) . T)) +((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) |has| |#1| (-978 (-499))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -((((-875)) . T)) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +((((-797)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-557)) . T) (($) . T)) +(((|#1|) . T) (((-499)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((|#1|) . T) (((-557)) . T)) -(((|#1|) |has| |#1| (-175))) +((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((|#1|) . T) (((-499)) . T)) +(((|#1|) |has| |#1| (-146))) (((|#1|) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) (((|#1|) . T)) -((((-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) (((-557)) |has| |#1| (-1057 (-557))) ((|#1|) . T)) +((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) |has| |#1| (-978 (-499))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -((((-875)) . T)) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +((((-797)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-557)) . T) (($) . T)) +(((|#1|) . T) (((-499)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((|#1|) . T) (((-557)) . T)) -(((|#1|) |has| |#1| (-175))) +((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((|#1|) . T) (((-499)) . T)) +(((|#1|) |has| |#1| (-146))) (((|#1|) . T)) -((((-690 |#1|)) . T)) -((((-690 |#1|)) . T)) -(((|#2| (-690 |#1|)) . T)) +((((-630 |#1|)) . T)) +((((-630 |#1|)) . T)) +(((|#2| (-630 |#1|)) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-875)) . T)) -((((-557)) . T) ((|#2|) . T)) +((((-797)) . T)) +((((-499)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-557) |#2|) . T)) +((((-499) |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-6 (-4425 "*")))) +(((|#2|) |has| |#2| (-6 (-4147 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-707 |#2|)) . T) (((-875)) . T)) -((($) . T) (((-557)) . T) ((|#2|) . T)) +((((-647 |#2|)) . T) (((-797)) . T)) +((($) . T) (((-499)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1196)) |has| |#2| (-915 (-1196)))) -((((-1196)) -3955 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196))))) -((($ (-1196)) -3955 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196))))) +((((-1117)) |has| |#2| (-836 (-1117)))) +((((-1117)) -3677 (|has| |#2| (-836 (-1117))) (|has| |#2| (-838 (-1117))))) +((($ (-1117)) -3677 (|has| |#2| (-836 (-1117))) (|has| |#2| (-838 (-1117))))) (((|#2|) . T)) -(-3955 (|has| |#2| (-240)) (|has| |#2| (-239))) -((($) -3955 (|has| |#2| (-240)) (|has| |#2| (-239)))) -(|has| |#2| (-240)) +(-3677 (|has| |#2| (-190)) (|has| |#2| (-189))) +((($) -3677 (|has| |#2| (-190)) (|has| |#2| (-189)))) +(|has| |#2| (-190)) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-557)) |has| |#2| (-656 (-557)))) -(((|#2|) . T) (((-557)) |has| |#2| (-656 (-557)))) +((($) . T) ((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) +(((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) (((|#2|) . T)) -((((-557)) . T) ((|#2|) . T) (((-419 (-557))) |has| |#2| (-1057 (-419 (-557))))) -(((|#2|) . T) (((-557)) |has| |#2| (-1057 (-557))) (((-419 (-557))) |has| |#2| (-1057 (-419 (-557))))) -(((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120)))) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120)))) +((((-499)) . T) ((|#2|) . T) (((-361 (-499))) |has| |#2| (-978 (-361 (-499))))) +(((|#2|) . T) (((-499)) |has| |#2| (-978 (-499))) (((-361 (-499))) |has| |#2| (-978 (-361 (-499))))) +(((|#1| |#1| |#2| (-196 |#1| |#2|) (-196 |#1| |#2|)) . T)) +(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) +(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) (((|#2|) . T)) -(((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-875)) . T)) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-1120))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(|has| |#1| (-1120)) -(((|#1|) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-875)) . T)) -((((-1201)) . T)) -((((-1237)) . T) (((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-546)) |has| |#1| (-629 (-546)))) -(((|#1| (-1286 |#1|) (-1286 |#1|)) . T)) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-1120))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(|has| |#1| (-1120)) -(((|#1|) . T)) -(((|#1| (-1286 |#1|) (-1286 |#1|)) . T)) -((((-875)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-717)) . T)) -((((-717)) . T)) -((((-717)) . T)) -((((-717)) . T)) -((((-717)) . T)) -((((-717)) . T)) -((((-391)) . T)) -((((-717)) . T)) -((((-717) (-1190 (-717))) . T)) -((((-717) (-1190 (-717))) . T)) -((((-717) (-1190 (-717))) . T)) -((((-717)) . T)) -((((-171 (-229))) . T) (((-171 (-391))) . T) (((-1190 (-717))) . T) (((-903 (-391))) . T)) -((((-717)) . T)) -((((-419 (-557))) . T) (((-717)) . T) (($) . T)) -((((-419 (-557))) . T) (((-717)) . T) (($) . T)) -((((-419 (-557))) . T) (((-717)) . T) (($) . T)) -((((-875)) . T)) -((((-419 (-557))) . T) (((-717)) . T) (($) . T) (((-557)) . T)) -((((-419 (-557))) . T) (((-717)) . T) (($) . T)) -((((-419 (-557))) . T) (((-717)) . T) (($) . T)) -((((-419 (-557)) (-419 (-557))) . T) (((-717) (-717)) . T) (($ $) . T)) -((((-419 (-557))) . T) (((-717)) . T) (($) . T) (((-557)) . T)) -((((-419 (-557))) . T) (((-717)) . T) (($) . T)) -((((-717)) . T) (((-419 (-557))) . T) (((-557)) . T)) -((((-391)) . T) (((-557)) . T) (((-419 (-557))) . T)) -((((-391)) . T)) -((($) . T) (((-419 (-557))) . T)) -((($) . T) (((-419 (-557))) . T)) -((($ $) . T) (((-419 (-557)) (-419 (-557))) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-229)) . T) (((-391)) . T) (((-903 (-391))) . T)) -((((-875)) . T)) -((((-419 (-557))) . T) (((-557)) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-391)) . T) (((-419 (-557))) . T) (($) . T) (((-557)) . T)) +(((|#1| |#2| (-196 |#1| |#2|) (-196 |#1| |#2|)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-797)) . T)) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(|has| |#1| (-1041)) +(((|#1|) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-797)) . T)) +((((-1122)) . T)) +((((-1158)) . T) (((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-488)) |has| |#1| (-569 (-488)))) +(((|#1| (-1207 |#1|) (-1207 |#1|)) . T)) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(|has| |#1| (-1041)) +(((|#1|) . T)) +(((|#1| (-1207 |#1|) (-1207 |#1|)) . T)) +((((-797)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-657)) . T)) +((((-657)) . T)) +((((-657)) . T)) +((((-657)) . T)) +((((-657)) . T)) +((((-657)) . T)) +((((-333)) . T)) +((((-657)) . T)) +((((-657) (-1111 (-657))) . T)) +((((-657) (-1111 (-657))) . T)) +((((-657) (-1111 (-657))) . T)) +((((-657)) . T)) +((((-142 (-179))) . T) (((-142 (-333))) . T) (((-1111 (-657))) . T) (((-825 (-333))) . T)) +((((-657)) . T)) +((((-361 (-499))) . T) (((-657)) . T) (($) . T)) +((((-361 (-499))) . T) (((-657)) . T) (($) . T)) +((((-361 (-499))) . T) (((-657)) . T) (($) . T)) +((((-797)) . T)) +((((-361 (-499))) . T) (((-657)) . T) (($) . T) (((-499)) . T)) +((((-361 (-499))) . T) (((-657)) . T) (($) . T)) +((((-361 (-499))) . T) (((-657)) . T) (($) . T)) +((((-361 (-499)) (-361 (-499))) . T) (((-657) (-657)) . T) (($ $) . T)) +((((-361 (-499))) . T) (((-657)) . T) (($) . T) (((-499)) . T)) +((((-361 (-499))) . T) (((-657)) . T) (($) . T)) +((((-657)) . T) (((-361 (-499))) . T) (((-499)) . T)) +((((-333)) . T) (((-499)) . T) (((-361 (-499))) . T)) +((((-333)) . T)) +((($) . T) (((-361 (-499))) . T)) +((($) . T) (((-361 (-499))) . T)) +((($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-179)) . T) (((-333)) . T) (((-825 (-333))) . T)) +((((-797)) . T)) +((((-361 (-499))) . T) (((-499)) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-333)) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) ((($) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-546)) . T) (((-557)) . T) (((-903 (-557))) . T) (((-391)) . T) (((-229)) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-488)) . T) (((-499)) . T) (((-825 (-499))) . T) (((-333)) . T) (((-179)) . T)) ((($) . T)) ((($) . T)) -((((-557)) . T) (($) . T)) -((((-875)) . T)) -((($) . T) (((-557)) . T)) +((((-499)) . T) (($) . T)) +((((-797)) . T)) +((($) . T) (((-499)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) -((($) . T) (((-557)) . T)) +((($) . T) (((-499)) . T)) ((($) . T)) -((((-557)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((($) . T) (((-419 (-557))) . T)) -((($) . T) (((-419 (-557))) . T)) -((($ $) . T) (((-419 (-557)) (-419 (-557))) . T)) -((((-419 (-557))) . T) (((-557)) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (((-557)) . T) (($) . T)) -(|has| |#1| (-381)) +((((-499)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((($) . T) (((-361 (-499))) . T)) +((($) . T) (((-361 (-499))) . T)) +((($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) +((((-361 (-499))) . T) (((-499)) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (((-499)) . T) (($) . T)) +(|has| |#1| (-323)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-875)) . T)) -((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-376)) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-927))) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(|has| |#1| (-376)) -(((|#1| (-789) (-1101)) . T)) -(|has| |#1| (-927)) -(|has| |#1| (-927)) -((((-1196)) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (((-1101)) . T)) -((($ (-1196)) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (($ (-1101)) . T)) -((((-1196)) |has| |#1| (-915 (-1196))) (((-1101)) . T)) -((((-557)) |has| |#1| (-656 (-557))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-789)) . T)) -(|has| |#1| (-149)) -(|has| |#1| (-147)) -(((|#2|) . T) (((-557)) . T) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) (((-1101)) . T) ((|#1|) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557)))))) -((($) -3955 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) . T) (((-557)) |has| |#1| (-656 (-557))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((((-557)) . T) (($) . T) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1| |#1|) . T) (((-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -(((|#1|) . T)) -((((-1101)) . T) ((|#1|) . T) (((-557)) |has| |#1| (-1057 (-557))) (((-419 (-557))) |has| |#1| (-1057 (-419 (-557))))) -(((|#1| (-789)) . T)) -((((-1101) |#1|) . T) (((-1101) $) . T) (($ $) . T)) +((((-797)) . T)) +((((-361 $) (-361 $)) |has| |#1| (-510)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-318)) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-848))) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(|has| |#1| (-318)) +(((|#1| (-714) (-1022)) . T)) +(|has| |#1| (-848)) +(|has| |#1| (-848)) +((((-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (((-1022)) . T)) +((($ (-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (($ (-1022)) . T)) +((((-1117)) |has| |#1| (-836 (-1117))) (((-1022)) . T)) +((((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-714)) . T)) +(|has| |#1| (-120)) +(|has| |#1| (-118)) +(((|#2|) . T) (((-499)) . T) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) (((-1022)) . T) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499)))))) +((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) . T) (((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((((-499)) . T) (($) . T) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +(((|#1|) . T)) +((((-1022)) . T) ((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) +(((|#1| (-714)) . T)) +((((-1022) |#1|) . T) (((-1022) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1171)) -(((|#1|) . T)) -((((-2 (|:| -2629 |#1|) (|:| -2630 |#2|))) . T)) -((((-2 (|:| -2629 |#1|) (|:| -2630 |#2|))) . T)) -((((-2 (|:| -2629 |#1|) (|:| -2630 |#2|))) . T) (((-875)) . T)) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -(((|#1| |#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -(|has| |#1| (-147)) -(|has| |#1| (-149)) +(|has| |#1| (-1092)) +(((|#1|) . T)) +((((-2 (|:| -2518 |#1|) (|:| -2519 |#2|))) . T)) +((((-2 (|:| -2518 |#1|) (|:| -2519 |#2|))) . T)) +((((-2 (|:| -2518 |#1|) (|:| -2519 |#2|))) . T) (((-797)) . T)) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1| |#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(|has| |#1| (-118)) +(|has| |#1| (-120)) (((|#2| |#2|) . T)) -((((-115)) . T) ((|#1|) . T)) -((((-115)) . T) ((|#1|) . T) (((-557)) . T)) -(((|#1|) |has| |#1| (-175)) (($) . T)) -((((-875)) . T)) -(((|#1|) |has| |#1| (-175)) (($) . T) (((-557)) . T)) -((((-557)) . T)) +((((-86)) . T) ((|#1|) . T)) +((((-86)) . T) ((|#1|) . T) (((-499)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T)) +((((-797)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-499)) . T)) +((((-499)) . T)) ((($) . T)) -((((-875)) . T)) -((($) . T) (((-557)) . T)) -((((-875)) . T)) -((((-546)) |has| |#2| (-629 (-546))) (((-903 (-391))) |has| |#2| (-629 (-903 (-391)))) (((-903 (-557))) |has| |#2| (-629 (-903 (-557))))) +((((-797)) . T)) +((($) . T) (((-499)) . T)) +((((-797)) . T)) +((((-488)) |has| |#2| (-569 (-488))) (((-825 (-333))) |has| |#2| (-569 (-825 (-333)))) (((-825 (-499))) |has| |#2| (-569 (-825 (-499))))) ((($) . T)) -(((|#2| (-542 (-876 |#1|))) . T)) +(((|#2| (-484 (-798 |#1|))) . T)) (((|#2|) . T)) -((((-875)) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) . T)) -(|has| |#2| (-147)) -(|has| |#2| (-149)) -(-3955 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -((((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) . T) (($) -3955 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) . T) (($) -3955 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-419 (-557)) (-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2| |#2|) . T) (($ $) -3955 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -(-3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -(-3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -((((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) |has| |#2| (-175)) (($) -3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) |has| |#2| (-175)) (($) -3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -((((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) |has| |#2| (-175)) (($) -3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927)))) -(((|#2| (-542 (-876 |#1|))) . T)) +((((-797)) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T)) +(|has| |#2| (-118)) +(|has| |#2| (-120)) +(-3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) +((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (($) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (($) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +((((-361 (-499)) (-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2| |#2|) . T) (($ $) -3677 (|has| |#2| (-146)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +(-3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) +(-3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) +((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +((((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) |has| |#2| (-146)) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848)))) +(((|#2| (-484 (-798 |#1|))) . T)) (((|#2|) . T)) -((($) . T) (((-419 (-557))) |has| |#2| (-38 (-419 (-557)))) ((|#2|) . T) (((-557)) |has| |#2| (-656 (-557)))) -(((|#2|) . T) (((-557)) |has| |#2| (-656 (-557)))) -(-3955 (|has| |#2| (-464)) (|has| |#2| (-927))) -((($ $) . T) (((-876 |#1|) $) . T) (((-876 |#1|) |#2|) . T)) -((((-876 |#1|)) . T)) -((($ (-876 |#1|)) . T)) -((((-876 |#1|)) . T)) -(|has| |#2| (-927)) -(|has| |#2| (-927)) -((((-419 (-557))) |has| |#2| (-1057 (-419 (-557)))) (((-557)) |has| |#2| (-1057 (-557))) ((|#2|) . T) (((-876 |#1|)) . T)) -((((-557)) . T) (((-419 (-557))) -3955 (|has| |#2| (-38 (-419 (-557)))) (|has| |#2| (-1057 (-419 (-557))))) ((|#2|) . T) (($) -3955 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) (((-876 |#1|)) . T)) -(((|#2| (-542 (-876 |#1|)) (-876 |#1|)) . T)) -(-12 (|has| |#1| (-381)) (|has| |#2| (-381))) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -(((|#1| |#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -(|has| |#1| (-147)) -(|has| |#1| (-149)) +((($) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499)))) ((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) +(((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) +(-3677 (|has| |#2| (-406)) (|has| |#2| (-848))) +((($ $) . T) (((-798 |#1|) $) . T) (((-798 |#1|) |#2|) . T)) +((((-798 |#1|)) . T)) +((($ (-798 |#1|)) . T)) +((((-798 |#1|)) . T)) +(|has| |#2| (-848)) +(|has| |#2| (-848)) +((((-361 (-499))) |has| |#2| (-978 (-361 (-499)))) (((-499)) |has| |#2| (-978 (-499))) ((|#2|) . T) (((-798 |#1|)) . T)) +((((-499)) . T) (((-361 (-499))) -3677 (|has| |#2| (-38 (-361 (-499)))) (|has| |#2| (-978 (-361 (-499))))) ((|#2|) . T) (($) -3677 (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) (((-798 |#1|)) . T)) +(((|#2| (-484 (-798 |#1|)) (-798 |#1|)) . T)) +(-12 (|has| |#1| (-323)) (|has| |#2| (-323))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1| |#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(|has| |#1| (-118)) +(|has| |#1| (-120)) (((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) ((|#2|) . T) (((-557)) . T)) -(((|#1|) |has| |#1| (-175)) (($) . T)) -((((-875)) . T)) -(((|#1|) |has| |#1| (-175)) (($) . T) (((-557)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-499)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T)) +((((-797)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-499)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-875)) . T)) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) +((((-797)) . T)) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) (((|#1|) . T)) (((|#1|) . T)) -((((-546)) |has| |#1| (-629 (-546)))) +((((-488)) |has| |#1| (-569 (-488)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -(((|#1| (-542 |#2|) |#2|) . T)) -(|has| |#1| (-927)) -(|has| |#1| (-927)) -((((-557)) -12 (|has| |#1| (-899 (-557))) (|has| |#2| (-899 (-557)))) (((-391)) -12 (|has| |#1| (-899 (-391))) (|has| |#2| (-899 (-391))))) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +(((|#1| (-484 |#2|) |#2|) . T)) +(|has| |#1| (-848)) +(|has| |#1| (-848)) +((((-499)) -12 (|has| |#1| (-821 (-499))) (|has| |#2| (-821 (-499)))) (((-333)) -12 (|has| |#1| (-821 (-333))) (|has| |#2| (-821 (-333))))) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -(-3955 (|has| |#1| (-464)) (|has| |#1| (-927))) -((((-557)) |has| |#1| (-656 (-557))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-542 |#2|)) . T)) -(-3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(|has| |#1| (-149)) -(|has| |#1| (-147)) -((($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((((-1144 |#1| |#2|)) . T) (((-963 |#1|)) |has| |#2| (-629 (-1196))) (((-875)) . T)) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1| |#1|) . T) (((-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -(((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) (((-557)) . T) (($) . T)) -((((-557)) |has| |#1| (-656 (-557))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) (($) . T)) -((((-1144 |#1| |#2|)) . T) ((|#2|) . T) (($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) (((-557)) . T)) -((($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -(((|#1|) . T)) -((((-1144 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-557)) |has| |#1| (-1057 (-557))) (((-419 (-557))) |has| |#1| (-1057 (-419 (-557))))) -(((|#1| (-542 |#2|)) . T)) +(-3677 (|has| |#1| (-406)) (|has| |#1| (-848))) +((((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-484 |#2|)) . T)) +(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(|has| |#1| (-120)) +(|has| |#1| (-118)) +((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((((-1065 |#1| |#2|)) . T) (((-884 |#1|)) |has| |#2| (-569 (-1117))) (((-797)) . T)) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +(((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (((-499)) . T) (($) . T)) +((((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (($) . T)) +((((-1065 |#1| |#2|)) . T) ((|#2|) . T) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) (((-499)) . T)) +((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +(((|#1|) . T)) +((((-1065 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) +(((|#1| (-484 |#2|)) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) ((($) . T)) -((((-963 |#1|)) |has| |#2| (-629 (-1196))) (((-1178)) -12 (|has| |#1| (-1057 (-557))) (|has| |#2| (-629 (-1196)))) (((-903 (-557))) -12 (|has| |#1| (-629 (-903 (-557)))) (|has| |#2| (-629 (-903 (-557))))) (((-903 (-391))) -12 (|has| |#1| (-629 (-903 (-391)))) (|has| |#2| (-629 (-903 (-391))))) (((-546)) -12 (|has| |#1| (-629 (-546))) (|has| |#2| (-629 (-546))))) -(((|#1| (-542 |#2|) |#2|) . T)) +((((-884 |#1|)) |has| |#2| (-569 (-1117))) (((-1099)) -12 (|has| |#1| (-978 (-499))) (|has| |#2| (-569 (-1117)))) (((-825 (-499))) -12 (|has| |#1| (-569 (-825 (-499)))) (|has| |#2| (-569 (-825 (-499))))) (((-825 (-333))) -12 (|has| |#1| (-569 (-825 (-333)))) (|has| |#2| (-569 (-825 (-333))))) (((-488)) -12 (|has| |#1| (-569 (-488))) (|has| |#2| (-569 (-488))))) +(((|#1| (-484 |#2|) |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-1190 |#1|)) . T) (((-875)) . T)) -((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-376)) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-927))) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(|has| |#1| (-376)) -(((|#1| (-789) (-1101)) . T)) -(|has| |#1| (-927)) -(|has| |#1| (-927)) -((((-1196)) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (((-1101)) . T)) -((($ (-1196)) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (($ (-1101)) . T)) -((((-1196)) |has| |#1| (-915 (-1196))) (((-1101)) . T)) -((((-557)) |has| |#1| (-656 (-557))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-789)) . T)) -(|has| |#1| (-149)) -(|has| |#1| (-147)) -((((-1190 |#1|)) . T) (((-557)) . T) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) (((-1101)) . T) ((|#1|) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557)))))) -((($) -3955 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) . T) (((-557)) |has| |#1| (-656 (-557))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((((-557)) . T) (($) . T) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1| |#1|) . T) (((-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -(((|#1|) . T)) -((((-1190 |#1|)) . T) (((-1101)) . T) ((|#1|) . T) (((-557)) |has| |#1| (-1057 (-557))) (((-419 (-557))) |has| |#1| (-1057 (-419 (-557))))) -(((|#1| (-789)) . T)) -((((-1101) |#1|) . T) (((-1101) $) . T) (($ $) . T)) +((((-1111 |#1|)) . T) (((-797)) . T)) +((((-361 $) (-361 $)) |has| |#1| (-510)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-318)) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-848))) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(|has| |#1| (-318)) +(((|#1| (-714) (-1022)) . T)) +(|has| |#1| (-848)) +(|has| |#1| (-848)) +((((-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (((-1022)) . T)) +((($ (-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (($ (-1022)) . T)) +((((-1117)) |has| |#1| (-836 (-1117))) (((-1022)) . T)) +((((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-714)) . T)) +(|has| |#1| (-120)) +(|has| |#1| (-118)) +((((-1111 |#1|)) . T) (((-499)) . T) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) (((-1022)) . T) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499)))))) +((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) . T) (((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((((-499)) . T) (($) . T) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +(((|#1|) . T)) +((((-1111 |#1|)) . T) (((-1022)) . T) ((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) +(((|#1| (-714)) . T)) +((((-1022) |#1|) . T) (((-1022) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1171)) +(|has| |#1| (-1092)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-875)) . T)) -((($) . T) (((-557)) . T) ((|#1|) . T)) +((((-797)) . T)) +((($) . T) (((-499)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-147)) -(|has| |#1| (-149)) -((((-546)) |has| |#1| (-629 (-546)))) -(|has| |#1| (-381)) -(((|#1|) . T)) -((((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) -(((|#1|) |has| |#1| (-321 |#1|))) -(((|#1| $) |has| |#1| (-298 |#1| |#1|))) -((((-1015 |#1|)) . T) ((|#1|) . T)) -((((-1015 |#1|)) . T) (((-557)) . T) ((|#1|) . T) (((-419 (-557))) -3955 (|has| |#1| (-1057 (-419 (-557)))) (|has| (-1015 |#1|) (-1057 (-419 (-557)))))) -((((-1015 |#1|)) . T) ((|#1|) . T) (((-557)) -3955 (|has| |#1| (-1057 (-557))) (|has| (-1015 |#1|) (-1057 (-557)))) (((-419 (-557))) -3955 (|has| |#1| (-1057 (-419 (-557)))) (|has| (-1015 |#1|) (-1057 (-419 (-557)))))) -(|has| |#1| (-859)) -(|has| |#1| (-859)) -(((|#1|) . T)) -((((-875)) . T)) -(-3955 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1068))) -(-3955 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-813)) (|has| |#2| (-1068))) -(-3955 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-744)) (|has| |#2| (-813)) (|has| |#2| (-859)) (|has| |#2| (-1068)) (|has| |#2| (-1120))) -(-3955 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-744)) (|has| |#2| (-813)) (|has| |#2| (-859)) (|has| |#2| (-1068)) (|has| |#2| (-1120))) -(-3955 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-813)) (|has| |#2| (-1068))) -(-3955 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-813)) (|has| |#2| (-1068))) -(((|#2| |#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1068)))) -(((|#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-744)) (|has| |#2| (-1068)))) -(((|#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1068)))) -((((-875)) -3955 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-628 (-875))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-744)) (|has| |#2| (-813)) (|has| |#2| (-859)) (|has| |#2| (-1068)) (|has| |#2| (-1120))) (((-1286 |#2|)) . T)) -(((|#2|) |has| |#2| (-1068))) -((((-1196)) -12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068)))) -((((-1196)) -3955 (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))))) -((($ (-1196)) -3955 (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))))) -(((|#2|) |has| |#2| (-1068))) -(-3955 (-12 (|has| |#2| (-240)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1068)))) -((($) -3955 (-12 (|has| |#2| (-240)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1068))))) -(|has| |#2| (-1068)) -(|has| |#2| (-1068)) -(|has| |#2| (-1068)) -(|has| |#2| (-1068)) -((((-557)) -3955 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1068))) ((|#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-744)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068))) -(-12 (|has| |#2| (-240)) (|has| |#2| (-1068))) -(|has| |#2| (-381)) -(((|#2|) |has| |#2| (-1068))) -(((|#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068)) (((-557)) -12 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068)))) -(((|#2|) |has| |#2| (-1068)) (((-557)) -12 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068)))) -(((|#2|) |has| |#2| (-1120))) -((((-557)) -3955 (-12 (|has| |#2| (-1057 (-557))) (|has| |#2| (-1120))) (|has| |#2| (-1068))) ((|#2|) |has| |#2| (-1120)) (((-419 (-557))) -12 (|has| |#2| (-1057 (-419 (-557)))) (|has| |#2| (-1120)))) -(((|#2|) |has| |#2| (-1120)) (((-557)) -12 (|has| |#2| (-1057 (-557))) (|has| |#2| (-1120))) (((-419 (-557))) -12 (|has| |#2| (-1057 (-419 (-557)))) (|has| |#2| (-1120)))) -((((-557) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120)))) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120)))) +(|has| |#1| (-118)) +(|has| |#1| (-120)) +((((-488)) |has| |#1| (-569 (-488)))) +(|has| |#1| (-323)) +(((|#1|) . T)) +((((-1117) |#1|) |has| |#1| (-468 (-1117) |#1|)) ((|#1| |#1|) |has| |#1| (-263 |#1|))) +(((|#1|) |has| |#1| (-263 |#1|))) +(((|#1| $) |has| |#1| (-240 |#1| |#1|))) +((((-936 |#1|)) . T) ((|#1|) . T)) +((((-936 |#1|)) . T) (((-499)) . T) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| (-936 |#1|) (-978 (-361 (-499)))))) +((((-936 |#1|)) . T) ((|#1|) . T) (((-499)) -3677 (|has| |#1| (-978 (-499))) (|has| (-936 |#1|) (-978 (-499)))) (((-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| (-936 |#1|) (-978 (-361 (-499)))))) +(|has| |#1| (-781)) +(|has| |#1| (-781)) +(((|#1|) . T)) +((((-797)) . T)) +(-3677 (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989))) +(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-738)) (|has| |#2| (-989))) +(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-323)) (|has| |#2| (-684)) (|has| |#2| (-738)) (|has| |#2| (-781)) (|has| |#2| (-989)) (|has| |#2| (-1041))) +(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-73)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-323)) (|has| |#2| (-684)) (|has| |#2| (-738)) (|has| |#2| (-781)) (|has| |#2| (-989)) (|has| |#2| (-1041))) +(-3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-738)) (|has| |#2| (-989))) +(-3677 (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-738)) (|has| |#2| (-989))) +(((|#2| |#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989)))) +(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-684)) (|has| |#2| (-989)))) +(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989)))) +((((-797)) -3677 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-568 (-797))) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-323)) (|has| |#2| (-684)) (|has| |#2| (-738)) (|has| |#2| (-781)) (|has| |#2| (-989)) (|has| |#2| (-1041))) (((-1207 |#2|)) . T)) +(((|#2|) |has| |#2| (-989))) +((((-1117)) -12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989)))) +((((-1117)) -3677 (-12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989))) (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))))) +((($ (-1117)) -3677 (-12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989))) (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))))) +(((|#2|) |has| |#2| (-989))) +(-3677 (-12 (|has| |#2| (-190)) (|has| |#2| (-989))) (-12 (|has| |#2| (-189)) (|has| |#2| (-989)))) +((($) -3677 (-12 (|has| |#2| (-190)) (|has| |#2| (-989))) (-12 (|has| |#2| (-189)) (|has| |#2| (-989))))) +(|has| |#2| (-989)) +(|has| |#2| (-989)) +(|has| |#2| (-989)) +(|has| |#2| (-989)) +((((-499)) -3677 (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989))) ((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-684)) (|has| |#2| (-989))) (($) |has| |#2| (-989))) +(-12 (|has| |#2| (-190)) (|has| |#2| (-989))) +(|has| |#2| (-323)) +(((|#2|) |has| |#2| (-989))) +(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-989))) (($) |has| |#2| (-989)) (((-499)) -12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989)))) +(((|#2|) |has| |#2| (-989)) (((-499)) -12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989)))) +(((|#2|) |has| |#2| (-1041))) +((((-499)) -3677 (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) (|has| |#2| (-989))) ((|#2|) |has| |#2| (-1041)) (((-361 (-499))) -12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041)))) +(((|#2|) |has| |#2| (-1041)) (((-499)) -12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) (((-361 (-499))) -12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041)))) +((((-499) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) +(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) (((|#2|) . T)) -((((-557) |#2|) . T)) -((((-557) |#2|) . T)) -(((|#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-744)))) -(((|#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)))) -(|has| |#2| (-813)) -(|has| |#2| (-813)) -(-3955 (|has| |#2| (-813)) (|has| |#2| (-859))) -(-3955 (|has| |#2| (-813)) (|has| |#2| (-859))) -(|has| |#2| (-813)) -(|has| |#2| (-813)) -(((|#2|) |has| |#2| (-376))) +((((-499) |#2|) . T)) +((((-499) |#2|) . T)) +(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-684)))) +(((|#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)))) +(|has| |#2| (-738)) +(|has| |#2| (-738)) +(-3677 (|has| |#2| (-738)) (|has| |#2| (-781))) +(-3677 (|has| |#2| (-738)) (|has| |#2| (-781))) +(|has| |#2| (-738)) +(|has| |#2| (-738)) +(((|#2|) |has| |#2| (-318))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3955 (|has| |#1| (-240)) (|has| |#1| (-239))) -((($) -3955 (|has| |#1| (-240)) (|has| |#1| (-239)))) -((((-875)) . T)) -(|has| |#1| (-240)) +(-3677 (|has| |#1| (-190)) (|has| |#1| (-189))) +((($) -3677 (|has| |#1| (-190)) (|has| |#1| (-189)))) +((((-797)) . T)) +(|has| |#1| (-190)) ((($) . T)) -(((|#1| (-542 (-838 (-1196))) (-838 (-1196))) . T)) -(|has| |#1| (-927)) -(|has| |#1| (-927)) -((((-1196)) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (((-838 (-1196))) . T)) -((($ (-1196)) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (($ (-838 (-1196))) . T)) -((((-1196)) |has| |#1| (-915 (-1196))) (((-838 (-1196))) . T)) -((($ $) . T) (((-1196) $) |has| |#1| (-240)) (((-1196) |#1|) |has| |#1| (-240)) (((-838 (-1196)) |#1|) . T) (((-838 (-1196)) $) . T)) -(-3955 (|has| |#1| (-464)) (|has| |#1| (-927))) -((((-557)) |has| |#1| (-656 (-557))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-542 (-838 (-1196)))) . T)) -(-3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(|has| |#1| (-149)) -(|has| |#1| (-147)) -((($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) . T) (((-557)) |has| |#1| (-656 (-557))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((((-557)) . T) (($) . T) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1| |#1|) . T) (((-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -(((|#1|) . T)) -(((|#1| (-542 (-838 (-1196)))) . T)) -((((-1144 |#1| (-1196))) . T) (((-838 (-1196))) . T) ((|#1|) . T) (((-557)) |has| |#1| (-1057 (-557))) (((-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) (((-1196)) . T)) -((((-1144 |#1| (-1196))) . T) (((-557)) . T) (((-838 (-1196))) . T) (($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) (((-1196)) . T)) -(((|#1| (-1196) (-838 (-1196)) (-542 (-838 (-1196)))) . T)) -(|has| |#2| (-376)) -(|has| |#2| (-376)) -(|has| |#2| (-376)) -(|has| |#2| (-376)) -((((-419 (-557))) |has| |#2| (-376)) (($) |has| |#2| (-376))) -((((-419 (-557))) |has| |#2| (-376)) (($) |has| |#2| (-376))) -((((-419 (-557))) |has| |#2| (-376)) (($) |has| |#2| (-376))) -(|has| |#2| (-376)) -(|has| |#2| (-376)) -(|has| |#2| (-376)) -(|has| |#2| (-376)) -(|has| |#2| (-376)) +(((|#1| (-484 (-761 (-1117))) (-761 (-1117))) . T)) +(|has| |#1| (-848)) +(|has| |#1| (-848)) +((((-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (((-761 (-1117))) . T)) +((($ (-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (($ (-761 (-1117))) . T)) +((((-1117)) |has| |#1| (-836 (-1117))) (((-761 (-1117))) . T)) +((($ $) . T) (((-1117) $) |has| |#1| (-190)) (((-1117) |#1|) |has| |#1| (-190)) (((-761 (-1117)) |#1|) . T) (((-761 (-1117)) $) . T)) +(-3677 (|has| |#1| (-406)) (|has| |#1| (-848))) +((((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-484 (-761 (-1117)))) . T)) +(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(|has| |#1| (-120)) +(|has| |#1| (-118)) +((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) . T) (((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((((-499)) . T) (($) . T) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +(((|#1|) . T)) +(((|#1| (-484 (-761 (-1117)))) . T)) +((((-1065 |#1| (-1117))) . T) (((-761 (-1117))) . T) ((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-1117)) . T)) +((((-1065 |#1| (-1117))) . T) (((-499)) . T) (((-761 (-1117))) . T) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) (((-1117)) . T)) +(((|#1| (-1117) (-761 (-1117)) (-484 (-761 (-1117)))) . T)) +(|has| |#2| (-318)) +(|has| |#2| (-318)) +(|has| |#2| (-318)) +(|has| |#2| (-318)) +((((-361 (-499))) |has| |#2| (-318)) (($) |has| |#2| (-318))) +((((-361 (-499))) |has| |#2| (-318)) (($) |has| |#2| (-318))) +((((-361 (-499))) |has| |#2| (-318)) (($) |has| |#2| (-318))) +(|has| |#2| (-318)) +(|has| |#2| (-318)) +(|has| |#2| (-318)) +(|has| |#2| (-318)) +(|has| |#2| (-318)) (((|#2|) . T)) ((($) . T)) -((((-419 (-557))) |has| |#2| (-376)) (($) |has| |#2| (-376)) ((|#2|) . T) (((-557)) . T)) -((((-419 (-557))) |has| |#2| (-376)) (($) . T)) -(((|#2|) . T) (((-875)) . T)) -((((-419 (-557))) |has| |#2| (-376)) (($) . T) (((-557)) . T)) -((((-419 (-557))) |has| |#2| (-376)) (($) . T)) -((((-419 (-557))) |has| |#2| (-376)) (($) . T)) -((((-419 (-557)) (-419 (-557))) |has| |#2| (-376)) (($ $) . T)) +((((-361 (-499))) |has| |#2| (-318)) (($) |has| |#2| (-318)) ((|#2|) . T) (((-499)) . T)) +((((-361 (-499))) |has| |#2| (-318)) (($) . T)) +(((|#2|) . T) (((-797)) . T)) +((((-361 (-499))) |has| |#2| (-318)) (($) . T) (((-499)) . T)) +((((-361 (-499))) |has| |#2| (-318)) (($) . T)) +((((-361 (-499))) |has| |#2| (-318)) (($) . T)) +((((-361 (-499)) (-361 (-499))) |has| |#2| (-318)) (($ $) . T)) ((($) . T)) -((((-875)) . T)) +((((-797)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-875)) . T)) +((((-797)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-240)) -((($) |has| |#1| (-240))) -(|has| |#1| (-240)) -(((|#2|) |has| |#2| (-175))) +(|has| |#1| (-190)) +((($) |has| |#1| (-190))) +(|has| |#1| (-190)) +(((|#2|) |has| |#2| (-146))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-875)) . T)) -((($) . T) (((-557)) . T) ((|#2|) . T)) +((((-797)) . T)) +((($) . T) (((-499)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-175))) -(((|#2|) |has| |#2| (-175))) -((((-557)) . T) ((|#2|) |has| |#2| (-175))) +(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-146))) +((((-499)) . T) ((|#2|) |has| |#2| (-146))) (((|#2|) . T)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -((($) |has| |#1| (-858))) -(|has| |#1| (-858)) -(-3955 (|has| |#1| (-21)) (|has| |#1| (-858))) -(-3955 (|has| |#1| (-21)) (|has| |#1| (-858))) -(-3955 (|has| |#1| (-21)) (|has| |#1| (-858))) -((($) |has| |#1| (-858)) (((-557)) -3955 (|has| |#1| (-21)) (|has| |#1| (-858)))) -(-3955 (|has| |#1| (-21)) (|has| |#1| (-858))) -((((-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) (((-557)) |has| |#1| (-1057 (-557))) ((|#1|) . T)) -((((-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) (((-557)) -3955 (|has| |#1| (-858)) (|has| |#1| (-1057 (-557)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-875)) . T)) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -(((|#1| |#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -(|has| |#1| (-147)) -(|has| |#1| (-149)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +((($) |has| |#1| (-780))) +(|has| |#1| (-780)) +(-3677 (|has| |#1| (-21)) (|has| |#1| (-780))) +(-3677 (|has| |#1| (-21)) (|has| |#1| (-780))) +(-3677 (|has| |#1| (-21)) (|has| |#1| (-780))) +((($) |has| |#1| (-780)) (((-499)) -3677 (|has| |#1| (-21)) (|has| |#1| (-780)))) +(-3677 (|has| |#1| (-21)) (|has| |#1| (-780))) +((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) |has| |#1| (-978 (-499))) ((|#1|) . T)) +((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) -3677 (|has| |#1| (-780)) (|has| |#1| (-978 (-499)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-797)) . T)) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1| |#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(|has| |#1| (-118)) +(|has| |#1| (-120)) (((|#1| |#1|) . T)) -((((-115)) . T) ((|#1|) . T)) -((((-115)) . T) ((|#1|) . T) (((-557)) . T)) -(((|#1|) |has| |#1| (-175)) (($) . T)) -((((-875)) . T)) -(((|#1|) |has| |#1| (-175)) (($) . T) (((-557)) . T)) -((((-875)) . T)) -((((-518)) . T)) -((((-875)) . T)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -((($) |has| |#1| (-858))) -(|has| |#1| (-858)) -(-3955 (|has| |#1| (-21)) (|has| |#1| (-858))) -(-3955 (|has| |#1| (-21)) (|has| |#1| (-858))) -(-3955 (|has| |#1| (-21)) (|has| |#1| (-858))) -((($) |has| |#1| (-858)) (((-557)) -3955 (|has| |#1| (-21)) (|has| |#1| (-858)))) -(-3955 (|has| |#1| (-21)) (|has| |#1| (-858))) -((((-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) (((-557)) |has| |#1| (-1057 (-557))) ((|#1|) . T)) -((((-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) (((-557)) -3955 (|has| |#1| (-858)) (|has| |#1| (-1057 (-557)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-875)) . T)) -(((|#1|) . T)) -((((-875)) |has| |#1| (-628 (-875))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-175))) +((((-86)) . T) ((|#1|) . T)) +((((-86)) . T) ((|#1|) . T) (((-499)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T)) +((((-797)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-499)) . T)) +((((-797)) . T)) +((((-460)) . T)) +((((-797)) . T)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +((($) |has| |#1| (-780))) +(|has| |#1| (-780)) +(-3677 (|has| |#1| (-21)) (|has| |#1| (-780))) +(-3677 (|has| |#1| (-21)) (|has| |#1| (-780))) +(-3677 (|has| |#1| (-21)) (|has| |#1| (-780))) +((($) |has| |#1| (-780)) (((-499)) -3677 (|has| |#1| (-21)) (|has| |#1| (-780)))) +(-3677 (|has| |#1| (-21)) (|has| |#1| (-780))) +((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) |has| |#1| (-978 (-499))) ((|#1|) . T)) +((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) -3677 (|has| |#1| (-780)) (|has| |#1| (-978 (-499)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-797)) . T)) +(((|#1|) . T)) +((((-797)) |has| |#1| (-568 (-797))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-146))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-875)) . T)) -((($) . T) (((-557)) . T) ((|#1|) . T)) +((((-797)) . T)) +((($) . T) (((-499)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) (((|#1|) . T)) -((((-557)) . T) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-1057 (-419 (-557))))) -(((|#1|) . T) (((-557)) |has| |#1| (-1057 (-557))) (((-419 (-557))) |has| |#1| (-1057 (-419 (-557))))) +((((-499)) . T) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) +(((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) (((|#1|) . T)) -(((|#2|) |has| |#2| (-175))) +(((|#2|) |has| |#2| (-146))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-875)) . T)) -((($) . T) (((-557)) . T) ((|#2|) . T)) +((((-797)) . T)) +((($) . T) (((-499)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-175))) -(((|#2|) |has| |#2| (-175))) +(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-146))) (((|#2|) . T)) -((((-1283 |#1|)) . T) (((-557)) . T) ((|#2|) . T) (((-419 (-557))) |has| |#2| (-1057 (-419 (-557))))) -(((|#2|) . T) (((-557)) |has| |#2| (-1057 (-557))) (((-419 (-557))) |has| |#2| (-1057 (-419 (-557))))) +((((-1204 |#1|)) . T) (((-499)) . T) ((|#2|) . T) (((-361 (-499))) |has| |#2| (-978 (-361 (-499))))) +(((|#2|) . T) (((-499)) |has| |#2| (-978 (-499))) (((-361 (-499))) |has| |#2| (-978 (-361 (-499))))) (((|#2|) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-903 (-557))) . T) (((-903 (-391))) . T) (((-546)) . T) (((-1196)) . T)) -((((-875)) . T)) -((((-875)) . T)) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -(((|#1| |#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -((((-963 |#1|)) . T)) -(((|#1|) |has| |#1| (-175)) (((-963 |#1|)) . T) (((-557)) . T)) -(((|#1|) |has| |#1| (-175)) (($) . T)) -((((-963 |#1|)) . T) (((-875)) . T)) -(((|#1|) |has| |#1| (-175)) (($) . T) (((-557)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-825 (-499))) . T) (((-825 (-333))) . T) (((-488)) . T) (((-1117)) . T)) +((((-797)) . T)) +((((-797)) . T)) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1| |#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +((((-884 |#1|)) . T)) +(((|#1|) |has| |#1| (-146)) (((-884 |#1|)) . T) (((-499)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T)) +((((-884 |#1|)) . T) (((-797)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-499)) . T)) ((($) . T)) -((((-875)) . T)) -((($) . T) (((-557)) . T)) +((((-797)) . T)) +((($) . T) (((-499)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-557)) . T) (($) . T)) -(((|#1|) . T)) -((((-875)) . T)) -((((-881 |#1|)) . T)) -((((-881 |#1|)) . T)) -((((-881 |#1|)) . T) (($) . T) (((-419 (-557))) . T)) -((($) . T) (((-557)) . T) (((-881 |#1|)) . T) (((-419 (-557))) . T)) -((((-881 |#1|)) . T) (($) . T) (((-419 (-557))) . T)) -((((-881 |#1|)) . T) (($) . T) (((-419 (-557))) . T)) -((((-881 |#1|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-881 |#1|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-881 |#1|) (-881 |#1|)) . T) (((-419 (-557)) (-419 (-557))) . T) (($ $) . T)) -((((-881 |#1|)) . T)) -((((-1196) (-881 |#1|)) |has| (-881 |#1|) (-526 (-1196) (-881 |#1|))) (((-881 |#1|) (-881 |#1|)) |has| (-881 |#1|) (-321 (-881 |#1|)))) -((((-881 |#1|)) |has| (-881 |#1|) (-321 (-881 |#1|)))) -((((-881 |#1|) $) |has| (-881 |#1|) (-298 (-881 |#1|) (-881 |#1|)))) -((((-881 |#1|)) . T)) -((($) . T) (((-881 |#1|)) . T) (((-419 (-557))) . T)) -((((-881 |#1|)) . T)) -((((-881 |#1|)) . T)) -((((-881 |#1|)) . T)) -((((-557)) . T) (((-881 |#1|)) . T) (($) . T) (((-419 (-557))) . T)) -((((-881 |#1|)) . T)) -((((-881 |#1|)) . T)) -((((-875)) . T)) -(|has| |#2| (-147)) -(|has| |#2| (-149)) +((((-499)) . T) (($) . T)) +(((|#1|) . T)) +((((-797)) . T)) +((((-803 |#1|)) . T)) +((((-803 |#1|)) . T)) +((((-803 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) +((($) . T) (((-499)) . T) (((-803 |#1|)) . T) (((-361 (-499))) . T)) +((((-803 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) +((((-803 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) +((((-803 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-803 |#1|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-803 |#1|) (-803 |#1|)) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) +((((-803 |#1|)) . T)) +((((-1117) (-803 |#1|)) |has| (-803 |#1|) (-468 (-1117) (-803 |#1|))) (((-803 |#1|) (-803 |#1|)) |has| (-803 |#1|) (-263 (-803 |#1|)))) +((((-803 |#1|)) |has| (-803 |#1|) (-263 (-803 |#1|)))) +((((-803 |#1|) $) |has| (-803 |#1|) (-240 (-803 |#1|) (-803 |#1|)))) +((((-803 |#1|)) . T)) +((($) . T) (((-803 |#1|)) . T) (((-361 (-499))) . T)) +((((-803 |#1|)) . T)) +((((-803 |#1|)) . T)) +((((-803 |#1|)) . T)) +((((-499)) . T) (((-803 |#1|)) . T) (($) . T) (((-361 (-499))) . T)) +((((-803 |#1|)) . T)) +((((-803 |#1|)) . T)) +((((-797)) . T)) +(|has| |#2| (-118)) +(|has| |#2| (-120)) (((|#2|) . T)) -((((-1196)) |has| |#2| (-915 (-1196)))) -((((-1196)) -3955 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196))))) -((($ (-1196)) -3955 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196))))) +((((-1117)) |has| |#2| (-836 (-1117)))) +((((-1117)) -3677 (|has| |#2| (-836 (-1117))) (|has| |#2| (-838 (-1117))))) +((($ (-1117)) -3677 (|has| |#2| (-836 (-1117))) (|has| |#2| (-838 (-1117))))) (((|#2|) . T)) -(-3955 (|has| |#2| (-240)) (|has| |#2| (-239))) -((($) -3955 (|has| |#2| (-240)) (|has| |#2| (-239)))) -(|has| |#2| (-240)) -(((|#2|) . T) (($) . T) (((-419 (-557))) . T)) -((($) . T) (((-557)) . T) ((|#2|) . T) (((-419 (-557))) . T)) -(((|#2|) . T) (($) . T) (((-419 (-557))) . T)) -(((|#2|) . T) (($) . T) (((-419 (-557))) . T)) -(((|#2|) . T) (((-419 (-557))) . T) (($) . T)) -(((|#2|) . T) (((-419 (-557))) . T) (($) . T)) -(((|#2| |#2|) . T) (((-419 (-557)) (-419 (-557))) . T) (($ $) . T)) +(-3677 (|has| |#2| (-190)) (|has| |#2| (-189))) +((($) -3677 (|has| |#2| (-190)) (|has| |#2| (-189)))) +(|has| |#2| (-190)) +(((|#2|) . T) (($) . T) (((-361 (-499))) . T)) +((($) . T) (((-499)) . T) ((|#2|) . T) (((-361 (-499))) . T)) +(((|#2|) . T) (($) . T) (((-361 (-499))) . T)) +(((|#2|) . T) (($) . T) (((-361 (-499))) . T)) +(((|#2|) . T) (((-361 (-499))) . T) (($) . T)) +(((|#2|) . T) (((-361 (-499))) . T) (($) . T)) +(((|#2| |#2|) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) (((|#2|) . T)) -((((-1196) |#2|) |has| |#2| (-526 (-1196) |#2|)) ((|#2| |#2|) |has| |#2| (-321 |#2|))) -(((|#2|) |has| |#2| (-321 |#2|))) -(((|#2| $) |has| |#2| (-298 |#2| |#2|))) +((((-1117) |#2|) |has| |#2| (-468 (-1117) |#2|)) ((|#2| |#2|) |has| |#2| (-263 |#2|))) +(((|#2|) |has| |#2| (-263 |#2|))) +(((|#2| $) |has| |#2| (-240 |#2| |#2|))) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-419 (-557))) . T) (((-557)) |has| |#2| (-656 (-557)))) -(((|#2|) . T) (((-557)) |has| |#2| (-656 (-557)))) +((($) . T) ((|#2|) . T) (((-361 (-499))) . T) (((-499)) |has| |#2| (-596 (-499)))) +(((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) (((|#2|) . T)) -((((-557)) |has| |#2| (-899 (-557))) (((-391)) |has| |#2| (-899 (-391)))) -(|has| |#2| (-840)) -(|has| |#2| (-840)) -(|has| |#2| (-840)) -(-3955 (|has| |#2| (-840)) (|has| |#2| (-859))) -(-3955 (|has| |#2| (-840)) (|has| |#2| (-859))) -(|has| |#2| (-840)) -(|has| |#2| (-840)) -(|has| |#2| (-840)) +((((-499)) |has| |#2| (-821 (-499))) (((-333)) |has| |#2| (-821 (-333)))) +(|has| |#2| (-763)) +(|has| |#2| (-763)) +(|has| |#2| (-763)) +(-3677 (|has| |#2| (-763)) (|has| |#2| (-781))) +(-3677 (|has| |#2| (-763)) (|has| |#2| (-781))) +(|has| |#2| (-763)) +(|has| |#2| (-763)) +(|has| |#2| (-763)) (((|#2|) . T)) -(|has| |#2| (-927)) -(|has| |#2| (-1039)) -((((-546)) |has| |#2| (-629 (-546))) (((-903 (-557))) |has| |#2| (-629 (-903 (-557)))) (((-903 (-391))) |has| |#2| (-629 (-903 (-391)))) (((-391)) |has| |#2| (-1039)) (((-229)) |has| |#2| (-1039))) -((((-557)) . T) ((|#2|) . T) (($) . T) (((-419 (-557))) . T) (((-1196)) |has| |#2| (-1057 (-1196)))) -((((-419 (-557))) |has| |#2| (-1057 (-557))) (((-557)) |has| |#2| (-1057 (-557))) (((-1196)) |has| |#2| (-1057 (-1196))) ((|#2|) . T)) -(|has| |#2| (-1171)) +(|has| |#2| (-848)) +(|has| |#2| (-960)) +((((-488)) |has| |#2| (-569 (-488))) (((-825 (-499))) |has| |#2| (-569 (-825 (-499)))) (((-825 (-333))) |has| |#2| (-569 (-825 (-333)))) (((-333)) |has| |#2| (-960)) (((-179)) |has| |#2| (-960))) +((((-499)) . T) ((|#2|) . T) (($) . T) (((-361 (-499))) . T) (((-1117)) |has| |#2| (-978 (-1117)))) +((((-361 (-499))) |has| |#2| (-978 (-499))) (((-499)) |has| |#2| (-978 (-499))) (((-1117)) |has| |#2| (-978 (-1117))) ((|#2|) . T)) +(|has| |#2| (-1092)) (((|#2|) . T)) -(-12 (|has| |#1| (-1120)) (|has| |#2| (-1120))) -(-12 (|has| |#1| (-1120)) (|has| |#2| (-1120))) -((((-875)) -3955 (-12 (|has| |#1| (-628 (-875))) (|has| |#2| (-628 (-875)))) (-12 (|has| |#1| (-1120)) (|has| |#2| (-1120))))) -((((-159)) . T)) -((((-875)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-1196)) . T) ((|#1|) . T)) -((((-1196)) . T) ((|#1|) . T)) -((((-875)) . T)) -((((-690 |#1|)) . T)) -((((-690 |#1|)) . T)) -((((-875)) . T)) -((((-875)) . T)) -(((|#1|) . T)) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-1120))) -((((-1223 |#1|)) . T) (((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(|has| |#1| (-1120)) +(-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) +(-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) +((((-797)) -3677 (-12 (|has| |#1| (-568 (-797))) (|has| |#2| (-568 (-797)))) (-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))))) +((((-130)) . T)) +((((-797)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-1117)) . T) ((|#1|) . T)) +((((-1117)) . T) ((|#1|) . T)) +((((-797)) . T)) +((((-630 |#1|)) . T)) +((((-630 |#1|)) . T)) +((((-797)) . T)) +((((-797)) . T)) +(((|#1|) . T)) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) +((((-1144 |#1|)) . T) (((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(|has| |#1| (-1041)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -((((-875)) . T)) -(-3955 (|has| |#1| (-381)) (|has| |#1| (-859))) -(-3955 (|has| |#1| (-381)) (|has| |#1| (-859))) +((((-797)) . T)) +(-3677 (|has| |#1| (-323)) (|has| |#1| (-781))) +(-3677 (|has| |#1| (-323)) (|has| |#1| (-781))) (((|#1|) . T)) -((((-875)) . T)) -((((-557)) . T)) +((((-797)) . T)) +((((-499)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -(|has| $ (-149)) +(|has| $ (-120)) ((($) . T)) -((((-875)) . T)) +((((-797)) . T)) ((($) . T)) -((($) . T) (((-419 (-557))) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) . T)) -((($) . T) (((-419 (-557))) . T)) -((($) . T) (((-419 (-557))) . T)) -((($ $) . T) (((-419 (-557)) (-419 (-557))) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-419 (-557))) . T) (($) . T)) -((((-557)) . T) (((-419 (-557))) . T) (($) . T)) -((((-875)) . T)) -(((|#1|) . T) (($) . T) (((-419 (-557))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-557))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-419 (-557)) (-419 (-557))) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (((-557)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (((-557)) . T) (($) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-659 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-859)) -(|has| |#1| (-859)) -(((|#1|) . T)) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-859)) (|has| |#1| (-1120))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-859)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(-3955 (|has| |#1| (-859)) (|has| |#1| (-1120))) -(((|#1|) . T)) -((((-546)) |has| |#1| (-629 (-546)))) -((((-557) |#1|) . T)) -((((-1253 (-557)) $) . T) (((-557) |#1|) . T)) -((((-557) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-546)) |has| |#1| (-629 (-546))) (((-903 (-391))) |has| |#1| (-629 (-903 (-391)))) (((-903 (-557))) |has| |#1| (-629 (-903 (-557))))) +((($) . T) (((-361 (-499))) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) . T)) +((($) . T) (((-361 (-499))) . T)) +((($) . T) (((-361 (-499))) . T)) +((($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-361 (-499))) . T) (($) . T)) +((((-499)) . T) (((-361 (-499))) . T) (($) . T)) +((((-797)) . T)) +(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) +(((|#1|) . T) (($) . T) (((-361 (-499))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-361 (-499)) (-361 (-499))) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-599 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-781)) +(|has| |#1| (-781)) +(((|#1|) . T)) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-781)) (|has| |#1| (-1041))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-781)) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(-3677 (|has| |#1| (-781)) (|has| |#1| (-1041))) +(((|#1|) . T)) +((((-488)) |has| |#1| (-569 (-488)))) +((((-499) |#1|) . T)) +((((-1174 (-499)) $) . T) (((-499) |#1|) . T)) +((((-499) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-488)) |has| |#1| (-569 (-488))) (((-825 (-333))) |has| |#1| (-569 (-825 (-333)))) (((-825 (-499))) |has| |#1| (-569 (-825 (-499))))) ((($) . T)) -(((|#1| (-542 (-1196))) . T)) -(((|#1|) . T)) -((((-875)) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) . T)) -(|has| |#1| (-147)) -(|has| |#1| (-149)) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) . T) (($) -3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) . T) (($) -3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) -((((-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1| |#1|) . T) (($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) -(-3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) |has| |#1| (-175)) (($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) |has| |#1| (-175)) (($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) |has| |#1| (-175)) (($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) -(((|#1| (-542 (-1196))) . T)) -(((|#1|) . T)) -((($) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) . T) (((-557)) |has| |#1| (-656 (-557)))) -(((|#1|) . T) (((-557)) |has| |#1| (-656 (-557)))) -(-3955 (|has| |#1| (-464)) (|has| |#1| (-927))) -((($ $) . T) (((-1196) $) . T) (((-1196) |#1|) . T)) -((((-1196)) . T)) -((($ (-1196)) . T)) -((((-1196)) . T)) -((((-391)) |has| |#1| (-899 (-391))) (((-557)) |has| |#1| (-899 (-557)))) -(|has| |#1| (-927)) -(|has| |#1| (-927)) -((((-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) (((-557)) |has| |#1| (-1057 (-557))) ((|#1|) . T) (((-1196)) . T)) -((((-557)) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) ((|#1|) . T) (($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) (((-1196)) . T)) -(((|#1| (-542 (-1196)) (-1196)) . T)) -((((-1139)) . T) (((-875)) . T)) +(((|#1| (-484 (-1117))) . T)) +(((|#1|) . T)) +((((-797)) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T)) +(|has| |#1| (-118)) +(|has| |#1| (-120)) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) +((((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1| |#1|) . T) (($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) +(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) +(((|#1| (-484 (-1117))) . T)) +(((|#1|) . T)) +((($) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (((-499)) |has| |#1| (-596 (-499)))) +(((|#1|) . T) (((-499)) |has| |#1| (-596 (-499)))) +(-3677 (|has| |#1| (-406)) (|has| |#1| (-848))) +((($ $) . T) (((-1117) $) . T) (((-1117) |#1|) . T)) +((((-1117)) . T)) +((($ (-1117)) . T)) +((((-1117)) . T)) +((((-333)) |has| |#1| (-821 (-333))) (((-499)) |has| |#1| (-821 (-499)))) +(|has| |#1| (-848)) +(|has| |#1| (-848)) +((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) |has| |#1| (-978 (-499))) ((|#1|) . T) (((-1117)) . T)) +((((-499)) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ((|#1|) . T) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) (((-1117)) . T)) +(((|#1| (-484 (-1117)) (-1117)) . T)) +((((-1060)) . T) (((-797)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-568))) -(|has| |#1| (-149)) -(|has| |#1| (-147)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((((-875)) . T)) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-568))) ((|#1| |#1|) . T) (((-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -(((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) (((-557)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) (($) . T)) -((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) (((-557)) . T)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -(((|#1|) . T)) -(((|#1|) . T) (((-557)) |has| |#1| (-1057 (-557))) (((-419 (-557))) |has| |#1| (-1057 (-419 (-557))))) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-510))) +(|has| |#1| (-120)) +(|has| |#1| (-118)) +((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((((-797)) . T)) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +(((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (($) . T)) +((($) |has| |#1| (-510)) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) (((-499)) . T)) +((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +(((|#1|) . T)) +(((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) (((|#1| |#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-859)) -(|has| |#1| (-859)) +(|has| |#1| (-781)) +(|has| |#1| (-781)) (((|#1|) . T)) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-859)) (|has| |#1| (-1120))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-859)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(-3955 (|has| |#1| (-859)) (|has| |#1| (-1120))) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-781)) (|has| |#1| (-1041))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-781)) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(-3677 (|has| |#1| (-781)) (|has| |#1| (-1041))) (((|#1|) . T)) -((((-546)) |has| |#1| (-629 (-546)))) -((((-557) |#1|) . T)) -((((-1253 (-557)) $) . T) (((-557) |#1|) . T)) -((((-557) |#1|) . T)) +((((-488)) |has| |#1| (-569 (-488)))) +((((-499) |#1|) . T)) +((((-1174 (-499)) $) . T) (((-499) |#1|) . T)) +((((-499) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-813)) (|has| |#2| (-813))) -(-12 (|has| |#1| (-813)) (|has| |#2| (-813))) -(-3955 (-12 (|has| |#1| (-813)) (|has| |#2| (-813))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))) -(-3955 (-12 (|has| |#1| (-813)) (|has| |#2| (-813))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))) -(-12 (|has| |#1| (-813)) (|has| |#2| (-813))) -(-12 (|has| |#1| (-813)) (|has| |#2| (-813))) -((((-557)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) +(-12 (|has| |#1| (-738)) (|has| |#2| (-738))) +(-12 (|has| |#1| (-738)) (|has| |#2| (-738))) +(-3677 (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-781)) (|has| |#2| (-781)))) +(-3677 (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-781)) (|has| |#2| (-781)))) +(-12 (|has| |#1| (-738)) (|has| |#2| (-738))) +(-12 (|has| |#1| (-738)) (|has| |#2| (-738))) +((((-499)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -(-12 (|has| |#1| (-485)) (|has| |#2| (-485))) -(-3955 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-813)) (|has| |#2| (-813)))) -(-3955 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-813)) (|has| |#2| (-813)))) -(-3955 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-813)) (|has| |#2| (-813)))) -(-3955 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-744)) (|has| |#2| (-744)))) -(-3955 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-744)) (|has| |#2| (-744)))) -(-12 (|has| |#1| (-381)) (|has| |#2| (-381))) -((((-875)) . T)) -((((-875)) . T)) -(((|#1|) . T)) -((((-875)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-659 (-936))) . T) (((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-246 |#1| |#2|) |#2|) . T)) -((((-875)) . T)) -((((-557)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T)) -(|has| |#1| (-147)) -(|has| |#1| (-149)) -((((-546)) |has| |#1| (-629 (-546)))) -(((|#1|) . T)) -((((-1196)) |has| |#1| (-915 (-1196)))) -((((-1196)) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196))))) -((($ (-1196)) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196))))) -(((|#1|) . T)) -(-3955 (|has| |#1| (-240)) (|has| |#1| (-239))) -((($) -3955 (|has| |#1| (-240)) (|has| |#1| (-239)))) -(|has| |#1| (-240)) -(|has| |#1| (-376)) -(-3955 (|has| |#1| (-302)) (|has| |#1| (-376))) -((((-557)) . T) ((|#1|) . T) (((-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-1057 (-419 (-557)))))) -(((|#1|) . T) (((-419 (-557))) |has| |#1| (-376))) -(((|#1|) . T) (((-419 (-557))) |has| |#1| (-376))) -((($) . T) (((-557)) . T) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-376))) -(((|#1|) . T) (($) -3955 (|has| |#1| (-302)) (|has| |#1| (-376))) (((-419 (-557))) |has| |#1| (-376))) -(((|#1|) . T) (($) -3955 (|has| |#1| (-302)) (|has| |#1| (-376))) (((-419 (-557))) |has| |#1| (-376))) -(((|#1| |#1|) . T) (($ $) -3955 (|has| |#1| (-302)) (|has| |#1| (-376))) (((-419 (-557)) (-419 (-557))) |has| |#1| (-376))) -(((|#1|) . T) (((-419 (-557))) |has| |#1| (-376))) -(((|#1|) . T)) -((((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) -(((|#1|) |has| |#1| (-321 |#1|))) -(((|#1| $) |has| |#1| (-298 |#1| |#1|))) -(((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-376)) (((-557)) |has| |#1| (-656 (-557)))) -(((|#1|) . T) (((-557)) |has| |#1| (-656 (-557)))) -(((|#1|) . T)) -(((|#1|) . T) (((-557)) |has| |#1| (-1057 (-557))) (((-419 (-557))) |has| |#1| (-1057 (-419 (-557))))) -(|has| |#1| (-859)) -(|has| |#1| (-859)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-1120))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(|has| |#1| (-1120)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-419 |#2|) |#3|) . T)) -((((-419 (-557))) |has| (-419 |#2|) (-1057 (-419 (-557)))) (((-557)) |has| (-419 |#2|) (-1057 (-557))) (((-419 |#2|)) . T)) -((((-419 |#2|)) . T)) -((((-557)) |has| (-419 |#2|) (-656 (-557))) (((-419 |#2|)) . T)) -((((-419 |#2|)) . T)) -((((-419 |#2|) |#3|) . T)) -(|has| (-419 |#2|) (-149)) -((((-419 |#2|) |#3|) . T)) -(|has| (-419 |#2|) (-147)) -((((-419 |#2|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-419 |#2|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-419 |#2|)) . T) (((-419 (-557))) . T) (($) . T)) -(|has| (-419 |#2|) (-240)) -((($) -3955 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-239)))) -(-3955 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-239))) -((((-419 |#2|)) . T)) -((($ (-1196)) -3955 (|has| (-419 |#2|) (-915 (-1196))) (|has| (-419 |#2|) (-917 (-1196))))) -((((-1196)) -3955 (|has| (-419 |#2|) (-915 (-1196))) (|has| (-419 |#2|) (-917 (-1196))))) -((((-1196)) |has| (-419 |#2|) (-915 (-1196)))) -((((-419 |#2|)) . T)) +(-12 (|has| |#1| (-427)) (|has| |#2| (-427))) +(-3677 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) +(-3677 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) +(-3677 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) +(-3677 (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) (-12 (|has| |#1| (-684)) (|has| |#2| (-684)))) +(-3677 (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) (-12 (|has| |#1| (-684)) (|has| |#2| (-684)))) +(-12 (|has| |#1| (-323)) (|has| |#2| (-323))) +((((-797)) . T)) +((((-797)) . T)) +(((|#1|) . T)) +((((-797)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-599 (-857))) . T) (((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-196 |#1| |#2|) |#2|) . T)) +((((-797)) . T)) +((((-499)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-797)) . T)) +(|has| |#1| (-118)) +(|has| |#1| (-120)) +((((-488)) |has| |#1| (-569 (-488)))) +(((|#1|) . T)) +((((-1117)) |has| |#1| (-836 (-1117)))) +((((-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117))))) +((($ (-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117))))) +(((|#1|) . T)) +(-3677 (|has| |#1| (-190)) (|has| |#1| (-189))) +((($) -3677 (|has| |#1| (-190)) (|has| |#1| (-189)))) +(|has| |#1| (-190)) +(|has| |#1| (-318)) +(-3677 (|has| |#1| (-244)) (|has| |#1| (-318))) +((((-499)) . T) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-978 (-361 (-499)))))) +(((|#1|) . T) (((-361 (-499))) |has| |#1| (-318))) +(((|#1|) . T) (((-361 (-499))) |has| |#1| (-318))) +((($) . T) (((-499)) . T) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-318))) +(((|#1|) . T) (($) -3677 (|has| |#1| (-244)) (|has| |#1| (-318))) (((-361 (-499))) |has| |#1| (-318))) +(((|#1|) . T) (($) -3677 (|has| |#1| (-244)) (|has| |#1| (-318))) (((-361 (-499))) |has| |#1| (-318))) +(((|#1| |#1|) . T) (($ $) -3677 (|has| |#1| (-244)) (|has| |#1| (-318))) (((-361 (-499)) (-361 (-499))) |has| |#1| (-318))) +(((|#1|) . T) (((-361 (-499))) |has| |#1| (-318))) +(((|#1|) . T)) +((((-1117) |#1|) |has| |#1| (-468 (-1117) |#1|)) ((|#1| |#1|) |has| |#1| (-263 |#1|))) +(((|#1|) |has| |#1| (-263 |#1|))) +(((|#1| $) |has| |#1| (-240 |#1| |#1|))) +(((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-318)) (((-499)) |has| |#1| (-596 (-499)))) +(((|#1|) . T) (((-499)) |has| |#1| (-596 (-499)))) +(((|#1|) . T)) +(((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) +(|has| |#1| (-781)) +(|has| |#1| (-781)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(|has| |#1| (-1041)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-361 |#2|) |#3|) . T)) +((((-361 (-499))) |has| (-361 |#2|) (-978 (-361 (-499)))) (((-499)) |has| (-361 |#2|) (-978 (-499))) (((-361 |#2|)) . T)) +((((-361 |#2|)) . T)) +((((-499)) |has| (-361 |#2|) (-596 (-499))) (((-361 |#2|)) . T)) +((((-361 |#2|)) . T)) +((((-361 |#2|) |#3|) . T)) +(|has| (-361 |#2|) (-120)) +((((-361 |#2|) |#3|) . T)) +(|has| (-361 |#2|) (-118)) +((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) +(|has| (-361 |#2|) (-190)) +((($) -3677 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-189)))) +(-3677 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-189))) +((((-361 |#2|)) . T)) +((($ (-1117)) -3677 (|has| (-361 |#2|) (-836 (-1117))) (|has| (-361 |#2|) (-838 (-1117))))) +((((-1117)) -3677 (|has| (-361 |#2|) (-836 (-1117))) (|has| (-361 |#2|) (-838 (-1117))))) +((((-1117)) |has| (-361 |#2|) (-836 (-1117)))) +((((-361 |#2|)) . T)) (((|#3|) . T)) -((((-419 |#2|) (-419 |#2|)) . T) (((-419 (-557)) (-419 (-557))) . T) (($ $) . T)) -((((-419 |#2|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-419 |#2|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-875)) . T)) -((((-419 |#2|)) . T) (((-419 (-557))) . T) (((-557)) . T) (($) . T)) -((((-557)) |has| (-419 |#2|) (-656 (-557))) (((-419 |#2|)) . T) (((-419 (-557))) . T) (($) . T)) -((((-419 |#2|)) . T) (((-419 (-557))) . T) (($) . T) (((-557)) . T)) +((((-361 |#2|) (-361 |#2|)) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) +((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-797)) . T)) +((((-361 |#2|)) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) +((((-499)) |has| (-361 |#2|) (-596 (-499))) (((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T)) +((((-361 |#2|)) . T) (((-361 (-499))) . T) (($) . T) (((-499)) . T)) (((|#1| |#2| |#3|) . T)) -((((-419 (-557))) . T) (((-875)) . T)) -((((-557)) . T)) -((((-557)) . T)) +((((-361 (-499))) . T) (((-797)) . T)) +((((-499)) . T)) +((((-499)) . T)) ((($) . T)) -((((-557)) . T) (($) . T) (((-419 (-557))) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) . T)) -((((-557)) . T) (($) . T) (((-419 (-557))) . T)) -((((-557)) . T) (($) . T) (((-419 (-557))) . T)) -((((-557)) . T) (((-419 (-557))) . T) (($) . T)) -((((-557)) . T) (((-419 (-557))) . T) (($) . T)) -((((-557) (-557)) . T) (((-419 (-557)) (-419 (-557))) . T) (($ $) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-557)) . T)) -((((-546)) . T) (((-903 (-557))) . T) (((-391)) . T) (((-229)) . T)) -((((-419 (-557))) . T) (((-557)) . T)) -((((-557)) . T) (($) . T) (((-419 (-557))) . T)) -((((-557)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T)) -(((|#1|) . T) (($) . T) (((-557)) . T) (((-419 (-557))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-557))) . T) (((-557)) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (((-557)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (((-557)) . T) (($) . T)) -(((|#1| |#1|) . T) (((-419 (-557)) (-419 (-557))) . T) (((-557) (-557)) . T) (($ $) . T)) -(((|#1|) . T) (((-557)) . T) (((-419 (-557))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (((-557)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (((-557)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T) (((-557)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) . T)) -(((|#1|) . T) (((-557)) -3955 (|has| |#1| (-1057 (-557))) (|has| (-419 (-557)) (-1057 (-557)))) (((-419 (-557))) . T)) -(|has| |#1| (-1120)) -((((-875)) |has| |#1| (-1120))) -(|has| |#1| (-1120)) +((((-499)) . T) (($) . T) (((-361 (-499))) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) . T)) +((((-499)) . T) (($) . T) (((-361 (-499))) . T)) +((((-499)) . T) (($) . T) (((-361 (-499))) . T)) +((((-499)) . T) (((-361 (-499))) . T) (($) . T)) +((((-499)) . T) (((-361 (-499))) . T) (($) . T)) +((((-499) (-499)) . T) (((-361 (-499)) (-361 (-499))) . T) (($ $) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-499)) . T)) +((((-488)) . T) (((-825 (-499))) . T) (((-333)) . T) (((-179)) . T)) +((((-361 (-499))) . T) (((-499)) . T)) +((((-499)) . T) (($) . T) (((-361 (-499))) . T)) +((((-499)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-797)) . T)) +(((|#1|) . T) (($) . T) (((-499)) . T) (((-361 (-499))) . T)) +(((|#1|) . T) (($) . T) (((-361 (-499))) . T) (((-499)) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) +(((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) . T) (((-499) (-499)) . T) (($ $) . T)) +(((|#1|) . T) (((-499)) . T) (((-361 (-499))) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) . T)) +(((|#1|) . T) (((-499)) -3677 (|has| |#1| (-978 (-499))) (|has| (-361 (-499)) (-978 (-499)))) (((-361 (-499))) . T)) +(|has| |#1| (-1041)) +((((-797)) |has| |#1| (-1041))) +(|has| |#1| (-1041)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) -((((-659 |#4|)) . T) (((-875)) . T)) -(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120)))) -(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120)))) +((((-599 |#4|)) . T) (((-797)) . T)) +(((|#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) +(((|#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) (((|#4|) . T)) -((((-546)) |has| |#4| (-629 (-546)))) +((((-488)) |has| |#4| (-569 (-488)))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) @@ -3045,57 +2990,57 @@ (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-875)) . T)) -(((|#1|) . T) (((-557)) . T) (($) . T)) +((((-797)) . T)) +(((|#1|) . T) (((-499)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-557)) . T)) -((((-1196) (-51)) . T)) -((((-875)) . T)) -((((-1196) (-51)) . T)) -((((-1196) (-51)) . T)) -((((-1196) (-51)) . T)) -((((-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) . T)) -((((-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) . T)) -((((-51)) . T) (((-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) . T)) -((((-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) |has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-321 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))))) -((((-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) |has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-321 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))))) -((((-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) . T)) -((((-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) . T)) -((((-1196) (-51)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -(((|#1| (-542 (-876 |#2|)) (-876 |#2|) (-798 |#1| (-876 |#2|))) . T)) -((((-798 |#1| (-876 |#2|))) . T)) -((((-659 (-798 |#1| (-876 |#2|)))) . T) (((-875)) . T)) -((((-798 |#1| (-876 |#2|))) |has| (-798 |#1| (-876 |#2|)) (-321 (-798 |#1| (-876 |#2|))))) -((((-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|))) |has| (-798 |#1| (-876 |#2|)) (-321 (-798 |#1| (-876 |#2|))))) -((((-798 |#1| (-876 |#2|))) . T)) -((((-546)) |has| (-798 |#1| (-876 |#2|)) (-629 (-546)))) -(((|#1| (-542 (-876 |#2|)) (-876 |#2|) (-798 |#1| (-876 |#2|))) . T)) -(((|#1| (-542 (-876 |#2|)) (-876 |#2|) (-798 |#1| (-876 |#2|))) . T)) -((((-546)) |has| |#3| (-629 (-546)))) -(((|#3|) |has| |#3| (-376))) +(((|#1|) . T) (((-499)) . T)) +((((-1117) (-51)) . T)) +((((-797)) . T)) +((((-1117) (-51)) . T)) +((((-1117) (-51)) . T)) +((((-1117) (-51)) . T)) +((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) . T)) +((((-51)) . T) (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) |has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))))) +((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) |has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))))) +((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) . T)) +((((-1117) (-51)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +(((|#1| (-484 (-798 |#2|)) (-798 |#2|) (-723 |#1| (-798 |#2|))) . T)) +((((-723 |#1| (-798 |#2|))) . T)) +((((-599 (-723 |#1| (-798 |#2|)))) . T) (((-797)) . T)) +((((-723 |#1| (-798 |#2|))) |has| (-723 |#1| (-798 |#2|)) (-263 (-723 |#1| (-798 |#2|))))) +((((-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|))) |has| (-723 |#1| (-798 |#2|)) (-263 (-723 |#1| (-798 |#2|))))) +((((-723 |#1| (-798 |#2|))) . T)) +((((-488)) |has| (-723 |#1| (-798 |#2|)) (-569 (-488)))) +(((|#1| (-484 (-798 |#2|)) (-798 |#2|) (-723 |#1| (-798 |#2|))) . T)) +(((|#1| (-484 (-798 |#2|)) (-798 |#2|) (-723 |#1| (-798 |#2|))) . T)) +((((-488)) |has| |#3| (-569 (-488)))) +(((|#3|) |has| |#3| (-318))) (((|#3| |#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-707 |#3|)) . T) (((-875)) . T)) -((((-557)) . T) ((|#3|) . T)) +((((-647 |#3|)) . T) (((-797)) . T)) +((((-499)) . T) ((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120)))) -(((|#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120)))) -(((|#3|) -3955 (|has| |#3| (-175)) (|has| |#3| (-376)))) -(((|#3|) -3955 (|has| |#3| (-175)) (|has| |#3| (-376)))) -(((|#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) . T)) -(|has| |#1| (-1120)) -((((-875)) |has| |#1| (-1120))) -(|has| |#1| (-1120)) -((((-875)) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041)))) +(((|#3|) -12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041)))) +(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)))) +(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)))) +(((|#1| |#2| |#3| (-196 |#2| |#3|) (-196 |#1| |#3|)) . T)) +(|has| |#1| (-1041)) +((((-797)) |has| |#1| (-1041))) +(|has| |#1| (-1041)) +((((-797)) . T)) (((|#1| |#2|) . T)) -((((-1196)) . T)) -((((-875)) . T)) -((($) . T) (((-557)) . T)) +((((-1117)) . T)) +((((-797)) . T)) +((($) . T) (((-499)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -3103,212 +3048,212 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-557)) . T) (($) . T)) -((((-557)) . T)) -((($) . T) (((-557)) . T)) -((((-557)) . T)) -((((-546)) . T) (((-557)) . T) (((-903 (-557))) . T) (((-391)) . T) (((-229)) . T)) -((((-557)) . T)) -((((-1196) (-51)) . T)) -((((-875)) . T)) -((((-1196) (-51)) . T)) -((((-1196) (-51)) . T)) -((((-1196) (-51)) . T)) -((((-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) . T)) -((((-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) . T)) -((((-51)) . T) (((-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) . T)) -((((-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) |has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-321 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))))) -((((-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) |has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-321 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))))) -((((-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) . T)) -((((-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) . T)) -((((-1196) (-51)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-305 |#3|)) . T)) -((((-305 |#3|)) . T)) +((((-499)) . T) (($) . T)) +((((-499)) . T)) +((($) . T) (((-499)) . T)) +((((-499)) . T)) +((((-488)) . T) (((-499)) . T) (((-825 (-499))) . T) (((-333)) . T) (((-179)) . T)) +((((-499)) . T)) +((((-1117) (-51)) . T)) +((((-797)) . T)) +((((-1117) (-51)) . T)) +((((-1117) (-51)) . T)) +((((-1117) (-51)) . T)) +((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) . T)) +((((-51)) . T) (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) |has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))))) +((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) |has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))))) +((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) . T)) +((((-1117) (-51)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-247 |#3|)) . T)) +((((-247 |#3|)) . T)) (((|#3| |#3|) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-797)) . T)) +((((-797)) . T)) (((|#3| |#3|) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-797)) . T)) +((((-797)) . T)) (((|#2|) . T)) -(((|#1|) |has| |#1| (-376))) -((((-1196)) -12 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196))))) -((((-1196)) -3955 (-12 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1196)))))) -((($ (-1196)) -3955 (-12 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1196)))))) -(((|#1|) |has| |#1| (-376))) -(-3955 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) -((($) -3955 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363)))) -(-3955 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-363))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3955 (|has| |#1| (-381)) (|has| |#1| (-363))) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -(-3955 (|has| |#1| (-147)) (|has| |#1| (-363))) -(|has| |#1| (-363)) +(((|#1|) |has| |#1| (-318))) +((((-1117)) -12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117))))) +((((-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))))) +((($ (-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))))) +(((|#1|) |has| |#1| (-318))) +(-3677 (-12 (|has| |#1| (-190)) (|has| |#1| (-318))) (-12 (|has| |#1| (-189)) (|has| |#1| (-318))) (|has| |#1| (-305))) +((($) -3677 (-12 (|has| |#1| (-190)) (|has| |#1| (-318))) (-12 (|has| |#1| (-189)) (|has| |#1| (-318))) (|has| |#1| (-305)))) +(-3677 (-12 (|has| |#1| (-190)) (|has| |#1| (-318))) (|has| |#1| (-305))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-305))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-305))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-305))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-305))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-305))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-305))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-305))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-305))) +(-3677 (|has| |#1| (-323)) (|has| |#1| (-305))) +(|has| |#1| (-305)) +(|has| |#1| (-305)) +(-3677 (|has| |#1| (-118)) (|has| |#1| (-305))) +(|has| |#1| (-305)) (((|#1| |#2|) . T)) -((($) -3955 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($ $) . T) (((-419 (-557)) (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1| |#1|) . T)) -((($) . T) (((-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) . T) (((-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) -3955 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) -3955 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((((-557)) . T) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-1057 (-419 (-557))))) ((|#1|) . T)) -(|has| |#1| (-149)) +((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) +((($ $) . T) (((-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1| |#1|) . T)) +((($) . T) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) +((($) . T) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) +((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) +((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T)) +((((-499)) . T) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305)) (|has| |#1| (-978 (-361 (-499))))) ((|#1|) . T)) +(|has| |#1| (-120)) (((|#1| |#2|) . T)) (((|#1|) . T)) -((($) . T) (((-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T) (((-557)) |has| |#1| (-656 (-557)))) -(((|#1|) . T) (((-557)) |has| |#1| (-656 (-557)))) +((($) . T) (((-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-305))) ((|#1|) . T) (((-499)) |has| |#1| (-596 (-499)))) +(((|#1|) . T) (((-499)) |has| |#1| (-596 (-499)))) (((|#1|) . T)) -(((|#1|) . T) (((-557)) |has| |#1| (-1057 (-557))) (((-419 (-557))) |has| |#1| (-1057 (-419 (-557))))) +(((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) (((|#1| |#2|) . T)) -((((-1196)) . T)) -((((-875)) . T)) -((((-875)) . T)) +((((-1117)) . T)) +((((-797)) . T)) +((((-797)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3955 (|has| |#1| (-240)) (|has| |#1| (-239))) -((($) -3955 (|has| |#1| (-240)) (|has| |#1| (-239)))) -((((-875)) . T)) -(|has| |#1| (-240)) +(-3677 (|has| |#1| (-190)) (|has| |#1| (-189))) +((($) -3677 (|has| |#1| (-190)) (|has| |#1| (-189)))) +((((-797)) . T)) +(|has| |#1| (-190)) ((($) . T)) -(((|#1| (-542 (-1107 (-1196))) (-1107 (-1196))) . T)) -(|has| |#1| (-927)) -(|has| |#1| (-927)) -((((-1196)) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (((-1107 (-1196))) . T)) -((($ (-1196)) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (($ (-1107 (-1196))) . T)) -((((-1196)) |has| |#1| (-915 (-1196))) (((-1107 (-1196))) . T)) -((($ $) . T) (((-1196) $) |has| |#1| (-240)) (((-1196) |#1|) |has| |#1| (-240)) (((-1107 (-1196)) |#1|) . T) (((-1107 (-1196)) $) . T)) -(-3955 (|has| |#1| (-464)) (|has| |#1| (-927))) -((((-557)) |has| |#1| (-656 (-557))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-542 (-1107 (-1196)))) . T)) -(-3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(|has| |#1| (-149)) -(|has| |#1| (-147)) -((($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) . T) (((-557)) |has| |#1| (-656 (-557))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((((-557)) . T) (($) . T) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1| |#1|) . T) (((-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -(((|#1|) . T)) -(((|#1| (-542 (-1107 (-1196)))) . T)) -((((-1144 |#1| (-1196))) . T) (((-1107 (-1196))) . T) ((|#1|) . T) (((-557)) |has| |#1| (-1057 (-557))) (((-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) (((-1196)) . T)) -((((-1144 |#1| (-1196))) . T) (((-557)) . T) (((-1107 (-1196))) . T) (($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) (((-1196)) . T)) -(((|#1| (-1196) (-1107 (-1196)) (-542 (-1107 (-1196)))) . T)) +(((|#1| (-484 (-1028 (-1117))) (-1028 (-1117))) . T)) +(|has| |#1| (-848)) +(|has| |#1| (-848)) +((((-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (((-1028 (-1117))) . T)) +((($ (-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (($ (-1028 (-1117))) . T)) +((((-1117)) |has| |#1| (-836 (-1117))) (((-1028 (-1117))) . T)) +((($ $) . T) (((-1117) $) |has| |#1| (-190)) (((-1117) |#1|) |has| |#1| (-190)) (((-1028 (-1117)) |#1|) . T) (((-1028 (-1117)) $) . T)) +(-3677 (|has| |#1| (-406)) (|has| |#1| (-848))) +((((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-484 (-1028 (-1117)))) . T)) +(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(|has| |#1| (-120)) +(|has| |#1| (-118)) +((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) . T) (((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((((-499)) . T) (($) . T) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +(((|#1|) . T)) +(((|#1| (-484 (-1028 (-1117)))) . T)) +((((-1065 |#1| (-1117))) . T) (((-1028 (-1117))) . T) ((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-1117)) . T)) +((((-1065 |#1| (-1117))) . T) (((-499)) . T) (((-1028 (-1117))) . T) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) (((-1117)) . T)) +(((|#1| (-1117) (-1028 (-1117)) (-484 (-1028 (-1117)))) . T)) ((($) . T)) -((((-875)) . T)) +((((-797)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-659 |#1|)) |has| |#1| (-858))) -(|has| |#1| (-1120)) -(|has| |#1| (-1120)) -((((-875)) |has| |#1| (-1120))) -(|has| |#1| (-1120)) +(((|#1| (-599 |#1|)) |has| |#1| (-780))) +(|has| |#1| (-1041)) +(|has| |#1| (-1041)) +((((-797)) |has| |#1| (-1041))) +(|has| |#1| (-1041)) (((|#1|) . T)) (((|#1|) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -(|has| (-1108 |#1|) (-1120)) -((((-875)) |has| (-1108 |#1|) (-1120))) -(|has| (-1108 |#1|) (-1120)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +(|has| (-1029 |#1|) (-1041)) +((((-797)) |has| (-1029 |#1|) (-1041))) +(|has| (-1029 |#1|) (-1041)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-875)) . T)) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) +((((-797)) . T)) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) (((|#1|) . T)) (((|#1|) . T)) -((((-546)) |has| |#1| (-629 (-546)))) +((((-488)) |has| |#1| (-569 (-488)))) (((|#1|) . T)) -(|has| |#1| (-381)) +(|has| |#1| (-323)) (((|#1|) . T)) (((|#1|) . T)) -((((-875)) . T)) -((((-659 $)) . T) (((-1178)) . T) (((-1196)) . T) (((-557)) . T) (((-229)) . T) (((-875)) . T)) -((((-557) $) . T) (((-659 (-557)) $) . T)) -((((-875)) . T)) -((((-1178) (-1196) (-557) (-229) (-875)) . T)) -((((-659 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -((((-557) $) . T) (((-659 (-557)) $) . T)) -((((-875)) . T)) +((((-797)) . T)) +((((-599 $)) . T) (((-1099)) . T) (((-1117)) . T) (((-499)) . T) (((-179)) . T) (((-797)) . T)) +((((-499) $) . T) (((-599 (-499)) $) . T)) +((((-797)) . T)) +((((-1099) (-1117) (-499) (-179) (-797)) . T)) +((((-599 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +((((-499) $) . T) (((-599 (-499)) $) . T)) +((((-797)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -((((-875)) . T)) -(-3955 (|has| |#3| (-21)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1068))) -(-3955 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-813)) (|has| |#3| (-1068))) -(-3955 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-744)) (|has| |#3| (-813)) (|has| |#3| (-859)) (|has| |#3| (-1068)) (|has| |#3| (-1120))) -(-3955 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-744)) (|has| |#3| (-813)) (|has| |#3| (-859)) (|has| |#3| (-1068)) (|has| |#3| (-1120))) -(-3955 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-813)) (|has| |#3| (-1068))) -(-3955 (|has| |#3| (-21)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-813)) (|has| |#3| (-1068))) -(((|#3| |#3|) -3955 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1068)))) -(((|#3|) -3955 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-744)) (|has| |#3| (-1068)))) -(((|#3|) -3955 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1068)))) -((((-875)) -3955 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-628 (-875))) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-744)) (|has| |#3| (-813)) (|has| |#3| (-859)) (|has| |#3| (-1068)) (|has| |#3| (-1120))) (((-1286 |#3|)) . T)) -(((|#3|) |has| |#3| (-1068))) -((((-1196)) -12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068)))) -((((-1196)) -3955 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) -((($ (-1196)) -3955 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) -(((|#3|) |has| |#3| (-1068))) -(-3955 (-12 (|has| |#3| (-240)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1068)))) -((($) -3955 (-12 (|has| |#3| (-240)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1068))))) -(|has| |#3| (-1068)) -(|has| |#3| (-1068)) -(|has| |#3| (-1068)) -(|has| |#3| (-1068)) -((((-557)) -3955 (|has| |#3| (-21)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1068))) ((|#3|) -3955 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-744)) (|has| |#3| (-1068))) (($) |has| |#3| (-1068))) -(-12 (|has| |#3| (-240)) (|has| |#3| (-1068))) -(|has| |#3| (-381)) -(((|#3|) |has| |#3| (-1068))) -(((|#3|) -3955 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1068))) (($) |has| |#3| (-1068)) (((-557)) -12 (|has| |#3| (-656 (-557))) (|has| |#3| (-1068)))) -(((|#3|) |has| |#3| (-1068)) (((-557)) -12 (|has| |#3| (-656 (-557))) (|has| |#3| (-1068)))) -(((|#3|) |has| |#3| (-1120))) -((((-557)) -3955 (-12 (|has| |#3| (-1057 (-557))) (|has| |#3| (-1120))) (|has| |#3| (-1068))) ((|#3|) |has| |#3| (-1120)) (((-419 (-557))) -12 (|has| |#3| (-1057 (-419 (-557)))) (|has| |#3| (-1120)))) -(((|#3|) |has| |#3| (-1120)) (((-557)) -12 (|has| |#3| (-1057 (-557))) (|has| |#3| (-1120))) (((-419 (-557))) -12 (|has| |#3| (-1057 (-419 (-557)))) (|has| |#3| (-1120)))) -((((-557) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120)))) -(((|#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120)))) +((((-797)) . T)) +(-3677 (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-989))) +(-3677 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-738)) (|has| |#3| (-989))) +(-3677 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-323)) (|has| |#3| (-684)) (|has| |#3| (-738)) (|has| |#3| (-781)) (|has| |#3| (-989)) (|has| |#3| (-1041))) +(-3677 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-73)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-323)) (|has| |#3| (-684)) (|has| |#3| (-738)) (|has| |#3| (-781)) (|has| |#3| (-989)) (|has| |#3| (-1041))) +(-3677 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-738)) (|has| |#3| (-989))) +(-3677 (|has| |#3| (-21)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-738)) (|has| |#3| (-989))) +(((|#3| |#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-989)))) +(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-684)) (|has| |#3| (-989)))) +(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-989)))) +((((-797)) -3677 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-568 (-797))) (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-323)) (|has| |#3| (-684)) (|has| |#3| (-738)) (|has| |#3| (-781)) (|has| |#3| (-989)) (|has| |#3| (-1041))) (((-1207 |#3|)) . T)) +(((|#3|) |has| |#3| (-989))) +((((-1117)) -12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989)))) +((((-1117)) -3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))))) +((($ (-1117)) -3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))))) +(((|#3|) |has| |#3| (-989))) +(-3677 (-12 (|has| |#3| (-190)) (|has| |#3| (-989))) (-12 (|has| |#3| (-189)) (|has| |#3| (-989)))) +((($) -3677 (-12 (|has| |#3| (-190)) (|has| |#3| (-989))) (-12 (|has| |#3| (-189)) (|has| |#3| (-989))))) +(|has| |#3| (-989)) +(|has| |#3| (-989)) +(|has| |#3| (-989)) +(|has| |#3| (-989)) +((((-499)) -3677 (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-989))) ((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-684)) (|has| |#3| (-989))) (($) |has| |#3| (-989))) +(-12 (|has| |#3| (-190)) (|has| |#3| (-989))) +(|has| |#3| (-323)) +(((|#3|) |has| |#3| (-989))) +(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-989))) (($) |has| |#3| (-989)) (((-499)) -12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989)))) +(((|#3|) |has| |#3| (-989)) (((-499)) -12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989)))) +(((|#3|) |has| |#3| (-1041))) +((((-499)) -3677 (-12 (|has| |#3| (-978 (-499))) (|has| |#3| (-1041))) (|has| |#3| (-989))) ((|#3|) |has| |#3| (-1041)) (((-361 (-499))) -12 (|has| |#3| (-978 (-361 (-499)))) (|has| |#3| (-1041)))) +(((|#3|) |has| |#3| (-1041)) (((-499)) -12 (|has| |#3| (-978 (-499))) (|has| |#3| (-1041))) (((-361 (-499))) -12 (|has| |#3| (-978 (-361 (-499)))) (|has| |#3| (-1041)))) +((((-499) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041)))) +(((|#3| |#3|) -12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041)))) (((|#3|) . T)) -((((-557) |#3|) . T)) -((((-557) |#3|) . T)) -(((|#3|) -3955 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-744)))) -(((|#3|) -3955 (|has| |#3| (-175)) (|has| |#3| (-376)))) -(|has| |#3| (-813)) -(|has| |#3| (-813)) -(-3955 (|has| |#3| (-813)) (|has| |#3| (-859))) -(-3955 (|has| |#3| (-813)) (|has| |#3| (-859))) -(|has| |#3| (-813)) -(|has| |#3| (-813)) -(((|#3|) |has| |#3| (-376))) +((((-499) |#3|) . T)) +((((-499) |#3|) . T)) +(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)) (|has| |#3| (-684)))) +(((|#3|) -3677 (|has| |#3| (-146)) (|has| |#3| (-318)))) +(|has| |#3| (-738)) +(|has| |#3| (-738)) +(-3677 (|has| |#3| (-738)) (|has| |#3| (-781))) +(-3677 (|has| |#3| (-738)) (|has| |#3| (-781))) +(|has| |#3| (-738)) +(|has| |#3| (-738)) +(((|#3|) |has| |#3| (-318))) (((|#1| |#3|) . T)) -((((-875)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T)) -((($) . T) (((-557)) . T)) +((((-797)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-797)) . T)) +((($) . T) (((-499)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -3316,873 +3261,873 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-557)) . T) (($) . T)) -((((-557)) . T)) -((($) . T) (((-557)) . T)) -((((-557)) . T)) -((((-546)) . T) (((-557)) . T) (((-903 (-557))) . T) (((-391)) . T) (((-229)) . T)) -((((-557)) . T)) -((((-546)) -12 (|has| |#1| (-629 (-546))) (|has| |#2| (-629 (-546)))) (((-903 (-391))) -12 (|has| |#1| (-629 (-903 (-391)))) (|has| |#2| (-629 (-903 (-391))))) (((-903 (-557))) -12 (|has| |#1| (-629 (-903 (-557)))) (|has| |#2| (-629 (-903 (-557)))))) +((((-499)) . T) (($) . T)) +((((-499)) . T)) +((($) . T) (((-499)) . T)) +((((-499)) . T)) +((((-488)) . T) (((-499)) . T) (((-825 (-499))) . T) (((-333)) . T) (((-179)) . T)) +((((-499)) . T)) +((((-488)) -12 (|has| |#1| (-569 (-488))) (|has| |#2| (-569 (-488)))) (((-825 (-333))) -12 (|has| |#1| (-569 (-825 (-333)))) (|has| |#2| (-569 (-825 (-333))))) (((-825 (-499))) -12 (|has| |#1| (-569 (-825 (-499)))) (|has| |#2| (-569 (-825 (-499)))))) ((($) . T)) -(((|#1| (-542 |#2|)) . T)) -(((|#1|) . T)) -((((-875)) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) . T)) -(|has| |#1| (-147)) -(|has| |#1| (-149)) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) . T) (($) -3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) . T) (($) -3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) -((((-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1| |#1|) . T) (($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) -(-3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) |has| |#1| (-175)) (($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) |has| |#1| (-175)) (($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) |has| |#1| (-175)) (($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927)))) -(((|#1| (-542 |#2|)) . T)) -(((|#1|) . T)) -((($) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) . T) (((-557)) |has| |#1| (-656 (-557)))) -(((|#1|) . T) (((-557)) |has| |#1| (-656 (-557)))) -(-3955 (|has| |#1| (-464)) (|has| |#1| (-927))) +(((|#1| (-484 |#2|)) . T)) +(((|#1|) . T)) +((((-797)) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T)) +(|has| |#1| (-118)) +(|has| |#1| (-120)) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) +((((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1| |#1|) . T) (($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) +(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(-3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848)))) +(((|#1| (-484 |#2|)) . T)) +(((|#1|) . T)) +((($) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (((-499)) |has| |#1| (-596 (-499)))) +(((|#1|) . T) (((-499)) |has| |#1| (-596 (-499)))) +(-3677 (|has| |#1| (-406)) (|has| |#1| (-848))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -((((-391)) -12 (|has| |#1| (-899 (-391))) (|has| |#2| (-899 (-391)))) (((-557)) -12 (|has| |#1| (-899 (-557))) (|has| |#2| (-899 (-557))))) -(|has| |#1| (-927)) -(|has| |#1| (-927)) -((((-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) (((-557)) |has| |#1| (-1057 (-557))) ((|#1|) . T) ((|#2|) . T)) -((((-557)) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) ((|#1|) . T) (($) -3955 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#2|) . T)) -(((|#1| (-542 |#2|) |#2|) . T)) +((((-333)) -12 (|has| |#1| (-821 (-333))) (|has| |#2| (-821 (-333)))) (((-499)) -12 (|has| |#1| (-821 (-499))) (|has| |#2| (-821 (-499))))) +(|has| |#1| (-848)) +(|has| |#1| (-848)) +((((-361 (-499))) |has| |#1| (-978 (-361 (-499)))) (((-499)) |has| |#1| (-978 (-499))) ((|#1|) . T) ((|#2|) . T)) +((((-499)) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ((|#1|) . T) (($) -3677 (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#2|) . T)) +(((|#1| (-484 |#2|) |#2|) . T)) ((($) . T)) ((($ $) . T) ((|#2| $) . T)) (((|#2|) . T)) -((((-875)) . T)) +((((-797)) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -(((|#1| (-542 |#2|) |#2|) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) . T)) -((($) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) . T)) -(|has| |#1| (-147)) -(|has| |#1| (-149)) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-568))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) . T) (($) -3955 (|has| |#1| (-175)) (|has| |#1| (-568)))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) . T) (($) -3955 (|has| |#1| (-175)) (|has| |#1| (-568)))) -((((-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1| |#1|) . T) (($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-568)))) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -((((-557)) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-568))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-568))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-568))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-568))) -(((|#1| (-542 |#2|)) . T)) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) +(((|#1| (-484 |#2|) |#2|) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T)) +((($) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T)) +(|has| |#1| (-118)) +(|has| |#1| (-120)) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-510))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510)))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510)))) +((((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1| |#1|) . T) (($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-510)))) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +((((-499)) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) +(((|#1| (-484 |#2|)) . T)) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) (((|#1| |#2|) . T)) -((((-875)) . T)) -(((|#1|) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T) (((-875)) . T)) -((((-875)) . T)) -((((-1159 |#1| |#2|)) . T)) -((((-1159 |#1| |#2|) (-1159 |#1| |#2|)) |has| (-1159 |#1| |#2|) (-321 (-1159 |#1| |#2|)))) -((((-1159 |#1| |#2|)) |has| (-1159 |#1| |#2|) (-321 (-1159 |#1| |#2|)))) -((((-875)) . T)) -((((-1159 |#1| |#2|)) . T)) -((((-546)) |has| |#2| (-629 (-546)))) -(((|#2|) |has| |#2| (-6 (-4425 "*")))) +((((-797)) . T)) +(((|#1|) . T)) +((((-1122)) . T)) +((((-1122)) . T)) +((((-1122)) . T) (((-797)) . T)) +((((-797)) . T)) +((((-1080 |#1| |#2|)) . T)) +((((-1080 |#1| |#2|) (-1080 |#1| |#2|)) |has| (-1080 |#1| |#2|) (-263 (-1080 |#1| |#2|)))) +((((-1080 |#1| |#2|)) |has| (-1080 |#1| |#2|) (-263 (-1080 |#1| |#2|)))) +((((-797)) . T)) +((((-1080 |#1| |#2|)) . T)) +((((-488)) |has| |#2| (-569 (-488)))) +(((|#2|) |has| |#2| (-6 (-4147 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-707 |#2|)) . T) (((-875)) . T)) -((($) . T) (((-557)) . T) ((|#2|) . T)) -(((|#2|) -3955 (|has| |#2| (-6 (-4425 "*"))) (|has| |#2| (-175)))) -(((|#2|) -3955 (|has| |#2| (-6 (-4425 "*"))) (|has| |#2| (-175)))) +((((-647 |#2|)) . T) (((-797)) . T)) +((($) . T) (((-499)) . T) ((|#2|) . T)) +(((|#2|) -3677 (|has| |#2| (-6 (-4147 "*"))) (|has| |#2| (-146)))) +(((|#2|) -3677 (|has| |#2| (-6 (-4147 "*"))) (|has| |#2| (-146)))) (((|#2|) . T)) -((((-1196)) |has| |#2| (-915 (-1196)))) -((((-1196)) -3955 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196))))) -((($ (-1196)) -3955 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196))))) +((((-1117)) |has| |#2| (-836 (-1117)))) +((((-1117)) -3677 (|has| |#2| (-836 (-1117))) (|has| |#2| (-838 (-1117))))) +((($ (-1117)) -3677 (|has| |#2| (-836 (-1117))) (|has| |#2| (-838 (-1117))))) (((|#2|) . T)) -(-3955 (|has| |#2| (-240)) (|has| |#2| (-239))) -((($) -3955 (|has| |#2| (-240)) (|has| |#2| (-239)))) -(|has| |#2| (-240)) +(-3677 (|has| |#2| (-190)) (|has| |#2| (-189))) +((($) -3677 (|has| |#2| (-190)) (|has| |#2| (-189)))) +(|has| |#2| (-190)) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-557)) |has| |#2| (-656 (-557)))) -(((|#2|) . T) (((-557)) |has| |#2| (-656 (-557)))) +((($) . T) ((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) +(((|#2|) . T) (((-499)) |has| |#2| (-596 (-499)))) (((|#2|) . T)) -((((-557)) . T) ((|#2|) . T) (((-419 (-557))) |has| |#2| (-1057 (-419 (-557))))) -(((|#2|) . T) (((-557)) |has| |#2| (-1057 (-557))) (((-419 (-557))) |has| |#2| (-1057 (-419 (-557))))) -(((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120)))) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120)))) +((((-499)) . T) ((|#2|) . T) (((-361 (-499))) |has| |#2| (-978 (-361 (-499))))) +(((|#2|) . T) (((-499)) |has| |#2| (-978 (-499))) (((-361 (-499))) |has| |#2| (-978 (-361 (-499))))) +(((|#1| |#1| |#2| (-196 |#1| |#2|) (-196 |#1| |#2|)) . T)) +(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) +(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041)))) (((|#2|) . T)) -(((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) +(((|#1| |#2| (-196 |#1| |#2|) (-196 |#1| |#2|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-546)) |has| |#4| (-629 (-546)))) +((((-488)) |has| |#4| (-569 (-488)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120)))) -(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120)))) +(((|#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) +(((|#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) (((|#4|) . T)) -((((-875)) . T) (((-659 |#4|)) . T)) +((((-797)) . T) (((-599 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-1120))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(|has| |#1| (-1120)) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(|has| |#1| (-1041)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-875)) . T)) +((((-797)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) |has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) |has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-659 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-1120))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(|has| |#1| (-1120)) -(((|#1|) . T)) -((((-546)) |has| |#1| (-629 (-546)))) -((((-557) |#1|) . T)) -((((-1253 (-557)) $) . T) (((-557) |#1|) . T)) -((((-557) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-146)) . T)) -((((-146)) . T)) -((((-557) (-146)) . T)) -((((-557) (-146)) . T)) -((((-557) (-146)) . T) (((-1253 (-557)) $) . T)) -((((-146)) . T)) -((((-875)) . T)) -((((-146)) . T)) -((((-146)) . T)) -((((-1178) |#1|) . T)) -((((-875)) . T)) -((((-1178) |#1|) . T)) -((((-1178) |#1|) . T)) -((((-1178) |#1|) . T)) -((((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) . T)) -((((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) (((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) |has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-321 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) (((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) |has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-321 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))))) -((((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) . T)) -((((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) . T)) -((((-1178) |#1|) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1194 |#1| |#2| |#3|)) . T)) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1194 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1194 |#1| |#2| |#3|) (-321 (-1194 |#1| |#2| |#3|))))) -((((-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1194 |#1| |#2| |#3|) (-321 (-1194 |#1| |#2| |#3|)))) (((-1196) (-1194 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1194 |#1| |#2| |#3|) (-526 (-1196) (-1194 |#1| |#2| |#3|))))) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-376))) -(|has| |#1| (-376)) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-568))) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-568))) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(-3955 (-12 (|has| |#1| (-376)) (|has| (-1194 |#1| |#2| |#3|) (-240))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) -((($) -3955 (-12 (|has| |#1| (-376)) (|has| (-1194 |#1| |#2| |#3|) (-240))) (-12 (|has| |#1| (-376)) (|has| (-1194 |#1| |#2| |#3|) (-239))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) -(-3955 (-12 (|has| |#1| (-376)) (|has| (-1194 |#1| |#2| |#3|) (-240))) (-12 (|has| |#1| (-376)) (|has| (-1194 |#1| |#2| |#3|) (-239))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-376))) -((($ (-1283 |#2|)) . T) (($ (-1196)) -3955 (-12 (|has| |#1| (-376)) (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196)))) (-12 (|has| |#1| (-376)) (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196)))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))))) -((((-1196)) -3955 (-12 (|has| |#1| (-376)) (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196)))) (-12 (|has| |#1| (-376)) (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196)))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))))) -((((-1196)) -3955 (-12 (|has| |#1| (-376)) (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196)))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))))) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-376))) -(-3955 (|has| |#1| (-149)) (-12 (|has| |#1| (-376)) (|has| (-1194 |#1| |#2| |#3|) (-149)))) -(-3955 (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| (-1194 |#1| |#2| |#3|) (-147)))) -((((-875)) . T)) -(((|#1|) . T)) -((((-1194 |#1| |#2| |#3|) $) -12 (|has| |#1| (-376)) (|has| (-1194 |#1| |#2| |#3|) (-298 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)))) (($ $) . T) (((-557) |#1|) . T)) -(((|#1| (-557) (-1101)) . T)) -((((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557)) (-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (((-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1| |#1|) . T)) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) -((((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-376)) (((-557)) . T) (($) . T) ((|#1|) . T)) -((((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-376)) (($) . T) ((|#1|) . T)) -((((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((((-1194 |#1| |#2| |#3|)) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568))) (((-557)) . T) ((|#1|) |has| |#1| (-175))) -(((|#1| (-557)) . T)) -(((|#1| (-557)) . T)) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(((|#1| (-1194 |#1| |#2| |#3|)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-599 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(|has| |#1| (-1041)) +(((|#1|) . T)) +((((-488)) |has| |#1| (-569 (-488)))) +((((-499) |#1|) . T)) +((((-1174 (-499)) $) . T) (((-499) |#1|) . T)) +((((-499) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-117)) . T)) +((((-117)) . T)) +((((-499) (-117)) . T)) +((((-499) (-117)) . T)) +((((-499) (-117)) . T) (((-1174 (-499)) $) . T)) +((((-117)) . T)) +((((-797)) . T)) +((((-117)) . T)) +((((-117)) . T)) +((((-1099) |#1|) . T)) +((((-797)) . T)) +((((-1099) |#1|) . T)) +((((-1099) |#1|) . T)) +((((-1099) |#1|) . T)) +((((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) |has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) |has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))))) +((((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) . T)) +((((-1099) |#1|) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-1115 |#1| |#2| |#3|)) |has| |#1| (-318))) +((((-1115 |#1| |#2| |#3|)) . T)) +((((-1115 |#1| |#2| |#3|)) |has| |#1| (-318))) +((((-1115 |#1| |#2| |#3|)) |has| |#1| (-318))) +((((-1115 |#1| |#2| |#3|)) |has| |#1| (-318))) +((((-1115 |#1| |#2| |#3|)) |has| |#1| (-318))) +((((-1115 |#1| |#2| |#3|)) -12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-263 (-1115 |#1| |#2| |#3|))))) +((((-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) -12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-263 (-1115 |#1| |#2| |#3|)))) (((-1117) (-1115 |#1| |#2| |#3|)) -12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-468 (-1117) (-1115 |#1| |#2| |#3|))))) +((((-1115 |#1| |#2| |#3|)) |has| |#1| (-318))) +(|has| |#1| (-318)) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(-3677 (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) +((($) -3677 (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) +(-3677 (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) +((((-1115 |#1| |#2| |#3|)) |has| |#1| (-318))) +((($ (-1204 |#2|)) . T) (($ (-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117)))) (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-838 (-1117)))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))))) +((((-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117)))) (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-838 (-1117)))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))))) +((((-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117)))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))))) +((((-1115 |#1| |#2| |#3|)) |has| |#1| (-318))) +(-3677 (|has| |#1| (-120)) (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-120)))) +(-3677 (|has| |#1| (-118)) (-12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-118)))) +((((-797)) . T)) +(((|#1|) . T)) +((((-1115 |#1| |#2| |#3|) $) -12 (|has| |#1| (-318)) (|has| (-1115 |#1| |#2| |#3|) (-240 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)))) (($ $) . T) (((-499) |#1|) . T)) +(((|#1| (-499) (-1022)) . T)) +((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1|) |has| |#1| (-146))) +((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1| |#1|) . T)) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1|) . T)) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1|) . T)) +((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-318)) (((-499)) . T) (($) . T) ((|#1|) . T)) +((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-318)) (($) . T) ((|#1|) . T)) +((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1|) |has| |#1| (-146))) +((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1|) |has| |#1| (-146))) +((((-1115 |#1| |#2| |#3|)) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-499)) . T) ((|#1|) |has| |#1| (-146))) +(((|#1| (-499)) . T)) +(((|#1| (-499)) . T)) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(((|#1| (-1115 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-875)) . T)) -((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-376)) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-927))) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) -(|has| |#1| (-376)) -(((|#1| (-789) (-1101)) . T)) -(|has| |#1| (-927)) -(|has| |#1| (-927)) -((((-1196)) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (((-1101)) . T)) -((($ (-1196)) -3955 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (($ (-1101)) . T)) -((((-1196)) |has| |#1| (-915 (-1196))) (((-1101)) . T)) -((((-557)) |has| |#1| (-656 (-557))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-789)) . T)) -(|has| |#1| (-149)) -(|has| |#1| (-147)) -((((-557)) . T) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) (((-1101)) . T) ((|#1|) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557)))))) -((($) -3955 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) . T) (((-557)) |has| |#1| (-656 (-557))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((((-557)) . T) (($) . T) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1| |#1|) . T) (((-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-927))) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -(((|#1|) . T)) -((((-1101)) . T) ((|#1|) . T) (((-557)) |has| |#1| (-1057 (-557))) (((-419 (-557))) |has| |#1| (-1057 (-419 (-557))))) -(((|#1| (-789)) . T)) -((((-1101) |#1|) . T) (((-1101) $) . T) (($ $) . T)) +((((-797)) . T)) +((((-361 $) (-361 $)) |has| |#1| (-510)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-318)) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-848))) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) +(|has| |#1| (-318)) +(((|#1| (-714) (-1022)) . T)) +(|has| |#1| (-848)) +(|has| |#1| (-848)) +((((-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (((-1022)) . T)) +((($ (-1117)) -3677 (|has| |#1| (-836 (-1117))) (|has| |#1| (-838 (-1117)))) (($ (-1022)) . T)) +((((-1117)) |has| |#1| (-836 (-1117))) (((-1022)) . T)) +((((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-714)) . T)) +(|has| |#1| (-120)) +(|has| |#1| (-118)) +((((-499)) . T) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) (((-1022)) . T) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499)))))) +((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) . T) (((-499)) |has| |#1| (-596 (-499))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((((-499)) . T) (($) . T) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-318)) (|has| |#1| (-406)) (|has| |#1| (-510)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +(((|#1|) . T)) +((((-1022)) . T) ((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) +(((|#1| (-714)) . T)) +((((-1022) |#1|) . T) (((-1022) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1171)) -(((|#1|) . T)) -((((-1194 |#1| |#2| |#3|)) . T) (((-1187 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) -((($ $) . T) (((-419 (-557)) |#1|) . T)) -((((-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))))) -((($ (-1283 |#2|)) . T) (($ (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))))) -((((-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))))) -(((|#1| (-419 (-557)) (-1101)) . T)) -(|has| |#1| (-147)) -(|has| |#1| (-149)) -(((|#1| (-419 (-557))) . T)) -(((|#1| (-419 (-557))) . T)) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-376)) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-568))) -((((-875)) . T)) -(((|#1|) . T) (($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376)))) -(((|#1|) . T) (($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376)))) -(((|#1| |#1|) . T) (($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557)) (-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376)))) -(((|#1|) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (((-557)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) . T)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(((|#1|) |has| |#1| (-175)) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568)))) -(((|#1|) |has| |#1| (-175)) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568)))) -(((|#1|) |has| |#1| (-175)) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568)))) -((((-1283 |#2|)) . T) (((-1194 |#1| |#2| |#3|)) . T) (((-1187 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (((-557)) . T) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568)))) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-568))) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(((|#1| (-1187 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(((|#1| (-789)) . T)) -(((|#1| (-789)) . T)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-568))) -(|has| |#1| (-149)) -(|has| |#1| (-147)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-568))) ((|#1| |#1|) . T) (((-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -(((|#1| (-789) (-1101)) . T)) -((((-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|))))) -((($ (-1283 |#2|)) . T) (($ (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|))))) -((((-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|))))) -((((-789) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-789) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-789) |#1|)))) -((((-875)) . T)) -(((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) (((-557)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) (($) . T)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) (((-557)) . T)) -(|has| |#1| (-15 * (|#1| (-789) |#1|))) -(((|#1|) . T)) -((((-875)) . T)) -((((-391)) . T) (((-557)) . T)) -((((-518)) . T)) -((((-518)) . T) (((-1178)) . T)) -((((-903 (-391))) . T) (((-903 (-557))) . T) (((-1196)) . T) (((-546)) . T)) -((((-875)) . T)) -(((|#1| (-990)) . T)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-568))) -(|has| |#1| (-149)) -(|has| |#1| (-147)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((((-875)) . T)) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-568))) ((|#1| |#1|) . T) (((-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -(((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) (((-557)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) (($) . T)) -((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) (((-557)) . T)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -(((|#1|) . T)) -(((|#1|) . T) (((-557)) |has| |#1| (-1057 (-557))) (((-419 (-557))) |has| |#1| (-1057 (-419 (-557))))) -(((|#1| (-990)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-1178)) . T) (((-518)) . T) (((-229)) . T) (((-557)) . T)) -((((-1178)) . T) (((-518)) . T) (((-229)) . T) (((-557)) . T)) -((((-546)) . T) (((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) +(|has| |#1| (-1092)) +(((|#1|) . T)) +((((-1115 |#1| |#2| |#3|)) . T) (((-1108 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) +((($ $) . T) (((-361 (-499)) |#1|) . T)) +((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) +((($ (-1204 |#2|)) . T) (($ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) +((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) +(((|#1| (-361 (-499)) (-1022)) . T)) +(|has| |#1| (-118)) +(|has| |#1| (-120)) +(((|#1| (-361 (-499))) . T)) +(((|#1| (-361 (-499))) . T)) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-318)) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) +((((-797)) . T)) +(((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318)))) +(((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318)))) +(((|#1| |#1|) . T) (($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318)))) +(((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) . T)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) +(((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) +(((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) +((((-1204 |#2|)) . T) (((-1115 |#1| |#2| |#3|)) . T) (((-1108 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-499)) . T) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(((|#1| (-1108 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(((|#1| (-714)) . T)) +(((|#1| (-714)) . T)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-510))) +(|has| |#1| (-120)) +(|has| |#1| (-118)) +((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +(((|#1| (-714) (-1022)) . T)) +((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|))))) +((($ (-1204 |#2|)) . T) (($ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|))))) +((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|))))) +((((-714) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-714) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-714) |#1|)))) +((((-797)) . T)) +(((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (($) . T)) +((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (((-499)) . T)) +(|has| |#1| (-15 * (|#1| (-714) |#1|))) +(((|#1|) . T)) +((((-797)) . T)) +((((-333)) . T) (((-499)) . T)) +((((-460)) . T)) +((((-460)) . T) (((-1099)) . T)) +((((-825 (-333))) . T) (((-825 (-499))) . T) (((-1117)) . T) (((-488)) . T)) +((((-797)) . T)) +(((|#1| (-911)) . T)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-510))) +(|has| |#1| (-120)) +(|has| |#1| (-118)) +((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((((-797)) . T)) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +(((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (($) . T)) +((($) |has| |#1| (-510)) ((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) (((-499)) . T)) +((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +(((|#1|) . T)) +(((|#1|) . T) (((-499)) |has| |#1| (-978 (-499))) (((-361 (-499))) |has| |#1| (-978 (-361 (-499))))) +(((|#1| (-911)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-1099)) . T) (((-460)) . T) (((-179)) . T) (((-499)) . T)) +((((-1099)) . T) (((-460)) . T) (((-179)) . T) (((-499)) . T)) +((((-488)) . T) (((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) (((|#1| |#2|) . T)) -((((-875)) . T)) +((((-797)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) |has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) |has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((((-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-875)) . T)) +((((-797)) . T)) (((|#1|) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-402) (-1178)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-344) (-1099)) . T)) (((|#1|) . T)) -(|has| |#1| (-1120)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-1120)))) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-1120))) +(|has| |#1| (-1041)) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-1041)))) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-1041))) (((|#1|) . T)) ((($) . T)) -((($ $) . T) (((-1196) $) . T)) -((((-1196)) . T)) -((((-875)) . T)) -((($ (-1196)) . T)) -((((-1196)) . T)) -(((|#1| (-542 (-1196)) (-1196)) . T)) -((($) . T) (((-557)) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) . T)) -((($) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) . T)) -(|has| |#1| (-147)) -(|has| |#1| (-149)) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-568))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) . T) (($) -3955 (|has| |#1| (-175)) (|has| |#1| (-568)))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) . T) (($) -3955 (|has| |#1| (-175)) (|has| |#1| (-568)))) -((((-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1| |#1|) . T) (($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-568)))) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -((((-557)) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-568))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-568))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-568))) -((((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-568))) -(((|#1| (-542 (-1196))) . T)) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(((|#1| (-1196)) . T)) -(|has| |#1| (-1120)) -(|has| |#1| (-1120)) -(|has| |#1| (-1120)) -((((-975 |#1|)) . T)) -((((-875)) |has| |#1| (-628 (-875))) (((-975 |#1|)) . T)) -((((-975 |#1|)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-1276 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1276 |#1| |#2| |#3|)) . T)) -((((-1276 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1276 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1276 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1276 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1276 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1276 |#1| |#2| |#3|) (-321 (-1276 |#1| |#2| |#3|))))) -((((-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1276 |#1| |#2| |#3|) (-321 (-1276 |#1| |#2| |#3|)))) (((-1196) (-1276 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1276 |#1| |#2| |#3|) (-526 (-1196) (-1276 |#1| |#2| |#3|))))) -((((-1276 |#1| |#2| |#3|)) |has| |#1| (-376))) -(|has| |#1| (-376)) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-568))) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-568))) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(-3955 (-12 (|has| |#1| (-376)) (|has| (-1276 |#1| |#2| |#3|) (-240))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) -((($) -3955 (-12 (|has| |#1| (-376)) (|has| (-1276 |#1| |#2| |#3|) (-240))) (-12 (|has| |#1| (-376)) (|has| (-1276 |#1| |#2| |#3|) (-239))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) -(-3955 (-12 (|has| |#1| (-376)) (|has| (-1276 |#1| |#2| |#3|) (-240))) (-12 (|has| |#1| (-376)) (|has| (-1276 |#1| |#2| |#3|) (-239))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) -((((-1276 |#1| |#2| |#3|)) |has| |#1| (-376))) -((($ (-1283 |#2|)) . T) (($ (-1196)) -3955 (-12 (|has| |#1| (-376)) (|has| (-1276 |#1| |#2| |#3|) (-915 (-1196)))) (-12 (|has| |#1| (-376)) (|has| (-1276 |#1| |#2| |#3|) (-917 (-1196)))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))))) -((((-1196)) -3955 (-12 (|has| |#1| (-376)) (|has| (-1276 |#1| |#2| |#3|) (-915 (-1196)))) (-12 (|has| |#1| (-376)) (|has| (-1276 |#1| |#2| |#3|) (-917 (-1196)))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))))) -((((-1196)) -3955 (-12 (|has| |#1| (-376)) (|has| (-1276 |#1| |#2| |#3|) (-915 (-1196)))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))))) -((((-1276 |#1| |#2| |#3|)) |has| |#1| (-376))) -(-3955 (|has| |#1| (-149)) (-12 (|has| |#1| (-376)) (|has| (-1276 |#1| |#2| |#3|) (-149)))) -(-3955 (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| (-1276 |#1| |#2| |#3|) (-147)))) -((((-875)) . T)) -(((|#1|) . T)) -((((-1276 |#1| |#2| |#3|) $) -12 (|has| |#1| (-376)) (|has| (-1276 |#1| |#2| |#3|) (-298 (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|)))) (($ $) . T) (((-557) |#1|) . T)) -(((|#1| (-557) (-1101)) . T)) -((((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568))) (((-1276 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557)) (-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (((-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1| |#1|) . T)) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (((-1276 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (((-1276 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) -((((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (((-1276 |#1| |#2| |#3|)) |has| |#1| (-376)) (((-557)) . T) (($) . T) ((|#1|) . T)) -((((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (((-1276 |#1| |#2| |#3|)) |has| |#1| (-376)) (($) . T) ((|#1|) . T)) -((((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568))) (((-1276 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568))) (((-1276 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((((-1276 |#1| |#2| |#3|)) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568))) (((-557)) . T) ((|#1|) |has| |#1| (-175))) -(((|#1| (-557)) . T)) -(((|#1| (-557)) . T)) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(((|#1| (-1276 |#1| |#2| |#3|)) . T)) -(((|#2|) |has| |#1| (-376))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-1171))) -(((|#2|) . T) (((-1196)) -12 (|has| |#1| (-376)) (|has| |#2| (-1057 (-1196)))) (((-557)) -12 (|has| |#1| (-376)) (|has| |#2| (-1057 (-557)))) (((-419 (-557))) -12 (|has| |#1| (-376)) (|has| |#2| (-1057 (-557))))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-1039))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-927))) -(((|#2|) |has| |#1| (-376))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-840))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-840))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-840))) -(-3955 (-12 (|has| |#1| (-376)) (|has| |#2| (-840))) (-12 (|has| |#1| (-376)) (|has| |#2| (-859)))) -(-3955 (-12 (|has| |#1| (-376)) (|has| |#2| (-840))) (-12 (|has| |#1| (-376)) (|has| |#2| (-859)))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-840))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-840))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-840))) -((((-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-899 (-391)))) (((-557)) -12 (|has| |#1| (-376)) (|has| |#2| (-899 (-557))))) -(((|#2|) |has| |#1| (-376))) -((((-557)) -12 (|has| |#1| (-376)) (|has| |#2| (-656 (-557)))) ((|#2|) |has| |#1| (-376))) -(((|#2|) |has| |#1| (-376))) -(((|#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|)))) -(((|#2| |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) (((-1196) |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-526 (-1196) |#2|)))) -(((|#2|) |has| |#1| (-376))) -(|has| |#1| (-376)) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-568))) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-568))) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(-3955 (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) -((($) -3955 (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) -(-3955 (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) -(((|#2|) |has| |#1| (-376))) -((($ (-1196)) -3955 (-12 (|has| |#1| (-376)) (|has| |#2| (-915 (-1196)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-917 (-1196)))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))))) -((((-1196)) -3955 (-12 (|has| |#1| (-376)) (|has| |#2| (-915 (-1196)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-917 (-1196)))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))))) -((((-1196)) -3955 (-12 (|has| |#1| (-376)) (|has| |#2| (-915 (-1196)))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))))) -(((|#2|) |has| |#1| (-376))) -((((-229)) -12 (|has| |#1| (-376)) (|has| |#2| (-1039))) (((-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-1039))) (((-903 (-391))) -12 (|has| |#1| (-376)) (|has| |#2| (-629 (-903 (-391))))) (((-903 (-557))) -12 (|has| |#1| (-376)) (|has| |#2| (-629 (-903 (-557))))) (((-546)) -12 (|has| |#1| (-376)) (|has| |#2| (-629 (-546))))) -(-3955 (|has| |#1| (-149)) (-12 (|has| |#1| (-376)) (|has| |#2| (-149)))) -(-3955 (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| |#2| (-147)))) -((((-875)) . T)) -(((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-376)) (|has| |#2| (-298 |#2| |#2|))) (($ $) . T) (((-557) |#1|) . T)) -(((|#1| (-557) (-1101)) . T)) -((((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557)) (-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) ((|#2| |#2|) |has| |#1| (-376)) ((|#1| |#1|) . T)) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) ((|#1|) . T)) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) ((|#1|) . T)) -((((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) (((-557)) . T) (($) . T) ((|#1|) . T)) -((((-557)) -12 (|has| |#1| (-376)) (|has| |#2| (-656 (-557)))) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) (($) . T) ((|#1|) . T)) -((((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -(((|#2|) . T) (((-1196)) -12 (|has| |#1| (-376)) (|has| |#2| (-1057 (-1196)))) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568))) (((-557)) . T) ((|#1|) |has| |#1| (-175))) -(((|#1| (-557)) . T)) -(((|#1| (-557)) . T)) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) +((($ $) . T) (((-1117) $) . T)) +((((-1117)) . T)) +((((-797)) . T)) +((($ (-1117)) . T)) +((((-1117)) . T)) +(((|#1| (-484 (-1117)) (-1117)) . T)) +((($) . T) (((-499)) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T)) +((($) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T)) +(|has| |#1| (-118)) +(|has| |#1| (-120)) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-510))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510)))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510)))) +((((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1| |#1|) . T) (($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-510)))) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +((((-499)) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) +((((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-510))) +(((|#1| (-484 (-1117))) . T)) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(((|#1| (-1117)) . T)) +(|has| |#1| (-1041)) +(|has| |#1| (-1041)) +(|has| |#1| (-1041)) +((((-896 |#1|)) . T)) +((((-797)) |has| |#1| (-568 (-797))) (((-896 |#1|)) . T)) +((((-896 |#1|)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-1197 |#1| |#2| |#3|)) |has| |#1| (-318))) +((((-1197 |#1| |#2| |#3|)) . T)) +((((-1197 |#1| |#2| |#3|)) |has| |#1| (-318))) +((((-1197 |#1| |#2| |#3|)) |has| |#1| (-318))) +((((-1197 |#1| |#2| |#3|)) |has| |#1| (-318))) +((((-1197 |#1| |#2| |#3|)) |has| |#1| (-318))) +((((-1197 |#1| |#2| |#3|)) -12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-263 (-1197 |#1| |#2| |#3|))))) +((((-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|)) -12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-263 (-1197 |#1| |#2| |#3|)))) (((-1117) (-1197 |#1| |#2| |#3|)) -12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-468 (-1117) (-1197 |#1| |#2| |#3|))))) +((((-1197 |#1| |#2| |#3|)) |has| |#1| (-318))) +(|has| |#1| (-318)) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(-3677 (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) +((($) -3677 (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) +(-3677 (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) +((((-1197 |#1| |#2| |#3|)) |has| |#1| (-318))) +((($ (-1204 |#2|)) . T) (($ (-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117)))) (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-838 (-1117)))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))))) +((((-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117)))) (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-838 (-1117)))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))))) +((((-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117)))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))))) +((((-1197 |#1| |#2| |#3|)) |has| |#1| (-318))) +(-3677 (|has| |#1| (-120)) (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-120)))) +(-3677 (|has| |#1| (-118)) (-12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-118)))) +((((-797)) . T)) +(((|#1|) . T)) +((((-1197 |#1| |#2| |#3|) $) -12 (|has| |#1| (-318)) (|has| (-1197 |#1| |#2| |#3|) (-240 (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|)))) (($ $) . T) (((-499) |#1|) . T)) +(((|#1| (-499) (-1022)) . T)) +((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-1197 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1|) |has| |#1| (-146))) +((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1| |#1|) . T)) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-1197 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1|) . T)) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-1197 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1|) . T)) +((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-1197 |#1| |#2| |#3|)) |has| |#1| (-318)) (((-499)) . T) (($) . T) ((|#1|) . T)) +((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-1197 |#1| |#2| |#3|)) |has| |#1| (-318)) (($) . T) ((|#1|) . T)) +((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-1197 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1|) |has| |#1| (-146))) +((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-1197 |#1| |#2| |#3|)) |has| |#1| (-318)) ((|#1|) |has| |#1| (-146))) +((((-1197 |#1| |#2| |#3|)) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-499)) . T) ((|#1|) |has| |#1| (-146))) +(((|#1| (-499)) . T)) +(((|#1| (-499)) . T)) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(((|#1| (-1197 |#1| |#2| |#3|)) . T)) +(((|#2|) |has| |#1| (-318))) +(-12 (|has| |#1| (-318)) (|has| |#2| (-1092))) +(((|#2|) . T) (((-1117)) -12 (|has| |#1| (-318)) (|has| |#2| (-978 (-1117)))) (((-499)) -12 (|has| |#1| (-318)) (|has| |#2| (-978 (-499)))) (((-361 (-499))) -12 (|has| |#1| (-318)) (|has| |#2| (-978 (-499))))) +(-12 (|has| |#1| (-318)) (|has| |#2| (-960))) +(-12 (|has| |#1| (-318)) (|has| |#2| (-848))) +(((|#2|) |has| |#1| (-318))) +(-12 (|has| |#1| (-318)) (|has| |#2| (-763))) +(-12 (|has| |#1| (-318)) (|has| |#2| (-763))) +(-12 (|has| |#1| (-318)) (|has| |#2| (-763))) +(-3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-763))) (-12 (|has| |#1| (-318)) (|has| |#2| (-781)))) +(-3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-763))) (-12 (|has| |#1| (-318)) (|has| |#2| (-781)))) +(-12 (|has| |#1| (-318)) (|has| |#2| (-763))) +(-12 (|has| |#1| (-318)) (|has| |#2| (-763))) +(-12 (|has| |#1| (-318)) (|has| |#2| (-763))) +((((-333)) -12 (|has| |#1| (-318)) (|has| |#2| (-821 (-333)))) (((-499)) -12 (|has| |#1| (-318)) (|has| |#2| (-821 (-499))))) +(((|#2|) |has| |#1| (-318))) +((((-499)) -12 (|has| |#1| (-318)) (|has| |#2| (-596 (-499)))) ((|#2|) |has| |#1| (-318))) +(((|#2|) |has| |#1| (-318))) +(((|#2|) -12 (|has| |#1| (-318)) (|has| |#2| (-263 |#2|)))) +(((|#2| |#2|) -12 (|has| |#1| (-318)) (|has| |#2| (-263 |#2|))) (((-1117) |#2|) -12 (|has| |#1| (-318)) (|has| |#2| (-468 (-1117) |#2|)))) +(((|#2|) |has| |#1| (-318))) +(|has| |#1| (-318)) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(-3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-190))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) +((($) -3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-190))) (-12 (|has| |#1| (-318)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) +(-3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-190))) (-12 (|has| |#1| (-318)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) +(((|#2|) |has| |#1| (-318))) +((($ (-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-836 (-1117)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117)))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))))) +((((-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-836 (-1117)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117)))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))))) +((((-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-836 (-1117)))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))))) +(((|#2|) |has| |#1| (-318))) +((((-179)) -12 (|has| |#1| (-318)) (|has| |#2| (-960))) (((-333)) -12 (|has| |#1| (-318)) (|has| |#2| (-960))) (((-825 (-333))) -12 (|has| |#1| (-318)) (|has| |#2| (-569 (-825 (-333))))) (((-825 (-499))) -12 (|has| |#1| (-318)) (|has| |#2| (-569 (-825 (-499))))) (((-488)) -12 (|has| |#1| (-318)) (|has| |#2| (-569 (-488))))) +(-3677 (|has| |#1| (-120)) (-12 (|has| |#1| (-318)) (|has| |#2| (-120)))) +(-3677 (|has| |#1| (-118)) (-12 (|has| |#1| (-318)) (|has| |#2| (-118)))) +((((-797)) . T)) +(((|#1|) . T)) +(((|#2| $) -12 (|has| |#1| (-318)) (|has| |#2| (-240 |#2| |#2|))) (($ $) . T) (((-499) |#1|) . T)) +(((|#1| (-499) (-1022)) . T)) +((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) ((|#2|) |has| |#1| (-318)) ((|#1|) |has| |#1| (-146))) +((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#2| |#2|) |has| |#1| (-318)) ((|#1| |#1|) . T)) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#2|) |has| |#1| (-318)) ((|#1|) . T)) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#2|) |has| |#1| (-318)) ((|#1|) . T)) +((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#2|) |has| |#1| (-318)) (((-499)) . T) (($) . T) ((|#1|) . T)) +((((-499)) -12 (|has| |#1| (-318)) (|has| |#2| (-596 (-499)))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) ((|#2|) |has| |#1| (-318)) (($) . T) ((|#1|) . T)) +((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) ((|#2|) |has| |#1| (-318)) ((|#1|) |has| |#1| (-146))) +((((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) ((|#2|) |has| |#1| (-318)) ((|#1|) |has| |#1| (-146))) +(((|#2|) . T) (((-1117)) -12 (|has| |#1| (-318)) (|has| |#2| (-978 (-1117)))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510))) (((-499)) . T) ((|#1|) |has| |#1| (-146))) +(((|#1| (-499)) . T)) +(((|#1| (-499)) . T)) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) (((|#1| |#2|) . T)) -(((|#1| (-1174 |#1|)) |has| |#1| (-858))) -(|has| |#1| (-1120)) -(|has| |#1| (-1120)) -((((-875)) |has| |#1| (-1120))) -(|has| |#1| (-1120)) +(((|#1| (-1095 |#1|)) |has| |#1| (-780))) +(|has| |#1| (-1041)) +(|has| |#1| (-1041)) +((((-797)) |has| |#1| (-1041))) +(|has| |#1| (-1041)) (((|#1|) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) ((($) . T)) -((((-875)) . T)) -((((-419 $) (-419 $)) |has| |#2| (-568)) (($ $) . T) ((|#2| |#2|) . T)) -(|has| |#2| (-376)) -(-3955 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-927))) -(-3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -(-3955 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -(-3955 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) -(|has| |#2| (-376)) -(((|#2| (-789) (-1101)) . T)) -(|has| |#2| (-927)) -(|has| |#2| (-927)) -((((-1196)) -3955 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196)))) (((-1101)) . T)) -((($ (-1196)) -3955 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196)))) (($ (-1101)) . T)) -((((-1196)) |has| |#2| (-915 (-1196))) (((-1101)) . T)) -((((-557)) |has| |#2| (-656 (-557))) ((|#2|) . T)) +((((-797)) . T)) +((((-361 $) (-361 $)) |has| |#2| (-510)) (($ $) . T) ((|#2| |#2|) . T)) +(|has| |#2| (-318)) +(-3677 (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-848))) +(-3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) +(-3677 (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) +(-3677 (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) +(|has| |#2| (-318)) +(((|#2| (-714) (-1022)) . T)) +(|has| |#2| (-848)) +(|has| |#2| (-848)) +((((-1117)) -3677 (|has| |#2| (-836 (-1117))) (|has| |#2| (-838 (-1117)))) (((-1022)) . T)) +((($ (-1117)) -3677 (|has| |#2| (-836 (-1117))) (|has| |#2| (-838 (-1117)))) (($ (-1022)) . T)) +((((-1117)) |has| |#2| (-836 (-1117))) (((-1022)) . T)) +((((-499)) |has| |#2| (-596 (-499))) ((|#2|) . T)) (((|#2|) . T)) -(((|#2| (-789)) . T)) -(|has| |#2| (-149)) -(|has| |#2| (-147)) -((((-1283 |#1|)) . T) (((-557)) . T) (($) -3955 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) (((-1101)) . T) ((|#2|) . T) (((-419 (-557))) -3955 (|has| |#2| (-38 (-419 (-557)))) (|has| |#2| (-1057 (-419 (-557)))))) -((($) -3955 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) ((|#2|) |has| |#2| (-175)) (((-419 (-557))) |has| |#2| (-38 (-419 (-557))))) -((($) -3955 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) ((|#2|) |has| |#2| (-175)) (((-419 (-557))) |has| |#2| (-38 (-419 (-557))))) -((($) . T) (((-557)) |has| |#2| (-656 (-557))) ((|#2|) . T) (((-419 (-557))) |has| |#2| (-38 (-419 (-557))))) -((((-557)) . T) (($) . T) ((|#2|) . T) (((-419 (-557))) |has| |#2| (-38 (-419 (-557))))) -((($) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) ((|#2|) . T) (((-419 (-557))) |has| |#2| (-38 (-419 (-557))))) -((($) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) ((|#2|) . T) (((-419 (-557))) |has| |#2| (-38 (-419 (-557))))) -((($ $) -3955 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) ((|#2| |#2|) . T) (((-419 (-557)) (-419 (-557))) |has| |#2| (-38 (-419 (-557))))) -((($) -3955 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-927))) ((|#2|) |has| |#2| (-175)) (((-419 (-557))) |has| |#2| (-38 (-419 (-557))))) +(((|#2| (-714)) . T)) +(|has| |#2| (-120)) +(|has| |#2| (-118)) +((((-1204 |#1|)) . T) (((-499)) . T) (($) -3677 (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) (((-1022)) . T) ((|#2|) . T) (((-361 (-499))) -3677 (|has| |#2| (-38 (-361 (-499)))) (|has| |#2| (-978 (-361 (-499)))))) +((($) -3677 (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) ((|#2|) |has| |#2| (-146)) (((-361 (-499))) |has| |#2| (-38 (-361 (-499))))) +((($) -3677 (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) ((|#2|) |has| |#2| (-146)) (((-361 (-499))) |has| |#2| (-38 (-361 (-499))))) +((($) . T) (((-499)) |has| |#2| (-596 (-499))) ((|#2|) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499))))) +((((-499)) . T) (($) . T) ((|#2|) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499))))) +((($) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) ((|#2|) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499))))) +((($) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) ((|#2|) . T) (((-361 (-499))) |has| |#2| (-38 (-361 (-499))))) +((($ $) -3677 (|has| |#2| (-146)) (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) ((|#2| |#2|) . T) (((-361 (-499)) (-361 (-499))) |has| |#2| (-38 (-361 (-499))))) +((($) -3677 (|has| |#2| (-318)) (|has| |#2| (-406)) (|has| |#2| (-510)) (|has| |#2| (-848))) ((|#2|) |has| |#2| (-146)) (((-361 (-499))) |has| |#2| (-38 (-361 (-499))))) (((|#2|) . T)) -((((-1101)) . T) ((|#2|) . T) (((-557)) |has| |#2| (-1057 (-557))) (((-419 (-557))) |has| |#2| (-1057 (-419 (-557))))) -(((|#2| (-789)) . T)) -((((-1101) |#2|) . T) (((-1101) $) . T) (($ $) . T)) +((((-1022)) . T) ((|#2|) . T) (((-499)) |has| |#2| (-978 (-499))) (((-361 (-499))) |has| |#2| (-978 (-361 (-499))))) +(((|#2| (-714)) . T)) +((((-1022) |#2|) . T) (((-1022) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#2| (-1171)) +(|has| |#2| (-1092)) (((|#2|) . T)) -((((-1276 |#1| |#2| |#3|)) . T) (((-1246 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) -((($ $) . T) (((-419 (-557)) |#1|) . T)) -((((-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))))) -((($ (-1283 |#2|)) . T) (($ (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))))) -((((-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))))) -(((|#1| (-419 (-557)) (-1101)) . T)) -(|has| |#1| (-147)) -(|has| |#1| (-149)) -(((|#1| (-419 (-557))) . T)) -(((|#1| (-419 (-557))) . T)) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-376)) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-568))) -((((-875)) . T)) -(((|#1|) . T) (($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376)))) -(((|#1|) . T) (($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376)))) -(((|#1| |#1|) . T) (($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557)) (-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376)))) -(((|#1|) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (((-557)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) . T)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(((|#1|) |has| |#1| (-175)) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568)))) -(((|#1|) |has| |#1| (-175)) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568)))) -(((|#1|) |has| |#1| (-175)) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568)))) -((((-1283 |#2|)) . T) (((-1276 |#1| |#2| |#3|)) . T) (((-1246 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (((-557)) . T) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568)))) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-568))) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(((|#1| (-1246 |#1| |#2| |#3|)) . T)) +((((-1197 |#1| |#2| |#3|)) . T) (((-1167 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) +((($ $) . T) (((-361 (-499)) |#1|) . T)) +((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) +((($ (-1204 |#2|)) . T) (($ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) +((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) +(((|#1| (-361 (-499)) (-1022)) . T)) +(|has| |#1| (-118)) +(|has| |#1| (-120)) +(((|#1| (-361 (-499))) . T)) +(((|#1| (-361 (-499))) . T)) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-318)) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) +((((-797)) . T)) +(((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318)))) +(((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318)))) +(((|#1| |#1|) . T) (($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318)))) +(((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) . T)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) +(((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) +(((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) +((((-1204 |#2|)) . T) (((-1197 |#1| |#2| |#3|)) . T) (((-1167 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-499)) . T) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(((|#1| (-1167 |#1| |#2| |#3|)) . T)) (((|#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) -((($ $) . T) (((-419 (-557)) |#1|) . T)) -((((-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))))) -((($ (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))))) -((((-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))))) -(((|#1| (-419 (-557)) (-1101)) . T)) -(|has| |#1| (-147)) -(|has| |#1| (-149)) -(((|#1| (-419 (-557))) . T)) -(((|#1| (-419 (-557))) . T)) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-376)) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-568))) -((((-875)) . T)) -(((|#1|) . T) (($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376)))) -(((|#1|) . T) (($) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376)))) -(((|#1| |#1|) . T) (($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) (((-419 (-557)) (-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376)))) -(((|#1|) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (((-557)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) . T)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(((|#1|) |has| |#1| (-175)) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568)))) -(((|#1|) |has| |#1| (-175)) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568)))) -(((|#1|) |has| |#1| (-175)) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568)))) -(((|#2|) . T) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) -3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-376))) (((-557)) . T) (($) -3955 (|has| |#1| (-376)) (|has| |#1| (-568)))) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-568))) -(-3955 (|has| |#1| (-376)) (|has| |#1| (-568))) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) +(|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) +((($ $) . T) (((-361 (-499)) |#1|) . T)) +((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) +((($ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) +((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))))) +(((|#1| (-361 (-499)) (-1022)) . T)) +(|has| |#1| (-118)) +(|has| |#1| (-120)) +(((|#1| (-361 (-499))) . T)) +(((|#1| (-361 (-499))) . T)) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-318)) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) +((((-797)) . T)) +(((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318)))) +(((|#1|) . T) (($) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318)))) +(((|#1| |#1|) . T) (($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) (((-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318)))) +(((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) . T)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) +(((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) +(((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) +(((|#2|) . T) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) -3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-318))) (((-499)) . T) (($) -3677 (|has| |#1| (-318)) (|has| |#1| (-510)))) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-318)) (|has| |#1| (-510))) +(-3677 (|has| |#1| (-318)) (|has| |#1| (-510))) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) (((|#1| |#2|) . T)) -((((-1267 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) . T)) -(|has| (-1267 |#2| |#3| |#4|) (-149)) -(|has| (-1267 |#2| |#3| |#4|) (-147)) -((($) . T) (((-1267 |#2| |#3| |#4|)) |has| (-1267 |#2| |#3| |#4|) (-175)) (((-419 (-557))) |has| (-1267 |#2| |#3| |#4|) (-38 (-419 (-557))))) -((($) . T) (((-1267 |#2| |#3| |#4|)) |has| (-1267 |#2| |#3| |#4|) (-175)) (((-419 (-557))) |has| (-1267 |#2| |#3| |#4|) (-38 (-419 (-557))))) -((((-875)) . T)) -((($) . T) (((-1267 |#2| |#3| |#4|)) . T) (((-419 (-557))) |has| (-1267 |#2| |#3| |#4|) (-38 (-419 (-557))))) -((($) . T) (((-1267 |#2| |#3| |#4|)) . T) (((-419 (-557))) |has| (-1267 |#2| |#3| |#4|) (-38 (-419 (-557))))) -((($ $) . T) (((-1267 |#2| |#3| |#4|) (-1267 |#2| |#3| |#4|)) . T) (((-419 (-557)) (-419 (-557))) |has| (-1267 |#2| |#3| |#4|) (-38 (-419 (-557))))) -((((-1267 |#2| |#3| |#4|)) . T) (((-419 (-557))) |has| (-1267 |#2| |#3| |#4|) (-38 (-419 (-557)))) (((-557)) . T) (($) . T)) -((((-1267 |#2| |#3| |#4|)) . T) (((-419 (-557))) |has| (-1267 |#2| |#3| |#4|) (-38 (-419 (-557)))) (($) . T)) -((($) . T) (((-1267 |#2| |#3| |#4|)) . T) (((-419 (-557))) |has| (-1267 |#2| |#3| |#4|) (-38 (-419 (-557)))) (((-557)) . T)) -((($) . T) (((-1267 |#2| |#3| |#4|)) |has| (-1267 |#2| |#3| |#4|) (-175)) (((-419 (-557))) |has| (-1267 |#2| |#3| |#4|) (-38 (-419 (-557))))) -((((-1267 |#2| |#3| |#4|)) . T)) -((((-1267 |#2| |#3| |#4|)) . T)) -((((-1267 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) . T)) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(|has| |#1| (-38 (-419 (-557)))) -(((|#1| (-789)) . T)) -(((|#1| (-789)) . T)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(-3955 (|has| |#1| (-175)) (|has| |#1| (-568))) -(|has| |#1| (-149)) -(|has| |#1| (-147)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) -3955 (|has| |#1| (-175)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($ $) -3955 (|has| |#1| (-175)) (|has| |#1| (-568))) ((|#1| |#1|) . T) (((-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557))))) -(((|#1| (-789) (-1101)) . T)) -((((-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|))))) -((($ (-1283 |#2|)) . T) (($ (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|))))) -((((-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|))))) -((((-789) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-789) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-789) |#1|)))) -((((-875)) . T)) -(((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) (((-557)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) (($) . T)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-175)) (((-419 (-557))) |has| |#1| (-38 (-419 (-557)))) (((-557)) . T)) -(|has| |#1| (-15 * (|#1| (-789) |#1|))) -(((|#1|) . T)) -((((-1196)) . T) (((-875)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-557) |#1|) . T)) -((((-557) |#1|) . T)) -((((-557) |#1|) . T) (((-1253 (-557)) $) . T)) -((((-546)) |has| |#1| (-629 (-546)))) -(((|#1|) . T)) -(-3955 (|has| |#1| (-859)) (|has| |#1| (-1120))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120)))) -((((-875)) -3955 (|has| |#1| (-628 (-875))) (|has| |#1| (-859)) (|has| |#1| (-1120)))) -(-3955 (|has| |#1| (-102)) (|has| |#1| (-859)) (|has| |#1| (-1120))) -(((|#1|) . T)) -(|has| |#1| (-859)) -(|has| |#1| (-859)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-875)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-875)) . T) (((-1201)) . T)) -((((-1201)) . T)) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) -(((|#1| |#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) +((((-1188 |#2| |#3| |#4|) (-273 |#2| |#3| |#4|)) . T)) +(|has| (-1188 |#2| |#3| |#4|) (-120)) +(|has| (-1188 |#2| |#3| |#4|) (-118)) +((($) . T) (((-1188 |#2| |#3| |#4|)) |has| (-1188 |#2| |#3| |#4|) (-146)) (((-361 (-499))) |has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499))))) +((($) . T) (((-1188 |#2| |#3| |#4|)) |has| (-1188 |#2| |#3| |#4|) (-146)) (((-361 (-499))) |has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499))))) +((((-797)) . T)) +((($) . T) (((-1188 |#2| |#3| |#4|)) . T) (((-361 (-499))) |has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499))))) +((($) . T) (((-1188 |#2| |#3| |#4|)) . T) (((-361 (-499))) |has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499))))) +((($ $) . T) (((-1188 |#2| |#3| |#4|) (-1188 |#2| |#3| |#4|)) . T) (((-361 (-499)) (-361 (-499))) |has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499))))) +((((-1188 |#2| |#3| |#4|)) . T) (((-361 (-499))) |has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499)))) (((-499)) . T) (($) . T)) +((((-1188 |#2| |#3| |#4|)) . T) (((-361 (-499))) |has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499)))) (($) . T)) +((($) . T) (((-1188 |#2| |#3| |#4|)) . T) (((-361 (-499))) |has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499)))) (((-499)) . T)) +((($) . T) (((-1188 |#2| |#3| |#4|)) |has| (-1188 |#2| |#3| |#4|) (-146)) (((-361 (-499))) |has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499))))) +((((-1188 |#2| |#3| |#4|)) . T)) +((((-1188 |#2| |#3| |#4|)) . T)) +((((-1188 |#2| |#3| |#4|) (-273 |#2| |#3| |#4|)) . T)) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(|has| |#1| (-38 (-361 (-499)))) +(((|#1| (-714)) . T)) +(((|#1| (-714)) . T)) +(|has| |#1| (-510)) +(|has| |#1| (-510)) +(-3677 (|has| |#1| (-146)) (|has| |#1| (-510))) +(|has| |#1| (-120)) +(|has| |#1| (-118)) +((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($ $) -3677 (|has| |#1| (-146)) (|has| |#1| (-510))) ((|#1| |#1|) . T) (((-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499))))) +(((|#1| (-714) (-1022)) . T)) +((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|))))) +((($ (-1204 |#2|)) . T) (($ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|))))) +((((-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|))))) +((((-714) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-714) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-714) |#1|)))) +((((-797)) . T)) +(((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (((-499)) . T) (($) . T)) +(((|#1|) . T) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (($) . T)) +((($) |has| |#1| (-510)) ((|#1|) |has| |#1| (-146)) (((-361 (-499))) |has| |#1| (-38 (-361 (-499)))) (((-499)) . T)) +(|has| |#1| (-15 * (|#1| (-714) |#1|))) +(((|#1|) . T)) +((((-1117)) . T) (((-797)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-499) |#1|) . T)) +((((-499) |#1|) . T)) +((((-499) |#1|) . T) (((-1174 (-499)) $) . T)) +((((-488)) |has| |#1| (-569 (-488)))) +(((|#1|) . T)) +(-3677 (|has| |#1| (-781)) (|has| |#1| (-1041))) +(((|#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +(((|#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041)))) +((((-797)) -3677 (|has| |#1| (-568 (-797))) (|has| |#1| (-781)) (|has| |#1| (-1041)))) +(-3677 (|has| |#1| (-73)) (|has| |#1| (-781)) (|has| |#1| (-1041))) +(((|#1|) . T)) +(|has| |#1| (-781)) +(|has| |#1| (-781)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +((((-1122)) . T)) +((((-797)) . T) (((-1122)) . T)) +((((-1122)) . T)) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) +(((|#1| |#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) (((|#4|) . T)) -(((|#1|) |has| |#1| (-175)) ((|#4|) . T) (((-557)) . T)) -(((|#1|) |has| |#1| (-175)) (($) . T)) -(((|#4|) . T) (((-875)) . T)) -(((|#1|) |has| |#1| (-175)) (($) . T) (((-557)) . T)) +(((|#1|) |has| |#1| (-146)) ((|#4|) . T) (((-499)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T)) +(((|#4|) . T) (((-797)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-499)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-546)) |has| |#4| (-629 (-546)))) +((((-488)) |has| |#4| (-569 (-488)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120)))) -(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120)))) +(((|#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) +(((|#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041)))) (((|#4|) . T)) -((((-875)) . T) (((-659 |#4|)) . T)) +((((-797)) . T) (((-599 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-175))) +(((|#2|) |has| |#2| (-146))) (((|#2|) . T)) (((|#1| |#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-875)) . T)) -((($) . T) (((-557)) . T) ((|#2|) . T)) +((((-797)) . T)) +((($) . T) (((-499)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-175))) -(((|#2|) |has| |#2| (-175))) -((((-839 |#1|)) . T)) -(((|#2|) . T) (((-557)) . T) (((-839 |#1|)) . T)) -(((|#2| (-839 |#1|)) . T)) -(((|#2| (-906 |#1|)) . T)) +(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-146))) +((((-762 |#1|)) . T)) +(((|#2|) . T) (((-499)) . T) (((-762 |#1|)) . T)) +(((|#2| (-762 |#1|)) . T)) +(((|#2| (-828 |#1|)) . T)) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-175))) +(((|#2|) |has| |#2| (-146))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-175))) -(((|#2|) |has| |#2| (-175))) +(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-146))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-875)) . T)) -(((|#2|) . T) (($) . T) (((-557)) . T)) -((((-906 |#1|)) . T) ((|#2|) . T) (((-557)) . T) (((-839 |#1|)) . T)) -((((-906 |#1|)) . T) (((-839 |#1|)) . T)) +((((-797)) . T)) +(((|#2|) . T) (($) . T) (((-499)) . T)) +((((-828 |#1|)) . T) ((|#2|) . T) (((-499)) . T) (((-762 |#1|)) . T)) +((((-828 |#1|)) . T) (((-762 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1196) |#1|) . T)) -(((|#1|) |has| |#1| (-175))) +((((-1117) |#1|) . T)) +(((|#1|) |has| |#1| (-146))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -((((-875)) . T)) -(((|#1|) . T) (($) . T) (((-557)) . T)) -(((|#1|) . T) (((-557)) . T) (((-839 (-1196))) . T)) -((((-839 (-1196))) . T)) -((((-1196) |#1|) . T)) +((((-797)) . T)) +(((|#1|) . T) (($) . T) (((-499)) . T)) +(((|#1|) . T) (((-499)) . T) (((-762 (-1117))) . T)) +((((-762 (-1117))) . T)) +((((-1117) |#1|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-175))) +(((|#1|) |has| |#1| (-146))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-175))) -(((|#1|) |has| |#1| (-175))) +(((|#1|) |has| |#1| (-146))) +(((|#1|) |has| |#1| (-146))) (((|#1|) . T)) -(((|#2|) . T) ((|#1|) . T) (((-557)) . T)) +(((|#2|) . T) ((|#1|) . T) (((-499)) . T)) (((|#1|) . T) (($) . T)) -((((-875)) . T)) -(((|#1|) . T) (($) . T) (((-557)) . T)) +((((-797)) . T)) +(((|#1|) . T) (($) . T) (((-499)) . T)) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-175))) +(((|#2|) |has| |#2| (-146))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-175))) -(((|#2|) |has| |#2| (-175))) +(((|#2|) |has| |#2| (-146))) +(((|#2|) |has| |#2| (-146))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-875)) . T)) -(((|#2|) . T) (($) . T) (((-557)) . T)) -(((|#2|) . T) (((-557)) . T) (((-839 |#1|)) . T)) -((((-839 |#1|)) . T)) +((((-797)) . T)) +(((|#2|) . T) (($) . T) (((-499)) . T)) +(((|#2|) . T) (((-499)) . T) (((-762 |#1|)) . T)) +((((-762 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-990)) . T)) -((((-990)) . T)) -((((-990)) . T) (((-875)) . T)) -((((-557)) . T)) +((((-911)) . T)) +((((-911)) . T)) +((((-911)) . T) (((-797)) . T)) +((((-499)) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-875)) . T)) -((((-557)) . T) (($) . T)) +((((-797)) . T)) +((((-499)) . T) (($) . T)) ((($) . T)) -((((-557)) . T)) -(((-3) T) ((-2) T) ((-1) T) ((0) T) ((-1316 . -175) T) ((-1316 . -631) 206571) ((-1316 . -744) T) ((-1316 . -1131) T) ((-1316 . -1076) T) ((-1316 . -1068) T) ((-1316 . -666) 206558) ((-1316 . -664) 206530) ((-1316 . -133) T) ((-1316 . -25) T) ((-1316 . -102) T) ((-1316 . -1236) T) ((-1316 . -628) 206512) ((-1316 . -1120) T) ((-1316 . -23) T) ((-1316 . -21) T) ((-1316 . -1075) 206499) ((-1316 . -1070) 206486) ((-1316 . -111) 206471) ((-1316 . -381) T) ((-1316 . -629) 206453) ((-1316 . -1171) T) ((-1312 . -1120) T) ((-1312 . -628) 206420) ((-1312 . -1236) T) ((-1312 . -102) T) ((-1312 . -502) 206402) ((-1312 . -631) 206384) ((-1311 . -1309) 206363) ((-1311 . -1057) 206340) ((-1311 . -631) 206289) ((-1311 . -1068) T) ((-1311 . -1076) T) ((-1311 . -1131) T) ((-1311 . -744) T) ((-1311 . -21) T) ((-1311 . -664) 206248) ((-1311 . -23) T) ((-1311 . -1120) T) ((-1311 . -628) 206230) ((-1311 . -1236) T) ((-1311 . -102) T) ((-1311 . -25) T) ((-1311 . -133) T) ((-1311 . -666) 206204) ((-1311 . -1301) 206188) ((-1311 . -735) 206158) ((-1311 . -658) 206128) ((-1311 . -1075) 206112) ((-1311 . -1070) 206096) ((-1311 . -111) 206075) ((-1311 . -38) 206045) ((-1311 . -1306) 206024) ((-1310 . -1068) T) ((-1310 . -1076) T) ((-1310 . -1131) T) ((-1310 . -744) T) ((-1310 . -21) T) ((-1310 . -664) 205983) ((-1310 . -23) T) ((-1310 . -1120) T) ((-1310 . -628) 205965) ((-1310 . -1236) T) ((-1310 . -102) T) ((-1310 . -25) T) ((-1310 . -133) T) ((-1310 . -666) 205939) ((-1310 . -631) 205895) ((-1310 . -1301) 205879) ((-1310 . -735) 205849) ((-1310 . -658) 205819) ((-1310 . -1075) 205803) ((-1310 . -1070) 205787) ((-1310 . -111) 205766) ((-1310 . -38) 205736) ((-1310 . -397) 205715) ((-1310 . -1057) 205699) ((-1308 . -1309) 205675) ((-1308 . -1057) 205649) ((-1308 . -631) 205595) ((-1308 . -1068) T) ((-1308 . -1076) T) ((-1308 . -1131) T) ((-1308 . -744) T) ((-1308 . -21) T) ((-1308 . -664) 205554) ((-1308 . -23) T) ((-1308 . -1120) T) ((-1308 . -628) 205536) ((-1308 . -1236) T) ((-1308 . -102) T) ((-1308 . -25) T) ((-1308 . -133) T) ((-1308 . -666) 205510) ((-1308 . -1301) 205494) ((-1308 . -735) 205464) ((-1308 . -658) 205434) ((-1308 . -1075) 205418) ((-1308 . -1070) 205402) ((-1308 . -111) 205381) ((-1308 . -38) 205351) ((-1308 . -1306) 205327) ((-1307 . -1309) 205306) ((-1307 . -1057) 205263) ((-1307 . -631) 205192) ((-1307 . -1068) T) ((-1307 . -1076) T) ((-1307 . -1131) T) ((-1307 . -744) T) ((-1307 . -21) T) ((-1307 . -664) 205151) ((-1307 . -23) T) ((-1307 . -1120) T) ((-1307 . -628) 205133) ((-1307 . -1236) T) ((-1307 . -102) T) ((-1307 . -25) T) ((-1307 . -133) T) ((-1307 . -666) 205107) ((-1307 . -1301) 205091) ((-1307 . -735) 205061) ((-1307 . -658) 205031) ((-1307 . -1075) 205015) ((-1307 . -1070) 204999) ((-1307 . -111) 204978) ((-1307 . -38) 204948) ((-1307 . -1306) 204927) ((-1307 . -397) 204899) ((-1302 . -397) 204871) ((-1302 . -631) 204820) ((-1302 . -1057) 204797) ((-1302 . -658) 204767) ((-1302 . -735) 204737) ((-1302 . -666) 204711) ((-1302 . -664) 204670) ((-1302 . -133) T) ((-1302 . -25) T) ((-1302 . -102) T) ((-1302 . -1236) T) ((-1302 . -628) 204652) ((-1302 . -1120) T) ((-1302 . -23) T) ((-1302 . -21) T) ((-1302 . -1075) 204636) ((-1302 . -1070) 204620) ((-1302 . -111) 204599) ((-1302 . -1309) 204578) ((-1302 . -1068) T) ((-1302 . -1076) T) ((-1302 . -1131) T) ((-1302 . -744) T) ((-1302 . -1301) 204562) ((-1302 . -38) 204532) ((-1302 . -1306) 204511) ((-1300 . -1231) 204480) ((-1300 . -628) 204442) ((-1300 . -153) 204426) ((-1300 . -34) T) ((-1300 . -1236) T) ((-1300 . -102) T) ((-1300 . -321) 204364) ((-1300 . -526) 204297) ((-1300 . -1120) T) ((-1300 . -501) 204281) ((-1300 . -629) 204242) ((-1300 . -995) 204211) ((-1299 . -1068) T) ((-1299 . -1076) T) ((-1299 . -1131) T) ((-1299 . -744) T) ((-1299 . -21) T) ((-1299 . -664) 204156) ((-1299 . -23) T) ((-1299 . -1120) T) ((-1299 . -628) 204125) ((-1299 . -1236) T) ((-1299 . -102) T) ((-1299 . -25) T) ((-1299 . -133) T) ((-1299 . -666) 204085) ((-1299 . -631) 204027) ((-1299 . -502) 204011) ((-1299 . -38) 203981) ((-1299 . -111) 203946) ((-1299 . -1070) 203916) ((-1299 . -1075) 203886) ((-1299 . -658) 203856) ((-1299 . -735) 203826) ((-1298 . -1102) T) ((-1298 . -502) 203807) ((-1298 . -628) 203773) ((-1298 . -631) 203754) ((-1298 . -1120) T) ((-1298 . -1236) T) ((-1298 . -102) T) ((-1298 . -93) T) ((-1297 . -1102) T) ((-1297 . -502) 203735) ((-1297 . -628) 203701) ((-1297 . -631) 203682) ((-1297 . -1120) T) ((-1297 . -1236) T) ((-1297 . -102) T) ((-1297 . -93) T) ((-1292 . -628) 203664) ((-1290 . -1120) T) ((-1290 . -628) 203646) ((-1290 . -1236) T) ((-1290 . -102) T) ((-1289 . -1120) T) ((-1289 . -628) 203628) ((-1289 . -1236) T) ((-1289 . -102) T) ((-1286 . -1285) 203612) ((-1286 . -385) 203596) ((-1286 . -862) 203575) ((-1286 . -859) 203554) ((-1286 . -153) 203538) ((-1286 . -34) T) ((-1286 . -1236) T) ((-1286 . -102) 203468) ((-1286 . -628) 203380) ((-1286 . -321) 203318) ((-1286 . -526) 203251) ((-1286 . -1120) 203201) ((-1286 . -501) 203185) ((-1286 . -629) 203146) ((-1286 . -298) 203098) ((-1286 . -614) 203075) ((-1286 . -300) 203052) ((-1286 . -669) 203036) ((-1286 . -19) 203020) ((-1283 . -1120) T) ((-1283 . -628) 202986) ((-1283 . -1236) T) ((-1283 . -102) T) ((-1276 . -1279) 202970) ((-1276 . -240) 202929) ((-1276 . -631) 202811) ((-1276 . -666) 202736) ((-1276 . -664) 202646) ((-1276 . -133) T) ((-1276 . -25) T) ((-1276 . -102) T) ((-1276 . -628) 202628) ((-1276 . -1120) T) ((-1276 . -23) T) ((-1276 . -21) T) ((-1276 . -744) T) ((-1276 . -1131) T) ((-1276 . -1076) T) ((-1276 . -1068) T) ((-1276 . -236) 202581) ((-1276 . -1236) T) ((-1276 . -239) 202540) ((-1276 . -298) 202505) ((-1276 . -915) 202418) ((-1276 . -909) 202306) ((-1276 . -917) 202219) ((-1276 . -992) 202188) ((-1276 . -38) 202085) ((-1276 . -111) 201947) ((-1276 . -1070) 201830) ((-1276 . -1075) 201713) ((-1276 . -658) 201610) ((-1276 . -735) 201507) ((-1276 . -147) 201486) ((-1276 . -149) 201465) ((-1276 . -175) 201416) ((-1276 . -568) 201395) ((-1276 . -302) 201374) ((-1276 . -47) 201351) ((-1276 . -1265) 201328) ((-1276 . -35) 201294) ((-1276 . -95) 201260) ((-1276 . -296) 201226) ((-1276 . -505) 201192) ((-1276 . -1225) 201158) ((-1276 . -1222) 201124) ((-1276 . -1021) 201090) ((-1273 . -338) 201034) ((-1273 . -1057) 201000) ((-1273 . -424) 200966) ((-1273 . -38) 200823) ((-1273 . -631) 200697) ((-1273 . -666) 200586) ((-1273 . -664) 200460) ((-1273 . -744) T) ((-1273 . -1131) T) ((-1273 . -1076) T) ((-1273 . -1068) T) ((-1273 . -111) 200310) ((-1273 . -1070) 200199) ((-1273 . -1075) 200088) ((-1273 . -21) T) ((-1273 . -23) T) ((-1273 . -1120) T) ((-1273 . -628) 200070) ((-1273 . -1236) T) ((-1273 . -102) T) ((-1273 . -25) T) ((-1273 . -133) T) ((-1273 . -658) 199927) ((-1273 . -735) 199784) ((-1273 . -147) 199745) ((-1273 . -149) 199706) ((-1273 . -175) T) ((-1273 . -568) T) ((-1273 . -302) T) ((-1273 . -47) 199650) ((-1272 . -1271) 199629) ((-1272 . -376) 199608) ((-1272 . -1241) 199587) ((-1272 . -938) 199566) ((-1272 . -568) 199517) ((-1272 . -175) 199448) ((-1272 . -631) 199261) ((-1272 . -735) 199102) ((-1272 . -658) 198943) ((-1272 . -38) 198784) ((-1272 . -464) 198763) ((-1272 . -319) 198742) ((-1272 . -666) 198639) ((-1272 . -664) 198521) ((-1272 . -744) T) ((-1272 . -1131) T) ((-1272 . -1076) T) ((-1272 . -1068) T) ((-1272 . -111) 198335) ((-1272 . -1070) 198170) ((-1272 . -1075) 198005) ((-1272 . -21) T) ((-1272 . -23) T) ((-1272 . -1120) T) ((-1272 . -628) 197987) ((-1272 . -1236) T) ((-1272 . -102) T) ((-1272 . -25) T) ((-1272 . -133) T) ((-1272 . -302) 197938) ((-1272 . -250) 197917) ((-1272 . -1021) 197883) ((-1272 . -1222) 197849) ((-1272 . -1225) 197815) ((-1272 . -505) 197781) ((-1272 . -296) 197747) ((-1272 . -95) 197713) ((-1272 . -35) 197679) ((-1272 . -1265) 197649) ((-1272 . -47) 197619) ((-1272 . -149) 197598) ((-1272 . -147) 197577) ((-1272 . -992) 197539) ((-1272 . -917) 197445) ((-1272 . -909) 197349) ((-1272 . -915) 197255) ((-1272 . -298) 197213) ((-1272 . -239) 197165) ((-1272 . -236) 197111) ((-1272 . -240) 197063) ((-1272 . -1269) 197047) ((-1272 . -1057) 197031) ((-1267 . -1271) 196992) ((-1267 . -376) 196971) ((-1267 . -1241) 196950) ((-1267 . -938) 196929) ((-1267 . -568) 196880) ((-1267 . -175) 196811) ((-1267 . -631) 196554) ((-1267 . -735) 196395) ((-1267 . -658) 196236) ((-1267 . -38) 196077) ((-1267 . -464) 196056) ((-1267 . -319) 196035) ((-1267 . -666) 195932) ((-1267 . -664) 195814) ((-1267 . -744) T) ((-1267 . -1131) T) ((-1267 . -1076) T) ((-1267 . -1068) T) ((-1267 . -111) 195628) ((-1267 . -1070) 195463) ((-1267 . -1075) 195298) ((-1267 . -21) T) ((-1267 . -23) T) ((-1267 . -1120) T) ((-1267 . -628) 195280) ((-1267 . -1236) T) ((-1267 . -102) T) ((-1267 . -25) T) ((-1267 . -133) T) ((-1267 . -302) 195231) ((-1267 . -250) 195210) ((-1267 . -1021) 195176) ((-1267 . -1222) 195142) ((-1267 . -1225) 195108) ((-1267 . -505) 195074) ((-1267 . -296) 195040) ((-1267 . -95) 195006) ((-1267 . -35) 194972) ((-1267 . -1265) 194942) ((-1267 . -47) 194912) ((-1267 . -149) 194891) ((-1267 . -147) 194870) ((-1267 . -992) 194832) ((-1267 . -917) 194738) ((-1267 . -909) 194619) ((-1267 . -915) 194525) ((-1267 . -298) 194483) ((-1267 . -239) 194435) ((-1267 . -236) 194381) ((-1267 . -240) 194333) ((-1267 . -1269) 194317) ((-1267 . -1057) 194252) ((-1255 . -1262) 194236) ((-1255 . -1171) 194214) ((-1255 . -629) NIL) ((-1255 . -321) 194201) ((-1255 . -526) 194147) ((-1255 . -338) 194124) ((-1255 . -1057) 194004) ((-1255 . -424) 193988) ((-1255 . -38) 193817) ((-1255 . -111) 193619) ((-1255 . -1070) 193442) ((-1255 . -1075) 193265) ((-1255 . -664) 193175) ((-1255 . -666) 193064) ((-1255 . -658) 192893) ((-1255 . -735) 192722) ((-1255 . -631) 192470) ((-1255 . -147) 192449) ((-1255 . -149) 192428) ((-1255 . -47) 192405) ((-1255 . -390) 192389) ((-1255 . -656) 192337) ((-1255 . -915) 192280) ((-1255 . -909) 192183) ((-1255 . -917) 192090) ((-1255 . -899) NIL) ((-1255 . -927) 192069) ((-1255 . -1241) 192048) ((-1255 . -967) 192017) ((-1255 . -938) 191996) ((-1255 . -568) 191907) ((-1255 . -302) 191818) ((-1255 . -175) 191709) ((-1255 . -464) 191640) ((-1255 . -319) 191619) ((-1255 . -298) 191546) ((-1255 . -240) T) ((-1255 . -133) T) ((-1255 . -25) T) ((-1255 . -102) T) ((-1255 . -628) 191528) ((-1255 . -1120) T) ((-1255 . -23) T) ((-1255 . -21) T) ((-1255 . -744) T) ((-1255 . -1131) T) ((-1255 . -1076) T) ((-1255 . -1068) T) ((-1255 . -236) 191515) ((-1255 . -1236) T) ((-1255 . -239) T) ((-1255 . -274) 191499) ((-1255 . -234) 191483) ((-1253 . -1113) 191467) ((-1253 . -633) 191451) ((-1253 . -1120) 191429) ((-1253 . -628) 191396) ((-1253 . -1236) 191374) ((-1253 . -102) 191352) ((-1253 . -1114) 191309) ((-1251 . -1250) 191288) ((-1251 . -1021) 191254) ((-1251 . -1222) 191220) ((-1251 . -1225) 191186) ((-1251 . -505) 191152) ((-1251 . -296) 191118) ((-1251 . -95) 191084) ((-1251 . -35) 191050) ((-1251 . -1265) 191027) ((-1251 . -47) 191004) ((-1251 . -631) 190752) ((-1251 . -735) 190566) ((-1251 . -658) 190380) ((-1251 . -666) 190188) ((-1251 . -664) 190043) ((-1251 . -1075) 189851) ((-1251 . -1070) 189659) ((-1251 . -111) 189441) ((-1251 . -38) 189255) ((-1251 . -992) 189224) ((-1251 . -298) 189124) ((-1251 . -1248) 189108) ((-1251 . -744) T) ((-1251 . -1131) T) ((-1251 . -1076) T) ((-1251 . -1068) T) ((-1251 . -21) T) ((-1251 . -23) T) ((-1251 . -1120) T) ((-1251 . -628) 189090) ((-1251 . -1236) T) ((-1251 . -102) T) ((-1251 . -25) T) ((-1251 . -133) T) ((-1251 . -147) 189015) ((-1251 . -149) 188940) ((-1251 . -629) 188611) ((-1251 . -234) 188581) ((-1251 . -915) 188432) ((-1251 . -917) 188229) ((-1251 . -909) 188024) ((-1251 . -274) 187994) ((-1251 . -239) 187853) ((-1251 . -236) 187706) ((-1251 . -240) 187611) ((-1251 . -376) 187590) ((-1251 . -1241) 187569) ((-1251 . -938) 187548) ((-1251 . -568) 187499) ((-1251 . -175) 187430) ((-1251 . -464) 187409) ((-1251 . -319) 187388) ((-1251 . -302) 187339) ((-1251 . -250) 187318) ((-1251 . -351) 187288) ((-1251 . -526) 187148) ((-1251 . -321) 187087) ((-1251 . -390) 187057) ((-1251 . -656) 186965) ((-1251 . -412) 186935) ((-1251 . -899) 186808) ((-1251 . -840) 186761) ((-1251 . -810) 186714) ((-1251 . -812) 186667) ((-1251 . -859) 186566) ((-1251 . -862) 186465) ((-1251 . -814) 186418) ((-1251 . -817) 186371) ((-1251 . -858) 186324) ((-1251 . -897) 186294) ((-1251 . -927) 186247) ((-1251 . -1039) 186199) ((-1251 . -1057) 185985) ((-1251 . -1171) 185937) ((-1251 . -1010) 185907) ((-1246 . -1250) 185868) ((-1246 . -1021) 185834) ((-1246 . -1222) 185800) ((-1246 . -1225) 185766) ((-1246 . -505) 185732) ((-1246 . -296) 185698) ((-1246 . -95) 185664) ((-1246 . -35) 185630) ((-1246 . -1265) 185607) ((-1246 . -47) 185584) ((-1246 . -631) 185379) ((-1246 . -735) 185175) ((-1246 . -658) 184971) ((-1246 . -666) 184823) ((-1246 . -664) 184660) ((-1246 . -1075) 184450) ((-1246 . -1070) 184240) ((-1246 . -111) 183986) ((-1246 . -38) 183782) ((-1246 . -992) 183751) ((-1246 . -298) 183579) ((-1246 . -1248) 183563) ((-1246 . -744) T) ((-1246 . -1131) T) ((-1246 . -1076) T) ((-1246 . -1068) T) ((-1246 . -21) T) ((-1246 . -23) T) ((-1246 . -1120) T) ((-1246 . -628) 183545) ((-1246 . -1236) T) ((-1246 . -102) T) ((-1246 . -25) T) ((-1246 . -133) T) ((-1246 . -147) 183452) ((-1246 . -149) 183359) ((-1246 . -629) NIL) ((-1246 . -234) 183311) ((-1246 . -915) 183144) ((-1246 . -917) 182905) ((-1246 . -909) 182641) ((-1246 . -274) 182593) ((-1246 . -239) 182416) ((-1246 . -236) 182233) ((-1246 . -240) 182120) ((-1246 . -376) 182099) ((-1246 . -1241) 182078) ((-1246 . -938) 182057) ((-1246 . -568) 182008) ((-1246 . -175) 181939) ((-1246 . -464) 181918) ((-1246 . -319) 181897) ((-1246 . -302) 181848) ((-1246 . -250) 181827) ((-1246 . -351) 181779) ((-1246 . -526) 181513) ((-1246 . -321) 181398) ((-1246 . -390) 181350) ((-1246 . -656) 181302) ((-1246 . -412) 181254) ((-1246 . -899) NIL) ((-1246 . -840) NIL) ((-1246 . -810) NIL) ((-1246 . -812) NIL) ((-1246 . -859) NIL) ((-1246 . -862) NIL) ((-1246 . -814) NIL) ((-1246 . -817) NIL) ((-1246 . -858) NIL) ((-1246 . -897) 181206) ((-1246 . -927) NIL) ((-1246 . -1039) NIL) ((-1246 . -1057) 181172) ((-1246 . -1171) NIL) ((-1246 . -1010) 181124) ((-1245 . -855) T) ((-1245 . -862) T) ((-1245 . -859) T) ((-1245 . -1120) T) ((-1245 . -628) 181106) ((-1245 . -1236) T) ((-1245 . -102) T) ((-1245 . -381) T) ((-1245 . -680) T) ((-1244 . -855) T) ((-1244 . -862) T) ((-1244 . -859) T) ((-1244 . -1120) T) ((-1244 . -628) 181088) ((-1244 . -1236) T) ((-1244 . -102) T) ((-1244 . -381) T) ((-1244 . -680) T) ((-1243 . -855) T) ((-1243 . -862) T) ((-1243 . -859) T) ((-1243 . -1120) T) ((-1243 . -628) 181070) ((-1243 . -1236) T) ((-1243 . -102) T) ((-1243 . -381) T) ((-1243 . -680) T) ((-1242 . -855) T) ((-1242 . -862) T) ((-1242 . -859) T) ((-1242 . -1120) T) ((-1242 . -628) 181052) ((-1242 . -1236) T) ((-1242 . -102) T) ((-1242 . -381) T) ((-1242 . -680) T) ((-1237 . -1102) T) ((-1237 . -502) 181033) ((-1237 . -628) 180999) ((-1237 . -631) 180980) ((-1237 . -1120) T) ((-1237 . -1236) T) ((-1237 . -102) T) ((-1237 . -93) T) ((-1234 . -502) 180957) ((-1234 . -628) 180898) ((-1234 . -631) 180875) ((-1234 . -1120) 180853) ((-1234 . -1236) 180831) ((-1234 . -102) 180809) ((-1229 . -758) 180785) ((-1229 . -35) 180751) ((-1229 . -95) 180717) ((-1229 . -296) 180683) ((-1229 . -505) 180649) ((-1229 . -1225) 180615) ((-1229 . -1222) 180581) ((-1229 . -1021) 180547) ((-1229 . -47) 180516) ((-1229 . -38) 180413) ((-1229 . -658) 180310) ((-1229 . -735) 180207) ((-1229 . -631) 180089) ((-1229 . -302) 180068) ((-1229 . -568) 180047) ((-1229 . -111) 179909) ((-1229 . -1070) 179792) ((-1229 . -1075) 179675) ((-1229 . -175) 179626) ((-1229 . -149) 179605) ((-1229 . -147) 179584) ((-1229 . -666) 179509) ((-1229 . -664) 179419) ((-1229 . -992) 179380) ((-1229 . -917) 179361) ((-1229 . -1236) T) ((-1229 . -909) 179340) ((-1229 . -1068) T) ((-1229 . -1076) T) ((-1229 . -1131) T) ((-1229 . -744) T) ((-1229 . -21) T) ((-1229 . -23) T) ((-1229 . -1120) T) ((-1229 . -628) 179322) ((-1229 . -102) T) ((-1229 . -25) T) ((-1229 . -133) T) ((-1229 . -915) 179303) ((-1229 . -526) 179270) ((-1229 . -321) 179257) ((-1223 . -1029) 179241) ((-1223 . -34) T) ((-1223 . -1236) T) ((-1223 . -102) 179191) ((-1223 . -628) 179123) ((-1223 . -321) 179061) ((-1223 . -526) 178994) ((-1223 . -1120) 178972) ((-1223 . -501) 178956) ((-1218 . -378) 178930) ((-1218 . -102) T) ((-1218 . -1236) T) ((-1218 . -628) 178912) ((-1218 . -1120) T) ((-1216 . -1120) T) ((-1216 . -628) 178894) ((-1216 . -1236) T) ((-1216 . -102) T) ((-1216 . -631) 178876) ((-1210 . -847) 178860) ((-1210 . -102) T) ((-1210 . -1236) T) ((-1210 . -628) 178842) ((-1210 . -1120) T) ((-1208 . -1213) 178821) ((-1208 . -233) 178771) ((-1208 . -107) 178721) ((-1208 . -321) 178525) ((-1208 . -526) 178285) ((-1208 . -501) 178222) ((-1208 . -153) 178172) ((-1208 . -629) NIL) ((-1208 . -242) 178122) ((-1208 . -625) 178101) ((-1208 . -300) 178080) ((-1208 . -1236) T) ((-1208 . -298) 178059) ((-1208 . -1120) T) ((-1208 . -628) 178041) ((-1208 . -102) T) ((-1208 . -34) T) ((-1208 . -614) 178020) ((-1204 . -1120) T) ((-1204 . -628) 178002) ((-1204 . -1236) T) ((-1204 . -102) T) ((-1203 . -855) T) ((-1203 . -862) T) ((-1203 . -859) T) ((-1203 . -1120) T) ((-1203 . -628) 177984) ((-1203 . -1236) T) ((-1203 . -102) T) ((-1203 . -381) T) ((-1203 . -680) T) ((-1202 . -855) T) ((-1202 . -862) T) ((-1202 . -859) T) ((-1202 . -1120) T) ((-1202 . -628) 177966) ((-1202 . -1236) T) ((-1202 . -102) T) ((-1202 . -381) T) ((-1201 . -1282) T) ((-1201 . -1120) T) ((-1201 . -628) 177933) ((-1201 . -1236) T) ((-1201 . -102) T) ((-1201 . -1057) 177869) ((-1201 . -631) 177805) ((-1200 . -628) 177787) ((-1199 . -628) 177769) ((-1198 . -338) 177746) ((-1198 . -1057) 177642) ((-1198 . -424) 177626) ((-1198 . -38) 177523) ((-1198 . -631) 177376) ((-1198 . -666) 177301) ((-1198 . -664) 177211) ((-1198 . -744) T) ((-1198 . -1131) T) ((-1198 . -1076) T) ((-1198 . -1068) T) ((-1198 . -111) 177073) ((-1198 . -1070) 176956) ((-1198 . -1075) 176839) ((-1198 . -21) T) ((-1198 . -23) T) ((-1198 . -1120) T) ((-1198 . -628) 176821) ((-1198 . -1236) T) ((-1198 . -102) T) ((-1198 . -25) T) ((-1198 . -133) T) ((-1198 . -658) 176718) ((-1198 . -735) 176615) ((-1198 . -147) 176594) ((-1198 . -149) 176573) ((-1198 . -175) 176524) ((-1198 . -568) 176503) ((-1198 . -302) 176482) ((-1198 . -47) 176459) ((-1196 . -859) T) ((-1196 . -628) 176441) ((-1196 . -1120) T) ((-1196 . -102) T) ((-1196 . -1236) T) ((-1196 . -862) T) ((-1196 . -629) 176363) ((-1196 . -631) 176329) ((-1196 . -1057) 176311) ((-1196 . -899) 176278) ((-1195 . -628) 176260) ((-1194 . -1279) 176244) ((-1194 . -240) 176203) ((-1194 . -631) 176085) ((-1194 . -666) 176010) ((-1194 . -664) 175920) ((-1194 . -133) T) ((-1194 . -25) T) ((-1194 . -102) T) ((-1194 . -628) 175902) ((-1194 . -1120) T) ((-1194 . -23) T) ((-1194 . -21) T) ((-1194 . -744) T) ((-1194 . -1131) T) ((-1194 . -1076) T) ((-1194 . -1068) T) ((-1194 . -236) 175855) ((-1194 . -1236) T) ((-1194 . -239) 175814) ((-1194 . -298) 175779) ((-1194 . -915) 175692) ((-1194 . -909) 175580) ((-1194 . -917) 175493) ((-1194 . -992) 175462) ((-1194 . -38) 175359) ((-1194 . -111) 175221) ((-1194 . -1070) 175104) ((-1194 . -1075) 174987) ((-1194 . -658) 174884) ((-1194 . -735) 174781) ((-1194 . -147) 174760) ((-1194 . -149) 174739) ((-1194 . -175) 174690) ((-1194 . -568) 174669) ((-1194 . -302) 174648) ((-1194 . -47) 174625) ((-1194 . -1265) 174602) ((-1194 . -35) 174568) ((-1194 . -95) 174534) ((-1194 . -296) 174500) ((-1194 . -505) 174466) ((-1194 . -1225) 174432) ((-1194 . -1222) 174398) ((-1194 . -1021) 174364) ((-1193 . -1271) 174325) ((-1193 . -376) 174304) ((-1193 . -1241) 174283) ((-1193 . -938) 174262) ((-1193 . -568) 174213) ((-1193 . -175) 174144) ((-1193 . -631) 173887) ((-1193 . -735) 173728) ((-1193 . -658) 173569) ((-1193 . -38) 173410) ((-1193 . -464) 173389) ((-1193 . -319) 173368) ((-1193 . -666) 173265) ((-1193 . -664) 173147) ((-1193 . -744) T) ((-1193 . -1131) T) ((-1193 . -1076) T) ((-1193 . -1068) T) ((-1193 . -111) 172961) ((-1193 . -1070) 172796) ((-1193 . -1075) 172631) ((-1193 . -21) T) ((-1193 . -23) T) ((-1193 . -1120) T) ((-1193 . -628) 172613) ((-1193 . -1236) T) ((-1193 . -102) T) ((-1193 . -25) T) ((-1193 . -133) T) ((-1193 . -302) 172564) ((-1193 . -250) 172543) ((-1193 . -1021) 172509) ((-1193 . -1222) 172475) ((-1193 . -1225) 172441) ((-1193 . -505) 172407) ((-1193 . -296) 172373) ((-1193 . -95) 172339) ((-1193 . -35) 172305) ((-1193 . -1265) 172275) ((-1193 . -47) 172245) ((-1193 . -149) 172224) ((-1193 . -147) 172203) ((-1193 . -992) 172165) ((-1193 . -917) 172071) ((-1193 . -909) 171952) ((-1193 . -915) 171858) ((-1193 . -298) 171816) ((-1193 . -239) 171768) ((-1193 . -236) 171714) ((-1193 . -240) 171666) ((-1193 . -1269) 171650) ((-1193 . -1057) 171585) ((-1190 . -1262) 171569) ((-1190 . -1171) 171547) ((-1190 . -629) NIL) ((-1190 . -321) 171534) ((-1190 . -526) 171480) ((-1190 . -338) 171457) ((-1190 . -1057) 171337) ((-1190 . -424) 171321) ((-1190 . -38) 171150) ((-1190 . -111) 170952) ((-1190 . -1070) 170775) ((-1190 . -1075) 170598) ((-1190 . -664) 170508) ((-1190 . -666) 170397) ((-1190 . -658) 170226) ((-1190 . -735) 170055) ((-1190 . -631) 169824) ((-1190 . -147) 169803) ((-1190 . -149) 169782) ((-1190 . -47) 169759) ((-1190 . -390) 169743) ((-1190 . -656) 169691) ((-1190 . -915) 169634) ((-1190 . -909) 169537) ((-1190 . -917) 169444) ((-1190 . -899) NIL) ((-1190 . -927) 169423) ((-1190 . -1241) 169402) ((-1190 . -967) 169371) ((-1190 . -938) 169350) ((-1190 . -568) 169261) ((-1190 . -302) 169172) ((-1190 . -175) 169063) ((-1190 . -464) 168994) ((-1190 . -319) 168973) ((-1190 . -298) 168900) ((-1190 . -240) T) ((-1190 . -133) T) ((-1190 . -25) T) ((-1190 . -102) T) ((-1190 . -628) 168882) ((-1190 . -1120) T) ((-1190 . -23) T) ((-1190 . -21) T) ((-1190 . -744) T) ((-1190 . -1131) T) ((-1190 . -1076) T) ((-1190 . -1068) T) ((-1190 . -236) 168869) ((-1190 . -1236) T) ((-1190 . -239) T) ((-1190 . -274) 168853) ((-1190 . -234) 168837) ((-1187 . -1250) 168798) ((-1187 . -1021) 168764) ((-1187 . -1222) 168730) ((-1187 . -1225) 168696) ((-1187 . -505) 168662) ((-1187 . -296) 168628) ((-1187 . -95) 168594) ((-1187 . -35) 168560) ((-1187 . -1265) 168537) ((-1187 . -47) 168514) ((-1187 . -631) 168309) ((-1187 . -735) 168105) ((-1187 . -658) 167901) ((-1187 . -666) 167753) ((-1187 . -664) 167590) ((-1187 . -1075) 167380) ((-1187 . -1070) 167170) ((-1187 . -111) 166916) ((-1187 . -38) 166712) ((-1187 . -992) 166681) ((-1187 . -298) 166509) ((-1187 . -1248) 166493) ((-1187 . -744) T) ((-1187 . -1131) T) ((-1187 . -1076) T) ((-1187 . -1068) T) ((-1187 . -21) T) ((-1187 . -23) T) ((-1187 . -1120) T) ((-1187 . -628) 166475) ((-1187 . -1236) T) ((-1187 . -102) T) ((-1187 . -25) T) ((-1187 . -133) T) ((-1187 . -147) 166382) ((-1187 . -149) 166289) ((-1187 . -629) NIL) ((-1187 . -234) 166241) ((-1187 . -915) 166074) ((-1187 . -917) 165835) ((-1187 . -909) 165571) ((-1187 . -274) 165523) ((-1187 . -239) 165346) ((-1187 . -236) 165163) ((-1187 . -240) 165050) ((-1187 . -376) 165029) ((-1187 . -1241) 165008) ((-1187 . -938) 164987) ((-1187 . -568) 164938) ((-1187 . -175) 164869) ((-1187 . -464) 164848) ((-1187 . -319) 164827) ((-1187 . -302) 164778) ((-1187 . -250) 164757) ((-1187 . -351) 164709) ((-1187 . -526) 164443) ((-1187 . -321) 164328) ((-1187 . -390) 164280) ((-1187 . -656) 164232) ((-1187 . -412) 164184) ((-1187 . -899) NIL) ((-1187 . -840) NIL) ((-1187 . -810) NIL) ((-1187 . -812) NIL) ((-1187 . -859) NIL) ((-1187 . -862) NIL) ((-1187 . -814) NIL) ((-1187 . -817) NIL) ((-1187 . -858) NIL) ((-1187 . -897) 164136) ((-1187 . -927) NIL) ((-1187 . -1039) NIL) ((-1187 . -1057) 164102) ((-1187 . -1171) NIL) ((-1187 . -1010) 164054) ((-1186 . -1102) T) ((-1186 . -502) 164035) ((-1186 . -628) 164001) ((-1186 . -631) 163982) ((-1186 . -1120) T) ((-1186 . -1236) T) ((-1186 . -102) T) ((-1186 . -93) T) ((-1185 . -1120) T) ((-1185 . -628) 163964) ((-1185 . -1236) T) ((-1185 . -102) T) ((-1184 . -1120) T) ((-1184 . -628) 163946) ((-1184 . -1236) T) ((-1184 . -102) T) ((-1179 . -1213) 163922) ((-1179 . -233) 163869) ((-1179 . -107) 163816) ((-1179 . -321) 163611) ((-1179 . -526) 163359) ((-1179 . -501) 163293) ((-1179 . -153) 163240) ((-1179 . -629) NIL) ((-1179 . -242) 163187) ((-1179 . -625) 163163) ((-1179 . -300) 163139) ((-1179 . -1236) T) ((-1179 . -298) 163115) ((-1179 . -1120) T) ((-1179 . -628) 163097) ((-1179 . -102) T) ((-1179 . -34) T) ((-1179 . -614) 163073) ((-1178 . -1163) T) ((-1178 . -385) 163055) ((-1178 . -862) T) ((-1178 . -859) T) ((-1178 . -153) 163037) ((-1178 . -34) T) ((-1178 . -1236) T) ((-1178 . -102) T) ((-1178 . -628) 163019) ((-1178 . -321) NIL) ((-1178 . -526) NIL) ((-1178 . -1120) T) ((-1178 . -501) 163001) ((-1178 . -629) NIL) ((-1178 . -298) 162951) ((-1178 . -614) 162926) ((-1178 . -300) 162901) ((-1178 . -669) 162883) ((-1178 . -19) 162865) ((-1174 . -692) 162849) ((-1174 . -669) 162833) ((-1174 . -300) 162810) ((-1174 . -298) 162762) ((-1174 . -614) 162739) ((-1174 . -629) 162700) ((-1174 . -501) 162684) ((-1174 . -1120) 162662) ((-1174 . -526) 162595) ((-1174 . -321) 162533) ((-1174 . -628) 162465) ((-1174 . -102) 162415) ((-1174 . -1236) T) ((-1174 . -34) T) ((-1174 . -153) 162399) ((-1174 . -1275) 162383) ((-1174 . -1029) 162367) ((-1174 . -1169) 162351) ((-1174 . -631) 162328) ((-1172 . -1102) T) ((-1172 . -502) 162309) ((-1172 . -628) 162275) ((-1172 . -631) 162256) ((-1172 . -1120) T) ((-1172 . -1236) T) ((-1172 . -102) T) ((-1172 . -93) T) ((-1170 . -1213) 162235) ((-1170 . -233) 162185) ((-1170 . -107) 162135) ((-1170 . -321) 161939) ((-1170 . -526) 161699) ((-1170 . -501) 161636) ((-1170 . -153) 161586) ((-1170 . -629) NIL) ((-1170 . -242) 161536) ((-1170 . -625) 161515) ((-1170 . -300) 161494) ((-1170 . -1236) T) ((-1170 . -298) 161473) ((-1170 . -1120) T) ((-1170 . -628) 161455) ((-1170 . -102) T) ((-1170 . -34) T) ((-1170 . -614) 161434) ((-1167 . -1140) 161418) ((-1167 . -501) 161402) ((-1167 . -1120) 161380) ((-1167 . -526) 161313) ((-1167 . -321) 161251) ((-1167 . -628) 161183) ((-1167 . -102) 161133) ((-1167 . -1236) T) ((-1167 . -34) T) ((-1167 . -107) 161117) ((-1165 . -1128) 161086) ((-1165 . -1231) 161055) ((-1165 . -628) 161017) ((-1165 . -153) 161001) ((-1165 . -34) T) ((-1165 . -1236) T) ((-1165 . -102) T) ((-1165 . -321) 160939) ((-1165 . -526) 160872) ((-1165 . -1120) T) ((-1165 . -501) 160856) ((-1165 . -629) 160817) ((-1165 . -995) 160786) ((-1165 . -1090) 160755) ((-1161 . -1142) 160700) ((-1161 . -501) 160684) ((-1161 . -526) 160617) ((-1161 . -321) 160555) ((-1161 . -34) T) ((-1161 . -1072) 160495) ((-1161 . -1057) 160391) ((-1161 . -631) 160309) ((-1161 . -424) 160293) ((-1161 . -656) 160241) ((-1161 . -666) 160179) ((-1161 . -390) 160163) ((-1161 . -240) 160142) ((-1161 . -236) 160087) ((-1161 . -239) 160038) ((-1161 . -274) 160022) ((-1161 . -909) 159943) ((-1161 . -917) 159866) ((-1161 . -915) 159825) ((-1161 . -234) 159809) ((-1161 . -735) 159741) ((-1161 . -658) 159673) ((-1161 . -664) 159632) ((-1161 . -133) T) ((-1161 . -25) T) ((-1161 . -102) T) ((-1161 . -1236) T) ((-1161 . -628) 159594) ((-1161 . -1120) T) ((-1161 . -23) T) ((-1161 . -21) T) ((-1161 . -1075) 159578) ((-1161 . -1070) 159562) ((-1161 . -111) 159541) ((-1161 . -1068) T) ((-1161 . -1076) T) ((-1161 . -1131) T) ((-1161 . -744) T) ((-1161 . -38) 159501) ((-1161 . -629) 159462) ((-1160 . -1029) 159433) ((-1160 . -34) T) ((-1160 . -1236) T) ((-1160 . -102) T) ((-1160 . -628) 159415) ((-1160 . -321) 159341) ((-1160 . -526) 159249) ((-1160 . -1120) T) ((-1160 . -501) 159220) ((-1159 . -1120) T) ((-1159 . -628) 159202) ((-1159 . -1236) T) ((-1159 . -102) T) ((-1154 . -1156) T) ((-1154 . -1282) T) ((-1154 . -93) T) ((-1154 . -102) T) ((-1154 . -1236) T) ((-1154 . -628) 159168) ((-1154 . -1120) T) ((-1154 . -631) 159149) ((-1154 . -502) 159130) ((-1154 . -1102) T) ((-1152 . -1153) 159114) ((-1152 . -102) T) ((-1152 . -1236) T) ((-1152 . -628) 159096) ((-1152 . -1120) T) ((-1145 . -758) 159075) ((-1145 . -35) 159041) ((-1145 . -95) 159007) ((-1145 . -296) 158973) ((-1145 . -505) 158939) ((-1145 . -1225) 158905) ((-1145 . -1222) 158871) ((-1145 . -1021) 158837) ((-1145 . -47) 158809) ((-1145 . -38) 158706) ((-1145 . -658) 158603) ((-1145 . -735) 158500) ((-1145 . -631) 158382) ((-1145 . -302) 158361) ((-1145 . -568) 158340) ((-1145 . -111) 158202) ((-1145 . -1070) 158085) ((-1145 . -1075) 157968) ((-1145 . -175) 157919) ((-1145 . -149) 157898) ((-1145 . -147) 157877) ((-1145 . -666) 157802) ((-1145 . -664) 157712) ((-1145 . -992) 157679) ((-1145 . -917) 157663) ((-1145 . -1236) T) ((-1145 . -909) 157645) ((-1145 . -1068) T) ((-1145 . -1076) T) ((-1145 . -1131) T) ((-1145 . -744) T) ((-1145 . -21) T) ((-1145 . -23) T) ((-1145 . -1120) T) ((-1145 . -628) 157627) ((-1145 . -102) T) ((-1145 . -25) T) ((-1145 . -133) T) ((-1145 . -915) 157611) ((-1145 . -526) 157581) ((-1145 . -321) 157568) ((-1144 . -967) 157535) ((-1144 . -631) 157327) ((-1144 . -1057) 157210) ((-1144 . -1241) 157189) ((-1144 . -927) 157168) ((-1144 . -899) 157027) ((-1144 . -917) 157011) ((-1144 . -909) 156993) ((-1144 . -915) 156977) ((-1144 . -526) 156929) ((-1144 . -464) 156880) ((-1144 . -656) 156828) ((-1144 . -666) 156717) ((-1144 . -390) 156701) ((-1144 . -47) 156673) ((-1144 . -38) 156522) ((-1144 . -658) 156371) ((-1144 . -735) 156220) ((-1144 . -302) 156151) ((-1144 . -568) 156082) ((-1144 . -111) 155904) ((-1144 . -1070) 155747) ((-1144 . -1075) 155590) ((-1144 . -175) 155501) ((-1144 . -149) 155480) ((-1144 . -147) 155459) ((-1144 . -664) 155369) ((-1144 . -133) T) ((-1144 . -25) T) ((-1144 . -102) T) ((-1144 . -1236) T) ((-1144 . -628) 155351) ((-1144 . -1120) T) ((-1144 . -23) T) ((-1144 . -21) T) ((-1144 . -1068) T) ((-1144 . -1076) T) ((-1144 . -1131) T) ((-1144 . -744) T) ((-1144 . -424) 155335) ((-1144 . -338) 155307) ((-1144 . -321) 155294) ((-1144 . -629) 155042) ((-1139 . -556) T) ((-1139 . -1241) T) ((-1139 . -1171) T) ((-1139 . -1057) 155024) ((-1139 . -629) 154939) ((-1139 . -1039) T) ((-1139 . -899) 154921) ((-1139 . -858) T) ((-1139 . -817) T) ((-1139 . -814) T) ((-1139 . -862) T) ((-1139 . -859) T) ((-1139 . -812) T) ((-1139 . -810) T) ((-1139 . -840) T) ((-1139 . -666) 154893) ((-1139 . -656) 154875) ((-1139 . -938) T) ((-1139 . -568) T) ((-1139 . -302) T) ((-1139 . -175) T) ((-1139 . -631) 154847) ((-1139 . -735) 154834) ((-1139 . -658) 154821) ((-1139 . -1075) 154808) ((-1139 . -1070) 154795) ((-1139 . -111) 154780) ((-1139 . -38) 154767) ((-1139 . -464) T) ((-1139 . -319) T) ((-1139 . -239) T) ((-1139 . -236) 154754) ((-1139 . -240) T) ((-1139 . -145) T) ((-1139 . -1068) T) ((-1139 . -1076) T) ((-1139 . -1131) T) ((-1139 . -744) T) ((-1139 . -21) T) ((-1139 . -664) 154726) ((-1139 . -23) T) ((-1139 . -1120) T) ((-1139 . -628) 154708) ((-1139 . -1236) T) ((-1139 . -102) T) ((-1139 . -25) T) ((-1139 . -133) T) ((-1139 . -149) T) ((-1139 . -855) T) ((-1139 . -381) T) ((-1139 . -113) T) ((-1139 . -680) T) ((-1135 . -1102) T) ((-1135 . -502) 154689) ((-1135 . -628) 154655) ((-1135 . -631) 154636) ((-1135 . -1120) T) ((-1135 . -1236) T) ((-1135 . -102) T) ((-1135 . -93) T) ((-1134 . -1120) T) ((-1134 . -628) 154618) ((-1134 . -1236) T) ((-1134 . -102) T) ((-1132 . -245) 154597) ((-1132 . -1294) 154567) ((-1132 . -817) 154546) ((-1132 . -814) 154525) ((-1132 . -862) 154476) ((-1132 . -859) 154427) ((-1132 . -812) 154406) ((-1132 . -813) 154385) ((-1132 . -735) 154327) ((-1132 . -658) 154249) ((-1132 . -300) 154226) ((-1132 . -298) 154203) ((-1132 . -501) 154187) ((-1132 . -526) 154120) ((-1132 . -321) 154058) ((-1132 . -34) T) ((-1132 . -614) 154035) ((-1132 . -1057) 153862) ((-1132 . -631) 153660) ((-1132 . -424) 153629) ((-1132 . -656) 153535) ((-1132 . -666) 153368) ((-1132 . -390) 153337) ((-1132 . -381) 153316) ((-1132 . -240) 153268) ((-1132 . -664) 153047) ((-1132 . -744) 153025) ((-1132 . -1131) 153003) ((-1132 . -1076) 152981) ((-1132 . -1068) 152959) ((-1132 . -236) 152850) ((-1132 . -239) 152747) ((-1132 . -274) 152716) ((-1132 . -909) 152583) ((-1132 . -917) 152452) ((-1132 . -915) 152384) ((-1132 . -234) 152353) ((-1132 . -628) 152046) ((-1132 . -1075) 151967) ((-1132 . -1070) 151868) ((-1132 . -111) 151784) ((-1132 . -133) 151655) ((-1132 . -25) 151488) ((-1132 . -102) 151220) ((-1132 . -1236) T) ((-1132 . -1120) 150972) ((-1132 . -23) 150824) ((-1132 . -21) 150735) ((-1125 . -408) T) ((-1125 . -1236) T) ((-1125 . -628) 150717) ((-1124 . -1123) 150681) ((-1124 . -102) T) ((-1124 . -628) 150663) ((-1124 . -1120) T) ((-1124 . -298) 150619) ((-1124 . -1236) T) ((-1124 . -633) 150534) ((-1122 . -1123) 150486) ((-1122 . -102) T) ((-1122 . -628) 150468) ((-1122 . -1120) T) ((-1122 . -298) 150424) ((-1122 . -1236) T) ((-1122 . -633) 150327) ((-1121 . -381) T) ((-1121 . -102) T) ((-1121 . -1236) T) ((-1121 . -628) 150309) ((-1121 . -1120) T) ((-1116 . -438) 150293) ((-1116 . -1118) 150277) ((-1116 . -381) 150256) ((-1116 . -242) 150240) ((-1116 . -629) 150201) ((-1116 . -153) 150185) ((-1116 . -501) 150169) ((-1116 . -1120) T) ((-1116 . -526) 150102) ((-1116 . -321) 150040) ((-1116 . -628) 150022) ((-1116 . -102) T) ((-1116 . -1236) T) ((-1116 . -34) T) ((-1116 . -107) 150006) ((-1116 . -233) 149990) ((-1115 . -1102) T) ((-1115 . -502) 149971) ((-1115 . -628) 149937) ((-1115 . -631) 149918) ((-1115 . -1120) T) ((-1115 . -1236) T) ((-1115 . -102) T) ((-1115 . -93) T) ((-1111 . -1236) T) ((-1111 . -1120) 149888) ((-1111 . -628) 149847) ((-1111 . -102) 149817) ((-1110 . -1102) T) ((-1110 . -502) 149798) ((-1110 . -628) 149764) ((-1110 . -631) 149745) ((-1110 . -1120) T) ((-1110 . -1236) T) ((-1110 . -102) T) ((-1110 . -93) T) ((-1108 . -1113) 149729) ((-1108 . -633) 149713) ((-1108 . -1120) 149691) ((-1108 . -628) 149658) ((-1108 . -1236) 149636) ((-1108 . -102) 149614) ((-1108 . -1114) 149572) ((-1107 . -277) 149556) ((-1107 . -631) 149540) ((-1107 . -1057) 149524) ((-1107 . -862) T) ((-1107 . -102) T) ((-1107 . -1120) T) ((-1107 . -628) 149506) ((-1107 . -859) T) ((-1107 . -236) 149493) ((-1107 . -1236) T) ((-1107 . -239) T) ((-1106 . -262) 149430) ((-1106 . -631) 149166) ((-1106 . -1057) 148993) ((-1106 . -629) NIL) ((-1106 . -338) 148954) ((-1106 . -424) 148938) ((-1106 . -38) 148787) ((-1106 . -111) 148609) ((-1106 . -1070) 148452) ((-1106 . -1075) 148295) ((-1106 . -664) 148205) ((-1106 . -666) 148094) ((-1106 . -658) 147943) ((-1106 . -735) 147792) ((-1106 . -147) 147771) ((-1106 . -149) 147750) ((-1106 . -175) 147661) ((-1106 . -568) 147592) ((-1106 . -302) 147523) ((-1106 . -47) 147484) ((-1106 . -390) 147468) ((-1106 . -656) 147416) ((-1106 . -464) 147367) ((-1106 . -526) 147230) ((-1106 . -915) 147165) ((-1106 . -909) 147060) ((-1106 . -917) 146959) ((-1106 . -899) NIL) ((-1106 . -927) 146938) ((-1106 . -1241) 146917) ((-1106 . -967) 146862) ((-1106 . -321) 146849) ((-1106 . -240) 146828) ((-1106 . -133) T) ((-1106 . -25) T) ((-1106 . -102) T) ((-1106 . -628) 146810) ((-1106 . -1120) T) ((-1106 . -23) T) ((-1106 . -21) T) ((-1106 . -744) T) ((-1106 . -1131) T) ((-1106 . -1076) T) ((-1106 . -1068) T) ((-1106 . -236) 146755) ((-1106 . -1236) T) ((-1106 . -239) 146706) ((-1106 . -274) 146690) ((-1106 . -234) 146674) ((-1104 . -628) 146656) ((-1101 . -859) T) ((-1101 . -628) 146638) ((-1101 . -1120) T) ((-1101 . -102) T) ((-1101 . -1236) T) ((-1101 . -862) T) ((-1101 . -629) 146619) ((-1098 . -742) 146598) ((-1098 . -1057) 146494) ((-1098 . -424) 146478) ((-1098 . -656) 146426) ((-1098 . -666) 146300) ((-1098 . -390) 146284) ((-1098 . -383) 146263) ((-1098 . -149) 146242) ((-1098 . -631) 146060) ((-1098 . -735) 145928) ((-1098 . -658) 145796) ((-1098 . -664) 145691) ((-1098 . -1075) 145601) ((-1098 . -1070) 145511) ((-1098 . -111) 145400) ((-1098 . -38) 145268) ((-1098 . -422) 145247) ((-1098 . -414) 145226) ((-1098 . -147) 145177) ((-1098 . -1171) 145156) ((-1098 . -363) 145135) ((-1098 . -381) 145086) ((-1098 . -250) 145037) ((-1098 . -302) 144988) ((-1098 . -319) 144939) ((-1098 . -464) 144890) ((-1098 . -568) 144841) ((-1098 . -938) 144792) ((-1098 . -1241) 144743) ((-1098 . -376) 144694) ((-1098 . -240) 144619) ((-1098 . -236) 144492) ((-1098 . -239) 144371) ((-1098 . -274) 144341) ((-1098 . -909) 144210) ((-1098 . -917) 144081) ((-1098 . -915) 144014) ((-1098 . -234) 143984) ((-1098 . -629) 143968) ((-1098 . -21) T) ((-1098 . -23) T) ((-1098 . -1120) T) ((-1098 . -628) 143950) ((-1098 . -1236) T) ((-1098 . -102) T) ((-1098 . -25) T) ((-1098 . -133) T) ((-1098 . -1068) T) ((-1098 . -1076) T) ((-1098 . -1131) T) ((-1098 . -744) T) ((-1098 . -175) T) ((-1096 . -1120) T) ((-1096 . -628) 143932) ((-1096 . -1236) T) ((-1096 . -102) T) ((-1096 . -298) 143911) ((-1095 . -1120) T) ((-1095 . -628) 143893) ((-1095 . -1236) T) ((-1095 . -102) T) ((-1094 . -1120) T) ((-1094 . -628) 143875) ((-1094 . -1236) T) ((-1094 . -102) T) ((-1094 . -298) 143854) ((-1094 . -1057) 143831) ((-1094 . -631) 143808) ((-1093 . -1236) T) ((-1092 . -1102) T) ((-1092 . -502) 143789) ((-1092 . -628) 143755) ((-1092 . -631) 143736) ((-1092 . -1120) T) ((-1092 . -1236) T) ((-1092 . -102) T) ((-1092 . -93) T) ((-1085 . -1102) T) ((-1085 . -502) 143717) ((-1085 . -628) 143683) ((-1085 . -631) 143664) ((-1085 . -1120) T) ((-1085 . -1236) T) ((-1085 . -102) T) ((-1085 . -93) T) ((-1082 . -1213) 143639) ((-1082 . -233) 143585) ((-1082 . -107) 143531) ((-1082 . -321) 143382) ((-1082 . -526) 143190) ((-1082 . -501) 143122) ((-1082 . -153) 143068) ((-1082 . -629) NIL) ((-1082 . -242) 143014) ((-1082 . -625) 142989) ((-1082 . -300) 142964) ((-1082 . -1236) T) ((-1082 . -298) 142939) ((-1082 . -1120) T) ((-1082 . -628) 142921) ((-1082 . -102) T) ((-1082 . -34) T) ((-1082 . -614) 142896) ((-1081 . -556) T) ((-1081 . -1241) T) ((-1081 . -1171) T) ((-1081 . -1057) 142878) ((-1081 . -629) 142793) ((-1081 . -1039) T) ((-1081 . -899) 142775) ((-1081 . -858) T) ((-1081 . -817) T) ((-1081 . -814) T) ((-1081 . -862) T) ((-1081 . -859) T) ((-1081 . -812) T) ((-1081 . -810) T) ((-1081 . -840) T) ((-1081 . -666) 142747) ((-1081 . -656) 142729) ((-1081 . -938) T) ((-1081 . -568) T) ((-1081 . -302) T) ((-1081 . -175) T) ((-1081 . -631) 142701) ((-1081 . -735) 142688) ((-1081 . -658) 142675) ((-1081 . -1075) 142662) ((-1081 . -1070) 142649) ((-1081 . -111) 142634) ((-1081 . -38) 142621) ((-1081 . -464) T) ((-1081 . -319) T) ((-1081 . -239) T) ((-1081 . -236) 142608) ((-1081 . -240) T) ((-1081 . -145) T) ((-1081 . -1068) T) ((-1081 . -1076) T) ((-1081 . -1131) T) ((-1081 . -744) T) ((-1081 . -21) T) ((-1081 . -664) 142580) ((-1081 . -23) T) ((-1081 . -1120) T) ((-1081 . -628) 142562) ((-1081 . -1236) T) ((-1081 . -102) T) ((-1081 . -25) T) ((-1081 . -133) T) ((-1081 . -149) T) ((-1081 . -633) 142543) ((-1080 . -1087) 142522) ((-1080 . -102) T) ((-1080 . -1236) T) ((-1080 . -628) 142504) ((-1080 . -1120) T) ((-1077 . -1236) T) ((-1077 . -1120) 142482) ((-1077 . -628) 142449) ((-1077 . -102) 142427) ((-1073 . -1072) 142367) ((-1073 . -658) 142309) ((-1073 . -735) 142251) ((-1073 . -34) T) ((-1073 . -321) 142189) ((-1073 . -526) 142122) ((-1073 . -501) 142106) ((-1073 . -666) 142090) ((-1073 . -664) 142059) ((-1073 . -133) T) ((-1073 . -25) T) ((-1073 . -102) T) ((-1073 . -1236) T) ((-1073 . -628) 142021) ((-1073 . -1120) T) ((-1073 . -23) T) ((-1073 . -21) T) ((-1073 . -1075) 142005) ((-1073 . -1070) 141989) ((-1073 . -111) 141968) ((-1073 . -1294) 141938) ((-1073 . -629) 141899) ((-1065 . -1090) 141828) ((-1065 . -995) 141757) ((-1065 . -629) 141699) ((-1065 . -501) 141664) ((-1065 . -1120) T) ((-1065 . -526) 141548) ((-1065 . -321) 141456) ((-1065 . -628) 141399) ((-1065 . -102) T) ((-1065 . -1236) T) ((-1065 . -34) T) ((-1065 . -153) 141364) ((-1065 . -1231) 141293) ((-1055 . -1102) T) ((-1055 . -502) 141274) ((-1055 . -628) 141240) ((-1055 . -631) 141221) ((-1055 . -1120) T) ((-1055 . -1236) T) ((-1055 . -102) T) ((-1055 . -93) T) ((-1054 . -1213) 141196) ((-1054 . -233) 141142) ((-1054 . -107) 141088) ((-1054 . -321) 140939) ((-1054 . -526) 140747) ((-1054 . -501) 140679) ((-1054 . -153) 140625) ((-1054 . -629) NIL) ((-1054 . -242) 140571) ((-1054 . -625) 140546) ((-1054 . -300) 140521) ((-1054 . -1236) T) ((-1054 . -298) 140496) ((-1054 . -1120) T) ((-1054 . -628) 140478) ((-1054 . -102) T) ((-1054 . -34) T) ((-1054 . -614) 140453) ((-1053 . -175) T) ((-1053 . -631) 140422) ((-1053 . -744) T) ((-1053 . -1131) T) ((-1053 . -1076) T) ((-1053 . -1068) T) ((-1053 . -666) 140396) ((-1053 . -664) 140355) ((-1053 . -133) T) ((-1053 . -25) T) ((-1053 . -102) T) ((-1053 . -1236) T) ((-1053 . -628) 140337) ((-1053 . -1120) T) ((-1053 . -23) T) ((-1053 . -21) T) ((-1053 . -1075) 140311) ((-1053 . -1070) 140285) ((-1053 . -111) 140252) ((-1053 . -38) 140236) ((-1053 . -658) 140220) ((-1053 . -735) 140204) ((-1046 . -1090) 140173) ((-1046 . -995) 140142) ((-1046 . -629) 140103) ((-1046 . -501) 140087) ((-1046 . -1120) T) ((-1046 . -526) 140020) ((-1046 . -321) 139958) ((-1046 . -628) 139920) ((-1046 . -102) T) ((-1046 . -1236) T) ((-1046 . -34) T) ((-1046 . -153) 139904) ((-1046 . -1231) 139873) ((-1045 . -1236) T) ((-1045 . -1120) 139851) ((-1045 . -628) 139818) ((-1045 . -102) 139796) ((-1043 . -1031) T) ((-1043 . -1021) T) ((-1043 . -810) T) ((-1043 . -812) T) ((-1043 . -859) T) ((-1043 . -862) T) ((-1043 . -814) T) ((-1043 . -817) T) ((-1043 . -858) T) ((-1043 . -1057) 139676) ((-1043 . -424) 139638) ((-1043 . -250) T) ((-1043 . -302) T) ((-1043 . -319) T) ((-1043 . -464) T) ((-1043 . -38) 139575) ((-1043 . -658) 139512) ((-1043 . -735) 139449) ((-1043 . -631) 139386) ((-1043 . -568) T) ((-1043 . -938) T) ((-1043 . -1241) T) ((-1043 . -376) T) ((-1043 . -111) 139295) ((-1043 . -1070) 139232) ((-1043 . -1075) 139169) ((-1043 . -175) T) ((-1043 . -149) T) ((-1043 . -666) 139106) ((-1043 . -664) 139043) ((-1043 . -133) T) ((-1043 . -25) T) ((-1043 . -102) T) ((-1043 . -1236) T) ((-1043 . -628) 139025) ((-1043 . -1120) T) ((-1043 . -23) T) ((-1043 . -21) T) ((-1043 . -1068) T) ((-1043 . -1076) T) ((-1043 . -1131) T) ((-1043 . -744) T) ((-1038 . -1102) T) ((-1038 . -502) 139006) ((-1038 . -628) 138972) ((-1038 . -631) 138953) ((-1038 . -1120) T) ((-1038 . -1236) T) ((-1038 . -102) T) ((-1038 . -93) T) ((-1023 . -1010) 138935) ((-1023 . -1171) T) ((-1023 . -631) 138885) ((-1023 . -1057) 138845) ((-1023 . -629) 138775) ((-1023 . -1039) T) ((-1023 . -927) NIL) ((-1023 . -897) 138757) ((-1023 . -858) T) ((-1023 . -817) T) ((-1023 . -814) T) ((-1023 . -862) T) ((-1023 . -859) T) ((-1023 . -812) T) ((-1023 . -810) T) ((-1023 . -840) T) ((-1023 . -899) 138739) ((-1023 . -412) 138721) ((-1023 . -656) 138703) ((-1023 . -390) 138685) ((-1023 . -298) NIL) ((-1023 . -321) NIL) ((-1023 . -526) NIL) ((-1023 . -351) 138667) ((-1023 . -250) T) ((-1023 . -111) 138594) ((-1023 . -1070) 138544) ((-1023 . -1075) 138494) ((-1023 . -302) T) ((-1023 . -735) 138444) ((-1023 . -658) 138394) ((-1023 . -666) 138344) ((-1023 . -664) 138294) ((-1023 . -38) 138244) ((-1023 . -319) T) ((-1023 . -464) T) ((-1023 . -175) T) ((-1023 . -568) T) ((-1023 . -938) T) ((-1023 . -1241) T) ((-1023 . -376) T) ((-1023 . -240) T) ((-1023 . -236) 138231) ((-1023 . -239) T) ((-1023 . -274) 138213) ((-1023 . -909) NIL) ((-1023 . -917) NIL) ((-1023 . -915) NIL) ((-1023 . -234) 138195) ((-1023 . -149) T) ((-1023 . -147) NIL) ((-1023 . -133) T) ((-1023 . -25) T) ((-1023 . -102) T) ((-1023 . -1236) T) ((-1023 . -628) 138155) ((-1023 . -1120) T) ((-1023 . -23) T) ((-1023 . -21) T) ((-1023 . -1068) T) ((-1023 . -1076) T) ((-1023 . -1131) T) ((-1023 . -744) T) ((-1022 . -355) 138129) ((-1022 . -175) T) ((-1022 . -631) 138059) ((-1022 . -744) T) ((-1022 . -1131) T) ((-1022 . -1076) T) ((-1022 . -1068) T) ((-1022 . -666) 137961) ((-1022 . -664) 137891) ((-1022 . -133) T) ((-1022 . -25) T) ((-1022 . -102) T) ((-1022 . -1236) T) ((-1022 . -628) 137873) ((-1022 . -1120) T) ((-1022 . -23) T) ((-1022 . -21) T) ((-1022 . -1075) 137818) ((-1022 . -1070) 137763) ((-1022 . -111) 137680) ((-1022 . -629) 137664) ((-1022 . -234) 137641) ((-1022 . -915) 137593) ((-1022 . -917) 137502) ((-1022 . -909) 137409) ((-1022 . -274) 137386) ((-1022 . -239) 137323) ((-1022 . -236) 137254) ((-1022 . -240) 137226) ((-1022 . -376) T) ((-1022 . -1241) T) ((-1022 . -938) T) ((-1022 . -568) T) ((-1022 . -735) 137171) ((-1022 . -658) 137116) ((-1022 . -38) 137061) ((-1022 . -464) T) ((-1022 . -319) T) ((-1022 . -302) T) ((-1022 . -250) T) ((-1022 . -381) NIL) ((-1022 . -363) NIL) ((-1022 . -1171) NIL) ((-1022 . -147) 137033) ((-1022 . -414) NIL) ((-1022 . -422) 137005) ((-1022 . -149) 136977) ((-1022 . -383) 136949) ((-1022 . -390) 136926) ((-1022 . -656) 136860) ((-1022 . -424) 136837) ((-1022 . -1057) 136712) ((-1022 . -742) 136684) ((-1019 . -1014) 136668) ((-1019 . -501) 136652) ((-1019 . -1120) 136630) ((-1019 . -526) 136563) ((-1019 . -321) 136501) ((-1019 . -628) 136433) ((-1019 . -102) 136383) ((-1019 . -1236) T) ((-1019 . -34) T) ((-1019 . -107) 136367) ((-1015 . -1017) 136351) ((-1015 . -862) 136330) ((-1015 . -859) 136309) ((-1015 . -1057) 136205) ((-1015 . -424) 136189) ((-1015 . -656) 136137) ((-1015 . -666) 136039) ((-1015 . -390) 136023) ((-1015 . -298) 135981) ((-1015 . -321) 135946) ((-1015 . -526) 135858) ((-1015 . -351) 135842) ((-1015 . -38) 135790) ((-1015 . -111) 135665) ((-1015 . -1070) 135561) ((-1015 . -1075) 135457) ((-1015 . -664) 135380) ((-1015 . -658) 135328) ((-1015 . -735) 135276) ((-1015 . -631) 135166) ((-1015 . -302) 135117) ((-1015 . -250) 135096) ((-1015 . -240) 135075) ((-1015 . -236) 135020) ((-1015 . -239) 134971) ((-1015 . -274) 134955) ((-1015 . -909) 134876) ((-1015 . -917) 134799) ((-1015 . -915) 134758) ((-1015 . -234) 134742) ((-1015 . -629) 134703) ((-1015 . -149) 134682) ((-1015 . -147) 134661) ((-1015 . -133) T) ((-1015 . -25) T) ((-1015 . -102) T) ((-1015 . -1236) T) ((-1015 . -628) 134643) ((-1015 . -1120) T) ((-1015 . -23) T) ((-1015 . -21) T) ((-1015 . -1068) T) ((-1015 . -1076) T) ((-1015 . -1131) T) ((-1015 . -744) T) ((-1013 . -1102) T) ((-1013 . -502) 134624) ((-1013 . -628) 134590) ((-1013 . -631) 134571) ((-1013 . -1120) T) ((-1013 . -1236) T) ((-1013 . -102) T) ((-1013 . -93) T) ((-1012 . -21) T) ((-1012 . -664) 134553) ((-1012 . -23) T) ((-1012 . -1120) T) ((-1012 . -628) 134535) ((-1012 . -1236) T) ((-1012 . -102) T) ((-1012 . -25) T) ((-1012 . -133) T) ((-1012 . -298) 134502) ((-1008 . -628) 134484) ((-1005 . -1120) T) ((-1005 . -628) 134466) ((-1005 . -1236) T) ((-1005 . -102) T) ((-990 . -817) T) ((-990 . -814) T) ((-990 . -862) T) ((-990 . -859) T) ((-990 . -812) T) ((-990 . -23) T) ((-990 . -1120) T) ((-990 . -628) 134426) ((-990 . -1236) T) ((-990 . -102) T) ((-990 . -25) T) ((-990 . -133) T) ((-989 . -1102) T) ((-989 . -502) 134407) ((-989 . -628) 134373) ((-989 . -631) 134354) ((-989 . -1120) T) ((-989 . -1236) T) ((-989 . -102) T) ((-989 . -93) T) ((-983 . -986) T) ((-983 . -102) T) ((-983 . -628) 134336) ((-983 . -1120) T) ((-983 . -680) T) ((-983 . -1236) T) ((-983 . -113) T) ((-983 . -631) 134320) ((-982 . -628) 134302) ((-981 . -1120) T) ((-981 . -628) 134284) ((-981 . -1236) T) ((-981 . -102) T) ((-981 . -381) 134237) ((-981 . -744) 134136) ((-981 . -1131) 134035) ((-981 . -23) 133846) ((-981 . -25) 133657) ((-981 . -133) 133512) ((-981 . -485) 133465) ((-981 . -21) 133420) ((-981 . -664) 133364) ((-981 . -813) 133317) ((-981 . -812) 133270) ((-981 . -859) 133169) ((-981 . -862) 133068) ((-981 . -814) 133021) ((-981 . -817) 132974) ((-975 . -19) 132958) ((-975 . -669) 132942) ((-975 . -300) 132919) ((-975 . -298) 132871) ((-975 . -614) 132848) ((-975 . -629) 132809) ((-975 . -501) 132793) ((-975 . -1120) 132743) ((-975 . -526) 132676) ((-975 . -321) 132614) ((-975 . -628) 132526) ((-975 . -102) 132456) ((-975 . -1236) T) ((-975 . -34) T) ((-975 . -153) 132440) ((-975 . -859) 132419) ((-975 . -862) 132398) ((-975 . -385) 132382) ((-973 . -338) 132361) ((-973 . -1057) 132257) ((-973 . -424) 132241) ((-973 . -38) 132138) ((-973 . -631) 131991) ((-973 . -666) 131916) ((-973 . -664) 131826) ((-973 . -744) T) ((-973 . -1131) T) ((-973 . -1076) T) ((-973 . -1068) T) ((-973 . -111) 131688) ((-973 . -1070) 131571) ((-973 . -1075) 131454) ((-973 . -21) T) ((-973 . -23) T) ((-973 . -1120) T) ((-973 . -628) 131436) ((-973 . -1236) T) ((-973 . -102) T) ((-973 . -25) T) ((-973 . -133) T) ((-973 . -658) 131333) ((-973 . -735) 131230) ((-973 . -147) 131209) ((-973 . -149) 131188) ((-973 . -175) 131139) ((-973 . -568) 131118) ((-973 . -302) 131097) ((-973 . -47) 131076) ((-971 . -1120) T) ((-971 . -628) 131042) ((-971 . -1236) T) ((-971 . -102) T) ((-963 . -967) 131003) ((-963 . -631) 130792) ((-963 . -1057) 130672) ((-963 . -1241) 130651) ((-963 . -927) 130630) ((-963 . -899) 130555) ((-963 . -917) 130536) ((-963 . -909) 130515) ((-963 . -915) 130496) ((-963 . -526) 130442) ((-963 . -464) 130393) ((-963 . -656) 130341) ((-963 . -666) 130230) ((-963 . -390) 130214) ((-963 . -47) 130183) ((-963 . -38) 130032) ((-963 . -658) 129881) ((-963 . -735) 129730) ((-963 . -302) 129661) ((-963 . -568) 129592) ((-963 . -111) 129414) ((-963 . -1070) 129257) ((-963 . -1075) 129100) ((-963 . -175) 129011) ((-963 . -149) 128990) ((-963 . -147) 128969) ((-963 . -664) 128879) ((-963 . -133) T) ((-963 . -25) T) ((-963 . -102) T) ((-963 . -1236) T) ((-963 . -628) 128861) ((-963 . -1120) T) ((-963 . -23) T) ((-963 . -21) T) ((-963 . -1068) T) ((-963 . -1076) T) ((-963 . -1131) T) ((-963 . -744) T) ((-963 . -424) 128845) ((-963 . -338) 128814) ((-963 . -321) 128801) ((-963 . -629) 128662) ((-960 . -999) 128646) ((-960 . -19) 128630) ((-960 . -669) 128614) ((-960 . -300) 128591) ((-960 . -298) 128543) ((-960 . -614) 128520) ((-960 . -629) 128481) ((-960 . -501) 128465) ((-960 . -1120) 128415) ((-960 . -526) 128348) ((-960 . -321) 128286) ((-960 . -628) 128198) ((-960 . -102) 128128) ((-960 . -1236) T) ((-960 . -34) T) ((-960 . -153) 128112) ((-960 . -859) 128091) ((-960 . -862) 128070) ((-960 . -385) 128054) ((-960 . -1285) 128038) ((-960 . -633) 128015) ((-944 . -993) T) ((-944 . -628) 127997) ((-942 . -972) T) ((-942 . -628) 127979) ((-936 . -814) T) ((-936 . -862) T) ((-936 . -859) T) ((-936 . -1120) T) ((-936 . -628) 127961) ((-936 . -1236) T) ((-936 . -102) T) ((-936 . -25) T) ((-936 . -744) T) ((-936 . -1131) T) ((-931 . -376) T) ((-931 . -1241) T) ((-931 . -938) T) ((-931 . -568) T) ((-931 . -175) T) ((-931 . -631) 127898) ((-931 . -735) 127850) ((-931 . -658) 127802) ((-931 . -38) 127754) ((-931 . -464) T) ((-931 . -319) T) ((-931 . -666) 127706) ((-931 . -664) 127643) ((-931 . -744) T) ((-931 . -1131) T) ((-931 . -1076) T) ((-931 . -1068) T) ((-931 . -111) 127574) ((-931 . -1070) 127526) ((-931 . -1075) 127478) ((-931 . -21) T) ((-931 . -23) T) ((-931 . -1120) T) ((-931 . -628) 127460) ((-931 . -1236) T) ((-931 . -102) T) ((-931 . -25) T) ((-931 . -133) T) ((-931 . -302) T) ((-931 . -250) T) ((-923 . -363) T) ((-923 . -1171) T) ((-923 . -381) T) ((-923 . -147) T) ((-923 . -376) T) ((-923 . -1241) T) ((-923 . -938) T) ((-923 . -568) T) ((-923 . -175) T) ((-923 . -631) 127410) ((-923 . -735) 127375) ((-923 . -658) 127340) ((-923 . -38) 127305) ((-923 . -464) T) ((-923 . -319) T) ((-923 . -111) 127254) ((-923 . -1070) 127219) ((-923 . -1075) 127184) ((-923 . -664) 127134) ((-923 . -666) 127099) ((-923 . -302) T) ((-923 . -250) T) ((-923 . -414) T) ((-923 . -239) T) ((-923 . -1236) T) ((-923 . -236) 127086) ((-923 . -1068) T) ((-923 . -1076) T) ((-923 . -1131) T) ((-923 . -744) T) ((-923 . -21) T) ((-923 . -23) T) ((-923 . -1120) T) ((-923 . -628) 127068) ((-923 . -102) T) ((-923 . -25) T) ((-923 . -133) T) ((-923 . -240) T) ((-923 . -341) 127055) ((-923 . -149) 127037) ((-923 . -1057) 127024) ((-923 . -1294) 127011) ((-923 . -1305) 126998) ((-923 . -629) 126980) ((-922 . -1120) T) ((-922 . -628) 126962) ((-922 . -1236) T) ((-922 . -102) T) ((-919 . -921) 126946) ((-919 . -862) 126897) ((-919 . -859) 126848) ((-919 . -744) T) ((-919 . -1120) T) ((-919 . -628) 126830) ((-919 . -102) T) ((-919 . -1131) T) ((-919 . -485) T) ((-919 . -1236) T) ((-919 . -298) 126809) ((-918 . -121) 126793) ((-918 . -501) 126777) ((-918 . -1120) 126755) ((-918 . -526) 126688) ((-918 . -321) 126626) ((-918 . -628) 126537) ((-918 . -102) 126487) ((-918 . -1236) T) ((-918 . -34) T) ((-918 . -1029) 126471) ((-913 . -1120) T) ((-913 . -628) 126453) ((-913 . -1236) T) ((-913 . -102) T) ((-906 . -859) T) ((-906 . -628) 126435) ((-906 . -1120) T) ((-906 . -102) T) ((-906 . -1236) T) ((-906 . -862) T) ((-906 . -1057) 126412) ((-906 . -631) 126389) ((-903 . -1120) T) ((-903 . -628) 126371) ((-903 . -1236) T) ((-903 . -102) T) ((-903 . -1057) 126339) ((-903 . -631) 126307) ((-901 . -1120) T) ((-901 . -628) 126289) ((-901 . -1236) T) ((-901 . -102) T) ((-898 . -1120) T) ((-898 . -628) 126271) ((-898 . -1236) T) ((-898 . -102) T) ((-888 . -1102) T) ((-888 . -502) 126252) ((-888 . -628) 126218) ((-888 . -631) 126199) ((-888 . -1120) T) ((-888 . -1236) T) ((-888 . -102) T) ((-888 . -93) T) ((-888 . -1282) T) ((-886 . -1120) T) ((-886 . -628) 126181) ((-886 . -1236) T) ((-886 . -102) T) ((-886 . -631) 126163) ((-885 . -1236) T) ((-885 . -628) 126035) ((-885 . -1120) 125986) ((-885 . -102) 125937) ((-884 . -1010) 125921) ((-884 . -1171) 125899) ((-884 . -1057) 125763) ((-884 . -631) 125661) ((-884 . -629) 125462) ((-884 . -1039) 125440) ((-884 . -927) 125419) ((-884 . -897) 125403) ((-884 . -858) 125382) ((-884 . -817) 125361) ((-884 . -814) 125340) ((-884 . -862) 125291) ((-884 . -859) 125242) ((-884 . -812) 125221) ((-884 . -810) 125200) ((-884 . -840) 125179) ((-884 . -899) 125104) ((-884 . -412) 125088) ((-884 . -656) 125036) ((-884 . -666) 124952) ((-884 . -390) 124936) ((-884 . -298) 124894) ((-884 . -321) 124859) ((-884 . -526) 124771) ((-884 . -351) 124755) ((-884 . -250) T) ((-884 . -111) 124686) ((-884 . -1070) 124638) ((-884 . -1075) 124590) ((-884 . -302) T) ((-884 . -735) 124542) ((-884 . -658) 124494) ((-884 . -664) 124431) ((-884 . -38) 124383) ((-884 . -319) T) ((-884 . -464) T) ((-884 . -175) T) ((-884 . -568) T) ((-884 . -938) T) ((-884 . -1241) T) ((-884 . -376) T) ((-884 . -240) 124362) ((-884 . -236) 124307) ((-884 . -239) 124258) ((-884 . -274) 124242) ((-884 . -909) 124163) ((-884 . -917) 124086) ((-884 . -915) 124045) ((-884 . -234) 124029) ((-884 . -149) 124008) ((-884 . -147) 123987) ((-884 . -133) T) ((-884 . -25) T) ((-884 . -102) T) ((-884 . -1236) T) ((-884 . -628) 123969) ((-884 . -1120) T) ((-884 . -23) T) ((-884 . -21) T) ((-884 . -1068) T) ((-884 . -1076) T) ((-884 . -1131) T) ((-884 . -744) T) ((-883 . -1010) 123946) ((-883 . -1171) NIL) ((-883 . -1057) 123923) ((-883 . -631) 123853) ((-883 . -629) NIL) ((-883 . -1039) NIL) ((-883 . -927) NIL) ((-883 . -897) 123830) ((-883 . -858) NIL) ((-883 . -817) NIL) ((-883 . -814) NIL) ((-883 . -862) NIL) ((-883 . -859) NIL) ((-883 . -812) NIL) ((-883 . -810) NIL) ((-883 . -840) NIL) ((-883 . -899) NIL) ((-883 . -412) 123807) ((-883 . -656) 123784) ((-883 . -666) 123729) ((-883 . -390) 123706) ((-883 . -298) 123636) ((-883 . -321) 123580) ((-883 . -526) 123443) ((-883 . -351) 123420) ((-883 . -250) T) ((-883 . -111) 123337) ((-883 . -1070) 123282) ((-883 . -1075) 123227) ((-883 . -302) T) ((-883 . -735) 123172) ((-883 . -658) 123117) ((-883 . -664) 123047) ((-883 . -38) 122992) ((-883 . -319) T) ((-883 . -464) T) ((-883 . -175) T) ((-883 . -568) T) ((-883 . -938) T) ((-883 . -1241) T) ((-883 . -376) T) ((-883 . -240) NIL) ((-883 . -236) NIL) ((-883 . -239) NIL) ((-883 . -274) 122969) ((-883 . -909) NIL) ((-883 . -917) NIL) ((-883 . -915) NIL) ((-883 . -234) 122946) ((-883 . -149) T) ((-883 . -147) NIL) ((-883 . -133) T) ((-883 . -25) T) ((-883 . -102) T) ((-883 . -1236) T) ((-883 . -628) 122928) ((-883 . -1120) T) ((-883 . -23) T) ((-883 . -21) T) ((-883 . -1068) T) ((-883 . -1076) T) ((-883 . -1131) T) ((-883 . -744) T) ((-881 . -882) 122912) ((-881 . -938) T) ((-881 . -568) T) ((-881 . -302) T) ((-881 . -175) T) ((-881 . -631) 122884) ((-881 . -735) 122871) ((-881 . -658) 122858) ((-881 . -1075) 122845) ((-881 . -1070) 122832) ((-881 . -111) 122817) ((-881 . -38) 122804) ((-881 . -464) T) ((-881 . -319) T) ((-881 . -1068) T) ((-881 . -1076) T) ((-881 . -1131) T) ((-881 . -744) T) ((-881 . -21) T) ((-881 . -664) 122776) ((-881 . -23) T) ((-881 . -1120) T) ((-881 . -628) 122758) ((-881 . -1236) T) ((-881 . -102) T) ((-881 . -25) T) ((-881 . -133) T) ((-881 . -666) 122745) ((-881 . -149) T) ((-878 . -1068) T) ((-878 . -1076) T) ((-878 . -1131) T) ((-878 . -744) T) ((-878 . -21) T) ((-878 . -664) 122690) ((-878 . -23) T) ((-878 . -1120) T) ((-878 . -628) 122652) ((-878 . -1236) T) ((-878 . -102) T) ((-878 . -25) T) ((-878 . -133) T) ((-878 . -666) 122612) ((-878 . -631) 122547) ((-878 . -502) 122524) ((-878 . -38) 122494) ((-878 . -111) 122459) ((-878 . -1070) 122429) ((-878 . -1075) 122399) ((-878 . -658) 122369) ((-878 . -735) 122339) ((-877 . -1120) T) ((-877 . -628) 122321) ((-877 . -1236) T) ((-877 . -102) T) ((-876 . -855) T) ((-876 . -862) T) ((-876 . -859) T) ((-876 . -1120) T) ((-876 . -628) 122303) ((-876 . -1236) T) ((-876 . -102) T) ((-876 . -381) T) ((-876 . -629) 122225) ((-875 . -1120) T) ((-875 . -628) 122207) ((-875 . -1236) T) ((-875 . -102) T) ((-874 . -873) T) ((-874 . -176) T) ((-874 . -628) 122189) ((-870 . -859) T) ((-870 . -628) 122171) ((-870 . -1120) T) ((-870 . -102) T) ((-870 . -1236) T) ((-870 . -862) T) ((-867 . -864) 122155) ((-867 . -1057) 122051) ((-867 . -631) 121948) ((-867 . -424) 121932) ((-867 . -735) 121902) ((-867 . -658) 121872) ((-867 . -666) 121846) ((-867 . -664) 121805) ((-867 . -133) T) ((-867 . -25) T) ((-867 . -102) T) ((-867 . -1236) T) ((-867 . -628) 121787) ((-867 . -1120) T) ((-867 . -23) T) ((-867 . -21) T) ((-867 . -1075) 121771) ((-867 . -1070) 121755) ((-867 . -111) 121734) ((-867 . -1068) T) ((-867 . -1076) T) ((-867 . -1131) T) ((-867 . -744) T) ((-867 . -38) 121704) ((-866 . -864) 121688) ((-866 . -1057) 121584) ((-866 . -631) 121502) ((-866 . -424) 121486) ((-866 . -735) 121456) ((-866 . -658) 121426) ((-866 . -666) 121400) ((-866 . -664) 121359) ((-866 . -133) T) ((-866 . -25) T) ((-866 . -102) T) ((-866 . -1236) T) ((-866 . -628) 121341) ((-866 . -1120) T) ((-866 . -23) T) ((-866 . -21) T) ((-866 . -1075) 121325) ((-866 . -1070) 121309) ((-866 . -111) 121288) ((-866 . -1068) T) ((-866 . -1076) T) ((-866 . -1131) T) ((-866 . -744) T) ((-866 . -38) 121258) ((-860 . -862) T) ((-860 . -1236) T) ((-860 . -102) T) ((-860 . -502) 121242) ((-860 . -628) 121190) ((-860 . -631) 121174) ((-853 . -1120) T) ((-853 . -628) 121156) ((-853 . -1236) T) ((-853 . -102) T) ((-853 . -424) 121140) ((-853 . -631) 121008) ((-853 . -1057) 120904) ((-853 . -21) 120856) ((-853 . -664) 120773) ((-853 . -23) 120725) ((-853 . -25) 120677) ((-853 . -133) 120629) ((-853 . -858) 120608) ((-853 . -666) 120581) ((-853 . -1076) 120560) ((-853 . -1068) 120539) ((-853 . -817) 120518) ((-853 . -814) 120497) ((-853 . -862) 120476) ((-853 . -859) 120455) ((-853 . -812) 120434) ((-853 . -810) 120413) ((-853 . -1131) 120392) ((-853 . -744) 120371) ((-852 . -1120) T) ((-852 . -628) 120353) ((-852 . -1236) T) ((-852 . -102) T) ((-849 . -847) 120335) ((-849 . -102) T) ((-849 . -1236) T) ((-849 . -628) 120317) ((-849 . -1120) T) ((-845 . -1068) T) ((-845 . -1076) T) ((-845 . -1131) T) ((-845 . -744) T) ((-845 . -21) T) ((-845 . -664) 120262) ((-845 . -23) T) ((-845 . -1120) T) ((-845 . -628) 120244) ((-845 . -1236) T) ((-845 . -102) T) ((-845 . -25) T) ((-845 . -133) T) ((-845 . -666) 120204) ((-845 . -631) 120158) ((-845 . -1057) 120127) ((-845 . -298) 120106) ((-845 . -149) 120085) ((-845 . -147) 120064) ((-845 . -38) 120034) ((-845 . -111) 119999) ((-845 . -1070) 119969) ((-845 . -1075) 119939) ((-845 . -658) 119909) ((-845 . -735) 119879) ((-843 . -1120) T) ((-843 . -628) 119861) ((-843 . -1236) T) ((-843 . -102) T) ((-843 . -424) 119845) ((-843 . -631) 119713) ((-843 . -1057) 119609) ((-843 . -21) 119561) ((-843 . -664) 119478) ((-843 . -23) 119430) ((-843 . -25) 119382) ((-843 . -133) 119334) ((-843 . -858) 119313) ((-843 . -666) 119286) ((-843 . -1076) 119265) ((-843 . -1068) 119244) ((-843 . -817) 119223) ((-843 . -814) 119202) ((-843 . -862) 119181) ((-843 . -859) 119160) ((-843 . -812) 119139) ((-843 . -810) 119118) ((-843 . -1131) 119097) ((-843 . -744) 119076) ((-841 . -726) 119060) ((-841 . -631) 119015) ((-841 . -735) 118985) ((-841 . -658) 118955) ((-841 . -666) 118929) ((-841 . -664) 118888) ((-841 . -133) T) ((-841 . -25) T) ((-841 . -102) T) ((-841 . -1236) T) ((-841 . -628) 118870) ((-841 . -1120) T) ((-841 . -23) T) ((-841 . -21) T) ((-841 . -1075) 118854) ((-841 . -1070) 118838) ((-841 . -111) 118817) ((-841 . -1068) T) ((-841 . -1076) T) ((-841 . -1131) T) ((-841 . -744) T) ((-841 . -38) 118787) ((-841 . -240) 118766) ((-841 . -236) 118739) ((-841 . -239) 118718) ((-839 . -399) 118702) ((-839 . -631) 118686) ((-839 . -1057) 118670) ((-839 . -862) T) ((-839 . -859) T) ((-839 . -1131) T) ((-839 . -102) T) ((-839 . -1236) T) ((-839 . -628) 118652) ((-839 . -1120) T) ((-839 . -744) T) ((-839 . -857) T) ((-839 . -869) T) ((-838 . -277) 118636) ((-838 . -631) 118620) ((-838 . -1057) 118604) ((-838 . -862) T) ((-838 . -102) T) ((-838 . -1120) T) ((-838 . -628) 118586) ((-838 . -859) T) ((-838 . -236) 118573) ((-838 . -1236) T) ((-838 . -239) T) ((-837 . -111) 118508) ((-837 . -1070) 118459) ((-837 . -1075) 118410) ((-837 . -21) T) ((-837 . -664) 118346) ((-837 . -23) T) ((-837 . -1120) T) ((-837 . -628) 118315) ((-837 . -1236) T) ((-837 . -102) T) ((-837 . -25) T) ((-837 . -133) T) ((-837 . -666) 118266) ((-837 . -240) T) ((-837 . -631) 118175) ((-837 . -744) T) ((-837 . -1131) T) ((-837 . -1076) T) ((-837 . -1068) T) ((-837 . -236) 118162) ((-837 . -239) T) ((-837 . -502) 118146) ((-837 . -376) 118125) ((-837 . -1241) 118104) ((-837 . -938) 118083) ((-837 . -568) 118062) ((-837 . -175) 118041) ((-837 . -735) 117978) ((-837 . -658) 117915) ((-837 . -38) 117852) ((-837 . -464) 117831) ((-837 . -319) 117810) ((-837 . -302) 117789) ((-837 . -250) 117768) ((-836 . -262) 117707) ((-836 . -631) 117444) ((-836 . -1057) 117272) ((-836 . -629) NIL) ((-836 . -338) 117234) ((-836 . -424) 117218) ((-836 . -38) 117067) ((-836 . -111) 116889) ((-836 . -1070) 116732) ((-836 . -1075) 116575) ((-836 . -664) 116485) ((-836 . -666) 116374) ((-836 . -658) 116223) ((-836 . -735) 116072) ((-836 . -147) 116051) ((-836 . -149) 116030) ((-836 . -175) 115941) ((-836 . -568) 115872) ((-836 . -302) 115803) ((-836 . -47) 115765) ((-836 . -390) 115749) ((-836 . -656) 115697) ((-836 . -464) 115648) ((-836 . -526) 115513) ((-836 . -915) 115449) ((-836 . -909) 115345) ((-836 . -917) 115245) ((-836 . -899) NIL) ((-836 . -927) 115224) ((-836 . -1241) 115203) ((-836 . -967) 115150) ((-836 . -321) 115137) ((-836 . -240) 115116) ((-836 . -133) T) ((-836 . -25) T) ((-836 . -102) T) ((-836 . -628) 115098) ((-836 . -1120) T) ((-836 . -23) T) ((-836 . -21) T) ((-836 . -744) T) ((-836 . -1131) T) ((-836 . -1076) T) ((-836 . -1068) T) ((-836 . -236) 115043) ((-836 . -1236) T) ((-836 . -239) 114994) ((-836 . -274) 114978) ((-836 . -234) 114962) ((-835 . -245) 114941) ((-835 . -1294) 114911) ((-835 . -817) 114890) ((-835 . -814) 114869) ((-835 . -862) 114820) ((-835 . -859) 114771) ((-835 . -812) 114750) ((-835 . -813) 114729) ((-835 . -735) 114671) ((-835 . -658) 114593) ((-835 . -300) 114570) ((-835 . -298) 114547) ((-835 . -501) 114531) ((-835 . -526) 114464) ((-835 . -321) 114402) ((-835 . -34) T) ((-835 . -614) 114379) ((-835 . -1057) 114206) ((-835 . -631) 114004) ((-835 . -424) 113973) ((-835 . -656) 113879) ((-835 . -666) 113712) ((-835 . -390) 113681) ((-835 . -381) 113660) ((-835 . -240) 113612) ((-835 . -664) 113391) ((-835 . -744) 113369) ((-835 . -1131) 113347) ((-835 . -1076) 113325) ((-835 . -1068) 113303) ((-835 . -236) 113194) ((-835 . -239) 113091) ((-835 . -274) 113060) ((-835 . -909) 112927) ((-835 . -917) 112796) ((-835 . -915) 112728) ((-835 . -234) 112697) ((-835 . -628) 112390) ((-835 . -1075) 112311) ((-835 . -1070) 112212) ((-835 . -111) 112128) ((-835 . -133) 111999) ((-835 . -25) 111832) ((-835 . -102) 111564) ((-835 . -1236) T) ((-835 . -1120) 111316) ((-835 . -23) 111168) ((-835 . -21) 111079) ((-828 . -1120) T) ((-828 . -628) 111061) ((-828 . -1236) T) ((-828 . -102) T) ((-818 . -816) 111045) ((-818 . -862) 111024) ((-818 . -859) 111003) ((-818 . -1057) 110783) ((-818 . -631) 110629) ((-818 . -424) 110592) ((-818 . -298) 110550) ((-818 . -321) 110515) ((-818 . -526) 110427) ((-818 . -351) 110411) ((-818 . -381) 110390) ((-818 . -629) 110351) ((-818 . -149) 110330) ((-818 . -147) 110309) ((-818 . -735) 110293) ((-818 . -658) 110277) ((-818 . -666) 110251) ((-818 . -664) 110210) ((-818 . -133) T) ((-818 . -25) T) ((-818 . -102) T) ((-818 . -1236) T) ((-818 . -628) 110192) ((-818 . -1120) T) ((-818 . -23) T) ((-818 . -21) T) ((-818 . -1075) 110176) ((-818 . -1070) 110160) ((-818 . -111) 110139) ((-818 . -1068) T) ((-818 . -1076) T) ((-818 . -1131) T) ((-818 . -744) T) ((-818 . -38) 110123) ((-799 . -1262) 110107) ((-799 . -1171) 110085) ((-799 . -629) NIL) ((-799 . -321) 110072) ((-799 . -526) 110018) ((-799 . -338) 109995) ((-799 . -1057) 109854) ((-799 . -424) 109838) ((-799 . -38) 109667) ((-799 . -111) 109469) ((-799 . -1070) 109292) ((-799 . -1075) 109115) ((-799 . -664) 109025) ((-799 . -666) 108914) ((-799 . -658) 108743) ((-799 . -735) 108572) ((-799 . -631) 108320) ((-799 . -147) 108299) ((-799 . -149) 108278) ((-799 . -47) 108255) ((-799 . -390) 108239) ((-799 . -656) 108187) ((-799 . -915) 108130) ((-799 . -909) 108033) ((-799 . -917) 107940) ((-799 . -899) NIL) ((-799 . -927) 107919) ((-799 . -1241) 107898) ((-799 . -967) 107867) ((-799 . -938) 107846) ((-799 . -568) 107757) ((-799 . -302) 107668) ((-799 . -175) 107559) ((-799 . -464) 107490) ((-799 . -319) 107469) ((-799 . -298) 107396) ((-799 . -240) T) ((-799 . -133) T) ((-799 . -25) T) ((-799 . -102) T) ((-799 . -628) 107357) ((-799 . -1120) T) ((-799 . -23) T) ((-799 . -21) T) ((-799 . -744) T) ((-799 . -1131) T) ((-799 . -1076) T) ((-799 . -1068) T) ((-799 . -236) 107344) ((-799 . -1236) T) ((-799 . -239) T) ((-799 . -274) 107328) ((-799 . -234) 107312) ((-798 . -1084) 107279) ((-798 . -629) 106913) ((-798 . -321) 106900) ((-798 . -526) 106852) ((-798 . -338) 106824) ((-798 . -1057) 106681) ((-798 . -424) 106665) ((-798 . -38) 106514) ((-798 . -631) 106280) ((-798 . -666) 106169) ((-798 . -664) 106079) ((-798 . -744) T) ((-798 . -1131) T) ((-798 . -1076) T) ((-798 . -1068) T) ((-798 . -111) 105901) ((-798 . -1070) 105744) ((-798 . -1075) 105587) ((-798 . -21) T) ((-798 . -23) T) ((-798 . -1120) T) ((-798 . -628) 105501) ((-798 . -1236) T) ((-798 . -102) T) ((-798 . -25) T) ((-798 . -133) T) ((-798 . -658) 105350) ((-798 . -735) 105199) ((-798 . -147) 105178) ((-798 . -149) 105157) ((-798 . -175) 105068) ((-798 . -568) 104999) ((-798 . -302) 104930) ((-798 . -47) 104902) ((-798 . -390) 104886) ((-798 . -656) 104834) ((-798 . -464) 104785) ((-798 . -915) 104769) ((-798 . -909) 104751) ((-798 . -917) 104735) ((-798 . -899) 104594) ((-798 . -927) 104573) ((-798 . -1241) 104552) ((-798 . -967) 104519) ((-791 . -1120) T) ((-791 . -628) 104501) ((-791 . -1236) T) ((-791 . -102) T) ((-789 . -813) T) ((-789 . -133) T) ((-789 . -25) T) ((-789 . -102) T) ((-789 . -1236) T) ((-789 . -628) 104483) ((-789 . -1120) T) ((-789 . -23) T) ((-789 . -812) T) ((-789 . -859) T) ((-789 . -862) T) ((-789 . -814) T) ((-789 . -817) T) ((-789 . -744) T) ((-789 . -1131) T) ((-787 . -1120) T) ((-787 . -628) 104465) ((-787 . -1236) T) ((-787 . -102) T) ((-754 . -755) 104449) ((-754 . -1118) 104433) ((-754 . -242) 104417) ((-754 . -629) 104378) ((-754 . -153) 104362) ((-754 . -501) 104346) ((-754 . -1120) T) ((-754 . -526) 104279) ((-754 . -321) 104217) ((-754 . -628) 104199) ((-754 . -102) T) ((-754 . -1236) T) ((-754 . -34) T) ((-754 . -107) 104183) ((-754 . -713) 104167) ((-753 . -1068) T) ((-753 . -1076) T) ((-753 . -1131) T) ((-753 . -744) T) ((-753 . -21) T) ((-753 . -664) 104112) ((-753 . -23) T) ((-753 . -1120) T) ((-753 . -628) 104094) ((-753 . -1236) T) ((-753 . -102) T) ((-753 . -25) T) ((-753 . -133) T) ((-753 . -666) 104054) ((-753 . -631) 104010) ((-753 . -1057) 103981) ((-753 . -149) 103960) ((-753 . -147) 103939) ((-753 . -38) 103909) ((-753 . -111) 103874) ((-753 . -1070) 103844) ((-753 . -1075) 103814) ((-753 . -658) 103784) ((-753 . -735) 103754) ((-753 . -381) 103707) ((-749 . -967) 103660) ((-749 . -631) 103445) ((-749 . -1057) 103321) ((-749 . -1241) 103300) ((-749 . -927) 103279) ((-749 . -899) NIL) ((-749 . -917) 103256) ((-749 . -909) 103231) ((-749 . -915) 103208) ((-749 . -526) 103146) ((-749 . -464) 103097) ((-749 . -656) 103045) ((-749 . -666) 102934) ((-749 . -390) 102918) ((-749 . -47) 102883) ((-749 . -38) 102732) ((-749 . -658) 102581) ((-749 . -735) 102430) ((-749 . -302) 102361) ((-749 . -568) 102292) ((-749 . -111) 102114) ((-749 . -1070) 101957) ((-749 . -1075) 101800) ((-749 . -175) 101711) ((-749 . -149) 101690) ((-749 . -147) 101669) ((-749 . -664) 101579) ((-749 . -133) T) ((-749 . -25) T) ((-749 . -102) T) ((-749 . -1236) T) ((-749 . -628) 101561) ((-749 . -1120) T) ((-749 . -23) T) ((-749 . -21) T) ((-749 . -1068) T) ((-749 . -1076) T) ((-749 . -1131) T) ((-749 . -744) T) ((-749 . -424) 101545) ((-749 . -338) 101510) ((-749 . -321) 101497) ((-749 . -629) 101358) ((-736 . -485) T) ((-736 . -1131) T) ((-736 . -102) T) ((-736 . -1236) T) ((-736 . -628) 101340) ((-736 . -1120) T) ((-736 . -744) T) ((-733 . -1068) T) ((-733 . -1076) T) ((-733 . -1131) T) ((-733 . -744) T) ((-733 . -21) T) ((-733 . -664) 101312) ((-733 . -23) T) ((-733 . -1120) T) ((-733 . -628) 101294) ((-733 . -1236) T) ((-733 . -102) T) ((-733 . -25) T) ((-733 . -133) T) ((-733 . -666) 101281) ((-733 . -631) 101263) ((-732 . -1068) T) ((-732 . -1076) T) ((-732 . -1131) T) ((-732 . -744) T) ((-732 . -21) T) ((-732 . -664) 101208) ((-732 . -23) T) ((-732 . -1120) T) ((-732 . -628) 101190) ((-732 . -1236) T) ((-732 . -102) T) ((-732 . -25) T) ((-732 . -133) T) ((-732 . -666) 101150) ((-732 . -631) 101104) ((-732 . -1057) 101073) ((-732 . -298) 101052) ((-732 . -149) 101031) ((-732 . -147) 101010) ((-732 . -38) 100980) ((-732 . -111) 100945) ((-732 . -1070) 100915) ((-732 . -1075) 100885) ((-732 . -658) 100855) ((-732 . -735) 100825) ((-731 . -859) T) ((-731 . -628) 100760) ((-731 . -1120) T) ((-731 . -102) T) ((-731 . -1236) T) ((-731 . -862) T) ((-731 . -502) 100710) ((-731 . -631) 100660) ((-730 . -1262) 100644) ((-730 . -1171) 100622) ((-730 . -629) NIL) ((-730 . -321) 100609) ((-730 . -526) 100555) ((-730 . -338) 100532) ((-730 . -1057) 100412) ((-730 . -424) 100396) ((-730 . -38) 100225) ((-730 . -111) 100027) ((-730 . -1070) 99850) ((-730 . -1075) 99673) ((-730 . -664) 99583) ((-730 . -666) 99472) ((-730 . -658) 99301) ((-730 . -735) 99130) ((-730 . -631) 98886) ((-730 . -147) 98865) ((-730 . -149) 98844) ((-730 . -47) 98821) ((-730 . -390) 98805) ((-730 . -656) 98753) ((-730 . -915) 98696) ((-730 . -909) 98599) ((-730 . -917) 98506) ((-730 . -899) NIL) ((-730 . -927) 98485) ((-730 . -1241) 98464) ((-730 . -967) 98433) ((-730 . -938) 98412) ((-730 . -568) 98323) ((-730 . -302) 98234) ((-730 . -175) 98125) ((-730 . -464) 98056) ((-730 . -319) 98035) ((-730 . -298) 97962) ((-730 . -240) T) ((-730 . -133) T) ((-730 . -25) T) ((-730 . -102) T) ((-730 . -628) 97944) ((-730 . -1120) T) ((-730 . -23) T) ((-730 . -21) T) ((-730 . -744) T) ((-730 . -1131) T) ((-730 . -1076) T) ((-730 . -1068) T) ((-730 . -236) 97931) ((-730 . -1236) T) ((-730 . -239) T) ((-730 . -274) 97915) ((-730 . -234) 97899) ((-730 . -381) 97878) ((-729 . -376) T) ((-729 . -1241) T) ((-729 . -938) T) ((-729 . -568) T) ((-729 . -175) T) ((-729 . -631) 97828) ((-729 . -735) 97793) ((-729 . -658) 97758) ((-729 . -38) 97723) ((-729 . -464) T) ((-729 . -319) T) ((-729 . -666) 97688) ((-729 . -664) 97638) ((-729 . -744) T) ((-729 . -1131) T) ((-729 . -1076) T) ((-729 . -1068) T) ((-729 . -111) 97587) ((-729 . -1070) 97552) ((-729 . -1075) 97517) ((-729 . -21) T) ((-729 . -23) T) ((-729 . -1120) T) ((-729 . -628) 97499) ((-729 . -1236) T) ((-729 . -102) T) ((-729 . -25) T) ((-729 . -133) T) ((-729 . -302) T) ((-729 . -250) T) ((-728 . -1120) T) ((-728 . -628) 97481) ((-728 . -1236) T) ((-728 . -102) T) ((-719 . -401) T) ((-719 . -1057) 97463) ((-719 . -862) T) ((-719 . -859) T) ((-719 . -38) 97450) ((-719 . -631) 97422) ((-719 . -744) T) ((-719 . -1131) T) ((-719 . -1076) T) ((-719 . -1068) T) ((-719 . -111) 97407) ((-719 . -1070) 97394) ((-719 . -1075) 97381) ((-719 . -21) T) ((-719 . -664) 97353) ((-719 . -23) T) ((-719 . -1120) T) ((-719 . -628) 97335) ((-719 . -1236) T) ((-719 . -102) T) ((-719 . -25) T) ((-719 . -133) T) ((-719 . -666) 97307) ((-719 . -658) 97294) ((-719 . -735) 97281) ((-719 . -175) T) ((-719 . -302) T) ((-719 . -568) T) ((-719 . -556) T) ((-719 . -1241) T) ((-719 . -1171) T) ((-719 . -629) 97196) ((-719 . -1039) T) ((-719 . -899) 97178) ((-719 . -858) T) ((-719 . -817) T) ((-719 . -814) T) ((-719 . -812) T) ((-719 . -810) T) ((-719 . -840) T) ((-719 . -656) 97160) ((-719 . -938) T) ((-719 . -464) T) ((-719 . -319) T) ((-719 . -239) T) ((-719 . -236) 97147) ((-719 . -240) T) ((-719 . -145) T) ((-719 . -149) T) ((-717 . -416) T) ((-717 . -149) T) ((-717 . -631) 97082) ((-717 . -666) 97047) ((-717 . -664) 96997) ((-717 . -133) T) ((-717 . -25) T) ((-717 . -102) T) ((-717 . -1236) T) ((-717 . -628) 96979) ((-717 . -1120) T) ((-717 . -23) T) ((-717 . -21) T) ((-717 . -744) T) ((-717 . -1131) T) ((-717 . -1076) T) ((-717 . -1068) T) ((-717 . -629) 96924) ((-717 . -376) T) ((-717 . -1241) T) ((-717 . -938) T) ((-717 . -568) T) ((-717 . -175) T) ((-717 . -735) 96889) ((-717 . -658) 96854) ((-717 . -38) 96819) ((-717 . -464) T) ((-717 . -319) T) ((-717 . -111) 96768) ((-717 . -1070) 96733) ((-717 . -1075) 96698) ((-717 . -302) T) ((-717 . -250) T) ((-717 . -858) T) ((-717 . -817) T) ((-717 . -814) T) ((-717 . -862) T) ((-717 . -859) T) ((-717 . -812) T) ((-717 . -810) T) ((-717 . -899) 96680) ((-717 . -1021) T) ((-717 . -1039) T) ((-717 . -1057) 96625) ((-717 . -1079) T) ((-717 . -401) T) ((-712 . -401) T) ((-712 . -1057) 96570) ((-712 . -862) T) ((-712 . -859) T) ((-712 . -38) 96520) ((-712 . -631) 96455) ((-712 . -744) T) ((-712 . -1131) T) ((-712 . -1076) T) ((-712 . -1068) T) ((-712 . -111) 96382) ((-712 . -1070) 96332) ((-712 . -1075) 96282) ((-712 . -21) T) ((-712 . -664) 96217) ((-712 . -23) T) ((-712 . -1120) T) ((-712 . -628) 96199) ((-712 . -1236) T) ((-712 . -102) T) ((-712 . -25) T) ((-712 . -133) T) ((-712 . -666) 96149) ((-712 . -658) 96099) ((-712 . -735) 96049) ((-712 . -175) T) ((-712 . -302) T) ((-712 . -568) T) ((-712 . -168) 96031) ((-712 . -35) NIL) ((-712 . -95) NIL) ((-712 . -296) NIL) ((-712 . -505) NIL) ((-712 . -1225) NIL) ((-712 . -1222) NIL) ((-712 . -1021) NIL) ((-712 . -927) NIL) ((-712 . -629) 95939) ((-712 . -897) 95921) ((-712 . -381) NIL) ((-712 . -363) NIL) ((-712 . -1171) NIL) ((-712 . -414) NIL) ((-712 . -422) 95888) ((-712 . -383) 95855) ((-712 . -742) 95822) ((-712 . -424) 95804) ((-712 . -899) 95786) ((-712 . -412) 95768) ((-712 . -656) 95750) ((-712 . -390) 95732) ((-712 . -298) NIL) ((-712 . -321) NIL) ((-712 . -526) NIL) ((-712 . -351) 95714) ((-712 . -250) T) ((-712 . -1241) T) ((-712 . -376) T) ((-712 . -938) T) ((-712 . -464) T) ((-712 . -319) T) ((-712 . -240) NIL) ((-712 . -236) NIL) ((-712 . -239) NIL) ((-712 . -274) 95696) ((-712 . -909) NIL) ((-712 . -917) NIL) ((-712 . -915) NIL) ((-712 . -234) 95678) ((-712 . -149) T) ((-712 . -147) NIL) ((-709 . -1282) T) ((-709 . -1057) 95662) ((-709 . -631) 95646) ((-709 . -628) 95628) ((-707 . -704) 95586) ((-707 . -501) 95570) ((-707 . -1120) 95548) ((-707 . -526) 95481) ((-707 . -321) 95419) ((-707 . -628) 95351) ((-707 . -102) 95301) ((-707 . -1236) T) ((-707 . -34) T) ((-707 . -57) 95259) ((-707 . -629) 95220) ((-699 . -1102) T) ((-699 . -502) 95201) ((-699 . -628) 95151) ((-699 . -631) 95132) ((-699 . -1120) T) ((-699 . -1236) T) ((-699 . -102) T) ((-699 . -93) T) ((-695 . -859) T) ((-695 . -628) 95114) ((-695 . -1120) T) ((-695 . -102) T) ((-695 . -1236) T) ((-695 . -862) T) ((-695 . -1057) 95098) ((-695 . -631) 95082) ((-694 . -1102) T) ((-694 . -502) 95063) ((-694 . -628) 95029) ((-694 . -631) 95010) ((-694 . -1120) T) ((-694 . -1236) T) ((-694 . -102) T) ((-694 . -93) T) ((-693 . -501) 94994) ((-693 . -1120) 94972) ((-693 . -526) 94905) ((-693 . -321) 94843) ((-693 . -628) 94775) ((-693 . -102) 94725) ((-693 . -1236) T) ((-693 . -34) T) ((-690 . -859) T) ((-690 . -628) 94707) ((-690 . -1120) T) ((-690 . -102) T) ((-690 . -1236) T) ((-690 . -862) T) ((-690 . -1057) 94691) ((-690 . -631) 94675) ((-689 . -1102) T) ((-689 . -502) 94656) ((-689 . -628) 94622) ((-689 . -631) 94603) ((-689 . -1120) T) ((-689 . -1236) T) ((-689 . -102) T) ((-689 . -93) T) ((-688 . -1142) 94548) ((-688 . -501) 94532) ((-688 . -526) 94465) ((-688 . -321) 94403) ((-688 . -34) T) ((-688 . -1072) 94343) ((-688 . -1057) 94239) ((-688 . -631) 94157) ((-688 . -424) 94141) ((-688 . -656) 94089) ((-688 . -666) 94027) ((-688 . -390) 94011) ((-688 . -240) 93990) ((-688 . -236) 93935) ((-688 . -239) 93886) ((-688 . -274) 93870) ((-688 . -909) 93791) ((-688 . -917) 93714) ((-688 . -915) 93673) ((-688 . -234) 93657) ((-688 . -735) 93641) ((-688 . -658) 93625) ((-688 . -664) 93584) ((-688 . -133) T) ((-688 . -25) T) ((-688 . -102) T) ((-688 . -1236) T) ((-688 . -628) 93546) ((-688 . -1120) T) ((-688 . -23) T) ((-688 . -21) T) ((-688 . -1075) 93530) ((-688 . -1070) 93514) ((-688 . -111) 93493) ((-688 . -1068) T) ((-688 . -1076) T) ((-688 . -1131) T) ((-688 . -744) T) ((-688 . -38) 93453) ((-688 . -430) 93437) ((-688 . -762) 93421) ((-688 . -738) T) ((-688 . -779) T) ((-688 . -380) 93405) ((-688 . -298) 93382) ((-682 . -387) 93361) ((-682 . -735) 93345) ((-682 . -658) 93329) ((-682 . -666) 93313) ((-682 . -664) 93282) ((-682 . -133) T) ((-682 . -25) T) ((-682 . -102) T) ((-682 . -1236) T) ((-682 . -628) 93264) ((-682 . -1120) T) ((-682 . -23) T) ((-682 . -21) T) ((-682 . -1075) 93248) ((-682 . -1070) 93232) ((-682 . -111) 93211) ((-682 . -650) 93195) ((-682 . -397) 93167) ((-682 . -631) 93144) ((-682 . -1057) 93121) ((-674 . -676) 93105) ((-674 . -38) 93075) ((-674 . -631) 92993) ((-674 . -666) 92967) ((-674 . -664) 92926) ((-674 . -744) T) ((-674 . -1131) T) ((-674 . -1076) T) ((-674 . -1068) T) ((-674 . -111) 92905) ((-674 . -1070) 92889) ((-674 . -1075) 92873) ((-674 . -21) T) ((-674 . -23) T) ((-674 . -1120) T) ((-674 . -628) 92855) ((-674 . -102) T) ((-674 . -25) T) ((-674 . -133) T) ((-674 . -658) 92825) ((-674 . -735) 92795) ((-674 . -424) 92779) ((-674 . -1057) 92675) ((-674 . -864) 92659) ((-674 . -1236) T) ((-674 . -298) 92620) ((-673 . -676) 92604) ((-673 . -38) 92574) ((-673 . -631) 92492) ((-673 . -666) 92466) ((-673 . -664) 92425) ((-673 . -744) T) ((-673 . -1131) T) ((-673 . -1076) T) ((-673 . -1068) T) ((-673 . -111) 92404) ((-673 . -1070) 92388) ((-673 . -1075) 92372) ((-673 . -21) T) ((-673 . -23) T) ((-673 . -1120) T) ((-673 . -628) 92354) ((-673 . -102) T) ((-673 . -25) T) ((-673 . -133) T) ((-673 . -658) 92324) ((-673 . -735) 92294) ((-673 . -424) 92278) ((-673 . -1057) 92174) ((-673 . -864) 92158) ((-673 . -1236) T) ((-673 . -298) 92137) ((-672 . -676) 92121) ((-672 . -38) 92091) ((-672 . -631) 92009) ((-672 . -666) 91983) ((-672 . -664) 91942) ((-672 . -744) T) ((-672 . -1131) T) ((-672 . -1076) T) ((-672 . -1068) T) ((-672 . -111) 91921) ((-672 . -1070) 91905) ((-672 . -1075) 91889) ((-672 . -21) T) ((-672 . -23) T) ((-672 . -1120) T) ((-672 . -628) 91871) ((-672 . -102) T) ((-672 . -25) T) ((-672 . -133) T) ((-672 . -658) 91841) ((-672 . -735) 91811) ((-672 . -424) 91795) ((-672 . -1057) 91691) ((-672 . -864) 91675) ((-672 . -1236) T) ((-672 . -298) 91654) ((-670 . -735) 91638) ((-670 . -658) 91622) ((-670 . -666) 91606) ((-670 . -664) 91575) ((-670 . -133) T) ((-670 . -25) T) ((-670 . -102) T) ((-670 . -1236) T) ((-670 . -628) 91557) ((-670 . -1120) T) ((-670 . -23) T) ((-670 . -21) T) ((-670 . -1075) 91541) ((-670 . -1070) 91525) ((-670 . -111) 91504) ((-670 . -810) 91483) ((-670 . -812) 91462) ((-670 . -859) 91441) ((-670 . -862) 91420) ((-670 . -814) 91399) ((-670 . -817) 91378) ((-667 . -1120) T) ((-667 . -628) 91360) ((-667 . -1236) T) ((-667 . -102) T) ((-667 . -1057) 91344) ((-667 . -631) 91328) ((-665 . -713) 91312) ((-665 . -107) 91296) ((-665 . -34) T) ((-665 . -1236) T) ((-665 . -102) 91246) ((-665 . -628) 91178) ((-665 . -321) 91116) ((-665 . -526) 91049) ((-665 . -1120) 91027) ((-665 . -501) 91011) ((-665 . -153) 90995) ((-665 . -629) 90956) ((-665 . -242) 90940) ((-663 . -1102) T) ((-663 . -502) 90921) ((-663 . -628) 90874) ((-663 . -631) 90855) ((-663 . -1120) T) ((-663 . -1236) T) ((-663 . -102) T) ((-663 . -93) T) ((-659 . -684) 90839) ((-659 . -1275) 90823) ((-659 . -1029) 90807) ((-659 . -1169) 90791) ((-659 . -859) 90770) ((-659 . -862) 90749) ((-659 . -385) 90733) ((-659 . -669) 90717) ((-659 . -300) 90694) ((-659 . -298) 90646) ((-659 . -614) 90623) ((-659 . -629) 90584) ((-659 . -501) 90568) ((-659 . -1120) 90518) ((-659 . -526) 90451) ((-659 . -321) 90389) ((-659 . -628) 90301) ((-659 . -102) 90231) ((-659 . -1236) T) ((-659 . -34) T) ((-659 . -153) 90215) ((-659 . -294) 90199) ((-657 . -1294) 90183) ((-657 . -111) 90162) ((-657 . -1070) 90146) ((-657 . -1075) 90130) ((-657 . -21) T) ((-657 . -664) 90099) ((-657 . -23) T) ((-657 . -1120) T) ((-657 . -628) 90081) ((-657 . -1236) T) ((-657 . -102) T) ((-657 . -25) T) ((-657 . -133) T) ((-657 . -666) 90065) ((-657 . -658) 90049) ((-657 . -735) 90033) ((-657 . -298) 90000) ((-655 . -1294) 89984) ((-655 . -111) 89963) ((-655 . -1070) 89947) ((-655 . -1075) 89931) ((-655 . -21) T) ((-655 . -664) 89900) ((-655 . -23) T) ((-655 . -1120) T) ((-655 . -628) 89882) ((-655 . -1236) T) ((-655 . -102) T) ((-655 . -25) T) ((-655 . -133) T) ((-655 . -666) 89866) ((-655 . -658) 89850) ((-655 . -735) 89834) ((-655 . -631) 89811) ((-655 . -521) 89783) ((-653 . -855) T) ((-653 . -862) T) ((-653 . -859) T) ((-653 . -1120) T) ((-653 . -628) 89765) ((-653 . -1236) T) ((-653 . -102) T) ((-653 . -381) T) ((-653 . -631) 89742) ((-648 . -762) 89726) ((-648 . -738) T) ((-648 . -779) T) ((-648 . -111) 89705) ((-648 . -1070) 89689) ((-648 . -1075) 89673) ((-648 . -21) T) ((-648 . -664) 89642) ((-648 . -23) T) ((-648 . -1120) T) ((-648 . -628) 89611) ((-648 . -1236) T) ((-648 . -102) T) ((-648 . -25) T) ((-648 . -133) T) ((-648 . -666) 89595) ((-648 . -658) 89579) ((-648 . -735) 89563) ((-648 . -430) 89528) ((-648 . -380) 89460) ((-648 . -298) 89418) ((-647 . -1213) 89393) ((-647 . -233) 89339) ((-647 . -107) 89285) ((-647 . -321) 89136) ((-647 . -526) 88944) ((-647 . -501) 88876) ((-647 . -153) 88822) ((-647 . -629) NIL) ((-647 . -242) 88768) ((-647 . -625) 88743) ((-647 . -300) 88718) ((-647 . -1236) T) ((-647 . -298) 88671) ((-647 . -1120) T) ((-647 . -628) 88653) ((-647 . -102) T) ((-647 . -34) T) ((-647 . -614) 88628) ((-642 . -485) T) ((-642 . -1131) T) ((-642 . -102) T) ((-642 . -1236) T) ((-642 . -628) 88610) ((-642 . -1120) T) ((-642 . -744) T) ((-641 . -1102) T) ((-641 . -502) 88591) ((-641 . -628) 88557) ((-641 . -631) 88538) ((-641 . -1120) T) ((-641 . -1236) T) ((-641 . -102) T) ((-641 . -93) T) ((-638 . -234) 88522) ((-638 . -915) 88481) ((-638 . -917) 88404) ((-638 . -909) 88325) ((-638 . -274) 88309) ((-638 . -239) 88260) ((-638 . -1236) T) ((-638 . -236) 88205) ((-638 . -1068) T) ((-638 . -1076) T) ((-638 . -1131) T) ((-638 . -744) T) ((-638 . -21) T) ((-638 . -664) 88177) ((-638 . -23) T) ((-638 . -1120) T) ((-638 . -628) 88159) ((-638 . -102) T) ((-638 . -25) T) ((-638 . -133) T) ((-638 . -666) 88146) ((-638 . -631) 88041) ((-638 . -240) 88020) ((-638 . -568) T) ((-638 . -302) T) ((-638 . -175) T) ((-638 . -735) 88007) ((-638 . -658) 87994) ((-638 . -1075) 87981) ((-638 . -1070) 87968) ((-638 . -111) 87953) ((-638 . -38) 87940) ((-638 . -629) 87917) ((-638 . -424) 87901) ((-638 . -1057) 87784) ((-638 . -149) 87763) ((-638 . -147) 87742) ((-638 . -319) 87721) ((-638 . -464) 87700) ((-638 . -938) 87679) ((-634 . -38) 87663) ((-634 . -631) 87632) ((-634 . -666) 87606) ((-634 . -664) 87565) ((-634 . -744) T) ((-634 . -1131) T) ((-634 . -1076) T) ((-634 . -1068) T) ((-634 . -111) 87544) ((-634 . -1070) 87528) ((-634 . -1075) 87512) ((-634 . -21) T) ((-634 . -23) T) ((-634 . -1120) T) ((-634 . -628) 87494) ((-634 . -1236) T) ((-634 . -102) T) ((-634 . -25) T) ((-634 . -133) T) ((-634 . -658) 87478) ((-634 . -735) 87462) ((-634 . -858) 87441) ((-634 . -817) 87420) ((-634 . -814) 87399) ((-634 . -862) 87378) ((-634 . -859) 87357) ((-634 . -812) 87336) ((-634 . -810) 87315) ((-632 . -986) T) ((-632 . -102) T) ((-632 . -628) 87297) ((-632 . -1120) T) ((-632 . -680) T) ((-632 . -1236) T) ((-632 . -113) T) ((-626 . -134) T) ((-626 . -102) T) ((-626 . -1236) T) ((-626 . -628) 87279) ((-626 . -1120) T) ((-626 . -859) T) ((-626 . -862) T) ((-626 . -897) 87263) ((-626 . -629) 87124) ((-623 . -378) 87064) ((-623 . -102) T) ((-623 . -1236) T) ((-623 . -628) 87046) ((-623 . -1120) T) ((-623 . -1213) 87022) ((-623 . -233) 86969) ((-623 . -107) 86916) ((-623 . -321) 86711) ((-623 . -526) 86459) ((-623 . -501) 86393) ((-623 . -153) 86340) ((-623 . -629) NIL) ((-623 . -242) 86287) ((-623 . -625) 86263) ((-623 . -300) 86239) ((-623 . -298) 86215) ((-623 . -34) T) ((-623 . -614) 86191) ((-622 . -1120) T) ((-622 . -628) 86143) ((-622 . -1236) T) ((-622 . -102) T) ((-622 . -502) 86110) ((-622 . -631) 86077) ((-621 . -1120) T) ((-621 . -628) 86059) ((-621 . -1236) T) ((-621 . -102) T) ((-621 . -680) T) ((-620 . -1120) T) ((-620 . -628) 86041) ((-620 . -1236) T) ((-620 . -102) T) ((-620 . -680) T) ((-619 . -1120) T) ((-619 . -628) 86008) ((-619 . -1236) T) ((-619 . -102) T) ((-618 . -1120) T) ((-618 . -628) 85990) ((-618 . -1236) T) ((-618 . -102) T) ((-618 . -680) T) ((-617 . -1120) T) ((-617 . -628) 85957) ((-617 . -1236) T) ((-617 . -102) T) ((-617 . -502) 85939) ((-617 . -631) 85921) ((-616 . -762) 85905) ((-616 . -738) T) ((-616 . -779) T) ((-616 . -111) 85884) ((-616 . -1070) 85868) ((-616 . -1075) 85852) ((-616 . -21) T) ((-616 . -664) 85821) ((-616 . -23) T) ((-616 . -1120) T) ((-616 . -628) 85790) ((-616 . -1236) T) ((-616 . -102) T) ((-616 . -25) T) ((-616 . -133) T) ((-616 . -666) 85774) ((-616 . -658) 85758) ((-616 . -735) 85742) ((-616 . -430) 85707) ((-616 . -380) 85639) ((-616 . -298) 85597) ((-615 . -1102) T) ((-615 . -502) 85578) ((-615 . -628) 85528) ((-615 . -631) 85509) ((-615 . -1120) T) ((-615 . -1236) T) ((-615 . -102) T) ((-615 . -93) T) ((-612 . -1285) 85493) ((-612 . -385) 85477) ((-612 . -862) 85456) ((-612 . -859) 85435) ((-612 . -153) 85419) ((-612 . -34) T) ((-612 . -1236) T) ((-612 . -102) 85349) ((-612 . -628) 85261) ((-612 . -321) 85199) ((-612 . -526) 85132) ((-612 . -1120) 85082) ((-612 . -501) 85066) ((-612 . -629) 85027) ((-612 . -298) 84979) ((-612 . -614) 84956) ((-612 . -300) 84933) ((-612 . -669) 84917) ((-612 . -19) 84901) ((-611 . -628) 84883) ((-607 . -1120) T) ((-607 . -628) 84849) ((-607 . -1236) T) ((-607 . -102) T) ((-607 . -502) 84830) ((-607 . -631) 84811) ((-606 . -1068) T) ((-606 . -1076) T) ((-606 . -1131) T) ((-606 . -744) T) ((-606 . -21) T) ((-606 . -664) 84770) ((-606 . -23) T) ((-606 . -1120) T) ((-606 . -628) 84752) ((-606 . -1236) T) ((-606 . -102) T) ((-606 . -25) T) ((-606 . -133) T) ((-606 . -666) 84726) ((-606 . -631) 84684) ((-606 . -111) 84637) ((-606 . -1070) 84597) ((-606 . -1075) 84557) ((-606 . -568) 84536) ((-606 . -302) 84515) ((-606 . -175) 84494) ((-606 . -735) 84467) ((-606 . -658) 84440) ((-606 . -38) 84413) ((-605 . -1265) 84390) ((-605 . -47) 84367) ((-605 . -38) 84264) ((-605 . -658) 84161) ((-605 . -735) 84058) ((-605 . -631) 83940) ((-605 . -302) 83919) ((-605 . -568) 83898) ((-605 . -111) 83760) ((-605 . -1070) 83643) ((-605 . -1075) 83526) ((-605 . -175) 83477) ((-605 . -149) 83456) ((-605 . -147) 83435) ((-605 . -666) 83360) ((-605 . -664) 83270) ((-605 . -992) 83239) ((-605 . -917) 83152) ((-605 . -909) 83063) ((-605 . -915) 82976) ((-605 . -298) 82941) ((-605 . -239) 82900) ((-605 . -1236) T) ((-605 . -236) 82853) ((-605 . -1068) T) ((-605 . -1076) T) ((-605 . -1131) T) ((-605 . -744) T) ((-605 . -21) T) ((-605 . -23) T) ((-605 . -1120) T) ((-605 . -628) 82835) ((-605 . -102) T) ((-605 . -25) T) ((-605 . -133) T) ((-605 . -240) 82794) ((-603 . -1102) T) ((-603 . -502) 82775) ((-603 . -628) 82741) ((-603 . -631) 82722) ((-603 . -1120) T) ((-603 . -1236) T) ((-603 . -102) T) ((-603 . -93) T) ((-597 . -1120) T) ((-597 . -628) 82688) ((-597 . -1236) T) ((-597 . -102) T) ((-597 . -502) 82669) ((-597 . -631) 82650) ((-594 . -735) 82625) ((-594 . -658) 82600) ((-594 . -666) 82575) ((-594 . -664) 82535) ((-594 . -133) T) ((-594 . -25) T) ((-594 . -102) T) ((-594 . -1236) T) ((-594 . -628) 82517) ((-594 . -1120) T) ((-594 . -23) T) ((-594 . -21) T) ((-594 . -1075) 82492) ((-594 . -1070) 82467) ((-594 . -111) 82428) ((-594 . -1057) 82412) ((-594 . -631) 82396) ((-592 . -363) T) ((-592 . -1171) T) ((-592 . -381) T) ((-592 . -147) T) ((-592 . -376) T) ((-592 . -1241) T) ((-592 . -938) T) ((-592 . -568) T) ((-592 . -175) T) ((-592 . -631) 82346) ((-592 . -735) 82311) ((-592 . -658) 82276) ((-592 . -38) 82241) ((-592 . -464) T) ((-592 . -319) T) ((-592 . -111) 82190) ((-592 . -1070) 82155) ((-592 . -1075) 82120) ((-592 . -664) 82070) ((-592 . -666) 82035) ((-592 . -302) T) ((-592 . -250) T) ((-592 . -414) T) ((-592 . -239) T) ((-592 . -1236) T) ((-592 . -236) 82022) ((-592 . -1068) T) ((-592 . -1076) T) ((-592 . -1131) T) ((-592 . -744) T) ((-592 . -21) T) ((-592 . -23) T) ((-592 . -1120) T) ((-592 . -628) 82004) ((-592 . -102) T) ((-592 . -25) T) ((-592 . -133) T) ((-592 . -240) T) ((-592 . -341) 81991) ((-592 . -149) 81973) ((-592 . -1057) 81960) ((-592 . -1294) 81947) ((-592 . -1305) 81934) ((-592 . -629) 81916) ((-591 . -882) 81900) ((-591 . -938) T) ((-591 . -568) T) ((-591 . -302) T) ((-591 . -175) T) ((-591 . -631) 81872) ((-591 . -735) 81859) ((-591 . -658) 81846) ((-591 . -1075) 81833) ((-591 . -1070) 81820) ((-591 . -111) 81805) ((-591 . -38) 81792) ((-591 . -464) T) ((-591 . -319) T) ((-591 . -1068) T) ((-591 . -1076) T) ((-591 . -1131) T) ((-591 . -744) T) ((-591 . -21) T) ((-591 . -664) 81764) ((-591 . -23) T) ((-591 . -1120) T) ((-591 . -628) 81746) ((-591 . -1236) T) ((-591 . -102) T) ((-591 . -25) T) ((-591 . -133) T) ((-591 . -666) 81733) ((-591 . -149) T) ((-590 . -1120) T) ((-590 . -628) 81715) ((-590 . -1236) T) ((-590 . -102) T) ((-589 . -1120) T) ((-589 . -628) 81697) ((-589 . -1236) T) ((-589 . -102) T) ((-588 . -587) T) ((-588 . -873) T) ((-588 . -176) T) ((-588 . -538) T) ((-588 . -628) 81679) ((-582 . -566) 81663) ((-582 . -35) T) ((-582 . -95) T) ((-582 . -296) T) ((-582 . -505) T) ((-582 . -1225) T) ((-582 . -1222) T) ((-582 . -1057) 81645) ((-582 . -1021) T) ((-582 . -862) T) ((-582 . -859) T) ((-582 . -568) T) ((-582 . -302) T) ((-582 . -175) T) ((-582 . -631) 81617) ((-582 . -735) 81604) ((-582 . -658) 81591) ((-582 . -666) 81578) ((-582 . -664) 81550) ((-582 . -133) T) ((-582 . -25) T) ((-582 . -102) T) ((-582 . -1236) T) ((-582 . -628) 81532) ((-582 . -1120) T) ((-582 . -23) T) ((-582 . -21) T) ((-582 . -1075) 81519) ((-582 . -1070) 81506) ((-582 . -111) 81491) ((-582 . -1068) T) ((-582 . -1076) T) ((-582 . -1131) T) ((-582 . -744) T) ((-582 . -38) 81478) ((-582 . -464) T) ((-562 . -1213) 81457) ((-562 . -233) 81407) ((-562 . -107) 81357) ((-562 . -321) 81161) ((-562 . -526) 80921) ((-562 . -501) 80858) ((-562 . -153) 80808) ((-562 . -629) NIL) ((-562 . -242) 80758) ((-562 . -625) 80737) ((-562 . -300) 80716) ((-562 . -1236) T) ((-562 . -298) 80695) ((-562 . -1120) T) ((-562 . -628) 80677) ((-562 . -102) T) ((-562 . -34) T) ((-562 . -614) 80656) ((-561 . -855) T) ((-561 . -862) T) ((-561 . -859) T) ((-561 . -1120) T) ((-561 . -628) 80638) ((-561 . -1236) T) ((-561 . -102) T) ((-561 . -381) T) ((-560 . -855) T) ((-560 . -862) T) ((-560 . -859) T) ((-560 . -1120) T) ((-560 . -628) 80620) ((-560 . -1236) T) ((-560 . -102) T) ((-560 . -381) T) ((-559 . -855) T) ((-559 . -862) T) ((-559 . -859) T) ((-559 . -1120) T) ((-559 . -628) 80602) ((-559 . -1236) T) ((-559 . -102) T) ((-559 . -381) T) ((-558 . -855) T) ((-558 . -862) T) ((-558 . -859) T) ((-558 . -1120) T) ((-558 . -628) 80584) ((-558 . -1236) T) ((-558 . -102) T) ((-558 . -381) T) ((-557 . -556) T) ((-557 . -1241) T) ((-557 . -1171) T) ((-557 . -1057) 80566) ((-557 . -629) 80481) ((-557 . -1039) T) ((-557 . -899) 80463) ((-557 . -858) T) ((-557 . -817) T) ((-557 . -814) T) ((-557 . -862) T) ((-557 . -859) T) ((-557 . -812) T) ((-557 . -810) T) ((-557 . -840) T) ((-557 . -666) 80435) ((-557 . -656) 80417) ((-557 . -938) T) ((-557 . -568) T) ((-557 . -302) T) ((-557 . -175) T) ((-557 . -631) 80389) ((-557 . -735) 80376) ((-557 . -658) 80363) ((-557 . -1075) 80350) ((-557 . -1070) 80337) ((-557 . -111) 80322) ((-557 . -38) 80309) ((-557 . -464) T) ((-557 . -319) T) ((-557 . -239) T) ((-557 . -236) 80296) ((-557 . -240) T) ((-557 . -145) T) ((-557 . -1068) T) ((-557 . -1076) T) ((-557 . -1131) T) ((-557 . -744) T) ((-557 . -21) T) ((-557 . -664) 80268) ((-557 . -23) T) ((-557 . -1120) T) ((-557 . -628) 80250) ((-557 . -1236) T) ((-557 . -102) T) ((-557 . -25) T) ((-557 . -133) T) ((-557 . -149) T) ((-546 . -1123) 80202) ((-546 . -102) T) ((-546 . -628) 80184) ((-546 . -1120) T) ((-546 . -298) 80140) ((-546 . -1236) T) ((-546 . -633) 80043) ((-546 . -629) 80024) ((-544 . -785) 80006) ((-544 . -538) T) ((-544 . -176) T) ((-544 . -873) T) ((-544 . -587) T) ((-544 . -628) 79988) ((-542 . -813) T) ((-542 . -133) T) ((-542 . -25) T) ((-542 . -102) T) ((-542 . -1236) T) ((-542 . -628) 79970) ((-542 . -1120) T) ((-542 . -23) T) ((-542 . -812) T) ((-542 . -859) T) ((-542 . -862) T) ((-542 . -814) T) ((-542 . -817) T) ((-542 . -521) 79947) ((-540 . -538) T) ((-540 . -176) T) ((-540 . -628) 79929) ((-536 . -1102) T) ((-536 . -502) 79910) ((-536 . -628) 79876) ((-536 . -631) 79857) ((-536 . -1120) T) ((-536 . -1236) T) ((-536 . -102) T) ((-536 . -93) T) ((-535 . -1102) T) ((-535 . -502) 79838) ((-535 . -628) 79804) ((-535 . -631) 79785) ((-535 . -1120) T) ((-535 . -1236) T) ((-535 . -102) T) ((-535 . -93) T) ((-534 . -704) 79735) ((-534 . -501) 79719) ((-534 . -1120) 79697) ((-534 . -526) 79630) ((-534 . -321) 79568) ((-534 . -628) 79500) ((-534 . -102) 79450) ((-534 . -1236) T) ((-534 . -34) T) ((-534 . -57) 79400) ((-531 . -57) 79374) ((-531 . -34) T) ((-531 . -1236) T) ((-531 . -102) 79324) ((-531 . -628) 79256) ((-531 . -321) 79194) ((-531 . -526) 79127) ((-531 . -1120) 79105) ((-531 . -501) 79089) ((-530 . -341) 79066) ((-530 . -240) T) ((-530 . -236) 79053) ((-530 . -239) T) ((-530 . -381) T) ((-530 . -1171) T) ((-530 . -363) T) ((-530 . -149) 79035) ((-530 . -631) 78965) ((-530 . -666) 78910) ((-530 . -664) 78840) ((-530 . -133) T) ((-530 . -25) T) ((-530 . -102) T) ((-530 . -1236) T) ((-530 . -628) 78822) ((-530 . -1120) T) ((-530 . -23) T) ((-530 . -21) T) ((-530 . -744) T) ((-530 . -1131) T) ((-530 . -1076) T) ((-530 . -1068) T) ((-530 . -376) T) ((-530 . -1241) T) ((-530 . -938) T) ((-530 . -568) T) ((-530 . -175) T) ((-530 . -735) 78767) ((-530 . -658) 78712) ((-530 . -38) 78677) ((-530 . -464) T) ((-530 . -319) T) ((-530 . -111) 78594) ((-530 . -1070) 78539) ((-530 . -1075) 78484) ((-530 . -302) T) ((-530 . -250) T) ((-530 . -414) T) ((-530 . -147) T) ((-530 . -1057) 78461) ((-530 . -1294) 78438) ((-530 . -1305) 78415) ((-529 . -1102) T) ((-529 . -502) 78396) ((-529 . -628) 78362) ((-529 . -631) 78343) ((-529 . -1120) T) ((-529 . -1236) T) ((-529 . -102) T) ((-529 . -93) T) ((-528 . -19) 78327) ((-528 . -669) 78311) ((-528 . -300) 78288) ((-528 . -298) 78240) ((-528 . -614) 78217) ((-528 . -629) 78178) ((-528 . -501) 78162) ((-528 . -1120) 78112) ((-528 . -526) 78045) ((-528 . -321) 77983) ((-528 . -628) 77895) ((-528 . -102) 77825) ((-528 . -1236) T) ((-528 . -34) T) ((-528 . -153) 77809) ((-528 . -859) 77788) ((-528 . -862) 77767) ((-528 . -385) 77751) ((-528 . -294) 77735) ((-527 . -335) 77714) ((-527 . -631) 77698) ((-527 . -1057) 77682) ((-527 . -23) T) ((-527 . -1120) T) ((-527 . -628) 77664) ((-527 . -1236) T) ((-527 . -102) T) ((-527 . -25) T) ((-527 . -133) T) ((-524 . -813) T) ((-524 . -133) T) ((-524 . -25) T) ((-524 . -102) T) ((-524 . -1236) T) ((-524 . -628) 77646) ((-524 . -1120) T) ((-524 . -23) T) ((-524 . -812) T) ((-524 . -859) T) ((-524 . -862) T) ((-524 . -814) T) ((-524 . -817) T) ((-524 . -521) 77625) ((-523 . -812) T) ((-523 . -859) T) ((-523 . -862) T) ((-523 . -814) T) ((-523 . -25) T) ((-523 . -102) T) ((-523 . -1236) T) ((-523 . -628) 77607) ((-523 . -1120) T) ((-523 . -23) T) ((-523 . -521) 77586) ((-522 . -521) 77565) ((-522 . -628) 77505) ((-522 . -1120) 77456) ((-522 . -1236) T) ((-522 . -102) T) ((-520 . -23) T) ((-520 . -1120) T) ((-520 . -628) 77438) ((-520 . -1236) T) ((-520 . -102) T) ((-520 . -25) T) ((-520 . -521) 77417) ((-519 . -21) T) ((-519 . -664) 77399) ((-519 . -23) T) ((-519 . -1120) T) ((-519 . -628) 77381) ((-519 . -1236) T) ((-519 . -102) T) ((-519 . -25) T) ((-519 . -133) T) ((-519 . -521) 77360) ((-518 . -1120) T) ((-518 . -628) 77342) ((-518 . -1236) T) ((-518 . -102) T) ((-516 . -1120) T) ((-516 . -628) 77324) ((-516 . -1236) T) ((-516 . -102) T) ((-514 . -859) T) ((-514 . -628) 77306) ((-514 . -1120) T) ((-514 . -102) T) ((-514 . -1236) T) ((-514 . -862) T) ((-514 . -631) 77287) ((-512 . -125) T) ((-512 . -385) 77269) ((-512 . -862) T) ((-512 . -859) T) ((-512 . -153) 77251) ((-512 . -34) T) ((-512 . -102) T) ((-512 . -628) 77233) ((-512 . -321) NIL) ((-512 . -526) NIL) ((-512 . -1120) T) ((-512 . -501) 77215) ((-512 . -629) 77197) ((-512 . -298) 77147) ((-512 . -614) 77122) ((-512 . -300) 77097) ((-512 . -669) 77079) ((-512 . -19) 77061) ((-512 . -680) T) ((-512 . -1236) T) ((-512 . -113) T) ((-509 . -57) 77011) ((-509 . -34) T) ((-509 . -1236) T) ((-509 . -102) 76961) ((-509 . -628) 76893) ((-509 . -321) 76831) ((-509 . -526) 76764) ((-509 . -1120) 76742) ((-509 . -501) 76726) ((-508 . -19) 76710) ((-508 . -669) 76694) ((-508 . -300) 76671) ((-508 . -298) 76623) ((-508 . -614) 76600) ((-508 . -629) 76561) ((-508 . -501) 76545) ((-508 . -1120) 76495) ((-508 . -526) 76428) ((-508 . -321) 76366) ((-508 . -628) 76278) ((-508 . -102) 76208) ((-508 . -1236) T) ((-508 . -34) T) ((-508 . -153) 76192) ((-508 . -859) 76171) ((-508 . -862) 76150) ((-508 . -385) 76134) ((-507 . -310) T) ((-507 . -102) T) ((-507 . -1236) T) ((-507 . -628) 76116) ((-507 . -1120) T) ((-507 . -631) 76017) ((-507 . -1057) 75960) ((-507 . -526) 75926) ((-507 . -321) 75913) ((-507 . -27) T) ((-507 . -1021) T) ((-507 . -250) T) ((-507 . -111) 75862) ((-507 . -1070) 75827) ((-507 . -1075) 75792) ((-507 . -302) T) ((-507 . -735) 75757) ((-507 . -658) 75722) ((-507 . -666) 75672) ((-507 . -664) 75622) ((-507 . -133) T) ((-507 . -25) T) ((-507 . -23) T) ((-507 . -21) T) ((-507 . -1068) T) ((-507 . -1076) T) ((-507 . -1131) T) ((-507 . -744) T) ((-507 . -38) 75587) ((-507 . -319) T) ((-507 . -464) T) ((-507 . -175) T) ((-507 . -568) T) ((-507 . -938) T) ((-507 . -1241) T) ((-507 . -376) T) ((-507 . -656) 75547) ((-507 . -1039) T) ((-507 . -629) 75492) ((-507 . -149) T) ((-507 . -240) T) ((-507 . -236) 75479) ((-507 . -239) T) ((-503 . -1120) T) ((-503 . -628) 75445) ((-503 . -1236) T) ((-503 . -102) T) ((-499 . -1010) 75427) ((-499 . -1171) T) ((-499 . -631) 75377) ((-499 . -1057) 75337) ((-499 . -629) 75267) ((-499 . -1039) T) ((-499 . -927) NIL) ((-499 . -897) 75249) ((-499 . -858) T) ((-499 . -817) T) ((-499 . -814) T) ((-499 . -862) T) ((-499 . -859) T) ((-499 . -812) T) ((-499 . -810) T) ((-499 . -840) T) ((-499 . -899) 75231) ((-499 . -412) 75213) ((-499 . -656) 75195) ((-499 . -390) 75177) ((-499 . -298) NIL) ((-499 . -321) NIL) ((-499 . -526) NIL) ((-499 . -351) 75159) ((-499 . -250) T) ((-499 . -111) 75086) ((-499 . -1070) 75036) ((-499 . -1075) 74986) ((-499 . -302) T) ((-499 . -735) 74936) ((-499 . -658) 74886) ((-499 . -666) 74836) ((-499 . -664) 74786) ((-499 . -38) 74736) ((-499 . -319) T) ((-499 . -464) T) ((-499 . -175) T) ((-499 . -568) T) ((-499 . -938) T) ((-499 . -1241) T) ((-499 . -376) T) ((-499 . -240) T) ((-499 . -236) 74723) ((-499 . -239) T) ((-499 . -274) 74705) ((-499 . -909) NIL) ((-499 . -917) NIL) ((-499 . -915) NIL) ((-499 . -234) 74687) ((-499 . -149) T) ((-499 . -147) NIL) ((-499 . -133) T) ((-499 . -25) T) ((-499 . -102) T) ((-499 . -1236) T) ((-499 . -628) 74628) ((-499 . -1120) T) ((-499 . -23) T) ((-499 . -21) T) ((-499 . -1068) T) ((-499 . -1076) T) ((-499 . -1131) T) ((-499 . -744) T) ((-497 . -349) 74597) ((-497 . -133) T) ((-497 . -25) T) ((-497 . -102) T) ((-497 . -1236) T) ((-497 . -628) 74579) ((-497 . -1120) T) ((-497 . -23) T) ((-497 . -664) 74561) ((-497 . -21) T) ((-496 . -987) 74545) ((-496 . -501) 74529) ((-496 . -1120) 74507) ((-496 . -526) 74440) ((-496 . -321) 74378) ((-496 . -628) 74310) ((-496 . -102) 74260) ((-496 . -1236) T) ((-496 . -34) T) ((-496 . -107) 74244) ((-495 . -1102) T) ((-495 . -502) 74225) ((-495 . -628) 74191) ((-495 . -631) 74172) ((-495 . -1120) T) ((-495 . -1236) T) ((-495 . -102) T) ((-495 . -93) T) ((-494 . -245) 74151) ((-494 . -1294) 74121) ((-494 . -817) 74100) ((-494 . -814) 74079) ((-494 . -862) 74030) ((-494 . -859) 73981) ((-494 . -812) 73960) ((-494 . -813) 73939) ((-494 . -735) 73881) ((-494 . -658) 73803) ((-494 . -300) 73780) ((-494 . -298) 73757) ((-494 . -501) 73741) ((-494 . -526) 73674) ((-494 . -321) 73612) ((-494 . -34) T) ((-494 . -614) 73589) ((-494 . -1057) 73416) ((-494 . -631) 73214) ((-494 . -424) 73183) ((-494 . -656) 73089) ((-494 . -666) 72922) ((-494 . -390) 72891) ((-494 . -381) 72870) ((-494 . -240) 72822) ((-494 . -664) 72601) ((-494 . -744) 72579) ((-494 . -1131) 72557) ((-494 . -1076) 72535) ((-494 . -1068) 72513) ((-494 . -236) 72404) ((-494 . -239) 72301) ((-494 . -274) 72270) ((-494 . -909) 72137) ((-494 . -917) 72006) ((-494 . -915) 71938) ((-494 . -234) 71907) ((-494 . -628) 71600) ((-494 . -1075) 71521) ((-494 . -1070) 71422) ((-494 . -111) 71338) ((-494 . -133) 71209) ((-494 . -25) 71042) ((-494 . -102) 70774) ((-494 . -1236) T) ((-494 . -1120) 70526) ((-494 . -23) 70378) ((-494 . -21) 70289) ((-493 . -967) 70234) ((-493 . -631) 70019) ((-493 . -1057) 69895) ((-493 . -1241) 69874) ((-493 . -927) 69853) ((-493 . -899) NIL) ((-493 . -917) 69830) ((-493 . -909) 69805) ((-493 . -915) 69782) ((-493 . -526) 69720) ((-493 . -464) 69671) ((-493 . -656) 69619) ((-493 . -666) 69508) ((-493 . -390) 69492) ((-493 . -47) 69449) ((-493 . -38) 69298) ((-493 . -658) 69147) ((-493 . -735) 68996) ((-493 . -302) 68927) ((-493 . -568) 68858) ((-493 . -111) 68680) ((-493 . -1070) 68523) ((-493 . -1075) 68366) ((-493 . -175) 68277) ((-493 . -149) 68256) ((-493 . -147) 68235) ((-493 . -664) 68145) ((-493 . -133) T) ((-493 . -25) T) ((-493 . -102) T) ((-493 . -1236) T) ((-493 . -628) 68127) ((-493 . -1120) T) ((-493 . -23) T) ((-493 . -21) T) ((-493 . -1068) T) ((-493 . -1076) T) ((-493 . -1131) T) ((-493 . -744) T) ((-493 . -424) 68111) ((-493 . -338) 68068) ((-493 . -321) 68055) ((-493 . -629) 67916) ((-491 . -1213) 67895) ((-491 . -233) 67845) ((-491 . -107) 67795) ((-491 . -321) 67599) ((-491 . -526) 67359) ((-491 . -501) 67296) ((-491 . -153) 67246) ((-491 . -629) NIL) ((-491 . -242) 67196) ((-491 . -625) 67175) ((-491 . -300) 67154) ((-491 . -1236) T) ((-491 . -298) 67133) ((-491 . -1120) T) ((-491 . -628) 67115) ((-491 . -102) T) ((-491 . -34) T) ((-491 . -614) 67094) ((-490 . -1102) T) ((-490 . -502) 67075) ((-490 . -628) 67041) ((-490 . -631) 67022) ((-490 . -1120) T) ((-490 . -1236) T) ((-490 . -102) T) ((-490 . -93) T) ((-489 . -376) T) ((-489 . -1241) T) ((-489 . -938) T) ((-489 . -568) T) ((-489 . -175) T) ((-489 . -631) 66972) ((-489 . -735) 66937) ((-489 . -658) 66902) ((-489 . -38) 66867) ((-489 . -464) T) ((-489 . -319) T) ((-489 . -666) 66832) ((-489 . -664) 66782) ((-489 . -744) T) ((-489 . -1131) T) ((-489 . -1076) T) ((-489 . -1068) T) ((-489 . -111) 66731) ((-489 . -1070) 66696) ((-489 . -1075) 66661) ((-489 . -21) T) ((-489 . -23) T) ((-489 . -1120) T) ((-489 . -628) 66613) ((-489 . -1236) T) ((-489 . -102) T) ((-489 . -25) T) ((-489 . -133) T) ((-489 . -302) T) ((-489 . -250) T) ((-489 . -149) T) ((-489 . -1057) 66573) ((-489 . -1039) T) ((-489 . -629) 66495) ((-488 . -1231) 66464) ((-488 . -628) 66426) ((-488 . -153) 66410) ((-488 . -34) T) ((-488 . -1236) T) ((-488 . -102) T) ((-488 . -321) 66348) ((-488 . -526) 66281) ((-488 . -1120) T) ((-488 . -501) 66265) ((-488 . -629) 66226) ((-488 . -995) 66195) ((-487 . -1213) 66174) ((-487 . -233) 66124) ((-487 . -107) 66074) ((-487 . -321) 65878) ((-487 . -526) 65638) ((-487 . -501) 65575) ((-487 . -153) 65525) ((-487 . -629) NIL) ((-487 . -242) 65475) ((-487 . -625) 65454) ((-487 . -300) 65433) ((-487 . -1236) T) ((-487 . -298) 65412) ((-487 . -1120) T) ((-487 . -628) 65394) ((-487 . -102) T) ((-487 . -34) T) ((-487 . -614) 65373) ((-486 . -1269) 65357) ((-486 . -240) 65309) ((-486 . -236) 65255) ((-486 . -239) 65207) ((-486 . -298) 65165) ((-486 . -915) 65071) ((-486 . -909) 64952) ((-486 . -917) 64858) ((-486 . -992) 64820) ((-486 . -38) 64661) ((-486 . -111) 64475) ((-486 . -1070) 64310) ((-486 . -1075) 64145) ((-486 . -664) 64027) ((-486 . -666) 63924) ((-486 . -658) 63765) ((-486 . -735) 63606) ((-486 . -631) 63432) ((-486 . -147) 63411) ((-486 . -149) 63390) ((-486 . -47) 63360) ((-486 . -1265) 63330) ((-486 . -35) 63296) ((-486 . -95) 63262) ((-486 . -296) 63228) ((-486 . -505) 63194) ((-486 . -1225) 63160) ((-486 . -1222) 63126) ((-486 . -1021) 63092) ((-486 . -250) 63071) ((-486 . -302) 63022) ((-486 . -133) T) ((-486 . -25) T) ((-486 . -102) T) ((-486 . -1236) T) ((-486 . -628) 63004) ((-486 . -1120) T) ((-486 . -23) T) ((-486 . -21) T) ((-486 . -1068) T) ((-486 . -1076) T) ((-486 . -1131) T) ((-486 . -744) T) ((-486 . -319) 62983) ((-486 . -464) 62962) ((-486 . -175) 62893) ((-486 . -568) 62844) ((-486 . -938) 62823) ((-486 . -1241) 62802) ((-486 . -376) 62781) ((-480 . -1120) T) ((-480 . -628) 62763) ((-480 . -1236) T) ((-480 . -102) T) ((-475 . -995) 62732) ((-475 . -629) 62693) ((-475 . -501) 62677) ((-475 . -1120) T) ((-475 . -526) 62610) ((-475 . -321) 62548) ((-475 . -628) 62510) ((-475 . -102) T) ((-475 . -1236) T) ((-475 . -34) T) ((-475 . -153) 62494) ((-473 . -735) 62465) ((-473 . -658) 62436) ((-473 . -666) 62407) ((-473 . -664) 62363) ((-473 . -133) T) ((-473 . -25) T) ((-473 . -102) T) ((-473 . -1236) T) ((-473 . -628) 62345) ((-473 . -1120) T) ((-473 . -23) T) ((-473 . -21) T) ((-473 . -1075) 62316) ((-473 . -1070) 62287) ((-473 . -111) 62248) ((-466 . -967) 62215) ((-466 . -631) 62000) ((-466 . -1057) 61876) ((-466 . -1241) 61855) ((-466 . -927) 61834) ((-466 . -899) NIL) ((-466 . -917) 61811) ((-466 . -909) 61786) ((-466 . -915) 61763) ((-466 . -526) 61701) ((-466 . -464) 61652) ((-466 . -656) 61600) ((-466 . -666) 61489) ((-466 . -390) 61473) ((-466 . -47) 61452) ((-466 . -38) 61301) ((-466 . -658) 61150) ((-466 . -735) 60999) ((-466 . -302) 60930) ((-466 . -568) 60861) ((-466 . -111) 60683) ((-466 . -1070) 60526) ((-466 . -1075) 60369) ((-466 . -175) 60280) ((-466 . -149) 60259) ((-466 . -147) 60238) ((-466 . -664) 60148) ((-466 . -133) T) ((-466 . -25) T) ((-466 . -102) T) ((-466 . -1236) T) ((-466 . -628) 60130) ((-466 . -1120) T) ((-466 . -23) T) ((-466 . -21) T) ((-466 . -1068) T) ((-466 . -1076) T) ((-466 . -1131) T) ((-466 . -744) T) ((-466 . -424) 60114) ((-466 . -338) 60093) ((-466 . -321) 60080) ((-466 . -629) 59941) ((-465 . -430) 59911) ((-465 . -762) 59881) ((-465 . -738) T) ((-465 . -779) T) ((-465 . -111) 59832) ((-465 . -1070) 59802) ((-465 . -1075) 59772) ((-465 . -21) T) ((-465 . -664) 59687) ((-465 . -23) T) ((-465 . -1120) T) ((-465 . -628) 59669) ((-465 . -102) T) ((-465 . -25) T) ((-465 . -133) T) ((-465 . -666) 59599) ((-465 . -658) 59569) ((-465 . -735) 59539) ((-465 . -380) 59509) ((-465 . -1236) T) ((-465 . -298) 59472) ((-451 . -1120) T) ((-451 . -628) 59454) ((-451 . -1236) T) ((-451 . -102) T) ((-450 . -1120) T) ((-450 . -628) 59436) ((-450 . -1236) T) ((-450 . -102) T) ((-449 . -378) 59410) ((-449 . -102) T) ((-449 . -1236) T) ((-449 . -628) 59392) ((-449 . -1120) T) ((-448 . -1120) T) ((-448 . -628) 59374) ((-448 . -1236) T) ((-448 . -102) T) ((-446 . -628) 59356) ((-441 . -38) 59340) ((-441 . -631) 59309) ((-441 . -666) 59283) ((-441 . -664) 59242) ((-441 . -744) T) ((-441 . -1131) T) ((-441 . -1076) T) ((-441 . -1068) T) ((-441 . -111) 59221) ((-441 . -1070) 59205) ((-441 . -1075) 59189) ((-441 . -21) T) ((-441 . -23) T) ((-441 . -1120) T) ((-441 . -628) 59171) ((-441 . -1236) T) ((-441 . -102) T) ((-441 . -25) T) ((-441 . -133) T) ((-441 . -658) 59155) ((-441 . -735) 59139) ((-427 . -744) T) ((-427 . -1120) T) ((-427 . -628) 59121) ((-427 . -1236) T) ((-427 . -102) T) ((-427 . -1131) T) ((-425 . -485) T) ((-425 . -1131) T) ((-425 . -102) T) ((-425 . -1236) T) ((-425 . -628) 59103) ((-425 . -1120) T) ((-425 . -744) T) ((-419 . -1010) 59087) ((-419 . -1171) 59065) ((-419 . -1057) 58929) ((-419 . -631) 58827) ((-419 . -629) 58628) ((-419 . -1039) 58606) ((-419 . -927) 58585) ((-419 . -897) 58569) ((-419 . -858) 58548) ((-419 . -817) 58527) ((-419 . -814) 58506) ((-419 . -862) 58457) ((-419 . -859) 58408) ((-419 . -812) 58387) ((-419 . -810) 58366) ((-419 . -840) 58345) ((-419 . -899) 58270) ((-419 . -412) 58254) ((-419 . -656) 58202) ((-419 . -666) 58118) ((-419 . -390) 58102) ((-419 . -298) 58060) ((-419 . -321) 58025) ((-419 . -526) 57937) ((-419 . -351) 57921) ((-419 . -250) T) ((-419 . -111) 57852) ((-419 . -1070) 57804) ((-419 . -1075) 57756) ((-419 . -302) T) ((-419 . -735) 57708) ((-419 . -658) 57660) ((-419 . -664) 57597) ((-419 . -38) 57549) ((-419 . -319) T) ((-419 . -464) T) ((-419 . -175) T) ((-419 . -568) T) ((-419 . -938) T) ((-419 . -1241) T) ((-419 . -376) T) ((-419 . -240) 57528) ((-419 . -236) 57473) ((-419 . -239) 57424) ((-419 . -274) 57408) ((-419 . -909) 57329) ((-419 . -917) 57252) ((-419 . -915) 57211) ((-419 . -234) 57195) ((-419 . -149) 57174) ((-419 . -147) 57153) ((-419 . -133) T) ((-419 . -25) T) ((-419 . -102) T) ((-419 . -1236) T) ((-419 . -628) 57135) ((-419 . -1120) T) ((-419 . -23) T) ((-419 . -21) T) ((-419 . -1068) T) ((-419 . -1076) T) ((-419 . -1131) T) ((-419 . -744) T) ((-417 . -568) T) ((-417 . -302) T) ((-417 . -175) T) ((-417 . -631) 57043) ((-417 . -735) 57017) ((-417 . -658) 56991) ((-417 . -666) 56965) ((-417 . -664) 56924) ((-417 . -133) T) ((-417 . -25) T) ((-417 . -102) T) ((-417 . -1236) T) ((-417 . -628) 56906) ((-417 . -1120) T) ((-417 . -23) T) ((-417 . -21) T) ((-417 . -1075) 56880) ((-417 . -1070) 56854) ((-417 . -111) 56821) ((-417 . -1068) T) ((-417 . -1076) T) ((-417 . -1131) T) ((-417 . -744) T) ((-417 . -38) 56795) ((-417 . -234) 56779) ((-417 . -915) 56738) ((-417 . -917) 56661) ((-417 . -909) 56582) ((-417 . -274) 56566) ((-417 . -239) 56517) ((-417 . -236) 56462) ((-417 . -240) 56441) ((-417 . -351) 56425) ((-417 . -526) 56267) ((-417 . -321) 56206) ((-417 . -298) 56134) ((-417 . -424) 56118) ((-417 . -1057) 56014) ((-417 . -464) 55964) ((-417 . -1039) 55942) ((-417 . -629) 55843) ((-417 . -1241) 55821) ((-411 . -1120) T) ((-411 . -628) 55803) ((-411 . -1236) T) ((-411 . -102) T) ((-411 . -239) T) ((-411 . -236) 55790) ((-411 . -629) 55767) ((-410 . -408) T) ((-410 . -1236) T) ((-410 . -628) 55749) ((-404 . -762) 55733) ((-404 . -738) T) ((-404 . -779) T) ((-404 . -111) 55712) ((-404 . -1070) 55696) ((-404 . -1075) 55680) ((-404 . -21) T) ((-404 . -664) 55649) ((-404 . -23) T) ((-404 . -1120) T) ((-404 . -628) 55631) ((-404 . -1236) T) ((-404 . -102) T) ((-404 . -25) T) ((-404 . -133) T) ((-404 . -666) 55615) ((-404 . -658) 55599) ((-404 . -735) 55583) ((-402 . -403) T) ((-402 . -102) T) ((-402 . -1236) T) ((-402 . -628) 55549) ((-402 . -1120) T) ((-402 . -631) 55530) ((-402 . -502) 55511) ((-400 . -399) 55495) ((-400 . -631) 55479) ((-400 . -1057) 55463) ((-400 . -862) 55442) ((-400 . -859) 55421) ((-400 . -1131) T) ((-400 . -102) T) ((-400 . -1236) T) ((-400 . -628) 55403) ((-400 . -1120) T) ((-400 . -744) T) ((-395 . -397) 55382) ((-395 . -631) 55366) ((-395 . -1057) 55350) ((-395 . -658) 55320) ((-395 . -735) 55290) ((-395 . -666) 55274) ((-395 . -664) 55243) ((-395 . -133) T) ((-395 . -25) T) ((-395 . -102) T) ((-395 . -1236) T) ((-395 . -628) 55225) ((-395 . -1120) T) ((-395 . -23) T) ((-395 . -21) T) ((-395 . -1075) 55209) ((-395 . -1070) 55193) ((-395 . -111) 55172) ((-394 . -111) 55151) ((-394 . -1070) 55135) ((-394 . -1075) 55119) ((-394 . -21) T) ((-394 . -664) 55088) ((-394 . -23) T) ((-394 . -1120) T) ((-394 . -628) 55070) ((-394 . -1236) T) ((-394 . -102) T) ((-394 . -25) T) ((-394 . -133) T) ((-394 . -666) 55054) ((-394 . -521) 55033) ((-394 . -735) 55003) ((-394 . -658) 54973) ((-391 . -416) T) ((-391 . -149) T) ((-391 . -631) 54923) ((-391 . -666) 54888) ((-391 . -664) 54838) ((-391 . -133) T) ((-391 . -25) T) ((-391 . -102) T) ((-391 . -1236) T) ((-391 . -628) 54805) ((-391 . -1120) T) ((-391 . -23) T) ((-391 . -21) T) ((-391 . -744) T) ((-391 . -1131) T) ((-391 . -1076) T) ((-391 . -1068) T) ((-391 . -629) 54719) ((-391 . -376) T) ((-391 . -1241) T) ((-391 . -938) T) ((-391 . -568) T) ((-391 . -175) T) ((-391 . -735) 54684) ((-391 . -658) 54649) ((-391 . -38) 54614) ((-391 . -464) T) ((-391 . -319) T) ((-391 . -111) 54563) ((-391 . -1070) 54528) ((-391 . -1075) 54493) ((-391 . -302) T) ((-391 . -250) T) ((-391 . -858) T) ((-391 . -817) T) ((-391 . -814) T) ((-391 . -862) T) ((-391 . -859) T) ((-391 . -812) T) ((-391 . -810) T) ((-391 . -899) 54475) ((-391 . -1021) T) ((-391 . -1039) T) ((-391 . -1057) 54435) ((-391 . -1079) T) ((-391 . -240) T) ((-391 . -236) 54422) ((-391 . -239) T) ((-391 . -1222) T) ((-391 . -1225) T) ((-391 . -505) T) ((-391 . -296) T) ((-391 . -95) T) ((-391 . -35) T) ((-391 . -633) 54404) ((-377 . -378) 54381) ((-377 . -102) T) ((-377 . -1236) T) ((-377 . -628) 54363) ((-377 . -1120) T) ((-374 . -485) T) ((-374 . -1131) T) ((-374 . -102) T) ((-374 . -1236) T) ((-374 . -628) 54345) ((-374 . -1120) T) ((-374 . -744) T) ((-374 . -1057) 54329) ((-374 . -631) 54313) ((-372 . -341) 54297) ((-372 . -240) 54276) ((-372 . -236) 54249) ((-372 . -239) 54228) ((-372 . -381) 54207) ((-372 . -1171) 54186) ((-372 . -363) 54165) ((-372 . -149) 54144) ((-372 . -631) 54081) ((-372 . -666) 54033) ((-372 . -664) 53970) ((-372 . -133) T) ((-372 . -25) T) ((-372 . -102) T) ((-372 . -1236) T) ((-372 . -628) 53952) ((-372 . -1120) T) ((-372 . -23) T) ((-372 . -21) T) ((-372 . -744) T) ((-372 . -1131) T) ((-372 . -1076) T) ((-372 . -1068) T) ((-372 . -376) T) ((-372 . -1241) T) ((-372 . -938) T) ((-372 . -568) T) ((-372 . -175) T) ((-372 . -735) 53904) ((-372 . -658) 53856) ((-372 . -38) 53821) ((-372 . -464) T) ((-372 . -319) T) ((-372 . -111) 53752) ((-372 . -1070) 53704) ((-372 . -1075) 53656) ((-372 . -302) T) ((-372 . -250) T) ((-372 . -414) 53607) ((-372 . -147) 53558) ((-372 . -1057) 53542) ((-372 . -1294) 53526) ((-372 . -1305) 53510) ((-368 . -341) 53494) ((-368 . -240) 53473) ((-368 . -236) 53446) ((-368 . -239) 53425) ((-368 . -381) 53404) ((-368 . -1171) 53383) ((-368 . -363) 53362) ((-368 . -149) 53341) ((-368 . -631) 53278) ((-368 . -666) 53230) ((-368 . -664) 53167) ((-368 . -133) T) ((-368 . -25) T) ((-368 . -102) T) ((-368 . -1236) T) ((-368 . -628) 53149) ((-368 . -1120) T) ((-368 . -23) T) ((-368 . -21) T) ((-368 . -744) T) ((-368 . -1131) T) ((-368 . -1076) T) ((-368 . -1068) T) ((-368 . -376) T) ((-368 . -1241) T) ((-368 . -938) T) ((-368 . -568) T) ((-368 . -175) T) ((-368 . -735) 53101) ((-368 . -658) 53053) ((-368 . -38) 53018) ((-368 . -464) T) ((-368 . -319) T) ((-368 . -111) 52949) ((-368 . -1070) 52901) ((-368 . -1075) 52853) ((-368 . -302) T) ((-368 . -250) T) ((-368 . -414) 52804) ((-368 . -147) 52755) ((-368 . -1057) 52739) ((-368 . -1294) 52723) ((-368 . -1305) 52707) ((-367 . -341) 52691) ((-367 . -240) 52670) ((-367 . -236) 52643) ((-367 . -239) 52622) ((-367 . -381) 52601) ((-367 . -1171) 52580) ((-367 . -363) 52559) ((-367 . -149) 52538) ((-367 . -631) 52475) ((-367 . -666) 52427) ((-367 . -664) 52364) ((-367 . -133) T) ((-367 . -25) T) ((-367 . -102) T) ((-367 . -1236) T) ((-367 . -628) 52346) ((-367 . -1120) T) ((-367 . -23) T) ((-367 . -21) T) ((-367 . -744) T) ((-367 . -1131) T) ((-367 . -1076) T) ((-367 . -1068) T) ((-367 . -376) T) ((-367 . -1241) T) ((-367 . -938) T) ((-367 . -568) T) ((-367 . -175) T) ((-367 . -735) 52298) ((-367 . -658) 52250) ((-367 . -38) 52215) ((-367 . -464) T) ((-367 . -319) T) ((-367 . -111) 52146) ((-367 . -1070) 52098) ((-367 . -1075) 52050) ((-367 . -302) T) ((-367 . -250) T) ((-367 . -414) 52001) ((-367 . -147) 51952) ((-367 . -1057) 51936) ((-367 . -1294) 51920) ((-367 . -1305) 51904) ((-366 . -341) 51888) ((-366 . -240) 51867) ((-366 . -236) 51840) ((-366 . -239) 51819) ((-366 . -381) 51798) ((-366 . -1171) 51777) ((-366 . -363) 51756) ((-366 . -149) 51735) ((-366 . -631) 51672) ((-366 . -666) 51624) ((-366 . -664) 51561) ((-366 . -133) T) ((-366 . -25) T) ((-366 . -102) T) ((-366 . -1236) T) ((-366 . -628) 51543) ((-366 . -1120) T) ((-366 . -23) T) ((-366 . -21) T) ((-366 . -744) T) ((-366 . -1131) T) ((-366 . -1076) T) ((-366 . -1068) T) ((-366 . -376) T) ((-366 . -1241) T) ((-366 . -938) T) ((-366 . -568) T) ((-366 . -175) T) ((-366 . -735) 51495) ((-366 . -658) 51447) ((-366 . -38) 51412) ((-366 . -464) T) ((-366 . -319) T) ((-366 . -111) 51343) ((-366 . -1070) 51295) ((-366 . -1075) 51247) ((-366 . -302) T) ((-366 . -250) T) ((-366 . -414) 51198) ((-366 . -147) 51149) ((-366 . -1057) 51133) ((-366 . -1294) 51117) ((-366 . -1305) 51101) ((-365 . -341) 51078) ((-365 . -240) T) ((-365 . -236) 51065) ((-365 . -239) T) ((-365 . -381) T) ((-365 . -1171) T) ((-365 . -363) T) ((-365 . -149) 51047) ((-365 . -631) 50977) ((-365 . -666) 50922) ((-365 . -664) 50852) ((-365 . -133) T) ((-365 . -25) T) ((-365 . -102) T) ((-365 . -1236) T) ((-365 . -628) 50834) ((-365 . -1120) T) ((-365 . -23) T) ((-365 . -21) T) ((-365 . -744) T) ((-365 . -1131) T) ((-365 . -1076) T) ((-365 . -1068) T) ((-365 . -376) T) ((-365 . -1241) T) ((-365 . -938) T) ((-365 . -568) T) ((-365 . -175) T) ((-365 . -735) 50779) ((-365 . -658) 50724) ((-365 . -38) 50689) ((-365 . -464) T) ((-365 . -319) T) ((-365 . -111) 50606) ((-365 . -1070) 50551) ((-365 . -1075) 50496) ((-365 . -302) T) ((-365 . -250) T) ((-365 . -414) T) ((-365 . -147) T) ((-365 . -1057) 50473) ((-365 . -1294) 50450) ((-365 . -1305) 50427) ((-359 . -341) 50411) ((-359 . -240) 50390) ((-359 . -236) 50363) ((-359 . -239) 50342) ((-359 . -381) 50321) ((-359 . -1171) 50300) ((-359 . -363) 50279) ((-359 . -149) 50258) ((-359 . -631) 50195) ((-359 . -666) 50147) ((-359 . -664) 50084) ((-359 . -133) T) ((-359 . -25) T) ((-359 . -102) T) ((-359 . -1236) T) ((-359 . -628) 50066) ((-359 . -1120) T) ((-359 . -23) T) ((-359 . -21) T) ((-359 . -744) T) ((-359 . -1131) T) ((-359 . -1076) T) ((-359 . -1068) T) ((-359 . -376) T) ((-359 . -1241) T) ((-359 . -938) T) ((-359 . -568) T) ((-359 . -175) T) ((-359 . -735) 50018) ((-359 . -658) 49970) ((-359 . -38) 49935) ((-359 . -464) T) ((-359 . -319) T) ((-359 . -111) 49866) ((-359 . -1070) 49818) ((-359 . -1075) 49770) ((-359 . -302) T) ((-359 . -250) T) ((-359 . -414) 49721) ((-359 . -147) 49672) ((-359 . -1057) 49656) ((-359 . -1294) 49640) ((-359 . -1305) 49624) ((-358 . -341) 49608) ((-358 . -240) 49587) ((-358 . -236) 49560) ((-358 . -239) 49539) ((-358 . -381) 49518) ((-358 . -1171) 49497) ((-358 . -363) 49476) ((-358 . -149) 49455) ((-358 . -631) 49392) ((-358 . -666) 49344) ((-358 . -664) 49281) ((-358 . -133) T) ((-358 . -25) T) ((-358 . -102) T) ((-358 . -1236) T) ((-358 . -628) 49263) ((-358 . -1120) T) ((-358 . -23) T) ((-358 . -21) T) ((-358 . -744) T) ((-358 . -1131) T) ((-358 . -1076) T) ((-358 . -1068) T) ((-358 . -376) T) ((-358 . -1241) T) ((-358 . -938) T) ((-358 . -568) T) ((-358 . -175) T) ((-358 . -735) 49215) ((-358 . -658) 49167) ((-358 . -38) 49132) ((-358 . -464) T) ((-358 . -319) T) ((-358 . -111) 49063) ((-358 . -1070) 49015) ((-358 . -1075) 48967) ((-358 . -302) T) ((-358 . -250) T) ((-358 . -414) 48918) ((-358 . -147) 48869) ((-358 . -1057) 48853) ((-358 . -1294) 48837) ((-358 . -1305) 48821) ((-357 . -341) 48798) ((-357 . -240) T) ((-357 . -236) 48785) ((-357 . -239) T) ((-357 . -381) T) ((-357 . -1171) T) ((-357 . -363) T) ((-357 . -149) 48767) ((-357 . -631) 48697) ((-357 . -666) 48642) ((-357 . -664) 48572) ((-357 . -133) T) ((-357 . -25) T) ((-357 . -102) T) ((-357 . -1236) T) ((-357 . -628) 48554) ((-357 . -1120) T) ((-357 . -23) T) ((-357 . -21) T) ((-357 . -744) T) ((-357 . -1131) T) ((-357 . -1076) T) ((-357 . -1068) T) ((-357 . -376) T) ((-357 . -1241) T) ((-357 . -938) T) ((-357 . -568) T) ((-357 . -175) T) ((-357 . -735) 48499) ((-357 . -658) 48444) ((-357 . -38) 48409) ((-357 . -464) T) ((-357 . -319) T) ((-357 . -111) 48326) ((-357 . -1070) 48271) ((-357 . -1075) 48216) ((-357 . -302) T) ((-357 . -250) T) ((-357 . -414) T) ((-357 . -147) T) ((-357 . -1057) 48193) ((-357 . -1294) 48170) ((-357 . -1305) 48147) ((-353 . -341) 48124) ((-353 . -240) T) ((-353 . -236) 48111) ((-353 . -239) T) ((-353 . -381) T) ((-353 . -1171) T) ((-353 . -363) T) ((-353 . -149) 48093) ((-353 . -631) 48023) ((-353 . -666) 47968) ((-353 . -664) 47898) ((-353 . -133) T) ((-353 . -25) T) ((-353 . -102) T) ((-353 . -1236) T) ((-353 . -628) 47880) ((-353 . -1120) T) ((-353 . -23) T) ((-353 . -21) T) ((-353 . -744) T) ((-353 . -1131) T) ((-353 . -1076) T) ((-353 . -1068) T) ((-353 . -376) T) ((-353 . -1241) T) ((-353 . -938) T) ((-353 . -568) T) ((-353 . -175) T) ((-353 . -735) 47825) ((-353 . -658) 47770) ((-353 . -38) 47735) ((-353 . -464) T) ((-353 . -319) T) ((-353 . -111) 47652) ((-353 . -1070) 47597) ((-353 . -1075) 47542) ((-353 . -302) T) ((-353 . -250) T) ((-353 . -414) T) ((-353 . -147) T) ((-353 . -1057) 47519) ((-353 . -1294) 47496) ((-353 . -1305) 47473) ((-352 . -310) T) ((-352 . -102) T) ((-352 . -1236) T) ((-352 . -628) 47455) ((-352 . -1120) T) ((-352 . -631) 47407) ((-352 . -1057) 47374) ((-352 . -526) 47340) ((-352 . -321) 47327) ((-352 . -38) 47311) ((-352 . -666) 47285) ((-352 . -664) 47244) ((-352 . -744) T) ((-352 . -1131) T) ((-352 . -1076) T) ((-352 . -1068) T) ((-352 . -111) 47223) ((-352 . -1070) 47207) ((-352 . -1075) 47191) ((-352 . -21) T) ((-352 . -23) T) ((-352 . -25) T) ((-352 . -133) T) ((-352 . -658) 47175) ((-352 . -735) 47159) ((-352 . -915) 47140) ((-352 . -909) 47119) ((-352 . -917) 47100) ((-346 . -349) 47069) ((-346 . -133) T) ((-346 . -25) T) ((-346 . -102) T) ((-346 . -1236) T) ((-346 . -628) 47051) ((-346 . -1120) T) ((-346 . -23) T) ((-346 . -664) 47033) ((-346 . -21) T) ((-345 . -1120) T) ((-345 . -628) 47015) ((-345 . -1236) T) ((-345 . -102) T) ((-343 . -859) T) ((-343 . -628) 46997) ((-343 . -1120) T) ((-343 . -102) T) ((-343 . -1236) T) ((-343 . -862) T) ((-342 . -1120) T) ((-342 . -628) 46979) ((-342 . -1236) T) ((-342 . -102) T) ((-339 . -19) 46963) ((-339 . -669) 46947) ((-339 . -300) 46924) ((-339 . -298) 46876) ((-339 . -614) 46853) ((-339 . -629) 46814) ((-339 . -501) 46798) ((-339 . -1120) 46748) ((-339 . -526) 46681) ((-339 . -321) 46619) ((-339 . -628) 46531) ((-339 . -102) 46461) ((-339 . -1236) T) ((-339 . -34) T) ((-339 . -153) 46445) ((-339 . -859) 46424) ((-339 . -862) 46403) ((-339 . -385) 46387) ((-339 . -294) 46371) ((-336 . -335) 46348) ((-336 . -631) 46332) ((-336 . -1057) 46316) ((-336 . -23) T) ((-336 . -1120) T) ((-336 . -628) 46298) ((-336 . -1236) T) ((-336 . -102) T) ((-336 . -25) T) ((-336 . -133) T) ((-334 . -21) T) ((-334 . -664) 46280) ((-334 . -23) T) ((-334 . -1120) T) ((-334 . -628) 46262) ((-334 . -1236) T) ((-334 . -102) T) ((-334 . -25) T) ((-334 . -133) T) ((-334 . -735) 46244) ((-334 . -658) 46226) ((-334 . -666) 46208) ((-334 . -1075) 46190) ((-334 . -1070) 46172) ((-334 . -111) 46147) ((-334 . -335) 46124) ((-334 . -631) 46108) ((-334 . -1057) 46092) ((-334 . -859) 46071) ((-334 . -862) 46050) ((-331 . -1269) 46034) ((-331 . -240) 45986) ((-331 . -236) 45932) ((-331 . -239) 45884) ((-331 . -298) 45842) ((-331 . -915) 45748) ((-331 . -909) 45652) ((-331 . -917) 45558) ((-331 . -992) 45520) ((-331 . -38) 45361) ((-331 . -111) 45175) ((-331 . -1070) 45010) ((-331 . -1075) 44845) ((-331 . -664) 44727) ((-331 . -666) 44624) ((-331 . -658) 44465) ((-331 . -735) 44306) ((-331 . -631) 44132) ((-331 . -147) 44111) ((-331 . -149) 44090) ((-331 . -47) 44060) ((-331 . -1265) 44030) ((-331 . -35) 43996) ((-331 . -95) 43962) ((-331 . -296) 43928) ((-331 . -505) 43894) ((-331 . -1225) 43860) ((-331 . -1222) 43826) ((-331 . -1021) 43792) ((-331 . -250) 43771) ((-331 . -302) 43722) ((-331 . -133) T) ((-331 . -25) T) ((-331 . -102) T) ((-331 . -1236) T) ((-331 . -628) 43704) ((-331 . -1120) T) ((-331 . -23) T) ((-331 . -21) T) ((-331 . -1068) T) ((-331 . -1076) T) ((-331 . -1131) T) ((-331 . -744) T) ((-331 . -319) 43683) ((-331 . -464) 43662) ((-331 . -175) 43593) ((-331 . -568) 43544) ((-331 . -938) 43523) ((-331 . -1241) 43502) ((-331 . -376) 43481) ((-331 . -812) T) ((-331 . -859) T) ((-331 . -862) T) ((-331 . -814) T) ((-326 . -433) 43465) ((-326 . -631) 43029) ((-326 . -1057) 42692) ((-326 . -629) 42553) ((-326 . -897) 42537) ((-326 . -917) 42503) ((-326 . -909) 42467) ((-326 . -915) 42433) ((-326 . -485) 42412) ((-326 . -424) 42396) ((-326 . -899) 42321) ((-326 . -412) 42305) ((-326 . -656) 42211) ((-326 . -666) 41940) ((-326 . -390) 41909) ((-326 . -250) 41888) ((-326 . -111) 41777) ((-326 . -1070) 41687) ((-326 . -1075) 41597) ((-326 . -302) 41576) ((-326 . -735) 41486) ((-326 . -658) 41396) ((-326 . -664) 41051) ((-326 . -38) 40961) ((-326 . -319) 40940) ((-326 . -464) 40919) ((-326 . -175) 40898) ((-326 . -568) 40877) ((-326 . -938) 40856) ((-326 . -1241) 40835) ((-326 . -376) 40814) ((-326 . -321) 40801) ((-326 . -526) 40767) ((-326 . -310) T) ((-326 . -149) 40746) ((-326 . -147) 40725) ((-326 . -1068) 40615) ((-326 . -1076) 40505) ((-326 . -1131) 40354) ((-326 . -744) 40203) ((-326 . -133) 40074) ((-326 . -25) 39926) ((-326 . -102) T) ((-326 . -1236) T) ((-326 . -628) 39908) ((-326 . -1120) T) ((-326 . -23) 39760) ((-326 . -21) 39631) ((-326 . -29) 39601) ((-326 . -1021) 39580) ((-326 . -27) 39559) ((-326 . -1222) 39538) ((-326 . -1225) 39517) ((-326 . -505) 39496) ((-326 . -296) 39475) ((-326 . -95) 39454) ((-326 . -35) 39433) ((-326 . -162) 39412) ((-326 . -145) 39391) ((-326 . -645) 39370) ((-326 . -977) 39349) ((-326 . -1158) 39328) ((-325 . -1010) 39289) ((-325 . -1171) NIL) ((-325 . -1057) 39219) ((-325 . -631) 39102) ((-325 . -629) NIL) ((-325 . -1039) NIL) ((-325 . -927) NIL) ((-325 . -897) 39063) ((-325 . -858) NIL) ((-325 . -817) NIL) ((-325 . -814) NIL) ((-325 . -862) NIL) ((-325 . -859) NIL) ((-325 . -812) NIL) ((-325 . -810) NIL) ((-325 . -840) NIL) ((-325 . -899) NIL) ((-325 . -412) 39024) ((-325 . -656) 38985) ((-325 . -666) 38914) ((-325 . -390) 38875) ((-325 . -298) 38741) ((-325 . -321) 38637) ((-325 . -526) 38388) ((-325 . -351) 38349) ((-325 . -250) T) ((-325 . -111) 38234) ((-325 . -1070) 38163) ((-325 . -1075) 38092) ((-325 . -302) T) ((-325 . -735) 38021) ((-325 . -658) 37950) ((-325 . -664) 37864) ((-325 . -38) 37793) ((-325 . -319) T) ((-325 . -464) T) ((-325 . -175) T) ((-325 . -568) T) ((-325 . -938) T) ((-325 . -1241) T) ((-325 . -376) T) ((-325 . -240) NIL) ((-325 . -236) NIL) ((-325 . -239) NIL) ((-325 . -274) 37754) ((-325 . -909) NIL) ((-325 . -917) NIL) ((-325 . -915) NIL) ((-325 . -234) 37715) ((-325 . -149) 37671) ((-325 . -147) 37627) ((-325 . -133) T) ((-325 . -25) T) ((-325 . -102) T) ((-325 . -1236) T) ((-325 . -628) 37609) ((-325 . -1120) T) ((-325 . -23) T) ((-325 . -21) T) ((-325 . -1068) T) ((-325 . -1076) T) ((-325 . -1131) T) ((-325 . -744) T) ((-324 . -1102) T) ((-324 . -502) 37590) ((-324 . -628) 37556) ((-324 . -631) 37537) ((-324 . -1120) T) ((-324 . -1236) T) ((-324 . -102) T) ((-324 . -93) T) ((-323 . -1120) T) ((-323 . -628) 37519) ((-323 . -1236) T) ((-323 . -102) T) ((-307 . -1213) 37498) ((-307 . -233) 37448) ((-307 . -107) 37398) ((-307 . -321) 37202) ((-307 . -526) 36962) ((-307 . -501) 36899) ((-307 . -153) 36849) ((-307 . -629) NIL) ((-307 . -242) 36799) ((-307 . -625) 36778) ((-307 . -300) 36757) ((-307 . -1236) T) ((-307 . -298) 36736) ((-307 . -1120) T) ((-307 . -628) 36718) ((-307 . -102) T) ((-307 . -34) T) ((-307 . -614) 36697) ((-305 . -1236) T) ((-305 . -526) 36646) ((-305 . -1120) 36428) ((-305 . -628) 36169) ((-305 . -102) 35951) ((-305 . -25) 35815) ((-305 . -21) 35698) ((-305 . -664) 35433) ((-305 . -23) 35316) ((-305 . -133) 35199) ((-305 . -1131) 35080) ((-305 . -744) 34982) ((-305 . -485) 34961) ((-305 . -1068) 34903) ((-305 . -1076) 34845) ((-305 . -666) 34705) ((-305 . -631) 34636) ((-305 . -111) 34552) ((-305 . -1070) 34473) ((-305 . -1075) 34394) ((-305 . -735) 34336) ((-305 . -658) 34278) ((-305 . -915) 34237) ((-305 . -909) 34194) ((-305 . -917) 34153) ((-305 . -1294) 34123) ((-303 . -628) 34105) ((-301 . -319) T) ((-301 . -464) T) ((-301 . -38) 34092) ((-301 . -631) 34064) ((-301 . -744) T) ((-301 . -1131) T) ((-301 . -1076) T) ((-301 . -1068) T) ((-301 . -111) 34049) ((-301 . -1070) 34036) ((-301 . -1075) 34023) ((-301 . -21) T) ((-301 . -664) 33995) ((-301 . -23) T) ((-301 . -1120) T) ((-301 . -628) 33977) ((-301 . -1236) T) ((-301 . -102) T) ((-301 . -25) T) ((-301 . -133) T) ((-301 . -666) 33964) ((-301 . -658) 33951) ((-301 . -735) 33938) ((-301 . -175) T) ((-301 . -302) T) ((-301 . -568) T) ((-301 . -938) T) ((-301 . -298) 33917) ((-292 . -628) 33899) ((-291 . -628) 33881) ((-286 . -859) T) ((-286 . -628) 33863) ((-286 . -1120) T) ((-286 . -102) T) ((-286 . -1236) T) ((-286 . -862) T) ((-285 . -850) T) ((-285 . -102) T) ((-285 . -1236) T) ((-285 . -628) 33845) ((-285 . -1120) T) ((-284 . -850) T) ((-284 . -102) T) ((-284 . -1236) T) ((-284 . -628) 33827) ((-284 . -1120) T) ((-283 . -850) T) ((-283 . -102) T) ((-283 . -1236) T) ((-283 . -628) 33809) ((-283 . -1120) T) ((-282 . -850) T) ((-282 . -102) T) ((-282 . -1236) T) ((-282 . -628) 33791) ((-282 . -1120) T) ((-281 . -850) T) ((-281 . -102) T) ((-281 . -1236) T) ((-281 . -628) 33773) ((-281 . -1120) T) ((-280 . -850) T) ((-280 . -102) T) ((-280 . -1236) T) ((-280 . -628) 33755) ((-280 . -1120) T) ((-279 . -850) T) ((-279 . -102) T) ((-279 . -1236) T) ((-279 . -628) 33737) ((-279 . -1120) T) ((-275 . -262) 33699) ((-275 . -631) 33452) ((-275 . -1057) 33296) ((-275 . -629) 33044) ((-275 . -338) 33016) ((-275 . -424) 33000) ((-275 . -38) 32849) ((-275 . -111) 32671) ((-275 . -1070) 32514) ((-275 . -1075) 32357) ((-275 . -664) 32267) ((-275 . -666) 32156) ((-275 . -658) 32005) ((-275 . -735) 31854) ((-275 . -147) 31833) ((-275 . -149) 31812) ((-275 . -175) 31723) ((-275 . -568) 31654) ((-275 . -302) 31585) ((-275 . -47) 31557) ((-275 . -390) 31541) ((-275 . -656) 31489) ((-275 . -464) 31440) ((-275 . -526) 31331) ((-275 . -915) 31277) ((-275 . -909) 31183) ((-275 . -917) 31093) ((-275 . -899) 30952) ((-275 . -927) 30931) ((-275 . -1241) 30910) ((-275 . -967) 30877) ((-275 . -321) 30864) ((-275 . -240) 30843) ((-275 . -133) T) ((-275 . -25) T) ((-275 . -102) T) ((-275 . -628) 30825) ((-275 . -1120) T) ((-275 . -23) T) ((-275 . -21) T) ((-275 . -744) T) ((-275 . -1131) T) ((-275 . -1076) T) ((-275 . -1068) T) ((-275 . -236) 30770) ((-275 . -1236) T) ((-275 . -239) 30721) ((-275 . -274) 30705) ((-275 . -234) 30689) ((-270 . -1120) T) ((-270 . -628) 30671) ((-270 . -1236) T) ((-270 . -102) T) ((-260 . -245) 30650) ((-260 . -1294) 30620) ((-260 . -817) 30599) ((-260 . -814) 30578) ((-260 . -862) 30529) ((-260 . -859) 30480) ((-260 . -812) 30459) ((-260 . -813) 30438) ((-260 . -735) 30380) ((-260 . -658) 30302) ((-260 . -300) 30279) ((-260 . -298) 30256) ((-260 . -501) 30240) ((-260 . -526) 30173) ((-260 . -321) 30111) ((-260 . -34) T) ((-260 . -614) 30088) ((-260 . -1057) 29915) ((-260 . -631) 29713) ((-260 . -424) 29682) ((-260 . -656) 29588) ((-260 . -666) 29408) ((-260 . -390) 29377) ((-260 . -381) 29356) ((-260 . -240) 29308) ((-260 . -664) 29156) ((-260 . -744) 29134) ((-260 . -1131) 29112) ((-260 . -1076) 29090) ((-260 . -1068) 29068) ((-260 . -236) 28959) ((-260 . -239) 28856) ((-260 . -274) 28825) ((-260 . -909) 28692) ((-260 . -917) 28561) ((-260 . -915) 28493) ((-260 . -234) 28462) ((-260 . -628) 28423) ((-260 . -1075) 28344) ((-260 . -1070) 28245) ((-260 . -111) 28161) ((-260 . -133) T) ((-260 . -25) T) ((-260 . -102) T) ((-260 . -1236) T) ((-260 . -1120) T) ((-260 . -23) T) ((-260 . -21) T) ((-259 . -245) 28140) ((-259 . -1294) 28110) ((-259 . -817) 28089) ((-259 . -814) 28068) ((-259 . -862) 28019) ((-259 . -859) 27970) ((-259 . -812) 27949) ((-259 . -813) 27928) ((-259 . -735) 27870) ((-259 . -658) 27792) ((-259 . -300) 27769) ((-259 . -298) 27746) ((-259 . -501) 27730) ((-259 . -526) 27663) ((-259 . -321) 27601) ((-259 . -34) T) ((-259 . -614) 27578) ((-259 . -1057) 27405) ((-259 . -631) 27203) ((-259 . -424) 27172) ((-259 . -656) 27078) ((-259 . -666) 26885) ((-259 . -390) 26854) ((-259 . -381) 26833) ((-259 . -240) 26785) ((-259 . -664) 26620) ((-259 . -744) 26598) ((-259 . -1131) 26576) ((-259 . -1076) 26554) ((-259 . -1068) 26532) ((-259 . -236) 26423) ((-259 . -239) 26320) ((-259 . -274) 26289) ((-259 . -909) 26156) ((-259 . -917) 26025) ((-259 . -915) 25957) ((-259 . -234) 25926) ((-259 . -628) 25887) ((-259 . -1075) 25808) ((-259 . -1070) 25709) ((-259 . -111) 25625) ((-259 . -133) T) ((-259 . -25) T) ((-259 . -102) T) ((-259 . -1236) T) ((-259 . -1120) T) ((-259 . -23) T) ((-259 . -21) T) ((-258 . -1120) T) ((-258 . -628) 25607) ((-258 . -1236) T) ((-258 . -102) T) ((-258 . -298) 25581) ((-257 . -189) T) ((-257 . -1120) T) ((-257 . -628) 25548) ((-257 . -1236) T) ((-257 . -102) T) ((-257 . -847) 25530) ((-256 . -1120) T) ((-256 . -628) 25512) ((-256 . -1236) T) ((-256 . -102) T) ((-255 . -967) 25457) ((-255 . -631) 25242) ((-255 . -1057) 25118) ((-255 . -1241) 25097) ((-255 . -927) 25076) ((-255 . -899) NIL) ((-255 . -917) 25053) ((-255 . -909) 25028) ((-255 . -915) 25005) ((-255 . -526) 24943) ((-255 . -464) 24894) ((-255 . -656) 24842) ((-255 . -666) 24731) ((-255 . -390) 24715) ((-255 . -47) 24672) ((-255 . -38) 24521) ((-255 . -658) 24370) ((-255 . -735) 24219) ((-255 . -302) 24150) ((-255 . -568) 24081) ((-255 . -111) 23903) ((-255 . -1070) 23746) ((-255 . -1075) 23589) ((-255 . -175) 23500) ((-255 . -149) 23479) ((-255 . -147) 23458) ((-255 . -664) 23368) ((-255 . -133) T) ((-255 . -25) T) ((-255 . -102) T) ((-255 . -1236) T) ((-255 . -628) 23350) ((-255 . -1120) T) ((-255 . -23) T) ((-255 . -21) T) ((-255 . -1068) T) ((-255 . -1076) T) ((-255 . -1131) T) ((-255 . -744) T) ((-255 . -424) 23334) ((-255 . -338) 23291) ((-255 . -321) 23278) ((-255 . -629) 23139) ((-252 . -684) 23123) ((-252 . -1275) 23107) ((-252 . -1029) 23091) ((-252 . -1169) 23075) ((-252 . -859) 23054) ((-252 . -862) 23033) ((-252 . -385) 23017) ((-252 . -669) 23001) ((-252 . -300) 22978) ((-252 . -298) 22930) ((-252 . -614) 22907) ((-252 . -629) 22868) ((-252 . -501) 22852) ((-252 . -1120) 22802) ((-252 . -526) 22735) ((-252 . -321) 22673) ((-252 . -628) 22565) ((-252 . -102) 22495) ((-252 . -1236) T) ((-252 . -34) T) ((-252 . -153) 22479) ((-252 . -294) 22463) ((-252 . -502) 22440) ((-252 . -631) 22417) ((-246 . -245) 22396) ((-246 . -1294) 22366) ((-246 . -817) 22345) ((-246 . -814) 22324) ((-246 . -862) 22275) ((-246 . -859) 22226) ((-246 . -812) 22205) ((-246 . -813) 22184) ((-246 . -735) 22126) ((-246 . -658) 22048) ((-246 . -300) 22025) ((-246 . -298) 22002) ((-246 . -501) 21986) ((-246 . -526) 21919) ((-246 . -321) 21857) ((-246 . -34) T) ((-246 . -614) 21834) ((-246 . -1057) 21661) ((-246 . -631) 21459) ((-246 . -424) 21428) ((-246 . -656) 21334) ((-246 . -666) 21167) ((-246 . -390) 21136) ((-246 . -381) 21115) ((-246 . -240) 21067) ((-246 . -664) 20846) ((-246 . -744) 20824) ((-246 . -1131) 20802) ((-246 . -1076) 20780) ((-246 . -1068) 20758) ((-246 . -236) 20649) ((-246 . -239) 20546) ((-246 . -274) 20515) ((-246 . -909) 20382) ((-246 . -917) 20251) ((-246 . -915) 20183) ((-246 . -234) 20152) ((-246 . -628) 19845) ((-246 . -1075) 19766) ((-246 . -1070) 19667) ((-246 . -111) 19583) ((-246 . -133) 19454) ((-246 . -25) 19287) ((-246 . -102) 19019) ((-246 . -1236) T) ((-246 . -1120) 18771) ((-246 . -23) 18623) ((-246 . -21) 18534) ((-231 . -704) 18492) ((-231 . -501) 18476) ((-231 . -1120) 18454) ((-231 . -526) 18387) ((-231 . -321) 18325) ((-231 . -628) 18257) ((-231 . -102) 18207) ((-231 . -1236) T) ((-231 . -34) T) ((-231 . -57) 18165) ((-229 . -416) T) ((-229 . -149) T) ((-229 . -631) 18115) ((-229 . -666) 18080) ((-229 . -664) 18030) ((-229 . -133) T) ((-229 . -25) T) ((-229 . -102) T) ((-229 . -1236) T) ((-229 . -628) 18012) ((-229 . -1120) T) ((-229 . -23) T) ((-229 . -21) T) ((-229 . -744) T) ((-229 . -1131) T) ((-229 . -1076) T) ((-229 . -1068) T) ((-229 . -629) 17942) ((-229 . -376) T) ((-229 . -1241) T) ((-229 . -938) T) ((-229 . -568) T) ((-229 . -175) T) ((-229 . -735) 17907) ((-229 . -658) 17872) ((-229 . -38) 17837) ((-229 . -464) T) ((-229 . -319) T) ((-229 . -111) 17786) ((-229 . -1070) 17751) ((-229 . -1075) 17716) ((-229 . -302) T) ((-229 . -250) T) ((-229 . -858) T) ((-229 . -817) T) ((-229 . -814) T) ((-229 . -862) T) ((-229 . -859) T) ((-229 . -812) T) ((-229 . -810) T) ((-229 . -899) 17698) ((-229 . -1021) T) ((-229 . -1039) T) ((-229 . -1057) 17658) ((-229 . -1079) T) ((-229 . -240) T) ((-229 . -236) 17645) ((-229 . -239) T) ((-229 . -1222) T) ((-229 . -1225) T) ((-229 . -505) T) ((-229 . -296) T) ((-229 . -95) T) ((-229 . -35) T) ((-227 . -636) 17622) ((-227 . -631) 17584) ((-227 . -666) 17551) ((-227 . -664) 17503) ((-227 . -744) T) ((-227 . -1131) T) ((-227 . -1076) T) ((-227 . -1068) T) ((-227 . -21) T) ((-227 . -23) T) ((-227 . -1120) T) ((-227 . -628) 17485) ((-227 . -1236) T) ((-227 . -102) T) ((-227 . -25) T) ((-227 . -133) T) ((-227 . -1057) 17462) ((-226 . -263) 17446) ((-226 . -1140) 17430) ((-226 . -107) 17414) ((-226 . -34) T) ((-226 . -1236) T) ((-226 . -102) 17364) ((-226 . -628) 17296) ((-226 . -321) 17234) ((-226 . -526) 17167) ((-226 . -1120) 17145) ((-226 . -501) 17129) ((-226 . -1014) 17113) ((-222 . -1102) T) ((-222 . -502) 17094) ((-222 . -628) 17060) ((-222 . -631) 17041) ((-222 . -1120) T) ((-222 . -1236) T) ((-222 . -102) T) ((-222 . -93) T) ((-221 . -1010) 17023) ((-221 . -1171) T) ((-221 . -631) 16973) ((-221 . -1057) 16933) ((-221 . -629) 16863) ((-221 . -1039) T) ((-221 . -927) NIL) ((-221 . -897) 16845) ((-221 . -858) T) ((-221 . -817) T) ((-221 . -814) T) ((-221 . -862) T) ((-221 . -859) T) ((-221 . -812) T) ((-221 . -810) T) ((-221 . -840) T) ((-221 . -899) 16827) ((-221 . -412) 16809) ((-221 . -656) 16791) ((-221 . -390) 16773) ((-221 . -298) NIL) ((-221 . -321) NIL) ((-221 . -526) NIL) ((-221 . -351) 16755) ((-221 . -250) T) ((-221 . -111) 16682) ((-221 . -1070) 16632) ((-221 . -1075) 16582) ((-221 . -302) T) ((-221 . -735) 16532) ((-221 . -658) 16482) ((-221 . -666) 16432) ((-221 . -664) 16382) ((-221 . -38) 16332) ((-221 . -319) T) ((-221 . -464) T) ((-221 . -175) T) ((-221 . -568) T) ((-221 . -938) T) ((-221 . -1241) T) ((-221 . -376) T) ((-221 . -240) T) ((-221 . -236) 16319) ((-221 . -239) T) ((-221 . -274) 16301) ((-221 . -909) NIL) ((-221 . -917) NIL) ((-221 . -915) NIL) ((-221 . -234) 16283) ((-221 . -149) T) ((-221 . -147) NIL) ((-221 . -133) T) ((-221 . -25) T) ((-221 . -102) T) ((-221 . -1236) T) ((-221 . -628) 16224) ((-221 . -1120) T) ((-221 . -23) T) ((-221 . -21) T) ((-221 . -1068) T) ((-221 . -1076) T) ((-221 . -1131) T) ((-221 . -744) T) ((-218 . -855) T) ((-218 . -862) T) ((-218 . -859) T) ((-218 . -1120) T) ((-218 . -628) 16206) ((-218 . -1236) T) ((-218 . -102) T) ((-218 . -381) T) ((-217 . -1120) T) ((-217 . -628) 16188) ((-217 . -1236) T) ((-217 . -102) T) ((-217 . -631) 16165) ((-216 . -1120) T) ((-216 . -628) 16147) ((-216 . -1236) T) ((-216 . -102) T) ((-215 . -910) T) ((-215 . -102) T) ((-215 . -1236) T) ((-215 . -628) 16129) ((-215 . -1120) T) ((-214 . -910) T) ((-214 . -102) T) ((-214 . -1236) T) ((-214 . -628) 16111) ((-214 . -1120) T) ((-212 . -820) T) ((-212 . -102) T) ((-212 . -1236) T) ((-212 . -628) 16093) ((-212 . -1120) T) ((-211 . -820) T) ((-211 . -102) T) ((-211 . -1236) T) ((-211 . -628) 16075) ((-211 . -1120) T) ((-210 . -820) T) ((-210 . -102) T) ((-210 . -1236) T) ((-210 . -628) 16057) ((-210 . -1120) T) ((-209 . -820) T) ((-209 . -102) T) ((-209 . -1236) T) ((-209 . -628) 16039) ((-209 . -1120) T) ((-206 . -805) T) ((-206 . -102) T) ((-206 . -1236) T) ((-206 . -628) 16021) ((-206 . -1120) T) ((-205 . -805) T) ((-205 . -102) T) ((-205 . -1236) T) ((-205 . -628) 16003) ((-205 . -1120) T) ((-204 . -805) T) ((-204 . -102) T) ((-204 . -1236) T) ((-204 . -628) 15985) ((-204 . -1120) T) ((-203 . -805) T) ((-203 . -102) T) ((-203 . -1236) T) ((-203 . -628) 15967) ((-203 . -1120) T) ((-202 . -805) T) ((-202 . -102) T) ((-202 . -1236) T) ((-202 . -628) 15949) ((-202 . -1120) T) ((-201 . -805) T) ((-201 . -102) T) ((-201 . -1236) T) ((-201 . -628) 15931) ((-201 . -1120) T) ((-200 . -805) T) ((-200 . -102) T) ((-200 . -1236) T) ((-200 . -628) 15913) ((-200 . -1120) T) ((-199 . -805) T) ((-199 . -102) T) ((-199 . -1236) T) ((-199 . -628) 15895) ((-199 . -1120) T) ((-198 . -805) T) ((-198 . -102) T) ((-198 . -1236) T) ((-198 . -628) 15877) ((-198 . -1120) T) ((-197 . -805) T) ((-197 . -102) T) ((-197 . -1236) T) ((-197 . -628) 15859) ((-197 . -1120) T) ((-196 . -805) T) ((-196 . -102) T) ((-196 . -1236) T) ((-196 . -628) 15841) ((-196 . -1120) T) ((-190 . -1120) T) ((-190 . -628) 15823) ((-190 . -1236) T) ((-190 . -102) T) ((-187 . -1120) T) ((-187 . -628) 15805) ((-187 . -1236) T) ((-187 . -102) T) ((-186 . -189) T) ((-186 . -1120) T) ((-186 . -628) 15787) ((-186 . -1236) T) ((-186 . -102) T) ((-186 . -847) 15769) ((-183 . -1102) T) ((-183 . -502) 15750) ((-183 . -628) 15716) ((-183 . -631) 15697) ((-183 . -1120) T) ((-183 . -1236) T) ((-183 . -102) T) ((-183 . -93) T) ((-178 . -628) 15679) ((-177 . -38) 15611) ((-177 . -631) 15528) ((-177 . -666) 15460) ((-177 . -664) 15377) ((-177 . -744) T) ((-177 . -1131) T) ((-177 . -1076) T) ((-177 . -1068) T) ((-177 . -111) 15276) ((-177 . -1070) 15208) ((-177 . -1075) 15140) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1120) T) ((-177 . -628) 15122) ((-177 . -1236) T) ((-177 . -102) T) ((-177 . -25) T) ((-177 . -133) T) ((-177 . -658) 15054) ((-177 . -735) 14986) ((-177 . -376) T) ((-177 . -1241) T) ((-177 . -938) T) ((-177 . -568) T) ((-177 . -175) T) ((-177 . -464) T) ((-177 . -319) T) ((-177 . -302) T) ((-177 . -250) T) ((-174 . -1120) T) ((-174 . -628) 14968) ((-174 . -1236) T) ((-174 . -102) T) ((-171 . -168) 14952) ((-171 . -35) 14930) ((-171 . -95) 14908) ((-171 . -296) 14886) ((-171 . -505) 14864) ((-171 . -1225) 14842) ((-171 . -1222) 14820) ((-171 . -1021) 14771) ((-171 . -927) 14724) ((-171 . -629) 14490) ((-171 . -897) 14474) ((-171 . -381) 14425) ((-171 . -363) 14404) ((-171 . -1171) 14383) ((-171 . -414) 14362) ((-171 . -422) 14333) ((-171 . -38) 14161) ((-171 . -111) 14050) ((-171 . -1070) 13960) ((-171 . -1075) 13870) ((-171 . -658) 13698) ((-171 . -735) 13526) ((-171 . -383) 13497) ((-171 . -742) 13468) ((-171 . -1057) 13364) ((-171 . -631) 13142) ((-171 . -424) 13126) ((-171 . -899) 13051) ((-171 . -412) 13035) ((-171 . -656) 12983) ((-171 . -666) 12857) ((-171 . -664) 12752) ((-171 . -390) 12736) ((-171 . -298) 12694) ((-171 . -321) 12659) ((-171 . -526) 12571) ((-171 . -351) 12555) ((-171 . -250) 12506) ((-171 . -1241) 12411) ((-171 . -376) 12362) ((-171 . -938) 12293) ((-171 . -568) 12204) ((-171 . -302) 12115) ((-171 . -464) 12046) ((-171 . -319) 11977) ((-171 . -240) 11928) ((-171 . -236) 11853) ((-171 . -239) 11784) ((-171 . -274) 11768) ((-171 . -909) 11689) ((-171 . -917) 11612) ((-171 . -915) 11571) ((-171 . -234) 11555) ((-171 . -175) T) ((-171 . -149) 11534) ((-171 . -1068) T) ((-171 . -1076) T) ((-171 . -1131) T) ((-171 . -744) T) ((-171 . -21) T) ((-171 . -23) T) ((-171 . -1120) T) ((-171 . -628) 11516) ((-171 . -1236) T) ((-171 . -102) T) ((-171 . -25) T) ((-171 . -133) T) ((-171 . -147) 11467) ((-164 . -1102) T) ((-164 . -502) 11448) ((-164 . -628) 11414) ((-164 . -631) 11395) ((-164 . -1120) T) ((-164 . -1236) T) ((-164 . -102) T) ((-164 . -93) T) ((-163 . -1120) T) ((-163 . -628) 11377) ((-163 . -1236) T) ((-163 . -102) T) ((-159 . -25) T) ((-159 . -102) T) ((-159 . -1236) T) ((-159 . -628) 11359) ((-159 . -1120) T) ((-158 . -1102) T) ((-158 . -502) 11340) ((-158 . -628) 11306) ((-158 . -631) 11287) ((-158 . -1120) T) ((-158 . -1236) T) ((-158 . -102) T) ((-158 . -93) T) ((-156 . -1102) T) ((-156 . -502) 11268) ((-156 . -628) 11234) ((-156 . -631) 11215) ((-156 . -1120) T) ((-156 . -1236) T) ((-156 . -102) T) ((-156 . -93) T) ((-154 . -1068) T) ((-154 . -1076) T) ((-154 . -1131) T) ((-154 . -744) T) ((-154 . -21) T) ((-154 . -664) 11174) ((-154 . -23) T) ((-154 . -1120) T) ((-154 . -628) 11156) ((-154 . -1236) T) ((-154 . -102) T) ((-154 . -25) T) ((-154 . -133) T) ((-154 . -666) 11130) ((-154 . -631) 11099) ((-154 . -38) 11083) ((-154 . -111) 11062) ((-154 . -1070) 11046) ((-154 . -1075) 11030) ((-154 . -658) 11014) ((-154 . -735) 10998) ((-154 . -1294) 10982) ((-146 . -855) T) ((-146 . -862) T) ((-146 . -859) T) ((-146 . -1120) T) ((-146 . -628) 10964) ((-146 . -1236) T) ((-146 . -102) T) ((-146 . -381) T) ((-143 . -1120) T) ((-143 . -628) 10946) ((-143 . -1236) T) ((-143 . -102) T) ((-143 . -629) 10905) ((-143 . -438) 10887) ((-143 . -1118) 10869) ((-143 . -381) T) ((-143 . -242) 10851) ((-143 . -153) 10833) ((-143 . -501) 10815) ((-143 . -526) NIL) ((-143 . -321) NIL) ((-143 . -34) T) ((-143 . -107) 10797) ((-143 . -233) 10779) ((-142 . -628) 10761) ((-141 . -189) T) ((-141 . -1120) T) ((-141 . -628) 10728) ((-141 . -1236) T) ((-141 . -102) T) ((-141 . -847) 10710) ((-140 . -1102) T) ((-140 . -502) 10691) ((-140 . -628) 10657) ((-140 . -631) 10638) ((-140 . -1120) T) ((-140 . -1236) T) ((-140 . -102) T) ((-140 . -93) T) ((-139 . -1102) T) ((-139 . -502) 10619) ((-139 . -628) 10585) ((-139 . -631) 10566) ((-139 . -1120) T) ((-139 . -1236) T) ((-139 . -102) T) ((-139 . -93) T) ((-137 . -477) 10543) ((-137 . -631) 10439) ((-137 . -1057) 10423) ((-137 . -1120) T) ((-137 . -628) 10405) ((-137 . -1236) T) ((-137 . -102) T) ((-137 . -482) 10360) ((-137 . -298) 10337) ((-136 . -859) T) ((-136 . -628) 10319) ((-136 . -1120) T) ((-136 . -102) T) ((-136 . -1236) T) ((-136 . -862) T) ((-136 . -23) T) ((-136 . -25) T) ((-136 . -744) T) ((-136 . -1131) T) ((-136 . -1057) 10301) ((-136 . -631) 10283) ((-135 . -1102) T) ((-135 . -502) 10264) ((-135 . -628) 10230) ((-135 . -631) 10211) ((-135 . -1120) T) ((-135 . -1236) T) ((-135 . -102) T) ((-135 . -93) T) ((-132 . -1120) T) ((-132 . -628) 10193) ((-132 . -1236) T) ((-132 . -102) T) ((-131 . -19) 10175) ((-131 . -669) 10157) ((-131 . -300) 10132) ((-131 . -298) 10082) ((-131 . -614) 10057) ((-131 . -629) NIL) ((-131 . -501) 10039) ((-131 . -1120) T) ((-131 . -526) NIL) ((-131 . -321) NIL) ((-131 . -628) 9983) ((-131 . -102) T) ((-131 . -1236) T) ((-131 . -34) T) ((-131 . -153) 9965) ((-131 . -859) T) ((-131 . -862) T) ((-131 . -385) 9947) ((-130 . -855) T) ((-130 . -862) T) ((-130 . -859) T) ((-130 . -1120) T) ((-130 . -628) 9929) ((-130 . -1236) T) ((-130 . -102) T) ((-130 . -381) T) ((-130 . -680) T) ((-129 . -127) 9913) ((-129 . -1029) 9897) ((-129 . -34) T) ((-129 . -1236) T) ((-129 . -102) 9847) ((-129 . -628) 9779) ((-129 . -321) 9717) ((-129 . -526) 9650) ((-129 . -1120) 9628) ((-129 . -501) 9612) ((-129 . -121) 9596) ((-128 . -127) 9580) ((-128 . -1029) 9564) ((-128 . -34) T) ((-128 . -1236) T) ((-128 . -102) 9514) ((-128 . -628) 9446) ((-128 . -321) 9384) ((-128 . -526) 9317) ((-128 . -1120) 9295) ((-128 . -501) 9279) ((-128 . -121) 9263) ((-123 . -127) 9247) ((-123 . -1029) 9231) ((-123 . -34) T) ((-123 . -1236) T) ((-123 . -102) 9181) ((-123 . -628) 9113) ((-123 . -321) 9051) ((-123 . -526) 8984) ((-123 . -1120) 8962) ((-123 . -501) 8946) ((-123 . -121) 8930) ((-119 . -1010) 8907) ((-119 . -1171) NIL) ((-119 . -1057) 8884) ((-119 . -631) 8814) ((-119 . -629) NIL) ((-119 . -1039) NIL) ((-119 . -927) NIL) ((-119 . -897) 8791) ((-119 . -858) NIL) ((-119 . -817) NIL) ((-119 . -814) NIL) ((-119 . -862) NIL) ((-119 . -859) NIL) ((-119 . -812) NIL) ((-119 . -810) NIL) ((-119 . -840) NIL) ((-119 . -899) NIL) ((-119 . -412) 8768) ((-119 . -656) 8745) ((-119 . -666) 8690) ((-119 . -390) 8667) ((-119 . -298) 8597) ((-119 . -321) 8541) ((-119 . -526) 8404) ((-119 . -351) 8381) ((-119 . -250) T) ((-119 . -111) 8298) ((-119 . -1070) 8243) ((-119 . -1075) 8188) ((-119 . -302) T) ((-119 . -735) 8133) ((-119 . -658) 8078) ((-119 . -664) 8008) ((-119 . -38) 7953) ((-119 . -319) T) ((-119 . -464) T) ((-119 . -175) T) ((-119 . -568) T) ((-119 . -938) T) ((-119 . -1241) T) ((-119 . -376) T) ((-119 . -240) NIL) ((-119 . -236) NIL) ((-119 . -239) NIL) ((-119 . -274) 7930) ((-119 . -909) NIL) ((-119 . -917) NIL) ((-119 . -915) NIL) ((-119 . -234) 7907) ((-119 . -149) T) ((-119 . -147) NIL) ((-119 . -133) T) ((-119 . -25) T) ((-119 . -102) T) ((-119 . -1236) T) ((-119 . -628) 7889) ((-119 . -1120) T) ((-119 . -23) T) ((-119 . -21) T) ((-119 . -1068) T) ((-119 . -1076) T) ((-119 . -1131) T) ((-119 . -744) T) ((-118 . -882) 7873) ((-118 . -938) T) ((-118 . -568) T) ((-118 . -302) T) ((-118 . -175) T) ((-118 . -631) 7845) ((-118 . -735) 7832) ((-118 . -658) 7819) ((-118 . -1075) 7806) ((-118 . -1070) 7793) ((-118 . -111) 7778) ((-118 . -38) 7765) ((-118 . -464) T) ((-118 . -319) T) ((-118 . -1068) T) ((-118 . -1076) T) ((-118 . -1131) T) ((-118 . -744) T) ((-118 . -21) T) ((-118 . -664) 7737) ((-118 . -23) T) ((-118 . -1120) T) ((-118 . -628) 7719) ((-118 . -1236) T) ((-118 . -102) T) ((-118 . -25) T) ((-118 . -133) T) ((-118 . -666) 7706) ((-118 . -149) T) ((-115 . -859) T) ((-115 . -628) 7688) ((-115 . -1120) T) ((-115 . -102) T) ((-115 . -1236) T) ((-115 . -862) T) ((-115 . -847) 7669) ((-114 . -855) T) ((-114 . -862) T) ((-114 . -859) T) ((-114 . -1120) T) ((-114 . -628) 7651) ((-114 . -1236) T) ((-114 . -102) T) ((-114 . -381) T) ((-114 . -986) T) ((-114 . -680) T) ((-114 . -113) T) ((-114 . -629) 7633) ((-110 . -125) T) ((-110 . -385) 7615) ((-110 . -862) T) ((-110 . -859) T) ((-110 . -153) 7597) ((-110 . -34) T) ((-110 . -102) T) ((-110 . -628) 7579) ((-110 . -321) NIL) ((-110 . -526) NIL) ((-110 . -1120) T) ((-110 . -501) 7561) ((-110 . -629) 7543) ((-110 . -298) 7493) ((-110 . -614) 7468) ((-110 . -300) 7443) ((-110 . -669) 7425) ((-110 . -19) 7407) ((-110 . -680) T) ((-110 . -1236) T) ((-110 . -113) T) ((-109 . -628) 7389) ((-108 . -1010) 7371) ((-108 . -1171) T) ((-108 . -631) 7321) ((-108 . -1057) 7281) ((-108 . -629) 7211) ((-108 . -1039) T) ((-108 . -927) NIL) ((-108 . -897) 7193) ((-108 . -858) T) ((-108 . -817) T) ((-108 . -814) T) ((-108 . -862) T) ((-108 . -859) T) ((-108 . -812) T) ((-108 . -810) T) ((-108 . -840) T) ((-108 . -899) 7175) ((-108 . -412) 7157) ((-108 . -656) 7139) ((-108 . -390) 7121) ((-108 . -298) NIL) ((-108 . -321) NIL) ((-108 . -526) NIL) ((-108 . -351) 7103) ((-108 . -250) T) ((-108 . -111) 7030) ((-108 . -1070) 6980) ((-108 . -1075) 6930) ((-108 . -302) T) ((-108 . -735) 6880) ((-108 . -658) 6830) ((-108 . -666) 6780) ((-108 . -664) 6730) ((-108 . -38) 6680) ((-108 . -319) T) ((-108 . -464) T) ((-108 . -175) T) ((-108 . -568) T) ((-108 . -938) T) ((-108 . -1241) T) ((-108 . -376) T) ((-108 . -240) T) ((-108 . -236) 6667) ((-108 . -239) T) ((-108 . -274) 6649) ((-108 . -909) NIL) ((-108 . -917) NIL) ((-108 . -915) NIL) ((-108 . -234) 6631) ((-108 . -149) T) ((-108 . -147) NIL) ((-108 . -133) T) ((-108 . -25) T) ((-108 . -102) T) ((-108 . -1236) T) ((-108 . -628) 6573) ((-108 . -1120) T) ((-108 . -23) T) ((-108 . -21) T) ((-108 . -1068) T) ((-108 . -1076) T) ((-108 . -1131) T) ((-108 . -744) T) ((-105 . -1120) T) ((-105 . -628) 6555) ((-105 . -1236) T) ((-105 . -102) T) ((-103 . -127) 6539) ((-103 . -1029) 6523) ((-103 . -34) T) ((-103 . -1236) T) ((-103 . -102) 6473) ((-103 . -628) 6405) ((-103 . -321) 6343) ((-103 . -526) 6276) ((-103 . -1120) 6254) ((-103 . -501) 6238) ((-103 . -121) 6222) ((-99 . -485) T) ((-99 . -1131) T) ((-99 . -102) T) ((-99 . -1236) T) ((-99 . -628) 6204) ((-99 . -1120) T) ((-99 . -744) T) ((-99 . -298) 6183) ((-97 . -1120) T) ((-97 . -628) 6165) ((-97 . -1236) T) ((-97 . -102) T) ((-96 . -1102) T) ((-96 . -502) 6146) ((-96 . -628) 6112) ((-96 . -631) 6093) ((-96 . -1120) T) ((-96 . -1236) T) ((-96 . -102) T) ((-96 . -93) T) ((-91 . -1140) 6077) ((-91 . -501) 6061) ((-91 . -1120) 6039) ((-91 . -526) 5972) ((-91 . -321) 5910) ((-91 . -628) 5842) ((-91 . -102) 5792) ((-91 . -1236) T) ((-91 . -34) T) ((-91 . -107) 5776) ((-89 . -409) T) ((-89 . -628) 5758) ((-89 . -1236) T) ((-89 . -408) T) ((-88 . -398) T) ((-88 . -628) 5740) ((-88 . -1236) T) ((-88 . -408) T) ((-87 . -452) T) ((-87 . -628) 5722) ((-87 . -1236) T) ((-87 . -408) T) ((-86 . -453) T) ((-86 . -628) 5704) ((-86 . -1236) T) ((-86 . -408) T) ((-85 . -398) T) ((-85 . -628) 5686) ((-85 . -1236) T) ((-85 . -408) T) ((-84 . -398) T) ((-84 . -628) 5668) ((-84 . -1236) T) ((-84 . -408) T) ((-83 . -453) T) ((-83 . -628) 5650) ((-83 . -1236) T) ((-83 . -408) T) ((-82 . -453) T) ((-82 . -628) 5632) ((-82 . -1236) T) ((-82 . -408) T) ((-81 . -453) T) ((-81 . -628) 5614) ((-81 . -1236) T) ((-81 . -408) T) ((-81 . -631) 5555) ((-80 . -453) T) ((-80 . -628) 5537) ((-80 . -1236) T) ((-80 . -408) T) ((-79 . -453) T) ((-79 . -628) 5519) ((-79 . -1236) T) ((-79 . -408) T) ((-78 . -409) T) ((-78 . -628) 5501) ((-78 . -1236) T) ((-78 . -408) T) ((-77 . -453) T) ((-77 . -628) 5483) ((-77 . -1236) T) ((-77 . -408) T) ((-76 . -453) T) ((-76 . -628) 5465) ((-76 . -1236) T) ((-76 . -408) T) ((-75 . -409) T) ((-75 . -628) 5447) ((-75 . -1236) T) ((-75 . -408) T) ((-74 . -453) T) ((-74 . -628) 5429) ((-74 . -1236) T) ((-74 . -408) T) ((-73 . -396) T) ((-73 . -628) 5411) ((-73 . -1236) T) ((-73 . -408) T) ((-72 . -408) T) ((-72 . -1236) T) ((-72 . -628) 5393) ((-71 . -453) T) ((-71 . -628) 5375) ((-71 . -1236) T) ((-71 . -408) T) ((-70 . -396) T) ((-70 . -628) 5357) ((-70 . -1236) T) ((-70 . -408) T) ((-69 . -408) T) ((-69 . -1236) T) ((-69 . -628) 5339) ((-68 . -396) T) ((-68 . -628) 5321) ((-68 . -1236) T) ((-68 . -408) T) ((-67 . -396) T) ((-67 . -628) 5303) ((-67 . -1236) T) ((-67 . -408) T) ((-66 . -409) T) ((-66 . -628) 5285) ((-66 . -1236) T) ((-66 . -408) T) ((-65 . -398) T) ((-65 . -628) 5267) ((-65 . -1236) T) ((-65 . -408) T) ((-65 . -631) 5196) ((-64 . -453) T) ((-64 . -628) 5178) ((-64 . -1236) T) ((-64 . -408) T) ((-63 . -408) T) ((-63 . -1236) T) ((-63 . -628) 5160) ((-62 . -453) T) ((-62 . -628) 5142) ((-62 . -1236) T) ((-62 . -408) T) ((-61 . -409) T) ((-61 . -628) 5124) ((-61 . -1236) T) ((-61 . -408) T) ((-60 . -57) 5086) ((-60 . -34) T) ((-60 . -1236) T) ((-60 . -102) 5036) ((-60 . -628) 4968) ((-60 . -321) 4906) ((-60 . -526) 4839) ((-60 . -1120) 4817) ((-60 . -501) 4801) ((-58 . -19) 4785) ((-58 . -669) 4769) ((-58 . -300) 4746) ((-58 . -298) 4698) ((-58 . -614) 4675) ((-58 . -629) 4636) ((-58 . -501) 4620) ((-58 . -1120) 4570) ((-58 . -526) 4503) ((-58 . -321) 4441) ((-58 . -628) 4353) ((-58 . -102) 4283) ((-58 . -1236) T) ((-58 . -34) T) ((-58 . -153) 4267) ((-58 . -859) 4246) ((-58 . -862) 4225) ((-58 . -385) 4209) ((-55 . -1120) T) ((-55 . -628) 4191) ((-55 . -1236) T) ((-55 . -102) T) ((-55 . -1057) 4173) ((-55 . -631) 4155) ((-51 . -1120) T) ((-51 . -628) 4137) ((-51 . -1236) T) ((-51 . -102) T) ((-50 . -636) 4121) ((-50 . -631) 4090) ((-50 . -666) 4064) ((-50 . -664) 4023) ((-50 . -744) T) ((-50 . -1131) T) ((-50 . -1076) T) ((-50 . -1068) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1120) T) ((-50 . -628) 4005) ((-50 . -1236) T) ((-50 . -102) T) ((-50 . -25) T) ((-50 . -133) T) ((-50 . -1057) 3989) ((-49 . -1120) T) ((-49 . -628) 3971) ((-49 . -1236) T) ((-49 . -102) T) ((-48 . -310) T) ((-48 . -102) T) ((-48 . -1236) T) ((-48 . -628) 3953) ((-48 . -1120) T) ((-48 . -631) 3854) ((-48 . -1057) 3797) ((-48 . -526) 3763) ((-48 . -321) 3750) ((-48 . -27) T) ((-48 . -1021) T) ((-48 . -250) T) ((-48 . -111) 3699) ((-48 . -1070) 3664) ((-48 . -1075) 3629) ((-48 . -302) T) ((-48 . -735) 3594) ((-48 . -658) 3559) ((-48 . -666) 3509) ((-48 . -664) 3459) ((-48 . -133) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -1068) T) ((-48 . -1076) T) ((-48 . -1131) T) ((-48 . -744) T) ((-48 . -38) 3424) ((-48 . -319) T) ((-48 . -464) T) ((-48 . -175) T) ((-48 . -568) T) ((-48 . -938) T) ((-48 . -1241) T) ((-48 . -376) T) ((-48 . -656) 3384) ((-48 . -1039) T) ((-48 . -629) 3329) ((-48 . -149) T) ((-48 . -240) T) ((-48 . -236) 3316) ((-48 . -239) T) ((-45 . -36) 3295) ((-45 . -614) 3220) ((-45 . -321) 3024) ((-45 . -526) 2784) ((-45 . -501) 2721) ((-45 . -298) 2621) ((-45 . -300) 2546) ((-45 . -625) 2525) ((-45 . -242) 2475) ((-45 . -107) 2425) ((-45 . -233) 2375) ((-45 . -1213) 2354) ((-45 . -294) 2304) ((-45 . -153) 2254) ((-45 . -34) T) ((-45 . -1236) T) ((-45 . -102) T) ((-45 . -628) 2236) ((-45 . -1120) T) ((-45 . -629) NIL) ((-45 . -669) 2186) ((-45 . -385) 2136) ((-45 . -862) NIL) ((-45 . -859) NIL) ((-45 . -1169) 2086) ((-45 . -1029) 2036) ((-45 . -1275) 1986) ((-45 . -684) 1936) ((-44 . -430) 1920) ((-44 . -762) 1904) ((-44 . -738) T) ((-44 . -779) T) ((-44 . -111) 1883) ((-44 . -1070) 1867) ((-44 . -1075) 1851) ((-44 . -21) T) ((-44 . -664) 1794) ((-44 . -23) T) ((-44 . -1120) T) ((-44 . -628) 1776) ((-44 . -102) T) ((-44 . -25) T) ((-44 . -133) T) ((-44 . -666) 1734) ((-44 . -658) 1718) ((-44 . -735) 1702) ((-44 . -380) 1686) ((-44 . -1236) T) ((-44 . -298) 1663) ((-40 . -355) 1637) ((-40 . -175) T) ((-40 . -631) 1567) ((-40 . -744) T) ((-40 . -1131) T) ((-40 . -1076) T) ((-40 . -1068) T) ((-40 . -666) 1469) ((-40 . -664) 1399) ((-40 . -133) T) ((-40 . -25) T) ((-40 . -102) T) ((-40 . -1236) T) ((-40 . -628) 1381) ((-40 . -1120) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -1075) 1326) ((-40 . -1070) 1271) ((-40 . -111) 1188) ((-40 . -629) 1172) ((-40 . -234) 1149) ((-40 . -915) 1101) ((-40 . -917) 1010) ((-40 . -909) 917) ((-40 . -274) 894) ((-40 . -239) 831) ((-40 . -236) 762) ((-40 . -240) 734) ((-40 . -376) T) ((-40 . -1241) T) ((-40 . -938) T) ((-40 . -568) T) ((-40 . -735) 679) ((-40 . -658) 624) ((-40 . -38) 569) ((-40 . -464) T) ((-40 . -319) T) ((-40 . -302) T) ((-40 . -250) T) ((-40 . -381) NIL) ((-40 . -363) NIL) ((-40 . -1171) NIL) ((-40 . -147) 541) ((-40 . -414) NIL) ((-40 . -422) 513) ((-40 . -149) 485) ((-40 . -383) 457) ((-40 . -390) 434) ((-40 . -656) 368) ((-40 . -424) 345) ((-40 . -1057) 220) ((-40 . -742) 192) ((-31 . -1102) T) ((-31 . -502) 173) ((-31 . -628) 139) ((-31 . -631) 120) ((-31 . -1120) T) ((-31 . -1236) T) ((-31 . -102) T) ((-31 . -93) T) ((-30 . -972) T) ((-30 . -628) 102) ((0 . |EnumerationCategory|) T) ((0 . -628) 84) ((0 . -1120) T) ((0 . -102) T) ((0 . -1236) T) ((-2 . |RecordCategory|) T) ((-2 . -628) 66) ((-2 . -1120) T) ((-2 . -102) T) ((-2 . -1236) T) ((-3 . |UnionCategory|) T) ((-3 . -628) 48) ((-3 . -1120) T) ((-3 . -102) T) ((-3 . -1236) T) ((-1 . -1120) T) ((-1 . -628) 30) ((-1 . -1236) T) ((-1 . -102) T))
\ No newline at end of file +((((-499)) . T)) +(((-3) T) ((-2) T) ((-1) T) ((0) T) ((-1237 . -146) T) ((-1237 . -571) 205294) ((-1237 . -684) T) ((-1237 . -1052) T) ((-1237 . -997) T) ((-1237 . -989) T) ((-1237 . -606) 205281) ((-1237 . -604) 205253) ((-1237 . -104) T) ((-1237 . -25) T) ((-1237 . -73) T) ((-1237 . -1157) T) ((-1237 . -568) 205235) ((-1237 . -1041) T) ((-1237 . -23) T) ((-1237 . -21) T) ((-1237 . -996) 205222) ((-1237 . -991) 205209) ((-1237 . -82) 205194) ((-1237 . -323) T) ((-1237 . -569) 205176) ((-1237 . -1092) T) ((-1233 . -1041) T) ((-1233 . -568) 205143) ((-1233 . -1157) T) ((-1233 . -73) T) ((-1233 . -444) 205125) ((-1233 . -571) 205107) ((-1232 . -1230) 205086) ((-1232 . -978) 205063) ((-1232 . -571) 205012) ((-1232 . -989) T) ((-1232 . -997) T) ((-1232 . -1052) T) ((-1232 . -684) T) ((-1232 . -21) T) ((-1232 . -604) 204971) ((-1232 . -23) T) ((-1232 . -1041) T) ((-1232 . -568) 204953) ((-1232 . -1157) T) ((-1232 . -73) T) ((-1232 . -25) T) ((-1232 . -104) T) ((-1232 . -606) 204927) ((-1232 . -1222) 204911) ((-1232 . -675) 204881) ((-1232 . -598) 204851) ((-1232 . -996) 204835) ((-1232 . -991) 204819) ((-1232 . -82) 204798) ((-1232 . -38) 204768) ((-1232 . -1227) 204747) ((-1231 . -989) T) ((-1231 . -997) T) ((-1231 . -1052) T) ((-1231 . -684) T) ((-1231 . -21) T) ((-1231 . -604) 204706) ((-1231 . -23) T) ((-1231 . -1041) T) ((-1231 . -568) 204688) ((-1231 . -1157) T) ((-1231 . -73) T) ((-1231 . -25) T) ((-1231 . -104) T) ((-1231 . -606) 204662) ((-1231 . -571) 204618) ((-1231 . -1222) 204602) ((-1231 . -675) 204572) ((-1231 . -598) 204542) ((-1231 . -996) 204526) ((-1231 . -991) 204510) ((-1231 . -82) 204489) ((-1231 . -38) 204459) ((-1231 . -339) 204438) ((-1231 . -978) 204422) ((-1229 . -1230) 204398) ((-1229 . -978) 204372) ((-1229 . -571) 204318) ((-1229 . -989) T) ((-1229 . -997) T) ((-1229 . -1052) T) ((-1229 . -684) T) ((-1229 . -21) T) ((-1229 . -604) 204277) ((-1229 . -23) T) ((-1229 . -1041) T) ((-1229 . -568) 204259) ((-1229 . -1157) T) ((-1229 . -73) T) ((-1229 . -25) T) ((-1229 . -104) T) ((-1229 . -606) 204233) ((-1229 . -1222) 204217) ((-1229 . -675) 204187) ((-1229 . -598) 204157) ((-1229 . -996) 204141) ((-1229 . -991) 204125) ((-1229 . -82) 204104) ((-1229 . -38) 204074) ((-1229 . -1227) 204050) ((-1228 . -1230) 204029) ((-1228 . -978) 203986) ((-1228 . -571) 203915) ((-1228 . -989) T) ((-1228 . -997) T) ((-1228 . -1052) T) ((-1228 . -684) T) ((-1228 . -21) T) ((-1228 . -604) 203874) ((-1228 . -23) T) ((-1228 . -1041) T) ((-1228 . -568) 203856) ((-1228 . -1157) T) ((-1228 . -73) T) ((-1228 . -25) T) ((-1228 . -104) T) ((-1228 . -606) 203830) ((-1228 . -1222) 203814) ((-1228 . -675) 203784) ((-1228 . -598) 203754) ((-1228 . -996) 203738) ((-1228 . -991) 203722) ((-1228 . -82) 203701) ((-1228 . -38) 203671) ((-1228 . -1227) 203650) ((-1228 . -339) 203622) ((-1223 . -339) 203594) ((-1223 . -571) 203543) ((-1223 . -978) 203520) ((-1223 . -598) 203490) ((-1223 . -675) 203460) ((-1223 . -606) 203434) ((-1223 . -604) 203393) ((-1223 . -104) T) ((-1223 . -25) T) ((-1223 . -73) T) ((-1223 . -1157) T) ((-1223 . -568) 203375) ((-1223 . -1041) T) ((-1223 . -23) T) ((-1223 . -21) T) ((-1223 . -996) 203359) ((-1223 . -991) 203343) ((-1223 . -82) 203322) ((-1223 . -1230) 203301) ((-1223 . -989) T) ((-1223 . -997) T) ((-1223 . -1052) T) ((-1223 . -684) T) ((-1223 . -1222) 203285) ((-1223 . -38) 203255) ((-1223 . -1227) 203234) ((-1221 . -1152) 203203) ((-1221 . -568) 203165) ((-1221 . -124) 203149) ((-1221 . -34) T) ((-1221 . -1157) T) ((-1221 . -73) T) ((-1221 . -263) 203087) ((-1221 . -468) 203020) ((-1221 . -1041) T) ((-1221 . -443) 203004) ((-1221 . -569) 202965) ((-1221 . -916) 202934) ((-1220 . -989) T) ((-1220 . -997) T) ((-1220 . -1052) T) ((-1220 . -684) T) ((-1220 . -21) T) ((-1220 . -604) 202879) ((-1220 . -23) T) ((-1220 . -1041) T) ((-1220 . -568) 202848) ((-1220 . -1157) T) ((-1220 . -73) T) ((-1220 . -25) T) ((-1220 . -104) T) ((-1220 . -606) 202808) ((-1220 . -571) 202750) ((-1220 . -444) 202734) ((-1220 . -38) 202704) ((-1220 . -82) 202669) ((-1220 . -991) 202639) ((-1220 . -996) 202609) ((-1220 . -598) 202579) ((-1220 . -675) 202549) ((-1219 . -1023) T) ((-1219 . -444) 202530) ((-1219 . -568) 202496) ((-1219 . -571) 202477) ((-1219 . -1041) T) ((-1219 . -1157) T) ((-1219 . -73) T) ((-1219 . -64) T) ((-1218 . -1023) T) ((-1218 . -444) 202458) ((-1218 . -568) 202424) ((-1218 . -571) 202405) ((-1218 . -1041) T) ((-1218 . -1157) T) ((-1218 . -73) T) ((-1218 . -64) T) ((-1213 . -568) 202387) ((-1211 . -1041) T) ((-1211 . -568) 202369) ((-1211 . -1157) T) ((-1211 . -73) T) ((-1210 . -1041) T) ((-1210 . -568) 202351) ((-1210 . -1157) T) ((-1210 . -73) T) ((-1207 . -1206) 202335) ((-1207 . -327) 202319) ((-1207 . -784) 202298) ((-1207 . -781) 202277) ((-1207 . -124) 202261) ((-1207 . -34) T) ((-1207 . -1157) T) ((-1207 . -73) 202192) ((-1207 . -568) 202104) ((-1207 . -263) 202042) ((-1207 . -468) 201975) ((-1207 . -1041) 201925) ((-1207 . -443) 201909) ((-1207 . -569) 201870) ((-1207 . -240) 201822) ((-1207 . -554) 201799) ((-1207 . -242) 201776) ((-1207 . -609) 201760) ((-1207 . -19) 201744) ((-1204 . -1041) T) ((-1204 . -568) 201710) ((-1204 . -1157) T) ((-1204 . -73) T) ((-1197 . -1200) 201694) ((-1197 . -190) 201653) ((-1197 . -571) 201535) ((-1197 . -606) 201460) ((-1197 . -604) 201370) ((-1197 . -104) T) ((-1197 . -25) T) ((-1197 . -73) T) ((-1197 . -568) 201352) ((-1197 . -1041) T) ((-1197 . -23) T) ((-1197 . -21) T) ((-1197 . -684) T) ((-1197 . -1052) T) ((-1197 . -997) T) ((-1197 . -989) T) ((-1197 . -186) 201305) ((-1197 . -1157) T) ((-1197 . -189) 201264) ((-1197 . -240) 201229) ((-1197 . -836) 201142) ((-1197 . -831) 201030) ((-1197 . -838) 200943) ((-1197 . -913) 200912) ((-1197 . -38) 200809) ((-1197 . -82) 200671) ((-1197 . -991) 200554) ((-1197 . -996) 200437) ((-1197 . -598) 200334) ((-1197 . -675) 200231) ((-1197 . -118) 200210) ((-1197 . -120) 200189) ((-1197 . -146) 200140) ((-1197 . -510) 200119) ((-1197 . -244) 200098) ((-1197 . -47) 200075) ((-1197 . -1186) 200052) ((-1197 . -35) 200018) ((-1197 . -66) 199984) ((-1197 . -238) 199950) ((-1197 . -447) 199916) ((-1197 . -1146) 199882) ((-1197 . -1143) 199848) ((-1197 . -942) 199814) ((-1194 . -280) 199758) ((-1194 . -978) 199724) ((-1194 . -366) 199690) ((-1194 . -38) 199547) ((-1194 . -571) 199421) ((-1194 . -606) 199310) ((-1194 . -604) 199184) ((-1194 . -684) T) ((-1194 . -1052) T) ((-1194 . -997) T) ((-1194 . -989) T) ((-1194 . -82) 199034) ((-1194 . -991) 198923) ((-1194 . -996) 198812) ((-1194 . -21) T) ((-1194 . -23) T) ((-1194 . -1041) T) ((-1194 . -568) 198794) ((-1194 . -1157) T) ((-1194 . -73) T) ((-1194 . -25) T) ((-1194 . -104) T) ((-1194 . -598) 198651) ((-1194 . -675) 198508) ((-1194 . -118) 198469) ((-1194 . -120) 198430) ((-1194 . -146) T) ((-1194 . -510) T) ((-1194 . -244) T) ((-1194 . -47) 198374) ((-1193 . -1192) 198353) ((-1193 . -318) 198332) ((-1193 . -1162) 198311) ((-1193 . -859) 198290) ((-1193 . -510) 198241) ((-1193 . -146) 198172) ((-1193 . -571) 197985) ((-1193 . -675) 197826) ((-1193 . -598) 197667) ((-1193 . -38) 197508) ((-1193 . -406) 197487) ((-1193 . -261) 197466) ((-1193 . -606) 197363) ((-1193 . -604) 197245) ((-1193 . -684) T) ((-1193 . -1052) T) ((-1193 . -997) T) ((-1193 . -989) T) ((-1193 . -82) 197059) ((-1193 . -991) 196894) ((-1193 . -996) 196729) ((-1193 . -21) T) ((-1193 . -23) T) ((-1193 . -1041) T) ((-1193 . -568) 196711) ((-1193 . -1157) T) ((-1193 . -73) T) ((-1193 . -25) T) ((-1193 . -104) T) ((-1193 . -244) 196662) ((-1193 . -200) 196641) ((-1193 . -942) 196607) ((-1193 . -1143) 196573) ((-1193 . -1146) 196539) ((-1193 . -447) 196505) ((-1193 . -238) 196471) ((-1193 . -66) 196437) ((-1193 . -35) 196403) ((-1193 . -1186) 196373) ((-1193 . -47) 196343) ((-1193 . -120) 196322) ((-1193 . -118) 196301) ((-1193 . -913) 196263) ((-1193 . -838) 196169) ((-1193 . -831) 196073) ((-1193 . -836) 195979) ((-1193 . -240) 195937) ((-1193 . -189) 195889) ((-1193 . -186) 195835) ((-1193 . -190) 195787) ((-1193 . -1190) 195771) ((-1193 . -978) 195755) ((-1188 . -1192) 195716) ((-1188 . -318) 195695) ((-1188 . -1162) 195674) ((-1188 . -859) 195653) ((-1188 . -510) 195604) ((-1188 . -146) 195535) ((-1188 . -571) 195278) ((-1188 . -675) 195119) ((-1188 . -598) 194960) ((-1188 . -38) 194801) ((-1188 . -406) 194780) ((-1188 . -261) 194759) ((-1188 . -606) 194656) ((-1188 . -604) 194538) ((-1188 . -684) T) ((-1188 . -1052) T) ((-1188 . -997) T) ((-1188 . -989) T) ((-1188 . -82) 194352) ((-1188 . -991) 194187) ((-1188 . -996) 194022) ((-1188 . -21) T) ((-1188 . -23) T) ((-1188 . -1041) T) ((-1188 . -568) 194004) ((-1188 . -1157) T) ((-1188 . -73) T) ((-1188 . -25) T) ((-1188 . -104) T) ((-1188 . -244) 193955) ((-1188 . -200) 193934) ((-1188 . -942) 193900) ((-1188 . -1143) 193866) ((-1188 . -1146) 193832) ((-1188 . -447) 193798) ((-1188 . -238) 193764) ((-1188 . -66) 193730) ((-1188 . -35) 193696) ((-1188 . -1186) 193666) ((-1188 . -47) 193636) ((-1188 . -120) 193615) ((-1188 . -118) 193594) ((-1188 . -913) 193556) ((-1188 . -838) 193462) ((-1188 . -831) 193343) ((-1188 . -836) 193249) ((-1188 . -240) 193207) ((-1188 . -189) 193159) ((-1188 . -186) 193105) ((-1188 . -190) 193057) ((-1188 . -1190) 193041) ((-1188 . -978) 192976) ((-1176 . -1183) 192960) ((-1176 . -1092) 192938) ((-1176 . -569) NIL) ((-1176 . -263) 192925) ((-1176 . -468) 192871) ((-1176 . -280) 192848) ((-1176 . -978) 192730) ((-1176 . -366) 192714) ((-1176 . -38) 192543) ((-1176 . -82) 192345) ((-1176 . -991) 192168) ((-1176 . -996) 191991) ((-1176 . -604) 191901) ((-1176 . -606) 191790) ((-1176 . -598) 191619) ((-1176 . -675) 191448) ((-1176 . -571) 191197) ((-1176 . -118) 191176) ((-1176 . -120) 191155) ((-1176 . -47) 191132) ((-1176 . -332) 191116) ((-1176 . -596) 191064) ((-1176 . -836) 191007) ((-1176 . -831) 190910) ((-1176 . -838) 190817) ((-1176 . -821) NIL) ((-1176 . -848) 190796) ((-1176 . -1162) 190775) ((-1176 . -888) 190744) ((-1176 . -859) 190723) ((-1176 . -510) 190634) ((-1176 . -244) 190545) ((-1176 . -146) 190436) ((-1176 . -406) 190367) ((-1176 . -261) 190346) ((-1176 . -240) 190273) ((-1176 . -190) T) ((-1176 . -104) T) ((-1176 . -25) T) ((-1176 . -73) T) ((-1176 . -568) 190255) ((-1176 . -1041) T) ((-1176 . -23) T) ((-1176 . -21) T) ((-1176 . -684) T) ((-1176 . -1052) T) ((-1176 . -997) T) ((-1176 . -989) T) ((-1176 . -186) 190242) ((-1176 . -1157) T) ((-1176 . -189) T) ((-1176 . -224) 190226) ((-1176 . -184) 190210) ((-1174 . -1034) 190194) ((-1174 . -573) 190178) ((-1174 . -1041) 190156) ((-1174 . -568) 190123) ((-1174 . -1157) 190101) ((-1174 . -73) 190079) ((-1174 . -1035) 190036) ((-1172 . -1171) 190015) ((-1172 . -942) 189981) ((-1172 . -1143) 189947) ((-1172 . -1146) 189913) ((-1172 . -447) 189879) ((-1172 . -238) 189845) ((-1172 . -66) 189811) ((-1172 . -35) 189777) ((-1172 . -1186) 189754) ((-1172 . -47) 189731) ((-1172 . -571) 189480) ((-1172 . -675) 189294) ((-1172 . -598) 189108) ((-1172 . -606) 188916) ((-1172 . -604) 188771) ((-1172 . -996) 188579) ((-1172 . -991) 188387) ((-1172 . -82) 188169) ((-1172 . -38) 187983) ((-1172 . -913) 187952) ((-1172 . -240) 187852) ((-1172 . -1169) 187836) ((-1172 . -684) T) ((-1172 . -1052) T) ((-1172 . -997) T) ((-1172 . -989) T) ((-1172 . -21) T) ((-1172 . -23) T) ((-1172 . -1041) T) ((-1172 . -568) 187818) ((-1172 . -1157) T) ((-1172 . -73) T) ((-1172 . -25) T) ((-1172 . -104) T) ((-1172 . -118) 187743) ((-1172 . -120) 187668) ((-1172 . -569) 187341) ((-1172 . -184) 187311) ((-1172 . -836) 187162) ((-1172 . -838) 186959) ((-1172 . -831) 186754) ((-1172 . -224) 186724) ((-1172 . -189) 186583) ((-1172 . -186) 186436) ((-1172 . -190) 186341) ((-1172 . -318) 186320) ((-1172 . -1162) 186299) ((-1172 . -859) 186278) ((-1172 . -510) 186229) ((-1172 . -146) 186160) ((-1172 . -406) 186139) ((-1172 . -261) 186118) ((-1172 . -244) 186069) ((-1172 . -200) 186048) ((-1172 . -293) 186018) ((-1172 . -468) 185878) ((-1172 . -263) 185817) ((-1172 . -332) 185787) ((-1172 . -596) 185695) ((-1172 . -354) 185665) ((-1172 . -821) 185538) ((-1172 . -763) 185491) ((-1172 . -735) 185444) ((-1172 . -737) 185397) ((-1172 . -781) 185296) ((-1172 . -784) 185195) ((-1172 . -739) 185148) ((-1172 . -742) 185101) ((-1172 . -780) 185054) ((-1172 . -819) 185024) ((-1172 . -848) 184977) ((-1172 . -960) 184930) ((-1172 . -978) 184719) ((-1172 . -1092) 184671) ((-1172 . -931) 184641) ((-1167 . -1171) 184602) ((-1167 . -942) 184568) ((-1167 . -1143) 184534) ((-1167 . -1146) 184500) ((-1167 . -447) 184466) ((-1167 . -238) 184432) ((-1167 . -66) 184398) ((-1167 . -35) 184364) ((-1167 . -1186) 184341) ((-1167 . -47) 184318) ((-1167 . -571) 184113) ((-1167 . -675) 183909) ((-1167 . -598) 183705) ((-1167 . -606) 183557) ((-1167 . -604) 183394) ((-1167 . -996) 183184) ((-1167 . -991) 182974) ((-1167 . -82) 182720) ((-1167 . -38) 182516) ((-1167 . -913) 182485) ((-1167 . -240) 182313) ((-1167 . -1169) 182297) ((-1167 . -684) T) ((-1167 . -1052) T) ((-1167 . -997) T) ((-1167 . -989) T) ((-1167 . -21) T) ((-1167 . -23) T) ((-1167 . -1041) T) ((-1167 . -568) 182279) ((-1167 . -1157) T) ((-1167 . -73) T) ((-1167 . -25) T) ((-1167 . -104) T) ((-1167 . -118) 182186) ((-1167 . -120) 182093) ((-1167 . -569) NIL) ((-1167 . -184) 182045) ((-1167 . -836) 181878) ((-1167 . -838) 181639) ((-1167 . -831) 181375) ((-1167 . -224) 181327) ((-1167 . -189) 181150) ((-1167 . -186) 180967) ((-1167 . -190) 180854) ((-1167 . -318) 180833) ((-1167 . -1162) 180812) ((-1167 . -859) 180791) ((-1167 . -510) 180742) ((-1167 . -146) 180673) ((-1167 . -406) 180652) ((-1167 . -261) 180631) ((-1167 . -244) 180582) ((-1167 . -200) 180561) ((-1167 . -293) 180513) ((-1167 . -468) 180247) ((-1167 . -263) 180132) ((-1167 . -332) 180084) ((-1167 . -596) 180036) ((-1167 . -354) 179988) ((-1167 . -821) NIL) ((-1167 . -763) NIL) ((-1167 . -735) NIL) ((-1167 . -737) NIL) ((-1167 . -781) NIL) ((-1167 . -784) NIL) ((-1167 . -739) NIL) ((-1167 . -742) NIL) ((-1167 . -780) NIL) ((-1167 . -819) 179940) ((-1167 . -848) NIL) ((-1167 . -960) NIL) ((-1167 . -978) 179906) ((-1167 . -1092) NIL) ((-1167 . -931) 179858) ((-1166 . -777) T) ((-1166 . -784) T) ((-1166 . -781) T) ((-1166 . -1041) T) ((-1166 . -568) 179840) ((-1166 . -1157) T) ((-1166 . -73) T) ((-1166 . -323) T) ((-1166 . -620) T) ((-1165 . -777) T) ((-1165 . -784) T) ((-1165 . -781) T) ((-1165 . -1041) T) ((-1165 . -568) 179822) ((-1165 . -1157) T) ((-1165 . -73) T) ((-1165 . -323) T) ((-1165 . -620) T) ((-1164 . -777) T) ((-1164 . -784) T) ((-1164 . -781) T) ((-1164 . -1041) T) ((-1164 . -568) 179804) ((-1164 . -1157) T) ((-1164 . -73) T) ((-1164 . -323) T) ((-1164 . -620) T) ((-1163 . -777) T) ((-1163 . -784) T) ((-1163 . -781) T) ((-1163 . -1041) T) ((-1163 . -568) 179786) ((-1163 . -1157) T) ((-1163 . -73) T) ((-1163 . -323) T) ((-1163 . -620) T) ((-1158 . -1023) T) ((-1158 . -444) 179767) ((-1158 . -568) 179733) ((-1158 . -571) 179714) ((-1158 . -1041) T) ((-1158 . -1157) T) ((-1158 . -73) T) ((-1158 . -64) T) ((-1155 . -444) 179691) ((-1155 . -568) 179632) ((-1155 . -571) 179609) ((-1155 . -1041) 179587) ((-1155 . -1157) 179565) ((-1155 . -73) 179543) ((-1150 . -698) 179519) ((-1150 . -35) 179485) ((-1150 . -66) 179451) ((-1150 . -238) 179417) ((-1150 . -447) 179383) ((-1150 . -1146) 179349) ((-1150 . -1143) 179315) ((-1150 . -942) 179281) ((-1150 . -47) 179250) ((-1150 . -38) 179147) ((-1150 . -598) 179044) ((-1150 . -675) 178941) ((-1150 . -571) 178823) ((-1150 . -244) 178802) ((-1150 . -510) 178781) ((-1150 . -82) 178643) ((-1150 . -991) 178526) ((-1150 . -996) 178409) ((-1150 . -146) 178360) ((-1150 . -120) 178339) ((-1150 . -118) 178318) ((-1150 . -606) 178243) ((-1150 . -604) 178153) ((-1150 . -913) 178114) ((-1150 . -838) 178095) ((-1150 . -1157) T) ((-1150 . -831) 178074) ((-1150 . -989) T) ((-1150 . -997) T) ((-1150 . -1052) T) ((-1150 . -684) T) ((-1150 . -21) T) ((-1150 . -23) T) ((-1150 . -1041) T) ((-1150 . -568) 178056) ((-1150 . -73) T) ((-1150 . -25) T) ((-1150 . -104) T) ((-1150 . -836) 178037) ((-1150 . -468) 178004) ((-1150 . -263) 177991) ((-1144 . -950) 177975) ((-1144 . -34) T) ((-1144 . -1157) T) ((-1144 . -73) 177926) ((-1144 . -568) 177858) ((-1144 . -263) 177796) ((-1144 . -468) 177729) ((-1144 . -1041) 177707) ((-1144 . -443) 177691) ((-1139 . -320) 177665) ((-1139 . -73) T) ((-1139 . -1157) T) ((-1139 . -568) 177647) ((-1139 . -1041) T) ((-1137 . -1041) T) ((-1137 . -568) 177629) ((-1137 . -1157) T) ((-1137 . -73) T) ((-1137 . -571) 177611) ((-1131 . -770) 177595) ((-1131 . -73) T) ((-1131 . -1157) T) ((-1131 . -568) 177577) ((-1131 . -1041) T) ((-1129 . -1134) 177556) ((-1129 . -183) 177504) ((-1129 . -78) 177452) ((-1129 . -263) 177250) ((-1129 . -468) 177002) ((-1129 . -443) 176937) ((-1129 . -124) 176885) ((-1129 . -569) NIL) ((-1129 . -192) 176833) ((-1129 . -565) 176812) ((-1129 . -242) 176791) ((-1129 . -1157) T) ((-1129 . -240) 176770) ((-1129 . -1041) T) ((-1129 . -568) 176752) ((-1129 . -73) T) ((-1129 . -34) T) ((-1129 . -554) 176731) ((-1125 . -1041) T) ((-1125 . -568) 176713) ((-1125 . -1157) T) ((-1125 . -73) T) ((-1124 . -777) T) ((-1124 . -784) T) ((-1124 . -781) T) ((-1124 . -1041) T) ((-1124 . -568) 176695) ((-1124 . -1157) T) ((-1124 . -73) T) ((-1124 . -323) T) ((-1124 . -620) T) ((-1123 . -777) T) ((-1123 . -784) T) ((-1123 . -781) T) ((-1123 . -1041) T) ((-1123 . -568) 176677) ((-1123 . -1157) T) ((-1123 . -73) T) ((-1123 . -323) T) ((-1122 . -1203) T) ((-1122 . -1041) T) ((-1122 . -568) 176644) ((-1122 . -1157) T) ((-1122 . -73) T) ((-1122 . -978) 176580) ((-1122 . -571) 176516) ((-1121 . -568) 176498) ((-1120 . -568) 176480) ((-1119 . -280) 176457) ((-1119 . -978) 176355) ((-1119 . -366) 176339) ((-1119 . -38) 176236) ((-1119 . -571) 176090) ((-1119 . -606) 176015) ((-1119 . -604) 175925) ((-1119 . -684) T) ((-1119 . -1052) T) ((-1119 . -997) T) ((-1119 . -989) T) ((-1119 . -82) 175787) ((-1119 . -991) 175670) ((-1119 . -996) 175553) ((-1119 . -21) T) ((-1119 . -23) T) ((-1119 . -1041) T) ((-1119 . -568) 175535) ((-1119 . -1157) T) ((-1119 . -73) T) ((-1119 . -25) T) ((-1119 . -104) T) ((-1119 . -598) 175432) ((-1119 . -675) 175329) ((-1119 . -118) 175308) ((-1119 . -120) 175287) ((-1119 . -146) 175238) ((-1119 . -510) 175217) ((-1119 . -244) 175196) ((-1119 . -47) 175173) ((-1117 . -781) T) ((-1117 . -568) 175155) ((-1117 . -1041) T) ((-1117 . -73) T) ((-1117 . -1157) T) ((-1117 . -784) T) ((-1117 . -569) 175077) ((-1117 . -571) 175043) ((-1117 . -978) 175025) ((-1117 . -821) 174992) ((-1116 . -568) 174974) ((-1115 . -1200) 174958) ((-1115 . -190) 174917) ((-1115 . -571) 174799) ((-1115 . -606) 174724) ((-1115 . -604) 174634) ((-1115 . -104) T) ((-1115 . -25) T) ((-1115 . -73) T) ((-1115 . -568) 174616) ((-1115 . -1041) T) ((-1115 . -23) T) ((-1115 . -21) T) ((-1115 . -684) T) ((-1115 . -1052) T) ((-1115 . -997) T) ((-1115 . -989) T) ((-1115 . -186) 174569) ((-1115 . -1157) T) ((-1115 . -189) 174528) ((-1115 . -240) 174493) ((-1115 . -836) 174406) ((-1115 . -831) 174294) ((-1115 . -838) 174207) ((-1115 . -913) 174176) ((-1115 . -38) 174073) ((-1115 . -82) 173935) ((-1115 . -991) 173818) ((-1115 . -996) 173701) ((-1115 . -598) 173598) ((-1115 . -675) 173495) ((-1115 . -118) 173474) ((-1115 . -120) 173453) ((-1115 . -146) 173404) ((-1115 . -510) 173383) ((-1115 . -244) 173362) ((-1115 . -47) 173339) ((-1115 . -1186) 173316) ((-1115 . -35) 173282) ((-1115 . -66) 173248) ((-1115 . -238) 173214) ((-1115 . -447) 173180) ((-1115 . -1146) 173146) ((-1115 . -1143) 173112) ((-1115 . -942) 173078) ((-1114 . -1192) 173039) ((-1114 . -318) 173018) ((-1114 . -1162) 172997) ((-1114 . -859) 172976) ((-1114 . -510) 172927) ((-1114 . -146) 172858) ((-1114 . -571) 172601) ((-1114 . -675) 172442) ((-1114 . -598) 172283) ((-1114 . -38) 172124) ((-1114 . -406) 172103) ((-1114 . -261) 172082) ((-1114 . -606) 171979) ((-1114 . -604) 171861) ((-1114 . -684) T) ((-1114 . -1052) T) ((-1114 . -997) T) ((-1114 . -989) T) ((-1114 . -82) 171675) ((-1114 . -991) 171510) ((-1114 . -996) 171345) ((-1114 . -21) T) ((-1114 . -23) T) ((-1114 . -1041) T) ((-1114 . -568) 171327) ((-1114 . -1157) T) ((-1114 . -73) T) ((-1114 . -25) T) ((-1114 . -104) T) ((-1114 . -244) 171278) ((-1114 . -200) 171257) ((-1114 . -942) 171223) ((-1114 . -1143) 171189) ((-1114 . -1146) 171155) ((-1114 . -447) 171121) ((-1114 . -238) 171087) ((-1114 . -66) 171053) ((-1114 . -35) 171019) ((-1114 . -1186) 170989) ((-1114 . -47) 170959) ((-1114 . -120) 170938) ((-1114 . -118) 170917) ((-1114 . -913) 170879) ((-1114 . -838) 170785) ((-1114 . -831) 170666) ((-1114 . -836) 170572) ((-1114 . -240) 170530) ((-1114 . -189) 170482) ((-1114 . -186) 170428) ((-1114 . -190) 170380) ((-1114 . -1190) 170364) ((-1114 . -978) 170299) ((-1111 . -1183) 170283) ((-1111 . -1092) 170261) ((-1111 . -569) NIL) ((-1111 . -263) 170248) ((-1111 . -468) 170194) ((-1111 . -280) 170171) ((-1111 . -978) 170053) ((-1111 . -366) 170037) ((-1111 . -38) 169866) ((-1111 . -82) 169668) ((-1111 . -991) 169491) ((-1111 . -996) 169314) ((-1111 . -604) 169224) ((-1111 . -606) 169113) ((-1111 . -598) 168942) ((-1111 . -675) 168771) ((-1111 . -571) 168541) ((-1111 . -118) 168520) ((-1111 . -120) 168499) ((-1111 . -47) 168476) ((-1111 . -332) 168460) ((-1111 . -596) 168408) ((-1111 . -836) 168351) ((-1111 . -831) 168254) ((-1111 . -838) 168161) ((-1111 . -821) NIL) ((-1111 . -848) 168140) ((-1111 . -1162) 168119) ((-1111 . -888) 168088) ((-1111 . -859) 168067) ((-1111 . -510) 167978) ((-1111 . -244) 167889) ((-1111 . -146) 167780) ((-1111 . -406) 167711) ((-1111 . -261) 167690) ((-1111 . -240) 167617) ((-1111 . -190) T) ((-1111 . -104) T) ((-1111 . -25) T) ((-1111 . -73) T) ((-1111 . -568) 167599) ((-1111 . -1041) T) ((-1111 . -23) T) ((-1111 . -21) T) ((-1111 . -684) T) ((-1111 . -1052) T) ((-1111 . -997) T) ((-1111 . -989) T) ((-1111 . -186) 167586) ((-1111 . -1157) T) ((-1111 . -189) T) ((-1111 . -224) 167570) ((-1111 . -184) 167554) ((-1108 . -1171) 167515) ((-1108 . -942) 167481) ((-1108 . -1143) 167447) ((-1108 . -1146) 167413) ((-1108 . -447) 167379) ((-1108 . -238) 167345) ((-1108 . -66) 167311) ((-1108 . -35) 167277) ((-1108 . -1186) 167254) ((-1108 . -47) 167231) ((-1108 . -571) 167026) ((-1108 . -675) 166822) ((-1108 . -598) 166618) ((-1108 . -606) 166470) ((-1108 . -604) 166307) ((-1108 . -996) 166097) ((-1108 . -991) 165887) ((-1108 . -82) 165633) ((-1108 . -38) 165429) ((-1108 . -913) 165398) ((-1108 . -240) 165226) ((-1108 . -1169) 165210) ((-1108 . -684) T) ((-1108 . -1052) T) ((-1108 . -997) T) ((-1108 . -989) T) ((-1108 . -21) T) ((-1108 . -23) T) ((-1108 . -1041) T) ((-1108 . -568) 165192) ((-1108 . -1157) T) ((-1108 . -73) T) ((-1108 . -25) T) ((-1108 . -104) T) ((-1108 . -118) 165099) ((-1108 . -120) 165006) ((-1108 . -569) NIL) ((-1108 . -184) 164958) ((-1108 . -836) 164791) ((-1108 . -838) 164552) ((-1108 . -831) 164288) ((-1108 . -224) 164240) ((-1108 . -189) 164063) ((-1108 . -186) 163880) ((-1108 . -190) 163767) ((-1108 . -318) 163746) ((-1108 . -1162) 163725) ((-1108 . -859) 163704) ((-1108 . -510) 163655) ((-1108 . -146) 163586) ((-1108 . -406) 163565) ((-1108 . -261) 163544) ((-1108 . -244) 163495) ((-1108 . -200) 163474) ((-1108 . -293) 163426) ((-1108 . -468) 163160) ((-1108 . -263) 163045) ((-1108 . -332) 162997) ((-1108 . -596) 162949) ((-1108 . -354) 162901) ((-1108 . -821) NIL) ((-1108 . -763) NIL) ((-1108 . -735) NIL) ((-1108 . -737) NIL) ((-1108 . -781) NIL) ((-1108 . -784) NIL) ((-1108 . -739) NIL) ((-1108 . -742) NIL) ((-1108 . -780) NIL) ((-1108 . -819) 162853) ((-1108 . -848) NIL) ((-1108 . -960) NIL) ((-1108 . -978) 162819) ((-1108 . -1092) NIL) ((-1108 . -931) 162771) ((-1107 . -1023) T) ((-1107 . -444) 162752) ((-1107 . -568) 162718) ((-1107 . -571) 162699) ((-1107 . -1041) T) ((-1107 . -1157) T) ((-1107 . -73) T) ((-1107 . -64) T) ((-1106 . -1041) T) ((-1106 . -568) 162681) ((-1106 . -1157) T) ((-1106 . -73) T) ((-1105 . -1041) T) ((-1105 . -568) 162663) ((-1105 . -1157) T) ((-1105 . -73) T) ((-1100 . -1134) 162639) ((-1100 . -183) 162584) ((-1100 . -78) 162529) ((-1100 . -263) 162318) ((-1100 . -468) 162058) ((-1100 . -443) 161990) ((-1100 . -124) 161935) ((-1100 . -569) NIL) ((-1100 . -192) 161880) ((-1100 . -565) 161856) ((-1100 . -242) 161832) ((-1100 . -1157) T) ((-1100 . -240) 161808) ((-1100 . -1041) T) ((-1100 . -568) 161790) ((-1100 . -73) T) ((-1100 . -34) T) ((-1100 . -554) 161766) ((-1099 . -1084) T) ((-1099 . -327) 161748) ((-1099 . -784) T) ((-1099 . -781) T) ((-1099 . -124) 161730) ((-1099 . -34) T) ((-1099 . -1157) T) ((-1099 . -73) T) ((-1099 . -568) 161712) ((-1099 . -263) NIL) ((-1099 . -468) NIL) ((-1099 . -1041) T) ((-1099 . -443) 161694) ((-1099 . -569) NIL) ((-1099 . -240) 161644) ((-1099 . -554) 161619) ((-1099 . -242) 161594) ((-1099 . -609) 161576) ((-1099 . -19) 161558) ((-1095 . -632) 161542) ((-1095 . -609) 161526) ((-1095 . -242) 161503) ((-1095 . -240) 161455) ((-1095 . -554) 161432) ((-1095 . -569) 161393) ((-1095 . -443) 161377) ((-1095 . -1041) 161355) ((-1095 . -468) 161288) ((-1095 . -263) 161226) ((-1095 . -568) 161158) ((-1095 . -73) 161109) ((-1095 . -1157) T) ((-1095 . -34) T) ((-1095 . -124) 161093) ((-1095 . -1196) 161077) ((-1095 . -950) 161061) ((-1095 . -1090) 161045) ((-1095 . -571) 161022) ((-1093 . -1023) T) ((-1093 . -444) 161003) ((-1093 . -568) 160969) ((-1093 . -571) 160950) ((-1093 . -1041) T) ((-1093 . -1157) T) ((-1093 . -73) T) ((-1093 . -64) T) ((-1091 . -1134) 160929) ((-1091 . -183) 160877) ((-1091 . -78) 160825) ((-1091 . -263) 160623) ((-1091 . -468) 160375) ((-1091 . -443) 160310) ((-1091 . -124) 160258) ((-1091 . -569) NIL) ((-1091 . -192) 160206) ((-1091 . -565) 160185) ((-1091 . -242) 160164) ((-1091 . -1157) T) ((-1091 . -240) 160143) ((-1091 . -1041) T) ((-1091 . -568) 160125) ((-1091 . -73) T) ((-1091 . -34) T) ((-1091 . -554) 160104) ((-1088 . -1061) 160088) ((-1088 . -443) 160072) ((-1088 . -1041) 160050) ((-1088 . -468) 159983) ((-1088 . -263) 159921) ((-1088 . -568) 159853) ((-1088 . -73) 159804) ((-1088 . -1157) T) ((-1088 . -34) T) ((-1088 . -78) 159788) ((-1086 . -1049) 159757) ((-1086 . -1152) 159726) ((-1086 . -568) 159688) ((-1086 . -124) 159672) ((-1086 . -34) T) ((-1086 . -1157) T) ((-1086 . -73) T) ((-1086 . -263) 159610) ((-1086 . -468) 159543) ((-1086 . -1041) T) ((-1086 . -443) 159527) ((-1086 . -569) 159488) ((-1086 . -916) 159457) ((-1086 . -1011) 159426) ((-1082 . -1063) 159371) ((-1082 . -443) 159355) ((-1082 . -468) 159288) ((-1082 . -263) 159226) ((-1082 . -34) T) ((-1082 . -993) 159166) ((-1082 . -978) 159064) ((-1082 . -571) 158983) ((-1082 . -366) 158967) ((-1082 . -596) 158915) ((-1082 . -606) 158853) ((-1082 . -332) 158837) ((-1082 . -190) 158816) ((-1082 . -186) 158761) ((-1082 . -189) 158712) ((-1082 . -224) 158696) ((-1082 . -831) 158617) ((-1082 . -838) 158540) ((-1082 . -836) 158499) ((-1082 . -184) 158483) ((-1082 . -675) 158415) ((-1082 . -598) 158347) ((-1082 . -604) 158306) ((-1082 . -104) T) ((-1082 . -25) T) ((-1082 . -73) T) ((-1082 . -1157) T) ((-1082 . -568) 158268) ((-1082 . -1041) T) ((-1082 . -23) T) ((-1082 . -21) T) ((-1082 . -996) 158252) ((-1082 . -991) 158236) ((-1082 . -82) 158215) ((-1082 . -989) T) ((-1082 . -997) T) ((-1082 . -1052) T) ((-1082 . -684) T) ((-1082 . -38) 158175) ((-1082 . -569) 158136) ((-1081 . -950) 158107) ((-1081 . -34) T) ((-1081 . -1157) T) ((-1081 . -73) T) ((-1081 . -568) 158089) ((-1081 . -263) 158015) ((-1081 . -468) 157923) ((-1081 . -1041) T) ((-1081 . -443) 157894) ((-1080 . -1041) T) ((-1080 . -568) 157876) ((-1080 . -1157) T) ((-1080 . -73) T) ((-1075 . -1077) T) ((-1075 . -1203) T) ((-1075 . -64) T) ((-1075 . -73) T) ((-1075 . -1157) T) ((-1075 . -568) 157842) ((-1075 . -1041) T) ((-1075 . -571) 157823) ((-1075 . -444) 157804) ((-1075 . -1023) T) ((-1073 . -1074) 157788) ((-1073 . -73) T) ((-1073 . -1157) T) ((-1073 . -568) 157770) ((-1073 . -1041) T) ((-1066 . -698) 157749) ((-1066 . -35) 157715) ((-1066 . -66) 157681) ((-1066 . -238) 157647) ((-1066 . -447) 157613) ((-1066 . -1146) 157579) ((-1066 . -1143) 157545) ((-1066 . -942) 157511) ((-1066 . -47) 157483) ((-1066 . -38) 157380) ((-1066 . -598) 157277) ((-1066 . -675) 157174) ((-1066 . -571) 157056) ((-1066 . -244) 157035) ((-1066 . -510) 157014) ((-1066 . -82) 156876) ((-1066 . -991) 156759) ((-1066 . -996) 156642) ((-1066 . -146) 156593) ((-1066 . -120) 156572) ((-1066 . -118) 156551) ((-1066 . -606) 156476) ((-1066 . -604) 156386) ((-1066 . -913) 156353) ((-1066 . -838) 156337) ((-1066 . -1157) T) ((-1066 . -831) 156319) ((-1066 . -989) T) ((-1066 . -997) T) ((-1066 . -1052) T) ((-1066 . -684) T) ((-1066 . -21) T) ((-1066 . -23) T) ((-1066 . -1041) T) ((-1066 . -568) 156301) ((-1066 . -73) T) ((-1066 . -25) T) ((-1066 . -104) T) ((-1066 . -836) 156285) ((-1066 . -468) 156255) ((-1066 . -263) 156242) ((-1065 . -888) 156209) ((-1065 . -571) 156002) ((-1065 . -978) 155887) ((-1065 . -1162) 155866) ((-1065 . -848) 155845) ((-1065 . -821) 155704) ((-1065 . -838) 155688) ((-1065 . -831) 155670) ((-1065 . -836) 155654) ((-1065 . -468) 155606) ((-1065 . -406) 155557) ((-1065 . -596) 155505) ((-1065 . -606) 155394) ((-1065 . -332) 155378) ((-1065 . -47) 155350) ((-1065 . -38) 155199) ((-1065 . -598) 155048) ((-1065 . -675) 154897) ((-1065 . -244) 154828) ((-1065 . -510) 154759) ((-1065 . -82) 154581) ((-1065 . -991) 154424) ((-1065 . -996) 154267) ((-1065 . -146) 154178) ((-1065 . -120) 154157) ((-1065 . -118) 154136) ((-1065 . -604) 154046) ((-1065 . -104) T) ((-1065 . -25) T) ((-1065 . -73) T) ((-1065 . -1157) T) ((-1065 . -568) 154028) ((-1065 . -1041) T) ((-1065 . -23) T) ((-1065 . -21) T) ((-1065 . -989) T) ((-1065 . -997) T) ((-1065 . -1052) T) ((-1065 . -684) T) ((-1065 . -366) 154012) ((-1065 . -280) 153984) ((-1065 . -263) 153971) ((-1065 . -569) 153719) ((-1060 . -498) T) ((-1060 . -1162) T) ((-1060 . -1092) T) ((-1060 . -978) 153701) ((-1060 . -569) 153616) ((-1060 . -960) T) ((-1060 . -821) 153598) ((-1060 . -780) T) ((-1060 . -742) T) ((-1060 . -739) T) ((-1060 . -784) T) ((-1060 . -781) T) ((-1060 . -737) T) ((-1060 . -735) T) ((-1060 . -763) T) ((-1060 . -606) 153570) ((-1060 . -596) 153552) ((-1060 . -859) T) ((-1060 . -510) T) ((-1060 . -244) T) ((-1060 . -146) T) ((-1060 . -571) 153524) ((-1060 . -675) 153511) ((-1060 . -598) 153498) ((-1060 . -996) 153485) ((-1060 . -991) 153472) ((-1060 . -82) 153457) ((-1060 . -38) 153444) ((-1060 . -406) T) ((-1060 . -261) T) ((-1060 . -189) T) ((-1060 . -186) 153431) ((-1060 . -190) T) ((-1060 . -116) T) ((-1060 . -989) T) ((-1060 . -997) T) ((-1060 . -1052) T) ((-1060 . -684) T) ((-1060 . -21) T) ((-1060 . -604) 153403) ((-1060 . -23) T) ((-1060 . -1041) T) ((-1060 . -568) 153385) ((-1060 . -1157) T) ((-1060 . -73) T) ((-1060 . -25) T) ((-1060 . -104) T) ((-1060 . -120) T) ((-1060 . -777) T) ((-1060 . -323) T) ((-1060 . -84) T) ((-1060 . -620) T) ((-1056 . -1023) T) ((-1056 . -444) 153366) ((-1056 . -568) 153332) ((-1056 . -571) 153313) ((-1056 . -1041) T) ((-1056 . -1157) T) ((-1056 . -73) T) ((-1056 . -64) T) ((-1055 . -1041) T) ((-1055 . -568) 153295) ((-1055 . -1157) T) ((-1055 . -73) T) ((-1053 . -195) 153274) ((-1053 . -1215) 153244) ((-1053 . -742) 153223) ((-1053 . -739) 153202) ((-1053 . -784) 153153) ((-1053 . -781) 153104) ((-1053 . -737) 153083) ((-1053 . -738) 153062) ((-1053 . -675) 153004) ((-1053 . -598) 152926) ((-1053 . -242) 152903) ((-1053 . -240) 152880) ((-1053 . -443) 152864) ((-1053 . -468) 152797) ((-1053 . -263) 152735) ((-1053 . -34) T) ((-1053 . -554) 152712) ((-1053 . -978) 152541) ((-1053 . -571) 152342) ((-1053 . -366) 152311) ((-1053 . -596) 152219) ((-1053 . -606) 152055) ((-1053 . -332) 152025) ((-1053 . -323) 152004) ((-1053 . -190) 151957) ((-1053 . -604) 151739) ((-1053 . -684) 151718) ((-1053 . -1052) 151697) ((-1053 . -997) 151676) ((-1053 . -989) 151655) ((-1053 . -186) 151548) ((-1053 . -189) 151447) ((-1053 . -224) 151417) ((-1053 . -831) 151286) ((-1053 . -838) 151157) ((-1053 . -836) 151090) ((-1053 . -184) 151060) ((-1053 . -568) 150754) ((-1053 . -996) 150676) ((-1053 . -991) 150578) ((-1053 . -82) 150495) ((-1053 . -104) 150367) ((-1053 . -25) 150201) ((-1053 . -73) 149935) ((-1053 . -1157) T) ((-1053 . -1041) 149688) ((-1053 . -23) 149541) ((-1053 . -21) 149453) ((-1046 . -350) T) ((-1046 . -1157) T) ((-1046 . -568) 149435) ((-1045 . -1044) 149399) ((-1045 . -73) T) ((-1045 . -568) 149381) ((-1045 . -1041) T) ((-1045 . -240) 149337) ((-1045 . -1157) T) ((-1045 . -573) 149252) ((-1043 . -1044) 149204) ((-1043 . -73) T) ((-1043 . -568) 149186) ((-1043 . -1041) T) ((-1043 . -240) 149142) ((-1043 . -1157) T) ((-1043 . -573) 149045) ((-1042 . -323) T) ((-1042 . -73) T) ((-1042 . -1157) T) ((-1042 . -568) 149027) ((-1042 . -1041) T) ((-1037 . -380) 149011) ((-1037 . -1039) 148995) ((-1037 . -323) 148974) ((-1037 . -192) 148958) ((-1037 . -569) 148919) ((-1037 . -124) 148903) ((-1037 . -443) 148887) ((-1037 . -1041) T) ((-1037 . -468) 148820) ((-1037 . -263) 148758) ((-1037 . -568) 148740) ((-1037 . -73) T) ((-1037 . -1157) T) ((-1037 . -34) T) ((-1037 . -78) 148724) ((-1037 . -183) 148708) ((-1036 . -1023) T) ((-1036 . -444) 148689) ((-1036 . -568) 148655) ((-1036 . -571) 148636) ((-1036 . -1041) T) ((-1036 . -1157) T) ((-1036 . -73) T) ((-1036 . -64) T) ((-1032 . -1157) T) ((-1032 . -1041) 148606) ((-1032 . -568) 148565) ((-1032 . -73) 148535) ((-1031 . -1023) T) ((-1031 . -444) 148516) ((-1031 . -568) 148482) ((-1031 . -571) 148463) ((-1031 . -1041) T) ((-1031 . -1157) T) ((-1031 . -73) T) ((-1031 . -64) T) ((-1029 . -1034) 148447) ((-1029 . -573) 148431) ((-1029 . -1041) 148409) ((-1029 . -568) 148376) ((-1029 . -1157) 148354) ((-1029 . -73) 148332) ((-1029 . -1035) 148290) ((-1028 . -227) 148274) ((-1028 . -571) 148258) ((-1028 . -978) 148242) ((-1028 . -784) T) ((-1028 . -73) T) ((-1028 . -1041) T) ((-1028 . -568) 148224) ((-1028 . -781) T) ((-1028 . -186) 148211) ((-1028 . -1157) T) ((-1028 . -189) T) ((-1027 . -212) 148148) ((-1027 . -571) 147885) ((-1027 . -978) 147714) ((-1027 . -569) NIL) ((-1027 . -280) 147675) ((-1027 . -366) 147659) ((-1027 . -38) 147508) ((-1027 . -82) 147330) ((-1027 . -991) 147173) ((-1027 . -996) 147016) ((-1027 . -604) 146926) ((-1027 . -606) 146815) ((-1027 . -598) 146664) ((-1027 . -675) 146513) ((-1027 . -118) 146492) ((-1027 . -120) 146471) ((-1027 . -146) 146382) ((-1027 . -510) 146313) ((-1027 . -244) 146244) ((-1027 . -47) 146205) ((-1027 . -332) 146189) ((-1027 . -596) 146137) ((-1027 . -406) 146088) ((-1027 . -468) 145951) ((-1027 . -836) 145886) ((-1027 . -831) 145781) ((-1027 . -838) 145680) ((-1027 . -821) NIL) ((-1027 . -848) 145659) ((-1027 . -1162) 145638) ((-1027 . -888) 145583) ((-1027 . -263) 145570) ((-1027 . -190) 145549) ((-1027 . -104) T) ((-1027 . -25) T) ((-1027 . -73) T) ((-1027 . -568) 145531) ((-1027 . -1041) T) ((-1027 . -23) T) ((-1027 . -21) T) ((-1027 . -684) T) ((-1027 . -1052) T) ((-1027 . -997) T) ((-1027 . -989) T) ((-1027 . -186) 145476) ((-1027 . -1157) T) ((-1027 . -189) 145427) ((-1027 . -224) 145411) ((-1027 . -184) 145395) ((-1025 . -568) 145377) ((-1022 . -781) T) ((-1022 . -568) 145359) ((-1022 . -1041) T) ((-1022 . -73) T) ((-1022 . -1157) T) ((-1022 . -784) T) ((-1022 . -569) 145340) ((-1019 . -682) 145319) ((-1019 . -978) 145217) ((-1019 . -366) 145201) ((-1019 . -596) 145149) ((-1019 . -606) 145023) ((-1019 . -332) 145007) ((-1019 . -325) 144986) ((-1019 . -120) 144965) ((-1019 . -571) 144784) ((-1019 . -675) 144652) ((-1019 . -598) 144520) ((-1019 . -604) 144415) ((-1019 . -996) 144325) ((-1019 . -991) 144235) ((-1019 . -82) 144124) ((-1019 . -38) 143992) ((-1019 . -364) 143971) ((-1019 . -356) 143950) ((-1019 . -118) 143901) ((-1019 . -1092) 143880) ((-1019 . -305) 143859) ((-1019 . -323) 143810) ((-1019 . -200) 143761) ((-1019 . -244) 143712) ((-1019 . -261) 143663) ((-1019 . -406) 143614) ((-1019 . -510) 143565) ((-1019 . -859) 143516) ((-1019 . -1162) 143467) ((-1019 . -318) 143418) ((-1019 . -190) 143343) ((-1019 . -186) 143216) ((-1019 . -189) 143095) ((-1019 . -224) 143065) ((-1019 . -831) 142934) ((-1019 . -838) 142805) ((-1019 . -836) 142738) ((-1019 . -184) 142708) ((-1019 . -569) 142692) ((-1019 . -21) T) ((-1019 . -23) T) ((-1019 . -1041) T) ((-1019 . -568) 142674) ((-1019 . -1157) T) ((-1019 . -73) T) ((-1019 . -25) T) ((-1019 . -104) T) ((-1019 . -989) T) ((-1019 . -997) T) ((-1019 . -1052) T) ((-1019 . -684) T) ((-1019 . -146) T) ((-1017 . -1041) T) ((-1017 . -568) 142656) ((-1017 . -1157) T) ((-1017 . -73) T) ((-1017 . -240) 142635) ((-1016 . -1041) T) ((-1016 . -568) 142617) ((-1016 . -1157) T) ((-1016 . -73) T) ((-1015 . -1041) T) ((-1015 . -568) 142599) ((-1015 . -1157) T) ((-1015 . -73) T) ((-1015 . -240) 142578) ((-1015 . -978) 142555) ((-1015 . -571) 142532) ((-1014 . -1157) T) ((-1013 . -1023) T) ((-1013 . -444) 142513) ((-1013 . -568) 142479) ((-1013 . -571) 142460) ((-1013 . -1041) T) ((-1013 . -1157) T) ((-1013 . -73) T) ((-1013 . -64) T) ((-1006 . -1023) T) ((-1006 . -444) 142441) ((-1006 . -568) 142407) ((-1006 . -571) 142388) ((-1006 . -1041) T) ((-1006 . -1157) T) ((-1006 . -73) T) ((-1006 . -64) T) ((-1003 . -1134) 142363) ((-1003 . -183) 142307) ((-1003 . -78) 142251) ((-1003 . -263) 142096) ((-1003 . -468) 141896) ((-1003 . -443) 141826) ((-1003 . -124) 141770) ((-1003 . -569) NIL) ((-1003 . -192) 141714) ((-1003 . -565) 141689) ((-1003 . -242) 141664) ((-1003 . -1157) T) ((-1003 . -240) 141639) ((-1003 . -1041) T) ((-1003 . -568) 141621) ((-1003 . -73) T) ((-1003 . -34) T) ((-1003 . -554) 141596) ((-1002 . -498) T) ((-1002 . -1162) T) ((-1002 . -1092) T) ((-1002 . -978) 141578) ((-1002 . -569) 141493) ((-1002 . -960) T) ((-1002 . -821) 141475) ((-1002 . -780) T) ((-1002 . -742) T) ((-1002 . -739) T) ((-1002 . -784) T) ((-1002 . -781) T) ((-1002 . -737) T) ((-1002 . -735) T) ((-1002 . -763) T) ((-1002 . -606) 141447) ((-1002 . -596) 141429) ((-1002 . -859) T) ((-1002 . -510) T) ((-1002 . -244) T) ((-1002 . -146) T) ((-1002 . -571) 141401) ((-1002 . -675) 141388) ((-1002 . -598) 141375) ((-1002 . -996) 141362) ((-1002 . -991) 141349) ((-1002 . -82) 141334) ((-1002 . -38) 141321) ((-1002 . -406) T) ((-1002 . -261) T) ((-1002 . -189) T) ((-1002 . -186) 141308) ((-1002 . -190) T) ((-1002 . -116) T) ((-1002 . -989) T) ((-1002 . -997) T) ((-1002 . -1052) T) ((-1002 . -684) T) ((-1002 . -21) T) ((-1002 . -604) 141280) ((-1002 . -23) T) ((-1002 . -1041) T) ((-1002 . -568) 141262) ((-1002 . -1157) T) ((-1002 . -73) T) ((-1002 . -25) T) ((-1002 . -104) T) ((-1002 . -120) T) ((-1002 . -573) 141243) ((-1001 . -1008) 141222) ((-1001 . -73) T) ((-1001 . -1157) T) ((-1001 . -568) 141204) ((-1001 . -1041) T) ((-998 . -1157) T) ((-998 . -1041) 141182) ((-998 . -568) 141149) ((-998 . -73) 141127) ((-994 . -993) 141067) ((-994 . -598) 141009) ((-994 . -675) 140951) ((-994 . -34) T) ((-994 . -263) 140889) ((-994 . -468) 140822) ((-994 . -443) 140806) ((-994 . -606) 140790) ((-994 . -604) 140759) ((-994 . -104) T) ((-994 . -25) T) ((-994 . -73) T) ((-994 . -1157) T) ((-994 . -568) 140721) ((-994 . -1041) T) ((-994 . -23) T) ((-994 . -21) T) ((-994 . -996) 140705) ((-994 . -991) 140689) ((-994 . -82) 140668) ((-994 . -1215) 140638) ((-994 . -569) 140599) ((-986 . -1011) 140528) ((-986 . -916) 140457) ((-986 . -569) 140399) ((-986 . -443) 140364) ((-986 . -1041) T) ((-986 . -468) 140248) ((-986 . -263) 140156) ((-986 . -568) 140099) ((-986 . -73) T) ((-986 . -1157) T) ((-986 . -34) T) ((-986 . -124) 140064) ((-986 . -1152) 139993) ((-976 . -1023) T) ((-976 . -444) 139974) ((-976 . -568) 139940) ((-976 . -571) 139921) ((-976 . -1041) T) ((-976 . -1157) T) ((-976 . -73) T) ((-976 . -64) T) ((-975 . -1134) 139896) ((-975 . -183) 139840) ((-975 . -78) 139784) ((-975 . -263) 139629) ((-975 . -468) 139429) ((-975 . -443) 139359) ((-975 . -124) 139303) ((-975 . -569) NIL) ((-975 . -192) 139247) ((-975 . -565) 139222) ((-975 . -242) 139197) ((-975 . -1157) T) ((-975 . -240) 139172) ((-975 . -1041) T) ((-975 . -568) 139154) ((-975 . -73) T) ((-975 . -34) T) ((-975 . -554) 139129) ((-974 . -146) T) ((-974 . -571) 139098) ((-974 . -684) T) ((-974 . -1052) T) ((-974 . -997) T) ((-974 . -989) T) ((-974 . -606) 139072) ((-974 . -604) 139031) ((-974 . -104) T) ((-974 . -25) T) ((-974 . -73) T) ((-974 . -1157) T) ((-974 . -568) 139013) ((-974 . -1041) T) ((-974 . -23) T) ((-974 . -21) T) ((-974 . -996) 138987) ((-974 . -991) 138961) ((-974 . -82) 138928) ((-974 . -38) 138912) ((-974 . -598) 138896) ((-974 . -675) 138880) ((-967 . -1011) 138849) ((-967 . -916) 138818) ((-967 . -569) 138779) ((-967 . -443) 138763) ((-967 . -1041) T) ((-967 . -468) 138696) ((-967 . -263) 138634) ((-967 . -568) 138596) ((-967 . -73) T) ((-967 . -1157) T) ((-967 . -34) T) ((-967 . -124) 138580) ((-967 . -1152) 138549) ((-966 . -1157) T) ((-966 . -1041) 138527) ((-966 . -568) 138494) ((-966 . -73) 138472) ((-964 . -952) T) ((-964 . -942) T) ((-964 . -735) T) ((-964 . -737) T) ((-964 . -781) T) ((-964 . -784) T) ((-964 . -739) T) ((-964 . -742) T) ((-964 . -780) T) ((-964 . -978) 138354) ((-964 . -366) 138316) ((-964 . -200) T) ((-964 . -244) T) ((-964 . -261) T) ((-964 . -406) T) ((-964 . -38) 138253) ((-964 . -598) 138190) ((-964 . -675) 138127) ((-964 . -571) 138064) ((-964 . -510) T) ((-964 . -859) T) ((-964 . -1162) T) ((-964 . -318) T) ((-964 . -82) 137973) ((-964 . -991) 137910) ((-964 . -996) 137847) ((-964 . -146) T) ((-964 . -120) T) ((-964 . -606) 137784) ((-964 . -604) 137721) ((-964 . -104) T) ((-964 . -25) T) ((-964 . -73) T) ((-964 . -1157) T) ((-964 . -568) 137703) ((-964 . -1041) T) ((-964 . -23) T) ((-964 . -21) T) ((-964 . -989) T) ((-964 . -997) T) ((-964 . -1052) T) ((-964 . -684) T) ((-959 . -1023) T) ((-959 . -444) 137684) ((-959 . -568) 137650) ((-959 . -571) 137631) ((-959 . -1041) T) ((-959 . -1157) T) ((-959 . -73) T) ((-959 . -64) T) ((-944 . -931) 137613) ((-944 . -1092) T) ((-944 . -571) 137563) ((-944 . -978) 137523) ((-944 . -569) 137453) ((-944 . -960) T) ((-944 . -848) NIL) ((-944 . -819) 137435) ((-944 . -780) T) ((-944 . -742) T) ((-944 . -739) T) ((-944 . -784) T) ((-944 . -781) T) ((-944 . -737) T) ((-944 . -735) T) ((-944 . -763) T) ((-944 . -821) 137417) ((-944 . -354) 137399) ((-944 . -596) 137381) ((-944 . -332) 137363) ((-944 . -240) NIL) ((-944 . -263) NIL) ((-944 . -468) NIL) ((-944 . -293) 137345) ((-944 . -200) T) ((-944 . -82) 137272) ((-944 . -991) 137222) ((-944 . -996) 137172) ((-944 . -244) T) ((-944 . -675) 137122) ((-944 . -598) 137072) ((-944 . -606) 137022) ((-944 . -604) 136972) ((-944 . -38) 136922) ((-944 . -261) T) ((-944 . -406) T) ((-944 . -146) T) ((-944 . -510) T) ((-944 . -859) T) ((-944 . -1162) T) ((-944 . -318) T) ((-944 . -190) T) ((-944 . -186) 136909) ((-944 . -189) T) ((-944 . -224) 136891) ((-944 . -831) NIL) ((-944 . -838) NIL) ((-944 . -836) NIL) ((-944 . -184) 136873) ((-944 . -120) T) ((-944 . -118) NIL) ((-944 . -104) T) ((-944 . -25) T) ((-944 . -73) T) ((-944 . -1157) T) ((-944 . -568) 136833) ((-944 . -1041) T) ((-944 . -23) T) ((-944 . -21) T) ((-944 . -989) T) ((-944 . -997) T) ((-944 . -1052) T) ((-944 . -684) T) ((-943 . -297) 136807) ((-943 . -146) T) ((-943 . -571) 136737) ((-943 . -684) T) ((-943 . -1052) T) ((-943 . -997) T) ((-943 . -989) T) ((-943 . -606) 136639) ((-943 . -604) 136569) ((-943 . -104) T) ((-943 . -25) T) ((-943 . -73) T) ((-943 . -1157) T) ((-943 . -568) 136551) ((-943 . -1041) T) ((-943 . -23) T) ((-943 . -21) T) ((-943 . -996) 136496) ((-943 . -991) 136441) ((-943 . -82) 136358) ((-943 . -569) 136342) ((-943 . -184) 136319) ((-943 . -836) 136271) ((-943 . -838) 136180) ((-943 . -831) 136087) ((-943 . -224) 136064) ((-943 . -189) 136001) ((-943 . -186) 135932) ((-943 . -190) 135904) ((-943 . -318) T) ((-943 . -1162) T) ((-943 . -859) T) ((-943 . -510) T) ((-943 . -675) 135849) ((-943 . -598) 135794) ((-943 . -38) 135739) ((-943 . -406) T) ((-943 . -261) T) ((-943 . -244) T) ((-943 . -200) T) ((-943 . -323) NIL) ((-943 . -305) NIL) ((-943 . -1092) NIL) ((-943 . -118) 135711) ((-943 . -356) NIL) ((-943 . -364) 135683) ((-943 . -120) 135655) ((-943 . -325) 135627) ((-943 . -332) 135604) ((-943 . -596) 135538) ((-943 . -366) 135515) ((-943 . -978) 135392) ((-943 . -682) 135364) ((-940 . -935) 135348) ((-940 . -443) 135332) ((-940 . -1041) 135310) ((-940 . -468) 135243) ((-940 . -263) 135181) ((-940 . -568) 135113) ((-940 . -73) 135064) ((-940 . -1157) T) ((-940 . -34) T) ((-940 . -78) 135048) ((-936 . -938) 135032) ((-936 . -784) 135011) ((-936 . -781) 134990) ((-936 . -978) 134888) ((-936 . -366) 134872) ((-936 . -596) 134820) ((-936 . -606) 134722) ((-936 . -332) 134706) ((-936 . -240) 134664) ((-936 . -263) 134629) ((-936 . -468) 134541) ((-936 . -293) 134525) ((-936 . -38) 134473) ((-936 . -82) 134348) ((-936 . -991) 134244) ((-936 . -996) 134140) ((-936 . -604) 134063) ((-936 . -598) 134011) ((-936 . -675) 133959) ((-936 . -571) 133850) ((-936 . -244) 133801) ((-936 . -200) 133780) ((-936 . -190) 133759) ((-936 . -186) 133704) ((-936 . -189) 133655) ((-936 . -224) 133639) ((-936 . -831) 133560) ((-936 . -838) 133483) ((-936 . -836) 133442) ((-936 . -184) 133426) ((-936 . -569) 133387) ((-936 . -120) 133366) ((-936 . -118) 133345) ((-936 . -104) T) ((-936 . -25) T) ((-936 . -73) T) ((-936 . -1157) T) ((-936 . -568) 133327) ((-936 . -1041) T) ((-936 . -23) T) ((-936 . -21) T) ((-936 . -989) T) ((-936 . -997) T) ((-936 . -1052) T) ((-936 . -684) T) ((-934 . -1023) T) ((-934 . -444) 133308) ((-934 . -568) 133274) ((-934 . -571) 133255) ((-934 . -1041) T) ((-934 . -1157) T) ((-934 . -73) T) ((-934 . -64) T) ((-933 . -21) T) ((-933 . -604) 133237) ((-933 . -23) T) ((-933 . -1041) T) ((-933 . -568) 133219) ((-933 . -1157) T) ((-933 . -73) T) ((-933 . -25) T) ((-933 . -104) T) ((-933 . -240) 133186) ((-929 . -568) 133168) ((-926 . -1041) T) ((-926 . -568) 133150) ((-926 . -1157) T) ((-926 . -73) T) ((-911 . -742) T) ((-911 . -739) T) ((-911 . -784) T) ((-911 . -781) T) ((-911 . -737) T) ((-911 . -23) T) ((-911 . -1041) T) ((-911 . -568) 133110) ((-911 . -1157) T) ((-911 . -73) T) ((-911 . -25) T) ((-911 . -104) T) ((-910 . -1023) T) ((-910 . -444) 133091) ((-910 . -568) 133057) ((-910 . -571) 133038) ((-910 . -1041) T) ((-910 . -1157) T) ((-910 . -73) T) ((-910 . -64) T) ((-904 . -907) T) ((-904 . -73) T) ((-904 . -568) 133020) ((-904 . -1041) T) ((-904 . -620) T) ((-904 . -1157) T) ((-904 . -84) T) ((-904 . -571) 133004) ((-903 . -568) 132986) ((-902 . -1041) T) ((-902 . -568) 132968) ((-902 . -1157) T) ((-902 . -73) T) ((-902 . -323) 132921) ((-902 . -684) 132820) ((-902 . -1052) 132719) ((-902 . -23) 132530) ((-902 . -25) 132341) ((-902 . -104) 132196) ((-902 . -427) 132149) ((-902 . -21) 132104) ((-902 . -604) 132048) ((-902 . -738) 132001) ((-902 . -737) 131954) ((-902 . -781) 131853) ((-902 . -784) 131752) ((-902 . -739) 131705) ((-902 . -742) 131658) ((-896 . -19) 131642) ((-896 . -609) 131626) ((-896 . -242) 131603) ((-896 . -240) 131555) ((-896 . -554) 131532) ((-896 . -569) 131493) ((-896 . -443) 131477) ((-896 . -1041) 131427) ((-896 . -468) 131360) ((-896 . -263) 131298) ((-896 . -568) 131210) ((-896 . -73) 131141) ((-896 . -1157) T) ((-896 . -34) T) ((-896 . -124) 131125) ((-896 . -781) 131104) ((-896 . -784) 131083) ((-896 . -327) 131067) ((-894 . -280) 131046) ((-894 . -978) 130944) ((-894 . -366) 130928) ((-894 . -38) 130825) ((-894 . -571) 130679) ((-894 . -606) 130604) ((-894 . -604) 130514) ((-894 . -684) T) ((-894 . -1052) T) ((-894 . -997) T) ((-894 . -989) T) ((-894 . -82) 130376) ((-894 . -991) 130259) ((-894 . -996) 130142) ((-894 . -21) T) ((-894 . -23) T) ((-894 . -1041) T) ((-894 . -568) 130124) ((-894 . -1157) T) ((-894 . -73) T) ((-894 . -25) T) ((-894 . -104) T) ((-894 . -598) 130021) ((-894 . -675) 129918) ((-894 . -118) 129897) ((-894 . -120) 129876) ((-894 . -146) 129827) ((-894 . -510) 129806) ((-894 . -244) 129785) ((-894 . -47) 129764) ((-892 . -1041) T) ((-892 . -568) 129730) ((-892 . -1157) T) ((-892 . -73) T) ((-884 . -888) 129691) ((-884 . -571) 129481) ((-884 . -978) 129363) ((-884 . -1162) 129342) ((-884 . -848) 129321) ((-884 . -821) 129246) ((-884 . -838) 129227) ((-884 . -831) 129206) ((-884 . -836) 129187) ((-884 . -468) 129133) ((-884 . -406) 129084) ((-884 . -596) 129032) ((-884 . -606) 128921) ((-884 . -332) 128905) ((-884 . -47) 128874) ((-884 . -38) 128723) ((-884 . -598) 128572) ((-884 . -675) 128421) ((-884 . -244) 128352) ((-884 . -510) 128283) ((-884 . -82) 128105) ((-884 . -991) 127948) ((-884 . -996) 127791) ((-884 . -146) 127702) ((-884 . -120) 127681) ((-884 . -118) 127660) ((-884 . -604) 127570) ((-884 . -104) T) ((-884 . -25) T) ((-884 . -73) T) ((-884 . -1157) T) ((-884 . -568) 127552) ((-884 . -1041) T) ((-884 . -23) T) ((-884 . -21) T) ((-884 . -989) T) ((-884 . -997) T) ((-884 . -1052) T) ((-884 . -684) T) ((-884 . -366) 127536) ((-884 . -280) 127505) ((-884 . -263) 127492) ((-884 . -569) 127353) ((-881 . -920) 127337) ((-881 . -19) 127321) ((-881 . -609) 127305) ((-881 . -242) 127282) ((-881 . -240) 127234) ((-881 . -554) 127211) ((-881 . -569) 127172) ((-881 . -443) 127156) ((-881 . -1041) 127106) ((-881 . -468) 127039) ((-881 . -263) 126977) ((-881 . -568) 126889) ((-881 . -73) 126820) ((-881 . -1157) T) ((-881 . -34) T) ((-881 . -124) 126804) ((-881 . -781) 126783) ((-881 . -784) 126762) ((-881 . -327) 126746) ((-881 . -1206) 126730) ((-881 . -573) 126707) ((-865 . -914) T) ((-865 . -568) 126689) ((-863 . -893) T) ((-863 . -568) 126671) ((-857 . -739) T) ((-857 . -784) T) ((-857 . -781) T) ((-857 . -1041) T) ((-857 . -568) 126653) ((-857 . -1157) T) ((-857 . -73) T) ((-857 . -25) T) ((-857 . -684) T) ((-857 . -1052) T) ((-852 . -318) T) ((-852 . -1162) T) ((-852 . -859) T) ((-852 . -510) T) ((-852 . -146) T) ((-852 . -571) 126590) ((-852 . -675) 126542) ((-852 . -598) 126494) ((-852 . -38) 126446) ((-852 . -406) T) ((-852 . -261) T) ((-852 . -606) 126398) ((-852 . -604) 126335) ((-852 . -684) T) ((-852 . -1052) T) ((-852 . -997) T) ((-852 . -989) T) ((-852 . -82) 126266) ((-852 . -991) 126218) ((-852 . -996) 126170) ((-852 . -21) T) ((-852 . -23) T) ((-852 . -1041) T) ((-852 . -568) 126152) ((-852 . -1157) T) ((-852 . -73) T) ((-852 . -25) T) ((-852 . -104) T) ((-852 . -244) T) ((-852 . -200) T) ((-844 . -305) T) ((-844 . -1092) T) ((-844 . -323) T) ((-844 . -118) T) ((-844 . -318) T) ((-844 . -1162) T) ((-844 . -859) T) ((-844 . -510) T) ((-844 . -146) T) ((-844 . -571) 126102) ((-844 . -675) 126067) ((-844 . -598) 126032) ((-844 . -38) 125997) ((-844 . -406) T) ((-844 . -261) T) ((-844 . -82) 125946) ((-844 . -991) 125911) ((-844 . -996) 125876) ((-844 . -604) 125826) ((-844 . -606) 125791) ((-844 . -244) T) ((-844 . -200) T) ((-844 . -356) T) ((-844 . -189) T) ((-844 . -1157) T) ((-844 . -186) 125778) ((-844 . -989) T) ((-844 . -997) T) ((-844 . -1052) T) ((-844 . -684) T) ((-844 . -21) T) ((-844 . -23) T) ((-844 . -1041) T) ((-844 . -568) 125760) ((-844 . -73) T) ((-844 . -25) T) ((-844 . -104) T) ((-844 . -190) T) ((-844 . -283) 125747) ((-844 . -120) 125729) ((-844 . -978) 125716) ((-844 . -1215) 125703) ((-844 . -1226) 125690) ((-844 . -569) 125672) ((-843 . -1041) T) ((-843 . -568) 125654) ((-843 . -1157) T) ((-843 . -73) T) ((-840 . -842) 125638) ((-840 . -784) 125589) ((-840 . -781) 125540) ((-840 . -684) T) ((-840 . -1041) T) ((-840 . -568) 125522) ((-840 . -73) T) ((-840 . -1052) T) ((-840 . -427) T) ((-840 . -1157) T) ((-840 . -240) 125501) ((-839 . -92) 125485) ((-839 . -443) 125469) ((-839 . -1041) 125447) ((-839 . -468) 125380) ((-839 . -263) 125318) ((-839 . -568) 125229) ((-839 . -73) 125180) ((-839 . -1157) T) ((-839 . -34) T) ((-839 . -950) 125164) ((-834 . -1041) T) ((-834 . -568) 125146) ((-834 . -1157) T) ((-834 . -73) T) ((-828 . -781) T) ((-828 . -568) 125128) ((-828 . -1041) T) ((-828 . -73) T) ((-828 . -1157) T) ((-828 . -784) T) ((-828 . -978) 125105) ((-828 . -571) 125082) ((-825 . -1041) T) ((-825 . -568) 125064) ((-825 . -1157) T) ((-825 . -73) T) ((-825 . -978) 125032) ((-825 . -571) 125000) ((-823 . -1041) T) ((-823 . -568) 124982) ((-823 . -1157) T) ((-823 . -73) T) ((-820 . -1041) T) ((-820 . -568) 124964) ((-820 . -1157) T) ((-820 . -73) T) ((-810 . -1023) T) ((-810 . -444) 124945) ((-810 . -568) 124911) ((-810 . -571) 124892) ((-810 . -1041) T) ((-810 . -1157) T) ((-810 . -73) T) ((-810 . -64) T) ((-810 . -1203) T) ((-808 . -1041) T) ((-808 . -568) 124874) ((-808 . -1157) T) ((-808 . -73) T) ((-808 . -571) 124856) ((-807 . -1157) T) ((-807 . -568) 124728) ((-807 . -1041) 124679) ((-807 . -73) 124630) ((-806 . -931) 124614) ((-806 . -1092) 124592) ((-806 . -978) 124459) ((-806 . -571) 124358) ((-806 . -569) 124161) ((-806 . -960) 124140) ((-806 . -848) 124119) ((-806 . -819) 124103) ((-806 . -780) 124082) ((-806 . -742) 124061) ((-806 . -739) 124040) ((-806 . -784) 123991) ((-806 . -781) 123942) ((-806 . -737) 123921) ((-806 . -735) 123900) ((-806 . -763) 123879) ((-806 . -821) 123804) ((-806 . -354) 123788) ((-806 . -596) 123736) ((-806 . -606) 123652) ((-806 . -332) 123636) ((-806 . -240) 123594) ((-806 . -263) 123559) ((-806 . -468) 123471) ((-806 . -293) 123455) ((-806 . -200) T) ((-806 . -82) 123386) ((-806 . -991) 123338) ((-806 . -996) 123290) ((-806 . -244) T) ((-806 . -675) 123242) ((-806 . -598) 123194) ((-806 . -604) 123131) ((-806 . -38) 123083) ((-806 . -261) T) ((-806 . -406) T) ((-806 . -146) T) ((-806 . -510) T) ((-806 . -859) T) ((-806 . -1162) T) ((-806 . -318) T) ((-806 . -190) 123062) ((-806 . -186) 123007) ((-806 . -189) 122958) ((-806 . -224) 122942) ((-806 . -831) 122863) ((-806 . -838) 122786) ((-806 . -836) 122745) ((-806 . -184) 122729) ((-806 . -120) 122708) ((-806 . -118) 122687) ((-806 . -104) T) ((-806 . -25) T) ((-806 . -73) T) ((-806 . -1157) T) ((-806 . -568) 122669) ((-806 . -1041) T) ((-806 . -23) T) ((-806 . -21) T) ((-806 . -989) T) ((-806 . -997) T) ((-806 . -1052) T) ((-806 . -684) T) ((-805 . -931) 122646) ((-805 . -1092) NIL) ((-805 . -978) 122623) ((-805 . -571) 122553) ((-805 . -569) NIL) ((-805 . -960) NIL) ((-805 . -848) NIL) ((-805 . -819) 122530) ((-805 . -780) NIL) ((-805 . -742) NIL) ((-805 . -739) NIL) ((-805 . -784) NIL) ((-805 . -781) NIL) ((-805 . -737) NIL) ((-805 . -735) NIL) ((-805 . -763) NIL) ((-805 . -821) NIL) ((-805 . -354) 122507) ((-805 . -596) 122484) ((-805 . -606) 122429) ((-805 . -332) 122406) ((-805 . -240) 122336) ((-805 . -263) 122280) ((-805 . -468) 122143) ((-805 . -293) 122120) ((-805 . -200) T) ((-805 . -82) 122037) ((-805 . -991) 121982) ((-805 . -996) 121927) ((-805 . -244) T) ((-805 . -675) 121872) ((-805 . -598) 121817) ((-805 . -604) 121747) ((-805 . -38) 121692) ((-805 . -261) T) ((-805 . -406) T) ((-805 . -146) T) ((-805 . -510) T) ((-805 . -859) T) ((-805 . -1162) T) ((-805 . -318) T) ((-805 . -190) NIL) ((-805 . -186) NIL) ((-805 . -189) NIL) ((-805 . -224) 121669) ((-805 . -831) NIL) ((-805 . -838) NIL) ((-805 . -836) NIL) ((-805 . -184) 121646) ((-805 . -120) T) ((-805 . -118) NIL) ((-805 . -104) T) ((-805 . -25) T) ((-805 . -73) T) ((-805 . -1157) T) ((-805 . -568) 121628) ((-805 . -1041) T) ((-805 . -23) T) ((-805 . -21) T) ((-805 . -989) T) ((-805 . -997) T) ((-805 . -1052) T) ((-805 . -684) T) ((-803 . -804) 121612) ((-803 . -859) T) ((-803 . -510) T) ((-803 . -244) T) ((-803 . -146) T) ((-803 . -571) 121584) ((-803 . -675) 121571) ((-803 . -598) 121558) ((-803 . -996) 121545) ((-803 . -991) 121532) ((-803 . -82) 121517) ((-803 . -38) 121504) ((-803 . -406) T) ((-803 . -261) T) ((-803 . -989) T) ((-803 . -997) T) ((-803 . -1052) T) ((-803 . -684) T) ((-803 . -21) T) ((-803 . -604) 121476) ((-803 . -23) T) ((-803 . -1041) T) ((-803 . -568) 121458) ((-803 . -1157) T) ((-803 . -73) T) ((-803 . -25) T) ((-803 . -104) T) ((-803 . -606) 121445) ((-803 . -120) T) ((-800 . -989) T) ((-800 . -997) T) ((-800 . -1052) T) ((-800 . -684) T) ((-800 . -21) T) ((-800 . -604) 121390) ((-800 . -23) T) ((-800 . -1041) T) ((-800 . -568) 121352) ((-800 . -1157) T) ((-800 . -73) T) ((-800 . -25) T) ((-800 . -104) T) ((-800 . -606) 121312) ((-800 . -571) 121247) ((-800 . -444) 121224) ((-800 . -38) 121194) ((-800 . -82) 121159) ((-800 . -991) 121129) ((-800 . -996) 121099) ((-800 . -598) 121069) ((-800 . -675) 121039) ((-799 . -1041) T) ((-799 . -568) 121021) ((-799 . -1157) T) ((-799 . -73) T) ((-798 . -777) T) ((-798 . -784) T) ((-798 . -781) T) ((-798 . -1041) T) ((-798 . -568) 121003) ((-798 . -1157) T) ((-798 . -73) T) ((-798 . -323) T) ((-798 . -569) 120925) ((-797 . -1041) T) ((-797 . -568) 120907) ((-797 . -1157) T) ((-797 . -73) T) ((-796 . -795) T) ((-796 . -147) T) ((-796 . -568) 120889) ((-792 . -781) T) ((-792 . -568) 120871) ((-792 . -1041) T) ((-792 . -73) T) ((-792 . -1157) T) ((-792 . -784) T) ((-789 . -786) 120855) ((-789 . -978) 120753) ((-789 . -571) 120651) ((-789 . -366) 120635) ((-789 . -675) 120605) ((-789 . -598) 120575) ((-789 . -606) 120549) ((-789 . -604) 120508) ((-789 . -104) T) ((-789 . -25) T) ((-789 . -73) T) ((-789 . -1157) T) ((-789 . -568) 120490) ((-789 . -1041) T) ((-789 . -23) T) ((-789 . -21) T) ((-789 . -996) 120474) ((-789 . -991) 120458) ((-789 . -82) 120437) ((-789 . -989) T) ((-789 . -997) T) ((-789 . -1052) T) ((-789 . -684) T) ((-789 . -38) 120407) ((-788 . -786) 120391) ((-788 . -978) 120289) ((-788 . -571) 120208) ((-788 . -366) 120192) ((-788 . -675) 120162) ((-788 . -598) 120132) ((-788 . -606) 120106) ((-788 . -604) 120065) ((-788 . -104) T) ((-788 . -25) T) ((-788 . -73) T) ((-788 . -1157) T) ((-788 . -568) 120047) ((-788 . -1041) T) ((-788 . -23) T) ((-788 . -21) T) ((-788 . -996) 120031) ((-788 . -991) 120015) ((-788 . -82) 119994) ((-788 . -989) T) ((-788 . -997) T) ((-788 . -1052) T) ((-788 . -684) T) ((-788 . -38) 119964) ((-782 . -784) T) ((-782 . -1157) T) ((-782 . -73) T) ((-782 . -444) 119948) ((-782 . -568) 119896) ((-782 . -571) 119880) ((-775 . -1041) T) ((-775 . -568) 119862) ((-775 . -1157) T) ((-775 . -73) T) ((-775 . -366) 119846) ((-775 . -571) 119716) ((-775 . -978) 119614) ((-775 . -21) 119566) ((-775 . -604) 119483) ((-775 . -23) 119435) ((-775 . -25) 119387) ((-775 . -104) 119339) ((-775 . -780) 119318) ((-775 . -606) 119291) ((-775 . -997) 119270) ((-775 . -989) 119249) ((-775 . -742) 119228) ((-775 . -739) 119207) ((-775 . -784) 119186) ((-775 . -781) 119165) ((-775 . -737) 119144) ((-775 . -735) 119123) ((-775 . -1052) 119102) ((-775 . -684) 119081) ((-774 . -1041) T) ((-774 . -568) 119063) ((-774 . -1157) T) ((-774 . -73) T) ((-772 . -770) 119045) ((-772 . -73) T) ((-772 . -1157) T) ((-772 . -568) 119027) ((-772 . -1041) T) ((-768 . -989) T) ((-768 . -997) T) ((-768 . -1052) T) ((-768 . -684) T) ((-768 . -21) T) ((-768 . -604) 118972) ((-768 . -23) T) ((-768 . -1041) T) ((-768 . -568) 118954) ((-768 . -1157) T) ((-768 . -73) T) ((-768 . -25) T) ((-768 . -104) T) ((-768 . -606) 118914) ((-768 . -571) 118869) ((-768 . -978) 118839) ((-768 . -240) 118818) ((-768 . -120) 118797) ((-768 . -118) 118776) ((-768 . -38) 118746) ((-768 . -82) 118711) ((-768 . -991) 118681) ((-768 . -996) 118651) ((-768 . -598) 118621) ((-768 . -675) 118591) ((-766 . -1041) T) ((-766 . -568) 118573) ((-766 . -1157) T) ((-766 . -73) T) ((-766 . -366) 118557) ((-766 . -571) 118427) ((-766 . -978) 118325) ((-766 . -21) 118277) ((-766 . -604) 118194) ((-766 . -23) 118146) ((-766 . -25) 118098) ((-766 . -104) 118050) ((-766 . -780) 118029) ((-766 . -606) 118002) ((-766 . -997) 117981) ((-766 . -989) 117960) ((-766 . -742) 117939) ((-766 . -739) 117918) ((-766 . -784) 117897) ((-766 . -781) 117876) ((-766 . -737) 117855) ((-766 . -735) 117834) ((-766 . -1052) 117813) ((-766 . -684) 117792) ((-764 . -666) 117776) ((-764 . -571) 117731) ((-764 . -675) 117701) ((-764 . -598) 117671) ((-764 . -606) 117645) ((-764 . -604) 117604) ((-764 . -104) T) ((-764 . -25) T) ((-764 . -73) T) ((-764 . -1157) T) ((-764 . -568) 117586) ((-764 . -1041) T) ((-764 . -23) T) ((-764 . -21) T) ((-764 . -996) 117570) ((-764 . -991) 117554) ((-764 . -82) 117533) ((-764 . -989) T) ((-764 . -997) T) ((-764 . -1052) T) ((-764 . -684) T) ((-764 . -38) 117503) ((-764 . -190) 117482) ((-764 . -186) 117455) ((-764 . -189) 117434) ((-762 . -341) 117418) ((-762 . -571) 117402) ((-762 . -978) 117386) ((-762 . -784) T) ((-762 . -781) T) ((-762 . -1052) T) ((-762 . -73) T) ((-762 . -1157) T) ((-762 . -568) 117368) ((-762 . -1041) T) ((-762 . -684) T) ((-762 . -779) T) ((-762 . -791) T) ((-761 . -227) 117352) ((-761 . -571) 117336) ((-761 . -978) 117320) ((-761 . -784) T) ((-761 . -73) T) ((-761 . -1041) T) ((-761 . -568) 117302) ((-761 . -781) T) ((-761 . -186) 117289) ((-761 . -1157) T) ((-761 . -189) T) ((-760 . -82) 117224) ((-760 . -991) 117175) ((-760 . -996) 117126) ((-760 . -21) T) ((-760 . -604) 117062) ((-760 . -23) T) ((-760 . -1041) T) ((-760 . -568) 117031) ((-760 . -1157) T) ((-760 . -73) T) ((-760 . -25) T) ((-760 . -104) T) ((-760 . -606) 116982) ((-760 . -190) T) ((-760 . -571) 116891) ((-760 . -684) T) ((-760 . -1052) T) ((-760 . -997) T) ((-760 . -989) T) ((-760 . -186) 116878) ((-760 . -189) T) ((-760 . -444) 116862) ((-760 . -318) 116841) ((-760 . -1162) 116820) ((-760 . -859) 116799) ((-760 . -510) 116778) ((-760 . -146) 116757) ((-760 . -675) 116694) ((-760 . -598) 116631) ((-760 . -38) 116568) ((-760 . -406) 116547) ((-760 . -261) 116526) ((-760 . -244) 116505) ((-760 . -200) 116484) ((-759 . -212) 116423) ((-759 . -571) 116161) ((-759 . -978) 115991) ((-759 . -569) NIL) ((-759 . -280) 115953) ((-759 . -366) 115937) ((-759 . -38) 115786) ((-759 . -82) 115608) ((-759 . -991) 115451) ((-759 . -996) 115294) ((-759 . -604) 115204) ((-759 . -606) 115093) ((-759 . -598) 114942) ((-759 . -675) 114791) ((-759 . -118) 114770) ((-759 . -120) 114749) ((-759 . -146) 114660) ((-759 . -510) 114591) ((-759 . -244) 114522) ((-759 . -47) 114484) ((-759 . -332) 114468) ((-759 . -596) 114416) ((-759 . -406) 114367) ((-759 . -468) 114232) ((-759 . -836) 114168) ((-759 . -831) 114064) ((-759 . -838) 113964) ((-759 . -821) NIL) ((-759 . -848) 113943) ((-759 . -1162) 113922) ((-759 . -888) 113869) ((-759 . -263) 113856) ((-759 . -190) 113835) ((-759 . -104) T) ((-759 . -25) T) ((-759 . -73) T) ((-759 . -568) 113817) ((-759 . -1041) T) ((-759 . -23) T) ((-759 . -21) T) ((-759 . -684) T) ((-759 . -1052) T) ((-759 . -997) T) ((-759 . -989) T) ((-759 . -186) 113762) ((-759 . -1157) T) ((-759 . -189) 113713) ((-759 . -224) 113697) ((-759 . -184) 113681) ((-758 . -195) 113660) ((-758 . -1215) 113630) ((-758 . -742) 113609) ((-758 . -739) 113588) ((-758 . -784) 113539) ((-758 . -781) 113490) ((-758 . -737) 113469) ((-758 . -738) 113448) ((-758 . -675) 113390) ((-758 . -598) 113312) ((-758 . -242) 113289) ((-758 . -240) 113266) ((-758 . -443) 113250) ((-758 . -468) 113183) ((-758 . -263) 113121) ((-758 . -34) T) ((-758 . -554) 113098) ((-758 . -978) 112927) ((-758 . -571) 112728) ((-758 . -366) 112697) ((-758 . -596) 112605) ((-758 . -606) 112441) ((-758 . -332) 112411) ((-758 . -323) 112390) ((-758 . -190) 112343) ((-758 . -604) 112125) ((-758 . -684) 112104) ((-758 . -1052) 112083) ((-758 . -997) 112062) ((-758 . -989) 112041) ((-758 . -186) 111934) ((-758 . -189) 111833) ((-758 . -224) 111803) ((-758 . -831) 111672) ((-758 . -838) 111543) ((-758 . -836) 111476) ((-758 . -184) 111446) ((-758 . -568) 111140) ((-758 . -996) 111062) ((-758 . -991) 110964) ((-758 . -82) 110881) ((-758 . -104) 110753) ((-758 . -25) 110587) ((-758 . -73) 110321) ((-758 . -1157) T) ((-758 . -1041) 110074) ((-758 . -23) 109927) ((-758 . -21) 109839) ((-751 . -1041) T) ((-751 . -568) 109821) ((-751 . -1157) T) ((-751 . -73) T) ((-743 . -741) 109805) ((-743 . -784) 109784) ((-743 . -781) 109763) ((-743 . -978) 109550) ((-743 . -571) 109400) ((-743 . -366) 109364) ((-743 . -240) 109322) ((-743 . -263) 109287) ((-743 . -468) 109199) ((-743 . -293) 109183) ((-743 . -323) 109162) ((-743 . -569) 109123) ((-743 . -120) 109102) ((-743 . -118) 109081) ((-743 . -675) 109065) ((-743 . -598) 109049) ((-743 . -606) 109023) ((-743 . -604) 108982) ((-743 . -104) T) ((-743 . -25) T) ((-743 . -73) T) ((-743 . -1157) T) ((-743 . -568) 108964) ((-743 . -1041) T) ((-743 . -23) T) ((-743 . -21) T) ((-743 . -996) 108948) ((-743 . -991) 108932) ((-743 . -82) 108911) ((-743 . -989) T) ((-743 . -997) T) ((-743 . -1052) T) ((-743 . -684) T) ((-743 . -38) 108895) ((-724 . -1183) 108879) ((-724 . -1092) 108857) ((-724 . -569) NIL) ((-724 . -263) 108844) ((-724 . -468) 108790) ((-724 . -280) 108767) ((-724 . -978) 108628) ((-724 . -366) 108612) ((-724 . -38) 108441) ((-724 . -82) 108243) ((-724 . -991) 108066) ((-724 . -996) 107889) ((-724 . -604) 107799) ((-724 . -606) 107688) ((-724 . -598) 107517) ((-724 . -675) 107346) ((-724 . -571) 107095) ((-724 . -118) 107074) ((-724 . -120) 107053) ((-724 . -47) 107030) ((-724 . -332) 107014) ((-724 . -596) 106962) ((-724 . -836) 106905) ((-724 . -831) 106808) ((-724 . -838) 106715) ((-724 . -821) NIL) ((-724 . -848) 106694) ((-724 . -1162) 106673) ((-724 . -888) 106642) ((-724 . -859) 106621) ((-724 . -510) 106532) ((-724 . -244) 106443) ((-724 . -146) 106334) ((-724 . -406) 106265) ((-724 . -261) 106244) ((-724 . -240) 106171) ((-724 . -190) T) ((-724 . -104) T) ((-724 . -25) T) ((-724 . -73) T) ((-724 . -568) 106132) ((-724 . -1041) T) ((-724 . -23) T) ((-724 . -21) T) ((-724 . -684) T) ((-724 . -1052) T) ((-724 . -997) T) ((-724 . -989) T) ((-724 . -186) 106119) ((-724 . -1157) T) ((-724 . -189) T) ((-724 . -224) 106103) ((-724 . -184) 106087) ((-723 . -1005) 106054) ((-723 . -569) 105689) ((-723 . -263) 105676) ((-723 . -468) 105628) ((-723 . -280) 105600) ((-723 . -978) 105459) ((-723 . -366) 105443) ((-723 . -38) 105292) ((-723 . -571) 105059) ((-723 . -606) 104948) ((-723 . -604) 104858) ((-723 . -684) T) ((-723 . -1052) T) ((-723 . -997) T) ((-723 . -989) T) ((-723 . -82) 104680) ((-723 . -991) 104523) ((-723 . -996) 104366) ((-723 . -21) T) ((-723 . -23) T) ((-723 . -1041) T) ((-723 . -568) 104280) ((-723 . -1157) T) ((-723 . -73) T) ((-723 . -25) T) ((-723 . -104) T) ((-723 . -598) 104129) ((-723 . -675) 103978) ((-723 . -118) 103957) ((-723 . -120) 103936) ((-723 . -146) 103847) ((-723 . -510) 103778) ((-723 . -244) 103709) ((-723 . -47) 103681) ((-723 . -332) 103665) ((-723 . -596) 103613) ((-723 . -406) 103564) ((-723 . -836) 103548) ((-723 . -831) 103530) ((-723 . -838) 103514) ((-723 . -821) 103373) ((-723 . -848) 103352) ((-723 . -1162) 103331) ((-723 . -888) 103298) ((-716 . -1041) T) ((-716 . -568) 103280) ((-716 . -1157) T) ((-716 . -73) T) ((-714 . -738) T) ((-714 . -104) T) ((-714 . -25) T) ((-714 . -73) T) ((-714 . -1157) T) ((-714 . -568) 103262) ((-714 . -1041) T) ((-714 . -23) T) ((-714 . -737) T) ((-714 . -781) T) ((-714 . -784) T) ((-714 . -739) T) ((-714 . -742) T) ((-714 . -684) T) ((-714 . -1052) T) ((-712 . -1041) T) ((-712 . -568) 103244) ((-712 . -1157) T) ((-712 . -73) T) ((-694 . -695) 103228) ((-694 . -1039) 103212) ((-694 . -192) 103196) ((-694 . -569) 103157) ((-694 . -124) 103141) ((-694 . -443) 103125) ((-694 . -1041) T) ((-694 . -468) 103058) ((-694 . -263) 102996) ((-694 . -568) 102978) ((-694 . -73) T) ((-694 . -1157) T) ((-694 . -34) T) ((-694 . -78) 102962) ((-694 . -653) 102946) ((-693 . -989) T) ((-693 . -997) T) ((-693 . -1052) T) ((-693 . -684) T) ((-693 . -21) T) ((-693 . -604) 102891) ((-693 . -23) T) ((-693 . -1041) T) ((-693 . -568) 102873) ((-693 . -1157) T) ((-693 . -73) T) ((-693 . -25) T) ((-693 . -104) T) ((-693 . -606) 102833) ((-693 . -571) 102789) ((-693 . -978) 102760) ((-693 . -120) 102739) ((-693 . -118) 102718) ((-693 . -38) 102688) ((-693 . -82) 102653) ((-693 . -991) 102623) ((-693 . -996) 102593) ((-693 . -598) 102563) ((-693 . -675) 102533) ((-693 . -323) 102486) ((-689 . -888) 102439) ((-689 . -571) 102225) ((-689 . -978) 102103) ((-689 . -1162) 102082) ((-689 . -848) 102061) ((-689 . -821) NIL) ((-689 . -838) 102038) ((-689 . -831) 102013) ((-689 . -836) 101990) ((-689 . -468) 101928) ((-689 . -406) 101879) ((-689 . -596) 101827) ((-689 . -606) 101716) ((-689 . -332) 101700) ((-689 . -47) 101665) ((-689 . -38) 101514) ((-689 . -598) 101363) ((-689 . -675) 101212) ((-689 . -244) 101143) ((-689 . -510) 101074) ((-689 . -82) 100896) ((-689 . -991) 100739) ((-689 . -996) 100582) ((-689 . -146) 100493) ((-689 . -120) 100472) ((-689 . -118) 100451) ((-689 . -604) 100361) ((-689 . -104) T) ((-689 . -25) T) ((-689 . -73) T) ((-689 . -1157) T) ((-689 . -568) 100343) ((-689 . -1041) T) ((-689 . -23) T) ((-689 . -21) T) ((-689 . -989) T) ((-689 . -997) T) ((-689 . -1052) T) ((-689 . -684) T) ((-689 . -366) 100327) ((-689 . -280) 100292) ((-689 . -263) 100279) ((-689 . -569) 100140) ((-676 . -427) T) ((-676 . -1052) T) ((-676 . -73) T) ((-676 . -1157) T) ((-676 . -568) 100122) ((-676 . -1041) T) ((-676 . -684) T) ((-673 . -989) T) ((-673 . -997) T) ((-673 . -1052) T) ((-673 . -684) T) ((-673 . -21) T) ((-673 . -604) 100094) ((-673 . -23) T) ((-673 . -1041) T) ((-673 . -568) 100076) ((-673 . -1157) T) ((-673 . -73) T) ((-673 . -25) T) ((-673 . -104) T) ((-673 . -606) 100063) ((-673 . -571) 100045) ((-672 . -989) T) ((-672 . -997) T) ((-672 . -1052) T) ((-672 . -684) T) ((-672 . -21) T) ((-672 . -604) 99990) ((-672 . -23) T) ((-672 . -1041) T) ((-672 . -568) 99972) ((-672 . -1157) T) ((-672 . -73) T) ((-672 . -25) T) ((-672 . -104) T) ((-672 . -606) 99932) ((-672 . -571) 99887) ((-672 . -978) 99857) ((-672 . -240) 99836) ((-672 . -120) 99815) ((-672 . -118) 99794) ((-672 . -38) 99764) ((-672 . -82) 99729) ((-672 . -991) 99699) ((-672 . -996) 99669) ((-672 . -598) 99639) ((-672 . -675) 99609) ((-671 . -781) T) ((-671 . -568) 99544) ((-671 . -1041) T) ((-671 . -73) T) ((-671 . -1157) T) ((-671 . -784) T) ((-671 . -444) 99494) ((-671 . -571) 99444) ((-670 . -1183) 99428) ((-670 . -1092) 99406) ((-670 . -569) NIL) ((-670 . -263) 99393) ((-670 . -468) 99339) ((-670 . -280) 99316) ((-670 . -978) 99198) ((-670 . -366) 99182) ((-670 . -38) 99011) ((-670 . -82) 98813) ((-670 . -991) 98636) ((-670 . -996) 98459) ((-670 . -604) 98369) ((-670 . -606) 98258) ((-670 . -598) 98087) ((-670 . -675) 97916) ((-670 . -571) 97673) ((-670 . -118) 97652) ((-670 . -120) 97631) ((-670 . -47) 97608) ((-670 . -332) 97592) ((-670 . -596) 97540) ((-670 . -836) 97483) ((-670 . -831) 97386) ((-670 . -838) 97293) ((-670 . -821) NIL) ((-670 . -848) 97272) ((-670 . -1162) 97251) ((-670 . -888) 97220) ((-670 . -859) 97199) ((-670 . -510) 97110) ((-670 . -244) 97021) ((-670 . -146) 96912) ((-670 . -406) 96843) ((-670 . -261) 96822) ((-670 . -240) 96749) ((-670 . -190) T) ((-670 . -104) T) ((-670 . -25) T) ((-670 . -73) T) ((-670 . -568) 96731) ((-670 . -1041) T) ((-670 . -23) T) ((-670 . -21) T) ((-670 . -684) T) ((-670 . -1052) T) ((-670 . -997) T) ((-670 . -989) T) ((-670 . -186) 96718) ((-670 . -1157) T) ((-670 . -189) T) ((-670 . -224) 96702) ((-670 . -184) 96686) ((-670 . -323) 96665) ((-669 . -318) T) ((-669 . -1162) T) ((-669 . -859) T) ((-669 . -510) T) ((-669 . -146) T) ((-669 . -571) 96615) ((-669 . -675) 96580) ((-669 . -598) 96545) ((-669 . -38) 96510) ((-669 . -406) T) ((-669 . -261) T) ((-669 . -606) 96475) ((-669 . -604) 96425) ((-669 . -684) T) ((-669 . -1052) T) ((-669 . -997) T) ((-669 . -989) T) ((-669 . -82) 96374) ((-669 . -991) 96339) ((-669 . -996) 96304) ((-669 . -21) T) ((-669 . -23) T) ((-669 . -1041) T) ((-669 . -568) 96286) ((-669 . -1157) T) ((-669 . -73) T) ((-669 . -25) T) ((-669 . -104) T) ((-669 . -244) T) ((-669 . -200) T) ((-668 . -1041) T) ((-668 . -568) 96268) ((-668 . -1157) T) ((-668 . -73) T) ((-659 . -343) T) ((-659 . -978) 96250) ((-659 . -784) T) ((-659 . -781) T) ((-659 . -38) 96237) ((-659 . -571) 96209) ((-659 . -684) T) ((-659 . -1052) T) ((-659 . -997) T) ((-659 . -989) T) ((-659 . -82) 96194) ((-659 . -991) 96181) ((-659 . -996) 96168) ((-659 . -21) T) ((-659 . -604) 96140) ((-659 . -23) T) ((-659 . -1041) T) ((-659 . -568) 96122) ((-659 . -1157) T) ((-659 . -73) T) ((-659 . -25) T) ((-659 . -104) T) ((-659 . -606) 96094) ((-659 . -598) 96081) ((-659 . -675) 96068) ((-659 . -146) T) ((-659 . -244) T) ((-659 . -510) T) ((-659 . -498) T) ((-659 . -1162) T) ((-659 . -1092) T) ((-659 . -569) 95983) ((-659 . -960) T) ((-659 . -821) 95965) ((-659 . -780) T) ((-659 . -742) T) ((-659 . -739) T) ((-659 . -737) T) ((-659 . -735) T) ((-659 . -763) T) ((-659 . -596) 95947) ((-659 . -859) T) ((-659 . -406) T) ((-659 . -261) T) ((-659 . -189) T) ((-659 . -186) 95934) ((-659 . -190) T) ((-659 . -116) T) ((-659 . -120) T) ((-657 . -358) T) ((-657 . -120) T) ((-657 . -571) 95869) ((-657 . -606) 95834) ((-657 . -604) 95784) ((-657 . -104) T) ((-657 . -25) T) ((-657 . -73) T) ((-657 . -1157) T) ((-657 . -568) 95766) ((-657 . -1041) T) ((-657 . -23) T) ((-657 . -21) T) ((-657 . -684) T) ((-657 . -1052) T) ((-657 . -997) T) ((-657 . -989) T) ((-657 . -569) 95711) ((-657 . -318) T) ((-657 . -1162) T) ((-657 . -859) T) ((-657 . -510) T) ((-657 . -146) T) ((-657 . -675) 95676) ((-657 . -598) 95641) ((-657 . -38) 95606) ((-657 . -406) T) ((-657 . -261) T) ((-657 . -82) 95555) ((-657 . -991) 95520) ((-657 . -996) 95485) ((-657 . -244) T) ((-657 . -200) T) ((-657 . -780) T) ((-657 . -742) T) ((-657 . -739) T) ((-657 . -784) T) ((-657 . -781) T) ((-657 . -737) T) ((-657 . -735) T) ((-657 . -821) 95467) ((-657 . -942) T) ((-657 . -960) T) ((-657 . -978) 95412) ((-657 . -1000) T) ((-657 . -343) T) ((-652 . -343) T) ((-652 . -978) 95357) ((-652 . -784) T) ((-652 . -781) T) ((-652 . -38) 95307) ((-652 . -571) 95242) ((-652 . -684) T) ((-652 . -1052) T) ((-652 . -997) T) ((-652 . -989) T) ((-652 . -82) 95169) ((-652 . -991) 95119) ((-652 . -996) 95069) ((-652 . -21) T) ((-652 . -604) 95004) ((-652 . -23) T) ((-652 . -1041) T) ((-652 . -568) 94986) ((-652 . -1157) T) ((-652 . -73) T) ((-652 . -25) T) ((-652 . -104) T) ((-652 . -606) 94936) ((-652 . -598) 94886) ((-652 . -675) 94836) ((-652 . -146) T) ((-652 . -244) T) ((-652 . -510) T) ((-652 . -139) 94818) ((-652 . -35) NIL) ((-652 . -66) NIL) ((-652 . -238) NIL) ((-652 . -447) NIL) ((-652 . -1146) NIL) ((-652 . -1143) NIL) ((-652 . -942) NIL) ((-652 . -848) NIL) ((-652 . -569) 94726) ((-652 . -819) 94708) ((-652 . -323) NIL) ((-652 . -305) NIL) ((-652 . -1092) NIL) ((-652 . -356) NIL) ((-652 . -364) 94675) ((-652 . -325) 94642) ((-652 . -682) 94609) ((-652 . -366) 94591) ((-652 . -821) 94573) ((-652 . -354) 94555) ((-652 . -596) 94537) ((-652 . -332) 94519) ((-652 . -240) NIL) ((-652 . -263) NIL) ((-652 . -468) NIL) ((-652 . -293) 94501) ((-652 . -200) T) ((-652 . -1162) T) ((-652 . -318) T) ((-652 . -859) T) ((-652 . -406) T) ((-652 . -261) T) ((-652 . -190) NIL) ((-652 . -186) NIL) ((-652 . -189) NIL) ((-652 . -224) 94483) ((-652 . -831) NIL) ((-652 . -838) NIL) ((-652 . -836) NIL) ((-652 . -184) 94465) ((-652 . -120) T) ((-652 . -118) NIL) ((-649 . -1203) T) ((-649 . -978) 94449) ((-649 . -571) 94433) ((-649 . -568) 94415) ((-647 . -644) 94373) ((-647 . -443) 94357) ((-647 . -1041) 94335) ((-647 . -468) 94268) ((-647 . -263) 94206) ((-647 . -568) 94138) ((-647 . -73) 94089) ((-647 . -1157) T) ((-647 . -34) T) ((-647 . -57) 94047) ((-647 . -569) 94008) ((-639 . -1023) T) ((-639 . -444) 93989) ((-639 . -568) 93939) ((-639 . -571) 93920) ((-639 . -1041) T) ((-639 . -1157) T) ((-639 . -73) T) ((-639 . -64) T) ((-635 . -781) T) ((-635 . -568) 93902) ((-635 . -1041) T) ((-635 . -73) T) ((-635 . -1157) T) ((-635 . -784) T) ((-635 . -978) 93886) ((-635 . -571) 93870) ((-634 . -1023) T) ((-634 . -444) 93851) ((-634 . -568) 93817) ((-634 . -571) 93798) ((-634 . -1041) T) ((-634 . -1157) T) ((-634 . -73) T) ((-634 . -64) T) ((-633 . -443) 93782) ((-633 . -1041) 93760) ((-633 . -468) 93693) ((-633 . -263) 93631) ((-633 . -568) 93563) ((-633 . -73) 93514) ((-633 . -1157) T) ((-633 . -34) T) ((-630 . -781) T) ((-630 . -568) 93496) ((-630 . -1041) T) ((-630 . -73) T) ((-630 . -1157) T) ((-630 . -784) T) ((-630 . -978) 93480) ((-630 . -571) 93464) ((-629 . -1023) T) ((-629 . -444) 93445) ((-629 . -568) 93411) ((-629 . -571) 93392) ((-629 . -1041) T) ((-629 . -1157) T) ((-629 . -73) T) ((-629 . -64) T) ((-628 . -1063) 93337) ((-628 . -443) 93321) ((-628 . -468) 93254) ((-628 . -263) 93192) ((-628 . -34) T) ((-628 . -993) 93132) ((-628 . -978) 93030) ((-628 . -571) 92949) ((-628 . -366) 92933) ((-628 . -596) 92881) ((-628 . -606) 92819) ((-628 . -332) 92803) ((-628 . -190) 92782) ((-628 . -186) 92727) ((-628 . -189) 92678) ((-628 . -224) 92662) ((-628 . -831) 92583) ((-628 . -838) 92506) ((-628 . -836) 92465) ((-628 . -184) 92449) ((-628 . -675) 92433) ((-628 . -598) 92417) ((-628 . -604) 92376) ((-628 . -104) T) ((-628 . -25) T) ((-628 . -73) T) ((-628 . -1157) T) ((-628 . -568) 92338) ((-628 . -1041) T) ((-628 . -23) T) ((-628 . -21) T) ((-628 . -996) 92322) ((-628 . -991) 92306) ((-628 . -82) 92285) ((-628 . -989) T) ((-628 . -997) T) ((-628 . -1052) T) ((-628 . -684) T) ((-628 . -38) 92245) ((-628 . -372) 92229) ((-628 . -702) 92213) ((-628 . -678) T) ((-628 . -704) T) ((-628 . -322) 92197) ((-628 . -240) 92174) ((-622 . -329) 92153) ((-622 . -675) 92137) ((-622 . -598) 92121) ((-622 . -606) 92105) ((-622 . -604) 92074) ((-622 . -104) T) ((-622 . -25) T) ((-622 . -73) T) ((-622 . -1157) T) ((-622 . -568) 92056) ((-622 . -1041) T) ((-622 . -23) T) ((-622 . -21) T) ((-622 . -996) 92040) ((-622 . -991) 92024) ((-622 . -82) 92003) ((-622 . -590) 91987) ((-622 . -339) 91959) ((-622 . -571) 91936) ((-622 . -978) 91913) ((-614 . -616) 91897) ((-614 . -38) 91867) ((-614 . -571) 91786) ((-614 . -606) 91760) ((-614 . -604) 91719) ((-614 . -684) T) ((-614 . -1052) T) ((-614 . -997) T) ((-614 . -989) T) ((-614 . -82) 91698) ((-614 . -991) 91682) ((-614 . -996) 91666) ((-614 . -21) T) ((-614 . -23) T) ((-614 . -1041) T) ((-614 . -568) 91648) ((-614 . -73) T) ((-614 . -25) T) ((-614 . -104) T) ((-614 . -598) 91618) ((-614 . -675) 91588) ((-614 . -366) 91572) ((-614 . -978) 91470) ((-614 . -786) 91454) ((-614 . -1157) T) ((-614 . -240) 91415) ((-613 . -616) 91399) ((-613 . -38) 91369) ((-613 . -571) 91288) ((-613 . -606) 91262) ((-613 . -604) 91221) ((-613 . -684) T) ((-613 . -1052) T) ((-613 . -997) T) ((-613 . -989) T) ((-613 . -82) 91200) ((-613 . -991) 91184) ((-613 . -996) 91168) ((-613 . -21) T) ((-613 . -23) T) ((-613 . -1041) T) ((-613 . -568) 91150) ((-613 . -73) T) ((-613 . -25) T) ((-613 . -104) T) ((-613 . -598) 91120) ((-613 . -675) 91090) ((-613 . -366) 91074) ((-613 . -978) 90972) ((-613 . -786) 90956) ((-613 . -1157) T) ((-613 . -240) 90935) ((-612 . -616) 90919) ((-612 . -38) 90889) ((-612 . -571) 90808) ((-612 . -606) 90782) ((-612 . -604) 90741) ((-612 . -684) T) ((-612 . -1052) T) ((-612 . -997) T) ((-612 . -989) T) ((-612 . -82) 90720) ((-612 . -991) 90704) ((-612 . -996) 90688) ((-612 . -21) T) ((-612 . -23) T) ((-612 . -1041) T) ((-612 . -568) 90670) ((-612 . -73) T) ((-612 . -25) T) ((-612 . -104) T) ((-612 . -598) 90640) ((-612 . -675) 90610) ((-612 . -366) 90594) ((-612 . -978) 90492) ((-612 . -786) 90476) ((-612 . -1157) T) ((-612 . -240) 90455) ((-610 . -675) 90439) ((-610 . -598) 90423) ((-610 . -606) 90407) ((-610 . -604) 90376) ((-610 . -104) T) ((-610 . -25) T) ((-610 . -73) T) ((-610 . -1157) T) ((-610 . -568) 90358) ((-610 . -1041) T) ((-610 . -23) T) ((-610 . -21) T) ((-610 . -996) 90342) ((-610 . -991) 90326) ((-610 . -82) 90305) ((-610 . -735) 90284) ((-610 . -737) 90263) ((-610 . -781) 90242) ((-610 . -784) 90221) ((-610 . -739) 90200) ((-610 . -742) 90179) ((-607 . -1041) T) ((-607 . -568) 90161) ((-607 . -1157) T) ((-607 . -73) T) ((-607 . -978) 90145) ((-607 . -571) 90129) ((-605 . -653) 90113) ((-605 . -78) 90097) ((-605 . -34) T) ((-605 . -1157) T) ((-605 . -73) 90048) ((-605 . -568) 89980) ((-605 . -263) 89918) ((-605 . -468) 89851) ((-605 . -1041) 89829) ((-605 . -443) 89813) ((-605 . -124) 89797) ((-605 . -569) 89758) ((-605 . -192) 89742) ((-603 . -1023) T) ((-603 . -444) 89723) ((-603 . -568) 89676) ((-603 . -571) 89657) ((-603 . -1041) T) ((-603 . -1157) T) ((-603 . -73) T) ((-603 . -64) T) ((-599 . -624) 89641) ((-599 . -1196) 89625) ((-599 . -950) 89609) ((-599 . -1090) 89593) ((-599 . -781) 89572) ((-599 . -784) 89551) ((-599 . -327) 89535) ((-599 . -609) 89519) ((-599 . -242) 89496) ((-599 . -240) 89448) ((-599 . -554) 89425) ((-599 . -569) 89386) ((-599 . -443) 89370) ((-599 . -1041) 89320) ((-599 . -468) 89253) ((-599 . -263) 89191) ((-599 . -568) 89103) ((-599 . -73) 89034) ((-599 . -1157) T) ((-599 . -34) T) ((-599 . -124) 89018) ((-599 . -236) 89002) ((-597 . -1215) 88986) ((-597 . -82) 88965) ((-597 . -991) 88949) ((-597 . -996) 88933) ((-597 . -21) T) ((-597 . -604) 88902) ((-597 . -23) T) ((-597 . -1041) T) ((-597 . -568) 88884) ((-597 . -1157) T) ((-597 . -73) T) ((-597 . -25) T) ((-597 . -104) T) ((-597 . -606) 88868) ((-597 . -598) 88852) ((-597 . -675) 88836) ((-597 . -240) 88803) ((-595 . -1215) 88787) ((-595 . -82) 88766) ((-595 . -991) 88750) ((-595 . -996) 88734) ((-595 . -21) T) ((-595 . -604) 88703) ((-595 . -23) T) ((-595 . -1041) T) ((-595 . -568) 88685) ((-595 . -1157) T) ((-595 . -73) T) ((-595 . -25) T) ((-595 . -104) T) ((-595 . -606) 88669) ((-595 . -598) 88653) ((-595 . -675) 88637) ((-595 . -571) 88614) ((-595 . -463) 88586) ((-593 . -777) T) ((-593 . -784) T) ((-593 . -781) T) ((-593 . -1041) T) ((-593 . -568) 88568) ((-593 . -1157) T) ((-593 . -73) T) ((-593 . -323) T) ((-593 . -571) 88545) ((-588 . -702) 88529) ((-588 . -678) T) ((-588 . -704) T) ((-588 . -82) 88508) ((-588 . -991) 88492) ((-588 . -996) 88476) ((-588 . -21) T) ((-588 . -604) 88445) ((-588 . -23) T) ((-588 . -1041) T) ((-588 . -568) 88414) ((-588 . -1157) T) ((-588 . -73) T) ((-588 . -25) T) ((-588 . -104) T) ((-588 . -606) 88398) ((-588 . -598) 88382) ((-588 . -675) 88366) ((-588 . -372) 88331) ((-588 . -322) 88263) ((-588 . -240) 88221) ((-587 . -1134) 88196) ((-587 . -183) 88140) ((-587 . -78) 88084) ((-587 . -263) 87929) ((-587 . -468) 87729) ((-587 . -443) 87659) ((-587 . -124) 87603) ((-587 . -569) NIL) ((-587 . -192) 87547) ((-587 . -565) 87522) ((-587 . -242) 87497) ((-587 . -1157) T) ((-587 . -240) 87450) ((-587 . -1041) T) ((-587 . -568) 87432) ((-587 . -73) T) ((-587 . -34) T) ((-587 . -554) 87407) ((-582 . -427) T) ((-582 . -1052) T) ((-582 . -73) T) ((-582 . -1157) T) ((-582 . -568) 87389) ((-582 . -1041) T) ((-582 . -684) T) ((-581 . -1023) T) ((-581 . -444) 87370) ((-581 . -568) 87336) ((-581 . -571) 87317) ((-581 . -1041) T) ((-581 . -1157) T) ((-581 . -73) T) ((-581 . -64) T) ((-578 . -184) 87301) ((-578 . -836) 87260) ((-578 . -838) 87183) ((-578 . -831) 87104) ((-578 . -224) 87088) ((-578 . -189) 87039) ((-578 . -1157) T) ((-578 . -186) 86984) ((-578 . -989) T) ((-578 . -997) T) ((-578 . -1052) T) ((-578 . -684) T) ((-578 . -21) T) ((-578 . -604) 86956) ((-578 . -23) T) ((-578 . -1041) T) ((-578 . -568) 86938) ((-578 . -73) T) ((-578 . -25) T) ((-578 . -104) T) ((-578 . -606) 86925) ((-578 . -571) 86821) ((-578 . -190) 86800) ((-578 . -510) T) ((-578 . -244) T) ((-578 . -146) T) ((-578 . -675) 86787) ((-578 . -598) 86774) ((-578 . -996) 86761) ((-578 . -991) 86748) ((-578 . -82) 86733) ((-578 . -38) 86720) ((-578 . -569) 86697) ((-578 . -366) 86681) ((-578 . -978) 86566) ((-578 . -120) 86545) ((-578 . -118) 86524) ((-578 . -261) 86503) ((-578 . -406) 86482) ((-578 . -859) 86461) ((-574 . -38) 86445) ((-574 . -571) 86414) ((-574 . -606) 86388) ((-574 . -604) 86347) ((-574 . -684) T) ((-574 . -1052) T) ((-574 . -997) T) ((-574 . -989) T) ((-574 . -82) 86326) ((-574 . -991) 86310) ((-574 . -996) 86294) ((-574 . -21) T) ((-574 . -23) T) ((-574 . -1041) T) ((-574 . -568) 86276) ((-574 . -1157) T) ((-574 . -73) T) ((-574 . -25) T) ((-574 . -104) T) ((-574 . -598) 86260) ((-574 . -675) 86244) ((-574 . -780) 86223) ((-574 . -742) 86202) ((-574 . -739) 86181) ((-574 . -784) 86160) ((-574 . -781) 86139) ((-574 . -737) 86118) ((-574 . -735) 86097) ((-572 . -907) T) ((-572 . -73) T) ((-572 . -568) 86079) ((-572 . -1041) T) ((-572 . -620) T) ((-572 . -1157) T) ((-572 . -84) T) ((-566 . -105) T) ((-566 . -73) T) ((-566 . -1157) T) ((-566 . -568) 86061) ((-566 . -1041) T) ((-566 . -781) T) ((-566 . -784) T) ((-566 . -819) 86045) ((-566 . -569) 85906) ((-563 . -320) 85844) ((-563 . -73) T) ((-563 . -1157) T) ((-563 . -568) 85826) ((-563 . -1041) T) ((-563 . -1134) 85802) ((-563 . -183) 85747) ((-563 . -78) 85692) ((-563 . -263) 85481) ((-563 . -468) 85221) ((-563 . -443) 85153) ((-563 . -124) 85098) ((-563 . -569) NIL) ((-563 . -192) 85043) ((-563 . -565) 85019) ((-563 . -242) 84995) ((-563 . -240) 84971) ((-563 . -34) T) ((-563 . -554) 84947) ((-562 . -1041) T) ((-562 . -568) 84899) ((-562 . -1157) T) ((-562 . -73) T) ((-562 . -444) 84866) ((-562 . -571) 84833) ((-561 . -1041) T) ((-561 . -568) 84815) ((-561 . -1157) T) ((-561 . -73) T) ((-561 . -620) T) ((-560 . -1041) T) ((-560 . -568) 84797) ((-560 . -1157) T) ((-560 . -73) T) ((-560 . -620) T) ((-559 . -1041) T) ((-559 . -568) 84764) ((-559 . -1157) T) ((-559 . -73) T) ((-558 . -1041) T) ((-558 . -568) 84746) ((-558 . -1157) T) ((-558 . -73) T) ((-558 . -620) T) ((-557 . -1041) T) ((-557 . -568) 84713) ((-557 . -1157) T) ((-557 . -73) T) ((-557 . -444) 84695) ((-557 . -571) 84677) ((-556 . -702) 84661) ((-556 . -678) T) ((-556 . -704) T) ((-556 . -82) 84640) ((-556 . -991) 84624) ((-556 . -996) 84608) ((-556 . -21) T) ((-556 . -604) 84577) ((-556 . -23) T) ((-556 . -1041) T) ((-556 . -568) 84546) ((-556 . -1157) T) ((-556 . -73) T) ((-556 . -25) T) ((-556 . -104) T) ((-556 . -606) 84530) ((-556 . -598) 84514) ((-556 . -675) 84498) ((-556 . -372) 84463) ((-556 . -322) 84395) ((-556 . -240) 84353) ((-555 . -1023) T) ((-555 . -444) 84334) ((-555 . -568) 84284) ((-555 . -571) 84265) ((-555 . -1041) T) ((-555 . -1157) T) ((-555 . -73) T) ((-555 . -64) T) ((-552 . -1206) 84249) ((-552 . -327) 84233) ((-552 . -784) 84212) ((-552 . -781) 84191) ((-552 . -124) 84175) ((-552 . -34) T) ((-552 . -1157) T) ((-552 . -73) 84106) ((-552 . -568) 84018) ((-552 . -263) 83956) ((-552 . -468) 83889) ((-552 . -1041) 83839) ((-552 . -443) 83823) ((-552 . -569) 83784) ((-552 . -240) 83736) ((-552 . -554) 83713) ((-552 . -242) 83690) ((-552 . -609) 83674) ((-552 . -19) 83658) ((-551 . -568) 83640) ((-547 . -1041) T) ((-547 . -568) 83606) ((-547 . -1157) T) ((-547 . -73) T) ((-547 . -444) 83587) ((-547 . -571) 83568) ((-546 . -989) T) ((-546 . -997) T) ((-546 . -1052) T) ((-546 . -684) T) ((-546 . -21) T) ((-546 . -604) 83527) ((-546 . -23) T) ((-546 . -1041) T) ((-546 . -568) 83509) ((-546 . -1157) T) ((-546 . -73) T) ((-546 . -25) T) ((-546 . -104) T) ((-546 . -606) 83483) ((-546 . -571) 83441) ((-546 . -82) 83394) ((-546 . -991) 83354) ((-546 . -996) 83314) ((-546 . -510) 83293) ((-546 . -244) 83272) ((-546 . -146) 83251) ((-546 . -675) 83224) ((-546 . -598) 83197) ((-546 . -38) 83170) ((-545 . -1186) 83147) ((-545 . -47) 83124) ((-545 . -38) 83021) ((-545 . -598) 82918) ((-545 . -675) 82815) ((-545 . -571) 82697) ((-545 . -244) 82676) ((-545 . -510) 82655) ((-545 . -82) 82517) ((-545 . -991) 82400) ((-545 . -996) 82283) ((-545 . -146) 82234) ((-545 . -120) 82213) ((-545 . -118) 82192) ((-545 . -606) 82117) ((-545 . -604) 82027) ((-545 . -913) 81996) ((-545 . -838) 81909) ((-545 . -831) 81820) ((-545 . -836) 81733) ((-545 . -240) 81698) ((-545 . -189) 81657) ((-545 . -1157) T) ((-545 . -186) 81610) ((-545 . -989) T) ((-545 . -997) T) ((-545 . -1052) T) ((-545 . -684) T) ((-545 . -21) T) ((-545 . -23) T) ((-545 . -1041) T) ((-545 . -568) 81592) ((-545 . -73) T) ((-545 . -25) T) ((-545 . -104) T) ((-545 . -190) 81551) ((-543 . -1023) T) ((-543 . -444) 81532) ((-543 . -568) 81498) ((-543 . -571) 81479) ((-543 . -1041) T) ((-543 . -1157) T) ((-543 . -73) T) ((-543 . -64) T) ((-537 . -1041) T) ((-537 . -568) 81445) ((-537 . -1157) T) ((-537 . -73) T) ((-537 . -444) 81426) ((-537 . -571) 81407) ((-534 . -675) 81382) ((-534 . -598) 81357) ((-534 . -606) 81332) ((-534 . -604) 81292) ((-534 . -104) T) ((-534 . -25) T) ((-534 . -73) T) ((-534 . -1157) T) ((-534 . -568) 81274) ((-534 . -1041) T) ((-534 . -23) T) ((-534 . -21) T) ((-534 . -996) 81249) ((-534 . -991) 81224) ((-534 . -82) 81185) ((-534 . -978) 81169) ((-534 . -571) 81153) ((-532 . -305) T) ((-532 . -1092) T) ((-532 . -323) T) ((-532 . -118) T) ((-532 . -318) T) ((-532 . -1162) T) ((-532 . -859) T) ((-532 . -510) T) ((-532 . -146) T) ((-532 . -571) 81103) ((-532 . -675) 81068) ((-532 . -598) 81033) ((-532 . -38) 80998) ((-532 . -406) T) ((-532 . -261) T) ((-532 . -82) 80947) ((-532 . -991) 80912) ((-532 . -996) 80877) ((-532 . -604) 80827) ((-532 . -606) 80792) ((-532 . -244) T) ((-532 . -200) T) ((-532 . -356) T) ((-532 . -189) T) ((-532 . -1157) T) ((-532 . -186) 80779) ((-532 . -989) T) ((-532 . -997) T) ((-532 . -1052) T) ((-532 . -684) T) ((-532 . -21) T) ((-532 . -23) T) ((-532 . -1041) T) ((-532 . -568) 80761) ((-532 . -73) T) ((-532 . -25) T) ((-532 . -104) T) ((-532 . -190) T) ((-532 . -283) 80748) ((-532 . -120) 80730) ((-532 . -978) 80717) ((-532 . -1215) 80704) ((-532 . -1226) 80691) ((-532 . -569) 80673) ((-531 . -804) 80657) ((-531 . -859) T) ((-531 . -510) T) ((-531 . -244) T) ((-531 . -146) T) ((-531 . -571) 80629) ((-531 . -675) 80616) ((-531 . -598) 80603) ((-531 . -996) 80590) ((-531 . -991) 80577) ((-531 . -82) 80562) ((-531 . -38) 80549) ((-531 . -406) T) ((-531 . -261) T) ((-531 . -989) T) ((-531 . -997) T) ((-531 . -1052) T) ((-531 . -684) T) ((-531 . -21) T) ((-531 . -604) 80521) ((-531 . -23) T) ((-531 . -1041) T) ((-531 . -568) 80503) ((-531 . -1157) T) ((-531 . -73) T) ((-531 . -25) T) ((-531 . -104) T) ((-531 . -606) 80490) ((-531 . -120) T) ((-530 . -1041) T) ((-530 . -568) 80472) ((-530 . -1157) T) ((-530 . -73) T) ((-529 . -1041) T) ((-529 . -568) 80454) ((-529 . -1157) T) ((-529 . -73) T) ((-528 . -527) T) ((-528 . -795) T) ((-528 . -147) T) ((-528 . -480) T) ((-528 . -568) 80436) ((-522 . -508) 80420) ((-522 . -35) T) ((-522 . -66) T) ((-522 . -238) T) ((-522 . -447) T) ((-522 . -1146) T) ((-522 . -1143) T) ((-522 . -978) 80402) ((-522 . -942) T) ((-522 . -784) T) ((-522 . -781) T) ((-522 . -510) T) ((-522 . -244) T) ((-522 . -146) T) ((-522 . -571) 80374) ((-522 . -675) 80361) ((-522 . -598) 80348) ((-522 . -606) 80335) ((-522 . -604) 80307) ((-522 . -104) T) ((-522 . -25) T) ((-522 . -73) T) ((-522 . -1157) T) ((-522 . -568) 80289) ((-522 . -1041) T) ((-522 . -23) T) ((-522 . -21) T) ((-522 . -996) 80276) ((-522 . -991) 80263) ((-522 . -82) 80248) ((-522 . -989) T) ((-522 . -997) T) ((-522 . -1052) T) ((-522 . -684) T) ((-522 . -38) 80235) ((-522 . -406) T) ((-504 . -1134) 80214) ((-504 . -183) 80162) ((-504 . -78) 80110) ((-504 . -263) 79908) ((-504 . -468) 79660) ((-504 . -443) 79595) ((-504 . -124) 79543) ((-504 . -569) NIL) ((-504 . -192) 79491) ((-504 . -565) 79470) ((-504 . -242) 79449) ((-504 . -1157) T) ((-504 . -240) 79428) ((-504 . -1041) T) ((-504 . -568) 79410) ((-504 . -73) T) ((-504 . -34) T) ((-504 . -554) 79389) ((-503 . -777) T) ((-503 . -784) T) ((-503 . -781) T) ((-503 . -1041) T) ((-503 . -568) 79371) ((-503 . -1157) T) ((-503 . -73) T) ((-503 . -323) T) ((-502 . -777) T) ((-502 . -784) T) ((-502 . -781) T) ((-502 . -1041) T) ((-502 . -568) 79353) ((-502 . -1157) T) ((-502 . -73) T) ((-502 . -323) T) ((-501 . -777) T) ((-501 . -784) T) ((-501 . -781) T) ((-501 . -1041) T) ((-501 . -568) 79335) ((-501 . -1157) T) ((-501 . -73) T) ((-501 . -323) T) ((-500 . -777) T) ((-500 . -784) T) ((-500 . -781) T) ((-500 . -1041) T) ((-500 . -568) 79317) ((-500 . -1157) T) ((-500 . -73) T) ((-500 . -323) T) ((-499 . -498) T) ((-499 . -1162) T) ((-499 . -1092) T) ((-499 . -978) 79299) ((-499 . -569) 79214) ((-499 . -960) T) ((-499 . -821) 79196) ((-499 . -780) T) ((-499 . -742) T) ((-499 . -739) T) ((-499 . -784) T) ((-499 . -781) T) ((-499 . -737) T) ((-499 . -735) T) ((-499 . -763) T) ((-499 . -606) 79168) ((-499 . -596) 79150) ((-499 . -859) T) ((-499 . -510) T) ((-499 . -244) T) ((-499 . -146) T) ((-499 . -571) 79122) ((-499 . -675) 79109) ((-499 . -598) 79096) ((-499 . -996) 79083) ((-499 . -991) 79070) ((-499 . -82) 79055) ((-499 . -38) 79042) ((-499 . -406) T) ((-499 . -261) T) ((-499 . -189) T) ((-499 . -186) 79029) ((-499 . -190) T) ((-499 . -116) T) ((-499 . -989) T) ((-499 . -997) T) ((-499 . -1052) T) ((-499 . -684) T) ((-499 . -21) T) ((-499 . -604) 79001) ((-499 . -23) T) ((-499 . -1041) T) ((-499 . -568) 78983) ((-499 . -1157) T) ((-499 . -73) T) ((-499 . -25) T) ((-499 . -104) T) ((-499 . -120) T) ((-488 . -1044) 78935) ((-488 . -73) T) ((-488 . -568) 78917) ((-488 . -1041) T) ((-488 . -240) 78873) ((-488 . -1157) T) ((-488 . -573) 78776) ((-488 . -569) 78757) ((-486 . -710) 78739) ((-486 . -480) T) ((-486 . -147) T) ((-486 . -795) T) ((-486 . -527) T) ((-486 . -568) 78721) ((-484 . -738) T) ((-484 . -104) T) ((-484 . -25) T) ((-484 . -73) T) ((-484 . -1157) T) ((-484 . -568) 78703) ((-484 . -1041) T) ((-484 . -23) T) ((-484 . -737) T) ((-484 . -781) T) ((-484 . -784) T) ((-484 . -739) T) ((-484 . -742) T) ((-484 . -463) 78680) ((-482 . -480) T) ((-482 . -147) T) ((-482 . -568) 78662) ((-478 . -1023) T) ((-478 . -444) 78643) ((-478 . -568) 78609) ((-478 . -571) 78590) ((-478 . -1041) T) ((-478 . -1157) T) ((-478 . -73) T) ((-478 . -64) T) ((-477 . -1023) T) ((-477 . -444) 78571) ((-477 . -568) 78537) ((-477 . -571) 78518) ((-477 . -1041) T) ((-477 . -1157) T) ((-477 . -73) T) ((-477 . -64) T) ((-476 . -644) 78468) ((-476 . -443) 78452) ((-476 . -1041) 78430) ((-476 . -468) 78363) ((-476 . -263) 78301) ((-476 . -568) 78233) ((-476 . -73) 78184) ((-476 . -1157) T) ((-476 . -34) T) ((-476 . -57) 78134) ((-473 . -57) 78108) ((-473 . -34) T) ((-473 . -1157) T) ((-473 . -73) 78059) ((-473 . -568) 77991) ((-473 . -263) 77929) ((-473 . -468) 77862) ((-473 . -1041) 77840) ((-473 . -443) 77824) ((-472 . -283) 77801) ((-472 . -190) T) ((-472 . -186) 77788) ((-472 . -189) T) ((-472 . -323) T) ((-472 . -1092) T) ((-472 . -305) T) ((-472 . -120) 77770) ((-472 . -571) 77700) ((-472 . -606) 77645) ((-472 . -604) 77575) ((-472 . -104) T) ((-472 . -25) T) ((-472 . -73) T) ((-472 . -1157) T) ((-472 . -568) 77557) ((-472 . -1041) T) ((-472 . -23) T) ((-472 . -21) T) ((-472 . -684) T) ((-472 . -1052) T) ((-472 . -997) T) ((-472 . -989) T) ((-472 . -318) T) ((-472 . -1162) T) ((-472 . -859) T) ((-472 . -510) T) ((-472 . -146) T) ((-472 . -675) 77502) ((-472 . -598) 77447) ((-472 . -38) 77412) ((-472 . -406) T) ((-472 . -261) T) ((-472 . -82) 77329) ((-472 . -991) 77274) ((-472 . -996) 77219) ((-472 . -244) T) ((-472 . -200) T) ((-472 . -356) T) ((-472 . -118) T) ((-472 . -978) 77196) ((-472 . -1215) 77173) ((-472 . -1226) 77150) ((-471 . -1023) T) ((-471 . -444) 77131) ((-471 . -568) 77097) ((-471 . -571) 77078) ((-471 . -1041) T) ((-471 . -1157) T) ((-471 . -73) T) ((-471 . -64) T) ((-470 . -19) 77062) ((-470 . -609) 77046) ((-470 . -242) 77023) ((-470 . -240) 76975) ((-470 . -554) 76952) ((-470 . -569) 76913) ((-470 . -443) 76897) ((-470 . -1041) 76847) ((-470 . -468) 76780) ((-470 . -263) 76718) ((-470 . -568) 76630) ((-470 . -73) 76561) ((-470 . -1157) T) ((-470 . -34) T) ((-470 . -124) 76545) ((-470 . -781) 76524) ((-470 . -784) 76503) ((-470 . -327) 76487) ((-470 . -236) 76471) ((-469 . -277) 76450) ((-469 . -571) 76434) ((-469 . -978) 76418) ((-469 . -23) T) ((-469 . -1041) T) ((-469 . -568) 76400) ((-469 . -1157) T) ((-469 . -73) T) ((-469 . -25) T) ((-469 . -104) T) ((-466 . -738) T) ((-466 . -104) T) ((-466 . -25) T) ((-466 . -73) T) ((-466 . -1157) T) ((-466 . -568) 76382) ((-466 . -1041) T) ((-466 . -23) T) ((-466 . -737) T) ((-466 . -781) T) ((-466 . -784) T) ((-466 . -739) T) ((-466 . -742) T) ((-466 . -463) 76361) ((-465 . -737) T) ((-465 . -781) T) ((-465 . -784) T) ((-465 . -739) T) ((-465 . -25) T) ((-465 . -73) T) ((-465 . -1157) T) ((-465 . -568) 76343) ((-465 . -1041) T) ((-465 . -23) T) ((-465 . -463) 76322) ((-464 . -463) 76301) ((-464 . -568) 76241) ((-464 . -1041) 76192) ((-464 . -1157) T) ((-464 . -73) T) ((-462 . -23) T) ((-462 . -1041) T) ((-462 . -568) 76174) ((-462 . -1157) T) ((-462 . -73) T) ((-462 . -25) T) ((-462 . -463) 76153) ((-461 . -21) T) ((-461 . -604) 76135) ((-461 . -23) T) ((-461 . -1041) T) ((-461 . -568) 76117) ((-461 . -1157) T) ((-461 . -73) T) ((-461 . -25) T) ((-461 . -104) T) ((-461 . -463) 76096) ((-460 . -1041) T) ((-460 . -568) 76078) ((-460 . -1157) T) ((-460 . -73) T) ((-458 . -1041) T) ((-458 . -568) 76060) ((-458 . -1157) T) ((-458 . -73) T) ((-456 . -781) T) ((-456 . -568) 76042) ((-456 . -1041) T) ((-456 . -73) T) ((-456 . -1157) T) ((-456 . -784) T) ((-456 . -571) 76023) ((-454 . -96) T) ((-454 . -327) 76006) ((-454 . -784) T) ((-454 . -781) T) ((-454 . -124) 75989) ((-454 . -34) T) ((-454 . -73) T) ((-454 . -568) 75971) ((-454 . -263) NIL) ((-454 . -468) NIL) ((-454 . -1041) T) ((-454 . -443) 75954) ((-454 . -569) 75936) ((-454 . -240) 75887) ((-454 . -554) 75863) ((-454 . -242) 75839) ((-454 . -609) 75822) ((-454 . -19) 75805) ((-454 . -620) T) ((-454 . -1157) T) ((-454 . -84) T) ((-451 . -57) 75755) ((-451 . -34) T) ((-451 . -1157) T) ((-451 . -73) 75706) ((-451 . -568) 75638) ((-451 . -263) 75576) ((-451 . -468) 75509) ((-451 . -1041) 75487) ((-451 . -443) 75471) ((-450 . -19) 75455) ((-450 . -609) 75439) ((-450 . -242) 75416) ((-450 . -240) 75368) ((-450 . -554) 75345) ((-450 . -569) 75306) ((-450 . -443) 75290) ((-450 . -1041) 75240) ((-450 . -468) 75173) ((-450 . -263) 75111) ((-450 . -568) 75023) ((-450 . -73) 74954) ((-450 . -1157) T) ((-450 . -34) T) ((-450 . -124) 74938) ((-450 . -781) 74917) ((-450 . -784) 74896) ((-450 . -327) 74880) ((-449 . -252) T) ((-449 . -73) T) ((-449 . -1157) T) ((-449 . -568) 74862) ((-449 . -1041) T) ((-449 . -571) 74763) ((-449 . -978) 74706) ((-449 . -468) 74672) ((-449 . -263) 74659) ((-449 . -27) T) ((-449 . -942) T) ((-449 . -200) T) ((-449 . -82) 74608) ((-449 . -991) 74573) ((-449 . -996) 74538) ((-449 . -244) T) ((-449 . -675) 74503) ((-449 . -598) 74468) ((-449 . -606) 74418) ((-449 . -604) 74368) ((-449 . -104) T) ((-449 . -25) T) ((-449 . -23) T) ((-449 . -21) T) ((-449 . -989) T) ((-449 . -997) T) ((-449 . -1052) T) ((-449 . -684) T) ((-449 . -38) 74333) ((-449 . -261) T) ((-449 . -406) T) ((-449 . -146) T) ((-449 . -510) T) ((-449 . -859) T) ((-449 . -1162) T) ((-449 . -318) T) ((-449 . -596) 74293) ((-449 . -960) T) ((-449 . -569) 74238) ((-449 . -120) T) ((-449 . -190) T) ((-449 . -186) 74225) ((-449 . -189) T) ((-445 . -1041) T) ((-445 . -568) 74191) ((-445 . -1157) T) ((-445 . -73) T) ((-441 . -931) 74173) ((-441 . -1092) T) ((-441 . -571) 74123) ((-441 . -978) 74083) ((-441 . -569) 74013) ((-441 . -960) T) ((-441 . -848) NIL) ((-441 . -819) 73995) ((-441 . -780) T) ((-441 . -742) T) ((-441 . -739) T) ((-441 . -784) T) ((-441 . -781) T) ((-441 . -737) T) ((-441 . -735) T) ((-441 . -763) T) ((-441 . -821) 73977) ((-441 . -354) 73959) ((-441 . -596) 73941) ((-441 . -332) 73923) ((-441 . -240) NIL) ((-441 . -263) NIL) ((-441 . -468) NIL) ((-441 . -293) 73905) ((-441 . -200) T) ((-441 . -82) 73832) ((-441 . -991) 73782) ((-441 . -996) 73732) ((-441 . -244) T) ((-441 . -675) 73682) ((-441 . -598) 73632) ((-441 . -606) 73582) ((-441 . -604) 73532) ((-441 . -38) 73482) ((-441 . -261) T) ((-441 . -406) T) ((-441 . -146) T) ((-441 . -510) T) ((-441 . -859) T) ((-441 . -1162) T) ((-441 . -318) T) ((-441 . -190) T) ((-441 . -186) 73469) ((-441 . -189) T) ((-441 . -224) 73451) ((-441 . -831) NIL) ((-441 . -838) NIL) ((-441 . -836) NIL) ((-441 . -184) 73433) ((-441 . -120) T) ((-441 . -118) NIL) ((-441 . -104) T) ((-441 . -25) T) ((-441 . -73) T) ((-441 . -1157) T) ((-441 . -568) 73375) ((-441 . -1041) T) ((-441 . -23) T) ((-441 . -21) T) ((-441 . -989) T) ((-441 . -997) T) ((-441 . -1052) T) ((-441 . -684) T) ((-439 . -291) 73344) ((-439 . -104) T) ((-439 . -25) T) ((-439 . -73) T) ((-439 . -1157) T) ((-439 . -568) 73326) ((-439 . -1041) T) ((-439 . -23) T) ((-439 . -604) 73308) ((-439 . -21) T) ((-438 . -908) 73292) ((-438 . -443) 73276) ((-438 . -1041) 73254) ((-438 . -468) 73187) ((-438 . -263) 73125) ((-438 . -568) 73057) ((-438 . -73) 73008) ((-438 . -1157) T) ((-438 . -34) T) ((-438 . -78) 72992) ((-437 . -1023) T) ((-437 . -444) 72973) ((-437 . -568) 72939) ((-437 . -571) 72920) ((-437 . -1041) T) ((-437 . -1157) T) ((-437 . -73) T) ((-437 . -64) T) ((-436 . -195) 72899) ((-436 . -1215) 72869) ((-436 . -742) 72848) ((-436 . -739) 72827) ((-436 . -784) 72778) ((-436 . -781) 72729) ((-436 . -737) 72708) ((-436 . -738) 72687) ((-436 . -675) 72629) ((-436 . -598) 72551) ((-436 . -242) 72528) ((-436 . -240) 72505) ((-436 . -443) 72489) ((-436 . -468) 72422) ((-436 . -263) 72360) ((-436 . -34) T) ((-436 . -554) 72337) ((-436 . -978) 72166) ((-436 . -571) 71967) ((-436 . -366) 71936) ((-436 . -596) 71844) ((-436 . -606) 71680) ((-436 . -332) 71650) ((-436 . -323) 71629) ((-436 . -190) 71582) ((-436 . -604) 71364) ((-436 . -684) 71343) ((-436 . -1052) 71322) ((-436 . -997) 71301) ((-436 . -989) 71280) ((-436 . -186) 71173) ((-436 . -189) 71072) ((-436 . -224) 71042) ((-436 . -831) 70911) ((-436 . -838) 70782) ((-436 . -836) 70715) ((-436 . -184) 70685) ((-436 . -568) 70379) ((-436 . -996) 70301) ((-436 . -991) 70203) ((-436 . -82) 70120) ((-436 . -104) 69992) ((-436 . -25) 69826) ((-436 . -73) 69560) ((-436 . -1157) T) ((-436 . -1041) 69313) ((-436 . -23) 69166) ((-436 . -21) 69078) ((-435 . -888) 69023) ((-435 . -571) 68809) ((-435 . -978) 68687) ((-435 . -1162) 68666) ((-435 . -848) 68645) ((-435 . -821) NIL) ((-435 . -838) 68622) ((-435 . -831) 68597) ((-435 . -836) 68574) ((-435 . -468) 68512) ((-435 . -406) 68463) ((-435 . -596) 68411) ((-435 . -606) 68300) ((-435 . -332) 68284) ((-435 . -47) 68241) ((-435 . -38) 68090) ((-435 . -598) 67939) ((-435 . -675) 67788) ((-435 . -244) 67719) ((-435 . -510) 67650) ((-435 . -82) 67472) ((-435 . -991) 67315) ((-435 . -996) 67158) ((-435 . -146) 67069) ((-435 . -120) 67048) ((-435 . -118) 67027) ((-435 . -604) 66937) ((-435 . -104) T) ((-435 . -25) T) ((-435 . -73) T) ((-435 . -1157) T) ((-435 . -568) 66919) ((-435 . -1041) T) ((-435 . -23) T) ((-435 . -21) T) ((-435 . -989) T) ((-435 . -997) T) ((-435 . -1052) T) ((-435 . -684) T) ((-435 . -366) 66903) ((-435 . -280) 66860) ((-435 . -263) 66847) ((-435 . -569) 66708) ((-433 . -1134) 66687) ((-433 . -183) 66635) ((-433 . -78) 66583) ((-433 . -263) 66381) ((-433 . -468) 66133) ((-433 . -443) 66068) ((-433 . -124) 66016) ((-433 . -569) NIL) ((-433 . -192) 65964) ((-433 . -565) 65943) ((-433 . -242) 65922) ((-433 . -1157) T) ((-433 . -240) 65901) ((-433 . -1041) T) ((-433 . -568) 65883) ((-433 . -73) T) ((-433 . -34) T) ((-433 . -554) 65862) ((-432 . -1023) T) ((-432 . -444) 65843) ((-432 . -568) 65809) ((-432 . -571) 65790) ((-432 . -1041) T) ((-432 . -1157) T) ((-432 . -73) T) ((-432 . -64) T) ((-431 . -318) T) ((-431 . -1162) T) ((-431 . -859) T) ((-431 . -510) T) ((-431 . -146) T) ((-431 . -571) 65740) ((-431 . -675) 65705) ((-431 . -598) 65670) ((-431 . -38) 65635) ((-431 . -406) T) ((-431 . -261) T) ((-431 . -606) 65600) ((-431 . -604) 65550) ((-431 . -684) T) ((-431 . -1052) T) ((-431 . -997) T) ((-431 . -989) T) ((-431 . -82) 65499) ((-431 . -991) 65464) ((-431 . -996) 65429) ((-431 . -21) T) ((-431 . -23) T) ((-431 . -1041) T) ((-431 . -568) 65381) ((-431 . -1157) T) ((-431 . -73) T) ((-431 . -25) T) ((-431 . -104) T) ((-431 . -244) T) ((-431 . -200) T) ((-431 . -120) T) ((-431 . -978) 65341) ((-431 . -960) T) ((-431 . -569) 65263) ((-430 . -1152) 65232) ((-430 . -568) 65194) ((-430 . -124) 65178) ((-430 . -34) T) ((-430 . -1157) T) ((-430 . -73) T) ((-430 . -263) 65116) ((-430 . -468) 65049) ((-430 . -1041) T) ((-430 . -443) 65033) ((-430 . -569) 64994) ((-430 . -916) 64963) ((-429 . -1134) 64942) ((-429 . -183) 64890) ((-429 . -78) 64838) ((-429 . -263) 64636) ((-429 . -468) 64388) ((-429 . -443) 64323) ((-429 . -124) 64271) ((-429 . -569) NIL) ((-429 . -192) 64219) ((-429 . -565) 64198) ((-429 . -242) 64177) ((-429 . -1157) T) ((-429 . -240) 64156) ((-429 . -1041) T) ((-429 . -568) 64138) ((-429 . -73) T) ((-429 . -34) T) ((-429 . -554) 64117) ((-428 . -1190) 64101) ((-428 . -190) 64053) ((-428 . -186) 63999) ((-428 . -189) 63951) ((-428 . -240) 63909) ((-428 . -836) 63815) ((-428 . -831) 63696) ((-428 . -838) 63602) ((-428 . -913) 63564) ((-428 . -38) 63405) ((-428 . -82) 63219) ((-428 . -991) 63054) ((-428 . -996) 62889) ((-428 . -604) 62771) ((-428 . -606) 62668) ((-428 . -598) 62509) ((-428 . -675) 62350) ((-428 . -571) 62176) ((-428 . -118) 62155) ((-428 . -120) 62134) ((-428 . -47) 62104) ((-428 . -1186) 62074) ((-428 . -35) 62040) ((-428 . -66) 62006) ((-428 . -238) 61972) ((-428 . -447) 61938) ((-428 . -1146) 61904) ((-428 . -1143) 61870) ((-428 . -942) 61836) ((-428 . -200) 61815) ((-428 . -244) 61766) ((-428 . -104) T) ((-428 . -25) T) ((-428 . -73) T) ((-428 . -1157) T) ((-428 . -568) 61748) ((-428 . -1041) T) ((-428 . -23) T) ((-428 . -21) T) ((-428 . -989) T) ((-428 . -997) T) ((-428 . -1052) T) ((-428 . -684) T) ((-428 . -261) 61727) ((-428 . -406) 61706) ((-428 . -146) 61637) ((-428 . -510) 61588) ((-428 . -859) 61567) ((-428 . -1162) 61546) ((-428 . -318) 61525) ((-422 . -1041) T) ((-422 . -568) 61507) ((-422 . -1157) T) ((-422 . -73) T) ((-417 . -916) 61476) ((-417 . -569) 61437) ((-417 . -443) 61421) ((-417 . -1041) T) ((-417 . -468) 61354) ((-417 . -263) 61292) ((-417 . -568) 61254) ((-417 . -73) T) ((-417 . -1157) T) ((-417 . -34) T) ((-417 . -124) 61238) ((-415 . -675) 61209) ((-415 . -598) 61180) ((-415 . -606) 61151) ((-415 . -604) 61107) ((-415 . -104) T) ((-415 . -25) T) ((-415 . -73) T) ((-415 . -1157) T) ((-415 . -568) 61089) ((-415 . -1041) T) ((-415 . -23) T) ((-415 . -21) T) ((-415 . -996) 61060) ((-415 . -991) 61031) ((-415 . -82) 60992) ((-408 . -888) 60959) ((-408 . -571) 60745) ((-408 . -978) 60623) ((-408 . -1162) 60602) ((-408 . -848) 60581) ((-408 . -821) NIL) ((-408 . -838) 60558) ((-408 . -831) 60533) ((-408 . -836) 60510) ((-408 . -468) 60448) ((-408 . -406) 60399) ((-408 . -596) 60347) ((-408 . -606) 60236) ((-408 . -332) 60220) ((-408 . -47) 60199) ((-408 . -38) 60048) ((-408 . -598) 59897) ((-408 . -675) 59746) ((-408 . -244) 59677) ((-408 . -510) 59608) ((-408 . -82) 59430) ((-408 . -991) 59273) ((-408 . -996) 59116) ((-408 . -146) 59027) ((-408 . -120) 59006) ((-408 . -118) 58985) ((-408 . -604) 58895) ((-408 . -104) T) ((-408 . -25) T) ((-408 . -73) T) ((-408 . -1157) T) ((-408 . -568) 58877) ((-408 . -1041) T) ((-408 . -23) T) ((-408 . -21) T) ((-408 . -989) T) ((-408 . -997) T) ((-408 . -1052) T) ((-408 . -684) T) ((-408 . -366) 58861) ((-408 . -280) 58840) ((-408 . -263) 58827) ((-408 . -569) 58688) ((-407 . -372) 58658) ((-407 . -702) 58628) ((-407 . -678) T) ((-407 . -704) T) ((-407 . -82) 58579) ((-407 . -991) 58549) ((-407 . -996) 58519) ((-407 . -21) T) ((-407 . -604) 58434) ((-407 . -23) T) ((-407 . -1041) T) ((-407 . -568) 58416) ((-407 . -73) T) ((-407 . -25) T) ((-407 . -104) T) ((-407 . -606) 58346) ((-407 . -598) 58316) ((-407 . -675) 58286) ((-407 . -322) 58256) ((-407 . -1157) T) ((-407 . -240) 58219) ((-393 . -1041) T) ((-393 . -568) 58201) ((-393 . -1157) T) ((-393 . -73) T) ((-392 . -1041) T) ((-392 . -568) 58183) ((-392 . -1157) T) ((-392 . -73) T) ((-391 . -320) 58157) ((-391 . -73) T) ((-391 . -1157) T) ((-391 . -568) 58139) ((-391 . -1041) T) ((-390 . -1041) T) ((-390 . -568) 58121) ((-390 . -1157) T) ((-390 . -73) T) ((-388 . -568) 58103) ((-383 . -38) 58087) ((-383 . -571) 58056) ((-383 . -606) 58030) ((-383 . -604) 57989) ((-383 . -684) T) ((-383 . -1052) T) ((-383 . -997) T) ((-383 . -989) T) ((-383 . -82) 57968) ((-383 . -991) 57952) ((-383 . -996) 57936) ((-383 . -21) T) ((-383 . -23) T) ((-383 . -1041) T) ((-383 . -568) 57918) ((-383 . -1157) T) ((-383 . -73) T) ((-383 . -25) T) ((-383 . -104) T) ((-383 . -598) 57902) ((-383 . -675) 57886) ((-369 . -684) T) ((-369 . -1041) T) ((-369 . -568) 57868) ((-369 . -1157) T) ((-369 . -73) T) ((-369 . -1052) T) ((-367 . -427) T) ((-367 . -1052) T) ((-367 . -73) T) ((-367 . -1157) T) ((-367 . -568) 57850) ((-367 . -1041) T) ((-367 . -684) T) ((-361 . -931) 57834) ((-361 . -1092) 57812) ((-361 . -978) 57679) ((-361 . -571) 57578) ((-361 . -569) 57381) ((-361 . -960) 57360) ((-361 . -848) 57339) ((-361 . -819) 57323) ((-361 . -780) 57302) ((-361 . -742) 57281) ((-361 . -739) 57260) ((-361 . -784) 57211) ((-361 . -781) 57162) ((-361 . -737) 57141) ((-361 . -735) 57120) ((-361 . -763) 57099) ((-361 . -821) 57024) ((-361 . -354) 57008) ((-361 . -596) 56956) ((-361 . -606) 56872) ((-361 . -332) 56856) ((-361 . -240) 56814) ((-361 . -263) 56779) ((-361 . -468) 56691) ((-361 . -293) 56675) ((-361 . -200) T) ((-361 . -82) 56606) ((-361 . -991) 56558) ((-361 . -996) 56510) ((-361 . -244) T) ((-361 . -675) 56462) ((-361 . -598) 56414) ((-361 . -604) 56351) ((-361 . -38) 56303) ((-361 . -261) T) ((-361 . -406) T) ((-361 . -146) T) ((-361 . -510) T) ((-361 . -859) T) ((-361 . -1162) T) ((-361 . -318) T) ((-361 . -190) 56282) ((-361 . -186) 56227) ((-361 . -189) 56178) ((-361 . -224) 56162) ((-361 . -831) 56083) ((-361 . -838) 56006) ((-361 . -836) 55965) ((-361 . -184) 55949) ((-361 . -120) 55928) ((-361 . -118) 55907) ((-361 . -104) T) ((-361 . -25) T) ((-361 . -73) T) ((-361 . -1157) T) ((-361 . -568) 55889) ((-361 . -1041) T) ((-361 . -23) T) ((-361 . -21) T) ((-361 . -989) T) ((-361 . -997) T) ((-361 . -1052) T) ((-361 . -684) T) ((-359 . -510) T) ((-359 . -244) T) ((-359 . -146) T) ((-359 . -571) 55798) ((-359 . -675) 55772) ((-359 . -598) 55746) ((-359 . -606) 55720) ((-359 . -604) 55679) ((-359 . -104) T) ((-359 . -25) T) ((-359 . -73) T) ((-359 . -1157) T) ((-359 . -568) 55661) ((-359 . -1041) T) ((-359 . -23) T) ((-359 . -21) T) ((-359 . -996) 55635) ((-359 . -991) 55609) ((-359 . -82) 55576) ((-359 . -989) T) ((-359 . -997) T) ((-359 . -1052) T) ((-359 . -684) T) ((-359 . -38) 55550) ((-359 . -184) 55534) ((-359 . -836) 55493) ((-359 . -838) 55416) ((-359 . -831) 55337) ((-359 . -224) 55321) ((-359 . -189) 55272) ((-359 . -186) 55217) ((-359 . -190) 55196) ((-359 . -293) 55180) ((-359 . -468) 55022) ((-359 . -263) 54961) ((-359 . -240) 54889) ((-359 . -366) 54873) ((-359 . -978) 54771) ((-359 . -406) 54721) ((-359 . -960) 54700) ((-359 . -569) 54603) ((-359 . -1162) 54581) ((-353 . -1041) T) ((-353 . -568) 54563) ((-353 . -1157) T) ((-353 . -73) T) ((-353 . -189) T) ((-353 . -186) 54550) ((-353 . -569) 54527) ((-352 . -350) T) ((-352 . -1157) T) ((-352 . -568) 54509) ((-346 . -702) 54493) ((-346 . -678) T) ((-346 . -704) T) ((-346 . -82) 54472) ((-346 . -991) 54456) ((-346 . -996) 54440) ((-346 . -21) T) ((-346 . -604) 54409) ((-346 . -23) T) ((-346 . -1041) T) ((-346 . -568) 54391) ((-346 . -1157) T) ((-346 . -73) T) ((-346 . -25) T) ((-346 . -104) T) ((-346 . -606) 54375) ((-346 . -598) 54359) ((-346 . -675) 54343) ((-344 . -345) T) ((-344 . -73) T) ((-344 . -1157) T) ((-344 . -568) 54309) ((-344 . -1041) T) ((-344 . -571) 54290) ((-344 . -444) 54271) ((-342 . -341) 54255) ((-342 . -571) 54239) ((-342 . -978) 54223) ((-342 . -784) 54202) ((-342 . -781) 54181) ((-342 . -1052) T) ((-342 . -73) T) ((-342 . -1157) T) ((-342 . -568) 54163) ((-342 . -1041) T) ((-342 . -684) T) ((-337 . -339) 54142) ((-337 . -571) 54126) ((-337 . -978) 54110) ((-337 . -598) 54080) ((-337 . -675) 54050) ((-337 . -606) 54034) ((-337 . -604) 54003) ((-337 . -104) T) ((-337 . -25) T) ((-337 . -73) T) ((-337 . -1157) T) ((-337 . -568) 53985) ((-337 . -1041) T) ((-337 . -23) T) ((-337 . -21) T) ((-337 . -996) 53969) ((-337 . -991) 53953) ((-337 . -82) 53932) ((-336 . -82) 53911) ((-336 . -991) 53895) ((-336 . -996) 53879) ((-336 . -21) T) ((-336 . -604) 53848) ((-336 . -23) T) ((-336 . -1041) T) ((-336 . -568) 53830) ((-336 . -1157) T) ((-336 . -73) T) ((-336 . -25) T) ((-336 . -104) T) ((-336 . -606) 53814) ((-336 . -463) 53793) ((-336 . -675) 53763) ((-336 . -598) 53733) ((-333 . -358) T) ((-333 . -120) T) ((-333 . -571) 53683) ((-333 . -606) 53648) ((-333 . -604) 53598) ((-333 . -104) T) ((-333 . -25) T) ((-333 . -73) T) ((-333 . -1157) T) ((-333 . -568) 53565) ((-333 . -1041) T) ((-333 . -23) T) ((-333 . -21) T) ((-333 . -684) T) ((-333 . -1052) T) ((-333 . -997) T) ((-333 . -989) T) ((-333 . -569) 53479) ((-333 . -318) T) ((-333 . -1162) T) ((-333 . -859) T) ((-333 . -510) T) ((-333 . -146) T) ((-333 . -675) 53444) ((-333 . -598) 53409) ((-333 . -38) 53374) ((-333 . -406) T) ((-333 . -261) T) ((-333 . -82) 53323) ((-333 . -991) 53288) ((-333 . -996) 53253) ((-333 . -244) T) ((-333 . -200) T) ((-333 . -780) T) ((-333 . -742) T) ((-333 . -739) T) ((-333 . -784) T) ((-333 . -781) T) ((-333 . -737) T) ((-333 . -735) T) ((-333 . -821) 53235) ((-333 . -942) T) ((-333 . -960) T) ((-333 . -978) 53195) ((-333 . -1000) T) ((-333 . -190) T) ((-333 . -186) 53182) ((-333 . -189) T) ((-333 . -1143) T) ((-333 . -1146) T) ((-333 . -447) T) ((-333 . -238) T) ((-333 . -66) T) ((-333 . -35) T) ((-333 . -573) 53164) ((-319 . -320) 53141) ((-319 . -73) T) ((-319 . -1157) T) ((-319 . -568) 53123) ((-319 . -1041) T) ((-316 . -427) T) ((-316 . -1052) T) ((-316 . -73) T) ((-316 . -1157) T) ((-316 . -568) 53105) ((-316 . -1041) T) ((-316 . -684) T) ((-316 . -978) 53089) ((-316 . -571) 53073) ((-314 . -283) 53057) ((-314 . -190) 53036) ((-314 . -186) 53009) ((-314 . -189) 52988) ((-314 . -323) 52967) ((-314 . -1092) 52946) ((-314 . -305) 52925) ((-314 . -120) 52904) ((-314 . -571) 52841) ((-314 . -606) 52793) ((-314 . -604) 52730) ((-314 . -104) T) ((-314 . -25) T) ((-314 . -73) T) ((-314 . -1157) T) ((-314 . -568) 52712) ((-314 . -1041) T) ((-314 . -23) T) ((-314 . -21) T) ((-314 . -684) T) ((-314 . -1052) T) ((-314 . -997) T) ((-314 . -989) T) ((-314 . -318) T) ((-314 . -1162) T) ((-314 . -859) T) ((-314 . -510) T) ((-314 . -146) T) ((-314 . -675) 52664) ((-314 . -598) 52616) ((-314 . -38) 52581) ((-314 . -406) T) ((-314 . -261) T) ((-314 . -82) 52512) ((-314 . -991) 52464) ((-314 . -996) 52416) ((-314 . -244) T) ((-314 . -200) T) ((-314 . -356) 52367) ((-314 . -118) 52318) ((-314 . -978) 52302) ((-314 . -1215) 52286) ((-314 . -1226) 52270) ((-310 . -283) 52254) ((-310 . -190) 52233) ((-310 . -186) 52206) ((-310 . -189) 52185) ((-310 . -323) 52164) ((-310 . -1092) 52143) ((-310 . -305) 52122) ((-310 . -120) 52101) ((-310 . -571) 52038) ((-310 . -606) 51990) ((-310 . -604) 51927) ((-310 . -104) T) ((-310 . -25) T) ((-310 . -73) T) ((-310 . -1157) T) ((-310 . -568) 51909) ((-310 . -1041) T) ((-310 . -23) T) ((-310 . -21) T) ((-310 . -684) T) ((-310 . -1052) T) ((-310 . -997) T) ((-310 . -989) T) ((-310 . -318) T) ((-310 . -1162) T) ((-310 . -859) T) ((-310 . -510) T) ((-310 . -146) T) ((-310 . -675) 51861) ((-310 . -598) 51813) ((-310 . -38) 51778) ((-310 . -406) T) ((-310 . -261) T) ((-310 . -82) 51709) ((-310 . -991) 51661) ((-310 . -996) 51613) ((-310 . -244) T) ((-310 . -200) T) ((-310 . -356) 51564) ((-310 . -118) 51515) ((-310 . -978) 51499) ((-310 . -1215) 51483) ((-310 . -1226) 51467) ((-309 . -283) 51451) ((-309 . -190) 51430) ((-309 . -186) 51403) ((-309 . -189) 51382) ((-309 . -323) 51361) ((-309 . -1092) 51340) ((-309 . -305) 51319) ((-309 . -120) 51298) ((-309 . -571) 51235) ((-309 . -606) 51187) ((-309 . -604) 51124) ((-309 . -104) T) ((-309 . -25) T) ((-309 . -73) T) ((-309 . -1157) T) ((-309 . -568) 51106) ((-309 . -1041) T) ((-309 . -23) T) ((-309 . -21) T) ((-309 . -684) T) ((-309 . -1052) T) ((-309 . -997) T) ((-309 . -989) T) ((-309 . -318) T) ((-309 . -1162) T) ((-309 . -859) T) ((-309 . -510) T) ((-309 . -146) T) ((-309 . -675) 51058) ((-309 . -598) 51010) ((-309 . -38) 50975) ((-309 . -406) T) ((-309 . -261) T) ((-309 . -82) 50906) ((-309 . -991) 50858) ((-309 . -996) 50810) ((-309 . -244) T) ((-309 . -200) T) ((-309 . -356) 50761) ((-309 . -118) 50712) ((-309 . -978) 50696) ((-309 . -1215) 50680) ((-309 . -1226) 50664) ((-308 . -283) 50648) ((-308 . -190) 50627) ((-308 . -186) 50600) ((-308 . -189) 50579) ((-308 . -323) 50558) ((-308 . -1092) 50537) ((-308 . -305) 50516) ((-308 . -120) 50495) ((-308 . -571) 50432) ((-308 . -606) 50384) ((-308 . -604) 50321) ((-308 . -104) T) ((-308 . -25) T) ((-308 . -73) T) ((-308 . -1157) T) ((-308 . -568) 50303) ((-308 . -1041) T) ((-308 . -23) T) ((-308 . -21) T) ((-308 . -684) T) ((-308 . -1052) T) ((-308 . -997) T) ((-308 . -989) T) ((-308 . -318) T) ((-308 . -1162) T) ((-308 . -859) T) ((-308 . -510) T) ((-308 . -146) T) ((-308 . -675) 50255) ((-308 . -598) 50207) ((-308 . -38) 50172) ((-308 . -406) T) ((-308 . -261) T) ((-308 . -82) 50103) ((-308 . -991) 50055) ((-308 . -996) 50007) ((-308 . -244) T) ((-308 . -200) T) ((-308 . -356) 49958) ((-308 . -118) 49909) ((-308 . -978) 49893) ((-308 . -1215) 49877) ((-308 . -1226) 49861) ((-307 . -283) 49838) ((-307 . -190) T) ((-307 . -186) 49825) ((-307 . -189) T) ((-307 . -323) T) ((-307 . -1092) T) ((-307 . -305) T) ((-307 . -120) 49807) ((-307 . -571) 49737) ((-307 . -606) 49682) ((-307 . -604) 49612) ((-307 . -104) T) ((-307 . -25) T) ((-307 . -73) T) ((-307 . -1157) T) ((-307 . -568) 49594) ((-307 . -1041) T) ((-307 . -23) T) ((-307 . -21) T) ((-307 . -684) T) ((-307 . -1052) T) ((-307 . -997) T) ((-307 . -989) T) ((-307 . -318) T) ((-307 . -1162) T) ((-307 . -859) T) ((-307 . -510) T) ((-307 . -146) T) ((-307 . -675) 49539) ((-307 . -598) 49484) ((-307 . -38) 49449) ((-307 . -406) T) ((-307 . -261) T) ((-307 . -82) 49366) ((-307 . -991) 49311) ((-307 . -996) 49256) ((-307 . -244) T) ((-307 . -200) T) ((-307 . -356) T) ((-307 . -118) T) ((-307 . -978) 49233) ((-307 . -1215) 49210) ((-307 . -1226) 49187) ((-301 . -283) 49171) ((-301 . -190) 49150) ((-301 . -186) 49123) ((-301 . -189) 49102) ((-301 . -323) 49081) ((-301 . -1092) 49060) ((-301 . -305) 49039) ((-301 . -120) 49018) ((-301 . -571) 48955) ((-301 . -606) 48907) ((-301 . -604) 48844) ((-301 . -104) T) ((-301 . -25) T) ((-301 . -73) T) ((-301 . -1157) T) ((-301 . -568) 48826) ((-301 . -1041) T) ((-301 . -23) T) ((-301 . -21) T) ((-301 . -684) T) ((-301 . -1052) T) ((-301 . -997) T) ((-301 . -989) T) ((-301 . -318) T) ((-301 . -1162) T) ((-301 . -859) T) ((-301 . -510) T) ((-301 . -146) T) ((-301 . -675) 48778) ((-301 . -598) 48730) ((-301 . -38) 48695) ((-301 . -406) T) ((-301 . -261) T) ((-301 . -82) 48626) ((-301 . -991) 48578) ((-301 . -996) 48530) ((-301 . -244) T) ((-301 . -200) T) ((-301 . -356) 48481) ((-301 . -118) 48432) ((-301 . -978) 48416) ((-301 . -1215) 48400) ((-301 . -1226) 48384) ((-300 . -283) 48368) ((-300 . -190) 48347) ((-300 . -186) 48320) ((-300 . -189) 48299) ((-300 . -323) 48278) ((-300 . -1092) 48257) ((-300 . -305) 48236) ((-300 . -120) 48215) ((-300 . -571) 48152) ((-300 . -606) 48104) ((-300 . -604) 48041) ((-300 . -104) T) ((-300 . -25) T) ((-300 . -73) T) ((-300 . -1157) T) ((-300 . -568) 48023) ((-300 . -1041) T) ((-300 . -23) T) ((-300 . -21) T) ((-300 . -684) T) ((-300 . -1052) T) ((-300 . -997) T) ((-300 . -989) T) ((-300 . -318) T) ((-300 . -1162) T) ((-300 . -859) T) ((-300 . -510) T) ((-300 . -146) T) ((-300 . -675) 47975) ((-300 . -598) 47927) ((-300 . -38) 47892) ((-300 . -406) T) ((-300 . -261) T) ((-300 . -82) 47823) ((-300 . -991) 47775) ((-300 . -996) 47727) ((-300 . -244) T) ((-300 . -200) T) ((-300 . -356) 47678) ((-300 . -118) 47629) ((-300 . -978) 47613) ((-300 . -1215) 47597) ((-300 . -1226) 47581) ((-299 . -283) 47558) ((-299 . -190) T) ((-299 . -186) 47545) ((-299 . -189) T) ((-299 . -323) T) ((-299 . -1092) T) ((-299 . -305) T) ((-299 . -120) 47527) ((-299 . -571) 47457) ((-299 . -606) 47402) ((-299 . -604) 47332) ((-299 . -104) T) ((-299 . -25) T) ((-299 . -73) T) ((-299 . -1157) T) ((-299 . -568) 47314) ((-299 . -1041) T) ((-299 . -23) T) ((-299 . -21) T) ((-299 . -684) T) ((-299 . -1052) T) ((-299 . -997) T) ((-299 . -989) T) ((-299 . -318) T) ((-299 . -1162) T) ((-299 . -859) T) ((-299 . -510) T) ((-299 . -146) T) ((-299 . -675) 47259) ((-299 . -598) 47204) ((-299 . -38) 47169) ((-299 . -406) T) ((-299 . -261) T) ((-299 . -82) 47086) ((-299 . -991) 47031) ((-299 . -996) 46976) ((-299 . -244) T) ((-299 . -200) T) ((-299 . -356) T) ((-299 . -118) T) ((-299 . -978) 46953) ((-299 . -1215) 46930) ((-299 . -1226) 46907) ((-295 . -283) 46884) ((-295 . -190) T) ((-295 . -186) 46871) ((-295 . -189) T) ((-295 . -323) T) ((-295 . -1092) T) ((-295 . -305) T) ((-295 . -120) 46853) ((-295 . -571) 46783) ((-295 . -606) 46728) ((-295 . -604) 46658) ((-295 . -104) T) ((-295 . -25) T) ((-295 . -73) T) ((-295 . -1157) T) ((-295 . -568) 46640) ((-295 . -1041) T) ((-295 . -23) T) ((-295 . -21) T) ((-295 . -684) T) ((-295 . -1052) T) ((-295 . -997) T) ((-295 . -989) T) ((-295 . -318) T) ((-295 . -1162) T) ((-295 . -859) T) ((-295 . -510) T) ((-295 . -146) T) ((-295 . -675) 46585) ((-295 . -598) 46530) ((-295 . -38) 46495) ((-295 . -406) T) ((-295 . -261) T) ((-295 . -82) 46412) ((-295 . -991) 46357) ((-295 . -996) 46302) ((-295 . -244) T) ((-295 . -200) T) ((-295 . -356) T) ((-295 . -118) T) ((-295 . -978) 46279) ((-295 . -1215) 46256) ((-295 . -1226) 46233) ((-294 . -252) T) ((-294 . -73) T) ((-294 . -1157) T) ((-294 . -568) 46215) ((-294 . -1041) T) ((-294 . -571) 46167) ((-294 . -978) 46134) ((-294 . -468) 46100) ((-294 . -263) 46087) ((-294 . -38) 46071) ((-294 . -606) 46045) ((-294 . -604) 46004) ((-294 . -684) T) ((-294 . -1052) T) ((-294 . -997) T) ((-294 . -989) T) ((-294 . -82) 45983) ((-294 . -991) 45967) ((-294 . -996) 45951) ((-294 . -21) T) ((-294 . -23) T) ((-294 . -25) T) ((-294 . -104) T) ((-294 . -598) 45935) ((-294 . -675) 45919) ((-294 . -836) 45900) ((-294 . -831) 45879) ((-294 . -838) 45860) ((-288 . -291) 45829) ((-288 . -104) T) ((-288 . -25) T) ((-288 . -73) T) ((-288 . -1157) T) ((-288 . -568) 45811) ((-288 . -1041) T) ((-288 . -23) T) ((-288 . -604) 45793) ((-288 . -21) T) ((-287 . -1041) T) ((-287 . -568) 45775) ((-287 . -1157) T) ((-287 . -73) T) ((-285 . -781) T) ((-285 . -568) 45757) ((-285 . -1041) T) ((-285 . -73) T) ((-285 . -1157) T) ((-285 . -784) T) ((-284 . -1041) T) ((-284 . -568) 45739) ((-284 . -1157) T) ((-284 . -73) T) ((-281 . -19) 45723) ((-281 . -609) 45707) ((-281 . -242) 45684) ((-281 . -240) 45636) ((-281 . -554) 45613) ((-281 . -569) 45574) ((-281 . -443) 45558) ((-281 . -1041) 45508) ((-281 . -468) 45441) ((-281 . -263) 45379) ((-281 . -568) 45291) ((-281 . -73) 45222) ((-281 . -1157) T) ((-281 . -34) T) ((-281 . -124) 45206) ((-281 . -781) 45185) ((-281 . -784) 45164) ((-281 . -327) 45148) ((-281 . -236) 45132) ((-278 . -277) 45109) ((-278 . -571) 45093) ((-278 . -978) 45077) ((-278 . -23) T) ((-278 . -1041) T) ((-278 . -568) 45059) ((-278 . -1157) T) ((-278 . -73) T) ((-278 . -25) T) ((-278 . -104) T) ((-276 . -21) T) ((-276 . -604) 45041) ((-276 . -23) T) ((-276 . -1041) T) ((-276 . -568) 45023) ((-276 . -1157) T) ((-276 . -73) T) ((-276 . -25) T) ((-276 . -104) T) ((-276 . -675) 45005) ((-276 . -598) 44987) ((-276 . -606) 44969) ((-276 . -996) 44951) ((-276 . -991) 44933) ((-276 . -82) 44908) ((-276 . -277) 44885) ((-276 . -571) 44869) ((-276 . -978) 44853) ((-276 . -781) 44832) ((-276 . -784) 44811) ((-273 . -1190) 44795) ((-273 . -190) 44747) ((-273 . -186) 44693) ((-273 . -189) 44645) ((-273 . -240) 44603) ((-273 . -836) 44509) ((-273 . -831) 44413) ((-273 . -838) 44319) ((-273 . -913) 44281) ((-273 . -38) 44122) ((-273 . -82) 43936) ((-273 . -991) 43771) ((-273 . -996) 43606) ((-273 . -604) 43488) ((-273 . -606) 43385) ((-273 . -598) 43226) ((-273 . -675) 43067) ((-273 . -571) 42893) ((-273 . -118) 42872) ((-273 . -120) 42851) ((-273 . -47) 42821) ((-273 . -1186) 42791) ((-273 . -35) 42757) ((-273 . -66) 42723) ((-273 . -238) 42689) ((-273 . -447) 42655) ((-273 . -1146) 42621) ((-273 . -1143) 42587) ((-273 . -942) 42553) ((-273 . -200) 42532) ((-273 . -244) 42483) ((-273 . -104) T) ((-273 . -25) T) ((-273 . -73) T) ((-273 . -1157) T) ((-273 . -568) 42465) ((-273 . -1041) T) ((-273 . -23) T) ((-273 . -21) T) ((-273 . -989) T) ((-273 . -997) T) ((-273 . -1052) T) ((-273 . -684) T) ((-273 . -261) 42444) ((-273 . -406) 42423) ((-273 . -146) 42354) ((-273 . -510) 42305) ((-273 . -859) 42284) ((-273 . -1162) 42263) ((-273 . -318) 42242) ((-273 . -737) T) ((-273 . -781) T) ((-273 . -784) T) ((-273 . -739) T) ((-268 . -375) 42226) ((-268 . -571) 41795) ((-268 . -978) 41463) ((-268 . -569) 41324) ((-268 . -819) 41308) ((-268 . -838) 41275) ((-268 . -831) 41240) ((-268 . -836) 41207) ((-268 . -427) 41186) ((-268 . -366) 41170) ((-268 . -821) 41095) ((-268 . -354) 41079) ((-268 . -596) 40987) ((-268 . -606) 40719) ((-268 . -332) 40689) ((-268 . -200) 40668) ((-268 . -82) 40557) ((-268 . -991) 40467) ((-268 . -996) 40377) ((-268 . -244) 40356) ((-268 . -675) 40266) ((-268 . -598) 40176) ((-268 . -604) 39834) ((-268 . -38) 39744) ((-268 . -261) 39723) ((-268 . -406) 39702) ((-268 . -146) 39681) ((-268 . -510) 39660) ((-268 . -859) 39639) ((-268 . -1162) 39618) ((-268 . -318) 39597) ((-268 . -263) 39584) ((-268 . -468) 39550) ((-268 . -252) T) ((-268 . -120) 39529) ((-268 . -118) 39508) ((-268 . -989) 39399) ((-268 . -997) 39290) ((-268 . -1052) 39140) ((-268 . -684) 38990) ((-268 . -104) 38862) ((-268 . -25) 38715) ((-268 . -73) T) ((-268 . -1157) T) ((-268 . -568) 38697) ((-268 . -1041) T) ((-268 . -23) 38550) ((-268 . -21) 38422) ((-268 . -29) 38392) ((-268 . -942) 38371) ((-268 . -27) 38350) ((-268 . -1143) 38329) ((-268 . -1146) 38308) ((-268 . -447) 38287) ((-268 . -238) 38266) ((-268 . -66) 38245) ((-268 . -35) 38224) ((-268 . -133) 38203) ((-268 . -116) 38182) ((-268 . -585) 38161) ((-268 . -898) 38140) ((-268 . -1079) 38119) ((-267 . -931) 38080) ((-267 . -1092) NIL) ((-267 . -978) 38010) ((-267 . -571) 37893) ((-267 . -569) NIL) ((-267 . -960) NIL) ((-267 . -848) NIL) ((-267 . -819) 37854) ((-267 . -780) NIL) ((-267 . -742) NIL) ((-267 . -739) NIL) ((-267 . -784) NIL) ((-267 . -781) NIL) ((-267 . -737) NIL) ((-267 . -735) NIL) ((-267 . -763) NIL) ((-267 . -821) NIL) ((-267 . -354) 37815) ((-267 . -596) 37776) ((-267 . -606) 37705) ((-267 . -332) 37666) ((-267 . -240) 37532) ((-267 . -263) 37428) ((-267 . -468) 37179) ((-267 . -293) 37140) ((-267 . -200) T) ((-267 . -82) 37025) ((-267 . -991) 36954) ((-267 . -996) 36883) ((-267 . -244) T) ((-267 . -675) 36812) ((-267 . -598) 36741) ((-267 . -604) 36655) ((-267 . -38) 36584) ((-267 . -261) T) ((-267 . -406) T) ((-267 . -146) T) ((-267 . -510) T) ((-267 . -859) T) ((-267 . -1162) T) ((-267 . -318) T) ((-267 . -190) NIL) ((-267 . -186) NIL) ((-267 . -189) NIL) ((-267 . -224) 36545) ((-267 . -831) NIL) ((-267 . -838) NIL) ((-267 . -836) NIL) ((-267 . -184) 36506) ((-267 . -120) 36462) ((-267 . -118) 36418) ((-267 . -104) T) ((-267 . -25) T) ((-267 . -73) T) ((-267 . -1157) T) ((-267 . -568) 36400) ((-267 . -1041) T) ((-267 . -23) T) ((-267 . -21) T) ((-267 . -989) T) ((-267 . -997) T) ((-267 . -1052) T) ((-267 . -684) T) ((-266 . -1023) T) ((-266 . -444) 36381) ((-266 . -568) 36347) ((-266 . -571) 36328) ((-266 . -1041) T) ((-266 . -1157) T) ((-266 . -73) T) ((-266 . -64) T) ((-265 . -1041) T) ((-265 . -568) 36310) ((-265 . -1157) T) ((-265 . -73) T) ((-249 . -1134) 36289) ((-249 . -183) 36237) ((-249 . -78) 36185) ((-249 . -263) 35983) ((-249 . -468) 35735) ((-249 . -443) 35670) ((-249 . -124) 35618) ((-249 . -569) NIL) ((-249 . -192) 35566) ((-249 . -565) 35545) ((-249 . -242) 35524) ((-249 . -1157) T) ((-249 . -240) 35503) ((-249 . -1041) T) ((-249 . -568) 35485) ((-249 . -73) T) ((-249 . -34) T) ((-249 . -554) 35464) ((-247 . -1157) T) ((-247 . -468) 35413) ((-247 . -1041) 35196) ((-247 . -568) 34939) ((-247 . -73) 34722) ((-247 . -25) 34587) ((-247 . -21) 34471) ((-247 . -604) 34209) ((-247 . -23) 34093) ((-247 . -104) 33977) ((-247 . -1052) 33859) ((-247 . -684) 33762) ((-247 . -427) 33741) ((-247 . -989) 33684) ((-247 . -997) 33627) ((-247 . -606) 33489) ((-247 . -571) 33421) ((-247 . -82) 33338) ((-247 . -991) 33260) ((-247 . -996) 33182) ((-247 . -675) 33124) ((-247 . -598) 33066) ((-247 . -836) 33025) ((-247 . -831) 32982) ((-247 . -838) 32941) ((-247 . -1215) 32911) ((-245 . -568) 32893) ((-243 . -261) T) ((-243 . -406) T) ((-243 . -38) 32880) ((-243 . -571) 32852) ((-243 . -684) T) ((-243 . -1052) T) ((-243 . -997) T) ((-243 . -989) T) ((-243 . -82) 32837) ((-243 . -991) 32824) ((-243 . -996) 32811) ((-243 . -21) T) ((-243 . -604) 32783) ((-243 . -23) T) ((-243 . -1041) T) ((-243 . -568) 32765) ((-243 . -1157) T) ((-243 . -73) T) ((-243 . -25) T) ((-243 . -104) T) ((-243 . -606) 32752) ((-243 . -598) 32739) ((-243 . -675) 32726) ((-243 . -146) T) ((-243 . -244) T) ((-243 . -510) T) ((-243 . -859) T) ((-243 . -240) 32705) ((-234 . -568) 32687) ((-233 . -568) 32669) ((-228 . -781) T) ((-228 . -568) 32651) ((-228 . -1041) T) ((-228 . -73) T) ((-228 . -1157) T) ((-228 . -784) T) ((-225 . -212) 32613) ((-225 . -571) 32367) ((-225 . -978) 32213) ((-225 . -569) 31961) ((-225 . -280) 31933) ((-225 . -366) 31917) ((-225 . -38) 31766) ((-225 . -82) 31588) ((-225 . -991) 31431) ((-225 . -996) 31274) ((-225 . -604) 31184) ((-225 . -606) 31073) ((-225 . -598) 30922) ((-225 . -675) 30771) ((-225 . -118) 30750) ((-225 . -120) 30729) ((-225 . -146) 30640) ((-225 . -510) 30571) ((-225 . -244) 30502) ((-225 . -47) 30474) ((-225 . -332) 30458) ((-225 . -596) 30406) ((-225 . -406) 30357) ((-225 . -468) 30248) ((-225 . -836) 30194) ((-225 . -831) 30100) ((-225 . -838) 30010) ((-225 . -821) 29869) ((-225 . -848) 29848) ((-225 . -1162) 29827) ((-225 . -888) 29794) ((-225 . -263) 29781) ((-225 . -190) 29760) ((-225 . -104) T) ((-225 . -25) T) ((-225 . -73) T) ((-225 . -568) 29742) ((-225 . -1041) T) ((-225 . -23) T) ((-225 . -21) T) ((-225 . -684) T) ((-225 . -1052) T) ((-225 . -997) T) ((-225 . -989) T) ((-225 . -186) 29687) ((-225 . -1157) T) ((-225 . -189) 29638) ((-225 . -224) 29622) ((-225 . -184) 29606) ((-220 . -1041) T) ((-220 . -568) 29588) ((-220 . -1157) T) ((-220 . -73) T) ((-210 . -195) 29567) ((-210 . -1215) 29537) ((-210 . -742) 29516) ((-210 . -739) 29495) ((-210 . -784) 29446) ((-210 . -781) 29397) ((-210 . -737) 29376) ((-210 . -738) 29355) ((-210 . -675) 29297) ((-210 . -598) 29219) ((-210 . -242) 29196) ((-210 . -240) 29173) ((-210 . -443) 29157) ((-210 . -468) 29090) ((-210 . -263) 29028) ((-210 . -34) T) ((-210 . -554) 29005) ((-210 . -978) 28834) ((-210 . -571) 28635) ((-210 . -366) 28604) ((-210 . -596) 28512) ((-210 . -606) 28335) ((-210 . -332) 28305) ((-210 . -323) 28284) ((-210 . -190) 28237) ((-210 . -604) 28087) ((-210 . -684) 28066) ((-210 . -1052) 28045) ((-210 . -997) 28024) ((-210 . -989) 28003) ((-210 . -186) 27896) ((-210 . -189) 27795) ((-210 . -224) 27765) ((-210 . -831) 27634) ((-210 . -838) 27505) ((-210 . -836) 27438) ((-210 . -184) 27408) ((-210 . -568) 27369) ((-210 . -996) 27291) ((-210 . -991) 27193) ((-210 . -82) 27110) ((-210 . -104) T) ((-210 . -25) T) ((-210 . -73) T) ((-210 . -1157) T) ((-210 . -1041) T) ((-210 . -23) T) ((-210 . -21) T) ((-209 . -195) 27089) ((-209 . -1215) 27059) ((-209 . -742) 27038) ((-209 . -739) 27017) ((-209 . -784) 26968) ((-209 . -781) 26919) ((-209 . -737) 26898) ((-209 . -738) 26877) ((-209 . -675) 26819) ((-209 . -598) 26741) ((-209 . -242) 26718) ((-209 . -240) 26695) ((-209 . -443) 26679) ((-209 . -468) 26612) ((-209 . -263) 26550) ((-209 . -34) T) ((-209 . -554) 26527) ((-209 . -978) 26356) ((-209 . -571) 26157) ((-209 . -366) 26126) ((-209 . -596) 26034) ((-209 . -606) 25844) ((-209 . -332) 25814) ((-209 . -323) 25793) ((-209 . -190) 25746) ((-209 . -604) 25583) ((-209 . -684) 25562) ((-209 . -1052) 25541) ((-209 . -997) 25520) ((-209 . -989) 25499) ((-209 . -186) 25392) ((-209 . -189) 25291) ((-209 . -224) 25261) ((-209 . -831) 25130) ((-209 . -838) 25001) ((-209 . -836) 24934) ((-209 . -184) 24904) ((-209 . -568) 24865) ((-209 . -996) 24787) ((-209 . -991) 24689) ((-209 . -82) 24606) ((-209 . -104) T) ((-209 . -25) T) ((-209 . -73) T) ((-209 . -1157) T) ((-209 . -1041) T) ((-209 . -23) T) ((-209 . -21) T) ((-208 . -1041) T) ((-208 . -568) 24588) ((-208 . -1157) T) ((-208 . -73) T) ((-208 . -240) 24562) ((-207 . -160) T) ((-207 . -1041) T) ((-207 . -568) 24529) ((-207 . -1157) T) ((-207 . -73) T) ((-207 . -770) 24511) ((-206 . -1041) T) ((-206 . -568) 24493) ((-206 . -1157) T) ((-206 . -73) T) ((-205 . -888) 24438) ((-205 . -571) 24224) ((-205 . -978) 24102) ((-205 . -1162) 24081) ((-205 . -848) 24060) ((-205 . -821) NIL) ((-205 . -838) 24037) ((-205 . -831) 24012) ((-205 . -836) 23989) ((-205 . -468) 23927) ((-205 . -406) 23878) ((-205 . -596) 23826) ((-205 . -606) 23715) ((-205 . -332) 23699) ((-205 . -47) 23656) ((-205 . -38) 23505) ((-205 . -598) 23354) ((-205 . -675) 23203) ((-205 . -244) 23134) ((-205 . -510) 23065) ((-205 . -82) 22887) ((-205 . -991) 22730) ((-205 . -996) 22573) ((-205 . -146) 22484) ((-205 . -120) 22463) ((-205 . -118) 22442) ((-205 . -604) 22352) ((-205 . -104) T) ((-205 . -25) T) ((-205 . -73) T) ((-205 . -1157) T) ((-205 . -568) 22334) ((-205 . -1041) T) ((-205 . -23) T) ((-205 . -21) T) ((-205 . -989) T) ((-205 . -997) T) ((-205 . -1052) T) ((-205 . -684) T) ((-205 . -366) 22318) ((-205 . -280) 22275) ((-205 . -263) 22262) ((-205 . -569) 22123) ((-202 . -624) 22107) ((-202 . -1196) 22091) ((-202 . -950) 22075) ((-202 . -1090) 22059) ((-202 . -781) 22038) ((-202 . -784) 22017) ((-202 . -327) 22001) ((-202 . -609) 21985) ((-202 . -242) 21962) ((-202 . -240) 21914) ((-202 . -554) 21891) ((-202 . -569) 21852) ((-202 . -443) 21836) ((-202 . -1041) 21786) ((-202 . -468) 21719) ((-202 . -263) 21657) ((-202 . -568) 21549) ((-202 . -73) 21480) ((-202 . -1157) T) ((-202 . -34) T) ((-202 . -124) 21464) ((-202 . -236) 21448) ((-202 . -444) 21425) ((-202 . -571) 21402) ((-196 . -195) 21381) ((-196 . -1215) 21351) ((-196 . -742) 21330) ((-196 . -739) 21309) ((-196 . -784) 21260) ((-196 . -781) 21211) ((-196 . -737) 21190) ((-196 . -738) 21169) ((-196 . -675) 21111) ((-196 . -598) 21033) ((-196 . -242) 21010) ((-196 . -240) 20987) ((-196 . -443) 20971) ((-196 . -468) 20904) ((-196 . -263) 20842) ((-196 . -34) T) ((-196 . -554) 20819) ((-196 . -978) 20648) ((-196 . -571) 20449) ((-196 . -366) 20418) ((-196 . -596) 20326) ((-196 . -606) 20162) ((-196 . -332) 20132) ((-196 . -323) 20111) ((-196 . -190) 20064) ((-196 . -604) 19846) ((-196 . -684) 19825) ((-196 . -1052) 19804) ((-196 . -997) 19783) ((-196 . -989) 19762) ((-196 . -186) 19655) ((-196 . -189) 19554) ((-196 . -224) 19524) ((-196 . -831) 19393) ((-196 . -838) 19264) ((-196 . -836) 19197) ((-196 . -184) 19167) ((-196 . -568) 18861) ((-196 . -996) 18783) ((-196 . -991) 18685) ((-196 . -82) 18602) ((-196 . -104) 18474) ((-196 . -25) 18308) ((-196 . -73) 18042) ((-196 . -1157) T) ((-196 . -1041) 17795) ((-196 . -23) 17648) ((-196 . -21) 17560) ((-181 . -644) 17518) ((-181 . -443) 17502) ((-181 . -1041) 17480) ((-181 . -468) 17413) ((-181 . -263) 17351) ((-181 . -568) 17283) ((-181 . -73) 17234) ((-181 . -1157) T) ((-181 . -34) T) ((-181 . -57) 17192) ((-179 . -358) T) ((-179 . -120) T) ((-179 . -571) 17142) ((-179 . -606) 17107) ((-179 . -604) 17057) ((-179 . -104) T) ((-179 . -25) T) ((-179 . -73) T) ((-179 . -1157) T) ((-179 . -568) 17039) ((-179 . -1041) T) ((-179 . -23) T) ((-179 . -21) T) ((-179 . -684) T) ((-179 . -1052) T) ((-179 . -997) T) ((-179 . -989) T) ((-179 . -569) 16969) ((-179 . -318) T) ((-179 . -1162) T) ((-179 . -859) T) ((-179 . -510) T) ((-179 . -146) T) ((-179 . -675) 16934) ((-179 . -598) 16899) ((-179 . -38) 16864) ((-179 . -406) T) ((-179 . -261) T) ((-179 . -82) 16813) ((-179 . -991) 16778) ((-179 . -996) 16743) ((-179 . -244) T) ((-179 . -200) T) ((-179 . -780) T) ((-179 . -742) T) ((-179 . -739) T) ((-179 . -784) T) ((-179 . -781) T) ((-179 . -737) T) ((-179 . -735) T) ((-179 . -821) 16725) ((-179 . -942) T) ((-179 . -960) T) ((-179 . -978) 16685) ((-179 . -1000) T) ((-179 . -190) T) ((-179 . -186) 16672) ((-179 . -189) T) ((-179 . -1143) T) ((-179 . -1146) T) ((-179 . -447) T) ((-179 . -238) T) ((-179 . -66) T) ((-179 . -35) T) ((-177 . -576) 16649) ((-177 . -571) 16611) ((-177 . -606) 16578) ((-177 . -604) 16530) ((-177 . -684) T) ((-177 . -1052) T) ((-177 . -997) T) ((-177 . -989) T) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1041) T) ((-177 . -568) 16512) ((-177 . -1157) T) ((-177 . -73) T) ((-177 . -25) T) ((-177 . -104) T) ((-177 . -978) 16489) ((-176 . -213) 16473) ((-176 . -1061) 16457) ((-176 . -78) 16441) ((-176 . -34) T) ((-176 . -1157) T) ((-176 . -73) 16392) ((-176 . -568) 16324) ((-176 . -263) 16262) ((-176 . -468) 16195) ((-176 . -1041) 16173) ((-176 . -443) 16157) ((-176 . -935) 16141) ((-172 . -1023) T) ((-172 . -444) 16122) ((-172 . -568) 16088) ((-172 . -571) 16069) ((-172 . -1041) T) ((-172 . -1157) T) ((-172 . -73) T) ((-172 . -64) T) ((-171 . -931) 16051) ((-171 . -1092) T) ((-171 . -571) 16001) ((-171 . -978) 15961) ((-171 . -569) 15891) ((-171 . -960) T) ((-171 . -848) NIL) ((-171 . -819) 15873) ((-171 . -780) T) ((-171 . -742) T) ((-171 . -739) T) ((-171 . -784) T) ((-171 . -781) T) ((-171 . -737) T) ((-171 . -735) T) ((-171 . -763) T) ((-171 . -821) 15855) ((-171 . -354) 15837) ((-171 . -596) 15819) ((-171 . -332) 15801) ((-171 . -240) NIL) ((-171 . -263) NIL) ((-171 . -468) NIL) ((-171 . -293) 15783) ((-171 . -200) T) ((-171 . -82) 15710) ((-171 . -991) 15660) ((-171 . -996) 15610) ((-171 . -244) T) ((-171 . -675) 15560) ((-171 . -598) 15510) ((-171 . -606) 15460) ((-171 . -604) 15410) ((-171 . -38) 15360) ((-171 . -261) T) ((-171 . -406) T) ((-171 . -146) T) ((-171 . -510) T) ((-171 . -859) T) ((-171 . -1162) T) ((-171 . -318) T) ((-171 . -190) T) ((-171 . -186) 15347) ((-171 . -189) T) ((-171 . -224) 15329) ((-171 . -831) NIL) ((-171 . -838) NIL) ((-171 . -836) NIL) ((-171 . -184) 15311) ((-171 . -120) T) ((-171 . -118) NIL) ((-171 . -104) T) ((-171 . -25) T) ((-171 . -73) T) ((-171 . -1157) T) ((-171 . -568) 15253) ((-171 . -1041) T) ((-171 . -23) T) ((-171 . -21) T) ((-171 . -989) T) ((-171 . -997) T) ((-171 . -1052) T) ((-171 . -684) T) ((-168 . -777) T) ((-168 . -784) T) ((-168 . -781) T) ((-168 . -1041) T) ((-168 . -568) 15235) ((-168 . -1157) T) ((-168 . -73) T) ((-168 . -323) T) ((-167 . -1041) T) ((-167 . -568) 15217) ((-167 . -1157) T) ((-167 . -73) T) ((-167 . -571) 15194) ((-166 . -1041) T) ((-166 . -568) 15176) ((-166 . -1157) T) ((-166 . -73) T) ((-161 . -1041) T) ((-161 . -568) 15158) ((-161 . -1157) T) ((-161 . -73) T) ((-158 . -1041) T) ((-158 . -568) 15140) ((-158 . -1157) T) ((-158 . -73) T) ((-157 . -160) T) ((-157 . -1041) T) ((-157 . -568) 15122) ((-157 . -1157) T) ((-157 . -73) T) ((-157 . -770) 15104) ((-154 . -1023) T) ((-154 . -444) 15085) ((-154 . -568) 15051) ((-154 . -571) 15032) ((-154 . -1041) T) ((-154 . -1157) T) ((-154 . -73) T) ((-154 . -64) T) ((-149 . -568) 15014) ((-148 . -38) 14946) ((-148 . -571) 14863) ((-148 . -606) 14795) ((-148 . -604) 14712) ((-148 . -684) T) ((-148 . -1052) T) ((-148 . -997) T) ((-148 . -989) T) ((-148 . -82) 14611) ((-148 . -991) 14543) ((-148 . -996) 14475) ((-148 . -21) T) ((-148 . -23) T) ((-148 . -1041) T) ((-148 . -568) 14457) ((-148 . -1157) T) ((-148 . -73) T) ((-148 . -25) T) ((-148 . -104) T) ((-148 . -598) 14389) ((-148 . -675) 14321) ((-148 . -318) T) ((-148 . -1162) T) ((-148 . -859) T) ((-148 . -510) T) ((-148 . -146) T) ((-148 . -406) T) ((-148 . -261) T) ((-148 . -244) T) ((-148 . -200) T) ((-145 . -1041) T) ((-145 . -568) 14303) ((-145 . -1157) T) ((-145 . -73) T) ((-142 . -139) 14287) ((-142 . -35) 14265) ((-142 . -66) 14243) ((-142 . -238) 14221) ((-142 . -447) 14199) ((-142 . -1146) 14177) ((-142 . -1143) 14155) ((-142 . -942) 14107) ((-142 . -848) 14060) ((-142 . -569) 13828) ((-142 . -819) 13812) ((-142 . -323) 13763) ((-142 . -305) 13742) ((-142 . -1092) 13721) ((-142 . -356) 13700) ((-142 . -364) 13671) ((-142 . -38) 13499) ((-142 . -82) 13388) ((-142 . -991) 13298) ((-142 . -996) 13208) ((-142 . -598) 13036) ((-142 . -675) 12864) ((-142 . -325) 12835) ((-142 . -682) 12806) ((-142 . -978) 12704) ((-142 . -571) 12483) ((-142 . -366) 12467) ((-142 . -821) 12392) ((-142 . -354) 12376) ((-142 . -596) 12324) ((-142 . -606) 12198) ((-142 . -604) 12093) ((-142 . -332) 12077) ((-142 . -240) 12035) ((-142 . -263) 12000) ((-142 . -468) 11912) ((-142 . -293) 11896) ((-142 . -200) 11847) ((-142 . -1162) 11752) ((-142 . -318) 11703) ((-142 . -859) 11634) ((-142 . -510) 11545) ((-142 . -244) 11456) ((-142 . -406) 11387) ((-142 . -261) 11318) ((-142 . -190) 11269) ((-142 . -186) 11194) ((-142 . -189) 11125) ((-142 . -224) 11109) ((-142 . -831) 11030) ((-142 . -838) 10953) ((-142 . -836) 10912) ((-142 . -184) 10896) ((-142 . -146) T) ((-142 . -120) 10875) ((-142 . -989) T) ((-142 . -997) T) ((-142 . -1052) T) ((-142 . -684) T) ((-142 . -21) T) ((-142 . -23) T) ((-142 . -1041) T) ((-142 . -568) 10857) ((-142 . -1157) T) ((-142 . -73) T) ((-142 . -25) T) ((-142 . -104) T) ((-142 . -118) 10808) ((-135 . -1023) T) ((-135 . -444) 10789) ((-135 . -568) 10755) ((-135 . -571) 10736) ((-135 . -1041) T) ((-135 . -1157) T) ((-135 . -73) T) ((-135 . -64) T) ((-134 . -1041) T) ((-134 . -568) 10718) ((-134 . -1157) T) ((-134 . -73) T) ((-130 . -25) T) ((-130 . -73) T) ((-130 . -1157) T) ((-130 . -568) 10700) ((-130 . -1041) T) ((-129 . -1023) T) ((-129 . -444) 10681) ((-129 . -568) 10647) ((-129 . -571) 10628) ((-129 . -1041) T) ((-129 . -1157) T) ((-129 . -73) T) ((-129 . -64) T) ((-127 . -1023) T) ((-127 . -444) 10609) ((-127 . -568) 10575) ((-127 . -571) 10556) ((-127 . -1041) T) ((-127 . -1157) T) ((-127 . -73) T) ((-127 . -64) T) ((-125 . -989) T) ((-125 . -997) T) ((-125 . -1052) T) ((-125 . -684) T) ((-125 . -21) T) ((-125 . -604) 10515) ((-125 . -23) T) ((-125 . -1041) T) ((-125 . -568) 10497) ((-125 . -1157) T) ((-125 . -73) T) ((-125 . -25) T) ((-125 . -104) T) ((-125 . -606) 10471) ((-125 . -571) 10440) ((-125 . -38) 10424) ((-125 . -82) 10403) ((-125 . -991) 10387) ((-125 . -996) 10371) ((-125 . -598) 10355) ((-125 . -675) 10339) ((-125 . -1215) 10323) ((-117 . -777) T) ((-117 . -784) T) ((-117 . -781) T) ((-117 . -1041) T) ((-117 . -568) 10305) ((-117 . -1157) T) ((-117 . -73) T) ((-117 . -323) T) ((-114 . -1041) T) ((-114 . -568) 10287) ((-114 . -1157) T) ((-114 . -73) T) ((-114 . -569) 10246) ((-114 . -380) 10228) ((-114 . -1039) 10210) ((-114 . -323) T) ((-114 . -192) 10192) ((-114 . -124) 10174) ((-114 . -443) 10156) ((-114 . -468) NIL) ((-114 . -263) NIL) ((-114 . -34) T) ((-114 . -78) 10138) ((-114 . -183) 10120) ((-113 . -568) 10102) ((-112 . -160) T) ((-112 . -1041) T) ((-112 . -568) 10069) ((-112 . -1157) T) ((-112 . -73) T) ((-112 . -770) 10051) ((-111 . -1023) T) ((-111 . -444) 10032) ((-111 . -568) 9998) ((-111 . -571) 9979) ((-111 . -1041) T) ((-111 . -1157) T) ((-111 . -73) T) ((-111 . -64) T) ((-110 . -1023) T) ((-110 . -444) 9960) ((-110 . -568) 9926) ((-110 . -571) 9907) ((-110 . -1041) T) ((-110 . -1157) T) ((-110 . -73) T) ((-110 . -64) T) ((-108 . -419) 9884) ((-108 . -571) 9780) ((-108 . -978) 9764) ((-108 . -1041) T) ((-108 . -568) 9746) ((-108 . -1157) T) ((-108 . -73) T) ((-108 . -424) 9701) ((-108 . -240) 9678) ((-107 . -781) T) ((-107 . -568) 9660) ((-107 . -1041) T) ((-107 . -73) T) ((-107 . -1157) T) ((-107 . -784) T) ((-107 . -23) T) ((-107 . -25) T) ((-107 . -684) T) ((-107 . -1052) T) ((-107 . -978) 9642) ((-107 . -571) 9624) ((-106 . -1023) T) ((-106 . -444) 9605) ((-106 . -568) 9571) ((-106 . -571) 9552) ((-106 . -1041) T) ((-106 . -1157) T) ((-106 . -73) T) ((-106 . -64) T) ((-103 . -1041) T) ((-103 . -568) 9534) ((-103 . -1157) T) ((-103 . -73) T) ((-102 . -19) 9516) ((-102 . -609) 9498) ((-102 . -242) 9473) ((-102 . -240) 9423) ((-102 . -554) 9398) ((-102 . -569) NIL) ((-102 . -443) 9380) ((-102 . -1041) T) ((-102 . -468) NIL) ((-102 . -263) NIL) ((-102 . -568) 9324) ((-102 . -73) T) ((-102 . -1157) T) ((-102 . -34) T) ((-102 . -124) 9306) ((-102 . -781) T) ((-102 . -784) T) ((-102 . -327) 9288) ((-101 . -777) T) ((-101 . -784) T) ((-101 . -781) T) ((-101 . -1041) T) ((-101 . -568) 9270) ((-101 . -1157) T) ((-101 . -73) T) ((-101 . -323) T) ((-101 . -620) T) ((-100 . -98) 9254) ((-100 . -950) 9238) ((-100 . -34) T) ((-100 . -1157) T) ((-100 . -73) 9189) ((-100 . -568) 9121) ((-100 . -263) 9059) ((-100 . -468) 8992) ((-100 . -1041) 8970) ((-100 . -443) 8954) ((-100 . -92) 8938) ((-99 . -98) 8922) ((-99 . -950) 8906) ((-99 . -34) T) ((-99 . -1157) T) ((-99 . -73) 8857) ((-99 . -568) 8789) ((-99 . -263) 8727) ((-99 . -468) 8660) ((-99 . -1041) 8638) ((-99 . -443) 8622) ((-99 . -92) 8606) ((-94 . -98) 8590) ((-94 . -950) 8574) ((-94 . -34) T) ((-94 . -1157) T) ((-94 . -73) 8525) ((-94 . -568) 8457) ((-94 . -263) 8395) ((-94 . -468) 8328) ((-94 . -1041) 8306) ((-94 . -443) 8290) ((-94 . -92) 8274) ((-90 . -931) 8252) ((-90 . -1092) NIL) ((-90 . -978) 8230) ((-90 . -571) 8161) ((-90 . -569) NIL) ((-90 . -960) NIL) ((-90 . -848) NIL) ((-90 . -819) 8139) ((-90 . -780) NIL) ((-90 . -742) NIL) ((-90 . -739) NIL) ((-90 . -784) NIL) ((-90 . -781) NIL) ((-90 . -737) NIL) ((-90 . -735) NIL) ((-90 . -763) NIL) ((-90 . -821) NIL) ((-90 . -354) 8117) ((-90 . -596) 8095) ((-90 . -606) 8041) ((-90 . -332) 8019) ((-90 . -240) 7953) ((-90 . -263) 7900) ((-90 . -468) 7770) ((-90 . -293) 7748) ((-90 . -200) T) ((-90 . -82) 7667) ((-90 . -991) 7613) ((-90 . -996) 7559) ((-90 . -244) T) ((-90 . -675) 7505) ((-90 . -598) 7451) ((-90 . -604) 7382) ((-90 . -38) 7328) ((-90 . -261) T) ((-90 . -406) T) ((-90 . -146) T) ((-90 . -510) T) ((-90 . -859) T) ((-90 . -1162) T) ((-90 . -318) T) ((-90 . -190) NIL) ((-90 . -186) NIL) ((-90 . -189) NIL) ((-90 . -224) 7306) ((-90 . -831) NIL) ((-90 . -838) NIL) ((-90 . -836) NIL) ((-90 . -184) 7284) ((-90 . -120) T) ((-90 . -118) NIL) ((-90 . -104) T) ((-90 . -25) T) ((-90 . -73) T) ((-90 . -1157) T) ((-90 . -568) 7266) ((-90 . -1041) T) ((-90 . -23) T) ((-90 . -21) T) ((-90 . -989) T) ((-90 . -997) T) ((-90 . -1052) T) ((-90 . -684) T) ((-89 . -804) 7250) ((-89 . -859) T) ((-89 . -510) T) ((-89 . -244) T) ((-89 . -146) T) ((-89 . -571) 7222) ((-89 . -675) 7209) ((-89 . -598) 7196) ((-89 . -996) 7183) ((-89 . -991) 7170) ((-89 . -82) 7155) ((-89 . -38) 7142) ((-89 . -406) T) ((-89 . -261) T) ((-89 . -989) T) ((-89 . -997) T) ((-89 . -1052) T) ((-89 . -684) T) ((-89 . -21) T) ((-89 . -604) 7114) ((-89 . -23) T) ((-89 . -1041) T) ((-89 . -568) 7096) ((-89 . -1157) T) ((-89 . -73) T) ((-89 . -25) T) ((-89 . -104) T) ((-89 . -606) 7083) ((-89 . -120) T) ((-86 . -781) T) ((-86 . -568) 7065) ((-86 . -1041) T) ((-86 . -73) T) ((-86 . -1157) T) ((-86 . -784) T) ((-86 . -770) 7046) ((-85 . -777) T) ((-85 . -784) T) ((-85 . -781) T) ((-85 . -1041) T) ((-85 . -568) 7028) ((-85 . -1157) T) ((-85 . -73) T) ((-85 . -323) T) ((-85 . -907) T) ((-85 . -620) T) ((-85 . -84) T) ((-85 . -569) 7010) ((-81 . -96) T) ((-81 . -327) 6993) ((-81 . -784) T) ((-81 . -781) T) ((-81 . -124) 6976) ((-81 . -34) T) ((-81 . -73) T) ((-81 . -568) 6958) ((-81 . -263) NIL) ((-81 . -468) NIL) ((-81 . -1041) T) ((-81 . -443) 6941) ((-81 . -569) 6923) ((-81 . -240) 6874) ((-81 . -554) 6850) ((-81 . -242) 6826) ((-81 . -609) 6809) ((-81 . -19) 6792) ((-81 . -620) T) ((-81 . -1157) T) ((-81 . -84) T) ((-80 . -568) 6774) ((-79 . -931) 6756) ((-79 . -1092) T) ((-79 . -571) 6706) ((-79 . -978) 6666) ((-79 . -569) 6596) ((-79 . -960) T) ((-79 . -848) NIL) ((-79 . -819) 6578) ((-79 . -780) T) ((-79 . -742) T) ((-79 . -739) T) ((-79 . -784) T) ((-79 . -781) T) ((-79 . -737) T) ((-79 . -735) T) ((-79 . -763) T) ((-79 . -821) 6560) ((-79 . -354) 6542) ((-79 . -596) 6524) ((-79 . -332) 6506) ((-79 . -240) NIL) ((-79 . -263) NIL) ((-79 . -468) NIL) ((-79 . -293) 6488) ((-79 . -200) T) ((-79 . -82) 6415) ((-79 . -991) 6365) ((-79 . -996) 6315) ((-79 . -244) T) ((-79 . -675) 6265) ((-79 . -598) 6215) ((-79 . -606) 6165) ((-79 . -604) 6115) ((-79 . -38) 6065) ((-79 . -261) T) ((-79 . -406) T) ((-79 . -146) T) ((-79 . -510) T) ((-79 . -859) T) ((-79 . -1162) T) ((-79 . -318) T) ((-79 . -190) T) ((-79 . -186) 6052) ((-79 . -189) T) ((-79 . -224) 6034) ((-79 . -831) NIL) ((-79 . -838) NIL) ((-79 . -836) NIL) ((-79 . -184) 6016) ((-79 . -120) T) ((-79 . -118) NIL) ((-79 . -104) T) ((-79 . -25) T) ((-79 . -73) T) ((-79 . -1157) T) ((-79 . -568) 5959) ((-79 . -1041) T) ((-79 . -23) T) ((-79 . -21) T) ((-79 . -989) T) ((-79 . -997) T) ((-79 . -1052) T) ((-79 . -684) T) ((-76 . -1041) T) ((-76 . -568) 5941) ((-76 . -1157) T) ((-76 . -73) T) ((-74 . -98) 5925) ((-74 . -950) 5909) ((-74 . -34) T) ((-74 . -1157) T) ((-74 . -73) 5860) ((-74 . -568) 5792) ((-74 . -263) 5730) ((-74 . -468) 5663) ((-74 . -1041) 5641) ((-74 . -443) 5625) ((-74 . -92) 5609) ((-70 . -427) T) ((-70 . -1052) T) ((-70 . -73) T) ((-70 . -1157) T) ((-70 . -568) 5591) ((-70 . -1041) T) ((-70 . -684) T) ((-70 . -240) 5570) ((-68 . -1041) T) ((-68 . -568) 5552) ((-68 . -1157) T) ((-68 . -73) T) ((-67 . -1023) T) ((-67 . -444) 5533) ((-67 . -568) 5499) ((-67 . -571) 5480) ((-67 . -1041) T) ((-67 . -1157) T) ((-67 . -73) T) ((-67 . -64) T) ((-62 . -1061) 5464) ((-62 . -443) 5448) ((-62 . -1041) 5426) ((-62 . -468) 5359) ((-62 . -263) 5297) ((-62 . -568) 5229) ((-62 . -73) 5180) ((-62 . -1157) T) ((-62 . -34) T) ((-62 . -78) 5164) ((-60 . -57) 5126) ((-60 . -34) T) ((-60 . -1157) T) ((-60 . -73) 5077) ((-60 . -568) 5009) ((-60 . -263) 4947) ((-60 . -468) 4880) ((-60 . -1041) 4858) ((-60 . -443) 4842) ((-58 . -19) 4826) ((-58 . -609) 4810) ((-58 . -242) 4787) ((-58 . -240) 4739) ((-58 . -554) 4716) ((-58 . -569) 4677) ((-58 . -443) 4661) ((-58 . -1041) 4611) ((-58 . -468) 4544) ((-58 . -263) 4482) ((-58 . -568) 4394) ((-58 . -73) 4325) ((-58 . -1157) T) ((-58 . -34) T) ((-58 . -124) 4309) ((-58 . -781) 4288) ((-58 . -784) 4267) ((-58 . -327) 4251) ((-55 . -1041) T) ((-55 . -568) 4233) ((-55 . -1157) T) ((-55 . -73) T) ((-55 . -978) 4215) ((-55 . -571) 4197) ((-51 . -1041) T) ((-51 . -568) 4179) ((-51 . -1157) T) ((-51 . -73) T) ((-50 . -576) 4163) ((-50 . -571) 4132) ((-50 . -606) 4106) ((-50 . -604) 4065) ((-50 . -684) T) ((-50 . -1052) T) ((-50 . -997) T) ((-50 . -989) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1041) T) ((-50 . -568) 4047) ((-50 . -1157) T) ((-50 . -73) T) ((-50 . -25) T) ((-50 . -104) T) ((-50 . -978) 4031) ((-49 . -1041) T) ((-49 . -568) 4013) ((-49 . -1157) T) ((-49 . -73) T) ((-48 . -252) T) ((-48 . -73) T) ((-48 . -1157) T) ((-48 . -568) 3995) ((-48 . -1041) T) ((-48 . -571) 3896) ((-48 . -978) 3839) ((-48 . -468) 3805) ((-48 . -263) 3792) ((-48 . -27) T) ((-48 . -942) T) ((-48 . -200) T) ((-48 . -82) 3741) ((-48 . -991) 3706) ((-48 . -996) 3671) ((-48 . -244) T) ((-48 . -675) 3636) ((-48 . -598) 3601) ((-48 . -606) 3551) ((-48 . -604) 3501) ((-48 . -104) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -989) T) ((-48 . -997) T) ((-48 . -1052) T) ((-48 . -684) T) ((-48 . -38) 3466) ((-48 . -261) T) ((-48 . -406) T) ((-48 . -146) T) ((-48 . -510) T) ((-48 . -859) T) ((-48 . -1162) T) ((-48 . -318) T) ((-48 . -596) 3426) ((-48 . -960) T) ((-48 . -569) 3371) ((-48 . -120) T) ((-48 . -190) T) ((-48 . -186) 3358) ((-48 . -189) T) ((-45 . -36) 3337) ((-45 . -554) 3260) ((-45 . -263) 3058) ((-45 . -468) 2810) ((-45 . -443) 2745) ((-45 . -240) 2643) ((-45 . -242) 2566) ((-45 . -565) 2545) ((-45 . -192) 2493) ((-45 . -78) 2441) ((-45 . -183) 2389) ((-45 . -1134) 2368) ((-45 . -236) 2316) ((-45 . -124) 2264) ((-45 . -34) T) ((-45 . -1157) T) ((-45 . -73) T) ((-45 . -568) 2246) ((-45 . -1041) T) ((-45 . -569) NIL) ((-45 . -609) 2194) ((-45 . -327) 2142) ((-45 . -784) NIL) ((-45 . -781) NIL) ((-45 . -1090) 2090) ((-45 . -950) 2038) ((-45 . -1196) 1986) ((-45 . -624) 1934) ((-44 . -372) 1918) ((-44 . -702) 1902) ((-44 . -678) T) ((-44 . -704) T) ((-44 . -82) 1881) ((-44 . -991) 1865) ((-44 . -996) 1849) ((-44 . -21) T) ((-44 . -604) 1792) ((-44 . -23) T) ((-44 . -1041) T) ((-44 . -568) 1774) ((-44 . -73) T) ((-44 . -25) T) ((-44 . -104) T) ((-44 . -606) 1732) ((-44 . -598) 1716) ((-44 . -675) 1700) ((-44 . -322) 1684) ((-44 . -1157) T) ((-44 . -240) 1661) ((-40 . -297) 1635) ((-40 . -146) T) ((-40 . -571) 1565) ((-40 . -684) T) ((-40 . -1052) T) ((-40 . -997) T) ((-40 . -989) T) ((-40 . -606) 1467) ((-40 . -604) 1397) ((-40 . -104) T) ((-40 . -25) T) ((-40 . -73) T) ((-40 . -1157) T) ((-40 . -568) 1379) ((-40 . -1041) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -996) 1324) ((-40 . -991) 1269) ((-40 . -82) 1186) ((-40 . -569) 1170) ((-40 . -184) 1147) ((-40 . -836) 1099) ((-40 . -838) 1008) ((-40 . -831) 915) ((-40 . -224) 892) ((-40 . -189) 829) ((-40 . -186) 760) ((-40 . -190) 732) ((-40 . -318) T) ((-40 . -1162) T) ((-40 . -859) T) ((-40 . -510) T) ((-40 . -675) 677) ((-40 . -598) 622) ((-40 . -38) 567) ((-40 . -406) T) ((-40 . -261) T) ((-40 . -244) T) ((-40 . -200) T) ((-40 . -323) NIL) ((-40 . -305) NIL) ((-40 . -1092) NIL) ((-40 . -118) 539) ((-40 . -356) NIL) ((-40 . -364) 511) ((-40 . -120) 483) ((-40 . -325) 455) ((-40 . -332) 432) ((-40 . -596) 366) ((-40 . -366) 343) ((-40 . -978) 220) ((-40 . -682) 192) ((-31 . -1023) T) ((-31 . -444) 173) ((-31 . -568) 139) ((-31 . -571) 120) ((-31 . -1041) T) ((-31 . -1157) T) ((-31 . -73) T) ((-31 . -64) T) ((-30 . -893) T) ((-30 . -568) 102) ((0 . |EnumerationCategory|) T) ((0 . -568) 84) ((0 . -1041) T) ((0 . -73) T) ((0 . -1157) T) ((-2 . |RecordCategory|) T) ((-2 . -568) 66) ((-2 . -1041) T) ((-2 . -73) T) ((-2 . -1157) T) ((-3 . |UnionCategory|) T) ((-3 . -568) 48) ((-3 . -1041) T) ((-3 . -73) T) ((-3 . -1157) T) ((-1 . -1041) T) ((-1 . -568) 30) ((-1 . -1157) T) ((-1 . -73) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 151ba3a3..1135c00d 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3525059668) -(4426 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3525483390) +(4148 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| @@ -16,9 +16,6 @@ |AnyFunctions1| |ApplyUnivariateSkewPolynomial| |ApplyRules| |Arity| |TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory| |OneDimensionalArray| |OneDimensionalArrayFunctions2| |TwoDimensionalArray| - |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| - |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| - |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| |AssociatedEquations| |ArrayStack| |AbstractSyntaxCategory&| |AbstractSyntaxCategory| |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory| |AttributeAst| |AttributeButtons| @@ -48,12 +45,7 @@ |Constructor| |ConstructorCall| |ConstructorCategory&| |ConstructorCategory| |ConstructorKind| |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage| - |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| - |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| - |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| - |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| - |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| - |d03fafAnnaType| |DataArray| |Database| |DualBasis| |DoubleResultantPackage| + |DataArray| |Database| |DualBasis| |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion| |DefinitionAst| |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| @@ -74,10 +66,8 @@ |TopLevelDrawFunctionsForPoints| |DrawOption| |DrawOptionFunctions0| |DrawOptionFunctions1| |DifferentialSpaceExtension&| |DifferentialSpaceExtension| |DifferentialSparseMultivariatePolynomial| - |DifferentialVariableCategory&| |DifferentialVariableCategory| - |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| - |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType| - |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage| + |DifferentialVariableCategory&| |DifferentialVariableCategory| |ExtAlgBasis| + |ElementaryFunction| |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ElaboratedExpression| |Elaboration| |ExtensibleLinearAggregate&| |ExtensibleLinearAggregate| @@ -173,10 +163,9 @@ |IntegerNumberSystem&| |IntegerNumberSystem| |Integer| |Int16| |Int32| |Int64| |Int8| |InnerTable| |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| |IntervalCategory| |IntegralDomain&| |IntegralDomain| |ElementaryIntegration| - |IntegerFactorizationPackage| |IntegrationFunctionsTable| - |GenusZeroIntegration| |IntegerNumberTheoryFunctions| - |AlgebraicHermiteIntegration| |TranscendentalHermiteIntegration| - |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration| + |IntegerFactorizationPackage| |GenusZeroIntegration| + |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration| + |TranscendentalHermiteIntegration| |PureAlgebraicIntegration| |PatternMatchIntegration| |RationalIntegration| |IntegerRetractions| |RationalFunctionIntegration| |Interval| |IntegerSolveLinearPolynomialEquation| |IntegrationTools| @@ -236,15 +225,8 @@ |MultisetAggregate| |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory| |MultivariateFactorize| |MultivariateSquareFree| |NonAssociativeAlgebra&| |NonAssociativeAlgebra| - |NagPolynomialRootsPackage| |NagRootFindingPackage| - |NagSeriesSummationPackage| |NagIntegrationPackage| - |NagOrdinaryDifferentialEquationsPackage| - |NagPartialDifferentialEquationsPackage| |NagInterpolationPackage| - |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage| - |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack| - |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&| - |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing| - |NumericComplexEigenPackage| |NumericContinuedFraction| + |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&| + |NonAssociativeRing| |NumericComplexEigenPackage| |NumericContinuedFraction| |NonCommutativeOperatorDivision| |NetworkClientSocket| |NumberFieldIntegralBasis| |NumericalIntegrationProblem| |NonLinearSolvePackage| |NonNegativeInteger| |NonLinearFirstOrderODESolver| @@ -259,29 +241,28 @@ |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| |OctonionCategory&| |OctonionCategory| |OrderedCancellationAbelianMonoid| |Octonion| |OctonionCategoryFunctions2| |OrdinaryDifferentialEquationsSolverCategory| - |ConstantLODE| |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| - |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE| - |PrimitiveRatDE| |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE| - |ReduceLODE| |RationalRicDE| |SystemODESolver| |ODETools| + |ConstantLODE| |ElementaryFunctionODESolver| |ODEIntegration| + |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem| |PrimitiveRatRicDE| + |RationalLODE| |ReduceLODE| |RationalRicDE| |SystemODESolver| |ODETools| |OrderedDirectProduct| |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| |OrderlyDifferentialVariable| |OrderedFreeMonoid| |OrderedIntegralDomain| |OppositeMonogenicLinearOperator| |OrderedMultisetAggregate| |OnePointCompletion| |OnePointCompletionFunctions2| |Operator| |OperatorCategory&| |OperatorCategory| |OperationsQuery| |OperatorSignature| |NumericalOptimizationCategory| - |AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem| - |OrderedCompletion| |OrderedCompletionFunctions2| |OrderedFinite| - |OrderingFunctions| |OrderedMonoid| |OrderedRing| |OrderedSet| - |OrderedStructure| |OrderedType&| |OrderedType| - |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategory| - |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial| - |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions| |OrderedSemiGroup| - |OrdSetInts| |OutputPackage| |OutputByteConduit&| |OutputByteConduit| - |OutputBinaryFile| |OutputForm| |OrderedVariableList| |OverloadSet| - |OrdinaryWeightedPolynomials| |PadeApproximants| |PadeApproximantPackage| - |PAdicInteger| |PAdicIntegerCategory| |PAdicRational| - |PAdicRationalConstructor| |Pair| |Palette| |PolynomialAN2Expression| - |ParameterAst| |ParametricPlaneCurveFunctions2| |ParametricPlaneCurve| + |NumericalOptimizationProblem| |OrderedCompletion| + |OrderedCompletionFunctions2| |OrderedFinite| |OrderingFunctions| + |OrderedMonoid| |OrderedRing| |OrderedSet| |OrderedStructure| |OrderedType&| + |OrderedType| |UnivariateSkewPolynomialCategory&| + |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps| + |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial| + |OrthogonalPolynomialFunctions| |OrderedSemiGroup| |OrdSetInts| + |OutputPackage| |OutputByteConduit&| |OutputByteConduit| |OutputBinaryFile| + |OutputForm| |OrderedVariableList| |OverloadSet| |OrdinaryWeightedPolynomials| + |PadeApproximants| |PadeApproximantPackage| |PAdicInteger| + |PAdicIntegerCategory| |PAdicRational| |PAdicRationalConstructor| |Pair| + |Palette| |PolynomialAN2Expression| |ParameterAst| + |ParametricPlaneCurveFunctions2| |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| |Parser| |ParametricSurfaceFunctions2| |ParametricSurface| |PartitionsAndPermutations| |Patternable| |PatternMatchListResult| |PatternMatchable| |PatternMatch| @@ -289,11 +270,11 @@ |PatternFunctions1| |PatternFunctions2| |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition| |PartialDifferentialDomain&| |PartialDifferentialDomain| |PartialDifferentialEquationsSolverCategory| - |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage| - |NumericalPDEProblem| |PartialDifferentialModule| |PartialDifferentialRing| - |PartialDifferentialSpace&| |PartialDifferentialSpace| |PendantTree| - |Permutation| |Permanent| |PermutationCategory| |PermutationGroup| - |PrimeField| |PolynomialFactorizationByRecursion| + |PolynomialDecomposition| |NumericalPDEProblem| |PartialDifferentialModule| + |PartialDifferentialRing| |PartialDifferentialSpace&| + |PartialDifferentialSpace| |PendantTree| |Permutation| |Permanent| + |PermutationCategory| |PermutationGroup| |PrimeField| + |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools| @@ -472,29 +453,21 @@ |operations| |dualSignature| |kind| |package| |domain| |category| |coerceP| |powerSum| |elementary| |alternating| |cyclic| |dihedral| |cap| |cup| |wreath| |SFunction| |skewSFunction| |cyclotomicDecomposition| - |cyclotomicFactorization| |rangeIsFinite| |functionIsContinuousAtEndPoints| - |functionIsOscillatory| |changeName| |exprHasWeightCosWXorSinWX| - |exprHasAlgebraicWeight| |exprHasLogarithmicWeights| - |combineFeatureCompatibility| |sparsityIF| |stiffnessAndStabilityFactor| - |stiffnessAndStabilityOfODEIF| |systemSizeIF| |expenseOfEvaluationIF| - |accuracyIF| |intermediateResultsIF| |subscriptedVariables| |central?| - |elliptic?| |qsetelt| |doubleResultant| |distdfact| |separateDegrees| - |trace2PowMod| |tracePowMod| |irreducible?| |decimal| |innerint| - |exteriorDifferential| |totalDifferential| |homogeneous?| |leadingBasisTerm| - |ignore?| |computeInt| |checkForZero| |nan?| |logGamma| |hypergeometric0F1| - |rotatez| |rotatey| |rotatex| |identity| |dictionary| |dioSolve| - |directProduct| |newLine| |copies| |say| |sayLength| |setnext!| |setprevious!| - |next| |previous| |datalist| |shanksDiscLogAlgorithm| |showSummary| |reflect| - |reify| |constructor| |functorData| |separant| |initial| |leader| |isobaric?| - |weights| |differentialVariables| |extractBottom!| |extractTop!| - |insertBottom!| |insertTop!| |bottom!| |top!| |dequeue| |makeObject| |recolor| - |drawComplex| |drawComplexVectorField| |setRealSteps| |setImagSteps| - |setClipValue| |draw| |option?| |range| |colorFunction| |curveColor| - |pointColor| |clip| |clipBoolean| |style| |toScale| |pointColorPalette| - |curveColorPalette| |var1Steps| |var2Steps| |space| |tubePoints| |tubeRadius| - |option| |weight| |makeVariable| |finiteBound| |sortConstraints| - |sumOfSquares| |splitLinear| |simpleBounds?| |linearMatrix| |linearPart| - |nonLinearPart| |quadratic?| |changeNameToObjf| |optAttributes| |Nul| + |cyclotomicFactorization| |qsetelt| |doubleResultant| |distdfact| + |separateDegrees| |trace2PowMod| |tracePowMod| |irreducible?| |decimal| + |innerint| |exteriorDifferential| |totalDifferential| |homogeneous?| + |leadingBasisTerm| |ignore?| |computeInt| |checkForZero| |nan?| |logGamma| + |hypergeometric0F1| |rotatez| |rotatey| |rotatex| |identity| |dictionary| + |dioSolve| |directProduct| |newLine| |copies| |say| |sayLength| |setnext!| + |setprevious!| |next| |previous| |datalist| |shanksDiscLogAlgorithm| + |showSummary| |reflect| |reify| |constructor| |functorData| |separant| + |initial| |leader| |isobaric?| |weights| |differentialVariables| + |extractBottom!| |extractTop!| |insertBottom!| |insertTop!| |bottom!| |top!| + |dequeue| |makeObject| |recolor| |drawComplex| |drawComplexVectorField| + |setRealSteps| |setImagSteps| |setClipValue| |draw| |option?| |range| + |colorFunction| |curveColor| |pointColor| |clip| |clipBoolean| |style| + |toScale| |pointColorPalette| |curveColorPalette| |var1Steps| |var2Steps| + |space| |tubePoints| |tubeRadius| |option| |weight| |makeVariable| |Nul| |exponents| |iisqrt2| |iisqrt3| |iiexp| |iilog| |iisin| |iicos| |iitan| |iicot| |iisec| |iicsc| |iiasin| |iiacos| |iiatan| |iiacot| |iiasec| |iiacsc| |iisinh| |iicosh| |iitanh| |iicoth| |iisech| |iicsch| |iiasinh| |iiacosh| @@ -570,7 +543,7 @@ |bringDown| |newReduc| |logical?| |character?| |doubleComplex?| |complex?| |double?| |ffactor| |qfactor| |UP2ifCan| |anfactor| |fortranCharacter| |fortranDoubleComplex| |fortranComplex| |fortranLogical| |fortranInteger| - |fortranDouble| |fortranReal| |external?| |scalarTypeOf| + |fortranDouble| |fortranReal| |external?| |dimensionsOf| |scalarTypeOf| |fortranCarriageReturn| |fortranLiteral| |fortranLiteralLine| |processTemplate| |makeFR| |musserTrials| |stopMusserTrials| |numberOfFactors| |modularFactor| |useSingleFactorBound?| |useSingleFactorBound| @@ -618,10 +591,9 @@ |palginfieldint| |bitLength| |bitCoef| |bitTruth| |contains?| |inf| |qinterval| |interval| |unit?| |associates?| |unitCanonical| |unitNormal| |lfextendedint| |lflimitedint| |lfinfieldint| |lfintegrate| |lfextlimint| - |BasicMethod| |PollardSmallFactor| |showTheFTable| |clearTheFTable| |fTable| - |showAttributes| |entry| |palgint0| |palgextint0| |palglimint0| |palgRDE0| - |palgLODE0| |chineseRemainder| |divisors| |eulerPhi| |fibonacci| |harmonic| - |jacobi| |moebiusMu| |numberOfDivisors| |sumOfDivisors| + |BasicMethod| |PollardSmallFactor| |palgint0| |palgextint0| |palglimint0| + |palgRDE0| |palgLODE0| |chineseRemainder| |divisors| |eulerPhi| |fibonacci| + |harmonic| |jacobi| |moebiusMu| |numberOfDivisors| |sumOfDivisors| |sumOfKthPowerDivisors| |HermiteIntegrate| |palgint| |palgextint| |palglimint| |palgRDE| |palgLODE| |splitConstant| |pmComplexintegrate| |pmintegrate| |infieldint| |extendedint| |limitedint| |integerIfCan| |internalIntegrate| @@ -649,20 +621,20 @@ |jvmFloatConstantTag| |jvmIntegerConstantTag| |jvmUTF8ConstantTag| |jvmTransient| |jvmVolatile| |jvmStrict| |jvmAbstract| |jvmNative| |jvmSynchronized| |jvmFinal| |jvmStatic| |jvmProtected| |jvmPrivate| - |jvmPublic| |search| |key?| |symbolIfCan| |kernel| |argument| |constantKernel| - |constantIfCan| |kovacic| |unknown| |laplace| |trailingCoefficient| - |normalizeIfCan| |polCase| |distFact| |identification| |LyndonCoordinates| - |LyndonBasis| |zeroDimensional?| |fglmIfCan| |groebner| |lexTriangular| - |squareFreeLexTriangular| |belong?| |erf| |dilog| |li| |Ci| |Si| |Ei| - |linGenPos| |groebgen| |totolex| |minPol| |computeBasis| |coord| |anticoord| - |intcompBasis| |choosemon| |transform| |pack!| |library| |complexLimit| - |limit| |linearlyDependent?| |linearDependence| |solveLinear| |linearElement| - |reducedSystem| |leftReducedSystem| |linearForm| |setDifference| - |setIntersection| |setUnion| |append| |null| |nil| |substitute| |duplicates?| - |mapGen| |mapExpon| |commutativeEquality| |leftMult| |rightMult| |makeUnit| - |reverse!| |reverse| |nthFactor| |nthExpon| |makeMulti| |makeTerm| - |listOfMonoms| |insert| |delete| |symmetricSquare| |factor1| - |symmetricProduct| |symmetricPower| |directSum| |\\/| |/\\| ~ + |jvmPublic| |search| |keys| |key?| |symbolIfCan| |kernel| |argument| + |constantKernel| |constantIfCan| |kovacic| |unknown| |laplace| + |trailingCoefficient| |normalizeIfCan| |polCase| |distFact| |identification| + |LyndonCoordinates| |LyndonBasis| |zeroDimensional?| |fglmIfCan| |groebner| + |lexTriangular| |squareFreeLexTriangular| |belong?| |erf| |dilog| |li| |Ci| + |Si| |Ei| |linGenPos| |groebgen| |totolex| |minPol| |computeBasis| |coord| + |anticoord| |intcompBasis| |choosemon| |transform| |pack!| |library| + |complexLimit| |limit| |linearlyDependent?| |linearDependence| |solveLinear| + |linearElement| |reducedSystem| |leftReducedSystem| |linearForm| + |setDifference| |setIntersection| |setUnion| |append| |null| |nil| + |substitute| |duplicates?| |mapGen| |mapExpon| |commutativeEquality| + |leftMult| |rightMult| |makeUnit| |reverse!| |reverse| |nthFactor| |nthExpon| + |makeMulti| |makeTerm| |listOfMonoms| |insert| |delete| |symmetricSquare| + |factor1| |symmetricProduct| |symmetricPower| |directSum| |\\/| |/\\| ~ |solveLinearPolynomialEquationByFractions| |hasSolution?| |linSolve| |LyndonWordsList| |LyndonWordsList1| |lyndonIfCan| |lyndon| |lyndon?| |numberOfComputedEntries| |rst| |frst| |lazyEvaluate| |lazy?| @@ -687,77 +659,54 @@ |reshape| |totalfract| |pushdterm| |pushucoef| |pushuconst| |numberOfMonomials| |multiset| |systemCommand| |mergeDifference| |squareFreePrim| |compdegd| |univcase| |consnewpol| |nsqfree| |intChoose| - |coefChoose| |myDegree| |normDeriv2| |plenaryPower| |c02aff| |c02agf| |c05adf| - |c05nbf| |c05pbf| |c06eaf| |c06ebf| |c06ecf| |c06ekf| |c06fpf| |c06fqf| - |c06frf| |c06fuf| |c06gbf| |c06gcf| |c06gqf| |c06gsf| |d01ajf| |d01akf| - |d01alf| |d01amf| |d01anf| |d01apf| |d01aqf| |d01asf| |d01bbf| |d01fcf| - |d01gaf| |d01gbf| |d02bbf| |d02bhf| |d02cjf| |d02ejf| |d02gaf| |d02gbf| - |d02kef| |d02raf| |d03edf| |d03eef| |d03faf| |e01baf| |e01bef| |e01bff| - |e01bgf| |e01bhf| |e01daf| |e01saf| |e01sbf| |e01sef| |e01sff| |e02adf| - |e02aef| |e02agf| |e02ahf| |e02ajf| |e02akf| |e02baf| |e02bbf| |e02bcf| - |e02bdf| |e02bef| |e02daf| |e02dcf| |e02ddf| |e02def| |e02dff| |e02gaf| - |e02zaf| |e04dgf| |e04fdf| |e04gcf| |e04jaf| |e04mbf| |e04naf| |e04ucf| - |e04ycf| |f01brf| |f01bsf| |f01maf| |f01mcf| |f01qcf| |f01qdf| |f01qef| - |f01rcf| |f01rdf| |f01ref| |f02aaf| |f02abf| |f02adf| |f02aef| |f02aff| - |f02agf| |f02ajf| |f02akf| |f02awf| |f02axf| |f02bbf| |f02bjf| |f02fjf| - |f02wef| |f02xef| |f04adf| |f04arf| |f04asf| |f04atf| |f04axf| |f04faf| - |f04jgf| |f04maf| |f04mbf| |f04mcf| |f04qaf| |f07adf| |f07aef| |f07fdf| - |f07fef| |s01eaf| |s13aaf| |s13acf| |s13adf| |s14aaf| |s14abf| |s14baf| - |s15adf| |s15aef| |s17acf| |s17adf| |s17aef| |s17aff| |s17agf| |s17ahf| - |s17ajf| |s17akf| |s17dcf| |s17def| |s17dgf| |s17dhf| |s17dlf| |s18acf| - |s18adf| |s18aef| |s18aff| |s18dcf| |s18def| |s19aaf| |s19abf| |s19acf| - |s19adf| |s20acf| |s20adf| |s21baf| |s21bbf| |s21bcf| |s21bdf| - |fortranCompilerName| |fortranLinkerArgs| |aspFilename| |dimensionsOf| - |checkPrecision| |restorePrecision| |antiCommutator| |commutator| |associator| - |complexEigenvalues| |complexEigenvectors| |isConnected?| |connectTo| |shift| - |normalizedAssociate| |normalize| |outputArgs| |normInvertible?| |normFactors| - |npcoef| |listexp| |characteristicPolynomial| |realEigenvalues| - |realEigenvectors| |halfExtendedResultant2| |halfExtendedResultant1| - |extendedResultant| |subResultantsChain| |lazyPseudoQuotient| - |lazyPseudoRemainder| |bernoulliB| |eulerE| |numeric| |complexNumeric| - |numericIfCan| |complexNumericIfCan| |FormatArabic| |ScanArabic| |FormatRoman| - |ScanRoman| |ScanFloatIgnoreSpaces| |ScanFloatIgnoreSpacesIfCan| - |numericalIntegration| |rk4| |rk4a| |rk4qc| |rk4f| |aromberg| |asimpson| - |atrapezoidal| |romberg| |simpson| |trapezoidal| |rombergo| |simpsono| - |trapezoidalo| |sup| |inv| |imagE| |imagk| |imagj| |imagi| |octon| |ODESolve| - |constDsolve| |showTheIFTable| |clearTheIFTable| |keys| |iFTable| - |showIntensityFunctions| |expint| |diff| |algDsolve| |denomLODE| - |indicialEquations| |indicialEquation| |denomRicDE| |leadingCoefficientRicDE| - |constantCoefficientRicDE| |changeVar| |ratDsolve| + |coefChoose| |myDegree| |normDeriv2| |plenaryPower| |antiCommutator| + |commutator| |associator| |complexEigenvalues| |complexEigenvectors| + |isConnected?| |connectTo| |shift| |normalizedAssociate| |normalize| + |outputArgs| |normInvertible?| |normFactors| |npcoef| |listexp| + |characteristicPolynomial| |realEigenvalues| |realEigenvectors| + |halfExtendedResultant2| |halfExtendedResultant1| |extendedResultant| + |subResultantsChain| |lazyPseudoQuotient| |lazyPseudoRemainder| |bernoulliB| + |eulerE| |numeric| |complexNumeric| |numericIfCan| |complexNumericIfCan| + |FormatArabic| |ScanArabic| |FormatRoman| |ScanRoman| |ScanFloatIgnoreSpaces| + |ScanFloatIgnoreSpacesIfCan| |numericalIntegration| |rk4| |rk4a| |rk4qc| + |rk4f| |aromberg| |asimpson| |atrapezoidal| |romberg| |simpson| |trapezoidal| + |rombergo| |simpsono| |trapezoidalo| |sup| |inv| |imagE| |imagk| |imagj| + |imagi| |octon| |ODESolve| |constDsolve| |expint| |diff| |algDsolve| + |denomLODE| |indicialEquations| |indicialEquation| |denomRicDE| + |leadingCoefficientRicDE| |constantCoefficientRicDE| |changeVar| |ratDsolve| |indicialEquationAtInfinity| |reduceLODE| |singRicDE| |polyRicDE| |ricDsolve| |triangulate| |solveInField| |wronskianMatrix| |variationOfParameters| |lexico| |po| |op| |infinity| |makeop| |opeval| |evaluateInverse| |evaluate| - |conjug| |adjoint| |arity| |getDatabase| |numericalOptimization| |optimize| - |goodnessOfFit| |whatInfinity| |infinite?| |finite?| |minusInfinity| - |plusInfinity| |pureLex| |totalLex| |reverseLex| |min| |leftLcm| - |rightExtendedGcd| |rightGcd| |rightExactQuotient| |rightRemainder| - |rightQuotient| |rightLcm| |leftExtendedGcd| |leftGcd| |leftExactQuotient| - |leftRemainder| |leftQuotient| |times| |apply| |monicLeftDivide| - |monicRightDivide| |leftDivide| |rightDivide| |hermiteH| |laguerreL| - |legendreP| |outputList| |writeBytes!| |writeUInt8!| |writeInt8!| |writeByte!| - |isOpen?| |outputBinaryFile| |not| |or| |and| |quo| |rem| |div| >= > ~= - |blankSeparate| |semicolonSeparate| |commaSeparate| |pile| |paren| |bracket| - |prod| |overlabel| |overbar| |prime| |quote| |supersub| |presuper| |presub| - |super| |sub| |rarrow| |assign| |slash| |over| |zag| |box| |label| |infix?| - |postfix| |infix| |prefix| |vconcat| |hconcat| |rspace| |vspace| |hspace| - |superHeight| |subHeight| |height| |width| |doubleFloatFormat| |messagePrint| - |message| |members| |padecf| |pade| |root| |quotientByP| |moduloP| |modulus| - |digits| |continuedFraction| |pair| |light| |pastel| |bright| |dim| |dark| - |getSyntaxFormsFromFile| |surface| |coordinate| |conjugates| |shuffle| - |shufflein| |sequences| |permutations| |lists| |makeResult| |is?| |Is| - |addMatchRestricted| |insertMatch| |addMatch| |getMatch| |failed| |failed?| - |optpair| |getBadValues| |resetBadValues| |hasTopPredicate?| |topPredicate| - |setTopPredicate| |patternVariable| |withPredicates| |setPredicates| - |predicates| |hasPredicate?| |optional?| |multiple?| |generic?| |quoted?| - |inR?| |isList| |isQuotient| |isOp| |Zero| |satisfy?| |addBadValue| - |badValues| |retractable?| |ListOfTerms| |One| |PDESolve| |leftFactor| - |rightFactorCandidate| |measure| D |ptree| |coerceImages| |fixedPoints| |odd?| - |even?| |numberOfCycles| |cyclePartition| |coerceListOfPairs| - |coercePreimagesImages| |listRepresentation| |permanent| |cycles| |cycle| - |initializeGroupForWordProblem| <= < |support| |wordInGenerators| - |wordInStrongGenerators| |orbits| |orbit| |permutationGroup| - |wordsForStrongGenerators| |strongGenerators| |base| |generators| - |bivariateSLPEBR| |solveLinearPolynomialEquationByRecursion| + |conjug| |adjoint| |arity| |getDatabase| |numericalOptimization| + |whatInfinity| |infinite?| |finite?| |minusInfinity| |plusInfinity| |pureLex| + |totalLex| |reverseLex| |min| |leftLcm| |rightExtendedGcd| |rightGcd| + |rightExactQuotient| |rightRemainder| |rightQuotient| |rightLcm| + |leftExtendedGcd| |leftGcd| |leftExactQuotient| |leftRemainder| |leftQuotient| + |times| |apply| |monicLeftDivide| |monicRightDivide| |leftDivide| + |rightDivide| |hermiteH| |laguerreL| |legendreP| |outputList| |writeBytes!| + |writeUInt8!| |writeInt8!| |writeByte!| |isOpen?| |outputBinaryFile| |not| + |or| |and| |quo| |rem| |div| >= > ~= |blankSeparate| |semicolonSeparate| + |commaSeparate| |pile| |paren| |bracket| |prod| |overlabel| |overbar| |prime| + |quote| |supersub| |presuper| |presub| |super| |sub| |rarrow| |assign| |slash| + |over| |zag| |box| |label| |infix?| |postfix| |infix| |prefix| |vconcat| + |hconcat| |rspace| |vspace| |hspace| |superHeight| |subHeight| |height| + |width| |doubleFloatFormat| |messagePrint| |message| |members| |padecf| |pade| + |root| |quotientByP| |moduloP| |modulus| |digits| |continuedFraction| |pair| + |light| |pastel| |bright| |dim| |dark| |getSyntaxFormsFromFile| |surface| + |coordinate| |conjugates| |shuffle| |shufflein| |sequences| |permutations| + |lists| |makeResult| |is?| |Is| |addMatchRestricted| |insertMatch| |addMatch| + |getMatch| |failed| |failed?| |optpair| |getBadValues| |resetBadValues| + |hasTopPredicate?| |topPredicate| |setTopPredicate| |patternVariable| + |withPredicates| |setPredicates| |predicates| |hasPredicate?| |optional?| + |multiple?| |generic?| |quoted?| |inR?| |isList| |isQuotient| |isOp| |Zero| + |satisfy?| |addBadValue| |badValues| |retractable?| |ListOfTerms| |One| + |PDESolve| |measure| |leftFactor| |rightFactorCandidate| D |ptree| + |coerceImages| |fixedPoints| |odd?| |even?| |numberOfCycles| |cyclePartition| + |coerceListOfPairs| |coercePreimagesImages| |listRepresentation| |permanent| + |cycles| |cycle| |initializeGroupForWordProblem| <= < |support| + |wordInGenerators| |wordInStrongGenerators| |orbits| |orbit| + |permutationGroup| |wordsForStrongGenerators| |strongGenerators| |base| + |generators| |bivariateSLPEBR| |solveLinearPolynomialEquationByRecursion| |factorByRecursion| |factorSquareFreeByRecursion| |randomR| |factorSFBRlcUnit| |charthRoot| |conditionP| |solveLinearPolynomialEquation| |factorSquareFreePolynomial| |factorPolynomial| |squareFreePolynomial| diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 0e9f51a8..4c2e1365 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,4377 +1,4140 @@ -(3084981 . 3525059681) -((-1933 (((-114) (-1 (-114) |#2| |#2|) $) 86 T ELT) (((-114) $) NIL T ELT)) (-1931 (($ (-1 (-114) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-4216 ((|#2| $ (-557) |#2|) NIL T ELT) ((|#2| $ (-1253 (-557)) |#2|) 44 T ELT)) (-2508 (($ $) 80 T ELT)) (-4270 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3837 (((-557) (-1 (-114) |#2|) $) 27 T ELT) (((-557) |#2| $) NIL T ELT) (((-557) |#2| $ (-557)) 96 T ELT)) (-3288 (((-659 |#2|) $) 13 T ELT)) (-3936 (($ (-1 (-114) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-2158 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-4386 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2515 (($ |#2| $ (-557)) NIL T ELT) (($ $ $ (-557)) 67 T ELT)) (-1466 (((-3 |#2| "failed") (-1 (-114) |#2|) $) 29 T ELT)) (-2156 (((-114) (-1 (-114) |#2|) $) 23 T ELT)) (-4228 ((|#2| $ (-557) |#2|) NIL T ELT) ((|#2| $ (-557)) NIL T ELT) (($ $ (-1253 (-557))) 66 T ELT)) (-2516 (($ $ (-557)) 76 T ELT) (($ $ (-1253 (-557))) 75 T ELT)) (-2155 (((-789) (-1 (-114) |#2|) $) 34 T ELT) (((-789) |#2| $) NIL T ELT)) (-1932 (($ $ $ (-557)) 69 T ELT)) (-3818 (($ $) 68 T ELT)) (-3948 (($ (-659 |#2|)) 73 T ELT)) (-4230 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-659 $)) 85 T ELT)) (-4374 (((-875) $) 92 T ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) 22 T ELT)) (-3452 (((-114) $ $) 95 T ELT)) (-3084 (((-114) $ $) 99 T ELT))) -(((-18 |#1| |#2|) (-10 -7 (-15 -3452 ((-114) |#1| |#1|)) (-15 -4374 ((-875) |#1|)) (-15 -3084 ((-114) |#1| |#1|)) (-15 -1931 (|#1| |#1|)) (-15 -1931 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -2508 (|#1| |#1|)) (-15 -1932 (|#1| |#1| |#1| (-557))) (-15 -1933 ((-114) |#1|)) (-15 -3936 (|#1| |#1| |#1|)) (-15 -3837 ((-557) |#2| |#1| (-557))) (-15 -3837 ((-557) |#2| |#1|)) (-15 -3837 ((-557) (-1 (-114) |#2|) |#1|)) (-15 -1933 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -3936 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -4216 (|#2| |#1| (-1253 (-557)) |#2|)) (-15 -2515 (|#1| |#1| |#1| (-557))) (-15 -2515 (|#1| |#2| |#1| (-557))) (-15 -2516 (|#1| |#1| (-1253 (-557)))) (-15 -2516 (|#1| |#1| (-557))) (-15 -4386 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4230 (|#1| (-659 |#1|))) (-15 -4230 (|#1| |#1| |#1|)) (-15 -4230 (|#1| |#2| |#1|)) (-15 -4230 (|#1| |#1| |#2|)) (-15 -4228 (|#1| |#1| (-1253 (-557)))) (-15 -3948 (|#1| (-659 |#2|))) (-15 -1466 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -4270 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4270 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4270 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4228 (|#2| |#1| (-557))) (-15 -4228 (|#2| |#1| (-557) |#2|)) (-15 -4216 (|#2| |#1| (-557) |#2|)) (-15 -2155 ((-789) |#2| |#1|)) (-15 -3288 ((-659 |#2|) |#1|)) (-15 -2155 ((-789) (-1 (-114) |#2|) |#1|)) (-15 -2156 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2157 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2158 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4386 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3818 (|#1| |#1|))) (-19 |#2|) (-1236)) (T -18)) -NIL -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2411 (((-1292) $ (-557) (-557)) 44 (|has| $ (-6 -4424)) ELT)) (-1933 (((-114) (-1 (-114) |#1| |#1|) $) 107 T ELT) (((-114) $) 101 (|has| |#1| (-859)) ELT)) (-1931 (($ (-1 (-114) |#1| |#1|) $) 98 (|has| $ (-6 -4424)) ELT) (($ $) 97 (-12 (|has| |#1| (-859)) (|has| $ (-6 -4424))) ELT)) (-3308 (($ (-1 (-114) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-859)) ELT)) (-4216 ((|#1| $ (-557) |#1|) 56 (|has| $ (-6 -4424)) ELT) ((|#1| $ (-1253 (-557)) |#1|) 64 (|has| $ (-6 -4424)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4423)) ELT)) (-4152 (($) 7 T CONST)) (-2508 (($ $) 99 (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) 109 T ELT)) (-1465 (($ $) 84 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3824 (($ |#1| $) 83 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4423)) ELT)) (-1717 ((|#1| $ (-557) |#1|) 57 (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-557)) 55 T ELT)) (-3837 (((-557) (-1 (-114) |#1|) $) 106 T ELT) (((-557) |#1| $) 105 (|has| |#1| (-1120)) ELT) (((-557) |#1| $ (-557)) 104 (|has| |#1| (-1120)) ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-4042 (($ (-789) |#1|) 74 T ELT)) (-2413 (((-557) $) 47 (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) 91 (|has| |#1| (-859)) ELT)) (-3936 (($ (-1 (-114) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-859)) ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2414 (((-557) $) 48 (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) 92 (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-2515 (($ |#1| $ (-557)) 66 T ELT) (($ $ $ (-557)) 65 T ELT)) (-2416 (((-659 (-557)) $) 50 T ELT)) (-2417 (((-114) (-557) $) 51 T ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-4229 ((|#1| $) 46 (|has| (-557) (-859)) ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2412 (($ $ |#1|) 45 (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-2415 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) 52 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-4228 ((|#1| $ (-557) |#1|) 54 T ELT) ((|#1| $ (-557)) 53 T ELT) (($ $ (-1253 (-557))) 75 T ELT)) (-2516 (($ $ (-557)) 68 T ELT) (($ $ (-1253 (-557))) 67 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-1932 (($ $ $ (-557)) 100 (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) 10 T ELT)) (-4400 (((-546) $) 85 (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 76 T ELT)) (-4230 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-659 $)) 70 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-2963 (((-114) $ $) 93 (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) 95 (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3083 (((-114) $ $) 94 (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) 96 (|has| |#1| (-859)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-19 |#1|) (-142) (-1236)) (T -19)) -NIL -(-13 (-385 |t#1|) (-10 -7 (-6 -4424))) -(((-34) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-859)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-859)) (|has| |#1| (-628 (-875)))) ((-153 |#1|) . T) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-298 (-557) |#1|) . T) ((-298 (-1253 (-557)) $) . T) ((-300 (-557) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-385 |#1|) . T) ((-501 |#1|) . T) ((-614 (-557) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-669 |#1|) . T) ((-859) |has| |#1| (-859)) ((-862) |has| |#1| (-859)) ((-1120) -3955 (|has| |#1| (-1120)) (|has| |#1| (-859))) ((-1236) . T)) -((-1424 (((-3 $ "failed") $ $) 12 T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) 16 T ELT) (($ (-557) $) 25 T ELT))) -(((-20 |#1|) (-10 -7 (-15 -4265 (|#1| |#1| |#1|)) (-15 -4265 (|#1| |#1|)) (-15 * (|#1| (-557) |#1|)) (-15 -1424 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-789) |#1|)) (-15 * (|#1| (-936) |#1|))) (-21)) (T -20)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT))) -(((-21) (-142)) (T -21)) -((-4265 (*1 *1 *1) (-4 *1 (-21))) (-4265 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-133) (-664 (-557)) (-10 -8 (-15 -4265 ($ $)) (-15 -4265 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-1120) . T) ((-1236) . T)) -((-3604 (((-114) $) 10 T ELT)) (-4152 (($) 15 T ELT)) (* (($ (-936) $) 14 T ELT) (($ (-789) $) 19 T ELT))) -(((-22 |#1|) (-10 -7 (-15 * (|#1| (-789) |#1|)) (-15 -3604 ((-114) |#1|)) (-15 -4152 (|#1|)) (-15 * (|#1| (-936) |#1|))) (-23)) (T -22)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-4152 (($) 22 T CONST)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT))) -(((-23) (-142)) (T -23)) -((-3057 (*1 *1) (-4 *1 (-23))) (-4152 (*1 *1) (-4 *1 (-23))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-114)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-789))))) -(-13 (-25) (-10 -8 (-15 (-3057) ($) -4380) (-15 -4152 ($) -4380) (-15 -3604 ((-114) $)) (-15 * ($ (-789) $)))) -(((-25) . T) ((-102) . T) ((-628 (-875)) . T) ((-1120) . T) ((-1236) . T)) -((* (($ (-936) $) 10 T ELT))) -(((-24 |#1|) (-10 -7 (-15 * (|#1| (-936) |#1|))) (-25)) (T -24)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ (-936) $) 17 T ELT))) -(((-25) (-142)) (T -25)) -((-4267 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-936))))) -(-13 (-1120) (-10 -8 (-15 -4267 ($ $ $)) (-15 * ($ (-936) $)))) -(((-102) . T) ((-628 (-875)) . T) ((-1120) . T) ((-1236) . T)) -((-1748 (((-659 $) (-963 $)) 32 T ELT) (((-659 $) (-1190 $)) 16 T ELT) (((-659 $) (-1190 $) (-1196)) 20 T ELT)) (-1321 (($ (-963 $)) 30 T ELT) (($ (-1190 $)) 11 T ELT) (($ (-1190 $) (-1196)) 60 T ELT)) (-1322 (((-659 $) (-963 $)) 33 T ELT) (((-659 $) (-1190 $)) 18 T ELT) (((-659 $) (-1190 $) (-1196)) 19 T ELT)) (-3599 (($ (-963 $)) 31 T ELT) (($ (-1190 $)) 13 T ELT) (($ (-1190 $) (-1196)) NIL T ELT))) -(((-26 |#1|) (-10 -7 (-15 -1748 ((-659 |#1|) (-1190 |#1|) (-1196))) (-15 -1748 ((-659 |#1|) (-1190 |#1|))) (-15 -1748 ((-659 |#1|) (-963 |#1|))) (-15 -1321 (|#1| (-1190 |#1|) (-1196))) (-15 -1321 (|#1| (-1190 |#1|))) (-15 -1321 (|#1| (-963 |#1|))) (-15 -1322 ((-659 |#1|) (-1190 |#1|) (-1196))) (-15 -1322 ((-659 |#1|) (-1190 |#1|))) (-15 -1322 ((-659 |#1|) (-963 |#1|))) (-15 -3599 (|#1| (-1190 |#1|) (-1196))) (-15 -3599 (|#1| (-1190 |#1|))) (-15 -3599 (|#1| (-963 |#1|)))) (-27)) (T -26)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-1748 (((-659 $) (-963 $)) 95 T ELT) (((-659 $) (-1190 $)) 94 T ELT) (((-659 $) (-1190 $) (-1196)) 93 T ELT)) (-1321 (($ (-963 $)) 98 T ELT) (($ (-1190 $)) 97 T ELT) (($ (-1190 $) (-1196)) 96 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 52 T ELT)) (-2271 (($ $) 51 T ELT)) (-2269 (((-114) $) 49 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4203 (($ $) 88 T ELT)) (-4399 (((-417 $) $) 87 T ELT)) (-3436 (($ $) 107 T ELT)) (-1786 (((-114) $ $) 72 T ELT)) (-4152 (($) 22 T CONST)) (-1322 (((-659 $) (-963 $)) 101 T ELT) (((-659 $) (-1190 $)) 100 T ELT) (((-659 $) (-1190 $) (-1196)) 99 T ELT)) (-3599 (($ (-963 $)) 104 T ELT) (($ (-1190 $)) 103 T ELT) (($ (-1190 $) (-1196)) 102 T ELT)) (-2961 (($ $ $) 68 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2960 (($ $ $) 69 T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 63 T ELT)) (-4151 (((-114) $) 86 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3410 (($ $ (-557)) 106 T ELT)) (-1783 (((-3 (-659 $) #1="failed") (-659 $) $) 65 T ELT)) (-2100 (($ $ $) 57 T ELT) (($ (-659 $)) 56 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2872 (($ $) 85 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 55 T ELT)) (-3560 (($ $ $) 59 T ELT) (($ (-659 $)) 58 T ELT)) (-4160 (((-417 $) $) 89 T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3884 (((-3 $ "failed") $ $) 53 T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 62 T ELT)) (-1785 (((-789) $) 71 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 70 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-557))) 81 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 50 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ $) 80 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ (-557)) 84 T ELT) (($ $ (-419 (-557))) 105 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-557))) 83 T ELT) (($ (-419 (-557)) $) 82 T ELT))) -(((-27) (-142)) (T -27)) -((-3599 (*1 *1 *2) (-12 (-5 *2 (-963 *1)) (-4 *1 (-27)))) (-3599 (*1 *1 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-27)))) (-3599 (*1 *1 *2 *3) (-12 (-5 *2 (-1190 *1)) (-5 *3 (-1196)) (-4 *1 (-27)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-963 *1)) (-4 *1 (-27)) (-5 *2 (-659 *1)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-1190 *1)) (-4 *1 (-27)) (-5 *2 (-659 *1)))) (-1322 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 *1)) (-5 *4 (-1196)) (-4 *1 (-27)) (-5 *2 (-659 *1)))) (-1321 (*1 *1 *2) (-12 (-5 *2 (-963 *1)) (-4 *1 (-27)))) (-1321 (*1 *1 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-27)))) (-1321 (*1 *1 *2 *3) (-12 (-5 *2 (-1190 *1)) (-5 *3 (-1196)) (-4 *1 (-27)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-963 *1)) (-4 *1 (-27)) (-5 *2 (-659 *1)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-1190 *1)) (-4 *1 (-27)) (-5 *2 (-659 *1)))) (-1748 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 *1)) (-5 *4 (-1196)) (-4 *1 (-27)) (-5 *2 (-659 *1))))) -(-13 (-376) (-1021) (-10 -8 (-15 -3599 ($ (-963 $))) (-15 -3599 ($ (-1190 $))) (-15 -3599 ($ (-1190 $) (-1196))) (-15 -1322 ((-659 $) (-963 $))) (-15 -1322 ((-659 $) (-1190 $))) (-15 -1322 ((-659 $) (-1190 $) (-1196))) (-15 -1321 ($ (-963 $))) (-15 -1321 ($ (-1190 $))) (-15 -1321 ($ (-1190 $) (-1196))) (-15 -1748 ((-659 $) (-963 $))) (-15 -1748 ((-659 $) (-1190 $))) (-15 -1748 ((-659 $) (-1190 $) (-1196))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-557))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) . T) ((-111 $ $) . T) ((-133) . T) ((-631 (-419 (-557))) . T) ((-631 (-557)) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-464) . T) ((-568) . T) ((-664 (-419 (-557))) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 (-419 (-557))) . T) ((-666 $) . T) ((-658 (-419 (-557))) . T) ((-658 $) . T) ((-735 (-419 (-557))) . T) ((-735 $) . T) ((-744) . T) ((-938) . T) ((-1021) . T) ((-1070 (-419 (-557))) . T) ((-1070 $) . T) ((-1075 (-419 (-557))) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T) ((-1241) . T)) -((-1748 (((-659 $) (-963 $)) NIL T ELT) (((-659 $) (-1190 $)) NIL T ELT) (((-659 $) (-1190 $) (-1196)) 54 T ELT) (((-659 $) $) 22 T ELT) (((-659 $) $ (-1196)) 45 T ELT)) (-1321 (($ (-963 $)) NIL T ELT) (($ (-1190 $)) NIL T ELT) (($ (-1190 $) (-1196)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1196)) 39 T ELT)) (-1322 (((-659 $) (-963 $)) NIL T ELT) (((-659 $) (-1190 $)) NIL T ELT) (((-659 $) (-1190 $) (-1196)) 52 T ELT) (((-659 $) $) 18 T ELT) (((-659 $) $ (-1196)) 47 T ELT)) (-3599 (($ (-963 $)) NIL T ELT) (($ (-1190 $)) NIL T ELT) (($ (-1190 $) (-1196)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1196)) 41 T ELT))) -(((-28 |#1| |#2|) (-10 -7 (-15 -1748 ((-659 |#1|) |#1| (-1196))) (-15 -1321 (|#1| |#1| (-1196))) (-15 -1748 ((-659 |#1|) |#1|)) (-15 -1321 (|#1| |#1|)) (-15 -1322 ((-659 |#1|) |#1| (-1196))) (-15 -3599 (|#1| |#1| (-1196))) (-15 -1322 ((-659 |#1|) |#1|)) (-15 -3599 (|#1| |#1|)) (-15 -1748 ((-659 |#1|) (-1190 |#1|) (-1196))) (-15 -1748 ((-659 |#1|) (-1190 |#1|))) (-15 -1748 ((-659 |#1|) (-963 |#1|))) (-15 -1321 (|#1| (-1190 |#1|) (-1196))) (-15 -1321 (|#1| (-1190 |#1|))) (-15 -1321 (|#1| (-963 |#1|))) (-15 -1322 ((-659 |#1|) (-1190 |#1|) (-1196))) (-15 -1322 ((-659 |#1|) (-1190 |#1|))) (-15 -1322 ((-659 |#1|) (-963 |#1|))) (-15 -3599 (|#1| (-1190 |#1|) (-1196))) (-15 -3599 (|#1| (-1190 |#1|))) (-15 -3599 (|#1| (-963 |#1|)))) (-29 |#2|) (-568)) (T -28)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-1748 (((-659 $) (-963 $)) 95 T ELT) (((-659 $) (-1190 $)) 94 T ELT) (((-659 $) (-1190 $) (-1196)) 93 T ELT) (((-659 $) $) 145 T ELT) (((-659 $) $ (-1196)) 143 T ELT)) (-1321 (($ (-963 $)) 98 T ELT) (($ (-1190 $)) 97 T ELT) (($ (-1190 $) (-1196)) 96 T ELT) (($ $) 146 T ELT) (($ $ (-1196)) 144 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-3482 (((-659 (-1196)) $) 214 T ELT)) (-3484 (((-419 (-1190 $)) $ (-626 $)) 246 (|has| |#1| (-568)) ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 52 T ELT)) (-2271 (($ $) 51 T ELT)) (-2269 (((-114) $) 49 T ELT)) (-1741 (((-659 (-626 $)) $) 177 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-1745 (($ $ (-659 (-626 $)) (-659 $)) 167 T ELT) (($ $ (-659 (-305 $))) 166 T ELT) (($ $ (-305 $)) 165 T ELT)) (-4203 (($ $) 88 T ELT)) (-4399 (((-417 $) $) 87 T ELT)) (-3436 (($ $) 107 T ELT)) (-1786 (((-114) $ $) 72 T ELT)) (-4152 (($) 22 T CONST)) (-1322 (((-659 $) (-963 $)) 101 T ELT) (((-659 $) (-1190 $)) 100 T ELT) (((-659 $) (-1190 $) (-1196)) 99 T ELT) (((-659 $) $) 149 T ELT) (((-659 $) $ (-1196)) 147 T ELT)) (-3599 (($ (-963 $)) 104 T ELT) (($ (-1190 $)) 103 T ELT) (($ (-1190 $) (-1196)) 102 T ELT) (($ $) 150 T ELT) (($ $ (-1196)) 148 T ELT)) (-3573 (((-3 (-963 |#1|) #1="failed") $) 265 (|has| |#1| (-1068)) ELT) (((-3 (-419 (-963 |#1|)) #1#) $) 248 (|has| |#1| (-568)) ELT) (((-3 |#1| #1#) $) 210 T ELT) (((-3 (-557) #1#) $) 207 (|has| |#1| (-1057 (-557))) ELT) (((-3 (-1196) #1#) $) 201 T ELT) (((-3 (-626 $) #1#) $) 152 T ELT) (((-3 (-419 (-557)) #1#) $) 140 (-3955 (-12 (|has| |#1| (-1057 (-557))) (|has| |#1| (-568))) (|has| |#1| (-1057 (-419 (-557))))) ELT)) (-3572 (((-963 |#1|) $) 264 (|has| |#1| (-1068)) ELT) (((-419 (-963 |#1|)) $) 247 (|has| |#1| (-568)) ELT) ((|#1| $) 209 T ELT) (((-557) $) 208 (|has| |#1| (-1057 (-557))) ELT) (((-1196) $) 200 T ELT) (((-626 $) $) 151 T ELT) (((-419 (-557)) $) 141 (-3955 (-12 (|has| |#1| (-1057 (-557))) (|has| |#1| (-568))) (|has| |#1| (-1057 (-419 (-557))))) ELT)) (-2961 (($ $ $) 68 T ELT)) (-2491 (((-707 |#1|) (-707 $)) 253 (|has| |#1| (-1068)) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) 252 (|has| |#1| (-1068)) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) 139 (-3955 (-2959 (|has| |#1| (-1068)) (|has| |#1| (-656 (-557)))) (-2959 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068)))) ELT) (((-707 (-557)) (-707 $)) 138 (-3955 (-2959 (|has| |#1| (-1068)) (|has| |#1| (-656 (-557)))) (-2959 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068)))) ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2960 (($ $ $) 69 T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 63 T ELT)) (-4151 (((-114) $) 86 T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) 206 (|has| |#1| (-899 (-391))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) 205 (|has| |#1| (-899 (-557))) ELT)) (-2970 (($ (-659 $)) 171 T ELT) (($ $) 170 T ELT)) (-1740 (((-659 (-115)) $) 178 T ELT)) (-4021 (((-115) (-115)) 179 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3072 (((-114) $) 199 (|has| $ (-1057 (-557))) ELT)) (-3395 (($ $) 231 (|has| |#1| (-1068)) ELT)) (-3397 (((-1144 |#1| (-626 $)) $) 230 (|has| |#1| (-1068)) ELT)) (-3410 (($ $ (-557)) 106 T ELT)) (-1783 (((-3 (-659 $) #2="failed") (-659 $) $) 65 T ELT)) (-1738 (((-1190 $) (-626 $)) 196 (|has| $ (-1068)) ELT)) (-4386 (($ (-1 $ $) (-626 $)) 185 T ELT)) (-1743 (((-3 (-626 $) "failed") $) 175 T ELT)) (-2492 (((-707 |#1|) (-1286 $)) 255 (|has| |#1| (-1068)) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 254 (|has| |#1| (-1068)) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) 137 (-3955 (-2959 (|has| |#1| (-1068)) (|has| |#1| (-656 (-557)))) (-2959 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068)))) ELT) (((-707 (-557)) (-1286 $)) 136 (-3955 (-2959 (|has| |#1| (-1068)) (|has| |#1| (-656 (-557)))) (-2959 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068)))) ELT)) (-2100 (($ $ $) 57 T ELT) (($ (-659 $)) 56 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-1742 (((-659 (-626 $)) $) 176 T ELT)) (-2447 (($ (-115) (-659 $)) 184 T ELT) (($ (-115) $) 183 T ELT)) (-3222 (((-3 (-659 $) #3="failed") $) 225 (|has| |#1| (-1131)) ELT)) (-3224 (((-3 (-2 (|:| |val| $) (|:| -2630 (-557))) #3#) $) 234 (|has| |#1| (-1068)) ELT)) (-3221 (((-3 (-659 $) #3#) $) 227 (|has| |#1| (-25)) ELT)) (-2000 (((-3 (-2 (|:| -4382 (-557)) (|:| |var| (-626 $))) #3#) $) 228 (|has| |#1| (-25)) ELT)) (-3223 (((-3 (-2 (|:| |var| (-626 $)) (|:| -2630 (-557))) #3#) $ (-1196)) 233 (|has| |#1| (-1068)) ELT) (((-3 (-2 (|:| |var| (-626 $)) (|:| -2630 (-557))) #3#) $ (-115)) 232 (|has| |#1| (-1068)) ELT) (((-3 (-2 (|:| |var| (-626 $)) (|:| -2630 (-557))) #3#) $) 226 (|has| |#1| (-1131)) ELT)) (-3030 (((-114) $ (-1196)) 182 T ELT) (((-114) $ (-115)) 181 T ELT)) (-2872 (($ $) 85 T ELT)) (-3000 (((-789) $) 174 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-2003 (((-114) $) 212 T ELT)) (-2002 ((|#1| $) 213 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 55 T ELT)) (-3560 (($ $ $) 59 T ELT) (($ (-659 $)) 58 T ELT)) (-1739 (((-114) $ (-1196)) 187 T ELT) (((-114) $ $) 186 T ELT)) (-4160 (((-417 $) $) 89 T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3884 (((-3 $ "failed") $ $) 53 T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 62 T ELT)) (-3073 (((-114) $) 198 (|has| $ (-1057 (-557))) ELT)) (-4196 (($ $ (-1196) (-789) (-1 $ $)) 238 (|has| |#1| (-1068)) ELT) (($ $ (-1196) (-789) (-1 $ (-659 $))) 237 (|has| |#1| (-1068)) ELT) (($ $ (-659 (-1196)) (-659 (-789)) (-659 (-1 $ (-659 $)))) 236 (|has| |#1| (-1068)) ELT) (($ $ (-659 (-1196)) (-659 (-789)) (-659 (-1 $ $))) 235 (|has| |#1| (-1068)) ELT) (($ $ (-659 (-115)) (-659 $) (-1196)) 224 (|has| |#1| (-629 (-546))) ELT) (($ $ (-115) $ (-1196)) 223 (|has| |#1| (-629 (-546))) ELT) (($ $) 222 (|has| |#1| (-629 (-546))) ELT) (($ $ (-659 (-1196))) 221 (|has| |#1| (-629 (-546))) ELT) (($ $ (-1196)) 220 (|has| |#1| (-629 (-546))) ELT) (($ $ (-115) (-1 $ $)) 195 T ELT) (($ $ (-115) (-1 $ (-659 $))) 194 T ELT) (($ $ (-659 (-115)) (-659 (-1 $ (-659 $)))) 193 T ELT) (($ $ (-659 (-115)) (-659 (-1 $ $))) 192 T ELT) (($ $ (-1196) (-1 $ $)) 191 T ELT) (($ $ (-1196) (-1 $ (-659 $))) 190 T ELT) (($ $ (-659 (-1196)) (-659 (-1 $ (-659 $)))) 189 T ELT) (($ $ (-659 (-1196)) (-659 (-1 $ $))) 188 T ELT) (($ $ (-659 $) (-659 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-305 $)) 157 T ELT) (($ $ (-659 (-305 $))) 156 T ELT) (($ $ (-659 (-626 $)) (-659 $)) 155 T ELT) (($ $ (-626 $) $) 154 T ELT)) (-1785 (((-789) $) 71 T ELT)) (-4228 (($ (-115) (-659 $)) 164 T ELT) (($ (-115) $ $ $ $) 163 T ELT) (($ (-115) $ $ $) 162 T ELT) (($ (-115) $ $) 161 T ELT) (($ (-115) $) 160 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 70 T ELT)) (-1744 (($ $ $) 173 T ELT) (($ $) 172 T ELT)) (-4186 (($ $ (-659 (-1196)) (-659 (-789))) 260 (|has| |#1| (-1068)) ELT) (($ $ (-1196) (-789)) 259 (|has| |#1| (-1068)) ELT) (($ $ (-659 (-1196))) 258 (|has| |#1| (-1068)) ELT) (($ $ (-1196)) 256 (|has| |#1| (-1068)) ELT)) (-3394 (($ $) 241 (|has| |#1| (-568)) ELT)) (-3396 (((-1144 |#1| (-626 $)) $) 240 (|has| |#1| (-568)) ELT)) (-3601 (($ $) 197 (|has| $ (-1068)) ELT)) (-4400 (((-546) $) 269 (|has| |#1| (-629 (-546))) ELT) (($ (-417 $)) 239 (|has| |#1| (-568)) ELT) (((-903 (-391)) $) 204 (|has| |#1| (-629 (-903 (-391)))) ELT) (((-903 (-557)) $) 203 (|has| |#1| (-629 (-903 (-557)))) ELT)) (-3408 (($ $ $) 268 (|has| |#1| (-485)) ELT)) (-2822 (($ $ $) 267 (|has| |#1| (-485)) ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-557))) 81 T ELT) (($ (-963 |#1|)) 266 (|has| |#1| (-1068)) ELT) (($ (-419 (-963 |#1|))) 249 (|has| |#1| (-568)) ELT) (($ (-419 (-963 (-419 |#1|)))) 245 (|has| |#1| (-568)) ELT) (($ (-963 (-419 |#1|))) 244 (|has| |#1| (-568)) ELT) (($ (-419 |#1|)) 243 (|has| |#1| (-568)) ELT) (($ (-1144 |#1| (-626 $))) 229 (|has| |#1| (-1068)) ELT) (($ |#1|) 211 T ELT) (($ (-1196)) 202 T ELT) (($ (-626 $)) 153 T ELT)) (-3101 (((-709 $) $) 251 (|has| |#1| (-147)) ELT)) (-3526 (((-789)) 37 T CONST)) (-2987 (($ (-659 $)) 169 T ELT) (($ $) 168 T ELT)) (-2466 (((-114) (-115)) 180 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 50 T ELT)) (-2001 (($ (-1196) (-659 $)) 219 T ELT) (($ (-1196) $ $ $ $) 218 T ELT) (($ (-1196) $ $ $) 217 T ELT) (($ (-1196) $ $) 216 T ELT) (($ (-1196) $) 215 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $ (-659 (-1196)) (-659 (-789))) 263 (|has| |#1| (-1068)) ELT) (($ $ (-1196) (-789)) 262 (|has| |#1| (-1068)) ELT) (($ $ (-659 (-1196))) 261 (|has| |#1| (-1068)) ELT) (($ $ (-1196)) 257 (|has| |#1| (-1068)) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ $) 80 T ELT) (($ (-1144 |#1| (-626 $)) (-1144 |#1| (-626 $))) 242 (|has| |#1| (-568)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ (-557)) 84 T ELT) (($ $ (-419 (-557))) 105 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-557))) 83 T ELT) (($ (-419 (-557)) $) 82 T ELT) (($ $ |#1|) 250 (|has| |#1| (-175)) ELT) (($ |#1| $) 142 (|has| |#1| (-1068)) ELT))) -(((-29 |#1|) (-142) (-568)) (T -29)) -((-3599 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-1322 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-659 *1)) (-4 *1 (-29 *3)))) (-3599 (*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-1322 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *2 (-659 *1)) (-4 *1 (-29 *4)))) (-1321 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-1748 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-659 *1)) (-4 *1 (-29 *3)))) (-1321 (*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-1748 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *2 (-659 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-433 |t#1|) (-10 -8 (-15 -3599 ($ $)) (-15 -1322 ((-659 $) $)) (-15 -3599 ($ $ (-1196))) (-15 -1322 ((-659 $) $ (-1196))) (-15 -1321 ($ $)) (-15 -1748 ((-659 $) $)) (-15 -1321 ($ $ (-1196))) (-15 -1748 ((-659 $) $ (-1196))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-557))) . T) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) . T) ((-111 |#1| |#1|) |has| |#1| (-175)) ((-111 $ $) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) . T) ((-631 (-419 (-963 |#1|))) |has| |#1| (-568)) ((-631 (-557)) . T) ((-631 (-626 $)) . T) ((-631 (-963 |#1|)) |has| |#1| (-1068)) ((-631 (-1196)) . T) ((-631 |#1|) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-175) . T) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-629 (-903 (-391))) |has| |#1| (-629 (-903 (-391)))) ((-629 (-903 (-557))) |has| |#1| (-629 (-903 (-557)))) ((-250) . T) ((-302) . T) ((-319) . T) ((-321 $) . T) ((-310) . T) ((-376) . T) ((-390 |#1|) |has| |#1| (-1068)) ((-412 |#1|) . T) ((-424 |#1|) . T) ((-433 |#1|) . T) ((-464) . T) ((-485) |has| |#1| (-485)) ((-526 (-626 $) $) . T) ((-526 $ $) . T) ((-568) . T) ((-664 (-419 (-557))) . T) ((-664 (-557)) . T) ((-664 |#1|) -3955 (|has| |#1| (-1068)) (|has| |#1| (-175))) ((-664 $) . T) ((-666 (-419 (-557))) . T) ((-666 (-557)) -12 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068))) ((-666 |#1|) -3955 (|has| |#1| (-1068)) (|has| |#1| (-175))) ((-666 $) . T) ((-658 (-419 (-557))) . T) ((-658 |#1|) |has| |#1| (-175)) ((-658 $) . T) ((-656 (-557)) -12 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068))) ((-656 |#1|) |has| |#1| (-1068)) ((-735 (-419 (-557))) . T) ((-735 |#1|) |has| |#1| (-175)) ((-735 $) . T) ((-744) . T) ((-909 $ (-1196)) |has| |#1| (-1068)) ((-915 (-1196)) |has| |#1| (-1068)) ((-917 (-1196)) |has| |#1| (-1068)) ((-899 (-391)) |has| |#1| (-899 (-391))) ((-899 (-557)) |has| |#1| (-899 (-557))) ((-897 |#1|) . T) ((-938) . T) ((-1021) . T) ((-1057 (-419 (-557))) -3955 (|has| |#1| (-1057 (-419 (-557)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-557))))) ((-1057 (-419 (-963 |#1|))) |has| |#1| (-568)) ((-1057 (-557)) |has| |#1| (-1057 (-557))) ((-1057 (-626 $)) . T) ((-1057 (-963 |#1|)) |has| |#1| (-1068)) ((-1057 (-1196)) . T) ((-1057 |#1|) . T) ((-1070 (-419 (-557))) . T) ((-1070 |#1|) |has| |#1| (-175)) ((-1070 $) . T) ((-1075 (-419 (-557))) . T) ((-1075 |#1|) |has| |#1| (-175)) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T) ((-1241) . T)) -((-3295 (((-1108 (-229)) $) NIL T ELT)) (-3296 (((-1108 (-229)) $) NIL T ELT)) (-3534 (($ $ (-229)) 164 T ELT)) (-1323 (($ (-963 (-557)) (-1196) (-1196) (-1108 (-419 (-557))) (-1108 (-419 (-557)))) 103 T ELT)) (-3297 (((-659 (-659 (-960 (-229)))) $) 181 T ELT)) (-4374 (((-875) $) 195 T ELT))) -(((-30) (-13 (-972) (-10 -8 (-15 -1323 ($ (-963 (-557)) (-1196) (-1196) (-1108 (-419 (-557))) (-1108 (-419 (-557))))) (-15 -3534 ($ $ (-229)))))) (T -30)) -((-1323 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-963 (-557))) (-5 *3 (-1196)) (-5 *4 (-1108 (-419 (-557)))) (-5 *1 (-30)))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-30))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 17 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-3649 (((-1154) $) 11 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3093 (((-1154) $) 9 T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-31) (-13 (-1102) (-10 -8 (-15 -3093 ((-1154) $)) (-15 -3649 ((-1154) $))))) (T -31)) -((-3093 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-31)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-31))))) -((-3599 ((|#2| (-1190 |#2|) (-1196)) 39 T ELT)) (-4021 (((-115) (-115)) 53 T ELT)) (-1738 (((-1190 |#2|) (-626 |#2|)) 150 (|has| |#1| (-1057 (-557))) ELT)) (-1326 ((|#2| |#1| (-557)) 138 (|has| |#1| (-1057 (-557))) ELT)) (-1324 ((|#2| (-1190 |#2|) |#2|) 29 T ELT)) (-1325 (((-875) (-659 |#2|)) 87 T ELT)) (-3601 ((|#2| |#2|) 145 (|has| |#1| (-1057 (-557))) ELT)) (-2466 (((-114) (-115)) 17 T ELT)) (** ((|#2| |#2| (-419 (-557))) 104 (|has| |#1| (-1057 (-557))) ELT))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3599 (|#2| (-1190 |#2|) (-1196))) (-15 -4021 ((-115) (-115))) (-15 -2466 ((-114) (-115))) (-15 -1324 (|#2| (-1190 |#2|) |#2|)) (-15 -1325 ((-875) (-659 |#2|))) (IF (|has| |#1| (-1057 (-557))) (PROGN (-15 ** (|#2| |#2| (-419 (-557)))) (-15 -1738 ((-1190 |#2|) (-626 |#2|))) (-15 -3601 (|#2| |#2|)) (-15 -1326 (|#2| |#1| (-557)))) |%noBranch|)) (-568) (-433 |#1|)) (T -32)) -((-1326 (*1 *2 *3 *4) (-12 (-5 *4 (-557)) (-4 *2 (-433 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1057 *4)) (-4 *3 (-568)))) (-3601 (*1 *2 *2) (-12 (-4 *3 (-1057 (-557))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) (-4 *2 (-433 *3)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-626 *5)) (-4 *5 (-433 *4)) (-4 *4 (-1057 (-557))) (-4 *4 (-568)) (-5 *2 (-1190 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-557))) (-4 *4 (-1057 (-557))) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)) (-4 *2 (-433 *4)))) (-1325 (*1 *2 *3) (-12 (-5 *3 (-659 *5)) (-4 *5 (-433 *4)) (-4 *4 (-568)) (-5 *2 (-875)) (-5 *1 (-32 *4 *5)))) (-1324 (*1 *2 *3 *2) (-12 (-5 *3 (-1190 *2)) (-4 *2 (-433 *4)) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-114)) (-5 *1 (-32 *4 *5)) (-4 *5 (-433 *4)))) (-4021 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) (-4 *4 (-433 *3)))) (-3599 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 *2)) (-5 *4 (-1196)) (-4 *2 (-433 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-568))))) -((-4152 (($) 10 T ELT)) (-1327 (((-114) $ $) 8 T ELT)) (-3821 (((-114) $) 15 T ELT))) -(((-33 |#1|) (-10 -7 (-15 -4152 (|#1|)) (-15 -3821 ((-114) |#1|)) (-15 -1327 ((-114) |#1| |#1|))) (-34)) (T -33)) -NIL -((-4152 (($) 7 T CONST)) (-1327 (((-114) $ $) 11 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-3818 (($ $) 10 T ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-34) (-142)) (T -34)) -((-1327 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114)))) (-3818 (*1 *1 *1) (-4 *1 (-34))) (-3991 (*1 *1) (-4 *1 (-34))) (-3821 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114)))) (-4152 (*1 *1) (-4 *1 (-34))) (-4385 (*1 *2 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-34)) (-5 *2 (-789))))) -(-13 (-1236) (-10 -8 (-15 -1327 ((-114) $ $)) (-15 -3818 ($ $)) (-15 -3991 ($)) (-15 -3821 ((-114) $)) (-15 -4152 ($) -4380) (IF (|has| $ (-6 -4423)) (-15 -4385 ((-789) $)) |%noBranch|))) -(((-1236) . T)) -((-3916 (($ $) 11 T ELT)) (-3914 (($ $) 10 T ELT)) (-3918 (($ $) 9 T ELT)) (-3919 (($ $) 8 T ELT)) (-3917 (($ $) 7 T ELT)) (-3915 (($ $) 6 T ELT))) -(((-35) (-142)) (T -35)) -((-3916 (*1 *1 *1) (-4 *1 (-35))) (-3914 (*1 *1 *1) (-4 *1 (-35))) (-3918 (*1 *1 *1) (-4 *1 (-35))) (-3919 (*1 *1 *1) (-4 *1 (-35))) (-3917 (*1 *1 *1) (-4 *1 (-35))) (-3915 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -3915 ($ $)) (-15 -3917 ($ $)) (-15 -3919 ($ $)) (-15 -3918 ($ $)) (-15 -3914 ($ $)) (-15 -3916 ($ $)))) -((-2965 (((-114) $ $) 19 (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102))) ELT)) (-3820 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 133 T ELT)) (-4223 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 156 T ELT)) (-4225 (($ $) 154 T ELT)) (-4025 (($) 77 T ELT) (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) 76 T ELT)) (-2411 (((-1292) $ |#1| |#1|) 104 (|has| $ (-6 -4424)) ELT) (((-1292) $ (-557) (-557)) 186 (|has| $ (-6 -4424)) ELT)) (-4213 (($ $ (-557)) 167 (|has| $ (-6 -4424)) ELT)) (-1933 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 220 T ELT) (((-114) $) 214 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ELT)) (-1931 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 211 (|has| $ (-6 -4424)) ELT) (($ $) 210 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) (|has| $ (-6 -4424))) ELT)) (-3308 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 221 T ELT) (($ $) 215 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ELT)) (-3860 (((-114) $ (-789)) 203 T ELT)) (-3424 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 142 (|has| $ (-6 -4424)) ELT)) (-4215 (($ $ $) 163 (|has| $ (-6 -4424)) ELT)) (-4214 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 165 (|has| $ (-6 -4424)) ELT)) (-4217 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 161 (|has| $ (-6 -4424)) ELT)) (-4216 ((|#2| $ |#1| |#2|) 78 T ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-557) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 197 (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-1253 (-557)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 168 (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ #1="last" (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 166 (|has| $ (-6 -4424)) ELT) (($ $ #2="rest" $) 164 (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ #3="first" (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 162 (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ #4="value" (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 141 (|has| $ (-6 -4424)) ELT)) (-3425 (($ $ (-659 $)) 140 (|has| $ (-6 -4424)) ELT)) (-1711 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 49 (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 227 T ELT)) (-4138 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 59 (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 183 (|has| $ (-6 -4423)) ELT)) (-4224 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 155 T ELT)) (-2444 (((-3 |#2| #5="failed") |#1| $) 65 T ELT)) (-4152 (($) 7 T CONST)) (-2508 (($ $) 212 (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) 222 T ELT)) (-4227 (($ $ (-789)) 150 T ELT) (($ $) 148 T ELT)) (-2592 (($ $) 225 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) ELT)) (-1465 (($ $) 62 (-3955 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| $ (-6 -4423))) (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| $ (-6 -4423)))) ELT)) (-3823 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 51 (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 50 (|has| $ (-6 -4423)) ELT) (((-3 |#2| #5#) |#1| $) 66 T ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 231 T ELT) (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 226 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) ELT)) (-3824 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 61 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 58 (|has| $ (-6 -4423)) ELT) (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 185 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 182 (|has| $ (-6 -4423)) ELT)) (-4270 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 60 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| $ (-6 -4423))) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 57 (|has| $ (-6 -4423)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 56 (|has| $ (-6 -4423)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 184 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| $ (-6 -4423))) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 181 (|has| $ (-6 -4423)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 180 (|has| $ (-6 -4423)) ELT)) (-1717 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-557) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 198 (|has| $ (-6 -4424)) ELT)) (-3513 ((|#2| $ |#1|) 93 T ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-557)) 196 T ELT)) (-3861 (((-114) $) 200 T ELT)) (-3837 (((-557) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 219 T ELT) (((-557) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 218 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) ELT) (((-557) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-557)) 217 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) ELT)) (-3288 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 30 (|has| $ (-6 -4423)) ELT) (((-659 |#2|) $) 84 (|has| $ (-6 -4423)) ELT) (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 122 (|has| $ (-6 -4423)) ELT)) (-3430 (((-659 $) $) 131 T ELT)) (-3426 (((-114) $ $) 139 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) ELT)) (-4042 (($ (-789) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 176 T ELT)) (-4147 (((-114) $ (-789)) 202 T ELT)) (-2413 ((|#1| $) 101 (|has| |#1| (-859)) ELT) (((-557) $) 188 (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) 204 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ELT)) (-3255 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ $) 228 T ELT) (($ $ $) 224 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ELT)) (-3936 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ $) 223 T ELT) (($ $ $) 216 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ELT)) (-3005 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 29 (|has| $ (-6 -4423)) ELT) (((-659 |#2|) $) 85 (|has| $ (-6 -4423)) ELT) (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 123 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| $ (-6 -4423))) ELT) (((-114) |#2| $) 87 (-12 (|has| |#2| (-1120)) (|has| $ (-6 -4423))) ELT) (((-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 125 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| $ (-6 -4423))) ELT)) (-2414 ((|#1| $) 100 (|has| |#1| (-859)) ELT) (((-557) $) 189 (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) 205 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ELT)) (-2158 (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 34 (|has| $ (-6 -4424)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -4424)) ELT) (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 118 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT) (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ $) 173 T ELT) (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 117 T ELT)) (-3960 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 236 T ELT)) (-4144 (((-114) $ (-789)) 201 T ELT)) (-3429 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 136 T ELT)) (-3945 (((-114) $) 132 T ELT)) (-3658 (((-1178) $) 22 (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| |#2| (-1120)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT)) (-4226 (($ $ (-789)) 153 T ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 151 T ELT)) (-2882 (((-659 |#1|) $) 67 T ELT)) (-2445 (((-114) |#1| $) 68 T ELT)) (-1387 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 43 T ELT)) (-4035 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 44 T ELT) (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-557)) 230 T ELT) (($ $ $ (-557)) 229 T ELT)) (-2515 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-557)) 170 T ELT) (($ $ $ (-557)) 169 T ELT)) (-2416 (((-659 |#1|) $) 98 T ELT) (((-659 (-557)) $) 191 T ELT)) (-2417 (((-114) |#1| $) 97 T ELT) (((-114) (-557) $) 192 T ELT)) (-3659 (((-1139) $) 21 (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| |#2| (-1120)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT)) (-4229 ((|#2| $) 102 (|has| |#1| (-859)) ELT) (($ $ (-789)) 147 T ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 145 T ELT)) (-1466 (((-3 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) #6="failed") (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) #6#) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 179 T ELT)) (-2412 (($ $ |#2|) 103 (|has| $ (-6 -4424)) ELT) (($ $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 187 (|has| $ (-6 -4424)) ELT)) (-1388 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 45 T ELT)) (-3862 (((-114) $) 199 T ELT)) (-2156 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 32 (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) |#2|) $) 82 (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 120 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) 26 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) 25 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 24 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) 23 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-659 |#2|) (-659 |#2|)) 91 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-305 |#2|)) 89 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-659 (-305 |#2|))) 88 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) 129 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 128 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) 127 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-659 (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) 126 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-2415 (((-114) |#2| $) 99 (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT) (((-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 190 (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT)) (-2418 (((-659 |#2|) $) 96 T ELT) (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 193 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-4228 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-557) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 195 T ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-557)) 194 T ELT) (($ $ (-1253 (-557))) 177 T ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ #1#) 152 T ELT) (($ $ #2#) 149 T ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ #3#) 146 T ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ #4#) 134 T ELT)) (-3428 (((-557) $ $) 137 T ELT)) (-1596 (($) 53 T ELT) (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) 52 T ELT)) (-1712 (($ $ (-557)) 233 T ELT) (($ $ (-1253 (-557))) 232 T ELT)) (-2516 (($ $ (-557)) 172 T ELT) (($ $ (-1253 (-557))) 171 T ELT)) (-4061 (((-114) $) 135 T ELT)) (-4220 (($ $) 159 T ELT)) (-4218 (($ $) 160 (|has| $ (-6 -4424)) ELT)) (-4221 (((-789) $) 158 T ELT)) (-4222 (($ $) 157 T ELT)) (-2155 (((-789) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| $ (-6 -4423))) ELT) (((-789) |#2| $) 86 (-12 (|has| |#2| (-1120)) (|has| $ (-6 -4423))) ELT) (((-789) (-1 (-114) |#2|) $) 83 (|has| $ (-6 -4423)) ELT) (((-789) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 124 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| $ (-6 -4423))) ELT) (((-789) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 121 (|has| $ (-6 -4423)) ELT)) (-1932 (($ $ $ (-557)) 213 (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) 10 T ELT)) (-4400 (((-546) $) 63 (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-629 (-546))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-629 (-546)))) ELT)) (-3948 (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) 54 T ELT) (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) 178 T ELT)) (-4219 (($ $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 235 T ELT) (($ $ $) 234 T ELT)) (-4230 (($ $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 175 T ELT) (($ (-659 $)) 174 T ELT) (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 144 T ELT) (($ $ $) 143 T ELT)) (-4374 (((-875) $) 17 (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-628 (-875))) (|has| |#2| (-628 (-875))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-628 (-875)))) ELT)) (-3940 (((-659 $) $) 130 T ELT)) (-3427 (((-114) $ $) 138 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) ELT)) (-1376 (((-114) $ $) 20 (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102))) ELT)) (-1389 (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) 46 T ELT)) (-1328 (((-3 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) "failed") |#1| $) 116 T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 33 (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) |#2|) $) 81 (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 119 (|has| $ (-6 -4423)) ELT)) (-2963 (((-114) $ $) 206 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ELT)) (-2964 (((-114) $ $) 208 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ELT)) (-3452 (((-114) $ $) 18 (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102))) ELT)) (-3083 (((-114) $ $) 207 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ELT)) (-3084 (((-114) $ $) 209 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-36 |#1| |#2|) (-142) (-1120) (-1120)) (T -36)) -((-1328 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-5 *2 (-2 (|:| -4288 *3) (|:| -2284 *4)))))) -(-13 (-1213 |t#1| |t#2|) (-684 (-2 (|:| -4288 |t#1|) (|:| -2284 |t#2|))) (-10 -8 (-15 -1328 ((-3 (-2 (|:| -4288 |t#1|) (|:| -2284 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-102) -3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-1120)) (|has| |#2| (-102))) ((-628 (-875)) -3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-628 (-875))) (|has| |#2| (-1120)) (|has| |#2| (-628 (-875)))) ((-153 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-629 (-546)) |has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-629 (-546))) ((-233 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-242 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-298 (-557) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-298 (-1253 (-557)) $) . T) ((-298 |#1| |#2|) . T) ((-300 (-557) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-300 |#1| |#2|) . T) ((-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) -12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ((-294 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-385 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-501 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-501 |#2|) . T) ((-614 (-557) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-614 |#1| |#2|) . T) ((-526 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) -12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ((-526 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ((-625 |#1| |#2|) . T) ((-669 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-684 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-859) |has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ((-862) |has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ((-1029 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-1120) -3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) (|has| |#2| (-1120))) ((-1169 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-1213 |#1| |#2|) . T) ((-1236) . T) ((-1275 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T)) -((-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-37 |#1| |#2|) (-10 -7 (-15 -4374 (|#1| |#2|)) (-15 -4374 (|#1| (-557))) (-15 -4374 ((-875) |#1|))) (-38 |#2|) (-175)) (T -37)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ |#1|) 49 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) -(((-38 |#1|) (-142) (-175)) (T -38)) -NIL -(-13 (-1068) (-735 |t#1|) (-631 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-631 (-557)) . T) ((-631 |#1|) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-658 |#1|) . T) ((-735 |#1|) . T) ((-744) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-3836 (((-417 |#1|) |#1|) 41 T ELT)) (-4160 (((-417 |#1|) |#1|) 30 T ELT) (((-417 |#1|) |#1| (-659 (-48))) 33 T ELT)) (-1329 (((-114) |#1|) 59 T ELT))) -(((-39 |#1|) (-10 -7 (-15 -4160 ((-417 |#1|) |#1| (-659 (-48)))) (-15 -4160 ((-417 |#1|) |#1|)) (-15 -3836 ((-417 |#1|) |#1|)) (-15 -1329 ((-114) |#1|))) (-1262 (-48))) (T -39)) -((-1329 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48))))) (-3836 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48))))) (-4160 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48))))) (-4160 (*1 *2 *3 *4) (-12 (-5 *4 (-659 (-48))) (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48)))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1848 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2271 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2269 (((-114) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1988 (((-707 (-419 |#2|)) (-1286 $)) NIL T ELT) (((-707 (-419 |#2|))) NIL T ELT)) (-3748 (((-419 |#2|) $) NIL T ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4399 (((-417 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1786 (((-114) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3536 (((-789)) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1862 (((-114)) NIL T ELT)) (-1861 (((-114) |#1|) NIL T ELT) (((-114) |#2|) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) NIL (|has| (-419 |#2|) (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| (-419 |#2|) (-1057 (-419 (-557)))) ELT) (((-3 (-419 |#2|) #1#) $) NIL T ELT)) (-3572 (((-557) $) NIL (|has| (-419 |#2|) (-1057 (-557))) ELT) (((-419 (-557)) $) NIL (|has| (-419 |#2|) (-1057 (-419 (-557)))) ELT) (((-419 |#2|) $) NIL T ELT)) (-1998 (($ (-1286 (-419 |#2|)) (-1286 $)) NIL T ELT) (($ (-1286 (-419 |#2|))) 61 T ELT) (($ (-1286 |#2|) |#2|) 131 T ELT)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-363)) ELT)) (-2961 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1987 (((-707 (-419 |#2|)) $ (-1286 $)) NIL T ELT) (((-707 (-419 |#2|)) $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| (-419 |#2|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| (-419 |#2|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-419 |#2|))) (|:| |vec| (-1286 (-419 |#2|)))) (-707 $) (-1286 $)) NIL T ELT) (((-707 (-419 |#2|)) (-707 $)) NIL T ELT)) (-1853 (((-1286 $) (-1286 $)) NIL T ELT)) (-4270 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-419 |#3|)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-1840 (((-659 (-659 |#1|))) NIL (|has| |#1| (-381)) ELT)) (-1865 (((-114) |#1| |#1|) NIL T ELT)) (-3509 (((-936)) NIL T ELT)) (-3393 (($) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1860 (((-114)) NIL T ELT)) (-1859 (((-114) |#1|) NIL T ELT) (((-114) |#2|) NIL T ELT)) (-2960 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3921 (($ $) NIL T ELT)) (-3232 (($) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1881 (((-114) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1972 (($ $ (-789)) NIL (|has| (-419 |#2|) (-363)) ELT) (($ $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4151 (((-114) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4200 (((-936) $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-843 (-936)) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-2639 (((-114) $) NIL T ELT)) (-3795 (((-789)) NIL T ELT)) (-1854 (((-1286 $) (-1286 $)) 106 T ELT)) (-3532 (((-419 |#2|) $) NIL T ELT)) (-1841 (((-659 (-963 |#1|)) (-1196)) NIL (|has| |#1| (-376)) ELT)) (-3863 (((-709 $) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2222 ((|#3| $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2218 (((-936) $) NIL (|has| (-419 |#2|) (-381)) ELT)) (-3478 ((|#3| $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| (-419 |#2|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| (-419 |#2|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-419 |#2|))) (|:| |vec| (-1286 (-419 |#2|)))) (-1286 $) $) NIL T ELT) (((-707 (-419 |#2|)) (-1286 $)) NIL T ELT)) (-2100 (($ (-659 $)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1330 (((-1292) (-789)) 84 T ELT)) (-1849 (((-707 (-419 |#2|))) 56 T ELT)) (-1851 (((-707 (-419 |#2|))) 49 T ELT)) (-2872 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1846 (($ (-1286 |#2|) |#2|) 132 T ELT)) (-1850 (((-707 (-419 |#2|))) 50 T ELT)) (-1852 (((-707 (-419 |#2|))) 48 T ELT)) (-1845 (((-2 (|:| |num| (-707 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130 T ELT)) (-1847 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) 68 T ELT)) (-1858 (((-1286 $)) 47 T ELT)) (-4346 (((-1286 $)) 46 T ELT)) (-1857 (((-114) $) NIL T ELT)) (-1856 (((-114) $) NIL T ELT) (((-114) $ |#1|) NIL T ELT) (((-114) $ |#2|) NIL T ELT)) (-3864 (($) NIL (|has| (-419 |#2|) (-363)) CONST)) (-2629 (($ (-936)) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1843 (((-3 |#2| #1#)) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1867 (((-789)) NIL T ELT)) (-2638 (($) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3560 (($ (-659 $)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4160 (((-417 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-419 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3884 (((-3 $ #1#) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1785 (((-789) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4228 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1844 (((-3 |#2| #1#)) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4185 (((-419 |#2|) (-1286 $)) NIL T ELT) (((-419 |#2|)) 44 T ELT)) (-1973 (((-789) $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-3 (-789) #1#) $ $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4186 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-789)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) 126 T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-3955 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196))))) ELT) (($ $ (-1196) (-789)) NIL (-3955 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196))))) ELT) (($ $ (-659 (-1196))) NIL (-3955 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196))))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196))))) ELT) (($ $ (-789)) NIL (-3955 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) NIL (-3955 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-2637 (((-707 (-419 |#2|)) (-1286 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3601 ((|#3|) 55 T ELT)) (-1875 (($) NIL (|has| (-419 |#2|) (-363)) ELT)) (-3640 (((-1286 (-419 |#2|)) $ (-1286 $)) NIL T ELT) (((-707 (-419 |#2|)) (-1286 $) (-1286 $)) NIL T ELT) (((-1286 (-419 |#2|)) $) 62 T ELT) (((-707 (-419 |#2|)) (-1286 $)) 107 T ELT)) (-4400 (((-1286 (-419 |#2|)) $) NIL T ELT) (($ (-1286 (-419 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1855 (((-1286 $) (-1286 $)) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ (-419 |#2|)) NIL T ELT) (($ (-419 (-557))) NIL (-3955 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-1057 (-419 (-557))))) ELT) (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3101 (($ $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-709 $) $) NIL (|has| (-419 |#2|) (-147)) ELT)) (-2836 ((|#3| $) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-1864 (((-114)) 42 T ELT)) (-1863 (((-114) |#1|) 54 T ELT) (((-114) |#2|) 138 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 $)) NIL T ELT)) (-2270 (((-114) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1842 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1866 (((-114)) NIL T ELT)) (-3057 (($) 17 T CONST)) (-3063 (($) 27 T CONST)) (-3068 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-789)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-3955 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196))))) ELT) (($ $ (-1196) (-789)) NIL (-3955 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196))))) ELT) (($ $ (-659 (-1196))) NIL (-3955 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196))))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196))))) ELT) (($ $ (-789)) NIL (-3955 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) NIL (-3955 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL (|has| (-419 |#2|) (-376)) ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 |#2|)) NIL T ELT) (($ (-419 |#2|) $) NIL T ELT) (($ (-419 (-557)) $) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-419 (-557))) NIL (|has| (-419 |#2|) (-376)) ELT))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-355 |#1| |#2| |#3|) (-10 -7 (-15 -1330 ((-1292) (-789))))) (-376) (-1262 |#1|) (-1262 (-419 |#2|)) |#3|) (T -40)) -((-1330 (*1 *2 *3) (-12 (-5 *3 (-789)) (-4 *4 (-376)) (-4 *5 (-1262 *4)) (-5 *2 (-1292)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1262 (-419 *5))) (-14 *7 *6)))) -((-1331 ((|#2| |#2|) 47 T ELT)) (-1336 ((|#2| |#2|) 138 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-464) (-1057 (-557))))) ELT)) (-1335 ((|#2| |#2|) 100 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-464) (-1057 (-557))))) ELT)) (-1334 ((|#2| |#2|) 101 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-464) (-1057 (-557))))) ELT)) (-1337 ((|#2| (-115) |#2| (-789)) 134 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-464) (-1057 (-557))))) ELT)) (-1333 (((-1190 |#2|) |#2|) 44 T ELT)) (-1332 ((|#2| |#2| (-659 (-626 |#2|))) 18 T ELT) ((|#2| |#2| (-659 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) -(((-41 |#1| |#2|) (-10 -7 (-15 -1331 (|#2| |#2|)) (-15 -1332 (|#2| |#2|)) (-15 -1332 (|#2| |#2| |#2|)) (-15 -1332 (|#2| |#2| (-659 |#2|))) (-15 -1332 (|#2| |#2| (-659 (-626 |#2|)))) (-15 -1333 ((-1190 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1057 (-557)))) (IF (|has| |#2| (-433 |#1|)) (PROGN (-15 -1334 (|#2| |#2|)) (-15 -1335 (|#2| |#2|)) (-15 -1336 (|#2| |#2|)) (-15 -1337 (|#2| (-115) |#2| (-789)))) |%noBranch|) |%noBranch|)) (-568) (-13 (-376) (-310) (-10 -8 (-15 -3397 ((-1144 |#1| (-626 $)) $)) (-15 -3396 ((-1144 |#1| (-626 $)) $)) (-15 -4374 ($ (-1144 |#1| (-626 $))))))) (T -41)) -((-1337 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-789)) (-4 *5 (-13 (-464) (-1057 (-557)))) (-4 *5 (-568)) (-5 *1 (-41 *5 *2)) (-4 *2 (-433 *5)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3397 ((-1144 *5 (-626 $)) $)) (-15 -3396 ((-1144 *5 (-626 $)) $)) (-15 -4374 ($ (-1144 *5 (-626 $))))))))) (-1336 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-557)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3397 ((-1144 *3 (-626 $)) $)) (-15 -3396 ((-1144 *3 (-626 $)) $)) (-15 -4374 ($ (-1144 *3 (-626 $))))))))) (-1335 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-557)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3397 ((-1144 *3 (-626 $)) $)) (-15 -3396 ((-1144 *3 (-626 $)) $)) (-15 -4374 ($ (-1144 *3 (-626 $))))))))) (-1334 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-557)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3397 ((-1144 *3 (-626 $)) $)) (-15 -3396 ((-1144 *3 (-626 $)) $)) (-15 -4374 ($ (-1144 *3 (-626 $))))))))) (-1333 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1190 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-376) (-310) (-10 -8 (-15 -3397 ((-1144 *4 (-626 $)) $)) (-15 -3396 ((-1144 *4 (-626 $)) $)) (-15 -4374 ($ (-1144 *4 (-626 $))))))))) (-1332 (*1 *2 *2 *3) (-12 (-5 *3 (-659 (-626 *2))) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3397 ((-1144 *4 (-626 $)) $)) (-15 -3396 ((-1144 *4 (-626 $)) $)) (-15 -4374 ($ (-1144 *4 (-626 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-1332 (*1 *2 *2 *3) (-12 (-5 *3 (-659 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3397 ((-1144 *4 (-626 $)) $)) (-15 -3396 ((-1144 *4 (-626 $)) $)) (-15 -4374 ($ (-1144 *4 (-626 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-1332 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3397 ((-1144 *3 (-626 $)) $)) (-15 -3396 ((-1144 *3 (-626 $)) $)) (-15 -4374 ($ (-1144 *3 (-626 $))))))))) (-1332 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3397 ((-1144 *3 (-626 $)) $)) (-15 -3396 ((-1144 *3 (-626 $)) $)) (-15 -4374 ($ (-1144 *3 (-626 $))))))))) (-1331 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3397 ((-1144 *3 (-626 $)) $)) (-15 -3396 ((-1144 *3 (-626 $)) $)) (-15 -4374 ($ (-1144 *3 (-626 $)))))))))) -((-4160 (((-417 (-1190 |#3|)) (-1190 |#3|) (-659 (-48))) 23 T ELT) (((-417 |#3|) |#3| (-659 (-48))) 19 T ELT))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4160 ((-417 |#3|) |#3| (-659 (-48)))) (-15 -4160 ((-417 (-1190 |#3|)) (-1190 |#3|) (-659 (-48))))) (-859) (-813) (-967 (-48) |#2| |#1|)) (T -42)) -((-4160 (*1 *2 *3 *4) (-12 (-5 *4 (-659 (-48))) (-4 *5 (-859)) (-4 *6 (-813)) (-4 *7 (-967 (-48) *6 *5)) (-5 *2 (-417 (-1190 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1190 *7)))) (-4160 (*1 *2 *3 *4) (-12 (-5 *4 (-659 (-48))) (-4 *5 (-859)) (-4 *6 (-813)) (-5 *2 (-417 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-967 (-48) *6 *5))))) -((-1341 (((-789) |#2|) 70 T ELT)) (-1339 (((-789) |#2|) 74 T ELT)) (-1354 (((-659 |#2|)) 37 T ELT)) (-1338 (((-789) |#2|) 73 T ELT)) (-1340 (((-789) |#2|) 69 T ELT)) (-1342 (((-789) |#2|) 72 T ELT)) (-1352 (((-659 (-707 |#1|))) 65 T ELT)) (-1347 (((-659 |#2|)) 60 T ELT)) (-1345 (((-659 |#2|) |#2|) 48 T ELT)) (-1349 (((-659 |#2|)) 62 T ELT)) (-1348 (((-659 |#2|)) 61 T ELT)) (-1351 (((-659 (-707 |#1|))) 53 T ELT)) (-1346 (((-659 |#2|)) 59 T ELT)) (-1344 (((-659 |#2|) |#2|) 47 T ELT)) (-1343 (((-659 |#2|)) 55 T ELT)) (-1353 (((-659 (-707 |#1|))) 66 T ELT)) (-1350 (((-659 |#2|)) 64 T ELT)) (-2220 (((-1286 |#2|) (-1286 |#2|)) 99 (|has| |#1| (-319)) ELT))) -(((-43 |#1| |#2|) (-10 -7 (-15 -1338 ((-789) |#2|)) (-15 -1339 ((-789) |#2|)) (-15 -1340 ((-789) |#2|)) (-15 -1341 ((-789) |#2|)) (-15 -1342 ((-789) |#2|)) (-15 -1343 ((-659 |#2|))) (-15 -1344 ((-659 |#2|) |#2|)) (-15 -1345 ((-659 |#2|) |#2|)) (-15 -1346 ((-659 |#2|))) (-15 -1347 ((-659 |#2|))) (-15 -1348 ((-659 |#2|))) (-15 -1349 ((-659 |#2|))) (-15 -1350 ((-659 |#2|))) (-15 -1351 ((-659 (-707 |#1|)))) (-15 -1352 ((-659 (-707 |#1|)))) (-15 -1353 ((-659 (-707 |#1|)))) (-15 -1354 ((-659 |#2|))) (IF (|has| |#1| (-319)) (-15 -2220 ((-1286 |#2|) (-1286 |#2|))) |%noBranch|)) (-568) (-430 |#1|)) (T -43)) -((-2220 (*1 *2 *2) (-12 (-5 *2 (-1286 *4)) (-4 *4 (-430 *3)) (-4 *3 (-319)) (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) (-1354 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-659 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1353 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-659 (-707 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1352 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-659 (-707 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1351 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-659 (-707 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1350 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-659 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1349 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-659 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1348 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-659 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1347 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-659 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1346 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-659 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1345 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-659 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1344 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-659 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1343 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-659 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1342 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-789)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1341 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-789)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1340 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-789)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1339 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-789)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1338 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-789)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1978 (((-3 $ #1="failed")) NIL (|has| |#1| (-568)) ELT)) (-1424 (((-3 $ #1#) $ $) NIL T ELT)) (-3639 (((-1286 (-707 |#1|)) (-1286 $)) NIL T ELT) (((-1286 (-707 |#1|))) 24 T ELT)) (-1930 (((-1286 $)) 52 T ELT)) (-4152 (($) NIL T CONST)) (-2115 (((-3 (-2 (|:| |particular| $) (|:| -2220 (-659 $))) #1#)) NIL (|has| |#1| (-568)) ELT)) (-1904 (((-3 $ #1#)) NIL (|has| |#1| (-568)) ELT)) (-1994 (((-707 |#1|) (-1286 $)) NIL T ELT) (((-707 |#1|)) NIL T ELT)) (-1928 ((|#1| $) NIL T ELT)) (-1992 (((-707 |#1|) $ (-1286 $)) NIL T ELT) (((-707 |#1|) $) NIL T ELT)) (-2633 (((-3 $ #1#) $) NIL (|has| |#1| (-568)) ELT)) (-2109 (((-1190 (-963 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-2636 (($ $ (-936)) NIL T ELT)) (-1926 ((|#1| $) NIL T ELT)) (-1906 (((-1190 |#1|) $) NIL (|has| |#1| (-568)) ELT)) (-1996 ((|#1| (-1286 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1924 (((-1190 |#1|) $) NIL T ELT)) (-1918 (((-114)) 99 T ELT)) (-1998 (($ (-1286 |#1|) (-1286 $)) NIL T ELT) (($ (-1286 |#1|)) NIL T ELT)) (-3885 (((-3 $ #1#) $) 14 (|has| |#1| (-568)) ELT)) (-3509 (((-936)) 53 T ELT)) (-1915 (((-114)) NIL T ELT)) (-2660 (($ $ (-936)) NIL T ELT)) (-1911 (((-114)) NIL T ELT)) (-1909 (((-114)) NIL T ELT)) (-1913 (((-114)) 101 T ELT)) (-2116 (((-3 (-2 (|:| |particular| $) (|:| -2220 (-659 $))) #1#)) NIL (|has| |#1| (-568)) ELT)) (-1905 (((-3 $ #1#)) NIL (|has| |#1| (-568)) ELT)) (-1995 (((-707 |#1|) (-1286 $)) NIL T ELT) (((-707 |#1|)) NIL T ELT)) (-1929 ((|#1| $) NIL T ELT)) (-1993 (((-707 |#1|) $ (-1286 $)) NIL T ELT) (((-707 |#1|) $) NIL T ELT)) (-2634 (((-3 $ #1#) $) NIL (|has| |#1| (-568)) ELT)) (-2113 (((-1190 (-963 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-2635 (($ $ (-936)) NIL T ELT)) (-1927 ((|#1| $) NIL T ELT)) (-1907 (((-1190 |#1|) $) NIL (|has| |#1| (-568)) ELT)) (-1997 ((|#1| (-1286 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1925 (((-1190 |#1|) $) NIL T ELT)) (-1919 (((-114)) 98 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1910 (((-114)) 106 T ELT)) (-1912 (((-114)) 105 T ELT)) (-1914 (((-114)) 107 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1917 (((-114)) 100 T ELT)) (-4228 ((|#1| $ (-557)) 55 T ELT)) (-3640 (((-1286 |#1|) $ (-1286 $)) 48 T ELT) (((-707 |#1|) (-1286 $) (-1286 $)) NIL T ELT) (((-1286 |#1|) $) 28 T ELT) (((-707 |#1|) (-1286 $)) NIL T ELT)) (-4400 (((-1286 |#1|) $) NIL T ELT) (($ (-1286 |#1|)) NIL T ELT)) (-2101 (((-659 (-963 |#1|)) (-1286 $)) NIL T ELT) (((-659 (-963 |#1|))) NIL T ELT)) (-2822 (($ $ $) NIL T ELT)) (-1923 (((-114)) 95 T ELT)) (-4374 (((-875) $) 71 T ELT) (($ (-1286 |#1|)) 22 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 $)) 51 T ELT)) (-1908 (((-659 (-1286 |#1|))) NIL (|has| |#1| (-568)) ELT)) (-2823 (($ $ $ $) NIL T ELT)) (-1921 (((-114)) 91 T ELT)) (-2942 (($ (-707 |#1|) $) 18 T ELT)) (-2821 (($ $ $) NIL T ELT)) (-1922 (((-114)) 97 T ELT)) (-1920 (((-114)) 92 T ELT)) (-1916 (((-114)) 90 T ELT)) (-3057 (($) NIL T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1161 |#2| |#1|) $) 19 T ELT))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-430 |#1|) (-666 (-1161 |#2| |#1|)) (-10 -8 (-15 -4374 ($ (-1286 |#1|))))) (-376) (-936) (-659 (-1196)) (-1286 (-707 |#1|))) (T -44)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-376)) (-14 *6 (-1286 (-707 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-936)) (-14 *5 (-659 (-1196)))))) -((-2965 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3820 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-4223 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-4225 (($ $) NIL T ELT)) (-4025 (($) NIL T ELT) (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-2411 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4424)) ELT) (((-1292) $ (-557) (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-4213 (($ $ (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-1933 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT) (((-114) $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ELT)) (-1931 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859))) ELT)) (-3308 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ELT)) (-3860 (((-114) $ (-789)) NIL T ELT)) (-3424 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (|has| $ (-6 -4424)) ELT)) (-4215 (($ $ $) 33 (|has| $ (-6 -4424)) ELT)) (-4214 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (|has| $ (-6 -4424)) ELT)) (-4217 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 35 (|has| $ (-6 -4424)) ELT)) (-4216 ((|#2| $ |#1| |#2|) 53 T ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-557) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-1253 (-557)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ #1="last" (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (|has| $ (-6 -4424)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ #3="first" (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ #4="value" (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (|has| $ (-6 -4424)) ELT)) (-3425 (($ $ (-659 $)) NIL (|has| $ (-6 -4424)) ELT)) (-1711 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT)) (-4138 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4224 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-2444 (((-3 |#2| #5="failed") |#1| $) 43 T ELT)) (-4152 (($) NIL T CONST)) (-2508 (($ $) NIL (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) NIL T ELT)) (-4227 (($ $ (-789)) NIL T ELT) (($ $) 29 T ELT)) (-2592 (($ $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT)) (-3823 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-3 |#2| #5#) |#1| $) 56 T ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT) (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) ELT)) (-3824 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (|has| $ (-6 -4423)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (|has| $ (-6 -4423)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-1717 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-557) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-557)) NIL T ELT)) (-3861 (((-114) $) NIL T ELT)) (-3837 (((-557) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT) (((-557) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) ELT) (((-557) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-557)) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) ELT)) (-3288 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 20 (|has| $ (-6 -4423)) ELT) (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 20 (|has| $ (-6 -4423)) ELT)) (-3430 (((-659 $) $) NIL T ELT)) (-3426 (((-114) $ $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) ELT)) (-4042 (($ (-789) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL T ELT)) (-4147 (((-114) $ (-789)) NIL T ELT)) (-2413 ((|#1| $) NIL (|has| |#1| (-859)) ELT) (((-557) $) 38 (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ELT)) (-3255 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ELT)) (-3936 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ELT)) (-3005 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT) (((-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT)) (-2414 ((|#1| $) NIL (|has| |#1| (-859)) ELT) (((-557) $) 40 (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ELT)) (-2158 (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT)) (-3960 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL T ELT)) (-4144 (((-114) $ (-789)) NIL T ELT)) (-3429 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT)) (-3945 (((-114) $) NIL T ELT)) (-3658 (((-1178) $) 49 (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| |#2| (-1120))) ELT)) (-4226 (($ $ (-789)) NIL T ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-2882 (((-659 |#1|) $) 22 T ELT)) (-2445 (((-114) |#1| $) NIL T ELT)) (-1387 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-4035 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT) (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-557)) NIL T ELT) (($ $ $ (-557)) NIL T ELT)) (-2515 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-557)) NIL T ELT) (($ $ $ (-557)) NIL T ELT)) (-2416 (((-659 |#1|) $) NIL T ELT) (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) |#1| $) NIL T ELT) (((-114) (-557) $) NIL T ELT)) (-3659 (((-1139) $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| |#2| (-1120))) ELT)) (-4229 ((|#2| $) NIL (|has| |#1| (-859)) ELT) (($ $ (-789)) NIL T ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 27 T ELT)) (-1466 (((-3 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) #5#) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) #5#) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT)) (-2412 (($ $ |#2|) NIL (|has| $ (-6 -4424)) ELT) (($ $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (|has| $ (-6 -4424)) ELT)) (-1388 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-3862 (((-114) $) NIL T ELT)) (-2156 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-659 |#2|) (-659 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-659 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-659 (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT) (((-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT)) (-2418 (((-659 |#2|) $) NIL T ELT) (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 19 T ELT)) (-3821 (((-114) $) 18 T ELT)) (-3991 (($) 14 T ELT)) (-4228 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-557) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL T ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ (-557)) NIL T ELT) (($ $ (-1253 (-557))) NIL T ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $ #4#) NIL T ELT)) (-3428 (((-557) $ $) NIL T ELT)) (-1596 (($) 13 T ELT) (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-1712 (($ $ (-557)) NIL T ELT) (($ $ (-1253 (-557))) NIL T ELT)) (-2516 (($ $ (-557)) NIL T ELT) (($ $ (-1253 (-557))) NIL T ELT)) (-4061 (((-114) $) NIL T ELT)) (-4220 (($ $) NIL T ELT)) (-4218 (($ $) NIL (|has| $ (-6 -4424)) ELT)) (-4221 (((-789) $) NIL T ELT)) (-4222 (($ $) NIL T ELT)) (-2155 (((-789) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-789) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT) (((-789) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-789) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-1932 (($ $ $ (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-629 (-546))) ELT)) (-3948 (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT) (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-4219 (($ $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-4230 (($ $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL T ELT) (($ (-659 $)) NIL T ELT) (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 31 T ELT) (($ $ $) NIL T ELT)) (-4374 (((-875) $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-628 (-875))) (|has| |#2| (-628 (-875)))) ELT)) (-3940 (((-659 $) $) NIL T ELT)) (-3427 (((-114) $ $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) ELT)) (-1376 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1389 (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-1328 (((-3 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) #5#) |#1| $) 51 T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-2963 (((-114) $ $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ELT)) (-3452 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3083 (((-114) $ $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-859)) ELT)) (-4385 (((-789) $) 25 (|has| $ (-6 -4423)) ELT))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1120) (-1120)) (T -45)) -NIL -((-4365 (((-114) $) 12 T ELT)) (-4386 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-419 (-557)) $) 25 T ELT) (($ $ (-419 (-557))) NIL T ELT))) -(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-419 (-557)))) (-15 * (|#1| (-419 (-557)) |#1|)) (-15 -4365 ((-114) |#1|)) (-15 -4386 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-557) |#1|)) (-15 * (|#1| (-789) |#1|)) (-15 * (|#1| (-936) |#1|))) (-47 |#2| |#3|) (-1068) (-812)) (T -46)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 68 (|has| |#1| (-568)) ELT)) (-2271 (($ $) 69 (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) 71 (|has| |#1| (-568)) ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-4387 (($ $) 77 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-4365 (((-114) $) 79 T ELT)) (-3292 (($ |#1| |#2|) 78 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3293 (($ $) 82 T ELT)) (-3590 ((|#1| $) 83 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3884 (((-3 $ "failed") $ $) 67 (|has| |#1| (-568)) ELT)) (-4376 ((|#2| $) 81 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ (-419 (-557))) 74 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $) 66 (|has| |#1| (-568)) ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT)) (-4105 ((|#1| $ |#2|) 76 T ELT)) (-3101 (((-709 $) $) 65 (|has| |#1| (-147)) ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 70 (|has| |#1| (-568)) ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-557)) $) 73 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) 72 (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-47 |#1| |#2|) (-142) (-1068) (-812)) (T -47)) -((-3590 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-812)) (-4 *2 (-1068)))) (-3293 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-812)))) (-4376 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-812)))) (-4386 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812)))) (-4365 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812)) (-5 *2 (-114)))) (-3292 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-812)))) (-4387 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-812)))) (-4105 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-812)) (-4 *2 (-1068)))) (-4377 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-812)) (-4 *2 (-376))))) -(-13 (-1068) (-111 |t#1| |t#1|) (-10 -8 (-15 -3590 (|t#1| $)) (-15 -3293 ($ $)) (-15 -4376 (|t#2| $)) (-15 -4386 ($ (-1 |t#1| |t#1|) $)) (-15 -4365 ((-114) $)) (-15 -3292 ($ |t#1| |t#2|)) (-15 -4387 ($ $)) (-15 -4105 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-376)) (-15 -4377 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-6 (-175)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-568)) (-6 (-568)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-557)))) (-6 (-38 (-419 (-557)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-631 (-557)) . T) ((-631 |#1|) |has| |#1| (-175)) ((-631 $) |has| |#1| (-568)) ((-628 (-875)) . T) ((-175) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-302) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-664 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-666 |#1|) . T) ((-666 $) . T) ((-658 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-658 |#1|) |has| |#1| (-175)) ((-658 $) |has| |#1| (-568)) ((-735 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-735 |#1|) |has| |#1| (-175)) ((-735 $) |has| |#1| (-568)) ((-744) . T) ((-1070 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-1070 |#1|) . T) ((-1070 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-1075 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-1075 |#1|) . T) ((-1075 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-1748 (((-659 $) (-1190 $) (-1196)) NIL T ELT) (((-659 $) (-1190 $)) NIL T ELT) (((-659 $) (-963 $)) NIL T ELT)) (-1321 (($ (-1190 $) (-1196)) NIL T ELT) (($ (-1190 $)) NIL T ELT) (($ (-963 $)) NIL T ELT)) (-3604 (((-114) $) 9 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-1741 (((-659 (-626 $)) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1745 (($ $ (-305 $)) NIL T ELT) (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-659 (-626 $)) (-659 $)) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-3436 (($ $) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-1322 (((-659 $) (-1190 $) (-1196)) NIL T ELT) (((-659 $) (-1190 $)) NIL T ELT) (((-659 $) (-963 $)) NIL T ELT)) (-3599 (($ (-1190 $) (-1196)) NIL T ELT) (($ (-1190 $)) NIL T ELT) (($ (-963 $)) NIL T ELT)) (-3573 (((-3 (-626 $) #1#) $) NIL T ELT) (((-3 (-557) #1#) $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL T ELT)) (-3572 (((-626 $) $) NIL T ELT) (((-557) $) NIL T ELT) (((-419 (-557)) $) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-2491 (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL T ELT) (((-707 (-557)) (-707 $)) NIL T ELT) (((-2 (|:| -1781 (-707 (-419 (-557)))) (|:| |vec| (-1286 (-419 (-557))))) (-707 $) (-1286 $)) NIL T ELT) (((-707 (-419 (-557))) (-707 $)) NIL T ELT)) (-4270 (($ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-2970 (($ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-1740 (((-659 (-115)) $) NIL T ELT)) (-4021 (((-115) (-115)) NIL T ELT)) (-2639 (((-114) $) 11 T ELT)) (-3072 (((-114) $) NIL (|has| $ (-1057 (-557))) ELT)) (-3397 (((-1144 (-557) (-626 $)) $) NIL T ELT)) (-3410 (($ $ (-557)) NIL T ELT)) (-3532 (((-1190 $) (-1190 $) (-626 $)) NIL T ELT) (((-1190 $) (-1190 $) (-659 (-626 $))) NIL T ELT) (($ $ (-626 $)) NIL T ELT) (($ $ (-659 (-626 $))) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-1738 (((-1190 $) (-626 $)) NIL (|has| $ (-1068)) ELT)) (-4386 (($ (-1 $ $) (-626 $)) NIL T ELT)) (-1743 (((-3 (-626 $) #1#) $) NIL T ELT)) (-2492 (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL T ELT) (((-707 (-557)) (-1286 $)) NIL T ELT) (((-2 (|:| -1781 (-707 (-419 (-557)))) (|:| |vec| (-1286 (-419 (-557))))) (-1286 $) $) NIL T ELT) (((-707 (-419 (-557))) (-1286 $)) NIL T ELT)) (-2100 (($ (-659 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1742 (((-659 (-626 $)) $) NIL T ELT)) (-2447 (($ (-115) $) NIL T ELT) (($ (-115) (-659 $)) NIL T ELT)) (-3030 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1196)) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3000 (((-789) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ (-659 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1739 (((-114) $ $) NIL T ELT) (((-114) $ (-1196)) NIL T ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-3073 (((-114) $) NIL (|has| $ (-1057 (-557))) ELT)) (-4196 (($ $ (-626 $) $) NIL T ELT) (($ $ (-659 (-626 $)) (-659 $)) NIL T ELT) (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-1 $ $))) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-1 $ (-659 $)))) NIL T ELT) (($ $ (-1196) (-1 $ (-659 $))) NIL T ELT) (($ $ (-1196) (-1 $ $)) NIL T ELT) (($ $ (-659 (-115)) (-659 (-1 $ $))) NIL T ELT) (($ $ (-659 (-115)) (-659 (-1 $ (-659 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-659 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-4228 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-659 $)) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-1744 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4186 (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-3396 (((-1144 (-557) (-626 $)) $) NIL T ELT)) (-3601 (($ $) NIL (|has| $ (-1068)) ELT)) (-4400 (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (((-171 (-391)) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-626 $)) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ $) NIL T ELT) (($ (-557)) NIL T ELT) (($ (-1144 (-557) (-626 $))) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-2987 (($ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-2466 (((-114) (-115)) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-3057 (($) 6 T CONST)) (-3063 (($) 10 T CONST)) (-3068 (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-3452 (((-114) $ $) 13 T ELT)) (-4377 (($ $ $) NIL T ELT)) (-4265 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-419 (-557))) NIL T ELT) (($ $ (-557)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-936)) NIL T ELT)) (* (($ (-419 (-557)) $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-936) $) NIL T ELT))) -(((-48) (-13 (-310) (-27) (-1057 (-557)) (-1057 (-419 (-557))) (-656 (-557)) (-1039) (-656 (-419 (-557))) (-149) (-629 (-171 (-391))) (-240) (-631 (-1144 (-557) (-626 $))) (-10 -8 (-15 -3397 ((-1144 (-557) (-626 $)) $)) (-15 -3396 ((-1144 (-557) (-626 $)) $)) (-15 -4270 ($ $)) (-15 -3532 ((-1190 $) (-1190 $) (-626 $))) (-15 -3532 ((-1190 $) (-1190 $) (-659 (-626 $)))) (-15 -3532 ($ $ (-626 $))) (-15 -3532 ($ $ (-659 (-626 $))))))) (T -48)) -((-3397 (*1 *2 *1) (-12 (-5 *2 (-1144 (-557) (-626 (-48)))) (-5 *1 (-48)))) (-3396 (*1 *2 *1) (-12 (-5 *2 (-1144 (-557) (-626 (-48)))) (-5 *1 (-48)))) (-4270 (*1 *1 *1) (-5 *1 (-48))) (-3532 (*1 *2 *2 *3) (-12 (-5 *2 (-1190 (-48))) (-5 *3 (-626 (-48))) (-5 *1 (-48)))) (-3532 (*1 *2 *2 *3) (-12 (-5 *2 (-1190 (-48))) (-5 *3 (-659 (-626 (-48)))) (-5 *1 (-48)))) (-3532 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-48))) (-5 *1 (-48)))) (-3532 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-626 (-48)))) (-5 *1 (-48))))) -((-2965 (((-114) $ $) NIL T ELT)) (-2147 (((-659 (-518)) $) 17 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 7 T ELT)) (-3649 (((-1201) $) 18 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-49) (-13 (-1120) (-10 -8 (-15 -2147 ((-659 (-518)) $)) (-15 -3649 ((-1201) $))))) (T -49)) -((-2147 (*1 *2 *1) (-12 (-5 *2 (-659 (-518))) (-5 *1 (-49)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-49))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 85 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3061 (((-114) $) 30 T ELT)) (-3573 (((-3 |#1| #1#) $) 33 T ELT)) (-3572 ((|#1| $) 34 T ELT)) (-4387 (($ $) 40 T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3590 ((|#1| $) 31 T ELT)) (-1585 (($ $) 74 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1584 (((-114) $) 43 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2638 (($ (-789)) 72 T ELT)) (-4371 (($ (-659 (-557))) 73 T ELT)) (-4376 (((-789) $) 44 T ELT)) (-4374 (((-875) $) 91 T ELT) (($ (-557)) 69 T ELT) (($ |#1|) 67 T ELT)) (-4105 ((|#1| $ $) 28 T ELT)) (-3526 (((-789)) 71 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 45 T CONST)) (-3063 (($) 17 T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 64 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 65 T ELT) (($ |#1| $) 58 T ELT))) -(((-50 |#1| |#2|) (-13 (-636 |#1|) (-1057 |#1|) (-10 -8 (-15 -3590 (|#1| $)) (-15 -1585 ($ $)) (-15 -4387 ($ $)) (-15 -4105 (|#1| $ $)) (-15 -2638 ($ (-789))) (-15 -4371 ($ (-659 (-557)))) (-15 -1584 ((-114) $)) (-15 -3061 ((-114) $)) (-15 -4376 ((-789) $)) (-15 -4386 ($ (-1 |#1| |#1|) $)))) (-1068) (-659 (-1196))) (T -50)) -((-3590 (*1 *2 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-50 *2 *3)) (-14 *3 (-659 (-1196))))) (-1585 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1068)) (-14 *3 (-659 (-1196))))) (-4387 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1068)) (-14 *3 (-659 (-1196))))) (-4105 (*1 *2 *1 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-50 *2 *3)) (-14 *3 (-659 (-1196))))) (-2638 (*1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) (-14 *4 (-659 (-1196))))) (-4371 (*1 *1 *2) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) (-14 *4 (-659 (-1196))))) (-1584 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) (-14 *4 (-659 (-1196))))) (-3061 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) (-14 *4 (-659 (-1196))))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) (-14 *4 (-659 (-1196))))) (-4386 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-50 *3 *4)) (-14 *4 (-659 (-1196)))))) -((-2965 (((-114) $ $) NIL T ELT)) (-1355 (((-791) $) 8 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1356 (((-1122) $) 10 T ELT)) (-4374 (((-875) $) 15 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-1357 (($ (-1122) (-791)) 16 T ELT)) (-3452 (((-114) $ $) 12 T ELT))) -(((-51) (-13 (-1120) (-10 -8 (-15 -1357 ($ (-1122) (-791))) (-15 -1356 ((-1122) $)) (-15 -1355 ((-791) $))))) (T -51)) -((-1357 (*1 *1 *2 *3) (-12 (-5 *2 (-1122)) (-5 *3 (-791)) (-5 *1 (-51)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-51)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-51))))) -((-3061 (((-114) (-51)) 18 T ELT)) (-3573 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3572 ((|#1| (-51)) 21 T ELT)) (-4374 (((-51) |#1|) 14 T ELT))) -(((-52 |#1|) (-10 -7 (-15 -4374 ((-51) |#1|)) (-15 -3573 ((-3 |#1| "failed") (-51))) (-15 -3061 ((-114) (-51))) (-15 -3572 (|#1| (-51)))) (-1236)) (T -52)) -((-3572 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1236)))) (-3061 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-114)) (-5 *1 (-52 *4)) (-4 *4 (-1236)))) (-3573 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1236)))) (-4374 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1236))))) -((-2942 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2942 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1068) (-666 |#1|) (-864 |#1|)) (T -53)) -((-2942 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-666 *5)) (-4 *5 (-1068)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-864 *5))))) -((-1359 ((|#3| |#3| (-659 (-1196))) 44 T ELT)) (-1358 ((|#3| (-659 (-1094 |#1| |#2| |#3|)) |#3| (-936)) 32 T ELT) ((|#3| (-659 (-1094 |#1| |#2| |#3|)) |#3|) 31 T ELT))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1358 (|#3| (-659 (-1094 |#1| |#2| |#3|)) |#3|)) (-15 -1358 (|#3| (-659 (-1094 |#1| |#2| |#3|)) |#3| (-936))) (-15 -1359 (|#3| |#3| (-659 (-1196))))) (-1120) (-13 (-1068) (-899 |#1|) (-629 (-903 |#1|))) (-13 (-433 |#2|) (-899 |#1|) (-629 (-903 |#1|)))) (T -54)) -((-1359 (*1 *2 *2 *3) (-12 (-5 *3 (-659 (-1196))) (-4 *4 (-1120)) (-4 *5 (-13 (-1068) (-899 *4) (-629 (-903 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-899 *4) (-629 (-903 *4)))))) (-1358 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-659 (-1094 *5 *6 *2))) (-5 *4 (-936)) (-4 *5 (-1120)) (-4 *6 (-13 (-1068) (-899 *5) (-629 (-903 *5)))) (-4 *2 (-13 (-433 *6) (-899 *5) (-629 (-903 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1358 (*1 *2 *3 *2) (-12 (-5 *3 (-659 (-1094 *4 *5 *2))) (-4 *4 (-1120)) (-4 *5 (-13 (-1068) (-899 *4) (-629 (-903 *4)))) (-4 *2 (-13 (-433 *5) (-899 *4) (-629 (-903 *4)))) (-5 *1 (-54 *4 *5 *2))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 14 T ELT)) (-3573 (((-3 (-789) "failed") $) 32 T ELT)) (-3572 (((-789) $) NIL T ELT)) (-2639 (((-114) $) 16 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) 18 T ELT)) (-4374 (((-875) $) 23 T ELT) (($ (-789)) 29 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-1360 (($) 11 T CONST)) (-3452 (((-114) $ $) 20 T ELT))) -(((-55) (-13 (-1120) (-1057 (-789)) (-10 -8 (-15 -1360 ($) -4380) (-15 -3604 ((-114) $)) (-15 -2639 ((-114) $))))) (T -55)) -((-1360 (*1 *1) (-5 *1 (-55))) (-3604 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55))))) -((-1362 (($ $ (-557) |#3|) 60 T ELT)) (-1361 (($ $ (-557) |#4|) 64 T ELT)) (-3512 ((|#3| $ (-557)) 73 T ELT)) (-3288 (((-659 |#2|) $) 41 T ELT)) (-3661 (((-114) |#2| $) 68 T ELT)) (-2158 (($ (-1 |#2| |#2|) $) 49 T ELT)) (-4386 (($ (-1 |#2| |#2|) $) 48 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 52 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 56 T ELT)) (-2412 (($ $ |#2|) 46 T ELT)) (-2156 (((-114) (-1 (-114) |#2|) $) 21 T ELT)) (-4228 ((|#2| $ (-557) (-557)) NIL T ELT) ((|#2| $ (-557) (-557) |#2|) 29 T ELT)) (-2155 (((-789) (-1 (-114) |#2|) $) 35 T ELT) (((-789) |#2| $) 70 T ELT)) (-3818 (($ $) 45 T ELT)) (-3511 ((|#4| $ (-557)) 76 T ELT)) (-4374 (((-875) $) 82 T ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) 20 T ELT)) (-3452 (((-114) $ $) 67 T ELT)) (-4385 (((-789) $) 26 T ELT))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3452 ((-114) |#1| |#1|)) (-15 -4374 ((-875) |#1|)) (-15 -4386 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4386 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2158 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1361 (|#1| |#1| (-557) |#4|)) (-15 -1362 (|#1| |#1| (-557) |#3|)) (-15 -3288 ((-659 |#2|) |#1|)) (-15 -3511 (|#4| |#1| (-557))) (-15 -3512 (|#3| |#1| (-557))) (-15 -4228 (|#2| |#1| (-557) (-557) |#2|)) (-15 -4228 (|#2| |#1| (-557) (-557))) (-15 -2412 (|#1| |#1| |#2|)) (-15 -3661 ((-114) |#2| |#1|)) (-15 -2155 ((-789) |#2| |#1|)) (-15 -2155 ((-789) (-1 (-114) |#2|) |#1|)) (-15 -2156 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2157 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4386 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4385 ((-789) |#1|)) (-15 -3818 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1236) (-385 |#2|) (-385 |#2|)) (T -56)) -NIL -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4216 ((|#1| $ (-557) (-557) |#1|) 48 T ELT)) (-1362 (($ $ (-557) |#2|) 46 T ELT)) (-1361 (($ $ (-557) |#3|) 45 T ELT)) (-4152 (($) 7 T CONST)) (-3512 ((|#2| $ (-557)) 50 T ELT)) (-1717 ((|#1| $ (-557) (-557) |#1|) 47 T ELT)) (-3513 ((|#1| $ (-557) (-557)) 52 T ELT)) (-3288 (((-659 |#1|) $) 30 T ELT)) (-3515 (((-789) $) 55 T ELT)) (-4042 (($ (-789) (-789) |#1|) 61 T ELT)) (-3514 (((-789) $) 54 T ELT)) (-3519 (((-557) $) 59 T ELT)) (-3517 (((-557) $) 57 T ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3518 (((-557) $) 58 T ELT)) (-3516 (((-557) $) 56 T ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-2412 (($ $ |#1|) 60 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-4228 ((|#1| $ (-557) (-557)) 53 T ELT) ((|#1| $ (-557) (-557) |#1|) 51 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-3511 ((|#3| $ (-557)) 49 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-57 |#1| |#2| |#3|) (-142) (-1236) (-385 |t#1|) (-385 |t#1|)) (T -57)) -((-4386 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4042 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-789)) (-4 *3 (-1236)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2412 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1236)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-557)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-557)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-557)))) (-3516 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-557)))) (-3515 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-789)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-789)))) (-4228 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-557)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1236)))) (-3513 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-557)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1236)))) (-4228 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-557)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-3512 (*1 *2 *1 *3) (-12 (-5 *3 (-557)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1236)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-3511 (*1 *2 *1 *3) (-12 (-5 *3 (-557)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1236)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-3288 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-659 *3)))) (-4216 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-557)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-1717 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-557)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-1362 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-557)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1236)) (-4 *3 (-385 *4)) (-4 *5 (-385 *4)))) (-1361 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-557)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1236)) (-4 *5 (-385 *4)) (-4 *3 (-385 *4)))) (-2158 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4386 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4386 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) -(-13 (-501 |t#1|) (-10 -8 (-6 -4424) (-6 -4423) (-15 -4042 ($ (-789) (-789) |t#1|)) (-15 -2412 ($ $ |t#1|)) (-15 -3519 ((-557) $)) (-15 -3518 ((-557) $)) (-15 -3517 ((-557) $)) (-15 -3516 ((-557) $)) (-15 -3515 ((-789) $)) (-15 -3514 ((-789) $)) (-15 -4228 (|t#1| $ (-557) (-557))) (-15 -3513 (|t#1| $ (-557) (-557))) (-15 -4228 (|t#1| $ (-557) (-557) |t#1|)) (-15 -3512 (|t#2| $ (-557))) (-15 -3511 (|t#3| $ (-557))) (-15 -3288 ((-659 |t#1|) $)) (-15 -4216 (|t#1| $ (-557) (-557) |t#1|)) (-15 -1717 (|t#1| $ (-557) (-557) |t#1|)) (-15 -1362 ($ $ (-557) |t#2|)) (-15 -1361 ($ $ (-557) |t#3|)) (-15 -4386 ($ (-1 |t#1| |t#1|) $)) (-15 -2158 ($ (-1 |t#1| |t#1|) $)) (-15 -4386 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4386 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-628 (-875)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1236) . T)) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2411 (((-1292) $ (-557) (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-1933 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-859)) ELT)) (-1931 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-859))) ELT)) (-3308 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-859)) ELT)) (-4216 ((|#1| $ (-557) |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| $ (-1253 (-557)) |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4152 (($) NIL T CONST)) (-2508 (($ $) NIL (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) NIL T ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-1717 ((|#1| $ (-557) |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-557)) NIL T ELT)) (-3837 (((-557) (-1 (-114) |#1|) $) NIL T ELT) (((-557) |#1| $) NIL (|has| |#1| (-1120)) ELT) (((-557) |#1| $ (-557)) NIL (|has| |#1| (-1120)) ELT)) (-3288 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-1363 (($ (-659 |#1|)) 11 T ELT) (($ (-789) |#1|) 14 T ELT)) (-4042 (($ (-789) |#1|) 13 T ELT)) (-2413 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3936 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2414 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-2515 (($ |#1| $ (-557)) NIL T ELT) (($ $ $ (-557)) NIL T ELT)) (-2416 (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) (-557) $) NIL T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-4229 ((|#1| $) NIL (|has| (-557) (-859)) ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2412 (($ $ |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#1| $ (-557) |#1|) NIL T ELT) ((|#1| $ (-557)) NIL T ELT) (($ $ (-1253 (-557))) NIL T ELT)) (-2516 (($ $ (-557)) NIL T ELT) (($ $ (-1253 (-557))) NIL T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-1932 (($ $ $ (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) NIL (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 10 T ELT)) (-4230 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-4374 (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2963 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3083 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1363 ($ (-659 |#1|))) (-15 -1363 ($ (-789) |#1|)))) (-1236)) (T -58)) -((-1363 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1236)) (-5 *1 (-58 *3)))) (-1363 (*1 *1 *2 *3) (-12 (-5 *2 (-789)) (-5 *1 (-58 *3)) (-4 *3 (-1236))))) -((-4269 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-4270 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-4386 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) -(((-59 |#1| |#2|) (-10 -7 (-15 -4269 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4270 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4386 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1236) (-1236)) (T -59)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-4270 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-59 *5 *2)))) (-4269 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1236)) (-4 *5 (-1236)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4216 ((|#1| $ (-557) (-557) |#1|) NIL T ELT)) (-1362 (($ $ (-557) (-58 |#1|)) NIL T ELT)) (-1361 (($ $ (-557) (-58 |#1|)) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3512 (((-58 |#1|) $ (-557)) NIL T ELT)) (-1717 ((|#1| $ (-557) (-557) |#1|) NIL T ELT)) (-3513 ((|#1| $ (-557) (-557)) NIL T ELT)) (-3288 (((-659 |#1|) $) NIL T ELT)) (-3515 (((-789) $) NIL T ELT)) (-4042 (($ (-789) (-789) |#1|) NIL T ELT)) (-3514 (((-789) $) NIL T ELT)) (-3519 (((-557) $) NIL T ELT)) (-3517 (((-557) $) NIL T ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3518 (((-557) $) NIL T ELT)) (-3516 (((-557) $) NIL T ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-2412 (($ $ |#1|) NIL T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#1| $ (-557) (-557)) NIL T ELT) ((|#1| $ (-557) (-557) |#1|) NIL T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-3511 (((-58 |#1|) $ (-557)) NIL T ELT)) (-4374 (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4424))) (-1236)) (T -60)) -NIL -((-3573 (((-3 $ #1="failed") (-326 (-391))) 41 T ELT) (((-3 $ #1#) (-326 (-557))) 46 T ELT) (((-3 $ #1#) (-963 (-391))) 50 T ELT) (((-3 $ #1#) (-963 (-557))) 54 T ELT) (((-3 $ #1#) (-419 (-963 (-391)))) 36 T ELT) (((-3 $ #1#) (-419 (-963 (-557)))) 29 T ELT)) (-3572 (($ (-326 (-391))) 39 T ELT) (($ (-326 (-557))) 44 T ELT) (($ (-963 (-391))) 48 T ELT) (($ (-963 (-557))) 52 T ELT) (($ (-419 (-963 (-391)))) 34 T ELT) (($ (-419 (-963 (-557)))) 26 T ELT)) (-3798 (((-1292) $) 76 T ELT)) (-4374 (((-875) $) 69 T ELT) (($ (-659 (-342))) 61 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 64 T ELT) (($ (-352 (-3948 (QUOTE X)) (-3948) (-717))) 25 T ELT))) -(((-61 |#1|) (-13 (-409) (-10 -8 (-15 -4374 ($ (-352 (-3948 (QUOTE X)) (-3948) (-717)))))) (-1196)) (T -61)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-352 (-3948 (QUOTE X)) (-3948) (-717))) (-5 *1 (-61 *3)) (-14 *3 (-1196))))) -((-3573 (((-3 $ #1="failed") (-1286 (-326 (-391)))) 74 T ELT) (((-3 $ #1#) (-1286 (-326 (-557)))) 63 T ELT) (((-3 $ #1#) (-1286 (-963 (-391)))) 94 T ELT) (((-3 $ #1#) (-1286 (-963 (-557)))) 84 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-391))))) 52 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-557))))) 39 T ELT)) (-3572 (($ (-1286 (-326 (-391)))) 70 T ELT) (($ (-1286 (-326 (-557)))) 59 T ELT) (($ (-1286 (-963 (-391)))) 90 T ELT) (($ (-1286 (-963 (-557)))) 80 T ELT) (($ (-1286 (-419 (-963 (-391))))) 48 T ELT) (($ (-1286 (-419 (-963 (-557))))) 32 T ELT)) (-3798 (((-1292) $) 124 T ELT)) (-4374 (((-875) $) 118 T ELT) (($ (-659 (-342))) 103 T ELT) (($ (-342)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 101 T ELT) (($ (-1286 (-352 (-3948 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3948) (-717)))) 31 T ELT))) -(((-62 |#1|) (-13 (-453) (-10 -8 (-15 -4374 ($ (-1286 (-352 (-3948 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3948) (-717))))))) (-1196)) (T -62)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1286 (-352 (-3948 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3948) (-717)))) (-5 *1 (-62 *3)) (-14 *3 (-1196))))) -((-3798 (((-1292) $) 54 T ELT) (((-1292)) 55 T ELT)) (-4374 (((-875) $) 51 T ELT))) -(((-63 |#1|) (-13 (-408) (-10 -7 (-15 -3798 ((-1292))))) (-1196)) (T -63)) -((-3798 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-63 *3)) (-14 *3 (-1196))))) -((-3573 (((-3 $ #1="failed") (-1286 (-326 (-391)))) 150 T ELT) (((-3 $ #1#) (-1286 (-326 (-557)))) 140 T ELT) (((-3 $ #1#) (-1286 (-963 (-391)))) 170 T ELT) (((-3 $ #1#) (-1286 (-963 (-557)))) 160 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-391))))) 129 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-557))))) 117 T ELT)) (-3572 (($ (-1286 (-326 (-391)))) 146 T ELT) (($ (-1286 (-326 (-557)))) 136 T ELT) (($ (-1286 (-963 (-391)))) 166 T ELT) (($ (-1286 (-963 (-557)))) 156 T ELT) (($ (-1286 (-419 (-963 (-391))))) 125 T ELT) (($ (-1286 (-419 (-963 (-557))))) 110 T ELT)) (-3798 (((-1292) $) 103 T ELT)) (-4374 (((-875) $) 97 T ELT) (($ (-659 (-342))) 30 T ELT) (($ (-342)) 35 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 33 T ELT) (($ (-1286 (-352 (-3948) (-3948 (QUOTE XC)) (-717)))) 95 T ELT))) -(((-64 |#1|) (-13 (-453) (-10 -8 (-15 -4374 ($ (-1286 (-352 (-3948) (-3948 (QUOTE XC)) (-717))))))) (-1196)) (T -64)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1286 (-352 (-3948) (-3948 (QUOTE XC)) (-717)))) (-5 *1 (-64 *3)) (-14 *3 (-1196))))) -((-3573 (((-3 $ #1="failed") (-707 (-326 (-391)))) 111 T ELT) (((-3 $ #1#) (-707 (-326 (-557)))) 99 T ELT) (((-3 $ #1#) (-707 (-963 (-391)))) 133 T ELT) (((-3 $ #1#) (-707 (-963 (-557)))) 122 T ELT) (((-3 $ #1#) (-707 (-419 (-963 (-391))))) 87 T ELT) (((-3 $ #1#) (-707 (-419 (-963 (-557))))) 73 T ELT)) (-3572 (($ (-707 (-326 (-391)))) 107 T ELT) (($ (-707 (-326 (-557)))) 95 T ELT) (($ (-707 (-963 (-391)))) 129 T ELT) (($ (-707 (-963 (-557)))) 118 T ELT) (($ (-707 (-419 (-963 (-391))))) 83 T ELT) (($ (-707 (-419 (-963 (-557))))) 66 T ELT)) (-3798 (((-1292) $) 141 T ELT)) (-4374 (((-875) $) 135 T ELT) (($ (-659 (-342))) 29 T ELT) (($ (-342)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 32 T ELT) (($ (-707 (-352 (-3948) (-3948 (QUOTE X) (QUOTE HESS)) (-717)))) 56 T ELT))) -(((-65 |#1|) (-13 (-398) (-631 (-707 (-352 (-3948) (-3948 (QUOTE X) (QUOTE HESS)) (-717))))) (-1196)) (T -65)) -NIL -((-3573 (((-3 $ #1="failed") (-326 (-391))) 60 T ELT) (((-3 $ #1#) (-326 (-557))) 65 T ELT) (((-3 $ #1#) (-963 (-391))) 69 T ELT) (((-3 $ #1#) (-963 (-557))) 73 T ELT) (((-3 $ #1#) (-419 (-963 (-391)))) 55 T ELT) (((-3 $ #1#) (-419 (-963 (-557)))) 48 T ELT)) (-3572 (($ (-326 (-391))) 58 T ELT) (($ (-326 (-557))) 63 T ELT) (($ (-963 (-391))) 67 T ELT) (($ (-963 (-557))) 71 T ELT) (($ (-419 (-963 (-391)))) 53 T ELT) (($ (-419 (-963 (-557)))) 45 T ELT)) (-3798 (((-1292) $) 82 T ELT)) (-4374 (((-875) $) 76 T ELT) (($ (-659 (-342))) 29 T ELT) (($ (-342)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 32 T ELT) (($ (-352 (-3948) (-3948 (QUOTE XC)) (-717))) 40 T ELT))) -(((-66 |#1|) (-13 (-409) (-10 -8 (-15 -4374 ($ (-352 (-3948) (-3948 (QUOTE XC)) (-717)))))) (-1196)) (T -66)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-352 (-3948) (-3948 (QUOTE XC)) (-717))) (-5 *1 (-66 *3)) (-14 *3 (-1196))))) -((-3798 (((-1292) $) 65 T ELT)) (-4374 (((-875) $) 59 T ELT) (($ (-707 (-717))) 51 T ELT) (($ (-659 (-342))) 50 T ELT) (($ (-342)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 55 T ELT))) -(((-67 |#1|) (-396) (-1196)) (T -67)) -NIL -((-3798 (((-1292) $) 66 T ELT)) (-4374 (((-875) $) 60 T ELT) (($ (-707 (-717))) 52 T ELT) (($ (-659 (-342))) 51 T ELT) (($ (-342)) 54 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 57 T ELT))) -(((-68 |#1|) (-396) (-1196)) (T -68)) -NIL -((-3798 (((-1292) $) NIL T ELT) (((-1292)) 33 T ELT)) (-4374 (((-875) $) NIL T ELT))) -(((-69 |#1|) (-13 (-408) (-10 -7 (-15 -3798 ((-1292))))) (-1196)) (T -69)) -((-3798 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-69 *3)) (-14 *3 (-1196))))) -((-3798 (((-1292) $) 75 T ELT)) (-4374 (((-875) $) 69 T ELT) (($ (-707 (-717))) 61 T ELT) (($ (-659 (-342))) 63 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 60 T ELT))) -(((-70 |#1|) (-396) (-1196)) (T -70)) -NIL -((-3573 (((-3 $ #1="failed") (-1286 (-326 (-391)))) 109 T ELT) (((-3 $ #1#) (-1286 (-326 (-557)))) 98 T ELT) (((-3 $ #1#) (-1286 (-963 (-391)))) 129 T ELT) (((-3 $ #1#) (-1286 (-963 (-557)))) 119 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-391))))) 87 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-557))))) 74 T ELT)) (-3572 (($ (-1286 (-326 (-391)))) 105 T ELT) (($ (-1286 (-326 (-557)))) 94 T ELT) (($ (-1286 (-963 (-391)))) 125 T ELT) (($ (-1286 (-963 (-557)))) 115 T ELT) (($ (-1286 (-419 (-963 (-391))))) 83 T ELT) (($ (-1286 (-419 (-963 (-557))))) 67 T ELT)) (-3798 (((-1292) $) 142 T ELT)) (-4374 (((-875) $) 136 T ELT) (($ (-659 (-342))) 131 T ELT) (($ (-342)) 134 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 59 T ELT) (($ (-1286 (-352 (-3948 (QUOTE X)) (-3948 (QUOTE -4394)) (-717)))) 60 T ELT))) -(((-71 |#1|) (-13 (-453) (-10 -8 (-15 -4374 ($ (-1286 (-352 (-3948 (QUOTE X)) (-3948 (QUOTE -4394)) (-717))))))) (-1196)) (T -71)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1286 (-352 (-3948 (QUOTE X)) (-3948 (QUOTE -4394)) (-717)))) (-5 *1 (-71 *3)) (-14 *3 (-1196))))) -((-3798 (((-1292) $) 33 T ELT) (((-1292)) 32 T ELT)) (-4374 (((-875) $) 36 T ELT))) -(((-72 |#1|) (-13 (-408) (-10 -7 (-15 -3798 ((-1292))))) (-1196)) (T -72)) -((-3798 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-72 *3)) (-14 *3 (-1196))))) -((-3798 (((-1292) $) 65 T ELT)) (-4374 (((-875) $) 59 T ELT) (($ (-707 (-717))) 51 T ELT) (($ (-659 (-342))) 53 T ELT) (($ (-342)) 56 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 50 T ELT))) -(((-73 |#1|) (-396) (-1196)) (T -73)) -NIL -((-3573 (((-3 $ #1="failed") (-1286 (-326 (-391)))) 127 T ELT) (((-3 $ #1#) (-1286 (-326 (-557)))) 117 T ELT) (((-3 $ #1#) (-1286 (-963 (-391)))) 147 T ELT) (((-3 $ #1#) (-1286 (-963 (-557)))) 137 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-391))))) 107 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-557))))) 95 T ELT)) (-3572 (($ (-1286 (-326 (-391)))) 123 T ELT) (($ (-1286 (-326 (-557)))) 113 T ELT) (($ (-1286 (-963 (-391)))) 143 T ELT) (($ (-1286 (-963 (-557)))) 133 T ELT) (($ (-1286 (-419 (-963 (-391))))) 103 T ELT) (($ (-1286 (-419 (-963 (-557))))) 88 T ELT)) (-3798 (((-1292) $) 80 T ELT)) (-4374 (((-875) $) 28 T ELT) (($ (-659 (-342))) 70 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 73 T ELT) (($ (-1286 (-352 (-3948) (-3948 (QUOTE X)) (-717)))) 67 T ELT))) -(((-74 |#1|) (-13 (-453) (-10 -8 (-15 -4374 ($ (-1286 (-352 (-3948) (-3948 (QUOTE X)) (-717))))))) (-1196)) (T -74)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1286 (-352 (-3948) (-3948 (QUOTE X)) (-717)))) (-5 *1 (-74 *3)) (-14 *3 (-1196))))) -((-3573 (((-3 $ #1="failed") (-326 (-391))) 47 T ELT) (((-3 $ #1#) (-326 (-557))) 52 T ELT) (((-3 $ #1#) (-963 (-391))) 56 T ELT) (((-3 $ #1#) (-963 (-557))) 60 T ELT) (((-3 $ #1#) (-419 (-963 (-391)))) 42 T ELT) (((-3 $ #1#) (-419 (-963 (-557)))) 35 T ELT)) (-3572 (($ (-326 (-391))) 45 T ELT) (($ (-326 (-557))) 50 T ELT) (($ (-963 (-391))) 54 T ELT) (($ (-963 (-557))) 58 T ELT) (($ (-419 (-963 (-391)))) 40 T ELT) (($ (-419 (-963 (-557)))) 32 T ELT)) (-3798 (((-1292) $) 81 T ELT)) (-4374 (((-875) $) 75 T ELT) (($ (-659 (-342))) 67 T ELT) (($ (-342)) 72 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 70 T ELT) (($ (-352 (-3948) (-3948 (QUOTE X)) (-717))) 31 T ELT))) -(((-75 |#1|) (-13 (-409) (-10 -8 (-15 -4374 ($ (-352 (-3948) (-3948 (QUOTE X)) (-717)))))) (-1196)) (T -75)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-352 (-3948) (-3948 (QUOTE X)) (-717))) (-5 *1 (-75 *3)) (-14 *3 (-1196))))) -((-3573 (((-3 $ #1="failed") (-1286 (-326 (-391)))) 132 T ELT) (((-3 $ #1#) (-1286 (-326 (-557)))) 121 T ELT) (((-3 $ #1#) (-1286 (-963 (-391)))) 152 T ELT) (((-3 $ #1#) (-1286 (-963 (-557)))) 142 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-391))))) 110 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-557))))) 97 T ELT)) (-3572 (($ (-1286 (-326 (-391)))) 128 T ELT) (($ (-1286 (-326 (-557)))) 117 T ELT) (($ (-1286 (-963 (-391)))) 148 T ELT) (($ (-1286 (-963 (-557)))) 138 T ELT) (($ (-1286 (-419 (-963 (-391))))) 106 T ELT) (($ (-1286 (-419 (-963 (-557))))) 90 T ELT)) (-3798 (((-1292) $) 82 T ELT)) (-4374 (((-875) $) 74 T ELT) (($ (-659 (-342))) NIL T ELT) (($ (-342)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) NIL T ELT) (($ (-1286 (-352 (-3948 (QUOTE X) (QUOTE EPS)) (-3948 (QUOTE -4394)) (-717)))) 69 T ELT))) -(((-76 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -4374 ($ (-1286 (-352 (-3948 (QUOTE X) (QUOTE EPS)) (-3948 (QUOTE -4394)) (-717))))))) (-1196) (-1196) (-1196)) (T -76)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1286 (-352 (-3948 (QUOTE X) (QUOTE EPS)) (-3948 (QUOTE -4394)) (-717)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1196)) (-14 *4 (-1196)) (-14 *5 (-1196))))) -((-3573 (((-3 $ #1="failed") (-1286 (-326 (-391)))) 138 T ELT) (((-3 $ #1#) (-1286 (-326 (-557)))) 127 T ELT) (((-3 $ #1#) (-1286 (-963 (-391)))) 158 T ELT) (((-3 $ #1#) (-1286 (-963 (-557)))) 148 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-391))))) 116 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-557))))) 103 T ELT)) (-3572 (($ (-1286 (-326 (-391)))) 134 T ELT) (($ (-1286 (-326 (-557)))) 123 T ELT) (($ (-1286 (-963 (-391)))) 154 T ELT) (($ (-1286 (-963 (-557)))) 144 T ELT) (($ (-1286 (-419 (-963 (-391))))) 112 T ELT) (($ (-1286 (-419 (-963 (-557))))) 96 T ELT)) (-3798 (((-1292) $) 88 T ELT)) (-4374 (((-875) $) 80 T ELT) (($ (-659 (-342))) NIL T ELT) (($ (-342)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) NIL T ELT) (($ (-1286 (-352 (-3948 (QUOTE EPS)) (-3948 (QUOTE YA) (QUOTE YB)) (-717)))) 75 T ELT))) -(((-77 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -4374 ($ (-1286 (-352 (-3948 (QUOTE EPS)) (-3948 (QUOTE YA) (QUOTE YB)) (-717))))))) (-1196) (-1196) (-1196)) (T -77)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1286 (-352 (-3948 (QUOTE EPS)) (-3948 (QUOTE YA) (QUOTE YB)) (-717)))) (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1196)) (-14 *4 (-1196)) (-14 *5 (-1196))))) -((-3573 (((-3 $ #1="failed") (-326 (-391))) 83 T ELT) (((-3 $ #1#) (-326 (-557))) 88 T ELT) (((-3 $ #1#) (-963 (-391))) 92 T ELT) (((-3 $ #1#) (-963 (-557))) 96 T ELT) (((-3 $ #1#) (-419 (-963 (-391)))) 78 T ELT) (((-3 $ #1#) (-419 (-963 (-557)))) 71 T ELT)) (-3572 (($ (-326 (-391))) 81 T ELT) (($ (-326 (-557))) 86 T ELT) (($ (-963 (-391))) 90 T ELT) (($ (-963 (-557))) 94 T ELT) (($ (-419 (-963 (-391)))) 76 T ELT) (($ (-419 (-963 (-557)))) 68 T ELT)) (-3798 (((-1292) $) 63 T ELT)) (-4374 (((-875) $) 51 T ELT) (($ (-659 (-342))) 47 T ELT) (($ (-342)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 55 T ELT) (($ (-352 (-3948) (-3948 (QUOTE X)) (-717))) 48 T ELT))) -(((-78 |#1|) (-13 (-409) (-10 -8 (-15 -4374 ($ (-352 (-3948) (-3948 (QUOTE X)) (-717)))))) (-1196)) (T -78)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-352 (-3948) (-3948 (QUOTE X)) (-717))) (-5 *1 (-78 *3)) (-14 *3 (-1196))))) -((-3573 (((-3 $ #1="failed") (-1286 (-326 (-391)))) 90 T ELT) (((-3 $ #1#) (-1286 (-326 (-557)))) 79 T ELT) (((-3 $ #1#) (-1286 (-963 (-391)))) 110 T ELT) (((-3 $ #1#) (-1286 (-963 (-557)))) 100 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-391))))) 68 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-557))))) 55 T ELT)) (-3572 (($ (-1286 (-326 (-391)))) 86 T ELT) (($ (-1286 (-326 (-557)))) 75 T ELT) (($ (-1286 (-963 (-391)))) 106 T ELT) (($ (-1286 (-963 (-557)))) 96 T ELT) (($ (-1286 (-419 (-963 (-391))))) 64 T ELT) (($ (-1286 (-419 (-963 (-557))))) 48 T ELT)) (-3798 (((-1292) $) 126 T ELT)) (-4374 (((-875) $) 120 T ELT) (($ (-659 (-342))) 113 T ELT) (($ (-342)) 38 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 116 T ELT) (($ (-1286 (-352 (-3948) (-3948 (QUOTE XC)) (-717)))) 39 T ELT))) -(((-79 |#1|) (-13 (-453) (-10 -8 (-15 -4374 ($ (-1286 (-352 (-3948) (-3948 (QUOTE XC)) (-717))))))) (-1196)) (T -79)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1286 (-352 (-3948) (-3948 (QUOTE XC)) (-717)))) (-5 *1 (-79 *3)) (-14 *3 (-1196))))) -((-3573 (((-3 $ #1="failed") (-1286 (-326 (-391)))) 151 T ELT) (((-3 $ #1#) (-1286 (-326 (-557)))) 141 T ELT) (((-3 $ #1#) (-1286 (-963 (-391)))) 171 T ELT) (((-3 $ #1#) (-1286 (-963 (-557)))) 161 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-391))))) 131 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-557))))) 119 T ELT)) (-3572 (($ (-1286 (-326 (-391)))) 147 T ELT) (($ (-1286 (-326 (-557)))) 137 T ELT) (($ (-1286 (-963 (-391)))) 167 T ELT) (($ (-1286 (-963 (-557)))) 157 T ELT) (($ (-1286 (-419 (-963 (-391))))) 127 T ELT) (($ (-1286 (-419 (-963 (-557))))) 112 T ELT)) (-3798 (((-1292) $) 105 T ELT)) (-4374 (((-875) $) 99 T ELT) (($ (-659 (-342))) 90 T ELT) (($ (-342)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 95 T ELT) (($ (-1286 (-352 (-3948) (-3948 (QUOTE X)) (-717)))) 91 T ELT))) -(((-80 |#1|) (-13 (-453) (-10 -8 (-15 -4374 ($ (-1286 (-352 (-3948) (-3948 (QUOTE X)) (-717))))))) (-1196)) (T -80)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1286 (-352 (-3948) (-3948 (QUOTE X)) (-717)))) (-5 *1 (-80 *3)) (-14 *3 (-1196))))) -((-3573 (((-3 $ #1="failed") (-1286 (-326 (-391)))) 79 T ELT) (((-3 $ #1#) (-1286 (-326 (-557)))) 68 T ELT) (((-3 $ #1#) (-1286 (-963 (-391)))) 99 T ELT) (((-3 $ #1#) (-1286 (-963 (-557)))) 89 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-391))))) 57 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-557))))) 44 T ELT)) (-3572 (($ (-1286 (-326 (-391)))) 75 T ELT) (($ (-1286 (-326 (-557)))) 64 T ELT) (($ (-1286 (-963 (-391)))) 95 T ELT) (($ (-1286 (-963 (-557)))) 85 T ELT) (($ (-1286 (-419 (-963 (-391))))) 53 T ELT) (($ (-1286 (-419 (-963 (-557))))) 37 T ELT)) (-3798 (((-1292) $) 125 T ELT)) (-4374 (((-875) $) 119 T ELT) (($ (-659 (-342))) 110 T ELT) (($ (-342)) 116 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 114 T ELT) (($ (-1286 (-352 (-3948) (-3948 (QUOTE X)) (-717)))) 36 T ELT))) -(((-81 |#1|) (-13 (-453) (-631 (-1286 (-352 (-3948) (-3948 (QUOTE X)) (-717))))) (-1196)) (T -81)) -NIL -((-3573 (((-3 $ #1="failed") (-1286 (-326 (-391)))) 80 T ELT) (((-3 $ #1#) (-1286 (-326 (-557)))) 69 T ELT) (((-3 $ #1#) (-1286 (-963 (-391)))) 100 T ELT) (((-3 $ #1#) (-1286 (-963 (-557)))) 90 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-391))))) 58 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-557))))) 45 T ELT)) (-3572 (($ (-1286 (-326 (-391)))) 76 T ELT) (($ (-1286 (-326 (-557)))) 65 T ELT) (($ (-1286 (-963 (-391)))) 96 T ELT) (($ (-1286 (-963 (-557)))) 86 T ELT) (($ (-1286 (-419 (-963 (-391))))) 54 T ELT) (($ (-1286 (-419 (-963 (-557))))) 38 T ELT)) (-3798 (((-1292) $) 126 T ELT)) (-4374 (((-875) $) 120 T ELT) (($ (-659 (-342))) 111 T ELT) (($ (-342)) 117 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 115 T ELT) (($ (-1286 (-352 (-3948 (QUOTE X)) (-3948 (QUOTE -4394)) (-717)))) 37 T ELT))) -(((-82 |#1|) (-13 (-453) (-10 -8 (-15 -4374 ($ (-1286 (-352 (-3948 (QUOTE X)) (-3948 (QUOTE -4394)) (-717))))))) (-1196)) (T -82)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1286 (-352 (-3948 (QUOTE X)) (-3948 (QUOTE -4394)) (-717)))) (-5 *1 (-82 *3)) (-14 *3 (-1196))))) -((-3573 (((-3 $ #1="failed") (-1286 (-326 (-391)))) 99 T ELT) (((-3 $ #1#) (-1286 (-326 (-557)))) 88 T ELT) (((-3 $ #1#) (-1286 (-963 (-391)))) 119 T ELT) (((-3 $ #1#) (-1286 (-963 (-557)))) 109 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-391))))) 77 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-557))))) 64 T ELT)) (-3572 (($ (-1286 (-326 (-391)))) 95 T ELT) (($ (-1286 (-326 (-557)))) 84 T ELT) (($ (-1286 (-963 (-391)))) 115 T ELT) (($ (-1286 (-963 (-557)))) 105 T ELT) (($ (-1286 (-419 (-963 (-391))))) 73 T ELT) (($ (-1286 (-419 (-963 (-557))))) 57 T ELT)) (-3798 (((-1292) $) 49 T ELT)) (-4374 (((-875) $) 43 T ELT) (($ (-659 (-342))) 33 T ELT) (($ (-342)) 36 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 39 T ELT) (($ (-1286 (-352 (-3948 (QUOTE X) (QUOTE -4394)) (-3948) (-717)))) 34 T ELT))) -(((-83 |#1|) (-13 (-453) (-10 -8 (-15 -4374 ($ (-1286 (-352 (-3948 (QUOTE X) (QUOTE -4394)) (-3948) (-717))))))) (-1196)) (T -83)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1286 (-352 (-3948 (QUOTE X) (QUOTE -4394)) (-3948) (-717)))) (-5 *1 (-83 *3)) (-14 *3 (-1196))))) -((-3573 (((-3 $ #1="failed") (-707 (-326 (-391)))) 118 T ELT) (((-3 $ #1#) (-707 (-326 (-557)))) 107 T ELT) (((-3 $ #1#) (-707 (-963 (-391)))) 140 T ELT) (((-3 $ #1#) (-707 (-963 (-557)))) 129 T ELT) (((-3 $ #1#) (-707 (-419 (-963 (-391))))) 96 T ELT) (((-3 $ #1#) (-707 (-419 (-963 (-557))))) 83 T ELT)) (-3572 (($ (-707 (-326 (-391)))) 114 T ELT) (($ (-707 (-326 (-557)))) 103 T ELT) (($ (-707 (-963 (-391)))) 136 T ELT) (($ (-707 (-963 (-557)))) 125 T ELT) (($ (-707 (-419 (-963 (-391))))) 92 T ELT) (($ (-707 (-419 (-963 (-557))))) 76 T ELT)) (-3798 (((-1292) $) 66 T ELT)) (-4374 (((-875) $) 53 T ELT) (($ (-659 (-342))) 60 T ELT) (($ (-342)) 49 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 58 T ELT) (($ (-707 (-352 (-3948 (QUOTE X) (QUOTE -4394)) (-3948) (-717)))) 50 T ELT))) -(((-84 |#1|) (-13 (-398) (-10 -8 (-15 -4374 ($ (-707 (-352 (-3948 (QUOTE X) (QUOTE -4394)) (-3948) (-717))))))) (-1196)) (T -84)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-707 (-352 (-3948 (QUOTE X) (QUOTE -4394)) (-3948) (-717)))) (-5 *1 (-84 *3)) (-14 *3 (-1196))))) -((-3573 (((-3 $ #1="failed") (-707 (-326 (-391)))) 113 T ELT) (((-3 $ #1#) (-707 (-326 (-557)))) 101 T ELT) (((-3 $ #1#) (-707 (-963 (-391)))) 135 T ELT) (((-3 $ #1#) (-707 (-963 (-557)))) 124 T ELT) (((-3 $ #1#) (-707 (-419 (-963 (-391))))) 89 T ELT) (((-3 $ #1#) (-707 (-419 (-963 (-557))))) 75 T ELT)) (-3572 (($ (-707 (-326 (-391)))) 109 T ELT) (($ (-707 (-326 (-557)))) 97 T ELT) (($ (-707 (-963 (-391)))) 131 T ELT) (($ (-707 (-963 (-557)))) 120 T ELT) (($ (-707 (-419 (-963 (-391))))) 85 T ELT) (($ (-707 (-419 (-963 (-557))))) 68 T ELT)) (-3798 (((-1292) $) 60 T ELT)) (-4374 (((-875) $) 54 T ELT) (($ (-659 (-342))) 48 T ELT) (($ (-342)) 51 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 45 T ELT) (($ (-707 (-352 (-3948 (QUOTE X)) (-3948) (-717)))) 46 T ELT))) -(((-85 |#1|) (-13 (-398) (-10 -8 (-15 -4374 ($ (-707 (-352 (-3948 (QUOTE X)) (-3948) (-717))))))) (-1196)) (T -85)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-707 (-352 (-3948 (QUOTE X)) (-3948) (-717)))) (-5 *1 (-85 *3)) (-14 *3 (-1196))))) -((-3573 (((-3 $ #1="failed") (-1286 (-326 (-391)))) 105 T ELT) (((-3 $ #1#) (-1286 (-326 (-557)))) 94 T ELT) (((-3 $ #1#) (-1286 (-963 (-391)))) 125 T ELT) (((-3 $ #1#) (-1286 (-963 (-557)))) 115 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-391))))) 83 T ELT) (((-3 $ #1#) (-1286 (-419 (-963 (-557))))) 70 T ELT)) (-3572 (($ (-1286 (-326 (-391)))) 101 T ELT) (($ (-1286 (-326 (-557)))) 90 T ELT) (($ (-1286 (-963 (-391)))) 121 T ELT) (($ (-1286 (-963 (-557)))) 111 T ELT) (($ (-1286 (-419 (-963 (-391))))) 79 T ELT) (($ (-1286 (-419 (-963 (-557))))) 63 T ELT)) (-3798 (((-1292) $) 47 T ELT)) (-4374 (((-875) $) 41 T ELT) (($ (-659 (-342))) 50 T ELT) (($ (-342)) 37 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 53 T ELT) (($ (-1286 (-352 (-3948 (QUOTE X)) (-3948) (-717)))) 38 T ELT))) -(((-86 |#1|) (-13 (-453) (-10 -8 (-15 -4374 ($ (-1286 (-352 (-3948 (QUOTE X)) (-3948) (-717))))))) (-1196)) (T -86)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1286 (-352 (-3948 (QUOTE X)) (-3948) (-717)))) (-5 *1 (-86 *3)) (-14 *3 (-1196))))) -((-3798 (((-1292) $) 45 T ELT)) (-4374 (((-875) $) 39 T ELT) (($ (-1286 (-717))) 99 T ELT) (($ (-659 (-342))) 31 T ELT) (($ (-342)) 36 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 34 T ELT))) -(((-87 |#1|) (-452) (-1196)) (T -87)) -NIL -((-3573 (((-3 $ #1="failed") (-707 (-326 (-391)))) 116 T ELT) (((-3 $ #1#) (-707 (-326 (-557)))) 104 T ELT) (((-3 $ #1#) (-707 (-963 (-391)))) 138 T ELT) (((-3 $ #1#) (-707 (-963 (-557)))) 127 T ELT) (((-3 $ #1#) (-707 (-419 (-963 (-391))))) 92 T ELT) (((-3 $ #1#) (-707 (-419 (-963 (-557))))) 78 T ELT)) (-3572 (($ (-707 (-326 (-391)))) 112 T ELT) (($ (-707 (-326 (-557)))) 100 T ELT) (($ (-707 (-963 (-391)))) 134 T ELT) (($ (-707 (-963 (-557)))) 123 T ELT) (($ (-707 (-419 (-963 (-391))))) 88 T ELT) (($ (-707 (-419 (-963 (-557))))) 71 T ELT)) (-3798 (((-1292) $) 62 T ELT)) (-4374 (((-875) $) 56 T ELT) (($ (-659 (-342))) 46 T ELT) (($ (-342)) 53 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 51 T ELT) (($ (-707 (-352 (-3948 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3948) (-717)))) 47 T ELT))) -(((-88 |#1|) (-13 (-398) (-10 -8 (-15 -4374 ($ (-707 (-352 (-3948 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3948) (-717))))))) (-1196)) (T -88)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-707 (-352 (-3948 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3948) (-717)))) (-5 *1 (-88 *3)) (-14 *3 (-1196))))) -((-3573 (((-3 $ #1="failed") (-326 (-391))) 48 T ELT) (((-3 $ #1#) (-326 (-557))) 53 T ELT) (((-3 $ #1#) (-963 (-391))) 57 T ELT) (((-3 $ #1#) (-963 (-557))) 61 T ELT) (((-3 $ #1#) (-419 (-963 (-391)))) 43 T ELT) (((-3 $ #1#) (-419 (-963 (-557)))) 36 T ELT)) (-3572 (($ (-326 (-391))) 46 T ELT) (($ (-326 (-557))) 51 T ELT) (($ (-963 (-391))) 55 T ELT) (($ (-963 (-557))) 59 T ELT) (($ (-419 (-963 (-391)))) 41 T ELT) (($ (-419 (-963 (-557)))) 33 T ELT)) (-3798 (((-1292) $) 91 T ELT)) (-4374 (((-875) $) 85 T ELT) (($ (-659 (-342))) 79 T ELT) (($ (-342)) 82 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 77 T ELT) (($ (-352 (-3948 (QUOTE X)) (-3948 (QUOTE -4394)) (-717))) 32 T ELT))) -(((-89 |#1|) (-13 (-409) (-10 -8 (-15 -4374 ($ (-352 (-3948 (QUOTE X)) (-3948 (QUOTE -4394)) (-717)))))) (-1196)) (T -89)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-352 (-3948 (QUOTE X)) (-3948 (QUOTE -4394)) (-717))) (-5 *1 (-89 *3)) (-14 *3 (-1196))))) -((-1365 (((-1286 (-707 |#1|)) (-707 |#1|)) 61 T ELT)) (-1364 (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 (-659 (-936))))) |#2| (-936)) 49 T ELT)) (-1366 (((-2 (|:| |minor| (-659 (-936))) (|:| -3682 |#2|) (|:| |minors| (-659 (-659 (-936)))) (|:| |ops| (-659 |#2|))) |#2| (-936)) 72 (|has| |#1| (-376)) ELT))) -(((-90 |#1| |#2|) (-10 -7 (-15 -1364 ((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 (-659 (-936))))) |#2| (-936))) (-15 -1365 ((-1286 (-707 |#1|)) (-707 |#1|))) (IF (|has| |#1| (-376)) (-15 -1366 ((-2 (|:| |minor| (-659 (-936))) (|:| -3682 |#2|) (|:| |minors| (-659 (-659 (-936)))) (|:| |ops| (-659 |#2|))) |#2| (-936))) |%noBranch|)) (-568) (-676 |#1|)) (T -90)) -((-1366 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |minor| (-659 (-936))) (|:| -3682 *3) (|:| |minors| (-659 (-659 (-936)))) (|:| |ops| (-659 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-936)) (-4 *3 (-676 *5)))) (-1365 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1286 (-707 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-707 *4)) (-4 *5 (-676 *4)))) (-1364 (*1 *2 *3 *4) (-12 (-4 *5 (-568)) (-5 *2 (-2 (|:| -1781 (-707 *5)) (|:| |vec| (-1286 (-659 (-936)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-936)) (-4 *3 (-676 *5))))) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3742 ((|#1| $) 40 T ELT)) (-4152 (($) NIL T CONST)) (-3744 ((|#1| |#1| $) 35 T ELT)) (-3743 ((|#1| $) 33 T ELT)) (-3288 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-1387 ((|#1| $) NIL T ELT)) (-4035 (($ |#1| $) 36 T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-1388 ((|#1| $) 34 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) 18 T ELT)) (-3991 (($) 45 T ELT)) (-3741 (((-789) $) 31 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) 17 T ELT)) (-4374 (((-875) $) 30 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1389 (($ (-659 |#1|)) NIL T ELT)) (-1367 (($ (-659 |#1|)) 42 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 15 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 12 (|has| $ (-6 -4423)) ELT))) -(((-91 |#1|) (-13 (-1140 |#1|) (-10 -8 (-15 -1367 ($ (-659 |#1|))))) (-1120)) (T -91)) -((-1367 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-5 *1 (-91 *3))))) -((-4374 (((-875) $) 13 T ELT) (($ (-1201)) 9 T ELT) (((-1201) $) 8 T ELT))) -(((-92 |#1|) (-10 -7 (-15 -4374 ((-1201) |#1|)) (-15 -4374 (|#1| (-1201))) (-15 -4374 ((-875) |#1|))) (-93)) (T -92)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-1201)) 20 T ELT) (((-1201) $) 19 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-93) (-142)) (T -93)) -NIL -(-13 (-1120) (-502 (-1201))) -(((-102) . T) ((-631 (-1201)) . T) ((-628 (-875)) . T) ((-628 (-1201)) . T) ((-502 (-1201)) . T) ((-1120) . T) ((-1236) . T)) -((-3906 (($ $) 10 T ELT)) (-3907 (($ $) 12 T ELT))) -(((-94 |#1|) (-10 -7 (-15 -3907 (|#1| |#1|)) (-15 -3906 (|#1| |#1|))) (-95)) (T -94)) -NIL -((-3904 (($ $) 11 T ELT)) (-3902 (($ $) 10 T ELT)) (-3906 (($ $) 9 T ELT)) (-3907 (($ $) 8 T ELT)) (-3905 (($ $) 7 T ELT)) (-3903 (($ $) 6 T ELT))) -(((-95) (-142)) (T -95)) -((-3904 (*1 *1 *1) (-4 *1 (-95))) (-3902 (*1 *1 *1) (-4 *1 (-95))) (-3906 (*1 *1 *1) (-4 *1 (-95))) (-3907 (*1 *1 *1) (-4 *1 (-95))) (-3905 (*1 *1 *1) (-4 *1 (-95))) (-3903 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -3903 ($ $)) (-15 -3905 ($ $)) (-15 -3907 ($ $)) (-15 -3906 ($ $)) (-15 -3902 ($ $)) (-15 -3904 ($ $)))) -((-2965 (((-114) $ $) NIL T ELT)) (-3968 (((-1154) $) 9 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 15 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-96) (-13 (-1102) (-10 -8 (-15 -3968 ((-1154) $))))) (T -96)) -((-3968 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-96))))) -((-2965 (((-114) $ $) NIL T ELT)) (-1368 (((-391) (-1178) (-391)) 46 T ELT) (((-391) (-1178) (-1178) (-391)) 44 T ELT)) (-1369 (((-391) (-391)) 35 T ELT)) (-1370 (((-1292)) 37 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1373 (((-391) (-1178) (-1178)) 50 T ELT) (((-391) (-1178)) 52 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1371 (((-391) (-1178) (-1178)) 51 T ELT)) (-1372 (((-391) (-1178) (-1178)) 53 T ELT) (((-391) (-1178)) 54 T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-97) (-13 (-1120) (-10 -7 (-15 -1373 ((-391) (-1178) (-1178))) (-15 -1373 ((-391) (-1178))) (-15 -1372 ((-391) (-1178) (-1178))) (-15 -1372 ((-391) (-1178))) (-15 -1371 ((-391) (-1178) (-1178))) (-15 -1370 ((-1292))) (-15 -1369 ((-391) (-391))) (-15 -1368 ((-391) (-1178) (-391))) (-15 -1368 ((-391) (-1178) (-1178) (-391))) (-6 -4423)))) (T -97)) -((-1373 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1373 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1372 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1371 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1370 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-97)))) (-1369 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-97)))) (-1368 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1178)) (-5 *1 (-97)))) (-1368 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1178)) (-5 *1 (-97))))) -NIL -(((-98) (-142)) (T -98)) -NIL -(-13 (-10 -7 (-6 -4423) (-6 (-4425 "*")) (-6 -4424) (-6 -4420) (-6 -4418) (-6 -4417) (-6 -4416) (-6 -4421) (-6 -4415) (-6 -4414) (-6 -4413) (-6 -4412) (-6 -4411) (-6 -4419) (-6 -4422) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4410))) -((-2965 (((-114) $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3885 (((-3 $ "failed") $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-1374 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-557))) 24 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) 16 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4228 ((|#1| $ |#1|) 13 T ELT)) (-3408 (($ $ $) NIL T ELT)) (-2822 (($ $ $) NIL T ELT)) (-4374 (((-875) $) 22 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3063 (($) 8 T CONST)) (-3452 (((-114) $ $) 10 T ELT)) (-4377 (($ $ $) NIL T ELT)) (** (($ $ (-936)) 30 T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) 18 T ELT)) (* (($ $ $) 31 T ELT))) -(((-99 |#1|) (-13 (-485) (-298 |#1| |#1|) (-10 -8 (-15 -1374 ($ (-1 |#1| |#1|))) (-15 -1374 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1374 ($ (-1 |#1| |#1| (-557)))))) (-1068)) (T -99)) -((-1374 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-99 *3)))) (-1374 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-99 *3)))) (-1374 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-557))) (-4 *3 (-1068)) (-5 *1 (-99 *3))))) -((-1375 (((-417 |#2|) |#2| (-659 |#2|)) 10 T ELT) (((-417 |#2|) |#2| |#2|) 11 T ELT))) -(((-100 |#1| |#2|) (-10 -7 (-15 -1375 ((-417 |#2|) |#2| |#2|)) (-15 -1375 ((-417 |#2|) |#2| (-659 |#2|)))) (-13 (-464) (-149)) (-1262 |#1|)) (T -100)) -((-1375 (*1 *2 *3 *4) (-12 (-5 *4 (-659 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-13 (-464) (-149))) (-5 *2 (-417 *3)) (-5 *1 (-100 *5 *3)))) (-1375 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-464) (-149))) (-5 *2 (-417 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1262 *4))))) -((-2965 (((-114) $ $) 13 T ELT)) (-1376 (((-114) $ $) 14 T ELT)) (-3452 (((-114) $ $) 11 T ELT))) -(((-101 |#1|) (-10 -7 (-15 -1376 ((-114) |#1| |#1|)) (-15 -2965 ((-114) |#1| |#1|)) (-15 -3452 ((-114) |#1| |#1|))) (-102)) (T -101)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-102) (-142)) (T -102)) -((-3452 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))) (-2965 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))) (-1376 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114))))) -(-13 (-1236) (-10 -8 (-15 -3452 ((-114) $ $)) (-15 -2965 ((-114) $ $)) (-15 -1376 ((-114) $ $)))) -(((-1236) . T)) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3820 ((|#1| $) NIL T ELT)) (-3424 ((|#1| $ |#1|) 24 (|has| $ (-6 -4424)) ELT)) (-1405 (($ $ $) NIL (|has| $ (-6 -4424)) ELT)) (-1406 (($ $ $) NIL (|has| $ (-6 -4424)) ELT)) (-1379 (($ $ (-659 |#1|)) 30 T ELT)) (-4216 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4424)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4424)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4424)) ELT)) (-3425 (($ $ (-659 $)) NIL (|has| $ (-6 -4424)) ELT)) (-4152 (($) NIL T CONST)) (-3537 (($ $) 12 T ELT)) (-3288 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3430 (((-659 $) $) NIL T ELT)) (-3426 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-1414 (($ $ |#1| $) 32 T ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-1378 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1377 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-659 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3538 (($ $) 11 T ELT)) (-3429 (((-659 |#1|) $) NIL T ELT)) (-3945 (((-114) $) 13 T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) 9 T ELT)) (-3991 (($) 31 T ELT)) (-4228 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3428 (((-557) $ $) NIL T ELT)) (-4061 (((-114) $) NIL T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-4374 (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-3940 (((-659 $) $) NIL T ELT)) (-3427 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1380 (($ (-789) |#1|) 33 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-103 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4423) (-6 -4424) (-15 -1380 ($ (-789) |#1|)) (-15 -1379 ($ $ (-659 |#1|))) (-15 -1378 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1378 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1377 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1377 ($ $ |#1| (-1 (-659 |#1|) |#1| |#1| |#1|))))) (-1120)) (T -103)) -((-1380 (*1 *1 *2 *3) (-12 (-5 *2 (-789)) (-5 *1 (-103 *3)) (-4 *3 (-1120)))) (-1379 (*1 *1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-5 *1 (-103 *3)))) (-1378 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1120)))) (-1378 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-103 *3)))) (-1377 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1120)) (-5 *1 (-103 *2)))) (-1377 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-659 *2) *2 *2 *2)) (-4 *2 (-1120)) (-5 *1 (-103 *2))))) -((-1381 ((|#3| |#2| |#2|) 34 T ELT)) (-1383 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4425 #1="*"))) ELT)) (-1382 ((|#3| |#2| |#2|) 36 T ELT)) (-1384 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4425 #1#))) ELT))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1381 (|#3| |#2| |#2|)) (-15 -1382 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4425 "*"))) (PROGN (-15 -1383 (|#1| |#2| |#2|)) (-15 -1384 (|#1| |#2|))) |%noBranch|)) (-1068) (-1262 |#1|) (-704 |#1| |#4| |#5|) (-385 |#1|) (-385 |#1|)) (T -104)) -((-1384 (*1 *2 *3) (-12 (|has| *2 (-6 (-4425 #1="*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1068)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1262 *2)) (-4 *4 (-704 *2 *5 *6)))) (-1383 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4425 #1#))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1068)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1262 *2)) (-4 *4 (-704 *2 *5 *6)))) (-1382 (*1 *2 *3 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-704 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1262 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-1381 (*1 *2 *3 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-704 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1262 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1386 (((-659 (-1196))) 37 T ELT)) (-1385 (((-2 (|:| |zeros| (-1174 (-229))) (|:| |ones| (-1174 (-229))) (|:| |singularities| (-1174 (-229)))) (-1196)) 39 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-105) (-13 (-1120) (-10 -7 (-15 -1386 ((-659 (-1196)))) (-15 -1385 ((-2 (|:| |zeros| (-1174 (-229))) (|:| |ones| (-1174 (-229))) (|:| |singularities| (-1174 (-229)))) (-1196))) (-6 -4423)))) (T -105)) -((-1386 (*1 *2) (-12 (-5 *2 (-659 (-1196))) (-5 *1 (-105)))) (-1385 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-2 (|:| |zeros| (-1174 (-229))) (|:| |ones| (-1174 (-229))) (|:| |singularities| (-1174 (-229))))) (-5 *1 (-105))))) -((-1389 (($ (-659 |#2|)) 11 T ELT))) -(((-106 |#1| |#2|) (-10 -7 (-15 -1389 (|#1| (-659 |#2|)))) (-107 |#2|) (-1236)) (T -106)) -NIL -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4152 (($) 7 T CONST)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-1387 ((|#1| $) 43 T ELT)) (-4035 (($ |#1| $) 44 T ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-1388 ((|#1| $) 45 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1389 (($ (-659 |#1|)) 46 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-107 |#1|) (-142) (-1236)) (T -107)) -((-1389 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1236)) (-4 *1 (-107 *3)))) (-1388 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236)))) (-4035 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236)))) (-1387 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236))))) -(-13 (-501 |t#1|) (-10 -8 (-6 -4424) (-15 -1389 ($ (-659 |t#1|))) (-15 -1388 (|t#1| $)) (-15 -4035 ($ |t#1| $)) (-15 -1387 (|t#1| $)))) -(((-34) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-628 (-875)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3529 (((-557) $) NIL (|has| (-557) (-319)) ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| (-557) (-927)) ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| (-557) (-927)) ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4051 (((-557) $) NIL (|has| (-557) (-840)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) NIL T ELT) (((-3 (-1196) #1#) $) NIL (|has| (-557) (-1057 (-1196))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| (-557) (-1057 (-557))) ELT) (((-3 (-557) #1#) $) NIL (|has| (-557) (-1057 (-557))) ELT)) (-3572 (((-557) $) NIL T ELT) (((-1196) $) NIL (|has| (-557) (-1057 (-1196))) ELT) (((-419 (-557)) $) NIL (|has| (-557) (-1057 (-557))) ELT) (((-557) $) NIL (|has| (-557) (-1057 (-557))) ELT)) (-2961 (($ $ $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| (-557) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| (-557) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL T ELT) (((-707 (-557)) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3393 (($) NIL (|has| (-557) (-556)) ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-3602 (((-114) $) NIL (|has| (-557) (-840)) ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (|has| (-557) (-899 (-557))) ELT) (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (|has| (-557) (-899 (-391))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-3395 (($ $) NIL T ELT)) (-3397 (((-557) $) NIL T ELT)) (-3863 (((-709 $) $) NIL (|has| (-557) (-1171)) ELT)) (-3603 (((-114) $) NIL (|has| (-557) (-840)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2928 (($ $ $) NIL (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| (-557) (-859)) ELT)) (-4386 (($ (-1 (-557) (-557)) $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| (-557) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| (-557) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL T ELT) (((-707 (-557)) (-1286 $)) NIL T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3864 (($) NIL (|has| (-557) (-1171)) CONST)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3528 (($ $) NIL (|has| (-557) (-319)) ELT) (((-419 (-557)) $) NIL T ELT)) (-3530 (((-557) $) NIL (|has| (-557) (-556)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (|has| (-557) (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (|has| (-557) (-927)) ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-4196 (($ $ (-659 (-557)) (-659 (-557))) NIL (|has| (-557) (-321 (-557))) ELT) (($ $ (-557) (-557)) NIL (|has| (-557) (-321 (-557))) ELT) (($ $ (-305 (-557))) NIL (|has| (-557) (-321 (-557))) ELT) (($ $ (-659 (-305 (-557)))) NIL (|has| (-557) (-321 (-557))) ELT) (($ $ (-659 (-1196)) (-659 (-557))) NIL (|has| (-557) (-526 (-1196) (-557))) ELT) (($ $ (-1196) (-557)) NIL (|has| (-557) (-526 (-1196) (-557))) ELT)) (-1785 (((-789) $) NIL T ELT)) (-4228 (($ $ (-557)) NIL (|has| (-557) (-298 (-557) (-557))) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-4186 (($ $ (-1 (-557) (-557))) NIL T ELT) (($ $ (-1 (-557) (-557)) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $) NIL (|has| (-557) (-239)) ELT) (($ $ (-789)) NIL (|has| (-557) (-239)) ELT)) (-3394 (($ $) NIL T ELT)) (-3396 (((-557) $) NIL T ELT)) (-4400 (((-903 (-557)) $) NIL (|has| (-557) (-629 (-903 (-557)))) ELT) (((-903 (-391)) $) NIL (|has| (-557) (-629 (-903 (-391)))) ELT) (((-546) $) NIL (|has| (-557) (-629 (-546))) ELT) (((-391) $) NIL (|has| (-557) (-1039)) ELT) (((-229) $) NIL (|has| (-557) (-1039)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| (-557) (-927))) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) 8 T ELT) (($ (-557)) NIL T ELT) (($ (-1196)) NIL (|has| (-557) (-1057 (-1196))) ELT) (((-419 (-557)) $) NIL T ELT) (((-1023 2) $) 10 T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| (-557) (-927))) (|has| (-557) (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-3531 (((-557) $) NIL (|has| (-557) (-556)) ELT)) (-2237 (($ (-419 (-557))) 9 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-3801 (($ $) NIL (|has| (-557) (-840)) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $ (-1 (-557) (-557))) NIL T ELT) (($ $ (-1 (-557) (-557)) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $) NIL (|has| (-557) (-239)) ELT) (($ $ (-789)) NIL (|has| (-557) (-239)) ELT)) (-2963 (((-114) $ $) NIL (|has| (-557) (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| (-557) (-859)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL (|has| (-557) (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| (-557) (-859)) ELT)) (-4377 (($ $ $) NIL T ELT) (($ (-557) (-557)) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ (-557)) NIL T ELT))) -(((-108) (-13 (-1010 (-557)) (-628 (-419 (-557))) (-628 (-1023 2)) (-10 -8 (-15 -3528 ((-419 (-557)) $)) (-15 -2237 ($ (-419 (-557))))))) (T -108)) -((-3528 (*1 *2 *1) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-108)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-108))))) -((-1400 (((-659 (-982)) $) 13 T ELT)) (-3968 (((-518) $) 9 T ELT)) (-4374 (((-875) $) 20 T ELT)) (-1390 (($ (-518) (-659 (-982))) 15 T ELT))) -(((-109) (-13 (-628 (-875)) (-10 -8 (-15 -3968 ((-518) $)) (-15 -1400 ((-659 (-982)) $)) (-15 -1390 ($ (-518) (-659 (-982))))))) (T -109)) -((-3968 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-659 (-982))) (-5 *1 (-109)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-659 (-982))) (-5 *1 (-109))))) -((-2965 (((-114) $ $) NIL T ELT)) (-2524 (($ $) NIL T ELT)) (-3740 (($ $ $) NIL T ELT)) (-2411 (((-1292) $ (-557) (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-1933 (((-114) $) NIL (|has| (-114) (-859)) ELT) (((-114) (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-1931 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-114) (-859))) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4424)) ELT)) (-3308 (($ $) NIL (|has| (-114) (-859)) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-4216 (((-114) $ (-1253 (-557)) (-114)) NIL (|has| $ (-6 -4424)) ELT) (((-114) $ (-557) (-114)) NIL (|has| $ (-6 -4424)) ELT)) (-4138 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4423)) ELT)) (-4152 (($) NIL T CONST)) (-2508 (($ $) NIL (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) NIL T ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-114) (-1120))) ELT)) (-3824 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4423)) ELT) (($ (-114) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-114) (-1120))) ELT)) (-4270 (((-114) (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) NIL (-12 (|has| $ (-6 -4423)) (|has| (-114) (-1120))) ELT)) (-1717 (((-114) $ (-557) (-114)) NIL (|has| $ (-6 -4424)) ELT)) (-3513 (((-114) $ (-557)) NIL T ELT)) (-3837 (((-557) (-114) $ (-557)) NIL (|has| (-114) (-1120)) ELT) (((-557) (-114) $) NIL (|has| (-114) (-1120)) ELT) (((-557) (-1 (-114) (-114)) $) NIL T ELT)) (-3288 (((-659 (-114)) $) NIL (|has| $ (-6 -4423)) ELT)) (-2958 (($ $ $) NIL T ELT)) (-2957 (($ $) NIL T ELT)) (-1412 (($ $ $) NIL T ELT)) (-4042 (($ (-789) (-114)) 10 T ELT)) (-1413 (($ $ $) NIL T ELT)) (-2413 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) NIL T ELT)) (-3936 (($ $ $) NIL (|has| (-114) (-859)) ELT) (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT)) (-3005 (((-659 (-114)) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-114) (-1120))) ELT)) (-2414 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL T ELT)) (-2158 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT) (($ (-1 (-114) (-114)) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2515 (($ $ $ (-557)) NIL T ELT) (($ (-114) $ (-557)) NIL T ELT)) (-2416 (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) (-557) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4229 (((-114) $) NIL (|has| (-557) (-859)) ELT)) (-1466 (((-3 (-114) "failed") (-1 (-114) (-114)) $) NIL T ELT)) (-2412 (($ $ (-114)) NIL (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-114)) (-659 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1120))) ELT) (($ $ (-114) (-114)) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1120))) ELT) (($ $ (-305 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1120))) ELT) (($ $ (-659 (-305 (-114)))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-114) (-1120))) ELT)) (-2418 (((-659 (-114)) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 (($ $ (-1253 (-557))) NIL T ELT) (((-114) $ (-557)) NIL T ELT) (((-114) $ (-557) (-114)) NIL T ELT)) (-2516 (($ $ (-1253 (-557))) NIL T ELT) (($ $ (-557)) NIL T ELT)) (-2155 (((-789) (-114) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-114) (-1120))) ELT) (((-789) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4423)) ELT)) (-1932 (($ $ $ (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) NIL (|has| (-114) (-629 (-546))) ELT)) (-3948 (($ (-659 (-114))) NIL T ELT)) (-4230 (($ (-659 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-114) $) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1976 (($ (-789) (-114)) 11 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4423)) ELT)) (-2959 (($ $ $) NIL T ELT)) (-2522 (($ $ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-2523 (($ $ $) NIL T ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-110) (-13 (-125) (-10 -8 (-15 -1976 ($ (-789) (-114)))))) (T -110)) -((-1976 (*1 *1 *2 *3) (-12 (-5 *2 (-789)) (-5 *3 (-114)) (-5 *1 (-110))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) -(((-111 |#1| |#2|) (-142) (-1068) (-1068)) (T -111)) -NIL -(-13 (-666 |t#1|) (-1075 |t#2|) (-10 -7 (-6 -4418) (-6 -4417))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-666 |#1|) . T) ((-1070 |#2|) . T) ((-1075 |#2|) . T) ((-1120) . T) ((-1236) . T)) -((-2524 (($ $) 8 T ELT))) -(((-112 |#1|) (-10 -7 (-15 -2524 (|#1| |#1|))) (-113)) (T -112)) -NIL -((-2524 (($ $) 8 T ELT)) (-2958 (($ $ $) 9 T ELT)) (-2957 (($ $) 11 T ELT)) (-2959 (($ $ $) 10 T ELT)) (-2522 (($ $ $) 6 T ELT)) (-2523 (($ $ $) 7 T ELT))) -(((-113) (-142)) (T -113)) -((-2957 (*1 *1 *1) (-4 *1 (-113))) (-2959 (*1 *1 *1 *1) (-4 *1 (-113))) (-2958 (*1 *1 *1 *1) (-4 *1 (-113)))) -(-13 (-680) (-10 -8 (-15 -2957 ($ $)) (-15 -2959 ($ $ $)) (-15 -2958 ($ $ $)))) -(((-680) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-2524 (($ $) 9 T ELT)) (-3740 (($ $ $) 14 T ELT)) (-3254 (($) 6 T CONST)) (-3536 (((-789)) 23 T ELT)) (-3393 (($) 31 T ELT)) (-2958 (($ $ $) 12 T ELT)) (-2957 (($ $) 8 T ELT)) (-1412 (($ $ $) 15 T ELT)) (-1413 (($ $ $) 16 T ELT)) (-2928 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3256 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2218 (((-936) $) 29 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2629 (($ (-936)) 27 T ELT)) (-3252 (($ $ $) 19 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3253 (($) 7 T CONST)) (-3251 (($ $ $) 20 T ELT)) (-4400 (((-546) $) 33 T ELT)) (-4374 (((-875) $) 35 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2959 (($ $ $) 10 T ELT)) (-2522 (($ $ $) 13 T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 18 T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 21 T ELT)) (-2523 (($ $ $) 11 T ELT))) -(((-114) (-13 (-855) (-986) (-629 (-546)) (-10 -8 (-15 -3740 ($ $ $)) (-15 -1413 ($ $ $)) (-15 -1412 ($ $ $))))) (T -114)) -((-3740 (*1 *1 *1 *1) (-5 *1 (-114))) (-1413 (*1 *1 *1 *1) (-5 *1 (-114))) (-1412 (*1 *1 *1 *1) (-5 *1 (-114)))) -((-2965 (((-114) $ $) NIL T ELT)) (-1652 (((-789) $) 92 T ELT) (($ $ (-789)) 38 T ELT)) (-1398 (((-114) $) 42 T ELT)) (-1392 (($ $ (-1178) (-791)) 59 T ELT) (($ $ (-518) (-791)) 34 T ELT)) (-1391 (($ $ (-45 (-1178) (-791))) 16 T ELT)) (-3240 (((-3 (-791) "failed") $ (-1178)) 27 T ELT) (((-709 (-791)) $ (-518)) 33 T ELT)) (-1400 (((-45 (-1178) (-791)) $) 15 T ELT)) (-4021 (($ (-1196)) 20 T ELT) (($ (-1196) (-789)) 23 T ELT) (($ (-1196) (-55)) 24 T ELT)) (-1399 (((-114) $) 40 T ELT)) (-1397 (((-114) $) 44 T ELT)) (-3968 (((-1196) $) 8 T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3030 (((-114) $ (-1196)) 11 T ELT)) (-2341 (($ $ (-1 (-546) (-659 (-546)))) 65 T ELT) (((-709 (-1 (-546) (-659 (-546)))) $) 69 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1394 (((-114) $ (-518)) 37 T ELT)) (-1396 (($ $ (-1 (-114) $ $)) 46 T ELT)) (-4045 (((-709 (-1 (-875) (-659 (-875)))) $) 67 T ELT) (($ $ (-1 (-875) (-659 (-875)))) 52 T ELT) (($ $ (-1 (-875) (-875))) 54 T ELT)) (-1393 (($ $ (-1178)) 56 T ELT) (($ $ (-518)) 57 T ELT)) (-3818 (($ $) 75 T ELT)) (-1395 (($ $ (-1 (-114) $ $)) 47 T ELT)) (-4374 (((-875) $) 61 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3191 (($ $ (-518)) 35 T ELT)) (-2915 (((-55) $) 70 T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 88 T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 104 T ELT))) -(((-115) (-13 (-859) (-847 (-1196)) (-10 -8 (-15 -1400 ((-45 (-1178) (-791)) $)) (-15 -3818 ($ $)) (-15 -4021 ($ (-1196))) (-15 -4021 ($ (-1196) (-789))) (-15 -4021 ($ (-1196) (-55))) (-15 -1399 ((-114) $)) (-15 -1398 ((-114) $)) (-15 -1397 ((-114) $)) (-15 -1652 ((-789) $)) (-15 -1652 ($ $ (-789))) (-15 -1396 ($ $ (-1 (-114) $ $))) (-15 -1395 ($ $ (-1 (-114) $ $))) (-15 -4045 ((-709 (-1 (-875) (-659 (-875)))) $)) (-15 -4045 ($ $ (-1 (-875) (-659 (-875))))) (-15 -4045 ($ $ (-1 (-875) (-875)))) (-15 -2341 ($ $ (-1 (-546) (-659 (-546))))) (-15 -2341 ((-709 (-1 (-546) (-659 (-546)))) $)) (-15 -1394 ((-114) $ (-518))) (-15 -3191 ($ $ (-518))) (-15 -1393 ($ $ (-1178))) (-15 -1393 ($ $ (-518))) (-15 -3240 ((-3 (-791) "failed") $ (-1178))) (-15 -3240 ((-709 (-791)) $ (-518))) (-15 -1392 ($ $ (-1178) (-791))) (-15 -1392 ($ $ (-518) (-791))) (-15 -1391 ($ $ (-45 (-1178) (-791))))))) (T -115)) -((-1400 (*1 *2 *1) (-12 (-5 *2 (-45 (-1178) (-791))) (-5 *1 (-115)))) (-3818 (*1 *1 *1) (-5 *1 (-115))) (-4021 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-115)))) (-4021 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-789)) (-5 *1 (-115)))) (-4021 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-55)) (-5 *1 (-115)))) (-1399 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))) (-1398 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))) (-1397 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))) (-1652 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-115)))) (-1652 (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-115)))) (-1396 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115)))) (-1395 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115)))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-709 (-1 (-875) (-659 (-875))))) (-5 *1 (-115)))) (-4045 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-875) (-659 (-875)))) (-5 *1 (-115)))) (-4045 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-875) (-875))) (-5 *1 (-115)))) (-2341 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-546) (-659 (-546)))) (-5 *1 (-115)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-709 (-1 (-546) (-659 (-546))))) (-5 *1 (-115)))) (-1394 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-114)) (-5 *1 (-115)))) (-3191 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-1393 (*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-115)))) (-1393 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-3240 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1178)) (-5 *2 (-791)) (-5 *1 (-115)))) (-3240 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-709 (-791))) (-5 *1 (-115)))) (-1392 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-791)) (-5 *1 (-115)))) (-1392 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-791)) (-5 *1 (-115)))) (-1391 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1178) (-791))) (-5 *1 (-115))))) -((-2912 (((-3 (-1 |#1| (-659 |#1|)) #1="failed") (-115)) 23 T ELT) (((-115) (-115) (-1 |#1| |#1|)) 13 T ELT) (((-115) (-115) (-1 |#1| (-659 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-115) (-659 |#1|)) 25 T ELT)) (-1401 (((-3 (-659 (-1 |#1| (-659 |#1|))) #1#) (-115)) 29 T ELT) (((-115) (-115) (-1 |#1| |#1|)) 33 T ELT) (((-115) (-115) (-659 (-1 |#1| (-659 |#1|)))) 30 T ELT)) (-1402 (((-115) |#1|) 63 T ELT)) (-1403 (((-3 |#1| #1#) (-115)) 58 T ELT))) -(((-116 |#1|) (-10 -7 (-15 -2912 ((-3 |#1| #1="failed") (-115) (-659 |#1|))) (-15 -2912 ((-115) (-115) (-1 |#1| (-659 |#1|)))) (-15 -2912 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2912 ((-3 (-1 |#1| (-659 |#1|)) #1#) (-115))) (-15 -1401 ((-115) (-115) (-659 (-1 |#1| (-659 |#1|))))) (-15 -1401 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1401 ((-3 (-659 (-1 |#1| (-659 |#1|))) #1#) (-115))) (-15 -1402 ((-115) |#1|)) (-15 -1403 ((-3 |#1| #1#) (-115)))) (-1120)) (T -116)) -((-1403 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-116 *2)) (-4 *2 (-1120)))) (-1402 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-116 *3)) (-4 *3 (-1120)))) (-1401 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-659 (-1 *4 (-659 *4)))) (-5 *1 (-116 *4)) (-4 *4 (-1120)))) (-1401 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1120)) (-5 *1 (-116 *4)))) (-1401 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-659 (-1 *4 (-659 *4)))) (-4 *4 (-1120)) (-5 *1 (-116 *4)))) (-2912 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-659 *4))) (-5 *1 (-116 *4)) (-4 *4 (-1120)))) (-2912 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1120)) (-5 *1 (-116 *4)))) (-2912 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-659 *4))) (-4 *4 (-1120)) (-5 *1 (-116 *4)))) (-2912 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-659 *2)) (-5 *1 (-116 *2)) (-4 *2 (-1120))))) -((-1404 (((-557) |#2|) 41 T ELT))) -(((-117 |#1| |#2|) (-10 -7 (-15 -1404 ((-557) |#2|))) (-13 (-376) (-1057 (-419 (-557)))) (-1262 |#1|)) (T -117)) -((-1404 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-1057 (-419 *2)))) (-5 *2 (-557)) (-5 *1 (-117 *4 *3)) (-4 *3 (-1262 *4))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3436 (($ $ (-557)) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3008 (($ (-1190 (-557)) (-557)) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3009 (($ $) NIL T ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4200 (((-789) $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-3011 (((-557)) NIL T ELT)) (-3010 (((-557) $) NIL T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-4197 (($ $ (-557)) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-3012 (((-1174 (-557)) $) NIL T ELT)) (-3290 (($ $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-4198 (((-557) $ (-557)) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-118 |#1|) (-882 |#1|) (-557)) (T -118)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3529 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-319)) ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| (-118 |#1|) (-927)) ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| (-118 |#1|) (-927)) ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4051 (((-557) $) NIL (|has| (-118 |#1|) (-840)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-118 |#1|) #1#) $) NIL T ELT) (((-3 (-1196) #1#) $) NIL (|has| (-118 |#1|) (-1057 (-1196))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| (-118 |#1|) (-1057 (-557))) ELT) (((-3 (-557) #1#) $) NIL (|has| (-118 |#1|) (-1057 (-557))) ELT)) (-3572 (((-118 |#1|) $) NIL T ELT) (((-1196) $) NIL (|has| (-118 |#1|) (-1057 (-1196))) ELT) (((-419 (-557)) $) NIL (|has| (-118 |#1|) (-1057 (-557))) ELT) (((-557) $) NIL (|has| (-118 |#1|) (-1057 (-557))) ELT)) (-4158 (($ $) NIL T ELT) (($ (-557) $) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| (-118 |#1|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| (-118 |#1|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-118 |#1|))) (|:| |vec| (-1286 (-118 |#1|)))) (-707 $) (-1286 $)) NIL T ELT) (((-707 (-118 |#1|)) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3393 (($) NIL (|has| (-118 |#1|) (-556)) ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-3602 (((-114) $) NIL (|has| (-118 |#1|) (-840)) ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (|has| (-118 |#1|) (-899 (-557))) ELT) (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (|has| (-118 |#1|) (-899 (-391))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-3395 (($ $) NIL T ELT)) (-3397 (((-118 |#1|) $) NIL T ELT)) (-3863 (((-709 $) $) NIL (|has| (-118 |#1|) (-1171)) ELT)) (-3603 (((-114) $) NIL (|has| (-118 |#1|) (-840)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2928 (($ $ $) NIL (|has| (-118 |#1|) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| (-118 |#1|) (-859)) ELT)) (-4386 (($ (-1 (-118 |#1|) (-118 |#1|)) $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| (-118 |#1|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| (-118 |#1|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-118 |#1|))) (|:| |vec| (-1286 (-118 |#1|)))) (-1286 $) $) NIL T ELT) (((-707 (-118 |#1|)) (-1286 $)) NIL T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3864 (($) NIL (|has| (-118 |#1|) (-1171)) CONST)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3528 (($ $) NIL (|has| (-118 |#1|) (-319)) ELT)) (-3530 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-556)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (|has| (-118 |#1|) (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (|has| (-118 |#1|) (-927)) ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-4196 (($ $ (-659 (-118 |#1|)) (-659 (-118 |#1|))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-118 |#1|) (-118 |#1|)) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-305 (-118 |#1|))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-659 (-305 (-118 |#1|)))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-659 (-1196)) (-659 (-118 |#1|))) NIL (|has| (-118 |#1|) (-526 (-1196) (-118 |#1|))) ELT) (($ $ (-1196) (-118 |#1|)) NIL (|has| (-118 |#1|) (-526 (-1196) (-118 |#1|))) ELT)) (-1785 (((-789) $) NIL T ELT)) (-4228 (($ $ (-118 |#1|)) NIL (|has| (-118 |#1|) (-298 (-118 |#1|) (-118 |#1|))) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-4186 (($ $ (-1 (-118 |#1|) (-118 |#1|))) NIL T ELT) (($ $ (-1 (-118 |#1|) (-118 |#1|)) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| (-118 |#1|) (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| (-118 |#1|) (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| (-118 |#1|) (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| (-118 |#1|) (-917 (-1196))) ELT) (($ $) NIL (|has| (-118 |#1|) (-239)) ELT) (($ $ (-789)) NIL (|has| (-118 |#1|) (-239)) ELT)) (-3394 (($ $) NIL T ELT)) (-3396 (((-118 |#1|) $) NIL T ELT)) (-4400 (((-903 (-557)) $) NIL (|has| (-118 |#1|) (-629 (-903 (-557)))) ELT) (((-903 (-391)) $) NIL (|has| (-118 |#1|) (-629 (-903 (-391)))) ELT) (((-546) $) NIL (|has| (-118 |#1|) (-629 (-546))) ELT) (((-391) $) NIL (|has| (-118 |#1|) (-1039)) ELT) (((-229) $) NIL (|has| (-118 |#1|) (-1039)) ELT)) (-3013 (((-177 (-419 (-557))) $) NIL T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| (-118 |#1|) (-927))) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ (-118 |#1|)) NIL T ELT) (($ (-1196)) NIL (|has| (-118 |#1|) (-1057 (-1196))) ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| (-118 |#1|) (-927))) (|has| (-118 |#1|) (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-3531 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-556)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-4198 (((-419 (-557)) $ (-557)) NIL T ELT)) (-3801 (($ $) NIL (|has| (-118 |#1|) (-840)) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $ (-1 (-118 |#1|) (-118 |#1|))) NIL T ELT) (($ $ (-1 (-118 |#1|) (-118 |#1|)) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| (-118 |#1|) (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| (-118 |#1|) (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| (-118 |#1|) (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| (-118 |#1|) (-917 (-1196))) ELT) (($ $) NIL (|has| (-118 |#1|) (-239)) ELT) (($ $ (-789)) NIL (|has| (-118 |#1|) (-239)) ELT)) (-2963 (((-114) $ $) NIL (|has| (-118 |#1|) (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| (-118 |#1|) (-859)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL (|has| (-118 |#1|) (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| (-118 |#1|) (-859)) ELT)) (-4377 (($ $ $) NIL T ELT) (($ (-118 |#1|) (-118 |#1|)) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ (-118 |#1|) $) NIL T ELT) (($ $ (-118 |#1|)) NIL T ELT))) -(((-119 |#1|) (-13 (-1010 (-118 |#1|)) (-10 -8 (-15 -4198 ((-419 (-557)) $ (-557))) (-15 -3013 ((-177 (-419 (-557))) $)) (-15 -4158 ($ $)) (-15 -4158 ($ (-557) $)))) (-557)) (T -119)) -((-4198 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-119 *4)) (-14 *4 *3) (-5 *3 (-557)))) (-3013 (*1 *2 *1) (-12 (-5 *2 (-177 (-419 (-557)))) (-5 *1 (-119 *3)) (-14 *3 (-557)))) (-4158 (*1 *1 *1) (-12 (-5 *1 (-119 *2)) (-14 *2 (-557)))) (-4158 (*1 *1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-119 *3)) (-14 *3 *2)))) -((-4216 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 61 T ELT) (($ $ #3="right" $) 63 T ELT)) (-3430 (((-659 $) $) 31 T ELT)) (-3426 (((-114) $ $) 36 T ELT)) (-3661 (((-114) |#2| $) 40 T ELT)) (-3429 (((-659 |#2|) $) 25 T ELT)) (-3945 (((-114) $) 18 T ELT)) (-4228 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-4061 (((-114) $) 57 T ELT)) (-4374 (((-875) $) 47 T ELT)) (-3940 (((-659 $) $) 32 T ELT)) (-3452 (((-114) $ $) 38 T ELT)) (-4385 (((-789) $) 50 T ELT))) -(((-120 |#1| |#2|) (-10 -7 (-15 -3452 ((-114) |#1| |#1|)) (-15 -4374 ((-875) |#1|)) (-15 -4216 (|#1| |#1| #1="right" |#1|)) (-15 -4216 (|#1| |#1| #2="left" |#1|)) (-15 -4228 (|#1| |#1| #1#)) (-15 -4228 (|#1| |#1| #2#)) (-15 -4216 (|#2| |#1| #3="value" |#2|)) (-15 -3426 ((-114) |#1| |#1|)) (-15 -3429 ((-659 |#2|) |#1|)) (-15 -4061 ((-114) |#1|)) (-15 -4228 (|#2| |#1| #3#)) (-15 -3945 ((-114) |#1|)) (-15 -3430 ((-659 |#1|) |#1|)) (-15 -3940 ((-659 |#1|) |#1|)) (-15 -3661 ((-114) |#2| |#1|)) (-15 -4385 ((-789) |#1|))) (-121 |#2|) (-1236)) (T -120)) -NIL -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3820 ((|#1| $) 52 T ELT)) (-3424 ((|#1| $ |#1|) 43 (|has| $ (-6 -4424)) ELT)) (-1405 (($ $ $) 58 (|has| $ (-6 -4424)) ELT)) (-1406 (($ $ $) 60 (|has| $ (-6 -4424)) ELT)) (-4216 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4424)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -4424)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -4424)) ELT)) (-3425 (($ $ (-659 $)) 45 (|has| $ (-6 -4424)) ELT)) (-4152 (($) 7 T CONST)) (-3537 (($ $) 63 T ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-3430 (((-659 $) $) 54 T ELT)) (-3426 (((-114) $ $) 46 (|has| |#1| (-1120)) ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3538 (($ $) 65 T ELT)) (-3429 (((-659 |#1|) $) 49 T ELT)) (-3945 (((-114) $) 53 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-4228 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3428 (((-557) $ $) 48 T ELT)) (-4061 (((-114) $) 50 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-3940 (((-659 $) $) 55 T ELT)) (-3427 (((-114) $ $) 47 (|has| |#1| (-1120)) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-121 |#1|) (-142) (-1236)) (T -121)) -((-3538 (*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1236)))) (-4228 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-121 *3)) (-4 *3 (-1236)))) (-3537 (*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1236)))) (-4228 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-121 *3)) (-4 *3 (-1236)))) (-4216 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4424)) (-4 *1 (-121 *3)) (-4 *3 (-1236)))) (-1406 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-121 *2)) (-4 *2 (-1236)))) (-4216 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4424)) (-4 *1 (-121 *3)) (-4 *3 (-1236)))) (-1405 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-121 *2)) (-4 *2 (-1236))))) -(-13 (-1029 |t#1|) (-10 -8 (-15 -3538 ($ $)) (-15 -4228 ($ $ "left")) (-15 -3537 ($ $)) (-15 -4228 ($ $ "right")) (IF (|has| $ (-6 -4424)) (PROGN (-15 -4216 ($ $ "left" $)) (-15 -1406 ($ $ $)) (-15 -4216 ($ $ "right" $)) (-15 -1405 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-628 (-875)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-1029 |#1|) . T) ((-1120) |has| |#1| (-1120)) ((-1236) . T)) -((-1409 (((-114) |#1|) 29 T ELT)) (-1408 (((-789) (-789)) 28 T ELT) (((-789)) 27 T ELT)) (-1407 (((-114) |#1| (-114)) 30 T ELT) (((-114) |#1|) 31 T ELT))) -(((-122 |#1|) (-10 -7 (-15 -1407 ((-114) |#1|)) (-15 -1407 ((-114) |#1| (-114))) (-15 -1408 ((-789))) (-15 -1408 ((-789) (-789))) (-15 -1409 ((-114) |#1|))) (-1262 (-557))) (T -122)) -((-1409 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1262 (-557))))) (-1408 (*1 *2 *2) (-12 (-5 *2 (-789)) (-5 *1 (-122 *3)) (-4 *3 (-1262 (-557))))) (-1408 (*1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-122 *3)) (-4 *3 (-1262 (-557))))) (-1407 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1262 (-557))))) (-1407 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1262 (-557)))))) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3820 ((|#1| $) 18 T ELT)) (-3836 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3424 ((|#1| $ |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-1405 (($ $ $) 21 (|has| $ (-6 -4424)) ELT)) (-1406 (($ $ $) 23 (|has| $ (-6 -4424)) ELT)) (-4216 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4424)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4424)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4424)) ELT)) (-3425 (($ $ (-659 $)) NIL (|has| $ (-6 -4424)) ELT)) (-4152 (($) NIL T CONST)) (-3537 (($ $) 20 T ELT)) (-3288 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3430 (((-659 $) $) NIL T ELT)) (-3426 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-1414 (($ $ |#1| $) 27 T ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3538 (($ $) 22 T ELT)) (-3429 (((-659 |#1|) $) NIL T ELT)) (-3945 (((-114) $) NIL T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-1410 (($ |#1| $) 28 T ELT)) (-4035 (($ |#1| $) 15 T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) 17 T ELT)) (-3991 (($) 11 T ELT)) (-4228 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3428 (((-557) $ $) NIL T ELT)) (-4061 (((-114) $) NIL T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-4374 (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-3940 (((-659 $) $) NIL T ELT)) (-3427 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-1411 (($ (-659 |#1|)) 16 T ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-123 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4424) (-6 -4423) (-15 -1411 ($ (-659 |#1|))) (-15 -4035 ($ |#1| $)) (-15 -1410 ($ |#1| $)) (-15 -3836 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-859)) (T -123)) -((-1411 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-859)) (-5 *1 (-123 *3)))) (-4035 (*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-859)))) (-1410 (*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-859)))) (-3836 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-123 *3)) (|:| |greater| (-123 *3)))) (-5 *1 (-123 *3)) (-4 *3 (-859))))) -((-2524 (($ $) 13 T ELT)) (-2957 (($ $) 11 T ELT)) (-1412 (($ $ $) 23 T ELT)) (-1413 (($ $ $) 21 T ELT)) (-2522 (($ $ $) 19 T ELT)) (-2523 (($ $ $) 17 T ELT))) -(((-124 |#1|) (-10 -7 (-15 -1412 (|#1| |#1| |#1|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -2524 (|#1| |#1|)) (-15 -2523 (|#1| |#1| |#1|)) (-15 -2522 (|#1| |#1| |#1|)) (-15 -2957 (|#1| |#1|))) (-125)) (T -124)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-2524 (($ $) 103 T ELT)) (-3740 (($ $ $) 31 T ELT)) (-2411 (((-1292) $ (-557) (-557)) 66 (|has| $ (-6 -4424)) ELT)) (-1933 (((-114) $) 98 (|has| (-114) (-859)) ELT) (((-114) (-1 (-114) (-114) (-114)) $) 92 T ELT)) (-1931 (($ $) 102 (-12 (|has| (-114) (-859)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) (-114) (-114)) $) 101 (|has| $ (-6 -4424)) ELT)) (-3308 (($ $) 97 (|has| (-114) (-859)) ELT) (($ (-1 (-114) (-114) (-114)) $) 91 T ELT)) (-4216 (((-114) $ (-1253 (-557)) (-114)) 88 (|has| $ (-6 -4424)) ELT) (((-114) $ (-557) (-114)) 54 (|has| $ (-6 -4424)) ELT)) (-4138 (($ (-1 (-114) (-114)) $) 71 (|has| $ (-6 -4423)) ELT)) (-4152 (($) 38 T CONST)) (-2508 (($ $) 100 (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) 90 T ELT)) (-1465 (($ $) 68 (-12 (|has| (-114) (-1120)) (|has| $ (-6 -4423))) ELT)) (-3824 (($ (-1 (-114) (-114)) $) 72 (|has| $ (-6 -4423)) ELT) (($ (-114) $) 69 (-12 (|has| (-114) (-1120)) (|has| $ (-6 -4423))) ELT)) (-4270 (((-114) (-1 (-114) (-114) (-114)) $) 74 (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) 73 (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) 70 (-12 (|has| (-114) (-1120)) (|has| $ (-6 -4423))) ELT)) (-1717 (((-114) $ (-557) (-114)) 53 (|has| $ (-6 -4424)) ELT)) (-3513 (((-114) $ (-557)) 55 T ELT)) (-3837 (((-557) (-114) $ (-557)) 95 (|has| (-114) (-1120)) ELT) (((-557) (-114) $) 94 (|has| (-114) (-1120)) ELT) (((-557) (-1 (-114) (-114)) $) 93 T ELT)) (-3288 (((-659 (-114)) $) 45 (|has| $ (-6 -4423)) ELT)) (-2958 (($ $ $) 108 T ELT)) (-2957 (($ $) 106 T ELT)) (-1412 (($ $ $) 32 T ELT)) (-4042 (($ (-789) (-114)) 78 T ELT)) (-1413 (($ $ $) 33 T ELT)) (-2413 (((-557) $) 63 (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) 23 T ELT)) (-3936 (($ $ $) 96 (|has| (-114) (-859)) ELT) (($ (-1 (-114) (-114) (-114)) $ $) 89 T ELT)) (-3005 (((-659 (-114)) $) 46 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-114) $) 48 (-12 (|has| (-114) (-1120)) (|has| $ (-6 -4423))) ELT)) (-2414 (((-557) $) 62 (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) 22 T ELT)) (-2158 (($ (-1 (-114) (-114)) $) 41 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-114) (-114) (-114)) $ $) 83 T ELT) (($ (-1 (-114) (-114)) $) 40 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2515 (($ $ $ (-557)) 87 T ELT) (($ (-114) $ (-557)) 86 T ELT)) (-2416 (((-659 (-557)) $) 60 T ELT)) (-2417 (((-114) (-557) $) 59 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4229 (((-114) $) 64 (|has| (-557) (-859)) ELT)) (-1466 (((-3 (-114) "failed") (-1 (-114) (-114)) $) 75 T ELT)) (-2412 (($ $ (-114)) 65 (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) (-114)) $) 43 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-114)) (-659 (-114))) 52 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1120))) ELT) (($ $ (-114) (-114)) 51 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1120))) ELT) (($ $ (-305 (-114))) 50 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1120))) ELT) (($ $ (-659 (-305 (-114)))) 49 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1120))) ELT)) (-1327 (((-114) $ $) 34 T ELT)) (-2415 (((-114) (-114) $) 61 (-12 (|has| $ (-6 -4423)) (|has| (-114) (-1120))) ELT)) (-2418 (((-659 (-114)) $) 58 T ELT)) (-3821 (((-114) $) 37 T ELT)) (-3991 (($) 36 T ELT)) (-4228 (($ $ (-1253 (-557))) 77 T ELT) (((-114) $ (-557)) 57 T ELT) (((-114) $ (-557) (-114)) 56 T ELT)) (-2516 (($ $ (-1253 (-557))) 85 T ELT) (($ $ (-557)) 84 T ELT)) (-2155 (((-789) (-114) $) 47 (-12 (|has| (-114) (-1120)) (|has| $ (-6 -4423))) ELT) (((-789) (-1 (-114) (-114)) $) 44 (|has| $ (-6 -4423)) ELT)) (-1932 (($ $ $ (-557)) 99 (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) 35 T ELT)) (-4400 (((-546) $) 67 (|has| (-114) (-629 (-546))) ELT)) (-3948 (($ (-659 (-114))) 76 T ELT)) (-4230 (($ (-659 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-114) $) 80 T ELT) (($ $ (-114)) 79 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2157 (((-114) (-1 (-114) (-114)) $) 42 (|has| $ (-6 -4423)) ELT)) (-2959 (($ $ $) 107 T ELT)) (-2522 (($ $ $) 105 T ELT)) (-2963 (((-114) $ $) 21 T ELT)) (-2964 (((-114) $ $) 19 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 20 T ELT)) (-3084 (((-114) $ $) 18 T ELT)) (-2523 (($ $ $) 104 T ELT)) (-4385 (((-789) $) 39 (|has| $ (-6 -4423)) ELT))) -(((-125) (-142)) (T -125)) -((-1413 (*1 *1 *1 *1) (-4 *1 (-125))) (-1412 (*1 *1 *1 *1) (-4 *1 (-125))) (-3740 (*1 *1 *1 *1) (-4 *1 (-125)))) -(-13 (-859) (-113) (-680) (-19 (-114)) (-10 -8 (-15 -1413 ($ $ $)) (-15 -1412 ($ $ $)) (-15 -3740 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-113) . T) ((-628 (-875)) . T) ((-153 (-114)) . T) ((-629 (-546)) |has| (-114) (-629 (-546))) ((-298 (-557) (-114)) . T) ((-298 (-1253 (-557)) $) . T) ((-300 (-557) (-114)) . T) ((-321 (-114)) -12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1120))) ((-385 (-114)) . T) ((-501 (-114)) . T) ((-614 (-557) (-114)) . T) ((-526 (-114) (-114)) -12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1120))) ((-669 (-114)) . T) ((-680) . T) ((-19 (-114)) . T) ((-859) . T) ((-862) . T) ((-1120) . T) ((-1236) . T)) -((-2158 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3818 (($ $) 16 T ELT)) (-4385 (((-789) $) 25 T ELT))) -(((-126 |#1| |#2|) (-10 -7 (-15 -2158 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4385 ((-789) |#1|)) (-15 -3818 (|#1| |#1|))) (-127 |#2|) (-1120)) (T -126)) -NIL -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3820 ((|#1| $) 52 T ELT)) (-3424 ((|#1| $ |#1|) 43 (|has| $ (-6 -4424)) ELT)) (-1405 (($ $ $) 58 (|has| $ (-6 -4424)) ELT)) (-1406 (($ $ $) 60 (|has| $ (-6 -4424)) ELT)) (-4216 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4424)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -4424)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -4424)) ELT)) (-3425 (($ $ (-659 $)) 45 (|has| $ (-6 -4424)) ELT)) (-4152 (($) 7 T CONST)) (-3537 (($ $) 63 T ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-3430 (((-659 $) $) 54 T ELT)) (-3426 (((-114) $ $) 46 (|has| |#1| (-1120)) ELT)) (-1414 (($ $ |#1| $) 66 T ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3538 (($ $) 65 T ELT)) (-3429 (((-659 |#1|) $) 49 T ELT)) (-3945 (((-114) $) 53 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-4228 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3428 (((-557) $ $) 48 T ELT)) (-4061 (((-114) $) 50 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-3940 (((-659 $) $) 55 T ELT)) (-3427 (((-114) $ $) 47 (|has| |#1| (-1120)) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-127 |#1|) (-142) (-1120)) (T -127)) -((-1414 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-127 *2)) (-4 *2 (-1120))))) -(-13 (-121 |t#1|) (-10 -8 (-6 -4424) (-6 -4423) (-15 -1414 ($ $ |t#1| $)))) -(((-34) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-121 |#1|) . T) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-628 (-875)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-1029 |#1|) . T) ((-1120) |has| |#1| (-1120)) ((-1236) . T)) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3820 ((|#1| $) 18 T ELT)) (-3424 ((|#1| $ |#1|) 22 (|has| $ (-6 -4424)) ELT)) (-1405 (($ $ $) 23 (|has| $ (-6 -4424)) ELT)) (-1406 (($ $ $) 21 (|has| $ (-6 -4424)) ELT)) (-4216 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4424)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4424)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4424)) ELT)) (-3425 (($ $ (-659 $)) NIL (|has| $ (-6 -4424)) ELT)) (-4152 (($) NIL T CONST)) (-3537 (($ $) 24 T ELT)) (-3288 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3430 (((-659 $) $) NIL T ELT)) (-3426 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-1414 (($ $ |#1| $) NIL T ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3538 (($ $) NIL T ELT)) (-3429 (((-659 |#1|) $) NIL T ELT)) (-3945 (((-114) $) NIL T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-4035 (($ |#1| $) 15 T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) 17 T ELT)) (-3991 (($) 11 T ELT)) (-4228 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3428 (((-557) $ $) NIL T ELT)) (-4061 (((-114) $) NIL T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) 20 T ELT)) (-4374 (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-3940 (((-659 $) $) NIL T ELT)) (-3427 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-1415 (($ (-659 |#1|)) 16 T ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-128 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4424) (-15 -1415 ($ (-659 |#1|))) (-15 -4035 ($ |#1| $)))) (-859)) (T -128)) -((-1415 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-859)) (-5 *1 (-128 *3)))) (-4035 (*1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-859))))) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3820 ((|#1| $) 30 T ELT)) (-3424 ((|#1| $ |#1|) 32 (|has| $ (-6 -4424)) ELT)) (-1405 (($ $ $) 36 (|has| $ (-6 -4424)) ELT)) (-1406 (($ $ $) 34 (|has| $ (-6 -4424)) ELT)) (-4216 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4424)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4424)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4424)) ELT)) (-3425 (($ $ (-659 $)) NIL (|has| $ (-6 -4424)) ELT)) (-4152 (($) NIL T CONST)) (-3537 (($ $) 23 T ELT)) (-3288 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3430 (((-659 $) $) NIL T ELT)) (-3426 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-1414 (($ $ |#1| $) 16 T ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3538 (($ $) 22 T ELT)) (-3429 (((-659 |#1|) $) NIL T ELT)) (-3945 (((-114) $) 25 T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) 20 T ELT)) (-3991 (($) 11 T ELT)) (-4228 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3428 (((-557) $ $) NIL T ELT)) (-4061 (((-114) $) NIL T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-4374 (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-3940 (((-659 $) $) NIL T ELT)) (-3427 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-1416 (($ |#1|) 18 T ELT) (($ $ |#1| $) 17 T ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 10 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-129 |#1|) (-13 (-127 |#1|) (-10 -8 (-15 -1416 ($ |#1|)) (-15 -1416 ($ $ |#1| $)))) (-1120)) (T -129)) -((-1416 (*1 *1 *2) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1120)))) (-1416 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1120))))) -((-2965 (((-114) $ $) NIL T ELT)) (-2524 (($ $) 34 T ELT)) (-3536 (((-789)) 20 T ELT)) (-4152 (($) 12 T CONST)) (-3393 (($) 29 T ELT)) (-2928 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-3256 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2218 (((-936) $) 27 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2629 (($ (-936)) 25 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1417 (($ (-789)) 8 T ELT)) (-4153 (($ $ $) 31 T ELT)) (-4154 (($ $ $) 30 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2522 (($ $ $) 33 T ELT)) (-2963 (((-114) $ $) 17 T ELT)) (-2964 (((-114) $ $) 15 T ELT)) (-3452 (((-114) $ $) 13 T ELT)) (-3083 (((-114) $ $) 16 T ELT)) (-3084 (((-114) $ $) 14 T ELT)) (-2523 (($ $ $) 32 T ELT))) -(((-130) (-13 (-855) (-680) (-10 -8 (-15 -1417 ($ (-789))) (-15 -4154 ($ $ $)) (-15 -4153 ($ $ $)) (-15 -4152 ($) -4380)))) (T -130)) -((-1417 (*1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-130)))) (-4154 (*1 *1 *1 *1) (-5 *1 (-130))) (-4153 (*1 *1 *1 *1) (-5 *1 (-130))) (-4152 (*1 *1) (-5 *1 (-130)))) -((-789) (|%ilt| |#1| 256)) -((-2965 (((-114) $ $) NIL (|has| (-130) (-102)) ELT)) (-2411 (((-1292) $ (-557) (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-1933 (((-114) (-1 (-114) (-130) (-130)) $) NIL T ELT) (((-114) $) NIL (|has| (-130) (-859)) ELT)) (-1931 (($ (-1 (-114) (-130) (-130)) $) NIL (|has| $ (-6 -4424)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-130) (-859))) ELT)) (-3308 (($ (-1 (-114) (-130) (-130)) $) NIL T ELT) (($ $) NIL (|has| (-130) (-859)) ELT)) (-4216 (((-130) $ (-557) (-130)) 26 (|has| $ (-6 -4424)) ELT) (((-130) $ (-1253 (-557)) (-130)) NIL (|has| $ (-6 -4424)) ELT)) (-1418 (((-789) $ (-789)) 34 T ELT)) (-4138 (($ (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4423)) ELT)) (-4152 (($) NIL T CONST)) (-2508 (($ $) NIL (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) NIL T ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-130) (-1120))) ELT)) (-3824 (($ (-130) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-130) (-1120))) ELT) (($ (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4423)) (|has| (-130) (-1120))) ELT) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4423)) ELT) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4423)) ELT)) (-1717 (((-130) $ (-557) (-130)) 25 (|has| $ (-6 -4424)) ELT)) (-3513 (((-130) $ (-557)) 20 T ELT)) (-3837 (((-557) (-1 (-114) (-130)) $) NIL T ELT) (((-557) (-130) $) NIL (|has| (-130) (-1120)) ELT) (((-557) (-130) $ (-557)) NIL (|has| (-130) (-1120)) ELT)) (-3288 (((-659 (-130)) $) NIL (|has| $ (-6 -4423)) ELT)) (-4042 (($ (-789) (-130)) 14 T ELT)) (-2413 (((-557) $) 27 (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) NIL (|has| (-130) (-859)) ELT)) (-3936 (($ (-1 (-114) (-130) (-130)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-130) (-859)) ELT)) (-3005 (((-659 (-130)) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-130) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-130) (-1120))) ELT)) (-2414 (((-557) $) 30 (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| (-130) (-859)) ELT)) (-2158 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-130) (-130)) $) NIL T ELT) (($ (-1 (-130) (-130) (-130)) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL (|has| (-130) (-1120)) ELT)) (-2515 (($ (-130) $ (-557)) NIL T ELT) (($ $ $ (-557)) NIL T ELT)) (-2416 (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) (-557) $) NIL T ELT)) (-3659 (((-1139) $) NIL (|has| (-130) (-1120)) ELT)) (-4229 (((-130) $) NIL (|has| (-557) (-859)) ELT)) (-1466 (((-3 (-130) "failed") (-1 (-114) (-130)) $) NIL T ELT)) (-2412 (($ $ (-130)) NIL (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 (-130)))) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1120))) ELT) (($ $ (-305 (-130))) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1120))) ELT) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1120))) ELT) (($ $ (-659 (-130)) (-659 (-130))) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) (-130) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-130) (-1120))) ELT)) (-2418 (((-659 (-130)) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) 12 T ELT)) (-4228 (((-130) $ (-557) (-130)) NIL T ELT) (((-130) $ (-557)) 23 T ELT) (($ $ (-1253 (-557))) NIL T ELT)) (-2516 (($ $ (-557)) NIL T ELT) (($ $ (-1253 (-557))) NIL T ELT)) (-2155 (((-789) (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) (-130) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-130) (-1120))) ELT)) (-1932 (($ $ $ (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) NIL (|has| (-130) (-629 (-546))) ELT)) (-3948 (($ (-659 (-130))) 40 T ELT)) (-4230 (($ $ (-130)) NIL T ELT) (($ (-130) $) NIL T ELT) (($ $ $) 44 T ELT) (($ (-659 $)) NIL T ELT)) (-4374 (((-975 (-130)) $) 35 T ELT) (((-1178) $) 37 T ELT) (((-875) $) NIL (|has| (-130) (-628 (-875))) ELT)) (-1419 (((-789) $) 18 T ELT)) (-1420 (($ (-789)) 8 T ELT)) (-1376 (((-114) $ $) NIL (|has| (-130) (-102)) ELT)) (-2157 (((-114) (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4423)) ELT)) (-2963 (((-114) $ $) NIL (|has| (-130) (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| (-130) (-859)) ELT)) (-3452 (((-114) $ $) 32 (|has| (-130) (-102)) ELT)) (-3083 (((-114) $ $) NIL (|has| (-130) (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| (-130) (-859)) ELT)) (-4385 (((-789) $) 15 (|has| $ (-6 -4423)) ELT))) -(((-131) (-13 (-19 (-130)) (-628 (-975 (-130))) (-628 (-1178)) (-10 -8 (-15 -1420 ($ (-789))) (-15 -1419 ((-789) $)) (-15 -1418 ((-789) $ (-789))) (-6 -4423)))) (T -131)) -((-1420 (*1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-131)))) (-1419 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-131)))) (-1418 (*1 *2 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-131))))) -((-2965 (((-114) $ $) NIL T ELT)) (-1421 (($) 6 T CONST)) (-1423 (($) 7 T CONST)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 14 T ELT)) (-1422 (($) 8 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 10 T ELT))) -(((-132) (-13 (-1120) (-10 -8 (-15 -1423 ($) -4380) (-15 -1422 ($) -4380) (-15 -1421 ($) -4380)))) (T -132)) -((-1423 (*1 *1) (-5 *1 (-132))) (-1422 (*1 *1) (-5 *1 (-132))) (-1421 (*1 *1) (-5 *1 (-132)))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT))) -(((-133) (-142)) (T -133)) -((-1424 (*1 *1 *1 *1) (|partial| -4 *1 (-133)))) -(-13 (-23) (-10 -8 (-15 -1424 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-628 (-875)) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) 7 T ELT)) (-1425 (((-1292) $ (-789)) 17 T ELT)) (-3837 (((-789) $) 18 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-134) (-142)) (T -134)) -((-3837 (*1 *2 *1) (-12 (-4 *1 (-134)) (-5 *2 (-789)))) (-1425 (*1 *2 *1 *3) (-12 (-4 *1 (-134)) (-5 *3 (-789)) (-5 *2 (-1292))))) -(-13 (-1120) (-10 -8 (-15 -3837 ((-789) $)) (-15 -1425 ((-1292) $ (-789))))) -(((-102) . T) ((-628 (-875)) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 16 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-3649 (((-659 (-1154)) $) 10 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-135) (-13 (-1102) (-10 -8 (-15 -3649 ((-659 (-1154)) $))))) (T -135)) -((-3649 (*1 *2 *1) (-12 (-5 *2 (-659 (-1154))) (-5 *1 (-135))))) -((-2965 (((-114) $ $) 49 T ELT)) (-3604 (((-114) $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-789) #1="failed") $) 60 T ELT)) (-3572 (((-789) $) 58 T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) 37 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1427 (((-114)) 61 T ELT)) (-1426 (((-114) (-114)) 63 T ELT)) (-2922 (((-114) $) 30 T ELT)) (-1428 (((-114) $) 57 T ELT)) (-4374 (((-875) $) 28 T ELT) (($ (-789)) 20 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 18 T CONST)) (-3063 (($) 19 T CONST)) (-1429 (($ (-789)) 21 T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) 40 T ELT)) (-3452 (((-114) $ $) 32 T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 35 T ELT)) (-4265 (((-3 $ #1#) $ $) 42 T ELT)) (-4267 (($ $ $) 38 T ELT)) (** (($ $ (-789)) NIL T ELT) (($ $ (-936)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-789) $) 48 T ELT) (($ (-936) $) NIL T ELT) (($ $ $) 45 T ELT))) -(((-136) (-13 (-859) (-23) (-744) (-1057 (-789)) (-10 -8 (-6 (-4425 "*")) (-15 -4265 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1429 ($ (-789))) (-15 -2922 ((-114) $)) (-15 -1428 ((-114) $)) (-15 -1427 ((-114))) (-15 -1426 ((-114) (-114)))))) (T -136)) -((-4265 (*1 *1 *1 *1) (|partial| -5 *1 (-136))) (** (*1 *1 *1 *1) (-5 *1 (-136))) (-1429 (*1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-136)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) (-1428 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) (-1427 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) (-1426 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136))))) -((-2965 (((-114) $ $) NIL T ELT)) (-1430 (($ (-659 |#3|)) 62 T ELT)) (-3832 (($ $) 125 T ELT) (($ $ (-557) (-557)) 124 T ELT)) (-4152 (($) 20 T ELT)) (-3573 (((-3 |#3| "failed") $) 85 T ELT)) (-3572 ((|#3| $) NIL T ELT)) (-1434 (($ $ (-659 (-557))) 126 T ELT)) (-1431 (((-659 |#3|) $) 57 T ELT)) (-3509 (((-789) $) 67 T ELT)) (-4372 (($ $ $) 119 T ELT)) (-1432 (($) 66 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1433 (($) 19 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4228 ((|#3| $ (-557)) 71 T ELT) ((|#3| $) 70 T ELT) ((|#3| $ (-557) (-557)) 72 T ELT) ((|#3| $ (-557) (-557) (-557)) 73 T ELT) ((|#3| $ (-557) (-557) (-557) (-557)) 74 T ELT) ((|#3| $ (-659 (-557))) 75 T ELT)) (-4376 (((-789) $) 68 T ELT)) (-2191 (($ $ (-557) $ (-557)) 120 T ELT) (($ $ (-557) (-557)) 122 T ELT)) (-4374 (((-875) $) 93 T ELT) (($ |#3|) 94 T ELT) (($ (-246 |#2| |#3|)) 101 T ELT) (($ (-1161 |#2| |#3|)) 104 T ELT) (($ (-659 |#3|)) 76 T ELT) (($ (-659 $)) 82 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 95 T CONST)) (-3063 (($) 96 T CONST)) (-3452 (((-114) $ $) 106 T ELT)) (-4265 (($ $) 112 T ELT) (($ $ $) 110 T ELT)) (-4267 (($ $ $) 108 T ELT)) (* (($ |#3| $) 117 T ELT) (($ $ |#3|) 118 T ELT) (($ $ (-557)) 115 T ELT) (($ (-557) $) 114 T ELT) (($ $ $) 121 T ELT))) -(((-137 |#1| |#2| |#3|) (-13 (-477 |#3| (-789)) (-482 (-557) (-789)) (-298 (-557) |#3|) (-631 (-246 |#2| |#3|)) (-631 (-1161 |#2| |#3|)) (-631 (-659 |#3|)) (-631 (-659 $)) (-10 -8 (-15 -3509 ((-789) $)) (-15 -4228 (|#3| $)) (-15 -4228 (|#3| $ (-557) (-557))) (-15 -4228 (|#3| $ (-557) (-557) (-557))) (-15 -4228 (|#3| $ (-557) (-557) (-557) (-557))) (-15 -4228 (|#3| $ (-659 (-557)))) (-15 -4372 ($ $ $)) (-15 * ($ $ $)) (-15 -2191 ($ $ (-557) $ (-557))) (-15 -2191 ($ $ (-557) (-557))) (-15 -3832 ($ $)) (-15 -3832 ($ $ (-557) (-557))) (-15 -1434 ($ $ (-659 (-557)))) (-15 -1433 ($)) (-15 -1432 ($)) (-15 -1431 ((-659 |#3|) $)) (-15 -1430 ($ (-659 |#3|))) (-15 -4152 ($)))) (-557) (-789) (-175)) (T -137)) -((-4372 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-557)) (-14 *3 (-789)) (-4 *4 (-175)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-557)) (-14 *4 *2) (-4 *5 (-175)))) (-4228 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-557)) (-14 *4 (-789)))) (-4228 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-557)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-789)))) (-4228 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-557)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-789)))) (-4228 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-557)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-789)))) (-4228 (*1 *2 *1 *3) (-12 (-5 *3 (-659 (-557))) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-557)) (-14 *5 (-789)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-557)) (-14 *3 (-789)) (-4 *4 (-175)))) (-2191 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-789)) (-4 *5 (-175)))) (-2191 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-789)) (-4 *5 (-175)))) (-3832 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-557)) (-14 *3 (-789)) (-4 *4 (-175)))) (-3832 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-789)) (-4 *5 (-175)))) (-1434 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-557)) (-14 *4 (-789)) (-4 *5 (-175)))) (-1433 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-557)) (-14 *3 (-789)) (-4 *4 (-175)))) (-1432 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-557)) (-14 *3 (-789)) (-4 *4 (-175)))) (-1431 (*1 *2 *1) (-12 (-5 *2 (-659 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-557)) (-14 *4 (-789)) (-4 *5 (-175)))) (-1430 (*1 *1 *2) (-12 (-5 *2 (-659 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-557)) (-14 *4 (-789)))) (-4152 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-557)) (-14 *3 (-789)) (-4 *4 (-175))))) -((-2642 (((-137 |#1| |#2| |#4|) (-659 |#4|) (-137 |#1| |#2| |#3|)) 14 T ELT)) (-4386 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18 T ELT))) -(((-138 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2642 ((-137 |#1| |#2| |#4|) (-659 |#4|) (-137 |#1| |#2| |#3|))) (-15 -4386 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-557) (-789) (-175) (-175)) (T -138)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-557)) (-14 *6 (-789)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8)))) (-2642 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-557)) (-14 *6 (-789)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3946 (((-1154) $) 11 T ELT)) (-3947 (((-1154) $) 9 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 17 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-139) (-13 (-1102) (-10 -8 (-15 -3947 ((-1154) $)) (-15 -3946 ((-1154) $))))) (T -139)) -((-3947 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-139)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-139))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1538 (((-190) $) 10 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 20 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-3649 (((-659 (-1154)) $) 13 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-140) (-13 (-1102) (-10 -8 (-15 -1538 ((-190) $)) (-15 -3649 ((-659 (-1154)) $))))) (T -140)) -((-1538 (*1 *2 *1) (-12 (-5 *2 (-190)) (-5 *1 (-140)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-659 (-1154))) (-5 *1 (-140))))) -((-2965 (((-114) $ $) NIL T ELT)) (-1536 (((-659 (-877)) $) NIL T ELT)) (-3968 (((-518) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1538 (((-190) $) NIL T ELT)) (-3030 (((-114) $ (-518)) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1537 (((-659 (-114)) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (((-186) $) 6 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2915 (((-55) $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-141) (-13 (-189) (-628 (-186)))) (T -141)) -NIL -((-1436 (((-659 (-187 (-141))) $) 13 T ELT)) (-1435 (((-659 (-187 (-141))) $) 14 T ELT)) (-1437 (((-659 (-849)) $) 10 T ELT)) (-1612 (((-141) $) 7 T ELT)) (-4374 (((-875) $) 16 T ELT))) -(((-142) (-13 (-628 (-875)) (-10 -8 (-15 -1612 ((-141) $)) (-15 -1437 ((-659 (-849)) $)) (-15 -1436 ((-659 (-187 (-141))) $)) (-15 -1435 ((-659 (-187 (-141))) $))))) (T -142)) -((-1612 (*1 *2 *1) (-12 (-5 *2 (-141)) (-5 *1 (-142)))) (-1437 (*1 *2 *1) (-12 (-5 *2 (-659 (-849))) (-5 *1 (-142)))) (-1436 (*1 *2 *1) (-12 (-5 *2 (-659 (-187 (-141)))) (-5 *1 (-142)))) (-1435 (*1 *2 *1) (-12 (-5 *2 (-659 (-187 (-141)))) (-5 *1 (-142))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3845 (($) 17 T CONST)) (-2008 (($) NIL (|has| (-146) (-381)) ELT)) (-3650 (($ $ $) 19 T ELT) (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT)) (-3652 (($ $ $) NIL T ELT)) (-3651 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) NIL (|has| (-146) (-381)) ELT)) (-3655 (($) NIL T ELT) (($ (-659 (-146))) NIL T ELT)) (-1711 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4423)) ELT)) (-4152 (($) NIL T CONST)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-146) (-1120))) ELT)) (-3823 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4423)) ELT) (($ (-146) $) 55 (|has| $ (-6 -4423)) ELT)) (-3824 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4423)) ELT) (($ (-146) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-146) (-1120))) ELT)) (-4270 (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4423)) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4423)) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4423)) (|has| (-146) (-1120))) ELT)) (-3393 (($) NIL (|has| (-146) (-381)) ELT)) (-3288 (((-659 (-146)) $) 64 (|has| $ (-6 -4423)) ELT)) (-3657 (((-114) $ $) NIL T ELT)) (-2928 (((-146) $) NIL (|has| (-146) (-859)) ELT)) (-3005 (((-659 (-146)) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-146) $) 27 (-12 (|has| $ (-6 -4423)) (|has| (-146) (-1120))) ELT)) (-3256 (((-146) $) NIL (|has| (-146) (-859)) ELT)) (-2158 (($ (-1 (-146) (-146)) $) 63 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-146) (-146)) $) 59 T ELT)) (-3847 (($) 18 T CONST)) (-2218 (((-936) $) NIL (|has| (-146) (-381)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3654 (($ $ $) 30 T ELT)) (-1387 (((-146) $) 56 T ELT)) (-4035 (($ (-146) $) 54 T ELT)) (-2629 (($ (-936)) NIL (|has| (-146) (-381)) ELT)) (-1440 (($) 16 T CONST)) (-3659 (((-1139) $) NIL T ELT)) (-1466 (((-3 (-146) "failed") (-1 (-114) (-146)) $) NIL T ELT)) (-1388 (((-146) $) 57 T ELT)) (-2156 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-146)) (-659 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1120))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1120))) ELT) (($ $ (-305 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1120))) ELT) (($ $ (-659 (-305 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) 52 T ELT)) (-1441 (($) 15 T CONST)) (-3653 (($ $ $) 32 T ELT) (($ $ (-146)) NIL T ELT)) (-1596 (($ (-659 (-146))) NIL T ELT) (($) NIL T ELT)) (-2155 (((-789) (-146) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-146) (-1120))) ELT) (((-789) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-1178) $) 37 T ELT) (((-546) $) NIL (|has| (-146) (-629 (-546))) ELT) (((-659 (-146)) $) 35 T ELT)) (-3948 (($ (-659 (-146))) NIL T ELT)) (-2009 (($ $) 33 (|has| (-146) (-381)) ELT)) (-4374 (((-875) $) 49 T ELT)) (-1442 (($ (-1178)) 14 T ELT) (($ (-659 (-146))) 46 T ELT)) (-2010 (((-789) $) NIL T ELT)) (-3656 (($) 53 T ELT) (($ (-659 (-146))) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-1389 (($ (-659 (-146))) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4423)) ELT)) (-1438 (($) 21 T CONST)) (-1439 (($) 20 T CONST)) (-3452 (((-114) $ $) 24 T ELT)) (-4385 (((-789) $) 51 (|has| $ (-6 -4423)) ELT))) -(((-143) (-13 (-1120) (-629 (-1178)) (-438 (-146)) (-629 (-659 (-146))) (-10 -8 (-15 -1442 ($ (-1178))) (-15 -1442 ($ (-659 (-146)))) (-15 -1441 ($) -4380) (-15 -1440 ($) -4380) (-15 -3845 ($) -4380) (-15 -3847 ($) -4380) (-15 -1439 ($) -4380) (-15 -1438 ($) -4380)))) (T -143)) -((-1442 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-143)))) (-1442 (*1 *1 *2) (-12 (-5 *2 (-659 (-146))) (-5 *1 (-143)))) (-1441 (*1 *1) (-5 *1 (-143))) (-1440 (*1 *1) (-5 *1 (-143))) (-3845 (*1 *1) (-5 *1 (-143))) (-3847 (*1 *1) (-5 *1 (-143))) (-1439 (*1 *1) (-5 *1 (-143))) (-1438 (*1 *1) (-5 *1 (-143)))) -((-4169 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-4167 ((|#1| |#3|) 9 T ELT)) (-4168 ((|#3| |#3|) 15 T ELT))) -(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -4167 (|#1| |#3|)) (-15 -4168 (|#3| |#3|)) (-15 -4169 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1010 |#1|) (-385 |#2|)) (T -144)) -((-4169 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-144 *4 *5 *3)) (-4 *3 (-385 *5)))) (-4168 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1010 *3)) (-5 *1 (-144 *3 *4 *2)) (-4 *2 (-385 *4)))) (-4167 (*1 *2 *3) (-12 (-4 *4 (-1010 *2)) (-4 *2 (-568)) (-5 *1 (-144 *2 *4 *3)) (-4 *3 (-385 *4))))) -((-1481 (($ $ $) 8 T ELT)) (-1479 (($ $) 7 T ELT)) (-3502 (($ $ $) 6 T ELT))) -(((-145) (-142)) (T -145)) -((-1481 (*1 *1 *1 *1) (-4 *1 (-145))) (-1479 (*1 *1 *1) (-4 *1 (-145))) (-3502 (*1 *1 *1 *1) (-4 *1 (-145)))) -(-13 (-10 -8 (-15 -3502 ($ $ $)) (-15 -1479 ($ $)) (-15 -1481 ($ $ $)))) -((-2965 (((-114) $ $) NIL T ELT)) (-1450 (($) 30 T CONST)) (-1445 (((-114) $) 42 T ELT)) (-3845 (($ $) 52 T ELT)) (-1457 (($) 23 T CONST)) (-1648 (($) 21 T CONST)) (-3536 (((-789)) 13 T ELT)) (-3393 (($) 20 T ELT)) (-2976 (($) 22 T CONST)) (-1459 (((-789) $) 17 T ELT)) (-1456 (($) 24 T CONST)) (-2928 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3256 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1444 (((-114) $) 44 T ELT)) (-3847 (($ $) 53 T ELT)) (-2218 (((-936) $) 18 T ELT)) (-1454 (($) 26 T CONST)) (-3658 (((-1178) $) 50 T ELT)) (-2629 (($ (-936)) 16 T ELT)) (-1451 (($) 29 T CONST)) (-1447 (((-114) $) 40 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1453 (($) 27 T CONST)) (-1449 (($) 31 T CONST)) (-1448 (((-114) $) 38 T ELT)) (-4374 (((-875) $) 33 T ELT)) (-1458 (($ (-789)) 14 T ELT) (($ (-1178)) 51 T ELT)) (-1455 (($) 25 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-1452 (($) 28 T CONST)) (-1443 (((-114) $) 48 T ELT)) (-1446 (((-114) $) 46 T ELT)) (-2963 (((-114) $ $) 11 T ELT)) (-2964 (((-114) $ $) 9 T ELT)) (-3452 (((-114) $ $) 7 T ELT)) (-3083 (((-114) $ $) 10 T ELT)) (-3084 (((-114) $ $) 8 T ELT))) -(((-146) (-13 (-855) (-10 -8 (-15 -1459 ((-789) $)) (-15 -1458 ($ (-789))) (-15 -1458 ($ (-1178))) (-15 -1648 ($) -4380) (-15 -2976 ($) -4380) (-15 -1457 ($) -4380) (-15 -1456 ($) -4380) (-15 -1455 ($) -4380) (-15 -1454 ($) -4380) (-15 -1453 ($) -4380) (-15 -1452 ($) -4380) (-15 -1451 ($) -4380) (-15 -1450 ($) -4380) (-15 -1449 ($) -4380) (-15 -3845 ($ $)) (-15 -3847 ($ $)) (-15 -1448 ((-114) $)) (-15 -1447 ((-114) $)) (-15 -1446 ((-114) $)) (-15 -1445 ((-114) $)) (-15 -1444 ((-114) $)) (-15 -1443 ((-114) $))))) (T -146)) -((-1459 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-146)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-146)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-146)))) (-1648 (*1 *1) (-5 *1 (-146))) (-2976 (*1 *1) (-5 *1 (-146))) (-1457 (*1 *1) (-5 *1 (-146))) (-1456 (*1 *1) (-5 *1 (-146))) (-1455 (*1 *1) (-5 *1 (-146))) (-1454 (*1 *1) (-5 *1 (-146))) (-1453 (*1 *1) (-5 *1 (-146))) (-1452 (*1 *1) (-5 *1 (-146))) (-1451 (*1 *1) (-5 *1 (-146))) (-1450 (*1 *1) (-5 *1 (-146))) (-1449 (*1 *1) (-5 *1 (-146))) (-3845 (*1 *1 *1) (-5 *1 (-146))) (-3847 (*1 *1 *1) (-5 *1 (-146))) (-1448 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1447 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1446 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1445 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1444 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1443 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT)) (-3101 (((-709 $) $) 44 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-147) (-142)) (T -147)) -((-3101 (*1 *2 *1) (-12 (-5 *2 (-709 *1)) (-4 *1 (-147))))) -(-13 (-1068) (-10 -8 (-15 -3101 ((-709 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-631 (-557)) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 $) . T) ((-744) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2836 ((|#1| (-707 |#1|) |#1|) 19 T ELT))) -(((-148 |#1|) (-10 -7 (-15 -2836 (|#1| (-707 |#1|) |#1|))) (-175)) (T -148)) -((-2836 (*1 *2 *3 *2) (-12 (-5 *3 (-707 *2)) (-4 *2 (-175)) (-5 *1 (-148 *2))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-149) (-142)) (T -149)) -NIL -(-13 (-1068)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-631 (-557)) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 $) . T) ((-744) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-1462 (((-2 (|:| -2630 (-789)) (|:| -4382 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-789)) 76 T ELT)) (-1461 (((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-789))) "failed") |#3|) 56 T ELT)) (-1460 (((-2 (|:| -4382 (-419 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1463 ((|#1| |#3| |#3|) 44 T ELT)) (-4196 ((|#3| |#3| (-419 |#2|) (-419 |#2|)) 20 T ELT)) (-1464 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-789))) |#3| |#3|) 53 T ELT))) -(((-150 |#1| |#2| |#3|) (-10 -7 (-15 -1460 ((-2 (|:| -4382 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1461 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-789))) "failed") |#3|)) (-15 -1462 ((-2 (|:| -2630 (-789)) (|:| -4382 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-789))) (-15 -1463 (|#1| |#3| |#3|)) (-15 -4196 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -1464 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-789))) |#3| |#3|))) (-1241) (-1262 |#1|) (-1262 (-419 |#2|))) (T -150)) -((-1464 (*1 *2 *3 *3) (-12 (-4 *4 (-1241)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) (|:| |c2| (-419 *5)) (|:| |deg| (-789)))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1262 (-419 *5))))) (-4196 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-1241)) (-4 *5 (-1262 *4)) (-5 *1 (-150 *4 *5 *2)) (-4 *2 (-1262 *3)))) (-1463 (*1 *2 *3 *3) (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1241)) (-5 *1 (-150 *2 *4 *3)) (-4 *3 (-1262 (-419 *4))))) (-1462 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *6)) (-4 *5 (-1241)) (-4 *6 (-1262 *5)) (-5 *2 (-2 (|:| -2630 (-789)) (|:| -4382 *3) (|:| |radicand| *6))) (-5 *1 (-150 *5 *6 *7)) (-5 *4 (-789)) (-4 *7 (-1262 *3)))) (-1461 (*1 *2 *3) (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-789)))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1262 (-419 *5))))) (-1460 (*1 *2 *3) (-12 (-4 *4 (-1241)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| -4382 (-419 *5)) (|:| |poly| *3))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1262 (-419 *5)))))) -((-3103 (((-3 (-659 (-1190 |#2|)) "failed") (-659 (-1190 |#2|)) (-1190 |#2|)) 35 T ELT))) -(((-151 |#1| |#2|) (-10 -7 (-15 -3103 ((-3 (-659 (-1190 |#2|)) "failed") (-659 (-1190 |#2|)) (-1190 |#2|)))) (-556) (-168 |#1|)) (T -151)) -((-3103 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-659 (-1190 *5))) (-5 *3 (-1190 *5)) (-4 *5 (-168 *4)) (-4 *4 (-556)) (-5 *1 (-151 *4 *5))))) -((-4138 (($ (-1 (-114) |#2|) $) 37 T ELT)) (-1465 (($ $) 44 T ELT)) (-3824 (($ (-1 (-114) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-4270 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1466 (((-3 |#2| "failed") (-1 (-114) |#2|) $) 27 T ELT)) (-2156 (((-114) (-1 (-114) |#2|) $) 24 T ELT)) (-2155 (((-789) (-1 (-114) |#2|) $) 18 T ELT) (((-789) |#2| $) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) 21 T ELT)) (-4385 (((-789) $) 12 T ELT))) -(((-152 |#1| |#2|) (-10 -7 (-15 -1465 (|#1| |#1|)) (-15 -3824 (|#1| |#2| |#1|)) (-15 -4270 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4138 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3824 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4270 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4270 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1466 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -2155 ((-789) |#2| |#1|)) (-15 -2155 ((-789) (-1 (-114) |#2|) |#1|)) (-15 -2156 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2157 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4385 ((-789) |#1|))) (-153 |#2|) (-1236)) (T -152)) -NIL -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) 48 (|has| $ (-6 -4423)) ELT)) (-4152 (($) 7 T CONST)) (-1465 (($ $) 45 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3824 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4423)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 52 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4400 (((-546) $) 44 (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 53 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-153 |#1|) (-142) (-1236)) (T -153)) -((-3948 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1236)) (-4 *1 (-153 *3)))) (-1466 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-114) *2)) (-4 *1 (-153 *2)) (-4 *2 (-1236)))) (-4270 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4423)) (-4 *1 (-153 *2)) (-4 *2 (-1236)))) (-4270 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4423)) (-4 *1 (-153 *2)) (-4 *2 (-1236)))) (-3824 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4423)) (-4 *1 (-153 *3)) (-4 *3 (-1236)))) (-4138 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4423)) (-4 *1 (-153 *3)) (-4 *3 (-1236)))) (-4270 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1120)) (|has| *1 (-6 -4423)) (-4 *1 (-153 *2)) (-4 *2 (-1236)))) (-3824 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-153 *2)) (-4 *2 (-1236)) (-4 *2 (-1120)))) (-1465 (*1 *1 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-153 *2)) (-4 *2 (-1236)) (-4 *2 (-1120))))) -(-13 (-501 |t#1|) (-10 -8 (-15 -3948 ($ (-659 |t#1|))) (-15 -1466 ((-3 |t#1| "failed") (-1 (-114) |t#1|) $)) (IF (|has| $ (-6 -4423)) (PROGN (-15 -4270 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4270 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3824 ($ (-1 (-114) |t#1|) $)) (-15 -4138 ($ (-1 (-114) |t#1|) $)) (IF (|has| |t#1| (-1120)) (PROGN (-15 -4270 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3824 ($ |t#1| $)) (-15 -1465 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-629 (-546))) (-6 (-629 (-546))) |%noBranch|))) -(((-34) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-628 (-875)))) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3885 (((-3 $ #1#) $) 112 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3292 (($ |#2| (-659 (-936))) 71 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1467 (($ (-936)) 57 T ELT)) (-4339 (((-136)) 23 T ELT)) (-4374 (((-875) $) 87 T ELT) (($ (-557)) 53 T ELT) (($ |#2|) 54 T ELT)) (-4105 ((|#2| $ (-659 (-936))) 74 T ELT)) (-3526 (((-789)) 20 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 47 T CONST)) (-3063 (($) 51 T CONST)) (-3452 (((-114) $ $) 33 T ELT)) (-4377 (($ $ |#2|) NIL T ELT)) (-4265 (($ $) 42 T ELT) (($ $ $) 40 T ELT)) (-4267 (($ $ $) 38 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 44 T ELT) (($ $ $) 63 T ELT) (($ |#2| $) 46 T ELT) (($ $ |#2|) NIL T ELT))) -(((-154 |#1| |#2| |#3|) (-13 (-1068) (-38 |#2|) (-1294 |#2|) (-10 -8 (-15 -1467 ($ (-936))) (-15 -3292 ($ |#2| (-659 (-936)))) (-15 -4105 (|#2| $ (-659 (-936)))) (-15 -3885 ((-3 $ "failed") $)))) (-936) (-376) (-1012 |#1| |#2|)) (T -154)) -((-3885 (*1 *1 *1) (|partial| -12 (-5 *1 (-154 *2 *3 *4)) (-14 *2 (-936)) (-4 *3 (-376)) (-14 *4 (-1012 *2 *3)))) (-1467 (*1 *1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-154 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-376)) (-14 *5 (-1012 *3 *4)))) (-3292 (*1 *1 *2 *3) (-12 (-5 *3 (-659 (-936))) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-936)) (-4 *2 (-376)) (-14 *5 (-1012 *4 *2)))) (-4105 (*1 *2 *1 *3) (-12 (-5 *3 (-659 (-936))) (-4 *2 (-376)) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-936)) (-14 *5 (-1012 *4 *2))))) -((-1469 (((-2 (|:| |brans| (-659 (-659 (-960 (-229))))) (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229)))) (-659 (-659 (-960 (-229)))) (-229) (-229) (-229) (-229)) 59 T ELT)) (-1468 (((-2 (|:| |brans| (-659 (-659 (-960 (-229))))) (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229)))) (-942) (-419 (-557)) (-419 (-557))) 95 T ELT) (((-2 (|:| |brans| (-659 (-659 (-960 (-229))))) (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229)))) (-942)) 96 T ELT)) (-1640 (((-2 (|:| |brans| (-659 (-659 (-960 (-229))))) (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229)))) (-659 (-659 (-960 (-229))))) 99 T ELT) (((-2 (|:| |brans| (-659 (-659 (-960 (-229))))) (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229)))) (-659 (-960 (-229)))) 98 T ELT) (((-2 (|:| |brans| (-659 (-659 (-960 (-229))))) (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229)))) (-942) (-419 (-557)) (-419 (-557))) 89 T ELT) (((-2 (|:| |brans| (-659 (-659 (-960 (-229))))) (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229)))) (-942)) 90 T ELT))) -(((-155) (-10 -7 (-15 -1640 ((-2 (|:| |brans| (-659 (-659 (-960 (-229))))) (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229)))) (-942))) (-15 -1640 ((-2 (|:| |brans| (-659 (-659 (-960 (-229))))) (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229)))) (-942) (-419 (-557)) (-419 (-557)))) (-15 -1468 ((-2 (|:| |brans| (-659 (-659 (-960 (-229))))) (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229)))) (-942))) (-15 -1468 ((-2 (|:| |brans| (-659 (-659 (-960 (-229))))) (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229)))) (-942) (-419 (-557)) (-419 (-557)))) (-15 -1469 ((-2 (|:| |brans| (-659 (-659 (-960 (-229))))) (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229)))) (-659 (-659 (-960 (-229)))) (-229) (-229) (-229) (-229))) (-15 -1640 ((-2 (|:| |brans| (-659 (-659 (-960 (-229))))) (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229)))) (-659 (-960 (-229))))) (-15 -1640 ((-2 (|:| |brans| (-659 (-659 (-960 (-229))))) (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229)))) (-659 (-659 (-960 (-229)))))))) (T -155)) -((-1640 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-659 (-659 (-960 (-229))))) (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229))))) (-5 *1 (-155)) (-5 *3 (-659 (-659 (-960 (-229))))))) (-1640 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-659 (-659 (-960 (-229))))) (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229))))) (-5 *1 (-155)) (-5 *3 (-659 (-960 (-229)))))) (-1469 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-229)) (-5 *2 (-2 (|:| |brans| (-659 (-659 (-960 *4)))) (|:| |xValues| (-1108 *4)) (|:| |yValues| (-1108 *4)))) (-5 *1 (-155)) (-5 *3 (-659 (-659 (-960 *4)))))) (-1468 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-942)) (-5 *4 (-419 (-557))) (-5 *2 (-2 (|:| |brans| (-659 (-659 (-960 (-229))))) (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229))))) (-5 *1 (-155)))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-942)) (-5 *2 (-2 (|:| |brans| (-659 (-659 (-960 (-229))))) (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229))))) (-5 *1 (-155)))) (-1640 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-942)) (-5 *4 (-419 (-557))) (-5 *2 (-2 (|:| |brans| (-659 (-659 (-960 (-229))))) (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229))))) (-5 *1 (-155)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-942)) (-5 *2 (-2 (|:| |brans| (-659 (-659 (-960 (-229))))) (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229))))) (-5 *1 (-155))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3597 (((-659 (-1154)) $) 20 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 27 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-3649 (((-1154) $) 9 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-156) (-13 (-1102) (-10 -8 (-15 -3597 ((-659 (-1154)) $)) (-15 -3649 ((-1154) $))))) (T -156)) -((-3597 (*1 *2 *1) (-12 (-5 *2 (-659 (-1154))) (-5 *1 (-156)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-156))))) -((-1522 (((-659 (-171 |#2|)) |#1| |#2|) 50 T ELT))) -(((-157 |#1| |#2|) (-10 -7 (-15 -1522 ((-659 (-171 |#2|)) |#1| |#2|))) (-1262 (-171 (-557))) (-13 (-376) (-858))) (T -157)) -((-1522 (*1 *2 *3 *4) (-12 (-5 *2 (-659 (-171 *4))) (-5 *1 (-157 *3 *4)) (-4 *3 (-1262 (-171 (-557)))) (-4 *4 (-13 (-376) (-858)))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3946 (((-1237) $) 12 T ELT)) (-3947 (((-1154) $) 9 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 19 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-158) (-13 (-1102) (-10 -8 (-15 -3947 ((-1154) $)) (-15 -3946 ((-1237) $))))) (T -158)) -((-3947 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-158)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-158))))) -((-2965 (((-114) $ $) NIL T ELT)) (-1471 (($) 38 T ELT)) (-3499 (($) 37 T ELT)) (-1470 (((-936)) 43 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3355 (((-557) $) 41 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3498 (($) 39 T ELT)) (-3354 (($ (-557)) 44 T ELT)) (-4374 (((-875) $) 50 T ELT)) (-3497 (($) 40 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 35 T ELT)) (-4267 (($ $ $) 32 T ELT)) (* (($ (-936) $) 42 T ELT) (($ (-229) $) 11 T ELT))) -(((-159) (-13 (-25) (-10 -8 (-15 * ($ (-936) $)) (-15 * ($ (-229) $)) (-15 -4267 ($ $ $)) (-15 -3499 ($)) (-15 -1471 ($)) (-15 -3498 ($)) (-15 -3497 ($)) (-15 -3355 ((-557) $)) (-15 -1470 ((-936))) (-15 -3354 ($ (-557)))))) (T -159)) -((-4267 (*1 *1 *1 *1) (-5 *1 (-159))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-159)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-159)))) (-3499 (*1 *1) (-5 *1 (-159))) (-1471 (*1 *1) (-5 *1 (-159))) (-3498 (*1 *1) (-5 *1 (-159))) (-3497 (*1 *1) (-5 *1 (-159))) (-3355 (*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-159)))) (-1470 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-159)))) (-3354 (*1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-159))))) -((-1484 ((|#2| |#2| (-1111 |#2|)) 98 T ELT) ((|#2| |#2| (-1196)) 75 T ELT)) (-4372 ((|#2| |#2| (-1111 |#2|)) 97 T ELT) ((|#2| |#2| (-1196)) 74 T ELT)) (-1481 ((|#2| |#2| |#2|) 25 T ELT)) (-4021 (((-115) (-115)) 111 T ELT)) (-1478 ((|#2| (-659 |#2|)) 130 T ELT)) (-1475 ((|#2| (-659 |#2|)) 150 T ELT)) (-1474 ((|#2| (-659 |#2|)) 138 T ELT)) (-1472 ((|#2| |#2|) 136 T ELT)) (-1476 ((|#2| (-659 |#2|)) 124 T ELT)) (-1477 ((|#2| (-659 |#2|)) 125 T ELT)) (-1473 ((|#2| (-659 |#2|)) 148 T ELT)) (-1485 ((|#2| |#2| (-1196)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1479 ((|#2| |#2|) 21 T ELT)) (-3502 ((|#2| |#2| |#2|) 24 T ELT)) (-2466 (((-114) (-115)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) -(((-160 |#1| |#2|) (-10 -7 (-15 -2466 ((-114) (-115))) (-15 -4021 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3502 (|#2| |#2| |#2|)) (-15 -1481 (|#2| |#2| |#2|)) (-15 -1479 (|#2| |#2|)) (-15 -1485 (|#2| |#2|)) (-15 -1485 (|#2| |#2| (-1196))) (-15 -1484 (|#2| |#2| (-1196))) (-15 -1484 (|#2| |#2| (-1111 |#2|))) (-15 -4372 (|#2| |#2| (-1196))) (-15 -4372 (|#2| |#2| (-1111 |#2|))) (-15 -1472 (|#2| |#2|)) (-15 -1473 (|#2| (-659 |#2|))) (-15 -1474 (|#2| (-659 |#2|))) (-15 -1475 (|#2| (-659 |#2|))) (-15 -1476 (|#2| (-659 |#2|))) (-15 -1477 (|#2| (-659 |#2|))) (-15 -1478 (|#2| (-659 |#2|)))) (-568) (-433 |#1|)) (T -160)) -((-1478 (*1 *2 *3) (-12 (-5 *3 (-659 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-568)))) (-1477 (*1 *2 *3) (-12 (-5 *3 (-659 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-568)))) (-1476 (*1 *2 *3) (-12 (-5 *3 (-659 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-568)))) (-1475 (*1 *2 *3) (-12 (-5 *3 (-659 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-568)))) (-1474 (*1 *2 *3) (-12 (-5 *3 (-659 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-568)))) (-1473 (*1 *2 *3) (-12 (-5 *3 (-659 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-568)))) (-1472 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (-4372 (*1 *2 *2 *3) (-12 (-5 *3 (-1111 *2)) (-4 *2 (-433 *4)) (-4 *4 (-568)) (-5 *1 (-160 *4 *2)))) (-4372 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) (-1484 (*1 *2 *2 *3) (-12 (-5 *3 (-1111 *2)) (-4 *2 (-433 *4)) (-4 *4 (-568)) (-5 *1 (-160 *4 *2)))) (-1484 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) (-1485 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) (-1485 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (-1479 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (-1481 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (-3502 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (-4021 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-160 *3 *4)) (-4 *4 (-433 *3)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-114)) (-5 *1 (-160 *4 *5)) (-4 *5 (-433 *4))))) -((-1483 ((|#1| |#1| |#1|) 66 T ELT)) (-1482 ((|#1| |#1| |#1|) 63 T ELT)) (-1481 ((|#1| |#1| |#1|) 57 T ELT)) (-3289 ((|#1| |#1|) 43 T ELT)) (-1480 ((|#1| |#1| (-659 |#1|)) 55 T ELT)) (-1479 ((|#1| |#1|) 47 T ELT)) (-3502 ((|#1| |#1| |#1|) 51 T ELT))) -(((-161 |#1|) (-10 -7 (-15 -3502 (|#1| |#1| |#1|)) (-15 -1479 (|#1| |#1|)) (-15 -1480 (|#1| |#1| (-659 |#1|))) (-15 -3289 (|#1| |#1|)) (-15 -1481 (|#1| |#1| |#1|)) (-15 -1482 (|#1| |#1| |#1|)) (-15 -1483 (|#1| |#1| |#1|))) (-556)) (T -161)) -((-1483 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-556)))) (-1482 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-556)))) (-1481 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-556)))) (-3289 (*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-556)))) (-1480 (*1 *2 *2 *3) (-12 (-5 *3 (-659 *2)) (-4 *2 (-556)) (-5 *1 (-161 *2)))) (-1479 (*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-556)))) (-3502 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-556))))) -((-1484 (($ $ (-1196)) 12 T ELT) (($ $ (-1111 $)) 11 T ELT)) (-4372 (($ $ (-1196)) 10 T ELT) (($ $ (-1111 $)) 9 T ELT)) (-1481 (($ $ $) 8 T ELT)) (-1485 (($ $) 14 T ELT) (($ $ (-1196)) 13 T ELT)) (-1479 (($ $) 7 T ELT)) (-3502 (($ $ $) 6 T ELT))) -(((-162) (-142)) (T -162)) -((-1485 (*1 *1 *1) (-4 *1 (-162))) (-1485 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1196)))) (-1484 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1196)))) (-1484 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-162)))) (-4372 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1196)))) (-4372 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-162))))) -(-13 (-145) (-10 -8 (-15 -1485 ($ $)) (-15 -1485 ($ $ (-1196))) (-15 -1484 ($ $ (-1196))) (-15 -1484 ($ $ (-1111 $))) (-15 -4372 ($ $ (-1196))) (-15 -4372 ($ $ (-1111 $))))) -(((-145) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-1486 (($ (-557)) 15 T ELT) (($ $ $) 16 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 19 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 11 T ELT))) -(((-163) (-13 (-1120) (-10 -8 (-15 -1486 ($ (-557))) (-15 -1486 ($ $ $))))) (T -163)) -((-1486 (*1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-163)))) (-1486 (*1 *1 *1 *1) (-5 *1 (-163)))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 16 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-3649 (((-659 (-1154)) $) 10 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-164) (-13 (-1102) (-10 -8 (-15 -3649 ((-659 (-1154)) $))))) (T -164)) -((-3649 (*1 *2 *1) (-12 (-5 *2 (-659 (-1154))) (-5 *1 (-164))))) -((-4021 (((-115) (-1196)) 103 T ELT))) -(((-165) (-10 -7 (-15 -4021 ((-115) (-1196))))) (T -165)) -((-4021 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-115)) (-5 *1 (-165))))) -((-1736 ((|#3| |#3|) 19 T ELT))) -(((-166 |#1| |#2| |#3|) (-10 -7 (-15 -1736 (|#3| |#3|))) (-1068) (-1262 |#1|) (-1262 |#2|)) (T -166)) -((-1736 (*1 *2 *2) (-12 (-4 *3 (-1068)) (-4 *4 (-1262 *3)) (-5 *1 (-166 *3 *4 *2)) (-4 *2 (-1262 *4))))) -((-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 222 T ELT)) (-3748 ((|#2| $) 102 T ELT)) (-3910 (($ $) 255 T ELT)) (-4067 (($ $) 249 T ELT)) (-3103 (((-3 (-659 (-1190 $)) #1="failed") (-659 (-1190 $)) (-1190 $)) 47 T ELT)) (-3908 (($ $) 253 T ELT)) (-4066 (($ $) 247 T ELT)) (-3573 (((-3 (-557) #1#) $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3572 (((-557) $) NIL T ELT) (((-419 (-557)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2961 (($ $ $) 228 T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL T ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL T ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 $) (-1286 $)) 160 T ELT) (((-707 |#2|) (-707 $)) 154 T ELT)) (-4270 (($ (-1190 |#2|)) 125 T ELT) (((-3 $ #1#) (-419 (-1190 |#2|))) NIL T ELT)) (-3885 (((-3 $ #1#) $) 213 T ELT)) (-3423 (((-3 (-419 (-557)) #1#) $) 203 T ELT)) (-3422 (((-114) $) 198 T ELT)) (-3421 (((-419 (-557)) $) 201 T ELT)) (-3509 (((-936)) 96 T ELT)) (-2960 (($ $ $) 230 T ELT)) (-1487 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-4055 (($) 244 T ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) 192 T ELT) (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) 197 T ELT)) (-3532 ((|#2| $) 100 T ELT)) (-2222 (((-1190 |#2|) $) 127 T ELT)) (-4386 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-4370 (($ $) 246 T ELT)) (-3478 (((-1190 |#2|) $) 126 T ELT)) (-2872 (($ $) 206 T ELT)) (-1489 (($) 103 T ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) 95 T ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) 64 T ELT)) (-3884 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-4371 (($ $) 245 T ELT)) (-1785 (((-789) $) 225 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 234 T ELT)) (-4185 ((|#2| (-1286 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-4186 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-789)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196))) NIL T ELT) (($ $ (-1196)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $) NIL T ELT)) (-3601 (((-1190 |#2|)) 120 T ELT)) (-3909 (($ $) 254 T ELT)) (-4062 (($ $) 248 T ELT)) (-3640 (((-1286 |#2|) $ (-1286 $)) 136 T ELT) (((-707 |#2|) (-1286 $) (-1286 $)) NIL T ELT) (((-1286 |#2|) $) 116 T ELT) (((-707 |#2|) (-1286 $)) NIL T ELT)) (-4400 (((-1286 |#2|) $) NIL T ELT) (($ (-1286 |#2|)) NIL T ELT) (((-1190 |#2|) $) NIL T ELT) (($ (-1190 |#2|)) NIL T ELT) (((-903 (-557)) $) 183 T ELT) (((-903 (-391)) $) 187 T ELT) (((-171 (-391)) $) 172 T ELT) (((-171 (-229)) $) 167 T ELT) (((-546) $) 179 T ELT)) (-3408 (($ $) 104 T ELT)) (-4374 (((-875) $) 143 T ELT) (($ (-557)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ $) NIL T ELT)) (-2836 (((-1190 |#2|) $) 32 T ELT)) (-3526 (((-789)) 106 T ELT)) (-1376 (((-114) $ $) 13 T ELT)) (-3916 (($ $) 258 T ELT)) (-3904 (($ $) 252 T ELT)) (-3914 (($ $) 256 T ELT)) (-3902 (($ $) 250 T ELT)) (-2448 ((|#2| $) 241 T ELT)) (-3915 (($ $) 257 T ELT)) (-3903 (($ $) 251 T ELT)) (-3801 (($ $) 162 T ELT)) (-3452 (((-114) $ $) 110 T ELT)) (-4265 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 111 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-419 (-557))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT))) -(((-167 |#1| |#2|) (-10 -7 (-15 -4186 (|#1| |#1|)) (-15 -4186 (|#1| |#1| (-789))) (-15 -4186 (|#1| |#1| (-1196))) (-15 -4186 (|#1| |#1| (-659 (-1196)))) (-15 -4186 (|#1| |#1| (-1196) (-789))) (-15 -4186 (|#1| |#1| (-659 (-1196)) (-659 (-789)))) (-15 -4374 (|#1| |#1|)) (-15 -3884 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2272 ((-2 (|:| -1978 |#1|) (|:| -4410 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1785 ((-789) |#1|)) (-15 -3278 ((-2 (|:| -2182 |#1|) (|:| -3301 |#1|)) |#1| |#1|)) (-15 -2960 (|#1| |#1| |#1|)) (-15 -2961 (|#1| |#1| |#1|)) (-15 -2872 (|#1| |#1|)) (-15 ** (|#1| |#1| (-557))) (-15 * (|#1| |#1| (-419 (-557)))) (-15 * (|#1| (-419 (-557)) |#1|)) (-15 -4374 (|#1| (-419 (-557)))) (-15 -4400 ((-546) |#1|)) (-15 -4400 ((-171 (-229)) |#1|)) (-15 -4400 ((-171 (-391)) |#1|)) (-15 -4067 (|#1| |#1|)) (-15 -4066 (|#1| |#1|)) (-15 -4062 (|#1| |#1|)) (-15 -3903 (|#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -4370 (|#1| |#1|)) (-15 -4371 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4055 (|#1|)) (-15 ** (|#1| |#1| (-419 (-557)))) (-15 -3105 ((-417 (-1190 |#1|)) (-1190 |#1|))) (-15 -3104 ((-417 (-1190 |#1|)) (-1190 |#1|))) (-15 -3103 ((-3 (-659 (-1190 |#1|)) #1#) (-659 (-1190 |#1|)) (-1190 |#1|))) (-15 -3423 ((-3 (-419 (-557)) #1#) |#1|)) (-15 -3421 ((-419 (-557)) |#1|)) (-15 -3422 ((-114) |#1|)) (-15 -1487 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2448 (|#2| |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -3884 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3408 (|#1| |#1|)) (-15 -1489 (|#1|)) (-15 -4400 ((-903 (-391)) |#1|)) (-15 -4400 ((-903 (-557)) |#1|)) (-15 -3195 ((-901 (-391) |#1|) |#1| (-903 (-391)) (-901 (-391) |#1|))) (-15 -3195 ((-901 (-557) |#1|) |#1| (-903 (-557)) (-901 (-557) |#1|))) (-15 -4386 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4186 (|#1| |#1| (-1 |#2| |#2|) (-789))) (-15 -4186 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4270 ((-3 |#1| #1#) (-419 (-1190 |#2|)))) (-15 -3478 ((-1190 |#2|) |#1|)) (-15 -4400 (|#1| (-1190 |#2|))) (-15 -4270 (|#1| (-1190 |#2|))) (-15 -3601 ((-1190 |#2|))) (-15 -2491 ((-707 |#2|) (-707 |#1|))) (-15 -2491 ((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 |#1|) (-1286 |#1|))) (-15 -2491 ((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 |#1|) (-1286 |#1|))) (-15 -2491 ((-707 (-557)) (-707 |#1|))) (-15 -3573 ((-3 |#2| #1#) |#1|)) (-15 -3572 (|#2| |#1|)) (-15 -3572 ((-419 (-557)) |#1|)) (-15 -3573 ((-3 (-419 (-557)) #1#) |#1|)) (-15 -3572 ((-557) |#1|)) (-15 -3573 ((-3 (-557) #1#) |#1|)) (-15 -4400 ((-1190 |#2|) |#1|)) (-15 -4185 (|#2|)) (-15 -4400 (|#1| (-1286 |#2|))) (-15 -4400 ((-1286 |#2|) |#1|)) (-15 -3640 ((-707 |#2|) (-1286 |#1|))) (-15 -3640 ((-1286 |#2|) |#1|)) (-15 -2222 ((-1190 |#2|) |#1|)) (-15 -2836 ((-1190 |#2|) |#1|)) (-15 -4185 (|#2| (-1286 |#1|))) (-15 -3640 ((-707 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3640 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -3532 (|#2| |#1|)) (-15 -3748 (|#2| |#1|)) (-15 -3509 ((-936))) (-15 -4374 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3526 ((-789))) (-15 -4374 (|#1| (-557))) (-15 ** (|#1| |#1| (-789))) (-15 -3885 ((-3 |#1| #1#) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-936))) (-15 -4265 (|#1| |#1| |#1|)) (-15 -4265 (|#1| |#1|)) (-15 * (|#1| (-557) |#1|)) (-15 * (|#1| (-789) |#1|)) (-15 * (|#1| (-936) |#1|)) (-15 -4267 (|#1| |#1| |#1|)) (-15 -4374 ((-875) |#1|)) (-15 -1376 ((-114) |#1| |#1|)) (-15 -3452 ((-114) |#1| |#1|))) (-168 |#2|) (-175)) (T -167)) -((-3526 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-789)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) (-3509 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-936)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) (-4185 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-167 *3 *2)) (-4 *3 (-168 *2)))) (-3601 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1190 *4)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 111 (-3955 (|has| |#1| (-568)) (-12 (|has| |#1| (-319)) (|has| |#1| (-927)))) ELT)) (-2271 (($ $) 112 (-3955 (|has| |#1| (-568)) (-12 (|has| |#1| (-319)) (|has| |#1| (-927)))) ELT)) (-2269 (((-114) $) 114 (-3955 (|has| |#1| (-568)) (-12 (|has| |#1| (-319)) (|has| |#1| (-927)))) ELT)) (-1988 (((-707 |#1|) (-1286 $)) 58 T ELT) (((-707 |#1|)) 74 T ELT)) (-3748 ((|#1| $) 64 T ELT)) (-3910 (($ $) 247 (|has| |#1| (-1222)) ELT)) (-4067 (($ $) 230 (|has| |#1| (-1222)) ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) 164 (|has| |#1| (-363)) ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) 261 (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) ELT)) (-4203 (($ $) 131 (-3955 (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) (|has| |#1| (-376))) ELT)) (-4399 (((-417 $) $) 132 (-3955 (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) (|has| |#1| (-376))) ELT)) (-3436 (($ $) 260 (-12 (|has| |#1| (-1021)) (|has| |#1| (-1222))) ELT)) (-3103 (((-3 (-659 (-1190 $)) "failed") (-659 (-1190 $)) (-1190 $)) 264 (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) ELT)) (-1786 (((-114) $ $) 122 (|has| |#1| (-319)) ELT)) (-3536 (((-789)) 105 (|has| |#1| (-381)) ELT)) (-3908 (($ $) 246 (|has| |#1| (-1222)) ELT)) (-4066 (($ $) 231 (|has| |#1| (-1222)) ELT)) (-3912 (($ $) 245 (|has| |#1| (-1222)) ELT)) (-4065 (($ $) 232 (|has| |#1| (-1222)) ELT)) (-4152 (($) 22 T CONST)) (-3573 (((-3 (-557) #1="failed") $) 191 (|has| |#1| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) 189 (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 |#1| #1#) $) 186 T ELT)) (-3572 (((-557) $) 190 (|has| |#1| (-1057 (-557))) ELT) (((-419 (-557)) $) 188 (|has| |#1| (-1057 (-419 (-557)))) ELT) ((|#1| $) 187 T ELT)) (-1998 (($ (-1286 |#1|) (-1286 $)) 60 T ELT) (($ (-1286 |#1|)) 77 T ELT)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| |#1| (-363)) ELT)) (-2961 (($ $ $) 126 (|has| |#1| (-319)) ELT)) (-1987 (((-707 |#1|) $ (-1286 $)) 65 T ELT) (((-707 |#1|) $) 72 T ELT)) (-2491 (((-707 (-557)) (-707 $)) 183 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) 182 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) 181 T ELT) (((-707 |#1|) (-707 $)) 180 T ELT)) (-4270 (($ (-1190 |#1|)) 175 T ELT) (((-3 $ "failed") (-419 (-1190 |#1|))) 172 (|has| |#1| (-376)) ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-4071 ((|#1| $) 272 T ELT)) (-3423 (((-3 (-419 (-557)) "failed") $) 265 (|has| |#1| (-556)) ELT)) (-3422 (((-114) $) 267 (|has| |#1| (-556)) ELT)) (-3421 (((-419 (-557)) $) 266 (|has| |#1| (-556)) ELT)) (-3509 (((-936)) 66 T ELT)) (-3393 (($) 108 (|has| |#1| (-381)) ELT)) (-2960 (($ $ $) 125 (|has| |#1| (-319)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 120 (|has| |#1| (-319)) ELT)) (-3232 (($) 166 (|has| |#1| (-363)) ELT)) (-1881 (((-114) $) 167 (|has| |#1| (-363)) ELT)) (-1972 (($ $ (-789)) 158 (|has| |#1| (-363)) ELT) (($ $) 157 (|has| |#1| (-363)) ELT)) (-4151 (((-114) $) 133 (-3955 (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) (|has| |#1| (-376))) ELT)) (-1487 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 268 (-12 (|has| |#1| (-1079)) (|has| |#1| (-1222))) ELT)) (-4055 (($) 257 (|has| |#1| (-1222)) ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) 280 (|has| |#1| (-899 (-557))) ELT) (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) 279 (|has| |#1| (-899 (-391))) ELT)) (-4200 (((-936) $) 169 (|has| |#1| (-363)) ELT) (((-843 (-936)) $) 155 (|has| |#1| (-363)) ELT)) (-2639 (((-114) $) 40 T ELT)) (-3410 (($ $ (-557)) 259 (-12 (|has| |#1| (-1021)) (|has| |#1| (-1222))) ELT)) (-3532 ((|#1| $) 63 T ELT)) (-3863 (((-709 $) $) 159 (|has| |#1| (-363)) ELT)) (-1783 (((-3 (-659 $) #2="failed") (-659 $) $) 129 (|has| |#1| (-319)) ELT)) (-2222 (((-1190 |#1|) $) 56 (|has| |#1| (-376)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 281 T ELT)) (-2218 (((-936) $) 107 (|has| |#1| (-381)) ELT)) (-4370 (($ $) 254 (|has| |#1| (-1222)) ELT)) (-3478 (((-1190 |#1|) $) 173 T ELT)) (-2492 (((-707 (-557)) (-1286 $)) 185 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) 184 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 179 T ELT) (((-707 |#1|) (-1286 $)) 178 T ELT)) (-2100 (($ (-659 $)) 118 (-3955 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-927)))) ELT) (($ $ $) 117 (-3955 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-927)))) ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2872 (($ $) 134 (|has| |#1| (-376)) ELT)) (-3864 (($) 160 (|has| |#1| (-363)) CONST)) (-2629 (($ (-936)) 106 (|has| |#1| (-381)) ELT)) (-1489 (($) 276 T ELT)) (-4072 ((|#1| $) 273 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-2638 (($) 177 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 119 (-3955 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-927)))) ELT)) (-3560 (($ (-659 $)) 116 (-3955 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-927)))) ELT) (($ $ $) 115 (-3955 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-927)))) ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) 163 (|has| |#1| (-363)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) 263 (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) 262 (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) ELT)) (-4160 (((-417 $) $) 130 (-3955 (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) (|has| |#1| (-376))) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| |#1| (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 127 (|has| |#1| (-319)) ELT)) (-3884 (((-3 $ "failed") $ |#1|) 271 (|has| |#1| (-568)) ELT) (((-3 $ "failed") $ $) 110 (-3955 (|has| |#1| (-568)) (-12 (|has| |#1| (-319)) (|has| |#1| (-927)))) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 121 (|has| |#1| (-319)) ELT)) (-4371 (($ $) 255 (|has| |#1| (-1222)) ELT)) (-4196 (($ $ (-659 |#1|) (-659 |#1|)) 287 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 286 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 285 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-659 (-305 |#1|))) 284 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-659 (-1196)) (-659 |#1|)) 283 (|has| |#1| (-526 (-1196) |#1|)) ELT) (($ $ (-1196) |#1|) 282 (|has| |#1| (-526 (-1196) |#1|)) ELT)) (-1785 (((-789) $) 123 (|has| |#1| (-319)) ELT)) (-4228 (($ $ |#1|) 288 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 124 (|has| |#1| (-319)) ELT)) (-4185 ((|#1| (-1286 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-1973 (((-789) $) 168 (|has| |#1| (-363)) ELT) (((-3 (-789) "failed") $ $) 156 (|has| |#1| (-363)) ELT)) (-4186 (($ $ (-1 |#1| |#1|)) 142 T ELT) (($ $ (-1 |#1| |#1|) (-789)) 141 T ELT) (($ $ (-659 (-1196)) (-659 (-789))) 147 (-3955 (-2959 (|has| |#1| (-376)) (|has| |#1| (-917 (-1196)))) (-2959 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-1196) (-789)) 146 (-3955 (-2959 (|has| |#1| (-376)) (|has| |#1| (-917 (-1196)))) (-2959 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-659 (-1196))) 145 (-3955 (-2959 (|has| |#1| (-376)) (|has| |#1| (-917 (-1196)))) (-2959 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-1196)) 143 (-3955 (-2959 (|has| |#1| (-376)) (|has| |#1| (-917 (-1196)))) (-2959 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-789)) 153 (-3955 (-2959 (|has| |#1| (-376)) (|has| |#1| (-239))) (-2959 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-2959 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT) (($ $) 151 (-3955 (-2959 (|has| |#1| (-376)) (|has| |#1| (-239))) (-2959 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-2959 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT)) (-2637 (((-707 |#1|) (-1286 $) (-1 |#1| |#1|)) 171 (|has| |#1| (-376)) ELT)) (-3601 (((-1190 |#1|)) 176 T ELT)) (-3913 (($ $) 244 (|has| |#1| (-1222)) ELT)) (-4064 (($ $) 233 (|has| |#1| (-1222)) ELT)) (-1875 (($) 165 (|has| |#1| (-363)) ELT)) (-3911 (($ $) 243 (|has| |#1| (-1222)) ELT)) (-4063 (($ $) 234 (|has| |#1| (-1222)) ELT)) (-3909 (($ $) 242 (|has| |#1| (-1222)) ELT)) (-4062 (($ $) 235 (|has| |#1| (-1222)) ELT)) (-3640 (((-1286 |#1|) $ (-1286 $)) 62 T ELT) (((-707 |#1|) (-1286 $) (-1286 $)) 61 T ELT) (((-1286 |#1|) $) 79 T ELT) (((-707 |#1|) (-1286 $)) 78 T ELT)) (-4400 (((-1286 |#1|) $) 76 T ELT) (($ (-1286 |#1|)) 75 T ELT) (((-1190 |#1|) $) 192 T ELT) (($ (-1190 |#1|)) 174 T ELT) (((-903 (-557)) $) 278 (|has| |#1| (-629 (-903 (-557)))) ELT) (((-903 (-391)) $) 277 (|has| |#1| (-629 (-903 (-391)))) ELT) (((-171 (-391)) $) 229 (|has| |#1| (-1039)) ELT) (((-171 (-229)) $) 228 (|has| |#1| (-1039)) ELT) (((-546) $) 227 (|has| |#1| (-629 (-546))) ELT)) (-3408 (($ $) 275 T ELT)) (-3102 (((-3 (-1286 $) "failed") (-707 $)) 162 (-3955 (-2959 (|has| $ (-147)) (-12 (|has| |#1| (-319)) (|has| |#1| (-927)))) (|has| |#1| (-363))) ELT)) (-1488 (($ |#1| |#1|) 274 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-419 (-557))) 104 (-3955 (|has| |#1| (-376)) (|has| |#1| (-1057 (-419 (-557))))) ELT) (($ $) 109 (-3955 (|has| |#1| (-568)) (-12 (|has| |#1| (-319)) (|has| |#1| (-927)))) ELT)) (-3101 (($ $) 161 (|has| |#1| (-363)) ELT) (((-709 $) $) 55 (-3955 (-2959 (|has| $ (-147)) (-12 (|has| |#1| (-319)) (|has| |#1| (-927)))) (|has| |#1| (-147))) ELT)) (-2836 (((-1190 |#1|) $) 57 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2220 (((-1286 $)) 80 T ELT)) (-3916 (($ $) 253 (|has| |#1| (-1222)) ELT)) (-3904 (($ $) 241 (|has| |#1| (-1222)) ELT)) (-2270 (((-114) $ $) 113 (-3955 (|has| |#1| (-568)) (-12 (|has| |#1| (-319)) (|has| |#1| (-927)))) ELT)) (-3914 (($ $) 252 (|has| |#1| (-1222)) ELT)) (-3902 (($ $) 240 (|has| |#1| (-1222)) ELT)) (-3918 (($ $) 251 (|has| |#1| (-1222)) ELT)) (-3906 (($ $) 239 (|has| |#1| (-1222)) ELT)) (-2448 ((|#1| $) 269 (|has| |#1| (-1222)) ELT)) (-3919 (($ $) 250 (|has| |#1| (-1222)) ELT)) (-3907 (($ $) 238 (|has| |#1| (-1222)) ELT)) (-3917 (($ $) 249 (|has| |#1| (-1222)) ELT)) (-3905 (($ $) 237 (|has| |#1| (-1222)) ELT)) (-3915 (($ $) 248 (|has| |#1| (-1222)) ELT)) (-3903 (($ $) 236 (|has| |#1| (-1222)) ELT)) (-3801 (($ $) 270 (|has| |#1| (-1079)) ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $ (-1 |#1| |#1|)) 140 T ELT) (($ $ (-1 |#1| |#1|) (-789)) 139 T ELT) (($ $ (-659 (-1196)) (-659 (-789))) 150 (-3955 (-2959 (|has| |#1| (-376)) (|has| |#1| (-917 (-1196)))) (-2959 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-1196) (-789)) 149 (-3955 (-2959 (|has| |#1| (-376)) (|has| |#1| (-917 (-1196)))) (-2959 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-659 (-1196))) 148 (-3955 (-2959 (|has| |#1| (-376)) (|has| |#1| (-917 (-1196)))) (-2959 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-1196)) 144 (-3955 (-2959 (|has| |#1| (-376)) (|has| |#1| (-917 (-1196)))) (-2959 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-789)) 154 (-3955 (-2959 (|has| |#1| (-376)) (|has| |#1| (-239))) (-2959 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-2959 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT) (($ $) 152 (-3955 (-2959 (|has| |#1| (-376)) (|has| |#1| (-239))) (-2959 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-2959 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ $) 138 (|has| |#1| (-376)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ (-419 (-557))) 258 (-12 (|has| |#1| (-1021)) (|has| |#1| (-1222))) ELT) (($ $ $) 256 (|has| |#1| (-1222)) ELT) (($ $ (-557)) 135 (|has| |#1| (-376)) ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ (-419 (-557)) $) 137 (|has| |#1| (-376)) ELT) (($ $ (-419 (-557))) 136 (|has| |#1| (-376)) ELT))) -(((-168 |#1|) (-142) (-175)) (T -168)) -((-3532 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-1489 (*1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-3408 (*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-1488 (*1 *1 *2 *2) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-4071 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-3884 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-568)))) (-3801 (*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1079)))) (-2448 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1222)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-1079)) (-4 *3 (-1222)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3422 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-556)) (-5 *2 (-114)))) (-3421 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-556)) (-5 *2 (-419 (-557))))) (-3423 (*1 *2 *1) (|partial| -12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-556)) (-5 *2 (-419 (-557)))))) -(-13 (-742 |t#1| (-1190 |t#1|)) (-424 |t#1|) (-234 |t#1|) (-351 |t#1|) (-412 |t#1|) (-897 |t#1|) (-390 |t#1|) (-175) (-10 -8 (-6 -1488) (-15 -1489 ($)) (-15 -3408 ($ $)) (-15 -1488 ($ |t#1| |t#1|)) (-15 -4072 (|t#1| $)) (-15 -4071 (|t#1| $)) (-15 -3532 (|t#1| $)) (IF (|has| |t#1| (-568)) (PROGN (-6 (-568)) (-15 -3884 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-319)) (-6 (-319)) |%noBranch|) (IF (|has| |t#1| (-6 -4422)) (-6 -4422) |%noBranch|) (IF (|has| |t#1| (-6 -4419)) (-6 -4419) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|) (IF (|has| |t#1| (-629 (-546))) (-6 (-629 (-546))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1039)) (PROGN (-6 (-629 (-171 (-229)))) (-6 (-629 (-171 (-391))))) |%noBranch|) (IF (|has| |t#1| (-1079)) (-15 -3801 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1222)) (PROGN (-6 (-1222)) (-15 -2448 (|t#1| $)) (IF (|has| |t#1| (-1021)) (-6 (-1021)) |%noBranch|) (IF (|has| |t#1| (-1079)) (-15 -1487 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -3422 ((-114) $)) (-15 -3421 ((-419 (-557)) $)) (-15 -3423 ((-3 (-419 (-557)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-927)) (IF (|has| |t#1| (-319)) (-6 (-927)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-557))) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-38 |#1|) . T) ((-38 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-35) |has| |#1| (-1222)) ((-95) |has| |#1| (-1222)) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -3955 (|has| |#1| (-363)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) -3955 (|has| |#1| (-1057 (-419 (-557)))) (|has| |#1| (-363)) (|has| |#1| (-376))) ((-631 (-557)) . T) ((-631 |#1|) . T) ((-631 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-628 (-875)) . T) ((-175) . T) ((-629 (-171 (-229))) |has| |#1| (-1039)) ((-629 (-171 (-391))) |has| |#1| (-1039)) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-629 (-903 (-391))) |has| |#1| (-629 (-903 (-391)))) ((-629 (-903 (-557))) |has| |#1| (-629 (-903 (-557)))) ((-629 (-1190 |#1|)) . T) ((-236 $) -3955 (|has| |#1| (-363)) (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) -3955 (|has| |#1| (-363)) (|has| |#1| (-240))) ((-239) -3955 (|has| |#1| (-363)) (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-296) |has| |#1| (-1222)) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) -3955 (|has| |#1| (-568)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-319) -3955 (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-376) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-414) |has| |#1| (-363)) ((-381) -3955 (|has| |#1| (-363)) (|has| |#1| (-381))) ((-363) |has| |#1| (-363)) ((-383 |#1| (-1190 |#1|)) . T) ((-422 |#1| (-1190 |#1|)) . T) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-412 |#1|) . T) ((-424 |#1|) . T) ((-464) -3955 (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-505) |has| |#1| (-1222)) ((-526 (-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-568) -3955 (|has| |#1| (-568)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-664 (-419 (-557))) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 (-419 (-557))) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-666 (-557)) |has| |#1| (-656 (-557))) ((-666 |#1|) . T) ((-666 $) . T) ((-658 (-419 (-557))) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-658 |#1|) . T) ((-658 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-656 (-557)) |has| |#1| (-656 (-557))) ((-656 |#1|) . T) ((-735 (-419 (-557))) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-735 |#1|) . T) ((-735 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-742 |#1| (-1190 |#1|)) . T) ((-744) . T) ((-909 $ (-1196)) -3955 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-915 (-1196)) |has| |#1| (-915 (-1196))) ((-917 (-1196)) -3955 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-899 (-391)) |has| |#1| (-899 (-391))) ((-899 (-557)) |has| |#1| (-899 (-557))) ((-897 |#1|) . T) ((-927) -12 (|has| |#1| (-319)) (|has| |#1| (-927))) ((-938) -3955 (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-1021) -12 (|has| |#1| (-1021)) (|has| |#1| (-1222))) ((-1057 (-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((-1057 (-557)) |has| |#1| (-1057 (-557))) ((-1057 |#1|) . T) ((-1070 (-419 (-557))) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1070 |#1|) . T) ((-1070 $) . T) ((-1075 (-419 (-557))) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1075 |#1|) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1171) |has| |#1| (-363)) ((-1222) |has| |#1| (-1222)) ((-1225) |has| |#1| (-1222)) ((-1236) . T) ((-1241) -3955 (|has| |#1| (-363)) (|has| |#1| (-376)) (-12 (|has| |#1| (-319)) (|has| |#1| (-927))))) -((-4160 (((-417 |#2|) |#2|) 67 T ELT))) -(((-169 |#1| |#2|) (-10 -7 (-15 -4160 ((-417 |#2|) |#2|))) (-319) (-1262 (-171 |#1|))) (T -169)) -((-4160 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1262 (-171 *4)))))) -((-1492 (((-1154) (-1154) (-303)) 8 T ELT)) (-1490 (((-659 (-709 (-292))) (-1178)) 81 T ELT)) (-1491 (((-709 (-292)) (-1154)) 76 T ELT))) -(((-170) (-13 (-1236) (-10 -7 (-15 -1492 ((-1154) (-1154) (-303))) (-15 -1491 ((-709 (-292)) (-1154))) (-15 -1490 ((-659 (-709 (-292))) (-1178)))))) (T -170)) -((-1492 (*1 *2 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-303)) (-5 *1 (-170)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-709 (-292))) (-5 *1 (-170)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-659 (-709 (-292)))) (-5 *1 (-170))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 15 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (-3955 (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) (|has| |#1| (-568))) ELT)) (-2271 (($ $) NIL (-3955 (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) (|has| |#1| (-568))) ELT)) (-2269 (((-114) $) NIL (-3955 (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) (|has| |#1| (-568))) ELT)) (-1988 (((-707 |#1|) (-1286 $)) NIL T ELT) (((-707 |#1|)) NIL T ELT)) (-3748 ((|#1| $) NIL T ELT)) (-3910 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-4067 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) NIL (|has| |#1| (-363)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) ELT)) (-4203 (($ $) NIL (-3955 (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) (|has| |#1| (-376))) ELT)) (-4399 (((-417 $) $) NIL (-3955 (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) (|has| |#1| (-376))) ELT)) (-3436 (($ $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1222))) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) ELT)) (-1786 (((-114) $ $) NIL (|has| |#1| (-319)) ELT)) (-3536 (((-789)) NIL (|has| |#1| (-381)) ELT)) (-3908 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-4066 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-3912 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-4065 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3572 (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) ((|#1| $) NIL T ELT)) (-1998 (($ (-1286 |#1|) (-1286 $)) NIL T ELT) (($ (-1286 |#1|)) NIL T ELT)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)) ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-1987 (((-707 |#1|) $ (-1286 $)) NIL T ELT) (((-707 |#1|) $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) NIL T ELT) (((-707 |#1|) (-707 $)) NIL T ELT)) (-4270 (($ (-1190 |#1|)) NIL T ELT) (((-3 $ #1#) (-419 (-1190 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-4071 ((|#1| $) 20 T ELT)) (-3423 (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-556)) ELT)) (-3422 (((-114) $) NIL (|has| |#1| (-556)) ELT)) (-3421 (((-419 (-557)) $) NIL (|has| |#1| (-556)) ELT)) (-3509 (((-936)) NIL T ELT)) (-3393 (($) NIL (|has| |#1| (-381)) ELT)) (-2960 (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL (|has| |#1| (-319)) ELT)) (-3232 (($) NIL (|has| |#1| (-363)) ELT)) (-1881 (((-114) $) NIL (|has| |#1| (-363)) ELT)) (-1972 (($ $ (-789)) NIL (|has| |#1| (-363)) ELT) (($ $) NIL (|has| |#1| (-363)) ELT)) (-4151 (((-114) $) NIL (-3955 (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) (|has| |#1| (-376))) ELT)) (-1487 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1079)) (|has| |#1| (-1222))) ELT)) (-4055 (($) NIL (|has| |#1| (-1222)) ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (|has| |#1| (-899 (-557))) ELT) (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (|has| |#1| (-899 (-391))) ELT)) (-4200 (((-936) $) NIL (|has| |#1| (-363)) ELT) (((-843 (-936)) $) NIL (|has| |#1| (-363)) ELT)) (-2639 (((-114) $) 17 T ELT)) (-3410 (($ $ (-557)) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1222))) ELT)) (-3532 ((|#1| $) 30 T ELT)) (-3863 (((-709 $) $) NIL (|has| |#1| (-363)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL (|has| |#1| (-319)) ELT)) (-2222 (((-1190 |#1|) $) NIL (|has| |#1| (-376)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2218 (((-936) $) NIL (|has| |#1| (-381)) ELT)) (-4370 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-3478 (((-1190 |#1|) $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL T ELT) (((-707 |#1|) (-1286 $)) NIL T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-319)) ELT) (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3864 (($) NIL (|has| |#1| (-363)) CONST)) (-2629 (($ (-936)) NIL (|has| |#1| (-381)) ELT)) (-1489 (($) NIL T ELT)) (-4072 ((|#1| $) 21 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2638 (($) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-319)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#1| (-319)) ELT) (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) NIL (|has| |#1| (-363)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) ELT)) (-4160 (((-417 $) $) NIL (-3955 (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) (|has| |#1| (-376))) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-319)) ELT)) (-3884 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-568)) ELT) (((-3 $ #1#) $ $) 31 (-3955 (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) (|has| |#1| (-568))) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL (|has| |#1| (-319)) ELT)) (-4371 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-4196 (($ $ (-659 |#1|) (-659 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-659 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-659 (-1196)) (-659 |#1|)) NIL (|has| |#1| (-526 (-1196) |#1|)) ELT) (($ $ (-1196) |#1|) NIL (|has| |#1| (-526 (-1196) |#1|)) ELT)) (-1785 (((-789) $) NIL (|has| |#1| (-319)) ELT)) (-4228 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-319)) ELT)) (-4185 ((|#1| (-1286 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1973 (((-789) $) NIL (|has| |#1| (-363)) ELT) (((-3 (-789) #1#) $ $) NIL (|has| |#1| (-363)) ELT)) (-4186 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-3955 (-12 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-1196) (-789)) NIL (-3955 (-12 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-659 (-1196))) NIL (-3955 (-12 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-789)) NIL (-3955 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT) (($ $) NIL (-3955 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT)) (-2637 (((-707 |#1|) (-1286 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT)) (-3601 (((-1190 |#1|)) NIL T ELT)) (-3913 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-4064 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-1875 (($) NIL (|has| |#1| (-363)) ELT)) (-3911 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-4063 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-3909 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-4062 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-3640 (((-1286 |#1|) $ (-1286 $)) NIL T ELT) (((-707 |#1|) (-1286 $) (-1286 $)) NIL T ELT) (((-1286 |#1|) $) NIL T ELT) (((-707 |#1|) (-1286 $)) NIL T ELT)) (-4400 (((-1286 |#1|) $) NIL T ELT) (($ (-1286 |#1|)) NIL T ELT) (((-1190 |#1|) $) NIL T ELT) (($ (-1190 |#1|)) NIL T ELT) (((-903 (-557)) $) NIL (|has| |#1| (-629 (-903 (-557)))) ELT) (((-903 (-391)) $) NIL (|has| |#1| (-629 (-903 (-391)))) ELT) (((-171 (-391)) $) NIL (|has| |#1| (-1039)) ELT) (((-171 (-229)) $) NIL (|has| |#1| (-1039)) ELT) (((-546) $) NIL (|has| |#1| (-629 (-546))) ELT)) (-3408 (($ $) 29 T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-3955 (-12 (|has| $ (-147)) (|has| |#1| (-319)) (|has| |#1| (-927))) (|has| |#1| (-363))) ELT)) (-1488 (($ |#1| |#1|) 19 T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-419 (-557))) NIL (-3955 (|has| |#1| (-376)) (|has| |#1| (-1057 (-419 (-557))))) ELT) (($ $) NIL (-3955 (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) (|has| |#1| (-568))) ELT)) (-3101 (($ $) NIL (|has| |#1| (-363)) ELT) (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| |#1| (-319)) (|has| |#1| (-927))) (|has| |#1| (-147))) ELT)) (-2836 (((-1190 |#1|) $) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 $)) NIL T ELT)) (-3916 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-3904 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-2270 (((-114) $ $) NIL (-3955 (-12 (|has| |#1| (-319)) (|has| |#1| (-927))) (|has| |#1| (-568))) ELT)) (-3914 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-3902 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-3918 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-3906 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-2448 ((|#1| $) NIL (|has| |#1| (-1222)) ELT)) (-3919 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-3907 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-3917 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-3905 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-3915 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-3903 (($ $) NIL (|has| |#1| (-1222)) ELT)) (-3801 (($ $) NIL (|has| |#1| (-1079)) ELT)) (-3057 (($) 8 T CONST)) (-3063 (($) 10 T CONST)) (-3068 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-3955 (-12 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-1196) (-789)) NIL (-3955 (-12 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-659 (-1196))) NIL (-3955 (-12 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-789)) NIL (-3955 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT) (($ $) NIL (-3955 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 23 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-419 (-557))) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1222))) ELT) (($ $ $) NIL (|has| |#1| (-1222)) ELT) (($ $ (-557)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-376)) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-376)) ELT))) -(((-171 |#1|) (-168 |#1|) (-175)) (T -171)) -NIL -((-4386 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14 T ELT))) -(((-172 |#1| |#2|) (-10 -7 (-15 -4386 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-175) (-175)) (T -172)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-5 *2 (-171 *6)) (-5 *1 (-172 *5 *6))))) -((-4400 (((-903 |#1|) |#3|) 22 T ELT))) -(((-173 |#1| |#2| |#3|) (-10 -7 (-15 -4400 ((-903 |#1|) |#3|))) (-1120) (-13 (-629 (-903 |#1|)) (-175)) (-168 |#2|)) (T -173)) -((-4400 (*1 *2 *3) (-12 (-4 *5 (-13 (-629 *2) (-175))) (-5 *2 (-903 *4)) (-5 *1 (-173 *4 *5 *3)) (-4 *4 (-1120)) (-4 *3 (-168 *5))))) -((-2965 (((-114) $ $) NIL T ELT)) (-1494 (((-114) $) 9 T ELT)) (-1493 (((-114) $ (-114)) 11 T ELT)) (-4042 (($) 13 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3818 (($ $) 14 T ELT)) (-4374 (((-875) $) 18 T ELT)) (-4130 (((-114) $) 8 T ELT)) (-4289 (((-114) $ (-114)) 10 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-174) (-13 (-1120) (-10 -8 (-15 -4042 ($)) (-15 -4130 ((-114) $)) (-15 -1494 ((-114) $)) (-15 -4289 ((-114) $ (-114))) (-15 -1493 ((-114) $ (-114))) (-15 -3818 ($ $))))) (T -174)) -((-4042 (*1 *1) (-5 *1 (-174))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-4289 (*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-1493 (*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-3818 (*1 *1 *1) (-5 *1 (-174)))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-175) (-142)) (T -175)) -NIL -(-13 (-1068) (-111 $ $) (-10 -7 (-6 (-4425 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-631 (-557)) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 $) . T) ((-744) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-1901 (($ $) 6 T ELT))) -(((-176) (-142)) (T -176)) -((-1901 (*1 *1 *1) (-4 *1 (-176)))) -(-13 (-10 -8 (-15 -1901 ($ $)))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3529 ((|#1| $) 79 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-2961 (($ $ $) NIL T ELT)) (-1499 (($ $) 21 T ELT)) (-1503 (($ |#1| (-1174 |#1|)) 48 T ELT)) (-3885 (((-3 $ #1#) $) 123 T ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-1500 (((-1174 |#1|) $) 86 T ELT)) (-1502 (((-1174 |#1|) $) 83 T ELT)) (-1501 (((-1174 |#1|) $) 84 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-1496 (((-1174 |#1|) $) 93 T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2100 (($ (-659 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ (-659 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT)) (-4197 (($ $ (-557)) 96 T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-1495 (((-1174 |#1|) $) 94 T ELT)) (-1497 (((-1174 (-419 |#1|)) $) 14 T ELT)) (-3013 (($ (-419 |#1|)) 17 T ELT) (($ |#1| (-1174 |#1|) (-1174 |#1|)) 38 T ELT)) (-3290 (($ $) 98 T ELT)) (-4374 (((-875) $) 139 T ELT) (($ (-557)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-419 |#1|)) 36 T ELT) (($ (-419 (-557))) NIL T ELT) (($ $) NIL T ELT)) (-3526 (((-789)) 67 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-1498 (((-1174 (-419 |#1|)) $) 20 T ELT)) (-3057 (($) 103 T CONST)) (-3063 (($) 28 T CONST)) (-3452 (((-114) $ $) 35 T ELT)) (-4377 (($ $ $) 121 T ELT)) (-4265 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-4267 (($ $ $) 107 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-419 |#1|) $) 117 T ELT) (($ $ (-419 |#1|)) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT))) -(((-177 |#1|) (-13 (-38 |#1|) (-38 (-419 |#1|)) (-376) (-10 -8 (-15 -3013 ($ (-419 |#1|))) (-15 -3013 ($ |#1| (-1174 |#1|) (-1174 |#1|))) (-15 -1503 ($ |#1| (-1174 |#1|))) (-15 -1502 ((-1174 |#1|) $)) (-15 -1501 ((-1174 |#1|) $)) (-15 -1500 ((-1174 |#1|) $)) (-15 -3529 (|#1| $)) (-15 -1499 ($ $)) (-15 -1498 ((-1174 (-419 |#1|)) $)) (-15 -1497 ((-1174 (-419 |#1|)) $)) (-15 -1496 ((-1174 |#1|) $)) (-15 -1495 ((-1174 |#1|) $)) (-15 -4197 ($ $ (-557))) (-15 -3290 ($ $)))) (-319)) (T -177)) -((-3013 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-319)) (-5 *1 (-177 *3)))) (-3013 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1174 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) (-1503 (*1 *1 *2 *3) (-12 (-5 *3 (-1174 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) (-1502 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1501 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1500 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3529 (*1 *2 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) (-1499 (*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) (-1498 (*1 *2 *1) (-12 (-5 *2 (-1174 (-419 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-1174 (-419 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1495 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-4197 (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3290 (*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319))))) -((-1504 (($ (-109) $) 15 T ELT)) (-3637 (((-709 (-109)) (-518) $) 14 T ELT)) (-4374 (((-875) $) 18 T ELT)) (-1505 (((-659 (-109)) $) 8 T ELT))) -(((-178) (-13 (-628 (-875)) (-10 -8 (-15 -1505 ((-659 (-109)) $)) (-15 -1504 ($ (-109) $)) (-15 -3637 ((-709 (-109)) (-518) $))))) (T -178)) -((-1505 (*1 *2 *1) (-12 (-5 *2 (-659 (-109))) (-5 *1 (-178)))) (-1504 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-178)))) (-3637 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-709 (-109))) (-5 *1 (-178))))) -((-1518 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 38 T ELT)) (-1509 (((-960 |#1|) (-960 |#1|)) 22 T ELT)) (-1514 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 34 T ELT)) (-1507 (((-960 |#1|) (-960 |#1|)) 20 T ELT)) (-1512 (((-960 |#1|) (-960 |#1|)) 28 T ELT)) (-1511 (((-960 |#1|) (-960 |#1|)) 27 T ELT)) (-1510 (((-960 |#1|) (-960 |#1|)) 26 T ELT)) (-1515 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 35 T ELT)) (-1513 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 33 T ELT)) (-1844 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 32 T ELT)) (-1508 (((-960 |#1|) (-960 |#1|)) 21 T ELT)) (-1519 (((-1 (-960 |#1|) (-960 |#1|)) |#1| |#1|) 41 T ELT)) (-1506 (((-960 |#1|) (-960 |#1|)) 8 T ELT)) (-1517 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 37 T ELT)) (-1516 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 36 T ELT))) -(((-179 |#1|) (-10 -7 (-15 -1506 ((-960 |#1|) (-960 |#1|))) (-15 -1507 ((-960 |#1|) (-960 |#1|))) (-15 -1508 ((-960 |#1|) (-960 |#1|))) (-15 -1509 ((-960 |#1|) (-960 |#1|))) (-15 -1510 ((-960 |#1|) (-960 |#1|))) (-15 -1511 ((-960 |#1|) (-960 |#1|))) (-15 -1512 ((-960 |#1|) (-960 |#1|))) (-15 -1844 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -1513 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -1514 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -1515 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -1516 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -1517 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -1518 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -1519 ((-1 (-960 |#1|) (-960 |#1|)) |#1| |#1|))) (-13 (-376) (-1222) (-1021))) (T -179)) -((-1519 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))))) (-1518 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))))) (-1517 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))))) (-1516 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))))) (-1515 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))))) (-1514 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))))) (-1513 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))))) (-1844 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))))) (-1512 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))) (-5 *1 (-179 *3)))) (-1511 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))) (-5 *1 (-179 *3)))) (-1510 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))) (-5 *1 (-179 *3)))) (-1509 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))) (-5 *1 (-179 *3)))) (-1508 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))) (-5 *1 (-179 *3)))) (-1507 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))) (-5 *1 (-179 *3)))) (-1506 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))) (-5 *1 (-179 *3))))) -((-2836 ((|#2| |#3|) 28 T ELT))) -(((-180 |#1| |#2| |#3|) (-10 -7 (-15 -2836 (|#2| |#3|))) (-175) (-1262 |#1|) (-742 |#1| |#2|)) (T -180)) -((-2836 (*1 *2 *3) (-12 (-4 *4 (-175)) (-4 *2 (-1262 *4)) (-5 *1 (-180 *4 *2 *3)) (-4 *3 (-742 *4 *2))))) -((-3195 (((-901 |#1| |#3|) |#3| (-903 |#1|) (-901 |#1| |#3|)) 44 (|has| (-963 |#2|) (-899 |#1|)) ELT))) -(((-181 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-963 |#2|) (-899 |#1|)) (-15 -3195 ((-901 |#1| |#3|) |#3| (-903 |#1|) (-901 |#1| |#3|))) |%noBranch|)) (-1120) (-13 (-899 |#1|) (-175)) (-168 |#2|)) (T -181)) -((-3195 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1120)) (-4 *3 (-168 *6)) (-4 (-963 *6) (-899 *5)) (-4 *6 (-13 (-899 *5) (-175))) (-5 *1 (-181 *5 *6 *3))))) -((-1521 (((-659 |#1|) (-659 |#1|) |#1|) 41 T ELT)) (-1520 (((-659 |#1|) |#1| (-659 |#1|)) 20 T ELT)) (-2290 (((-659 |#1|) (-659 (-659 |#1|)) (-659 |#1|)) 36 T ELT) ((|#1| (-659 |#1|) (-659 |#1|)) 32 T ELT))) -(((-182 |#1|) (-10 -7 (-15 -1520 ((-659 |#1|) |#1| (-659 |#1|))) (-15 -2290 (|#1| (-659 |#1|) (-659 |#1|))) (-15 -2290 ((-659 |#1|) (-659 (-659 |#1|)) (-659 |#1|))) (-15 -1521 ((-659 |#1|) (-659 |#1|) |#1|))) (-319)) (T -182)) -((-1521 (*1 *2 *2 *3) (-12 (-5 *2 (-659 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3)))) (-2290 (*1 *2 *3 *2) (-12 (-5 *3 (-659 (-659 *4))) (-5 *2 (-659 *4)) (-4 *4 (-319)) (-5 *1 (-182 *4)))) (-2290 (*1 *2 *3 *3) (-12 (-5 *3 (-659 *2)) (-5 *1 (-182 *2)) (-4 *2 (-319)))) (-1520 (*1 *2 *3 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3734 (((-1237) $) 13 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3622 (((-1154) $) 10 T ELT)) (-4374 (((-875) $) 20 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-183) (-13 (-1102) (-10 -8 (-15 -3622 ((-1154) $)) (-15 -3734 ((-1237) $))))) (T -183)) -((-3622 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-183)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-183))))) -((-1530 (((-2 (|:| |start| |#2|) (|:| -1985 (-417 |#2|))) |#2|) 66 T ELT)) (-1529 ((|#1| |#1|) 58 T ELT)) (-1528 (((-171 |#1|) |#2|) 93 T ELT)) (-1527 ((|#1| |#2|) 136 T ELT) ((|#1| |#2| |#1|) 89 T ELT)) (-1526 ((|#2| |#2|) 90 T ELT)) (-1525 (((-417 |#2|) |#2| |#1|) 118 T ELT) (((-417 |#2|) |#2| |#1| (-114)) 87 T ELT)) (-3532 ((|#1| |#2|) 117 T ELT)) (-1524 ((|#2| |#2|) 130 T ELT)) (-4160 (((-417 |#2|) |#2|) 153 T ELT) (((-417 |#2|) |#2| |#1|) 33 T ELT) (((-417 |#2|) |#2| |#1| (-114)) 152 T ELT)) (-1523 (((-659 (-2 (|:| -1985 (-659 |#2|)) (|:| -1737 |#1|))) |#2| |#2|) 151 T ELT) (((-659 (-2 (|:| -1985 (-659 |#2|)) (|:| -1737 |#1|))) |#2| |#2| (-114)) 81 T ELT)) (-1522 (((-659 (-171 |#1|)) |#2| |#1|) 42 T ELT) (((-659 (-171 |#1|)) |#2|) 43 T ELT))) -(((-184 |#1| |#2|) (-10 -7 (-15 -1522 ((-659 (-171 |#1|)) |#2|)) (-15 -1522 ((-659 (-171 |#1|)) |#2| |#1|)) (-15 -1523 ((-659 (-2 (|:| -1985 (-659 |#2|)) (|:| -1737 |#1|))) |#2| |#2| (-114))) (-15 -1523 ((-659 (-2 (|:| -1985 (-659 |#2|)) (|:| -1737 |#1|))) |#2| |#2|)) (-15 -4160 ((-417 |#2|) |#2| |#1| (-114))) (-15 -4160 ((-417 |#2|) |#2| |#1|)) (-15 -4160 ((-417 |#2|) |#2|)) (-15 -1524 (|#2| |#2|)) (-15 -3532 (|#1| |#2|)) (-15 -1525 ((-417 |#2|) |#2| |#1| (-114))) (-15 -1525 ((-417 |#2|) |#2| |#1|)) (-15 -1526 (|#2| |#2|)) (-15 -1527 (|#1| |#2| |#1|)) (-15 -1527 (|#1| |#2|)) (-15 -1528 ((-171 |#1|) |#2|)) (-15 -1529 (|#1| |#1|)) (-15 -1530 ((-2 (|:| |start| |#2|) (|:| -1985 (-417 |#2|))) |#2|))) (-13 (-376) (-858)) (-1262 (-171 |#1|))) (T -184)) -((-1530 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-858))) (-5 *2 (-2 (|:| |start| *3) (|:| -1985 (-417 *3)))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-1529 (*1 *2 *2) (-12 (-4 *2 (-13 (-376) (-858))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1262 (-171 *2))))) (-1528 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-184 *4 *3)) (-4 *4 (-13 (-376) (-858))) (-4 *3 (-1262 *2)))) (-1527 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-858))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1262 (-171 *2))))) (-1527 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-376) (-858))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1262 (-171 *2))))) (-1526 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-858))) (-5 *1 (-184 *3 *2)) (-4 *2 (-1262 (-171 *3))))) (-1525 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-858))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-1525 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-858))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-3532 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-858))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1262 (-171 *2))))) (-1524 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-858))) (-5 *1 (-184 *3 *2)) (-4 *2 (-1262 (-171 *3))))) (-4160 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-858))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-4160 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-858))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-4160 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-858))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-1523 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-376) (-858))) (-5 *2 (-659 (-2 (|:| -1985 (-659 *3)) (|:| -1737 *4)))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-1523 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-376) (-858))) (-5 *2 (-659 (-2 (|:| -1985 (-659 *3)) (|:| -1737 *5)))) (-5 *1 (-184 *5 *3)) (-4 *3 (-1262 (-171 *5))))) (-1522 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-858))) (-5 *2 (-659 (-171 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-1522 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-858))) (-5 *2 (-659 (-171 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1262 (-171 *4)))))) -((-1531 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1532 (((-789) |#2|) 18 T ELT)) (-1533 ((|#2| |#2| |#2|) 20 T ELT))) -(((-185 |#1| |#2|) (-10 -7 (-15 -1531 ((-3 |#2| "failed") |#2|)) (-15 -1532 ((-789) |#2|)) (-15 -1533 (|#2| |#2| |#2|))) (-1236) (-692 |#1|)) (T -185)) -((-1533 (*1 *2 *2 *2) (-12 (-4 *3 (-1236)) (-5 *1 (-185 *3 *2)) (-4 *2 (-692 *3)))) (-1532 (*1 *2 *3) (-12 (-4 *4 (-1236)) (-5 *2 (-789)) (-5 *1 (-185 *4 *3)) (-4 *3 (-692 *4)))) (-1531 (*1 *2 *2) (|partial| -12 (-4 *3 (-1236)) (-5 *1 (-185 *3 *2)) (-4 *2 (-692 *3))))) -((-2965 (((-114) $ $) NIL T ELT)) (-1536 (((-659 (-877)) $) NIL T ELT)) (-3968 (((-518) $) 8 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1538 (((-190) $) 10 T ELT)) (-3030 (((-114) $ (-518)) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1534 (((-709 $) (-518)) 17 T ELT)) (-1537 (((-659 (-114)) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2915 (((-55) $) 12 T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-186) (-13 (-189) (-10 -8 (-15 -1534 ((-709 $) (-518)))))) (T -186)) -((-1534 (*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-709 (-186))) (-5 *1 (-186))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1612 ((|#1| $) 7 T ELT)) (-4374 (((-875) $) 14 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-1535 (((-659 (-1201)) $) 10 T ELT)) (-3452 (((-114) $ $) 12 T ELT))) -(((-187 |#1|) (-13 (-1120) (-10 -8 (-15 -1612 (|#1| $)) (-15 -1535 ((-659 (-1201)) $)))) (-189)) (T -187)) -((-1612 (*1 *2 *1) (-12 (-5 *1 (-187 *2)) (-4 *2 (-189)))) (-1535 (*1 *2 *1) (-12 (-5 *2 (-659 (-1201))) (-5 *1 (-187 *3)) (-4 *3 (-189))))) -((-1536 (((-659 (-877)) $) 16 T ELT)) (-1538 (((-190) $) 8 T ELT)) (-1537 (((-659 (-114)) $) 13 T ELT)) (-2915 (((-55) $) 10 T ELT))) -(((-188 |#1|) (-10 -7 (-15 -1536 ((-659 (-877)) |#1|)) (-15 -1537 ((-659 (-114)) |#1|)) (-15 -1538 ((-190) |#1|)) (-15 -2915 ((-55) |#1|))) (-189)) (T -188)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-1536 (((-659 (-877)) $) 22 T ELT)) (-3968 (((-518) $) 19 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-1538 (((-190) $) 24 T ELT)) (-3030 (((-114) $ (-518)) 17 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-1537 (((-659 (-114)) $) 23 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2915 (((-55) $) 18 T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-189) (-142)) (T -189)) -((-1538 (*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-190)))) (-1537 (*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-659 (-114))))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-659 (-877)))))) -(-13 (-847 (-518)) (-10 -8 (-15 -1538 ((-190) $)) (-15 -1537 ((-659 (-114)) $)) (-15 -1536 ((-659 (-877)) $)))) -(((-102) . T) ((-628 (-875)) . T) ((-847 (-518)) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-4374 (((-875) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 10 T ELT))) -(((-190) (-13 (-1120) (-10 -8 (-15 -9 ($) -4380) (-15 -8 ($) -4380) (-15 -7 ($) -4380)))) (T -190)) -((-9 (*1 *1) (-5 *1 (-190))) (-8 (*1 *1) (-5 *1 (-190))) (-7 (*1 *1) (-5 *1 (-190)))) -((-4070 ((|#2| |#2|) 28 T ELT)) (-4073 (((-114) |#2|) 19 T ELT)) (-4071 (((-326 |#1|) |#2|) 12 T ELT)) (-4072 (((-326 |#1|) |#2|) 14 T ELT)) (-4068 ((|#2| |#2| (-1196)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-4074 (((-171 (-326 |#1|)) |#2|) 10 T ELT)) (-4069 ((|#2| |#2| (-1196)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) -(((-191 |#1| |#2|) (-10 -7 (-15 -4068 (|#2| |#2|)) (-15 -4068 (|#2| |#2| (-1196))) (-15 -4069 (|#2| |#2|)) (-15 -4069 (|#2| |#2| (-1196))) (-15 -4071 ((-326 |#1|) |#2|)) (-15 -4072 ((-326 |#1|) |#2|)) (-15 -4073 ((-114) |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -4074 ((-171 (-326 |#1|)) |#2|))) (-13 (-568) (-1057 (-557))) (-13 (-27) (-1222) (-433 (-171 |#1|)))) (T -191)) -((-4074 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-557)))) (-5 *2 (-171 (-326 *4))) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-433 (-171 *4)))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-557)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-433 (-171 *3)))))) (-4073 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-557)))) (-5 *2 (-114)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-433 (-171 *4)))))) (-4072 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-557)))) (-5 *2 (-326 *4)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-433 (-171 *4)))))) (-4071 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-557)))) (-5 *2 (-326 *4)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-433 (-171 *4)))))) (-4069 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-557)))) (-5 *1 (-191 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-433 (-171 *4)))))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-557)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-433 (-171 *3)))))) (-4068 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-557)))) (-5 *1 (-191 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-433 (-171 *4)))))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-557)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-433 (-171 *3))))))) -((-1542 (((-1286 (-707 (-963 |#1|))) (-1286 (-707 |#1|))) 26 T ELT)) (-4374 (((-1286 (-707 (-419 (-963 |#1|)))) (-1286 (-707 |#1|))) 37 T ELT))) -(((-192 |#1|) (-10 -7 (-15 -1542 ((-1286 (-707 (-963 |#1|))) (-1286 (-707 |#1|)))) (-15 -4374 ((-1286 (-707 (-419 (-963 |#1|)))) (-1286 (-707 |#1|))))) (-175)) (T -192)) -((-4374 (*1 *2 *3) (-12 (-5 *3 (-1286 (-707 *4))) (-4 *4 (-175)) (-5 *2 (-1286 (-707 (-419 (-963 *4))))) (-5 *1 (-192 *4)))) (-1542 (*1 *2 *3) (-12 (-5 *3 (-1286 (-707 *4))) (-4 *4 (-175)) (-5 *2 (-1286 (-707 (-963 *4)))) (-5 *1 (-192 *4))))) -((-1550 (((-1198 (-419 (-557))) (-1198 (-419 (-557))) (-1198 (-419 (-557)))) 93 T ELT)) (-1552 (((-1198 (-419 (-557))) (-659 (-557)) (-659 (-557))) 106 T ELT)) (-1543 (((-1198 (-419 (-557))) (-936)) 54 T ELT)) (-4282 (((-1198 (-419 (-557))) (-936)) 79 T ELT)) (-4196 (((-419 (-557)) (-1198 (-419 (-557)))) 89 T ELT)) (-1544 (((-1198 (-419 (-557))) (-936)) 37 T ELT)) (-1547 (((-1198 (-419 (-557))) (-936)) 66 T ELT)) (-1546 (((-1198 (-419 (-557))) (-936)) 61 T ELT)) (-1549 (((-1198 (-419 (-557))) (-1198 (-419 (-557))) (-1198 (-419 (-557)))) 87 T ELT)) (-3290 (((-1198 (-419 (-557))) (-936)) 29 T ELT)) (-1548 (((-419 (-557)) (-1198 (-419 (-557))) (-1198 (-419 (-557)))) 91 T ELT)) (-1545 (((-1198 (-419 (-557))) (-936)) 35 T ELT)) (-1551 (((-1198 (-419 (-557))) (-659 (-936))) 100 T ELT))) -(((-193) (-10 -7 (-15 -3290 ((-1198 (-419 (-557))) (-936))) (-15 -1543 ((-1198 (-419 (-557))) (-936))) (-15 -1544 ((-1198 (-419 (-557))) (-936))) (-15 -1545 ((-1198 (-419 (-557))) (-936))) (-15 -1546 ((-1198 (-419 (-557))) (-936))) (-15 -1547 ((-1198 (-419 (-557))) (-936))) (-15 -4282 ((-1198 (-419 (-557))) (-936))) (-15 -1548 ((-419 (-557)) (-1198 (-419 (-557))) (-1198 (-419 (-557))))) (-15 -1549 ((-1198 (-419 (-557))) (-1198 (-419 (-557))) (-1198 (-419 (-557))))) (-15 -4196 ((-419 (-557)) (-1198 (-419 (-557))))) (-15 -1550 ((-1198 (-419 (-557))) (-1198 (-419 (-557))) (-1198 (-419 (-557))))) (-15 -1551 ((-1198 (-419 (-557))) (-659 (-936)))) (-15 -1552 ((-1198 (-419 (-557))) (-659 (-557)) (-659 (-557)))))) (T -193)) -((-1552 (*1 *2 *3 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193)))) (-1551 (*1 *2 *3) (-12 (-5 *3 (-659 (-936))) (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193)))) (-1550 (*1 *2 *2 *2) (-12 (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193)))) (-4196 (*1 *2 *3) (-12 (-5 *3 (-1198 (-419 (-557)))) (-5 *2 (-419 (-557))) (-5 *1 (-193)))) (-1549 (*1 *2 *2 *2) (-12 (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193)))) (-1548 (*1 *2 *3 *3) (-12 (-5 *3 (-1198 (-419 (-557)))) (-5 *2 (-419 (-557))) (-5 *1 (-193)))) (-4282 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193)))) (-1547 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193)))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193)))) (-1545 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193)))) (-1544 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193)))) (-1543 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193))))) -((-1554 (((-417 (-1190 (-557))) (-557)) 38 T ELT)) (-1553 (((-659 (-1190 (-557))) (-557)) 33 T ELT)) (-3200 (((-1190 (-557)) (-557)) 28 T ELT))) -(((-194) (-10 -7 (-15 -1553 ((-659 (-1190 (-557))) (-557))) (-15 -3200 ((-1190 (-557)) (-557))) (-15 -1554 ((-417 (-1190 (-557))) (-557))))) (T -194)) -((-1554 (*1 *2 *3) (-12 (-5 *2 (-417 (-1190 (-557)))) (-5 *1 (-194)) (-5 *3 (-557)))) (-3200 (*1 *2 *3) (-12 (-5 *2 (-1190 (-557))) (-5 *1 (-194)) (-5 *3 (-557)))) (-1553 (*1 *2 *3) (-12 (-5 *2 (-659 (-1190 (-557)))) (-5 *1 (-194)) (-5 *3 (-557))))) -((-1749 (((-1174 (-229)) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 133 T ELT)) (-1770 (((-659 (-1178)) (-1174 (-229))) NIL T ELT)) (-1555 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 110 T ELT)) (-1747 (((-659 (-229)) (-326 (-229)) (-1196) (-1108 (-853 (-229)))) NIL T ELT)) (-1769 (((-659 (-1178)) (-659 (-229))) NIL T ELT)) (-1771 (((-229) (-1108 (-853 (-229)))) 31 T ELT)) (-1772 (((-229) (-1108 (-853 (-229)))) 32 T ELT)) (-1557 (((-391) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 127 T ELT)) (-1556 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 67 T ELT)) (-1767 (((-1178) (-229)) NIL T ELT)) (-2968 (((-1178) (-659 (-1178))) 27 T ELT)) (-1558 (((-1054) (-1196) (-1196) (-1054)) 13 T ELT))) -(((-195) (-10 -7 (-15 -1555 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1556 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1771 ((-229) (-1108 (-853 (-229))))) (-15 -1772 ((-229) (-1108 (-853 (-229))))) (-15 -1557 ((-391) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1747 ((-659 (-229)) (-326 (-229)) (-1196) (-1108 (-853 (-229))))) (-15 -1749 ((-1174 (-229)) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1767 ((-1178) (-229))) (-15 -1769 ((-659 (-1178)) (-659 (-229)))) (-15 -1770 ((-659 (-1178)) (-1174 (-229)))) (-15 -2968 ((-1178) (-659 (-1178)))) (-15 -1558 ((-1054) (-1196) (-1196) (-1054))))) (T -195)) -((-1558 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1054)) (-5 *3 (-1196)) (-5 *1 (-195)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-659 (-1178))) (-5 *2 (-1178)) (-5 *1 (-195)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-1174 (-229))) (-5 *2 (-659 (-1178))) (-5 *1 (-195)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-659 (-229))) (-5 *2 (-659 (-1178))) (-5 *1 (-195)))) (-1767 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1178)) (-5 *1 (-195)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-1174 (-229))) (-5 *1 (-195)))) (-1747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1196)) (-5 *5 (-1108 (-853 (-229)))) (-5 *2 (-659 (-229))) (-5 *1 (-195)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-195)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-1108 (-853 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-1108 (-853 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) (-1556 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-195)))) (-1555 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-195))))) -((-2965 (((-114) $ $) NIL T ELT)) (-2857 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) 61 T ELT) (((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) NIL T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 33 T ELT) (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-196) (-805)) (T -196)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-2857 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) 66 T ELT) (((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) NIL T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 44 T ELT) (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-197) (-805)) (T -197)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-2857 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) 80 T ELT) (((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) NIL T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 46 T ELT) (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-198) (-805)) (T -198)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-2857 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) 63 T ELT) (((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) NIL T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 36 T ELT) (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-199) (-805)) (T -199)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-2857 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) 76 T ELT) (((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) NIL T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 40 T ELT) (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-200) (-805)) (T -200)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-2857 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) 93 T ELT) (((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) NIL T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 49 T ELT) (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-201) (-805)) (T -201)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-2857 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) 90 T ELT) (((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) NIL T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 51 T ELT) (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-202) (-805)) (T -202)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-2857 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) 78 T ELT) (((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) NIL T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 44 T ELT) (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-203) (-805)) (T -203)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-2857 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) NIL T ELT) (((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) 76 T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT) (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 35 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-204) (-805)) (T -204)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-2857 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) NIL T ELT) (((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) 77 T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT) (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 42 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-205) (-805)) (T -205)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-2857 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) 105 T ELT) (((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) NIL T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 86 T ELT) (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-206) (-805)) (T -206)) -NIL -((-1559 (((-3 (-2 (|:| -2907 (-115)) (|:| |w| (-229))) #1="failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 110 T ELT)) (-1561 (((-557) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 59 T ELT)) (-1560 (((-3 (-659 (-229)) #1#) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 91 T ELT))) -(((-207) (-10 -7 (-15 -1559 ((-3 (-2 (|:| -2907 (-115)) (|:| |w| (-229))) #1="failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1560 ((-3 (-659 (-229)) #1#) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1561 ((-557) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -207)) -((-1561 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-557)) (-5 *1 (-207)))) (-1560 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-659 (-229))) (-5 *1 (-207)))) (-1559 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -2907 (-115)) (|:| |w| (-229)))) (-5 *1 (-207))))) -((-1566 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 47 T ELT)) (-1565 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 157 T ELT)) (-1564 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-707 (-326 (-229)))) 110 T ELT)) (-1563 (((-391) (-707 (-326 (-229)))) 138 T ELT)) (-2589 (((-707 (-326 (-229))) (-1286 (-326 (-229))) (-659 (-1196))) 134 T ELT)) (-1569 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 35 T ELT)) (-1567 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 51 T ELT)) (-4196 (((-707 (-326 (-229))) (-707 (-326 (-229))) (-659 (-1196)) (-1286 (-326 (-229)))) 123 T ELT)) (-1562 (((-391) (-391) (-659 (-391))) 131 T ELT) (((-391) (-391) (-391)) 126 T ELT)) (-1568 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 45 T ELT))) -(((-208) (-10 -7 (-15 -1562 ((-391) (-391) (-391))) (-15 -1562 ((-391) (-391) (-659 (-391)))) (-15 -1563 ((-391) (-707 (-326 (-229))))) (-15 -2589 ((-707 (-326 (-229))) (-1286 (-326 (-229))) (-659 (-1196)))) (-15 -4196 ((-707 (-326 (-229))) (-707 (-326 (-229))) (-659 (-1196)) (-1286 (-326 (-229))))) (-15 -1564 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-707 (-326 (-229))))) (-15 -1565 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1566 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1567 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1568 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1569 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -208)) -((-1569 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1567 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1566 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1565 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-208)))) (-1564 (*1 *2 *3) (-12 (-5 *3 (-707 (-326 (-229)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-208)))) (-4196 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-707 (-326 (-229)))) (-5 *3 (-659 (-1196))) (-5 *4 (-1286 (-326 (-229)))) (-5 *1 (-208)))) (-2589 (*1 *2 *3 *4) (-12 (-5 *3 (-1286 (-326 (-229)))) (-5 *4 (-659 (-1196))) (-5 *2 (-707 (-326 (-229)))) (-5 *1 (-208)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-707 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1562 (*1 *2 *2 *3) (-12 (-5 *3 (-659 (-391))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1562 (*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-208))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 43 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2878 (((-1054) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 74 T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-209) (-820)) (T -209)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 43 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2878 (((-1054) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 73 T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-210) (-820)) (T -210)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 40 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2878 (((-1054) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 76 T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-211) (-820)) (T -211)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 48 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2878 (((-1054) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 87 T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-212) (-820)) (T -212)) -NIL -((-4362 (((-659 (-1196)) (-1196) (-789)) 26 T ELT)) (-1570 (((-326 (-229)) (-326 (-229))) 35 T ELT)) (-1572 (((-114) (-2 (|:| |pde| (-659 (-326 (-229)))) (|:| |constraints| (-659 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) (|:| |dFinish| (-707 (-229)))))) (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) (|:| |tol| (-229)))) 87 T ELT)) (-1571 (((-114) (-229) (-229) (-659 (-326 (-229)))) 47 T ELT))) -(((-213) (-10 -7 (-15 -4362 ((-659 (-1196)) (-1196) (-789))) (-15 -1570 ((-326 (-229)) (-326 (-229)))) (-15 -1571 ((-114) (-229) (-229) (-659 (-326 (-229))))) (-15 -1572 ((-114) (-2 (|:| |pde| (-659 (-326 (-229)))) (|:| |constraints| (-659 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) (|:| |dFinish| (-707 (-229)))))) (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) (|:| |tol| (-229))))))) (T -213)) -((-1572 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-659 (-326 (-229)))) (|:| |constraints| (-659 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) (|:| |dFinish| (-707 (-229)))))) (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) (|:| |tol| (-229)))) (-5 *2 (-114)) (-5 *1 (-213)))) (-1571 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-659 (-326 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-213)))) (-1570 (*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-213)))) (-4362 (*1 *2 *3 *4) (-12 (-5 *4 (-789)) (-5 *2 (-659 (-1196))) (-5 *1 (-213)) (-5 *3 (-1196))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |pde| (-659 (-326 (-229)))) (|:| |constraints| (-659 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) (|:| |dFinish| (-707 (-229)))))) (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) (|:| |tol| (-229)))) 28 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3064 (((-1054) (-2 (|:| |pde| (-659 (-326 (-229)))) (|:| |constraints| (-659 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) (|:| |dFinish| (-707 (-229)))))) (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) (|:| |tol| (-229)))) 70 T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-214) (-910)) (T -214)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |pde| (-659 (-326 (-229)))) (|:| |constraints| (-659 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) (|:| |dFinish| (-707 (-229)))))) (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) (|:| |tol| (-229)))) 24 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3064 (((-1054) (-2 (|:| |pde| (-659 (-326 (-229)))) (|:| |constraints| (-659 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) (|:| |dFinish| (-707 (-229)))))) (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) (|:| |tol| (-229)))) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-215) (-910)) (T -215)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-1573 ((|#2| $ (-789) |#2|) 11 T ELT)) (-3513 ((|#2| $ (-789)) 10 T ELT)) (-4042 (($) 8 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 23 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 13 T ELT))) -(((-216 |#1| |#2|) (-13 (-1120) (-10 -8 (-15 -4042 ($)) (-15 -3513 (|#2| $ (-789))) (-15 -1573 (|#2| $ (-789) |#2|)))) (-936) (-1120)) (T -216)) -((-4042 (*1 *1) (-12 (-5 *1 (-216 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1120)))) (-3513 (*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-4 *2 (-1120)) (-5 *1 (-216 *4 *2)) (-14 *4 (-936)))) (-1573 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-789)) (-5 *1 (-216 *4 *2)) (-14 *4 (-936)) (-4 *2 (-1120))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2173 (((-1292) $) 37 T ELT) (((-1292) $ (-936) (-936)) 41 T ELT)) (-4228 (($ $ (-1008)) 19 T ELT) (((-252 (-1178)) $ (-1196)) 15 T ELT)) (-4045 (((-1292) $) 35 T ELT)) (-4374 (((-875) $) 32 T ELT) (($ (-659 |#1|)) 8 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $ $) 27 T ELT)) (-4267 (($ $ $) 22 T ELT))) -(((-217 |#1|) (-13 (-1120) (-631 (-659 |#1|)) (-10 -8 (-15 -4228 ($ $ (-1008))) (-15 -4228 ((-252 (-1178)) $ (-1196))) (-15 -4267 ($ $ $)) (-15 -4265 ($ $ $)) (-15 -4045 ((-1292) $)) (-15 -2173 ((-1292) $)) (-15 -2173 ((-1292) $ (-936) (-936))))) (-13 (-859) (-10 -8 (-15 -4228 ((-1178) $ (-1196))) (-15 -4045 ((-1292) $)) (-15 -2173 ((-1292) $))))) (T -217)) -((-4228 (*1 *1 *1 *2) (-12 (-5 *2 (-1008)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-859) (-10 -8 (-15 -4228 ((-1178) $ (-1196))) (-15 -4045 ((-1292) $)) (-15 -2173 ((-1292) $))))))) (-4228 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-252 (-1178))) (-5 *1 (-217 *4)) (-4 *4 (-13 (-859) (-10 -8 (-15 -4228 ((-1178) $ *3)) (-15 -4045 ((-1292) $)) (-15 -2173 ((-1292) $))))))) (-4267 (*1 *1 *1 *1) (-12 (-5 *1 (-217 *2)) (-4 *2 (-13 (-859) (-10 -8 (-15 -4228 ((-1178) $ (-1196))) (-15 -4045 ((-1292) $)) (-15 -2173 ((-1292) $))))))) (-4265 (*1 *1 *1 *1) (-12 (-5 *1 (-217 *2)) (-4 *2 (-13 (-859) (-10 -8 (-15 -4228 ((-1178) $ (-1196))) (-15 -4045 ((-1292) $)) (-15 -2173 ((-1292) $))))))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-859) (-10 -8 (-15 -4228 ((-1178) $ (-1196))) (-15 -4045 (*2 $)) (-15 -2173 (*2 $))))))) (-2173 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-859) (-10 -8 (-15 -4228 ((-1178) $ (-1196))) (-15 -4045 (*2 $)) (-15 -2173 (*2 $))))))) (-2173 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1292)) (-5 *1 (-217 *4)) (-4 *4 (-13 (-859) (-10 -8 (-15 -4228 ((-1178) $ (-1196))) (-15 -4045 (*2 $)) (-15 -2173 (*2 $)))))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) NIL T ELT)) (-3393 (($) NIL T ELT)) (-2928 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3256 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2218 (((-936) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2629 (($ (-936)) 10 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3250 (($ (-653 |#1|)) 11 T ELT)) (-4374 (((-875) $) 18 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT))) -(((-218 |#1|) (-13 (-855) (-10 -8 (-15 -3250 ($ (-653 |#1|))))) (-659 (-1196))) (T -218)) -((-3250 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-14 *3 (-659 (-1196))) (-5 *1 (-218 *3))))) -((-1574 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) -(((-219 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1574 (|#2| |#4| (-1 |#2| |#2|)))) (-376) (-1262 |#1|) (-1262 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -219)) -((-1574 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-376)) (-4 *6 (-1262 (-419 *2))) (-4 *2 (-1262 *5)) (-5 *1 (-219 *5 *2 *6 *3)) (-4 *3 (-355 *5 *2 *6))))) -((-1578 ((|#2| |#2| (-789) |#2|) 55 T ELT)) (-1577 ((|#2| |#2| (-789) |#2|) 51 T ELT)) (-2595 (((-659 |#2|) (-659 (-2 (|:| |deg| (-789)) (|:| -2972 |#2|)))) 79 T ELT)) (-1576 (((-659 (-2 (|:| |deg| (-789)) (|:| -2972 |#2|))) |#2|) 72 T ELT)) (-1579 (((-114) |#2|) 70 T ELT)) (-4161 (((-417 |#2|) |#2|) 92 T ELT)) (-4160 (((-417 |#2|) |#2|) 91 T ELT)) (-2596 ((|#2| |#2| (-789) |#2|) 49 T ELT)) (-1575 (((-2 (|:| |cont| |#1|) (|:| -1985 (-659 (-2 (|:| |irr| |#2|) (|:| -2624 (-557)))))) |#2| (-114)) 86 T ELT))) -(((-220 |#1| |#2|) (-10 -7 (-15 -4160 ((-417 |#2|) |#2|)) (-15 -4161 ((-417 |#2|) |#2|)) (-15 -1575 ((-2 (|:| |cont| |#1|) (|:| -1985 (-659 (-2 (|:| |irr| |#2|) (|:| -2624 (-557)))))) |#2| (-114))) (-15 -1576 ((-659 (-2 (|:| |deg| (-789)) (|:| -2972 |#2|))) |#2|)) (-15 -2595 ((-659 |#2|) (-659 (-2 (|:| |deg| (-789)) (|:| -2972 |#2|))))) (-15 -2596 (|#2| |#2| (-789) |#2|)) (-15 -1577 (|#2| |#2| (-789) |#2|)) (-15 -1578 (|#2| |#2| (-789) |#2|)) (-15 -1579 ((-114) |#2|))) (-363) (-1262 |#1|)) (T -220)) -((-1579 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1262 *4)))) (-1578 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-789)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1262 *4)))) (-1577 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-789)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1262 *4)))) (-2596 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-789)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1262 *4)))) (-2595 (*1 *2 *3) (-12 (-5 *3 (-659 (-2 (|:| |deg| (-789)) (|:| -2972 *5)))) (-4 *5 (-1262 *4)) (-4 *4 (-363)) (-5 *2 (-659 *5)) (-5 *1 (-220 *4 *5)))) (-1576 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-659 (-2 (|:| |deg| (-789)) (|:| -2972 *3)))) (-5 *1 (-220 *4 *3)) (-4 *3 (-1262 *4)))) (-1575 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1985 (-659 (-2 (|:| |irr| *3) (|:| -2624 (-557))))))) (-5 *1 (-220 *5 *3)) (-4 *3 (-1262 *5)))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-417 *3)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1262 *4)))) (-4160 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-417 *3)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1262 *4))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3529 (((-557) $) NIL (|has| (-557) (-319)) ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| (-557) (-927)) ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| (-557) (-927)) ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4051 (((-557) $) NIL (|has| (-557) (-840)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) NIL T ELT) (((-3 (-1196) #1#) $) NIL (|has| (-557) (-1057 (-1196))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| (-557) (-1057 (-557))) ELT) (((-3 (-557) #1#) $) NIL (|has| (-557) (-1057 (-557))) ELT)) (-3572 (((-557) $) NIL T ELT) (((-1196) $) NIL (|has| (-557) (-1057 (-1196))) ELT) (((-419 (-557)) $) NIL (|has| (-557) (-1057 (-557))) ELT) (((-557) $) NIL (|has| (-557) (-1057 (-557))) ELT)) (-2961 (($ $ $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| (-557) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| (-557) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL T ELT) (((-707 (-557)) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3393 (($) NIL (|has| (-557) (-556)) ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-3602 (((-114) $) NIL (|has| (-557) (-840)) ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (|has| (-557) (-899 (-557))) ELT) (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (|has| (-557) (-899 (-391))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-3395 (($ $) NIL T ELT)) (-3397 (((-557) $) NIL T ELT)) (-3863 (((-709 $) $) NIL (|has| (-557) (-1171)) ELT)) (-3603 (((-114) $) NIL (|has| (-557) (-840)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2928 (($ $ $) NIL (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| (-557) (-859)) ELT)) (-4386 (($ (-1 (-557) (-557)) $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| (-557) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| (-557) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL T ELT) (((-707 (-557)) (-1286 $)) NIL T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3864 (($) NIL (|has| (-557) (-1171)) CONST)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3528 (($ $) NIL (|has| (-557) (-319)) ELT) (((-419 (-557)) $) NIL T ELT)) (-3530 (((-557) $) NIL (|has| (-557) (-556)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (|has| (-557) (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (|has| (-557) (-927)) ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-4196 (($ $ (-659 (-557)) (-659 (-557))) NIL (|has| (-557) (-321 (-557))) ELT) (($ $ (-557) (-557)) NIL (|has| (-557) (-321 (-557))) ELT) (($ $ (-305 (-557))) NIL (|has| (-557) (-321 (-557))) ELT) (($ $ (-659 (-305 (-557)))) NIL (|has| (-557) (-321 (-557))) ELT) (($ $ (-659 (-1196)) (-659 (-557))) NIL (|has| (-557) (-526 (-1196) (-557))) ELT) (($ $ (-1196) (-557)) NIL (|has| (-557) (-526 (-1196) (-557))) ELT)) (-1785 (((-789) $) NIL T ELT)) (-4228 (($ $ (-557)) NIL (|has| (-557) (-298 (-557) (-557))) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-4186 (($ $ (-1 (-557) (-557))) NIL T ELT) (($ $ (-1 (-557) (-557)) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $) NIL (|has| (-557) (-239)) ELT) (($ $ (-789)) NIL (|has| (-557) (-239)) ELT)) (-3394 (($ $) NIL T ELT)) (-3396 (((-557) $) NIL T ELT)) (-1580 (($ (-419 (-557))) 9 T ELT)) (-4400 (((-903 (-557)) $) NIL (|has| (-557) (-629 (-903 (-557)))) ELT) (((-903 (-391)) $) NIL (|has| (-557) (-629 (-903 (-391)))) ELT) (((-546) $) NIL (|has| (-557) (-629 (-546))) ELT) (((-391) $) NIL (|has| (-557) (-1039)) ELT) (((-229) $) NIL (|has| (-557) (-1039)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| (-557) (-927))) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) 8 T ELT) (($ (-557)) NIL T ELT) (($ (-1196)) NIL (|has| (-557) (-1057 (-1196))) ELT) (((-419 (-557)) $) NIL T ELT) (((-1023 10) $) 10 T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| (-557) (-927))) (|has| (-557) (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-3531 (((-557) $) NIL (|has| (-557) (-556)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-3801 (($ $) NIL (|has| (-557) (-840)) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $ (-1 (-557) (-557))) NIL T ELT) (($ $ (-1 (-557) (-557)) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $) NIL (|has| (-557) (-239)) ELT) (($ $ (-789)) NIL (|has| (-557) (-239)) ELT)) (-2963 (((-114) $ $) NIL (|has| (-557) (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| (-557) (-859)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL (|has| (-557) (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| (-557) (-859)) ELT)) (-4377 (($ $ $) NIL T ELT) (($ (-557) (-557)) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ (-557)) NIL T ELT))) -(((-221) (-13 (-1010 (-557)) (-628 (-419 (-557))) (-628 (-1023 10)) (-10 -8 (-15 -3528 ((-419 (-557)) $)) (-15 -1580 ($ (-419 (-557))))))) (T -221)) -((-3528 (*1 *2 *1) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-221)))) (-1580 (*1 *1 *2) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-221))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3735 (((-1134) $) 13 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3594 (((-495) $) 10 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 23 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-3649 (((-1154) $) 15 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-222) (-13 (-1102) (-10 -8 (-15 -3594 ((-495) $)) (-15 -3735 ((-1134) $)) (-15 -3649 ((-1154) $))))) (T -222)) -((-3594 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-222)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-222)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-222))))) -((-4240 (((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-659 (-853 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1111 (-853 |#2|)) (-1178)) 29 T ELT) (((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-659 (-853 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1111 (-853 |#2|))) 25 T ELT)) (-1581 (((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-659 (-853 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1196) (-853 |#2|) (-853 |#2|) (-114)) 17 T ELT))) -(((-223 |#1| |#2|) (-10 -7 (-15 -4240 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-659 (-853 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1111 (-853 |#2|)))) (-15 -4240 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-659 (-853 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1111 (-853 |#2|)) (-1178))) (-15 -1581 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-659 (-853 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1196) (-853 |#2|) (-853 |#2|) (-114)))) (-13 (-319) (-149) (-1057 (-557)) (-656 (-557))) (-13 (-1222) (-977) (-29 |#1|))) (T -223)) -((-1581 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1196)) (-5 *6 (-114)) (-4 *7 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) (-4 *3 (-13 (-1222) (-977) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-659 (-853 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-223 *7 *3)) (-5 *5 (-853 *3)))) (-4240 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1111 (-853 *3))) (-5 *5 (-1178)) (-4 *3 (-13 (-1222) (-977) (-29 *6))) (-4 *6 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-659 (-853 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-223 *6 *3)))) (-4240 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-853 *3))) (-4 *3 (-13 (-1222) (-977) (-29 *5))) (-4 *5 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-659 (-853 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-223 *5 *3))))) -((-4240 (((-3 (|:| |f1| (-853 (-326 |#1|))) (|:| |f2| (-659 (-853 (-326 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-419 (-963 |#1|)) (-1111 (-853 (-419 (-963 |#1|)))) (-1178)) 49 T ELT) (((-3 (|:| |f1| (-853 (-326 |#1|))) (|:| |f2| (-659 (-853 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-963 |#1|)) (-1111 (-853 (-419 (-963 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-853 (-326 |#1|))) (|:| |f2| (-659 (-853 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-963 |#1|)) (-1111 (-853 (-326 |#1|))) (-1178)) 50 T ELT) (((-3 (|:| |f1| (-853 (-326 |#1|))) (|:| |f2| (-659 (-853 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-963 |#1|)) (-1111 (-853 (-326 |#1|)))) 22 T ELT))) -(((-224 |#1|) (-10 -7 (-15 -4240 ((-3 (|:| |f1| (-853 (-326 |#1|))) (|:| |f2| (-659 (-853 (-326 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-419 (-963 |#1|)) (-1111 (-853 (-326 |#1|))))) (-15 -4240 ((-3 (|:| |f1| (-853 (-326 |#1|))) (|:| |f2| (-659 (-853 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-963 |#1|)) (-1111 (-853 (-326 |#1|))) (-1178))) (-15 -4240 ((-3 (|:| |f1| (-853 (-326 |#1|))) (|:| |f2| (-659 (-853 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-963 |#1|)) (-1111 (-853 (-419 (-963 |#1|)))))) (-15 -4240 ((-3 (|:| |f1| (-853 (-326 |#1|))) (|:| |f2| (-659 (-853 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-963 |#1|)) (-1111 (-853 (-419 (-963 |#1|)))) (-1178)))) (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) (T -224)) -((-4240 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1111 (-853 (-419 (-963 *6))))) (-5 *5 (-1178)) (-5 *3 (-419 (-963 *6))) (-4 *6 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-3 (|:| |f1| (-853 (-326 *6))) (|:| |f2| (-659 (-853 (-326 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-224 *6)))) (-4240 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-853 (-419 (-963 *5))))) (-5 *3 (-419 (-963 *5))) (-4 *5 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-3 (|:| |f1| (-853 (-326 *5))) (|:| |f2| (-659 (-853 (-326 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-224 *5)))) (-4240 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-419 (-963 *6))) (-5 *4 (-1111 (-853 (-326 *6)))) (-5 *5 (-1178)) (-4 *6 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-3 (|:| |f1| (-853 (-326 *6))) (|:| |f2| (-659 (-853 (-326 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-224 *6)))) (-4240 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-1111 (-853 (-326 *5)))) (-4 *5 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-3 (|:| |f1| (-853 (-326 *5))) (|:| |f2| (-659 (-853 (-326 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-224 *5))))) -((-4270 (((-2 (|:| -2212 (-1190 |#1|)) (|:| |deg| (-936))) (-1190 |#1|)) 26 T ELT)) (-4391 (((-659 (-326 |#2|)) (-326 |#2|) (-936)) 51 T ELT))) -(((-225 |#1| |#2|) (-10 -7 (-15 -4270 ((-2 (|:| -2212 (-1190 |#1|)) (|:| |deg| (-936))) (-1190 |#1|))) (-15 -4391 ((-659 (-326 |#2|)) (-326 |#2|) (-936)))) (-1068) (-568)) (T -225)) -((-4391 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-4 *6 (-568)) (-5 *2 (-659 (-326 *6))) (-5 *1 (-225 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1068)))) (-4270 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-2 (|:| -2212 (-1190 *4)) (|:| |deg| (-936)))) (-5 *1 (-225 *4 *5)) (-5 *3 (-1190 *4)) (-4 *5 (-568))))) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1625 ((|#1| $) NIL T ELT)) (-3742 ((|#1| $) 30 T ELT)) (-4152 (($) NIL T CONST)) (-3401 (($ $) NIL T ELT)) (-2508 (($ $) 39 T ELT)) (-3744 ((|#1| |#1| $) NIL T ELT)) (-3743 ((|#1| $) NIL T ELT)) (-3288 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4261 (((-789) $) NIL T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-1387 ((|#1| $) NIL T ELT)) (-1623 ((|#1| |#1| $) 35 T ELT)) (-1622 ((|#1| |#1| $) 37 T ELT)) (-4035 (($ |#1| $) NIL T ELT)) (-3000 (((-789) $) 33 T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-3400 ((|#1| $) NIL T ELT)) (-1621 ((|#1| $) 31 T ELT)) (-1620 ((|#1| $) 29 T ELT)) (-1388 ((|#1| $) NIL T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3403 ((|#1| |#1| $) NIL T ELT)) (-3821 (((-114) $) 9 T ELT)) (-3991 (($) NIL T ELT)) (-3402 ((|#1| $) NIL T ELT)) (-1626 (($) NIL T ELT) (($ (-659 |#1|)) 16 T ELT)) (-3741 (((-789) $) NIL T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-4374 (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-1624 ((|#1| $) 13 T ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1389 (($ (-659 |#1|)) NIL T ELT)) (-3399 ((|#1| $) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-226 |#1|) (-13 (-263 |#1|) (-10 -8 (-15 -1626 ($ (-659 |#1|))))) (-1120)) (T -226)) -((-1626 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-5 *1 (-226 *3))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1583 (($ (-326 |#1|)) 24 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3061 (((-114) $) NIL T ELT)) (-3573 (((-3 (-326 |#1|) #1#) $) NIL T ELT)) (-3572 (((-326 |#1|) $) NIL T ELT)) (-4387 (($ $) 32 T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-4386 (($ (-1 (-326 |#1|) (-326 |#1|)) $) NIL T ELT)) (-3590 (((-326 |#1|) $) NIL T ELT)) (-1585 (($ $) 31 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1584 (((-114) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2638 (($ (-789)) NIL T ELT)) (-1582 (($ $) 33 T ELT)) (-4376 (((-557) $) NIL T ELT)) (-4374 (((-875) $) 65 T ELT) (($ (-557)) NIL T ELT) (($ (-326 |#1|)) NIL T ELT)) (-4105 (((-326 |#1|) $ $) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 26 T CONST)) (-3063 (($) NIL T CONST)) (-3452 (((-114) $ $) 29 T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 20 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-326 |#1|) $) 19 T ELT))) -(((-227 |#1| |#2|) (-13 (-636 (-326 |#1|)) (-1057 (-326 |#1|)) (-10 -8 (-15 -3590 ((-326 |#1|) $)) (-15 -1585 ($ $)) (-15 -4387 ($ $)) (-15 -4105 ((-326 |#1|) $ $)) (-15 -2638 ($ (-789))) (-15 -1584 ((-114) $)) (-15 -3061 ((-114) $)) (-15 -4376 ((-557) $)) (-15 -4386 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -1583 ($ (-326 |#1|))) (-15 -1582 ($ $)))) (-13 (-1068) (-859)) (-659 (-1196))) (T -227)) -((-3590 (*1 *2 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1068) (-859))) (-14 *4 (-659 (-1196))))) (-1585 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1068) (-859))) (-14 *3 (-659 (-1196))))) (-4387 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1068) (-859))) (-14 *3 (-659 (-1196))))) (-4105 (*1 *2 *1 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1068) (-859))) (-14 *4 (-659 (-1196))))) (-2638 (*1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1068) (-859))) (-14 *4 (-659 (-1196))))) (-1584 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1068) (-859))) (-14 *4 (-659 (-1196))))) (-3061 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1068) (-859))) (-14 *4 (-659 (-1196))))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1068) (-859))) (-14 *4 (-659 (-1196))))) (-4386 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1068) (-859))) (-5 *1 (-227 *3 *4)) (-14 *4 (-659 (-1196))))) (-1583 (*1 *1 *2) (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1068) (-859))) (-5 *1 (-227 *3 *4)) (-14 *4 (-659 (-1196))))) (-1582 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1068) (-859))) (-14 *3 (-659 (-1196)))))) -((-1586 (((-114) (-1178)) 26 T ELT)) (-1587 (((-3 (-853 |#2|) #1="failed") (-626 |#2|) |#2| (-853 |#2|) (-853 |#2|) (-114)) 35 T ELT)) (-1588 (((-3 (-114) #1#) (-1190 |#2|) (-853 |#2|) (-853 |#2|) (-114)) 83 T ELT) (((-3 (-114) #1#) (-963 |#1|) (-1196) (-853 |#2|) (-853 |#2|) (-114)) 84 T ELT))) -(((-228 |#1| |#2|) (-10 -7 (-15 -1586 ((-114) (-1178))) (-15 -1587 ((-3 (-853 |#2|) #1="failed") (-626 |#2|) |#2| (-853 |#2|) (-853 |#2|) (-114))) (-15 -1588 ((-3 (-114) #1#) (-963 |#1|) (-1196) (-853 |#2|) (-853 |#2|) (-114))) (-15 -1588 ((-3 (-114) #1#) (-1190 |#2|) (-853 |#2|) (-853 |#2|) (-114)))) (-13 (-464) (-1057 (-557)) (-656 (-557))) (-13 (-1222) (-29 |#1|))) (T -228)) -((-1588 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-114)) (-5 *3 (-1190 *6)) (-5 *4 (-853 *6)) (-4 *6 (-13 (-1222) (-29 *5))) (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-228 *5 *6)))) (-1588 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-114)) (-5 *3 (-963 *6)) (-5 *4 (-1196)) (-5 *5 (-853 *7)) (-4 *6 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-4 *7 (-13 (-1222) (-29 *6))) (-5 *1 (-228 *6 *7)))) (-1587 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-853 *4)) (-5 *3 (-626 *4)) (-5 *5 (-114)) (-4 *4 (-13 (-1222) (-29 *6))) (-4 *6 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-228 *6 *4)))) (-1586 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-114)) (-5 *1 (-228 *4 *5)) (-4 *5 (-13 (-1222) (-29 *4)))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 83 T ELT)) (-3529 (((-557) $) 17 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-4199 (($ $) NIL T ELT)) (-3910 (($ $) 72 T ELT)) (-4067 (($ $) 60 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-3436 (($ $) 51 T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-3908 (($ $) 70 T ELT)) (-4066 (($ $) 58 T ELT)) (-4051 (((-557) $) 114 T ELT)) (-3912 (($ $) 75 T ELT)) (-4065 (($ $) 62 T ELT)) (-4152 (($) NIL T CONST)) (-3527 (($ $) NIL T ELT)) (-3573 (((-3 (-557) #1#) $) 113 T ELT) (((-3 (-419 (-557)) #1#) $) 110 T ELT)) (-3572 (((-557) $) 111 T ELT) (((-419 (-557)) $) 108 T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) 88 T ELT)) (-1945 (((-419 (-557)) $ (-789)) 103 T ELT) (((-419 (-557)) $ (-789) (-789)) 102 T ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-2603 (((-936)) 11 T ELT) (((-936) (-936)) NIL (|has| $ (-6 -4414)) ELT)) (-3602 (((-114) $) 104 T ELT)) (-4055 (($) 30 T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL T ELT)) (-4200 (((-557) $) 24 T ELT)) (-2639 (((-114) $) 84 T ELT)) (-3410 (($ $ (-557)) NIL T ELT)) (-3532 (($ $) NIL T ELT)) (-3603 (((-114) $) 82 T ELT)) (-1589 (((-114) $) 140 T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2928 (($ $ $) 48 T ELT) (($) 20 (-12 (-2957 (|has| $ (-6 -4406))) (-2957 (|has| $ (-6 -4414)))) ELT)) (-3256 (($ $ $) 47 T ELT) (($) 19 (-12 (-2957 (|has| $ (-6 -4406))) (-2957 (|has| $ (-6 -4414)))) ELT)) (-2604 (((-557) $) 9 T ELT)) (-1944 (($ $) 15 T ELT)) (-1943 (($ $) 52 T ELT)) (-4370 (($ $) 57 T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-1975 (((-936) (-557)) NIL (|has| $ (-6 -4414)) ELT)) (-3659 (((-1139) $) 86 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3528 (($ $) NIL T ELT)) (-3530 (($ $) NIL T ELT)) (-3670 (($ (-557) (-557)) NIL T ELT) (($ (-557) (-557) (-936)) 95 T ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-2630 (((-557) $) 10 T ELT)) (-1942 (($) 29 T ELT)) (-4371 (($ $) 56 T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-3012 (((-936)) NIL T ELT) (((-936) (-936)) NIL (|has| $ (-6 -4414)) ELT)) (-4186 (($ $) 89 T ELT) (($ $ (-789)) NIL T ELT)) (-1974 (((-936) (-557)) NIL (|has| $ (-6 -4414)) ELT)) (-3913 (($ $) 73 T ELT)) (-4064 (($ $) 63 T ELT)) (-3911 (($ $) 74 T ELT)) (-4063 (($ $) 61 T ELT)) (-3909 (($ $) 71 T ELT)) (-4062 (($ $) 59 T ELT)) (-4400 (((-391) $) 99 T ELT) (((-229) $) 96 T ELT) (((-903 (-391)) $) NIL T ELT) (((-546) $) 37 T ELT)) (-4374 (((-875) $) 34 T ELT) (($ (-557)) 139 T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ (-557)) 139 T ELT) (($ (-419 (-557))) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-3531 (($ $) NIL T ELT)) (-1976 (((-936)) 18 T ELT) (((-936) (-936)) NIL (|has| $ (-6 -4414)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3093 (((-936)) 7 T ELT)) (-3916 (($ $) 78 T ELT)) (-3904 (($ $) 66 T ELT) (($ $ $) 106 T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-3914 (($ $) 76 T ELT)) (-3902 (($ $) 64 T ELT)) (-3918 (($ $) 81 T ELT)) (-3906 (($ $) 69 T ELT)) (-3919 (($ $) 79 T ELT)) (-3907 (($ $) 67 T ELT)) (-3917 (($ $) 80 T ELT)) (-3905 (($ $) 68 T ELT)) (-3915 (($ $) 77 T ELT)) (-3903 (($ $) 65 T ELT)) (-3801 (($ $) 105 T ELT)) (-3057 (($) 26 T CONST)) (-3063 (($) 27 T CONST)) (-3805 (($ $) 92 T ELT)) (-3068 (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-3802 (($ $ $) 94 T ELT)) (-2963 (((-114) $ $) 41 T ELT)) (-2964 (((-114) $ $) 39 T ELT)) (-3452 (((-114) $ $) 49 T ELT)) (-3083 (((-114) $ $) 40 T ELT)) (-3084 (((-114) $ $) 38 T ELT)) (-4377 (($ $ $) 28 T ELT) (($ $ (-557)) 50 T ELT)) (-4265 (($ $) 42 T ELT) (($ $ $) 44 T ELT)) (-4267 (($ $ $) 43 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) 53 T ELT) (($ $ (-419 (-557))) 138 T ELT) (($ $ $) 54 T ELT)) (* (($ (-936) $) 16 T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 46 T ELT) (($ $ $) 45 T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT))) -(((-229) (-13 (-416) (-240) (-1222) (-629 (-546)) (-10 -8 (-15 -4377 ($ $ (-557))) (-15 ** ($ $ $)) (-15 -1942 ($)) (-15 -1944 ($ $)) (-15 -1943 ($ $)) (-15 -3904 ($ $ $)) (-15 -3805 ($ $)) (-15 -3802 ($ $ $)) (-15 -1945 ((-419 (-557)) $ (-789))) (-15 -1945 ((-419 (-557)) $ (-789) (-789))) (-15 -1589 ((-114) $))))) (T -229)) -((** (*1 *1 *1 *1) (-5 *1 (-229))) (-4377 (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-229)))) (-1942 (*1 *1) (-5 *1 (-229))) (-1944 (*1 *1 *1) (-5 *1 (-229))) (-1943 (*1 *1 *1) (-5 *1 (-229))) (-3904 (*1 *1 *1 *1) (-5 *1 (-229))) (-3805 (*1 *1 *1) (-5 *1 (-229))) (-3802 (*1 *1 *1 *1) (-5 *1 (-229))) (-1945 (*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-5 *2 (-419 (-557))) (-5 *1 (-229)))) (-1945 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-789)) (-5 *2 (-419 (-557))) (-5 *1 (-229)))) (-1589 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-229))))) -((-3804 (((-171 (-229)) (-789) (-171 (-229))) 11 T ELT) (((-229) (-789) (-229)) 12 T ELT)) (-1590 (((-171 (-229)) (-171 (-229))) 13 T ELT) (((-229) (-229)) 14 T ELT)) (-1591 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 19 T ELT) (((-229) (-229) (-229)) 22 T ELT)) (-3803 (((-171 (-229)) (-171 (-229))) 27 T ELT) (((-229) (-229)) 26 T ELT)) (-3807 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 57 T ELT) (((-229) (-229) (-229)) 49 T ELT)) (-3809 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 62 T ELT) (((-229) (-229) (-229)) 60 T ELT)) (-3806 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 15 T ELT) (((-229) (-229) (-229)) 16 T ELT)) (-3808 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 17 T ELT) (((-229) (-229) (-229)) 18 T ELT)) (-3811 (((-171 (-229)) (-171 (-229))) 74 T ELT) (((-229) (-229)) 73 T ELT)) (-3810 (((-229) (-229)) 68 T ELT) (((-171 (-229)) (-171 (-229))) 72 T ELT)) (-3805 (((-171 (-229)) (-171 (-229))) 8 T ELT) (((-229) (-229)) 9 T ELT)) (-3802 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 35 T ELT) (((-229) (-229) (-229)) 31 T ELT))) -(((-230) (-10 -7 (-15 -3805 ((-229) (-229))) (-15 -3805 ((-171 (-229)) (-171 (-229)))) (-15 -3802 ((-229) (-229) (-229))) (-15 -3802 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -1590 ((-229) (-229))) (-15 -1590 ((-171 (-229)) (-171 (-229)))) (-15 -3803 ((-229) (-229))) (-15 -3803 ((-171 (-229)) (-171 (-229)))) (-15 -3804 ((-229) (-789) (-229))) (-15 -3804 ((-171 (-229)) (-789) (-171 (-229)))) (-15 -3806 ((-229) (-229) (-229))) (-15 -3806 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3807 ((-229) (-229) (-229))) (-15 -3807 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3808 ((-229) (-229) (-229))) (-15 -3808 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3809 ((-229) (-229) (-229))) (-15 -3809 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3810 ((-171 (-229)) (-171 (-229)))) (-15 -3810 ((-229) (-229))) (-15 -3811 ((-229) (-229))) (-15 -3811 ((-171 (-229)) (-171 (-229)))) (-15 -1591 ((-229) (-229) (-229))) (-15 -1591 ((-171 (-229)) (-171 (-229)) (-171 (-229)))))) (T -230)) -((-1591 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-1591 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3809 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3809 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3808 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3808 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3807 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3807 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3806 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3806 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3804 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-229))) (-5 *3 (-789)) (-5 *1 (-230)))) (-3804 (*1 *2 *3 *2) (-12 (-5 *2 (-229)) (-5 *3 (-789)) (-5 *1 (-230)))) (-3803 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3803 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-1590 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-1590 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3802 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3802 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4266 (($ (-789) (-789)) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3832 (($ (-1286 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-4301 (($ |#1| |#1| |#1|) 33 T ELT)) (-3521 (((-114) $) NIL T ELT)) (-2566 (($ $ (-557) (-557)) NIL T ELT)) (-2565 (($ $ (-557) (-557)) NIL T ELT)) (-2564 (($ $ (-557) (-557) (-557) (-557)) NIL T ELT)) (-2569 (($ $) NIL T ELT)) (-3523 (((-114) $) NIL T ELT)) (-2563 (($ $ (-557) (-557) $) NIL T ELT)) (-4216 ((|#1| $ (-557) (-557) |#1|) NIL T ELT) (($ $ (-659 (-557)) (-659 (-557)) $) NIL T ELT)) (-1362 (($ $ (-557) (-1286 |#1|)) NIL T ELT)) (-1361 (($ $ (-557) (-1286 |#1|)) NIL T ELT)) (-4275 (($ |#1| |#1| |#1|) 32 T ELT)) (-3751 (($ (-789) |#1|) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3510 (($ $) NIL (|has| |#1| (-319)) ELT)) (-3512 (((-1286 |#1|) $ (-557)) NIL T ELT)) (-1592 (($ |#1|) 31 T ELT)) (-1593 (($ |#1|) 30 T ELT)) (-1594 (($ |#1|) 29 T ELT)) (-3509 (((-789) $) NIL (|has| |#1| (-568)) ELT)) (-1717 ((|#1| $ (-557) (-557) |#1|) NIL T ELT)) (-3513 ((|#1| $ (-557) (-557)) NIL T ELT)) (-3288 (((-659 |#1|) $) NIL T ELT)) (-3508 (((-789) $) NIL (|has| |#1| (-568)) ELT)) (-3507 (((-659 (-1286 |#1|)) $) NIL (|has| |#1| (-568)) ELT)) (-3515 (((-789) $) NIL T ELT)) (-4042 (($ (-789) (-789) |#1|) NIL T ELT)) (-3514 (((-789) $) NIL T ELT)) (-3745 ((|#1| $) NIL (|has| |#1| (-6 (-4425 #1="*"))) ELT)) (-3519 (((-557) $) NIL T ELT)) (-3517 (((-557) $) NIL T ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3518 (((-557) $) NIL T ELT)) (-3516 (((-557) $) NIL T ELT)) (-3524 (($ (-659 (-659 |#1|))) 11 T ELT) (($ (-789) (-789) (-1 |#1| (-557) (-557))) NIL T ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-4020 (((-659 (-659 |#1|)) $) NIL T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-4016 (((-3 $ #2="failed") $) NIL (|has| |#1| (-376)) ELT)) (-1595 (($) 12 T ELT)) (-2568 (($ $ $) NIL T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-2412 (($ $ |#1|) NIL T ELT)) (-3884 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-568)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#1| $ (-557) (-557)) NIL T ELT) ((|#1| $ (-557) (-557) |#1|) NIL T ELT) (($ $ (-659 (-557)) (-659 (-557))) NIL T ELT)) (-3750 (($ (-659 |#1|)) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3522 (((-114) $) NIL T ELT)) (-3746 ((|#1| $) NIL (|has| |#1| (-6 (-4425 #1#))) ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-3511 (((-1286 |#1|) $ (-557)) NIL T ELT)) (-4374 (($ (-1286 |#1|)) NIL T ELT) (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3520 (((-114) $) NIL T ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL (|has| |#1| (-376)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-557) $) NIL T ELT) (((-1286 |#1|) $ (-1286 |#1|)) 15 T ELT) (((-1286 |#1|) (-1286 |#1|) $) NIL T ELT) (((-960 |#1|) $ (-960 |#1|)) 21 T ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-231 |#1|) (-13 (-704 |#1| (-1286 |#1|) (-1286 |#1|)) (-10 -8 (-15 * ((-960 |#1|) $ (-960 |#1|))) (-15 -1595 ($)) (-15 -1594 ($ |#1|)) (-15 -1593 ($ |#1|)) (-15 -1592 ($ |#1|)) (-15 -4275 ($ |#1| |#1| |#1|)) (-15 -4301 ($ |#1| |#1| |#1|)))) (-13 (-376) (-1222))) (T -231)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-376) (-1222))) (-5 *1 (-231 *3)))) (-1595 (*1 *1) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1222))))) (-1594 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1222))))) (-1593 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1222))))) (-1592 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1222))))) (-4275 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1222))))) (-4301 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1222)))))) -((-1711 (($ (-1 (-114) |#2|) $) 16 T ELT)) (-3823 (($ |#2| $) NIL T ELT) (($ (-1 (-114) |#2|) $) 28 T ELT)) (-1596 (($) NIL T ELT) (($ (-659 |#2|)) 11 T ELT)) (-3452 (((-114) $ $) 26 T ELT))) -(((-232 |#1| |#2|) (-10 -7 (-15 -3452 ((-114) |#1| |#1|)) (-15 -1711 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3823 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3823 (|#1| |#2| |#1|)) (-15 -1596 (|#1| (-659 |#2|))) (-15 -1596 (|#1|))) (-233 |#2|) (-1120)) (T -232)) -NIL -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1711 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4423)) ELT)) (-4152 (($) 7 T CONST)) (-1465 (($ $) 62 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3823 (($ |#1| $) 51 (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4423)) ELT)) (-3824 (($ |#1| $) 61 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4423)) ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-1387 ((|#1| $) 43 T ELT)) (-4035 (($ |#1| $) 44 T ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1388 ((|#1| $) 45 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-1596 (($) 53 T ELT) (($ (-659 |#1|)) 52 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4400 (((-546) $) 63 (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 54 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1389 (($ (-659 |#1|)) 46 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-233 |#1|) (-142) (-1120)) (T -233)) -NIL -(-13 (-242 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-628 (-875)))) ((-153 |#1|) . T) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1236) . T)) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4186 (($ $ (-1 |#1| |#1|) (-789)) 62 T ELT) (($ $ (-1 |#1| |#1|)) 61 T ELT) (($ $ (-1196)) 60 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) 58 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) 57 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 56 (|has| |#1| (-917 (-1196))) ELT) (($ $) 52 (|has| |#1| (-239)) ELT) (($ $ (-789)) 50 (|has| |#1| (-239)) ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $ (-1 |#1| |#1|) (-789)) 64 T ELT) (($ $ (-1 |#1| |#1|)) 63 T ELT) (($ $ (-1196)) 59 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) 55 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) 54 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 53 (|has| |#1| (-917 (-1196))) ELT) (($ $) 51 (|has| |#1| (-239)) ELT) (($ $ (-789)) 49 (|has| |#1| (-239)) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-234 |#1|) (-142) (-1068)) (T -234)) -NIL -(-13 (-1068) (-274 |t#1|) (-10 -7 (IF (|has| |t#1| (-240)) (-6 (-240)) |%noBranch|) (IF (|has| |t#1| (-915 (-1196))) (-6 (-915 (-1196))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-631 (-557)) . T) ((-628 (-875)) . T) ((-236 $) -3955 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-240) |has| |#1| (-240)) ((-239) -3955 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 $) . T) ((-744) . T) ((-909 $ (-1196)) -3955 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-915 (-1196)) |has| |#1| (-915 (-1196))) ((-917 (-1196)) -3955 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-3068 ((|#2| $) 9 T ELT))) -(((-235 |#1| |#2|) (-10 -7 (-15 -3068 (|#2| |#1|))) (-236 |#2|) (-1236)) (T -235)) -NIL -((-4186 ((|#1| $) 7 T ELT)) (-3068 ((|#1| $) 6 T ELT))) -(((-236 |#1|) (-142) (-1236)) (T -236)) -((-4186 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1236)))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1236))))) -(-13 (-1236) (-10 -8 (-15 -4186 (|t#1| $)) (-15 -3068 (|t#1| $)))) -(((-1236) . T)) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4186 (($ $ (-789)) 42 T ELT) (($ $) 40 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3068 (($ $ (-789)) 43 T ELT) (($ $) 41 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-237 |#1|) (-142) (-1068)) (T -237)) -NIL -(-13 (-111 |t#1| |t#1|) (-239) (-10 -7 (IF (|has| |t#1| (-175)) (-6 (-735 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-628 (-875)) . T) ((-236 $) . T) ((-239) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-666 |#1|) . T) ((-658 |#1|) |has| |#1| (-175)) ((-735 |#1|) |has| |#1| (-175)) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-4186 (($ $) NIL T ELT) (($ $ (-789)) 9 T ELT)) (-3068 (($ $) NIL T ELT) (($ $ (-789)) 11 T ELT))) -(((-238 |#1|) (-10 -7 (-15 -3068 (|#1| |#1| (-789))) (-15 -4186 (|#1| |#1| (-789))) (-15 -3068 (|#1| |#1|)) (-15 -4186 (|#1| |#1|))) (-239)) (T -238)) -NIL -((-4186 (($ $) 7 T ELT) (($ $ (-789)) 10 T ELT)) (-3068 (($ $) 6 T ELT) (($ $ (-789)) 9 T ELT))) -(((-239) (-142)) (T -239)) -((-4186 (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-789)))) (-3068 (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-789))))) -(-13 (-236 $) (-10 -8 (-15 -4186 ($ $ (-789))) (-15 -3068 ($ $ (-789))))) -(((-236 $) . T) ((-1236) . T)) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4186 (($ $ (-789)) 47 T ELT) (($ $) 45 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $ (-789)) 48 T ELT) (($ $) 46 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-240) (-142)) (T -240)) -NIL -(-13 (-1068) (-239)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-631 (-557)) . T) ((-628 (-875)) . T) ((-236 $) . T) ((-239) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 $) . T) ((-744) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-1596 (($) 12 T ELT) (($ (-659 |#2|)) NIL T ELT)) (-3818 (($ $) 14 T ELT)) (-3948 (($ (-659 |#2|)) 10 T ELT)) (-4374 (((-875) $) 21 T ELT))) -(((-241 |#1| |#2|) (-10 -7 (-15 -4374 ((-875) |#1|)) (-15 -1596 (|#1| (-659 |#2|))) (-15 -1596 (|#1|)) (-15 -3948 (|#1| (-659 |#2|))) (-15 -3818 (|#1| |#1|))) (-242 |#2|) (-1120)) (T -241)) -NIL -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1711 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4423)) ELT)) (-4152 (($) 7 T CONST)) (-1465 (($ $) 62 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3823 (($ |#1| $) 51 (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4423)) ELT)) (-3824 (($ |#1| $) 61 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4423)) ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-1387 ((|#1| $) 43 T ELT)) (-4035 (($ |#1| $) 44 T ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1388 ((|#1| $) 45 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-1596 (($) 53 T ELT) (($ (-659 |#1|)) 52 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4400 (((-546) $) 63 (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 54 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1389 (($ (-659 |#1|)) 46 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-242 |#1|) (-142) (-1120)) (T -242)) -((-1596 (*1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1120)))) (-1596 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-4 *1 (-242 *3)))) (-3823 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-242 *2)) (-4 *2 (-1120)))) (-3823 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4423)) (-4 *1 (-242 *3)) (-4 *3 (-1120)))) (-1711 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4423)) (-4 *1 (-242 *3)) (-4 *3 (-1120))))) -(-13 (-107 |t#1|) (-153 |t#1|) (-10 -8 (-15 -1596 ($)) (-15 -1596 ($ (-659 |t#1|))) (IF (|has| $ (-6 -4423)) (PROGN (-15 -3823 ($ |t#1| $)) (-15 -3823 ($ (-1 (-114) |t#1|) $)) (-15 -1711 ($ (-1 (-114) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-628 (-875)))) ((-153 |#1|) . T) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1236) . T)) -((-1597 (((-2 (|:| |varOrder| (-659 (-1196))) (|:| |inhom| (-3 (-659 (-1286 (-789))) "failed")) (|:| |hom| (-659 (-1286 (-789))))) (-305 (-963 (-557)))) 42 T ELT))) -(((-243) (-10 -7 (-15 -1597 ((-2 (|:| |varOrder| (-659 (-1196))) (|:| |inhom| (-3 (-659 (-1286 (-789))) "failed")) (|:| |hom| (-659 (-1286 (-789))))) (-305 (-963 (-557))))))) (T -243)) -((-1597 (*1 *2 *3) (-12 (-5 *3 (-305 (-963 (-557)))) (-5 *2 (-2 (|:| |varOrder| (-659 (-1196))) (|:| |inhom| (-3 (-659 (-1286 (-789))) "failed")) (|:| |hom| (-659 (-1286 (-789)))))) (-5 *1 (-243))))) -((-3536 (((-789)) 56 T ELT)) (-2491 (((-2 (|:| -1781 (-707 |#3|)) (|:| |vec| (-1286 |#3|))) (-707 $) (-1286 $)) 53 T ELT) (((-707 |#3|) (-707 $)) 44 T ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL T ELT) (((-707 (-557)) (-707 $)) NIL T ELT)) (-4339 (((-136)) 62 T ELT)) (-4186 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-789)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196))) NIL T ELT) (($ $ (-1196)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $) NIL T ELT)) (-4374 (((-1286 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-875) $) NIL T ELT) (($ (-557)) 12 T ELT) (($ (-419 (-557))) NIL T ELT)) (-3526 (((-789)) 15 T ELT)) (-4377 (($ $ |#3|) 59 T ELT))) -(((-244 |#1| |#2| |#3|) (-10 -7 (-15 -4374 (|#1| (-419 (-557)))) (-15 -4374 (|#1| (-557))) (-15 -4186 (|#1| |#1|)) (-15 -4186 (|#1| |#1| (-789))) (-15 -4186 (|#1| |#1| (-1196))) (-15 -4186 (|#1| |#1| (-659 (-1196)))) (-15 -4186 (|#1| |#1| (-1196) (-789))) (-15 -4186 (|#1| |#1| (-659 (-1196)) (-659 (-789)))) (-15 -4374 ((-875) |#1|)) (-15 -3526 ((-789))) (-15 -2491 ((-707 (-557)) (-707 |#1|))) (-15 -2491 ((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 |#1|) (-1286 |#1|))) (-15 -4374 (|#1| |#3|)) (-15 -4186 (|#1| |#1| (-1 |#3| |#3|) (-789))) (-15 -4186 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2491 ((-707 |#3|) (-707 |#1|))) (-15 -2491 ((-2 (|:| -1781 (-707 |#3|)) (|:| |vec| (-1286 |#3|))) (-707 |#1|) (-1286 |#1|))) (-15 -3536 ((-789))) (-15 -4377 (|#1| |#1| |#3|)) (-15 -4339 ((-136))) (-15 -4374 ((-1286 |#3|) |#1|))) (-245 |#2| |#3|) (-789) (-1236)) (T -244)) -((-4339 (*1 *2) (-12 (-14 *4 (-789)) (-4 *5 (-1236)) (-5 *2 (-136)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) (-3536 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1236)) (-5 *2 (-789)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) (-3526 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1236)) (-5 *2 (-789)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5))))) -((-2965 (((-114) $ $) 19 (|has| |#2| (-102)) ELT)) (-3604 (((-114) $) 80 (|has| |#2| (-23)) ELT)) (-4135 (($ (-936)) 134 (|has| |#2| (-1068)) ELT)) (-2411 (((-1292) $ (-557) (-557)) 44 (|has| $ (-6 -4424)) ELT)) (-2871 (($ $ $) 130 (|has| |#2| (-813)) ELT)) (-1424 (((-3 $ "failed") $ $) 82 (|has| |#2| (-133)) ELT)) (-3536 (((-789)) 119 (|has| |#2| (-381)) ELT)) (-4216 ((|#2| $ (-557) |#2|) 56 (|has| $ (-6 -4424)) ELT)) (-4152 (($) 7 T CONST)) (-3573 (((-3 (-557) #1="failed") $) 75 (-2959 (|has| |#2| (-1057 (-557))) (|has| |#2| (-1120))) ELT) (((-3 (-419 (-557)) #1#) $) 72 (-2959 (|has| |#2| (-1057 (-419 (-557)))) (|has| |#2| (-1120))) ELT) (((-3 |#2| #1#) $) 69 (|has| |#2| (-1120)) ELT)) (-3572 (((-557) $) 74 (-2959 (|has| |#2| (-1057 (-557))) (|has| |#2| (-1120))) ELT) (((-419 (-557)) $) 71 (-2959 (|has| |#2| (-1057 (-419 (-557)))) (|has| |#2| (-1120))) ELT) ((|#2| $) 70 (|has| |#2| (-1120)) ELT)) (-2491 (((-707 (-557)) (-707 $)) 116 (-2959 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) 115 (-2959 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 $) (-1286 $)) 114 (|has| |#2| (-1068)) ELT) (((-707 |#2|) (-707 $)) 113 (|has| |#2| (-1068)) ELT)) (-3885 (((-3 $ "failed") $) 90 (|has| |#2| (-1068)) ELT)) (-3393 (($) 122 (|has| |#2| (-381)) ELT)) (-1717 ((|#2| $ (-557) |#2|) 57 (|has| $ (-6 -4424)) ELT)) (-3513 ((|#2| $ (-557)) 55 T ELT)) (-3602 (((-114) $) 129 (|has| |#2| (-813)) ELT)) (-3288 (((-659 |#2|) $) 30 (|has| $ (-6 -4423)) ELT)) (-2639 (((-114) $) 92 (|has| |#2| (-1068)) ELT)) (-2413 (((-557) $) 47 (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) 123 (|has| |#2| (-859)) ELT)) (-3005 (((-659 |#2|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#2| $) 27 (-12 (|has| |#2| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2414 (((-557) $) 48 (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) 124 (|has| |#2| (-859)) ELT)) (-2158 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-2218 (((-936) $) 121 (|has| |#2| (-381)) ELT)) (-2492 (((-707 (-557)) (-1286 $)) 118 (-2959 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) 117 (-2959 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) 112 (|has| |#2| (-1068)) ELT) (((-707 |#2|) (-1286 $)) 111 (|has| |#2| (-1068)) ELT)) (-3658 (((-1178) $) 22 (|has| |#2| (-1120)) ELT)) (-2416 (((-659 (-557)) $) 50 T ELT)) (-2417 (((-114) (-557) $) 51 T ELT)) (-2629 (($ (-936)) 120 (|has| |#2| (-381)) ELT)) (-3659 (((-1139) $) 21 (|has| |#2| (-1120)) ELT)) (-4229 ((|#2| $) 46 (|has| (-557) (-859)) ELT)) (-2412 (($ $ |#2|) 45 (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) |#2|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#2|))) 26 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-305 |#2|)) 25 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-659 |#2|) (-659 |#2|)) 23 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-2415 (((-114) |#2| $) 49 (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-2418 (((-659 |#2|) $) 52 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-4228 ((|#2| $ (-557) |#2|) 54 T ELT) ((|#2| $ (-557)) 53 T ELT)) (-4264 ((|#2| $ $) 133 (|has| |#2| (-1068)) ELT)) (-1598 (($ (-1286 |#2|)) 135 T ELT)) (-4339 (((-136)) 132 (|has| |#2| (-376)) ELT)) (-4186 (($ $ (-789)) 109 (-2959 (|has| |#2| (-239)) (|has| |#2| (-1068))) ELT) (($ $) 107 (-2959 (|has| |#2| (-239)) (|has| |#2| (-1068))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 103 (-2959 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1196) (-789)) 102 (-2959 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-659 (-1196))) 101 (-2959 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1196)) 99 (-2959 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1 |#2| |#2|)) 98 (|has| |#2| (-1068)) ELT) (($ $ (-1 |#2| |#2|) (-789)) 97 (|has| |#2| (-1068)) ELT)) (-2155 (((-789) (-1 (-114) |#2|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#2| $) 28 (-12 (|has| |#2| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4374 (((-1286 |#2|) $) 136 T ELT) (($ (-557)) 76 (-3955 (-2959 (|has| |#2| (-1057 (-557))) (|has| |#2| (-1120))) (|has| |#2| (-1068))) ELT) (($ (-419 (-557))) 73 (-2959 (|has| |#2| (-1057 (-419 (-557)))) (|has| |#2| (-1120))) ELT) (($ |#2|) 68 (|has| |#2| (-1120)) ELT) (((-875) $) 17 (|has| |#2| (-628 (-875))) ELT)) (-3526 (((-789)) 94 (|has| |#2| (-1068)) CONST)) (-1376 (((-114) $ $) 20 (|has| |#2| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3057 (($) 79 (|has| |#2| (-23)) CONST)) (-3063 (($) 93 (|has| |#2| (-1068)) CONST)) (-3068 (($ $ (-789)) 110 (-2959 (|has| |#2| (-239)) (|has| |#2| (-1068))) ELT) (($ $) 108 (-2959 (|has| |#2| (-239)) (|has| |#2| (-1068))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 106 (-2959 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1196) (-789)) 105 (-2959 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-659 (-1196))) 104 (-2959 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1196)) 100 (-2959 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1 |#2| |#2|)) 96 (|has| |#2| (-1068)) ELT) (($ $ (-1 |#2| |#2|) (-789)) 95 (|has| |#2| (-1068)) ELT)) (-2963 (((-114) $ $) 125 (|has| |#2| (-859)) ELT)) (-2964 (((-114) $ $) 127 (|has| |#2| (-859)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#2| (-102)) ELT)) (-3083 (((-114) $ $) 126 (|has| |#2| (-859)) ELT)) (-3084 (((-114) $ $) 128 (|has| |#2| (-859)) ELT)) (-4377 (($ $ |#2|) 131 (|has| |#2| (-376)) ELT)) (-4265 (($ $ $) 85 (|has| |#2| (-21)) ELT) (($ $) 84 (|has| |#2| (-21)) ELT)) (-4267 (($ $ $) 77 (|has| |#2| (-25)) ELT)) (** (($ $ (-789)) 91 (|has| |#2| (-1068)) ELT) (($ $ (-936)) 88 (|has| |#2| (-1068)) ELT)) (* (($ $ $) 89 (|has| |#2| (-1068)) ELT) (($ $ |#2|) 87 (|has| |#2| (-744)) ELT) (($ |#2| $) 86 (|has| |#2| (-744)) ELT) (($ (-557) $) 83 (|has| |#2| (-21)) ELT) (($ (-789) $) 81 (|has| |#2| (-23)) ELT) (($ (-936) $) 78 (|has| |#2| (-25)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-245 |#1| |#2|) (-142) (-789) (-1236)) (T -245)) -((-1598 (*1 *1 *2) (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1236)) (-4 *1 (-245 *3 *4)))) (-4135 (*1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-245 *3 *4)) (-4 *4 (-1068)) (-4 *4 (-1236)))) (-4264 (*1 *2 *1 *1) (-12 (-4 *1 (-245 *3 *2)) (-4 *2 (-1236)) (-4 *2 (-1068))))) -(-13 (-614 (-557) |t#2|) (-628 (-1286 |t#2|)) (-10 -8 (-6 -4423) (-15 -1598 ($ (-1286 |t#2|))) (IF (|has| |t#2| (-1120)) (-6 (-424 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1068)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-234 |t#2|)) (-6 (-390 |t#2|)) (-15 -4135 ($ (-936))) (-15 -4264 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-744)) (-6 (-658 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#2| (-175)) (-6 (-735 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4420)) (-6 -4420) |%noBranch|) (IF (|has| |t#2| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |t#2| (-813)) (-6 (-813)) |%noBranch|) (IF (|has| |t#2| (-376)) (-6 (-1294 |t#2|)) |%noBranch|))) -(((-21) -3955 (|has| |#2| (-1068)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-21))) ((-23) -3955 (|has| |#2| (-1068)) (|has| |#2| (-813)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -3955 (|has| |#2| (-1068)) (|has| |#2| (-813)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -3955 (|has| |#2| (-1120)) (|has| |#2| (-1068)) (|has| |#2| (-859)) (|has| |#2| (-813)) (|has| |#2| (-744)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -3955 (|has| |#2| (-1068)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-133) -3955 (|has| |#2| (-1068)) (|has| |#2| (-813)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-21))) ((-631 (-419 (-557))) -12 (|has| |#2| (-1057 (-419 (-557)))) (|has| |#2| (-1120))) ((-631 (-557)) -3955 (|has| |#2| (-1068)) (-12 (|has| |#2| (-1057 (-557))) (|has| |#2| (-1120)))) ((-631 |#2|) |has| |#2| (-1120)) ((-628 (-875)) -3955 (|has| |#2| (-1120)) (|has| |#2| (-1068)) (|has| |#2| (-859)) (|has| |#2| (-813)) (|has| |#2| (-744)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-628 (-875))) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-628 (-1286 |#2|)) . T) ((-236 $) -3955 (-12 (|has| |#2| (-239)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-240)) (|has| |#2| (-1068)))) ((-234 |#2|) |has| |#2| (-1068)) ((-240) -12 (|has| |#2| (-240)) (|has| |#2| (-1068))) ((-239) -3955 (-12 (|has| |#2| (-239)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-240)) (|has| |#2| (-1068)))) ((-274 |#2|) |has| |#2| (-1068)) ((-298 (-557) |#2|) . T) ((-300 (-557) |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ((-381) |has| |#2| (-381)) ((-390 |#2|) |has| |#2| (-1068)) ((-424 |#2|) |has| |#2| (-1120)) ((-501 |#2|) . T) ((-614 (-557) |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ((-664 (-557)) -3955 (|has| |#2| (-1068)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-21))) ((-664 |#2|) -3955 (|has| |#2| (-1068)) (|has| |#2| (-744)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-664 $) |has| |#2| (-1068)) ((-666 (-557)) -12 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068))) ((-666 |#2|) -3955 (|has| |#2| (-1068)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-666 $) |has| |#2| (-1068)) ((-658 |#2|) -3955 (|has| |#2| (-744)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-656 (-557)) -12 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068))) ((-656 |#2|) |has| |#2| (-1068)) ((-735 |#2|) -3955 (|has| |#2| (-376)) (|has| |#2| (-175))) ((-744) |has| |#2| (-1068)) ((-812) |has| |#2| (-813)) ((-813) |has| |#2| (-813)) ((-814) |has| |#2| (-813)) ((-817) |has| |#2| (-813)) ((-859) -3955 (|has| |#2| (-859)) (|has| |#2| (-813))) ((-862) -3955 (|has| |#2| (-859)) (|has| |#2| (-813))) ((-909 $ (-1196)) -3955 (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068)))) ((-915 (-1196)) -12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))) ((-917 (-1196)) -3955 (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068)))) ((-1057 (-419 (-557))) -12 (|has| |#2| (-1057 (-419 (-557)))) (|has| |#2| (-1120))) ((-1057 (-557)) -12 (|has| |#2| (-1057 (-557))) (|has| |#2| (-1120))) ((-1057 |#2|) |has| |#2| (-1120)) ((-1070 |#2|) -3955 (|has| |#2| (-1068)) (|has| |#2| (-744)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-1075 |#2|) -3955 (|has| |#2| (-1068)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-1068) |has| |#2| (-1068)) ((-1076) |has| |#2| (-1068)) ((-1131) |has| |#2| (-1068)) ((-1120) -3955 (|has| |#2| (-1120)) (|has| |#2| (-1068)) (|has| |#2| (-859)) (|has| |#2| (-813)) (|has| |#2| (-744)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1236) . T) ((-1294 |#2|) |has| |#2| (-376))) -((-2965 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3604 (((-114) $) NIL (|has| |#2| (-23)) ELT)) (-4135 (($ (-936)) 63 (|has| |#2| (-1068)) ELT)) (-2411 (((-1292) $ (-557) (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-2871 (($ $ $) 69 (|has| |#2| (-813)) ELT)) (-1424 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-133)) ELT)) (-3536 (((-789)) NIL (|has| |#2| (-381)) ELT)) (-4216 ((|#2| $ (-557) |#2|) NIL (|has| $ (-6 -4424)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) NIL (-12 (|has| |#2| (-1057 (-557))) (|has| |#2| (-1120))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (-12 (|has| |#2| (-1057 (-419 (-557)))) (|has| |#2| (-1120))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1120)) ELT)) (-3572 (((-557) $) NIL (-12 (|has| |#2| (-1057 (-557))) (|has| |#2| (-1120))) ELT) (((-419 (-557)) $) NIL (-12 (|has| |#2| (-1057 (-419 (-557)))) (|has| |#2| (-1120))) ELT) ((|#2| $) 29 (|has| |#2| (-1120)) ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (-12 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (-12 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 $) (-1286 $)) NIL (|has| |#2| (-1068)) ELT) (((-707 |#2|) (-707 $)) NIL (|has| |#2| (-1068)) ELT)) (-3885 (((-3 $ #1#) $) 59 (|has| |#2| (-1068)) ELT)) (-3393 (($) NIL (|has| |#2| (-381)) ELT)) (-1717 ((|#2| $ (-557) |#2|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#2| $ (-557)) 57 T ELT)) (-3602 (((-114) $) NIL (|has| |#2| (-813)) ELT)) (-3288 (((-659 |#2|) $) 14 (|has| $ (-6 -4423)) ELT)) (-2639 (((-114) $) NIL (|has| |#2| (-1068)) ELT)) (-2413 (((-557) $) 20 (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) NIL (|has| |#2| (-859)) ELT)) (-3005 (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-2414 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#2| (-859)) ELT)) (-2158 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2218 (((-936) $) NIL (|has| |#2| (-381)) ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (-12 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (-12 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL (|has| |#2| (-1068)) ELT) (((-707 |#2|) (-1286 $)) NIL (|has| |#2| (-1068)) ELT)) (-3658 (((-1178) $) NIL (|has| |#2| (-1120)) ELT)) (-2416 (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) (-557) $) NIL T ELT)) (-2629 (($ (-936)) NIL (|has| |#2| (-381)) ELT)) (-3659 (((-1139) $) NIL (|has| |#2| (-1120)) ELT)) (-4229 ((|#2| $) NIL (|has| (-557) (-859)) ELT)) (-2412 (($ $ |#2|) NIL (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) |#2|) $) 24 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-659 |#2|) (-659 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-2418 (((-659 |#2|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#2| $ (-557) |#2|) NIL T ELT) ((|#2| $ (-557)) 21 T ELT)) (-4264 ((|#2| $ $) NIL (|has| |#2| (-1068)) ELT)) (-1598 (($ (-1286 |#2|)) 18 T ELT)) (-4339 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-4186 (($ $ (-789)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1068))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1068))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1196)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068)) ELT) (($ $ (-1 |#2| |#2|) (-789)) NIL (|has| |#2| (-1068)) ELT)) (-2155 (((-789) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-4374 (((-1286 |#2|) $) 9 T ELT) (($ (-557)) NIL (-3955 (-12 (|has| |#2| (-1057 (-557))) (|has| |#2| (-1120))) (|has| |#2| (-1068))) ELT) (($ (-419 (-557))) NIL (-12 (|has| |#2| (-1057 (-419 (-557)))) (|has| |#2| (-1120))) ELT) (($ |#2|) 12 (|has| |#2| (-1120)) ELT) (((-875) $) NIL (|has| |#2| (-628 (-875))) ELT)) (-3526 (((-789)) NIL (|has| |#2| (-1068)) CONST)) (-1376 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3057 (($) 37 (|has| |#2| (-23)) CONST)) (-3063 (($) 41 (|has| |#2| (-1068)) CONST)) (-3068 (($ $ (-789)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1068))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1068))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1196)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068)) ELT) (($ $ (-1 |#2| |#2|) (-789)) NIL (|has| |#2| (-1068)) ELT)) (-2963 (((-114) $ $) NIL (|has| |#2| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#2| (-859)) ELT)) (-3452 (((-114) $ $) 28 (|has| |#2| (-102)) ELT)) (-3083 (((-114) $ $) NIL (|has| |#2| (-859)) ELT)) (-3084 (((-114) $ $) 67 (|has| |#2| (-859)) ELT)) (-4377 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4265 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-4267 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-789)) NIL (|has| |#2| (-1068)) ELT) (($ $ (-936)) NIL (|has| |#2| (-1068)) ELT)) (* (($ $ $) 47 (|has| |#2| (-1068)) ELT) (($ $ |#2|) 45 (|has| |#2| (-744)) ELT) (($ |#2| $) 46 (|has| |#2| (-744)) ELT) (($ (-557) $) NIL (|has| |#2| (-21)) ELT) (($ (-789) $) NIL (|has| |#2| (-23)) ELT) (($ (-936) $) NIL (|has| |#2| (-25)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-246 |#1| |#2|) (-245 |#1| |#2|) (-789) (-1236)) (T -246)) -NIL -((-4269 (((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 21 T ELT)) (-4270 ((|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 23 T ELT)) (-4386 (((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)) 18 T ELT))) -(((-247 |#1| |#2| |#3|) (-10 -7 (-15 -4269 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -4270 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -4386 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) (-789) (-1236) (-1236)) (T -247)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-789)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-5 *2 (-246 *5 *7)) (-5 *1 (-247 *5 *6 *7)))) (-4270 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-789)) (-4 *6 (-1236)) (-4 *2 (-1236)) (-5 *1 (-247 *5 *6 *2)))) (-4269 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-789)) (-4 *7 (-1236)) (-4 *5 (-1236)) (-5 *2 (-246 *6 *5)) (-5 *1 (-247 *6 *7 *5))))) -((-1602 (((-557) (-659 (-1178))) 36 T ELT) (((-557) (-1178)) 29 T ELT)) (-1601 (((-1292) (-659 (-1178))) 40 T ELT) (((-1292) (-1178)) 39 T ELT)) (-1599 (((-1178)) 16 T ELT)) (-1600 (((-1178) (-557) (-1178)) 23 T ELT)) (-4201 (((-659 (-1178)) (-659 (-1178)) (-557) (-1178)) 37 T ELT) (((-1178) (-1178) (-557) (-1178)) 35 T ELT)) (-3017 (((-659 (-1178)) (-659 (-1178))) 15 T ELT) (((-659 (-1178)) (-1178)) 11 T ELT))) -(((-248) (-10 -7 (-15 -3017 ((-659 (-1178)) (-1178))) (-15 -3017 ((-659 (-1178)) (-659 (-1178)))) (-15 -1599 ((-1178))) (-15 -1600 ((-1178) (-557) (-1178))) (-15 -4201 ((-1178) (-1178) (-557) (-1178))) (-15 -4201 ((-659 (-1178)) (-659 (-1178)) (-557) (-1178))) (-15 -1601 ((-1292) (-1178))) (-15 -1601 ((-1292) (-659 (-1178)))) (-15 -1602 ((-557) (-1178))) (-15 -1602 ((-557) (-659 (-1178)))))) (T -248)) -((-1602 (*1 *2 *3) (-12 (-5 *3 (-659 (-1178))) (-5 *2 (-557)) (-5 *1 (-248)))) (-1602 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-557)) (-5 *1 (-248)))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-659 (-1178))) (-5 *2 (-1292)) (-5 *1 (-248)))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-248)))) (-4201 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-659 (-1178))) (-5 *3 (-557)) (-5 *4 (-1178)) (-5 *1 (-248)))) (-4201 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-557)) (-5 *1 (-248)))) (-1600 (*1 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-557)) (-5 *1 (-248)))) (-1599 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-248)))) (-3017 (*1 *2 *2) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-248)))) (-3017 (*1 *2 *3) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-248)) (-5 *3 (-1178))))) -((** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) 18 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-419 (-557)) $) 25 T ELT) (($ $ (-419 (-557))) NIL T ELT))) -(((-249 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-557))) (-15 * (|#1| |#1| (-419 (-557)))) (-15 * (|#1| (-419 (-557)) |#1|)) (-15 ** (|#1| |#1| (-789))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-936))) (-15 * (|#1| (-557) |#1|)) (-15 * (|#1| (-789) |#1|)) (-15 * (|#1| (-936) |#1|))) (-250)) (T -249)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2872 (($ $) 52 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ (-419 (-557))) 56 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ (-557)) 53 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-419 (-557)) $) 55 T ELT) (($ $ (-419 (-557))) 54 T ELT))) -(((-250) (-142)) (T -250)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-250)) (-5 *2 (-557)))) (-2872 (*1 *1 *1) (-4 *1 (-250)))) -(-13 (-302) (-38 (-419 (-557))) (-10 -8 (-15 ** ($ $ (-557))) (-15 -2872 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-557))) . T) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) . T) ((-111 $ $) . T) ((-133) . T) ((-631 (-419 (-557))) . T) ((-631 (-557)) . T) ((-628 (-875)) . T) ((-302) . T) ((-664 (-419 (-557))) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 (-419 (-557))) . T) ((-666 $) . T) ((-658 (-419 (-557))) . T) ((-735 (-419 (-557))) . T) ((-744) . T) ((-1070 (-419 (-557))) . T) ((-1070 $) . T) ((-1075 (-419 (-557))) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3820 ((|#1| $) 52 T ELT)) (-4225 (($ $) 63 T ELT)) (-3424 ((|#1| $ |#1|) 43 (|has| $ (-6 -4424)) ELT)) (-1604 (($ $ $) 59 (|has| $ (-6 -4424)) ELT)) (-1603 (($ $ $) 58 (|has| $ (-6 -4424)) ELT)) (-4216 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4424)) ELT)) (-3425 (($ $ (-659 $)) 45 (|has| $ (-6 -4424)) ELT)) (-4152 (($) 7 T CONST)) (-1606 (($ $) 62 T ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-3430 (((-659 $) $) 54 T ELT)) (-3426 (((-114) $ $) 46 (|has| |#1| (-1120)) ELT)) (-1605 (($ $) 61 T ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3429 (((-659 |#1|) $) 49 T ELT)) (-3945 (((-114) $) 53 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-4226 ((|#1| $) 65 T ELT)) (-3594 (($ $) 64 T ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-4228 ((|#1| $ #1#) 51 T ELT)) (-3428 (((-557) $ $) 48 T ELT)) (-4061 (((-114) $) 50 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4219 (($ $ $) 60 (|has| $ (-6 -4424)) ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-3940 (((-659 $) $) 55 T ELT)) (-3427 (((-114) $ $) 47 (|has| |#1| (-1120)) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-251 |#1|) (-142) (-1236)) (T -251)) -((-4226 (*1 *2 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1236)))) (-3594 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1236)))) (-4225 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1236)))) (-1606 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1236)))) (-1605 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1236)))) (-4219 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-251 *2)) (-4 *2 (-1236)))) (-1604 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-251 *2)) (-4 *2 (-1236)))) (-1603 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-251 *2)) (-4 *2 (-1236))))) -(-13 (-1029 |t#1|) (-10 -8 (-15 -4226 (|t#1| $)) (-15 -3594 ($ $)) (-15 -4225 ($ $)) (-15 -1606 ($ $)) (-15 -1605 ($ $)) (IF (|has| $ (-6 -4424)) (PROGN (-15 -4219 ($ $ $)) (-15 -1604 ($ $ $)) (-15 -1603 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-628 (-875)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-1029 |#1|) . T) ((-1120) |has| |#1| (-1120)) ((-1236) . T)) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3820 ((|#1| $) NIL T ELT)) (-4223 ((|#1| $) NIL T ELT)) (-4225 (($ $) NIL T ELT)) (-2411 (((-1292) $ (-557) (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-4213 (($ $ (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-1933 (((-114) $) NIL (|has| |#1| (-859)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-1931 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-859))) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3308 (($ $) 10 (|has| |#1| (-859)) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3860 (((-114) $ (-789)) NIL T ELT)) (-3424 ((|#1| $ |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-4215 (($ $ $) NIL (|has| $ (-6 -4424)) ELT)) (-4214 ((|#1| $ |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-4217 ((|#1| $ |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-4216 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4424)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -4424)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| $ (-1253 (-557)) |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| $ (-557) |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-3425 (($ $ (-659 $)) NIL (|has| $ (-6 -4424)) ELT)) (-1711 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-4138 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4224 ((|#1| $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-2508 (($ $) NIL (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) NIL T ELT)) (-4227 (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-2592 (($ $) NIL (|has| |#1| (-1120)) ELT)) (-1465 (($ $) 7 (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3823 (($ |#1| $) NIL (|has| |#1| (-1120)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3824 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-1717 ((|#1| $ (-557) |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-557)) NIL T ELT)) (-3861 (((-114) $) NIL T ELT)) (-3837 (((-557) |#1| $ (-557)) NIL (|has| |#1| (-1120)) ELT) (((-557) |#1| $) NIL (|has| |#1| (-1120)) ELT) (((-557) (-1 (-114) |#1|) $) NIL T ELT)) (-3288 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3430 (((-659 $) $) NIL T ELT)) (-3426 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-4042 (($ (-789) |#1|) NIL T ELT)) (-4147 (((-114) $ (-789)) NIL T ELT)) (-2413 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3255 (($ $ $) NIL (|has| |#1| (-859)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3936 (($ $ $) NIL (|has| |#1| (-859)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2414 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3960 (($ |#1|) NIL T ELT)) (-4144 (((-114) $ (-789)) NIL T ELT)) (-3429 (((-659 |#1|) $) NIL T ELT)) (-3945 (((-114) $) NIL T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-4226 ((|#1| $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-4035 (($ $ $ (-557)) NIL T ELT) (($ |#1| $ (-557)) NIL T ELT)) (-2515 (($ $ $ (-557)) NIL T ELT) (($ |#1| $ (-557)) NIL T ELT)) (-2416 (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) (-557) $) NIL T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-4229 ((|#1| $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2412 (($ $ |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-3862 (((-114) $) NIL T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1253 (-557))) NIL T ELT) ((|#1| $ (-557)) NIL T ELT) ((|#1| $ (-557) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-789) $ "count") 16 T ELT)) (-3428 (((-557) $ $) NIL T ELT)) (-1712 (($ $ (-1253 (-557))) NIL T ELT) (($ $ (-557)) NIL T ELT)) (-2516 (($ $ (-1253 (-557))) NIL T ELT) (($ $ (-557)) NIL T ELT)) (-1607 (($ (-659 |#1|)) 22 T ELT)) (-4061 (((-114) $) NIL T ELT)) (-4220 (($ $) NIL T ELT)) (-4218 (($ $) NIL (|has| $ (-6 -4424)) ELT)) (-4221 (((-789) $) NIL T ELT)) (-4222 (($ $) NIL T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-1932 (($ $ $ (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) NIL (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) NIL T ELT)) (-4219 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4230 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-659 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4374 (($ (-659 |#1|)) 17 T ELT) (((-659 |#1|) $) 18 T ELT) (((-875) $) 21 (|has| |#1| (-628 (-875))) ELT)) (-3940 (((-659 $) $) NIL T ELT)) (-3427 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2963 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3083 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-4385 (((-789) $) 14 (|has| $ (-6 -4423)) ELT))) -(((-252 |#1|) (-13 (-684 |#1|) (-502 (-659 |#1|)) (-10 -8 (-15 -1607 ($ (-659 |#1|))) (-15 -4228 ($ $ "unique")) (-15 -4228 ($ $ "sort")) (-15 -4228 ((-789) $ "count")))) (-859)) (T -252)) -((-1607 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-859)) (-5 *1 (-252 *3)))) (-4228 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-252 *3)) (-4 *3 (-859)))) (-4228 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-252 *3)) (-4 *3 (-859)))) (-4228 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-789)) (-5 *1 (-252 *4)) (-4 *4 (-859))))) -((-1608 (((-3 (-789) "failed") |#1| |#1| (-789)) 40 T ELT))) -(((-253 |#1|) (-10 -7 (-15 -1608 ((-3 (-789) "failed") |#1| |#1| (-789)))) (-13 (-744) (-381) (-10 -7 (-15 ** (|#1| |#1| (-557)))))) (T -253)) -((-1608 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-789)) (-4 *3 (-13 (-744) (-381) (-10 -7 (-15 ** (*3 *3 (-557)))))) (-5 *1 (-253 *3))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4186 (($ $) 59 (|has| |#1| (-239)) ELT) (($ $ (-789)) 57 (|has| |#1| (-239)) ELT) (($ $ (-1196)) 55 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) 53 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) 52 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 51 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1 |#1| |#1|) (-789)) 45 T ELT) (($ $ (-1 |#1| |#1|)) 44 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3068 (($ $) 58 (|has| |#1| (-239)) ELT) (($ $ (-789)) 56 (|has| |#1| (-239)) ELT) (($ $ (-1196)) 54 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) 50 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) 49 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 48 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1 |#1| |#1|) (-789)) 47 T ELT) (($ $ (-1 |#1| |#1|)) 46 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-254 |#1|) (-142) (-1068)) (T -254)) -NIL -(-13 (-111 |t#1| |t#1|) (-274 |t#1|) (-10 -7 (IF (|has| |t#1| (-239)) (-6 (-237 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-917 (-1196))) (-6 (-914 |t#1| (-1196))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-628 (-875)) . T) ((-236 $) |has| |#1| (-239)) ((-237 |#1|) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-274 |#1|) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-666 |#1|) . T) ((-658 |#1|) -3955 (-12 (|has| |#1| (-175)) (|has| |#1| (-917 (-1196)))) (-12 (|has| |#1| (-175)) (|has| |#1| (-239)))) ((-735 |#1|) -3955 (-12 (|has| |#1| (-175)) (|has| |#1| (-917 (-1196)))) (-12 (|has| |#1| (-175)) (|has| |#1| (-239)))) ((-909 $ (-1196)) |has| |#1| (-917 (-1196))) ((-914 |#1| (-1196)) |has| |#1| (-917 (-1196))) ((-917 (-1196)) |has| |#1| (-917 (-1196))) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3482 (((-659 (-876 |#1|)) $) NIL T ELT)) (-3484 (((-1190 $) $ (-876 |#1|)) NIL T ELT) (((-1190 |#2|) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#2| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#2| (-568)) ELT)) (-3218 (((-789) $) NIL T ELT) (((-789) $ (-659 (-876 |#1|))) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-4203 (($ $) NIL (|has| |#2| (-464)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#2| (-464)) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#2| (-1057 (-419 (-557)))) ELT) (((-3 (-557) #1#) $) NIL (|has| |#2| (-1057 (-557))) ELT) (((-3 (-876 |#1|) #1#) $) NIL T ELT)) (-3572 ((|#2| $) NIL T ELT) (((-419 (-557)) $) NIL (|has| |#2| (-1057 (-419 (-557)))) ELT) (((-557) $) NIL (|has| |#2| (-1057 (-557))) ELT) (((-876 |#1|) $) NIL T ELT)) (-4184 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2146 (($ $ (-659 (-557))) NIL T ELT)) (-4387 (($ $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 $) (-1286 $)) NIL T ELT) (((-707 |#2|) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3921 (($ $) NIL (|has| |#2| (-464)) ELT) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3217 (((-659 $) $) NIL T ELT)) (-4151 (((-114) $) NIL (|has| |#2| (-927)) ELT)) (-1802 (($ $ |#2| (-246 (-4385 |#1|) (-789)) $) NIL T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-391))) (|has| |#2| (-899 (-391)))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-557))) (|has| |#2| (-899 (-557)))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-2647 (((-789) $) NIL T ELT)) (-3485 (($ (-1190 |#2|) (-876 |#1|)) NIL T ELT) (($ (-1190 $) (-876 |#1|)) NIL T ELT)) (-3220 (((-659 $) $) NIL T ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#2| (-246 (-4385 |#1|) (-789))) NIL T ELT) (($ $ (-876 |#1|) (-789)) NIL T ELT) (($ $ (-659 (-876 |#1|)) (-659 (-789))) NIL T ELT)) (-4191 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $ (-876 |#1|)) NIL T ELT)) (-3219 (((-246 (-4385 |#1|) (-789)) $) NIL T ELT) (((-789) $ (-876 |#1|)) NIL T ELT) (((-659 (-789)) $ (-659 (-876 |#1|))) NIL T ELT)) (-1803 (($ (-1 (-246 (-4385 |#1|) (-789)) (-246 (-4385 |#1|) (-789))) $) NIL T ELT)) (-4386 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3483 (((-3 (-876 |#1|) #1#) $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL T ELT) (((-707 |#2|) (-1286 $)) NIL T ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#2| $) NIL T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3222 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3221 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -2630 (-789))) #1#) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2003 (((-114) $) NIL T ELT)) (-2002 ((|#2| $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#2| (-464)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-4160 (((-417 $) $) NIL (|has| |#2| (-927)) ELT)) (-3884 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-568)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-568)) ELT)) (-4196 (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ (-876 |#1|) |#2|) NIL T ELT) (($ $ (-659 (-876 |#1|)) (-659 |#2|)) NIL T ELT) (($ $ (-876 |#1|) $) NIL T ELT) (($ $ (-659 (-876 |#1|)) (-659 $)) NIL T ELT)) (-4185 (($ $ (-876 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4186 (($ $ (-659 (-876 |#1|)) (-659 (-789))) NIL T ELT) (($ $ (-876 |#1|) (-789)) NIL T ELT) (($ $ (-659 (-876 |#1|))) NIL T ELT) (($ $ (-876 |#1|)) NIL T ELT)) (-4376 (((-246 (-4385 |#1|) (-789)) $) NIL T ELT) (((-789) $ (-876 |#1|)) NIL T ELT) (((-659 (-789)) $ (-659 (-876 |#1|))) NIL T ELT)) (-4400 (((-903 (-391)) $) NIL (-12 (|has| (-876 |#1|) (-629 (-903 (-391)))) (|has| |#2| (-629 (-903 (-391))))) ELT) (((-903 (-557)) $) NIL (-12 (|has| (-876 |#1|) (-629 (-903 (-557)))) (|has| |#2| (-629 (-903 (-557))))) ELT) (((-546) $) NIL (-12 (|has| (-876 |#1|) (-629 (-546))) (|has| |#2| (-629 (-546)))) ELT)) (-3216 ((|#2| $) NIL (|has| |#2| (-464)) ELT) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-927))) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-876 |#1|)) NIL T ELT) (($ (-419 (-557))) NIL (-3955 (|has| |#2| (-38 (-419 (-557)))) (|has| |#2| (-1057 (-419 (-557))))) ELT) (($ $) NIL (|has| |#2| (-568)) ELT)) (-4245 (((-659 |#2|) $) NIL T ELT)) (-4105 ((|#2| $ (-246 (-4385 |#1|) (-789))) NIL T ELT) (($ $ (-876 |#1|) (-789)) NIL T ELT) (($ $ (-659 (-876 |#1|)) (-659 (-789))) NIL T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| |#2| (-927))) (|has| |#2| (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-1801 (($ $ $ (-789)) NIL (|has| |#2| (-175)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL (|has| |#2| (-568)) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $ (-659 (-876 |#1|)) (-659 (-789))) NIL T ELT) (($ $ (-876 |#1|) (-789)) NIL T ELT) (($ $ (-659 (-876 |#1|))) NIL T ELT) (($ $ (-876 |#1|)) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL (|has| |#2| (-38 (-419 (-557)))) ELT) (($ (-419 (-557)) $) NIL (|has| |#2| (-38 (-419 (-557)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-255 |#1| |#2|) (-13 (-967 |#2| (-246 (-4385 |#1|) (-789)) (-876 |#1|)) (-10 -8 (-15 -2146 ($ $ (-659 (-557)))))) (-659 (-1196)) (-1068)) (T -255)) -((-2146 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-255 *3 *4)) (-14 *3 (-659 (-1196))) (-4 *4 (-1068))))) -((-2965 (((-114) $ $) NIL T ELT)) (-1609 (((-1292) $) 17 T ELT)) (-1611 (((-187 (-257)) $) 11 T ELT)) (-1610 (($ (-187 (-257))) 12 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1612 (((-257) $) 7 T ELT)) (-4374 (((-875) $) 9 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 15 T ELT))) -(((-256) (-13 (-1120) (-10 -8 (-15 -1612 ((-257) $)) (-15 -1611 ((-187 (-257)) $)) (-15 -1610 ($ (-187 (-257)))) (-15 -1609 ((-1292) $))))) (T -256)) -((-1612 (*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-256)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256)))) (-1610 (*1 *1 *2) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256)))) (-1609 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-256))))) -((-2965 (((-114) $ $) NIL T ELT)) (-1536 (((-659 (-877)) $) NIL T ELT)) (-3968 (((-518) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1538 (((-190) $) NIL T ELT)) (-3030 (((-114) $ (-518)) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1613 (((-345) $) 7 T ELT)) (-1537 (((-659 (-114)) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (((-186) $) 8 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2915 (((-55) $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-257) (-13 (-189) (-628 (-186)) (-10 -8 (-15 -1613 ((-345) $))))) (T -257)) -((-1613 (*1 *2 *1) (-12 (-5 *2 (-345)) (-5 *1 (-257))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4228 (((-1201) $ (-789)) 13 T ELT)) (-4374 (((-875) $) 20 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 16 T ELT)) (-4385 (((-789) $) 9 T ELT))) -(((-258) (-13 (-1120) (-298 (-789) (-1201)) (-10 -8 (-15 -4385 ((-789) $))))) (T -258)) -((-4385 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-258))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-4135 (($ (-936)) NIL (|has| |#4| (-1068)) ELT)) (-2411 (((-1292) $ (-557) (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-2871 (($ $ $) NIL (|has| |#4| (-813)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3536 (((-789)) NIL (|has| |#4| (-381)) ELT)) (-4216 ((|#4| $ (-557) |#4|) NIL (|has| $ (-6 -4424)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1120)) ELT) (((-3 (-557) #1#) $) NIL (-12 (|has| |#4| (-1057 (-557))) (|has| |#4| (-1120))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (-12 (|has| |#4| (-1057 (-419 (-557)))) (|has| |#4| (-1120))) ELT)) (-3572 ((|#4| $) NIL (|has| |#4| (-1120)) ELT) (((-557) $) NIL (-12 (|has| |#4| (-1057 (-557))) (|has| |#4| (-1120))) ELT) (((-419 (-557)) $) NIL (-12 (|has| |#4| (-1057 (-419 (-557)))) (|has| |#4| (-1120))) ELT)) (-2491 (((-2 (|:| -1781 (-707 |#4|)) (|:| |vec| (-1286 |#4|))) (-707 $) (-1286 $)) NIL (|has| |#4| (-1068)) ELT) (((-707 |#4|) (-707 $)) NIL (|has| |#4| (-1068)) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (-12 (|has| |#4| (-656 (-557))) (|has| |#4| (-1068))) ELT) (((-707 (-557)) (-707 $)) NIL (-12 (|has| |#4| (-656 (-557))) (|has| |#4| (-1068))) ELT)) (-3885 (((-3 $ #1#) $) NIL (|has| |#4| (-1068)) ELT)) (-3393 (($) NIL (|has| |#4| (-381)) ELT)) (-1717 ((|#4| $ (-557) |#4|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#4| $ (-557)) NIL T ELT)) (-3602 (((-114) $) NIL (|has| |#4| (-813)) ELT)) (-3288 (((-659 |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2639 (((-114) $) NIL (|has| |#4| (-1068)) ELT)) (-2413 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) NIL (|has| |#4| (-859)) ELT)) (-3005 (((-659 |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#4| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT)) (-2414 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#4| (-859)) ELT)) (-2158 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2218 (((-936) $) NIL (|has| |#4| (-381)) ELT)) (-2492 (((-2 (|:| -1781 (-707 |#4|)) (|:| |vec| (-1286 |#4|))) (-1286 $) $) NIL (|has| |#4| (-1068)) ELT) (((-707 |#4|) (-1286 $)) NIL (|has| |#4| (-1068)) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (-12 (|has| |#4| (-656 (-557))) (|has| |#4| (-1068))) ELT) (((-707 (-557)) (-1286 $)) NIL (-12 (|has| |#4| (-656 (-557))) (|has| |#4| (-1068))) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2416 (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) (-557) $) NIL T ELT)) (-2629 (($ (-936)) NIL (|has| |#4| (-381)) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4229 ((|#4| $) NIL (|has| (-557) (-859)) ELT)) (-2412 (($ $ |#4|) NIL (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-659 |#4|) (-659 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#4| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT)) (-2418 (((-659 |#4|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#4| $ (-557) |#4|) NIL T ELT) ((|#4| $ (-557)) 12 T ELT)) (-4264 ((|#4| $ $) NIL (|has| |#4| (-1068)) ELT)) (-1598 (($ (-1286 |#4|)) NIL T ELT)) (-4339 (((-136)) NIL (|has| |#4| (-376)) ELT)) (-4186 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1068)) ELT) (($ $ (-1 |#4| |#4|) (-789)) NIL (|has| |#4| (-1068)) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-3955 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068)))) ELT) (($ $ (-1196) (-789)) NIL (-3955 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068)))) ELT) (($ $ (-659 (-1196))) NIL (-3955 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068)))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068)))) ELT) (($ $ (-789)) NIL (-3955 (-12 (|has| |#4| (-240)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1068)))) ELT) (($ $) NIL (-3955 (-12 (|has| |#4| (-240)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1068)))) ELT)) (-2155 (((-789) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#4| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-4374 (((-1286 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1120)) ELT) (((-875) $) NIL T ELT) (($ (-557)) NIL (-3955 (-12 (|has| |#4| (-1057 (-557))) (|has| |#4| (-1120))) (|has| |#4| (-1068))) ELT) (($ (-419 (-557))) NIL (-12 (|has| |#4| (-1057 (-419 (-557)))) (|has| |#4| (-1120))) ELT)) (-3526 (((-789)) NIL (|has| |#4| (-1068)) CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL (|has| |#4| (-1068)) CONST)) (-3068 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1068)) ELT) (($ $ (-1 |#4| |#4|) (-789)) NIL (|has| |#4| (-1068)) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-3955 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068)))) ELT) (($ $ (-1196) (-789)) NIL (-3955 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068)))) ELT) (($ $ (-659 (-1196))) NIL (-3955 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068)))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068)))) ELT) (($ $ (-789)) NIL (-3955 (-12 (|has| |#4| (-240)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1068)))) ELT) (($ $) NIL (-3955 (-12 (|has| |#4| (-240)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1068)))) ELT)) (-2963 (((-114) $ $) NIL (|has| |#4| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#4| (-859)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL (|has| |#4| (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#4| (-859)) ELT)) (-4377 (($ $ |#4|) NIL (|has| |#4| (-376)) ELT)) (-4265 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-789)) NIL (|has| |#4| (-1068)) ELT) (($ $ (-936)) NIL (|has| |#4| (-1068)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-557) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-936) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-744)) ELT) (($ |#4| $) NIL (|has| |#4| (-744)) ELT) (($ $ $) NIL (|has| |#4| (-1068)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-259 |#1| |#2| |#3| |#4|) (-13 (-245 |#1| |#4|) (-666 |#2|) (-666 |#3|)) (-936) (-1068) (-1142 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-666 |#2|)) (T -259)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-4135 (($ (-936)) NIL (|has| |#3| (-1068)) ELT)) (-2411 (((-1292) $ (-557) (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-2871 (($ $ $) NIL (|has| |#3| (-813)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3536 (((-789)) NIL (|has| |#3| (-381)) ELT)) (-4216 ((|#3| $ (-557) |#3|) NIL (|has| $ (-6 -4424)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1120)) ELT) (((-3 (-557) #1#) $) NIL (-12 (|has| |#3| (-1057 (-557))) (|has| |#3| (-1120))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (-12 (|has| |#3| (-1057 (-419 (-557)))) (|has| |#3| (-1120))) ELT)) (-3572 ((|#3| $) NIL (|has| |#3| (-1120)) ELT) (((-557) $) NIL (-12 (|has| |#3| (-1057 (-557))) (|has| |#3| (-1120))) ELT) (((-419 (-557)) $) NIL (-12 (|has| |#3| (-1057 (-419 (-557)))) (|has| |#3| (-1120))) ELT)) (-2491 (((-2 (|:| -1781 (-707 |#3|)) (|:| |vec| (-1286 |#3|))) (-707 $) (-1286 $)) NIL (|has| |#3| (-1068)) ELT) (((-707 |#3|) (-707 $)) NIL (|has| |#3| (-1068)) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (-12 (|has| |#3| (-656 (-557))) (|has| |#3| (-1068))) ELT) (((-707 (-557)) (-707 $)) NIL (-12 (|has| |#3| (-656 (-557))) (|has| |#3| (-1068))) ELT)) (-3885 (((-3 $ #1#) $) NIL (|has| |#3| (-1068)) ELT)) (-3393 (($) NIL (|has| |#3| (-381)) ELT)) (-1717 ((|#3| $ (-557) |#3|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#3| $ (-557)) NIL T ELT)) (-3602 (((-114) $) NIL (|has| |#3| (-813)) ELT)) (-3288 (((-659 |#3|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2639 (((-114) $) NIL (|has| |#3| (-1068)) ELT)) (-2413 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) NIL (|has| |#3| (-859)) ELT)) (-3005 (((-659 |#3|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#3| (-1120))) ELT)) (-2414 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#3| (-859)) ELT)) (-2158 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2218 (((-936) $) NIL (|has| |#3| (-381)) ELT)) (-2492 (((-2 (|:| -1781 (-707 |#3|)) (|:| |vec| (-1286 |#3|))) (-1286 $) $) NIL (|has| |#3| (-1068)) ELT) (((-707 |#3|) (-1286 $)) NIL (|has| |#3| (-1068)) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (-12 (|has| |#3| (-656 (-557))) (|has| |#3| (-1068))) ELT) (((-707 (-557)) (-1286 $)) NIL (-12 (|has| |#3| (-656 (-557))) (|has| |#3| (-1068))) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2416 (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) (-557) $) NIL T ELT)) (-2629 (($ (-936)) NIL (|has| |#3| (-381)) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4229 ((|#3| $) NIL (|has| (-557) (-859)) ELT)) (-2412 (($ $ |#3|) NIL (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120))) ELT) (($ $ (-659 |#3|) (-659 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#3| (-1120))) ELT)) (-2418 (((-659 |#3|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#3| $ (-557) |#3|) NIL T ELT) ((|#3| $ (-557)) 11 T ELT)) (-4264 ((|#3| $ $) NIL (|has| |#3| (-1068)) ELT)) (-1598 (($ (-1286 |#3|)) NIL T ELT)) (-4339 (((-136)) NIL (|has| |#3| (-376)) ELT)) (-4186 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1068)) ELT) (($ $ (-1 |#3| |#3|) (-789)) NIL (|has| |#3| (-1068)) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-3955 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) ELT) (($ $ (-1196) (-789)) NIL (-3955 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) ELT) (($ $ (-659 (-1196))) NIL (-3955 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) ELT) (($ $ (-789)) NIL (-3955 (-12 (|has| |#3| (-240)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1068)))) ELT) (($ $) NIL (-3955 (-12 (|has| |#3| (-240)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1068)))) ELT)) (-2155 (((-789) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#3| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#3| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-4374 (((-1286 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1120)) ELT) (((-875) $) NIL T ELT) (($ (-557)) NIL (-3955 (-12 (|has| |#3| (-1057 (-557))) (|has| |#3| (-1120))) (|has| |#3| (-1068))) ELT) (($ (-419 (-557))) NIL (-12 (|has| |#3| (-1057 (-419 (-557)))) (|has| |#3| (-1120))) ELT)) (-3526 (((-789)) NIL (|has| |#3| (-1068)) CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL (|has| |#3| (-1068)) CONST)) (-3068 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1068)) ELT) (($ $ (-1 |#3| |#3|) (-789)) NIL (|has| |#3| (-1068)) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-3955 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) ELT) (($ $ (-1196) (-789)) NIL (-3955 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) ELT) (($ $ (-659 (-1196))) NIL (-3955 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) ELT) (($ $ (-789)) NIL (-3955 (-12 (|has| |#3| (-240)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1068)))) ELT) (($ $) NIL (-3955 (-12 (|has| |#3| (-240)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1068)))) ELT)) (-2963 (((-114) $ $) NIL (|has| |#3| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#3| (-859)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL (|has| |#3| (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#3| (-859)) ELT)) (-4377 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-4265 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-789)) NIL (|has| |#3| (-1068)) ELT) (($ $ (-936)) NIL (|has| |#3| (-1068)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-557) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-936) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-744)) ELT) (($ |#3| $) NIL (|has| |#3| (-744)) ELT) (($ $ $) NIL (|has| |#3| (-1068)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-260 |#1| |#2| |#3|) (-13 (-245 |#1| |#3|) (-666 |#2|)) (-789) (-1068) (-666 |#2|)) (T -260)) -NIL -((-1618 (((-659 (-789)) $) 56 T ELT) (((-659 (-789)) $ |#3|) 59 T ELT)) (-1652 (((-789) $) 58 T ELT) (((-789) $ |#3|) 61 T ELT)) (-1614 (($ $) 76 T ELT)) (-3573 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL T ELT) (((-3 (-557) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-4200 (((-789) $ |#3|) 43 T ELT) (((-789) $) 38 T ELT)) (-1653 (((-1 $ (-789)) |#3|) 15 T ELT) (((-1 $ (-789)) $) 88 T ELT)) (-1616 ((|#4| $) 69 T ELT)) (-1617 (((-114) $) 67 T ELT)) (-1615 (($ $) 75 T ELT)) (-4196 (($ $ (-659 (-305 $))) 111 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-659 |#4|) (-659 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-659 |#4|) (-659 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-659 |#3|) (-659 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-659 |#3|) (-659 |#2|)) 97 T ELT)) (-4186 (($ $ (-659 |#4|) (-659 (-789))) NIL T ELT) (($ $ |#4| (-789)) NIL T ELT) (($ $ (-659 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-789)) NIL T ELT) (($ $ (-1196)) NIL T ELT) (($ $ (-659 (-1196))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-1619 (((-659 |#3|) $) 86 T ELT)) (-4376 ((|#5| $) NIL T ELT) (((-789) $ |#4|) NIL T ELT) (((-659 (-789)) $ (-659 |#4|)) NIL T ELT) (((-789) $ |#3|) 49 T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-419 (-557))) NIL T ELT) (($ $) NIL T ELT))) -(((-261 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4186 (|#1| |#1| (-789))) (-15 -4186 (|#1| |#1|)) (-15 -4186 (|#1| |#1| (-659 (-1196)) (-659 (-789)))) (-15 -4186 (|#1| |#1| (-1196) (-789))) (-15 -4186 (|#1| |#1| (-659 (-1196)))) (-15 -4186 (|#1| |#1| (-1196))) (-15 -4374 (|#1| |#1|)) (-15 -4374 (|#1| (-419 (-557)))) (-15 -4196 (|#1| |#1| (-659 |#3|) (-659 |#2|))) (-15 -4196 (|#1| |#1| |#3| |#2|)) (-15 -4196 (|#1| |#1| (-659 |#3|) (-659 |#1|))) (-15 -4196 (|#1| |#1| |#3| |#1|)) (-15 -1653 ((-1 |#1| (-789)) |#1|)) (-15 -1614 (|#1| |#1|)) (-15 -1615 (|#1| |#1|)) (-15 -1616 (|#4| |#1|)) (-15 -1617 ((-114) |#1|)) (-15 -1652 ((-789) |#1| |#3|)) (-15 -1618 ((-659 (-789)) |#1| |#3|)) (-15 -1652 ((-789) |#1|)) (-15 -1618 ((-659 (-789)) |#1|)) (-15 -4376 ((-789) |#1| |#3|)) (-15 -4200 ((-789) |#1|)) (-15 -4200 ((-789) |#1| |#3|)) (-15 -1619 ((-659 |#3|) |#1|)) (-15 -1653 ((-1 |#1| (-789)) |#3|)) (-15 -4374 (|#1| |#3|)) (-15 -3573 ((-3 |#3| #1="failed") |#1|)) (-15 -4186 (|#1| |#1| (-1 |#2| |#2|) (-789))) (-15 -4186 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4376 ((-659 (-789)) |#1| (-659 |#4|))) (-15 -4376 ((-789) |#1| |#4|)) (-15 -4374 (|#1| |#4|)) (-15 -3573 ((-3 |#4| #1#) |#1|)) (-15 -4196 (|#1| |#1| (-659 |#4|) (-659 |#1|))) (-15 -4196 (|#1| |#1| |#4| |#1|)) (-15 -4196 (|#1| |#1| (-659 |#4|) (-659 |#2|))) (-15 -4196 (|#1| |#1| |#4| |#2|)) (-15 -4196 (|#1| |#1| (-659 |#1|) (-659 |#1|))) (-15 -4196 (|#1| |#1| |#1| |#1|)) (-15 -4196 (|#1| |#1| (-305 |#1|))) (-15 -4196 (|#1| |#1| (-659 (-305 |#1|)))) (-15 -4376 (|#5| |#1|)) (-15 -3573 ((-3 (-557) #1#) |#1|)) (-15 -3573 ((-3 (-419 (-557)) #1#) |#1|)) (-15 -3573 ((-3 |#2| #1#) |#1|)) (-15 -4374 (|#1| |#2|)) (-15 -4186 (|#1| |#1| |#4|)) (-15 -4186 (|#1| |#1| (-659 |#4|))) (-15 -4186 (|#1| |#1| |#4| (-789))) (-15 -4186 (|#1| |#1| (-659 |#4|) (-659 (-789)))) (-15 -4374 (|#1| (-557))) (-15 -4374 ((-875) |#1|))) (-262 |#2| |#3| |#4| |#5|) (-1068) (-859) (-277 |#3|) (-813)) (T -261)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1618 (((-659 (-789)) $) 248 T ELT) (((-659 (-789)) $ |#2|) 246 T ELT)) (-1652 (((-789) $) 247 T ELT) (((-789) $ |#2|) 245 T ELT)) (-3482 (((-659 |#3|) $) 120 T ELT)) (-3484 (((-1190 $) $ |#3|) 135 T ELT) (((-1190 |#1|) $) 134 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 97 (|has| |#1| (-568)) ELT)) (-2271 (($ $) 98 (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) 100 (|has| |#1| (-568)) ELT)) (-3218 (((-789) $) 122 T ELT) (((-789) $ (-659 |#3|)) 121 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) 110 (|has| |#1| (-927)) ELT)) (-4203 (($ $) 108 (|has| |#1| (-464)) ELT)) (-4399 (((-417 $) $) 107 (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1="failed") (-659 (-1190 $)) (-1190 $)) 113 (|has| |#1| (-927)) ELT)) (-1614 (($ $) 241 T ELT)) (-4152 (($) 22 T CONST)) (-3573 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-419 (-557)) #2#) $) 175 (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 (-557) #2#) $) 173 (|has| |#1| (-1057 (-557))) ELT) (((-3 |#3| #2#) $) 150 T ELT) (((-3 |#2| #2#) $) 255 T ELT)) (-3572 ((|#1| $) 177 T ELT) (((-419 (-557)) $) 176 (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-557) $) 174 (|has| |#1| (-1057 (-557))) ELT) ((|#3| $) 151 T ELT) ((|#2| $) 256 T ELT)) (-4184 (($ $ $ |#3|) 118 (|has| |#1| (-175)) ELT)) (-4387 (($ $) 168 T ELT)) (-2491 (((-707 (-557)) (-707 $)) 146 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) 145 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) 144 T ELT) (((-707 |#1|) (-707 $)) 143 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-3921 (($ $) 190 (|has| |#1| (-464)) ELT) (($ $ |#3|) 115 (|has| |#1| (-464)) ELT)) (-3217 (((-659 $) $) 119 T ELT)) (-4151 (((-114) $) 106 (|has| |#1| (-927)) ELT)) (-1802 (($ $ |#1| |#4| $) 186 T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) 94 (-12 (|has| |#3| (-899 (-391))) (|has| |#1| (-899 (-391)))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) 93 (-12 (|has| |#3| (-899 (-557))) (|has| |#1| (-899 (-557)))) ELT)) (-4200 (((-789) $ |#2|) 251 T ELT) (((-789) $) 250 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-2647 (((-789) $) 183 T ELT)) (-3485 (($ (-1190 |#1|) |#3|) 127 T ELT) (($ (-1190 $) |#3|) 126 T ELT)) (-3220 (((-659 $) $) 136 T ELT)) (-4365 (((-114) $) 166 T ELT)) (-3292 (($ |#1| |#4|) 167 T ELT) (($ $ |#3| (-789)) 129 T ELT) (($ $ (-659 |#3|) (-659 (-789))) 128 T ELT)) (-4191 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $ |#3|) 130 T ELT)) (-3219 ((|#4| $) 184 T ELT) (((-789) $ |#3|) 132 T ELT) (((-659 (-789)) $ (-659 |#3|)) 131 T ELT)) (-1803 (($ (-1 |#4| |#4|) $) 185 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-1653 (((-1 $ (-789)) |#2|) 253 T ELT) (((-1 $ (-789)) $) 240 (|has| |#1| (-240)) ELT)) (-3483 (((-3 |#3| #3="failed") $) 133 T ELT)) (-2492 (((-707 (-557)) (-1286 $)) 148 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) 147 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 142 T ELT) (((-707 |#1|) (-1286 $)) 141 T ELT)) (-3293 (($ $) 163 T ELT)) (-3590 ((|#1| $) 162 T ELT)) (-1616 ((|#3| $) 243 T ELT)) (-2100 (($ (-659 $)) 104 (|has| |#1| (-464)) ELT) (($ $ $) 103 (|has| |#1| (-464)) ELT)) (-3658 (((-1178) $) 11 T ELT)) (-1617 (((-114) $) 244 T ELT)) (-3222 (((-3 (-659 $) #3#) $) 124 T ELT)) (-3221 (((-3 (-659 $) #3#) $) 125 T ELT)) (-3223 (((-3 (-2 (|:| |var| |#3|) (|:| -2630 (-789))) #3#) $) 123 T ELT)) (-1615 (($ $) 242 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-2003 (((-114) $) 180 T ELT)) (-2002 ((|#1| $) 181 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 105 (|has| |#1| (-464)) ELT)) (-3560 (($ (-659 $)) 102 (|has| |#1| (-464)) ELT) (($ $ $) 101 (|has| |#1| (-464)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) 112 (|has| |#1| (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) 111 (|has| |#1| (-927)) ELT)) (-4160 (((-417 $) $) 109 (|has| |#1| (-927)) ELT)) (-3884 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-568)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-568)) ELT)) (-4196 (($ $ (-659 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-659 $) (-659 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-659 |#3|) (-659 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-659 |#3|) (-659 $)) 152 T ELT) (($ $ |#2| $) 239 (|has| |#1| (-240)) ELT) (($ $ (-659 |#2|) (-659 $)) 238 (|has| |#1| (-240)) ELT) (($ $ |#2| |#1|) 237 (|has| |#1| (-240)) ELT) (($ $ (-659 |#2|) (-659 |#1|)) 236 (|has| |#1| (-240)) ELT)) (-4185 (($ $ |#3|) 117 (|has| |#1| (-175)) ELT)) (-4186 (($ $ (-659 |#3|) (-659 (-789))) 49 T ELT) (($ $ |#3| (-789)) 48 T ELT) (($ $ (-659 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT) (($ $ (-1 |#1| |#1|)) 260 T ELT) (($ $ (-1 |#1| |#1|) (-789)) 259 T ELT) (($ $) 235 (|has| |#1| (-239)) ELT) (($ $ (-789)) 233 (|has| |#1| (-239)) ELT) (($ $ (-1196)) 231 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) 229 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) 228 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 227 (|has| |#1| (-917 (-1196))) ELT)) (-1619 (((-659 |#2|) $) 252 T ELT)) (-4376 ((|#4| $) 164 T ELT) (((-789) $ |#3|) 140 T ELT) (((-659 (-789)) $ (-659 |#3|)) 139 T ELT) (((-789) $ |#2|) 249 T ELT)) (-4400 (((-903 (-391)) $) 92 (-12 (|has| |#3| (-629 (-903 (-391)))) (|has| |#1| (-629 (-903 (-391))))) ELT) (((-903 (-557)) $) 91 (-12 (|has| |#3| (-629 (-903 (-557)))) (|has| |#1| (-629 (-903 (-557))))) ELT) (((-546) $) 90 (-12 (|has| |#3| (-629 (-546))) (|has| |#1| (-629 (-546)))) ELT)) (-3216 ((|#1| $) 189 (|has| |#1| (-464)) ELT) (($ $ |#3|) 116 (|has| |#1| (-464)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) 114 (-2959 (|has| $ (-147)) (|has| |#1| (-927))) ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (($ |#2|) 254 T ELT) (($ (-419 (-557))) 88 (-3955 (|has| |#1| (-1057 (-419 (-557)))) (|has| |#1| (-38 (-419 (-557))))) ELT) (($ $) 95 (|has| |#1| (-568)) ELT)) (-4245 (((-659 |#1|) $) 182 T ELT)) (-4105 ((|#1| $ |#4|) 169 T ELT) (($ $ |#3| (-789)) 138 T ELT) (($ $ (-659 |#3|) (-659 (-789))) 137 T ELT)) (-3101 (((-709 $) $) 89 (-3955 (-2959 (|has| $ (-147)) (|has| |#1| (-927))) (|has| |#1| (-147))) ELT)) (-3526 (((-789)) 37 T CONST)) (-1801 (($ $ $ (-789)) 187 (|has| |#1| (-175)) ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 99 (|has| |#1| (-568)) ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $ (-659 |#3|) (-659 (-789))) 52 T ELT) (($ $ |#3| (-789)) 51 T ELT) (($ $ (-659 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT) (($ $ (-1 |#1| |#1|)) 258 T ELT) (($ $ (-1 |#1| |#1|) (-789)) 257 T ELT) (($ $) 234 (|has| |#1| (-239)) ELT) (($ $ (-789)) 232 (|has| |#1| (-239)) ELT) (($ $ (-1196)) 230 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) 226 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) 225 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 224 (|has| |#1| (-917 (-1196))) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ |#1|) 170 (|has| |#1| (-376)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-557))) 172 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ (-419 (-557)) $) 171 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) -(((-262 |#1| |#2| |#3| |#4|) (-142) (-1068) (-859) (-277 |t#2|) (-813)) (T -262)) -((-1653 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *3 (-859)) (-4 *5 (-277 *3)) (-4 *6 (-813)) (-5 *2 (-1 *1 (-789))) (-4 *1 (-262 *4 *3 *5 *6)))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-859)) (-4 *5 (-277 *4)) (-4 *6 (-813)) (-5 *2 (-659 *4)))) (-4200 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-859)) (-4 *5 (-277 *3)) (-4 *6 (-813)) (-5 *2 (-789)))) (-4200 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-859)) (-4 *5 (-277 *4)) (-4 *6 (-813)) (-5 *2 (-789)))) (-4376 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-859)) (-4 *5 (-277 *3)) (-4 *6 (-813)) (-5 *2 (-789)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-859)) (-4 *5 (-277 *4)) (-4 *6 (-813)) (-5 *2 (-659 (-789))))) (-1652 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-859)) (-4 *5 (-277 *4)) (-4 *6 (-813)) (-5 *2 (-789)))) (-1618 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-859)) (-4 *5 (-277 *3)) (-4 *6 (-813)) (-5 *2 (-659 (-789))))) (-1652 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-859)) (-4 *5 (-277 *3)) (-4 *6 (-813)) (-5 *2 (-789)))) (-1617 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-859)) (-4 *5 (-277 *4)) (-4 *6 (-813)) (-5 *2 (-114)))) (-1616 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-859)) (-4 *5 (-813)) (-4 *2 (-277 *4)))) (-1615 (*1 *1 *1) (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1068)) (-4 *3 (-859)) (-4 *4 (-277 *3)) (-4 *5 (-813)))) (-1614 (*1 *1 *1) (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1068)) (-4 *3 (-859)) (-4 *4 (-277 *3)) (-4 *5 (-813)))) (-1653 (*1 *2 *1) (-12 (-4 *3 (-240)) (-4 *3 (-1068)) (-4 *4 (-859)) (-4 *5 (-277 *4)) (-4 *6 (-813)) (-5 *2 (-1 *1 (-789))) (-4 *1 (-262 *3 *4 *5 *6))))) -(-13 (-967 |t#1| |t#4| |t#3|) (-234 |t#1|) (-1057 |t#2|) (-10 -8 (-15 -1653 ((-1 $ (-789)) |t#2|)) (-15 -1619 ((-659 |t#2|) $)) (-15 -4200 ((-789) $ |t#2|)) (-15 -4200 ((-789) $)) (-15 -4376 ((-789) $ |t#2|)) (-15 -1618 ((-659 (-789)) $)) (-15 -1652 ((-789) $)) (-15 -1618 ((-659 (-789)) $ |t#2|)) (-15 -1652 ((-789) $ |t#2|)) (-15 -1617 ((-114) $)) (-15 -1616 (|t#3| $)) (-15 -1615 ($ $)) (-15 -1614 ($ $)) (IF (|has| |t#1| (-240)) (PROGN (-6 (-526 |t#2| |t#1|)) (-6 (-526 |t#2| $)) (-6 (-321 $)) (-15 -1653 ((-1 $ (-789)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) -3955 (|has| |#1| (-1057 (-419 (-557)))) (|has| |#1| (-38 (-419 (-557))))) ((-631 (-557)) . T) ((-631 |#1|) . T) ((-631 |#2|) . T) ((-631 |#3|) . T) ((-631 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-628 (-875)) . T) ((-175) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-629 (-546)) -12 (|has| |#1| (-629 (-546))) (|has| |#3| (-629 (-546)))) ((-629 (-903 (-391))) -12 (|has| |#1| (-629 (-903 (-391)))) (|has| |#3| (-629 (-903 (-391))))) ((-629 (-903 (-557))) -12 (|has| |#1| (-629 (-903 (-557)))) (|has| |#3| (-629 (-903 (-557))))) ((-236 $) -3955 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -3955 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-302) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-321 $) . T) ((-338 |#1| |#4|) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-464) -3955 (|has| |#1| (-927)) (|has| |#1| (-464))) ((-526 |#2| |#1|) |has| |#1| (-240)) ((-526 |#2| $) |has| |#1| (-240)) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-664 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-666 (-557)) |has| |#1| (-656 (-557))) ((-666 |#1|) . T) ((-666 $) . T) ((-658 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-658 |#1|) |has| |#1| (-175)) ((-658 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-656 (-557)) |has| |#1| (-656 (-557))) ((-656 |#1|) . T) ((-735 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-735 |#1|) |has| |#1| (-175)) ((-735 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-744) . T) ((-909 $ (-1196)) -3955 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-909 $ |#3|) . T) ((-915 (-1196)) |has| |#1| (-915 (-1196))) ((-915 |#3|) . T) ((-917 (-1196)) -3955 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-917 |#3|) . T) ((-899 (-391)) -12 (|has| |#1| (-899 (-391))) (|has| |#3| (-899 (-391)))) ((-899 (-557)) -12 (|has| |#1| (-899 (-557))) (|has| |#3| (-899 (-557)))) ((-967 |#1| |#4| |#3|) . T) ((-927) |has| |#1| (-927)) ((-1057 (-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((-1057 (-557)) |has| |#1| (-1057 (-557))) ((-1057 |#1|) . T) ((-1057 |#2|) . T) ((-1057 |#3|) . T) ((-1070 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-1070 |#1|) . T) ((-1070 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1075 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-1075 |#1|) . T) ((-1075 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T) ((-1241) |has| |#1| (-927))) -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1625 ((|#1| $) 58 T ELT)) (-3742 ((|#1| $) 48 T ELT)) (-4152 (($) 7 T CONST)) (-3401 (($ $) 64 T ELT)) (-2508 (($ $) 52 T ELT)) (-3744 ((|#1| |#1| $) 50 T ELT)) (-3743 ((|#1| $) 49 T ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-4261 (((-789) $) 65 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-1387 ((|#1| $) 43 T ELT)) (-1623 ((|#1| |#1| $) 56 T ELT)) (-1622 ((|#1| |#1| $) 55 T ELT)) (-4035 (($ |#1| $) 44 T ELT)) (-3000 (((-789) $) 59 T ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-3400 ((|#1| $) 66 T ELT)) (-1621 ((|#1| $) 54 T ELT)) (-1620 ((|#1| $) 53 T ELT)) (-1388 ((|#1| $) 45 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-3403 ((|#1| |#1| $) 62 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-3402 ((|#1| $) 63 T ELT)) (-1626 (($) 61 T ELT) (($ (-659 |#1|)) 60 T ELT)) (-3741 (((-789) $) 47 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-1624 ((|#1| $) 57 T ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1389 (($ (-659 |#1|)) 46 T ELT)) (-3399 ((|#1| $) 67 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-263 |#1|) (-142) (-1236)) (T -263)) -((-1626 (*1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1236)))) (-1626 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1236)) (-4 *1 (-263 *3)))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-263 *3)) (-4 *3 (-1236)) (-5 *2 (-789)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1236)))) (-1624 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1236)))) (-1623 (*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1236)))) (-1622 (*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1236)))) (-1621 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1236)))) (-1620 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1236)))) (-2508 (*1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1236))))) -(-13 (-1140 |t#1|) (-1014 |t#1|) (-10 -8 (-15 -1626 ($)) (-15 -1626 ($ (-659 |t#1|))) (-15 -3000 ((-789) $)) (-15 -1625 (|t#1| $)) (-15 -1624 (|t#1| $)) (-15 -1623 (|t#1| |t#1| $)) (-15 -1622 (|t#1| |t#1| $)) (-15 -1621 (|t#1| $)) (-15 -1620 (|t#1| $)) (-15 -2508 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-628 (-875)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-1014 |#1|) . T) ((-1120) |has| |#1| (-1120)) ((-1140 |#1|) . T) ((-1236) . T)) -((-1627 (((-1152 (-229)) (-895 |#1|) (-1111 (-391)) (-1111 (-391))) 75 T ELT) (((-1152 (-229)) (-895 |#1|) (-1111 (-391)) (-1111 (-391)) (-659 (-270))) 74 T ELT) (((-1152 (-229)) |#1| (-1111 (-391)) (-1111 (-391))) 65 T ELT) (((-1152 (-229)) |#1| (-1111 (-391)) (-1111 (-391)) (-659 (-270))) 64 T ELT) (((-1152 (-229)) (-892 |#1|) (-1111 (-391))) 56 T ELT) (((-1152 (-229)) (-892 |#1|) (-1111 (-391)) (-659 (-270))) 55 T ELT)) (-1634 (((-1290) (-895 |#1|) (-1111 (-391)) (-1111 (-391))) 78 T ELT) (((-1290) (-895 |#1|) (-1111 (-391)) (-1111 (-391)) (-659 (-270))) 77 T ELT) (((-1290) |#1| (-1111 (-391)) (-1111 (-391))) 68 T ELT) (((-1290) |#1| (-1111 (-391)) (-1111 (-391)) (-659 (-270))) 67 T ELT) (((-1290) (-892 |#1|) (-1111 (-391))) 60 T ELT) (((-1290) (-892 |#1|) (-1111 (-391)) (-659 (-270))) 59 T ELT) (((-1289) (-890 |#1|) (-1111 (-391))) 47 T ELT) (((-1289) (-890 |#1|) (-1111 (-391)) (-659 (-270))) 46 T ELT) (((-1289) |#1| (-1111 (-391))) 38 T ELT) (((-1289) |#1| (-1111 (-391)) (-659 (-270))) 36 T ELT))) -(((-264 |#1|) (-10 -7 (-15 -1634 ((-1289) |#1| (-1111 (-391)) (-659 (-270)))) (-15 -1634 ((-1289) |#1| (-1111 (-391)))) (-15 -1634 ((-1289) (-890 |#1|) (-1111 (-391)) (-659 (-270)))) (-15 -1634 ((-1289) (-890 |#1|) (-1111 (-391)))) (-15 -1634 ((-1290) (-892 |#1|) (-1111 (-391)) (-659 (-270)))) (-15 -1634 ((-1290) (-892 |#1|) (-1111 (-391)))) (-15 -1627 ((-1152 (-229)) (-892 |#1|) (-1111 (-391)) (-659 (-270)))) (-15 -1627 ((-1152 (-229)) (-892 |#1|) (-1111 (-391)))) (-15 -1634 ((-1290) |#1| (-1111 (-391)) (-1111 (-391)) (-659 (-270)))) (-15 -1634 ((-1290) |#1| (-1111 (-391)) (-1111 (-391)))) (-15 -1627 ((-1152 (-229)) |#1| (-1111 (-391)) (-1111 (-391)) (-659 (-270)))) (-15 -1627 ((-1152 (-229)) |#1| (-1111 (-391)) (-1111 (-391)))) (-15 -1634 ((-1290) (-895 |#1|) (-1111 (-391)) (-1111 (-391)) (-659 (-270)))) (-15 -1634 ((-1290) (-895 |#1|) (-1111 (-391)) (-1111 (-391)))) (-15 -1627 ((-1152 (-229)) (-895 |#1|) (-1111 (-391)) (-1111 (-391)) (-659 (-270)))) (-15 -1627 ((-1152 (-229)) (-895 |#1|) (-1111 (-391)) (-1111 (-391))))) (-13 (-629 (-546)) (-1120))) (T -264)) -((-1627 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-1111 (-391))) (-4 *5 (-13 (-629 (-546)) (-1120))) (-5 *2 (-1152 (-229))) (-5 *1 (-264 *5)))) (-1627 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 *6)) (-5 *4 (-1111 (-391))) (-5 *5 (-659 (-270))) (-4 *6 (-13 (-629 (-546)) (-1120))) (-5 *2 (-1152 (-229))) (-5 *1 (-264 *6)))) (-1634 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-1111 (-391))) (-4 *5 (-13 (-629 (-546)) (-1120))) (-5 *2 (-1290)) (-5 *1 (-264 *5)))) (-1634 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 *6)) (-5 *4 (-1111 (-391))) (-5 *5 (-659 (-270))) (-4 *6 (-13 (-629 (-546)) (-1120))) (-5 *2 (-1290)) (-5 *1 (-264 *6)))) (-1627 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1111 (-391))) (-5 *2 (-1152 (-229))) (-5 *1 (-264 *3)) (-4 *3 (-13 (-629 (-546)) (-1120))))) (-1627 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1111 (-391))) (-5 *5 (-659 (-270))) (-5 *2 (-1152 (-229))) (-5 *1 (-264 *3)) (-4 *3 (-13 (-629 (-546)) (-1120))))) (-1634 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1111 (-391))) (-5 *2 (-1290)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-629 (-546)) (-1120))))) (-1634 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1111 (-391))) (-5 *5 (-659 (-270))) (-5 *2 (-1290)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-629 (-546)) (-1120))))) (-1627 (*1 *2 *3 *4) (-12 (-5 *3 (-892 *5)) (-5 *4 (-1111 (-391))) (-4 *5 (-13 (-629 (-546)) (-1120))) (-5 *2 (-1152 (-229))) (-5 *1 (-264 *5)))) (-1627 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 *6)) (-5 *4 (-1111 (-391))) (-5 *5 (-659 (-270))) (-4 *6 (-13 (-629 (-546)) (-1120))) (-5 *2 (-1152 (-229))) (-5 *1 (-264 *6)))) (-1634 (*1 *2 *3 *4) (-12 (-5 *3 (-892 *5)) (-5 *4 (-1111 (-391))) (-4 *5 (-13 (-629 (-546)) (-1120))) (-5 *2 (-1290)) (-5 *1 (-264 *5)))) (-1634 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 *6)) (-5 *4 (-1111 (-391))) (-5 *5 (-659 (-270))) (-4 *6 (-13 (-629 (-546)) (-1120))) (-5 *2 (-1290)) (-5 *1 (-264 *6)))) (-1634 (*1 *2 *3 *4) (-12 (-5 *3 (-890 *5)) (-5 *4 (-1111 (-391))) (-4 *5 (-13 (-629 (-546)) (-1120))) (-5 *2 (-1289)) (-5 *1 (-264 *5)))) (-1634 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 *6)) (-5 *4 (-1111 (-391))) (-5 *5 (-659 (-270))) (-4 *6 (-13 (-629 (-546)) (-1120))) (-5 *2 (-1289)) (-5 *1 (-264 *6)))) (-1634 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-391))) (-5 *2 (-1289)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-629 (-546)) (-1120))))) (-1634 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1111 (-391))) (-5 *5 (-659 (-270))) (-5 *2 (-1289)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-629 (-546)) (-1120)))))) -((-1628 (((-1 (-960 (-229)) (-229) (-229)) (-1 (-960 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))) 158 T ELT)) (-1627 (((-1152 (-229)) (-895 (-1 (-229) (-229) (-229))) (-1108 (-391)) (-1108 (-391))) 178 T ELT) (((-1152 (-229)) (-895 (-1 (-229) (-229) (-229))) (-1108 (-391)) (-1108 (-391)) (-659 (-270))) 176 T ELT) (((-1152 (-229)) (-1 (-960 (-229)) (-229) (-229)) (-1108 (-391)) (-1108 (-391))) 181 T ELT) (((-1152 (-229)) (-1 (-960 (-229)) (-229) (-229)) (-1108 (-391)) (-1108 (-391)) (-659 (-270))) 177 T ELT) (((-1152 (-229)) (-1 (-229) (-229) (-229)) (-1108 (-391)) (-1108 (-391))) 169 T ELT) (((-1152 (-229)) (-1 (-229) (-229) (-229)) (-1108 (-391)) (-1108 (-391)) (-659 (-270))) 168 T ELT) (((-1152 (-229)) (-1 (-960 (-229)) (-229)) (-1108 (-391))) 150 T ELT) (((-1152 (-229)) (-1 (-960 (-229)) (-229)) (-1108 (-391)) (-659 (-270))) 148 T ELT) (((-1152 (-229)) (-892 (-1 (-229) (-229))) (-1108 (-391))) 149 T ELT) (((-1152 (-229)) (-892 (-1 (-229) (-229))) (-1108 (-391)) (-659 (-270))) 146 T ELT)) (-1634 (((-1290) (-895 (-1 (-229) (-229) (-229))) (-1108 (-391)) (-1108 (-391))) 180 T ELT) (((-1290) (-895 (-1 (-229) (-229) (-229))) (-1108 (-391)) (-1108 (-391)) (-659 (-270))) 179 T ELT) (((-1290) (-1 (-960 (-229)) (-229) (-229)) (-1108 (-391)) (-1108 (-391))) 183 T ELT) (((-1290) (-1 (-960 (-229)) (-229) (-229)) (-1108 (-391)) (-1108 (-391)) (-659 (-270))) 182 T ELT) (((-1290) (-1 (-229) (-229) (-229)) (-1108 (-391)) (-1108 (-391))) 171 T ELT) (((-1290) (-1 (-229) (-229) (-229)) (-1108 (-391)) (-1108 (-391)) (-659 (-270))) 170 T ELT) (((-1290) (-1 (-960 (-229)) (-229)) (-1108 (-391))) 156 T ELT) (((-1290) (-1 (-960 (-229)) (-229)) (-1108 (-391)) (-659 (-270))) 155 T ELT) (((-1290) (-892 (-1 (-229) (-229))) (-1108 (-391))) 154 T ELT) (((-1290) (-892 (-1 (-229) (-229))) (-1108 (-391)) (-659 (-270))) 153 T ELT) (((-1289) (-890 (-1 (-229) (-229))) (-1108 (-391))) 118 T ELT) (((-1289) (-890 (-1 (-229) (-229))) (-1108 (-391)) (-659 (-270))) 117 T ELT) (((-1289) (-1 (-229) (-229)) (-1108 (-391))) 112 T ELT) (((-1289) (-1 (-229) (-229)) (-1108 (-391)) (-659 (-270))) 110 T ELT))) -(((-265) (-10 -7 (-15 -1634 ((-1289) (-1 (-229) (-229)) (-1108 (-391)) (-659 (-270)))) (-15 -1634 ((-1289) (-1 (-229) (-229)) (-1108 (-391)))) (-15 -1634 ((-1289) (-890 (-1 (-229) (-229))) (-1108 (-391)) (-659 (-270)))) (-15 -1634 ((-1289) (-890 (-1 (-229) (-229))) (-1108 (-391)))) (-15 -1634 ((-1290) (-892 (-1 (-229) (-229))) (-1108 (-391)) (-659 (-270)))) (-15 -1634 ((-1290) (-892 (-1 (-229) (-229))) (-1108 (-391)))) (-15 -1634 ((-1290) (-1 (-960 (-229)) (-229)) (-1108 (-391)) (-659 (-270)))) (-15 -1634 ((-1290) (-1 (-960 (-229)) (-229)) (-1108 (-391)))) (-15 -1627 ((-1152 (-229)) (-892 (-1 (-229) (-229))) (-1108 (-391)) (-659 (-270)))) (-15 -1627 ((-1152 (-229)) (-892 (-1 (-229) (-229))) (-1108 (-391)))) (-15 -1627 ((-1152 (-229)) (-1 (-960 (-229)) (-229)) (-1108 (-391)) (-659 (-270)))) (-15 -1627 ((-1152 (-229)) (-1 (-960 (-229)) (-229)) (-1108 (-391)))) (-15 -1634 ((-1290) (-1 (-229) (-229) (-229)) (-1108 (-391)) (-1108 (-391)) (-659 (-270)))) (-15 -1634 ((-1290) (-1 (-229) (-229) (-229)) (-1108 (-391)) (-1108 (-391)))) (-15 -1627 ((-1152 (-229)) (-1 (-229) (-229) (-229)) (-1108 (-391)) (-1108 (-391)) (-659 (-270)))) (-15 -1627 ((-1152 (-229)) (-1 (-229) (-229) (-229)) (-1108 (-391)) (-1108 (-391)))) (-15 -1634 ((-1290) (-1 (-960 (-229)) (-229) (-229)) (-1108 (-391)) (-1108 (-391)) (-659 (-270)))) (-15 -1634 ((-1290) (-1 (-960 (-229)) (-229) (-229)) (-1108 (-391)) (-1108 (-391)))) (-15 -1627 ((-1152 (-229)) (-1 (-960 (-229)) (-229) (-229)) (-1108 (-391)) (-1108 (-391)) (-659 (-270)))) (-15 -1627 ((-1152 (-229)) (-1 (-960 (-229)) (-229) (-229)) (-1108 (-391)) (-1108 (-391)))) (-15 -1634 ((-1290) (-895 (-1 (-229) (-229) (-229))) (-1108 (-391)) (-1108 (-391)) (-659 (-270)))) (-15 -1634 ((-1290) (-895 (-1 (-229) (-229) (-229))) (-1108 (-391)) (-1108 (-391)))) (-15 -1627 ((-1152 (-229)) (-895 (-1 (-229) (-229) (-229))) (-1108 (-391)) (-1108 (-391)) (-659 (-270)))) (-15 -1627 ((-1152 (-229)) (-895 (-1 (-229) (-229) (-229))) (-1108 (-391)) (-1108 (-391)))) (-15 -1628 ((-1 (-960 (-229)) (-229) (-229)) (-1 (-960 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229) (-229)))))) (T -265)) -((-1628 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-960 (-229)) (-229) (-229))) (-5 *3 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-265)))) (-1627 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 (-1 (-229) (-229) (-229)))) (-5 *4 (-1108 (-391))) (-5 *2 (-1152 (-229))) (-5 *1 (-265)))) (-1627 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 (-1 (-229) (-229) (-229)))) (-5 *4 (-1108 (-391))) (-5 *5 (-659 (-270))) (-5 *2 (-1152 (-229))) (-5 *1 (-265)))) (-1634 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 (-1 (-229) (-229) (-229)))) (-5 *4 (-1108 (-391))) (-5 *2 (-1290)) (-5 *1 (-265)))) (-1634 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 (-1 (-229) (-229) (-229)))) (-5 *4 (-1108 (-391))) (-5 *5 (-659 (-270))) (-5 *2 (-1290)) (-5 *1 (-265)))) (-1627 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-960 (-229)) (-229) (-229))) (-5 *4 (-1108 (-391))) (-5 *2 (-1152 (-229))) (-5 *1 (-265)))) (-1627 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-960 (-229)) (-229) (-229))) (-5 *4 (-1108 (-391))) (-5 *5 (-659 (-270))) (-5 *2 (-1152 (-229))) (-5 *1 (-265)))) (-1634 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-960 (-229)) (-229) (-229))) (-5 *4 (-1108 (-391))) (-5 *2 (-1290)) (-5 *1 (-265)))) (-1634 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-960 (-229)) (-229) (-229))) (-5 *4 (-1108 (-391))) (-5 *5 (-659 (-270))) (-5 *2 (-1290)) (-5 *1 (-265)))) (-1627 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1108 (-391))) (-5 *2 (-1152 (-229))) (-5 *1 (-265)))) (-1627 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1108 (-391))) (-5 *5 (-659 (-270))) (-5 *2 (-1152 (-229))) (-5 *1 (-265)))) (-1634 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1108 (-391))) (-5 *2 (-1290)) (-5 *1 (-265)))) (-1634 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1108 (-391))) (-5 *5 (-659 (-270))) (-5 *2 (-1290)) (-5 *1 (-265)))) (-1627 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-960 (-229)) (-229))) (-5 *4 (-1108 (-391))) (-5 *2 (-1152 (-229))) (-5 *1 (-265)))) (-1627 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-960 (-229)) (-229))) (-5 *4 (-1108 (-391))) (-5 *5 (-659 (-270))) (-5 *2 (-1152 (-229))) (-5 *1 (-265)))) (-1627 (*1 *2 *3 *4) (-12 (-5 *3 (-892 (-1 (-229) (-229)))) (-5 *4 (-1108 (-391))) (-5 *2 (-1152 (-229))) (-5 *1 (-265)))) (-1627 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 (-1 (-229) (-229)))) (-5 *4 (-1108 (-391))) (-5 *5 (-659 (-270))) (-5 *2 (-1152 (-229))) (-5 *1 (-265)))) (-1634 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-960 (-229)) (-229))) (-5 *4 (-1108 (-391))) (-5 *2 (-1290)) (-5 *1 (-265)))) (-1634 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-960 (-229)) (-229))) (-5 *4 (-1108 (-391))) (-5 *5 (-659 (-270))) (-5 *2 (-1290)) (-5 *1 (-265)))) (-1634 (*1 *2 *3 *4) (-12 (-5 *3 (-892 (-1 (-229) (-229)))) (-5 *4 (-1108 (-391))) (-5 *2 (-1290)) (-5 *1 (-265)))) (-1634 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 (-1 (-229) (-229)))) (-5 *4 (-1108 (-391))) (-5 *5 (-659 (-270))) (-5 *2 (-1290)) (-5 *1 (-265)))) (-1634 (*1 *2 *3 *4) (-12 (-5 *3 (-890 (-1 (-229) (-229)))) (-5 *4 (-1108 (-391))) (-5 *2 (-1289)) (-5 *1 (-265)))) (-1634 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 (-1 (-229) (-229)))) (-5 *4 (-1108 (-391))) (-5 *5 (-659 (-270))) (-5 *2 (-1289)) (-5 *1 (-265)))) (-1634 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1108 (-391))) (-5 *2 (-1289)) (-5 *1 (-265)))) (-1634 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1108 (-391))) (-5 *5 (-659 (-270))) (-5 *2 (-1289)) (-5 *1 (-265))))) -((-1634 (((-1289) (-305 |#2|) (-1196) (-1196) (-659 (-270))) 102 T ELT))) -(((-266 |#1| |#2|) (-10 -7 (-15 -1634 ((-1289) (-305 |#2|) (-1196) (-1196) (-659 (-270))))) (-13 (-568) (-859) (-1057 (-557))) (-433 |#1|)) (T -266)) -((-1634 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-1196)) (-5 *5 (-659 (-270))) (-4 *7 (-433 *6)) (-4 *6 (-13 (-568) (-859) (-1057 (-557)))) (-5 *2 (-1289)) (-5 *1 (-266 *6 *7))))) -((-1631 (((-557) (-557)) 71 T ELT)) (-1632 (((-557) (-557)) 72 T ELT)) (-1633 (((-229) (-229)) 73 T ELT)) (-1630 (((-1290) (-1 (-171 (-229)) (-171 (-229))) (-1108 (-229)) (-1108 (-229))) 70 T ELT)) (-1629 (((-1290) (-1 (-171 (-229)) (-171 (-229))) (-1108 (-229)) (-1108 (-229)) (-114)) 68 T ELT))) -(((-267) (-10 -7 (-15 -1629 ((-1290) (-1 (-171 (-229)) (-171 (-229))) (-1108 (-229)) (-1108 (-229)) (-114))) (-15 -1630 ((-1290) (-1 (-171 (-229)) (-171 (-229))) (-1108 (-229)) (-1108 (-229)))) (-15 -1631 ((-557) (-557))) (-15 -1632 ((-557) (-557))) (-15 -1633 ((-229) (-229))))) (T -267)) -((-1633 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-267)))) (-1632 (*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-267)))) (-1631 (*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-267)))) (-1630 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1108 (-229))) (-5 *2 (-1290)) (-5 *1 (-267)))) (-1629 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1108 (-229))) (-5 *5 (-114)) (-5 *2 (-1290)) (-5 *1 (-267))))) -((-4374 (((-1111 (-391)) (-1111 (-326 |#1|))) 16 T ELT))) -(((-268 |#1|) (-10 -7 (-15 -4374 ((-1111 (-391)) (-1111 (-326 |#1|))))) (-13 (-859) (-568) (-629 (-391)))) (T -268)) -((-4374 (*1 *2 *3) (-12 (-5 *3 (-1111 (-326 *4))) (-4 *4 (-13 (-859) (-568) (-629 (-391)))) (-5 *2 (-1111 (-391))) (-5 *1 (-268 *4))))) -((-1634 (((-1290) (-659 (-229)) (-659 (-229)) (-659 (-229)) (-659 (-270))) 23 T ELT) (((-1290) (-659 (-229)) (-659 (-229)) (-659 (-229))) 24 T ELT) (((-1289) (-659 (-960 (-229))) (-659 (-270))) 16 T ELT) (((-1289) (-659 (-960 (-229)))) 17 T ELT) (((-1289) (-659 (-229)) (-659 (-229)) (-659 (-270))) 20 T ELT) (((-1289) (-659 (-229)) (-659 (-229))) 21 T ELT))) -(((-269) (-10 -7 (-15 -1634 ((-1289) (-659 (-229)) (-659 (-229)))) (-15 -1634 ((-1289) (-659 (-229)) (-659 (-229)) (-659 (-270)))) (-15 -1634 ((-1289) (-659 (-960 (-229))))) (-15 -1634 ((-1289) (-659 (-960 (-229))) (-659 (-270)))) (-15 -1634 ((-1290) (-659 (-229)) (-659 (-229)) (-659 (-229)))) (-15 -1634 ((-1290) (-659 (-229)) (-659 (-229)) (-659 (-229)) (-659 (-270)))))) (T -269)) -((-1634 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-659 (-229))) (-5 *4 (-659 (-270))) (-5 *2 (-1290)) (-5 *1 (-269)))) (-1634 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-659 (-229))) (-5 *2 (-1290)) (-5 *1 (-269)))) (-1634 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-960 (-229)))) (-5 *4 (-659 (-270))) (-5 *2 (-1289)) (-5 *1 (-269)))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-659 (-960 (-229)))) (-5 *2 (-1289)) (-5 *1 (-269)))) (-1634 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-659 (-229))) (-5 *4 (-659 (-270))) (-5 *2 (-1289)) (-5 *1 (-269)))) (-1634 (*1 *2 *3 *3) (-12 (-5 *3 (-659 (-229))) (-5 *2 (-1289)) (-5 *1 (-269))))) -((-2965 (((-114) $ $) NIL T ELT)) (-4309 (($ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4275 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 24 T ELT)) (-1647 (($ (-936)) 81 T ELT)) (-1646 (($ (-936)) 80 T ELT)) (-1978 (($ (-659 (-391))) 87 T ELT)) (-1650 (($ (-391)) 66 T ELT)) (-1649 (($ (-936)) 82 T ELT)) (-1643 (($ (-114)) 33 T ELT)) (-4311 (($ (-1178)) 28 T ELT)) (-1642 (($ (-1178)) 29 T ELT)) (-1648 (($ (-1152 (-229))) 76 T ELT)) (-2137 (($ (-659 (-1108 (-391)))) 72 T ELT)) (-1636 (($ (-659 (-1108 (-391)))) 68 T ELT) (($ (-659 (-1108 (-419 (-557))))) 71 T ELT)) (-1639 (($ (-391)) 38 T ELT) (($ (-886)) 42 T ELT)) (-1635 (((-114) (-659 $) (-1196)) 100 T ELT)) (-1651 (((-3 (-51) "failed") (-659 $) (-1196)) 102 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1638 (($ (-391)) 43 T ELT) (($ (-886)) 44 T ELT)) (-3640 (($ (-1 (-960 (-229)) (-960 (-229)))) 65 T ELT)) (-2478 (($ (-1 (-960 (-229)) (-960 (-229)))) 83 T ELT)) (-1637 (($ (-1 (-229) (-229))) 48 T ELT) (($ (-1 (-229) (-229) (-229))) 52 T ELT) (($ (-1 (-229) (-229) (-229) (-229))) 56 T ELT)) (-4374 (((-875) $) 93 T ELT)) (-1640 (($ (-114)) 34 T ELT) (($ (-659 (-1108 (-391)))) 60 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2132 (($ (-114)) 35 T ELT)) (-3452 (((-114) $ $) 97 T ELT))) -(((-270) (-13 (-1120) (-10 -8 (-15 -2132 ($ (-114))) (-15 -1640 ($ (-114))) (-15 -4309 ($ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4275 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4311 ($ (-1178))) (-15 -1642 ($ (-1178))) (-15 -1643 ($ (-114))) (-15 -1640 ($ (-659 (-1108 (-391))))) (-15 -3640 ($ (-1 (-960 (-229)) (-960 (-229))))) (-15 -1639 ($ (-391))) (-15 -1639 ($ (-886))) (-15 -1638 ($ (-391))) (-15 -1638 ($ (-886))) (-15 -1637 ($ (-1 (-229) (-229)))) (-15 -1637 ($ (-1 (-229) (-229) (-229)))) (-15 -1637 ($ (-1 (-229) (-229) (-229) (-229)))) (-15 -1650 ($ (-391))) (-15 -1636 ($ (-659 (-1108 (-391))))) (-15 -1636 ($ (-659 (-1108 (-419 (-557)))))) (-15 -2137 ($ (-659 (-1108 (-391))))) (-15 -1648 ($ (-1152 (-229)))) (-15 -1646 ($ (-936))) (-15 -1647 ($ (-936))) (-15 -1649 ($ (-936))) (-15 -2478 ($ (-1 (-960 (-229)) (-960 (-229))))) (-15 -1978 ($ (-659 (-391)))) (-15 -1651 ((-3 (-51) "failed") (-659 $) (-1196))) (-15 -1635 ((-114) (-659 $) (-1196)))))) (T -270)) -((-2132 (*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) (-1640 (*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) (-4309 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4275 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *1 (-270)))) (-4311 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-270)))) (-1642 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-270)))) (-1643 (*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) (-1640 (*1 *1 *2) (-12 (-5 *2 (-659 (-1108 (-391)))) (-5 *1 (-270)))) (-3640 (*1 *1 *2) (-12 (-5 *2 (-1 (-960 (-229)) (-960 (-229)))) (-5 *1 (-270)))) (-1639 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) (-1639 (*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270)))) (-1638 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) (-1638 (*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270)))) (-1637 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-270)))) (-1637 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-270)))) (-1637 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-270)))) (-1650 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) (-1636 (*1 *1 *2) (-12 (-5 *2 (-659 (-1108 (-391)))) (-5 *1 (-270)))) (-1636 (*1 *1 *2) (-12 (-5 *2 (-659 (-1108 (-419 (-557))))) (-5 *1 (-270)))) (-2137 (*1 *1 *2) (-12 (-5 *2 (-659 (-1108 (-391)))) (-5 *1 (-270)))) (-1648 (*1 *1 *2) (-12 (-5 *2 (-1152 (-229))) (-5 *1 (-270)))) (-1646 (*1 *1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-270)))) (-1647 (*1 *1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-270)))) (-1649 (*1 *1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-270)))) (-2478 (*1 *1 *2) (-12 (-5 *2 (-1 (-960 (-229)) (-960 (-229)))) (-5 *1 (-270)))) (-1978 (*1 *1 *2) (-12 (-5 *2 (-659 (-391))) (-5 *1 (-270)))) (-1651 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-659 (-270))) (-5 *4 (-1196)) (-5 *2 (-51)) (-5 *1 (-270)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-270))) (-5 *4 (-1196)) (-5 *2 (-114)) (-5 *1 (-270))))) -((-4309 (((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4275 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) (-659 (-270)) (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4275 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 25 T ELT)) (-1647 (((-936) (-659 (-270)) (-936)) 52 T ELT)) (-1646 (((-936) (-659 (-270)) (-936)) 51 T ELT)) (-4279 (((-659 (-391)) (-659 (-270)) (-659 (-391))) 68 T ELT)) (-1650 (((-391) (-659 (-270)) (-391)) 57 T ELT)) (-1649 (((-936) (-659 (-270)) (-936)) 53 T ELT)) (-1643 (((-114) (-659 (-270)) (-114)) 27 T ELT)) (-4311 (((-1178) (-659 (-270)) (-1178)) 19 T ELT)) (-1642 (((-1178) (-659 (-270)) (-1178)) 26 T ELT)) (-1648 (((-1152 (-229)) (-659 (-270))) 46 T ELT)) (-2137 (((-659 (-1108 (-391))) (-659 (-270)) (-659 (-1108 (-391)))) 40 T ELT)) (-1644 (((-886) (-659 (-270)) (-886)) 32 T ELT)) (-1645 (((-886) (-659 (-270)) (-886)) 33 T ELT)) (-2478 (((-1 (-960 (-229)) (-960 (-229))) (-659 (-270)) (-1 (-960 (-229)) (-960 (-229)))) 63 T ELT)) (-1641 (((-114) (-659 (-270)) (-114)) 14 T ELT)) (-2132 (((-114) (-659 (-270)) (-114)) 13 T ELT))) -(((-271) (-10 -7 (-15 -2132 ((-114) (-659 (-270)) (-114))) (-15 -1641 ((-114) (-659 (-270)) (-114))) (-15 -4309 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4275 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) (-659 (-270)) (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4275 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4311 ((-1178) (-659 (-270)) (-1178))) (-15 -1642 ((-1178) (-659 (-270)) (-1178))) (-15 -1643 ((-114) (-659 (-270)) (-114))) (-15 -1644 ((-886) (-659 (-270)) (-886))) (-15 -1645 ((-886) (-659 (-270)) (-886))) (-15 -2137 ((-659 (-1108 (-391))) (-659 (-270)) (-659 (-1108 (-391))))) (-15 -1646 ((-936) (-659 (-270)) (-936))) (-15 -1647 ((-936) (-659 (-270)) (-936))) (-15 -1648 ((-1152 (-229)) (-659 (-270)))) (-15 -1649 ((-936) (-659 (-270)) (-936))) (-15 -1650 ((-391) (-659 (-270)) (-391))) (-15 -2478 ((-1 (-960 (-229)) (-960 (-229))) (-659 (-270)) (-1 (-960 (-229)) (-960 (-229))))) (-15 -4279 ((-659 (-391)) (-659 (-270)) (-659 (-391)))))) (T -271)) -((-4279 (*1 *2 *3 *2) (-12 (-5 *2 (-659 (-391))) (-5 *3 (-659 (-270))) (-5 *1 (-271)))) (-2478 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-960 (-229)) (-960 (-229)))) (-5 *3 (-659 (-270))) (-5 *1 (-271)))) (-1650 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-659 (-270))) (-5 *1 (-271)))) (-1649 (*1 *2 *3 *2) (-12 (-5 *2 (-936)) (-5 *3 (-659 (-270))) (-5 *1 (-271)))) (-1648 (*1 *2 *3) (-12 (-5 *3 (-659 (-270))) (-5 *2 (-1152 (-229))) (-5 *1 (-271)))) (-1647 (*1 *2 *3 *2) (-12 (-5 *2 (-936)) (-5 *3 (-659 (-270))) (-5 *1 (-271)))) (-1646 (*1 *2 *3 *2) (-12 (-5 *2 (-936)) (-5 *3 (-659 (-270))) (-5 *1 (-271)))) (-2137 (*1 *2 *3 *2) (-12 (-5 *2 (-659 (-1108 (-391)))) (-5 *3 (-659 (-270))) (-5 *1 (-271)))) (-1645 (*1 *2 *3 *2) (-12 (-5 *2 (-886)) (-5 *3 (-659 (-270))) (-5 *1 (-271)))) (-1644 (*1 *2 *3 *2) (-12 (-5 *2 (-886)) (-5 *3 (-659 (-270))) (-5 *1 (-271)))) (-1643 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-659 (-270))) (-5 *1 (-271)))) (-1642 (*1 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-659 (-270))) (-5 *1 (-271)))) (-4311 (*1 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-659 (-270))) (-5 *1 (-271)))) (-4309 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4275 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *3 (-659 (-270))) (-5 *1 (-271)))) (-1641 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-659 (-270))) (-5 *1 (-271)))) (-2132 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-659 (-270))) (-5 *1 (-271))))) -((-1651 (((-3 |#1| "failed") (-659 (-270)) (-1196)) 17 T ELT))) -(((-272 |#1|) (-10 -7 (-15 -1651 ((-3 |#1| "failed") (-659 (-270)) (-1196)))) (-1236)) (T -272)) -((-1651 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-659 (-270))) (-5 *4 (-1196)) (-5 *1 (-272 *2)) (-4 *2 (-1236))))) -((-4186 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-789)) 11 T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196))) NIL T ELT) (($ $ (-1196)) 19 T ELT) (($ $ (-789)) NIL T ELT) (($ $) 16 T ELT)) (-3068 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-789)) 14 T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196))) NIL T ELT) (($ $ (-1196)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $) NIL T ELT))) -(((-273 |#1| |#2|) (-10 -7 (-15 -4186 (|#1| |#1|)) (-15 -3068 (|#1| |#1|)) (-15 -4186 (|#1| |#1| (-789))) (-15 -3068 (|#1| |#1| (-789))) (-15 -4186 (|#1| |#1| (-1196))) (-15 -3068 (|#1| |#1| (-1196))) (-15 -4186 (|#1| |#1| (-659 (-1196)))) (-15 -4186 (|#1| |#1| (-1196) (-789))) (-15 -4186 (|#1| |#1| (-659 (-1196)) (-659 (-789)))) (-15 -3068 (|#1| |#1| (-659 (-1196)))) (-15 -3068 (|#1| |#1| (-1196) (-789))) (-15 -3068 (|#1| |#1| (-659 (-1196)) (-659 (-789)))) (-15 -3068 (|#1| |#1| (-1 |#2| |#2|) (-789))) (-15 -3068 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4186 (|#1| |#1| (-1 |#2| |#2|) (-789))) (-15 -4186 (|#1| |#1| (-1 |#2| |#2|)))) (-274 |#2|) (-1236)) (T -273)) -NIL -((-4186 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-789)) 22 T ELT) (($ $ (-659 (-1196)) (-659 (-789))) 16 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) 15 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) 14 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196)) 12 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-789)) 10 (|has| |#1| (-239)) ELT) (($ $) 8 (|has| |#1| (-239)) ELT)) (-3068 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-789)) 20 T ELT) (($ $ (-659 (-1196)) (-659 (-789))) 19 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) 18 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) 17 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196)) 13 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-789)) 11 (|has| |#1| (-239)) ELT) (($ $) 9 (|has| |#1| (-239)) ELT))) -(((-274 |#1|) (-142) (-1236)) (T -274)) -((-4186 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1236)))) (-4186 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-789)) (-4 *1 (-274 *4)) (-4 *4 (-1236)))) (-3068 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1236)))) (-3068 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-789)) (-4 *1 (-274 *4)) (-4 *4 (-1236))))) -(-13 (-1236) (-10 -8 (-15 -4186 ($ $ (-1 |t#1| |t#1|))) (-15 -4186 ($ $ (-1 |t#1| |t#1|) (-789))) (-15 -3068 ($ $ (-1 |t#1| |t#1|))) (-15 -3068 ($ $ (-1 |t#1| |t#1|) (-789))) (IF (|has| |t#1| (-239)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-917 (-1196))) (-6 (-917 (-1196))) |%noBranch|))) -(((-236 $) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-909 $ (-1196)) |has| |#1| (-917 (-1196))) ((-917 (-1196)) |has| |#1| (-917 (-1196))) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1618 (((-659 (-789)) $) NIL T ELT) (((-659 (-789)) $ |#2|) NIL T ELT)) (-1652 (((-789) $) NIL T ELT) (((-789) $ |#2|) NIL T ELT)) (-3482 (((-659 |#3|) $) NIL T ELT)) (-3484 (((-1190 $) $ |#3|) NIL T ELT) (((-1190 |#1|) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-3218 (((-789) $) NIL T ELT) (((-789) $ (-659 |#3|)) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-4203 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-1614 (($ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1144 |#1| |#2|) #1#) $) 23 T ELT)) (-3572 ((|#1| $) NIL T ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1144 |#1| |#2|) $) NIL T ELT)) (-4184 (($ $ $ |#3|) NIL (|has| |#1| (-175)) ELT)) (-4387 (($ $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) NIL T ELT) (((-707 |#1|) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3921 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ |#3|) NIL (|has| |#1| (-464)) ELT)) (-3217 (((-659 $) $) NIL T ELT)) (-4151 (((-114) $) NIL (|has| |#1| (-927)) ELT)) (-1802 (($ $ |#1| (-542 |#3|) $) NIL T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (-12 (|has| |#1| (-899 (-391))) (|has| |#3| (-899 (-391)))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (-12 (|has| |#1| (-899 (-557))) (|has| |#3| (-899 (-557)))) ELT)) (-4200 (((-789) $ |#2|) NIL T ELT) (((-789) $) 10 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-2647 (((-789) $) NIL T ELT)) (-3485 (($ (-1190 |#1|) |#3|) NIL T ELT) (($ (-1190 $) |#3|) NIL T ELT)) (-3220 (((-659 $) $) NIL T ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-542 |#3|)) NIL T ELT) (($ $ |#3| (-789)) NIL T ELT) (($ $ (-659 |#3|) (-659 (-789))) NIL T ELT)) (-4191 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $ |#3|) NIL T ELT)) (-3219 (((-542 |#3|) $) NIL T ELT) (((-789) $ |#3|) NIL T ELT) (((-659 (-789)) $ (-659 |#3|)) NIL T ELT)) (-1803 (($ (-1 (-542 |#3|) (-542 |#3|)) $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1653 (((-1 $ (-789)) |#2|) NIL T ELT) (((-1 $ (-789)) $) NIL (|has| |#1| (-240)) ELT)) (-3483 (((-3 |#3| #1#) $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL T ELT) (((-707 |#1|) (-1286 $)) NIL T ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-1616 ((|#3| $) NIL T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1617 (((-114) $) NIL T ELT)) (-3222 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3221 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-2 (|:| |var| |#3|) (|:| -2630 (-789))) #1#) $) NIL T ELT)) (-1615 (($ $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2003 (((-114) $) NIL T ELT)) (-2002 ((|#1| $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-464)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-4160 (((-417 $) $) NIL (|has| |#1| (-927)) ELT)) (-3884 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-568)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-568)) ELT)) (-4196 (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-659 |#3|) (-659 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-659 |#3|) (-659 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-240)) ELT) (($ $ (-659 |#2|) (-659 $)) NIL (|has| |#1| (-240)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-659 |#2|) (-659 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-4185 (($ $ |#3|) NIL (|has| |#1| (-175)) ELT)) (-4186 (($ $ (-659 |#3|) (-659 (-789))) NIL T ELT) (($ $ |#3| (-789)) NIL T ELT) (($ $ (-659 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-789)) NIL (|has| |#1| (-239)) ELT)) (-1619 (((-659 |#2|) $) NIL T ELT)) (-4376 (((-542 |#3|) $) NIL T ELT) (((-789) $ |#3|) NIL T ELT) (((-659 (-789)) $ (-659 |#3|)) NIL T ELT) (((-789) $ |#2|) NIL T ELT)) (-4400 (((-903 (-391)) $) NIL (-12 (|has| |#1| (-629 (-903 (-391)))) (|has| |#3| (-629 (-903 (-391))))) ELT) (((-903 (-557)) $) NIL (-12 (|has| |#1| (-629 (-903 (-557)))) (|has| |#3| (-629 (-903 (-557))))) ELT) (((-546) $) NIL (-12 (|has| |#1| (-629 (-546))) (|has| |#3| (-629 (-546)))) ELT)) (-3216 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ |#3|) NIL (|has| |#1| (-464)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-927))) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1144 |#1| |#2|)) 32 T ELT) (($ (-419 (-557))) NIL (-3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) ELT) (($ $) NIL (|has| |#1| (-568)) ELT)) (-4245 (((-659 |#1|) $) NIL T ELT)) (-4105 ((|#1| $ (-542 |#3|)) NIL T ELT) (($ $ |#3| (-789)) NIL T ELT) (($ $ (-659 |#3|) (-659 (-789))) NIL T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| |#1| (-927))) (|has| |#1| (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-1801 (($ $ $ (-789)) NIL (|has| |#1| (-175)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $ (-659 |#3|) (-659 (-789))) NIL T ELT) (($ $ |#3| (-789)) NIL T ELT) (($ $ (-659 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-789)) NIL (|has| |#1| (-239)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-275 |#1| |#2| |#3|) (-13 (-262 |#1| |#2| |#3| (-542 |#3|)) (-1057 (-1144 |#1| |#2|))) (-1068) (-859) (-277 |#2|)) (T -275)) -NIL -((-1652 (((-789) $) 37 T ELT)) (-3573 (((-3 |#2| "failed") $) 22 T ELT)) (-3572 ((|#2| $) 33 T ELT)) (-4186 (($ $ (-789)) 18 T ELT) (($ $) 14 T ELT)) (-4374 (((-875) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3452 (((-114) $ $) 26 T ELT)) (-3084 (((-114) $ $) 36 T ELT))) -(((-276 |#1| |#2|) (-10 -7 (-15 -1652 ((-789) |#1|)) (-15 -4374 (|#1| |#2|)) (-15 -3573 ((-3 |#2| "failed") |#1|)) (-15 -3572 (|#2| |#1|)) (-15 -4186 (|#1| |#1|)) (-15 -4186 (|#1| |#1| (-789))) (-15 -3084 ((-114) |#1| |#1|)) (-15 -4374 ((-875) |#1|)) (-15 -3452 ((-114) |#1| |#1|))) (-277 |#2|) (-859)) (T -276)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-1652 (((-789) $) 26 T ELT)) (-4259 ((|#1| $) 27 T ELT)) (-3573 (((-3 |#1| "failed") $) 31 T ELT)) (-3572 ((|#1| $) 32 T ELT)) (-4200 (((-789) $) 28 T ELT)) (-2928 (($ $ $) 23 T ELT)) (-3256 (($ $ $) 22 T ELT)) (-1653 (($ |#1| (-789)) 29 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4186 (($ $ (-789)) 35 T ELT) (($ $) 33 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3068 (($ $ (-789)) 36 T ELT) (($ $) 34 T ELT)) (-2963 (((-114) $ $) 21 T ELT)) (-2964 (((-114) $ $) 19 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 20 T ELT)) (-3084 (((-114) $ $) 18 T ELT))) -(((-277 |#1|) (-142) (-859)) (T -277)) -((-1653 (*1 *1 *2 *3) (-12 (-5 *3 (-789)) (-4 *1 (-277 *2)) (-4 *2 (-859)))) (-4200 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-859)) (-5 *2 (-789)))) (-4259 (*1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-859)))) (-1652 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-859)) (-5 *2 (-789))))) -(-13 (-859) (-239) (-1057 |t#1|) (-10 -8 (-15 -1653 ($ |t#1| (-789))) (-15 -4200 ((-789) $)) (-15 -4259 (|t#1| $)) (-15 -1652 ((-789) $)))) -(((-102) . T) ((-631 |#1|) . T) ((-628 (-875)) . T) ((-236 $) . T) ((-239) . T) ((-859) . T) ((-862) . T) ((-1057 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-3482 (((-659 (-1196)) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) 52 T ELT)) (-4362 (((-659 (-1196)) (-326 (-229)) (-789)) 94 T ELT)) (-1656 (((-3 (-326 (-229)) "failed") (-326 (-229))) 62 T ELT)) (-1657 (((-326 (-229)) (-326 (-229))) 78 T ELT)) (-1655 (((-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229))))) (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) 37 T ELT)) (-1658 (((-114) (-659 (-326 (-229)))) 104 T ELT)) (-1662 (((-114) (-326 (-229))) 35 T ELT)) (-1664 (((-659 (-1178)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))))) 132 T ELT)) (-1661 (((-659 (-326 (-229))) (-659 (-326 (-229)))) 108 T ELT)) (-1660 (((-659 (-326 (-229))) (-659 (-326 (-229)))) 106 T ELT)) (-1659 (((-707 (-229)) (-659 (-326 (-229))) (-789)) 120 T ELT)) (-3326 (((-114) (-326 (-229))) 30 T ELT) (((-114) (-659 (-326 (-229)))) 105 T ELT)) (-1654 (((-659 (-229)) (-659 (-853 (-229))) (-229)) 15 T ELT)) (-1758 (((-391) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) 126 T ELT)) (-1663 (((-1054) (-1196) (-1054)) 45 T ELT))) -(((-278) (-10 -7 (-15 -1654 ((-659 (-229)) (-659 (-853 (-229))) (-229))) (-15 -1655 ((-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229))))) (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229))))))) (-15 -1656 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -1657 ((-326 (-229)) (-326 (-229)))) (-15 -1658 ((-114) (-659 (-326 (-229))))) (-15 -3326 ((-114) (-659 (-326 (-229))))) (-15 -3326 ((-114) (-326 (-229)))) (-15 -1659 ((-707 (-229)) (-659 (-326 (-229))) (-789))) (-15 -1660 ((-659 (-326 (-229))) (-659 (-326 (-229))))) (-15 -1661 ((-659 (-326 (-229))) (-659 (-326 (-229))))) (-15 -1662 ((-114) (-326 (-229)))) (-15 -3482 ((-659 (-1196)) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229)))))) (-15 -4362 ((-659 (-1196)) (-326 (-229)) (-789))) (-15 -1663 ((-1054) (-1196) (-1054))) (-15 -1758 ((-391) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229)))))) (-15 -1664 ((-659 (-1178)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229)))))))))) (T -278)) -((-1664 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))))) (-5 *2 (-659 (-1178))) (-5 *1 (-278)))) (-1758 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) (-5 *2 (-391)) (-5 *1 (-278)))) (-1663 (*1 *2 *3 *2) (-12 (-5 *2 (-1054)) (-5 *3 (-1196)) (-5 *1 (-278)))) (-4362 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-789)) (-5 *2 (-659 (-1196))) (-5 *1 (-278)))) (-3482 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) (-5 *2 (-659 (-1196))) (-5 *1 (-278)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278)))) (-1661 (*1 *2 *2) (-12 (-5 *2 (-659 (-326 (-229)))) (-5 *1 (-278)))) (-1660 (*1 *2 *2) (-12 (-5 *2 (-659 (-326 (-229)))) (-5 *1 (-278)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-326 (-229)))) (-5 *4 (-789)) (-5 *2 (-707 (-229))) (-5 *1 (-278)))) (-3326 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278)))) (-3326 (*1 *2 *3) (-12 (-5 *3 (-659 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278)))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-659 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278)))) (-1657 (*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-278)))) (-1656 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-278)))) (-1655 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) (-5 *1 (-278)))) (-1654 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-853 (-229)))) (-5 *4 (-229)) (-5 *2 (-659 *4)) (-5 *1 (-278))))) -((-2965 (((-114) $ $) NIL T ELT)) (-2917 (((-1054) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) NIL T ELT) (((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) 56 T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) 32 T ELT) (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-279) (-850)) (T -279)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-2917 (((-1054) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) 72 T ELT) (((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) 63 T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) 41 T ELT) (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) 43 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-280) (-850)) (T -280)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-2917 (((-1054) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) 90 T ELT) (((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) 85 T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) 52 T ELT) (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) 65 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-281) (-850)) (T -281)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-2917 (((-1054) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) NIL T ELT) (((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) 73 T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) 45 T ELT) (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-282) (-850)) (T -282)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-2917 (((-1054) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) NIL T ELT) (((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) 65 T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) 31 T ELT) (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-283) (-850)) (T -283)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-2917 (((-1054) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) NIL T ELT) (((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) 90 T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) 33 T ELT) (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-284) (-850)) (T -284)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-2917 (((-1054) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) NIL T ELT) (((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) 87 T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) 32 T ELT) (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-285) (-850)) (T -285)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1666 (((-659 (-557)) $) 28 T ELT)) (-4376 (((-789) $) 26 T ELT)) (-4374 (((-875) $) 32 T ELT) (($ (-659 (-557))) 22 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-1665 (($ (-789)) 29 T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 9 T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 17 T ELT))) -(((-286) (-13 (-859) (-10 -8 (-15 -4374 ($ (-659 (-557)))) (-15 -4376 ((-789) $)) (-15 -1666 ((-659 (-557)) $)) (-15 -1665 ($ (-789)))))) (T -286)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-286)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-286)))) (-1666 (*1 *2 *1) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-286)))) (-1665 (*1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-286))))) -((-3910 ((|#2| |#2|) 77 T ELT)) (-4067 ((|#2| |#2|) 65 T ELT)) (-1695 (((-3 |#2| "failed") |#2| (-659 (-2 (|:| |func| |#2|) (|:| |pole| (-114))))) 123 T ELT)) (-3908 ((|#2| |#2|) 75 T ELT)) (-4066 ((|#2| |#2|) 63 T ELT)) (-3912 ((|#2| |#2|) 79 T ELT)) (-4065 ((|#2| |#2|) 67 T ELT)) (-4055 ((|#2|) 46 T ELT)) (-4021 (((-115) (-115)) 97 T ELT)) (-4370 ((|#2| |#2|) 61 T ELT)) (-1696 (((-114) |#2|) 146 T ELT)) (-1685 ((|#2| |#2|) 193 T ELT)) (-1673 ((|#2| |#2|) 169 T ELT)) (-1668 ((|#2|) 59 T ELT)) (-1667 ((|#2|) 58 T ELT)) (-1683 ((|#2| |#2|) 189 T ELT)) (-1671 ((|#2| |#2|) 165 T ELT)) (-1687 ((|#2| |#2|) 197 T ELT)) (-1675 ((|#2| |#2|) 173 T ELT)) (-1670 ((|#2| |#2|) 161 T ELT)) (-1669 ((|#2| |#2|) 163 T ELT)) (-1688 ((|#2| |#2|) 199 T ELT)) (-1676 ((|#2| |#2|) 175 T ELT)) (-1686 ((|#2| |#2|) 195 T ELT)) (-1674 ((|#2| |#2|) 171 T ELT)) (-1684 ((|#2| |#2|) 191 T ELT)) (-1672 ((|#2| |#2|) 167 T ELT)) (-1691 ((|#2| |#2|) 205 T ELT)) (-1679 ((|#2| |#2|) 181 T ELT)) (-1689 ((|#2| |#2|) 201 T ELT)) (-1677 ((|#2| |#2|) 177 T ELT)) (-1693 ((|#2| |#2|) 209 T ELT)) (-1681 ((|#2| |#2|) 185 T ELT)) (-1694 ((|#2| |#2|) 211 T ELT)) (-1682 ((|#2| |#2|) 187 T ELT)) (-1692 ((|#2| |#2|) 207 T ELT)) (-1680 ((|#2| |#2|) 183 T ELT)) (-1690 ((|#2| |#2|) 203 T ELT)) (-1678 ((|#2| |#2|) 179 T ELT)) (-4371 ((|#2| |#2|) 62 T ELT)) (-3913 ((|#2| |#2|) 80 T ELT)) (-4064 ((|#2| |#2|) 68 T ELT)) (-3911 ((|#2| |#2|) 78 T ELT)) (-4063 ((|#2| |#2|) 66 T ELT)) (-3909 ((|#2| |#2|) 76 T ELT)) (-4062 ((|#2| |#2|) 64 T ELT)) (-2466 (((-114) (-115)) 95 T ELT)) (-3916 ((|#2| |#2|) 83 T ELT)) (-3904 ((|#2| |#2|) 71 T ELT)) (-3914 ((|#2| |#2|) 81 T ELT)) (-3902 ((|#2| |#2|) 69 T ELT)) (-3918 ((|#2| |#2|) 85 T ELT)) (-3906 ((|#2| |#2|) 73 T ELT)) (-3919 ((|#2| |#2|) 86 T ELT)) (-3907 ((|#2| |#2|) 74 T ELT)) (-3917 ((|#2| |#2|) 84 T ELT)) (-3905 ((|#2| |#2|) 72 T ELT)) (-3915 ((|#2| |#2|) 82 T ELT)) (-3903 ((|#2| |#2|) 70 T ELT))) -(((-287 |#1| |#2|) (-10 -7 (-15 -4371 (|#2| |#2|)) (-15 -4370 (|#2| |#2|)) (-15 -4066 (|#2| |#2|)) (-15 -4062 (|#2| |#2|)) (-15 -4067 (|#2| |#2|)) (-15 -4063 (|#2| |#2|)) (-15 -4065 (|#2| |#2|)) (-15 -4064 (|#2| |#2|)) (-15 -3902 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -3904 (|#2| |#2|)) (-15 -3905 (|#2| |#2|)) (-15 -3906 (|#2| |#2|)) (-15 -3907 (|#2| |#2|)) (-15 -3908 (|#2| |#2|)) (-15 -3909 (|#2| |#2|)) (-15 -3910 (|#2| |#2|)) (-15 -3911 (|#2| |#2|)) (-15 -3912 (|#2| |#2|)) (-15 -3913 (|#2| |#2|)) (-15 -3914 (|#2| |#2|)) (-15 -3915 (|#2| |#2|)) (-15 -3916 (|#2| |#2|)) (-15 -3917 (|#2| |#2|)) (-15 -3918 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -4055 (|#2|)) (-15 -2466 ((-114) (-115))) (-15 -4021 ((-115) (-115))) (-15 -1667 (|#2|)) (-15 -1668 (|#2|)) (-15 -1669 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -1671 (|#2| |#2|)) (-15 -1672 (|#2| |#2|)) (-15 -1673 (|#2| |#2|)) (-15 -1674 (|#2| |#2|)) (-15 -1675 (|#2| |#2|)) (-15 -1676 (|#2| |#2|)) (-15 -1677 (|#2| |#2|)) (-15 -1678 (|#2| |#2|)) (-15 -1679 (|#2| |#2|)) (-15 -1680 (|#2| |#2|)) (-15 -1681 (|#2| |#2|)) (-15 -1682 (|#2| |#2|)) (-15 -1683 (|#2| |#2|)) (-15 -1684 (|#2| |#2|)) (-15 -1685 (|#2| |#2|)) (-15 -1686 (|#2| |#2|)) (-15 -1687 (|#2| |#2|)) (-15 -1688 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -1690 (|#2| |#2|)) (-15 -1691 (|#2| |#2|)) (-15 -1692 (|#2| |#2|)) (-15 -1693 (|#2| |#2|)) (-15 -1694 (|#2| |#2|)) (-15 -1695 ((-3 |#2| "failed") |#2| (-659 (-2 (|:| |func| |#2|) (|:| |pole| (-114)))))) (-15 -1696 ((-114) |#2|))) (-568) (-13 (-433 |#1|) (-1021))) (T -287)) -((-1696 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-114)) (-5 *1 (-287 *4 *3)) (-4 *3 (-13 (-433 *4) (-1021))))) (-1695 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-659 (-2 (|:| |func| *2) (|:| |pole| (-114))))) (-4 *2 (-13 (-433 *4) (-1021))) (-4 *4 (-568)) (-5 *1 (-287 *4 *2)))) (-1694 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1693 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1692 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1691 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1690 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1689 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1688 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1687 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1686 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1685 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1684 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1683 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1682 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1681 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1680 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1679 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1678 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1677 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1676 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1675 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1674 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1673 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1672 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1671 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1669 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-1668 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1021))) (-5 *1 (-287 *3 *2)) (-4 *3 (-568)))) (-1667 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1021))) (-5 *1 (-287 *3 *2)) (-4 *3 (-568)))) (-4021 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-287 *3 *4)) (-4 *4 (-13 (-433 *3) (-1021))))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-114)) (-5 *1 (-287 *4 *5)) (-4 *5 (-13 (-433 *4) (-1021))))) (-4055 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1021))) (-5 *1 (-287 *3 *2)) (-4 *3 (-568)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-3912 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-3908 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-3906 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-3905 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-3904 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-3903 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-3902 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-4064 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-4065 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-4063 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-4062 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-4066 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-4370 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) (-4371 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) -((-1699 (((-3 |#2| "failed") (-659 (-626 |#2|)) |#2| (-1196)) 151 T ELT)) (-1701 ((|#2| (-419 (-557)) |#2|) 49 T ELT)) (-1700 ((|#2| |#2| (-626 |#2|)) 144 T ELT)) (-1697 (((-2 (|:| |func| |#2|) (|:| |kers| (-659 (-626 |#2|))) (|:| |vals| (-659 |#2|))) |#2| (-1196)) 143 T ELT)) (-1698 ((|#2| |#2| (-1196)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2830 ((|#2| |#2| (-1196)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) -(((-288 |#1| |#2|) (-10 -7 (-15 -2830 (|#2| |#2|)) (-15 -2830 (|#2| |#2| (-1196))) (-15 -1697 ((-2 (|:| |func| |#2|) (|:| |kers| (-659 (-626 |#2|))) (|:| |vals| (-659 |#2|))) |#2| (-1196))) (-15 -1698 (|#2| |#2|)) (-15 -1698 (|#2| |#2| (-1196))) (-15 -1699 ((-3 |#2| "failed") (-659 (-626 |#2|)) |#2| (-1196))) (-15 -1700 (|#2| |#2| (-626 |#2|))) (-15 -1701 (|#2| (-419 (-557)) |#2|))) (-13 (-568) (-1057 (-557)) (-656 (-557))) (-13 (-27) (-1222) (-433 |#1|))) (T -288)) -((-1701 (*1 *2 *3 *2) (-12 (-5 *3 (-419 (-557))) (-4 *4 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-433 *4))))) (-1700 (*1 *2 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-13 (-27) (-1222) (-433 *4))) (-4 *4 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-288 *4 *2)))) (-1699 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-659 (-626 *2))) (-5 *4 (-1196)) (-4 *2 (-13 (-27) (-1222) (-433 *5))) (-4 *5 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-288 *5 *2)))) (-1698 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-433 *4))))) (-1698 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-433 *3))))) (-1697 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-659 (-626 *3))) (|:| |vals| (-659 *3)))) (-5 *1 (-288 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5))))) (-2830 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-433 *4))))) (-2830 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-433 *3)))))) -((-3374 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3910 ((|#3| |#3|) 142 T ELT)) (-3362 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-4067 ((|#3| |#3|) 132 T ELT)) (-3372 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3908 ((|#3| |#3|) 140 T ELT)) (-3360 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-4066 ((|#3| |#3|) 130 T ELT)) (-3376 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3912 ((|#3| |#3|) 144 T ELT)) (-3364 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-4065 ((|#3| |#3|) 134 T ELT)) (-3357 (((-3 |#3| #1#) |#3| (-789)) 41 T ELT)) (-3359 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-4370 ((|#3| |#3|) 129 T ELT)) (-3358 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-4371 ((|#3| |#3|) 128 T ELT)) (-3377 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3913 ((|#3| |#3|) 145 T ELT)) (-3365 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-4064 ((|#3| |#3|) 135 T ELT)) (-3375 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3911 ((|#3| |#3|) 143 T ELT)) (-3363 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-4063 ((|#3| |#3|) 133 T ELT)) (-3373 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3909 ((|#3| |#3|) 141 T ELT)) (-3361 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-4062 ((|#3| |#3|) 131 T ELT)) (-3380 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3916 ((|#3| |#3|) 148 T ELT)) (-3368 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3904 ((|#3| |#3|) 152 T ELT)) (-3378 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3914 ((|#3| |#3|) 146 T ELT)) (-3366 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3902 ((|#3| |#3|) 136 T ELT)) (-3382 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3918 ((|#3| |#3|) 150 T ELT)) (-3370 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3906 ((|#3| |#3|) 138 T ELT)) (-3383 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3919 ((|#3| |#3|) 151 T ELT)) (-3371 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3907 ((|#3| |#3|) 139 T ELT)) (-3381 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3917 ((|#3| |#3|) 149 T ELT)) (-3369 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3905 ((|#3| |#3|) 153 T ELT)) (-3379 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3915 ((|#3| |#3|) 147 T ELT)) (-3367 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3903 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-419 (-557))) 47 (|has| |#1| (-376)) ELT))) -(((-289 |#1| |#2| |#3|) (-13 (-1002 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-419 (-557)))) |%noBranch|) (-15 -4371 (|#3| |#3|)) (-15 -4370 (|#3| |#3|)) (-15 -4066 (|#3| |#3|)) (-15 -4062 (|#3| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -4063 (|#3| |#3|)) (-15 -4065 (|#3| |#3|)) (-15 -4064 (|#3| |#3|)) (-15 -3902 (|#3| |#3|)) (-15 -3903 (|#3| |#3|)) (-15 -3904 (|#3| |#3|)) (-15 -3905 (|#3| |#3|)) (-15 -3906 (|#3| |#3|)) (-15 -3907 (|#3| |#3|)) (-15 -3908 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3912 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)))) (-38 (-419 (-557))) (-1279 |#1|) (-1250 |#1| |#2|)) (T -289)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-557))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1279 *4)) (-5 *1 (-289 *4 *5 *2)) (-4 *2 (-1250 *4 *5)))) (-4371 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4370 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4066 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4062 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4063 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4065 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4064 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3902 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3903 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3904 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3905 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3906 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3908 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3912 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1250 *3 *4))))) -((-3374 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3910 ((|#3| |#3|) 137 T ELT)) (-3362 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-4067 ((|#3| |#3|) 125 T ELT)) (-3372 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3908 ((|#3| |#3|) 135 T ELT)) (-3360 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-4066 ((|#3| |#3|) 123 T ELT)) (-3376 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3912 ((|#3| |#3|) 139 T ELT)) (-3364 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-4065 ((|#3| |#3|) 127 T ELT)) (-3357 (((-3 |#3| #1#) |#3| (-789)) 38 T ELT)) (-3359 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-4370 ((|#3| |#3|) 111 T ELT)) (-3358 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-4371 ((|#3| |#3|) 122 T ELT)) (-3377 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3913 ((|#3| |#3|) 140 T ELT)) (-3365 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-4064 ((|#3| |#3|) 128 T ELT)) (-3375 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3911 ((|#3| |#3|) 138 T ELT)) (-3363 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-4063 ((|#3| |#3|) 126 T ELT)) (-3373 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3909 ((|#3| |#3|) 136 T ELT)) (-3361 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-4062 ((|#3| |#3|) 124 T ELT)) (-3380 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3916 ((|#3| |#3|) 143 T ELT)) (-3368 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3904 ((|#3| |#3|) 131 T ELT)) (-3378 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3914 ((|#3| |#3|) 141 T ELT)) (-3366 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3902 ((|#3| |#3|) 129 T ELT)) (-3382 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3918 ((|#3| |#3|) 145 T ELT)) (-3370 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3906 ((|#3| |#3|) 133 T ELT)) (-3383 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3919 ((|#3| |#3|) 146 T ELT)) (-3371 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3907 ((|#3| |#3|) 134 T ELT)) (-3381 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3917 ((|#3| |#3|) 144 T ELT)) (-3369 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3905 ((|#3| |#3|) 132 T ELT)) (-3379 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3915 ((|#3| |#3|) 142 T ELT)) (-3367 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3903 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-419 (-557))) 44 (|has| |#1| (-376)) ELT))) -(((-290 |#1| |#2| |#3| |#4|) (-13 (-1002 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-419 (-557)))) |%noBranch|) (-15 -4371 (|#3| |#3|)) (-15 -4370 (|#3| |#3|)) (-15 -4066 (|#3| |#3|)) (-15 -4062 (|#3| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -4063 (|#3| |#3|)) (-15 -4065 (|#3| |#3|)) (-15 -4064 (|#3| |#3|)) (-15 -3902 (|#3| |#3|)) (-15 -3903 (|#3| |#3|)) (-15 -3904 (|#3| |#3|)) (-15 -3905 (|#3| |#3|)) (-15 -3906 (|#3| |#3|)) (-15 -3907 (|#3| |#3|)) (-15 -3908 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3912 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)))) (-38 (-419 (-557))) (-1248 |#1|) (-1271 |#1| |#2|) (-1002 |#2|)) (T -290)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-557))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1248 *4)) (-5 *1 (-290 *4 *5 *2 *6)) (-4 *2 (-1271 *4 *5)) (-4 *6 (-1002 *5)))) (-4371 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-4370 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-4066 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-4062 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-4063 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-4065 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-4064 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-3902 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-3903 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-3904 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-3905 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-3906 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-3908 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-3912 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4))))) -((-1704 (((-114) $) 20 T ELT)) (-1706 (((-1201) $) 9 T ELT)) (-3995 (((-3 (-518) #1="failed") $) 15 T ELT)) (-3994 (((-3 (-659 $) #1#) $) NIL T ELT)) (-1703 (((-3 (-518) #1#) $) 21 T ELT)) (-1705 (((-3 (-1122) #1#) $) 19 T ELT)) (-4381 (((-114) $) 17 T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1702 (((-114) $) 10 T ELT))) -(((-291) (-13 (-628 (-875)) (-10 -8 (-15 -1706 ((-1201) $)) (-15 -4381 ((-114) $)) (-15 -1705 ((-3 (-1122) #1="failed") $)) (-15 -1704 ((-114) $)) (-15 -1703 ((-3 (-518) #1#) $)) (-15 -1702 ((-114) $)) (-15 -3995 ((-3 (-518) #1#) $)) (-15 -3994 ((-3 (-659 $) #1#) $))))) (T -291)) -((-1706 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-291)))) (-4381 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) (-1705 (*1 *2 *1) (|partial| -12 (-5 *2 (-1122)) (-5 *1 (-291)))) (-1704 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) (-1703 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-291)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) (-3995 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-291)))) (-3994 (*1 *2 *1) (|partial| -12 (-5 *2 (-659 (-291))) (-5 *1 (-291))))) -((-1708 (((-607) $) 10 T ELT)) (-1709 (((-597) $) 8 T ELT)) (-1707 (((-303) $) 12 T ELT)) (-1710 (($ (-597) (-607) (-303)) NIL T ELT)) (-4374 (((-875) $) 19 T ELT))) -(((-292) (-13 (-628 (-875)) (-10 -8 (-15 -1710 ($ (-597) (-607) (-303))) (-15 -1709 ((-597) $)) (-15 -1708 ((-607) $)) (-15 -1707 ((-303) $))))) (T -292)) -((-1710 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-597)) (-5 *3 (-607)) (-5 *4 (-303)) (-5 *1 (-292)))) (-1709 (*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-292)))) (-1708 (*1 *2 *1) (-12 (-5 *2 (-607)) (-5 *1 (-292)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-303)) (-5 *1 (-292))))) -((-4138 (($ (-1 (-114) |#2|) $) 24 T ELT)) (-1465 (($ $) 38 T ELT)) (-3823 (($ (-1 (-114) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3824 (($ |#2| $) 34 T ELT) (($ (-1 (-114) |#2|) $) 18 T ELT)) (-3255 (($ (-1 (-114) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2515 (($ |#2| $ (-557)) 20 T ELT) (($ $ $ (-557)) 22 T ELT)) (-2516 (($ $ (-557)) 11 T ELT) (($ $ (-1253 (-557))) 14 T ELT)) (-4219 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-4230 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-659 $)) NIL T ELT))) -(((-293 |#1| |#2|) (-10 -7 (-15 -3255 (|#1| |#1| |#1|)) (-15 -3823 (|#1| |#2| |#1|)) (-15 -3255 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -3823 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4219 (|#1| |#1| |#1|)) (-15 -4219 (|#1| |#1| |#2|)) (-15 -2515 (|#1| |#1| |#1| (-557))) (-15 -2515 (|#1| |#2| |#1| (-557))) (-15 -2516 (|#1| |#1| (-1253 (-557)))) (-15 -2516 (|#1| |#1| (-557))) (-15 -4230 (|#1| (-659 |#1|))) (-15 -4230 (|#1| |#1| |#1|)) (-15 -4230 (|#1| |#2| |#1|)) (-15 -4230 (|#1| |#1| |#2|)) (-15 -3824 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4138 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3824 (|#1| |#2| |#1|)) (-15 -1465 (|#1| |#1|))) (-294 |#2|) (-1236)) (T -293)) -NIL -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2411 (((-1292) $ (-557) (-557)) 44 (|has| $ (-6 -4424)) ELT)) (-4216 ((|#1| $ (-557) |#1|) 56 (|has| $ (-6 -4424)) ELT) ((|#1| $ (-1253 (-557)) |#1|) 64 (|has| $ (-6 -4424)) ELT)) (-1711 (($ (-1 (-114) |#1|) $) 94 T ELT)) (-4138 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4423)) ELT)) (-4152 (($) 7 T CONST)) (-2592 (($ $) 92 (|has| |#1| (-1120)) ELT)) (-1465 (($ $) 84 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3823 (($ (-1 (-114) |#1|) $) 98 T ELT) (($ |#1| $) 93 (|has| |#1| (-1120)) ELT)) (-3824 (($ |#1| $) 83 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4423)) ELT)) (-1717 ((|#1| $ (-557) |#1|) 57 (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-557)) 55 T ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-4042 (($ (-789) |#1|) 74 T ELT)) (-2413 (((-557) $) 47 (|has| (-557) (-859)) ELT)) (-3255 (($ (-1 (-114) |#1| |#1|) $ $) 95 T ELT) (($ $ $) 91 (|has| |#1| (-859)) ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2414 (((-557) $) 48 (|has| (-557) (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-4035 (($ |#1| $ (-557)) 97 T ELT) (($ $ $ (-557)) 96 T ELT)) (-2515 (($ |#1| $ (-557)) 66 T ELT) (($ $ $ (-557)) 65 T ELT)) (-2416 (((-659 (-557)) $) 50 T ELT)) (-2417 (((-114) (-557) $) 51 T ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-4229 ((|#1| $) 46 (|has| (-557) (-859)) ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2412 (($ $ |#1|) 45 (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-2415 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) 52 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-4228 ((|#1| $ (-557) |#1|) 54 T ELT) ((|#1| $ (-557)) 53 T ELT) (($ $ (-1253 (-557))) 75 T ELT)) (-1712 (($ $ (-557)) 100 T ELT) (($ $ (-1253 (-557))) 99 T ELT)) (-2516 (($ $ (-557)) 68 T ELT) (($ $ (-1253 (-557))) 67 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4400 (((-546) $) 85 (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 76 T ELT)) (-4219 (($ $ |#1|) 102 T ELT) (($ $ $) 101 T ELT)) (-4230 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-659 $)) 70 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-294 |#1|) (-142) (-1236)) (T -294)) -((-4219 (*1 *1 *1 *2) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1236)))) (-4219 (*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1236)))) (-1712 (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-4 *1 (-294 *3)) (-4 *3 (-1236)))) (-1712 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 (-557))) (-4 *1 (-294 *3)) (-4 *3 (-1236)))) (-3823 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1236)))) (-4035 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-557)) (-4 *1 (-294 *2)) (-4 *2 (-1236)))) (-4035 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-557)) (-4 *1 (-294 *3)) (-4 *3 (-1236)))) (-3255 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-294 *3)) (-4 *3 (-1236)))) (-1711 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1236)))) (-3823 (*1 *1 *2 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1236)) (-4 *2 (-1120)))) (-2592 (*1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1236)) (-4 *2 (-1120)))) (-3255 (*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1236)) (-4 *2 (-859))))) -(-13 (-669 |t#1|) (-10 -8 (-6 -4424) (-15 -4219 ($ $ |t#1|)) (-15 -4219 ($ $ $)) (-15 -1712 ($ $ (-557))) (-15 -1712 ($ $ (-1253 (-557)))) (-15 -3823 ($ (-1 (-114) |t#1|) $)) (-15 -4035 ($ |t#1| $ (-557))) (-15 -4035 ($ $ $ (-557))) (-15 -3255 ($ (-1 (-114) |t#1| |t#1|) $ $)) (-15 -1711 ($ (-1 (-114) |t#1|) $)) (IF (|has| |t#1| (-1120)) (PROGN (-15 -3823 ($ |t#1| $)) (-15 -2592 ($ $))) |%noBranch|) (IF (|has| |t#1| (-859)) (-15 -3255 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-628 (-875)))) ((-153 |#1|) . T) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-298 (-557) |#1|) . T) ((-298 (-1253 (-557)) $) . T) ((-300 (-557) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-614 (-557) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-669 |#1|) . T) ((-1120) |has| |#1| (-1120)) ((-1236) . T)) +(2928076 . 3525483402) +((-1825 (((-85) (-1 (-85) |#2| |#2|) $) 86 T ELT) (((-85) $) NIL T ELT)) (-1823 (($ (-1 (-85) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3938 ((|#2| $ (-499) |#2|) NIL T ELT) ((|#2| $ (-1174 (-499)) |#2|) 44 T ELT)) (-2397 (($ $) 80 T ELT)) (-3992 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3559 (((-499) (-1 (-85) |#2|) $) 27 T ELT) (((-499) |#2| $) NIL T ELT) (((-499) |#2| $ (-499)) 96 T ELT)) (-3010 (((-599 |#2|) $) 13 T ELT)) (-3658 (($ (-1 (-85) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-2051 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2404 (($ |#2| $ (-499)) NIL T ELT) (($ $ $ (-499)) 67 T ELT)) (-1387 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 29 T ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3950 ((|#2| $ (-499) |#2|) NIL T ELT) ((|#2| $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) 66 T ELT)) (-2405 (($ $ (-499)) 76 T ELT) (($ $ (-1174 (-499))) 75 T ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) 34 T ELT) (((-714) |#2| $) NIL T ELT)) (-1824 (($ $ $ (-499)) 69 T ELT)) (-3540 (($ $) 68 T ELT)) (-3670 (($ (-599 |#2|)) 73 T ELT)) (-3952 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-599 $)) 85 T ELT)) (-4096 (((-797) $) 92 T ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) 22 T ELT)) (-3174 (((-85) $ $) 95 T ELT)) (-2806 (((-85) $ $) 99 T ELT))) +(((-18 |#1| |#2|) (-10 -7 (-15 -3174 ((-85) |#1| |#1|)) (-15 -4096 ((-797) |#1|)) (-15 -2806 ((-85) |#1| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -1823 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2397 (|#1| |#1|)) (-15 -1824 (|#1| |#1| |#1| (-499))) (-15 -1825 ((-85) |#1|)) (-15 -3658 (|#1| |#1| |#1|)) (-15 -3559 ((-499) |#2| |#1| (-499))) (-15 -3559 ((-499) |#2| |#1|)) (-15 -3559 ((-499) (-1 (-85) |#2|) |#1|)) (-15 -1825 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3658 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3938 (|#2| |#1| (-1174 (-499)) |#2|)) (-15 -2404 (|#1| |#1| |#1| (-499))) (-15 -2404 (|#1| |#2| |#1| (-499))) (-15 -2405 (|#1| |#1| (-1174 (-499)))) (-15 -2405 (|#1| |#1| (-499))) (-15 -4108 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3952 (|#1| (-599 |#1|))) (-15 -3952 (|#1| |#1| |#1|)) (-15 -3952 (|#1| |#2| |#1|)) (-15 -3952 (|#1| |#1| |#2|)) (-15 -3950 (|#1| |#1| (-1174 (-499)))) (-15 -3670 (|#1| (-599 |#2|))) (-15 -1387 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3992 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3992 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3992 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3950 (|#2| |#1| (-499))) (-15 -3950 (|#2| |#1| (-499) |#2|)) (-15 -3938 (|#2| |#1| (-499) |#2|)) (-15 -2048 ((-714) |#2| |#1|)) (-15 -3010 ((-599 |#2|) |#1|)) (-15 -2048 ((-714) (-1 (-85) |#2|) |#1|)) (-15 -2049 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -2050 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -2051 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4108 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3540 (|#1| |#1|))) (-19 |#2|) (-1157)) (T -18)) +NIL +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-2299 (((-1213) $ (-499) (-499)) 44 (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -4146)) ELT) (($ $) 97 (-12 (|has| |#1| (-781)) (|has| $ (-6 -4146))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-781)) ELT)) (-3938 ((|#1| $ (-499) |#1|) 56 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) 64 (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-2397 (($ $) 99 (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) 109 T ELT)) (-1386 (($ $) 84 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#1| $) 83 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) 57 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 55 T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) 106 T ELT) (((-499) |#1| $) 105 (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) 104 (|has| |#1| (-1041)) ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) |#1|) 74 T ELT)) (-2301 (((-499) $) 47 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) 91 (|has| |#1| (-781)) ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 48 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) 92 (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) 66 T ELT) (($ $ $ (-499)) 65 T ELT)) (-2304 (((-599 (-499)) $) 50 T ELT)) (-2305 (((-85) (-499) $) 51 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) 46 (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2300 (($ $ |#1|) 45 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) 52 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ (-499) |#1|) 54 T ELT) ((|#1| $ (-499)) 53 T ELT) (($ $ (-1174 (-499))) 75 T ELT)) (-2405 (($ $ (-499)) 68 T ELT) (($ $ (-1174 (-499))) 67 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-1824 (($ $ $ (-499)) 100 (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 85 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 76 T ELT)) (-3952 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-599 $)) 70 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) 93 (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) 95 (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) 94 (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 96 (|has| |#1| (-781)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-19 |#1|) (-113) (-1157)) (T -19)) +NIL +(-13 (-327 |t#1|) (-10 -7 (-6 -4146))) +(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-240 (-499) |#1|) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-327 |#1|) . T) ((-443 |#1|) . T) ((-554 (-499) |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-609 |#1|) . T) ((-781) |has| |#1| (-781)) ((-784) |has| |#1| (-781)) ((-1041) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781))) ((-1157) . T)) +((-1345 (((-3 $ "failed") $ $) 12 T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) 16 T ELT) (($ (-499) $) 25 T ELT))) +(((-20 |#1|) (-10 -7 (-15 -3987 (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1|)) (-15 * (|#1| (-499) |#1|)) (-15 -1345 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-714) |#1|)) (-15 * (|#1| (-857) |#1|))) (-21)) (T -20)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT))) +(((-21) (-113)) (T -21)) +((-3987 (*1 *1 *1) (-4 *1 (-21))) (-3987 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-104) (-604 (-499)) (-10 -8 (-15 -3987 ($ $)) (-15 -3987 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-1041) . T) ((-1157) . T)) +((-3326 (((-85) $) 10 T ELT)) (-3874 (($) 15 T ELT)) (* (($ (-857) $) 14 T ELT) (($ (-714) $) 19 T ELT))) +(((-22 |#1|) (-10 -7 (-15 * (|#1| (-714) |#1|)) (-15 -3326 ((-85) |#1|)) (-15 -3874 (|#1|)) (-15 * (|#1| (-857) |#1|))) (-23)) (T -22)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT))) +(((-23) (-113)) (T -23)) +((-2779 (*1 *1) (-4 *1 (-23))) (-3874 (*1 *1) (-4 *1 (-23))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-714))))) +(-13 (-25) (-10 -8 (-15 (-2779) ($) -4102) (-15 -3874 ($) -4102) (-15 -3326 ((-85) $)) (-15 * ($ (-714) $)))) +(((-25) . T) ((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) +((* (($ (-857) $) 10 T ELT))) +(((-24 |#1|) (-10 -7 (-15 * (|#1| (-857) |#1|))) (-25)) (T -24)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT))) +(((-25) (-113)) (T -25)) +((-3989 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-857))))) +(-13 (-1041) (-10 -8 (-15 -3989 ($ $ $)) (-15 * ($ (-857) $)))) +(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) +((-1640 (((-599 $) (-884 $)) 32 T ELT) (((-599 $) (-1111 $)) 16 T ELT) (((-599 $) (-1111 $) (-1117)) 20 T ELT)) (-1242 (($ (-884 $)) 30 T ELT) (($ (-1111 $)) 11 T ELT) (($ (-1111 $) (-1117)) 60 T ELT)) (-1243 (((-599 $) (-884 $)) 33 T ELT) (((-599 $) (-1111 $)) 18 T ELT) (((-599 $) (-1111 $) (-1117)) 19 T ELT)) (-3321 (($ (-884 $)) 31 T ELT) (($ (-1111 $)) 13 T ELT) (($ (-1111 $) (-1117)) NIL T ELT))) +(((-26 |#1|) (-10 -7 (-15 -1640 ((-599 |#1|) (-1111 |#1|) (-1117))) (-15 -1640 ((-599 |#1|) (-1111 |#1|))) (-15 -1640 ((-599 |#1|) (-884 |#1|))) (-15 -1242 (|#1| (-1111 |#1|) (-1117))) (-15 -1242 (|#1| (-1111 |#1|))) (-15 -1242 (|#1| (-884 |#1|))) (-15 -1243 ((-599 |#1|) (-1111 |#1|) (-1117))) (-15 -1243 ((-599 |#1|) (-1111 |#1|))) (-15 -1243 ((-599 |#1|) (-884 |#1|))) (-15 -3321 (|#1| (-1111 |#1|) (-1117))) (-15 -3321 (|#1| (-1111 |#1|))) (-15 -3321 (|#1| (-884 |#1|)))) (-27)) (T -26)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-1640 (((-599 $) (-884 $)) 95 T ELT) (((-599 $) (-1111 $)) 94 T ELT) (((-599 $) (-1111 $) (-1117)) 93 T ELT)) (-1242 (($ (-884 $)) 98 T ELT) (($ (-1111 $)) 97 T ELT) (($ (-1111 $) (-1117)) 96 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 88 T ELT)) (-4121 (((-359 $) $) 87 T ELT)) (-3158 (($ $) 107 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3874 (($) 22 T CONST)) (-1243 (((-599 $) (-884 $)) 101 T ELT) (((-599 $) (-1111 $)) 100 T ELT) (((-599 $) (-1111 $) (-1117)) 99 T ELT)) (-3321 (($ (-884 $)) 104 T ELT) (($ (-1111 $)) 103 T ELT) (($ (-1111 $) (-1117)) 102 T ELT)) (-2683 (($ $ $) 68 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-3873 (((-85) $) 86 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 106 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 65 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 85 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3882 (((-359 $) $) 89 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-361 (-499))) 81 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 80 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 84 T ELT) (($ $ (-361 (-499))) 105 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 83 T ELT) (($ (-361 (-499)) $) 82 T ELT))) +(((-27) (-113)) (T -27)) +((-3321 (*1 *1 *2) (-12 (-5 *2 (-884 *1)) (-4 *1 (-27)))) (-3321 (*1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-27)))) (-3321 (*1 *1 *2 *3) (-12 (-5 *2 (-1111 *1)) (-5 *3 (-1117)) (-4 *1 (-27)))) (-1243 (*1 *2 *3) (-12 (-5 *3 (-884 *1)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) (-1243 (*1 *2 *3) (-12 (-5 *3 (-1111 *1)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *3 (-1111 *1)) (-5 *4 (-1117)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) (-1242 (*1 *1 *2) (-12 (-5 *2 (-884 *1)) (-4 *1 (-27)))) (-1242 (*1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-27)))) (-1242 (*1 *1 *2 *3) (-12 (-5 *2 (-1111 *1)) (-5 *3 (-1117)) (-4 *1 (-27)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-884 *1)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-1111 *1)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) (-1640 (*1 *2 *3 *4) (-12 (-5 *3 (-1111 *1)) (-5 *4 (-1117)) (-4 *1 (-27)) (-5 *2 (-599 *1))))) +(-13 (-318) (-942) (-10 -8 (-15 -3321 ($ (-884 $))) (-15 -3321 ($ (-1111 $))) (-15 -3321 ($ (-1111 $) (-1117))) (-15 -1243 ((-599 $) (-884 $))) (-15 -1243 ((-599 $) (-1111 $))) (-15 -1243 ((-599 $) (-1111 $) (-1117))) (-15 -1242 ($ (-884 $))) (-15 -1242 ($ (-1111 $))) (-15 -1242 ($ (-1111 $) (-1117))) (-15 -1640 ((-599 $) (-884 $))) (-15 -1640 ((-599 $) (-1111 $))) (-15 -1640 ((-599 $) (-1111 $) (-1117))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 $) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-200) . T) ((-244) . T) ((-261) . T) ((-318) . T) ((-406) . T) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 $) . T) ((-675 (-361 (-499))) . T) ((-675 $) . T) ((-684) . T) ((-859) . T) ((-942) . T) ((-991 (-361 (-499))) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) . T)) +((-1640 (((-599 $) (-884 $)) NIL T ELT) (((-599 $) (-1111 $)) NIL T ELT) (((-599 $) (-1111 $) (-1117)) 54 T ELT) (((-599 $) $) 22 T ELT) (((-599 $) $ (-1117)) 45 T ELT)) (-1242 (($ (-884 $)) NIL T ELT) (($ (-1111 $)) NIL T ELT) (($ (-1111 $) (-1117)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1117)) 39 T ELT)) (-1243 (((-599 $) (-884 $)) NIL T ELT) (((-599 $) (-1111 $)) NIL T ELT) (((-599 $) (-1111 $) (-1117)) 52 T ELT) (((-599 $) $) 18 T ELT) (((-599 $) $ (-1117)) 47 T ELT)) (-3321 (($ (-884 $)) NIL T ELT) (($ (-1111 $)) NIL T ELT) (($ (-1111 $) (-1117)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1117)) 41 T ELT))) +(((-28 |#1| |#2|) (-10 -7 (-15 -1640 ((-599 |#1|) |#1| (-1117))) (-15 -1242 (|#1| |#1| (-1117))) (-15 -1640 ((-599 |#1|) |#1|)) (-15 -1242 (|#1| |#1|)) (-15 -1243 ((-599 |#1|) |#1| (-1117))) (-15 -3321 (|#1| |#1| (-1117))) (-15 -1243 ((-599 |#1|) |#1|)) (-15 -3321 (|#1| |#1|)) (-15 -1640 ((-599 |#1|) (-1111 |#1|) (-1117))) (-15 -1640 ((-599 |#1|) (-1111 |#1|))) (-15 -1640 ((-599 |#1|) (-884 |#1|))) (-15 -1242 (|#1| (-1111 |#1|) (-1117))) (-15 -1242 (|#1| (-1111 |#1|))) (-15 -1242 (|#1| (-884 |#1|))) (-15 -1243 ((-599 |#1|) (-1111 |#1|) (-1117))) (-15 -1243 ((-599 |#1|) (-1111 |#1|))) (-15 -1243 ((-599 |#1|) (-884 |#1|))) (-15 -3321 (|#1| (-1111 |#1|) (-1117))) (-15 -3321 (|#1| (-1111 |#1|))) (-15 -3321 (|#1| (-884 |#1|)))) (-29 |#2|) (-510)) (T -28)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-1640 (((-599 $) (-884 $)) 95 T ELT) (((-599 $) (-1111 $)) 94 T ELT) (((-599 $) (-1111 $) (-1117)) 93 T ELT) (((-599 $) $) 145 T ELT) (((-599 $) $ (-1117)) 143 T ELT)) (-1242 (($ (-884 $)) 98 T ELT) (($ (-1111 $)) 97 T ELT) (($ (-1111 $) (-1117)) 96 T ELT) (($ $) 146 T ELT) (($ $ (-1117)) 144 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3204 (((-599 (-1117)) $) 214 T ELT)) (-3206 (((-361 (-1111 $)) $ (-566 $)) 246 (|has| |#1| (-510)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1633 (((-599 (-566 $)) $) 177 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-1637 (($ $ (-599 (-566 $)) (-599 $)) 167 T ELT) (($ $ (-599 (-247 $))) 166 T ELT) (($ $ (-247 $)) 165 T ELT)) (-3925 (($ $) 88 T ELT)) (-4121 (((-359 $) $) 87 T ELT)) (-3158 (($ $) 107 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3874 (($) 22 T CONST)) (-1243 (((-599 $) (-884 $)) 101 T ELT) (((-599 $) (-1111 $)) 100 T ELT) (((-599 $) (-1111 $) (-1117)) 99 T ELT) (((-599 $) $) 149 T ELT) (((-599 $) $ (-1117)) 147 T ELT)) (-3321 (($ (-884 $)) 104 T ELT) (($ (-1111 $)) 103 T ELT) (($ (-1111 $) (-1117)) 102 T ELT) (($ $) 150 T ELT) (($ $ (-1117)) 148 T ELT)) (-3295 (((-3 (-884 |#1|) #1="failed") $) 265 (|has| |#1| (-989)) ELT) (((-3 (-361 (-884 |#1|)) #1#) $) 248 (|has| |#1| (-510)) ELT) (((-3 |#1| #1#) $) 210 T ELT) (((-3 (-499) #1#) $) 207 (|has| |#1| (-978 (-499))) ELT) (((-3 (-1117) #1#) $) 201 T ELT) (((-3 (-566 $) #1#) $) 152 T ELT) (((-3 (-361 (-499)) #1#) $) 140 (-3677 (-12 (|has| |#1| (-978 (-499))) (|has| |#1| (-510))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-3294 (((-884 |#1|) $) 264 (|has| |#1| (-989)) ELT) (((-361 (-884 |#1|)) $) 247 (|has| |#1| (-510)) ELT) ((|#1| $) 209 T ELT) (((-499) $) 208 (|has| |#1| (-978 (-499))) ELT) (((-1117) $) 200 T ELT) (((-566 $) $) 151 T ELT) (((-361 (-499)) $) 141 (-3677 (-12 (|has| |#1| (-978 (-499))) (|has| |#1| (-510))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-2683 (($ $ $) 68 T ELT)) (-2380 (((-647 |#1|) (-647 $)) 253 (|has| |#1| (-989)) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 252 (|has| |#1| (-989)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 139 (-3677 (-2681 (|has| |#1| (-989)) (|has| |#1| (-596 (-499)))) (-2681 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT) (((-647 (-499)) (-647 $)) 138 (-3677 (-2681 (|has| |#1| (-989)) (|has| |#1| (-596 (-499)))) (-2681 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-3873 (((-85) $) 86 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 206 (|has| |#1| (-821 (-333))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 205 (|has| |#1| (-821 (-499))) ELT)) (-2692 (($ (-599 $)) 171 T ELT) (($ $) 170 T ELT)) (-1632 (((-599 (-86)) $) 178 T ELT)) (-3743 (((-86) (-86)) 179 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-2794 (((-85) $) 199 (|has| $ (-978 (-499))) ELT)) (-3117 (($ $) 231 (|has| |#1| (-989)) ELT)) (-3119 (((-1065 |#1| (-566 $)) $) 230 (|has| |#1| (-989)) ELT)) (-3132 (($ $ (-499)) 106 T ELT)) (-1675 (((-3 (-599 $) #2="failed") (-599 $) $) 65 T ELT)) (-1630 (((-1111 $) (-566 $)) 196 (|has| $ (-989)) ELT)) (-4108 (($ (-1 $ $) (-566 $)) 185 T ELT)) (-1635 (((-3 (-566 $) "failed") $) 175 T ELT)) (-2381 (((-647 |#1|) (-1207 $)) 255 (|has| |#1| (-989)) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 254 (|has| |#1| (-989)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 137 (-3677 (-2681 (|has| |#1| (-989)) (|has| |#1| (-596 (-499)))) (-2681 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT) (((-647 (-499)) (-1207 $)) 136 (-3677 (-2681 (|has| |#1| (-989)) (|has| |#1| (-596 (-499)))) (-2681 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1634 (((-599 (-566 $)) $) 176 T ELT)) (-2336 (($ (-86) (-599 $)) 184 T ELT) (($ (-86) $) 183 T ELT)) (-2944 (((-3 (-599 $) #3="failed") $) 225 (|has| |#1| (-1052)) ELT)) (-2946 (((-3 (-2 (|:| |val| $) (|:| -2519 (-499))) #3#) $) 234 (|has| |#1| (-989)) ELT)) (-2943 (((-3 (-599 $) #3#) $) 227 (|has| |#1| (-25)) ELT)) (-1892 (((-3 (-2 (|:| -4104 (-499)) (|:| |var| (-566 $))) #3#) $) 228 (|has| |#1| (-25)) ELT)) (-2945 (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) #3#) $ (-1117)) 233 (|has| |#1| (-989)) ELT) (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) #3#) $ (-86)) 232 (|has| |#1| (-989)) ELT) (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) #3#) $) 226 (|has| |#1| (-1052)) ELT)) (-2752 (((-85) $ (-1117)) 182 T ELT) (((-85) $ (-86)) 181 T ELT)) (-2601 (($ $) 85 T ELT)) (-2722 (((-714) $) 174 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1895 (((-85) $) 212 T ELT)) (-1894 ((|#1| $) 213 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-1631 (((-85) $ (-1117)) 187 T ELT) (((-85) $ $) 186 T ELT)) (-3882 (((-359 $) $) 89 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-2795 (((-85) $) 198 (|has| $ (-978 (-499))) ELT)) (-3918 (($ $ (-1117) (-714) (-1 $ $)) 238 (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714) (-1 $ (-599 $))) 237 (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714)) (-599 (-1 $ (-599 $)))) 236 (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714)) (-599 (-1 $ $))) 235 (|has| |#1| (-989)) ELT) (($ $ (-599 (-86)) (-599 $) (-1117)) 224 (|has| |#1| (-569 (-488))) ELT) (($ $ (-86) $ (-1117)) 223 (|has| |#1| (-569 (-488))) ELT) (($ $) 222 (|has| |#1| (-569 (-488))) ELT) (($ $ (-599 (-1117))) 221 (|has| |#1| (-569 (-488))) ELT) (($ $ (-1117)) 220 (|has| |#1| (-569 (-488))) ELT) (($ $ (-86) (-1 $ $)) 195 T ELT) (($ $ (-86) (-1 $ (-599 $))) 194 T ELT) (($ $ (-599 (-86)) (-599 (-1 $ (-599 $)))) 193 T ELT) (($ $ (-599 (-86)) (-599 (-1 $ $))) 192 T ELT) (($ $ (-1117) (-1 $ $)) 191 T ELT) (($ $ (-1117) (-1 $ (-599 $))) 190 T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ (-599 $)))) 189 T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ $))) 188 T ELT) (($ $ (-599 $) (-599 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-247 $)) 157 T ELT) (($ $ (-599 (-247 $))) 156 T ELT) (($ $ (-599 (-566 $)) (-599 $)) 155 T ELT) (($ $ (-566 $) $) 154 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3950 (($ (-86) (-599 $)) 164 T ELT) (($ (-86) $ $ $ $) 163 T ELT) (($ (-86) $ $ $) 162 T ELT) (($ (-86) $ $) 161 T ELT) (($ (-86) $) 160 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-1636 (($ $ $) 173 T ELT) (($ $) 172 T ELT)) (-3908 (($ $ (-599 (-1117)) (-599 (-714))) 260 (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714)) 259 (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117))) 258 (|has| |#1| (-989)) ELT) (($ $ (-1117)) 256 (|has| |#1| (-989)) ELT)) (-3116 (($ $) 241 (|has| |#1| (-510)) ELT)) (-3118 (((-1065 |#1| (-566 $)) $) 240 (|has| |#1| (-510)) ELT)) (-3323 (($ $) 197 (|has| $ (-989)) ELT)) (-4122 (((-488) $) 269 (|has| |#1| (-569 (-488))) ELT) (($ (-359 $)) 239 (|has| |#1| (-510)) ELT) (((-825 (-333)) $) 204 (|has| |#1| (-569 (-825 (-333)))) ELT) (((-825 (-499)) $) 203 (|has| |#1| (-569 (-825 (-499)))) ELT)) (-3130 (($ $ $) 268 (|has| |#1| (-427)) ELT)) (-2551 (($ $ $) 267 (|has| |#1| (-427)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-361 (-499))) 81 T ELT) (($ (-884 |#1|)) 266 (|has| |#1| (-989)) ELT) (($ (-361 (-884 |#1|))) 249 (|has| |#1| (-510)) ELT) (($ (-361 (-884 (-361 |#1|)))) 245 (|has| |#1| (-510)) ELT) (($ (-884 (-361 |#1|))) 244 (|has| |#1| (-510)) ELT) (($ (-361 |#1|)) 243 (|has| |#1| (-510)) ELT) (($ (-1065 |#1| (-566 $))) 229 (|has| |#1| (-989)) ELT) (($ |#1|) 211 T ELT) (($ (-1117)) 202 T ELT) (($ (-566 $)) 153 T ELT)) (-2823 (((-649 $) $) 251 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-2709 (($ (-599 $)) 169 T ELT) (($ $) 168 T ELT)) (-2355 (((-85) (-86)) 180 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-1893 (($ (-1117) (-599 $)) 219 T ELT) (($ (-1117) $ $ $ $) 218 T ELT) (($ (-1117) $ $ $) 217 T ELT) (($ (-1117) $ $) 216 T ELT) (($ (-1117) $) 215 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-599 (-1117)) (-599 (-714))) 263 (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714)) 262 (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117))) 261 (|has| |#1| (-989)) ELT) (($ $ (-1117)) 257 (|has| |#1| (-989)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 80 T ELT) (($ (-1065 |#1| (-566 $)) (-1065 |#1| (-566 $))) 242 (|has| |#1| (-510)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 84 T ELT) (($ $ (-361 (-499))) 105 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 83 T ELT) (($ (-361 (-499)) $) 82 T ELT) (($ $ |#1|) 250 (|has| |#1| (-146)) ELT) (($ |#1| $) 142 (|has| |#1| (-989)) ELT))) +(((-29 |#1|) (-113) (-510)) (T -29)) +((-3321 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-510)))) (-1243 (*1 *2 *1) (-12 (-4 *3 (-510)) (-5 *2 (-599 *1)) (-4 *1 (-29 *3)))) (-3321 (*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-4 *1 (-29 *3)) (-4 *3 (-510)))) (-1243 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *2 (-599 *1)) (-4 *1 (-29 *4)))) (-1242 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-510)))) (-1640 (*1 *2 *1) (-12 (-4 *3 (-510)) (-5 *2 (-599 *1)) (-4 *1 (-29 *3)))) (-1242 (*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-4 *1 (-29 *3)) (-4 *3 (-510)))) (-1640 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *2 (-599 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-375 |t#1|) (-10 -8 (-15 -3321 ($ $)) (-15 -1243 ((-599 $) $)) (-15 -3321 ($ $ (-1117))) (-15 -1243 ((-599 $) $ (-1117))) (-15 -1242 ($ $)) (-15 -1640 ((-599 $) $)) (-15 -1242 ($ $ (-1117))) (-15 -1640 ((-599 $) $ (-1117))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) . T) ((-27) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) . T) ((-571 (-361 (-884 |#1|))) |has| |#1| (-510)) ((-571 (-499)) . T) ((-571 (-566 $)) . T) ((-571 (-884 |#1|)) |has| |#1| (-989)) ((-571 (-1117)) . T) ((-571 |#1|) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-569 (-825 (-333))) |has| |#1| (-569 (-825 (-333)))) ((-569 (-825 (-499))) |has| |#1| (-569 (-825 (-499)))) ((-200) . T) ((-244) . T) ((-261) . T) ((-263 $) . T) ((-252) . T) ((-318) . T) ((-332 |#1|) |has| |#1| (-989)) ((-354 |#1|) . T) ((-366 |#1|) . T) ((-375 |#1|) . T) ((-406) . T) ((-427) |has| |#1| (-427)) ((-468 (-566 $) $) . T) ((-468 $ $) . T) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 |#1|) -3677 (|has| |#1| (-989)) (|has| |#1| (-146))) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 (-499)) -12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ((-606 |#1|) -3677 (|has| |#1| (-989)) (|has| |#1| (-146))) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) . T) ((-596 (-499)) -12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ((-596 |#1|) |has| |#1| (-989)) ((-675 (-361 (-499))) . T) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) . T) ((-684) . T) ((-831 $ (-1117)) |has| |#1| (-989)) ((-836 (-1117)) |has| |#1| (-989)) ((-838 (-1117)) |has| |#1| (-989)) ((-821 (-333)) |has| |#1| (-821 (-333))) ((-821 (-499)) |has| |#1| (-821 (-499))) ((-819 |#1|) . T) ((-859) . T) ((-942) . T) ((-978 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (-12 (|has| |#1| (-510)) (|has| |#1| (-978 (-499))))) ((-978 (-361 (-884 |#1|))) |has| |#1| (-510)) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 (-566 $)) . T) ((-978 (-884 |#1|)) |has| |#1| (-989)) ((-978 (-1117)) . T) ((-978 |#1|) . T) ((-991 (-361 (-499))) . T) ((-991 |#1|) |has| |#1| (-146)) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 |#1|) |has| |#1| (-146)) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) . T)) +((-3017 (((-1029 (-179)) $) NIL T ELT)) (-3018 (((-1029 (-179)) $) NIL T ELT)) (-3256 (($ $ (-179)) 164 T ELT)) (-1244 (($ (-884 (-499)) (-1117) (-1117) (-1029 (-361 (-499))) (-1029 (-361 (-499)))) 103 T ELT)) (-3019 (((-599 (-599 (-881 (-179)))) $) 181 T ELT)) (-4096 (((-797) $) 195 T ELT))) +(((-30) (-13 (-893) (-10 -8 (-15 -1244 ($ (-884 (-499)) (-1117) (-1117) (-1029 (-361 (-499))) (-1029 (-361 (-499))))) (-15 -3256 ($ $ (-179)))))) (T -30)) +((-1244 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-884 (-499))) (-5 *3 (-1117)) (-5 *4 (-1029 (-361 (-499)))) (-5 *1 (-30)))) (-3256 (*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 17 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3371 (((-1075) $) 11 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2815 (((-1075) $) 9 T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-31) (-13 (-1023) (-10 -8 (-15 -2815 ((-1075) $)) (-15 -3371 ((-1075) $))))) (T -31)) +((-2815 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-31)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-31))))) +((-3321 ((|#2| (-1111 |#2|) (-1117)) 39 T ELT)) (-3743 (((-86) (-86)) 53 T ELT)) (-1630 (((-1111 |#2|) (-566 |#2|)) 150 (|has| |#1| (-978 (-499))) ELT)) (-1247 ((|#2| |#1| (-499)) 138 (|has| |#1| (-978 (-499))) ELT)) (-1245 ((|#2| (-1111 |#2|) |#2|) 29 T ELT)) (-1246 (((-797) (-599 |#2|)) 87 T ELT)) (-3323 ((|#2| |#2|) 145 (|has| |#1| (-978 (-499))) ELT)) (-2355 (((-85) (-86)) 17 T ELT)) (** ((|#2| |#2| (-361 (-499))) 104 (|has| |#1| (-978 (-499))) ELT))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3321 (|#2| (-1111 |#2|) (-1117))) (-15 -3743 ((-86) (-86))) (-15 -2355 ((-85) (-86))) (-15 -1245 (|#2| (-1111 |#2|) |#2|)) (-15 -1246 ((-797) (-599 |#2|))) (IF (|has| |#1| (-978 (-499))) (PROGN (-15 ** (|#2| |#2| (-361 (-499)))) (-15 -1630 ((-1111 |#2|) (-566 |#2|))) (-15 -3323 (|#2| |#2|)) (-15 -1247 (|#2| |#1| (-499)))) |%noBranch|)) (-510) (-375 |#1|)) (T -32)) +((-1247 (*1 *2 *3 *4) (-12 (-5 *4 (-499)) (-4 *2 (-375 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-978 *4)) (-4 *3 (-510)))) (-3323 (*1 *2 *2) (-12 (-4 *3 (-978 (-499))) (-4 *3 (-510)) (-5 *1 (-32 *3 *2)) (-4 *2 (-375 *3)))) (-1630 (*1 *2 *3) (-12 (-5 *3 (-566 *5)) (-4 *5 (-375 *4)) (-4 *4 (-978 (-499))) (-4 *4 (-510)) (-5 *2 (-1111 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-361 (-499))) (-4 *4 (-978 (-499))) (-4 *4 (-510)) (-5 *1 (-32 *4 *2)) (-4 *2 (-375 *4)))) (-1246 (*1 *2 *3) (-12 (-5 *3 (-599 *5)) (-4 *5 (-375 *4)) (-4 *4 (-510)) (-5 *2 (-797)) (-5 *1 (-32 *4 *5)))) (-1245 (*1 *2 *3 *2) (-12 (-5 *3 (-1111 *2)) (-4 *2 (-375 *4)) (-4 *4 (-510)) (-5 *1 (-32 *4 *2)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) (-4 *5 (-375 *4)))) (-3743 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-510)) (-5 *1 (-32 *3 *4)) (-4 *4 (-375 *3)))) (-3321 (*1 *2 *3 *4) (-12 (-5 *3 (-1111 *2)) (-5 *4 (-1117)) (-4 *2 (-375 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-510))))) +((-3874 (($) 10 T ELT)) (-1248 (((-85) $ $) 8 T ELT)) (-3543 (((-85) $) 15 T ELT))) +(((-33 |#1|) (-10 -7 (-15 -3874 (|#1|)) (-15 -3543 ((-85) |#1|)) (-15 -1248 ((-85) |#1| |#1|))) (-34)) (T -33)) +NIL +((-3874 (($) 7 T CONST)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3540 (($ $) 10 T ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-34) (-113)) (T -34)) +((-1248 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3540 (*1 *1 *1) (-4 *1 (-34))) (-3713 (*1 *1) (-4 *1 (-34))) (-3543 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3874 (*1 *1) (-4 *1 (-34))) (-4107 (*1 *2 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-34)) (-5 *2 (-714))))) +(-13 (-1157) (-10 -8 (-15 -1248 ((-85) $ $)) (-15 -3540 ($ $)) (-15 -3713 ($)) (-15 -3543 ((-85) $)) (-15 -3874 ($) -4102) (IF (|has| $ (-6 -4145)) (-15 -4107 ((-714) $)) |%noBranch|))) +(((-1157) . T)) +((-3638 (($ $) 11 T ELT)) (-3636 (($ $) 10 T ELT)) (-3640 (($ $) 9 T ELT)) (-3641 (($ $) 8 T ELT)) (-3639 (($ $) 7 T ELT)) (-3637 (($ $) 6 T ELT))) +(((-35) (-113)) (T -35)) +((-3638 (*1 *1 *1) (-4 *1 (-35))) (-3636 (*1 *1 *1) (-4 *1 (-35))) (-3640 (*1 *1 *1) (-4 *1 (-35))) (-3641 (*1 *1 *1) (-4 *1 (-35))) (-3639 (*1 *1 *1) (-4 *1 (-35))) (-3637 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -3637 ($ $)) (-15 -3639 ($ $)) (-15 -3641 ($ $)) (-15 -3640 ($ $)) (-15 -3636 ($ $)) (-15 -3638 ($ $)))) +((-2687 (((-85) $ $) 19 (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73))) ELT)) (-3542 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 133 T ELT)) (-3945 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 156 T ELT)) (-3947 (($ $) 154 T ELT)) (-3747 (($) 77 T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2299 (((-1213) $ |#1| |#1|) 104 (|has| $ (-6 -4146)) ELT) (((-1213) $ (-499) (-499)) 186 (|has| $ (-6 -4146)) ELT)) (-3935 (($ $ (-499)) 167 (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 220 T ELT) (((-85) $) 214 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-1823 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 211 (|has| $ (-6 -4146)) ELT) (($ $) 210 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) (|has| $ (-6 -4146))) ELT)) (-3030 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 221 T ELT) (($ $) 215 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-3582 (((-85) $ (-714)) 203 T ELT)) (-3146 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 142 (|has| $ (-6 -4146)) ELT)) (-3937 (($ $ $) 163 (|has| $ (-6 -4146)) ELT)) (-3936 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 165 (|has| $ (-6 -4146)) ELT)) (-3939 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 161 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#2| $ |#1| |#2|) 78 T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 197 (|has| $ (-6 -4146)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-1174 (-499)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 168 (|has| $ (-6 -4146)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 166 (|has| $ (-6 -4146)) ELT) (($ $ #2="rest" $) 164 (|has| $ (-6 -4146)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 162 (|has| $ (-6 -4146)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 141 (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 140 (|has| $ (-6 -4146)) ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 227 T ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 183 (|has| $ (-6 -4145)) ELT)) (-3946 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 155 T ELT)) (-2332 (((-3 |#2| #5="failed") |#1| $) 65 T ELT)) (-3874 (($) 7 T CONST)) (-2397 (($ $) 212 (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) 222 T ELT)) (-3949 (($ $ (-714)) 150 T ELT) (($ $) 148 T ELT)) (-2481 (($ $) 225 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-1386 (($ $) 62 (-3677 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145)))) ELT)) (-3545 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -4145)) ELT) (((-3 |#2| #5#) |#1| $) 66 T ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 231 T ELT) (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 226 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-3546 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -4145)) ELT) (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 185 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 182 (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 184 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 181 (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 180 (|has| $ (-6 -4145)) ELT)) (-1609 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -4146)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 198 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) 93 T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499)) 196 T ELT)) (-3583 (((-85) $) 200 T ELT)) (-3559 (((-499) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 219 T ELT) (((-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 218 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT) (((-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499)) 217 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-3010 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) 84 (|has| $ (-6 -4145)) ELT) (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 122 (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) 131 T ELT)) (-3148 (((-85) $ $) 139 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-3764 (($ (-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 176 T ELT)) (-3869 (((-85) $ (-714)) 202 T ELT)) (-2301 ((|#1| $) 101 (|has| |#1| (-781)) ELT) (((-499) $) 188 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) 204 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-2977 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ $) 228 T ELT) (($ $ $) 224 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-3658 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ $) 223 T ELT) (($ $ $) 216 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) 85 (|has| $ (-6 -4145)) ELT) (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 123 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (((-85) |#2| $) 87 (-12 (|has| |#2| (-1041)) (|has| $ (-6 -4145))) ELT) (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 125 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 ((|#1| $) 100 (|has| |#1| (-781)) ELT) (((-499) $) 189 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) 205 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -4146)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -4146)) ELT) (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 118 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT) (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ $) 173 T ELT) (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 117 T ELT)) (-3682 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 236 T ELT)) (-3866 (((-85) $ (-714)) 201 T ELT)) (-3151 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 136 T ELT)) (-3667 (((-85) $) 132 T ELT)) (-3380 (((-1099) $) 22 (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-3948 (($ $ (-714)) 153 T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 151 T ELT)) (-2333 (((-599 |#1|) $) 67 T ELT)) (-2334 (((-85) |#1| $) 68 T ELT)) (-1308 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3757 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 44 T ELT) (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499)) 230 T ELT) (($ $ $ (-499)) 229 T ELT)) (-2404 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499)) 170 T ELT) (($ $ $ (-499)) 169 T ELT)) (-2304 (((-599 |#1|) $) 98 T ELT) (((-599 (-499)) $) 191 T ELT)) (-2305 (((-85) |#1| $) 97 T ELT) (((-85) (-499) $) 192 T ELT)) (-3381 (((-1060) $) 21 (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-3951 ((|#2| $) 102 (|has| |#1| (-781)) ELT) (($ $ (-714)) 147 T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 145 T ELT)) (-1387 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 179 T ELT)) (-2300 (($ $ |#2|) 103 (|has| $ (-6 -4146)) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 187 (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-3584 (((-85) $) 199 T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) 82 (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 120 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) 91 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) 89 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-247 |#2|))) 88 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 129 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 128 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 127 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) 126 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#2| $) 99 (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT) (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 190 (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-2306 (((-599 |#2|) $) 96 T ELT) (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 193 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 195 T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499)) 194 T ELT) (($ $ (-1174 (-499))) 177 T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #1#) 152 T ELT) (($ $ #2#) 149 T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #3#) 146 T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #4#) 134 T ELT)) (-3150 (((-499) $ $) 137 T ELT)) (-1499 (($) 53 T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1604 (($ $ (-499)) 233 T ELT) (($ $ (-1174 (-499))) 232 T ELT)) (-2405 (($ $ (-499)) 172 T ELT) (($ $ (-1174 (-499))) 171 T ELT)) (-3783 (((-85) $) 135 T ELT)) (-3942 (($ $) 159 T ELT)) (-3940 (($ $) 160 (|has| $ (-6 -4146)) ELT)) (-3943 (((-714) $) 158 T ELT)) (-3944 (($ $) 157 T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) |#2| $) 86 (-12 (|has| |#2| (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) |#2|) $) 83 (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 124 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 121 (|has| $ (-6 -4145)) ELT)) (-1824 (($ $ $ (-499)) 213 (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 63 (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488)))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 54 T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 178 T ELT)) (-3941 (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 235 T ELT) (($ $ $) 234 T ELT)) (-3952 (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 175 T ELT) (($ (-599 $)) 174 T ELT) (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 144 T ELT) (($ $ $) 143 T ELT)) (-4096 (((-797) $) 17 (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) (|has| |#2| (-568 (-797))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797)))) ELT)) (-3662 (((-599 $) $) 130 T ELT)) (-3149 (((-85) $ $) 138 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-1297 (((-85) $ $) 20 (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1249 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) "failed") |#1| $) 116 T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) 81 (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 119 (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) 206 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-2686 (((-85) $ $) 208 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-3174 (((-85) $ $) 18 (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73))) ELT)) (-2805 (((-85) $ $) 207 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-2806 (((-85) $ $) 209 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-36 |#1| |#2|) (-113) (-1041) (-1041)) (T -36)) +((-1249 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-5 *2 (-2 (|:| -4010 *3) (|:| |entry| *4)))))) +(-13 (-1134 |t#1| |t#2|) (-624 (-2 (|:| -4010 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -1249 ((-3 (-2 (|:| -4010 |t#1|) (|:| |entry| |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-78 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-73) -3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-1041)) (|has| |#2| (-73))) ((-568 (-797)) -3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) (|has| |#2| (-1041)) (|has| |#2| (-568 (-797)))) ((-124 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-569 (-488)) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ((-183 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-192 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-240 (-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-240 (-1174 (-499)) $) . T) ((-240 |#1| |#2|) . T) ((-242 (-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-242 |#1| |#2|) . T) ((-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ((-263 |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ((-236 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-327 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-443 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-443 |#2|) . T) ((-554 (-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-554 |#1| |#2|) . T) ((-468 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ((-468 |#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ((-565 |#1| |#2|) . T) ((-609 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-624 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-781) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ((-784) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ((-950 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-1041) -3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) (|has| |#2| (-1041))) ((-1090 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-1134 |#1| |#2|) . T) ((-1157) . T) ((-1196 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T)) +((-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-37 |#1| |#2|) (-10 -7 (-15 -4096 (|#1| |#2|)) (-15 -4096 (|#1| (-499))) (-15 -4096 ((-797) |#1|))) (-38 |#2|) (-146)) (T -37)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 49 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) +(((-38 |#1|) (-113) (-146)) (T -38)) +NIL +(-13 (-989) (-675 |t#1|) (-571 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-598 |#1|) . T) ((-675 |#1|) . T) ((-684) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-3558 (((-359 |#1|) |#1|) 41 T ELT)) (-3882 (((-359 |#1|) |#1|) 30 T ELT) (((-359 |#1|) |#1| (-599 (-48))) 33 T ELT)) (-1250 (((-85) |#1|) 59 T ELT))) +(((-39 |#1|) (-10 -7 (-15 -3882 ((-359 |#1|) |#1| (-599 (-48)))) (-15 -3882 ((-359 |#1|) |#1|)) (-15 -3558 ((-359 |#1|) |#1|)) (-15 -1250 ((-85) |#1|))) (-1183 (-48))) (T -39)) +((-1250 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1183 (-48))))) (-3558 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1183 (-48))))) (-3882 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1183 (-48))))) (-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-48))) (-5 *2 (-359 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1183 (-48)))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1740 (((-2 (|:| |num| (-1207 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2164 (($ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2162 (((-85) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1880 (((-647 (-361 |#2|)) (-1207 $)) NIL T ELT) (((-647 (-361 |#2|))) NIL T ELT)) (-3470 (((-361 |#2|) $) NIL T ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| (-361 |#2|) (-305)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1678 (((-85) $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3258 (((-714)) NIL (|has| (-361 |#2|) (-323)) ELT)) (-1754 (((-85)) NIL T ELT)) (-1753 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| (-361 |#2|) (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| (-361 |#2|) (-978 (-361 (-499)))) ELT) (((-3 (-361 |#2|) #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| (-361 |#2|) (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| (-361 |#2|) (-978 (-361 (-499)))) ELT) (((-361 |#2|) $) NIL T ELT)) (-1890 (($ (-1207 (-361 |#2|)) (-1207 $)) NIL T ELT) (($ (-1207 (-361 |#2|))) 61 T ELT) (($ (-1207 |#2|) |#2|) 131 T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-361 |#2|) (-305)) ELT)) (-2683 (($ $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1879 (((-647 (-361 |#2|)) $ (-1207 $)) NIL T ELT) (((-647 (-361 |#2|)) $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-361 |#2|))) (|:| |vec| (-1207 (-361 |#2|)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-361 |#2|)) (-647 $)) NIL T ELT)) (-1745 (((-1207 $) (-1207 $)) NIL T ELT)) (-3992 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-361 |#3|)) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-1732 (((-599 (-599 |#1|))) NIL (|has| |#1| (-323)) ELT)) (-1757 (((-85) |#1| |#1|) NIL T ELT)) (-3231 (((-857)) NIL T ELT)) (-3115 (($) NIL (|has| (-361 |#2|) (-323)) ELT)) (-1752 (((-85)) NIL T ELT)) (-1751 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-2682 (($ $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3643 (($ $) NIL T ELT)) (-2954 (($) NIL (|has| (-361 |#2|) (-305)) ELT)) (-1773 (((-85) $) NIL (|has| (-361 |#2|) (-305)) ELT)) (-1864 (($ $ (-714)) NIL (|has| (-361 |#2|) (-305)) ELT) (($ $) NIL (|has| (-361 |#2|) (-305)) ELT)) (-3873 (((-85) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3922 (((-857) $) NIL (|has| (-361 |#2|) (-305)) ELT) (((-766 (-857)) $) NIL (|has| (-361 |#2|) (-305)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3517 (((-714)) NIL T ELT)) (-1746 (((-1207 $) (-1207 $)) 106 T ELT)) (-3254 (((-361 |#2|) $) NIL T ELT)) (-1733 (((-599 (-884 |#1|)) (-1117)) NIL (|has| |#1| (-318)) ELT)) (-3585 (((-649 $) $) NIL (|has| (-361 |#2|) (-305)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2115 ((|#3| $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2111 (((-857) $) NIL (|has| (-361 |#2|) (-323)) ELT)) (-3200 ((|#3| $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-361 |#2|))) (|:| |vec| (-1207 (-361 |#2|)))) (-1207 $) $) NIL T ELT) (((-647 (-361 |#2|)) (-1207 $)) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1251 (((-1213) (-714)) 84 T ELT)) (-1741 (((-647 (-361 |#2|))) 56 T ELT)) (-1743 (((-647 (-361 |#2|))) 49 T ELT)) (-2601 (($ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1738 (($ (-1207 |#2|) |#2|) 132 T ELT)) (-1742 (((-647 (-361 |#2|))) 50 T ELT)) (-1744 (((-647 (-361 |#2|))) 48 T ELT)) (-1737 (((-2 (|:| |num| (-647 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130 T ELT)) (-1739 (((-2 (|:| |num| (-1207 |#2|)) (|:| |den| |#2|)) $) 68 T ELT)) (-1750 (((-1207 $)) 47 T ELT)) (-4068 (((-1207 $)) 46 T ELT)) (-1749 (((-85) $) NIL T ELT)) (-1748 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3586 (($) NIL (|has| (-361 |#2|) (-305)) CONST)) (-2518 (($ (-857)) NIL (|has| (-361 |#2|) (-323)) ELT)) (-1735 (((-3 |#2| #1#)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1759 (((-714)) NIL T ELT)) (-2527 (($) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| (-361 |#2|) (-305)) ELT)) (-3882 (((-359 $) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-361 |#2|) (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1677 (((-714) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3950 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1736 (((-3 |#2| #1#)) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3907 (((-361 |#2|) (-1207 $)) NIL T ELT) (((-361 |#2|)) 44 T ELT)) (-1865 (((-714) $) NIL (|has| (-361 |#2|) (-305)) ELT) (((-3 (-714) #1#) $ $) NIL (|has| (-361 |#2|) (-305)) ELT)) (-3908 (($ $ (-1 (-361 |#2|) (-361 |#2|))) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ (-1 (-361 |#2|) (-361 |#2|)) (-714)) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ (-1 |#2| |#2|)) 126 T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318))) (-12 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT) (($ $) NIL (-3677 (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318))) (-12 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT)) (-2526 (((-647 (-361 |#2|)) (-1207 $) (-1 (-361 |#2|) (-361 |#2|))) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3323 ((|#3|) 55 T ELT)) (-1767 (($) NIL (|has| (-361 |#2|) (-305)) ELT)) (-3362 (((-1207 (-361 |#2|)) $ (-1207 $)) NIL T ELT) (((-647 (-361 |#2|)) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 (-361 |#2|)) $) 62 T ELT) (((-647 (-361 |#2|)) (-1207 $)) 107 T ELT)) (-4122 (((-1207 (-361 |#2|)) $) NIL T ELT) (($ (-1207 (-361 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| (-361 |#2|) (-305)) ELT)) (-1747 (((-1207 $) (-1207 $)) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-361 |#2|)) NIL T ELT) (($ (-361 (-499))) NIL (-3677 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2823 (($ $) NIL (|has| (-361 |#2|) (-305)) ELT) (((-649 $) $) NIL (|has| (-361 |#2|) (-118)) ELT)) (-2565 ((|#3| $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1756 (((-85)) 42 T ELT)) (-1755 (((-85) |#1|) 54 T ELT) (((-85) |#2|) 138 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1734 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1758 (((-85)) NIL T ELT)) (-2779 (($) 17 T CONST)) (-2785 (($) 27 T CONST)) (-2790 (($ $ (-1 (-361 |#2|) (-361 |#2|))) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ (-1 (-361 |#2|) (-361 |#2|)) (-714)) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318))) (-12 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT) (($ $) NIL (-3677 (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318))) (-12 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| (-361 |#2|) (-318)) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 |#2|)) NIL T ELT) (($ (-361 |#2|) $) NIL T ELT) (($ (-361 (-499)) $) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ (-361 (-499))) NIL (|has| (-361 |#2|) (-318)) ELT))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-297 |#1| |#2| |#3|) (-10 -7 (-15 -1251 ((-1213) (-714))))) (-318) (-1183 |#1|) (-1183 (-361 |#2|)) |#3|) (T -40)) +((-1251 (*1 *2 *3) (-12 (-5 *3 (-714)) (-4 *4 (-318)) (-4 *5 (-1183 *4)) (-5 *2 (-1213)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1183 (-361 *5))) (-14 *7 *6)))) +((-1252 ((|#2| |#2|) 47 T ELT)) (-1257 ((|#2| |#2|) 138 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-13 (-406) (-978 (-499))))) ELT)) (-1256 ((|#2| |#2|) 100 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-13 (-406) (-978 (-499))))) ELT)) (-1255 ((|#2| |#2|) 101 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-13 (-406) (-978 (-499))))) ELT)) (-1258 ((|#2| (-86) |#2| (-714)) 134 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-13 (-406) (-978 (-499))))) ELT)) (-1254 (((-1111 |#2|) |#2|) 44 T ELT)) (-1253 ((|#2| |#2| (-599 (-566 |#2|))) 18 T ELT) ((|#2| |#2| (-599 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) +(((-41 |#1| |#2|) (-10 -7 (-15 -1252 (|#2| |#2|)) (-15 -1253 (|#2| |#2|)) (-15 -1253 (|#2| |#2| |#2|)) (-15 -1253 (|#2| |#2| (-599 |#2|))) (-15 -1253 (|#2| |#2| (-599 (-566 |#2|)))) (-15 -1254 ((-1111 |#2|) |#2|)) (IF (|has| |#1| (-13 (-406) (-978 (-499)))) (IF (|has| |#2| (-375 |#1|)) (PROGN (-15 -1255 (|#2| |#2|)) (-15 -1256 (|#2| |#2|)) (-15 -1257 (|#2| |#2|)) (-15 -1258 (|#2| (-86) |#2| (-714)))) |%noBranch|) |%noBranch|)) (-510) (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 |#1| (-566 $)) $)) (-15 -3118 ((-1065 |#1| (-566 $)) $)) (-15 -4096 ($ (-1065 |#1| (-566 $))))))) (T -41)) +((-1258 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-86)) (-5 *4 (-714)) (-4 *5 (-13 (-406) (-978 (-499)))) (-4 *5 (-510)) (-5 *1 (-41 *5 *2)) (-4 *2 (-375 *5)) (-4 *2 (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 *5 (-566 $)) $)) (-15 -3118 ((-1065 *5 (-566 $)) $)) (-15 -4096 ($ (-1065 *5 (-566 $))))))))) (-1257 (*1 *2 *2) (-12 (-4 *3 (-13 (-406) (-978 (-499)))) (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) (-4 *2 (-375 *3)) (-4 *2 (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) (-15 -3118 ((-1065 *3 (-566 $)) $)) (-15 -4096 ($ (-1065 *3 (-566 $))))))))) (-1256 (*1 *2 *2) (-12 (-4 *3 (-13 (-406) (-978 (-499)))) (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) (-4 *2 (-375 *3)) (-4 *2 (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) (-15 -3118 ((-1065 *3 (-566 $)) $)) (-15 -4096 ($ (-1065 *3 (-566 $))))))))) (-1255 (*1 *2 *2) (-12 (-4 *3 (-13 (-406) (-978 (-499)))) (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) (-4 *2 (-375 *3)) (-4 *2 (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) (-15 -3118 ((-1065 *3 (-566 $)) $)) (-15 -4096 ($ (-1065 *3 (-566 $))))))))) (-1254 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-1111 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 *4 (-566 $)) $)) (-15 -3118 ((-1065 *4 (-566 $)) $)) (-15 -4096 ($ (-1065 *4 (-566 $))))))))) (-1253 (*1 *2 *2 *3) (-12 (-5 *3 (-599 (-566 *2))) (-4 *2 (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 *4 (-566 $)) $)) (-15 -3118 ((-1065 *4 (-566 $)) $)) (-15 -4096 ($ (-1065 *4 (-566 $))))))) (-4 *4 (-510)) (-5 *1 (-41 *4 *2)))) (-1253 (*1 *2 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 *4 (-566 $)) $)) (-15 -3118 ((-1065 *4 (-566 $)) $)) (-15 -4096 ($ (-1065 *4 (-566 $))))))) (-4 *4 (-510)) (-5 *1 (-41 *4 *2)))) (-1253 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) (-15 -3118 ((-1065 *3 (-566 $)) $)) (-15 -4096 ($ (-1065 *3 (-566 $))))))))) (-1253 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) (-15 -3118 ((-1065 *3 (-566 $)) $)) (-15 -4096 ($ (-1065 *3 (-566 $))))))))) (-1252 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-318) (-252) (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) (-15 -3118 ((-1065 *3 (-566 $)) $)) (-15 -4096 ($ (-1065 *3 (-566 $)))))))))) +((-3882 (((-359 (-1111 |#3|)) (-1111 |#3|) (-599 (-48))) 23 T ELT) (((-359 |#3|) |#3| (-599 (-48))) 19 T ELT))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3882 ((-359 |#3|) |#3| (-599 (-48)))) (-15 -3882 ((-359 (-1111 |#3|)) (-1111 |#3|) (-599 (-48))))) (-781) (-738) (-888 (-48) |#2| |#1|)) (T -42)) +((-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-48))) (-4 *5 (-781)) (-4 *6 (-738)) (-4 *7 (-888 (-48) *6 *5)) (-5 *2 (-359 (-1111 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1111 *7)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-48))) (-4 *5 (-781)) (-4 *6 (-738)) (-5 *2 (-359 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-888 (-48) *6 *5))))) +((-1262 (((-714) |#2|) 70 T ELT)) (-1260 (((-714) |#2|) 74 T ELT)) (-1275 (((-599 |#2|)) 37 T ELT)) (-1259 (((-714) |#2|) 73 T ELT)) (-1261 (((-714) |#2|) 69 T ELT)) (-1263 (((-714) |#2|) 72 T ELT)) (-1273 (((-599 (-647 |#1|))) 65 T ELT)) (-1268 (((-599 |#2|)) 60 T ELT)) (-1266 (((-599 |#2|) |#2|) 48 T ELT)) (-1270 (((-599 |#2|)) 62 T ELT)) (-1269 (((-599 |#2|)) 61 T ELT)) (-1272 (((-599 (-647 |#1|))) 53 T ELT)) (-1267 (((-599 |#2|)) 59 T ELT)) (-1265 (((-599 |#2|) |#2|) 47 T ELT)) (-1264 (((-599 |#2|)) 55 T ELT)) (-1274 (((-599 (-647 |#1|))) 66 T ELT)) (-1271 (((-599 |#2|)) 64 T ELT)) (-2113 (((-1207 |#2|) (-1207 |#2|)) 99 (|has| |#1| (-261)) ELT))) +(((-43 |#1| |#2|) (-10 -7 (-15 -1259 ((-714) |#2|)) (-15 -1260 ((-714) |#2|)) (-15 -1261 ((-714) |#2|)) (-15 -1262 ((-714) |#2|)) (-15 -1263 ((-714) |#2|)) (-15 -1264 ((-599 |#2|))) (-15 -1265 ((-599 |#2|) |#2|)) (-15 -1266 ((-599 |#2|) |#2|)) (-15 -1267 ((-599 |#2|))) (-15 -1268 ((-599 |#2|))) (-15 -1269 ((-599 |#2|))) (-15 -1270 ((-599 |#2|))) (-15 -1271 ((-599 |#2|))) (-15 -1272 ((-599 (-647 |#1|)))) (-15 -1273 ((-599 (-647 |#1|)))) (-15 -1274 ((-599 (-647 |#1|)))) (-15 -1275 ((-599 |#2|))) (IF (|has| |#1| (-261)) (-15 -2113 ((-1207 |#2|) (-1207 |#2|))) |%noBranch|)) (-510) (-372 |#1|)) (T -43)) +((-2113 (*1 *2 *2) (-12 (-5 *2 (-1207 *4)) (-4 *4 (-372 *3)) (-4 *3 (-261)) (-4 *3 (-510)) (-5 *1 (-43 *3 *4)))) (-1275 (*1 *2) (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3)))) (-1274 (*1 *2) (-12 (-4 *3 (-510)) (-5 *2 (-599 (-647 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3)))) (-1273 (*1 *2) (-12 (-4 *3 (-510)) (-5 *2 (-599 (-647 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3)))) (-1272 (*1 *2) (-12 (-4 *3 (-510)) (-5 *2 (-599 (-647 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3)))) (-1271 (*1 *2) (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3)))) (-1270 (*1 *2) (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3)))) (-1269 (*1 *2) (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3)))) (-1268 (*1 *2) (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3)))) (-1267 (*1 *2) (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3)))) (-1266 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-599 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4)))) (-1265 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-599 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4)))) (-1264 (*1 *2) (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3)))) (-1263 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4)))) (-1262 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4)))) (-1261 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4)))) (-1260 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4)))) (-1259 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1870 (((-3 $ #1="failed")) NIL (|has| |#1| (-510)) ELT)) (-1345 (((-3 $ #1#) $ $) NIL T ELT)) (-3361 (((-1207 (-647 |#1|)) (-1207 $)) NIL T ELT) (((-1207 (-647 |#1|))) 24 T ELT)) (-1822 (((-1207 $)) 52 T ELT)) (-3874 (($) NIL T CONST)) (-2008 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) NIL (|has| |#1| (-510)) ELT)) (-1796 (((-3 $ #1#)) NIL (|has| |#1| (-510)) ELT)) (-1886 (((-647 |#1|) (-1207 $)) NIL T ELT) (((-647 |#1|)) NIL T ELT)) (-1820 ((|#1| $) NIL T ELT)) (-1884 (((-647 |#1|) $ (-1207 $)) NIL T ELT) (((-647 |#1|) $) NIL T ELT)) (-2522 (((-3 $ #1#) $) NIL (|has| |#1| (-510)) ELT)) (-2002 (((-1111 (-884 |#1|))) NIL (|has| |#1| (-318)) ELT)) (-2525 (($ $ (-857)) NIL T ELT)) (-1818 ((|#1| $) NIL T ELT)) (-1798 (((-1111 |#1|) $) NIL (|has| |#1| (-510)) ELT)) (-1888 ((|#1| (-1207 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1816 (((-1111 |#1|) $) NIL T ELT)) (-1810 (((-85)) 99 T ELT)) (-1890 (($ (-1207 |#1|) (-1207 $)) NIL T ELT) (($ (-1207 |#1|)) NIL T ELT)) (-3607 (((-3 $ #1#) $) 14 (|has| |#1| (-510)) ELT)) (-3231 (((-857)) 53 T ELT)) (-1807 (((-85)) NIL T ELT)) (-2549 (($ $ (-857)) NIL T ELT)) (-1803 (((-85)) NIL T ELT)) (-1801 (((-85)) NIL T ELT)) (-1805 (((-85)) 101 T ELT)) (-2009 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) NIL (|has| |#1| (-510)) ELT)) (-1797 (((-3 $ #1#)) NIL (|has| |#1| (-510)) ELT)) (-1887 (((-647 |#1|) (-1207 $)) NIL T ELT) (((-647 |#1|)) NIL T ELT)) (-1821 ((|#1| $) NIL T ELT)) (-1885 (((-647 |#1|) $ (-1207 $)) NIL T ELT) (((-647 |#1|) $) NIL T ELT)) (-2523 (((-3 $ #1#) $) NIL (|has| |#1| (-510)) ELT)) (-2006 (((-1111 (-884 |#1|))) NIL (|has| |#1| (-318)) ELT)) (-2524 (($ $ (-857)) NIL T ELT)) (-1819 ((|#1| $) NIL T ELT)) (-1799 (((-1111 |#1|) $) NIL (|has| |#1| (-510)) ELT)) (-1889 ((|#1| (-1207 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1817 (((-1111 |#1|) $) NIL T ELT)) (-1811 (((-85)) 98 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1802 (((-85)) 106 T ELT)) (-1804 (((-85)) 105 T ELT)) (-1806 (((-85)) 107 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1809 (((-85)) 100 T ELT)) (-3950 ((|#1| $ (-499)) 55 T ELT)) (-3362 (((-1207 |#1|) $ (-1207 $)) 48 T ELT) (((-647 |#1|) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 |#1|) $) 28 T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-4122 (((-1207 |#1|) $) NIL T ELT) (($ (-1207 |#1|)) NIL T ELT)) (-1994 (((-599 (-884 |#1|)) (-1207 $)) NIL T ELT) (((-599 (-884 |#1|))) NIL T ELT)) (-2551 (($ $ $) NIL T ELT)) (-1815 (((-85)) 95 T ELT)) (-4096 (((-797) $) 71 T ELT) (($ (-1207 |#1|)) 22 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) 51 T ELT)) (-1800 (((-599 (-1207 |#1|))) NIL (|has| |#1| (-510)) ELT)) (-2552 (($ $ $ $) NIL T ELT)) (-1813 (((-85)) 91 T ELT)) (-2664 (($ (-647 |#1|) $) 18 T ELT)) (-2550 (($ $ $) NIL T ELT)) (-1814 (((-85)) 97 T ELT)) (-1812 (((-85)) 92 T ELT)) (-1808 (((-85)) 90 T ELT)) (-2779 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1082 |#2| |#1|) $) 19 T ELT))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-372 |#1|) (-606 (-1082 |#2| |#1|)) (-10 -8 (-15 -4096 ($ (-1207 |#1|))))) (-318) (-857) (-599 (-1117)) (-1207 (-647 |#1|))) (T -44)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-318)) (-14 *6 (-1207 (-647 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-857)) (-14 *5 (-599 (-1117)))))) +((-2687 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-3542 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3945 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3947 (($ $) NIL T ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2299 (((-1213) $ |#1| |#1|) NIL (|has| $ (-6 -4146)) ELT) (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3935 (($ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-1823 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781))) ELT)) (-3030 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-3582 (((-85) $ (-714)) NIL T ELT)) (-3146 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4146)) ELT)) (-3937 (($ $ $) 33 (|has| $ (-6 -4146)) ELT)) (-3936 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4146)) ELT)) (-3939 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 35 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#2| $ |#1| |#2|) 53 T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4146)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-1174 (-499)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4146)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4146)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -4146)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4146)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) NIL (|has| $ (-6 -4146)) ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3946 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2332 (((-3 |#2| #5="failed") |#1| $) 43 T ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-3949 (($ $ (-714)) NIL T ELT) (($ $) 29 T ELT)) (-2481 (($ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#2| #5#) |#1| $) 56 T ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-3546 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4146)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499)) NIL T ELT)) (-3583 (((-85) $) NIL T ELT)) (-3559 (((-499) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT) (((-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499)) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-3010 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 20 (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 20 (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) NIL T ELT)) (-3148 (((-85) $ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-3764 (($ (-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3869 (((-85) $ (-714)) NIL T ELT)) (-2301 ((|#1| $) NIL (|has| |#1| (-781)) ELT) (((-499) $) 38 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-2977 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-3658 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT) (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-2302 ((|#1| $) NIL (|has| |#1| (-781)) ELT) (((-499) $) 40 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3682 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3866 (((-85) $ (-714)) NIL T ELT)) (-3151 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3667 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) 49 (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-3948 (($ $ (-714)) NIL T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2333 (((-599 |#1|) $) 22 T ELT)) (-2334 (((-85) |#1| $) NIL T ELT)) (-1308 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2404 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 |#1|) $) NIL T ELT) (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) |#1| $) NIL T ELT) (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-3951 ((|#2| $) NIL (|has| |#1| (-781)) ELT) (($ $ (-714)) NIL T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 27 T ELT)) (-1387 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2300 (($ $ |#2|) NIL (|has| $ (-6 -4146)) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3584 (((-85) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT) (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-2306 (((-599 |#2|) $) NIL T ELT) (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 19 T ELT)) (-3543 (((-85) $) 18 T ELT)) (-3713 (($) 14 T ELT)) (-3950 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3150 (((-499) $ $) NIL T ELT)) (-1499 (($) 13 T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1604 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-3783 (((-85) $) NIL T ELT)) (-3942 (($ $) NIL T ELT)) (-3940 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-3943 (((-714) $) NIL T ELT)) (-3944 (($ $) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT) (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3941 (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3952 (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-599 $)) NIL T ELT) (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 31 T ELT) (($ $ $) NIL T ELT)) (-4096 (((-797) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) (|has| |#2| (-568 (-797)))) ELT)) (-3662 (((-599 $) $) NIL T ELT)) (-3149 (((-85) $ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1249 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #5#) |#1| $) 51 T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-3174 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-2805 (((-85) $ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-781)) ELT)) (-4107 (((-714) $) 25 (|has| $ (-6 -4145)) ELT))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1041) (-1041)) (T -45)) +NIL +((-4087 (((-85) $) 12 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-361 (-499)) $) 25 T ELT) (($ $ (-361 (-499))) NIL T ELT))) +(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-361 (-499)))) (-15 * (|#1| (-361 (-499)) |#1|)) (-15 -4087 ((-85) |#1|)) (-15 -4108 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-499) |#1|)) (-15 * (|#1| (-714) |#1|)) (-15 * (|#1| (-857) |#1|))) (-47 |#2| |#3|) (-989) (-737)) (T -46)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 68 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 69 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 71 (|has| |#1| (-510)) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-4109 (($ $) 77 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-4087 (((-85) $) 79 T ELT)) (-3014 (($ |#1| |#2|) 78 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3015 (($ $) 82 T ELT)) (-3312 ((|#1| $) 83 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3606 (((-3 $ "failed") $ $) 67 (|has| |#1| (-510)) ELT)) (-4098 ((|#2| $) 81 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ (-361 (-499))) 74 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) 66 (|has| |#1| (-510)) ELT) (($ |#1|) 64 (|has| |#1| (-146)) ELT)) (-3827 ((|#1| $ |#2|) 76 T ELT)) (-2823 (((-649 $) $) 65 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 70 (|has| |#1| (-510)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 75 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-361 (-499)) $) 73 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 72 (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-47 |#1| |#2|) (-113) (-989) (-737)) (T -47)) +((-3312 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-737)) (-4 *2 (-989)))) (-3015 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) (-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)))) (-4087 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-85)))) (-3014 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)))) (-4109 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)))) (-3827 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-737)) (-4 *2 (-989)))) (-4099 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)) (-4 *2 (-318))))) +(-13 (-989) (-82 |t#1| |t#1|) (-10 -8 (-15 -3312 (|t#1| $)) (-15 -3015 ($ $)) (-15 -4098 (|t#2| $)) (-15 -4108 ($ (-1 |t#1| |t#1|) $)) (-15 -4087 ((-85) $)) (-15 -3014 ($ |t#1| |t#2|)) (-15 -4109 ($ $)) (-15 -3827 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-318)) (-15 -4099 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-6 (-146)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-510)) (-6 (-510)) |%noBranch|) (IF (|has| |t#1| (-38 (-361 (-499)))) (-6 (-38 (-361 (-499)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-510)) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-571 (-499)) . T) ((-571 |#1|) |has| |#1| (-146)) ((-571 $) |has| |#1| (-510)) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-244) |has| |#1| (-510)) ((-510) |has| |#1| (-510)) ((-604 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) |has| |#1| (-510)) ((-675 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) |has| |#1| (-510)) ((-684) . T) ((-991 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-996 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-1640 (((-599 $) (-1111 $) (-1117)) NIL T ELT) (((-599 $) (-1111 $)) NIL T ELT) (((-599 $) (-884 $)) NIL T ELT)) (-1242 (($ (-1111 $) (-1117)) NIL T ELT) (($ (-1111 $)) NIL T ELT) (($ (-884 $)) NIL T ELT)) (-3326 (((-85) $) 9 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1633 (((-599 (-566 $)) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1637 (($ $ (-247 $)) NIL T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-599 (-566 $)) (-599 $)) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-3158 (($ $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-1243 (((-599 $) (-1111 $) (-1117)) NIL T ELT) (((-599 $) (-1111 $)) NIL T ELT) (((-599 $) (-884 $)) NIL T ELT)) (-3321 (($ (-1111 $) (-1117)) NIL T ELT) (($ (-1111 $)) NIL T ELT) (($ (-884 $)) NIL T ELT)) (-3295 (((-3 (-566 $) #1#) $) NIL T ELT) (((-3 (-499) #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT)) (-3294 (((-566 $) $) NIL T ELT) (((-499) $) NIL T ELT) (((-361 (-499)) $) NIL T ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-499)) (-647 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-361 (-499)))) (|:| |vec| (-1207 (-361 (-499))))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-361 (-499))) (-647 $)) NIL T ELT)) (-3992 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2692 (($ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1632 (((-599 (-86)) $) NIL T ELT)) (-3743 (((-86) (-86)) NIL T ELT)) (-2528 (((-85) $) 11 T ELT)) (-2794 (((-85) $) NIL (|has| $ (-978 (-499))) ELT)) (-3119 (((-1065 (-499) (-566 $)) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL T ELT)) (-3254 (((-1111 $) (-1111 $) (-566 $)) NIL T ELT) (((-1111 $) (-1111 $) (-599 (-566 $))) NIL T ELT) (($ $ (-566 $)) NIL T ELT) (($ $ (-599 (-566 $))) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-1630 (((-1111 $) (-566 $)) NIL (|has| $ (-989)) ELT)) (-4108 (($ (-1 $ $) (-566 $)) NIL T ELT)) (-1635 (((-3 (-566 $) #1#) $) NIL T ELT)) (-2381 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL T ELT) (((-647 (-499)) (-1207 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-361 (-499)))) (|:| |vec| (-1207 (-361 (-499))))) (-1207 $) $) NIL T ELT) (((-647 (-361 (-499))) (-1207 $)) NIL T ELT)) (-1993 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1634 (((-599 (-566 $)) $) NIL T ELT)) (-2336 (($ (-86) $) NIL T ELT) (($ (-86) (-599 $)) NIL T ELT)) (-2752 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1117)) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-2722 (((-714) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1631 (((-85) $ $) NIL T ELT) (((-85) $ (-1117)) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2795 (((-85) $) NIL (|has| $ (-978 (-499))) ELT)) (-3918 (($ $ (-566 $) $) NIL T ELT) (($ $ (-599 (-566 $)) (-599 $)) NIL T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ $))) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ (-599 $)))) NIL T ELT) (($ $ (-1117) (-1 $ (-599 $))) NIL T ELT) (($ $ (-1117) (-1 $ $)) NIL T ELT) (($ $ (-599 (-86)) (-599 (-1 $ $))) NIL T ELT) (($ $ (-599 (-86)) (-599 (-1 $ (-599 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-599 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-599 $)) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1636 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3908 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3118 (((-1065 (-499) (-566 $)) $) NIL T ELT)) (-3323 (($ $) NIL (|has| $ (-989)) ELT)) (-4122 (((-333) $) NIL T ELT) (((-179) $) NIL T ELT) (((-142 (-333)) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-566 $)) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-1065 (-499) (-566 $))) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-2709 (($ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-2355 (((-85) (-86)) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2779 (($) 6 T CONST)) (-2785 (($) 10 T CONST)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3174 (((-85) $ $) 13 T ELT)) (-4099 (($ $ $) NIL T ELT)) (-3987 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-361 (-499))) NIL T ELT) (($ $ (-499)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-857)) NIL T ELT)) (* (($ (-361 (-499)) $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-857) $) NIL T ELT))) +(((-48) (-13 (-252) (-27) (-978 (-499)) (-978 (-361 (-499))) (-596 (-499)) (-960) (-596 (-361 (-499))) (-120) (-569 (-142 (-333))) (-190) (-571 (-1065 (-499) (-566 $))) (-10 -8 (-15 -3119 ((-1065 (-499) (-566 $)) $)) (-15 -3118 ((-1065 (-499) (-566 $)) $)) (-15 -3992 ($ $)) (-15 -3254 ((-1111 $) (-1111 $) (-566 $))) (-15 -3254 ((-1111 $) (-1111 $) (-599 (-566 $)))) (-15 -3254 ($ $ (-566 $))) (-15 -3254 ($ $ (-599 (-566 $))))))) (T -48)) +((-3119 (*1 *2 *1) (-12 (-5 *2 (-1065 (-499) (-566 (-48)))) (-5 *1 (-48)))) (-3118 (*1 *2 *1) (-12 (-5 *2 (-1065 (-499) (-566 (-48)))) (-5 *1 (-48)))) (-3992 (*1 *1 *1) (-5 *1 (-48))) (-3254 (*1 *2 *2 *3) (-12 (-5 *2 (-1111 (-48))) (-5 *3 (-566 (-48))) (-5 *1 (-48)))) (-3254 (*1 *2 *2 *3) (-12 (-5 *2 (-1111 (-48))) (-5 *3 (-599 (-566 (-48)))) (-5 *1 (-48)))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-566 (-48))) (-5 *1 (-48)))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-566 (-48)))) (-5 *1 (-48))))) +((-2687 (((-85) $ $) NIL T ELT)) (-2040 (((-599 (-460)) $) 17 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 7 T ELT)) (-3371 (((-1122) $) 18 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-49) (-13 (-1041) (-10 -8 (-15 -2040 ((-599 (-460)) $)) (-15 -3371 ((-1122) $))))) (T -49)) +((-2040 (*1 *2 *1) (-12 (-5 *2 (-599 (-460))) (-5 *1 (-49)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-49))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 85 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2783 (((-85) $) 30 T ELT)) (-3295 (((-3 |#1| #1#) $) 33 T ELT)) (-3294 ((|#1| $) 34 T ELT)) (-4109 (($ $) 40 T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3312 ((|#1| $) 31 T ELT)) (-1488 (($ $) 74 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1487 (((-85) $) 43 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($ (-714)) 72 T ELT)) (-4093 (($ (-599 (-499))) 73 T ELT)) (-4098 (((-714) $) 44 T ELT)) (-4096 (((-797) $) 91 T ELT) (($ (-499)) 69 T ELT) (($ |#1|) 67 T ELT)) (-3827 ((|#1| $ $) 28 T ELT)) (-3248 (((-714)) 71 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 45 T CONST)) (-2785 (($) 17 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 64 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 65 T ELT) (($ |#1| $) 58 T ELT))) +(((-50 |#1| |#2|) (-13 (-576 |#1|) (-978 |#1|) (-10 -8 (-15 -3312 (|#1| $)) (-15 -1488 ($ $)) (-15 -4109 ($ $)) (-15 -3827 (|#1| $ $)) (-15 -2527 ($ (-714))) (-15 -4093 ($ (-599 (-499)))) (-15 -1487 ((-85) $)) (-15 -2783 ((-85) $)) (-15 -4098 ((-714) $)) (-15 -4108 ($ (-1 |#1| |#1|) $)))) (-989) (-599 (-1117))) (T -50)) +((-3312 (*1 *2 *1) (-12 (-4 *2 (-989)) (-5 *1 (-50 *2 *3)) (-14 *3 (-599 (-1117))))) (-1488 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-989)) (-14 *3 (-599 (-1117))))) (-4109 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-989)) (-14 *3 (-599 (-1117))))) (-3827 (*1 *2 *1 *1) (-12 (-4 *2 (-989)) (-5 *1 (-50 *2 *3)) (-14 *3 (-599 (-1117))))) (-2527 (*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-50 *3 *4)) (-4 *3 (-989)) (-14 *4 (-599 (-1117))))) (-4093 (*1 *1 *2) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-50 *3 *4)) (-4 *3 (-989)) (-14 *4 (-599 (-1117))))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-989)) (-14 *4 (-599 (-1117))))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-989)) (-14 *4 (-599 (-1117))))) (-4098 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-50 *3 *4)) (-4 *3 (-989)) (-14 *4 (-599 (-1117))))) (-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-50 *3 *4)) (-14 *4 (-599 (-1117)))))) +((-2687 (((-85) $ $) NIL T ELT)) (-1276 (((-716) $) 8 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1277 (((-1043) $) 10 T ELT)) (-4096 (((-797) $) 15 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-1278 (($ (-1043) (-716)) 16 T ELT)) (-3174 (((-85) $ $) 12 T ELT))) +(((-51) (-13 (-1041) (-10 -8 (-15 -1278 ($ (-1043) (-716))) (-15 -1277 ((-1043) $)) (-15 -1276 ((-716) $))))) (T -51)) +((-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1043)) (-5 *3 (-716)) (-5 *1 (-51)))) (-1277 (*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-51)))) (-1276 (*1 *2 *1) (-12 (-5 *2 (-716)) (-5 *1 (-51))))) +((-2783 (((-85) (-51)) 18 T ELT)) (-3295 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3294 ((|#1| (-51)) 21 T ELT)) (-4096 (((-51) |#1|) 14 T ELT))) +(((-52 |#1|) (-10 -7 (-15 -4096 ((-51) |#1|)) (-15 -3295 ((-3 |#1| "failed") (-51))) (-15 -2783 ((-85) (-51))) (-15 -3294 (|#1| (-51)))) (-1157)) (T -52)) +((-3294 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1157)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1157)))) (-3295 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1157)))) (-4096 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1157))))) +((-2664 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2664 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-989) (-606 |#1|) (-786 |#1|)) (T -53)) +((-2664 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-606 *5)) (-4 *5 (-989)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-786 *5))))) +((-1280 ((|#3| |#3| (-599 (-1117))) 44 T ELT)) (-1279 ((|#3| (-599 (-1015 |#1| |#2| |#3|)) |#3| (-857)) 32 T ELT) ((|#3| (-599 (-1015 |#1| |#2| |#3|)) |#3|) 31 T ELT))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1279 (|#3| (-599 (-1015 |#1| |#2| |#3|)) |#3|)) (-15 -1279 (|#3| (-599 (-1015 |#1| |#2| |#3|)) |#3| (-857))) (-15 -1280 (|#3| |#3| (-599 (-1117))))) (-1041) (-13 (-989) (-821 |#1|) (-569 (-825 |#1|))) (-13 (-375 |#2|) (-821 |#1|) (-569 (-825 |#1|)))) (T -54)) +((-1280 (*1 *2 *2 *3) (-12 (-5 *3 (-599 (-1117))) (-4 *4 (-1041)) (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-375 *5) (-821 *4) (-569 (-825 *4)))))) (-1279 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-599 (-1015 *5 *6 *2))) (-5 *4 (-857)) (-4 *5 (-1041)) (-4 *6 (-13 (-989) (-821 *5) (-569 (-825 *5)))) (-4 *2 (-13 (-375 *6) (-821 *5) (-569 (-825 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1279 (*1 *2 *3 *2) (-12 (-5 *3 (-599 (-1015 *4 *5 *2))) (-4 *4 (-1041)) (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-4 *2 (-13 (-375 *5) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-54 *4 *5 *2))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 14 T ELT)) (-3295 (((-3 (-714) "failed") $) 32 T ELT)) (-3294 (((-714) $) NIL T ELT)) (-2528 (((-85) $) 16 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) 18 T ELT)) (-4096 (((-797) $) 23 T ELT) (($ (-714)) 29 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-1281 (($) 11 T CONST)) (-3174 (((-85) $ $) 20 T ELT))) +(((-55) (-13 (-1041) (-978 (-714)) (-10 -8 (-15 -1281 ($) -4102) (-15 -3326 ((-85) $)) (-15 -2528 ((-85) $))))) (T -55)) +((-1281 (*1 *1) (-5 *1 (-55))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55))))) +((-1283 (($ $ (-499) |#3|) 60 T ELT)) (-1282 (($ $ (-499) |#4|) 64 T ELT)) (-3234 ((|#3| $ (-499)) 73 T ELT)) (-3010 (((-599 |#2|) $) 41 T ELT)) (-3383 (((-85) |#2| $) 68 T ELT)) (-2051 (($ (-1 |#2| |#2|) $) 49 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) 48 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 52 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 56 T ELT)) (-2300 (($ $ |#2|) 46 T ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3950 ((|#2| $ (-499) (-499)) NIL T ELT) ((|#2| $ (-499) (-499) |#2|) 29 T ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) 35 T ELT) (((-714) |#2| $) 70 T ELT)) (-3540 (($ $) 45 T ELT)) (-3233 ((|#4| $ (-499)) 76 T ELT)) (-4096 (((-797) $) 82 T ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) 20 T ELT)) (-3174 (((-85) $ $) 67 T ELT)) (-4107 (((-714) $) 26 T ELT))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3174 ((-85) |#1| |#1|)) (-15 -4096 ((-797) |#1|)) (-15 -4108 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4108 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2051 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1282 (|#1| |#1| (-499) |#4|)) (-15 -1283 (|#1| |#1| (-499) |#3|)) (-15 -3010 ((-599 |#2|) |#1|)) (-15 -3233 (|#4| |#1| (-499))) (-15 -3234 (|#3| |#1| (-499))) (-15 -3950 (|#2| |#1| (-499) (-499) |#2|)) (-15 -3950 (|#2| |#1| (-499) (-499))) (-15 -2300 (|#1| |#1| |#2|)) (-15 -3383 ((-85) |#2| |#1|)) (-15 -2048 ((-714) |#2| |#1|)) (-15 -2048 ((-714) (-1 (-85) |#2|) |#1|)) (-15 -2049 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -2050 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -4108 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4107 ((-714) |#1|)) (-15 -3540 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1157) (-327 |#2|) (-327 |#2|)) (T -56)) +NIL +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3938 ((|#1| $ (-499) (-499) |#1|) 48 T ELT)) (-1283 (($ $ (-499) |#2|) 46 T ELT)) (-1282 (($ $ (-499) |#3|) 45 T ELT)) (-3874 (($) 7 T CONST)) (-3234 ((|#2| $ (-499)) 50 T ELT)) (-1609 ((|#1| $ (-499) (-499) |#1|) 47 T ELT)) (-3235 ((|#1| $ (-499) (-499)) 52 T ELT)) (-3010 (((-599 |#1|) $) 30 T ELT)) (-3237 (((-714) $) 55 T ELT)) (-3764 (($ (-714) (-714) |#1|) 61 T ELT)) (-3236 (((-714) $) 54 T ELT)) (-3241 (((-499) $) 59 T ELT)) (-3239 (((-499) $) 57 T ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3240 (((-499) $) 58 T ELT)) (-3238 (((-499) $) 56 T ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-2300 (($ $ |#1|) 60 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ (-499) (-499)) 53 T ELT) ((|#1| $ (-499) (-499) |#1|) 51 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-3233 ((|#3| $ (-499)) 49 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-57 |#1| |#2| |#3|) (-113) (-1157) (-327 |t#1|) (-327 |t#1|)) (T -57)) +((-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-3764 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-714)) (-4 *3 (-1157)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-2300 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1157)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-499)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-499)))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-499)))) (-3238 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-499)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-714)))) (-3236 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-714)))) (-3950 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-499)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-327 *2)) (-4 *5 (-327 *2)) (-4 *2 (-1157)))) (-3235 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-499)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-327 *2)) (-4 *5 (-327 *2)) (-4 *2 (-1157)))) (-3950 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-499)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1157)) (-4 *4 (-327 *2)) (-4 *5 (-327 *2)))) (-3234 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1157)) (-4 *5 (-327 *4)) (-4 *2 (-327 *4)))) (-3233 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1157)) (-4 *5 (-327 *4)) (-4 *2 (-327 *4)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-599 *3)))) (-3938 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-499)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1157)) (-4 *4 (-327 *2)) (-4 *5 (-327 *2)))) (-1609 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-499)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1157)) (-4 *4 (-327 *2)) (-4 *5 (-327 *2)))) (-1283 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-499)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1157)) (-4 *3 (-327 *4)) (-4 *5 (-327 *4)))) (-1282 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-499)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1157)) (-4 *5 (-327 *4)) (-4 *3 (-327 *4)))) (-2051 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-4108 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-4108 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3))))) +(-13 (-443 |t#1|) (-10 -8 (-6 -4146) (-6 -4145) (-15 -3764 ($ (-714) (-714) |t#1|)) (-15 -2300 ($ $ |t#1|)) (-15 -3241 ((-499) $)) (-15 -3240 ((-499) $)) (-15 -3239 ((-499) $)) (-15 -3238 ((-499) $)) (-15 -3237 ((-714) $)) (-15 -3236 ((-714) $)) (-15 -3950 (|t#1| $ (-499) (-499))) (-15 -3235 (|t#1| $ (-499) (-499))) (-15 -3950 (|t#1| $ (-499) (-499) |t#1|)) (-15 -3234 (|t#2| $ (-499))) (-15 -3233 (|t#3| $ (-499))) (-15 -3010 ((-599 |t#1|) $)) (-15 -3938 (|t#1| $ (-499) (-499) |t#1|)) (-15 -1609 (|t#1| $ (-499) (-499) |t#1|)) (-15 -1283 ($ $ (-499) |t#2|)) (-15 -1282 ($ $ (-499) |t#3|)) (-15 -4108 ($ (-1 |t#1| |t#1|) $)) (-15 -2051 ($ (-1 |t#1| |t#1|) $)) (-15 -4108 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4108 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| |#1| (-781))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-781)) ELT)) (-3938 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) NIL T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) NIL T ELT) (((-499) |#1| $) NIL (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) NIL (|has| |#1| (-1041)) ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-1284 (($ (-599 |#1|)) 11 T ELT) (($ (-714) |#1|) 14 T ELT)) (-3764 (($ (-714) |#1|) 13 T ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2300 (($ $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-499) |#1|) NIL T ELT) ((|#1| $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 10 T ELT)) (-3952 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1284 ($ (-599 |#1|))) (-15 -1284 ($ (-714) |#1|)))) (-1157)) (T -58)) +((-1284 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-58 *3)))) (-1284 (*1 *1 *2 *3) (-12 (-5 *2 (-714)) (-5 *1 (-58 *3)) (-4 *3 (-1157))))) +((-3991 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3992 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-4108 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) +(((-59 |#1| |#2|) (-10 -7 (-15 -3991 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3992 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4108 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1157) (-1157)) (T -59)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3992 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1157)) (-4 *2 (-1157)) (-5 *1 (-59 *5 *2)))) (-3991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1157)) (-4 *5 (-1157)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3938 ((|#1| $ (-499) (-499) |#1|) NIL T ELT)) (-1283 (($ $ (-499) (-58 |#1|)) NIL T ELT)) (-1282 (($ $ (-499) (-58 |#1|)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3234 (((-58 |#1|) $ (-499)) NIL T ELT)) (-1609 ((|#1| $ (-499) (-499) |#1|) NIL T ELT)) (-3235 ((|#1| $ (-499) (-499)) NIL T ELT)) (-3010 (((-599 |#1|) $) NIL T ELT)) (-3237 (((-714) $) NIL T ELT)) (-3764 (($ (-714) (-714) |#1|) NIL T ELT)) (-3236 (((-714) $) NIL T ELT)) (-3241 (((-499) $) NIL T ELT)) (-3239 (((-499) $) NIL T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3240 (((-499) $) NIL T ELT)) (-3238 (((-499) $) NIL T ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2300 (($ $ |#1|) NIL T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-499) (-499)) NIL T ELT) ((|#1| $ (-499) (-499) |#1|) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-3233 (((-58 |#1|) $ (-499)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4146))) (-1157)) (T -60)) +NIL +((-1286 (((-1207 (-647 |#1|)) (-647 |#1|)) 61 T ELT)) (-1285 (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 (-599 (-857))))) |#2| (-857)) 49 T ELT)) (-1287 (((-2 (|:| |minor| (-599 (-857))) (|:| -3404 |#2|) (|:| |minors| (-599 (-599 (-857)))) (|:| |ops| (-599 |#2|))) |#2| (-857)) 72 (|has| |#1| (-318)) ELT))) +(((-61 |#1| |#2|) (-10 -7 (-15 -1285 ((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 (-599 (-857))))) |#2| (-857))) (-15 -1286 ((-1207 (-647 |#1|)) (-647 |#1|))) (IF (|has| |#1| (-318)) (-15 -1287 ((-2 (|:| |minor| (-599 (-857))) (|:| -3404 |#2|) (|:| |minors| (-599 (-599 (-857)))) (|:| |ops| (-599 |#2|))) |#2| (-857))) |%noBranch|)) (-510) (-616 |#1|)) (T -61)) +((-1287 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-4 *5 (-510)) (-5 *2 (-2 (|:| |minor| (-599 (-857))) (|:| -3404 *3) (|:| |minors| (-599 (-599 (-857)))) (|:| |ops| (-599 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-857)) (-4 *3 (-616 *5)))) (-1286 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-1207 (-647 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-647 *4)) (-4 *5 (-616 *4)))) (-1285 (*1 *2 *3 *4) (-12 (-4 *5 (-510)) (-5 *2 (-2 (|:| -1673 (-647 *5)) (|:| |vec| (-1207 (-599 (-857)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-857)) (-4 *3 (-616 *5))))) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3464 ((|#1| $) 40 T ELT)) (-3874 (($) NIL T CONST)) (-3466 ((|#1| |#1| $) 35 T ELT)) (-3465 ((|#1| $) 33 T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) NIL T ELT)) (-3757 (($ |#1| $) 36 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-1309 ((|#1| $) 34 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 18 T ELT)) (-3713 (($) 45 T ELT)) (-3463 (((-714) $) 31 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) 17 T ELT)) (-4096 (((-797) $) 30 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) NIL T ELT)) (-1288 (($ (-599 |#1|)) 42 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 15 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 12 (|has| $ (-6 -4145)) ELT))) +(((-62 |#1|) (-13 (-1061 |#1|) (-10 -8 (-15 -1288 ($ (-599 |#1|))))) (-1041)) (T -62)) +((-1288 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-62 *3))))) +((-4096 (((-797) $) 13 T ELT) (($ (-1122)) 9 T ELT) (((-1122) $) 8 T ELT))) +(((-63 |#1|) (-10 -7 (-15 -4096 ((-1122) |#1|)) (-15 -4096 (|#1| (-1122))) (-15 -4096 ((-797) |#1|))) (-64)) (T -63)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-1122)) 20 T ELT) (((-1122) $) 19 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-64) (-113)) (T -64)) +NIL +(-13 (-1041) (-444 (-1122))) +(((-73) . T) ((-571 (-1122)) . T) ((-568 (-797)) . T) ((-568 (-1122)) . T) ((-444 (-1122)) . T) ((-1041) . T) ((-1157) . T)) +((-3628 (($ $) 10 T ELT)) (-3629 (($ $) 12 T ELT))) +(((-65 |#1|) (-10 -7 (-15 -3629 (|#1| |#1|)) (-15 -3628 (|#1| |#1|))) (-66)) (T -65)) +NIL +((-3626 (($ $) 11 T ELT)) (-3624 (($ $) 10 T ELT)) (-3628 (($ $) 9 T ELT)) (-3629 (($ $) 8 T ELT)) (-3627 (($ $) 7 T ELT)) (-3625 (($ $) 6 T ELT))) +(((-66) (-113)) (T -66)) +((-3626 (*1 *1 *1) (-4 *1 (-66))) (-3624 (*1 *1 *1) (-4 *1 (-66))) (-3628 (*1 *1 *1) (-4 *1 (-66))) (-3629 (*1 *1 *1) (-4 *1 (-66))) (-3627 (*1 *1 *1) (-4 *1 (-66))) (-3625 (*1 *1 *1) (-4 *1 (-66)))) +(-13 (-10 -8 (-15 -3625 ($ $)) (-15 -3627 ($ $)) (-15 -3629 ($ $)) (-15 -3628 ($ $)) (-15 -3624 ($ $)) (-15 -3626 ($ $)))) +((-2687 (((-85) $ $) NIL T ELT)) (-3690 (((-1075) $) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 15 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-67) (-13 (-1023) (-10 -8 (-15 -3690 ((-1075) $))))) (T -67)) +((-3690 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-67))))) +((-2687 (((-85) $ $) NIL T ELT)) (-1289 (((-333) (-1099) (-333)) 46 T ELT) (((-333) (-1099) (-1099) (-333)) 44 T ELT)) (-1290 (((-333) (-333)) 35 T ELT)) (-1291 (((-1213)) 37 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1294 (((-333) (-1099) (-1099)) 50 T ELT) (((-333) (-1099)) 52 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1292 (((-333) (-1099) (-1099)) 51 T ELT)) (-1293 (((-333) (-1099) (-1099)) 53 T ELT) (((-333) (-1099)) 54 T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-68) (-13 (-1041) (-10 -7 (-15 -1294 ((-333) (-1099) (-1099))) (-15 -1294 ((-333) (-1099))) (-15 -1293 ((-333) (-1099) (-1099))) (-15 -1293 ((-333) (-1099))) (-15 -1292 ((-333) (-1099) (-1099))) (-15 -1291 ((-1213))) (-15 -1290 ((-333) (-333))) (-15 -1289 ((-333) (-1099) (-333))) (-15 -1289 ((-333) (-1099) (-1099) (-333))) (-6 -4145)))) (T -68)) +((-1294 (*1 *2 *3 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-68)))) (-1294 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-68)))) (-1293 (*1 *2 *3 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-68)))) (-1293 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-68)))) (-1292 (*1 *2 *3 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-68)))) (-1291 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-68)))) (-1290 (*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-68)))) (-1289 (*1 *2 *3 *2) (-12 (-5 *2 (-333)) (-5 *3 (-1099)) (-5 *1 (-68)))) (-1289 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-333)) (-5 *3 (-1099)) (-5 *1 (-68))))) +NIL +(((-69) (-113)) (T -69)) +NIL +(-13 (-10 -7 (-6 -4145) (-6 (-4147 "*")) (-6 -4146) (-6 -4142) (-6 -4140) (-6 -4139) (-6 -4138) (-6 -4143) (-6 -4137) (-6 -4136) (-6 -4135) (-6 -4134) (-6 -4133) (-6 -4141) (-6 -4144) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4132))) +((-2687 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ "failed") $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-1295 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-499))) 24 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 16 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3950 ((|#1| $ |#1|) 13 T ELT)) (-3130 (($ $ $) NIL T ELT)) (-2551 (($ $ $) NIL T ELT)) (-4096 (((-797) $) 22 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2785 (($) 8 T CONST)) (-3174 (((-85) $ $) 10 T ELT)) (-4099 (($ $ $) NIL T ELT)) (** (($ $ (-857)) 30 T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) 18 T ELT)) (* (($ $ $) 31 T ELT))) +(((-70 |#1|) (-13 (-427) (-240 |#1| |#1|) (-10 -8 (-15 -1295 ($ (-1 |#1| |#1|))) (-15 -1295 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1295 ($ (-1 |#1| |#1| (-499)))))) (-989)) (T -70)) +((-1295 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-70 *3)))) (-1295 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-70 *3)))) (-1295 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-499))) (-4 *3 (-989)) (-5 *1 (-70 *3))))) +((-1296 (((-359 |#2|) |#2| (-599 |#2|)) 10 T ELT) (((-359 |#2|) |#2| |#2|) 11 T ELT))) +(((-71 |#1| |#2|) (-10 -7 (-15 -1296 ((-359 |#2|) |#2| |#2|)) (-15 -1296 ((-359 |#2|) |#2| (-599 |#2|)))) (-13 (-406) (-120)) (-1183 |#1|)) (T -71)) +((-1296 (*1 *2 *3 *4) (-12 (-5 *4 (-599 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-13 (-406) (-120))) (-5 *2 (-359 *3)) (-5 *1 (-71 *5 *3)))) (-1296 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-406) (-120))) (-5 *2 (-359 *3)) (-5 *1 (-71 *4 *3)) (-4 *3 (-1183 *4))))) +((-2687 (((-85) $ $) 13 T ELT)) (-1297 (((-85) $ $) 14 T ELT)) (-3174 (((-85) $ $) 11 T ELT))) +(((-72 |#1|) (-10 -7 (-15 -1297 ((-85) |#1| |#1|)) (-15 -2687 ((-85) |#1| |#1|)) (-15 -3174 ((-85) |#1| |#1|))) (-73)) (T -72)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-73) (-113)) (T -73)) +((-3174 (*1 *2 *1 *1) (-12 (-4 *1 (-73)) (-5 *2 (-85)))) (-2687 (*1 *2 *1 *1) (-12 (-4 *1 (-73)) (-5 *2 (-85)))) (-1297 (*1 *2 *1 *1) (-12 (-4 *1 (-73)) (-5 *2 (-85))))) +(-13 (-1157) (-10 -8 (-15 -3174 ((-85) $ $)) (-15 -2687 ((-85) $ $)) (-15 -1297 ((-85) $ $)))) +(((-1157) . T)) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) NIL T ELT)) (-3146 ((|#1| $ |#1|) 24 (|has| $ (-6 -4146)) ELT)) (-1326 (($ $ $) NIL (|has| $ (-6 -4146)) ELT)) (-1327 (($ $ $) NIL (|has| $ (-6 -4146)) ELT)) (-1300 (($ $ (-599 |#1|)) 30 T ELT)) (-3938 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4146)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4146)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3259 (($ $) 12 T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) NIL T ELT)) (-3148 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1335 (($ $ |#1| $) 32 T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1299 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1298 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-599 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3260 (($ $) 11 T ELT)) (-3151 (((-599 |#1|) $) NIL T ELT)) (-3667 (((-85) $) 13 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 9 T ELT)) (-3713 (($) 31 T ELT)) (-3950 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3150 (((-499) $ $) NIL T ELT)) (-3783 (((-85) $) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) NIL T ELT)) (-3149 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-1301 (($ (-714) |#1|) 33 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-74 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -4145) (-6 -4146) (-15 -1301 ($ (-714) |#1|)) (-15 -1300 ($ $ (-599 |#1|))) (-15 -1299 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1299 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1298 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1298 ($ $ |#1| (-1 (-599 |#1|) |#1| |#1| |#1|))))) (-1041)) (T -74)) +((-1301 (*1 *1 *2 *3) (-12 (-5 *2 (-714)) (-5 *1 (-74 *3)) (-4 *3 (-1041)))) (-1300 (*1 *1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-74 *3)))) (-1299 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-74 *2)) (-4 *2 (-1041)))) (-1299 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1041)) (-5 *1 (-74 *3)))) (-1298 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1041)) (-5 *1 (-74 *2)))) (-1298 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-599 *2) *2 *2 *2)) (-4 *2 (-1041)) (-5 *1 (-74 *2))))) +((-1302 ((|#3| |#2| |#2|) 34 T ELT)) (-1304 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4147 #1="*"))) ELT)) (-1303 ((|#3| |#2| |#2|) 36 T ELT)) (-1305 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4147 #1#))) ELT))) +(((-75 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1302 (|#3| |#2| |#2|)) (-15 -1303 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4147 "*"))) (PROGN (-15 -1304 (|#1| |#2| |#2|)) (-15 -1305 (|#1| |#2|))) |%noBranch|)) (-989) (-1183 |#1|) (-644 |#1| |#4| |#5|) (-327 |#1|) (-327 |#1|)) (T -75)) +((-1305 (*1 *2 *3) (-12 (|has| *2 (-6 (-4147 #1="*"))) (-4 *5 (-327 *2)) (-4 *6 (-327 *2)) (-4 *2 (-989)) (-5 *1 (-75 *2 *3 *4 *5 *6)) (-4 *3 (-1183 *2)) (-4 *4 (-644 *2 *5 *6)))) (-1304 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4147 #1#))) (-4 *5 (-327 *2)) (-4 *6 (-327 *2)) (-4 *2 (-989)) (-5 *1 (-75 *2 *3 *4 *5 *6)) (-4 *3 (-1183 *2)) (-4 *4 (-644 *2 *5 *6)))) (-1303 (*1 *2 *3 *3) (-12 (-4 *4 (-989)) (-4 *2 (-644 *4 *5 *6)) (-5 *1 (-75 *4 *3 *2 *5 *6)) (-4 *3 (-1183 *4)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)))) (-1302 (*1 *2 *3 *3) (-12 (-4 *4 (-989)) (-4 *2 (-644 *4 *5 *6)) (-5 *1 (-75 *4 *3 *2 *5 *6)) (-4 *3 (-1183 *4)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1307 (((-599 (-1117))) 37 T ELT)) (-1306 (((-2 (|:| |zeros| (-1095 (-179))) (|:| |ones| (-1095 (-179))) (|:| |singularities| (-1095 (-179)))) (-1117)) 39 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-76) (-13 (-1041) (-10 -7 (-15 -1307 ((-599 (-1117)))) (-15 -1306 ((-2 (|:| |zeros| (-1095 (-179))) (|:| |ones| (-1095 (-179))) (|:| |singularities| (-1095 (-179)))) (-1117))) (-6 -4145)))) (T -76)) +((-1307 (*1 *2) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-76)))) (-1306 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-2 (|:| |zeros| (-1095 (-179))) (|:| |ones| (-1095 (-179))) (|:| |singularities| (-1095 (-179))))) (-5 *1 (-76))))) +((-1310 (($ (-599 |#2|)) 11 T ELT))) +(((-77 |#1| |#2|) (-10 -7 (-15 -1310 (|#1| (-599 |#2|)))) (-78 |#2|) (-1157)) (T -77)) +NIL +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3874 (($) 7 T CONST)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 43 T ELT)) (-3757 (($ |#1| $) 44 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-78 |#1|) (-113) (-1157)) (T -78)) +((-1310 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-4 *1 (-78 *3)))) (-1309 (*1 *2 *1) (-12 (-4 *1 (-78 *2)) (-4 *2 (-1157)))) (-3757 (*1 *1 *2 *1) (-12 (-4 *1 (-78 *2)) (-4 *2 (-1157)))) (-1308 (*1 *2 *1) (-12 (-4 *1 (-78 *2)) (-4 *2 (-1157))))) +(-13 (-443 |t#1|) (-10 -8 (-6 -4146) (-15 -1310 ($ (-599 |t#1|))) (-15 -1309 (|t#1| $)) (-15 -3757 ($ |t#1| $)) (-15 -1308 (|t#1| $)))) +(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3251 (((-499) $) NIL (|has| (-499) (-261)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| (-499) (-763)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL T ELT) (((-3 (-1117) #1#) $) NIL (|has| (-499) (-978 (-1117))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| (-499) (-978 (-499))) ELT) (((-3 (-499) #1#) $) NIL (|has| (-499) (-978 (-499))) ELT)) (-3294 (((-499) $) NIL T ELT) (((-1117) $) NIL (|has| (-499) (-978 (-1117))) ELT) (((-361 (-499)) $) NIL (|has| (-499) (-978 (-499))) ELT) (((-499) $) NIL (|has| (-499) (-978 (-499))) ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-499)) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-499) (-498)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3324 (((-85) $) NIL (|has| (-499) (-763)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| (-499) (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| (-499) (-821 (-333))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL T ELT)) (-3119 (((-499) $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| (-499) (-1092)) ELT)) (-3325 (((-85) $) NIL (|has| (-499) (-763)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| (-499) (-781)) ELT)) (-4108 (($ (-1 (-499) (-499)) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL T ELT) (((-647 (-499)) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-499) (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL (|has| (-499) (-261)) ELT) (((-361 (-499)) $) NIL T ELT)) (-3252 (((-499) $) NIL (|has| (-499) (-498)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-3918 (($ $ (-599 (-499)) (-599 (-499))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-499) (-499)) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-247 (-499))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-599 (-247 (-499)))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-599 (-1117)) (-599 (-499))) NIL (|has| (-499) (-468 (-1117) (-499))) ELT) (($ $ (-1117) (-499)) NIL (|has| (-499) (-468 (-1117) (-499))) ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ $ (-499)) NIL (|has| (-499) (-240 (-499) (-499))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $ (-1 (-499) (-499))) NIL T ELT) (($ $ (-1 (-499) (-499)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $) NIL (|has| (-499) (-189)) ELT) (($ $ (-714)) NIL (|has| (-499) (-189)) ELT)) (-3116 (($ $) NIL T ELT)) (-3118 (((-499) $) NIL T ELT)) (-4122 (((-825 (-499)) $) NIL (|has| (-499) (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| (-499) (-569 (-825 (-333)))) ELT) (((-488) $) NIL (|has| (-499) (-569 (-488))) ELT) (((-333) $) NIL (|has| (-499) (-960)) ELT) (((-179) $) NIL (|has| (-499) (-960)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| (-499) (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) 8 T ELT) (($ (-499)) NIL T ELT) (($ (-1117)) NIL (|has| (-499) (-978 (-1117))) ELT) (((-361 (-499)) $) NIL T ELT) (((-944 2) $) 10 T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| (-499) (-848))) (|has| (-499) (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-3253 (((-499) $) NIL (|has| (-499) (-498)) ELT)) (-2130 (($ (-361 (-499))) 9 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3523 (($ $) NIL (|has| (-499) (-763)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1 (-499) (-499))) NIL T ELT) (($ $ (-1 (-499) (-499)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $) NIL (|has| (-499) (-189)) ELT) (($ $ (-714)) NIL (|has| (-499) (-189)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-4099 (($ $ $) NIL T ELT) (($ (-499) (-499)) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ (-499)) NIL T ELT))) +(((-79) (-13 (-931 (-499)) (-568 (-361 (-499))) (-568 (-944 2)) (-10 -8 (-15 -3250 ((-361 (-499)) $)) (-15 -2130 ($ (-361 (-499))))))) (T -79)) +((-3250 (*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-79)))) (-2130 (*1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-79))))) +((-1321 (((-599 (-903)) $) 13 T ELT)) (-3690 (((-460) $) 9 T ELT)) (-4096 (((-797) $) 20 T ELT)) (-1311 (($ (-460) (-599 (-903))) 15 T ELT))) +(((-80) (-13 (-568 (-797)) (-10 -8 (-15 -3690 ((-460) $)) (-15 -1321 ((-599 (-903)) $)) (-15 -1311 ($ (-460) (-599 (-903))))))) (T -80)) +((-3690 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-80)))) (-1321 (*1 *2 *1) (-12 (-5 *2 (-599 (-903))) (-5 *1 (-80)))) (-1311 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-599 (-903))) (-5 *1 (-80))))) +((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-3462 (($ $ $) NIL T ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) $) NIL (|has| (-85) (-781)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1823 (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| (-85) (-781))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -4146)) ELT)) (-3030 (($ $) NIL (|has| (-85) (-781)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3938 (((-85) $ (-1174 (-499)) (-85)) NIL (|has| $ (-6 -4146)) ELT) (((-85) $ (-499) (-85)) NIL (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-3546 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-3992 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-1609 (((-85) $ (-499) (-85)) NIL (|has| $ (-6 -4146)) ELT)) (-3235 (((-85) $ (-499)) NIL T ELT)) (-3559 (((-499) (-85) $ (-499)) NIL (|has| (-85) (-1041)) ELT) (((-499) (-85) $) NIL (|has| (-85) (-1041)) ELT) (((-499) (-1 (-85) (-85)) $) NIL T ELT)) (-3010 (((-599 (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-2680 (($ $ $) NIL T ELT)) (-2679 (($ $) NIL T ELT)) (-1333 (($ $ $) NIL T ELT)) (-3764 (($ (-714) (-85)) 10 T ELT)) (-1334 (($ $ $) NIL T ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL T ELT)) (-3658 (($ $ $) NIL (|has| (-85) (-781)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2727 (((-599 (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL T ELT)) (-2051 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2404 (($ $ $ (-499)) NIL T ELT) (($ (-85) $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 (((-85) $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2300 (($ $ (-85)) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-85)) (-599 (-85))) NIL (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT) (($ $ (-247 (-85))) NIL (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT) (($ $ (-599 (-247 (-85)))) NIL (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-2306 (((-599 (-85)) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 (($ $ (-1174 (-499))) NIL T ELT) (((-85) $ (-499)) NIL T ELT) (((-85) $ (-499) (-85)) NIL T ELT)) (-2405 (($ $ (-1174 (-499))) NIL T ELT) (($ $ (-499)) NIL T ELT)) (-2048 (((-714) (-85) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT) (((-714) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-85) (-569 (-488))) ELT)) (-3670 (($ (-599 (-85))) NIL T ELT)) (-3952 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1868 (($ (-714) (-85)) 11 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-2681 (($ $ $) NIL T ELT)) (-2411 (($ $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-2412 (($ $ $) NIL T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-81) (-13 (-96) (-10 -8 (-15 -1868 ($ (-714) (-85)))))) (T -81)) +((-1868 (*1 *1 *2 *3) (-12 (-5 *2 (-714)) (-5 *3 (-85)) (-5 *1 (-81))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) +(((-82 |#1| |#2|) (-113) (-989) (-989)) (T -82)) +NIL +(-13 (-606 |t#1|) (-996 |t#2|) (-10 -7 (-6 -4140) (-6 -4139))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-991 |#2|) . T) ((-996 |#2|) . T) ((-1041) . T) ((-1157) . T)) +((-2413 (($ $) 8 T ELT))) +(((-83 |#1|) (-10 -7 (-15 -2413 (|#1| |#1|))) (-84)) (T -83)) +NIL +((-2413 (($ $) 8 T ELT)) (-2680 (($ $ $) 9 T ELT)) (-2679 (($ $) 11 T ELT)) (-2681 (($ $ $) 10 T ELT)) (-2411 (($ $ $) 6 T ELT)) (-2412 (($ $ $) 7 T ELT))) +(((-84) (-113)) (T -84)) +((-2679 (*1 *1 *1) (-4 *1 (-84))) (-2681 (*1 *1 *1 *1) (-4 *1 (-84))) (-2680 (*1 *1 *1 *1) (-4 *1 (-84)))) +(-13 (-620) (-10 -8 (-15 -2679 ($ $)) (-15 -2681 ($ $ $)) (-15 -2680 ($ $ $)))) +(((-620) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) 9 T ELT)) (-3462 (($ $ $) 14 T ELT)) (-2976 (($) 6 T CONST)) (-3258 (((-714)) 23 T ELT)) (-3115 (($) 31 T ELT)) (-2680 (($ $ $) 12 T ELT)) (-2679 (($ $) 8 T ELT)) (-1333 (($ $ $) 15 T ELT)) (-1334 (($ $ $) 16 T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) 29 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) 27 T ELT)) (-2974 (($ $ $) 19 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2975 (($) 7 T CONST)) (-2973 (($ $ $) 20 T ELT)) (-4122 (((-488) $) 33 T ELT)) (-4096 (((-797) $) 35 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2681 (($ $ $) 10 T ELT)) (-2411 (($ $ $) 13 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 18 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 21 T ELT)) (-2412 (($ $ $) 11 T ELT))) +(((-85) (-13 (-777) (-907) (-569 (-488)) (-10 -8 (-15 -3462 ($ $ $)) (-15 -1334 ($ $ $)) (-15 -1333 ($ $ $))))) (T -85)) +((-3462 (*1 *1 *1 *1) (-5 *1 (-85))) (-1334 (*1 *1 *1 *1) (-5 *1 (-85))) (-1333 (*1 *1 *1 *1) (-5 *1 (-85)))) +((-2687 (((-85) $ $) NIL T ELT)) (-1555 (((-714) $) 92 T ELT) (($ $ (-714)) 38 T ELT)) (-1319 (((-85) $) 42 T ELT)) (-1313 (($ $ (-1099) (-716)) 59 T ELT) (($ $ (-460) (-716)) 34 T ELT)) (-1312 (($ $ (-45 (-1099) (-716))) 16 T ELT)) (-2962 (((-3 (-716) "failed") $ (-1099)) 27 T ELT) (((-649 (-716)) $ (-460)) 33 T ELT)) (-1321 (((-45 (-1099) (-716)) $) 15 T ELT)) (-3743 (($ (-1117)) 20 T ELT) (($ (-1117) (-714)) 23 T ELT) (($ (-1117) (-55)) 24 T ELT)) (-1320 (((-85) $) 40 T ELT)) (-1318 (((-85) $) 44 T ELT)) (-3690 (((-1117) $) 8 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2752 (((-85) $ (-1117)) 11 T ELT)) (-2229 (($ $ (-1 (-488) (-599 (-488)))) 65 T ELT) (((-649 (-1 (-488) (-599 (-488)))) $) 69 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1315 (((-85) $ (-460)) 37 T ELT)) (-1317 (($ $ (-1 (-85) $ $)) 46 T ELT)) (-3767 (((-649 (-1 (-797) (-599 (-797)))) $) 67 T ELT) (($ $ (-1 (-797) (-599 (-797)))) 52 T ELT) (($ $ (-1 (-797) (-797))) 54 T ELT)) (-1314 (($ $ (-1099)) 56 T ELT) (($ $ (-460)) 57 T ELT)) (-3540 (($ $) 75 T ELT)) (-1316 (($ $ (-1 (-85) $ $)) 47 T ELT)) (-4096 (((-797) $) 61 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2913 (($ $ (-460)) 35 T ELT)) (-2639 (((-55) $) 70 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 88 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 104 T ELT))) +(((-86) (-13 (-781) (-770 (-1117)) (-10 -8 (-15 -1321 ((-45 (-1099) (-716)) $)) (-15 -3540 ($ $)) (-15 -3743 ($ (-1117))) (-15 -3743 ($ (-1117) (-714))) (-15 -3743 ($ (-1117) (-55))) (-15 -1320 ((-85) $)) (-15 -1319 ((-85) $)) (-15 -1318 ((-85) $)) (-15 -1555 ((-714) $)) (-15 -1555 ($ $ (-714))) (-15 -1317 ($ $ (-1 (-85) $ $))) (-15 -1316 ($ $ (-1 (-85) $ $))) (-15 -3767 ((-649 (-1 (-797) (-599 (-797)))) $)) (-15 -3767 ($ $ (-1 (-797) (-599 (-797))))) (-15 -3767 ($ $ (-1 (-797) (-797)))) (-15 -2229 ($ $ (-1 (-488) (-599 (-488))))) (-15 -2229 ((-649 (-1 (-488) (-599 (-488)))) $)) (-15 -1315 ((-85) $ (-460))) (-15 -2913 ($ $ (-460))) (-15 -1314 ($ $ (-1099))) (-15 -1314 ($ $ (-460))) (-15 -2962 ((-3 (-716) "failed") $ (-1099))) (-15 -2962 ((-649 (-716)) $ (-460))) (-15 -1313 ($ $ (-1099) (-716))) (-15 -1313 ($ $ (-460) (-716))) (-15 -1312 ($ $ (-45 (-1099) (-716))))))) (T -86)) +((-1321 (*1 *2 *1) (-12 (-5 *2 (-45 (-1099) (-716))) (-5 *1 (-86)))) (-3540 (*1 *1 *1) (-5 *1 (-86))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-86)))) (-3743 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-714)) (-5 *1 (-86)))) (-3743 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-55)) (-5 *1 (-86)))) (-1320 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1318 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1555 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-86)))) (-1555 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-86)))) (-1317 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-1316 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-3767 (*1 *2 *1) (-12 (-5 *2 (-649 (-1 (-797) (-599 (-797))))) (-5 *1 (-86)))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-797) (-599 (-797)))) (-5 *1 (-86)))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-797) (-797))) (-5 *1 (-86)))) (-2229 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-488) (-599 (-488)))) (-5 *1 (-86)))) (-2229 (*1 *2 *1) (-12 (-5 *2 (-649 (-1 (-488) (-599 (-488))))) (-5 *1 (-86)))) (-1315 (*1 *2 *1 *3) (-12 (-5 *3 (-460)) (-5 *2 (-85)) (-5 *1 (-86)))) (-2913 (*1 *1 *1 *2) (-12 (-5 *2 (-460)) (-5 *1 (-86)))) (-1314 (*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-86)))) (-1314 (*1 *1 *1 *2) (-12 (-5 *2 (-460)) (-5 *1 (-86)))) (-2962 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-716)) (-5 *1 (-86)))) (-2962 (*1 *2 *1 *3) (-12 (-5 *3 (-460)) (-5 *2 (-649 (-716))) (-5 *1 (-86)))) (-1313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-716)) (-5 *1 (-86)))) (-1313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-716)) (-5 *1 (-86)))) (-1312 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1099) (-716))) (-5 *1 (-86))))) +((-2636 (((-3 (-1 |#1| (-599 |#1|)) #1="failed") (-86)) 23 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 13 T ELT) (((-86) (-86) (-1 |#1| (-599 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-86) (-599 |#1|)) 25 T ELT)) (-1322 (((-3 (-599 (-1 |#1| (-599 |#1|))) #1#) (-86)) 29 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 33 T ELT) (((-86) (-86) (-599 (-1 |#1| (-599 |#1|)))) 30 T ELT)) (-1323 (((-86) |#1|) 63 T ELT)) (-1324 (((-3 |#1| #1#) (-86)) 58 T ELT))) +(((-87 |#1|) (-10 -7 (-15 -2636 ((-3 |#1| #1="failed") (-86) (-599 |#1|))) (-15 -2636 ((-86) (-86) (-1 |#1| (-599 |#1|)))) (-15 -2636 ((-86) (-86) (-1 |#1| |#1|))) (-15 -2636 ((-3 (-1 |#1| (-599 |#1|)) #1#) (-86))) (-15 -1322 ((-86) (-86) (-599 (-1 |#1| (-599 |#1|))))) (-15 -1322 ((-86) (-86) (-1 |#1| |#1|))) (-15 -1322 ((-3 (-599 (-1 |#1| (-599 |#1|))) #1#) (-86))) (-15 -1323 ((-86) |#1|)) (-15 -1324 ((-3 |#1| #1#) (-86)))) (-1041)) (T -87)) +((-1324 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1041)))) (-1323 (*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1041)))) (-1322 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-599 (-1 *4 (-599 *4)))) (-5 *1 (-87 *4)) (-4 *4 (-1041)))) (-1322 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1041)) (-5 *1 (-87 *4)))) (-1322 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-599 (-1 *4 (-599 *4)))) (-4 *4 (-1041)) (-5 *1 (-87 *4)))) (-2636 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-599 *4))) (-5 *1 (-87 *4)) (-4 *4 (-1041)))) (-2636 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1041)) (-5 *1 (-87 *4)))) (-2636 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-599 *4))) (-4 *4 (-1041)) (-5 *1 (-87 *4)))) (-2636 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-599 *2)) (-5 *1 (-87 *2)) (-4 *2 (-1041))))) +((-1325 (((-499) |#2|) 41 T ELT))) +(((-88 |#1| |#2|) (-10 -7 (-15 -1325 ((-499) |#2|))) (-13 (-318) (-978 (-361 (-499)))) (-1183 |#1|)) (T -88)) +((-1325 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-978 (-361 *2)))) (-5 *2 (-499)) (-5 *1 (-88 *4 *3)) (-4 *3 (-1183 *4))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3158 (($ $ (-499)) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2730 (($ (-1111 (-499)) (-499)) NIL T ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2731 (($ $) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3922 (((-714) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2733 (((-499)) NIL T ELT)) (-2732 (((-499) $) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3919 (($ $ (-499)) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-2734 (((-1095 (-499)) $) NIL T ELT)) (-3012 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3920 (((-499) $ (-499)) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-89 |#1|) (-804 |#1|) (-499)) (T -89)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3251 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-261)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-89 |#1|) (-848)) ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| (-89 |#1|) (-848)) ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| (-89 |#1|) (-763)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-89 |#1|) #1#) $) NIL T ELT) (((-3 (-1117) #1#) $) NIL (|has| (-89 |#1|) (-978 (-1117))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| (-89 |#1|) (-978 (-499))) ELT) (((-3 (-499) #1#) $) NIL (|has| (-89 |#1|) (-978 (-499))) ELT)) (-3294 (((-89 |#1|) $) NIL T ELT) (((-1117) $) NIL (|has| (-89 |#1|) (-978 (-1117))) ELT) (((-361 (-499)) $) NIL (|has| (-89 |#1|) (-978 (-499))) ELT) (((-499) $) NIL (|has| (-89 |#1|) (-978 (-499))) ELT)) (-3880 (($ $) NIL T ELT) (($ (-499) $) NIL T ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| (-89 |#1|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| (-89 |#1|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-89 |#1|))) (|:| |vec| (-1207 (-89 |#1|)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-89 |#1|)) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-89 |#1|) (-498)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3324 (((-85) $) NIL (|has| (-89 |#1|) (-763)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| (-89 |#1|) (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| (-89 |#1|) (-821 (-333))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL T ELT)) (-3119 (((-89 |#1|) $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| (-89 |#1|) (-1092)) ELT)) (-3325 (((-85) $) NIL (|has| (-89 |#1|) (-763)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| (-89 |#1|) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| (-89 |#1|) (-781)) ELT)) (-4108 (($ (-1 (-89 |#1|) (-89 |#1|)) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| (-89 |#1|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| (-89 |#1|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-89 |#1|))) (|:| |vec| (-1207 (-89 |#1|)))) (-1207 $) $) NIL T ELT) (((-647 (-89 |#1|)) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-89 |#1|) (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL (|has| (-89 |#1|) (-261)) ELT)) (-3252 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-498)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-89 |#1|) (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-89 |#1|) (-848)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-3918 (($ $ (-599 (-89 |#1|)) (-599 (-89 |#1|))) NIL (|has| (-89 |#1|) (-263 (-89 |#1|))) ELT) (($ $ (-89 |#1|) (-89 |#1|)) NIL (|has| (-89 |#1|) (-263 (-89 |#1|))) ELT) (($ $ (-247 (-89 |#1|))) NIL (|has| (-89 |#1|) (-263 (-89 |#1|))) ELT) (($ $ (-599 (-247 (-89 |#1|)))) NIL (|has| (-89 |#1|) (-263 (-89 |#1|))) ELT) (($ $ (-599 (-1117)) (-599 (-89 |#1|))) NIL (|has| (-89 |#1|) (-468 (-1117) (-89 |#1|))) ELT) (($ $ (-1117) (-89 |#1|)) NIL (|has| (-89 |#1|) (-468 (-1117) (-89 |#1|))) ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ $ (-89 |#1|)) NIL (|has| (-89 |#1|) (-240 (-89 |#1|) (-89 |#1|))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-89 |#1|) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-89 |#1|) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-89 |#1|) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-89 |#1|) (-838 (-1117))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-714)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-3116 (($ $) NIL T ELT)) (-3118 (((-89 |#1|) $) NIL T ELT)) (-4122 (((-825 (-499)) $) NIL (|has| (-89 |#1|) (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| (-89 |#1|) (-569 (-825 (-333)))) ELT) (((-488) $) NIL (|has| (-89 |#1|) (-569 (-488))) ELT) (((-333) $) NIL (|has| (-89 |#1|) (-960)) ELT) (((-179) $) NIL (|has| (-89 |#1|) (-960)) ELT)) (-2735 (((-148 (-361 (-499))) $) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-89 |#1|)) NIL T ELT) (($ (-1117)) NIL (|has| (-89 |#1|) (-978 (-1117))) ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-848))) (|has| (-89 |#1|) (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-3253 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-498)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3920 (((-361 (-499)) $ (-499)) NIL T ELT)) (-3523 (($ $) NIL (|has| (-89 |#1|) (-763)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-89 |#1|) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-89 |#1|) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-89 |#1|) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-89 |#1|) (-838 (-1117))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-714)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-89 |#1|) (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-89 |#1|) (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| (-89 |#1|) (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| (-89 |#1|) (-781)) ELT)) (-4099 (($ $ $) NIL T ELT) (($ (-89 |#1|) (-89 |#1|)) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ (-89 |#1|) $) NIL T ELT) (($ $ (-89 |#1|)) NIL T ELT))) +(((-90 |#1|) (-13 (-931 (-89 |#1|)) (-10 -8 (-15 -3920 ((-361 (-499)) $ (-499))) (-15 -2735 ((-148 (-361 (-499))) $)) (-15 -3880 ($ $)) (-15 -3880 ($ (-499) $)))) (-499)) (T -90)) +((-3920 (*1 *2 *1 *3) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-499)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-148 (-361 (-499)))) (-5 *1 (-90 *3)) (-14 *3 (-499)))) (-3880 (*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-499)))) (-3880 (*1 *1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-90 *3)) (-14 *3 *2)))) +((-3938 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 61 T ELT) (($ $ #3="right" $) 63 T ELT)) (-3152 (((-599 $) $) 31 T ELT)) (-3148 (((-85) $ $) 36 T ELT)) (-3383 (((-85) |#2| $) 40 T ELT)) (-3151 (((-599 |#2|) $) 25 T ELT)) (-3667 (((-85) $) 18 T ELT)) (-3950 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3783 (((-85) $) 57 T ELT)) (-4096 (((-797) $) 47 T ELT)) (-3662 (((-599 $) $) 32 T ELT)) (-3174 (((-85) $ $) 38 T ELT)) (-4107 (((-714) $) 50 T ELT))) +(((-91 |#1| |#2|) (-10 -7 (-15 -3174 ((-85) |#1| |#1|)) (-15 -4096 ((-797) |#1|)) (-15 -3938 (|#1| |#1| #1="right" |#1|)) (-15 -3938 (|#1| |#1| #2="left" |#1|)) (-15 -3950 (|#1| |#1| #1#)) (-15 -3950 (|#1| |#1| #2#)) (-15 -3938 (|#2| |#1| #3="value" |#2|)) (-15 -3148 ((-85) |#1| |#1|)) (-15 -3151 ((-599 |#2|) |#1|)) (-15 -3783 ((-85) |#1|)) (-15 -3950 (|#2| |#1| #3#)) (-15 -3667 ((-85) |#1|)) (-15 -3152 ((-599 |#1|) |#1|)) (-15 -3662 ((-599 |#1|) |#1|)) (-15 -3383 ((-85) |#2| |#1|)) (-15 -4107 ((-714) |#1|))) (-92 |#2|) (-1157)) (T -91)) +NIL +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 52 T ELT)) (-3146 ((|#1| $ |#1|) 43 (|has| $ (-6 -4146)) ELT)) (-1326 (($ $ $) 58 (|has| $ (-6 -4146)) ELT)) (-1327 (($ $ $) 60 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4146)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -4146)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 45 (|has| $ (-6 -4146)) ELT)) (-3874 (($) 7 T CONST)) (-3259 (($ $) 63 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) 54 T ELT)) (-3148 (((-85) $ $) 46 (|has| |#1| (-1041)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3260 (($ $) 65 T ELT)) (-3151 (((-599 |#1|) $) 49 T ELT)) (-3667 (((-85) $) 53 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3150 (((-499) $ $) 48 T ELT)) (-3783 (((-85) $) 50 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) 55 T ELT)) (-3149 (((-85) $ $) 47 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-92 |#1|) (-113) (-1157)) (T -92)) +((-3260 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1157)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1157)))) (-3259 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1157)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1157)))) (-3938 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4146)) (-4 *1 (-92 *3)) (-4 *3 (-1157)))) (-1327 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-92 *2)) (-4 *2 (-1157)))) (-3938 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4146)) (-4 *1 (-92 *3)) (-4 *3 (-1157)))) (-1326 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-92 *2)) (-4 *2 (-1157))))) +(-13 (-950 |t#1|) (-10 -8 (-15 -3260 ($ $)) (-15 -3950 ($ $ "left")) (-15 -3259 ($ $)) (-15 -3950 ($ $ "right")) (IF (|has| $ (-6 -4146)) (PROGN (-15 -3938 ($ $ "left" $)) (-15 -1327 ($ $ $)) (-15 -3938 ($ $ "right" $)) (-15 -1326 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-950 |#1|) . T) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) +((-1330 (((-85) |#1|) 29 T ELT)) (-1329 (((-714) (-714)) 28 T ELT) (((-714)) 27 T ELT)) (-1328 (((-85) |#1| (-85)) 30 T ELT) (((-85) |#1|) 31 T ELT))) +(((-93 |#1|) (-10 -7 (-15 -1328 ((-85) |#1|)) (-15 -1328 ((-85) |#1| (-85))) (-15 -1329 ((-714))) (-15 -1329 ((-714) (-714))) (-15 -1330 ((-85) |#1|))) (-1183 (-499))) (T -93)) +((-1330 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1183 (-499))))) (-1329 (*1 *2 *2) (-12 (-5 *2 (-714)) (-5 *1 (-93 *3)) (-4 *3 (-1183 (-499))))) (-1329 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-93 *3)) (-4 *3 (-1183 (-499))))) (-1328 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1183 (-499))))) (-1328 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1183 (-499)))))) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 18 T ELT)) (-3558 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3146 ((|#1| $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-1326 (($ $ $) 21 (|has| $ (-6 -4146)) ELT)) (-1327 (($ $ $) 23 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4146)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4146)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3259 (($ $) 20 T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) NIL T ELT)) (-3148 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1335 (($ $ |#1| $) 27 T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3260 (($ $) 22 T ELT)) (-3151 (((-599 |#1|) $) NIL T ELT)) (-3667 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-1331 (($ |#1| $) 28 T ELT)) (-3757 (($ |#1| $) 15 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 17 T ELT)) (-3713 (($) 11 T ELT)) (-3950 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3150 (((-499) $ $) NIL T ELT)) (-3783 (((-85) $) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) NIL T ELT)) (-3149 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1332 (($ (-599 |#1|)) 16 T ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-94 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -4146) (-6 -4145) (-15 -1332 ($ (-599 |#1|))) (-15 -3757 ($ |#1| $)) (-15 -1331 ($ |#1| $)) (-15 -3558 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-781)) (T -94)) +((-1332 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-94 *3)))) (-3757 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-781)))) (-1331 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-781)))) (-3558 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) (-5 *1 (-94 *3)) (-4 *3 (-781))))) +((-2413 (($ $) 13 T ELT)) (-2679 (($ $) 11 T ELT)) (-1333 (($ $ $) 23 T ELT)) (-1334 (($ $ $) 21 T ELT)) (-2411 (($ $ $) 19 T ELT)) (-2412 (($ $ $) 17 T ELT))) +(((-95 |#1|) (-10 -7 (-15 -1333 (|#1| |#1| |#1|)) (-15 -1334 (|#1| |#1| |#1|)) (-15 -2413 (|#1| |#1|)) (-15 -2412 (|#1| |#1| |#1|)) (-15 -2411 (|#1| |#1| |#1|)) (-15 -2679 (|#1| |#1|))) (-96)) (T -95)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-2413 (($ $) 103 T ELT)) (-3462 (($ $ $) 31 T ELT)) (-2299 (((-1213) $ (-499) (-499)) 66 (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) $) 98 (|has| (-85) (-781)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) 92 T ELT)) (-1823 (($ $) 102 (-12 (|has| (-85) (-781)) (|has| $ (-6 -4146))) ELT) (($ (-1 (-85) (-85) (-85)) $) 101 (|has| $ (-6 -4146)) ELT)) (-3030 (($ $) 97 (|has| (-85) (-781)) ELT) (($ (-1 (-85) (-85) (-85)) $) 91 T ELT)) (-3938 (((-85) $ (-1174 (-499)) (-85)) 88 (|has| $ (-6 -4146)) ELT) (((-85) $ (-499) (-85)) 54 (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) (-85)) $) 71 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 38 T CONST)) (-2397 (($ $) 100 (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) 90 T ELT)) (-1386 (($ $) 68 (-12 (|has| (-85) (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ (-1 (-85) (-85)) $) 72 (|has| $ (-6 -4145)) ELT) (($ (-85) $) 69 (-12 (|has| (-85) (-1041)) (|has| $ (-6 -4145))) ELT)) (-3992 (((-85) (-1 (-85) (-85) (-85)) $) 74 (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) 73 (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) 70 (-12 (|has| (-85) (-1041)) (|has| $ (-6 -4145))) ELT)) (-1609 (((-85) $ (-499) (-85)) 53 (|has| $ (-6 -4146)) ELT)) (-3235 (((-85) $ (-499)) 55 T ELT)) (-3559 (((-499) (-85) $ (-499)) 95 (|has| (-85) (-1041)) ELT) (((-499) (-85) $) 94 (|has| (-85) (-1041)) ELT) (((-499) (-1 (-85) (-85)) $) 93 T ELT)) (-3010 (((-599 (-85)) $) 45 (|has| $ (-6 -4145)) ELT)) (-2680 (($ $ $) 108 T ELT)) (-2679 (($ $) 106 T ELT)) (-1333 (($ $ $) 32 T ELT)) (-3764 (($ (-714) (-85)) 78 T ELT)) (-1334 (($ $ $) 33 T ELT)) (-2301 (((-499) $) 63 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) 23 T ELT)) (-3658 (($ $ $) 96 (|has| (-85) (-781)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) 89 T ELT)) (-2727 (((-599 (-85)) $) 46 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-85) $) 48 (-12 (|has| (-85) (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 62 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) 22 T ELT)) (-2051 (($ (-1 (-85) (-85)) $) 41 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-85) (-85) (-85)) $ $) 83 T ELT) (($ (-1 (-85) (-85)) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2404 (($ $ $ (-499)) 87 T ELT) (($ (-85) $ (-499)) 86 T ELT)) (-2304 (((-599 (-499)) $) 60 T ELT)) (-2305 (((-85) (-499) $) 59 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3951 (((-85) $) 64 (|has| (-499) (-781)) ELT)) (-1387 (((-3 (-85) "failed") (-1 (-85) (-85)) $) 75 T ELT)) (-2300 (($ $ (-85)) 65 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) (-85)) $) 43 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-85)) (-599 (-85))) 52 (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT) (($ $ (-85) (-85)) 51 (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT) (($ $ (-247 (-85))) 50 (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT) (($ $ (-599 (-247 (-85)))) 49 (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT)) (-1248 (((-85) $ $) 34 T ELT)) (-2303 (((-85) (-85) $) 61 (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-2306 (((-599 (-85)) $) 58 T ELT)) (-3543 (((-85) $) 37 T ELT)) (-3713 (($) 36 T ELT)) (-3950 (($ $ (-1174 (-499))) 77 T ELT) (((-85) $ (-499)) 57 T ELT) (((-85) $ (-499) (-85)) 56 T ELT)) (-2405 (($ $ (-1174 (-499))) 85 T ELT) (($ $ (-499)) 84 T ELT)) (-2048 (((-714) (-85) $) 47 (-12 (|has| (-85) (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) (-85)) $) 44 (|has| $ (-6 -4145)) ELT)) (-1824 (($ $ $ (-499)) 99 (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 35 T ELT)) (-4122 (((-488) $) 67 (|has| (-85) (-569 (-488))) ELT)) (-3670 (($ (-599 (-85))) 76 T ELT)) (-3952 (($ (-599 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-85) $) 80 T ELT) (($ $ (-85)) 79 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2050 (((-85) (-1 (-85) (-85)) $) 42 (|has| $ (-6 -4145)) ELT)) (-2681 (($ $ $) 107 T ELT)) (-2411 (($ $ $) 105 T ELT)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT)) (-2412 (($ $ $) 104 T ELT)) (-4107 (((-714) $) 39 (|has| $ (-6 -4145)) ELT))) +(((-96) (-113)) (T -96)) +((-1334 (*1 *1 *1 *1) (-4 *1 (-96))) (-1333 (*1 *1 *1 *1) (-4 *1 (-96))) (-3462 (*1 *1 *1 *1) (-4 *1 (-96)))) +(-13 (-781) (-84) (-620) (-19 (-85)) (-10 -8 (-15 -1334 ($ $ $)) (-15 -1333 ($ $ $)) (-15 -3462 ($ $ $)))) +(((-34) . T) ((-73) . T) ((-84) . T) ((-568 (-797)) . T) ((-124 (-85)) . T) ((-569 (-488)) |has| (-85) (-569 (-488))) ((-240 (-499) (-85)) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) (-85)) . T) ((-263 (-85)) -12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ((-327 (-85)) . T) ((-443 (-85)) . T) ((-554 (-499) (-85)) . T) ((-468 (-85) (-85)) -12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ((-609 (-85)) . T) ((-620) . T) ((-19 (-85)) . T) ((-781) . T) ((-784) . T) ((-1041) . T) ((-1157) . T)) +((-2051 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3540 (($ $) 16 T ELT)) (-4107 (((-714) $) 25 T ELT))) +(((-97 |#1| |#2|) (-10 -7 (-15 -2051 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4107 ((-714) |#1|)) (-15 -3540 (|#1| |#1|))) (-98 |#2|) (-1041)) (T -97)) +NIL +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 52 T ELT)) (-3146 ((|#1| $ |#1|) 43 (|has| $ (-6 -4146)) ELT)) (-1326 (($ $ $) 58 (|has| $ (-6 -4146)) ELT)) (-1327 (($ $ $) 60 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4146)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -4146)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 45 (|has| $ (-6 -4146)) ELT)) (-3874 (($) 7 T CONST)) (-3259 (($ $) 63 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) 54 T ELT)) (-3148 (((-85) $ $) 46 (|has| |#1| (-1041)) ELT)) (-1335 (($ $ |#1| $) 66 T ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3260 (($ $) 65 T ELT)) (-3151 (((-599 |#1|) $) 49 T ELT)) (-3667 (((-85) $) 53 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3150 (((-499) $ $) 48 T ELT)) (-3783 (((-85) $) 50 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) 55 T ELT)) (-3149 (((-85) $ $) 47 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-98 |#1|) (-113) (-1041)) (T -98)) +((-1335 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1041))))) +(-13 (-92 |t#1|) (-10 -8 (-6 -4146) (-6 -4145) (-15 -1335 ($ $ |t#1| $)))) +(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-92 |#1|) . T) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-950 |#1|) . T) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 18 T ELT)) (-3146 ((|#1| $ |#1|) 22 (|has| $ (-6 -4146)) ELT)) (-1326 (($ $ $) 23 (|has| $ (-6 -4146)) ELT)) (-1327 (($ $ $) 21 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4146)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4146)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3259 (($ $) 24 T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) NIL T ELT)) (-3148 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1335 (($ $ |#1| $) NIL T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3260 (($ $) NIL T ELT)) (-3151 (((-599 |#1|) $) NIL T ELT)) (-3667 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3757 (($ |#1| $) 15 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 17 T ELT)) (-3713 (($) 11 T ELT)) (-3950 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3150 (((-499) $ $) NIL T ELT)) (-3783 (((-85) $) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) 20 T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) NIL T ELT)) (-3149 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1336 (($ (-599 |#1|)) 16 T ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-99 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -4146) (-15 -1336 ($ (-599 |#1|))) (-15 -3757 ($ |#1| $)))) (-781)) (T -99)) +((-1336 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-99 *3)))) (-3757 (*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-781))))) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 30 T ELT)) (-3146 ((|#1| $ |#1|) 32 (|has| $ (-6 -4146)) ELT)) (-1326 (($ $ $) 36 (|has| $ (-6 -4146)) ELT)) (-1327 (($ $ $) 34 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4146)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4146)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3259 (($ $) 23 T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) NIL T ELT)) (-3148 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1335 (($ $ |#1| $) 16 T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3260 (($ $) 22 T ELT)) (-3151 (((-599 |#1|) $) NIL T ELT)) (-3667 (((-85) $) 25 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 20 T ELT)) (-3713 (($) 11 T ELT)) (-3950 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3150 (((-499) $ $) NIL T ELT)) (-3783 (((-85) $) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) NIL T ELT)) (-3149 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1337 (($ |#1|) 18 T ELT) (($ $ |#1| $) 17 T ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 10 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-100 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1337 ($ |#1|)) (-15 -1337 ($ $ |#1| $)))) (-1041)) (T -100)) +((-1337 (*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1041)))) (-1337 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1041))))) +((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) 34 T ELT)) (-3258 (((-714)) 20 T ELT)) (-3874 (($) 12 T CONST)) (-3115 (($) 29 T ELT)) (-2650 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2978 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2111 (((-857) $) 27 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) 25 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1338 (($ (-714)) 8 T ELT)) (-3875 (($ $ $) 31 T ELT)) (-3876 (($ $ $) 30 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2411 (($ $ $) 33 T ELT)) (-2685 (((-85) $ $) 17 T ELT)) (-2686 (((-85) $ $) 15 T ELT)) (-3174 (((-85) $ $) 13 T ELT)) (-2805 (((-85) $ $) 16 T ELT)) (-2806 (((-85) $ $) 14 T ELT)) (-2412 (($ $ $) 32 T ELT))) +(((-101) (-13 (-777) (-620) (-10 -8 (-15 -1338 ($ (-714))) (-15 -3876 ($ $ $)) (-15 -3875 ($ $ $)) (-15 -3874 ($) -4102)))) (T -101)) +((-1338 (*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-101)))) (-3876 (*1 *1 *1 *1) (-5 *1 (-101))) (-3875 (*1 *1 *1 *1) (-5 *1 (-101))) (-3874 (*1 *1) (-5 *1 (-101)))) +((-714) (|%ilt| |#1| 256)) +((-2687 (((-85) $ $) NIL (|has| (-101) (-73)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) (-101) (-101)) $) NIL T ELT) (((-85) $) NIL (|has| (-101) (-781)) ELT)) (-1823 (($ (-1 (-85) (-101) (-101)) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| (-101) (-781))) ELT)) (-3030 (($ (-1 (-85) (-101) (-101)) $) NIL T ELT) (($ $) NIL (|has| (-101) (-781)) ELT)) (-3938 (((-101) $ (-499) (-101)) 26 (|has| $ (-6 -4146)) ELT) (((-101) $ (-1174 (-499)) (-101)) NIL (|has| $ (-6 -4146)) ELT)) (-1339 (((-714) $ (-714)) 34 T ELT)) (-3860 (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-101) (-1041))) ELT)) (-3546 (($ (-101) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-101) (-1041))) ELT) (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-101) (-1 (-101) (-101) (-101)) $ (-101) (-101)) NIL (-12 (|has| $ (-6 -4145)) (|has| (-101) (-1041))) ELT) (((-101) (-1 (-101) (-101) (-101)) $ (-101)) NIL (|has| $ (-6 -4145)) ELT) (((-101) (-1 (-101) (-101) (-101)) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 (((-101) $ (-499) (-101)) 25 (|has| $ (-6 -4146)) ELT)) (-3235 (((-101) $ (-499)) 20 T ELT)) (-3559 (((-499) (-1 (-85) (-101)) $) NIL T ELT) (((-499) (-101) $) NIL (|has| (-101) (-1041)) ELT) (((-499) (-101) $ (-499)) NIL (|has| (-101) (-1041)) ELT)) (-3010 (((-599 (-101)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) (-101)) 14 T ELT)) (-2301 (((-499) $) 27 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| (-101) (-781)) ELT)) (-3658 (($ (-1 (-85) (-101) (-101)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-101) (-781)) ELT)) (-2727 (((-599 (-101)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-101) (-1041))) ELT)) (-2302 (((-499) $) 30 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| (-101) (-781)) ELT)) (-2051 (($ (-1 (-101) (-101)) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-101) (-101)) $) NIL T ELT) (($ (-1 (-101) (-101) (-101)) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| (-101) (-1041)) ELT)) (-2404 (($ (-101) $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| (-101) (-1041)) ELT)) (-3951 (((-101) $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 (-101) "failed") (-1 (-85) (-101)) $) NIL T ELT)) (-2300 (($ $ (-101)) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-101)))) NIL (-12 (|has| (-101) (-263 (-101))) (|has| (-101) (-1041))) ELT) (($ $ (-247 (-101))) NIL (-12 (|has| (-101) (-263 (-101))) (|has| (-101) (-1041))) ELT) (($ $ (-101) (-101)) NIL (-12 (|has| (-101) (-263 (-101))) (|has| (-101) (-1041))) ELT) (($ $ (-599 (-101)) (-599 (-101))) NIL (-12 (|has| (-101) (-263 (-101))) (|has| (-101) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-101) (-1041))) ELT)) (-2306 (((-599 (-101)) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) 12 T ELT)) (-3950 (((-101) $ (-499) (-101)) NIL T ELT) (((-101) $ (-499)) 23 T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-101) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-101) (-1041))) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-101) (-569 (-488))) ELT)) (-3670 (($ (-599 (-101))) 40 T ELT)) (-3952 (($ $ (-101)) NIL T ELT) (($ (-101) $) NIL T ELT) (($ $ $) 44 T ELT) (($ (-599 $)) NIL T ELT)) (-4096 (((-896 (-101)) $) 35 T ELT) (((-1099) $) 37 T ELT) (((-797) $) NIL (|has| (-101) (-568 (-797))) ELT)) (-1340 (((-714) $) 18 T ELT)) (-1341 (($ (-714)) 8 T ELT)) (-1297 (((-85) $ $) NIL (|has| (-101) (-73)) ELT)) (-2050 (((-85) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-101) (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-101) (-781)) ELT)) (-3174 (((-85) $ $) 32 (|has| (-101) (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| (-101) (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| (-101) (-781)) ELT)) (-4107 (((-714) $) 15 (|has| $ (-6 -4145)) ELT))) +(((-102) (-13 (-19 (-101)) (-568 (-896 (-101))) (-568 (-1099)) (-10 -8 (-15 -1341 ($ (-714))) (-15 -1340 ((-714) $)) (-15 -1339 ((-714) $ (-714))) (-6 -4145)))) (T -102)) +((-1341 (*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-102)))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-102)))) (-1339 (*1 *2 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-102))))) +((-2687 (((-85) $ $) NIL T ELT)) (-1342 (($) 6 T CONST)) (-1344 (($) 7 T CONST)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 14 T ELT)) (-1343 (($) 8 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 10 T ELT))) +(((-103) (-13 (-1041) (-10 -8 (-15 -1344 ($) -4102) (-15 -1343 ($) -4102) (-15 -1342 ($) -4102)))) (T -103)) +((-1344 (*1 *1) (-5 *1 (-103))) (-1343 (*1 *1) (-5 *1 (-103))) (-1342 (*1 *1) (-5 *1 (-103)))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT))) +(((-104) (-113)) (T -104)) +((-1345 (*1 *1 *1 *1) (|partial| -4 *1 (-104)))) +(-13 (-23) (-10 -8 (-15 -1345 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) 7 T ELT)) (-1346 (((-1213) $ (-714)) 17 T ELT)) (-3559 (((-714) $) 18 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-105) (-113)) (T -105)) +((-3559 (*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-714)))) (-1346 (*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-714)) (-5 *2 (-1213))))) +(-13 (-1041) (-10 -8 (-15 -3559 ((-714) $)) (-15 -1346 ((-1213) $ (-714))))) +(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 16 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3371 (((-599 (-1075)) $) 10 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-106) (-13 (-1023) (-10 -8 (-15 -3371 ((-599 (-1075)) $))))) (T -106)) +((-3371 (*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-106))))) +((-2687 (((-85) $ $) 49 T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-714) #1="failed") $) 60 T ELT)) (-3294 (((-714) $) 58 T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) 37 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1348 (((-85)) 61 T ELT)) (-1347 (((-85) (-85)) 63 T ELT)) (-2644 (((-85) $) 30 T ELT)) (-1349 (((-85) $) 57 T ELT)) (-4096 (((-797) $) 28 T ELT) (($ (-714)) 20 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 18 T CONST)) (-2785 (($) 19 T CONST)) (-1350 (($ (-714)) 21 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 40 T ELT)) (-3174 (((-85) $ $) 32 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 35 T ELT)) (-3987 (((-3 $ #1#) $ $) 42 T ELT)) (-3989 (($ $ $) 38 T ELT)) (** (($ $ (-714)) NIL T ELT) (($ $ (-857)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-714) $) 48 T ELT) (($ (-857) $) NIL T ELT) (($ $ $) 45 T ELT))) +(((-107) (-13 (-781) (-23) (-684) (-978 (-714)) (-10 -8 (-6 (-4147 "*")) (-15 -3987 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1350 ($ (-714))) (-15 -2644 ((-85) $)) (-15 -1349 ((-85) $)) (-15 -1348 ((-85))) (-15 -1347 ((-85) (-85)))))) (T -107)) +((-3987 (*1 *1 *1 *1) (|partial| -5 *1 (-107))) (** (*1 *1 *1 *1) (-5 *1 (-107))) (-1350 (*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-107)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1349 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1348 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1347 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) +((-2687 (((-85) $ $) NIL T ELT)) (-1351 (($ (-599 |#3|)) 62 T ELT)) (-3554 (($ $) 125 T ELT) (($ $ (-499) (-499)) 124 T ELT)) (-3874 (($) 20 T ELT)) (-3295 (((-3 |#3| "failed") $) 85 T ELT)) (-3294 ((|#3| $) NIL T ELT)) (-1355 (($ $ (-599 (-499))) 126 T ELT)) (-1352 (((-599 |#3|) $) 57 T ELT)) (-3231 (((-714) $) 67 T ELT)) (-4094 (($ $ $) 119 T ELT)) (-1353 (($) 66 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1354 (($) 19 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3950 ((|#3| $ (-499)) 71 T ELT) ((|#3| $) 70 T ELT) ((|#3| $ (-499) (-499)) 72 T ELT) ((|#3| $ (-499) (-499) (-499)) 73 T ELT) ((|#3| $ (-499) (-499) (-499) (-499)) 74 T ELT) ((|#3| $ (-599 (-499))) 75 T ELT)) (-4098 (((-714) $) 68 T ELT)) (-2084 (($ $ (-499) $ (-499)) 120 T ELT) (($ $ (-499) (-499)) 122 T ELT)) (-4096 (((-797) $) 93 T ELT) (($ |#3|) 94 T ELT) (($ (-196 |#2| |#3|)) 101 T ELT) (($ (-1082 |#2| |#3|)) 104 T ELT) (($ (-599 |#3|)) 76 T ELT) (($ (-599 $)) 82 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 95 T CONST)) (-2785 (($) 96 T CONST)) (-3174 (((-85) $ $) 106 T ELT)) (-3987 (($ $) 112 T ELT) (($ $ $) 110 T ELT)) (-3989 (($ $ $) 108 T ELT)) (* (($ |#3| $) 117 T ELT) (($ $ |#3|) 118 T ELT) (($ $ (-499)) 115 T ELT) (($ (-499) $) 114 T ELT) (($ $ $) 121 T ELT))) +(((-108 |#1| |#2| |#3|) (-13 (-419 |#3| (-714)) (-424 (-499) (-714)) (-240 (-499) |#3|) (-571 (-196 |#2| |#3|)) (-571 (-1082 |#2| |#3|)) (-571 (-599 |#3|)) (-571 (-599 $)) (-10 -8 (-15 -3231 ((-714) $)) (-15 -3950 (|#3| $)) (-15 -3950 (|#3| $ (-499) (-499))) (-15 -3950 (|#3| $ (-499) (-499) (-499))) (-15 -3950 (|#3| $ (-499) (-499) (-499) (-499))) (-15 -3950 (|#3| $ (-599 (-499)))) (-15 -4094 ($ $ $)) (-15 * ($ $ $)) (-15 -2084 ($ $ (-499) $ (-499))) (-15 -2084 ($ $ (-499) (-499))) (-15 -3554 ($ $)) (-15 -3554 ($ $ (-499) (-499))) (-15 -1355 ($ $ (-599 (-499)))) (-15 -1354 ($)) (-15 -1353 ($)) (-15 -1352 ((-599 |#3|) $)) (-15 -1351 ($ (-599 |#3|))) (-15 -3874 ($)))) (-499) (-714) (-146)) (T -108)) +((-4094 (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-499)) (-14 *4 *2) (-4 *5 (-146)))) (-3950 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-499)) (-14 *4 (-714)))) (-3950 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-499)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-714)))) (-3950 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-499)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-714)))) (-3950 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-499)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-714)))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 (-599 (-499))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 (-499)) (-14 *5 (-714)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146)))) (-2084 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-714)) (-4 *5 (-146)))) (-2084 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-714)) (-4 *5 (-146)))) (-3554 (*1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146)))) (-3554 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-714)) (-4 *5 (-146)))) (-1355 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-499)) (-14 *4 (-714)) (-4 *5 (-146)))) (-1354 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146)))) (-1353 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146)))) (-1352 (*1 *2 *1) (-12 (-5 *2 (-599 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-499)) (-14 *4 (-714)) (-4 *5 (-146)))) (-1351 (*1 *1 *2) (-12 (-5 *2 (-599 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-499)) (-14 *4 (-714)))) (-3874 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146))))) +((-2531 (((-108 |#1| |#2| |#4|) (-599 |#4|) (-108 |#1| |#2| |#3|)) 14 T ELT)) (-4108 (((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)) 18 T ELT))) +(((-109 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2531 ((-108 |#1| |#2| |#4|) (-599 |#4|) (-108 |#1| |#2| |#3|))) (-15 -4108 ((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)))) (-499) (-714) (-146) (-146)) (T -109)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-499)) (-14 *6 (-714)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) (-2531 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-499)) (-14 *6 (-714)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3668 (((-1075) $) 11 T ELT)) (-3669 (((-1075) $) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 17 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-110) (-13 (-1023) (-10 -8 (-15 -3669 ((-1075) $)) (-15 -3668 ((-1075) $))))) (T -110)) +((-3669 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-110)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-110))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1459 (((-161) $) 10 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 20 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3371 (((-599 (-1075)) $) 13 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-111) (-13 (-1023) (-10 -8 (-15 -1459 ((-161) $)) (-15 -3371 ((-599 (-1075)) $))))) (T -111)) +((-1459 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-111))))) +((-2687 (((-85) $ $) NIL T ELT)) (-1457 (((-599 (-799)) $) NIL T ELT)) (-3690 (((-460) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1459 (((-161) $) NIL T ELT)) (-2752 (((-85) $ (-460)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1458 (((-599 (-85)) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (((-157) $) 6 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2639 (((-55) $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-112) (-13 (-160) (-568 (-157)))) (T -112)) +NIL +((-1357 (((-599 (-158 (-112))) $) 13 T ELT)) (-1356 (((-599 (-158 (-112))) $) 14 T ELT)) (-1358 (((-599 (-772)) $) 10 T ELT)) (-1515 (((-112) $) 7 T ELT)) (-4096 (((-797) $) 16 T ELT))) +(((-113) (-13 (-568 (-797)) (-10 -8 (-15 -1515 ((-112) $)) (-15 -1358 ((-599 (-772)) $)) (-15 -1357 ((-599 (-158 (-112))) $)) (-15 -1356 ((-599 (-158 (-112))) $))))) (T -113)) +((-1515 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1358 (*1 *2 *1) (-12 (-5 *2 (-599 (-772))) (-5 *1 (-113)))) (-1357 (*1 *2 *1) (-12 (-5 *2 (-599 (-158 (-112)))) (-5 *1 (-113)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-599 (-158 (-112)))) (-5 *1 (-113))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3567 (($) 17 T CONST)) (-1900 (($) NIL (|has| (-117) (-323)) ELT)) (-3372 (($ $ $) 19 T ELT) (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT)) (-3374 (($ $ $) NIL T ELT)) (-3373 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| (-117) (-323)) ELT)) (-3377 (($) NIL T ELT) (($ (-599 (-117))) NIL T ELT)) (-1603 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT)) (-3545 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-117) $) 55 (|has| $ (-6 -4145)) ELT)) (-3546 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-117) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT)) (-3992 (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -4145)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -4145)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT)) (-3115 (($) NIL (|has| (-117) (-323)) ELT)) (-3010 (((-599 (-117)) $) 64 (|has| $ (-6 -4145)) ELT)) (-3379 (((-85) $ $) NIL T ELT)) (-2650 (((-117) $) NIL (|has| (-117) (-781)) ELT)) (-2727 (((-599 (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-117) $) 27 (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT)) (-2978 (((-117) $) NIL (|has| (-117) (-781)) ELT)) (-2051 (($ (-1 (-117) (-117)) $) 63 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-117) (-117)) $) 59 T ELT)) (-3569 (($) 18 T CONST)) (-2111 (((-857) $) NIL (|has| (-117) (-323)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3376 (($ $ $) 30 T ELT)) (-1308 (((-117) $) 56 T ELT)) (-3757 (($ (-117) $) 54 T ELT)) (-2518 (($ (-857)) NIL (|has| (-117) (-323)) ELT)) (-1361 (($) 16 T CONST)) (-3381 (((-1060) $) NIL T ELT)) (-1387 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-1309 (((-117) $) 57 T ELT)) (-2049 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-117)) (-599 (-117))) NIL (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT) (($ $ (-247 (-117))) NIL (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT) (($ $ (-599 (-247 (-117)))) NIL (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) 52 T ELT)) (-1362 (($) 15 T CONST)) (-3375 (($ $ $) 32 T ELT) (($ $ (-117)) NIL T ELT)) (-1499 (($ (-599 (-117))) NIL T ELT) (($) NIL T ELT)) (-2048 (((-714) (-117) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT) (((-714) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-1099) $) 37 T ELT) (((-488) $) NIL (|has| (-117) (-569 (-488))) ELT) (((-599 (-117)) $) 35 T ELT)) (-3670 (($ (-599 (-117))) NIL T ELT)) (-1901 (($ $) 33 (|has| (-117) (-323)) ELT)) (-4096 (((-797) $) 49 T ELT)) (-1363 (($ (-1099)) 14 T ELT) (($ (-599 (-117))) 46 T ELT)) (-1902 (((-714) $) NIL T ELT)) (-3378 (($) 53 T ELT) (($ (-599 (-117))) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-1310 (($ (-599 (-117))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-1359 (($) 21 T CONST)) (-1360 (($) 20 T CONST)) (-3174 (((-85) $ $) 24 T ELT)) (-4107 (((-714) $) 51 (|has| $ (-6 -4145)) ELT))) +(((-114) (-13 (-1041) (-569 (-1099)) (-380 (-117)) (-569 (-599 (-117))) (-10 -8 (-15 -1363 ($ (-1099))) (-15 -1363 ($ (-599 (-117)))) (-15 -1362 ($) -4102) (-15 -1361 ($) -4102) (-15 -3567 ($) -4102) (-15 -3569 ($) -4102) (-15 -1360 ($) -4102) (-15 -1359 ($) -4102)))) (T -114)) +((-1363 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-114)))) (-1363 (*1 *1 *2) (-12 (-5 *2 (-599 (-117))) (-5 *1 (-114)))) (-1362 (*1 *1) (-5 *1 (-114))) (-1361 (*1 *1) (-5 *1 (-114))) (-3567 (*1 *1) (-5 *1 (-114))) (-3569 (*1 *1) (-5 *1 (-114))) (-1360 (*1 *1) (-5 *1 (-114))) (-1359 (*1 *1) (-5 *1 (-114)))) +((-3891 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3889 ((|#1| |#3|) 9 T ELT)) (-3890 ((|#3| |#3|) 15 T ELT))) +(((-115 |#1| |#2| |#3|) (-10 -7 (-15 -3889 (|#1| |#3|)) (-15 -3890 (|#3| |#3|)) (-15 -3891 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-510) (-931 |#1|) (-327 |#2|)) (T -115)) +((-3891 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-931 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) (-4 *3 (-327 *5)))) (-3890 (*1 *2 *2) (-12 (-4 *3 (-510)) (-4 *4 (-931 *3)) (-5 *1 (-115 *3 *4 *2)) (-4 *2 (-327 *4)))) (-3889 (*1 *2 *3) (-12 (-4 *4 (-931 *2)) (-4 *2 (-510)) (-5 *1 (-115 *2 *4 *3)) (-4 *3 (-327 *4))))) +((-1402 (($ $ $) 8 T ELT)) (-1400 (($ $) 7 T ELT)) (-3224 (($ $ $) 6 T ELT))) +(((-116) (-113)) (T -116)) +((-1402 (*1 *1 *1 *1) (-4 *1 (-116))) (-1400 (*1 *1 *1) (-4 *1 (-116))) (-3224 (*1 *1 *1 *1) (-4 *1 (-116)))) +(-13 (-10 -8 (-15 -3224 ($ $ $)) (-15 -1400 ($ $)) (-15 -1402 ($ $ $)))) +((-2687 (((-85) $ $) NIL T ELT)) (-1371 (($) 30 T CONST)) (-1366 (((-85) $) 42 T ELT)) (-3567 (($ $) 52 T ELT)) (-1378 (($) 23 T CONST)) (-1551 (($) 21 T CONST)) (-3258 (((-714)) 13 T ELT)) (-3115 (($) 20 T ELT)) (-2698 (($) 22 T CONST)) (-1380 (((-714) $) 17 T ELT)) (-1377 (($) 24 T CONST)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1365 (((-85) $) 44 T ELT)) (-3569 (($ $) 53 T ELT)) (-2111 (((-857) $) 18 T ELT)) (-1375 (($) 26 T CONST)) (-3380 (((-1099) $) 50 T ELT)) (-2518 (($ (-857)) 16 T ELT)) (-1372 (($) 29 T CONST)) (-1368 (((-85) $) 40 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1374 (($) 27 T CONST)) (-1370 (($) 31 T CONST)) (-1369 (((-85) $) 38 T ELT)) (-4096 (((-797) $) 33 T ELT)) (-1379 (($ (-714)) 14 T ELT) (($ (-1099)) 51 T ELT)) (-1376 (($) 25 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-1373 (($) 28 T CONST)) (-1364 (((-85) $) 48 T ELT)) (-1367 (((-85) $) 46 T ELT)) (-2685 (((-85) $ $) 11 T ELT)) (-2686 (((-85) $ $) 9 T ELT)) (-3174 (((-85) $ $) 7 T ELT)) (-2805 (((-85) $ $) 10 T ELT)) (-2806 (((-85) $ $) 8 T ELT))) +(((-117) (-13 (-777) (-10 -8 (-15 -1380 ((-714) $)) (-15 -1379 ($ (-714))) (-15 -1379 ($ (-1099))) (-15 -1551 ($) -4102) (-15 -2698 ($) -4102) (-15 -1378 ($) -4102) (-15 -1377 ($) -4102) (-15 -1376 ($) -4102) (-15 -1375 ($) -4102) (-15 -1374 ($) -4102) (-15 -1373 ($) -4102) (-15 -1372 ($) -4102) (-15 -1371 ($) -4102) (-15 -1370 ($) -4102) (-15 -3567 ($ $)) (-15 -3569 ($ $)) (-15 -1369 ((-85) $)) (-15 -1368 ((-85) $)) (-15 -1367 ((-85) $)) (-15 -1366 ((-85) $)) (-15 -1365 ((-85) $)) (-15 -1364 ((-85) $))))) (T -117)) +((-1380 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-117)))) (-1379 (*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-117)))) (-1379 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-117)))) (-1551 (*1 *1) (-5 *1 (-117))) (-2698 (*1 *1) (-5 *1 (-117))) (-1378 (*1 *1) (-5 *1 (-117))) (-1377 (*1 *1) (-5 *1 (-117))) (-1376 (*1 *1) (-5 *1 (-117))) (-1375 (*1 *1) (-5 *1 (-117))) (-1374 (*1 *1) (-5 *1 (-117))) (-1373 (*1 *1) (-5 *1 (-117))) (-1372 (*1 *1) (-5 *1 (-117))) (-1371 (*1 *1) (-5 *1 (-117))) (-1370 (*1 *1) (-5 *1 (-117))) (-3567 (*1 *1 *1) (-5 *1 (-117))) (-3569 (*1 *1 *1) (-5 *1 (-117))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1368 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1366 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1365 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT)) (-2823 (((-649 $) $) 44 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-118) (-113)) (T -118)) +((-2823 (*1 *2 *1) (-12 (-5 *2 (-649 *1)) (-4 *1 (-118))))) +(-13 (-989) (-10 -8 (-15 -2823 ((-649 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-684) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2565 ((|#1| (-647 |#1|) |#1|) 19 T ELT))) +(((-119 |#1|) (-10 -7 (-15 -2565 (|#1| (-647 |#1|) |#1|))) (-146)) (T -119)) +((-2565 (*1 *2 *3 *2) (-12 (-5 *3 (-647 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-120) (-113)) (T -120)) +NIL +(-13 (-989)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-684) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-1383 (((-2 (|:| -2519 (-714)) (|:| -4104 (-361 |#2|)) (|:| |radicand| |#2|)) (-361 |#2|) (-714)) 76 T ELT)) (-1382 (((-3 (-2 (|:| |radicand| (-361 |#2|)) (|:| |deg| (-714))) "failed") |#3|) 56 T ELT)) (-1381 (((-2 (|:| -4104 (-361 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1384 ((|#1| |#3| |#3|) 44 T ELT)) (-3918 ((|#3| |#3| (-361 |#2|) (-361 |#2|)) 20 T ELT)) (-1385 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-361 |#2|)) (|:| |c2| (-361 |#2|)) (|:| |deg| (-714))) |#3| |#3|) 53 T ELT))) +(((-121 |#1| |#2| |#3|) (-10 -7 (-15 -1381 ((-2 (|:| -4104 (-361 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1382 ((-3 (-2 (|:| |radicand| (-361 |#2|)) (|:| |deg| (-714))) "failed") |#3|)) (-15 -1383 ((-2 (|:| -2519 (-714)) (|:| -4104 (-361 |#2|)) (|:| |radicand| |#2|)) (-361 |#2|) (-714))) (-15 -1384 (|#1| |#3| |#3|)) (-15 -3918 (|#3| |#3| (-361 |#2|) (-361 |#2|))) (-15 -1385 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-361 |#2|)) (|:| |c2| (-361 |#2|)) (|:| |deg| (-714))) |#3| |#3|))) (-1162) (-1183 |#1|) (-1183 (-361 |#2|))) (T -121)) +((-1385 (*1 *2 *3 *3) (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-361 *5)) (|:| |c2| (-361 *5)) (|:| |deg| (-714)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1183 (-361 *5))))) (-3918 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-361 *5)) (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1183 *3)))) (-1384 (*1 *2 *3 *3) (-12 (-4 *4 (-1183 *2)) (-4 *2 (-1162)) (-5 *1 (-121 *2 *4 *3)) (-4 *3 (-1183 (-361 *4))))) (-1383 (*1 *2 *3 *4) (-12 (-5 *3 (-361 *6)) (-4 *5 (-1162)) (-4 *6 (-1183 *5)) (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *3) (|:| |radicand| *6))) (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-714)) (-4 *7 (-1183 *3)))) (-1382 (*1 *2 *3) (|partial| -12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-5 *2 (-2 (|:| |radicand| (-361 *5)) (|:| |deg| (-714)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1183 (-361 *5))))) (-1381 (*1 *2 *3) (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-5 *2 (-2 (|:| -4104 (-361 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1183 (-361 *5)))))) +((-2825 (((-3 (-599 (-1111 |#2|)) "failed") (-599 (-1111 |#2|)) (-1111 |#2|)) 35 T ELT))) +(((-122 |#1| |#2|) (-10 -7 (-15 -2825 ((-3 (-599 (-1111 |#2|)) "failed") (-599 (-1111 |#2|)) (-1111 |#2|)))) (-498) (-139 |#1|)) (T -122)) +((-2825 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-599 (-1111 *5))) (-5 *3 (-1111 *5)) (-4 *5 (-139 *4)) (-4 *4 (-498)) (-5 *1 (-122 *4 *5))))) +((-3860 (($ (-1 (-85) |#2|) $) 37 T ELT)) (-1386 (($ $) 44 T ELT)) (-3546 (($ (-1 (-85) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-3992 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1387 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 27 T ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) 18 T ELT) (((-714) |#2| $) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-4107 (((-714) $) 12 T ELT))) +(((-123 |#1| |#2|) (-10 -7 (-15 -1386 (|#1| |#1|)) (-15 -3546 (|#1| |#2| |#1|)) (-15 -3992 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3860 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3546 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3992 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3992 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1387 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -2048 ((-714) |#2| |#1|)) (-15 -2048 ((-714) (-1 (-85) |#2|) |#1|)) (-15 -2049 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -2050 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -4107 ((-714) |#1|))) (-124 |#2|) (-1157)) (T -123)) +NIL +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-1386 (($ $) 45 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -4145)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 52 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 44 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 53 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-124 |#1|) (-113) (-1157)) (T -124)) +((-3670 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-4 *1 (-124 *3)))) (-1387 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1157)))) (-3992 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4145)) (-4 *1 (-124 *2)) (-4 *2 (-1157)))) (-3992 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4145)) (-4 *1 (-124 *2)) (-4 *2 (-1157)))) (-3546 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -4145)) (-4 *1 (-124 *3)) (-4 *3 (-1157)))) (-3860 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -4145)) (-4 *1 (-124 *3)) (-4 *3 (-1157)))) (-3992 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1041)) (|has| *1 (-6 -4145)) (-4 *1 (-124 *2)) (-4 *2 (-1157)))) (-3546 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-124 *2)) (-4 *2 (-1157)) (-4 *2 (-1041)))) (-1386 (*1 *1 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-124 *2)) (-4 *2 (-1157)) (-4 *2 (-1041))))) +(-13 (-443 |t#1|) (-10 -8 (-15 -3670 ($ (-599 |t#1|))) (-15 -1387 ((-3 |t#1| "failed") (-1 (-85) |t#1|) $)) (IF (|has| $ (-6 -4145)) (PROGN (-15 -3992 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3992 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3546 ($ (-1 (-85) |t#1|) $)) (-15 -3860 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1041)) (PROGN (-15 -3992 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3546 ($ |t#1| $)) (-15 -1386 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|))) +(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ #1#) $) 112 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3014 (($ |#2| (-599 (-857))) 71 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1388 (($ (-857)) 57 T ELT)) (-4061 (((-107)) 23 T ELT)) (-4096 (((-797) $) 87 T ELT) (($ (-499)) 53 T ELT) (($ |#2|) 54 T ELT)) (-3827 ((|#2| $ (-599 (-857))) 74 T ELT)) (-3248 (((-714)) 20 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 47 T CONST)) (-2785 (($) 51 T CONST)) (-3174 (((-85) $ $) 33 T ELT)) (-4099 (($ $ |#2|) NIL T ELT)) (-3987 (($ $) 42 T ELT) (($ $ $) 40 T ELT)) (-3989 (($ $ $) 38 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 44 T ELT) (($ $ $) 63 T ELT) (($ |#2| $) 46 T ELT) (($ $ |#2|) NIL T ELT))) +(((-125 |#1| |#2| |#3|) (-13 (-989) (-38 |#2|) (-1215 |#2|) (-10 -8 (-15 -1388 ($ (-857))) (-15 -3014 ($ |#2| (-599 (-857)))) (-15 -3827 (|#2| $ (-599 (-857)))) (-15 -3607 ((-3 $ "failed") $)))) (-857) (-318) (-933 |#1| |#2|)) (T -125)) +((-3607 (*1 *1 *1) (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-857)) (-4 *3 (-318)) (-14 *4 (-933 *2 *3)))) (-1388 (*1 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-318)) (-14 *5 (-933 *3 *4)))) (-3014 (*1 *1 *2 *3) (-12 (-5 *3 (-599 (-857))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-857)) (-4 *2 (-318)) (-14 *5 (-933 *4 *2)))) (-3827 (*1 *2 *1 *3) (-12 (-5 *3 (-599 (-857))) (-4 *2 (-318)) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-857)) (-14 *5 (-933 *4 *2))))) +((-1390 (((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-599 (-599 (-881 (-179)))) (-179) (-179) (-179) (-179)) 59 T ELT)) (-1389 (((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-863) (-361 (-499)) (-361 (-499))) 95 T ELT) (((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-863)) 96 T ELT)) (-1543 (((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-599 (-599 (-881 (-179))))) 99 T ELT) (((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-599 (-881 (-179)))) 98 T ELT) (((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-863) (-361 (-499)) (-361 (-499))) 89 T ELT) (((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-863)) 90 T ELT))) +(((-126) (-10 -7 (-15 -1543 ((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-863))) (-15 -1543 ((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-863) (-361 (-499)) (-361 (-499)))) (-15 -1389 ((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-863))) (-15 -1389 ((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-863) (-361 (-499)) (-361 (-499)))) (-15 -1390 ((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-599 (-599 (-881 (-179)))) (-179) (-179) (-179) (-179))) (-15 -1543 ((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-599 (-881 (-179))))) (-15 -1543 ((-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179)))) (-599 (-599 (-881 (-179)))))))) (T -126)) +((-1543 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) (-5 *1 (-126)) (-5 *3 (-599 (-599 (-881 (-179))))))) (-1543 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) (-5 *1 (-126)) (-5 *3 (-599 (-881 (-179)))))) (-1390 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 (-2 (|:| |brans| (-599 (-599 (-881 *4)))) (|:| |xValues| (-1029 *4)) (|:| |yValues| (-1029 *4)))) (-5 *1 (-126)) (-5 *3 (-599 (-599 (-881 *4)))))) (-1389 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-863)) (-5 *4 (-361 (-499))) (-5 *2 (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) (-5 *1 (-126)))) (-1389 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) (-5 *1 (-126)))) (-1543 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-863)) (-5 *4 (-361 (-499))) (-5 *2 (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) (-5 *1 (-126)))) (-1543 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) (-5 *1 (-126))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3319 (((-599 (-1075)) $) 20 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 27 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3371 (((-1075) $) 9 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-127) (-13 (-1023) (-10 -8 (-15 -3319 ((-599 (-1075)) $)) (-15 -3371 ((-1075) $))))) (T -127)) +((-3319 (*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-127)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-127))))) +((-1443 (((-599 (-142 |#2|)) |#1| |#2|) 50 T ELT))) +(((-128 |#1| |#2|) (-10 -7 (-15 -1443 ((-599 (-142 |#2|)) |#1| |#2|))) (-1183 (-142 (-499))) (-13 (-318) (-780))) (T -128)) +((-1443 (*1 *2 *3 *4) (-12 (-5 *2 (-599 (-142 *4))) (-5 *1 (-128 *3 *4)) (-4 *3 (-1183 (-142 (-499)))) (-4 *4 (-13 (-318) (-780)))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3668 (((-1158) $) 12 T ELT)) (-3669 (((-1075) $) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 19 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-129) (-13 (-1023) (-10 -8 (-15 -3669 ((-1075) $)) (-15 -3668 ((-1158) $))))) (T -129)) +((-3669 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-129)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-129))))) +((-2687 (((-85) $ $) NIL T ELT)) (-1392 (($) 38 T ELT)) (-3221 (($) 37 T ELT)) (-1391 (((-857)) 43 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3077 (((-499) $) 41 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3220 (($) 39 T ELT)) (-3076 (($ (-499)) 44 T ELT)) (-4096 (((-797) $) 50 T ELT)) (-3219 (($) 40 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 35 T ELT)) (-3989 (($ $ $) 32 T ELT)) (* (($ (-857) $) 42 T ELT) (($ (-179) $) 11 T ELT))) +(((-130) (-13 (-25) (-10 -8 (-15 * ($ (-857) $)) (-15 * ($ (-179) $)) (-15 -3989 ($ $ $)) (-15 -3221 ($)) (-15 -1392 ($)) (-15 -3220 ($)) (-15 -3219 ($)) (-15 -3077 ((-499) $)) (-15 -1391 ((-857))) (-15 -3076 ($ (-499)))))) (T -130)) +((-3989 (*1 *1 *1 *1) (-5 *1 (-130))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-130)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) (-3221 (*1 *1) (-5 *1 (-130))) (-1392 (*1 *1) (-5 *1 (-130))) (-3220 (*1 *1) (-5 *1 (-130))) (-3219 (*1 *1) (-5 *1 (-130))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-130)))) (-1391 (*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-130)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-130))))) +((-1405 ((|#2| |#2| (-1032 |#2|)) 98 T ELT) ((|#2| |#2| (-1117)) 75 T ELT)) (-4094 ((|#2| |#2| (-1032 |#2|)) 97 T ELT) ((|#2| |#2| (-1117)) 74 T ELT)) (-1402 ((|#2| |#2| |#2|) 25 T ELT)) (-3743 (((-86) (-86)) 111 T ELT)) (-1399 ((|#2| (-599 |#2|)) 130 T ELT)) (-1396 ((|#2| (-599 |#2|)) 150 T ELT)) (-1395 ((|#2| (-599 |#2|)) 138 T ELT)) (-1393 ((|#2| |#2|) 136 T ELT)) (-1397 ((|#2| (-599 |#2|)) 124 T ELT)) (-1398 ((|#2| (-599 |#2|)) 125 T ELT)) (-1394 ((|#2| (-599 |#2|)) 148 T ELT)) (-1406 ((|#2| |#2| (-1117)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1400 ((|#2| |#2|) 21 T ELT)) (-3224 ((|#2| |#2| |#2|) 24 T ELT)) (-2355 (((-85) (-86)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) +(((-131 |#1| |#2|) (-10 -7 (-15 -2355 ((-85) (-86))) (-15 -3743 ((-86) (-86))) (-15 ** (|#2| |#2| |#2|)) (-15 -3224 (|#2| |#2| |#2|)) (-15 -1402 (|#2| |#2| |#2|)) (-15 -1400 (|#2| |#2|)) (-15 -1406 (|#2| |#2|)) (-15 -1406 (|#2| |#2| (-1117))) (-15 -1405 (|#2| |#2| (-1117))) (-15 -1405 (|#2| |#2| (-1032 |#2|))) (-15 -4094 (|#2| |#2| (-1117))) (-15 -4094 (|#2| |#2| (-1032 |#2|))) (-15 -1393 (|#2| |#2|)) (-15 -1394 (|#2| (-599 |#2|))) (-15 -1395 (|#2| (-599 |#2|))) (-15 -1396 (|#2| (-599 |#2|))) (-15 -1397 (|#2| (-599 |#2|))) (-15 -1398 (|#2| (-599 |#2|))) (-15 -1399 (|#2| (-599 |#2|)))) (-510) (-375 |#1|)) (T -131)) +((-1399 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-510)))) (-1398 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-510)))) (-1397 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-510)))) (-1396 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-510)))) (-1395 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-510)))) (-1394 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-510)))) (-1393 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) (-4094 (*1 *2 *2 *3) (-12 (-5 *3 (-1032 *2)) (-4 *2 (-375 *4)) (-4 *4 (-510)) (-5 *1 (-131 *4 *2)))) (-4094 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *1 (-131 *4 *2)) (-4 *2 (-375 *4)))) (-1405 (*1 *2 *2 *3) (-12 (-5 *3 (-1032 *2)) (-4 *2 (-375 *4)) (-4 *4 (-510)) (-5 *1 (-131 *4 *2)))) (-1405 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *1 (-131 *4 *2)) (-4 *2 (-375 *4)))) (-1406 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *1 (-131 *4 *2)) (-4 *2 (-375 *4)))) (-1406 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) (-1400 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) (-1402 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) (-3224 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) (-3743 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-510)) (-5 *1 (-131 *3 *4)) (-4 *4 (-375 *3)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) (-4 *5 (-375 *4))))) +((-1404 ((|#1| |#1| |#1|) 66 T ELT)) (-1403 ((|#1| |#1| |#1|) 63 T ELT)) (-1402 ((|#1| |#1| |#1|) 57 T ELT)) (-3011 ((|#1| |#1|) 43 T ELT)) (-1401 ((|#1| |#1| (-599 |#1|)) 55 T ELT)) (-1400 ((|#1| |#1|) 47 T ELT)) (-3224 ((|#1| |#1| |#1|) 51 T ELT))) +(((-132 |#1|) (-10 -7 (-15 -3224 (|#1| |#1| |#1|)) (-15 -1400 (|#1| |#1|)) (-15 -1401 (|#1| |#1| (-599 |#1|))) (-15 -3011 (|#1| |#1|)) (-15 -1402 (|#1| |#1| |#1|)) (-15 -1403 (|#1| |#1| |#1|)) (-15 -1404 (|#1| |#1| |#1|))) (-498)) (T -132)) +((-1404 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498)))) (-1403 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498)))) (-1402 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498)))) (-3011 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498)))) (-1401 (*1 *2 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-498)) (-5 *1 (-132 *2)))) (-1400 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498)))) (-3224 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498))))) +((-1405 (($ $ (-1117)) 12 T ELT) (($ $ (-1032 $)) 11 T ELT)) (-4094 (($ $ (-1117)) 10 T ELT) (($ $ (-1032 $)) 9 T ELT)) (-1402 (($ $ $) 8 T ELT)) (-1406 (($ $) 14 T ELT) (($ $ (-1117)) 13 T ELT)) (-1400 (($ $) 7 T ELT)) (-3224 (($ $ $) 6 T ELT))) +(((-133) (-113)) (T -133)) +((-1406 (*1 *1 *1) (-4 *1 (-133))) (-1406 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1117)))) (-1405 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1117)))) (-1405 (*1 *1 *1 *2) (-12 (-5 *2 (-1032 *1)) (-4 *1 (-133)))) (-4094 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1117)))) (-4094 (*1 *1 *1 *2) (-12 (-5 *2 (-1032 *1)) (-4 *1 (-133))))) +(-13 (-116) (-10 -8 (-15 -1406 ($ $)) (-15 -1406 ($ $ (-1117))) (-15 -1405 ($ $ (-1117))) (-15 -1405 ($ $ (-1032 $))) (-15 -4094 ($ $ (-1117))) (-15 -4094 ($ $ (-1032 $))))) +(((-116) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-1407 (($ (-499)) 15 T ELT) (($ $ $) 16 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 19 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 11 T ELT))) +(((-134) (-13 (-1041) (-10 -8 (-15 -1407 ($ (-499))) (-15 -1407 ($ $ $))))) (T -134)) +((-1407 (*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-134)))) (-1407 (*1 *1 *1 *1) (-5 *1 (-134)))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 16 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3371 (((-599 (-1075)) $) 10 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-135) (-13 (-1023) (-10 -8 (-15 -3371 ((-599 (-1075)) $))))) (T -135)) +((-3371 (*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-135))))) +((-3743 (((-86) (-1117)) 103 T ELT))) +(((-136) (-10 -7 (-15 -3743 ((-86) (-1117))))) (T -136)) +((-3743 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-86)) (-5 *1 (-136))))) +((-1628 ((|#3| |#3|) 19 T ELT))) +(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -1628 (|#3| |#3|))) (-989) (-1183 |#1|) (-1183 |#2|)) (T -137)) +((-1628 (*1 *2 *2) (-12 (-4 *3 (-989)) (-4 *4 (-1183 *3)) (-5 *1 (-137 *3 *4 *2)) (-4 *2 (-1183 *4))))) +((-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 222 T ELT)) (-3470 ((|#2| $) 102 T ELT)) (-3632 (($ $) 255 T ELT)) (-3789 (($ $) 249 T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1="failed") (-599 (-1111 $)) (-1111 $)) 47 T ELT)) (-3630 (($ $) 253 T ELT)) (-3788 (($ $) 247 T ELT)) (-3295 (((-3 (-499) #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3294 (((-499) $) NIL T ELT) (((-361 (-499)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2683 (($ $ $) 228 T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) 160 T ELT) (((-647 |#2|) (-647 $)) 154 T ELT)) (-3992 (($ (-1111 |#2|)) 125 T ELT) (((-3 $ #1#) (-361 (-1111 |#2|))) NIL T ELT)) (-3607 (((-3 $ #1#) $) 213 T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) 203 T ELT)) (-3144 (((-85) $) 198 T ELT)) (-3143 (((-361 (-499)) $) 201 T ELT)) (-3231 (((-857)) 96 T ELT)) (-2682 (($ $ $) 230 T ELT)) (-1408 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3777 (($) 244 T ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 192 T ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 197 T ELT)) (-3254 ((|#2| $) 100 T ELT)) (-2115 (((-1111 |#2|) $) 127 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-4092 (($ $) 246 T ELT)) (-3200 (((-1111 |#2|) $) 126 T ELT)) (-2601 (($ $) 206 T ELT)) (-1410 (($) 103 T ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 95 T ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 64 T ELT)) (-3606 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-4093 (($ $) 245 T ELT)) (-1677 (((-714) $) 225 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 234 T ELT)) (-3907 ((|#2| (-1207 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3908 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT)) (-3323 (((-1111 |#2|)) 120 T ELT)) (-3631 (($ $) 254 T ELT)) (-3784 (($ $) 248 T ELT)) (-3362 (((-1207 |#2|) $ (-1207 $)) 136 T ELT) (((-647 |#2|) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 |#2|) $) 116 T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-4122 (((-1207 |#2|) $) NIL T ELT) (($ (-1207 |#2|)) NIL T ELT) (((-1111 |#2|) $) NIL T ELT) (($ (-1111 |#2|)) NIL T ELT) (((-825 (-499)) $) 183 T ELT) (((-825 (-333)) $) 187 T ELT) (((-142 (-333)) $) 172 T ELT) (((-142 (-179)) $) 167 T ELT) (((-488) $) 179 T ELT)) (-3130 (($ $) 104 T ELT)) (-4096 (((-797) $) 143 T ELT) (($ (-499)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ $) NIL T ELT)) (-2565 (((-1111 |#2|) $) 32 T ELT)) (-3248 (((-714)) 106 T ELT)) (-1297 (((-85) $ $) 13 T ELT)) (-3638 (($ $) 258 T ELT)) (-3626 (($ $) 252 T ELT)) (-3636 (($ $) 256 T ELT)) (-3624 (($ $) 250 T ELT)) (-2337 ((|#2| $) 241 T ELT)) (-3637 (($ $) 257 T ELT)) (-3625 (($ $) 251 T ELT)) (-3523 (($ $) 162 T ELT)) (-3174 (((-85) $ $) 110 T ELT)) (-3987 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 111 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-361 (-499))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT))) +(((-138 |#1| |#2|) (-10 -7 (-15 -3908 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1| (-1117))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -4096 (|#1| |#1|)) (-15 -3606 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2165 ((-2 (|:| -1870 |#1|) (|:| -4132 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1677 ((-714) |#1|)) (-15 -3000 ((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|)) (-15 -2682 (|#1| |#1| |#1|)) (-15 -2683 (|#1| |#1| |#1|)) (-15 -2601 (|#1| |#1|)) (-15 ** (|#1| |#1| (-499))) (-15 * (|#1| |#1| (-361 (-499)))) (-15 * (|#1| (-361 (-499)) |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -4122 ((-488) |#1|)) (-15 -4122 ((-142 (-179)) |#1|)) (-15 -4122 ((-142 (-333)) |#1|)) (-15 -3789 (|#1| |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -3784 (|#1| |#1|)) (-15 -3625 (|#1| |#1|)) (-15 -3624 (|#1| |#1|)) (-15 -3626 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -4092 (|#1| |#1|)) (-15 -4093 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3777 (|#1|)) (-15 ** (|#1| |#1| (-361 (-499)))) (-15 -2827 ((-359 (-1111 |#1|)) (-1111 |#1|))) (-15 -2826 ((-359 (-1111 |#1|)) (-1111 |#1|))) (-15 -2825 ((-3 (-599 (-1111 |#1|)) #1#) (-599 (-1111 |#1|)) (-1111 |#1|))) (-15 -3145 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3143 ((-361 (-499)) |#1|)) (-15 -3144 ((-85) |#1|)) (-15 -1408 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2337 (|#2| |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -3606 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3130 (|#1| |#1|)) (-15 -1410 (|#1|)) (-15 -4122 ((-825 (-333)) |#1|)) (-15 -4122 ((-825 (-499)) |#1|)) (-15 -2917 ((-823 (-333) |#1|) |#1| (-825 (-333)) (-823 (-333) |#1|))) (-15 -2917 ((-823 (-499) |#1|) |#1| (-825 (-499)) (-823 (-499) |#1|))) (-15 -4108 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|) (-714))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3992 ((-3 |#1| #1#) (-361 (-1111 |#2|)))) (-15 -3200 ((-1111 |#2|) |#1|)) (-15 -4122 (|#1| (-1111 |#2|))) (-15 -3992 (|#1| (-1111 |#2|))) (-15 -3323 ((-1111 |#2|))) (-15 -2380 ((-647 |#2|) (-647 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 |#1|) (-1207 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 |#1|) (-1207 |#1|))) (-15 -2380 ((-647 (-499)) (-647 |#1|))) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -4122 ((-1111 |#2|) |#1|)) (-15 -3907 (|#2|)) (-15 -4122 (|#1| (-1207 |#2|))) (-15 -4122 ((-1207 |#2|) |#1|)) (-15 -3362 ((-647 |#2|) (-1207 |#1|))) (-15 -3362 ((-1207 |#2|) |#1|)) (-15 -2115 ((-1111 |#2|) |#1|)) (-15 -2565 ((-1111 |#2|) |#1|)) (-15 -3907 (|#2| (-1207 |#1|))) (-15 -3362 ((-647 |#2|) (-1207 |#1|) (-1207 |#1|))) (-15 -3362 ((-1207 |#2|) |#1| (-1207 |#1|))) (-15 -3254 (|#2| |#1|)) (-15 -3470 (|#2| |#1|)) (-15 -3231 ((-857))) (-15 -4096 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3248 ((-714))) (-15 -4096 (|#1| (-499))) (-15 ** (|#1| |#1| (-714))) (-15 -3607 ((-3 |#1| #1#) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-857))) (-15 -3987 (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1|)) (-15 * (|#1| (-499) |#1|)) (-15 * (|#1| (-714) |#1|)) (-15 * (|#1| (-857) |#1|)) (-15 -3989 (|#1| |#1| |#1|)) (-15 -4096 ((-797) |#1|)) (-15 -1297 ((-85) |#1| |#1|)) (-15 -3174 ((-85) |#1| |#1|))) (-139 |#2|) (-146)) (T -138)) +((-3248 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-714)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3231 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-857)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3907 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) (-3323 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1111 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 111 (-3677 (|has| |#1| (-510)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT)) (-2164 (($ $) 112 (-3677 (|has| |#1| (-510)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT)) (-2162 (((-85) $) 114 (-3677 (|has| |#1| (-510)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT)) (-1880 (((-647 |#1|) (-1207 $)) 58 T ELT) (((-647 |#1|)) 74 T ELT)) (-3470 ((|#1| $) 64 T ELT)) (-3632 (($ $) 247 (|has| |#1| (-1143)) ELT)) (-3789 (($ $) 230 (|has| |#1| (-1143)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) 164 (|has| |#1| (-305)) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 261 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) ELT)) (-3925 (($ $) 131 (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-318))) ELT)) (-4121 (((-359 $) $) 132 (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-318))) ELT)) (-3158 (($ $) 260 (-12 (|has| |#1| (-942)) (|has| |#1| (-1143))) ELT)) (-2825 (((-3 (-599 (-1111 $)) "failed") (-599 (-1111 $)) (-1111 $)) 264 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) ELT)) (-1678 (((-85) $ $) 122 (|has| |#1| (-261)) ELT)) (-3258 (((-714)) 105 (|has| |#1| (-323)) ELT)) (-3630 (($ $) 246 (|has| |#1| (-1143)) ELT)) (-3788 (($ $) 231 (|has| |#1| (-1143)) ELT)) (-3634 (($ $) 245 (|has| |#1| (-1143)) ELT)) (-3787 (($ $) 232 (|has| |#1| (-1143)) ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 (-499) #1="failed") $) 191 (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) 189 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 186 T ELT)) (-3294 (((-499) $) 190 (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) 188 (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) 187 T ELT)) (-1890 (($ (-1207 |#1|) (-1207 $)) 60 T ELT) (($ (-1207 |#1|)) 77 T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| |#1| (-305)) ELT)) (-2683 (($ $ $) 126 (|has| |#1| (-261)) ELT)) (-1879 (((-647 |#1|) $ (-1207 $)) 65 T ELT) (((-647 |#1|) $) 72 T ELT)) (-2380 (((-647 (-499)) (-647 $)) 183 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 182 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 181 T ELT) (((-647 |#1|) (-647 $)) 180 T ELT)) (-3992 (($ (-1111 |#1|)) 175 T ELT) (((-3 $ "failed") (-361 (-1111 |#1|))) 172 (|has| |#1| (-318)) ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3793 ((|#1| $) 272 T ELT)) (-3145 (((-3 (-361 (-499)) "failed") $) 265 (|has| |#1| (-498)) ELT)) (-3144 (((-85) $) 267 (|has| |#1| (-498)) ELT)) (-3143 (((-361 (-499)) $) 266 (|has| |#1| (-498)) ELT)) (-3231 (((-857)) 66 T ELT)) (-3115 (($) 108 (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) 125 (|has| |#1| (-261)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 120 (|has| |#1| (-261)) ELT)) (-2954 (($) 166 (|has| |#1| (-305)) ELT)) (-1773 (((-85) $) 167 (|has| |#1| (-305)) ELT)) (-1864 (($ $ (-714)) 158 (|has| |#1| (-305)) ELT) (($ $) 157 (|has| |#1| (-305)) ELT)) (-3873 (((-85) $) 133 (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-318))) ELT)) (-1408 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 268 (-12 (|has| |#1| (-1000)) (|has| |#1| (-1143))) ELT)) (-3777 (($) 257 (|has| |#1| (-1143)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 280 (|has| |#1| (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 279 (|has| |#1| (-821 (-333))) ELT)) (-3922 (((-857) $) 169 (|has| |#1| (-305)) ELT) (((-766 (-857)) $) 155 (|has| |#1| (-305)) ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 259 (-12 (|has| |#1| (-942)) (|has| |#1| (-1143))) ELT)) (-3254 ((|#1| $) 63 T ELT)) (-3585 (((-649 $) $) 159 (|has| |#1| (-305)) ELT)) (-1675 (((-3 (-599 $) #2="failed") (-599 $) $) 129 (|has| |#1| (-261)) ELT)) (-2115 (((-1111 |#1|) $) 56 (|has| |#1| (-318)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 281 T ELT)) (-2111 (((-857) $) 107 (|has| |#1| (-323)) ELT)) (-4092 (($ $) 254 (|has| |#1| (-1143)) ELT)) (-3200 (((-1111 |#1|) $) 173 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 185 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 184 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 179 T ELT) (((-647 |#1|) (-1207 $)) 178 T ELT)) (-1993 (($ (-599 $)) 118 (-3677 (|has| |#1| (-261)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT) (($ $ $) 117 (-3677 (|has| |#1| (-261)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 134 (|has| |#1| (-318)) ELT)) (-3586 (($) 160 (|has| |#1| (-305)) CONST)) (-2518 (($ (-857)) 106 (|has| |#1| (-323)) ELT)) (-1410 (($) 276 T ELT)) (-3794 ((|#1| $) 273 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2527 (($) 177 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 119 (-3677 (|has| |#1| (-261)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT)) (-3282 (($ (-599 $)) 116 (-3677 (|has| |#1| (-261)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT) (($ $ $) 115 (-3677 (|has| |#1| (-261)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) 163 (|has| |#1| (-305)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 263 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 262 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) ELT)) (-3882 (((-359 $) $) 130 (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-318))) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| |#1| (-261)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 127 (|has| |#1| (-261)) ELT)) (-3606 (((-3 $ "failed") $ |#1|) 271 (|has| |#1| (-510)) ELT) (((-3 $ "failed") $ $) 110 (-3677 (|has| |#1| (-510)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 121 (|has| |#1| (-261)) ELT)) (-4093 (($ $) 255 (|has| |#1| (-1143)) ELT)) (-3918 (($ $ (-599 |#1|) (-599 |#1|)) 287 (|has| |#1| (-263 |#1|)) ELT) (($ $ |#1| |#1|) 286 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-247 |#1|)) 285 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-247 |#1|))) 284 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) 283 (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-1117) |#1|) 282 (|has| |#1| (-468 (-1117) |#1|)) ELT)) (-1677 (((-714) $) 123 (|has| |#1| (-261)) ELT)) (-3950 (($ $ |#1|) 288 (|has| |#1| (-240 |#1| |#1|)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 124 (|has| |#1| (-261)) ELT)) (-3907 ((|#1| (-1207 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-1865 (((-714) $) 168 (|has| |#1| (-305)) ELT) (((-3 (-714) "failed") $ $) 156 (|has| |#1| (-305)) ELT)) (-3908 (($ $ (-1 |#1| |#1|)) 142 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 141 T ELT) (($ $ (-599 (-1117)) (-599 (-714))) 147 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117) (-714)) 146 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-599 (-1117))) 145 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117)) 143 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-714)) 153 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-189))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2681 (|has| |#1| (-189)) (|has| |#1| (-318)))) ELT) (($ $) 151 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-189))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2681 (|has| |#1| (-189)) (|has| |#1| (-318)))) ELT)) (-2526 (((-647 |#1|) (-1207 $) (-1 |#1| |#1|)) 171 (|has| |#1| (-318)) ELT)) (-3323 (((-1111 |#1|)) 176 T ELT)) (-3635 (($ $) 244 (|has| |#1| (-1143)) ELT)) (-3786 (($ $) 233 (|has| |#1| (-1143)) ELT)) (-1767 (($) 165 (|has| |#1| (-305)) ELT)) (-3633 (($ $) 243 (|has| |#1| (-1143)) ELT)) (-3785 (($ $) 234 (|has| |#1| (-1143)) ELT)) (-3631 (($ $) 242 (|has| |#1| (-1143)) ELT)) (-3784 (($ $) 235 (|has| |#1| (-1143)) ELT)) (-3362 (((-1207 |#1|) $ (-1207 $)) 62 T ELT) (((-647 |#1|) (-1207 $) (-1207 $)) 61 T ELT) (((-1207 |#1|) $) 79 T ELT) (((-647 |#1|) (-1207 $)) 78 T ELT)) (-4122 (((-1207 |#1|) $) 76 T ELT) (($ (-1207 |#1|)) 75 T ELT) (((-1111 |#1|) $) 192 T ELT) (($ (-1111 |#1|)) 174 T ELT) (((-825 (-499)) $) 278 (|has| |#1| (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) 277 (|has| |#1| (-569 (-825 (-333)))) ELT) (((-142 (-333)) $) 229 (|has| |#1| (-960)) ELT) (((-142 (-179)) $) 228 (|has| |#1| (-960)) ELT) (((-488) $) 227 (|has| |#1| (-569 (-488))) ELT)) (-3130 (($ $) 275 T ELT)) (-2824 (((-3 (-1207 $) "failed") (-647 $)) 162 (-3677 (-2681 (|has| $ (-118)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) (|has| |#1| (-305))) ELT)) (-1409 (($ |#1| |#1|) 274 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-361 (-499))) 104 (-3677 (|has| |#1| (-318)) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ $) 109 (-3677 (|has| |#1| (-510)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT)) (-2823 (($ $) 161 (|has| |#1| (-305)) ELT) (((-649 $) $) 55 (-3677 (-2681 (|has| $ (-118)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) (|has| |#1| (-118))) ELT)) (-2565 (((-1111 |#1|) $) 57 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2113 (((-1207 $)) 80 T ELT)) (-3638 (($ $) 253 (|has| |#1| (-1143)) ELT)) (-3626 (($ $) 241 (|has| |#1| (-1143)) ELT)) (-2163 (((-85) $ $) 113 (-3677 (|has| |#1| (-510)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848)))) ELT)) (-3636 (($ $) 252 (|has| |#1| (-1143)) ELT)) (-3624 (($ $) 240 (|has| |#1| (-1143)) ELT)) (-3640 (($ $) 251 (|has| |#1| (-1143)) ELT)) (-3628 (($ $) 239 (|has| |#1| (-1143)) ELT)) (-2337 ((|#1| $) 269 (|has| |#1| (-1143)) ELT)) (-3641 (($ $) 250 (|has| |#1| (-1143)) ELT)) (-3629 (($ $) 238 (|has| |#1| (-1143)) ELT)) (-3639 (($ $) 249 (|has| |#1| (-1143)) ELT)) (-3627 (($ $) 237 (|has| |#1| (-1143)) ELT)) (-3637 (($ $) 248 (|has| |#1| (-1143)) ELT)) (-3625 (($ $) 236 (|has| |#1| (-1143)) ELT)) (-3523 (($ $) 270 (|has| |#1| (-1000)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1 |#1| |#1|)) 140 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 139 T ELT) (($ $ (-599 (-1117)) (-599 (-714))) 150 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117) (-714)) 149 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-599 (-1117))) 148 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117)) 144 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-714)) 154 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-189))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2681 (|has| |#1| (-189)) (|has| |#1| (-318)))) ELT) (($ $) 152 (-3677 (-2681 (|has| |#1| (-318)) (|has| |#1| (-189))) (-2681 (|has| |#1| (-318)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2681 (|has| |#1| (-189)) (|has| |#1| (-318)))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 138 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-361 (-499))) 258 (-12 (|has| |#1| (-942)) (|has| |#1| (-1143))) ELT) (($ $ $) 256 (|has| |#1| (-1143)) ELT) (($ $ (-499)) 135 (|has| |#1| (-318)) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ (-361 (-499)) $) 137 (|has| |#1| (-318)) ELT) (($ $ (-361 (-499))) 136 (|has| |#1| (-318)) ELT))) +(((-139 |#1|) (-113) (-146)) (T -139)) +((-3254 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1410 (*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3130 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1409 (*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3606 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-510)))) (-3523 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1000)))) (-2337 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1143)))) (-1408 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-1000)) (-4 *3 (-1143)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3144 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-85)))) (-3143 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-361 (-499))))) (-3145 (*1 *2 *1) (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-361 (-499)))))) +(-13 (-682 |t#1| (-1111 |t#1|)) (-366 |t#1|) (-184 |t#1|) (-293 |t#1|) (-354 |t#1|) (-819 |t#1|) (-332 |t#1|) (-146) (-10 -8 (-6 -1409) (-15 -1410 ($)) (-15 -3130 ($ $)) (-15 -1409 ($ |t#1| |t#1|)) (-15 -3794 (|t#1| $)) (-15 -3793 (|t#1| $)) (-15 -3254 (|t#1| $)) (IF (|has| |t#1| (-510)) (PROGN (-6 (-510)) (-15 -3606 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-261)) (-6 (-261)) |%noBranch|) (IF (|has| |t#1| (-6 -4144)) (-6 -4144) |%noBranch|) (IF (|has| |t#1| (-6 -4141)) (-6 -4141) |%noBranch|) (IF (|has| |t#1| (-318)) (-6 (-318)) |%noBranch|) (IF (|has| |t#1| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-960)) (PROGN (-6 (-569 (-142 (-179)))) (-6 (-569 (-142 (-333))))) |%noBranch|) (IF (|has| |t#1| (-1000)) (-15 -3523 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1143)) (PROGN (-6 (-1143)) (-15 -2337 (|t#1| $)) (IF (|has| |t#1| (-942)) (-6 (-942)) |%noBranch|) (IF (|has| |t#1| (-1000)) (-15 -1408 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-498)) (PROGN (-15 -3144 ((-85) $)) (-15 -3143 ((-361 (-499)) $)) (-15 -3145 ((-3 (-361 (-499)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-848)) (IF (|has| |t#1| (-261)) (-6 (-848)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-38 |#1|) . T) ((-38 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-305)) (|has| |#1| (-318)) (|has| |#1| (-261))) ((-35) |has| |#1| (-1143)) ((-66) |has| |#1| (-1143)) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) -3677 (|has| |#1| (-305)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-305)) (|has| |#1| (-318))) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-571 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-305)) (|has| |#1| (-318)) (|has| |#1| (-261))) ((-568 (-797)) . T) ((-146) . T) ((-569 (-142 (-179))) |has| |#1| (-960)) ((-569 (-142 (-333))) |has| |#1| (-960)) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-569 (-825 (-333))) |has| |#1| (-569 (-825 (-333)))) ((-569 (-825 (-499))) |has| |#1| (-569 (-825 (-499)))) ((-569 (-1111 |#1|)) . T) ((-186 $) -3677 (|has| |#1| (-305)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) -3677 (|has| |#1| (-305)) (|has| |#1| (-190))) ((-189) -3677 (|has| |#1| (-305)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-224 |#1|) . T) ((-200) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-238) |has| |#1| (-1143)) ((-240 |#1| $) |has| |#1| (-240 |#1| |#1|)) ((-244) -3677 (|has| |#1| (-510)) (|has| |#1| (-305)) (|has| |#1| (-318)) (|has| |#1| (-261))) ((-261) -3677 (|has| |#1| (-305)) (|has| |#1| (-318)) (|has| |#1| (-261))) ((-263 |#1|) |has| |#1| (-263 |#1|)) ((-318) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-356) |has| |#1| (-305)) ((-323) -3677 (|has| |#1| (-305)) (|has| |#1| (-323))) ((-305) |has| |#1| (-305)) ((-325 |#1| (-1111 |#1|)) . T) ((-364 |#1| (-1111 |#1|)) . T) ((-293 |#1|) . T) ((-332 |#1|) . T) ((-354 |#1|) . T) ((-366 |#1|) . T) ((-406) -3677 (|has| |#1| (-305)) (|has| |#1| (-318)) (|has| |#1| (-261))) ((-447) |has| |#1| (-1143)) ((-468 (-1117) |#1|) |has| |#1| (-468 (-1117) |#1|)) ((-468 |#1| |#1|) |has| |#1| (-263 |#1|)) ((-510) -3677 (|has| |#1| (-510)) (|has| |#1| (-305)) (|has| |#1| (-318)) (|has| |#1| (-261))) ((-604 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-606 (-499)) |has| |#1| (-596 (-499))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-598 |#1|) . T) ((-598 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-305)) (|has| |#1| (-318)) (|has| |#1| (-261))) ((-596 (-499)) |has| |#1| (-596 (-499))) ((-596 |#1|) . T) ((-675 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-675 |#1|) . T) ((-675 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-305)) (|has| |#1| (-318)) (|has| |#1| (-261))) ((-682 |#1| (-1111 |#1|)) . T) ((-684) . T) ((-831 $ (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-836 (-1117)) |has| |#1| (-836 (-1117))) ((-838 (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-821 (-333)) |has| |#1| (-821 (-333))) ((-821 (-499)) |has| |#1| (-821 (-499))) ((-819 |#1|) . T) ((-848) -12 (|has| |#1| (-261)) (|has| |#1| (-848))) ((-859) -3677 (|has| |#1| (-305)) (|has| |#1| (-318)) (|has| |#1| (-261))) ((-942) -12 (|has| |#1| (-942)) (|has| |#1| (-1143))) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T) ((-991 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-991 |#1|) . T) ((-991 $) . T) ((-996 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-996 |#1|) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1092) |has| |#1| (-305)) ((-1143) |has| |#1| (-1143)) ((-1146) |has| |#1| (-1143)) ((-1157) . T) ((-1162) -3677 (|has| |#1| (-305)) (|has| |#1| (-318)) (-12 (|has| |#1| (-261)) (|has| |#1| (-848))))) +((-3882 (((-359 |#2|) |#2|) 67 T ELT))) +(((-140 |#1| |#2|) (-10 -7 (-15 -3882 ((-359 |#2|) |#2|))) (-261) (-1183 (-142 |#1|))) (T -140)) +((-3882 (*1 *2 *3) (-12 (-4 *4 (-261)) (-5 *2 (-359 *3)) (-5 *1 (-140 *4 *3)) (-4 *3 (-1183 (-142 *4)))))) +((-1413 (((-1075) (-1075) (-245)) 8 T ELT)) (-1411 (((-599 (-649 (-234))) (-1099)) 81 T ELT)) (-1412 (((-649 (-234)) (-1075)) 76 T ELT))) +(((-141) (-13 (-1157) (-10 -7 (-15 -1413 ((-1075) (-1075) (-245))) (-15 -1412 ((-649 (-234)) (-1075))) (-15 -1411 ((-599 (-649 (-234))) (-1099)))))) (T -141)) +((-1413 (*1 *2 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-245)) (-5 *1 (-141)))) (-1412 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-649 (-234))) (-5 *1 (-141)))) (-1411 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-599 (-649 (-234)))) (-5 *1 (-141))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 15 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-510))) ELT)) (-2164 (($ $) NIL (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-510))) ELT)) (-2162 (((-85) $) NIL (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-510))) ELT)) (-1880 (((-647 |#1|) (-1207 $)) NIL T ELT) (((-647 |#1|)) NIL T ELT)) (-3470 ((|#1| $) NIL T ELT)) (-3632 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3789 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| |#1| (-305)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) ELT)) (-3925 (($ $) NIL (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-318))) ELT)) (-4121 (((-359 $) $) NIL (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-318))) ELT)) (-3158 (($ $) NIL (-12 (|has| |#1| (-942)) (|has| |#1| (-1143))) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-261)) ELT)) (-3258 (((-714)) NIL (|has| |#1| (-323)) ELT)) (-3630 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3788 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3634 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3787 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) NIL T ELT)) (-1890 (($ (-1207 |#1|) (-1207 $)) NIL T ELT) (($ (-1207 |#1|)) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-305)) ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-261)) ELT)) (-1879 (((-647 |#1|) $ (-1207 $)) NIL T ELT) (((-647 |#1|) $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3992 (($ (-1111 |#1|)) NIL T ELT) (((-3 $ #1#) (-361 (-1111 |#1|))) NIL (|has| |#1| (-318)) ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3793 ((|#1| $) 20 T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-498)) ELT)) (-3144 (((-85) $) NIL (|has| |#1| (-498)) ELT)) (-3143 (((-361 (-499)) $) NIL (|has| |#1| (-498)) ELT)) (-3231 (((-857)) NIL T ELT)) (-3115 (($) NIL (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-261)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-261)) ELT)) (-2954 (($) NIL (|has| |#1| (-305)) ELT)) (-1773 (((-85) $) NIL (|has| |#1| (-305)) ELT)) (-1864 (($ $ (-714)) NIL (|has| |#1| (-305)) ELT) (($ $) NIL (|has| |#1| (-305)) ELT)) (-3873 (((-85) $) NIL (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-318))) ELT)) (-1408 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1000)) (|has| |#1| (-1143))) ELT)) (-3777 (($) NIL (|has| |#1| (-1143)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| |#1| (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| |#1| (-821 (-333))) ELT)) (-3922 (((-857) $) NIL (|has| |#1| (-305)) ELT) (((-766 (-857)) $) NIL (|has| |#1| (-305)) ELT)) (-2528 (((-85) $) 17 T ELT)) (-3132 (($ $ (-499)) NIL (-12 (|has| |#1| (-942)) (|has| |#1| (-1143))) ELT)) (-3254 ((|#1| $) 30 T ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-305)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-261)) ELT)) (-2115 (((-1111 |#1|) $) NIL (|has| |#1| (-318)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2111 (((-857) $) NIL (|has| |#1| (-323)) ELT)) (-4092 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3200 (((-1111 |#1|) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-261)) ELT) (($ $ $) NIL (|has| |#1| (-261)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3586 (($) NIL (|has| |#1| (-305)) CONST)) (-2518 (($ (-857)) NIL (|has| |#1| (-323)) ELT)) (-1410 (($) NIL T ELT)) (-3794 ((|#1| $) 21 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-261)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-261)) ELT) (($ $ $) NIL (|has| |#1| (-261)) ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| |#1| (-305)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) ELT)) (-3882 (((-359 $) $) NIL (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-318))) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-261)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-261)) ELT)) (-3606 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ $) 31 (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-510))) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-261)) ELT)) (-4093 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3918 (($ $ (-599 |#1|) (-599 |#1|)) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-247 |#1|)) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-247 |#1|))) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) NIL (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-1117) |#1|) NIL (|has| |#1| (-468 (-1117) |#1|)) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-261)) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-240 |#1| |#1|)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-261)) ELT)) (-3907 ((|#1| (-1207 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1865 (((-714) $) NIL (|has| |#1| (-305)) ELT) (((-3 (-714) #1#) $ $) NIL (|has| |#1| (-305)) ELT)) (-3908 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| |#1| (-190)) (|has| |#1| (-318))) (|has| |#1| (-189))) ELT) (($ $) NIL (-3677 (-12 (|has| |#1| (-190)) (|has| |#1| (-318))) (|has| |#1| (-189))) ELT)) (-2526 (((-647 |#1|) (-1207 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-318)) ELT)) (-3323 (((-1111 |#1|)) NIL T ELT)) (-3635 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3786 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-1767 (($) NIL (|has| |#1| (-305)) ELT)) (-3633 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3785 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3631 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3784 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3362 (((-1207 |#1|) $ (-1207 $)) NIL T ELT) (((-647 |#1|) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 |#1|) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-4122 (((-1207 |#1|) $) NIL T ELT) (($ (-1207 |#1|)) NIL T ELT) (((-1111 |#1|) $) NIL T ELT) (($ (-1111 |#1|)) NIL T ELT) (((-825 (-499)) $) NIL (|has| |#1| (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| |#1| (-569 (-825 (-333)))) ELT) (((-142 (-333)) $) NIL (|has| |#1| (-960)) ELT) (((-142 (-179)) $) NIL (|has| |#1| (-960)) ELT) (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3130 (($ $) 29 T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-305))) ELT)) (-1409 (($ |#1| |#1|) 19 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-318)) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ $) NIL (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-510))) ELT)) (-2823 (($ $) NIL (|has| |#1| (-305)) ELT) (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-2565 (((-1111 |#1|) $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT)) (-3638 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3626 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-2163 (((-85) $ $) NIL (-3677 (-12 (|has| |#1| (-261)) (|has| |#1| (-848))) (|has| |#1| (-510))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3624 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3640 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3628 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-2337 ((|#1| $) NIL (|has| |#1| (-1143)) ELT)) (-3641 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3629 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3639 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3627 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3637 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3625 (($ $) NIL (|has| |#1| (-1143)) ELT)) (-3523 (($ $) NIL (|has| |#1| (-1000)) ELT)) (-2779 (($) 8 T CONST)) (-2785 (($) 10 T CONST)) (-2790 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| |#1| (-190)) (|has| |#1| (-318))) (|has| |#1| (-189))) ELT) (($ $) NIL (-3677 (-12 (|has| |#1| (-190)) (|has| |#1| (-318))) (|has| |#1| (-189))) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 23 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-361 (-499))) NIL (-12 (|has| |#1| (-942)) (|has| |#1| (-1143))) ELT) (($ $ $) NIL (|has| |#1| (-1143)) ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-318)) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-318)) ELT))) +(((-142 |#1|) (-139 |#1|) (-146)) (T -142)) +NIL +((-4108 (((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)) 14 T ELT))) +(((-143 |#1| |#2|) (-10 -7 (-15 -4108 ((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)))) (-146) (-146)) (T -143)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6))))) +((-4122 (((-825 |#1|) |#3|) 22 T ELT))) +(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -4122 ((-825 |#1|) |#3|))) (-1041) (-13 (-569 (-825 |#1|)) (-146)) (-139 |#2|)) (T -144)) +((-4122 (*1 *2 *3) (-12 (-4 *5 (-13 (-569 *2) (-146))) (-5 *2 (-825 *4)) (-5 *1 (-144 *4 *5 *3)) (-4 *4 (-1041)) (-4 *3 (-139 *5))))) +((-2687 (((-85) $ $) NIL T ELT)) (-1415 (((-85) $) 9 T ELT)) (-1414 (((-85) $ (-85)) 11 T ELT)) (-3764 (($) 13 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3540 (($ $) 14 T ELT)) (-4096 (((-797) $) 18 T ELT)) (-3852 (((-85) $) 8 T ELT)) (-4011 (((-85) $ (-85)) 10 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-145) (-13 (-1041) (-10 -8 (-15 -3764 ($)) (-15 -3852 ((-85) $)) (-15 -1415 ((-85) $)) (-15 -4011 ((-85) $ (-85))) (-15 -1414 ((-85) $ (-85))) (-15 -3540 ($ $))))) (T -145)) +((-3764 (*1 *1) (-5 *1 (-145))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1415 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-4011 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1414 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3540 (*1 *1 *1) (-5 *1 (-145)))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-146) (-113)) (T -146)) +NIL +(-13 (-989) (-82 $ $) (-10 -7 (-6 (-4147 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-684) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-1793 (($ $) 6 T ELT))) +(((-147) (-113)) (T -147)) +((-1793 (*1 *1 *1) (-4 *1 (-147)))) +(-13 (-10 -8 (-15 -1793 ($ $)))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3251 ((|#1| $) 79 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2683 (($ $ $) NIL T ELT)) (-1420 (($ $) 21 T ELT)) (-1424 (($ |#1| (-1095 |#1|)) 48 T ELT)) (-3607 (((-3 $ #1#) $) 123 T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-1421 (((-1095 |#1|) $) 86 T ELT)) (-1423 (((-1095 |#1|) $) 83 T ELT)) (-1422 (((-1095 |#1|) $) 84 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-1417 (((-1095 |#1|) $) 93 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-1993 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT)) (-3919 (($ $ (-499)) 96 T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1416 (((-1095 |#1|) $) 94 T ELT)) (-1418 (((-1095 (-361 |#1|)) $) 14 T ELT)) (-2735 (($ (-361 |#1|)) 17 T ELT) (($ |#1| (-1095 |#1|) (-1095 |#1|)) 38 T ELT)) (-3012 (($ $) 98 T ELT)) (-4096 (((-797) $) 139 T ELT) (($ (-499)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-361 |#1|)) 36 T ELT) (($ (-361 (-499))) NIL T ELT) (($ $) NIL T ELT)) (-3248 (((-714)) 67 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-1419 (((-1095 (-361 |#1|)) $) 20 T ELT)) (-2779 (($) 103 T CONST)) (-2785 (($) 28 T CONST)) (-3174 (((-85) $ $) 35 T ELT)) (-4099 (($ $ $) 121 T ELT)) (-3987 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3989 (($ $ $) 107 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-361 |#1|) $) 117 T ELT) (($ $ (-361 |#1|)) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT))) +(((-148 |#1|) (-13 (-38 |#1|) (-38 (-361 |#1|)) (-318) (-10 -8 (-15 -2735 ($ (-361 |#1|))) (-15 -2735 ($ |#1| (-1095 |#1|) (-1095 |#1|))) (-15 -1424 ($ |#1| (-1095 |#1|))) (-15 -1423 ((-1095 |#1|) $)) (-15 -1422 ((-1095 |#1|) $)) (-15 -1421 ((-1095 |#1|) $)) (-15 -3251 (|#1| $)) (-15 -1420 ($ $)) (-15 -1419 ((-1095 (-361 |#1|)) $)) (-15 -1418 ((-1095 (-361 |#1|)) $)) (-15 -1417 ((-1095 |#1|) $)) (-15 -1416 ((-1095 |#1|) $)) (-15 -3919 ($ $ (-499))) (-15 -3012 ($ $)))) (-261)) (T -148)) +((-2735 (*1 *1 *2) (-12 (-5 *2 (-361 *3)) (-4 *3 (-261)) (-5 *1 (-148 *3)))) (-2735 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-261)) (-5 *1 (-148 *2)))) (-1424 (*1 *1 *2 *3) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-261)) (-5 *1 (-148 *2)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-148 *3)) (-4 *3 (-261)))) (-1422 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-148 *3)) (-4 *3 (-261)))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-148 *3)) (-4 *3 (-261)))) (-3251 (*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-261)))) (-1420 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-261)))) (-1419 (*1 *2 *1) (-12 (-5 *2 (-1095 (-361 *3))) (-5 *1 (-148 *3)) (-4 *3 (-261)))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-1095 (-361 *3))) (-5 *1 (-148 *3)) (-4 *3 (-261)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-148 *3)) (-4 *3 (-261)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-148 *3)) (-4 *3 (-261)))) (-3919 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-148 *3)) (-4 *3 (-261)))) (-3012 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-261))))) +((-1425 (($ (-80) $) 15 T ELT)) (-3359 (((-649 (-80)) (-460) $) 14 T ELT)) (-4096 (((-797) $) 18 T ELT)) (-1426 (((-599 (-80)) $) 8 T ELT))) +(((-149) (-13 (-568 (-797)) (-10 -8 (-15 -1426 ((-599 (-80)) $)) (-15 -1425 ($ (-80) $)) (-15 -3359 ((-649 (-80)) (-460) $))))) (T -149)) +((-1426 (*1 *2 *1) (-12 (-5 *2 (-599 (-80))) (-5 *1 (-149)))) (-1425 (*1 *1 *2 *1) (-12 (-5 *2 (-80)) (-5 *1 (-149)))) (-3359 (*1 *2 *3 *1) (-12 (-5 *3 (-460)) (-5 *2 (-649 (-80))) (-5 *1 (-149))))) +((-1439 (((-1 (-881 |#1|) (-881 |#1|)) |#1|) 38 T ELT)) (-1430 (((-881 |#1|) (-881 |#1|)) 22 T ELT)) (-1435 (((-1 (-881 |#1|) (-881 |#1|)) |#1|) 34 T ELT)) (-1428 (((-881 |#1|) (-881 |#1|)) 20 T ELT)) (-1433 (((-881 |#1|) (-881 |#1|)) 28 T ELT)) (-1432 (((-881 |#1|) (-881 |#1|)) 27 T ELT)) (-1431 (((-881 |#1|) (-881 |#1|)) 26 T ELT)) (-1436 (((-1 (-881 |#1|) (-881 |#1|)) |#1|) 35 T ELT)) (-1434 (((-1 (-881 |#1|) (-881 |#1|)) |#1|) 33 T ELT)) (-1736 (((-1 (-881 |#1|) (-881 |#1|)) |#1|) 32 T ELT)) (-1429 (((-881 |#1|) (-881 |#1|)) 21 T ELT)) (-1440 (((-1 (-881 |#1|) (-881 |#1|)) |#1| |#1|) 41 T ELT)) (-1427 (((-881 |#1|) (-881 |#1|)) 8 T ELT)) (-1438 (((-1 (-881 |#1|) (-881 |#1|)) |#1|) 37 T ELT)) (-1437 (((-1 (-881 |#1|) (-881 |#1|)) |#1|) 36 T ELT))) +(((-150 |#1|) (-10 -7 (-15 -1427 ((-881 |#1|) (-881 |#1|))) (-15 -1428 ((-881 |#1|) (-881 |#1|))) (-15 -1429 ((-881 |#1|) (-881 |#1|))) (-15 -1430 ((-881 |#1|) (-881 |#1|))) (-15 -1431 ((-881 |#1|) (-881 |#1|))) (-15 -1432 ((-881 |#1|) (-881 |#1|))) (-15 -1433 ((-881 |#1|) (-881 |#1|))) (-15 -1736 ((-1 (-881 |#1|) (-881 |#1|)) |#1|)) (-15 -1434 ((-1 (-881 |#1|) (-881 |#1|)) |#1|)) (-15 -1435 ((-1 (-881 |#1|) (-881 |#1|)) |#1|)) (-15 -1436 ((-1 (-881 |#1|) (-881 |#1|)) |#1|)) (-15 -1437 ((-1 (-881 |#1|) (-881 |#1|)) |#1|)) (-15 -1438 ((-1 (-881 |#1|) (-881 |#1|)) |#1|)) (-15 -1439 ((-1 (-881 |#1|) (-881 |#1|)) |#1|)) (-15 -1440 ((-1 (-881 |#1|) (-881 |#1|)) |#1| |#1|))) (-13 (-318) (-1143) (-942))) (T -150)) +((-1440 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-318) (-1143) (-942))))) (-1439 (*1 *2 *3) (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-318) (-1143) (-942))))) (-1438 (*1 *2 *3) (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-318) (-1143) (-942))))) (-1437 (*1 *2 *3) (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-318) (-1143) (-942))))) (-1436 (*1 *2 *3) (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-318) (-1143) (-942))))) (-1435 (*1 *2 *3) (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-318) (-1143) (-942))))) (-1434 (*1 *2 *3) (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-318) (-1143) (-942))))) (-1736 (*1 *2 *3) (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-318) (-1143) (-942))))) (-1433 (*1 *2 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) (-5 *1 (-150 *3)))) (-1432 (*1 *2 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) (-5 *1 (-150 *3)))) (-1431 (*1 *2 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) (-5 *1 (-150 *3)))) (-1430 (*1 *2 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) (-5 *1 (-150 *3)))) (-1429 (*1 *2 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) (-5 *1 (-150 *3)))) (-1428 (*1 *2 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) (-5 *1 (-150 *3)))) (-1427 (*1 *2 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) (-5 *1 (-150 *3))))) +((-2565 ((|#2| |#3|) 28 T ELT))) +(((-151 |#1| |#2| |#3|) (-10 -7 (-15 -2565 (|#2| |#3|))) (-146) (-1183 |#1|) (-682 |#1| |#2|)) (T -151)) +((-2565 (*1 *2 *3) (-12 (-4 *4 (-146)) (-4 *2 (-1183 *4)) (-5 *1 (-151 *4 *2 *3)) (-4 *3 (-682 *4 *2))))) +((-2917 (((-823 |#1| |#3|) |#3| (-825 |#1|) (-823 |#1| |#3|)) 44 (|has| (-884 |#2|) (-821 |#1|)) ELT))) +(((-152 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-884 |#2|) (-821 |#1|)) (-15 -2917 ((-823 |#1| |#3|) |#3| (-825 |#1|) (-823 |#1| |#3|))) |%noBranch|)) (-1041) (-13 (-821 |#1|) (-146)) (-139 |#2|)) (T -152)) +((-2917 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *3)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-4 *3 (-139 *6)) (-4 (-884 *6) (-821 *5)) (-4 *6 (-13 (-821 *5) (-146))) (-5 *1 (-152 *5 *6 *3))))) +((-1442 (((-599 |#1|) (-599 |#1|) |#1|) 41 T ELT)) (-1441 (((-599 |#1|) |#1| (-599 |#1|)) 20 T ELT)) (-2178 (((-599 |#1|) (-599 (-599 |#1|)) (-599 |#1|)) 36 T ELT) ((|#1| (-599 |#1|) (-599 |#1|)) 32 T ELT))) +(((-153 |#1|) (-10 -7 (-15 -1441 ((-599 |#1|) |#1| (-599 |#1|))) (-15 -2178 (|#1| (-599 |#1|) (-599 |#1|))) (-15 -2178 ((-599 |#1|) (-599 (-599 |#1|)) (-599 |#1|))) (-15 -1442 ((-599 |#1|) (-599 |#1|) |#1|))) (-261)) (T -153)) +((-1442 (*1 *2 *2 *3) (-12 (-5 *2 (-599 *3)) (-4 *3 (-261)) (-5 *1 (-153 *3)))) (-2178 (*1 *2 *3 *2) (-12 (-5 *3 (-599 (-599 *4))) (-5 *2 (-599 *4)) (-4 *4 (-261)) (-5 *1 (-153 *4)))) (-2178 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *2)) (-5 *1 (-153 *2)) (-4 *2 (-261)))) (-1441 (*1 *2 *3 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-261)) (-5 *1 (-153 *3))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3456 (((-1158) $) 13 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3344 (((-1075) $) 10 T ELT)) (-4096 (((-797) $) 20 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-154) (-13 (-1023) (-10 -8 (-15 -3344 ((-1075) $)) (-15 -3456 ((-1158) $))))) (T -154)) +((-3344 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-154)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-154))))) +((-1451 (((-2 (|:| |start| |#2|) (|:| -1877 (-359 |#2|))) |#2|) 66 T ELT)) (-1450 ((|#1| |#1|) 58 T ELT)) (-1449 (((-142 |#1|) |#2|) 93 T ELT)) (-1448 ((|#1| |#2|) 136 T ELT) ((|#1| |#2| |#1|) 89 T ELT)) (-1447 ((|#2| |#2|) 90 T ELT)) (-1446 (((-359 |#2|) |#2| |#1|) 118 T ELT) (((-359 |#2|) |#2| |#1| (-85)) 87 T ELT)) (-3254 ((|#1| |#2|) 117 T ELT)) (-1445 ((|#2| |#2|) 130 T ELT)) (-3882 (((-359 |#2|) |#2|) 153 T ELT) (((-359 |#2|) |#2| |#1|) 33 T ELT) (((-359 |#2|) |#2| |#1| (-85)) 152 T ELT)) (-1444 (((-599 (-2 (|:| -1877 (-599 |#2|)) (|:| -1629 |#1|))) |#2| |#2|) 151 T ELT) (((-599 (-2 (|:| -1877 (-599 |#2|)) (|:| -1629 |#1|))) |#2| |#2| (-85)) 81 T ELT)) (-1443 (((-599 (-142 |#1|)) |#2| |#1|) 42 T ELT) (((-599 (-142 |#1|)) |#2|) 43 T ELT))) +(((-155 |#1| |#2|) (-10 -7 (-15 -1443 ((-599 (-142 |#1|)) |#2|)) (-15 -1443 ((-599 (-142 |#1|)) |#2| |#1|)) (-15 -1444 ((-599 (-2 (|:| -1877 (-599 |#2|)) (|:| -1629 |#1|))) |#2| |#2| (-85))) (-15 -1444 ((-599 (-2 (|:| -1877 (-599 |#2|)) (|:| -1629 |#1|))) |#2| |#2|)) (-15 -3882 ((-359 |#2|) |#2| |#1| (-85))) (-15 -3882 ((-359 |#2|) |#2| |#1|)) (-15 -3882 ((-359 |#2|) |#2|)) (-15 -1445 (|#2| |#2|)) (-15 -3254 (|#1| |#2|)) (-15 -1446 ((-359 |#2|) |#2| |#1| (-85))) (-15 -1446 ((-359 |#2|) |#2| |#1|)) (-15 -1447 (|#2| |#2|)) (-15 -1448 (|#1| |#2| |#1|)) (-15 -1448 (|#1| |#2|)) (-15 -1449 ((-142 |#1|) |#2|)) (-15 -1450 (|#1| |#1|)) (-15 -1451 ((-2 (|:| |start| |#2|) (|:| -1877 (-359 |#2|))) |#2|))) (-13 (-318) (-780)) (-1183 (-142 |#1|))) (T -155)) +((-1451 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-2 (|:| |start| *3) (|:| -1877 (-359 *3)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) (-1450 (*1 *2 *2) (-12 (-4 *2 (-13 (-318) (-780))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1183 (-142 *2))))) (-1449 (*1 *2 *3) (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-318) (-780))) (-4 *3 (-1183 *2)))) (-1448 (*1 *2 *3) (-12 (-4 *2 (-13 (-318) (-780))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1183 (-142 *2))))) (-1448 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-318) (-780))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1183 (-142 *2))))) (-1447 (*1 *2 *2) (-12 (-4 *3 (-13 (-318) (-780))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1183 (-142 *3))))) (-1446 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-359 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) (-1446 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-318) (-780))) (-5 *2 (-359 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) (-3254 (*1 *2 *3) (-12 (-4 *2 (-13 (-318) (-780))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1183 (-142 *2))))) (-1445 (*1 *2 *2) (-12 (-4 *3 (-13 (-318) (-780))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1183 (-142 *3))))) (-3882 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-359 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) (-3882 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-359 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) (-3882 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-318) (-780))) (-5 *2 (-359 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) (-1444 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-599 (-2 (|:| -1877 (-599 *3)) (|:| -1629 *4)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) (-1444 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-318) (-780))) (-5 *2 (-599 (-2 (|:| -1877 (-599 *3)) (|:| -1629 *5)))) (-5 *1 (-155 *5 *3)) (-4 *3 (-1183 (-142 *5))))) (-1443 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-599 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) (-1443 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-599 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4)))))) +((-1452 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1453 (((-714) |#2|) 18 T ELT)) (-1454 ((|#2| |#2| |#2|) 20 T ELT))) +(((-156 |#1| |#2|) (-10 -7 (-15 -1452 ((-3 |#2| "failed") |#2|)) (-15 -1453 ((-714) |#2|)) (-15 -1454 (|#2| |#2| |#2|))) (-1157) (-632 |#1|)) (T -156)) +((-1454 (*1 *2 *2 *2) (-12 (-4 *3 (-1157)) (-5 *1 (-156 *3 *2)) (-4 *2 (-632 *3)))) (-1453 (*1 *2 *3) (-12 (-4 *4 (-1157)) (-5 *2 (-714)) (-5 *1 (-156 *4 *3)) (-4 *3 (-632 *4)))) (-1452 (*1 *2 *2) (|partial| -12 (-4 *3 (-1157)) (-5 *1 (-156 *3 *2)) (-4 *2 (-632 *3))))) +((-2687 (((-85) $ $) NIL T ELT)) (-1457 (((-599 (-799)) $) NIL T ELT)) (-3690 (((-460) $) 8 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1459 (((-161) $) 10 T ELT)) (-2752 (((-85) $ (-460)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1455 (((-649 $) (-460)) 17 T ELT)) (-1458 (((-599 (-85)) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2639 (((-55) $) 12 T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-157) (-13 (-160) (-10 -8 (-15 -1455 ((-649 $) (-460)))))) (T -157)) +((-1455 (*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-649 (-157))) (-5 *1 (-157))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1515 ((|#1| $) 7 T ELT)) (-4096 (((-797) $) 14 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-1456 (((-599 (-1122)) $) 10 T ELT)) (-3174 (((-85) $ $) 12 T ELT))) +(((-158 |#1|) (-13 (-1041) (-10 -8 (-15 -1515 (|#1| $)) (-15 -1456 ((-599 (-1122)) $)))) (-160)) (T -158)) +((-1515 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) (-1456 (*1 *2 *1) (-12 (-5 *2 (-599 (-1122))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) +((-1457 (((-599 (-799)) $) 16 T ELT)) (-1459 (((-161) $) 8 T ELT)) (-1458 (((-599 (-85)) $) 13 T ELT)) (-2639 (((-55) $) 10 T ELT))) +(((-159 |#1|) (-10 -7 (-15 -1457 ((-599 (-799)) |#1|)) (-15 -1458 ((-599 (-85)) |#1|)) (-15 -1459 ((-161) |#1|)) (-15 -2639 ((-55) |#1|))) (-160)) (T -159)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-1457 (((-599 (-799)) $) 22 T ELT)) (-3690 (((-460) $) 19 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1459 (((-161) $) 24 T ELT)) (-2752 (((-85) $ (-460)) 17 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1458 (((-599 (-85)) $) 23 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2639 (((-55) $) 18 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-160) (-113)) (T -160)) +((-1459 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161)))) (-1458 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-599 (-85))))) (-1457 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-599 (-799)))))) +(-13 (-770 (-460)) (-10 -8 (-15 -1459 ((-161) $)) (-15 -1458 ((-599 (-85)) $)) (-15 -1457 ((-599 (-799)) $)))) +(((-73) . T) ((-568 (-797)) . T) ((-770 (-460)) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-4096 (((-797) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 10 T ELT))) +(((-161) (-13 (-1041) (-10 -8 (-15 -9 ($) -4102) (-15 -8 ($) -4102) (-15 -7 ($) -4102)))) (T -161)) +((-9 (*1 *1) (-5 *1 (-161))) (-8 (*1 *1) (-5 *1 (-161))) (-7 (*1 *1) (-5 *1 (-161)))) +((-3792 ((|#2| |#2|) 28 T ELT)) (-3795 (((-85) |#2|) 19 T ELT)) (-3793 (((-268 |#1|) |#2|) 12 T ELT)) (-3794 (((-268 |#1|) |#2|) 14 T ELT)) (-3790 ((|#2| |#2| (-1117)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3796 (((-142 (-268 |#1|)) |#2|) 10 T ELT)) (-3791 ((|#2| |#2| (-1117)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) +(((-162 |#1| |#2|) (-10 -7 (-15 -3790 (|#2| |#2|)) (-15 -3790 (|#2| |#2| (-1117))) (-15 -3791 (|#2| |#2|)) (-15 -3791 (|#2| |#2| (-1117))) (-15 -3793 ((-268 |#1|) |#2|)) (-15 -3794 ((-268 |#1|) |#2|)) (-15 -3795 ((-85) |#2|)) (-15 -3792 (|#2| |#2|)) (-15 -3796 ((-142 (-268 |#1|)) |#2|))) (-13 (-510) (-978 (-499))) (-13 (-27) (-1143) (-375 (-142 |#1|)))) (T -162)) +((-3796 (*1 *2 *3) (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-142 (-268 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 (-142 *4)))))) (-3792 (*1 *2 *2) (-12 (-4 *3 (-13 (-510) (-978 (-499)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1143) (-375 (-142 *3)))))) (-3795 (*1 *2 *3) (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 (-142 *4)))))) (-3794 (*1 *2 *3) (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-268 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 (-142 *4)))))) (-3793 (*1 *2 *3) (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-268 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 (-142 *4)))))) (-3791 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 (-142 *4)))))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-13 (-510) (-978 (-499)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1143) (-375 (-142 *3)))))) (-3790 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 (-142 *4)))))) (-3790 (*1 *2 *2) (-12 (-4 *3 (-13 (-510) (-978 (-499)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1143) (-375 (-142 *3))))))) +((-1463 (((-1207 (-647 (-884 |#1|))) (-1207 (-647 |#1|))) 26 T ELT)) (-4096 (((-1207 (-647 (-361 (-884 |#1|)))) (-1207 (-647 |#1|))) 37 T ELT))) +(((-163 |#1|) (-10 -7 (-15 -1463 ((-1207 (-647 (-884 |#1|))) (-1207 (-647 |#1|)))) (-15 -4096 ((-1207 (-647 (-361 (-884 |#1|)))) (-1207 (-647 |#1|))))) (-146)) (T -163)) +((-4096 (*1 *2 *3) (-12 (-5 *3 (-1207 (-647 *4))) (-4 *4 (-146)) (-5 *2 (-1207 (-647 (-361 (-884 *4))))) (-5 *1 (-163 *4)))) (-1463 (*1 *2 *3) (-12 (-5 *3 (-1207 (-647 *4))) (-4 *4 (-146)) (-5 *2 (-1207 (-647 (-884 *4)))) (-5 *1 (-163 *4))))) +((-1471 (((-1119 (-361 (-499))) (-1119 (-361 (-499))) (-1119 (-361 (-499)))) 93 T ELT)) (-1473 (((-1119 (-361 (-499))) (-599 (-499)) (-599 (-499))) 106 T ELT)) (-1464 (((-1119 (-361 (-499))) (-857)) 54 T ELT)) (-4004 (((-1119 (-361 (-499))) (-857)) 79 T ELT)) (-3918 (((-361 (-499)) (-1119 (-361 (-499)))) 89 T ELT)) (-1465 (((-1119 (-361 (-499))) (-857)) 37 T ELT)) (-1468 (((-1119 (-361 (-499))) (-857)) 66 T ELT)) (-1467 (((-1119 (-361 (-499))) (-857)) 61 T ELT)) (-1470 (((-1119 (-361 (-499))) (-1119 (-361 (-499))) (-1119 (-361 (-499)))) 87 T ELT)) (-3012 (((-1119 (-361 (-499))) (-857)) 29 T ELT)) (-1469 (((-361 (-499)) (-1119 (-361 (-499))) (-1119 (-361 (-499)))) 91 T ELT)) (-1466 (((-1119 (-361 (-499))) (-857)) 35 T ELT)) (-1472 (((-1119 (-361 (-499))) (-599 (-857))) 100 T ELT))) +(((-164) (-10 -7 (-15 -3012 ((-1119 (-361 (-499))) (-857))) (-15 -1464 ((-1119 (-361 (-499))) (-857))) (-15 -1465 ((-1119 (-361 (-499))) (-857))) (-15 -1466 ((-1119 (-361 (-499))) (-857))) (-15 -1467 ((-1119 (-361 (-499))) (-857))) (-15 -1468 ((-1119 (-361 (-499))) (-857))) (-15 -4004 ((-1119 (-361 (-499))) (-857))) (-15 -1469 ((-361 (-499)) (-1119 (-361 (-499))) (-1119 (-361 (-499))))) (-15 -1470 ((-1119 (-361 (-499))) (-1119 (-361 (-499))) (-1119 (-361 (-499))))) (-15 -3918 ((-361 (-499)) (-1119 (-361 (-499))))) (-15 -1471 ((-1119 (-361 (-499))) (-1119 (-361 (-499))) (-1119 (-361 (-499))))) (-15 -1472 ((-1119 (-361 (-499))) (-599 (-857)))) (-15 -1473 ((-1119 (-361 (-499))) (-599 (-499)) (-599 (-499)))))) (T -164)) +((-1473 (*1 *2 *3 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-599 (-857))) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) (-1471 (*1 *2 *2 *2) (-12 (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) (-3918 (*1 *2 *3) (-12 (-5 *3 (-1119 (-361 (-499)))) (-5 *2 (-361 (-499))) (-5 *1 (-164)))) (-1470 (*1 *2 *2 *2) (-12 (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) (-1469 (*1 *2 *3 *3) (-12 (-5 *3 (-1119 (-361 (-499)))) (-5 *2 (-361 (-499))) (-5 *1 (-164)))) (-4004 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) (-1467 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) (-1466 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) (-1464 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) (-3012 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164))))) +((-1475 (((-359 (-1111 (-499))) (-499)) 38 T ELT)) (-1474 (((-599 (-1111 (-499))) (-499)) 33 T ELT)) (-2922 (((-1111 (-499)) (-499)) 28 T ELT))) +(((-165) (-10 -7 (-15 -1474 ((-599 (-1111 (-499))) (-499))) (-15 -2922 ((-1111 (-499)) (-499))) (-15 -1475 ((-359 (-1111 (-499))) (-499))))) (T -165)) +((-1475 (*1 *2 *3) (-12 (-5 *2 (-359 (-1111 (-499)))) (-5 *1 (-165)) (-5 *3 (-499)))) (-2922 (*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-165)) (-5 *3 (-499)))) (-1474 (*1 *2 *3) (-12 (-5 *2 (-599 (-1111 (-499)))) (-5 *1 (-165)) (-5 *3 (-499))))) +((-2687 (((-85) $ $) NIL T ELT)) (-1476 ((|#2| $ (-714) |#2|) 11 T ELT)) (-3235 ((|#2| $ (-714)) 10 T ELT)) (-3764 (($) 8 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 23 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 13 T ELT))) +(((-166 |#1| |#2|) (-13 (-1041) (-10 -8 (-15 -3764 ($)) (-15 -3235 (|#2| $ (-714))) (-15 -1476 (|#2| $ (-714) |#2|)))) (-857) (-1041)) (T -166)) +((-3764 (*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-857)) (-4 *3 (-1041)))) (-3235 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *2 (-1041)) (-5 *1 (-166 *4 *2)) (-14 *4 (-857)))) (-1476 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-166 *4 *2)) (-14 *4 (-857)) (-4 *2 (-1041))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2066 (((-1213) $) 37 T ELT) (((-1213) $ (-857) (-857)) 41 T ELT)) (-3950 (($ $ (-929)) 19 T ELT) (((-202 (-1099)) $ (-1117)) 15 T ELT)) (-3767 (((-1213) $) 35 T ELT)) (-4096 (((-797) $) 32 T ELT) (($ (-599 |#1|)) 8 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $ $) 27 T ELT)) (-3989 (($ $ $) 22 T ELT))) +(((-167 |#1|) (-13 (-1041) (-571 (-599 |#1|)) (-10 -8 (-15 -3950 ($ $ (-929))) (-15 -3950 ((-202 (-1099)) $ (-1117))) (-15 -3989 ($ $ $)) (-15 -3987 ($ $ $)) (-15 -3767 ((-1213) $)) (-15 -2066 ((-1213) $)) (-15 -2066 ((-1213) $ (-857) (-857))))) (-13 (-781) (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 ((-1213) $)) (-15 -2066 ((-1213) $))))) (T -167)) +((-3950 (*1 *1 *1 *2) (-12 (-5 *2 (-929)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-781) (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 ((-1213) $)) (-15 -2066 ((-1213) $))))))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-202 (-1099))) (-5 *1 (-167 *4)) (-4 *4 (-13 (-781) (-10 -8 (-15 -3950 ((-1099) $ *3)) (-15 -3767 ((-1213) $)) (-15 -2066 ((-1213) $))))))) (-3989 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-781) (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 ((-1213) $)) (-15 -2066 ((-1213) $))))))) (-3987 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-781) (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 ((-1213) $)) (-15 -2066 ((-1213) $))))))) (-3767 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-781) (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 (*2 $)) (-15 -2066 (*2 $))))))) (-2066 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-781) (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 (*2 $)) (-15 -2066 (*2 $))))))) (-2066 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1213)) (-5 *1 (-167 *4)) (-4 *4 (-13 (-781) (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 (*2 $)) (-15 -2066 (*2 $)))))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) 10 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2972 (($ (-593 |#1|)) 11 T ELT)) (-4096 (((-797) $) 18 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT))) +(((-168 |#1|) (-13 (-777) (-10 -8 (-15 -2972 ($ (-593 |#1|))))) (-599 (-1117))) (T -168)) +((-2972 (*1 *1 *2) (-12 (-5 *2 (-593 *3)) (-14 *3 (-599 (-1117))) (-5 *1 (-168 *3))))) +((-1477 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) +(((-169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1477 (|#2| |#4| (-1 |#2| |#2|)))) (-318) (-1183 |#1|) (-1183 (-361 |#2|)) (-297 |#1| |#2| |#3|)) (T -169)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-318)) (-4 *6 (-1183 (-361 *2))) (-4 *2 (-1183 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-297 *5 *2 *6))))) +((-1481 ((|#2| |#2| (-714) |#2|) 55 T ELT)) (-1480 ((|#2| |#2| (-714) |#2|) 51 T ELT)) (-2484 (((-599 |#2|) (-599 (-2 (|:| |deg| (-714)) (|:| -2694 |#2|)))) 79 T ELT)) (-1479 (((-599 (-2 (|:| |deg| (-714)) (|:| -2694 |#2|))) |#2|) 72 T ELT)) (-1482 (((-85) |#2|) 70 T ELT)) (-3883 (((-359 |#2|) |#2|) 92 T ELT)) (-3882 (((-359 |#2|) |#2|) 91 T ELT)) (-2485 ((|#2| |#2| (-714) |#2|) 49 T ELT)) (-1478 (((-2 (|:| |cont| |#1|) (|:| -1877 (-599 (-2 (|:| |irr| |#2|) (|:| -2513 (-499)))))) |#2| (-85)) 86 T ELT))) +(((-170 |#1| |#2|) (-10 -7 (-15 -3882 ((-359 |#2|) |#2|)) (-15 -3883 ((-359 |#2|) |#2|)) (-15 -1478 ((-2 (|:| |cont| |#1|) (|:| -1877 (-599 (-2 (|:| |irr| |#2|) (|:| -2513 (-499)))))) |#2| (-85))) (-15 -1479 ((-599 (-2 (|:| |deg| (-714)) (|:| -2694 |#2|))) |#2|)) (-15 -2484 ((-599 |#2|) (-599 (-2 (|:| |deg| (-714)) (|:| -2694 |#2|))))) (-15 -2485 (|#2| |#2| (-714) |#2|)) (-15 -1480 (|#2| |#2| (-714) |#2|)) (-15 -1481 (|#2| |#2| (-714) |#2|)) (-15 -1482 ((-85) |#2|))) (-305) (-1183 |#1|)) (T -170)) +((-1482 (*1 *2 *3) (-12 (-4 *4 (-305)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1183 *4)))) (-1481 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-714)) (-4 *4 (-305)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1183 *4)))) (-1480 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-714)) (-4 *4 (-305)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1183 *4)))) (-2485 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-714)) (-4 *4 (-305)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1183 *4)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| |deg| (-714)) (|:| -2694 *5)))) (-4 *5 (-1183 *4)) (-4 *4 (-305)) (-5 *2 (-599 *5)) (-5 *1 (-170 *4 *5)))) (-1479 (*1 *2 *3) (-12 (-4 *4 (-305)) (-5 *2 (-599 (-2 (|:| |deg| (-714)) (|:| -2694 *3)))) (-5 *1 (-170 *4 *3)) (-4 *3 (-1183 *4)))) (-1478 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-305)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1877 (-599 (-2 (|:| |irr| *3) (|:| -2513 (-499))))))) (-5 *1 (-170 *5 *3)) (-4 *3 (-1183 *5)))) (-3883 (*1 *2 *3) (-12 (-4 *4 (-305)) (-5 *2 (-359 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1183 *4)))) (-3882 (*1 *2 *3) (-12 (-4 *4 (-305)) (-5 *2 (-359 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1183 *4))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3251 (((-499) $) NIL (|has| (-499) (-261)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| (-499) (-763)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL T ELT) (((-3 (-1117) #1#) $) NIL (|has| (-499) (-978 (-1117))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| (-499) (-978 (-499))) ELT) (((-3 (-499) #1#) $) NIL (|has| (-499) (-978 (-499))) ELT)) (-3294 (((-499) $) NIL T ELT) (((-1117) $) NIL (|has| (-499) (-978 (-1117))) ELT) (((-361 (-499)) $) NIL (|has| (-499) (-978 (-499))) ELT) (((-499) $) NIL (|has| (-499) (-978 (-499))) ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-499)) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-499) (-498)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3324 (((-85) $) NIL (|has| (-499) (-763)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| (-499) (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| (-499) (-821 (-333))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL T ELT)) (-3119 (((-499) $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| (-499) (-1092)) ELT)) (-3325 (((-85) $) NIL (|has| (-499) (-763)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| (-499) (-781)) ELT)) (-4108 (($ (-1 (-499) (-499)) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL T ELT) (((-647 (-499)) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-499) (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL (|has| (-499) (-261)) ELT) (((-361 (-499)) $) NIL T ELT)) (-3252 (((-499) $) NIL (|has| (-499) (-498)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-3918 (($ $ (-599 (-499)) (-599 (-499))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-499) (-499)) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-247 (-499))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-599 (-247 (-499)))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-599 (-1117)) (-599 (-499))) NIL (|has| (-499) (-468 (-1117) (-499))) ELT) (($ $ (-1117) (-499)) NIL (|has| (-499) (-468 (-1117) (-499))) ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ $ (-499)) NIL (|has| (-499) (-240 (-499) (-499))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $ (-1 (-499) (-499))) NIL T ELT) (($ $ (-1 (-499) (-499)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $) NIL (|has| (-499) (-189)) ELT) (($ $ (-714)) NIL (|has| (-499) (-189)) ELT)) (-3116 (($ $) NIL T ELT)) (-3118 (((-499) $) NIL T ELT)) (-1483 (($ (-361 (-499))) 9 T ELT)) (-4122 (((-825 (-499)) $) NIL (|has| (-499) (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| (-499) (-569 (-825 (-333)))) ELT) (((-488) $) NIL (|has| (-499) (-569 (-488))) ELT) (((-333) $) NIL (|has| (-499) (-960)) ELT) (((-179) $) NIL (|has| (-499) (-960)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| (-499) (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) 8 T ELT) (($ (-499)) NIL T ELT) (($ (-1117)) NIL (|has| (-499) (-978 (-1117))) ELT) (((-361 (-499)) $) NIL T ELT) (((-944 10) $) 10 T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| (-499) (-848))) (|has| (-499) (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-3253 (((-499) $) NIL (|has| (-499) (-498)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3523 (($ $) NIL (|has| (-499) (-763)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1 (-499) (-499))) NIL T ELT) (($ $ (-1 (-499) (-499)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $) NIL (|has| (-499) (-189)) ELT) (($ $ (-714)) NIL (|has| (-499) (-189)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-4099 (($ $ $) NIL T ELT) (($ (-499) (-499)) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ (-499)) NIL T ELT))) +(((-171) (-13 (-931 (-499)) (-568 (-361 (-499))) (-568 (-944 10)) (-10 -8 (-15 -3250 ((-361 (-499)) $)) (-15 -1483 ($ (-361 (-499))))))) (T -171)) +((-3250 (*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-171)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-171))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3457 (((-1055) $) 13 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3316 (((-437) $) 10 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 23 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3371 (((-1075) $) 15 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-172) (-13 (-1023) (-10 -8 (-15 -3316 ((-437) $)) (-15 -3457 ((-1055) $)) (-15 -3371 ((-1075) $))))) (T -172)) +((-3316 (*1 *2 *1) (-12 (-5 *2 (-437)) (-5 *1 (-172)))) (-3457 (*1 *2 *1) (-12 (-5 *2 (-1055)) (-5 *1 (-172)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-172))))) +((-3962 (((-3 (|:| |f1| (-775 |#2|)) (|:| |f2| (-599 (-775 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1032 (-775 |#2|)) (-1099)) 29 T ELT) (((-3 (|:| |f1| (-775 |#2|)) (|:| |f2| (-599 (-775 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1032 (-775 |#2|))) 25 T ELT)) (-1484 (((-3 (|:| |f1| (-775 |#2|)) (|:| |f2| (-599 (-775 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1117) (-775 |#2|) (-775 |#2|) (-85)) 17 T ELT))) +(((-173 |#1| |#2|) (-10 -7 (-15 -3962 ((-3 (|:| |f1| (-775 |#2|)) (|:| |f2| (-599 (-775 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1032 (-775 |#2|)))) (-15 -3962 ((-3 (|:| |f1| (-775 |#2|)) (|:| |f2| (-599 (-775 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1032 (-775 |#2|)) (-1099))) (-15 -1484 ((-3 (|:| |f1| (-775 |#2|)) (|:| |f2| (-599 (-775 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1117) (-775 |#2|) (-775 |#2|) (-85)))) (-13 (-261) (-120) (-978 (-499)) (-596 (-499))) (-13 (-1143) (-898) (-29 |#1|))) (T -173)) +((-1484 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1117)) (-5 *6 (-85)) (-4 *7 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-4 *3 (-13 (-1143) (-898) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-775 *3)) (|:| |f2| (-599 (-775 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *7 *3)) (-5 *5 (-775 *3)))) (-3962 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1032 (-775 *3))) (-5 *5 (-1099)) (-4 *3 (-13 (-1143) (-898) (-29 *6))) (-4 *6 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-3 (|:| |f1| (-775 *3)) (|:| |f2| (-599 (-775 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) (-3962 (*1 *2 *3 *4) (-12 (-5 *4 (-1032 (-775 *3))) (-4 *3 (-13 (-1143) (-898) (-29 *5))) (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-3 (|:| |f1| (-775 *3)) (|:| |f2| (-599 (-775 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *5 *3))))) +((-3962 (((-3 (|:| |f1| (-775 (-268 |#1|))) (|:| |f2| (-599 (-775 (-268 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-361 (-884 |#1|)) (-1032 (-775 (-361 (-884 |#1|)))) (-1099)) 49 T ELT) (((-3 (|:| |f1| (-775 (-268 |#1|))) (|:| |f2| (-599 (-775 (-268 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-361 (-884 |#1|)) (-1032 (-775 (-361 (-884 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-775 (-268 |#1|))) (|:| |f2| (-599 (-775 (-268 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-361 (-884 |#1|)) (-1032 (-775 (-268 |#1|))) (-1099)) 50 T ELT) (((-3 (|:| |f1| (-775 (-268 |#1|))) (|:| |f2| (-599 (-775 (-268 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-361 (-884 |#1|)) (-1032 (-775 (-268 |#1|)))) 22 T ELT))) +(((-174 |#1|) (-10 -7 (-15 -3962 ((-3 (|:| |f1| (-775 (-268 |#1|))) (|:| |f2| (-599 (-775 (-268 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-361 (-884 |#1|)) (-1032 (-775 (-268 |#1|))))) (-15 -3962 ((-3 (|:| |f1| (-775 (-268 |#1|))) (|:| |f2| (-599 (-775 (-268 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-361 (-884 |#1|)) (-1032 (-775 (-268 |#1|))) (-1099))) (-15 -3962 ((-3 (|:| |f1| (-775 (-268 |#1|))) (|:| |f2| (-599 (-775 (-268 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-361 (-884 |#1|)) (-1032 (-775 (-361 (-884 |#1|)))))) (-15 -3962 ((-3 (|:| |f1| (-775 (-268 |#1|))) (|:| |f2| (-599 (-775 (-268 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-361 (-884 |#1|)) (-1032 (-775 (-361 (-884 |#1|)))) (-1099)))) (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (T -174)) +((-3962 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1032 (-775 (-361 (-884 *6))))) (-5 *5 (-1099)) (-5 *3 (-361 (-884 *6))) (-4 *6 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-3 (|:| |f1| (-775 (-268 *6))) (|:| |f2| (-599 (-775 (-268 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-174 *6)))) (-3962 (*1 *2 *3 *4) (-12 (-5 *4 (-1032 (-775 (-361 (-884 *5))))) (-5 *3 (-361 (-884 *5))) (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-3 (|:| |f1| (-775 (-268 *5))) (|:| |f2| (-599 (-775 (-268 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))) (-3962 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-361 (-884 *6))) (-5 *4 (-1032 (-775 (-268 *6)))) (-5 *5 (-1099)) (-4 *6 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-3 (|:| |f1| (-775 (-268 *6))) (|:| |f2| (-599 (-775 (-268 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *6)))) (-3962 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1032 (-775 (-268 *5)))) (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-3 (|:| |f1| (-775 (-268 *5))) (|:| |f2| (-599 (-775 (-268 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5))))) +((-3992 (((-2 (|:| -2105 (-1111 |#1|)) (|:| |deg| (-857))) (-1111 |#1|)) 26 T ELT)) (-4113 (((-599 (-268 |#2|)) (-268 |#2|) (-857)) 51 T ELT))) +(((-175 |#1| |#2|) (-10 -7 (-15 -3992 ((-2 (|:| -2105 (-1111 |#1|)) (|:| |deg| (-857))) (-1111 |#1|))) (-15 -4113 ((-599 (-268 |#2|)) (-268 |#2|) (-857)))) (-989) (-510)) (T -175)) +((-4113 (*1 *2 *3 *4) (-12 (-5 *4 (-857)) (-4 *6 (-510)) (-5 *2 (-599 (-268 *6))) (-5 *1 (-175 *5 *6)) (-5 *3 (-268 *6)) (-4 *5 (-989)))) (-3992 (*1 *2 *3) (-12 (-4 *4 (-989)) (-5 *2 (-2 (|:| -2105 (-1111 *4)) (|:| |deg| (-857)))) (-5 *1 (-175 *4 *5)) (-5 *3 (-1111 *4)) (-4 *5 (-510))))) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-1528 ((|#1| $) NIL T ELT)) (-3464 ((|#1| $) 30 T ELT)) (-3874 (($) NIL T CONST)) (-3123 (($ $) NIL T ELT)) (-2397 (($ $) 39 T ELT)) (-3466 ((|#1| |#1| $) NIL T ELT)) (-3465 ((|#1| $) NIL T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3983 (((-714) $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) NIL T ELT)) (-1526 ((|#1| |#1| $) 35 T ELT)) (-1525 ((|#1| |#1| $) 37 T ELT)) (-3757 (($ |#1| $) NIL T ELT)) (-2722 (((-714) $) 33 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3122 ((|#1| $) NIL T ELT)) (-1524 ((|#1| $) 31 T ELT)) (-1523 ((|#1| $) 29 T ELT)) (-1309 ((|#1| $) NIL T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3125 ((|#1| |#1| $) NIL T ELT)) (-3543 (((-85) $) 9 T ELT)) (-3713 (($) NIL T ELT)) (-3124 ((|#1| $) NIL T ELT)) (-1529 (($) NIL T ELT) (($ (-599 |#1|)) 16 T ELT)) (-3463 (((-714) $) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1527 ((|#1| $) 13 T ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) NIL T ELT)) (-3121 ((|#1| $) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-176 |#1|) (-13 (-213 |#1|) (-10 -8 (-15 -1529 ($ (-599 |#1|))))) (-1041)) (T -176)) +((-1529 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-176 *3))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1486 (($ (-268 |#1|)) 24 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2783 (((-85) $) NIL T ELT)) (-3295 (((-3 (-268 |#1|) #1#) $) NIL T ELT)) (-3294 (((-268 |#1|) $) NIL T ELT)) (-4109 (($ $) 32 T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-4108 (($ (-1 (-268 |#1|) (-268 |#1|)) $) NIL T ELT)) (-3312 (((-268 |#1|) $) NIL T ELT)) (-1488 (($ $) 31 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1487 (((-85) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($ (-714)) NIL T ELT)) (-1485 (($ $) 33 T ELT)) (-4098 (((-499) $) NIL T ELT)) (-4096 (((-797) $) 65 T ELT) (($ (-499)) NIL T ELT) (($ (-268 |#1|)) NIL T ELT)) (-3827 (((-268 |#1|) $ $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 26 T CONST)) (-2785 (($) NIL T CONST)) (-3174 (((-85) $ $) 29 T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 20 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-268 |#1|) $) 19 T ELT))) +(((-177 |#1| |#2|) (-13 (-576 (-268 |#1|)) (-978 (-268 |#1|)) (-10 -8 (-15 -3312 ((-268 |#1|) $)) (-15 -1488 ($ $)) (-15 -4109 ($ $)) (-15 -3827 ((-268 |#1|) $ $)) (-15 -2527 ($ (-714))) (-15 -1487 ((-85) $)) (-15 -2783 ((-85) $)) (-15 -4098 ((-499) $)) (-15 -4108 ($ (-1 (-268 |#1|) (-268 |#1|)) $)) (-15 -1486 ($ (-268 |#1|))) (-15 -1485 ($ $)))) (-13 (-989) (-781)) (-599 (-1117))) (T -177)) +((-3312 (*1 *2 *1) (-12 (-5 *2 (-268 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) (-14 *4 (-599 (-1117))))) (-1488 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-989) (-781))) (-14 *3 (-599 (-1117))))) (-4109 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-989) (-781))) (-14 *3 (-599 (-1117))))) (-3827 (*1 *2 *1 *1) (-12 (-5 *2 (-268 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) (-14 *4 (-599 (-1117))))) (-2527 (*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) (-14 *4 (-599 (-1117))))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) (-14 *4 (-599 (-1117))))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) (-14 *4 (-599 (-1117))))) (-4098 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) (-14 *4 (-599 (-1117))))) (-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-268 *3) (-268 *3))) (-4 *3 (-13 (-989) (-781))) (-5 *1 (-177 *3 *4)) (-14 *4 (-599 (-1117))))) (-1486 (*1 *1 *2) (-12 (-5 *2 (-268 *3)) (-4 *3 (-13 (-989) (-781))) (-5 *1 (-177 *3 *4)) (-14 *4 (-599 (-1117))))) (-1485 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-989) (-781))) (-14 *3 (-599 (-1117)))))) +((-1489 (((-85) (-1099)) 26 T ELT)) (-1490 (((-3 (-775 |#2|) #1="failed") (-566 |#2|) |#2| (-775 |#2|) (-775 |#2|) (-85)) 35 T ELT)) (-1491 (((-3 (-85) #1#) (-1111 |#2|) (-775 |#2|) (-775 |#2|) (-85)) 83 T ELT) (((-3 (-85) #1#) (-884 |#1|) (-1117) (-775 |#2|) (-775 |#2|) (-85)) 84 T ELT))) +(((-178 |#1| |#2|) (-10 -7 (-15 -1489 ((-85) (-1099))) (-15 -1490 ((-3 (-775 |#2|) #1="failed") (-566 |#2|) |#2| (-775 |#2|) (-775 |#2|) (-85))) (-15 -1491 ((-3 (-85) #1#) (-884 |#1|) (-1117) (-775 |#2|) (-775 |#2|) (-85))) (-15 -1491 ((-3 (-85) #1#) (-1111 |#2|) (-775 |#2|) (-775 |#2|) (-85)))) (-13 (-406) (-978 (-499)) (-596 (-499))) (-13 (-1143) (-29 |#1|))) (T -178)) +((-1491 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1111 *6)) (-5 *4 (-775 *6)) (-4 *6 (-13 (-1143) (-29 *5))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-178 *5 *6)))) (-1491 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-884 *6)) (-5 *4 (-1117)) (-5 *5 (-775 *7)) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-4 *7 (-13 (-1143) (-29 *6))) (-5 *1 (-178 *6 *7)))) (-1490 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-775 *4)) (-5 *3 (-566 *4)) (-5 *5 (-85)) (-4 *4 (-13 (-1143) (-29 *6))) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-178 *6 *4)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1143) (-29 *4)))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 83 T ELT)) (-3251 (((-499) $) 17 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-3921 (($ $) NIL T ELT)) (-3632 (($ $) 72 T ELT)) (-3789 (($ $) 60 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-3158 (($ $) 51 T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3630 (($ $) 70 T ELT)) (-3788 (($ $) 58 T ELT)) (-3773 (((-499) $) 114 T ELT)) (-3634 (($ $) 75 T ELT)) (-3787 (($ $) 62 T ELT)) (-3874 (($) NIL T CONST)) (-3249 (($ $) NIL T ELT)) (-3295 (((-3 (-499) #1#) $) 113 T ELT) (((-3 (-361 (-499)) #1#) $) 110 T ELT)) (-3294 (((-499) $) 111 T ELT) (((-361 (-499)) $) 108 T ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) 88 T ELT)) (-1837 (((-361 (-499)) $ (-714)) 103 T ELT) (((-361 (-499)) $ (-714) (-714)) 102 T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2492 (((-857)) 11 T ELT) (((-857) (-857)) NIL (|has| $ (-6 -4136)) ELT)) (-3324 (((-85) $) 104 T ELT)) (-3777 (($) 30 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL T ELT)) (-3922 (((-499) $) 24 T ELT)) (-2528 (((-85) $) 84 T ELT)) (-3132 (($ $ (-499)) NIL T ELT)) (-3254 (($ $) NIL T ELT)) (-3325 (((-85) $) 82 T ELT)) (-1492 (((-85) $) 140 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) 48 T ELT) (($) 20 (-12 (-2679 (|has| $ (-6 -4128))) (-2679 (|has| $ (-6 -4136)))) ELT)) (-2978 (($ $ $) 47 T ELT) (($) 19 (-12 (-2679 (|has| $ (-6 -4128))) (-2679 (|has| $ (-6 -4136)))) ELT)) (-2493 (((-499) $) 9 T ELT)) (-1836 (($ $) 15 T ELT)) (-1835 (($ $) 52 T ELT)) (-4092 (($ $) 57 T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-1867 (((-857) (-499)) NIL (|has| $ (-6 -4136)) ELT)) (-3381 (((-1060) $) 86 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL T ELT)) (-3252 (($ $) NIL T ELT)) (-3392 (($ (-499) (-499)) NIL T ELT) (($ (-499) (-499) (-857)) 95 T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2519 (((-499) $) 10 T ELT)) (-1834 (($) 29 T ELT)) (-4093 (($ $) 56 T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-2734 (((-857)) NIL T ELT) (((-857) (-857)) NIL (|has| $ (-6 -4136)) ELT)) (-3908 (($ $) 89 T ELT) (($ $ (-714)) NIL T ELT)) (-1866 (((-857) (-499)) NIL (|has| $ (-6 -4136)) ELT)) (-3635 (($ $) 73 T ELT)) (-3786 (($ $) 63 T ELT)) (-3633 (($ $) 74 T ELT)) (-3785 (($ $) 61 T ELT)) (-3631 (($ $) 71 T ELT)) (-3784 (($ $) 59 T ELT)) (-4122 (((-333) $) 99 T ELT) (((-179) $) 96 T ELT) (((-825 (-333)) $) NIL T ELT) (((-488) $) 37 T ELT)) (-4096 (((-797) $) 34 T ELT) (($ (-499)) 139 T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-499)) 139 T ELT) (($ (-361 (-499))) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-3253 (($ $) NIL T ELT)) (-1868 (((-857)) 18 T ELT) (((-857) (-857)) NIL (|has| $ (-6 -4136)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2815 (((-857)) 7 T ELT)) (-3638 (($ $) 78 T ELT)) (-3626 (($ $) 66 T ELT) (($ $ $) 106 T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3636 (($ $) 76 T ELT)) (-3624 (($ $) 64 T ELT)) (-3640 (($ $) 81 T ELT)) (-3628 (($ $) 69 T ELT)) (-3641 (($ $) 79 T ELT)) (-3629 (($ $) 67 T ELT)) (-3639 (($ $) 80 T ELT)) (-3627 (($ $) 68 T ELT)) (-3637 (($ $) 77 T ELT)) (-3625 (($ $) 65 T ELT)) (-3523 (($ $) 105 T ELT)) (-2779 (($) 26 T CONST)) (-2785 (($) 27 T CONST)) (-3527 (($ $) 92 T ELT)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3524 (($ $ $) 94 T ELT)) (-2685 (((-85) $ $) 41 T ELT)) (-2686 (((-85) $ $) 39 T ELT)) (-3174 (((-85) $ $) 49 T ELT)) (-2805 (((-85) $ $) 40 T ELT)) (-2806 (((-85) $ $) 38 T ELT)) (-4099 (($ $ $) 28 T ELT) (($ $ (-499)) 50 T ELT)) (-3987 (($ $) 42 T ELT) (($ $ $) 44 T ELT)) (-3989 (($ $ $) 43 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) 53 T ELT) (($ $ (-361 (-499))) 138 T ELT) (($ $ $) 54 T ELT)) (* (($ (-857) $) 16 T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 46 T ELT) (($ $ $) 45 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT))) +(((-179) (-13 (-358) (-190) (-1143) (-569 (-488)) (-10 -8 (-15 -4099 ($ $ (-499))) (-15 ** ($ $ $)) (-15 -1834 ($)) (-15 -1836 ($ $)) (-15 -1835 ($ $)) (-15 -3626 ($ $ $)) (-15 -3527 ($ $)) (-15 -3524 ($ $ $)) (-15 -1837 ((-361 (-499)) $ (-714))) (-15 -1837 ((-361 (-499)) $ (-714) (-714))) (-15 -1492 ((-85) $))))) (T -179)) +((** (*1 *1 *1 *1) (-5 *1 (-179))) (-4099 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-179)))) (-1834 (*1 *1) (-5 *1 (-179))) (-1836 (*1 *1 *1) (-5 *1 (-179))) (-1835 (*1 *1 *1) (-5 *1 (-179))) (-3626 (*1 *1 *1 *1) (-5 *1 (-179))) (-3527 (*1 *1 *1) (-5 *1 (-179))) (-3524 (*1 *1 *1 *1) (-5 *1 (-179))) (-1837 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *2 (-361 (-499))) (-5 *1 (-179)))) (-1837 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-361 (-499))) (-5 *1 (-179)))) (-1492 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179))))) +((-3526 (((-142 (-179)) (-714) (-142 (-179))) 11 T ELT) (((-179) (-714) (-179)) 12 T ELT)) (-1493 (((-142 (-179)) (-142 (-179))) 13 T ELT) (((-179) (-179)) 14 T ELT)) (-1494 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 19 T ELT) (((-179) (-179) (-179)) 22 T ELT)) (-3525 (((-142 (-179)) (-142 (-179))) 27 T ELT) (((-179) (-179)) 26 T ELT)) (-3529 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 57 T ELT) (((-179) (-179) (-179)) 49 T ELT)) (-3531 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 62 T ELT) (((-179) (-179) (-179)) 60 T ELT)) (-3528 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 15 T ELT) (((-179) (-179) (-179)) 16 T ELT)) (-3530 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 17 T ELT) (((-179) (-179) (-179)) 18 T ELT)) (-3533 (((-142 (-179)) (-142 (-179))) 74 T ELT) (((-179) (-179)) 73 T ELT)) (-3532 (((-179) (-179)) 68 T ELT) (((-142 (-179)) (-142 (-179))) 72 T ELT)) (-3527 (((-142 (-179)) (-142 (-179))) 8 T ELT) (((-179) (-179)) 9 T ELT)) (-3524 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 35 T ELT) (((-179) (-179) (-179)) 31 T ELT))) +(((-180) (-10 -7 (-15 -3527 ((-179) (-179))) (-15 -3527 ((-142 (-179)) (-142 (-179)))) (-15 -3524 ((-179) (-179) (-179))) (-15 -3524 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -1493 ((-179) (-179))) (-15 -1493 ((-142 (-179)) (-142 (-179)))) (-15 -3525 ((-179) (-179))) (-15 -3525 ((-142 (-179)) (-142 (-179)))) (-15 -3526 ((-179) (-714) (-179))) (-15 -3526 ((-142 (-179)) (-714) (-142 (-179)))) (-15 -3528 ((-179) (-179) (-179))) (-15 -3528 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3529 ((-179) (-179) (-179))) (-15 -3529 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3530 ((-179) (-179) (-179))) (-15 -3530 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3531 ((-179) (-179) (-179))) (-15 -3531 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3532 ((-142 (-179)) (-142 (-179)))) (-15 -3532 ((-179) (-179))) (-15 -3533 ((-179) (-179))) (-15 -3533 ((-142 (-179)) (-142 (-179)))) (-15 -1494 ((-179) (-179) (-179))) (-15 -1494 ((-142 (-179)) (-142 (-179)) (-142 (-179)))))) (T -180)) +((-1494 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1494 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3533 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3533 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3532 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3532 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3531 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3531 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3530 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3530 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3529 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3529 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3528 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3528 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3526 (*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-714)) (-5 *1 (-180)))) (-3526 (*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-714)) (-5 *1 (-180)))) (-3525 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3525 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-1493 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1493 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3524 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3524 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3527 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3527 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3988 (($ (-714) (-714)) NIL T ELT)) (-2456 (($ $ $) NIL T ELT)) (-3554 (($ (-1207 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-4023 (($ |#1| |#1| |#1|) 33 T ELT)) (-3243 (((-85) $) NIL T ELT)) (-2455 (($ $ (-499) (-499)) NIL T ELT)) (-2454 (($ $ (-499) (-499)) NIL T ELT)) (-2453 (($ $ (-499) (-499) (-499) (-499)) NIL T ELT)) (-2458 (($ $) NIL T ELT)) (-3245 (((-85) $) NIL T ELT)) (-2452 (($ $ (-499) (-499) $) NIL T ELT)) (-3938 ((|#1| $ (-499) (-499) |#1|) NIL T ELT) (($ $ (-599 (-499)) (-599 (-499)) $) NIL T ELT)) (-1283 (($ $ (-499) (-1207 |#1|)) NIL T ELT)) (-1282 (($ $ (-499) (-1207 |#1|)) NIL T ELT)) (-3997 (($ |#1| |#1| |#1|) 32 T ELT)) (-3473 (($ (-714) |#1|) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3232 (($ $) NIL (|has| |#1| (-261)) ELT)) (-3234 (((-1207 |#1|) $ (-499)) NIL T ELT)) (-1495 (($ |#1|) 31 T ELT)) (-1496 (($ |#1|) 30 T ELT)) (-1497 (($ |#1|) 29 T ELT)) (-3231 (((-714) $) NIL (|has| |#1| (-510)) ELT)) (-1609 ((|#1| $ (-499) (-499) |#1|) NIL T ELT)) (-3235 ((|#1| $ (-499) (-499)) NIL T ELT)) (-3010 (((-599 |#1|) $) NIL T ELT)) (-3230 (((-714) $) NIL (|has| |#1| (-510)) ELT)) (-3229 (((-599 (-1207 |#1|)) $) NIL (|has| |#1| (-510)) ELT)) (-3237 (((-714) $) NIL T ELT)) (-3764 (($ (-714) (-714) |#1|) NIL T ELT)) (-3236 (((-714) $) NIL T ELT)) (-3467 ((|#1| $) NIL (|has| |#1| (-6 (-4147 #1="*"))) ELT)) (-3241 (((-499) $) NIL T ELT)) (-3239 (((-499) $) NIL T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3240 (((-499) $) NIL T ELT)) (-3238 (((-499) $) NIL T ELT)) (-3246 (($ (-599 (-599 |#1|))) 11 T ELT) (($ (-714) (-714) (-1 |#1| (-499) (-499))) NIL T ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3742 (((-599 (-599 |#1|)) $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3738 (((-3 $ #2="failed") $) NIL (|has| |#1| (-318)) ELT)) (-1498 (($) 12 T ELT)) (-2457 (($ $ $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2300 (($ $ |#1|) NIL T ELT)) (-3606 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-510)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-499) (-499)) NIL T ELT) ((|#1| $ (-499) (-499) |#1|) NIL T ELT) (($ $ (-599 (-499)) (-599 (-499))) NIL T ELT)) (-3472 (($ (-599 |#1|)) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3244 (((-85) $) NIL T ELT)) (-3468 ((|#1| $) NIL (|has| |#1| (-6 (-4147 #1#))) ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-3233 (((-1207 |#1|) $ (-499)) NIL T ELT)) (-4096 (($ (-1207 |#1|)) NIL T ELT) (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3242 (((-85) $) NIL T ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-499) $) NIL T ELT) (((-1207 |#1|) $ (-1207 |#1|)) 15 T ELT) (((-1207 |#1|) (-1207 |#1|) $) NIL T ELT) (((-881 |#1|) $ (-881 |#1|)) 21 T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-181 |#1|) (-13 (-644 |#1| (-1207 |#1|) (-1207 |#1|)) (-10 -8 (-15 * ((-881 |#1|) $ (-881 |#1|))) (-15 -1498 ($)) (-15 -1497 ($ |#1|)) (-15 -1496 ($ |#1|)) (-15 -1495 ($ |#1|)) (-15 -3997 ($ |#1| |#1| |#1|)) (-15 -4023 ($ |#1| |#1| |#1|)))) (-13 (-318) (-1143))) (T -181)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143))) (-5 *1 (-181 *3)))) (-1498 (*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143))))) (-1497 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143))))) (-1496 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143))))) (-1495 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143))))) (-3997 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143))))) (-4023 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143)))))) +((-1603 (($ (-1 (-85) |#2|) $) 16 T ELT)) (-3545 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 28 T ELT)) (-1499 (($) NIL T ELT) (($ (-599 |#2|)) 11 T ELT)) (-3174 (((-85) $ $) 26 T ELT))) +(((-182 |#1| |#2|) (-10 -7 (-15 -3174 ((-85) |#1| |#1|)) (-15 -1603 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3545 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3545 (|#1| |#2| |#1|)) (-15 -1499 (|#1| (-599 |#2|))) (-15 -1499 (|#1|))) (-183 |#2|) (-1041)) (T -182)) +NIL +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-1603 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-1386 (($ $) 62 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3545 (($ |#1| $) 51 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3546 (($ |#1| $) 61 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 43 T ELT)) (-3757 (($ |#1| $) 44 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-1499 (($) 53 T ELT) (($ (-599 |#1|)) 52 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 63 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 54 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-183 |#1|) (-113) (-1041)) (T -183)) +NIL +(-13 (-192 |t#1|)) +(((-34) . T) ((-78 |#1|) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-192 |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3908 (($ $ (-1 |#1| |#1|) (-714)) 62 T ELT) (($ $ (-1 |#1| |#1|)) 61 T ELT) (($ $ (-1117)) 60 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 58 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 57 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 56 (|has| |#1| (-838 (-1117))) ELT) (($ $) 52 (|has| |#1| (-189)) ELT) (($ $ (-714)) 50 (|has| |#1| (-189)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1 |#1| |#1|) (-714)) 64 T ELT) (($ $ (-1 |#1| |#1|)) 63 T ELT) (($ $ (-1117)) 59 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 55 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 54 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 53 (|has| |#1| (-838 (-1117))) ELT) (($ $) 51 (|has| |#1| (-189)) ELT) (($ $ (-714)) 49 (|has| |#1| (-189)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-184 |#1|) (-113) (-989)) (T -184)) +NIL +(-13 (-989) (-224 |t#1|) (-10 -7 (IF (|has| |t#1| (-190)) (-6 (-190)) |%noBranch|) (IF (|has| |t#1| (-836 (-1117))) (-6 (-836 (-1117))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-186 $) -3677 (|has| |#1| (-189)) (|has| |#1| (-190))) ((-190) |has| |#1| (-190)) ((-189) -3677 (|has| |#1| (-189)) (|has| |#1| (-190))) ((-224 |#1|) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-684) . T) ((-831 $ (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-836 (-1117)) |has| |#1| (-836 (-1117))) ((-838 (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2790 ((|#2| $) 9 T ELT))) +(((-185 |#1| |#2|) (-10 -7 (-15 -2790 (|#2| |#1|))) (-186 |#2|) (-1157)) (T -185)) +NIL +((-3908 ((|#1| $) 7 T ELT)) (-2790 ((|#1| $) 6 T ELT))) +(((-186 |#1|) (-113) (-1157)) (T -186)) +((-3908 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1157)))) (-2790 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1157))))) +(-13 (-1157) (-10 -8 (-15 -3908 (|t#1| $)) (-15 -2790 (|t#1| $)))) +(((-1157) . T)) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3908 (($ $ (-714)) 42 T ELT) (($ $) 40 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2790 (($ $ (-714)) 43 T ELT) (($ $) 41 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-187 |#1|) (-113) (-989)) (T -187)) +NIL +(-13 (-82 |t#1| |t#1|) (-189) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-675 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-568 (-797)) . T) ((-186 $) . T) ((-189) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-598 |#1|) |has| |#1| (-146)) ((-675 |#1|) |has| |#1| (-146)) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-3908 (($ $) NIL T ELT) (($ $ (-714)) 9 T ELT)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) 11 T ELT))) +(((-188 |#1|) (-10 -7 (-15 -2790 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1| (-714))) (-15 -2790 (|#1| |#1|)) (-15 -3908 (|#1| |#1|))) (-189)) (T -188)) +NIL +((-3908 (($ $) 7 T ELT) (($ $ (-714)) 10 T ELT)) (-2790 (($ $) 6 T ELT) (($ $ (-714)) 9 T ELT))) +(((-189) (-113)) (T -189)) +((-3908 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-714)))) (-2790 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-714))))) +(-13 (-186 $) (-10 -8 (-15 -3908 ($ $ (-714))) (-15 -2790 ($ $ (-714))))) +(((-186 $) . T) ((-1157) . T)) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3908 (($ $ (-714)) 47 T ELT) (($ $) 45 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-714)) 48 T ELT) (($ $) 46 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-190) (-113)) (T -190)) +NIL +(-13 (-989) (-189)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-186 $) . T) ((-189) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-684) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-1499 (($) 12 T ELT) (($ (-599 |#2|)) NIL T ELT)) (-3540 (($ $) 14 T ELT)) (-3670 (($ (-599 |#2|)) 10 T ELT)) (-4096 (((-797) $) 21 T ELT))) +(((-191 |#1| |#2|) (-10 -7 (-15 -4096 ((-797) |#1|)) (-15 -1499 (|#1| (-599 |#2|))) (-15 -1499 (|#1|)) (-15 -3670 (|#1| (-599 |#2|))) (-15 -3540 (|#1| |#1|))) (-192 |#2|) (-1041)) (T -191)) +NIL +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-1603 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-1386 (($ $) 62 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3545 (($ |#1| $) 51 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3546 (($ |#1| $) 61 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 43 T ELT)) (-3757 (($ |#1| $) 44 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-1499 (($) 53 T ELT) (($ (-599 |#1|)) 52 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 63 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 54 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-192 |#1|) (-113) (-1041)) (T -192)) +((-1499 (*1 *1) (-12 (-4 *1 (-192 *2)) (-4 *2 (-1041)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-4 *1 (-192 *3)))) (-3545 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-192 *2)) (-4 *2 (-1041)))) (-3545 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -4145)) (-4 *1 (-192 *3)) (-4 *3 (-1041)))) (-1603 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -4145)) (-4 *1 (-192 *3)) (-4 *3 (-1041))))) +(-13 (-78 |t#1|) (-124 |t#1|) (-10 -8 (-15 -1499 ($)) (-15 -1499 ($ (-599 |t#1|))) (IF (|has| $ (-6 -4145)) (PROGN (-15 -3545 ($ |t#1| $)) (-15 -3545 ($ (-1 (-85) |t#1|) $)) (-15 -1603 ($ (-1 (-85) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-78 |#1|) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) +((-1500 (((-2 (|:| |varOrder| (-599 (-1117))) (|:| |inhom| (-3 (-599 (-1207 (-714))) "failed")) (|:| |hom| (-599 (-1207 (-714))))) (-247 (-884 (-499)))) 42 T ELT))) +(((-193) (-10 -7 (-15 -1500 ((-2 (|:| |varOrder| (-599 (-1117))) (|:| |inhom| (-3 (-599 (-1207 (-714))) "failed")) (|:| |hom| (-599 (-1207 (-714))))) (-247 (-884 (-499))))))) (T -193)) +((-1500 (*1 *2 *3) (-12 (-5 *3 (-247 (-884 (-499)))) (-5 *2 (-2 (|:| |varOrder| (-599 (-1117))) (|:| |inhom| (-3 (-599 (-1207 (-714))) "failed")) (|:| |hom| (-599 (-1207 (-714)))))) (-5 *1 (-193))))) +((-3258 (((-714)) 56 T ELT)) (-2380 (((-2 (|:| -1673 (-647 |#3|)) (|:| |vec| (-1207 |#3|))) (-647 $) (-1207 $)) 53 T ELT) (((-647 |#3|) (-647 $)) 44 T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-499)) (-647 $)) NIL T ELT)) (-4061 (((-107)) 62 T ELT)) (-3908 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT)) (-4096 (((-1207 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-797) $) NIL T ELT) (($ (-499)) 12 T ELT) (($ (-361 (-499))) NIL T ELT)) (-3248 (((-714)) 15 T ELT)) (-4099 (($ $ |#3|) 59 T ELT))) +(((-194 |#1| |#2| |#3|) (-10 -7 (-15 -4096 (|#1| (-361 (-499)))) (-15 -4096 (|#1| (-499))) (-15 -3908 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1| (-1117))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -4096 ((-797) |#1|)) (-15 -3248 ((-714))) (-15 -2380 ((-647 (-499)) (-647 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 |#1|) (-1207 |#1|))) (-15 -4096 (|#1| |#3|)) (-15 -3908 (|#1| |#1| (-1 |#3| |#3|) (-714))) (-15 -3908 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2380 ((-647 |#3|) (-647 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 |#3|)) (|:| |vec| (-1207 |#3|))) (-647 |#1|) (-1207 |#1|))) (-15 -3258 ((-714))) (-15 -4099 (|#1| |#1| |#3|)) (-15 -4061 ((-107))) (-15 -4096 ((-1207 |#3|) |#1|))) (-195 |#2| |#3|) (-714) (-1157)) (T -194)) +((-4061 (*1 *2) (-12 (-14 *4 (-714)) (-4 *5 (-1157)) (-5 *2 (-107)) (-5 *1 (-194 *3 *4 *5)) (-4 *3 (-195 *4 *5)))) (-3258 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1157)) (-5 *2 (-714)) (-5 *1 (-194 *3 *4 *5)) (-4 *3 (-195 *4 *5)))) (-3248 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1157)) (-5 *2 (-714)) (-5 *1 (-194 *3 *4 *5)) (-4 *3 (-195 *4 *5))))) +((-2687 (((-85) $ $) 19 (|has| |#2| (-73)) ELT)) (-3326 (((-85) $) 80 (|has| |#2| (-23)) ELT)) (-3857 (($ (-857)) 134 (|has| |#2| (-989)) ELT)) (-2299 (((-1213) $ (-499) (-499)) 44 (|has| $ (-6 -4146)) ELT)) (-2600 (($ $ $) 130 (|has| |#2| (-738)) ELT)) (-1345 (((-3 $ "failed") $ $) 82 (|has| |#2| (-104)) ELT)) (-3258 (((-714)) 119 (|has| |#2| (-323)) ELT)) (-3938 ((|#2| $ (-499) |#2|) 56 (|has| $ (-6 -4146)) ELT)) (-3874 (($) 7 T CONST)) (-3295 (((-3 (-499) #1="failed") $) 75 (-2681 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) ELT) (((-3 (-361 (-499)) #1#) $) 72 (-2681 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) (((-3 |#2| #1#) $) 69 (|has| |#2| (-1041)) ELT)) (-3294 (((-499) $) 74 (-2681 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) ELT) (((-361 (-499)) $) 71 (-2681 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) ((|#2| $) 70 (|has| |#2| (-1041)) ELT)) (-2380 (((-647 (-499)) (-647 $)) 116 (-2681 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 115 (-2681 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) 114 (|has| |#2| (-989)) ELT) (((-647 |#2|) (-647 $)) 113 (|has| |#2| (-989)) ELT)) (-3607 (((-3 $ "failed") $) 90 (|has| |#2| (-989)) ELT)) (-3115 (($) 122 (|has| |#2| (-323)) ELT)) (-1609 ((|#2| $ (-499) |#2|) 57 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ (-499)) 55 T ELT)) (-3324 (((-85) $) 129 (|has| |#2| (-738)) ELT)) (-3010 (((-599 |#2|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2528 (((-85) $) 92 (|has| |#2| (-989)) ELT)) (-2301 (((-499) $) 47 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) 123 (|has| |#2| (-781)) ELT)) (-2727 (((-599 |#2|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#2| $) 27 (-12 (|has| |#2| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 48 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) 124 (|has| |#2| (-781)) ELT)) (-2051 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-2111 (((-857) $) 121 (|has| |#2| (-323)) ELT)) (-2381 (((-647 (-499)) (-1207 $)) 118 (-2681 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 117 (-2681 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) 112 (|has| |#2| (-989)) ELT) (((-647 |#2|) (-1207 $)) 111 (|has| |#2| (-989)) ELT)) (-3380 (((-1099) $) 22 (|has| |#2| (-1041)) ELT)) (-2304 (((-599 (-499)) $) 50 T ELT)) (-2305 (((-85) (-499) $) 51 T ELT)) (-2518 (($ (-857)) 120 (|has| |#2| (-323)) ELT)) (-3381 (((-1060) $) 21 (|has| |#2| (-1041)) ELT)) (-3951 ((|#2| $) 46 (|has| (-499) (-781)) ELT)) (-2300 (($ $ |#2|) 45 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#2|))) 26 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) 25 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) 23 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) 52 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#2| $ (-499) |#2|) 54 T ELT) ((|#2| $ (-499)) 53 T ELT)) (-3986 ((|#2| $ $) 133 (|has| |#2| (-989)) ELT)) (-1501 (($ (-1207 |#2|)) 135 T ELT)) (-4061 (((-107)) 132 (|has| |#2| (-318)) ELT)) (-3908 (($ $ (-714)) 109 (-2681 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $) 107 (-2681 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 103 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117) (-714)) 102 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117))) 101 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117)) 99 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1 |#2| |#2|)) 98 (|has| |#2| (-989)) ELT) (($ $ (-1 |#2| |#2|) (-714)) 97 (|has| |#2| (-989)) ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#2| $) 28 (-12 (|has| |#2| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-1207 |#2|) $) 136 T ELT) (($ (-499)) 76 (-3677 (-2681 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) (|has| |#2| (-989))) ELT) (($ (-361 (-499))) 73 (-2681 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) (($ |#2|) 68 (|has| |#2| (-1041)) ELT) (((-797) $) 17 (|has| |#2| (-568 (-797))) ELT)) (-3248 (((-714)) 94 (|has| |#2| (-989)) CONST)) (-1297 (((-85) $ $) 20 (|has| |#2| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -4145)) ELT)) (-2779 (($) 79 (|has| |#2| (-23)) CONST)) (-2785 (($) 93 (|has| |#2| (-989)) CONST)) (-2790 (($ $ (-714)) 110 (-2681 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $) 108 (-2681 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 106 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117) (-714)) 105 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117))) 104 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117)) 100 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1 |#2| |#2|)) 96 (|has| |#2| (-989)) ELT) (($ $ (-1 |#2| |#2|) (-714)) 95 (|has| |#2| (-989)) ELT)) (-2685 (((-85) $ $) 125 (|has| |#2| (-781)) ELT)) (-2686 (((-85) $ $) 127 (|has| |#2| (-781)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#2| (-73)) ELT)) (-2805 (((-85) $ $) 126 (|has| |#2| (-781)) ELT)) (-2806 (((-85) $ $) 128 (|has| |#2| (-781)) ELT)) (-4099 (($ $ |#2|) 131 (|has| |#2| (-318)) ELT)) (-3987 (($ $ $) 85 (|has| |#2| (-21)) ELT) (($ $) 84 (|has| |#2| (-21)) ELT)) (-3989 (($ $ $) 77 (|has| |#2| (-25)) ELT)) (** (($ $ (-714)) 91 (|has| |#2| (-989)) ELT) (($ $ (-857)) 88 (|has| |#2| (-989)) ELT)) (* (($ $ $) 89 (|has| |#2| (-989)) ELT) (($ $ |#2|) 87 (|has| |#2| (-684)) ELT) (($ |#2| $) 86 (|has| |#2| (-684)) ELT) (($ (-499) $) 83 (|has| |#2| (-21)) ELT) (($ (-714) $) 81 (|has| |#2| (-23)) ELT) (($ (-857) $) 78 (|has| |#2| (-25)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-195 |#1| |#2|) (-113) (-714) (-1157)) (T -195)) +((-1501 (*1 *1 *2) (-12 (-5 *2 (-1207 *4)) (-4 *4 (-1157)) (-4 *1 (-195 *3 *4)))) (-3857 (*1 *1 *2) (-12 (-5 *2 (-857)) (-4 *1 (-195 *3 *4)) (-4 *4 (-989)) (-4 *4 (-1157)))) (-3986 (*1 *2 *1 *1) (-12 (-4 *1 (-195 *3 *2)) (-4 *2 (-1157)) (-4 *2 (-989))))) +(-13 (-554 (-499) |t#2|) (-568 (-1207 |t#2|)) (-10 -8 (-6 -4145) (-15 -1501 ($ (-1207 |t#2|))) (IF (|has| |t#2| (-1041)) (-6 (-366 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-989)) (PROGN (-6 (-82 |t#2| |t#2|)) (-6 (-184 |t#2|)) (-6 (-332 |t#2|)) (-15 -3857 ($ (-857))) (-15 -3986 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-104)) (-6 (-104)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-684)) (-6 (-598 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-323)) (-6 (-323)) |%noBranch|) (IF (|has| |t#2| (-146)) (-6 (-675 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4142)) (-6 -4142) |%noBranch|) (IF (|has| |t#2| (-781)) (-6 (-781)) |%noBranch|) (IF (|has| |t#2| (-738)) (-6 (-738)) |%noBranch|) (IF (|has| |t#2| (-318)) (-6 (-1215 |t#2|)) |%noBranch|))) +(((-21) -3677 (|has| |#2| (-989)) (|has| |#2| (-318)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-23) -3677 (|has| |#2| (-989)) (|has| |#2| (-738)) (|has| |#2| (-318)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -3677 (|has| |#2| (-989)) (|has| |#2| (-738)) (|has| |#2| (-318)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-73) -3677 (|has| |#2| (-1041)) (|has| |#2| (-989)) (|has| |#2| (-781)) (|has| |#2| (-738)) (|has| |#2| (-684)) (|has| |#2| (-323)) (|has| |#2| (-318)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-73)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-82 |#2| |#2|) -3677 (|has| |#2| (-989)) (|has| |#2| (-318)) (|has| |#2| (-146))) ((-104) -3677 (|has| |#2| (-989)) (|has| |#2| (-738)) (|has| |#2| (-318)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-21))) ((-571 (-361 (-499))) -12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ((-571 (-499)) -3677 (|has| |#2| (-989)) (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041)))) ((-571 |#2|) |has| |#2| (-1041)) ((-568 (-797)) -3677 (|has| |#2| (-1041)) (|has| |#2| (-989)) (|has| |#2| (-781)) (|has| |#2| (-738)) (|has| |#2| (-684)) (|has| |#2| (-323)) (|has| |#2| (-318)) (|has| |#2| (-146)) (|has| |#2| (-568 (-797))) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-568 (-1207 |#2|)) . T) ((-186 $) -3677 (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) (-12 (|has| |#2| (-190)) (|has| |#2| (-989)))) ((-184 |#2|) |has| |#2| (-989)) ((-190) -12 (|has| |#2| (-190)) (|has| |#2| (-989))) ((-189) -3677 (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) (-12 (|has| |#2| (-190)) (|has| |#2| (-989)))) ((-224 |#2|) |has| |#2| (-989)) ((-240 (-499) |#2|) . T) ((-242 (-499) |#2|) . T) ((-263 |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ((-323) |has| |#2| (-323)) ((-332 |#2|) |has| |#2| (-989)) ((-366 |#2|) |has| |#2| (-1041)) ((-443 |#2|) . T) ((-554 (-499) |#2|) . T) ((-468 |#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ((-604 (-499)) -3677 (|has| |#2| (-989)) (|has| |#2| (-318)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-604 |#2|) -3677 (|has| |#2| (-989)) (|has| |#2| (-684)) (|has| |#2| (-318)) (|has| |#2| (-146))) ((-604 $) |has| |#2| (-989)) ((-606 (-499)) -12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ((-606 |#2|) -3677 (|has| |#2| (-989)) (|has| |#2| (-318)) (|has| |#2| (-146))) ((-606 $) |has| |#2| (-989)) ((-598 |#2|) -3677 (|has| |#2| (-684)) (|has| |#2| (-318)) (|has| |#2| (-146))) ((-596 (-499)) -12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ((-596 |#2|) |has| |#2| (-989)) ((-675 |#2|) -3677 (|has| |#2| (-318)) (|has| |#2| (-146))) ((-684) |has| |#2| (-989)) ((-737) |has| |#2| (-738)) ((-738) |has| |#2| (-738)) ((-739) |has| |#2| (-738)) ((-742) |has| |#2| (-738)) ((-781) -3677 (|has| |#2| (-781)) (|has| |#2| (-738))) ((-784) -3677 (|has| |#2| (-781)) (|has| |#2| (-738))) ((-831 $ (-1117)) -3677 (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) (-12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989)))) ((-836 (-1117)) -12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989))) ((-838 (-1117)) -3677 (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) (-12 (|has| |#2| (-836 (-1117))) (|has| |#2| (-989)))) ((-978 (-361 (-499))) -12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ((-978 (-499)) -12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) ((-978 |#2|) |has| |#2| (-1041)) ((-991 |#2|) -3677 (|has| |#2| (-989)) (|has| |#2| (-684)) (|has| |#2| (-318)) (|has| |#2| (-146))) ((-996 |#2|) -3677 (|has| |#2| (-989)) (|has| |#2| (-318)) (|has| |#2| (-146))) ((-989) |has| |#2| (-989)) ((-997) |has| |#2| (-989)) ((-1052) |has| |#2| (-989)) ((-1041) -3677 (|has| |#2| (-1041)) (|has| |#2| (-989)) (|has| |#2| (-781)) (|has| |#2| (-738)) (|has| |#2| (-684)) (|has| |#2| (-323)) (|has| |#2| (-318)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1157) . T) ((-1215 |#2|) |has| |#2| (-318))) +((-2687 (((-85) $ $) NIL (|has| |#2| (-73)) ELT)) (-3326 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3857 (($ (-857)) 63 (|has| |#2| (-989)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-2600 (($ $ $) 69 (|has| |#2| (-738)) ELT)) (-1345 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-104)) ELT)) (-3258 (((-714)) NIL (|has| |#2| (-323)) ELT)) (-3938 ((|#2| $ (-499) |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (-12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1041)) ELT)) (-3294 (((-499) $) NIL (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) ELT) (((-361 (-499)) $) NIL (-12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) ((|#2| $) 29 (|has| |#2| (-1041)) ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL (|has| |#2| (-989)) ELT) (((-647 |#2|) (-647 $)) NIL (|has| |#2| (-989)) ELT)) (-3607 (((-3 $ #1#) $) 59 (|has| |#2| (-989)) ELT)) (-3115 (($) NIL (|has| |#2| (-323)) ELT)) (-1609 ((|#2| $ (-499) |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ (-499)) 57 T ELT)) (-3324 (((-85) $) NIL (|has| |#2| (-738)) ELT)) (-3010 (((-599 |#2|) $) 14 (|has| $ (-6 -4145)) ELT)) (-2528 (((-85) $) NIL (|has| |#2| (-989)) ELT)) (-2301 (((-499) $) 20 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#2| (-781)) ELT)) (-2727 (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#2| (-781)) ELT)) (-2051 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2111 (((-857) $) NIL (|has| |#2| (-323)) ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL (|has| |#2| (-989)) ELT) (((-647 |#2|) (-1207 $)) NIL (|has| |#2| (-989)) ELT)) (-3380 (((-1099) $) NIL (|has| |#2| (-1041)) ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-2518 (($ (-857)) NIL (|has| |#2| (-323)) ELT)) (-3381 (((-1060) $) NIL (|has| |#2| (-1041)) ELT)) (-3951 ((|#2| $) NIL (|has| (-499) (-781)) ELT)) (-2300 (($ $ |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) 24 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#2| $ (-499) |#2|) NIL T ELT) ((|#2| $ (-499)) 21 T ELT)) (-3986 ((|#2| $ $) NIL (|has| |#2| (-989)) ELT)) (-1501 (($ (-1207 |#2|)) 18 T ELT)) (-4061 (((-107)) NIL (|has| |#2| (-318)) ELT)) (-3908 (($ $ (-714)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-989)) ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL (|has| |#2| (-989)) ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-1207 |#2|) $) 9 T ELT) (($ (-499)) NIL (-3677 (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) (|has| |#2| (-989))) ELT) (($ (-361 (-499))) NIL (-12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) (($ |#2|) 12 (|has| |#2| (-1041)) ELT) (((-797) $) NIL (|has| |#2| (-568 (-797))) ELT)) (-3248 (((-714)) NIL (|has| |#2| (-989)) CONST)) (-1297 (((-85) $ $) NIL (|has| |#2| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2779 (($) 37 (|has| |#2| (-23)) CONST)) (-2785 (($) 41 (|has| |#2| (-989)) CONST)) (-2790 (($ $ (-714)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-989)) ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL (|has| |#2| (-989)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-3174 (((-85) $ $) 28 (|has| |#2| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-2806 (((-85) $ $) 67 (|has| |#2| (-781)) ELT)) (-4099 (($ $ |#2|) NIL (|has| |#2| (-318)) ELT)) (-3987 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3989 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-714)) NIL (|has| |#2| (-989)) ELT) (($ $ (-857)) NIL (|has| |#2| (-989)) ELT)) (* (($ $ $) 47 (|has| |#2| (-989)) ELT) (($ $ |#2|) 45 (|has| |#2| (-684)) ELT) (($ |#2| $) 46 (|has| |#2| (-684)) ELT) (($ (-499) $) NIL (|has| |#2| (-21)) ELT) (($ (-714) $) NIL (|has| |#2| (-23)) ELT) (($ (-857) $) NIL (|has| |#2| (-25)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-196 |#1| |#2|) (-195 |#1| |#2|) (-714) (-1157)) (T -196)) +NIL +((-3991 (((-196 |#1| |#3|) (-1 |#3| |#2| |#3|) (-196 |#1| |#2|) |#3|) 21 T ELT)) (-3992 ((|#3| (-1 |#3| |#2| |#3|) (-196 |#1| |#2|) |#3|) 23 T ELT)) (-4108 (((-196 |#1| |#3|) (-1 |#3| |#2|) (-196 |#1| |#2|)) 18 T ELT))) +(((-197 |#1| |#2| |#3|) (-10 -7 (-15 -3991 ((-196 |#1| |#3|) (-1 |#3| |#2| |#3|) (-196 |#1| |#2|) |#3|)) (-15 -3992 (|#3| (-1 |#3| |#2| |#3|) (-196 |#1| |#2|) |#3|)) (-15 -4108 ((-196 |#1| |#3|) (-1 |#3| |#2|) (-196 |#1| |#2|)))) (-714) (-1157) (-1157)) (T -197)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-196 *5 *6)) (-14 *5 (-714)) (-4 *6 (-1157)) (-4 *7 (-1157)) (-5 *2 (-196 *5 *7)) (-5 *1 (-197 *5 *6 *7)))) (-3992 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-196 *5 *6)) (-14 *5 (-714)) (-4 *6 (-1157)) (-4 *2 (-1157)) (-5 *1 (-197 *5 *6 *2)))) (-3991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-196 *6 *7)) (-14 *6 (-714)) (-4 *7 (-1157)) (-4 *5 (-1157)) (-5 *2 (-196 *6 *5)) (-5 *1 (-197 *6 *7 *5))))) +((-1505 (((-499) (-599 (-1099))) 36 T ELT) (((-499) (-1099)) 29 T ELT)) (-1504 (((-1213) (-599 (-1099))) 40 T ELT) (((-1213) (-1099)) 39 T ELT)) (-1502 (((-1099)) 16 T ELT)) (-1503 (((-1099) (-499) (-1099)) 23 T ELT)) (-3923 (((-599 (-1099)) (-599 (-1099)) (-499) (-1099)) 37 T ELT) (((-1099) (-1099) (-499) (-1099)) 35 T ELT)) (-2739 (((-599 (-1099)) (-599 (-1099))) 15 T ELT) (((-599 (-1099)) (-1099)) 11 T ELT))) +(((-198) (-10 -7 (-15 -2739 ((-599 (-1099)) (-1099))) (-15 -2739 ((-599 (-1099)) (-599 (-1099)))) (-15 -1502 ((-1099))) (-15 -1503 ((-1099) (-499) (-1099))) (-15 -3923 ((-1099) (-1099) (-499) (-1099))) (-15 -3923 ((-599 (-1099)) (-599 (-1099)) (-499) (-1099))) (-15 -1504 ((-1213) (-1099))) (-15 -1504 ((-1213) (-599 (-1099)))) (-15 -1505 ((-499) (-1099))) (-15 -1505 ((-499) (-599 (-1099)))))) (T -198)) +((-1505 (*1 *2 *3) (-12 (-5 *3 (-599 (-1099))) (-5 *2 (-499)) (-5 *1 (-198)))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-499)) (-5 *1 (-198)))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-599 (-1099))) (-5 *2 (-1213)) (-5 *1 (-198)))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-198)))) (-3923 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-599 (-1099))) (-5 *3 (-499)) (-5 *4 (-1099)) (-5 *1 (-198)))) (-3923 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1099)) (-5 *3 (-499)) (-5 *1 (-198)))) (-1503 (*1 *2 *3 *2) (-12 (-5 *2 (-1099)) (-5 *3 (-499)) (-5 *1 (-198)))) (-1502 (*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-198)))) (-2739 (*1 *2 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-198)))) (-2739 (*1 *2 *3) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-198)) (-5 *3 (-1099))))) +((** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) 18 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-361 (-499)) $) 25 T ELT) (($ $ (-361 (-499))) NIL T ELT))) +(((-199 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-499))) (-15 * (|#1| |#1| (-361 (-499)))) (-15 * (|#1| (-361 (-499)) |#1|)) (-15 ** (|#1| |#1| (-714))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-857))) (-15 * (|#1| (-499) |#1|)) (-15 * (|#1| (-714) |#1|)) (-15 * (|#1| (-857) |#1|))) (-200)) (T -199)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 52 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ (-361 (-499))) 56 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 53 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-361 (-499)) $) 55 T ELT) (($ $ (-361 (-499))) 54 T ELT))) +(((-200) (-113)) (T -200)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-200)) (-5 *2 (-499)))) (-2601 (*1 *1 *1) (-4 *1 (-200)))) +(-13 (-244) (-38 (-361 (-499))) (-10 -8 (-15 ** ($ $ (-499))) (-15 -2601 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-244) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-675 (-361 (-499))) . T) ((-684) . T) ((-991 (-361 (-499))) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 52 T ELT)) (-3947 (($ $) 63 T ELT)) (-3146 ((|#1| $ |#1|) 43 (|has| $ (-6 -4146)) ELT)) (-1507 (($ $ $) 59 (|has| $ (-6 -4146)) ELT)) (-1506 (($ $ $) 58 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 45 (|has| $ (-6 -4146)) ELT)) (-3874 (($) 7 T CONST)) (-1509 (($ $) 62 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) 54 T ELT)) (-3148 (((-85) $ $) 46 (|has| |#1| (-1041)) ELT)) (-1508 (($ $) 61 T ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3151 (((-599 |#1|) $) 49 T ELT)) (-3667 (((-85) $) 53 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3948 ((|#1| $) 65 T ELT)) (-3316 (($ $) 64 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ #1#) 51 T ELT)) (-3150 (((-499) $ $) 48 T ELT)) (-3783 (((-85) $) 50 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-3941 (($ $ $) 60 (|has| $ (-6 -4146)) ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) 55 T ELT)) (-3149 (((-85) $ $) 47 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-201 |#1|) (-113) (-1157)) (T -201)) +((-3948 (*1 *2 *1) (-12 (-4 *1 (-201 *2)) (-4 *2 (-1157)))) (-3316 (*1 *1 *1) (-12 (-4 *1 (-201 *2)) (-4 *2 (-1157)))) (-3947 (*1 *1 *1) (-12 (-4 *1 (-201 *2)) (-4 *2 (-1157)))) (-1509 (*1 *1 *1) (-12 (-4 *1 (-201 *2)) (-4 *2 (-1157)))) (-1508 (*1 *1 *1) (-12 (-4 *1 (-201 *2)) (-4 *2 (-1157)))) (-3941 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-201 *2)) (-4 *2 (-1157)))) (-1507 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-201 *2)) (-4 *2 (-1157)))) (-1506 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-201 *2)) (-4 *2 (-1157))))) +(-13 (-950 |t#1|) (-10 -8 (-15 -3948 (|t#1| $)) (-15 -3316 ($ $)) (-15 -3947 ($ $)) (-15 -1509 ($ $)) (-15 -1508 ($ $)) (IF (|has| $ (-6 -4146)) (PROGN (-15 -3941 ($ $ $)) (-15 -1507 ($ $ $)) (-15 -1506 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-950 |#1|) . T) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) NIL T ELT)) (-3945 ((|#1| $) NIL T ELT)) (-3947 (($ $) NIL T ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3935 (($ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) $) NIL (|has| |#1| (-781)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1823 (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| |#1| (-781))) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-3030 (($ $) 10 (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3582 (((-85) $ (-714)) NIL T ELT)) (-3146 ((|#1| $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3937 (($ $ $) NIL (|has| $ (-6 -4146)) ELT)) (-3936 ((|#1| $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3939 ((|#1| $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4146)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) NIL (|has| $ (-6 -4146)) ELT)) (-1603 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3946 ((|#1| $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-3949 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-2481 (($ $) NIL (|has| |#1| (-1041)) ELT)) (-1386 (($ $) 7 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3545 (($ |#1| $) NIL (|has| |#1| (-1041)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3546 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1609 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) NIL T ELT)) (-3583 (((-85) $) NIL T ELT)) (-3559 (((-499) |#1| $ (-499)) NIL (|has| |#1| (-1041)) ELT) (((-499) |#1| $) NIL (|has| |#1| (-1041)) ELT) (((-499) (-1 (-85) |#1|) $) NIL T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) NIL T ELT)) (-3148 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3764 (($ (-714) |#1|) NIL T ELT)) (-3869 (((-85) $ (-714)) NIL T ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2977 (($ $ $) NIL (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3658 (($ $ $) NIL (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3682 (($ |#1|) NIL T ELT)) (-3866 (((-85) $ (-714)) NIL T ELT)) (-3151 (((-599 |#1|) $) NIL T ELT)) (-3667 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3948 ((|#1| $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3757 (($ $ $ (-499)) NIL T ELT) (($ |#1| $ (-499)) NIL T ELT)) (-2404 (($ $ $ (-499)) NIL T ELT) (($ |#1| $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2300 (($ $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3584 (((-85) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT) ((|#1| $ (-499)) NIL T ELT) ((|#1| $ (-499) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-714) $ "count") 16 T ELT)) (-3150 (((-499) $ $) NIL T ELT)) (-1604 (($ $ (-1174 (-499))) NIL T ELT) (($ $ (-499)) NIL T ELT)) (-2405 (($ $ (-1174 (-499))) NIL T ELT) (($ $ (-499)) NIL T ELT)) (-1510 (($ (-599 |#1|)) 22 T ELT)) (-3783 (((-85) $) NIL T ELT)) (-3942 (($ $) NIL T ELT)) (-3940 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-3943 (((-714) $) NIL T ELT)) (-3944 (($ $) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) NIL T ELT)) (-3941 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3952 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-599 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4096 (($ (-599 |#1|)) 17 T ELT) (((-599 |#1|) $) 18 T ELT) (((-797) $) 21 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) NIL T ELT)) (-3149 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-4107 (((-714) $) 14 (|has| $ (-6 -4145)) ELT))) +(((-202 |#1|) (-13 (-624 |#1|) (-444 (-599 |#1|)) (-10 -8 (-15 -1510 ($ (-599 |#1|))) (-15 -3950 ($ $ "unique")) (-15 -3950 ($ $ "sort")) (-15 -3950 ((-714) $ "count")))) (-781)) (T -202)) +((-1510 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-202 *3)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-202 *3)) (-4 *3 (-781)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-202 *3)) (-4 *3 (-781)))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-714)) (-5 *1 (-202 *4)) (-4 *4 (-781))))) +((-1511 (((-3 (-714) "failed") |#1| |#1| (-714)) 40 T ELT))) +(((-203 |#1|) (-10 -7 (-15 -1511 ((-3 (-714) "failed") |#1| |#1| (-714)))) (-13 (-684) (-323) (-10 -7 (-15 ** (|#1| |#1| (-499)))))) (T -203)) +((-1511 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-714)) (-4 *3 (-13 (-684) (-323) (-10 -7 (-15 ** (*3 *3 (-499)))))) (-5 *1 (-203 *3))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3908 (($ $) 59 (|has| |#1| (-189)) ELT) (($ $ (-714)) 57 (|has| |#1| (-189)) ELT) (($ $ (-1117)) 55 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 53 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 52 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 51 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1 |#1| |#1|) (-714)) 45 T ELT) (($ $ (-1 |#1| |#1|)) 44 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2790 (($ $) 58 (|has| |#1| (-189)) ELT) (($ $ (-714)) 56 (|has| |#1| (-189)) ELT) (($ $ (-1117)) 54 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 50 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 49 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 48 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1 |#1| |#1|) (-714)) 47 T ELT) (($ $ (-1 |#1| |#1|)) 46 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-204 |#1|) (-113) (-989)) (T -204)) +NIL +(-13 (-82 |t#1| |t#1|) (-224 |t#1|) (-10 -7 (IF (|has| |t#1| (-189)) (-6 (-187 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-838 (-1117))) (-6 (-835 |t#1| (-1117))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-568 (-797)) . T) ((-186 $) |has| |#1| (-189)) ((-187 |#1|) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-224 |#1|) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-598 |#1|) -3677 (-12 (|has| |#1| (-146)) (|has| |#1| (-838 (-1117)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-675 |#1|) -3677 (-12 (|has| |#1| (-146)) (|has| |#1| (-838 (-1117)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-831 $ (-1117)) |has| |#1| (-838 (-1117))) ((-835 |#1| (-1117)) |has| |#1| (-838 (-1117))) ((-838 (-1117)) |has| |#1| (-838 (-1117))) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-798 |#1|)) $) NIL T ELT)) (-3206 (((-1111 $) $ (-798 |#1|)) NIL T ELT) (((-1111 |#2|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#2| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#2| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#2| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-798 |#1|))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#2| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#2| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-3 (-798 |#1|) #1#) $) NIL T ELT)) (-3294 ((|#2| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-798 |#1|) $) NIL T ELT)) (-3906 (($ $ $ (-798 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-2039 (($ $ (-599 (-499))) NIL T ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#2|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#2| (-406)) ELT) (($ $ (-798 |#1|)) NIL (|has| |#2| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#2| (-848)) ELT)) (-1694 (($ $ |#2| (-196 (-4107 |#1|) (-714)) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-798 |#1|) (-821 (-333))) (|has| |#2| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-798 |#1|) (-821 (-499))) (|has| |#2| (-821 (-499)))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3207 (($ (-1111 |#2|) (-798 |#1|)) NIL T ELT) (($ (-1111 $) (-798 |#1|)) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#2| (-196 (-4107 |#1|) (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-798 |#1|)) NIL T ELT)) (-2941 (((-196 (-4107 |#1|) (-714)) $) NIL T ELT) (((-714) $ (-798 |#1|)) NIL T ELT) (((-599 (-714)) $ (-599 (-798 |#1|))) NIL T ELT)) (-1695 (($ (-1 (-196 (-4107 |#1|) (-714)) (-196 (-4107 |#1|) (-714))) $) NIL T ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3205 (((-3 (-798 |#1|) #1#) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#2| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#2| (-406)) ELT) (($ $ $) NIL (|has| |#2| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-798 |#1|)) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 ((|#2| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#2| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#2| (-406)) ELT) (($ $ $) NIL (|has| |#2| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#2| (-848)) ELT)) (-3606 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-510)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-798 |#1|) |#2|) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 |#2|)) NIL T ELT) (($ $ (-798 |#1|) $) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 $)) NIL T ELT)) (-3907 (($ $ (-798 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3908 (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|))) NIL T ELT) (($ $ (-798 |#1|)) NIL T ELT)) (-4098 (((-196 (-4107 |#1|) (-714)) $) NIL T ELT) (((-714) $ (-798 |#1|)) NIL T ELT) (((-599 (-714)) $ (-599 (-798 |#1|))) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-798 |#1|) (-569 (-825 (-333)))) (|has| |#2| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-798 |#1|) (-569 (-825 (-499)))) (|has| |#2| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-798 |#1|) (-569 (-488))) (|has| |#2| (-569 (-488)))) ELT)) (-2938 ((|#2| $) NIL (|has| |#2| (-406)) ELT) (($ $ (-798 |#1|)) NIL (|has| |#2| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-798 |#1|)) NIL T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#2| (-38 (-361 (-499)))) (|has| |#2| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#2| (-510)) ELT)) (-3967 (((-599 |#2|) $) NIL T ELT)) (-3827 ((|#2| $ (-196 (-4107 |#1|) (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#2| (-848))) (|has| |#2| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#2| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#2| (-510)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|))) NIL T ELT) (($ $ (-798 |#1|)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#2|) NIL (|has| |#2| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#2| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#2| (-38 (-361 (-499)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-205 |#1| |#2|) (-13 (-888 |#2| (-196 (-4107 |#1|) (-714)) (-798 |#1|)) (-10 -8 (-15 -2039 ($ $ (-599 (-499)))))) (-599 (-1117)) (-989)) (T -205)) +((-2039 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-205 *3 *4)) (-14 *3 (-599 (-1117))) (-4 *4 (-989))))) +((-2687 (((-85) $ $) NIL T ELT)) (-1512 (((-1213) $) 17 T ELT)) (-1514 (((-158 (-207)) $) 11 T ELT)) (-1513 (($ (-158 (-207))) 12 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1515 (((-207) $) 7 T ELT)) (-4096 (((-797) $) 9 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 15 T ELT))) +(((-206) (-13 (-1041) (-10 -8 (-15 -1515 ((-207) $)) (-15 -1514 ((-158 (-207)) $)) (-15 -1513 ($ (-158 (-207)))) (-15 -1512 ((-1213) $))))) (T -206)) +((-1515 (*1 *2 *1) (-12 (-5 *2 (-207)) (-5 *1 (-206)))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-158 (-207))) (-5 *1 (-206)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-158 (-207))) (-5 *1 (-206)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-206))))) +((-2687 (((-85) $ $) NIL T ELT)) (-1457 (((-599 (-799)) $) NIL T ELT)) (-3690 (((-460) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1459 (((-161) $) NIL T ELT)) (-2752 (((-85) $ (-460)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1516 (((-287) $) 7 T ELT)) (-1458 (((-599 (-85)) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (((-157) $) 8 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2639 (((-55) $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-207) (-13 (-160) (-568 (-157)) (-10 -8 (-15 -1516 ((-287) $))))) (T -207)) +((-1516 (*1 *2 *1) (-12 (-5 *2 (-287)) (-5 *1 (-207))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3950 (((-1122) $ (-714)) 13 T ELT)) (-4096 (((-797) $) 20 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 16 T ELT)) (-4107 (((-714) $) 9 T ELT))) +(((-208) (-13 (-1041) (-240 (-714) (-1122)) (-10 -8 (-15 -4107 ((-714) $))))) (T -208)) +((-4107 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-208))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3857 (($ (-857)) NIL (|has| |#4| (-989)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-2600 (($ $ $) NIL (|has| |#4| (-738)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| |#4| (-323)) ELT)) (-3938 ((|#4| $ (-499) |#4|) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1041)) ELT) (((-3 (-499) #1#) $) NIL (-12 (|has| |#4| (-978 (-499))) (|has| |#4| (-1041))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (-12 (|has| |#4| (-978 (-361 (-499)))) (|has| |#4| (-1041))) ELT)) (-3294 ((|#4| $) NIL (|has| |#4| (-1041)) ELT) (((-499) $) NIL (-12 (|has| |#4| (-978 (-499))) (|has| |#4| (-1041))) ELT) (((-361 (-499)) $) NIL (-12 (|has| |#4| (-978 (-361 (-499)))) (|has| |#4| (-1041))) ELT)) (-2380 (((-2 (|:| -1673 (-647 |#4|)) (|:| |vec| (-1207 |#4|))) (-647 $) (-1207 $)) NIL (|has| |#4| (-989)) ELT) (((-647 |#4|) (-647 $)) NIL (|has| |#4| (-989)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (-12 (|has| |#4| (-596 (-499))) (|has| |#4| (-989))) ELT) (((-647 (-499)) (-647 $)) NIL (-12 (|has| |#4| (-596 (-499))) (|has| |#4| (-989))) ELT)) (-3607 (((-3 $ #1#) $) NIL (|has| |#4| (-989)) ELT)) (-3115 (($) NIL (|has| |#4| (-323)) ELT)) (-1609 ((|#4| $ (-499) |#4|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#4| $ (-499)) NIL T ELT)) (-3324 (((-85) $) NIL (|has| |#4| (-738)) ELT)) (-3010 (((-599 |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2528 (((-85) $) NIL (|has| |#4| (-989)) ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#4| (-781)) ELT)) (-2727 (((-599 |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#4| (-781)) ELT)) (-2051 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2111 (((-857) $) NIL (|has| |#4| (-323)) ELT)) (-2381 (((-2 (|:| -1673 (-647 |#4|)) (|:| |vec| (-1207 |#4|))) (-1207 $) $) NIL (|has| |#4| (-989)) ELT) (((-647 |#4|) (-1207 $)) NIL (|has| |#4| (-989)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (-12 (|has| |#4| (-596 (-499))) (|has| |#4| (-989))) ELT) (((-647 (-499)) (-1207 $)) NIL (-12 (|has| |#4| (-596 (-499))) (|has| |#4| (-989))) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-2518 (($ (-857)) NIL (|has| |#4| (-323)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 ((|#4| $) NIL (|has| (-499) (-781)) ELT)) (-2300 (($ $ |#4|) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#4|))) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 |#4|) (-599 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-2306 (((-599 |#4|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#4| $ (-499) |#4|) NIL T ELT) ((|#4| $ (-499)) 12 T ELT)) (-3986 ((|#4| $ $) NIL (|has| |#4| (-989)) ELT)) (-1501 (($ (-1207 |#4|)) NIL T ELT)) (-4061 (((-107)) NIL (|has| |#4| (-318)) ELT)) (-3908 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-989)) ELT) (($ $ (-1 |#4| |#4|) (-714)) NIL (|has| |#4| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989))) (-12 (|has| |#4| (-838 (-1117))) (|has| |#4| (-989)))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989))) (-12 (|has| |#4| (-838 (-1117))) (|has| |#4| (-989)))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989))) (-12 (|has| |#4| (-838 (-1117))) (|has| |#4| (-989)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989))) (-12 (|has| |#4| (-838 (-1117))) (|has| |#4| (-989)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| |#4| (-190)) (|has| |#4| (-989))) (-12 (|has| |#4| (-189)) (|has| |#4| (-989)))) ELT) (($ $) NIL (-3677 (-12 (|has| |#4| (-190)) (|has| |#4| (-989))) (-12 (|has| |#4| (-189)) (|has| |#4| (-989)))) ELT)) (-2048 (((-714) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-1207 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1041)) ELT) (((-797) $) NIL T ELT) (($ (-499)) NIL (-3677 (-12 (|has| |#4| (-978 (-499))) (|has| |#4| (-1041))) (|has| |#4| (-989))) ELT) (($ (-361 (-499))) NIL (-12 (|has| |#4| (-978 (-361 (-499)))) (|has| |#4| (-1041))) ELT)) (-3248 (((-714)) NIL (|has| |#4| (-989)) CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL (|has| |#4| (-989)) CONST)) (-2790 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-989)) ELT) (($ $ (-1 |#4| |#4|) (-714)) NIL (|has| |#4| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989))) (-12 (|has| |#4| (-838 (-1117))) (|has| |#4| (-989)))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989))) (-12 (|has| |#4| (-838 (-1117))) (|has| |#4| (-989)))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989))) (-12 (|has| |#4| (-838 (-1117))) (|has| |#4| (-989)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#4| (-836 (-1117))) (|has| |#4| (-989))) (-12 (|has| |#4| (-838 (-1117))) (|has| |#4| (-989)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| |#4| (-190)) (|has| |#4| (-989))) (-12 (|has| |#4| (-189)) (|has| |#4| (-989)))) ELT) (($ $) NIL (-3677 (-12 (|has| |#4| (-190)) (|has| |#4| (-989))) (-12 (|has| |#4| (-189)) (|has| |#4| (-989)))) ELT)) (-2685 (((-85) $ $) NIL (|has| |#4| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#4| (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| |#4| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#4| (-781)) ELT)) (-4099 (($ $ |#4|) NIL (|has| |#4| (-318)) ELT)) (-3987 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-714)) NIL (|has| |#4| (-989)) ELT) (($ $ (-857)) NIL (|has| |#4| (-989)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-499) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-857) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-684)) ELT) (($ |#4| $) NIL (|has| |#4| (-684)) ELT) (($ $ $) NIL (|has| |#4| (-989)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-209 |#1| |#2| |#3| |#4|) (-13 (-195 |#1| |#4|) (-606 |#2|) (-606 |#3|)) (-857) (-989) (-1063 |#1| |#2| (-196 |#1| |#2|) (-196 |#1| |#2|)) (-606 |#2|)) (T -209)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3857 (($ (-857)) NIL (|has| |#3| (-989)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-2600 (($ $ $) NIL (|has| |#3| (-738)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| |#3| (-323)) ELT)) (-3938 ((|#3| $ (-499) |#3|) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1041)) ELT) (((-3 (-499) #1#) $) NIL (-12 (|has| |#3| (-978 (-499))) (|has| |#3| (-1041))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (-12 (|has| |#3| (-978 (-361 (-499)))) (|has| |#3| (-1041))) ELT)) (-3294 ((|#3| $) NIL (|has| |#3| (-1041)) ELT) (((-499) $) NIL (-12 (|has| |#3| (-978 (-499))) (|has| |#3| (-1041))) ELT) (((-361 (-499)) $) NIL (-12 (|has| |#3| (-978 (-361 (-499)))) (|has| |#3| (-1041))) ELT)) (-2380 (((-2 (|:| -1673 (-647 |#3|)) (|:| |vec| (-1207 |#3|))) (-647 $) (-1207 $)) NIL (|has| |#3| (-989)) ELT) (((-647 |#3|) (-647 $)) NIL (|has| |#3| (-989)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (-12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989))) ELT) (((-647 (-499)) (-647 $)) NIL (-12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989))) ELT)) (-3607 (((-3 $ #1#) $) NIL (|has| |#3| (-989)) ELT)) (-3115 (($) NIL (|has| |#3| (-323)) ELT)) (-1609 ((|#3| $ (-499) |#3|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#3| $ (-499)) NIL T ELT)) (-3324 (((-85) $) NIL (|has| |#3| (-738)) ELT)) (-3010 (((-599 |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2528 (((-85) $) NIL (|has| |#3| (-989)) ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#3| (-781)) ELT)) (-2727 (((-599 |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#3| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#3| (-781)) ELT)) (-2051 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2111 (((-857) $) NIL (|has| |#3| (-323)) ELT)) (-2381 (((-2 (|:| -1673 (-647 |#3|)) (|:| |vec| (-1207 |#3|))) (-1207 $) $) NIL (|has| |#3| (-989)) ELT) (((-647 |#3|) (-1207 $)) NIL (|has| |#3| (-989)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (-12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989))) ELT) (((-647 (-499)) (-1207 $)) NIL (-12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989))) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-2518 (($ (-857)) NIL (|has| |#3| (-323)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 ((|#3| $) NIL (|has| (-499) (-781)) ELT)) (-2300 (($ $ |#3|) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#3|))) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ (-247 |#3|)) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ (-599 |#3|) (-599 |#3|)) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#3| (-1041))) ELT)) (-2306 (((-599 |#3|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#3| $ (-499) |#3|) NIL T ELT) ((|#3| $ (-499)) 11 T ELT)) (-3986 ((|#3| $ $) NIL (|has| |#3| (-989)) ELT)) (-1501 (($ (-1207 |#3|)) NIL T ELT)) (-4061 (((-107)) NIL (|has| |#3| (-318)) ELT)) (-3908 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-989)) ELT) (($ $ (-1 |#3| |#3|) (-714)) NIL (|has| |#3| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989)))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989)))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| |#3| (-190)) (|has| |#3| (-989))) (-12 (|has| |#3| (-189)) (|has| |#3| (-989)))) ELT) (($ $) NIL (-3677 (-12 (|has| |#3| (-190)) (|has| |#3| (-989))) (-12 (|has| |#3| (-189)) (|has| |#3| (-989)))) ELT)) (-2048 (((-714) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#3| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#3| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-1207 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1041)) ELT) (((-797) $) NIL T ELT) (($ (-499)) NIL (-3677 (-12 (|has| |#3| (-978 (-499))) (|has| |#3| (-1041))) (|has| |#3| (-989))) ELT) (($ (-361 (-499))) NIL (-12 (|has| |#3| (-978 (-361 (-499)))) (|has| |#3| (-1041))) ELT)) (-3248 (((-714)) NIL (|has| |#3| (-989)) CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL (|has| |#3| (-989)) CONST)) (-2790 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-989)) ELT) (($ $ (-1 |#3| |#3|) (-714)) NIL (|has| |#3| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989)))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989)))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#3| (-836 (-1117))) (|has| |#3| (-989))) (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| |#3| (-190)) (|has| |#3| (-989))) (-12 (|has| |#3| (-189)) (|has| |#3| (-989)))) ELT) (($ $) NIL (-3677 (-12 (|has| |#3| (-190)) (|has| |#3| (-989))) (-12 (|has| |#3| (-189)) (|has| |#3| (-989)))) ELT)) (-2685 (((-85) $ $) NIL (|has| |#3| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#3| (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| |#3| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#3| (-781)) ELT)) (-4099 (($ $ |#3|) NIL (|has| |#3| (-318)) ELT)) (-3987 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-714)) NIL (|has| |#3| (-989)) ELT) (($ $ (-857)) NIL (|has| |#3| (-989)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-499) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-857) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-684)) ELT) (($ |#3| $) NIL (|has| |#3| (-684)) ELT) (($ $ $) NIL (|has| |#3| (-989)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-210 |#1| |#2| |#3|) (-13 (-195 |#1| |#3|) (-606 |#2|)) (-714) (-989) (-606 |#2|)) (T -210)) +NIL +((-1521 (((-599 (-714)) $) 56 T ELT) (((-599 (-714)) $ |#3|) 59 T ELT)) (-1555 (((-714) $) 58 T ELT) (((-714) $ |#3|) 61 T ELT)) (-1517 (($ $) 76 T ELT)) (-3295 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 (-499) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3922 (((-714) $ |#3|) 43 T ELT) (((-714) $) 38 T ELT)) (-1556 (((-1 $ (-714)) |#3|) 15 T ELT) (((-1 $ (-714)) $) 88 T ELT)) (-1519 ((|#4| $) 69 T ELT)) (-1520 (((-85) $) 67 T ELT)) (-1518 (($ $) 75 T ELT)) (-3918 (($ $ (-599 (-247 $))) 111 T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-599 |#4|) (-599 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-599 |#4|) (-599 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-599 |#3|) (-599 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-599 |#3|) (-599 |#2|)) 97 T ELT)) (-3908 (($ $ (-599 |#4|) (-599 (-714))) NIL T ELT) (($ $ |#4| (-714)) NIL T ELT) (($ $ (-599 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1117)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-1522 (((-599 |#3|) $) 86 T ELT)) (-4098 ((|#5| $) NIL T ELT) (((-714) $ |#4|) NIL T ELT) (((-599 (-714)) $ (-599 |#4|)) NIL T ELT) (((-714) $ |#3|) 49 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-361 (-499))) NIL T ELT) (($ $) NIL T ELT))) +(((-211 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117))) (-15 -4096 (|#1| |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -3918 (|#1| |#1| (-599 |#3|) (-599 |#2|))) (-15 -3918 (|#1| |#1| |#3| |#2|)) (-15 -3918 (|#1| |#1| (-599 |#3|) (-599 |#1|))) (-15 -3918 (|#1| |#1| |#3| |#1|)) (-15 -1556 ((-1 |#1| (-714)) |#1|)) (-15 -1517 (|#1| |#1|)) (-15 -1518 (|#1| |#1|)) (-15 -1519 (|#4| |#1|)) (-15 -1520 ((-85) |#1|)) (-15 -1555 ((-714) |#1| |#3|)) (-15 -1521 ((-599 (-714)) |#1| |#3|)) (-15 -1555 ((-714) |#1|)) (-15 -1521 ((-599 (-714)) |#1|)) (-15 -4098 ((-714) |#1| |#3|)) (-15 -3922 ((-714) |#1|)) (-15 -3922 ((-714) |#1| |#3|)) (-15 -1522 ((-599 |#3|) |#1|)) (-15 -1556 ((-1 |#1| (-714)) |#3|)) (-15 -4096 (|#1| |#3|)) (-15 -3295 ((-3 |#3| #1="failed") |#1|)) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|) (-714))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4098 ((-599 (-714)) |#1| (-599 |#4|))) (-15 -4098 ((-714) |#1| |#4|)) (-15 -4096 (|#1| |#4|)) (-15 -3295 ((-3 |#4| #1#) |#1|)) (-15 -3918 (|#1| |#1| (-599 |#4|) (-599 |#1|))) (-15 -3918 (|#1| |#1| |#4| |#1|)) (-15 -3918 (|#1| |#1| (-599 |#4|) (-599 |#2|))) (-15 -3918 (|#1| |#1| |#4| |#2|)) (-15 -3918 (|#1| |#1| (-599 |#1|) (-599 |#1|))) (-15 -3918 (|#1| |#1| |#1| |#1|)) (-15 -3918 (|#1| |#1| (-247 |#1|))) (-15 -3918 (|#1| |#1| (-599 (-247 |#1|)))) (-15 -4098 (|#5| |#1|)) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -4096 (|#1| |#2|)) (-15 -3908 (|#1| |#1| |#4|)) (-15 -3908 (|#1| |#1| (-599 |#4|))) (-15 -3908 (|#1| |#1| |#4| (-714))) (-15 -3908 (|#1| |#1| (-599 |#4|) (-599 (-714)))) (-15 -4096 (|#1| (-499))) (-15 -4096 ((-797) |#1|))) (-212 |#2| |#3| |#4| |#5|) (-989) (-781) (-227 |#3|) (-738)) (T -211)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1521 (((-599 (-714)) $) 248 T ELT) (((-599 (-714)) $ |#2|) 246 T ELT)) (-1555 (((-714) $) 247 T ELT) (((-714) $ |#2|) 245 T ELT)) (-3204 (((-599 |#3|) $) 120 T ELT)) (-3206 (((-1111 $) $ |#3|) 135 T ELT) (((-1111 |#1|) $) 134 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 97 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 98 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 100 (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) 122 T ELT) (((-714) $ (-599 |#3|)) 121 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 110 (|has| |#1| (-848)) ELT)) (-3925 (($ $) 108 (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) 107 (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1="failed") (-599 (-1111 $)) (-1111 $)) 113 (|has| |#1| (-848)) ELT)) (-1517 (($ $) 241 T ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-361 (-499)) #2#) $) 175 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #2#) $) 173 (|has| |#1| (-978 (-499))) ELT) (((-3 |#3| #2#) $) 150 T ELT) (((-3 |#2| #2#) $) 255 T ELT)) (-3294 ((|#1| $) 177 T ELT) (((-361 (-499)) $) 176 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) 174 (|has| |#1| (-978 (-499))) ELT) ((|#3| $) 151 T ELT) ((|#2| $) 256 T ELT)) (-3906 (($ $ $ |#3|) 118 (|has| |#1| (-146)) ELT)) (-4109 (($ $) 168 T ELT)) (-2380 (((-647 (-499)) (-647 $)) 146 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 145 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 144 T ELT) (((-647 |#1|) (-647 $)) 143 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3643 (($ $) 190 (|has| |#1| (-406)) ELT) (($ $ |#3|) 115 (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) 119 T ELT)) (-3873 (((-85) $) 106 (|has| |#1| (-848)) ELT)) (-1694 (($ $ |#1| |#4| $) 186 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 94 (-12 (|has| |#3| (-821 (-333))) (|has| |#1| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 93 (-12 (|has| |#3| (-821 (-499))) (|has| |#1| (-821 (-499)))) ELT)) (-3922 (((-714) $ |#2|) 251 T ELT) (((-714) $) 250 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-2536 (((-714) $) 183 T ELT)) (-3207 (($ (-1111 |#1|) |#3|) 127 T ELT) (($ (-1111 $) |#3|) 126 T ELT)) (-2942 (((-599 $) $) 136 T ELT)) (-4087 (((-85) $) 166 T ELT)) (-3014 (($ |#1| |#4|) 167 T ELT) (($ $ |#3| (-714)) 129 T ELT) (($ $ (-599 |#3|) (-599 (-714))) 128 T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ |#3|) 130 T ELT)) (-2941 ((|#4| $) 184 T ELT) (((-714) $ |#3|) 132 T ELT) (((-599 (-714)) $ (-599 |#3|)) 131 T ELT)) (-1695 (($ (-1 |#4| |#4|) $) 185 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-1556 (((-1 $ (-714)) |#2|) 253 T ELT) (((-1 $ (-714)) $) 240 (|has| |#1| (-190)) ELT)) (-3205 (((-3 |#3| #3="failed") $) 133 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 148 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 147 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 142 T ELT) (((-647 |#1|) (-1207 $)) 141 T ELT)) (-3015 (($ $) 163 T ELT)) (-3312 ((|#1| $) 162 T ELT)) (-1519 ((|#3| $) 243 T ELT)) (-1993 (($ (-599 $)) 104 (|has| |#1| (-406)) ELT) (($ $ $) 103 (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1520 (((-85) $) 244 T ELT)) (-2944 (((-3 (-599 $) #3#) $) 124 T ELT)) (-2943 (((-3 (-599 $) #3#) $) 125 T ELT)) (-2945 (((-3 (-2 (|:| |var| |#3|) (|:| -2519 (-714))) #3#) $) 123 T ELT)) (-1518 (($ $) 242 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1895 (((-85) $) 180 T ELT)) (-1894 ((|#1| $) 181 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 105 (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) 102 (|has| |#1| (-406)) ELT) (($ $ $) 101 (|has| |#1| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 112 (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 111 (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) 109 (|has| |#1| (-848)) ELT)) (-3606 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-510)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) 159 T ELT) (($ $ (-247 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-599 $) (-599 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-599 |#3|) (-599 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-599 |#3|) (-599 $)) 152 T ELT) (($ $ |#2| $) 239 (|has| |#1| (-190)) ELT) (($ $ (-599 |#2|) (-599 $)) 238 (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) 237 (|has| |#1| (-190)) ELT) (($ $ (-599 |#2|) (-599 |#1|)) 236 (|has| |#1| (-190)) ELT)) (-3907 (($ $ |#3|) 117 (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 |#3|) (-599 (-714))) 49 T ELT) (($ $ |#3| (-714)) 48 T ELT) (($ $ (-599 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT) (($ $ (-1 |#1| |#1|)) 260 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 259 T ELT) (($ $) 235 (|has| |#1| (-189)) ELT) (($ $ (-714)) 233 (|has| |#1| (-189)) ELT) (($ $ (-1117)) 231 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 229 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 228 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 227 (|has| |#1| (-838 (-1117))) ELT)) (-1522 (((-599 |#2|) $) 252 T ELT)) (-4098 ((|#4| $) 164 T ELT) (((-714) $ |#3|) 140 T ELT) (((-599 (-714)) $ (-599 |#3|)) 139 T ELT) (((-714) $ |#2|) 249 T ELT)) (-4122 (((-825 (-333)) $) 92 (-12 (|has| |#3| (-569 (-825 (-333)))) (|has| |#1| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) 91 (-12 (|has| |#3| (-569 (-825 (-499)))) (|has| |#1| (-569 (-825 (-499))))) ELT) (((-488) $) 90 (-12 (|has| |#3| (-569 (-488))) (|has| |#1| (-569 (-488)))) ELT)) (-2938 ((|#1| $) 189 (|has| |#1| (-406)) ELT) (($ $ |#3|) 116 (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) 114 (-2681 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (($ |#2|) 254 T ELT) (($ (-361 (-499))) 88 (-3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-38 (-361 (-499))))) ELT) (($ $) 95 (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) 182 T ELT)) (-3827 ((|#1| $ |#4|) 169 T ELT) (($ $ |#3| (-714)) 138 T ELT) (($ $ (-599 |#3|) (-599 (-714))) 137 T ELT)) (-2823 (((-649 $) $) 89 (-3677 (-2681 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) 37 T CONST)) (-1693 (($ $ $ (-714)) 187 (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 99 (|has| |#1| (-510)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-599 |#3|) (-599 (-714))) 52 T ELT) (($ $ |#3| (-714)) 51 T ELT) (($ $ (-599 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT) (($ $ (-1 |#1| |#1|)) 258 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 257 T ELT) (($ $) 234 (|has| |#1| (-189)) ELT) (($ $ (-714)) 232 (|has| |#1| (-189)) ELT) (($ $ (-1117)) 230 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 226 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 225 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 224 (|has| |#1| (-838 (-1117))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 170 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 172 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) 171 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) +(((-212 |#1| |#2| |#3| |#4|) (-113) (-989) (-781) (-227 |t#2|) (-738)) (T -212)) +((-1556 (*1 *2 *3) (-12 (-4 *4 (-989)) (-4 *3 (-781)) (-4 *5 (-227 *3)) (-4 *6 (-738)) (-5 *2 (-1 *1 (-714))) (-4 *1 (-212 *4 *3 *5 *6)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-599 *4)))) (-3922 (*1 *2 *1 *3) (-12 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-989)) (-4 *3 (-781)) (-4 *5 (-227 *3)) (-4 *6 (-738)) (-5 *2 (-714)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-714)))) (-4098 (*1 *2 *1 *3) (-12 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-989)) (-4 *3 (-781)) (-4 *5 (-227 *3)) (-4 *6 (-738)) (-5 *2 (-714)))) (-1521 (*1 *2 *1) (-12 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-599 (-714))))) (-1555 (*1 *2 *1) (-12 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-714)))) (-1521 (*1 *2 *1 *3) (-12 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-989)) (-4 *3 (-781)) (-4 *5 (-227 *3)) (-4 *6 (-738)) (-5 *2 (-599 (-714))))) (-1555 (*1 *2 *1 *3) (-12 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-989)) (-4 *3 (-781)) (-4 *5 (-227 *3)) (-4 *6 (-738)) (-5 *2 (-714)))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-85)))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-212 *3 *4 *2 *5)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *5 (-738)) (-4 *2 (-227 *4)))) (-1518 (*1 *1 *1) (-12 (-4 *1 (-212 *2 *3 *4 *5)) (-4 *2 (-989)) (-4 *3 (-781)) (-4 *4 (-227 *3)) (-4 *5 (-738)))) (-1517 (*1 *1 *1) (-12 (-4 *1 (-212 *2 *3 *4 *5)) (-4 *2 (-989)) (-4 *3 (-781)) (-4 *4 (-227 *3)) (-4 *5 (-738)))) (-1556 (*1 *2 *1) (-12 (-4 *3 (-190)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-1 *1 (-714))) (-4 *1 (-212 *3 *4 *5 *6))))) +(-13 (-888 |t#1| |t#4| |t#3|) (-184 |t#1|) (-978 |t#2|) (-10 -8 (-15 -1556 ((-1 $ (-714)) |t#2|)) (-15 -1522 ((-599 |t#2|) $)) (-15 -3922 ((-714) $ |t#2|)) (-15 -3922 ((-714) $)) (-15 -4098 ((-714) $ |t#2|)) (-15 -1521 ((-599 (-714)) $)) (-15 -1555 ((-714) $)) (-15 -1521 ((-599 (-714)) $ |t#2|)) (-15 -1555 ((-714) $ |t#2|)) (-15 -1520 ((-85) $)) (-15 -1519 (|t#3| $)) (-15 -1518 ($ $)) (-15 -1517 ($ $)) (IF (|has| |t#1| (-190)) (PROGN (-6 (-468 |t#2| |t#1|)) (-6 (-468 |t#2| $)) (-6 (-263 $)) (-15 -1556 ((-1 $ (-714)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-38 (-361 (-499))))) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-571 |#2|) . T) ((-571 |#3|) . T) ((-571 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-569 (-488)) -12 (|has| |#1| (-569 (-488))) (|has| |#3| (-569 (-488)))) ((-569 (-825 (-333))) -12 (|has| |#1| (-569 (-825 (-333)))) (|has| |#3| (-569 (-825 (-333))))) ((-569 (-825 (-499))) -12 (|has| |#1| (-569 (-825 (-499)))) (|has| |#3| (-569 (-825 (-499))))) ((-186 $) -3677 (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) -3677 (|has| |#1| (-189)) (|has| |#1| (-190))) ((-224 |#1|) . T) ((-244) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-263 $) . T) ((-280 |#1| |#4|) . T) ((-332 |#1|) . T) ((-366 |#1|) . T) ((-406) -3677 (|has| |#1| (-848)) (|has| |#1| (-406))) ((-468 |#2| |#1|) |has| |#1| (-190)) ((-468 |#2| $) |has| |#1| (-190)) ((-468 |#3| |#1|) . T) ((-468 |#3| $) . T) ((-468 $ $) . T) ((-510) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-604 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-606 (-499)) |has| |#1| (-596 (-499))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-596 (-499)) |has| |#1| (-596 (-499))) ((-596 |#1|) . T) ((-675 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-684) . T) ((-831 $ (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-831 $ |#3|) . T) ((-836 (-1117)) |has| |#1| (-836 (-1117))) ((-836 |#3|) . T) ((-838 (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-838 |#3|) . T) ((-821 (-333)) -12 (|has| |#1| (-821 (-333))) (|has| |#3| (-821 (-333)))) ((-821 (-499)) -12 (|has| |#1| (-821 (-499))) (|has| |#3| (-821 (-499)))) ((-888 |#1| |#4| |#3|) . T) ((-848) |has| |#1| (-848)) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T) ((-978 |#2|) . T) ((-978 |#3|) . T) ((-991 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-996 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) |has| |#1| (-848))) +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-1528 ((|#1| $) 58 T ELT)) (-3464 ((|#1| $) 48 T ELT)) (-3874 (($) 7 T CONST)) (-3123 (($ $) 64 T ELT)) (-2397 (($ $) 52 T ELT)) (-3466 ((|#1| |#1| $) 50 T ELT)) (-3465 ((|#1| $) 49 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3983 (((-714) $) 65 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 43 T ELT)) (-1526 ((|#1| |#1| $) 56 T ELT)) (-1525 ((|#1| |#1| $) 55 T ELT)) (-3757 (($ |#1| $) 44 T ELT)) (-2722 (((-714) $) 59 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3122 ((|#1| $) 66 T ELT)) (-1524 ((|#1| $) 54 T ELT)) (-1523 ((|#1| $) 53 T ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3125 ((|#1| |#1| $) 62 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3124 ((|#1| $) 63 T ELT)) (-1529 (($) 61 T ELT) (($ (-599 |#1|)) 60 T ELT)) (-3463 (((-714) $) 47 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1527 ((|#1| $) 57 T ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-3121 ((|#1| $) 67 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-213 |#1|) (-113) (-1157)) (T -213)) +((-1529 (*1 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157)))) (-1529 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-4 *1 (-213 *3)))) (-2722 (*1 *2 *1) (-12 (-4 *1 (-213 *3)) (-4 *3 (-1157)) (-5 *2 (-714)))) (-1528 (*1 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157)))) (-1527 (*1 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157)))) (-1526 (*1 *2 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157)))) (-1525 (*1 *2 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157)))) (-1524 (*1 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157)))) (-1523 (*1 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157)))) (-2397 (*1 *1 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157))))) +(-13 (-1061 |t#1|) (-935 |t#1|) (-10 -8 (-15 -1529 ($)) (-15 -1529 ($ (-599 |t#1|))) (-15 -2722 ((-714) $)) (-15 -1528 (|t#1| $)) (-15 -1527 (|t#1| $)) (-15 -1526 (|t#1| |t#1| $)) (-15 -1525 (|t#1| |t#1| $)) (-15 -1524 (|t#1| $)) (-15 -1523 (|t#1| $)) (-15 -2397 ($ $)))) +(((-34) . T) ((-78 |#1|) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-935 |#1|) . T) ((-1041) |has| |#1| (-1041)) ((-1061 |#1|) . T) ((-1157) . T)) +((-1530 (((-1073 (-179)) (-817 |#1|) (-1032 (-333)) (-1032 (-333))) 75 T ELT) (((-1073 (-179)) (-817 |#1|) (-1032 (-333)) (-1032 (-333)) (-599 (-220))) 74 T ELT) (((-1073 (-179)) |#1| (-1032 (-333)) (-1032 (-333))) 65 T ELT) (((-1073 (-179)) |#1| (-1032 (-333)) (-1032 (-333)) (-599 (-220))) 64 T ELT) (((-1073 (-179)) (-814 |#1|) (-1032 (-333))) 56 T ELT) (((-1073 (-179)) (-814 |#1|) (-1032 (-333)) (-599 (-220))) 55 T ELT)) (-1537 (((-1211) (-817 |#1|) (-1032 (-333)) (-1032 (-333))) 78 T ELT) (((-1211) (-817 |#1|) (-1032 (-333)) (-1032 (-333)) (-599 (-220))) 77 T ELT) (((-1211) |#1| (-1032 (-333)) (-1032 (-333))) 68 T ELT) (((-1211) |#1| (-1032 (-333)) (-1032 (-333)) (-599 (-220))) 67 T ELT) (((-1211) (-814 |#1|) (-1032 (-333))) 60 T ELT) (((-1211) (-814 |#1|) (-1032 (-333)) (-599 (-220))) 59 T ELT) (((-1210) (-812 |#1|) (-1032 (-333))) 47 T ELT) (((-1210) (-812 |#1|) (-1032 (-333)) (-599 (-220))) 46 T ELT) (((-1210) |#1| (-1032 (-333))) 38 T ELT) (((-1210) |#1| (-1032 (-333)) (-599 (-220))) 36 T ELT))) +(((-214 |#1|) (-10 -7 (-15 -1537 ((-1210) |#1| (-1032 (-333)) (-599 (-220)))) (-15 -1537 ((-1210) |#1| (-1032 (-333)))) (-15 -1537 ((-1210) (-812 |#1|) (-1032 (-333)) (-599 (-220)))) (-15 -1537 ((-1210) (-812 |#1|) (-1032 (-333)))) (-15 -1537 ((-1211) (-814 |#1|) (-1032 (-333)) (-599 (-220)))) (-15 -1537 ((-1211) (-814 |#1|) (-1032 (-333)))) (-15 -1530 ((-1073 (-179)) (-814 |#1|) (-1032 (-333)) (-599 (-220)))) (-15 -1530 ((-1073 (-179)) (-814 |#1|) (-1032 (-333)))) (-15 -1537 ((-1211) |#1| (-1032 (-333)) (-1032 (-333)) (-599 (-220)))) (-15 -1537 ((-1211) |#1| (-1032 (-333)) (-1032 (-333)))) (-15 -1530 ((-1073 (-179)) |#1| (-1032 (-333)) (-1032 (-333)) (-599 (-220)))) (-15 -1530 ((-1073 (-179)) |#1| (-1032 (-333)) (-1032 (-333)))) (-15 -1537 ((-1211) (-817 |#1|) (-1032 (-333)) (-1032 (-333)) (-599 (-220)))) (-15 -1537 ((-1211) (-817 |#1|) (-1032 (-333)) (-1032 (-333)))) (-15 -1530 ((-1073 (-179)) (-817 |#1|) (-1032 (-333)) (-1032 (-333)) (-599 (-220)))) (-15 -1530 ((-1073 (-179)) (-817 |#1|) (-1032 (-333)) (-1032 (-333))))) (-13 (-569 (-488)) (-1041))) (T -214)) +((-1530 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-817 *5)) (-5 *4 (-1032 (-333))) (-4 *5 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1073 (-179))) (-5 *1 (-214 *5)))) (-1530 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-817 *6)) (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-4 *6 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1073 (-179))) (-5 *1 (-214 *6)))) (-1537 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-817 *5)) (-5 *4 (-1032 (-333))) (-4 *5 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1211)) (-5 *1 (-214 *5)))) (-1537 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-817 *6)) (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-4 *6 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1211)) (-5 *1 (-214 *6)))) (-1530 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1032 (-333))) (-5 *2 (-1073 (-179))) (-5 *1 (-214 *3)) (-4 *3 (-13 (-569 (-488)) (-1041))))) (-1530 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-214 *3)) (-4 *3 (-13 (-569 (-488)) (-1041))))) (-1537 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1032 (-333))) (-5 *2 (-1211)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-569 (-488)) (-1041))))) (-1537 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-569 (-488)) (-1041))))) (-1530 (*1 *2 *3 *4) (-12 (-5 *3 (-814 *5)) (-5 *4 (-1032 (-333))) (-4 *5 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1073 (-179))) (-5 *1 (-214 *5)))) (-1530 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-814 *6)) (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-4 *6 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1073 (-179))) (-5 *1 (-214 *6)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-814 *5)) (-5 *4 (-1032 (-333))) (-4 *5 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1211)) (-5 *1 (-214 *5)))) (-1537 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-814 *6)) (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-4 *6 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1211)) (-5 *1 (-214 *6)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-812 *5)) (-5 *4 (-1032 (-333))) (-4 *5 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1210)) (-5 *1 (-214 *5)))) (-1537 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-812 *6)) (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-4 *6 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1210)) (-5 *1 (-214 *6)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *4 (-1032 (-333))) (-5 *2 (-1210)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-569 (-488)) (-1041))))) (-1537 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1210)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-569 (-488)) (-1041)))))) +((-1531 (((-1 (-881 (-179)) (-179) (-179)) (-1 (-881 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 158 T ELT)) (-1530 (((-1073 (-179)) (-817 (-1 (-179) (-179) (-179))) (-1029 (-333)) (-1029 (-333))) 178 T ELT) (((-1073 (-179)) (-817 (-1 (-179) (-179) (-179))) (-1029 (-333)) (-1029 (-333)) (-599 (-220))) 176 T ELT) (((-1073 (-179)) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-333)) (-1029 (-333))) 181 T ELT) (((-1073 (-179)) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-333)) (-1029 (-333)) (-599 (-220))) 177 T ELT) (((-1073 (-179)) (-1 (-179) (-179) (-179)) (-1029 (-333)) (-1029 (-333))) 169 T ELT) (((-1073 (-179)) (-1 (-179) (-179) (-179)) (-1029 (-333)) (-1029 (-333)) (-599 (-220))) 168 T ELT) (((-1073 (-179)) (-1 (-881 (-179)) (-179)) (-1029 (-333))) 150 T ELT) (((-1073 (-179)) (-1 (-881 (-179)) (-179)) (-1029 (-333)) (-599 (-220))) 148 T ELT) (((-1073 (-179)) (-814 (-1 (-179) (-179))) (-1029 (-333))) 149 T ELT) (((-1073 (-179)) (-814 (-1 (-179) (-179))) (-1029 (-333)) (-599 (-220))) 146 T ELT)) (-1537 (((-1211) (-817 (-1 (-179) (-179) (-179))) (-1029 (-333)) (-1029 (-333))) 180 T ELT) (((-1211) (-817 (-1 (-179) (-179) (-179))) (-1029 (-333)) (-1029 (-333)) (-599 (-220))) 179 T ELT) (((-1211) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-333)) (-1029 (-333))) 183 T ELT) (((-1211) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-333)) (-1029 (-333)) (-599 (-220))) 182 T ELT) (((-1211) (-1 (-179) (-179) (-179)) (-1029 (-333)) (-1029 (-333))) 171 T ELT) (((-1211) (-1 (-179) (-179) (-179)) (-1029 (-333)) (-1029 (-333)) (-599 (-220))) 170 T ELT) (((-1211) (-1 (-881 (-179)) (-179)) (-1029 (-333))) 156 T ELT) (((-1211) (-1 (-881 (-179)) (-179)) (-1029 (-333)) (-599 (-220))) 155 T ELT) (((-1211) (-814 (-1 (-179) (-179))) (-1029 (-333))) 154 T ELT) (((-1211) (-814 (-1 (-179) (-179))) (-1029 (-333)) (-599 (-220))) 153 T ELT) (((-1210) (-812 (-1 (-179) (-179))) (-1029 (-333))) 118 T ELT) (((-1210) (-812 (-1 (-179) (-179))) (-1029 (-333)) (-599 (-220))) 117 T ELT) (((-1210) (-1 (-179) (-179)) (-1029 (-333))) 112 T ELT) (((-1210) (-1 (-179) (-179)) (-1029 (-333)) (-599 (-220))) 110 T ELT))) +(((-215) (-10 -7 (-15 -1537 ((-1210) (-1 (-179) (-179)) (-1029 (-333)) (-599 (-220)))) (-15 -1537 ((-1210) (-1 (-179) (-179)) (-1029 (-333)))) (-15 -1537 ((-1210) (-812 (-1 (-179) (-179))) (-1029 (-333)) (-599 (-220)))) (-15 -1537 ((-1210) (-812 (-1 (-179) (-179))) (-1029 (-333)))) (-15 -1537 ((-1211) (-814 (-1 (-179) (-179))) (-1029 (-333)) (-599 (-220)))) (-15 -1537 ((-1211) (-814 (-1 (-179) (-179))) (-1029 (-333)))) (-15 -1537 ((-1211) (-1 (-881 (-179)) (-179)) (-1029 (-333)) (-599 (-220)))) (-15 -1537 ((-1211) (-1 (-881 (-179)) (-179)) (-1029 (-333)))) (-15 -1530 ((-1073 (-179)) (-814 (-1 (-179) (-179))) (-1029 (-333)) (-599 (-220)))) (-15 -1530 ((-1073 (-179)) (-814 (-1 (-179) (-179))) (-1029 (-333)))) (-15 -1530 ((-1073 (-179)) (-1 (-881 (-179)) (-179)) (-1029 (-333)) (-599 (-220)))) (-15 -1530 ((-1073 (-179)) (-1 (-881 (-179)) (-179)) (-1029 (-333)))) (-15 -1537 ((-1211) (-1 (-179) (-179) (-179)) (-1029 (-333)) (-1029 (-333)) (-599 (-220)))) (-15 -1537 ((-1211) (-1 (-179) (-179) (-179)) (-1029 (-333)) (-1029 (-333)))) (-15 -1530 ((-1073 (-179)) (-1 (-179) (-179) (-179)) (-1029 (-333)) (-1029 (-333)) (-599 (-220)))) (-15 -1530 ((-1073 (-179)) (-1 (-179) (-179) (-179)) (-1029 (-333)) (-1029 (-333)))) (-15 -1537 ((-1211) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-333)) (-1029 (-333)) (-599 (-220)))) (-15 -1537 ((-1211) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-333)) (-1029 (-333)))) (-15 -1530 ((-1073 (-179)) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-333)) (-1029 (-333)) (-599 (-220)))) (-15 -1530 ((-1073 (-179)) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-333)) (-1029 (-333)))) (-15 -1537 ((-1211) (-817 (-1 (-179) (-179) (-179))) (-1029 (-333)) (-1029 (-333)) (-599 (-220)))) (-15 -1537 ((-1211) (-817 (-1 (-179) (-179) (-179))) (-1029 (-333)) (-1029 (-333)))) (-15 -1530 ((-1073 (-179)) (-817 (-1 (-179) (-179) (-179))) (-1029 (-333)) (-1029 (-333)) (-599 (-220)))) (-15 -1530 ((-1073 (-179)) (-817 (-1 (-179) (-179) (-179))) (-1029 (-333)) (-1029 (-333)))) (-15 -1531 ((-1 (-881 (-179)) (-179) (-179)) (-1 (-881 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -215)) +((-1531 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-881 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-215)))) (-1530 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-817 (-1 (-179) (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) (-1530 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-817 (-1 (-179) (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-817 (-1 (-179) (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *2 (-1211)) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-817 (-1 (-179) (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-215)))) (-1530 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) (-1530 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *2 (-1211)) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-215)))) (-1530 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) (-1530 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *2 (-1211)) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-215)))) (-1530 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-881 (-179)) (-179))) (-5 *4 (-1029 (-333))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) (-1530 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-881 (-179)) (-179))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) (-1530 (*1 *2 *3 *4) (-12 (-5 *3 (-814 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) (-1530 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-814 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-881 (-179)) (-179))) (-5 *4 (-1029 (-333))) (-5 *2 (-1211)) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-881 (-179)) (-179))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-814 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *2 (-1211)) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-814 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-812 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *2 (-1210)) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-812 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1210)) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *2 (-1210)) (-5 *1 (-215)))) (-1537 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1210)) (-5 *1 (-215))))) +((-1537 (((-1210) (-247 |#2|) (-1117) (-1117) (-599 (-220))) 102 T ELT))) +(((-216 |#1| |#2|) (-10 -7 (-15 -1537 ((-1210) (-247 |#2|) (-1117) (-1117) (-599 (-220))))) (-13 (-510) (-781) (-978 (-499))) (-375 |#1|)) (T -216)) +((-1537 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-247 *7)) (-5 *4 (-1117)) (-5 *5 (-599 (-220))) (-4 *7 (-375 *6)) (-4 *6 (-13 (-510) (-781) (-978 (-499)))) (-5 *2 (-1210)) (-5 *1 (-216 *6 *7))))) +((-1534 (((-499) (-499)) 71 T ELT)) (-1535 (((-499) (-499)) 72 T ELT)) (-1536 (((-179) (-179)) 73 T ELT)) (-1533 (((-1211) (-1 (-142 (-179)) (-142 (-179))) (-1029 (-179)) (-1029 (-179))) 70 T ELT)) (-1532 (((-1211) (-1 (-142 (-179)) (-142 (-179))) (-1029 (-179)) (-1029 (-179)) (-85)) 68 T ELT))) +(((-217) (-10 -7 (-15 -1532 ((-1211) (-1 (-142 (-179)) (-142 (-179))) (-1029 (-179)) (-1029 (-179)) (-85))) (-15 -1533 ((-1211) (-1 (-142 (-179)) (-142 (-179))) (-1029 (-179)) (-1029 (-179)))) (-15 -1534 ((-499) (-499))) (-15 -1535 ((-499) (-499))) (-15 -1536 ((-179) (-179))))) (T -217)) +((-1536 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-217)))) (-1535 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-217)))) (-1534 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-217)))) (-1533 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1029 (-179))) (-5 *2 (-1211)) (-5 *1 (-217)))) (-1532 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1029 (-179))) (-5 *5 (-85)) (-5 *2 (-1211)) (-5 *1 (-217))))) +((-4096 (((-1032 (-333)) (-1032 (-268 |#1|))) 16 T ELT))) +(((-218 |#1|) (-10 -7 (-15 -4096 ((-1032 (-333)) (-1032 (-268 |#1|))))) (-13 (-781) (-510) (-569 (-333)))) (T -218)) +((-4096 (*1 *2 *3) (-12 (-5 *3 (-1032 (-268 *4))) (-4 *4 (-13 (-781) (-510) (-569 (-333)))) (-5 *2 (-1032 (-333))) (-5 *1 (-218 *4))))) +((-1537 (((-1211) (-599 (-179)) (-599 (-179)) (-599 (-179)) (-599 (-220))) 23 T ELT) (((-1211) (-599 (-179)) (-599 (-179)) (-599 (-179))) 24 T ELT) (((-1210) (-599 (-881 (-179))) (-599 (-220))) 16 T ELT) (((-1210) (-599 (-881 (-179)))) 17 T ELT) (((-1210) (-599 (-179)) (-599 (-179)) (-599 (-220))) 20 T ELT) (((-1210) (-599 (-179)) (-599 (-179))) 21 T ELT))) +(((-219) (-10 -7 (-15 -1537 ((-1210) (-599 (-179)) (-599 (-179)))) (-15 -1537 ((-1210) (-599 (-179)) (-599 (-179)) (-599 (-220)))) (-15 -1537 ((-1210) (-599 (-881 (-179))))) (-15 -1537 ((-1210) (-599 (-881 (-179))) (-599 (-220)))) (-15 -1537 ((-1211) (-599 (-179)) (-599 (-179)) (-599 (-179)))) (-15 -1537 ((-1211) (-599 (-179)) (-599 (-179)) (-599 (-179)) (-599 (-220)))))) (T -219)) +((-1537 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-599 (-179))) (-5 *4 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-219)))) (-1537 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-599 (-179))) (-5 *2 (-1211)) (-5 *1 (-219)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-881 (-179)))) (-5 *4 (-599 (-220))) (-5 *2 (-1210)) (-5 *1 (-219)))) (-1537 (*1 *2 *3) (-12 (-5 *3 (-599 (-881 (-179)))) (-5 *2 (-1210)) (-5 *1 (-219)))) (-1537 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-599 (-179))) (-5 *4 (-599 (-220))) (-5 *2 (-1210)) (-5 *1 (-219)))) (-1537 (*1 *2 *3 *3) (-12 (-5 *3 (-599 (-179))) (-5 *2 (-1210)) (-5 *1 (-219))))) +((-2687 (((-85) $ $) NIL T ELT)) (-4031 (($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 24 T ELT)) (-1550 (($ (-857)) 81 T ELT)) (-1549 (($ (-857)) 80 T ELT)) (-1870 (($ (-599 (-333))) 87 T ELT)) (-1553 (($ (-333)) 66 T ELT)) (-1552 (($ (-857)) 82 T ELT)) (-1546 (($ (-85)) 33 T ELT)) (-4033 (($ (-1099)) 28 T ELT)) (-1545 (($ (-1099)) 29 T ELT)) (-1551 (($ (-1073 (-179))) 76 T ELT)) (-2030 (($ (-599 (-1029 (-333)))) 72 T ELT)) (-1539 (($ (-599 (-1029 (-333)))) 68 T ELT) (($ (-599 (-1029 (-361 (-499))))) 71 T ELT)) (-1542 (($ (-333)) 38 T ELT) (($ (-808)) 42 T ELT)) (-1538 (((-85) (-599 $) (-1117)) 100 T ELT)) (-1554 (((-3 (-51) "failed") (-599 $) (-1117)) 102 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1541 (($ (-333)) 43 T ELT) (($ (-808)) 44 T ELT)) (-3362 (($ (-1 (-881 (-179)) (-881 (-179)))) 65 T ELT)) (-2367 (($ (-1 (-881 (-179)) (-881 (-179)))) 83 T ELT)) (-1540 (($ (-1 (-179) (-179))) 48 T ELT) (($ (-1 (-179) (-179) (-179))) 52 T ELT) (($ (-1 (-179) (-179) (-179) (-179))) 56 T ELT)) (-4096 (((-797) $) 93 T ELT)) (-1543 (($ (-85)) 34 T ELT) (($ (-599 (-1029 (-333)))) 60 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2025 (($ (-85)) 35 T ELT)) (-3174 (((-85) $ $) 97 T ELT))) +(((-220) (-13 (-1041) (-10 -8 (-15 -2025 ($ (-85))) (-15 -1543 ($ (-85))) (-15 -4031 ($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -4033 ($ (-1099))) (-15 -1545 ($ (-1099))) (-15 -1546 ($ (-85))) (-15 -1543 ($ (-599 (-1029 (-333))))) (-15 -3362 ($ (-1 (-881 (-179)) (-881 (-179))))) (-15 -1542 ($ (-333))) (-15 -1542 ($ (-808))) (-15 -1541 ($ (-333))) (-15 -1541 ($ (-808))) (-15 -1540 ($ (-1 (-179) (-179)))) (-15 -1540 ($ (-1 (-179) (-179) (-179)))) (-15 -1540 ($ (-1 (-179) (-179) (-179) (-179)))) (-15 -1553 ($ (-333))) (-15 -1539 ($ (-599 (-1029 (-333))))) (-15 -1539 ($ (-599 (-1029 (-361 (-499)))))) (-15 -2030 ($ (-599 (-1029 (-333))))) (-15 -1551 ($ (-1073 (-179)))) (-15 -1549 ($ (-857))) (-15 -1550 ($ (-857))) (-15 -1552 ($ (-857))) (-15 -2367 ($ (-1 (-881 (-179)) (-881 (-179))))) (-15 -1870 ($ (-599 (-333)))) (-15 -1554 ((-3 (-51) "failed") (-599 $) (-1117))) (-15 -1538 ((-85) (-599 $) (-1117)))))) (T -220)) +((-2025 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-220)))) (-1543 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-220)))) (-4031 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-220)))) (-4033 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-220)))) (-1545 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-220)))) (-1546 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-220)))) (-1543 (*1 *1 *2) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *1 (-220)))) (-3362 (*1 *1 *2) (-12 (-5 *2 (-1 (-881 (-179)) (-881 (-179)))) (-5 *1 (-220)))) (-1542 (*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-220)))) (-1542 (*1 *1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-220)))) (-1541 (*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-220)))) (-1541 (*1 *1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-220)))) (-1540 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-220)))) (-1540 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-220)))) (-1540 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-220)))) (-1553 (*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-220)))) (-1539 (*1 *1 *2) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *1 (-220)))) (-1539 (*1 *1 *2) (-12 (-5 *2 (-599 (-1029 (-361 (-499))))) (-5 *1 (-220)))) (-2030 (*1 *1 *2) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *1 (-220)))) (-1551 (*1 *1 *2) (-12 (-5 *2 (-1073 (-179))) (-5 *1 (-220)))) (-1549 (*1 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-220)))) (-1550 (*1 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-220)))) (-1552 (*1 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-220)))) (-2367 (*1 *1 *2) (-12 (-5 *2 (-1 (-881 (-179)) (-881 (-179)))) (-5 *1 (-220)))) (-1870 (*1 *1 *2) (-12 (-5 *2 (-599 (-333))) (-5 *1 (-220)))) (-1554 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-599 (-220))) (-5 *4 (-1117)) (-5 *2 (-51)) (-5 *1 (-220)))) (-1538 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-220))) (-5 *4 (-1117)) (-5 *2 (-85)) (-5 *1 (-220))))) +((-4031 (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-599 (-220)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 25 T ELT)) (-1550 (((-857) (-599 (-220)) (-857)) 52 T ELT)) (-1549 (((-857) (-599 (-220)) (-857)) 51 T ELT)) (-4001 (((-599 (-333)) (-599 (-220)) (-599 (-333))) 68 T ELT)) (-1553 (((-333) (-599 (-220)) (-333)) 57 T ELT)) (-1552 (((-857) (-599 (-220)) (-857)) 53 T ELT)) (-1546 (((-85) (-599 (-220)) (-85)) 27 T ELT)) (-4033 (((-1099) (-599 (-220)) (-1099)) 19 T ELT)) (-1545 (((-1099) (-599 (-220)) (-1099)) 26 T ELT)) (-1551 (((-1073 (-179)) (-599 (-220))) 46 T ELT)) (-2030 (((-599 (-1029 (-333))) (-599 (-220)) (-599 (-1029 (-333)))) 40 T ELT)) (-1547 (((-808) (-599 (-220)) (-808)) 32 T ELT)) (-1548 (((-808) (-599 (-220)) (-808)) 33 T ELT)) (-2367 (((-1 (-881 (-179)) (-881 (-179))) (-599 (-220)) (-1 (-881 (-179)) (-881 (-179)))) 63 T ELT)) (-1544 (((-85) (-599 (-220)) (-85)) 14 T ELT)) (-2025 (((-85) (-599 (-220)) (-85)) 13 T ELT))) +(((-221) (-10 -7 (-15 -2025 ((-85) (-599 (-220)) (-85))) (-15 -1544 ((-85) (-599 (-220)) (-85))) (-15 -4031 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-599 (-220)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -4033 ((-1099) (-599 (-220)) (-1099))) (-15 -1545 ((-1099) (-599 (-220)) (-1099))) (-15 -1546 ((-85) (-599 (-220)) (-85))) (-15 -1547 ((-808) (-599 (-220)) (-808))) (-15 -1548 ((-808) (-599 (-220)) (-808))) (-15 -2030 ((-599 (-1029 (-333))) (-599 (-220)) (-599 (-1029 (-333))))) (-15 -1549 ((-857) (-599 (-220)) (-857))) (-15 -1550 ((-857) (-599 (-220)) (-857))) (-15 -1551 ((-1073 (-179)) (-599 (-220)))) (-15 -1552 ((-857) (-599 (-220)) (-857))) (-15 -1553 ((-333) (-599 (-220)) (-333))) (-15 -2367 ((-1 (-881 (-179)) (-881 (-179))) (-599 (-220)) (-1 (-881 (-179)) (-881 (-179))))) (-15 -4001 ((-599 (-333)) (-599 (-220)) (-599 (-333)))))) (T -221)) +((-4001 (*1 *2 *3 *2) (-12 (-5 *2 (-599 (-333))) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-2367 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-881 (-179)) (-881 (-179)))) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-1553 (*1 *2 *3 *2) (-12 (-5 *2 (-333)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-1552 (*1 *2 *3 *2) (-12 (-5 *2 (-857)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-1551 (*1 *2 *3) (-12 (-5 *3 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-221)))) (-1550 (*1 *2 *3 *2) (-12 (-5 *2 (-857)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-1549 (*1 *2 *3 *2) (-12 (-5 *2 (-857)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-2030 (*1 *2 *3 *2) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-1548 (*1 *2 *3 *2) (-12 (-5 *2 (-808)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-1547 (*1 *2 *3 *2) (-12 (-5 *2 (-808)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-1546 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-1545 (*1 *2 *3 *2) (-12 (-5 *2 (-1099)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-4033 (*1 *2 *3 *2) (-12 (-5 *2 (-1099)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-4031 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-1544 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) (-2025 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-599 (-220))) (-5 *1 (-221))))) +((-1554 (((-3 |#1| "failed") (-599 (-220)) (-1117)) 17 T ELT))) +(((-222 |#1|) (-10 -7 (-15 -1554 ((-3 |#1| "failed") (-599 (-220)) (-1117)))) (-1157)) (T -222)) +((-1554 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-599 (-220))) (-5 *4 (-1117)) (-5 *1 (-222 *2)) (-4 *2 (-1157))))) +((-3908 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-714)) 11 T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117)) 19 T ELT) (($ $ (-714)) NIL T ELT) (($ $) 16 T ELT)) (-2790 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-714)) 14 T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT))) +(((-223 |#1| |#2|) (-10 -7 (-15 -3908 (|#1| |#1|)) (-15 -2790 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-714))) (-15 -2790 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1| (-1117))) (-15 -2790 (|#1| |#1| (-1117))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -2790 (|#1| |#1| (-599 (-1117)))) (-15 -2790 (|#1| |#1| (-1117) (-714))) (-15 -2790 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -2790 (|#1| |#1| (-1 |#2| |#2|) (-714))) (-15 -2790 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|) (-714))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|)))) (-224 |#2|) (-1157)) (T -223)) +NIL +((-3908 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 22 T ELT) (($ $ (-599 (-1117)) (-599 (-714))) 16 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 15 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 14 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117)) 12 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-714)) 10 (|has| |#1| (-189)) ELT) (($ $) 8 (|has| |#1| (-189)) ELT)) (-2790 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 20 T ELT) (($ $ (-599 (-1117)) (-599 (-714))) 19 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 18 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 17 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117)) 13 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-714)) 11 (|has| |#1| (-189)) ELT) (($ $) 9 (|has| |#1| (-189)) ELT))) +(((-224 |#1|) (-113) (-1157)) (T -224)) +((-3908 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-224 *3)) (-4 *3 (-1157)))) (-3908 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-714)) (-4 *1 (-224 *4)) (-4 *4 (-1157)))) (-2790 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-224 *3)) (-4 *3 (-1157)))) (-2790 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-714)) (-4 *1 (-224 *4)) (-4 *4 (-1157))))) +(-13 (-1157) (-10 -8 (-15 -3908 ($ $ (-1 |t#1| |t#1|))) (-15 -3908 ($ $ (-1 |t#1| |t#1|) (-714))) (-15 -2790 ($ $ (-1 |t#1| |t#1|))) (-15 -2790 ($ $ (-1 |t#1| |t#1|) (-714))) (IF (|has| |t#1| (-189)) (-6 (-189)) |%noBranch|) (IF (|has| |t#1| (-838 (-1117))) (-6 (-838 (-1117))) |%noBranch|))) +(((-186 $) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-831 $ (-1117)) |has| |#1| (-838 (-1117))) ((-838 (-1117)) |has| |#1| (-838 (-1117))) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1521 (((-599 (-714)) $) NIL T ELT) (((-599 (-714)) $ |#2|) NIL T ELT)) (-1555 (((-714) $) NIL T ELT) (((-714) $ |#2|) NIL T ELT)) (-3204 (((-599 |#3|) $) NIL T ELT)) (-3206 (((-1111 $) $ |#3|) NIL T ELT) (((-1111 |#1|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 |#3|)) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-1517 (($ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1065 |#1| |#2|) #1#) $) 23 T ELT)) (-3294 ((|#1| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1065 |#1| |#2|) $) NIL T ELT)) (-3906 (($ $ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT) (($ $ |#3|) NIL (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-848)) ELT)) (-1694 (($ $ |#1| (-484 |#3|) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| |#1| (-821 (-333))) (|has| |#3| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| |#1| (-821 (-499))) (|has| |#3| (-821 (-499)))) ELT)) (-3922 (((-714) $ |#2|) NIL T ELT) (((-714) $) 10 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3207 (($ (-1111 |#1|) |#3|) NIL T ELT) (($ (-1111 $) |#3|) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-484 |#3|)) NIL T ELT) (($ $ |#3| (-714)) NIL T ELT) (($ $ (-599 |#3|) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ |#3|) NIL T ELT)) (-2941 (((-484 |#3|) $) NIL T ELT) (((-714) $ |#3|) NIL T ELT) (((-599 (-714)) $ (-599 |#3|)) NIL T ELT)) (-1695 (($ (-1 (-484 |#3|) (-484 |#3|)) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1556 (((-1 $ (-714)) |#2|) NIL T ELT) (((-1 $ (-714)) $) NIL (|has| |#1| (-190)) ELT)) (-3205 (((-3 |#3| #1#) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1519 ((|#3| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1520 (((-85) $) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| |#3|) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-1518 (($ $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-848)) ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-599 |#3|) (-599 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-599 |#3|) (-599 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-190)) ELT) (($ $ (-599 |#2|) (-599 $)) NIL (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-599 |#2|) (-599 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3907 (($ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 |#3|) (-599 (-714))) NIL T ELT) (($ $ |#3| (-714)) NIL T ELT) (($ $ (-599 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT)) (-1522 (((-599 |#2|) $) NIL T ELT)) (-4098 (((-484 |#3|) $) NIL T ELT) (((-714) $ |#3|) NIL T ELT) (((-599 (-714)) $ (-599 |#3|)) NIL T ELT) (((-714) $ |#2|) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| |#1| (-569 (-825 (-333)))) (|has| |#3| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| |#1| (-569 (-825 (-499)))) (|has| |#3| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| |#1| (-569 (-488))) (|has| |#3| (-569 (-488)))) ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT) (($ $ |#3|) NIL (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1065 |#1| |#2|)) 32 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-484 |#3|)) NIL T ELT) (($ $ |#3| (-714)) NIL T ELT) (($ $ (-599 |#3|) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-599 |#3|) (-599 (-714))) NIL T ELT) (($ $ |#3| (-714)) NIL T ELT) (($ $ (-599 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-225 |#1| |#2| |#3|) (-13 (-212 |#1| |#2| |#3| (-484 |#3|)) (-978 (-1065 |#1| |#2|))) (-989) (-781) (-227 |#2|)) (T -225)) +NIL +((-1555 (((-714) $) 37 T ELT)) (-3295 (((-3 |#2| "failed") $) 22 T ELT)) (-3294 ((|#2| $) 33 T ELT)) (-3908 (($ $ (-714)) 18 T ELT) (($ $) 14 T ELT)) (-4096 (((-797) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3174 (((-85) $ $) 26 T ELT)) (-2806 (((-85) $ $) 36 T ELT))) +(((-226 |#1| |#2|) (-10 -7 (-15 -1555 ((-714) |#1|)) (-15 -4096 (|#1| |#2|)) (-15 -3295 ((-3 |#2| "failed") |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-714))) (-15 -2806 ((-85) |#1| |#1|)) (-15 -4096 ((-797) |#1|)) (-15 -3174 ((-85) |#1| |#1|))) (-227 |#2|) (-781)) (T -226)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-1555 (((-714) $) 26 T ELT)) (-3981 ((|#1| $) 27 T ELT)) (-3295 (((-3 |#1| "failed") $) 31 T ELT)) (-3294 ((|#1| $) 32 T ELT)) (-3922 (((-714) $) 28 T ELT)) (-2650 (($ $ $) 23 T ELT)) (-2978 (($ $ $) 22 T ELT)) (-1556 (($ |#1| (-714)) 29 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3908 (($ $ (-714)) 35 T ELT) (($ $) 33 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2790 (($ $ (-714)) 36 T ELT) (($ $) 34 T ELT)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT))) +(((-227 |#1|) (-113) (-781)) (T -227)) +((-1556 (*1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-227 *2)) (-4 *2 (-781)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-781)) (-5 *2 (-714)))) (-3981 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-781)))) (-1555 (*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-781)) (-5 *2 (-714))))) +(-13 (-781) (-189) (-978 |t#1|) (-10 -8 (-15 -1556 ($ |t#1| (-714))) (-15 -3922 ((-714) $)) (-15 -3981 (|t#1| $)) (-15 -1555 ((-714) $)))) +(((-73) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-186 $) . T) ((-189) . T) ((-781) . T) ((-784) . T) ((-978 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1558 (((-599 (-499)) $) 28 T ELT)) (-4098 (((-714) $) 26 T ELT)) (-4096 (((-797) $) 32 T ELT) (($ (-599 (-499))) 22 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-1557 (($ (-714)) 29 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 9 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 17 T ELT))) +(((-228) (-13 (-781) (-10 -8 (-15 -4096 ($ (-599 (-499)))) (-15 -4098 ((-714) $)) (-15 -1558 ((-599 (-499)) $)) (-15 -1557 ($ (-714)))))) (T -228)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-228)))) (-4098 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-228)))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-228)))) (-1557 (*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-228))))) +((-3632 ((|#2| |#2|) 77 T ELT)) (-3789 ((|#2| |#2|) 65 T ELT)) (-1587 (((-3 |#2| "failed") |#2| (-599 (-2 (|:| |func| |#2|) (|:| |pole| (-85))))) 123 T ELT)) (-3630 ((|#2| |#2|) 75 T ELT)) (-3788 ((|#2| |#2|) 63 T ELT)) (-3634 ((|#2| |#2|) 79 T ELT)) (-3787 ((|#2| |#2|) 67 T ELT)) (-3777 ((|#2|) 46 T ELT)) (-3743 (((-86) (-86)) 97 T ELT)) (-4092 ((|#2| |#2|) 61 T ELT)) (-1588 (((-85) |#2|) 146 T ELT)) (-1577 ((|#2| |#2|) 193 T ELT)) (-1565 ((|#2| |#2|) 169 T ELT)) (-1560 ((|#2|) 59 T ELT)) (-1559 ((|#2|) 58 T ELT)) (-1575 ((|#2| |#2|) 189 T ELT)) (-1563 ((|#2| |#2|) 165 T ELT)) (-1579 ((|#2| |#2|) 197 T ELT)) (-1567 ((|#2| |#2|) 173 T ELT)) (-1562 ((|#2| |#2|) 161 T ELT)) (-1561 ((|#2| |#2|) 163 T ELT)) (-1580 ((|#2| |#2|) 199 T ELT)) (-1568 ((|#2| |#2|) 175 T ELT)) (-1578 ((|#2| |#2|) 195 T ELT)) (-1566 ((|#2| |#2|) 171 T ELT)) (-1576 ((|#2| |#2|) 191 T ELT)) (-1564 ((|#2| |#2|) 167 T ELT)) (-1583 ((|#2| |#2|) 205 T ELT)) (-1571 ((|#2| |#2|) 181 T ELT)) (-1581 ((|#2| |#2|) 201 T ELT)) (-1569 ((|#2| |#2|) 177 T ELT)) (-1585 ((|#2| |#2|) 209 T ELT)) (-1573 ((|#2| |#2|) 185 T ELT)) (-1586 ((|#2| |#2|) 211 T ELT)) (-1574 ((|#2| |#2|) 187 T ELT)) (-1584 ((|#2| |#2|) 207 T ELT)) (-1572 ((|#2| |#2|) 183 T ELT)) (-1582 ((|#2| |#2|) 203 T ELT)) (-1570 ((|#2| |#2|) 179 T ELT)) (-4093 ((|#2| |#2|) 62 T ELT)) (-3635 ((|#2| |#2|) 80 T ELT)) (-3786 ((|#2| |#2|) 68 T ELT)) (-3633 ((|#2| |#2|) 78 T ELT)) (-3785 ((|#2| |#2|) 66 T ELT)) (-3631 ((|#2| |#2|) 76 T ELT)) (-3784 ((|#2| |#2|) 64 T ELT)) (-2355 (((-85) (-86)) 95 T ELT)) (-3638 ((|#2| |#2|) 83 T ELT)) (-3626 ((|#2| |#2|) 71 T ELT)) (-3636 ((|#2| |#2|) 81 T ELT)) (-3624 ((|#2| |#2|) 69 T ELT)) (-3640 ((|#2| |#2|) 85 T ELT)) (-3628 ((|#2| |#2|) 73 T ELT)) (-3641 ((|#2| |#2|) 86 T ELT)) (-3629 ((|#2| |#2|) 74 T ELT)) (-3639 ((|#2| |#2|) 84 T ELT)) (-3627 ((|#2| |#2|) 72 T ELT)) (-3637 ((|#2| |#2|) 82 T ELT)) (-3625 ((|#2| |#2|) 70 T ELT))) +(((-229 |#1| |#2|) (-10 -7 (-15 -4093 (|#2| |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -3788 (|#2| |#2|)) (-15 -3784 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3785 (|#2| |#2|)) (-15 -3787 (|#2| |#2|)) (-15 -3786 (|#2| |#2|)) (-15 -3624 (|#2| |#2|)) (-15 -3625 (|#2| |#2|)) (-15 -3626 (|#2| |#2|)) (-15 -3627 (|#2| |#2|)) (-15 -3628 (|#2| |#2|)) (-15 -3629 (|#2| |#2|)) (-15 -3630 (|#2| |#2|)) (-15 -3631 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -3633 (|#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -3636 (|#2| |#2|)) (-15 -3637 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -3641 (|#2| |#2|)) (-15 -3777 (|#2|)) (-15 -2355 ((-85) (-86))) (-15 -3743 ((-86) (-86))) (-15 -1559 (|#2|)) (-15 -1560 (|#2|)) (-15 -1561 (|#2| |#2|)) (-15 -1562 (|#2| |#2|)) (-15 -1563 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -1565 (|#2| |#2|)) (-15 -1566 (|#2| |#2|)) (-15 -1567 (|#2| |#2|)) (-15 -1568 (|#2| |#2|)) (-15 -1569 (|#2| |#2|)) (-15 -1570 (|#2| |#2|)) (-15 -1571 (|#2| |#2|)) (-15 -1572 (|#2| |#2|)) (-15 -1573 (|#2| |#2|)) (-15 -1574 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -1577 (|#2| |#2|)) (-15 -1578 (|#2| |#2|)) (-15 -1579 (|#2| |#2|)) (-15 -1580 (|#2| |#2|)) (-15 -1581 (|#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -1583 (|#2| |#2|)) (-15 -1584 (|#2| |#2|)) (-15 -1585 (|#2| |#2|)) (-15 -1586 (|#2| |#2|)) (-15 -1587 ((-3 |#2| "failed") |#2| (-599 (-2 (|:| |func| |#2|) (|:| |pole| (-85)))))) (-15 -1588 ((-85) |#2|))) (-510) (-13 (-375 |#1|) (-942))) (T -229)) +((-1588 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-229 *4 *3)) (-4 *3 (-13 (-375 *4) (-942))))) (-1587 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-599 (-2 (|:| |func| *2) (|:| |pole| (-85))))) (-4 *2 (-13 (-375 *4) (-942))) (-4 *4 (-510)) (-5 *1 (-229 *4 *2)))) (-1586 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1585 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1583 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1582 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1581 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1580 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1579 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1578 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1577 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1576 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1574 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1573 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1572 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1571 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1570 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1569 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1568 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1567 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1566 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1565 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1563 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1562 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1561 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-1560 (*1 *2) (-12 (-4 *2 (-13 (-375 *3) (-942))) (-5 *1 (-229 *3 *2)) (-4 *3 (-510)))) (-1559 (*1 *2) (-12 (-4 *2 (-13 (-375 *3) (-942))) (-5 *1 (-229 *3 *2)) (-4 *3 (-510)))) (-3743 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-510)) (-5 *1 (-229 *3 *4)) (-4 *4 (-13 (-375 *3) (-942))))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-229 *4 *5)) (-4 *5 (-13 (-375 *4) (-942))))) (-3777 (*1 *2) (-12 (-4 *2 (-13 (-375 *3) (-942))) (-5 *1 (-229 *3 *2)) (-4 *3 (-510)))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3629 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3628 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3627 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3626 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3625 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3624 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3786 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3787 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3785 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3784 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-3788 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-4092 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) (-4093 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) +((-1591 (((-3 |#2| "failed") (-599 (-566 |#2|)) |#2| (-1117)) 151 T ELT)) (-1593 ((|#2| (-361 (-499)) |#2|) 49 T ELT)) (-1592 ((|#2| |#2| (-566 |#2|)) 144 T ELT)) (-1589 (((-2 (|:| |func| |#2|) (|:| |kers| (-599 (-566 |#2|))) (|:| |vals| (-599 |#2|))) |#2| (-1117)) 143 T ELT)) (-1590 ((|#2| |#2| (-1117)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2559 ((|#2| |#2| (-1117)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) +(((-230 |#1| |#2|) (-10 -7 (-15 -2559 (|#2| |#2|)) (-15 -2559 (|#2| |#2| (-1117))) (-15 -1589 ((-2 (|:| |func| |#2|) (|:| |kers| (-599 (-566 |#2|))) (|:| |vals| (-599 |#2|))) |#2| (-1117))) (-15 -1590 (|#2| |#2|)) (-15 -1590 (|#2| |#2| (-1117))) (-15 -1591 ((-3 |#2| "failed") (-599 (-566 |#2|)) |#2| (-1117))) (-15 -1592 (|#2| |#2| (-566 |#2|))) (-15 -1593 (|#2| (-361 (-499)) |#2|))) (-13 (-510) (-978 (-499)) (-596 (-499))) (-13 (-27) (-1143) (-375 |#1|))) (T -230)) +((-1593 (*1 *2 *3 *2) (-12 (-5 *3 (-361 (-499))) (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4))))) (-1592 (*1 *2 *2 *3) (-12 (-5 *3 (-566 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4))) (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *4 *2)))) (-1591 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-599 (-566 *2))) (-5 *4 (-1117)) (-4 *2 (-13 (-27) (-1143) (-375 *5))) (-4 *5 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *5 *2)))) (-1590 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4))))) (-1590 (*1 *2 *2) (-12 (-4 *3 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *3))))) (-1589 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-599 (-566 *3))) (|:| |vals| (-599 *3)))) (-5 *1 (-230 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) (-2559 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4))))) (-2559 (*1 *2 *2) (-12 (-4 *3 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *3)))))) +((-3096 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3632 ((|#3| |#3|) 142 T ELT)) (-3084 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3789 ((|#3| |#3|) 132 T ELT)) (-3094 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3630 ((|#3| |#3|) 140 T ELT)) (-3082 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3788 ((|#3| |#3|) 130 T ELT)) (-3098 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3634 ((|#3| |#3|) 144 T ELT)) (-3086 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3787 ((|#3| |#3|) 134 T ELT)) (-3079 (((-3 |#3| #1#) |#3| (-714)) 41 T ELT)) (-3081 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-4092 ((|#3| |#3|) 129 T ELT)) (-3080 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-4093 ((|#3| |#3|) 128 T ELT)) (-3099 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3635 ((|#3| |#3|) 145 T ELT)) (-3087 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3786 ((|#3| |#3|) 135 T ELT)) (-3097 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3633 ((|#3| |#3|) 143 T ELT)) (-3085 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3785 ((|#3| |#3|) 133 T ELT)) (-3095 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3631 ((|#3| |#3|) 141 T ELT)) (-3083 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3784 ((|#3| |#3|) 131 T ELT)) (-3102 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3638 ((|#3| |#3|) 148 T ELT)) (-3090 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3626 ((|#3| |#3|) 152 T ELT)) (-3100 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3636 ((|#3| |#3|) 146 T ELT)) (-3088 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3624 ((|#3| |#3|) 136 T ELT)) (-3104 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3640 ((|#3| |#3|) 150 T ELT)) (-3092 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3628 ((|#3| |#3|) 138 T ELT)) (-3105 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3641 ((|#3| |#3|) 151 T ELT)) (-3093 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3629 ((|#3| |#3|) 139 T ELT)) (-3103 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3639 ((|#3| |#3|) 149 T ELT)) (-3091 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3627 ((|#3| |#3|) 153 T ELT)) (-3101 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3637 ((|#3| |#3|) 147 T ELT)) (-3089 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3625 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-361 (-499))) 47 (|has| |#1| (-318)) ELT))) +(((-231 |#1| |#2| |#3|) (-13 (-923 |#3|) (-10 -7 (IF (|has| |#1| (-318)) (-15 ** (|#3| |#3| (-361 (-499)))) |%noBranch|) (-15 -4093 (|#3| |#3|)) (-15 -4092 (|#3| |#3|)) (-15 -3788 (|#3| |#3|)) (-15 -3784 (|#3| |#3|)) (-15 -3789 (|#3| |#3|)) (-15 -3785 (|#3| |#3|)) (-15 -3787 (|#3| |#3|)) (-15 -3786 (|#3| |#3|)) (-15 -3624 (|#3| |#3|)) (-15 -3625 (|#3| |#3|)) (-15 -3626 (|#3| |#3|)) (-15 -3627 (|#3| |#3|)) (-15 -3628 (|#3| |#3|)) (-15 -3629 (|#3| |#3|)) (-15 -3630 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -3633 (|#3| |#3|)) (-15 -3634 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3640 (|#3| |#3|)) (-15 -3641 (|#3| |#3|)))) (-38 (-361 (-499))) (-1200 |#1|) (-1171 |#1| |#2|)) (T -231)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-361 (-499))) (-4 *4 (-318)) (-4 *4 (-38 *3)) (-4 *5 (-1200 *4)) (-5 *1 (-231 *4 *5 *2)) (-4 *2 (-1171 *4 *5)))) (-4093 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-4092 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3788 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3784 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3785 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3787 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3786 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3624 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3625 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3626 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3627 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3628 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3629 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4)))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1171 *3 *4))))) +((-3096 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3632 ((|#3| |#3|) 137 T ELT)) (-3084 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3789 ((|#3| |#3|) 125 T ELT)) (-3094 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3630 ((|#3| |#3|) 135 T ELT)) (-3082 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3788 ((|#3| |#3|) 123 T ELT)) (-3098 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3634 ((|#3| |#3|) 139 T ELT)) (-3086 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3787 ((|#3| |#3|) 127 T ELT)) (-3079 (((-3 |#3| #1#) |#3| (-714)) 38 T ELT)) (-3081 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-4092 ((|#3| |#3|) 111 T ELT)) (-3080 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-4093 ((|#3| |#3|) 122 T ELT)) (-3099 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3635 ((|#3| |#3|) 140 T ELT)) (-3087 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3786 ((|#3| |#3|) 128 T ELT)) (-3097 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3633 ((|#3| |#3|) 138 T ELT)) (-3085 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3785 ((|#3| |#3|) 126 T ELT)) (-3095 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3631 ((|#3| |#3|) 136 T ELT)) (-3083 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3784 ((|#3| |#3|) 124 T ELT)) (-3102 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3638 ((|#3| |#3|) 143 T ELT)) (-3090 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3626 ((|#3| |#3|) 131 T ELT)) (-3100 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3636 ((|#3| |#3|) 141 T ELT)) (-3088 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3624 ((|#3| |#3|) 129 T ELT)) (-3104 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3640 ((|#3| |#3|) 145 T ELT)) (-3092 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3628 ((|#3| |#3|) 133 T ELT)) (-3105 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3641 ((|#3| |#3|) 146 T ELT)) (-3093 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3629 ((|#3| |#3|) 134 T ELT)) (-3103 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3639 ((|#3| |#3|) 144 T ELT)) (-3091 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3627 ((|#3| |#3|) 132 T ELT)) (-3101 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3637 ((|#3| |#3|) 142 T ELT)) (-3089 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3625 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-361 (-499))) 44 (|has| |#1| (-318)) ELT))) +(((-232 |#1| |#2| |#3| |#4|) (-13 (-923 |#3|) (-10 -7 (IF (|has| |#1| (-318)) (-15 ** (|#3| |#3| (-361 (-499)))) |%noBranch|) (-15 -4093 (|#3| |#3|)) (-15 -4092 (|#3| |#3|)) (-15 -3788 (|#3| |#3|)) (-15 -3784 (|#3| |#3|)) (-15 -3789 (|#3| |#3|)) (-15 -3785 (|#3| |#3|)) (-15 -3787 (|#3| |#3|)) (-15 -3786 (|#3| |#3|)) (-15 -3624 (|#3| |#3|)) (-15 -3625 (|#3| |#3|)) (-15 -3626 (|#3| |#3|)) (-15 -3627 (|#3| |#3|)) (-15 -3628 (|#3| |#3|)) (-15 -3629 (|#3| |#3|)) (-15 -3630 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -3633 (|#3| |#3|)) (-15 -3634 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3640 (|#3| |#3|)) (-15 -3641 (|#3| |#3|)))) (-38 (-361 (-499))) (-1169 |#1|) (-1192 |#1| |#2|) (-923 |#2|)) (T -232)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-361 (-499))) (-4 *4 (-318)) (-4 *4 (-38 *3)) (-4 *5 (-1169 *4)) (-5 *1 (-232 *4 *5 *2 *6)) (-4 *2 (-1192 *4 *5)) (-4 *6 (-923 *5)))) (-4093 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-4092 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3788 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3784 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3785 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3787 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3786 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3624 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3625 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3626 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3627 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3628 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3629 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4))))) +((-1596 (((-85) $) 20 T ELT)) (-1598 (((-1122) $) 9 T ELT)) (-3717 (((-3 (-460) #1="failed") $) 15 T ELT)) (-3716 (((-3 (-599 $) #1#) $) NIL T ELT)) (-1595 (((-3 (-460) #1#) $) 21 T ELT)) (-1597 (((-3 (-1043) #1#) $) 19 T ELT)) (-4103 (((-85) $) 17 T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1594 (((-85) $) 10 T ELT))) +(((-233) (-13 (-568 (-797)) (-10 -8 (-15 -1598 ((-1122) $)) (-15 -4103 ((-85) $)) (-15 -1597 ((-3 (-1043) #1="failed") $)) (-15 -1596 ((-85) $)) (-15 -1595 ((-3 (-460) #1#) $)) (-15 -1594 ((-85) $)) (-15 -3717 ((-3 (-460) #1#) $)) (-15 -3716 ((-3 (-599 $) #1#) $))))) (T -233)) +((-1598 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-233)))) (-4103 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-233)))) (-1597 (*1 *2 *1) (|partial| -12 (-5 *2 (-1043)) (-5 *1 (-233)))) (-1596 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-233)))) (-1595 (*1 *2 *1) (|partial| -12 (-5 *2 (-460)) (-5 *1 (-233)))) (-1594 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-233)))) (-3717 (*1 *2 *1) (|partial| -12 (-5 *2 (-460)) (-5 *1 (-233)))) (-3716 (*1 *2 *1) (|partial| -12 (-5 *2 (-599 (-233))) (-5 *1 (-233))))) +((-1600 (((-547) $) 10 T ELT)) (-1601 (((-537) $) 8 T ELT)) (-1599 (((-245) $) 12 T ELT)) (-1602 (($ (-537) (-547) (-245)) NIL T ELT)) (-4096 (((-797) $) 19 T ELT))) +(((-234) (-13 (-568 (-797)) (-10 -8 (-15 -1602 ($ (-537) (-547) (-245))) (-15 -1601 ((-537) $)) (-15 -1600 ((-547) $)) (-15 -1599 ((-245) $))))) (T -234)) +((-1602 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-537)) (-5 *3 (-547)) (-5 *4 (-245)) (-5 *1 (-234)))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-234)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-234)))) (-1599 (*1 *2 *1) (-12 (-5 *2 (-245)) (-5 *1 (-234))))) +((-3860 (($ (-1 (-85) |#2|) $) 24 T ELT)) (-1386 (($ $) 38 T ELT)) (-3545 (($ (-1 (-85) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3546 (($ |#2| $) 34 T ELT) (($ (-1 (-85) |#2|) $) 18 T ELT)) (-2977 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2404 (($ |#2| $ (-499)) 20 T ELT) (($ $ $ (-499)) 22 T ELT)) (-2405 (($ $ (-499)) 11 T ELT) (($ $ (-1174 (-499))) 14 T ELT)) (-3941 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3952 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-599 $)) NIL T ELT))) +(((-235 |#1| |#2|) (-10 -7 (-15 -2977 (|#1| |#1| |#1|)) (-15 -3545 (|#1| |#2| |#1|)) (-15 -2977 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3545 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3941 (|#1| |#1| |#1|)) (-15 -3941 (|#1| |#1| |#2|)) (-15 -2404 (|#1| |#1| |#1| (-499))) (-15 -2404 (|#1| |#2| |#1| (-499))) (-15 -2405 (|#1| |#1| (-1174 (-499)))) (-15 -2405 (|#1| |#1| (-499))) (-15 -3952 (|#1| (-599 |#1|))) (-15 -3952 (|#1| |#1| |#1|)) (-15 -3952 (|#1| |#2| |#1|)) (-15 -3952 (|#1| |#1| |#2|)) (-15 -3546 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3860 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3546 (|#1| |#2| |#1|)) (-15 -1386 (|#1| |#1|))) (-236 |#2|) (-1157)) (T -235)) +NIL +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-2299 (((-1213) $ (-499) (-499)) 44 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ (-499) |#1|) 56 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) 64 (|has| $ (-6 -4146)) ELT)) (-1603 (($ (-1 (-85) |#1|) $) 94 T ELT)) (-3860 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-2481 (($ $) 92 (|has| |#1| (-1041)) ELT)) (-1386 (($ $) 84 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3545 (($ (-1 (-85) |#1|) $) 98 T ELT) (($ |#1| $) 93 (|has| |#1| (-1041)) ELT)) (-3546 (($ |#1| $) 83 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) 57 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 55 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) |#1|) 74 T ELT)) (-2301 (((-499) $) 47 (|has| (-499) (-781)) ELT)) (-2977 (($ (-1 (-85) |#1| |#1|) $ $) 95 T ELT) (($ $ $) 91 (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 48 (|has| (-499) (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3757 (($ |#1| $ (-499)) 97 T ELT) (($ $ $ (-499)) 96 T ELT)) (-2404 (($ |#1| $ (-499)) 66 T ELT) (($ $ $ (-499)) 65 T ELT)) (-2304 (((-599 (-499)) $) 50 T ELT)) (-2305 (((-85) (-499) $) 51 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) 46 (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2300 (($ $ |#1|) 45 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) 52 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ (-499) |#1|) 54 T ELT) ((|#1| $ (-499)) 53 T ELT) (($ $ (-1174 (-499))) 75 T ELT)) (-1604 (($ $ (-499)) 100 T ELT) (($ $ (-1174 (-499))) 99 T ELT)) (-2405 (($ $ (-499)) 68 T ELT) (($ $ (-1174 (-499))) 67 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 85 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 76 T ELT)) (-3941 (($ $ |#1|) 102 T ELT) (($ $ $) 101 T ELT)) (-3952 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-599 $)) 70 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-236 |#1|) (-113) (-1157)) (T -236)) +((-3941 (*1 *1 *1 *2) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1157)))) (-3941 (*1 *1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1157)))) (-1604 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-236 *3)) (-4 *3 (-1157)))) (-1604 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 (-499))) (-4 *1 (-236 *3)) (-4 *3 (-1157)))) (-3545 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-236 *3)) (-4 *3 (-1157)))) (-3757 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-236 *2)) (-4 *2 (-1157)))) (-3757 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-236 *3)) (-4 *3 (-1157)))) (-2977 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-236 *3)) (-4 *3 (-1157)))) (-1603 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-236 *3)) (-4 *3 (-1157)))) (-3545 (*1 *1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1157)) (-4 *2 (-1041)))) (-2481 (*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1157)) (-4 *2 (-1041)))) (-2977 (*1 *1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1157)) (-4 *2 (-781))))) +(-13 (-609 |t#1|) (-10 -8 (-6 -4146) (-15 -3941 ($ $ |t#1|)) (-15 -3941 ($ $ $)) (-15 -1604 ($ $ (-499))) (-15 -1604 ($ $ (-1174 (-499)))) (-15 -3545 ($ (-1 (-85) |t#1|) $)) (-15 -3757 ($ |t#1| $ (-499))) (-15 -3757 ($ $ $ (-499))) (-15 -2977 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -1603 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1041)) (PROGN (-15 -3545 ($ |t#1| $)) (-15 -2481 ($ $))) |%noBranch|) (IF (|has| |t#1| (-781)) (-15 -2977 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-240 (-499) |#1|) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-554 (-499) |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-609 |#1|) . T) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) ((** (($ $ $) 10 T ELT))) -(((-295 |#1|) (-10 -7 (-15 ** (|#1| |#1| |#1|))) (-296)) (T -295)) -NIL -((-4370 (($ $) 6 T ELT)) (-4371 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) -(((-296) (-142)) (T -296)) -((** (*1 *1 *1 *1) (-4 *1 (-296))) (-4371 (*1 *1 *1) (-4 *1 (-296))) (-4370 (*1 *1 *1) (-4 *1 (-296)))) -(-13 (-10 -8 (-15 -4370 ($ $)) (-15 -4371 ($ $)) (-15 ** ($ $ $)))) -((-1716 (((-659 (-1174 |#1|)) (-1174 |#1|) |#1|) 35 T ELT)) (-1713 ((|#2| |#2| |#1|) 39 T ELT)) (-1715 ((|#2| |#2| |#1|) 41 T ELT)) (-1714 ((|#2| |#2| |#1|) 40 T ELT))) -(((-297 |#1| |#2|) (-10 -7 (-15 -1713 (|#2| |#2| |#1|)) (-15 -1714 (|#2| |#2| |#1|)) (-15 -1715 (|#2| |#2| |#1|)) (-15 -1716 ((-659 (-1174 |#1|)) (-1174 |#1|) |#1|))) (-376) (-1279 |#1|)) (T -297)) -((-1716 (*1 *2 *3 *4) (-12 (-4 *4 (-376)) (-5 *2 (-659 (-1174 *4))) (-5 *1 (-297 *4 *5)) (-5 *3 (-1174 *4)) (-4 *5 (-1279 *4)))) (-1715 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1279 *3)))) (-1714 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1279 *3)))) (-1713 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1279 *3))))) -((-4228 ((|#2| $ |#1|) 6 T ELT))) -(((-298 |#1| |#2|) (-142) (-1236) (-1236)) (T -298)) -((-4228 (*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1236)) (-4 *2 (-1236))))) -(-13 (-1236) (-10 -8 (-15 -4228 (|t#2| $ |t#1|)))) -(((-1236) . T)) -((-1717 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3513 ((|#3| $ |#2|) 10 T ELT))) -(((-299 |#1| |#2| |#3|) (-10 -7 (-15 -1717 (|#3| |#1| |#2| |#3|)) (-15 -3513 (|#3| |#1| |#2|))) (-300 |#2| |#3|) (-1120) (-1236)) (T -299)) -NIL -((-4216 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4424)) ELT)) (-1717 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4424)) ELT)) (-3513 ((|#2| $ |#1|) 11 T ELT)) (-4228 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) -(((-300 |#1| |#2|) (-142) (-1120) (-1236)) (T -300)) -((-4228 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1236)))) (-3513 (*1 *2 *1 *3) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1236)))) (-4216 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1236)))) (-1717 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1236))))) -(-13 (-298 |t#1| |t#2|) (-10 -8 (-15 -4228 (|t#2| $ |t#1| |t#2|)) (-15 -3513 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4424)) (PROGN (-15 -4216 (|t#2| $ |t#1| |t#2|)) (-15 -1717 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-298 |#1| |#2|) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 37 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 44 T ELT)) (-2271 (($ $) 41 T ELT)) (-2269 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-2961 (($ $ $) 35 T ELT)) (-4270 (($ |#2| |#3|) 18 T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-3011 ((|#3| $) NIL T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) 19 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-2631 (((-3 $ #1#) $ $) NIL T ELT)) (-1785 (((-789) $) 36 T ELT)) (-4228 ((|#2| $ |#2|) 46 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 23 T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-3057 (($) 31 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 40 T ELT))) -(((-301 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-319) (-298 |#2| |#2|) (-10 -8 (-15 -3011 (|#3| $)) (-15 -4374 (|#2| $)) (-15 -4270 ($ |#2| |#3|)) (-15 -2631 ((-3 $ #1="failed") $ $)) (-15 -3885 ((-3 $ #1#) $)) (-15 -2872 ($ $)))) (-175) (-1262 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -301)) -((-3885 (*1 *1 *1) (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-3011 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-23)) (-5 *1 (-301 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1262 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4374 (*1 *2 *1) (-12 (-4 *2 (-1262 *3)) (-5 *1 (-301 *3 *2 *4 *5 *6 *7)) (-4 *3 (-175)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-4270 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-301 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1262 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2631 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2872 (*1 *1 *1) (-12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-302) (-142)) (T -302)) -NIL -(-13 (-1068) (-111 $ $) (-10 -7 (-6 -4416))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-631 (-557)) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 $) . T) ((-744) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-1725 (((-659 (-1104)) $) 10 T ELT)) (-1723 (($ (-518) (-518) (-1122) $) 19 T ELT)) (-1721 (($ (-518) (-659 (-982)) $) 23 T ELT)) (-1719 (($) 25 T ELT)) (-1724 (((-709 (-1122)) (-518) (-518) $) 18 T ELT)) (-1722 (((-659 (-982)) (-518) $) 22 T ELT)) (-3991 (($) 7 T ELT)) (-1720 (($) 24 T ELT)) (-4374 (((-875) $) 29 T ELT)) (-1718 (($) 26 T ELT))) -(((-303) (-13 (-628 (-875)) (-10 -8 (-15 -3991 ($)) (-15 -1725 ((-659 (-1104)) $)) (-15 -1724 ((-709 (-1122)) (-518) (-518) $)) (-15 -1723 ($ (-518) (-518) (-1122) $)) (-15 -1722 ((-659 (-982)) (-518) $)) (-15 -1721 ($ (-518) (-659 (-982)) $)) (-15 -1720 ($)) (-15 -1719 ($)) (-15 -1718 ($))))) (T -303)) -((-3991 (*1 *1) (-5 *1 (-303))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-659 (-1104))) (-5 *1 (-303)))) (-1724 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-709 (-1122))) (-5 *1 (-303)))) (-1723 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-1122)) (-5 *1 (-303)))) (-1722 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-659 (-982))) (-5 *1 (-303)))) (-1721 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-659 (-982))) (-5 *1 (-303)))) (-1720 (*1 *1) (-5 *1 (-303))) (-1719 (*1 *1) (-5 *1 (-303))) (-1718 (*1 *1) (-5 *1 (-303)))) -((-1729 (((-659 (-2 (|:| |eigval| (-3 (-419 (-963 |#1|)) (-1185 (-1196) (-963 |#1|)))) (|:| |geneigvec| (-659 (-707 (-419 (-963 |#1|))))))) (-707 (-419 (-963 |#1|)))) 103 T ELT)) (-1728 (((-659 (-707 (-419 (-963 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-963 |#1|)) (-1185 (-1196) (-963 |#1|)))) (|:| |eigmult| (-789)) (|:| |eigvec| (-659 (-707 (-419 (-963 |#1|)))))) (-707 (-419 (-963 |#1|)))) 98 T ELT) (((-659 (-707 (-419 (-963 |#1|)))) (-3 (-419 (-963 |#1|)) (-1185 (-1196) (-963 |#1|))) (-707 (-419 (-963 |#1|))) (-789) (-789)) 42 T ELT)) (-1730 (((-659 (-2 (|:| |eigval| (-3 (-419 (-963 |#1|)) (-1185 (-1196) (-963 |#1|)))) (|:| |eigmult| (-789)) (|:| |eigvec| (-659 (-707 (-419 (-963 |#1|))))))) (-707 (-419 (-963 |#1|)))) 100 T ELT)) (-1727 (((-659 (-707 (-419 (-963 |#1|)))) (-3 (-419 (-963 |#1|)) (-1185 (-1196) (-963 |#1|))) (-707 (-419 (-963 |#1|)))) 76 T ELT)) (-1726 (((-659 (-3 (-419 (-963 |#1|)) (-1185 (-1196) (-963 |#1|)))) (-707 (-419 (-963 |#1|)))) 75 T ELT)) (-2836 (((-963 |#1|) (-707 (-419 (-963 |#1|)))) 56 T ELT) (((-963 |#1|) (-707 (-419 (-963 |#1|))) (-1196)) 57 T ELT))) -(((-304 |#1|) (-10 -7 (-15 -2836 ((-963 |#1|) (-707 (-419 (-963 |#1|))) (-1196))) (-15 -2836 ((-963 |#1|) (-707 (-419 (-963 |#1|))))) (-15 -1726 ((-659 (-3 (-419 (-963 |#1|)) (-1185 (-1196) (-963 |#1|)))) (-707 (-419 (-963 |#1|))))) (-15 -1727 ((-659 (-707 (-419 (-963 |#1|)))) (-3 (-419 (-963 |#1|)) (-1185 (-1196) (-963 |#1|))) (-707 (-419 (-963 |#1|))))) (-15 -1728 ((-659 (-707 (-419 (-963 |#1|)))) (-3 (-419 (-963 |#1|)) (-1185 (-1196) (-963 |#1|))) (-707 (-419 (-963 |#1|))) (-789) (-789))) (-15 -1728 ((-659 (-707 (-419 (-963 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-963 |#1|)) (-1185 (-1196) (-963 |#1|)))) (|:| |eigmult| (-789)) (|:| |eigvec| (-659 (-707 (-419 (-963 |#1|)))))) (-707 (-419 (-963 |#1|))))) (-15 -1729 ((-659 (-2 (|:| |eigval| (-3 (-419 (-963 |#1|)) (-1185 (-1196) (-963 |#1|)))) (|:| |geneigvec| (-659 (-707 (-419 (-963 |#1|))))))) (-707 (-419 (-963 |#1|))))) (-15 -1730 ((-659 (-2 (|:| |eigval| (-3 (-419 (-963 |#1|)) (-1185 (-1196) (-963 |#1|)))) (|:| |eigmult| (-789)) (|:| |eigvec| (-659 (-707 (-419 (-963 |#1|))))))) (-707 (-419 (-963 |#1|)))))) (-464)) (T -304)) -((-1730 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-659 (-2 (|:| |eigval| (-3 (-419 (-963 *4)) (-1185 (-1196) (-963 *4)))) (|:| |eigmult| (-789)) (|:| |eigvec| (-659 (-707 (-419 (-963 *4)))))))) (-5 *1 (-304 *4)) (-5 *3 (-707 (-419 (-963 *4)))))) (-1729 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-659 (-2 (|:| |eigval| (-3 (-419 (-963 *4)) (-1185 (-1196) (-963 *4)))) (|:| |geneigvec| (-659 (-707 (-419 (-963 *4)))))))) (-5 *1 (-304 *4)) (-5 *3 (-707 (-419 (-963 *4)))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-419 (-963 *5)) (-1185 (-1196) (-963 *5)))) (|:| |eigmult| (-789)) (|:| |eigvec| (-659 *4)))) (-4 *5 (-464)) (-5 *2 (-659 (-707 (-419 (-963 *5))))) (-5 *1 (-304 *5)) (-5 *4 (-707 (-419 (-963 *5)))))) (-1728 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-419 (-963 *6)) (-1185 (-1196) (-963 *6)))) (-5 *5 (-789)) (-4 *6 (-464)) (-5 *2 (-659 (-707 (-419 (-963 *6))))) (-5 *1 (-304 *6)) (-5 *4 (-707 (-419 (-963 *6)))))) (-1727 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-419 (-963 *5)) (-1185 (-1196) (-963 *5)))) (-4 *5 (-464)) (-5 *2 (-659 (-707 (-419 (-963 *5))))) (-5 *1 (-304 *5)) (-5 *4 (-707 (-419 (-963 *5)))))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-707 (-419 (-963 *4)))) (-4 *4 (-464)) (-5 *2 (-659 (-3 (-419 (-963 *4)) (-1185 (-1196) (-963 *4))))) (-5 *1 (-304 *4)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-707 (-419 (-963 *4)))) (-5 *2 (-963 *4)) (-5 *1 (-304 *4)) (-4 *4 (-464)))) (-2836 (*1 *2 *3 *4) (-12 (-5 *3 (-707 (-419 (-963 *5)))) (-5 *4 (-1196)) (-5 *2 (-963 *5)) (-5 *1 (-304 *5)) (-4 *5 (-464))))) -((-2965 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-3604 (((-114) $) NIL (|has| |#1| (-21)) ELT)) (-1736 (($ $) 12 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1745 (($ $ $) 95 (|has| |#1| (-310)) ELT)) (-4152 (($) NIL (-3955 (|has| |#1| (-21)) (|has| |#1| (-744))) CONST)) (-1734 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1732 (((-3 $ #1#) $) 62 (|has| |#1| (-744)) ELT)) (-3946 ((|#1| $) 11 T ELT)) (-3885 (((-3 $ #1#) $) 60 (|has| |#1| (-744)) ELT)) (-2639 (((-114) $) NIL (|has| |#1| (-744)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3947 ((|#1| $) 10 T ELT)) (-1735 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1733 (((-3 $ #1#) $) 61 (|has| |#1| (-744)) ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-2872 (($ $) 64 (-3955 (|has| |#1| (-376)) (|has| |#1| (-485))) ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-1731 (((-659 $) $) 85 (|has| |#1| (-568)) ELT)) (-4196 (($ $ $) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 $)) 28 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-1196) |#1|) 17 (|has| |#1| (-526 (-1196) |#1|)) ELT) (($ $ (-659 (-1196)) (-659 |#1|)) 21 (|has| |#1| (-526 (-1196) |#1|)) ELT)) (-3642 (($ |#1| |#1|) 9 T ELT)) (-4339 (((-136)) 90 (|has| |#1| (-376)) ELT)) (-4186 (($ $ (-1196)) 87 (|has| |#1| (-915 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-915 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-915 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-915 (-1196))) ELT)) (-3408 (($ $ $) NIL (|has| |#1| (-485)) ELT)) (-2822 (($ $ $) NIL (|has| |#1| (-485)) ELT)) (-4374 (($ (-557)) NIL (|has| |#1| (-1068)) ELT) (((-114) $) 37 (|has| |#1| (-1120)) ELT) (((-875) $) 36 (|has| |#1| (-1120)) ELT)) (-3526 (((-789)) 67 (|has| |#1| (-1068)) CONST)) (-1376 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-3057 (($) 47 (|has| |#1| (-21)) CONST)) (-3063 (($) 57 (|has| |#1| (-744)) CONST)) (-3068 (($ $ (-1196)) NIL (|has| |#1| (-915 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-915 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-915 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-915 (-1196))) ELT)) (-3452 (($ |#1| |#1|) 8 T ELT) (((-114) $ $) 32 (|has| |#1| (-1120)) ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 92 (-3955 (|has| |#1| (-376)) (|has| |#1| (-485))) ELT)) (-4265 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-4267 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-557)) NIL (|has| |#1| (-485)) ELT) (($ $ (-789)) NIL (|has| |#1| (-744)) ELT) (($ $ (-936)) NIL (|has| |#1| (-1131)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1131)) ELT) (($ |#1| $) 54 (|has| |#1| (-1131)) ELT) (($ $ $) 53 (|has| |#1| (-1131)) ELT) (($ (-557) $) 70 (|has| |#1| (-21)) ELT) (($ (-789) $) NIL (|has| |#1| (-21)) ELT) (($ (-936) $) NIL (|has| |#1| (-25)) ELT))) -(((-305 |#1|) (-13 (-1236) (-10 -8 (-15 -3452 ($ |#1| |#1|)) (-15 -3642 ($ |#1| |#1|)) (-15 -1736 ($ $)) (-15 -3947 (|#1| $)) (-15 -3946 (|#1| $)) (-15 -4386 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1196) |#1|)) (-6 (-526 (-1196) |#1|)) |%noBranch|) (IF (|has| |#1| (-1120)) (PROGN (-6 (-1120)) (-6 (-628 (-114))) (IF (|has| |#1| (-321 |#1|)) (PROGN (-15 -4196 ($ $ $)) (-15 -4196 ($ $ (-659 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4267 ($ |#1| $)) (-15 -4267 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1735 ($ $)) (-15 -1734 ($ $)) (-15 -4265 ($ |#1| $)) (-15 -4265 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1131)) (PROGN (-6 (-1131)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-744)) (PROGN (-6 (-744)) (-15 -1733 ((-3 $ #1="failed") $)) (-15 -1732 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -1733 ((-3 $ #1#) $)) (-15 -1732 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-6 (-1068)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-735 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -1731 ((-659 $) $)) |%noBranch|) (IF (|has| |#1| (-915 (-1196))) (-6 (-915 (-1196))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-1294 |#1|)) (-15 -4377 ($ $ $)) (-15 -2872 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -1745 ($ $ $)) |%noBranch|))) (-1236)) (T -305)) -((-3452 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1236)))) (-3642 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1236)))) (-1736 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1236)))) (-3947 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1236)))) (-3946 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1236)))) (-4386 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-305 *3)))) (-4196 (*1 *1 *1 *1) (-12 (-4 *2 (-321 *2)) (-4 *2 (-1120)) (-4 *2 (-1236)) (-5 *1 (-305 *2)))) (-4196 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-305 *3))) (-4 *3 (-321 *3)) (-4 *3 (-1120)) (-4 *3 (-1236)) (-5 *1 (-305 *3)))) (-4267 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1236)))) (-4267 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1236)))) (-1735 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) (-1734 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) (-4265 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) (-4265 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) (-1733 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-744)) (-4 *2 (-1236)))) (-1732 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-744)) (-4 *2 (-1236)))) (-1731 (*1 *2 *1) (-12 (-5 *2 (-659 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-568)) (-4 *3 (-1236)))) (-1745 (*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-310)) (-4 *2 (-1236)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1131)) (-4 *2 (-1236)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1131)) (-4 *2 (-1236)))) (-4377 (*1 *1 *1 *1) (-3955 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1236))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-485)) (-4 *2 (-1236))))) (-2872 (*1 *1 *1) (-3955 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1236))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-485)) (-4 *2 (-1236)))))) -((-4386 (((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)) 14 T ELT))) -(((-306 |#1| |#2|) (-10 -7 (-15 -4386 ((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)))) (-1236) (-1236)) (T -306)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-305 *6)) (-5 *1 (-306 *5 *6))))) -((-2965 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4025 (($) NIL T ELT) (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-2411 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-4216 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1711 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-2444 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT)) (-3823 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3824 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (|has| $ (-6 -4423)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-1717 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#2| $ |#1|) NIL T ELT)) (-3288 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2413 ((|#1| $) NIL (|has| |#1| (-859)) ELT)) (-3005 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-2414 ((|#1| $) NIL (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| |#2| (-1120))) ELT)) (-2882 (((-659 |#1|) $) NIL T ELT)) (-2445 (((-114) |#1| $) NIL T ELT)) (-1387 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-4035 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-2416 (((-659 |#1|) $) NIL T ELT)) (-2417 (((-114) |#1| $) NIL T ELT)) (-3659 (((-1139) $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| |#2| (-1120))) ELT)) (-4229 ((|#2| $) NIL (|has| |#1| (-859)) ELT)) (-1466 (((-3 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) #1#) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT)) (-2412 (($ $ |#2|) NIL (|has| $ (-6 -4424)) ELT)) (-1388 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-2156 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-659 |#2|) (-659 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-659 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-2418 (((-659 |#2|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1596 (($) NIL T ELT) (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-2155 (((-789) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-789) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT) (((-789) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-629 (-546))) ELT)) (-3948 (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-4374 (((-875) $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-628 (-875))) (|has| |#2| (-628 (-875)))) ELT)) (-1376 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1389 (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-307 |#1| |#2|) (-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4423))) (-1120) (-1120)) (T -307)) -NIL -((-1737 (((-323) (-1178) (-659 (-1178))) 17 T ELT) (((-323) (-1178) (-1178)) 16 T ELT) (((-323) (-659 (-1178))) 15 T ELT) (((-323) (-1178)) 14 T ELT))) -(((-308) (-10 -7 (-15 -1737 ((-323) (-1178))) (-15 -1737 ((-323) (-659 (-1178)))) (-15 -1737 ((-323) (-1178) (-1178))) (-15 -1737 ((-323) (-1178) (-659 (-1178)))))) (T -308)) -((-1737 (*1 *2 *3 *4) (-12 (-5 *4 (-659 (-1178))) (-5 *3 (-1178)) (-5 *2 (-323)) (-5 *1 (-308)))) (-1737 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-323)) (-5 *1 (-308)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-659 (-1178))) (-5 *2 (-323)) (-5 *1 (-308)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-323)) (-5 *1 (-308))))) -((-1741 (((-659 (-626 $)) $) 27 T ELT)) (-1745 (($ $ (-305 $)) 78 T ELT) (($ $ (-659 (-305 $))) 139 T ELT) (($ $ (-659 (-626 $)) (-659 $)) NIL T ELT)) (-3573 (((-3 (-626 $) #1="failed") $) 127 T ELT)) (-3572 (((-626 $) $) 126 T ELT)) (-2970 (($ $) 17 T ELT) (($ (-659 $)) 54 T ELT)) (-1740 (((-659 (-115)) $) 35 T ELT)) (-4021 (((-115) (-115)) 88 T ELT)) (-3072 (((-114) $) 150 T ELT)) (-4386 (($ (-1 $ $) (-626 $)) 86 T ELT)) (-1743 (((-3 (-626 $) #1#) $) 94 T ELT)) (-2447 (($ (-115) $) 59 T ELT) (($ (-115) (-659 $)) 110 T ELT)) (-3030 (((-114) $ (-115)) 132 T ELT) (((-114) $ (-1196)) 131 T ELT)) (-3000 (((-789) $) 44 T ELT)) (-1739 (((-114) $ $) 57 T ELT) (((-114) $ (-1196)) 49 T ELT)) (-3073 (((-114) $) 148 T ELT)) (-4196 (($ $ (-626 $) $) NIL T ELT) (($ $ (-659 (-626 $)) (-659 $)) NIL T ELT) (($ $ (-659 (-305 $))) 137 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-1 $ $))) 81 T ELT) (($ $ (-659 (-1196)) (-659 (-1 $ (-659 $)))) NIL T ELT) (($ $ (-1196) (-1 $ (-659 $))) 67 T ELT) (($ $ (-1196) (-1 $ $)) 72 T ELT) (($ $ (-659 (-115)) (-659 (-1 $ $))) 80 T ELT) (($ $ (-659 (-115)) (-659 (-1 $ (-659 $)))) 82 T ELT) (($ $ (-115) (-1 $ (-659 $))) 68 T ELT) (($ $ (-115) (-1 $ $)) 74 T ELT)) (-4228 (($ (-115) $) 60 T ELT) (($ (-115) $ $) 61 T ELT) (($ (-115) $ $ $) 62 T ELT) (($ (-115) $ $ $ $) 63 T ELT) (($ (-115) (-659 $)) 123 T ELT)) (-1744 (($ $) 51 T ELT) (($ $ $) 135 T ELT)) (-2987 (($ $) 15 T ELT) (($ (-659 $)) 53 T ELT)) (-2466 (((-114) (-115)) 21 T ELT))) -(((-309 |#1|) (-10 -7 (-15 -3072 ((-114) |#1|)) (-15 -3073 ((-114) |#1|)) (-15 -4196 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -4196 (|#1| |#1| (-115) (-1 |#1| (-659 |#1|)))) (-15 -4196 (|#1| |#1| (-659 (-115)) (-659 (-1 |#1| (-659 |#1|))))) (-15 -4196 (|#1| |#1| (-659 (-115)) (-659 (-1 |#1| |#1|)))) (-15 -4196 (|#1| |#1| (-1196) (-1 |#1| |#1|))) (-15 -4196 (|#1| |#1| (-1196) (-1 |#1| (-659 |#1|)))) (-15 -4196 (|#1| |#1| (-659 (-1196)) (-659 (-1 |#1| (-659 |#1|))))) (-15 -4196 (|#1| |#1| (-659 (-1196)) (-659 (-1 |#1| |#1|)))) (-15 -1739 ((-114) |#1| (-1196))) (-15 -1739 ((-114) |#1| |#1|)) (-15 -4386 (|#1| (-1 |#1| |#1|) (-626 |#1|))) (-15 -2447 (|#1| (-115) (-659 |#1|))) (-15 -2447 (|#1| (-115) |#1|)) (-15 -3030 ((-114) |#1| (-1196))) (-15 -3030 ((-114) |#1| (-115))) (-15 -2466 ((-114) (-115))) (-15 -4021 ((-115) (-115))) (-15 -1740 ((-659 (-115)) |#1|)) (-15 -1741 ((-659 (-626 |#1|)) |#1|)) (-15 -1743 ((-3 (-626 |#1|) #1="failed") |#1|)) (-15 -3000 ((-789) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -2970 (|#1| (-659 |#1|))) (-15 -2970 (|#1| |#1|)) (-15 -2987 (|#1| (-659 |#1|))) (-15 -2987 (|#1| |#1|)) (-15 -1745 (|#1| |#1| (-659 (-626 |#1|)) (-659 |#1|))) (-15 -1745 (|#1| |#1| (-659 (-305 |#1|)))) (-15 -1745 (|#1| |#1| (-305 |#1|))) (-15 -4228 (|#1| (-115) (-659 |#1|))) (-15 -4228 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4228 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4228 (|#1| (-115) |#1| |#1|)) (-15 -4228 (|#1| (-115) |#1|)) (-15 -4196 (|#1| |#1| (-659 |#1|) (-659 |#1|))) (-15 -4196 (|#1| |#1| |#1| |#1|)) (-15 -4196 (|#1| |#1| (-305 |#1|))) (-15 -4196 (|#1| |#1| (-659 (-305 |#1|)))) (-15 -4196 (|#1| |#1| (-659 (-626 |#1|)) (-659 |#1|))) (-15 -4196 (|#1| |#1| (-626 |#1|) |#1|)) (-15 -3573 ((-3 (-626 |#1|) #1#) |#1|)) (-15 -3572 ((-626 |#1|) |#1|))) (-310)) (T -309)) -((-4021 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-309 *4)) (-4 *4 (-310))))) -((-2965 (((-114) $ $) 7 T ELT)) (-1741 (((-659 (-626 $)) $) 42 T ELT)) (-1745 (($ $ (-305 $)) 54 T ELT) (($ $ (-659 (-305 $))) 53 T ELT) (($ $ (-659 (-626 $)) (-659 $)) 52 T ELT)) (-3573 (((-3 (-626 $) "failed") $) 67 T ELT)) (-3572 (((-626 $) $) 68 T ELT)) (-2970 (($ $) 49 T ELT) (($ (-659 $)) 48 T ELT)) (-1740 (((-659 (-115)) $) 41 T ELT)) (-4021 (((-115) (-115)) 40 T ELT)) (-3072 (((-114) $) 20 (|has| $ (-1057 (-557))) ELT)) (-1738 (((-1190 $) (-626 $)) 23 (|has| $ (-1068)) ELT)) (-4386 (($ (-1 $ $) (-626 $)) 34 T ELT)) (-1743 (((-3 (-626 $) "failed") $) 44 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-1742 (((-659 (-626 $)) $) 43 T ELT)) (-2447 (($ (-115) $) 36 T ELT) (($ (-115) (-659 $)) 35 T ELT)) (-3030 (((-114) $ (-115)) 38 T ELT) (((-114) $ (-1196)) 37 T ELT)) (-3000 (((-789) $) 45 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-1739 (((-114) $ $) 33 T ELT) (((-114) $ (-1196)) 32 T ELT)) (-3073 (((-114) $) 21 (|has| $ (-1057 (-557))) ELT)) (-4196 (($ $ (-626 $) $) 65 T ELT) (($ $ (-659 (-626 $)) (-659 $)) 64 T ELT) (($ $ (-659 (-305 $))) 63 T ELT) (($ $ (-305 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-659 $) (-659 $)) 60 T ELT) (($ $ (-659 (-1196)) (-659 (-1 $ $))) 31 T ELT) (($ $ (-659 (-1196)) (-659 (-1 $ (-659 $)))) 30 T ELT) (($ $ (-1196) (-1 $ (-659 $))) 29 T ELT) (($ $ (-1196) (-1 $ $)) 28 T ELT) (($ $ (-659 (-115)) (-659 (-1 $ $))) 27 T ELT) (($ $ (-659 (-115)) (-659 (-1 $ (-659 $)))) 26 T ELT) (($ $ (-115) (-1 $ (-659 $))) 25 T ELT) (($ $ (-115) (-1 $ $)) 24 T ELT)) (-4228 (($ (-115) $) 59 T ELT) (($ (-115) $ $) 58 T ELT) (($ (-115) $ $ $) 57 T ELT) (($ (-115) $ $ $ $) 56 T ELT) (($ (-115) (-659 $)) 55 T ELT)) (-1744 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3601 (($ $) 22 (|has| $ (-1068)) ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-626 $)) 66 T ELT)) (-2987 (($ $) 51 T ELT) (($ (-659 $)) 50 T ELT)) (-2466 (((-114) (-115)) 39 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-310) (-142)) (T -310)) -((-4228 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-4228 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-4228 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-4228 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-4228 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-659 *1)) (-4 *1 (-310)))) (-1745 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *1)) (-4 *1 (-310)))) (-1745 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-305 *1))) (-4 *1 (-310)))) (-1745 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 (-626 *1))) (-5 *3 (-659 *1)) (-4 *1 (-310)))) (-2987 (*1 *1 *1) (-4 *1 (-310))) (-2987 (*1 *1 *2) (-12 (-5 *2 (-659 *1)) (-4 *1 (-310)))) (-2970 (*1 *1 *1) (-4 *1 (-310))) (-2970 (*1 *1 *2) (-12 (-5 *2 (-659 *1)) (-4 *1 (-310)))) (-1744 (*1 *1 *1) (-4 *1 (-310))) (-1744 (*1 *1 *1 *1) (-4 *1 (-310))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-789)))) (-1743 (*1 *2 *1) (|partial| -12 (-5 *2 (-626 *1)) (-4 *1 (-310)))) (-1742 (*1 *2 *1) (-12 (-5 *2 (-659 (-626 *1))) (-4 *1 (-310)))) (-1741 (*1 *2 *1) (-12 (-5 *2 (-659 (-626 *1))) (-4 *1 (-310)))) (-1740 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-659 (-115))))) (-4021 (*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2466 (*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114)))) (-3030 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114)))) (-3030 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1196)) (-5 *2 (-114)))) (-2447 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2447 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-659 *1)) (-4 *1 (-310)))) (-4386 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-626 *1)) (-4 *1 (-310)))) (-1739 (*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-114)))) (-1739 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1196)) (-5 *2 (-114)))) (-4196 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 (-1196))) (-5 *3 (-659 (-1 *1 *1))) (-4 *1 (-310)))) (-4196 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 (-1196))) (-5 *3 (-659 (-1 *1 (-659 *1)))) (-4 *1 (-310)))) (-4196 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1 *1 (-659 *1))) (-4 *1 (-310)))) (-4196 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-4196 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 (-115))) (-5 *3 (-659 (-1 *1 *1))) (-4 *1 (-310)))) (-4196 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 (-115))) (-5 *3 (-659 (-1 *1 (-659 *1)))) (-4 *1 (-310)))) (-4196 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-659 *1))) (-4 *1 (-310)))) (-4196 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-626 *1)) (-4 *1 (-1068)) (-4 *1 (-310)) (-5 *2 (-1190 *1)))) (-3601 (*1 *1 *1) (-12 (-4 *1 (-1068)) (-4 *1 (-310)))) (-3073 (*1 *2 *1) (-12 (-4 *1 (-1057 (-557))) (-4 *1 (-310)) (-5 *2 (-114)))) (-3072 (*1 *2 *1) (-12 (-4 *1 (-1057 (-557))) (-4 *1 (-310)) (-5 *2 (-114))))) -(-13 (-1120) (-1057 (-626 $)) (-526 (-626 $) $) (-321 $) (-10 -8 (-15 -4228 ($ (-115) $)) (-15 -4228 ($ (-115) $ $)) (-15 -4228 ($ (-115) $ $ $)) (-15 -4228 ($ (-115) $ $ $ $)) (-15 -4228 ($ (-115) (-659 $))) (-15 -1745 ($ $ (-305 $))) (-15 -1745 ($ $ (-659 (-305 $)))) (-15 -1745 ($ $ (-659 (-626 $)) (-659 $))) (-15 -2987 ($ $)) (-15 -2987 ($ (-659 $))) (-15 -2970 ($ $)) (-15 -2970 ($ (-659 $))) (-15 -1744 ($ $)) (-15 -1744 ($ $ $)) (-15 -3000 ((-789) $)) (-15 -1743 ((-3 (-626 $) "failed") $)) (-15 -1742 ((-659 (-626 $)) $)) (-15 -1741 ((-659 (-626 $)) $)) (-15 -1740 ((-659 (-115)) $)) (-15 -4021 ((-115) (-115))) (-15 -2466 ((-114) (-115))) (-15 -3030 ((-114) $ (-115))) (-15 -3030 ((-114) $ (-1196))) (-15 -2447 ($ (-115) $)) (-15 -2447 ($ (-115) (-659 $))) (-15 -4386 ($ (-1 $ $) (-626 $))) (-15 -1739 ((-114) $ $)) (-15 -1739 ((-114) $ (-1196))) (-15 -4196 ($ $ (-659 (-1196)) (-659 (-1 $ $)))) (-15 -4196 ($ $ (-659 (-1196)) (-659 (-1 $ (-659 $))))) (-15 -4196 ($ $ (-1196) (-1 $ (-659 $)))) (-15 -4196 ($ $ (-1196) (-1 $ $))) (-15 -4196 ($ $ (-659 (-115)) (-659 (-1 $ $)))) (-15 -4196 ($ $ (-659 (-115)) (-659 (-1 $ (-659 $))))) (-15 -4196 ($ $ (-115) (-1 $ (-659 $)))) (-15 -4196 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1068)) (PROGN (-15 -1738 ((-1190 $) (-626 $))) (-15 -3601 ($ $))) |%noBranch|) (IF (|has| $ (-1057 (-557))) (PROGN (-15 -3073 ((-114) $)) (-15 -3072 ((-114) $))) |%noBranch|))) -(((-102) . T) ((-631 (-626 $)) . T) ((-628 (-875)) . T) ((-321 $) . T) ((-526 (-626 $) $) . T) ((-526 $ $) . T) ((-1057 (-626 $)) . T) ((-1120) . T) ((-1236) . T)) -((-4386 ((|#2| (-1 |#2| |#1|) (-1178) (-626 |#1|)) 18 T ELT))) -(((-311 |#1| |#2|) (-10 -7 (-15 -4386 (|#2| (-1 |#2| |#1|) (-1178) (-626 |#1|)))) (-310) (-1236)) (T -311)) -((-4386 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1178)) (-5 *5 (-626 *6)) (-4 *6 (-310)) (-4 *2 (-1236)) (-5 *1 (-311 *6 *2))))) -((-4386 ((|#2| (-1 |#2| |#1|) (-626 |#1|)) 17 T ELT))) -(((-312 |#1| |#2|) (-10 -7 (-15 -4386 (|#2| (-1 |#2| |#1|) (-626 |#1|)))) (-310) (-310)) (T -312)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-626 *5)) (-4 *5 (-310)) (-4 *2 (-310)) (-5 *1 (-312 *5 *2))))) -((-1748 (((-1174 (-229)) (-326 (-229)) (-659 (-1196)) (-1108 (-853 (-229)))) 117 T ELT)) (-1749 (((-1174 (-229)) (-1286 (-326 (-229))) (-659 (-1196)) (-1108 (-853 (-229)))) 134 T ELT) (((-1174 (-229)) (-326 (-229)) (-659 (-1196)) (-1108 (-853 (-229)))) 71 T ELT)) (-1770 (((-659 (-1178)) (-1174 (-229))) NIL T ELT)) (-1747 (((-659 (-229)) (-326 (-229)) (-1196) (-1108 (-853 (-229)))) 68 T ELT)) (-1750 (((-659 (-229)) (-963 (-419 (-557))) (-1196) (-1108 (-853 (-229)))) 58 T ELT)) (-1769 (((-659 (-1178)) (-659 (-229))) NIL T ELT)) (-1771 (((-229) (-1108 (-853 (-229)))) 29 T ELT)) (-1772 (((-229) (-1108 (-853 (-229)))) 30 T ELT)) (-1746 (((-114) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 63 T ELT)) (-1767 (((-1178) (-229)) NIL T ELT))) -(((-313) (-10 -7 (-15 -1771 ((-229) (-1108 (-853 (-229))))) (-15 -1772 ((-229) (-1108 (-853 (-229))))) (-15 -1746 ((-114) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1747 ((-659 (-229)) (-326 (-229)) (-1196) (-1108 (-853 (-229))))) (-15 -1748 ((-1174 (-229)) (-326 (-229)) (-659 (-1196)) (-1108 (-853 (-229))))) (-15 -1749 ((-1174 (-229)) (-326 (-229)) (-659 (-1196)) (-1108 (-853 (-229))))) (-15 -1749 ((-1174 (-229)) (-1286 (-326 (-229))) (-659 (-1196)) (-1108 (-853 (-229))))) (-15 -1750 ((-659 (-229)) (-963 (-419 (-557))) (-1196) (-1108 (-853 (-229))))) (-15 -1767 ((-1178) (-229))) (-15 -1769 ((-659 (-1178)) (-659 (-229)))) (-15 -1770 ((-659 (-1178)) (-1174 (-229)))))) (T -313)) -((-1770 (*1 *2 *3) (-12 (-5 *3 (-1174 (-229))) (-5 *2 (-659 (-1178))) (-5 *1 (-313)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-659 (-229))) (-5 *2 (-659 (-1178))) (-5 *1 (-313)))) (-1767 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1178)) (-5 *1 (-313)))) (-1750 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-963 (-419 (-557)))) (-5 *4 (-1196)) (-5 *5 (-1108 (-853 (-229)))) (-5 *2 (-659 (-229))) (-5 *1 (-313)))) (-1749 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1286 (-326 (-229)))) (-5 *4 (-659 (-1196))) (-5 *5 (-1108 (-853 (-229)))) (-5 *2 (-1174 (-229))) (-5 *1 (-313)))) (-1749 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-659 (-1196))) (-5 *5 (-1108 (-853 (-229)))) (-5 *2 (-1174 (-229))) (-5 *1 (-313)))) (-1748 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-659 (-1196))) (-5 *5 (-1108 (-853 (-229)))) (-5 *2 (-1174 (-229))) (-5 *1 (-313)))) (-1747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1196)) (-5 *5 (-1108 (-853 (-229)))) (-5 *2 (-659 (-229))) (-5 *1 (-313)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-114)) (-5 *1 (-313)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-1108 (-853 (-229)))) (-5 *2 (-229)) (-5 *1 (-313)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-1108 (-853 (-229)))) (-5 *2 (-229)) (-5 *1 (-313))))) -((-2185 (((-114) (-229)) 12 T ELT))) -(((-314 |#1| |#2|) (-10 -7 (-15 -2185 ((-114) (-229)))) (-229) (-229)) (T -314)) -((-2185 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-314 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -((-1766 (((-1286 (-326 (-391))) (-1286 (-326 (-229)))) 110 T ELT)) (-1754 (((-1108 (-853 (-229))) (-1108 (-853 (-391)))) 43 T ELT)) (-1770 (((-659 (-1178)) (-1174 (-229))) 92 T ELT)) (-1777 (((-326 (-391)) (-963 (-229))) 53 T ELT)) (-1778 (((-229) (-963 (-229))) 49 T ELT)) (-1773 (((-1178) (-391)) 193 T ELT)) (-1753 (((-853 (-229)) (-853 (-391))) 37 T ELT)) (-1759 (((-2 (|:| |additions| (-557)) (|:| |multiplications| (-557)) (|:| |exponentiations| (-557)) (|:| |functionCalls| (-557))) (-1286 (-326 (-229)))) 164 T ELT)) (-1774 (((-1054) (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178))) (|:| |extra| (-1054)))) 205 T ELT) (((-1054) (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178))))) 203 T ELT)) (-1781 (((-707 (-229)) (-659 (-229)) (-789)) 19 T ELT)) (-1764 (((-1286 (-717)) (-659 (-229))) 99 T ELT)) (-1769 (((-659 (-1178)) (-659 (-229))) 79 T ELT)) (-3055 (((-3 (-326 (-229)) "failed") (-326 (-229))) 128 T ELT)) (-2185 (((-114) (-229) (-1108 (-853 (-229)))) 117 T ELT)) (-1776 (((-1054) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) 222 T ELT)) (-1771 (((-229) (-1108 (-853 (-229)))) 112 T ELT)) (-1772 (((-229) (-1108 (-853 (-229)))) 113 T ELT)) (-1780 (((-229) (-419 (-557))) 31 T ELT)) (-1768 (((-1178) (-391)) 77 T ELT)) (-1751 (((-229) (-391)) 22 T ELT)) (-1758 (((-391) (-1286 (-326 (-229)))) 175 T ELT)) (-1752 (((-326 (-229)) (-326 (-391))) 28 T ELT)) (-1756 (((-419 (-557)) (-326 (-229))) 56 T ELT)) (-1760 (((-326 (-419 (-557))) (-326 (-229))) 73 T ELT)) (-1765 (((-326 (-391)) (-326 (-229))) 103 T ELT)) (-1757 (((-229) (-326 (-229))) 57 T ELT)) (-1762 (((-659 (-229)) (-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))))) 68 T ELT)) (-1761 (((-1108 (-853 (-229))) (-1108 (-853 (-229)))) 65 T ELT)) (-1767 (((-1178) (-229)) 76 T ELT)) (-1763 (((-717) (-229)) 95 T ELT)) (-1755 (((-419 (-557)) (-229)) 58 T ELT)) (-1779 (((-326 (-391)) (-229)) 52 T ELT)) (-4400 (((-659 (-1108 (-853 (-229)))) (-659 (-1108 (-853 (-391))))) 46 T ELT)) (-4230 (((-1054) (-659 (-1054))) 189 T ELT) (((-1054) (-1054) (-1054)) 183 T ELT)) (-1775 (((-1054) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1636 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 219 T ELT))) -(((-315) (-10 -7 (-15 -1751 ((-229) (-391))) (-15 -1752 ((-326 (-229)) (-326 (-391)))) (-15 -1753 ((-853 (-229)) (-853 (-391)))) (-15 -1754 ((-1108 (-853 (-229))) (-1108 (-853 (-391))))) (-15 -4400 ((-659 (-1108 (-853 (-229)))) (-659 (-1108 (-853 (-391)))))) (-15 -1755 ((-419 (-557)) (-229))) (-15 -1756 ((-419 (-557)) (-326 (-229)))) (-15 -1757 ((-229) (-326 (-229)))) (-15 -3055 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -1758 ((-391) (-1286 (-326 (-229))))) (-15 -1759 ((-2 (|:| |additions| (-557)) (|:| |multiplications| (-557)) (|:| |exponentiations| (-557)) (|:| |functionCalls| (-557))) (-1286 (-326 (-229))))) (-15 -1760 ((-326 (-419 (-557))) (-326 (-229)))) (-15 -1761 ((-1108 (-853 (-229))) (-1108 (-853 (-229))))) (-15 -1762 ((-659 (-229)) (-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))))) (-15 -1763 ((-717) (-229))) (-15 -1764 ((-1286 (-717)) (-659 (-229)))) (-15 -1765 ((-326 (-391)) (-326 (-229)))) (-15 -1766 ((-1286 (-326 (-391))) (-1286 (-326 (-229))))) (-15 -2185 ((-114) (-229) (-1108 (-853 (-229))))) (-15 -1767 ((-1178) (-229))) (-15 -1768 ((-1178) (-391))) (-15 -1769 ((-659 (-1178)) (-659 (-229)))) (-15 -1770 ((-659 (-1178)) (-1174 (-229)))) (-15 -1771 ((-229) (-1108 (-853 (-229))))) (-15 -1772 ((-229) (-1108 (-853 (-229))))) (-15 -4230 ((-1054) (-1054) (-1054))) (-15 -4230 ((-1054) (-659 (-1054)))) (-15 -1773 ((-1178) (-391))) (-15 -1774 ((-1054) (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178)))))) (-15 -1774 ((-1054) (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178))) (|:| |extra| (-1054))))) (-15 -1775 ((-1054) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1636 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1776 ((-1054) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))) (-15 -1777 ((-326 (-391)) (-963 (-229)))) (-15 -1778 ((-229) (-963 (-229)))) (-15 -1779 ((-326 (-391)) (-229))) (-15 -1780 ((-229) (-419 (-557)))) (-15 -1781 ((-707 (-229)) (-659 (-229)) (-789))))) (T -315)) -((-1781 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-229))) (-5 *4 (-789)) (-5 *2 (-707 (-229))) (-5 *1 (-315)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-419 (-557))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-326 (-391))) (-5 *1 (-315)))) (-1778 (*1 *2 *3) (-12 (-5 *3 (-963 (-229))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-963 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315)))) (-1776 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *2 (-1054)) (-5 *1 (-315)))) (-1775 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1636 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1054)) (-5 *1 (-315)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178))) (|:| |extra| (-1054)))) (-5 *2 (-1054)) (-5 *1 (-315)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178))))) (-5 *2 (-1054)) (-5 *1 (-315)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1178)) (-5 *1 (-315)))) (-4230 (*1 *2 *3) (-12 (-5 *3 (-659 (-1054))) (-5 *2 (-1054)) (-5 *1 (-315)))) (-4230 (*1 *2 *2 *2) (-12 (-5 *2 (-1054)) (-5 *1 (-315)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-1108 (-853 (-229)))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-1108 (-853 (-229)))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-1174 (-229))) (-5 *2 (-659 (-1178))) (-5 *1 (-315)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-659 (-229))) (-5 *2 (-659 (-1178))) (-5 *1 (-315)))) (-1768 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1178)) (-5 *1 (-315)))) (-1767 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1178)) (-5 *1 (-315)))) (-2185 (*1 *2 *3 *4) (-12 (-5 *4 (-1108 (-853 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-315)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-1286 (-326 (-229)))) (-5 *2 (-1286 (-326 (-391)))) (-5 *1 (-315)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-659 (-229))) (-5 *2 (-1286 (-717))) (-5 *1 (-315)))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-717)) (-5 *1 (-315)))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))))) (-5 *2 (-659 (-229))) (-5 *1 (-315)))) (-1761 (*1 *2 *2) (-12 (-5 *2 (-1108 (-853 (-229)))) (-5 *1 (-315)))) (-1760 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-419 (-557)))) (-5 *1 (-315)))) (-1759 (*1 *2 *3) (-12 (-5 *3 (-1286 (-326 (-229)))) (-5 *2 (-2 (|:| |additions| (-557)) (|:| |multiplications| (-557)) (|:| |exponentiations| (-557)) (|:| |functionCalls| (-557)))) (-5 *1 (-315)))) (-1758 (*1 *2 *3) (-12 (-5 *3 (-1286 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-315)))) (-3055 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-315)))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1756 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-419 (-557))) (-5 *1 (-315)))) (-1755 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-419 (-557))) (-5 *1 (-315)))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-659 (-1108 (-853 (-391))))) (-5 *2 (-659 (-1108 (-853 (-229))))) (-5 *1 (-315)))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-1108 (-853 (-391)))) (-5 *2 (-1108 (-853 (-229)))) (-5 *1 (-315)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-853 (-391))) (-5 *2 (-853 (-229))) (-5 *1 (-315)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-326 (-391))) (-5 *2 (-326 (-229))) (-5 *1 (-315)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-315))))) -((-1782 (((-659 |#1|) (-659 |#1|)) 10 T ELT))) -(((-316 |#1|) (-10 -7 (-15 -1782 ((-659 |#1|) (-659 |#1|)))) (-858)) (T -316)) -((-1782 (*1 *2 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-858)) (-5 *1 (-316 *3))))) -((-4386 (((-707 |#2|) (-1 |#2| |#1|) (-707 |#1|)) 17 T ELT))) -(((-317 |#1| |#2|) (-10 -7 (-15 -4386 ((-707 |#2|) (-1 |#2| |#1|) (-707 |#1|)))) (-1068) (-1068)) (T -317)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-707 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-707 *6)) (-5 *1 (-317 *5 *6))))) -((-1786 (((-114) $ $) 14 T ELT)) (-2961 (($ $ $) 18 T ELT)) (-2960 (($ $ $) 17 T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 50 T ELT)) (-1783 (((-3 (-659 $) #1="failed") (-659 $) $) 67 T ELT)) (-3560 (($ $ $) 25 T ELT) (($ (-659 $)) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3884 (((-3 $ #1#) $ $) 21 T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 55 T ELT))) -(((-318 |#1|) (-10 -7 (-15 -1783 ((-3 (-659 |#1|) #1="failed") (-659 |#1|) |#1|)) (-15 -1784 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1784 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2638 |#1|)) |#1| |#1|)) (-15 -2961 (|#1| |#1| |#1|)) (-15 -2960 (|#1| |#1| |#1|)) (-15 -1786 ((-114) |#1| |#1|)) (-15 -3139 ((-709 (-659 |#1|)) (-659 |#1|) |#1|)) (-15 -3140 ((-2 (|:| -4382 (-659 |#1|)) (|:| -2638 |#1|)) (-659 |#1|))) (-15 -3560 (|#1| (-659 |#1|))) (-15 -3560 (|#1| |#1| |#1|)) (-15 -3884 ((-3 |#1| #1#) |#1| |#1|))) (-319)) (T -318)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 52 T ELT)) (-2271 (($ $) 51 T ELT)) (-2269 (((-114) $) 49 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-1786 (((-114) $ $) 72 T ELT)) (-4152 (($) 22 T CONST)) (-2961 (($ $ $) 68 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2960 (($ $ $) 69 T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 63 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-1783 (((-3 (-659 $) "failed") (-659 $) $) 65 T ELT)) (-2100 (($ $ $) 57 T ELT) (($ (-659 $)) 56 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 55 T ELT)) (-3560 (($ $ $) 59 T ELT) (($ (-659 $)) 58 T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 66 T ELT)) (-3884 (((-3 $ "failed") $ $) 53 T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 62 T ELT)) (-1785 (((-789) $) 71 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 70 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 54 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 50 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-319) (-142)) (T -319)) -((-1786 (*1 *2 *1 *1) (-12 (-4 *1 (-319)) (-5 *2 (-114)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-789)))) (-3278 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2182 *1) (|:| -3301 *1))) (-4 *1 (-319)))) (-2960 (*1 *1 *1 *1) (-4 *1 (-319))) (-2961 (*1 *1 *1 *1) (-4 *1 (-319))) (-1784 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2638 *1))) (-4 *1 (-319)))) (-1784 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-319)))) (-1783 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-659 *1)) (-4 *1 (-319))))) -(-13 (-938) (-10 -8 (-15 -1786 ((-114) $ $)) (-15 -1785 ((-789) $)) (-15 -3278 ((-2 (|:| -2182 $) (|:| -3301 $)) $ $)) (-15 -2960 ($ $ $)) (-15 -2961 ($ $ $)) (-15 -1784 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $)) (-15 -1784 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1783 ((-3 (-659 $) "failed") (-659 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-631 (-557)) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-175) . T) ((-302) . T) ((-464) . T) ((-568) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 $) . T) ((-658 $) . T) ((-735 $) . T) ((-744) . T) ((-938) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-4196 (($ $ (-659 |#2|) (-659 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-305 |#2|)) 11 T ELT) (($ $ (-659 (-305 |#2|))) NIL T ELT))) -(((-320 |#1| |#2|) (-10 -7 (-15 -4196 (|#1| |#1| (-659 (-305 |#2|)))) (-15 -4196 (|#1| |#1| (-305 |#2|))) (-15 -4196 (|#1| |#1| |#2| |#2|)) (-15 -4196 (|#1| |#1| (-659 |#2|) (-659 |#2|)))) (-321 |#2|) (-1120)) (T -320)) -NIL -((-4196 (($ $ (-659 |#1|) (-659 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-305 |#1|)) 13 T ELT) (($ $ (-659 (-305 |#1|))) 12 T ELT))) -(((-321 |#1|) (-142) (-1120)) (T -321)) -((-4196 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1120)))) (-4196 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-305 *3))) (-4 *1 (-321 *3)) (-4 *3 (-1120))))) -(-13 (-526 |t#1| |t#1|) (-10 -8 (-15 -4196 ($ $ (-305 |t#1|))) (-15 -4196 ($ $ (-659 (-305 |t#1|)))))) -(((-526 |#1| |#1|) . T)) -((-4196 ((|#1| (-1 |#1| (-557)) (-1198 (-419 (-557)))) 26 T ELT))) -(((-322 |#1|) (-10 -7 (-15 -4196 (|#1| (-1 |#1| (-557)) (-1198 (-419 (-557)))))) (-38 (-419 (-557)))) (T -322)) -((-4196 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-557))) (-5 *4 (-1198 (-419 (-557)))) (-5 *1 (-322 *2)) (-4 *2 (-38 (-419 (-557))))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 7 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 9 T ELT))) -(((-323) (-1120)) (T -323)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3924 (((-557) $) 12 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3622 (((-1154) $) 9 T ELT)) (-4374 (((-875) $) 19 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-324) (-13 (-1102) (-10 -8 (-15 -3622 ((-1154) $)) (-15 -3924 ((-557) $))))) (T -324)) -((-3622 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-324)))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-324))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 60 T ELT)) (-3529 (((-1273 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-319)) ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-927)) ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-927)) ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4051 (((-557) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-840)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-1273 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1196) #1#) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1057 (-1196))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1057 (-557))) ELT) (((-3 (-557) #1#) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1057 (-557))) ELT) (((-3 (-1267 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3572 (((-1273 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1196) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1057 (-1196))) ELT) (((-419 (-557)) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1057 (-557))) ELT) (((-557) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1057 (-557))) ELT) (((-1267 |#2| |#3| |#4|) $) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-1273 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1286 (-1273 |#1| |#2| |#3| |#4|)))) (-707 $) (-1286 $)) NIL T ELT) (((-707 (-1273 |#1| |#2| |#3| |#4|)) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3393 (($) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-556)) ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-3602 (((-114) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-840)) ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-899 (-557))) ELT) (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-899 (-391))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-3395 (($ $) NIL T ELT)) (-3397 (((-1273 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3863 (((-709 $) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1171)) ELT)) (-3603 (((-114) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-840)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2928 (($ $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-859)) ELT)) (-4386 (($ (-1 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-4212 (((-3 (-853 |#2|) #1#) $) 80 T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-1273 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1286 (-1273 |#1| |#2| |#3| |#4|)))) (-1286 $) $) NIL T ELT) (((-707 (-1273 |#1| |#2| |#3| |#4|)) (-1286 $)) NIL T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3864 (($) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1171)) CONST)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3528 (($ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-319)) ELT)) (-3530 (((-1273 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-556)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-927)) ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-4196 (($ $ (-659 (-1273 |#1| |#2| |#3| |#4|)) (-659 (-1273 |#1| |#2| |#3| |#4|))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-321 (-1273 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-321 (-1273 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-305 (-1273 |#1| |#2| |#3| |#4|))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-321 (-1273 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-659 (-305 (-1273 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-321 (-1273 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-659 (-1196)) (-659 (-1273 |#1| |#2| |#3| |#4|))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-526 (-1196) (-1273 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1196) (-1273 |#1| |#2| |#3| |#4|)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-526 (-1196) (-1273 |#1| |#2| |#3| |#4|))) ELT)) (-1785 (((-789) $) NIL T ELT)) (-4228 (($ $ (-1273 |#1| |#2| |#3| |#4|)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-298 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|))) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-4186 (($ $ (-1 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196))) ELT) (($ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-239)) ELT) (($ $ (-789)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-239)) ELT)) (-3394 (($ $) NIL T ELT)) (-3396 (((-1273 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-4400 (((-903 (-557)) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-629 (-903 (-557)))) ELT) (((-903 (-391)) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-629 (-903 (-391)))) ELT) (((-546) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-629 (-546))) ELT) (((-391) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1039)) ELT) (((-229) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1039)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| (-1273 |#1| |#2| |#3| |#4|) (-927))) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ (-1273 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1196)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1057 (-1196))) ELT) (($ (-1267 |#2| |#3| |#4|)) 37 T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| (-1273 |#1| |#2| |#3| |#4|) (-927))) (|has| (-1273 |#1| |#2| |#3| |#4|) (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-3531 (((-1273 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-556)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-3801 (($ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-840)) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $ (-1 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196))) ELT) (($ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-239)) ELT) (($ $ (-789)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-239)) ELT)) (-2963 (((-114) $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-859)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-859)) ELT)) (-4377 (($ $ $) 35 T ELT) (($ (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ (-1273 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1273 |#1| |#2| |#3| |#4|)) NIL T ELT))) -(((-325 |#1| |#2| |#3| |#4|) (-13 (-1010 (-1273 |#1| |#2| |#3| |#4|)) (-1057 (-1267 |#2| |#3| |#4|)) (-10 -8 (-15 -4212 ((-3 (-853 |#2|) "failed") $)) (-15 -4374 ($ (-1267 |#2| |#3| |#4|))))) (-13 (-1057 (-557)) (-656 (-557)) (-464)) (-13 (-27) (-1222) (-433 |#1|)) (-1196) |#2|) (T -325)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1267 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-433 *3))) (-14 *5 (-1196)) (-14 *6 *4) (-4 *3 (-13 (-1057 (-557)) (-656 (-557)) (-464))) (-5 *1 (-325 *3 *4 *5 *6)))) (-4212 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1057 (-557)) (-656 (-557)) (-464))) (-5 *2 (-853 *4)) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-433 *3))) (-14 *5 (-1196)) (-14 *6 *4)))) -((-2965 (((-114) $ $) NIL T ELT)) (-1748 (((-659 $) $ (-1196)) NIL (|has| |#1| (-568)) ELT) (((-659 $) $) NIL (|has| |#1| (-568)) ELT) (((-659 $) (-1190 $) (-1196)) NIL (|has| |#1| (-568)) ELT) (((-659 $) (-1190 $)) NIL (|has| |#1| (-568)) ELT) (((-659 $) (-963 $)) NIL (|has| |#1| (-568)) ELT)) (-1321 (($ $ (-1196)) NIL (|has| |#1| (-568)) ELT) (($ $) NIL (|has| |#1| (-568)) ELT) (($ (-1190 $) (-1196)) NIL (|has| |#1| (-568)) ELT) (($ (-1190 $)) NIL (|has| |#1| (-568)) ELT) (($ (-963 $)) NIL (|has| |#1| (-568)) ELT)) (-3604 (((-114) $) 27 (-3955 (|has| |#1| (-25)) (-12 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068)))) ELT)) (-3482 (((-659 (-1196)) $) 368 T ELT)) (-3484 (((-419 (-1190 $)) $ (-626 $)) NIL (|has| |#1| (-568)) ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-1741 (((-659 (-626 $)) $) NIL T ELT)) (-3910 (($ $) 171 (|has| |#1| (-568)) ELT)) (-4067 (($ $) 147 (|has| |#1| (-568)) ELT)) (-1484 (($ $ (-1111 $)) 232 (|has| |#1| (-568)) ELT) (($ $ (-1196)) 228 (|has| |#1| (-568)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL (-3955 (|has| |#1| (-21)) (-12 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068)))) ELT)) (-1745 (($ $ (-305 $)) NIL T ELT) (($ $ (-659 (-305 $))) 386 T ELT) (($ $ (-659 (-626 $)) (-659 $)) 430 T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) 308 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))) ELT)) (-4203 (($ $) NIL (|has| |#1| (-568)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#1| (-568)) ELT)) (-3436 (($ $) NIL (|has| |#1| (-568)) ELT)) (-1786 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3908 (($ $) 167 (|has| |#1| (-568)) ELT)) (-4066 (($ $) 143 (|has| |#1| (-568)) ELT)) (-1787 (($ $ (-557)) 73 (|has| |#1| (-568)) ELT)) (-3912 (($ $) 175 (|has| |#1| (-568)) ELT)) (-4065 (($ $) 151 (|has| |#1| (-568)) ELT)) (-4152 (($) NIL (-3955 (|has| |#1| (-25)) (-12 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068))) (|has| |#1| (-1131))) CONST)) (-1322 (((-659 $) $ (-1196)) NIL (|has| |#1| (-568)) ELT) (((-659 $) $) NIL (|has| |#1| (-568)) ELT) (((-659 $) (-1190 $) (-1196)) NIL (|has| |#1| (-568)) ELT) (((-659 $) (-1190 $)) NIL (|has| |#1| (-568)) ELT) (((-659 $) (-963 $)) NIL (|has| |#1| (-568)) ELT)) (-3599 (($ $ (-1196)) NIL (|has| |#1| (-568)) ELT) (($ $) NIL (|has| |#1| (-568)) ELT) (($ (-1190 $) (-1196)) 134 (|has| |#1| (-568)) ELT) (($ (-1190 $)) NIL (|has| |#1| (-568)) ELT) (($ (-963 $)) NIL (|has| |#1| (-568)) ELT)) (-3573 (((-3 (-626 $) #1#) $) 18 T ELT) (((-3 (-1196) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 441 T ELT) (((-3 (-48) #1#) $) 336 (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-557)))) ELT) (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 (-419 (-963 |#1|)) #1#) $) NIL (|has| |#1| (-568)) ELT) (((-3 (-963 |#1|) #1#) $) NIL (|has| |#1| (-1068)) ELT) (((-3 (-419 (-557)) #1#) $) 46 (-3955 (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) ELT)) (-3572 (((-626 $) $) 12 T ELT) (((-1196) $) NIL T ELT) ((|#1| $) 421 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-557)))) ELT) (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-419 (-963 |#1|)) $) NIL (|has| |#1| (-568)) ELT) (((-963 |#1|) $) NIL (|has| |#1| (-1068)) ELT) (((-419 (-557)) $) 319 (-3955 (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-568)) ELT)) (-2491 (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) 125 (|has| |#1| (-1068)) ELT) (((-707 |#1|) (-707 $)) 115 (|has| |#1| (-1068)) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (-12 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068))) ELT) (((-707 (-557)) (-707 $)) NIL (-12 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068))) ELT)) (-4270 (($ $) 96 (|has| |#1| (-568)) ELT)) (-3885 (((-3 $ #1#) $) NIL (|has| |#1| (-1131)) ELT)) (-2960 (($ $ $) NIL (|has| |#1| (-568)) ELT)) (-4372 (($ $ (-1111 $)) 236 (|has| |#1| (-568)) ELT) (($ $ (-1196)) 234 (|has| |#1| (-568)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL (|has| |#1| (-568)) ELT)) (-4151 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-3804 (($ $ $) 202 (|has| |#1| (-568)) ELT)) (-4055 (($) 137 (|has| |#1| (-568)) ELT)) (-1481 (($ $ $) 222 (|has| |#1| (-568)) ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) 392 (|has| |#1| (-899 (-557))) ELT) (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) 399 (|has| |#1| (-899 (-391))) ELT)) (-2970 (($ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-1740 (((-659 (-115)) $) NIL T ELT)) (-4021 (((-115) (-115)) 276 T ELT)) (-2639 (((-114) $) 25 (|has| |#1| (-1131)) ELT)) (-3072 (((-114) $) NIL (|has| $ (-1057 (-557))) ELT)) (-3395 (($ $) 72 (|has| |#1| (-1068)) ELT)) (-3397 (((-1144 |#1| (-626 $)) $) 91 (|has| |#1| (-1068)) ELT)) (-1788 (((-114) $) 62 (|has| |#1| (-568)) ELT)) (-3410 (($ $ (-557)) NIL (|has| |#1| (-568)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL (|has| |#1| (-568)) ELT)) (-1738 (((-1190 $) (-626 $)) 277 (|has| $ (-1068)) ELT)) (-4386 (($ (-1 $ $) (-626 $)) 426 T ELT)) (-1743 (((-3 (-626 $) #1#) $) NIL T ELT)) (-4370 (($ $) 141 (|has| |#1| (-568)) ELT)) (-2469 (($ $) 247 (|has| |#1| (-568)) ELT)) (-2492 (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL (|has| |#1| (-1068)) ELT) (((-707 |#1|) (-1286 $)) NIL (|has| |#1| (-1068)) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (-12 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068))) ELT) (((-707 (-557)) (-1286 $)) NIL (-12 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068))) ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-568)) ELT) (($ $ $) NIL (|has| |#1| (-568)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1742 (((-659 (-626 $)) $) 49 T ELT)) (-2447 (($ (-115) $) NIL T ELT) (($ (-115) (-659 $)) 431 T ELT)) (-3222 (((-3 (-659 $) #1#) $) NIL (|has| |#1| (-1131)) ELT)) (-3224 (((-3 (-2 (|:| |val| $) (|:| -2630 (-557))) #1#) $) NIL (|has| |#1| (-1068)) ELT)) (-3221 (((-3 (-659 $) #1#) $) 436 (|has| |#1| (-25)) ELT)) (-2000 (((-3 (-2 (|:| -4382 (-557)) (|:| |var| (-626 $))) #1#) $) 440 (|has| |#1| (-25)) ELT)) (-3223 (((-3 (-2 (|:| |var| (-626 $)) (|:| -2630 (-557))) #1#) $) NIL (|has| |#1| (-1131)) ELT) (((-3 (-2 (|:| |var| (-626 $)) (|:| -2630 (-557))) #1#) $ (-115)) NIL (|has| |#1| (-1068)) ELT) (((-3 (-2 (|:| |var| (-626 $)) (|:| -2630 (-557))) #1#) $ (-1196)) NIL (|has| |#1| (-1068)) ELT)) (-3030 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1196)) 51 T ELT)) (-2872 (($ $) NIL (-3955 (|has| |#1| (-485)) (|has| |#1| (-568))) ELT)) (-3231 (($ $ (-1196)) 251 (|has| |#1| (-568)) ELT) (($ $ (-1111 $)) 253 (|has| |#1| (-568)) ELT)) (-3000 (((-789) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2003 (((-114) $) 43 T ELT)) (-2002 ((|#1| $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 301 (|has| |#1| (-568)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#1| (-568)) ELT) (($ $ $) NIL (|has| |#1| (-568)) ELT)) (-1739 (((-114) $ $) NIL T ELT) (((-114) $ (-1196)) NIL T ELT)) (-1485 (($ $ (-1196)) 226 (|has| |#1| (-568)) ELT) (($ $) 224 (|has| |#1| (-568)) ELT)) (-1479 (($ $) 218 (|has| |#1| (-568)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) 306 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))) ELT)) (-4160 (((-417 $) $) NIL (|has| |#1| (-568)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-568)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-568)) ELT)) (-3884 (((-3 $ #1#) $ $) NIL (|has| |#1| (-568)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL (|has| |#1| (-568)) ELT)) (-4371 (($ $) 139 (|has| |#1| (-568)) ELT)) (-3073 (((-114) $) NIL (|has| $ (-1057 (-557))) ELT)) (-4196 (($ $ (-626 $) $) NIL T ELT) (($ $ (-659 (-626 $)) (-659 $)) 425 T ELT) (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-1 $ $))) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-1 $ (-659 $)))) NIL T ELT) (($ $ (-1196) (-1 $ (-659 $))) NIL T ELT) (($ $ (-1196) (-1 $ $)) NIL T ELT) (($ $ (-659 (-115)) (-659 (-1 $ $))) 379 T ELT) (($ $ (-659 (-115)) (-659 (-1 $ (-659 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-659 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT) (($ $ (-1196)) NIL (|has| |#1| (-629 (-546))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-629 (-546))) ELT) (($ $) NIL (|has| |#1| (-629 (-546))) ELT) (($ $ (-115) $ (-1196)) 366 (|has| |#1| (-629 (-546))) ELT) (($ $ (-659 (-115)) (-659 $) (-1196)) 365 (|has| |#1| (-629 (-546))) ELT) (($ $ (-659 (-1196)) (-659 (-789)) (-659 (-1 $ $))) NIL (|has| |#1| (-1068)) ELT) (($ $ (-659 (-1196)) (-659 (-789)) (-659 (-1 $ (-659 $)))) NIL (|has| |#1| (-1068)) ELT) (($ $ (-1196) (-789) (-1 $ (-659 $))) NIL (|has| |#1| (-1068)) ELT) (($ $ (-1196) (-789) (-1 $ $)) NIL (|has| |#1| (-1068)) ELT)) (-1785 (((-789) $) NIL (|has| |#1| (-568)) ELT)) (-2467 (($ $) 239 (|has| |#1| (-568)) ELT)) (-4228 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-659 $)) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-568)) ELT)) (-1744 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2468 (($ $) 249 (|has| |#1| (-568)) ELT)) (-3803 (($ $) 200 (|has| |#1| (-568)) ELT)) (-4186 (($ $ (-1196)) NIL (|has| |#1| (-1068)) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-1068)) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-1068)) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-1068)) ELT)) (-3394 (($ $) 74 (|has| |#1| (-568)) ELT)) (-3396 (((-1144 |#1| (-626 $)) $) 93 (|has| |#1| (-568)) ELT)) (-3601 (($ $) 317 (|has| $ (-1068)) ELT)) (-3913 (($ $) 177 (|has| |#1| (-568)) ELT)) (-4064 (($ $) 153 (|has| |#1| (-568)) ELT)) (-3911 (($ $) 173 (|has| |#1| (-568)) ELT)) (-4063 (($ $) 149 (|has| |#1| (-568)) ELT)) (-3909 (($ $) 169 (|has| |#1| (-568)) ELT)) (-4062 (($ $) 145 (|has| |#1| (-568)) ELT)) (-4400 (((-903 (-557)) $) NIL (|has| |#1| (-629 (-903 (-557)))) ELT) (((-903 (-391)) $) NIL (|has| |#1| (-629 (-903 (-391)))) ELT) (($ (-417 $)) NIL (|has| |#1| (-568)) ELT) (((-546) $) 363 (|has| |#1| (-629 (-546))) ELT)) (-3408 (($ $ $) NIL (|has| |#1| (-485)) ELT)) (-2822 (($ $ $) NIL (|has| |#1| (-485)) ELT)) (-4374 (((-875) $) 424 T ELT) (($ (-626 $)) 415 T ELT) (($ (-1196)) 381 T ELT) (($ |#1|) 337 T ELT) (($ $) NIL (|has| |#1| (-568)) ELT) (($ (-48)) 312 (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-557)))) ELT) (($ (-1144 |#1| (-626 $))) 95 (|has| |#1| (-1068)) ELT) (($ (-419 |#1|)) NIL (|has| |#1| (-568)) ELT) (($ (-963 (-419 |#1|))) NIL (|has| |#1| (-568)) ELT) (($ (-419 (-963 (-419 |#1|)))) NIL (|has| |#1| (-568)) ELT) (($ (-419 (-963 |#1|))) NIL (|has| |#1| (-568)) ELT) (($ (-963 |#1|)) NIL (|has| |#1| (-1068)) ELT) (($ (-557)) 34 (-3955 (|has| |#1| (-1057 (-557))) (|has| |#1| (-1068))) ELT) (($ (-419 (-557))) NIL (-3955 (|has| |#1| (-568)) (|has| |#1| (-1057 (-419 (-557))))) ELT)) (-3101 (((-709 $) $) NIL (|has| |#1| (-147)) ELT)) (-3526 (((-789)) NIL (|has| |#1| (-1068)) CONST)) (-2987 (($ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3502 (($ $ $) 220 (|has| |#1| (-568)) ELT)) (-3807 (($ $ $) 206 (|has| |#1| (-568)) ELT)) (-3809 (($ $ $) 210 (|has| |#1| (-568)) ELT)) (-3806 (($ $ $) 204 (|has| |#1| (-568)) ELT)) (-3808 (($ $ $) 208 (|has| |#1| (-568)) ELT)) (-2466 (((-114) (-115)) 10 T ELT)) (-1376 (((-114) $ $) 86 T ELT)) (-3916 (($ $) 183 (|has| |#1| (-568)) ELT)) (-3904 (($ $) 159 (|has| |#1| (-568)) ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3914 (($ $) 179 (|has| |#1| (-568)) ELT)) (-3902 (($ $) 155 (|has| |#1| (-568)) ELT)) (-3918 (($ $) 187 (|has| |#1| (-568)) ELT)) (-3906 (($ $) 163 (|has| |#1| (-568)) ELT)) (-2001 (($ (-1196) $) NIL T ELT) (($ (-1196) $ $) NIL T ELT) (($ (-1196) $ $ $) NIL T ELT) (($ (-1196) $ $ $ $) NIL T ELT) (($ (-1196) (-659 $)) NIL T ELT)) (-3811 (($ $) 214 (|has| |#1| (-568)) ELT)) (-3810 (($ $) 212 (|has| |#1| (-568)) ELT)) (-3919 (($ $) 189 (|has| |#1| (-568)) ELT)) (-3907 (($ $) 165 (|has| |#1| (-568)) ELT)) (-3917 (($ $) 185 (|has| |#1| (-568)) ELT)) (-3905 (($ $) 161 (|has| |#1| (-568)) ELT)) (-3915 (($ $) 181 (|has| |#1| (-568)) ELT)) (-3903 (($ $) 157 (|has| |#1| (-568)) ELT)) (-3801 (($ $) 192 (|has| |#1| (-568)) ELT)) (-3057 (($) 21 (-3955 (|has| |#1| (-25)) (-12 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068)))) CONST)) (-2471 (($ $) 243 (|has| |#1| (-568)) ELT)) (-3063 (($) 23 (|has| |#1| (-1131)) CONST)) (-3805 (($ $) 194 (|has| |#1| (-568)) ELT) (($ $ $) 196 (|has| |#1| (-568)) ELT)) (-2472 (($ $) 241 (|has| |#1| (-568)) ELT)) (-3068 (($ $ (-1196)) NIL (|has| |#1| (-1068)) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-1068)) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-1068)) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-1068)) ELT)) (-2470 (($ $) 245 (|has| |#1| (-568)) ELT)) (-3802 (($ $ $) 198 (|has| |#1| (-568)) ELT)) (-3452 (((-114) $ $) 88 T ELT)) (-4377 (($ (-1144 |#1| (-626 $)) (-1144 |#1| (-626 $))) 106 (|has| |#1| (-568)) ELT) (($ $ $) 42 (-3955 (|has| |#1| (-485)) (|has| |#1| (-568))) ELT)) (-4265 (($ $ $) 40 (-3955 (|has| |#1| (-21)) (-12 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068)))) ELT) (($ $) 29 (-3955 (|has| |#1| (-21)) (-12 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068)))) ELT)) (-4267 (($ $ $) 38 (-3955 (|has| |#1| (-25)) (-12 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068)))) ELT)) (** (($ $ $) 64 (|has| |#1| (-568)) ELT) (($ $ (-419 (-557))) 314 (|has| |#1| (-568)) ELT) (($ $ (-557)) 80 (-3955 (|has| |#1| (-485)) (|has| |#1| (-568))) ELT) (($ $ (-789)) 75 (|has| |#1| (-1131)) ELT) (($ $ (-936)) 84 (|has| |#1| (-1131)) ELT)) (* (($ (-419 (-557)) $) NIL (|has| |#1| (-568)) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-568)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT) (($ |#1| $) NIL (|has| |#1| (-1068)) ELT) (($ $ $) 36 (|has| |#1| (-1131)) ELT) (($ (-557) $) 32 (-3955 (|has| |#1| (-21)) (-12 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068)))) ELT) (($ (-789) $) NIL (-3955 (|has| |#1| (-25)) (-12 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068)))) ELT) (($ (-936) $) NIL (-3955 (|has| |#1| (-25)) (-12 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068)))) ELT))) -(((-326 |#1|) (-13 (-433 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1222)) (-6 (-162)) (-6 (-645)) (-6 (-1158)) (-15 -4270 ($ $)) (-15 -1788 ((-114) $)) (-15 -1787 ($ $ (-557))) (IF (|has| |#1| (-464)) (PROGN (-15 -3105 ((-417 (-1190 $)) (-1190 $))) (-15 -3106 ((-417 (-1190 $)) (-1190 $)))) |%noBranch|) (IF (|has| |#1| (-1057 (-557))) (-6 (-1057 (-48))) |%noBranch|)) |%noBranch|))) (-1120)) (T -326)) -((-4270 (*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1120)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1120)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1120)))) (-3105 (*1 *2 *3) (-12 (-5 *2 (-417 (-1190 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1190 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1120)))) (-3106 (*1 *2 *3) (-12 (-5 *2 (-417 (-1190 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1190 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1120))))) -((-4386 (((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)) 13 T ELT))) -(((-327 |#1| |#2|) (-10 -7 (-15 -4386 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) (-1120) (-1120)) (T -327)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-326 *6)) (-5 *1 (-327 *5 *6))))) -((-4157 (((-51) |#2| (-305 |#2|) (-789)) 40 T ELT) (((-51) |#2| (-305 |#2|)) 32 T ELT) (((-51) |#2| (-789)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1196)) 26 T ELT)) (-4246 (((-51) |#2| (-305 |#2|) (-419 (-557))) 59 T ELT) (((-51) |#2| (-305 |#2|)) 56 T ELT) (((-51) |#2| (-419 (-557))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1196)) 55 T ELT)) (-4210 (((-51) |#2| (-305 |#2|) (-419 (-557))) 54 T ELT) (((-51) |#2| (-305 |#2|)) 51 T ELT) (((-51) |#2| (-419 (-557))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1196)) 50 T ELT)) (-4207 (((-51) |#2| (-305 |#2|) (-557)) 47 T ELT) (((-51) |#2| (-305 |#2|)) 44 T ELT) (((-51) |#2| (-557)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1196)) 43 T ELT))) -(((-328 |#1| |#2|) (-10 -7 (-15 -4157 ((-51) (-1196))) (-15 -4157 ((-51) |#2|)) (-15 -4157 ((-51) |#2| (-789))) (-15 -4157 ((-51) |#2| (-305 |#2|))) (-15 -4157 ((-51) |#2| (-305 |#2|) (-789))) (-15 -4207 ((-51) (-1196))) (-15 -4207 ((-51) |#2|)) (-15 -4207 ((-51) |#2| (-557))) (-15 -4207 ((-51) |#2| (-305 |#2|))) (-15 -4207 ((-51) |#2| (-305 |#2|) (-557))) (-15 -4210 ((-51) (-1196))) (-15 -4210 ((-51) |#2|)) (-15 -4210 ((-51) |#2| (-419 (-557)))) (-15 -4210 ((-51) |#2| (-305 |#2|))) (-15 -4210 ((-51) |#2| (-305 |#2|) (-419 (-557)))) (-15 -4246 ((-51) (-1196))) (-15 -4246 ((-51) |#2|)) (-15 -4246 ((-51) |#2| (-419 (-557)))) (-15 -4246 ((-51) |#2| (-305 |#2|))) (-15 -4246 ((-51) |#2| (-305 |#2|) (-419 (-557))))) (-13 (-464) (-1057 (-557)) (-656 (-557))) (-13 (-27) (-1222) (-433 |#1|))) (T -328)) -((-4246 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-419 (-557))) (-4 *3 (-13 (-27) (-1222) (-433 *6))) (-4 *6 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-4246 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5))) (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-4246 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-557))) (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5))))) (-4246 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *4))))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-433 *4))))) (-4210 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-419 (-557))) (-4 *3 (-13 (-27) (-1222) (-433 *6))) (-4 *6 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-4210 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5))) (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-4210 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-557))) (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5))))) (-4210 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *4))))) (-4210 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-433 *4))))) (-4207 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *6))) (-4 *6 (-13 (-464) (-1057 *5) (-656 *5))) (-5 *5 (-557)) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-4207 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5))) (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-4207 (*1 *2 *3 *4) (-12 (-5 *4 (-557)) (-4 *5 (-13 (-464) (-1057 *4) (-656 *4))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5))))) (-4207 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *4))))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-433 *4))))) (-4157 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-789)) (-4 *3 (-13 (-27) (-1222) (-433 *6))) (-4 *6 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5))) (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *4 (-789)) (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5))))) (-4157 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *4))))) (-4157 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-433 *4)))))) -((-1789 (((-51) |#2| (-115) (-305 |#2|) (-659 |#2|)) 89 T ELT) (((-51) |#2| (-115) (-305 |#2|) (-305 |#2|)) 85 T ELT) (((-51) |#2| (-115) (-305 |#2|) |#2|) 87 T ELT) (((-51) (-305 |#2|) (-115) (-305 |#2|) |#2|) 88 T ELT) (((-51) (-659 |#2|) (-659 (-115)) (-305 |#2|) (-659 (-305 |#2|))) 81 T ELT) (((-51) (-659 |#2|) (-659 (-115)) (-305 |#2|) (-659 |#2|)) 83 T ELT) (((-51) (-659 (-305 |#2|)) (-659 (-115)) (-305 |#2|) (-659 |#2|)) 84 T ELT) (((-51) (-659 (-305 |#2|)) (-659 (-115)) (-305 |#2|) (-659 (-305 |#2|))) 82 T ELT) (((-51) (-305 |#2|) (-115) (-305 |#2|) (-659 |#2|)) 90 T ELT) (((-51) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|)) 86 T ELT))) -(((-329 |#1| |#2|) (-10 -7 (-15 -1789 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|))) (-15 -1789 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-659 |#2|))) (-15 -1789 ((-51) (-659 (-305 |#2|)) (-659 (-115)) (-305 |#2|) (-659 (-305 |#2|)))) (-15 -1789 ((-51) (-659 (-305 |#2|)) (-659 (-115)) (-305 |#2|) (-659 |#2|))) (-15 -1789 ((-51) (-659 |#2|) (-659 (-115)) (-305 |#2|) (-659 |#2|))) (-15 -1789 ((-51) (-659 |#2|) (-659 (-115)) (-305 |#2|) (-659 (-305 |#2|)))) (-15 -1789 ((-51) (-305 |#2|) (-115) (-305 |#2|) |#2|)) (-15 -1789 ((-51) |#2| (-115) (-305 |#2|) |#2|)) (-15 -1789 ((-51) |#2| (-115) (-305 |#2|) (-305 |#2|))) (-15 -1789 ((-51) |#2| (-115) (-305 |#2|) (-659 |#2|)))) (-13 (-568) (-629 (-546))) (-433 |#1|)) (T -329)) -((-1789 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-659 *3)) (-4 *3 (-433 *7)) (-4 *7 (-13 (-568) (-629 (-546)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *3)))) (-1789 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-433 *6)) (-4 *6 (-13 (-568) (-629 (-546)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) (-1789 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-433 *6)) (-4 *6 (-13 (-568) (-629 (-546)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) (-1789 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *5)) (-5 *4 (-115)) (-4 *5 (-433 *6)) (-4 *6 (-13 (-568) (-629 (-546)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *5)))) (-1789 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-659 *8)) (-5 *4 (-659 (-115))) (-5 *6 (-659 (-305 *8))) (-4 *8 (-433 *7)) (-5 *5 (-305 *8)) (-4 *7 (-13 (-568) (-629 (-546)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *8)))) (-1789 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-659 *7)) (-5 *4 (-659 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-568) (-629 (-546)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) (-1789 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-659 (-305 *8))) (-5 *4 (-659 (-115))) (-5 *5 (-305 *8)) (-5 *6 (-659 *8)) (-4 *8 (-433 *7)) (-4 *7 (-13 (-568) (-629 (-546)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *8)))) (-1789 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-659 (-305 *7))) (-5 *4 (-659 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-568) (-629 (-546)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) (-1789 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-659 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-568) (-629 (-546)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) (-1789 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-305 *6)) (-5 *4 (-115)) (-4 *6 (-433 *5)) (-4 *5 (-13 (-568) (-629 (-546)))) (-5 *2 (-51)) (-5 *1 (-329 *5 *6))))) -((-1791 (((-1232 (-944)) (-326 (-557)) (-326 (-557)) (-326 (-557)) (-1 (-229) (-229)) (-1108 (-229)) (-229) (-557) (-1178)) 67 T ELT) (((-1232 (-944)) (-326 (-557)) (-326 (-557)) (-326 (-557)) (-1 (-229) (-229)) (-1108 (-229)) (-229) (-557)) 68 T ELT) (((-1232 (-944)) (-326 (-557)) (-326 (-557)) (-326 (-557)) (-1 (-229) (-229)) (-1108 (-229)) (-1 (-229) (-229)) (-557) (-1178)) 64 T ELT) (((-1232 (-944)) (-326 (-557)) (-326 (-557)) (-326 (-557)) (-1 (-229) (-229)) (-1108 (-229)) (-1 (-229) (-229)) (-557)) 65 T ELT)) (-1790 (((-1 (-229) (-229)) (-229)) 66 T ELT))) -(((-330) (-10 -7 (-15 -1790 ((-1 (-229) (-229)) (-229))) (-15 -1791 ((-1232 (-944)) (-326 (-557)) (-326 (-557)) (-326 (-557)) (-1 (-229) (-229)) (-1108 (-229)) (-1 (-229) (-229)) (-557))) (-15 -1791 ((-1232 (-944)) (-326 (-557)) (-326 (-557)) (-326 (-557)) (-1 (-229) (-229)) (-1108 (-229)) (-1 (-229) (-229)) (-557) (-1178))) (-15 -1791 ((-1232 (-944)) (-326 (-557)) (-326 (-557)) (-326 (-557)) (-1 (-229) (-229)) (-1108 (-229)) (-229) (-557))) (-15 -1791 ((-1232 (-944)) (-326 (-557)) (-326 (-557)) (-326 (-557)) (-1 (-229) (-229)) (-1108 (-229)) (-229) (-557) (-1178))))) (T -330)) -((-1791 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-326 (-557))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1108 (-229))) (-5 *6 (-229)) (-5 *7 (-557)) (-5 *8 (-1178)) (-5 *2 (-1232 (-944))) (-5 *1 (-330)))) (-1791 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-326 (-557))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1108 (-229))) (-5 *6 (-229)) (-5 *7 (-557)) (-5 *2 (-1232 (-944))) (-5 *1 (-330)))) (-1791 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-326 (-557))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1108 (-229))) (-5 *6 (-557)) (-5 *7 (-1178)) (-5 *2 (-1232 (-944))) (-5 *1 (-330)))) (-1791 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-326 (-557))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1108 (-229))) (-5 *6 (-557)) (-5 *2 (-1232 (-944))) (-5 *1 (-330)))) (-1790 (*1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-330)) (-5 *3 (-229))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 26 T ELT)) (-3482 (((-659 (-1101)) $) NIL T ELT)) (-4259 (((-1196) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-4199 (($ $ (-419 (-557))) NIL T ELT) (($ $ (-419 (-557)) (-419 (-557))) NIL T ELT)) (-4202 (((-1174 (-2 (|:| |k| (-419 (-557))) (|:| |c| |#1|))) $) 20 T ELT)) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3436 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1786 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3908 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4066 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4246 (($ (-789) (-1174 (-2 (|:| |k| (-419 (-557))) (|:| |c| |#1|)))) NIL T ELT)) (-3912 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4065 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4152 (($) NIL T CONST)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4387 (($ $) 36 T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-2960 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL (|has| |#1| (-376)) ELT)) (-4151 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3602 (((-114) $) NIL T ELT)) (-3291 (((-114) $) NIL T ELT)) (-4055 (($) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4200 (((-419 (-557)) $) NIL T ELT) (((-419 (-557)) $ (-419 (-557))) 16 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3410 (($ $ (-557)) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4205 (($ $ (-936)) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-419 (-557))) NIL T ELT) (($ $ (-1101) (-419 (-557))) NIL T ELT) (($ $ (-659 (-1101)) (-659 (-419 (-557)))) NIL T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4370 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4240 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-29 (-557))) (|has| |#1| (-977)) (|has| |#1| (-1222))) (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-15 -4240 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -3482 ((-659 (-1196)) |#1|))))) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-376)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4160 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4197 (($ $ (-419 (-557))) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL (|has| |#1| (-568)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-1792 (((-419 (-557)) $) 17 T ELT)) (-3491 (($ (-1267 |#1| |#2| |#3|)) 11 T ELT)) (-2630 (((-1267 |#1| |#2| |#3|) $) 12 T ELT)) (-4371 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4196 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-557))))) ELT)) (-1785 (((-789) $) NIL (|has| |#1| (-376)) ELT)) (-4228 ((|#1| $ (-419 (-557))) NIL T ELT) (($ $ $) NIL (|has| (-419 (-557)) (-1131)) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4186 (($ $ (-1196)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT) (($ $ (-789)) NIL (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT)) (-4376 (((-419 (-557)) $) NIL T ELT)) (-3913 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4064 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4063 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4062 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3290 (($ $) 10 T ELT)) (-4374 (((-875) $) 42 T ELT) (($ (-557)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $) NIL (|has| |#1| (-568)) ELT)) (-4105 ((|#1| $ (-419 (-557))) 34 T ELT)) (-3101 (((-709 $) $) NIL (|has| |#1| (-147)) ELT)) (-3526 (((-789)) NIL T CONST)) (-4201 ((|#1| $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3904 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3914 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3902 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3906 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4198 ((|#1| $ (-419 (-557))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-557))))) (|has| |#1| (-15 -4374 (|#1| (-1196))))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3917 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3915 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3903 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $ (-1196)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT) (($ $ (-789)) NIL (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 28 T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 37 T ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-331 |#1| |#2| |#3|) (-13 (-1269 |#1|) (-812) (-10 -8 (-15 -3491 ($ (-1267 |#1| |#2| |#3|))) (-15 -2630 ((-1267 |#1| |#2| |#3|) $)) (-15 -1792 ((-419 (-557)) $)))) (-376) (-1196) |#1|) (T -331)) -((-3491 (*1 *1 *2) (-12 (-5 *2 (-1267 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1196)) (-14 *5 *3) (-5 *1 (-331 *3 *4 *5)))) (-2630 (*1 *2 *1) (-12 (-5 *2 (-1267 *3 *4 *5)) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1196)) (-14 *5 *3))) (-1792 (*1 *2 *1) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1196)) (-14 *5 *3)))) -((-3410 (((-2 (|:| -2630 (-789)) (|:| -4382 |#1|) (|:| |radicand| (-659 |#1|))) (-417 |#1|) (-789)) 35 T ELT)) (-4370 (((-659 (-2 (|:| -4382 (-789)) (|:| |logand| |#1|))) (-417 |#1|)) 40 T ELT))) -(((-332 |#1|) (-10 -7 (-15 -3410 ((-2 (|:| -2630 (-789)) (|:| -4382 |#1|) (|:| |radicand| (-659 |#1|))) (-417 |#1|) (-789))) (-15 -4370 ((-659 (-2 (|:| -4382 (-789)) (|:| |logand| |#1|))) (-417 |#1|)))) (-568)) (T -332)) -((-4370 (*1 *2 *3) (-12 (-5 *3 (-417 *4)) (-4 *4 (-568)) (-5 *2 (-659 (-2 (|:| -4382 (-789)) (|:| |logand| *4)))) (-5 *1 (-332 *4)))) (-3410 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *5)) (-4 *5 (-568)) (-5 *2 (-2 (|:| -2630 (-789)) (|:| -4382 *5) (|:| |radicand| (-659 *5)))) (-5 *1 (-332 *5)) (-5 *4 (-789))))) -((-3482 (((-659 |#2|) (-1190 |#4|)) 44 T ELT)) (-1797 ((|#3| (-557)) 47 T ELT)) (-1795 (((-1190 |#4|) (-1190 |#3|)) 30 T ELT)) (-1796 (((-1190 |#4|) (-1190 |#4|) (-557)) 66 T ELT)) (-1794 (((-1190 |#3|) (-1190 |#4|)) 21 T ELT)) (-4376 (((-659 (-789)) (-1190 |#4|) (-659 |#2|)) 41 T ELT)) (-1793 (((-1190 |#3|) (-1190 |#4|) (-659 |#2|) (-659 |#3|)) 35 T ELT))) -(((-333 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1793 ((-1190 |#3|) (-1190 |#4|) (-659 |#2|) (-659 |#3|))) (-15 -4376 ((-659 (-789)) (-1190 |#4|) (-659 |#2|))) (-15 -3482 ((-659 |#2|) (-1190 |#4|))) (-15 -1794 ((-1190 |#3|) (-1190 |#4|))) (-15 -1795 ((-1190 |#4|) (-1190 |#3|))) (-15 -1796 ((-1190 |#4|) (-1190 |#4|) (-557))) (-15 -1797 (|#3| (-557)))) (-813) (-859) (-1068) (-967 |#3| |#1| |#2|)) (T -333)) -((-1797 (*1 *2 *3) (-12 (-5 *3 (-557)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *2 (-1068)) (-5 *1 (-333 *4 *5 *2 *6)) (-4 *6 (-967 *2 *4 *5)))) (-1796 (*1 *2 *2 *3) (-12 (-5 *2 (-1190 *7)) (-5 *3 (-557)) (-4 *7 (-967 *6 *4 *5)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1068)) (-5 *1 (-333 *4 *5 *6 *7)))) (-1795 (*1 *2 *3) (-12 (-5 *3 (-1190 *6)) (-4 *6 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-1190 *7)) (-5 *1 (-333 *4 *5 *6 *7)) (-4 *7 (-967 *6 *4 *5)))) (-1794 (*1 *2 *3) (-12 (-5 *3 (-1190 *7)) (-4 *7 (-967 *6 *4 *5)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1068)) (-5 *2 (-1190 *6)) (-5 *1 (-333 *4 *5 *6 *7)))) (-3482 (*1 *2 *3) (-12 (-5 *3 (-1190 *7)) (-4 *7 (-967 *6 *4 *5)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1068)) (-5 *2 (-659 *5)) (-5 *1 (-333 *4 *5 *6 *7)))) (-4376 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 *8)) (-5 *4 (-659 *6)) (-4 *6 (-859)) (-4 *8 (-967 *7 *5 *6)) (-4 *5 (-813)) (-4 *7 (-1068)) (-5 *2 (-659 (-789))) (-5 *1 (-333 *5 *6 *7 *8)))) (-1793 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1190 *9)) (-5 *4 (-659 *7)) (-5 *5 (-659 *8)) (-4 *7 (-859)) (-4 *8 (-1068)) (-4 *9 (-967 *8 *6 *7)) (-4 *6 (-813)) (-5 *2 (-1190 *8)) (-5 *1 (-333 *6 *7 *8 *9))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 19 T ELT)) (-4202 (((-659 (-2 (|:| |gen| |#1|) (|:| -4371 (-557)))) $) 21 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3536 (((-789) $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) NIL T ELT)) (-3572 ((|#1| $) NIL T ELT)) (-2510 ((|#1| $ (-557)) NIL T ELT)) (-1800 (((-557) $ (-557)) NIL T ELT)) (-2928 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-2502 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1799 (($ (-1 (-557) (-557)) $) 11 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1798 (($ $ $) NIL (|has| (-557) (-812)) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-4105 (((-557) |#1| $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-2963 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) 30 (|has| |#1| (-859)) ELT)) (-4265 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-4267 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ (-557)) NIL T ELT) (($ (-557) |#1|) 28 T ELT))) -(((-334 |#1|) (-13 (-21) (-735 (-557)) (-335 |#1| (-557)) (-10 -7 (IF (|has| |#1| (-859)) (-6 (-859)) |%noBranch|))) (-1120)) (T -334)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-4202 (((-659 (-2 (|:| |gen| |#1|) (|:| -4371 |#2|))) $) 33 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-3536 (((-789) $) 34 T ELT)) (-4152 (($) 22 T CONST)) (-3573 (((-3 |#1| "failed") $) 38 T ELT)) (-3572 ((|#1| $) 39 T ELT)) (-2510 ((|#1| $ (-557)) 31 T ELT)) (-1800 ((|#2| $ (-557)) 32 T ELT)) (-2502 (($ (-1 |#1| |#1|) $) 28 T ELT)) (-1799 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-1798 (($ $ $) 27 (|has| |#2| (-812)) ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ |#1|) 37 T ELT)) (-4105 ((|#2| |#1| $) 30 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4267 (($ $ $) 18 T ELT) (($ |#1| $) 36 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ |#2| |#1|) 35 T ELT))) -(((-335 |#1| |#2|) (-142) (-1120) (-133)) (T -335)) -((-4267 (*1 *1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-133)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-133)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-133)) (-5 *2 (-789)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-133)) (-5 *2 (-659 (-2 (|:| |gen| *3) (|:| -4371 *4)))))) (-1800 (*1 *2 *1 *3) (-12 (-5 *3 (-557)) (-4 *1 (-335 *4 *2)) (-4 *4 (-1120)) (-4 *2 (-133)))) (-2510 (*1 *2 *1 *3) (-12 (-5 *3 (-557)) (-4 *1 (-335 *2 *4)) (-4 *4 (-133)) (-4 *2 (-1120)))) (-4105 (*1 *2 *3 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-133)))) (-1799 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-133)))) (-2502 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-133)))) (-1798 (*1 *1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-133)) (-4 *3 (-812))))) -(-13 (-133) (-1057 |t#1|) (-10 -8 (-15 -4267 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3536 ((-789) $)) (-15 -4202 ((-659 (-2 (|:| |gen| |t#1|) (|:| -4371 |t#2|))) $)) (-15 -1800 (|t#2| $ (-557))) (-15 -2510 (|t#1| $ (-557))) (-15 -4105 (|t#2| |t#1| $)) (-15 -1799 ($ (-1 |t#2| |t#2|) $)) (-15 -2502 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-812)) (-15 -1798 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-631 |#1|) . T) ((-628 (-875)) . T) ((-1057 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-4202 (((-659 (-2 (|:| |gen| |#1|) (|:| -4371 (-789)))) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3536 (((-789) $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) NIL T ELT)) (-3572 ((|#1| $) NIL T ELT)) (-2510 ((|#1| $ (-557)) NIL T ELT)) (-1800 (((-789) $ (-557)) NIL T ELT)) (-2502 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1799 (($ (-1 (-789) (-789)) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1798 (($ $ $) NIL (|has| (-789) (-812)) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-4105 (((-789) |#1| $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-789) |#1|) NIL T ELT))) -(((-336 |#1|) (-335 |#1| (-789)) (-1120)) (T -336)) -NIL -((-3921 (($ $) 72 T ELT)) (-1802 (($ $ |#2| |#3| $) 14 T ELT)) (-1803 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-2003 (((-114) $) 42 T ELT)) (-2002 ((|#2| $) 44 T ELT)) (-3884 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-3216 ((|#2| $) 68 T ELT)) (-4245 (((-659 |#2|) $) 56 T ELT)) (-1801 (($ $ $ (-789)) 37 T ELT)) (-4377 (($ $ |#2|) 60 T ELT))) -(((-337 |#1| |#2| |#3|) (-10 -7 (-15 -3921 (|#1| |#1|)) (-15 -3216 (|#2| |#1|)) (-15 -3884 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1801 (|#1| |#1| |#1| (-789))) (-15 -1802 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1803 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4245 ((-659 |#2|) |#1|)) (-15 -2002 (|#2| |#1|)) (-15 -2003 ((-114) |#1|)) (-15 -3884 ((-3 |#1| #1#) |#1| |#1|)) (-15 -4377 (|#1| |#1| |#2|))) (-338 |#2| |#3|) (-1068) (-812)) (T -337)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 68 (|has| |#1| (-568)) ELT)) (-2271 (($ $) 69 (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) 71 (|has| |#1| (-568)) ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3573 (((-3 (-557) #1="failed") $) 106 (|has| |#1| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) 104 (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 |#1| #1#) $) 101 T ELT)) (-3572 (((-557) $) 105 (|has| |#1| (-1057 (-557))) ELT) (((-419 (-557)) $) 103 (|has| |#1| (-1057 (-419 (-557)))) ELT) ((|#1| $) 102 T ELT)) (-4387 (($ $) 77 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-3921 (($ $) 90 (|has| |#1| (-464)) ELT)) (-1802 (($ $ |#1| |#2| $) 94 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-2647 (((-789) $) 97 T ELT)) (-4365 (((-114) $) 79 T ELT)) (-3292 (($ |#1| |#2|) 78 T ELT)) (-3219 ((|#2| $) 96 T ELT)) (-1803 (($ (-1 |#2| |#2|) $) 95 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3293 (($ $) 82 T ELT)) (-3590 ((|#1| $) 83 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-2003 (((-114) $) 100 T ELT)) (-2002 ((|#1| $) 99 T ELT)) (-3884 (((-3 $ "failed") $ $) 67 (|has| |#1| (-568)) ELT) (((-3 $ "failed") $ |#1|) 92 (|has| |#1| (-568)) ELT)) (-4376 ((|#2| $) 81 T ELT)) (-3216 ((|#1| $) 91 (|has| |#1| (-464)) ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 66 (|has| |#1| (-568)) ELT) (($ |#1|) 64 T ELT) (($ (-419 (-557))) 74 (-3955 (|has| |#1| (-1057 (-419 (-557)))) (|has| |#1| (-38 (-419 (-557))))) ELT)) (-4245 (((-659 |#1|) $) 98 T ELT)) (-4105 ((|#1| $ |#2|) 76 T ELT)) (-3101 (((-709 $) $) 65 (|has| |#1| (-147)) ELT)) (-3526 (((-789)) 37 T CONST)) (-1801 (($ $ $ (-789)) 93 (|has| |#1| (-175)) ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 70 (|has| |#1| (-568)) ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-557)) $) 73 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) 72 (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-338 |#1| |#2|) (-142) (-1068) (-812)) (T -338)) -((-2003 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812)) (-5 *2 (-114)))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-812)) (-4 *2 (-1068)))) (-4245 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812)) (-5 *2 (-659 *3)))) (-2647 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812)) (-5 *2 (-789)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-812)))) (-1803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812)))) (-1802 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-812)))) (-1801 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812)) (-4 *3 (-175)))) (-3884 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-812)) (-4 *2 (-568)))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-812)) (-4 *2 (-1068)) (-4 *2 (-464)))) (-3921 (*1 *1 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-812)) (-4 *2 (-464))))) -(-13 (-47 |t#1| |t#2|) (-424 |t#1|) (-10 -8 (-15 -2003 ((-114) $)) (-15 -2002 (|t#1| $)) (-15 -4245 ((-659 |t#1|) $)) (-15 -2647 ((-789) $)) (-15 -3219 (|t#2| $)) (-15 -1803 ($ (-1 |t#2| |t#2|) $)) (-15 -1802 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-175)) (-15 -1801 ($ $ $ (-789))) |%noBranch|) (IF (|has| |t#1| (-568)) (-15 -3884 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3216 (|t#1| $)) (-15 -3921 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) -3955 (|has| |#1| (-1057 (-419 (-557)))) (|has| |#1| (-38 (-419 (-557))))) ((-631 (-557)) . T) ((-631 |#1|) . T) ((-631 $) |has| |#1| (-568)) ((-628 (-875)) . T) ((-175) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-302) |has| |#1| (-568)) ((-424 |#1|) . T) ((-568) |has| |#1| (-568)) ((-664 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-666 |#1|) . T) ((-666 $) . T) ((-658 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-658 |#1|) |has| |#1| (-175)) ((-658 $) |has| |#1| (-568)) ((-735 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-735 |#1|) |has| |#1| (-175)) ((-735 $) |has| |#1| (-568)) ((-744) . T) ((-1057 (-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((-1057 (-557)) |has| |#1| (-1057 (-557))) ((-1057 |#1|) . T) ((-1070 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-1070 |#1|) . T) ((-1070 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-1075 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-1075 |#1|) . T) ((-1075 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2411 (((-1292) $ (-557) (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-1933 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-859)) ELT)) (-1931 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-859))) ELT)) (-3308 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-859)) ELT)) (-2194 (((-114) (-114)) NIL T ELT)) (-4216 ((|#1| $ (-557) |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| $ (-1253 (-557)) |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-1711 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-4138 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4152 (($) NIL T CONST)) (-2508 (($ $) NIL (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) NIL T ELT)) (-2592 (($ $) NIL (|has| |#1| (-1120)) ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3823 (($ |#1| $) NIL (|has| |#1| (-1120)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-1717 ((|#1| $ (-557) |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-557)) NIL T ELT)) (-3837 (((-557) (-1 (-114) |#1|) $) NIL T ELT) (((-557) |#1| $) NIL (|has| |#1| (-1120)) ELT) (((-557) |#1| $ (-557)) NIL (|has| |#1| (-1120)) ELT)) (-2195 (($ $ (-557)) NIL T ELT)) (-2196 (((-789) $) NIL T ELT)) (-3288 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4042 (($ (-789) |#1|) NIL T ELT)) (-2413 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3255 (($ $ $) NIL (|has| |#1| (-859)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3936 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2414 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-4035 (($ $ $ (-557)) NIL T ELT) (($ |#1| $ (-557)) NIL T ELT)) (-2515 (($ |#1| $ (-557)) NIL T ELT) (($ $ $ (-557)) NIL T ELT)) (-2416 (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) (-557) $) NIL T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-2197 (($ (-659 |#1|)) NIL T ELT)) (-4229 ((|#1| $) NIL (|has| (-557) (-859)) ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2412 (($ $ |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#1| $ (-557) |#1|) NIL T ELT) ((|#1| $ (-557)) NIL T ELT) (($ $ (-1253 (-557))) NIL T ELT)) (-1712 (($ $ (-1253 (-557))) NIL T ELT) (($ $ (-557)) NIL T ELT)) (-2516 (($ $ (-557)) NIL T ELT) (($ $ (-1253 (-557))) NIL T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-1932 (($ $ $ (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) NIL (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) NIL T ELT)) (-4219 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4230 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-4374 (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2963 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3083 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-339 |#1|) (-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2197 ($ (-659 |#1|))) (-15 -2196 ((-789) $)) (-15 -2195 ($ $ (-557))) (-15 -2194 ((-114) (-114))))) (-1236)) (T -339)) -((-2197 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1236)) (-5 *1 (-339 *3)))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-339 *3)) (-4 *3 (-1236)))) (-2195 (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-339 *3)) (-4 *3 (-1236)))) (-2194 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-339 *3)) (-4 *3 (-1236))))) -((-4360 (((-114) $) 47 T ELT)) (-4357 (((-789)) 23 T ELT)) (-3748 ((|#2| $) 51 T ELT) (($ $ (-936)) 123 T ELT)) (-3536 (((-789)) 124 T ELT)) (-1998 (($ (-1286 |#2|)) 20 T ELT)) (-2219 (((-114) $) 136 T ELT)) (-3532 ((|#2| $) 53 T ELT) (($ $ (-936)) 120 T ELT)) (-2222 (((-1190 |#2|) $) NIL T ELT) (((-1190 $) $ (-936)) 111 T ELT)) (-1805 (((-1190 |#2|) $) 95 T ELT)) (-1804 (((-1190 |#2|) $) 91 T ELT) (((-3 (-1190 |#2|) "failed") $ $) 88 T ELT)) (-1806 (($ $ (-1190 |#2|)) 58 T ELT)) (-4358 (((-843 (-936))) 30 T ELT) (((-936)) 48 T ELT)) (-4339 (((-136)) 27 T ELT)) (-4376 (((-843 (-936)) $) 32 T ELT) (((-936) $) 139 T ELT)) (-1807 (($) 130 T ELT)) (-3640 (((-1286 |#2|) $) NIL T ELT) (((-707 |#2|) (-1286 $)) 42 T ELT)) (-3101 (($ $) NIL T ELT) (((-709 $) $) 100 T ELT)) (-4361 (((-114) $) 45 T ELT))) -(((-340 |#1| |#2|) (-10 -7 (-15 -3101 ((-709 |#1|) |#1|)) (-15 -3536 ((-789))) (-15 -3101 (|#1| |#1|)) (-15 -1804 ((-3 (-1190 |#2|) "failed") |#1| |#1|)) (-15 -1804 ((-1190 |#2|) |#1|)) (-15 -1805 ((-1190 |#2|) |#1|)) (-15 -1806 (|#1| |#1| (-1190 |#2|))) (-15 -2219 ((-114) |#1|)) (-15 -1807 (|#1|)) (-15 -3748 (|#1| |#1| (-936))) (-15 -3532 (|#1| |#1| (-936))) (-15 -2222 ((-1190 |#1|) |#1| (-936))) (-15 -3748 (|#2| |#1|)) (-15 -3532 (|#2| |#1|)) (-15 -4376 ((-936) |#1|)) (-15 -4358 ((-936))) (-15 -2222 ((-1190 |#2|) |#1|)) (-15 -1998 (|#1| (-1286 |#2|))) (-15 -3640 ((-707 |#2|) (-1286 |#1|))) (-15 -3640 ((-1286 |#2|) |#1|)) (-15 -4357 ((-789))) (-15 -4358 ((-843 (-936)))) (-15 -4376 ((-843 (-936)) |#1|)) (-15 -4360 ((-114) |#1|)) (-15 -4361 ((-114) |#1|)) (-15 -4339 ((-136)))) (-341 |#2|) (-376)) (T -340)) -((-4339 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-136)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-4358 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-843 (-936))) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-4357 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-789)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-4358 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-936)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-3536 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-789)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 52 T ELT)) (-2271 (($ $) 51 T ELT)) (-2269 (((-114) $) 49 T ELT)) (-4360 (((-114) $) 111 T ELT)) (-4357 (((-789)) 107 T ELT)) (-3748 ((|#1| $) 159 T ELT) (($ $ (-936)) 156 (|has| |#1| (-381)) ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) 141 (|has| |#1| (-381)) ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4203 (($ $) 88 T ELT)) (-4399 (((-417 $) $) 87 T ELT)) (-1786 (((-114) $ $) 72 T ELT)) (-3536 (((-789)) 131 (|has| |#1| (-381)) ELT)) (-4152 (($) 22 T CONST)) (-3573 (((-3 |#1| "failed") $) 118 T ELT)) (-3572 ((|#1| $) 119 T ELT)) (-1998 (($ (-1286 |#1|)) 165 T ELT)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) 147 (|has| |#1| (-381)) ELT)) (-2961 (($ $ $) 68 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-3393 (($) 128 (|has| |#1| (-381)) ELT)) (-2960 (($ $ $) 69 T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 63 T ELT)) (-3232 (($) 143 (|has| |#1| (-381)) ELT)) (-1881 (((-114) $) 144 (|has| |#1| (-381)) ELT)) (-1972 (($ $ (-789)) 104 (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) 103 (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4151 (((-114) $) 86 T ELT)) (-4200 (((-936) $) 146 (|has| |#1| (-381)) ELT) (((-843 (-936)) $) 101 (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2639 (((-114) $) 40 T ELT)) (-2221 (($) 154 (|has| |#1| (-381)) ELT)) (-2219 (((-114) $) 153 (|has| |#1| (-381)) ELT)) (-3532 ((|#1| $) 160 T ELT) (($ $ (-936)) 157 (|has| |#1| (-381)) ELT)) (-3863 (((-709 $) $) 132 (|has| |#1| (-381)) ELT)) (-1783 (((-3 (-659 $) #1="failed") (-659 $) $) 65 T ELT)) (-2222 (((-1190 |#1|) $) 164 T ELT) (((-1190 $) $ (-936)) 158 (|has| |#1| (-381)) ELT)) (-2218 (((-936) $) 129 (|has| |#1| (-381)) ELT)) (-1805 (((-1190 |#1|) $) 150 (|has| |#1| (-381)) ELT)) (-1804 (((-1190 |#1|) $) 149 (|has| |#1| (-381)) ELT) (((-3 (-1190 |#1|) "failed") $ $) 148 (|has| |#1| (-381)) ELT)) (-1806 (($ $ (-1190 |#1|)) 151 (|has| |#1| (-381)) ELT)) (-2100 (($ $ $) 57 T ELT) (($ (-659 $)) 56 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2872 (($ $) 85 T ELT)) (-3864 (($) 133 (|has| |#1| (-381)) CONST)) (-2629 (($ (-936)) 130 (|has| |#1| (-381)) ELT)) (-4359 (((-114) $) 110 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-2638 (($) 152 (|has| |#1| (-381)) ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 55 T ELT)) (-3560 (($ $ $) 59 T ELT) (($ (-659 $)) 58 T ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) 140 (|has| |#1| (-381)) ELT)) (-4160 (((-417 $) $) 89 T ELT)) (-4358 (((-843 (-936))) 108 T ELT) (((-936)) 162 T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3884 (((-3 $ "failed") $ $) 53 T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 62 T ELT)) (-1785 (((-789) $) 71 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 70 T ELT)) (-1973 (((-789) $) 145 (|has| |#1| (-381)) ELT) (((-3 (-789) "failed") $ $) 102 (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4339 (((-136)) 116 T ELT)) (-4186 (($ $ (-789)) 136 (|has| |#1| (-381)) ELT) (($ $) 134 (|has| |#1| (-381)) ELT)) (-4376 (((-843 (-936)) $) 109 T ELT) (((-936) $) 161 T ELT)) (-3601 (((-1190 |#1|)) 163 T ELT)) (-1875 (($) 142 (|has| |#1| (-381)) ELT)) (-1807 (($) 155 (|has| |#1| (-381)) ELT)) (-3640 (((-1286 |#1|) $) 167 T ELT) (((-707 |#1|) (-1286 $)) 166 T ELT)) (-3102 (((-3 (-1286 $) "failed") (-707 $)) 139 (|has| |#1| (-381)) ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-557))) 81 T ELT) (($ |#1|) 117 T ELT)) (-3101 (($ $) 138 (|has| |#1| (-381)) ELT) (((-709 $) $) 100 (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2220 (((-1286 $)) 169 T ELT) (((-1286 $) (-936)) 168 T ELT)) (-2270 (((-114) $ $) 50 T ELT)) (-4361 (((-114) $) 112 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-4356 (($ $) 106 (|has| |#1| (-381)) ELT) (($ $ (-789)) 105 (|has| |#1| (-381)) ELT)) (-3068 (($ $ (-789)) 137 (|has| |#1| (-381)) ELT) (($ $) 135 (|has| |#1| (-381)) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ $) 80 T ELT) (($ $ |#1|) 115 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ (-557)) 84 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-557))) 83 T ELT) (($ (-419 (-557)) $) 82 T ELT) (($ $ |#1|) 114 T ELT) (($ |#1| $) 113 T ELT))) -(((-341 |#1|) (-142) (-376)) (T -341)) -((-2220 (*1 *2) (-12 (-4 *3 (-376)) (-5 *2 (-1286 *1)) (-4 *1 (-341 *3)))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-936)) (-4 *4 (-376)) (-5 *2 (-1286 *1)) (-4 *1 (-341 *4)))) (-3640 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1286 *3)))) (-3640 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-341 *4)) (-4 *4 (-376)) (-5 *2 (-707 *4)))) (-1998 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-376)) (-4 *1 (-341 *3)))) (-2222 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1190 *3)))) (-3601 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1190 *3)))) (-4358 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-936)))) (-4376 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-936)))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) (-2222 (*1 *2 *1 *3) (-12 (-5 *3 (-936)) (-4 *4 (-381)) (-4 *4 (-376)) (-5 *2 (-1190 *1)) (-4 *1 (-341 *4)))) (-3532 (*1 *1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) (-3748 (*1 *1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) (-1807 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-2221 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-114)))) (-2638 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-1806 (*1 *1 *1 *2) (-12 (-5 *2 (-1190 *3)) (-4 *3 (-381)) (-4 *1 (-341 *3)) (-4 *3 (-376)))) (-1805 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1190 *3)))) (-1804 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1190 *3)))) (-1804 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1190 *3))))) -(-13 (-1305 |t#1|) (-1057 |t#1|) (-10 -8 (-15 -2220 ((-1286 $))) (-15 -2220 ((-1286 $) (-936))) (-15 -3640 ((-1286 |t#1|) $)) (-15 -3640 ((-707 |t#1|) (-1286 $))) (-15 -1998 ($ (-1286 |t#1|))) (-15 -2222 ((-1190 |t#1|) $)) (-15 -3601 ((-1190 |t#1|))) (-15 -4358 ((-936))) (-15 -4376 ((-936) $)) (-15 -3532 (|t#1| $)) (-15 -3748 (|t#1| $)) (IF (|has| |t#1| (-381)) (PROGN (-6 (-363)) (-15 -2222 ((-1190 $) $ (-936))) (-15 -3532 ($ $ (-936))) (-15 -3748 ($ $ (-936))) (-15 -1807 ($)) (-15 -2221 ($)) (-15 -2219 ((-114) $)) (-15 -2638 ($)) (-15 -1806 ($ $ (-1190 |t#1|))) (-15 -1805 ((-1190 |t#1|) $)) (-15 -1804 ((-1190 |t#1|) $)) (-15 -1804 ((-3 (-1190 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-557))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -3955 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) . T) ((-631 (-557)) . T) ((-631 |#1|) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-175) . T) ((-236 $) |has| |#1| (-381)) ((-240) |has| |#1| (-381)) ((-239) |has| |#1| (-381)) ((-250) . T) ((-302) . T) ((-319) . T) ((-1305 |#1|) . T) ((-376) . T) ((-414) -3955 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-381) |has| |#1| (-381)) ((-363) |has| |#1| (-381)) ((-464) . T) ((-568) . T) ((-664 (-419 (-557))) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 (-419 (-557))) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-658 (-419 (-557))) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-735 (-419 (-557))) . T) ((-735 |#1|) . T) ((-735 $) . T) ((-744) . T) ((-938) . T) ((-1057 |#1|) . T) ((-1070 (-419 (-557))) . T) ((-1070 |#1|) . T) ((-1070 $) . T) ((-1075 (-419 (-557))) . T) ((-1075 |#1|) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1171) |has| |#1| (-381)) ((-1236) . T) ((-1241) . T) ((-1294 |#1|) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-1825 (($ (-1195) $) 101 T ELT)) (-1816 (($) 90 T ELT)) (-1808 (((-1139) (-1139)) 9 T ELT)) (-1815 (($) 91 T ELT)) (-1819 (($) 105 T ELT) (($ (-326 (-717))) 113 T ELT) (($ (-326 (-719))) 109 T ELT) (($ (-326 (-712))) 117 T ELT) (($ (-326 (-391))) 124 T ELT) (($ (-326 (-557))) 120 T ELT) (($ (-326 (-171 (-391)))) 128 T ELT)) (-1824 (($ (-1195) $) 102 T ELT)) (-1814 (($ (-659 (-875))) 92 T ELT)) (-1810 (((-1292) $) 88 T ELT)) (-1812 (((-3 (|:| |Null| #1="null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 32 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1823 (($ (-1139)) 59 T ELT)) (-1809 (((-1122) $) 29 T ELT)) (-1826 (($ (-1111 (-963 (-557))) $) 98 T ELT) (($ (-1111 (-963 (-557))) (-963 (-557)) $) 99 T ELT)) (-1822 (($ (-1139)) 100 T ELT)) (-1818 (($ (-1195) $) 130 T ELT) (($ (-1195) $ $) 131 T ELT)) (-1813 (($ (-1196) (-659 (-1196))) 89 T ELT)) (-1821 (($ (-1178)) 95 T ELT) (($ (-659 (-1178))) 93 T ELT)) (-4374 (((-875) $) 133 T ELT)) (-1811 (((-3 (|:| |nullBranch| #1#) (|:| |assignmentBranch| (-2 (|:| |var| (-1196)) (|:| |arrayIndex| (-659 (-963 (-557)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3669 (-875)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1196)) (|:| |rand| (-875)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1195)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3821 (-114)) (|:| -3820 (-2 (|:| |ints2Floats?| (-114)) (|:| -3669 (-875)))))) (|:| |blockBranch| (-659 $)) (|:| |commentBranch| (-659 (-1178))) (|:| |callBranch| (-1178)) (|:| |forBranch| (-2 (|:| -1636 (-1111 (-963 (-557)))) (|:| |span| (-963 (-557))) (|:| -3649 $))) (|:| |labelBranch| (-1139)) (|:| |loopBranch| (-2 (|:| |switch| (-1195)) (|:| -3649 $))) (|:| |commonBranch| (-2 (|:| -3968 (-1196)) (|:| |contents| (-659 (-1196))))) (|:| |printBranch| (-659 (-875)))) $) 50 T ELT)) (-1820 (($ (-1178)) 203 T ELT)) (-1817 (($ (-659 $)) 129 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2983 (($ (-1196) (-1178)) 136 T ELT) (($ (-1196) (-326 (-719))) 176 T ELT) (($ (-1196) (-326 (-717))) 177 T ELT) (($ (-1196) (-326 (-712))) 178 T ELT) (($ (-1196) (-707 (-719))) 139 T ELT) (($ (-1196) (-707 (-717))) 142 T ELT) (($ (-1196) (-707 (-712))) 145 T ELT) (($ (-1196) (-1286 (-719))) 148 T ELT) (($ (-1196) (-1286 (-717))) 151 T ELT) (($ (-1196) (-1286 (-712))) 154 T ELT) (($ (-1196) (-707 (-326 (-719)))) 157 T ELT) (($ (-1196) (-707 (-326 (-717)))) 160 T ELT) (($ (-1196) (-707 (-326 (-712)))) 163 T ELT) (($ (-1196) (-1286 (-326 (-719)))) 166 T ELT) (($ (-1196) (-1286 (-326 (-717)))) 169 T ELT) (($ (-1196) (-1286 (-326 (-712)))) 172 T ELT) (($ (-1196) (-659 (-963 (-557))) (-326 (-719))) 173 T ELT) (($ (-1196) (-659 (-963 (-557))) (-326 (-717))) 174 T ELT) (($ (-1196) (-659 (-963 (-557))) (-326 (-712))) 175 T ELT) (($ (-1196) (-326 (-557))) 200 T ELT) (($ (-1196) (-326 (-391))) 201 T ELT) (($ (-1196) (-326 (-171 (-391)))) 202 T ELT) (($ (-1196) (-707 (-326 (-557)))) 181 T ELT) (($ (-1196) (-707 (-326 (-391)))) 184 T ELT) (($ (-1196) (-707 (-326 (-171 (-391))))) 187 T ELT) (($ (-1196) (-1286 (-326 (-557)))) 190 T ELT) (($ (-1196) (-1286 (-326 (-391)))) 193 T ELT) (($ (-1196) (-1286 (-326 (-171 (-391))))) 196 T ELT) (($ (-1196) (-659 (-963 (-557))) (-326 (-557))) 197 T ELT) (($ (-1196) (-659 (-963 (-557))) (-326 (-391))) 198 T ELT) (($ (-1196) (-659 (-963 (-557))) (-326 (-171 (-391)))) 199 T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-342) (-13 (-1120) (-10 -8 (-15 -1826 ($ (-1111 (-963 (-557))) $)) (-15 -1826 ($ (-1111 (-963 (-557))) (-963 (-557)) $)) (-15 -1825 ($ (-1195) $)) (-15 -1824 ($ (-1195) $)) (-15 -1823 ($ (-1139))) (-15 -1822 ($ (-1139))) (-15 -1821 ($ (-1178))) (-15 -1821 ($ (-659 (-1178)))) (-15 -1820 ($ (-1178))) (-15 -1819 ($)) (-15 -1819 ($ (-326 (-717)))) (-15 -1819 ($ (-326 (-719)))) (-15 -1819 ($ (-326 (-712)))) (-15 -1819 ($ (-326 (-391)))) (-15 -1819 ($ (-326 (-557)))) (-15 -1819 ($ (-326 (-171 (-391))))) (-15 -1818 ($ (-1195) $)) (-15 -1818 ($ (-1195) $ $)) (-15 -2983 ($ (-1196) (-1178))) (-15 -2983 ($ (-1196) (-326 (-719)))) (-15 -2983 ($ (-1196) (-326 (-717)))) (-15 -2983 ($ (-1196) (-326 (-712)))) (-15 -2983 ($ (-1196) (-707 (-719)))) (-15 -2983 ($ (-1196) (-707 (-717)))) (-15 -2983 ($ (-1196) (-707 (-712)))) (-15 -2983 ($ (-1196) (-1286 (-719)))) (-15 -2983 ($ (-1196) (-1286 (-717)))) (-15 -2983 ($ (-1196) (-1286 (-712)))) (-15 -2983 ($ (-1196) (-707 (-326 (-719))))) (-15 -2983 ($ (-1196) (-707 (-326 (-717))))) (-15 -2983 ($ (-1196) (-707 (-326 (-712))))) (-15 -2983 ($ (-1196) (-1286 (-326 (-719))))) (-15 -2983 ($ (-1196) (-1286 (-326 (-717))))) (-15 -2983 ($ (-1196) (-1286 (-326 (-712))))) (-15 -2983 ($ (-1196) (-659 (-963 (-557))) (-326 (-719)))) (-15 -2983 ($ (-1196) (-659 (-963 (-557))) (-326 (-717)))) (-15 -2983 ($ (-1196) (-659 (-963 (-557))) (-326 (-712)))) (-15 -2983 ($ (-1196) (-326 (-557)))) (-15 -2983 ($ (-1196) (-326 (-391)))) (-15 -2983 ($ (-1196) (-326 (-171 (-391))))) (-15 -2983 ($ (-1196) (-707 (-326 (-557))))) (-15 -2983 ($ (-1196) (-707 (-326 (-391))))) (-15 -2983 ($ (-1196) (-707 (-326 (-171 (-391)))))) (-15 -2983 ($ (-1196) (-1286 (-326 (-557))))) (-15 -2983 ($ (-1196) (-1286 (-326 (-391))))) (-15 -2983 ($ (-1196) (-1286 (-326 (-171 (-391)))))) (-15 -2983 ($ (-1196) (-659 (-963 (-557))) (-326 (-557)))) (-15 -2983 ($ (-1196) (-659 (-963 (-557))) (-326 (-391)))) (-15 -2983 ($ (-1196) (-659 (-963 (-557))) (-326 (-171 (-391))))) (-15 -1817 ($ (-659 $))) (-15 -1816 ($)) (-15 -1815 ($)) (-15 -1814 ($ (-659 (-875)))) (-15 -1813 ($ (-1196) (-659 (-1196)))) (-15 -1812 ((-3 (|:| |Null| #1="null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1811 ((-3 (|:| |nullBranch| #1#) (|:| |assignmentBranch| (-2 (|:| |var| (-1196)) (|:| |arrayIndex| (-659 (-963 (-557)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3669 (-875)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1196)) (|:| |rand| (-875)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1195)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3821 (-114)) (|:| -3820 (-2 (|:| |ints2Floats?| (-114)) (|:| -3669 (-875)))))) (|:| |blockBranch| (-659 $)) (|:| |commentBranch| (-659 (-1178))) (|:| |callBranch| (-1178)) (|:| |forBranch| (-2 (|:| -1636 (-1111 (-963 (-557)))) (|:| |span| (-963 (-557))) (|:| -3649 $))) (|:| |labelBranch| (-1139)) (|:| |loopBranch| (-2 (|:| |switch| (-1195)) (|:| -3649 $))) (|:| |commonBranch| (-2 (|:| -3968 (-1196)) (|:| |contents| (-659 (-1196))))) (|:| |printBranch| (-659 (-875)))) $)) (-15 -1810 ((-1292) $)) (-15 -1809 ((-1122) $)) (-15 -1808 ((-1139) (-1139)))))) (T -342)) -((-1826 (*1 *1 *2 *1) (-12 (-5 *2 (-1111 (-963 (-557)))) (-5 *1 (-342)))) (-1826 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1111 (-963 (-557)))) (-5 *3 (-963 (-557))) (-5 *1 (-342)))) (-1825 (*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-342)))) (-1824 (*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-342)))) (-1823 (*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-342)))) (-1822 (*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-342)))) (-1821 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-342)))) (-1821 (*1 *1 *2) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-342)))) (-1820 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-342)))) (-1819 (*1 *1) (-5 *1 (-342))) (-1819 (*1 *1 *2) (-12 (-5 *2 (-326 (-717))) (-5 *1 (-342)))) (-1819 (*1 *1 *2) (-12 (-5 *2 (-326 (-719))) (-5 *1 (-342)))) (-1819 (*1 *1 *2) (-12 (-5 *2 (-326 (-712))) (-5 *1 (-342)))) (-1819 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-342)))) (-1819 (*1 *1 *2) (-12 (-5 *2 (-326 (-557))) (-5 *1 (-342)))) (-1819 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-342)))) (-1818 (*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-342)))) (-1818 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1178)) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-719))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-717))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-712))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-707 (-719))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-707 (-717))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-707 (-712))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1286 (-719))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1286 (-717))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1286 (-712))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-707 (-326 (-719)))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-707 (-326 (-717)))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-707 (-326 (-712)))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1286 (-326 (-719)))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1286 (-326 (-717)))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1286 (-326 (-712)))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-659 (-963 (-557)))) (-5 *4 (-326 (-719))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-659 (-963 (-557)))) (-5 *4 (-326 (-717))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-659 (-963 (-557)))) (-5 *4 (-326 (-712))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-557))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-391))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-171 (-391)))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-707 (-326 (-557)))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-707 (-326 (-391)))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-707 (-326 (-171 (-391))))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1286 (-326 (-557)))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1286 (-326 (-391)))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1286 (-326 (-171 (-391))))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-659 (-963 (-557)))) (-5 *4 (-326 (-557))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-659 (-963 (-557)))) (-5 *4 (-326 (-391))) (-5 *1 (-342)))) (-2983 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-659 (-963 (-557)))) (-5 *4 (-326 (-171 (-391)))) (-5 *1 (-342)))) (-1817 (*1 *1 *2) (-12 (-5 *2 (-659 (-342))) (-5 *1 (-342)))) (-1816 (*1 *1) (-5 *1 (-342))) (-1815 (*1 *1) (-5 *1 (-342))) (-1814 (*1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-342)))) (-1813 (*1 *1 *2 *3) (-12 (-5 *3 (-659 (-1196))) (-5 *2 (-1196)) (-5 *1 (-342)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-342)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1196)) (|:| |arrayIndex| (-659 (-963 (-557)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3669 (-875)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1196)) (|:| |rand| (-875)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1195)) (|:| |thenClause| (-342)) (|:| |elseClause| (-342)))) (|:| |returnBranch| (-2 (|:| -3821 (-114)) (|:| -3820 (-2 (|:| |ints2Floats?| (-114)) (|:| -3669 (-875)))))) (|:| |blockBranch| (-659 (-342))) (|:| |commentBranch| (-659 (-1178))) (|:| |callBranch| (-1178)) (|:| |forBranch| (-2 (|:| -1636 (-1111 (-963 (-557)))) (|:| |span| (-963 (-557))) (|:| -3649 (-342)))) (|:| |labelBranch| (-1139)) (|:| |loopBranch| (-2 (|:| |switch| (-1195)) (|:| -3649 (-342)))) (|:| |commonBranch| (-2 (|:| -3968 (-1196)) (|:| |contents| (-659 (-1196))))) (|:| |printBranch| (-659 (-875))))) (-5 *1 (-342)))) (-1810 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-342)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-342)))) (-1808 (*1 *2 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-342))))) -((-2965 (((-114) $ $) NIL T ELT)) (-1827 (((-114) $) 13 T ELT)) (-4066 (($ |#1|) 10 T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4062 (($ |#1|) 12 T ELT)) (-4374 (((-875) $) 19 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2448 ((|#1| $) 14 T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 21 T ELT))) -(((-343 |#1|) (-13 (-859) (-10 -8 (-15 -4066 ($ |#1|)) (-15 -4062 ($ |#1|)) (-15 -1827 ((-114) $)) (-15 -2448 (|#1| $)))) (-859)) (T -343)) -((-4066 (*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-859)))) (-4062 (*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-859)))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-343 *3)) (-4 *3 (-859)))) (-2448 (*1 *2 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-859))))) -((-1828 (((-342) (-1196) (-963 (-557))) 23 T ELT)) (-1829 (((-342) (-1196) (-963 (-557))) 27 T ELT)) (-2545 (((-342) (-1196) (-1111 (-963 (-557))) (-1111 (-963 (-557)))) 26 T ELT) (((-342) (-1196) (-963 (-557)) (-963 (-557))) 24 T ELT)) (-1830 (((-342) (-1196) (-963 (-557))) 31 T ELT))) -(((-344) (-10 -7 (-15 -1828 ((-342) (-1196) (-963 (-557)))) (-15 -2545 ((-342) (-1196) (-963 (-557)) (-963 (-557)))) (-15 -2545 ((-342) (-1196) (-1111 (-963 (-557))) (-1111 (-963 (-557))))) (-15 -1829 ((-342) (-1196) (-963 (-557)))) (-15 -1830 ((-342) (-1196) (-963 (-557)))))) (T -344)) -((-1830 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-963 (-557))) (-5 *2 (-342)) (-5 *1 (-344)))) (-1829 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-963 (-557))) (-5 *2 (-342)) (-5 *1 (-344)))) (-2545 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-1111 (-963 (-557)))) (-5 *2 (-342)) (-5 *1 (-344)))) (-2545 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-963 (-557))) (-5 *2 (-342)) (-5 *1 (-344)))) (-1828 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-963 (-557))) (-5 *2 (-342)) (-5 *1 (-344))))) -((-2965 (((-114) $ $) NIL T ELT)) (-1831 (((-518) $) 20 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1832 (((-975 (-789)) $) 18 T ELT)) (-1834 (((-258) $) 7 T ELT)) (-4374 (((-875) $) 26 T ELT)) (-2419 (((-975 (-187 (-141))) $) 16 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-1833 (((-659 (-885 (-1201) (-789))) $) 12 T ELT)) (-3452 (((-114) $ $) 22 T ELT))) -(((-345) (-13 (-1120) (-10 -8 (-15 -1834 ((-258) $)) (-15 -1833 ((-659 (-885 (-1201) (-789))) $)) (-15 -1832 ((-975 (-789)) $)) (-15 -2419 ((-975 (-187 (-141))) $)) (-15 -1831 ((-518) $))))) (T -345)) -((-1834 (*1 *2 *1) (-12 (-5 *2 (-258)) (-5 *1 (-345)))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-659 (-885 (-1201) (-789)))) (-5 *1 (-345)))) (-1832 (*1 *2 *1) (-12 (-5 *2 (-975 (-789))) (-5 *1 (-345)))) (-2419 (*1 *2 *1) (-12 (-5 *2 (-975 (-187 (-141)))) (-5 *1 (-345)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-345))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-4270 (($ $) 33 T ELT)) (-1837 (((-114) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1835 (((-1286 |#4|) $) 132 T ELT)) (-2178 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 31 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2638 (((-3 |#4| #1#) $) 36 T ELT)) (-1836 (((-1286 |#4|) $) 124 T ELT)) (-1838 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 41 T ELT) (($ |#4|) 43 T ELT) (($ |#1| |#1|) 45 T ELT) (($ |#1| |#1| (-557)) 47 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 49 T ELT)) (-3853 (((-2 (|:| -2553 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39 T ELT)) (-4374 (((-875) $) 17 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 14 T CONST)) (-3452 (((-114) $ $) 20 T ELT)) (-4265 (($ $) 27 T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 25 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 23 T ELT))) -(((-346 |#1| |#2| |#3| |#4|) (-13 (-349 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1836 ((-1286 |#4|) $)) (-15 -1835 ((-1286 |#4|) $)))) (-376) (-1262 |#1|) (-1262 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -346)) -((-1836 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-1286 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5)))) (-1835 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-1286 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5))))) -((-4386 (((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|)) 33 T ELT))) -(((-347 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4386 ((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|)))) (-376) (-1262 |#1|) (-1262 (-419 |#2|)) (-355 |#1| |#2| |#3|) (-376) (-1262 |#5|) (-1262 (-419 |#6|)) (-355 |#5| |#6| |#7|)) (T -347)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-346 *5 *6 *7 *8)) (-4 *5 (-376)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *9 (-376)) (-4 *10 (-1262 *9)) (-4 *11 (-1262 (-419 *10))) (-5 *2 (-346 *9 *10 *11 *12)) (-5 *1 (-347 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-355 *9 *10 *11))))) -((-1837 (((-114) $) 14 T ELT))) -(((-348 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1837 ((-114) |#1|))) (-349 |#2| |#3| |#4| |#5|) (-376) (-1262 |#2|) (-1262 (-419 |#3|)) (-355 |#2| |#3| |#4|)) (T -348)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-4270 (($ $) 34 T ELT)) (-1837 (((-114) $) 33 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2178 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 40 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-2638 (((-3 |#4| "failed") $) 32 T ELT)) (-1838 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 39 T ELT) (($ |#4|) 38 T ELT) (($ |#1| |#1|) 37 T ELT) (($ |#1| |#1| (-557)) 36 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 31 T ELT)) (-3853 (((-2 (|:| -2553 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 35 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT))) -(((-349 |#1| |#2| |#3| |#4|) (-142) (-376) (-1262 |t#1|) (-1262 (-419 |t#2|)) (-355 |t#1| |t#2| |t#3|)) (T -349)) -((-2178 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-425 *4 (-419 *4) *5 *6)))) (-1838 (*1 *1 *2) (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-4 *3 (-376)) (-4 *1 (-349 *3 *4 *5 *6)))) (-1838 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *1 (-349 *3 *4 *5 *2)) (-4 *2 (-355 *3 *4 *5)))) (-1838 (*1 *1 *2 *2) (-12 (-4 *2 (-376)) (-4 *3 (-1262 *2)) (-4 *4 (-1262 (-419 *3))) (-4 *1 (-349 *2 *3 *4 *5)) (-4 *5 (-355 *2 *3 *4)))) (-1838 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-557)) (-4 *2 (-376)) (-4 *4 (-1262 *2)) (-4 *5 (-1262 (-419 *4))) (-4 *1 (-349 *2 *4 *5 *6)) (-4 *6 (-355 *2 *4 *5)))) (-3853 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-2 (|:| -2553 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) (-4270 (*1 *1 *1) (-12 (-4 *1 (-349 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *3 (-1262 *2)) (-4 *4 (-1262 (-419 *3))) (-4 *5 (-355 *2 *3 *4)))) (-1837 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-114)))) (-2638 (*1 *2 *1) (|partial| -12 (-4 *1 (-349 *3 *4 *5 *2)) (-4 *3 (-376)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *2 (-355 *3 *4 *5)))) (-1838 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-376)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) (-4 *1 (-349 *4 *3 *5 *2)) (-4 *2 (-355 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -2178 ((-425 |t#2| (-419 |t#2|) |t#3| |t#4|) $)) (-15 -1838 ($ (-425 |t#2| (-419 |t#2|) |t#3| |t#4|))) (-15 -1838 ($ |t#4|)) (-15 -1838 ($ |t#1| |t#1|)) (-15 -1838 ($ |t#1| |t#1| (-557))) (-15 -3853 ((-2 (|:| -2553 (-425 |t#2| (-419 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4270 ($ $)) (-15 -1837 ((-114) $)) (-15 -2638 ((-3 |t#4| "failed") $)) (-15 -1838 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-1120) . T) ((-1236) . T)) -((-4196 (($ $ (-1196) |#2|) NIL T ELT) (($ $ (-659 (-1196)) (-659 |#2|)) 20 T ELT) (($ $ (-659 (-305 |#2|))) 15 T ELT) (($ $ (-305 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-659 |#2|) (-659 |#2|)) NIL T ELT)) (-4228 (($ $ |#2|) 11 T ELT))) -(((-350 |#1| |#2|) (-10 -7 (-15 -4228 (|#1| |#1| |#2|)) (-15 -4196 (|#1| |#1| (-659 |#2|) (-659 |#2|))) (-15 -4196 (|#1| |#1| |#2| |#2|)) (-15 -4196 (|#1| |#1| (-305 |#2|))) (-15 -4196 (|#1| |#1| (-659 (-305 |#2|)))) (-15 -4196 (|#1| |#1| (-659 (-1196)) (-659 |#2|))) (-15 -4196 (|#1| |#1| (-1196) |#2|))) (-351 |#2|) (-1120)) (T -350)) -NIL -((-4386 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-4196 (($ $ (-1196) |#1|) 17 (|has| |#1| (-526 (-1196) |#1|)) ELT) (($ $ (-659 (-1196)) (-659 |#1|)) 16 (|has| |#1| (-526 (-1196) |#1|)) ELT) (($ $ (-659 (-305 |#1|))) 15 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 14 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 12 (|has| |#1| (-321 |#1|)) ELT)) (-4228 (($ $ |#1|) 11 (|has| |#1| (-298 |#1| |#1|)) ELT))) -(((-351 |#1|) (-142) (-1120)) (T -351)) -((-4386 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1120))))) -(-13 (-10 -8 (-15 -4386 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-298 |t#1| |t#1|)) (-6 (-298 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-321 |t#1|)) (-6 (-321 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-526 (-1196) |t#1|)) (-6 (-526 (-1196) |t#1|)) |%noBranch|))) -(((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-526 (-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-1236) |has| |#1| (-298 |#1| |#1|))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3482 (((-659 (-1196)) $) NIL T ELT)) (-1839 (((-114)) 96 T ELT) (((-114) (-114)) 97 T ELT)) (-1741 (((-659 (-626 $)) $) NIL T ELT)) (-3910 (($ $) NIL T ELT)) (-4067 (($ $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1745 (($ $ (-305 $)) NIL T ELT) (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-659 (-626 $)) (-659 $)) NIL T ELT)) (-3436 (($ $) NIL T ELT)) (-3908 (($ $) NIL T ELT)) (-4066 (($ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-626 $) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 $ #1#) (-326 |#3|)) 76 T ELT) (((-3 $ #1#) (-1196)) 103 T ELT) (((-3 $ #1#) (-326 (-557))) 64 (|has| |#3| (-1057 (-557))) ELT) (((-3 $ #1#) (-419 (-963 (-557)))) 70 (|has| |#3| (-1057 (-557))) ELT) (((-3 $ #1#) (-963 (-557))) 65 (|has| |#3| (-1057 (-557))) ELT) (((-3 $ #1#) (-326 (-391))) 94 (|has| |#3| (-1057 (-391))) ELT) (((-3 $ #1#) (-419 (-963 (-391)))) 88 (|has| |#3| (-1057 (-391))) ELT) (((-3 $ #1#) (-963 (-391))) 83 (|has| |#3| (-1057 (-391))) ELT)) (-3572 (((-626 $) $) NIL T ELT) ((|#3| $) NIL T ELT) (($ (-326 |#3|)) 77 T ELT) (($ (-1196)) 104 T ELT) (($ (-326 (-557))) 66 (|has| |#3| (-1057 (-557))) ELT) (($ (-419 (-963 (-557)))) 71 (|has| |#3| (-1057 (-557))) ELT) (($ (-963 (-557))) 67 (|has| |#3| (-1057 (-557))) ELT) (($ (-326 (-391))) 95 (|has| |#3| (-1057 (-391))) ELT) (($ (-419 (-963 (-391)))) 89 (|has| |#3| (-1057 (-391))) ELT) (($ (-963 (-391))) 85 (|has| |#3| (-1057 (-391))) ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-4055 (($) 101 T ELT)) (-2970 (($ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-1740 (((-659 (-115)) $) NIL T ELT)) (-4021 (((-115) (-115)) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3072 (((-114) $) NIL (|has| $ (-1057 (-557))) ELT)) (-1738 (((-1190 $) (-626 $)) NIL (|has| $ (-1068)) ELT)) (-4386 (($ (-1 $ $) (-626 $)) NIL T ELT)) (-1743 (((-3 (-626 $) #1#) $) NIL T ELT)) (-1943 (($ $) 99 T ELT)) (-4370 (($ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1742 (((-659 (-626 $)) $) NIL T ELT)) (-2447 (($ (-115) $) 98 T ELT) (($ (-115) (-659 $)) NIL T ELT)) (-3030 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1196)) NIL T ELT)) (-3000 (((-789) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1739 (((-114) $ $) NIL T ELT) (((-114) $ (-1196)) NIL T ELT)) (-4371 (($ $) NIL T ELT)) (-3073 (((-114) $) NIL (|has| $ (-1057 (-557))) ELT)) (-4196 (($ $ (-626 $) $) NIL T ELT) (($ $ (-659 (-626 $)) (-659 $)) NIL T ELT) (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-1 $ $))) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-1 $ (-659 $)))) NIL T ELT) (($ $ (-1196) (-1 $ (-659 $))) NIL T ELT) (($ $ (-1196) (-1 $ $)) NIL T ELT) (($ $ (-659 (-115)) (-659 (-1 $ $))) NIL T ELT) (($ $ (-659 (-115)) (-659 (-1 $ (-659 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-659 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-4228 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-659 $)) NIL T ELT)) (-1744 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4186 (($ $ (-1196)) NIL T ELT) (($ $ (-659 (-1196))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT)) (-3601 (($ $) NIL (|has| $ (-1068)) ELT)) (-3909 (($ $) NIL T ELT)) (-4062 (($ $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-626 $)) NIL T ELT) (($ |#3|) NIL T ELT) (($ (-557)) NIL T ELT) (((-326 |#3|) $) 102 T ELT)) (-3526 (((-789)) NIL T CONST)) (-2987 (($ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-2466 (((-114) (-115)) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3904 (($ $) NIL T ELT)) (-3902 (($ $) NIL T ELT)) (-3903 (($ $) NIL T ELT)) (-3801 (($ $) NIL T ELT)) (-3057 (($) 100 T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $ (-1196)) NIL T ELT) (($ $ (-659 (-1196))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-789)) NIL T ELT) (($ $ (-936)) NIL T ELT)) (* (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-936) $) NIL T ELT))) -(((-352 |#1| |#2| |#3|) (-13 (-310) (-38 |#3|) (-1057 |#3|) (-915 (-1196)) (-10 -8 (-15 -3572 ($ (-326 |#3|))) (-15 -3573 ((-3 $ #1="failed") (-326 |#3|))) (-15 -3572 ($ (-1196))) (-15 -3573 ((-3 $ #1#) (-1196))) (-15 -4374 ((-326 |#3|) $)) (IF (|has| |#3| (-1057 (-557))) (PROGN (-15 -3572 ($ (-326 (-557)))) (-15 -3573 ((-3 $ #1#) (-326 (-557)))) (-15 -3572 ($ (-419 (-963 (-557))))) (-15 -3573 ((-3 $ #1#) (-419 (-963 (-557))))) (-15 -3572 ($ (-963 (-557)))) (-15 -3573 ((-3 $ #1#) (-963 (-557))))) |%noBranch|) (IF (|has| |#3| (-1057 (-391))) (PROGN (-15 -3572 ($ (-326 (-391)))) (-15 -3573 ((-3 $ #1#) (-326 (-391)))) (-15 -3572 ($ (-419 (-963 (-391))))) (-15 -3573 ((-3 $ #1#) (-419 (-963 (-391))))) (-15 -3572 ($ (-963 (-391)))) (-15 -3573 ((-3 $ #1#) (-963 (-391))))) |%noBranch|) (-15 -3801 ($ $)) (-15 -3436 ($ $)) (-15 -4371 ($ $)) (-15 -4370 ($ $)) (-15 -1943 ($ $)) (-15 -4066 ($ $)) (-15 -4062 ($ $)) (-15 -4067 ($ $)) (-15 -3902 ($ $)) (-15 -3903 ($ $)) (-15 -3904 ($ $)) (-15 -3908 ($ $)) (-15 -3909 ($ $)) (-15 -3910 ($ $)) (-15 -4055 ($)) (-15 -3482 ((-659 (-1196)) $)) (-15 -1839 ((-114))) (-15 -1839 ((-114) (-114))))) (-659 (-1196)) (-659 (-1196)) (-401)) (T -352)) -((-3572 (*1 *1 *2) (-12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-659 *2)) (-14 *4 (-659 *2)) (-4 *5 (-401)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-659 *2)) (-14 *4 (-659 *2)) (-4 *5 (-401)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-326 *5)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) (-4 *5 (-401)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-326 (-557))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1057 (-557))) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) (-4 *5 (-401)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-557))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1057 (-557))) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) (-4 *5 (-401)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-419 (-963 (-557)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1057 (-557))) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) (-4 *5 (-401)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-963 (-557)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1057 (-557))) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) (-4 *5 (-401)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-963 (-557))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1057 (-557))) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) (-4 *5 (-401)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-963 (-557))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1057 (-557))) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) (-4 *5 (-401)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1057 (-391))) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) (-4 *5 (-401)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1057 (-391))) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) (-4 *5 (-401)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-419 (-963 (-391)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1057 (-391))) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) (-4 *5 (-401)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-963 (-391)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1057 (-391))) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) (-4 *5 (-401)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-963 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1057 (-391))) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) (-4 *5 (-401)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-963 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1057 (-391))) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) (-4 *5 (-401)))) (-3801 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) (-4 *4 (-401)))) (-3436 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) (-4 *4 (-401)))) (-4371 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) (-4 *4 (-401)))) (-4370 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) (-4 *4 (-401)))) (-1943 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) (-4 *4 (-401)))) (-4066 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) (-4 *4 (-401)))) (-4062 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) (-4 *4 (-401)))) (-4067 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) (-4 *4 (-401)))) (-3902 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) (-4 *4 (-401)))) (-3903 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) (-4 *4 (-401)))) (-3904 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) (-4 *4 (-401)))) (-3908 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) (-4 *4 (-401)))) (-3909 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) (-4 *4 (-401)))) (-3910 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) (-4 *4 (-401)))) (-4055 (*1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) (-4 *4 (-401)))) (-3482 (*1 *2 *1) (-12 (-5 *2 (-659 (-1196))) (-5 *1 (-352 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-401)))) (-1839 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) (-4 *5 (-401)))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) (-4 *5 (-401))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-4360 (((-114) $) NIL T ELT)) (-4357 (((-789)) NIL T ELT)) (-3748 (((-923 |#1|) $) NIL T ELT) (($ $ (-936)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-923 |#1|) #1#) $) NIL T ELT)) (-3572 (((-923 |#1|) $) NIL T ELT)) (-1998 (($ (-1286 (-923 |#1|))) NIL T ELT)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-923 |#1|) (-381)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3393 (($) NIL (|has| (-923 |#1|) (-381)) ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-3232 (($) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1881 (((-114) $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1972 (($ $ (-789)) NIL (-3955 (|has| (-923 |#1|) (-147)) (|has| (-923 |#1|) (-381))) ELT) (($ $) NIL (-3955 (|has| (-923 |#1|) (-147)) (|has| (-923 |#1|) (-381))) ELT)) (-4151 (((-114) $) NIL T ELT)) (-4200 (((-936) $) NIL (|has| (-923 |#1|) (-381)) ELT) (((-843 (-936)) $) NIL (-3955 (|has| (-923 |#1|) (-147)) (|has| (-923 |#1|) (-381))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-2221 (($) NIL (|has| (-923 |#1|) (-381)) ELT)) (-2219 (((-114) $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-3532 (((-923 |#1|) $) NIL T ELT) (($ $ (-936)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-3863 (((-709 $) $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2222 (((-1190 (-923 |#1|)) $) NIL T ELT) (((-1190 $) $ (-936)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-2218 (((-936) $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1805 (((-1190 (-923 |#1|)) $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1804 (((-1190 (-923 |#1|)) $) NIL (|has| (-923 |#1|) (-381)) ELT) (((-3 (-1190 (-923 |#1|)) #1#) $ $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1806 (($ $ (-1190 (-923 |#1|))) NIL (|has| (-923 |#1|) (-381)) ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3864 (($) NIL (|has| (-923 |#1|) (-381)) CONST)) (-2629 (($ (-936)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-4359 (((-114) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2638 (($) NIL (|has| (-923 |#1|) (-381)) ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) NIL (|has| (-923 |#1|) (-381)) ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-4358 (((-843 (-936))) NIL T ELT) (((-936)) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-1973 (((-789) $) NIL (|has| (-923 |#1|) (-381)) ELT) (((-3 (-789) #1#) $ $) NIL (-3955 (|has| (-923 |#1|) (-147)) (|has| (-923 |#1|) (-381))) ELT)) (-4339 (((-136)) NIL T ELT)) (-4186 (($ $ (-789)) NIL (|has| (-923 |#1|) (-381)) ELT) (($ $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-4376 (((-843 (-936)) $) NIL T ELT) (((-936) $) NIL T ELT)) (-3601 (((-1190 (-923 |#1|))) NIL T ELT)) (-1875 (($) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1807 (($) NIL (|has| (-923 |#1|) (-381)) ELT)) (-3640 (((-1286 (-923 |#1|)) $) NIL T ELT) (((-707 (-923 |#1|)) (-1286 $)) NIL T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ (-923 |#1|)) NIL T ELT)) (-3101 (($ $) NIL (|has| (-923 |#1|) (-381)) ELT) (((-709 $) $) NIL (-3955 (|has| (-923 |#1|) (-147)) (|has| (-923 |#1|) (-381))) ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 $)) NIL T ELT) (((-1286 $) (-936)) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-4356 (($ $) NIL (|has| (-923 |#1|) (-381)) ELT) (($ $ (-789)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-3068 (($ $ (-789)) NIL (|has| (-923 |#1|) (-381)) ELT) (($ $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ $) NIL T ELT) (($ $ (-923 |#1|)) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ $ (-923 |#1|)) NIL T ELT) (($ (-923 |#1|) $) NIL T ELT))) -(((-353 |#1| |#2|) (-341 (-923 |#1|)) (-936) (-936)) (T -353)) -NIL -((-1848 (((-2 (|:| |num| (-1286 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1998 (($ (-1286 (-419 |#3|)) (-1286 $)) NIL T ELT) (($ (-1286 (-419 |#3|))) NIL T ELT) (($ (-1286 |#3|) |#3|) 172 T ELT)) (-1853 (((-1286 $) (-1286 $)) 156 T ELT)) (-1840 (((-659 (-659 |#2|))) 126 T ELT)) (-1865 (((-114) |#2| |#2|) 76 T ELT)) (-3921 (($ $) 148 T ELT)) (-3795 (((-789)) 171 T ELT)) (-1854 (((-1286 $) (-1286 $)) 219 T ELT)) (-1841 (((-659 (-963 |#2|)) (-1196)) 115 T ELT)) (-1857 (((-114) $) 168 T ELT)) (-1856 (((-114) $) 27 T ELT) (((-114) $ |#2|) 31 T ELT) (((-114) $ |#3|) 223 T ELT)) (-1843 (((-3 |#3| #1="failed")) 52 T ELT)) (-1867 (((-789)) 183 T ELT)) (-4228 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1844 (((-3 |#3| #1#)) 71 T ELT)) (-4186 (($ $ (-1 (-419 |#3|) (-419 |#3|))) NIL T ELT) (($ $ (-1 (-419 |#3|) (-419 |#3|)) (-789)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196))) NIL T ELT) (($ $ (-1196)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $) NIL T ELT)) (-1855 (((-1286 $) (-1286 $)) 162 T ELT)) (-1842 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1866 (((-114)) 34 T ELT))) -(((-354 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4186 (|#1| |#1|)) (-15 -4186 (|#1| |#1| (-789))) (-15 -4186 (|#1| |#1| (-1196))) (-15 -4186 (|#1| |#1| (-659 (-1196)))) (-15 -4186 (|#1| |#1| (-1196) (-789))) (-15 -4186 (|#1| |#1| (-659 (-1196)) (-659 (-789)))) (-15 -1840 ((-659 (-659 |#2|)))) (-15 -1841 ((-659 (-963 |#2|)) (-1196))) (-15 -1842 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1843 ((-3 |#3| #1="failed"))) (-15 -1844 ((-3 |#3| #1#))) (-15 -4228 (|#2| |#1| |#2| |#2|)) (-15 -3921 (|#1| |#1|)) (-15 -4186 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1856 ((-114) |#1| |#3|)) (-15 -1856 ((-114) |#1| |#2|)) (-15 -1998 (|#1| (-1286 |#3|) |#3|)) (-15 -1848 ((-2 (|:| |num| (-1286 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1853 ((-1286 |#1|) (-1286 |#1|))) (-15 -1854 ((-1286 |#1|) (-1286 |#1|))) (-15 -1855 ((-1286 |#1|) (-1286 |#1|))) (-15 -1856 ((-114) |#1|)) (-15 -1857 ((-114) |#1|)) (-15 -1865 ((-114) |#2| |#2|)) (-15 -1866 ((-114))) (-15 -1867 ((-789))) (-15 -3795 ((-789))) (-15 -4186 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-789))) (-15 -4186 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -1998 (|#1| (-1286 (-419 |#3|)))) (-15 -1998 (|#1| (-1286 (-419 |#3|)) (-1286 |#1|)))) (-355 |#2| |#3| |#4|) (-1241) (-1262 |#2|) (-1262 (-419 |#3|))) (T -354)) -((-3795 (*1 *2) (-12 (-4 *4 (-1241)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-789)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-1867 (*1 *2) (-12 (-4 *4 (-1241)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-789)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-1866 (*1 *2) (-12 (-4 *4 (-1241)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-114)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-1865 (*1 *2 *3 *3) (-12 (-4 *3 (-1241)) (-4 *5 (-1262 *3)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-114)) (-5 *1 (-354 *4 *3 *5 *6)) (-4 *4 (-355 *3 *5 *6)))) (-1844 (*1 *2) (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1262 (-419 *2))) (-4 *2 (-1262 *4)) (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) (-1843 (*1 *2) (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1262 (-419 *2))) (-4 *2 (-1262 *4)) (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *5 (-1241)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-5 *2 (-659 (-963 *5))) (-5 *1 (-354 *4 *5 *6 *7)) (-4 *4 (-355 *5 *6 *7)))) (-1840 (*1 *2) (-12 (-4 *4 (-1241)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-659 (-659 *4))) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1848 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) 222 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 111 (|has| (-419 |#2|) (-376)) ELT)) (-2271 (($ $) 112 (|has| (-419 |#2|) (-376)) ELT)) (-2269 (((-114) $) 114 (|has| (-419 |#2|) (-376)) ELT)) (-1988 (((-707 (-419 |#2|)) (-1286 $)) 58 T ELT) (((-707 (-419 |#2|))) 74 T ELT)) (-3748 (((-419 |#2|) $) 64 T ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) 164 (|has| (-419 |#2|) (-363)) ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4203 (($ $) 131 (|has| (-419 |#2|) (-376)) ELT)) (-4399 (((-417 $) $) 132 (|has| (-419 |#2|) (-376)) ELT)) (-1786 (((-114) $ $) 122 (|has| (-419 |#2|) (-376)) ELT)) (-3536 (((-789)) 105 (|has| (-419 |#2|) (-381)) ELT)) (-1862 (((-114)) 239 T ELT)) (-1861 (((-114) |#1|) 238 T ELT) (((-114) |#2|) 237 T ELT)) (-4152 (($) 22 T CONST)) (-3573 (((-3 (-557) #1="failed") $) 191 (|has| (-419 |#2|) (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) 189 (|has| (-419 |#2|) (-1057 (-419 (-557)))) ELT) (((-3 (-419 |#2|) #1#) $) 186 T ELT)) (-3572 (((-557) $) 190 (|has| (-419 |#2|) (-1057 (-557))) ELT) (((-419 (-557)) $) 188 (|has| (-419 |#2|) (-1057 (-419 (-557)))) ELT) (((-419 |#2|) $) 187 T ELT)) (-1998 (($ (-1286 (-419 |#2|)) (-1286 $)) 60 T ELT) (($ (-1286 (-419 |#2|))) 77 T ELT) (($ (-1286 |#2|) |#2|) 221 T ELT)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| (-419 |#2|) (-363)) ELT)) (-2961 (($ $ $) 126 (|has| (-419 |#2|) (-376)) ELT)) (-1987 (((-707 (-419 |#2|)) $ (-1286 $)) 65 T ELT) (((-707 (-419 |#2|)) $) 72 T ELT)) (-2491 (((-707 (-557)) (-707 $)) 183 (|has| (-419 |#2|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) 182 (|has| (-419 |#2|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-419 |#2|))) (|:| |vec| (-1286 (-419 |#2|)))) (-707 $) (-1286 $)) 181 T ELT) (((-707 (-419 |#2|)) (-707 $)) 180 T ELT)) (-1853 (((-1286 $) (-1286 $)) 227 T ELT)) (-4270 (($ |#3|) 175 T ELT) (((-3 $ "failed") (-419 |#3|)) 172 (|has| (-419 |#2|) (-376)) ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-1840 (((-659 (-659 |#1|))) 208 (|has| |#1| (-381)) ELT)) (-1865 (((-114) |#1| |#1|) 243 T ELT)) (-3509 (((-936)) 66 T ELT)) (-3393 (($) 108 (|has| (-419 |#2|) (-381)) ELT)) (-1860 (((-114)) 236 T ELT)) (-1859 (((-114) |#1|) 235 T ELT) (((-114) |#2|) 234 T ELT)) (-2960 (($ $ $) 125 (|has| (-419 |#2|) (-376)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 120 (|has| (-419 |#2|) (-376)) ELT)) (-3921 (($ $) 214 T ELT)) (-3232 (($) 166 (|has| (-419 |#2|) (-363)) ELT)) (-1881 (((-114) $) 167 (|has| (-419 |#2|) (-363)) ELT)) (-1972 (($ $ (-789)) 158 (|has| (-419 |#2|) (-363)) ELT) (($ $) 157 (|has| (-419 |#2|) (-363)) ELT)) (-4151 (((-114) $) 133 (|has| (-419 |#2|) (-376)) ELT)) (-4200 (((-936) $) 169 (|has| (-419 |#2|) (-363)) ELT) (((-843 (-936)) $) 155 (|has| (-419 |#2|) (-363)) ELT)) (-2639 (((-114) $) 40 T ELT)) (-3795 (((-789)) 246 T ELT)) (-1854 (((-1286 $) (-1286 $)) 228 T ELT)) (-3532 (((-419 |#2|) $) 63 T ELT)) (-1841 (((-659 (-963 |#1|)) (-1196)) 209 (|has| |#1| (-376)) ELT)) (-3863 (((-709 $) $) 159 (|has| (-419 |#2|) (-363)) ELT)) (-1783 (((-3 (-659 $) #2="failed") (-659 $) $) 129 (|has| (-419 |#2|) (-376)) ELT)) (-2222 ((|#3| $) 56 (|has| (-419 |#2|) (-376)) ELT)) (-2218 (((-936) $) 107 (|has| (-419 |#2|) (-381)) ELT)) (-3478 ((|#3| $) 173 T ELT)) (-2492 (((-707 (-557)) (-1286 $)) 185 (|has| (-419 |#2|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) 184 (|has| (-419 |#2|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-419 |#2|))) (|:| |vec| (-1286 (-419 |#2|)))) (-1286 $) $) 179 T ELT) (((-707 (-419 |#2|)) (-1286 $)) 178 T ELT)) (-2100 (($ (-659 $)) 118 (|has| (-419 |#2|) (-376)) ELT) (($ $ $) 117 (|has| (-419 |#2|) (-376)) ELT)) (-3658 (((-1178) $) 11 T ELT)) (-1849 (((-707 (-419 |#2|))) 223 T ELT)) (-1851 (((-707 (-419 |#2|))) 225 T ELT)) (-2872 (($ $) 134 (|has| (-419 |#2|) (-376)) ELT)) (-1846 (($ (-1286 |#2|) |#2|) 219 T ELT)) (-1850 (((-707 (-419 |#2|))) 224 T ELT)) (-1852 (((-707 (-419 |#2|))) 226 T ELT)) (-1845 (((-2 (|:| |num| (-707 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 218 T ELT)) (-1847 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) 220 T ELT)) (-1858 (((-1286 $)) 232 T ELT)) (-4346 (((-1286 $)) 233 T ELT)) (-1857 (((-114) $) 231 T ELT)) (-1856 (((-114) $) 230 T ELT) (((-114) $ |#1|) 217 T ELT) (((-114) $ |#2|) 216 T ELT)) (-3864 (($) 160 (|has| (-419 |#2|) (-363)) CONST)) (-2629 (($ (-936)) 106 (|has| (-419 |#2|) (-381)) ELT)) (-1843 (((-3 |#2| "failed")) 211 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-1867 (((-789)) 245 T ELT)) (-2638 (($) 177 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 119 (|has| (-419 |#2|) (-376)) ELT)) (-3560 (($ (-659 $)) 116 (|has| (-419 |#2|) (-376)) ELT) (($ $ $) 115 (|has| (-419 |#2|) (-376)) ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) 163 (|has| (-419 |#2|) (-363)) ELT)) (-4160 (((-417 $) $) 130 (|has| (-419 |#2|) (-376)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| (-419 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 127 (|has| (-419 |#2|) (-376)) ELT)) (-3884 (((-3 $ "failed") $ $) 110 (|has| (-419 |#2|) (-376)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 121 (|has| (-419 |#2|) (-376)) ELT)) (-1785 (((-789) $) 123 (|has| (-419 |#2|) (-376)) ELT)) (-4228 ((|#1| $ |#1| |#1|) 213 T ELT)) (-1844 (((-3 |#2| "failed")) 212 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 124 (|has| (-419 |#2|) (-376)) ELT)) (-4185 (((-419 |#2|) (-1286 $)) 59 T ELT) (((-419 |#2|)) 73 T ELT)) (-1973 (((-789) $) 168 (|has| (-419 |#2|) (-363)) ELT) (((-3 (-789) "failed") $ $) 156 (|has| (-419 |#2|) (-363)) ELT)) (-4186 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 142 (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-789)) 141 (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) 215 T ELT) (($ $ (-659 (-1196)) (-659 (-789))) 147 (-3955 (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196)))) (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-2959 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-1196) (-789)) 146 (-3955 (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196)))) (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-2959 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-659 (-1196))) 145 (-3955 (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196)))) (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-2959 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-1196)) 143 (-3955 (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196)))) (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-2959 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-789)) 153 (-3955 (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-239))) (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-240))) (-2959 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) 151 (-3955 (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-239))) (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-240))) (-2959 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-2637 (((-707 (-419 |#2|)) (-1286 $) (-1 (-419 |#2|) (-419 |#2|))) 171 (|has| (-419 |#2|) (-376)) ELT)) (-3601 ((|#3|) 176 T ELT)) (-1875 (($) 165 (|has| (-419 |#2|) (-363)) ELT)) (-3640 (((-1286 (-419 |#2|)) $ (-1286 $)) 62 T ELT) (((-707 (-419 |#2|)) (-1286 $) (-1286 $)) 61 T ELT) (((-1286 (-419 |#2|)) $) 79 T ELT) (((-707 (-419 |#2|)) (-1286 $)) 78 T ELT)) (-4400 (((-1286 (-419 |#2|)) $) 76 T ELT) (($ (-1286 (-419 |#2|))) 75 T ELT) ((|#3| $) 192 T ELT) (($ |#3|) 174 T ELT)) (-3102 (((-3 (-1286 $) "failed") (-707 $)) 162 (|has| (-419 |#2|) (-363)) ELT)) (-1855 (((-1286 $) (-1286 $)) 229 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ (-419 |#2|)) 49 T ELT) (($ (-419 (-557))) 104 (-3955 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-1057 (-419 (-557))))) ELT) (($ $) 109 (|has| (-419 |#2|) (-376)) ELT)) (-3101 (($ $) 161 (|has| (-419 |#2|) (-363)) ELT) (((-709 $) $) 55 (|has| (-419 |#2|) (-147)) ELT)) (-2836 ((|#3| $) 57 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1864 (((-114)) 242 T ELT)) (-1863 (((-114) |#1|) 241 T ELT) (((-114) |#2|) 240 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2220 (((-1286 $)) 80 T ELT)) (-2270 (((-114) $ $) 113 (|has| (-419 |#2|) (-376)) ELT)) (-1842 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 210 T ELT)) (-1866 (((-114)) 244 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 140 (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-789)) 139 (|has| (-419 |#2|) (-376)) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 150 (-3955 (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196)))) (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-2959 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-1196) (-789)) 149 (-3955 (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196)))) (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-2959 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-659 (-1196))) 148 (-3955 (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196)))) (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-2959 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-1196)) 144 (-3955 (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196)))) (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-2959 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-789)) 154 (-3955 (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-239))) (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-240))) (-2959 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) 152 (-3955 (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-239))) (-2959 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-240))) (-2959 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ $) 138 (|has| (-419 |#2|) (-376)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ (-557)) 135 (|has| (-419 |#2|) (-376)) ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 |#2|)) 51 T ELT) (($ (-419 |#2|) $) 50 T ELT) (($ (-419 (-557)) $) 137 (|has| (-419 |#2|) (-376)) ELT) (($ $ (-419 (-557))) 136 (|has| (-419 |#2|) (-376)) ELT))) -(((-355 |#1| |#2| |#3|) (-142) (-1241) (-1262 |t#1|) (-1262 (-419 |t#2|))) (T -355)) -((-3795 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-789)))) (-1867 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-789)))) (-1866 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114)))) (-1865 (*1 *2 *3 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114)))) (-1864 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114)))) (-1863 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114)))) (-1863 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) (-5 *2 (-114)))) (-1862 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114)))) (-1861 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114)))) (-1861 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) (-5 *2 (-114)))) (-1860 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114)))) (-1859 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114)))) (-1859 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) (-5 *2 (-114)))) (-4346 (*1 *2) (-12 (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-1286 *1)) (-4 *1 (-355 *3 *4 *5)))) (-1858 (*1 *2) (-12 (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-1286 *1)) (-4 *1 (-355 *3 *4 *5)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114)))) (-1855 (*1 *2 *2) (-12 (-5 *2 (-1286 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))) (-1854 (*1 *2 *2) (-12 (-5 *2 (-1286 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-1286 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))) (-1852 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-707 (-419 *4))))) (-1851 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-707 (-419 *4))))) (-1850 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-707 (-419 *4))))) (-1849 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-707 (-419 *4))))) (-1848 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1286 *4)) (|:| |den| *4))))) (-1998 (*1 *1 *2 *3) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1262 *4)) (-4 *4 (-1241)) (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1262 (-419 *3))))) (-1847 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1286 *4)) (|:| |den| *4))))) (-1846 (*1 *1 *2 *3) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1262 *4)) (-4 *4 (-1241)) (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1262 (-419 *3))))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1241)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-2 (|:| |num| (-707 *5)) (|:| |den| *5))))) (-1856 (*1 *2 *1 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114)))) (-1856 (*1 *2 *1 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) (-5 *2 (-114)))) (-4186 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))) (-3921 (*1 *1 *1) (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1241)) (-4 *3 (-1262 *2)) (-4 *4 (-1262 (-419 *3))))) (-4228 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1241)) (-4 *3 (-1262 *2)) (-4 *4 (-1262 (-419 *3))))) (-1844 (*1 *2) (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1241)) (-4 *4 (-1262 (-419 *2))) (-4 *2 (-1262 *3)))) (-1843 (*1 *2) (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1241)) (-4 *4 (-1262 (-419 *2))) (-4 *2 (-1262 *3)))) (-1842 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-1241)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-355 *4 *5 *6)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1241)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-4 *4 (-376)) (-5 *2 (-659 (-963 *4))))) (-1840 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *3 (-381)) (-5 *2 (-659 (-659 *3)))))) -(-13 (-742 (-419 |t#2|) |t#3|) (-10 -8 (-15 -3795 ((-789))) (-15 -1867 ((-789))) (-15 -1866 ((-114))) (-15 -1865 ((-114) |t#1| |t#1|)) (-15 -1864 ((-114))) (-15 -1863 ((-114) |t#1|)) (-15 -1863 ((-114) |t#2|)) (-15 -1862 ((-114))) (-15 -1861 ((-114) |t#1|)) (-15 -1861 ((-114) |t#2|)) (-15 -1860 ((-114))) (-15 -1859 ((-114) |t#1|)) (-15 -1859 ((-114) |t#2|)) (-15 -4346 ((-1286 $))) (-15 -1858 ((-1286 $))) (-15 -1857 ((-114) $)) (-15 -1856 ((-114) $)) (-15 -1855 ((-1286 $) (-1286 $))) (-15 -1854 ((-1286 $) (-1286 $))) (-15 -1853 ((-1286 $) (-1286 $))) (-15 -1852 ((-707 (-419 |t#2|)))) (-15 -1851 ((-707 (-419 |t#2|)))) (-15 -1850 ((-707 (-419 |t#2|)))) (-15 -1849 ((-707 (-419 |t#2|)))) (-15 -1848 ((-2 (|:| |num| (-1286 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1998 ($ (-1286 |t#2|) |t#2|)) (-15 -1847 ((-2 (|:| |num| (-1286 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1846 ($ (-1286 |t#2|) |t#2|)) (-15 -1845 ((-2 (|:| |num| (-707 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1856 ((-114) $ |t#1|)) (-15 -1856 ((-114) $ |t#2|)) (-15 -4186 ($ $ (-1 |t#2| |t#2|))) (-15 -3921 ($ $)) (-15 -4228 (|t#1| $ |t#1| |t#1|)) (-15 -1844 ((-3 |t#2| "failed"))) (-15 -1843 ((-3 |t#2| "failed"))) (-15 -1842 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-376)) (-15 -1841 ((-659 (-963 |t#1|)) (-1196))) |%noBranch|) (IF (|has| |t#1| (-381)) (-15 -1840 ((-659 (-659 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-557))) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-38 (-419 |#2|)) . T) ((-38 $) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-111 (-419 |#2|) (-419 |#2|)) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-147))) ((-149) |has| (-419 |#2|) (-149)) ((-631 (-419 (-557))) -3955 (|has| (-419 |#2|) (-1057 (-419 (-557)))) (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-631 (-419 |#2|)) . T) ((-631 (-557)) . T) ((-631 $) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-628 (-875)) . T) ((-175) . T) ((-629 |#3|) . T) ((-236 $) -3955 (|has| (-419 |#2|) (-363)) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376)))) ((-234 (-419 |#2|)) |has| (-419 |#2|) (-376)) ((-240) -3955 (|has| (-419 |#2|) (-363)) (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376)))) ((-239) -3955 (|has| (-419 |#2|) (-363)) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376)))) ((-274 (-419 |#2|)) |has| (-419 |#2|) (-376)) ((-250) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-302) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-319) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-376) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-414) |has| (-419 |#2|) (-363)) ((-381) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-381))) ((-363) |has| (-419 |#2|) (-363)) ((-383 (-419 |#2|) |#3|) . T) ((-422 (-419 |#2|) |#3|) . T) ((-390 (-419 |#2|)) . T) ((-424 (-419 |#2|)) . T) ((-464) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-568) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-664 (-419 (-557))) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-664 (-419 |#2|)) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 (-419 (-557))) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-666 (-419 |#2|)) . T) ((-666 (-557)) |has| (-419 |#2|) (-656 (-557))) ((-666 $) . T) ((-658 (-419 (-557))) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-658 (-419 |#2|)) . T) ((-658 $) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-656 (-419 |#2|)) . T) ((-656 (-557)) |has| (-419 |#2|) (-656 (-557))) ((-735 (-419 (-557))) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-735 (-419 |#2|)) . T) ((-735 $) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-742 (-419 |#2|) |#3|) . T) ((-744) . T) ((-909 $ (-1196)) -3955 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196))))) ((-915 (-1196)) -12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) ((-917 (-1196)) -3955 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196))))) ((-938) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-1057 (-419 (-557))) |has| (-419 |#2|) (-1057 (-419 (-557)))) ((-1057 (-419 |#2|)) . T) ((-1057 (-557)) |has| (-419 |#2|) (-1057 (-557))) ((-1070 (-419 (-557))) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-1070 (-419 |#2|)) . T) ((-1070 $) . T) ((-1075 (-419 (-557))) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-1075 (-419 |#2|)) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1171) |has| (-419 |#2|) (-363)) ((-1236) . T) ((-1241) -3955 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376)))) -((-4386 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) -(((-356 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4386 (|#8| (-1 |#5| |#1|) |#4|))) (-1241) (-1262 |#1|) (-1262 (-419 |#2|)) (-355 |#1| |#2| |#3|) (-1241) (-1262 |#5|) (-1262 (-419 |#6|)) (-355 |#5| |#6| |#7|)) (T -356)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1241)) (-4 *8 (-1241)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *9 (-1262 *8)) (-4 *2 (-355 *8 *9 *10)) (-5 *1 (-356 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-355 *5 *6 *7)) (-4 *10 (-1262 (-419 *9)))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-4360 (((-114) $) NIL T ELT)) (-4357 (((-789)) NIL T ELT)) (-3748 (((-923 |#1|) $) NIL T ELT) (($ $ (-936)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-923 |#1|) #1#) $) NIL T ELT)) (-3572 (((-923 |#1|) $) NIL T ELT)) (-1998 (($ (-1286 (-923 |#1|))) NIL T ELT)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-923 |#1|) (-381)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3393 (($) NIL (|has| (-923 |#1|) (-381)) ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-3232 (($) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1881 (((-114) $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1972 (($ $ (-789)) NIL (-3955 (|has| (-923 |#1|) (-147)) (|has| (-923 |#1|) (-381))) ELT) (($ $) NIL (-3955 (|has| (-923 |#1|) (-147)) (|has| (-923 |#1|) (-381))) ELT)) (-4151 (((-114) $) NIL T ELT)) (-4200 (((-936) $) NIL (|has| (-923 |#1|) (-381)) ELT) (((-843 (-936)) $) NIL (-3955 (|has| (-923 |#1|) (-147)) (|has| (-923 |#1|) (-381))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-2221 (($) NIL (|has| (-923 |#1|) (-381)) ELT)) (-2219 (((-114) $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-3532 (((-923 |#1|) $) NIL T ELT) (($ $ (-936)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-3863 (((-709 $) $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2222 (((-1190 (-923 |#1|)) $) NIL T ELT) (((-1190 $) $ (-936)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-2218 (((-936) $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1805 (((-1190 (-923 |#1|)) $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1804 (((-1190 (-923 |#1|)) $) NIL (|has| (-923 |#1|) (-381)) ELT) (((-3 (-1190 (-923 |#1|)) #1#) $ $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1806 (($ $ (-1190 (-923 |#1|))) NIL (|has| (-923 |#1|) (-381)) ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3864 (($) NIL (|has| (-923 |#1|) (-381)) CONST)) (-2629 (($ (-936)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-4359 (((-114) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1868 (((-975 (-1139))) NIL T ELT)) (-2638 (($) NIL (|has| (-923 |#1|) (-381)) ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) NIL (|has| (-923 |#1|) (-381)) ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-4358 (((-843 (-936))) NIL T ELT) (((-936)) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-1973 (((-789) $) NIL (|has| (-923 |#1|) (-381)) ELT) (((-3 (-789) #1#) $ $) NIL (-3955 (|has| (-923 |#1|) (-147)) (|has| (-923 |#1|) (-381))) ELT)) (-4339 (((-136)) NIL T ELT)) (-4186 (($ $ (-789)) NIL (|has| (-923 |#1|) (-381)) ELT) (($ $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-4376 (((-843 (-936)) $) NIL T ELT) (((-936) $) NIL T ELT)) (-3601 (((-1190 (-923 |#1|))) NIL T ELT)) (-1875 (($) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1807 (($) NIL (|has| (-923 |#1|) (-381)) ELT)) (-3640 (((-1286 (-923 |#1|)) $) NIL T ELT) (((-707 (-923 |#1|)) (-1286 $)) NIL T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ (-923 |#1|)) NIL T ELT)) (-3101 (($ $) NIL (|has| (-923 |#1|) (-381)) ELT) (((-709 $) $) NIL (-3955 (|has| (-923 |#1|) (-147)) (|has| (-923 |#1|) (-381))) ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 $)) NIL T ELT) (((-1286 $) (-936)) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-4356 (($ $) NIL (|has| (-923 |#1|) (-381)) ELT) (($ $ (-789)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-3068 (($ $ (-789)) NIL (|has| (-923 |#1|) (-381)) ELT) (($ $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ $) NIL T ELT) (($ $ (-923 |#1|)) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ $ (-923 |#1|)) NIL T ELT) (($ (-923 |#1|) $) NIL T ELT))) -(((-357 |#1| |#2|) (-13 (-341 (-923 |#1|)) (-10 -7 (-15 -1868 ((-975 (-1139)))))) (-936) (-936)) (T -357)) -((-1868 (*1 *2) (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-357 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 58 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-4360 (((-114) $) NIL T ELT)) (-4357 (((-789)) NIL T ELT)) (-3748 ((|#1| $) NIL T ELT) (($ $ (-936)) NIL (|has| |#1| (-381)) ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) 56 (|has| |#1| (-381)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) NIL (|has| |#1| (-381)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) 141 T ELT)) (-3572 ((|#1| $) 113 T ELT)) (-1998 (($ (-1286 |#1|)) 130 T ELT)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-381)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3393 (($) 124 (|has| |#1| (-381)) ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-3232 (($) 159 (|has| |#1| (-381)) ELT)) (-1881 (((-114) $) 66 (|has| |#1| (-381)) ELT)) (-1972 (($ $ (-789)) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4151 (((-114) $) NIL T ELT)) (-4200 (((-936) $) 60 (|has| |#1| (-381)) ELT) (((-843 (-936)) $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2639 (((-114) $) 62 T ELT)) (-2221 (($) 161 (|has| |#1| (-381)) ELT)) (-2219 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3532 ((|#1| $) NIL T ELT) (($ $ (-936)) NIL (|has| |#1| (-381)) ELT)) (-3863 (((-709 $) $) NIL (|has| |#1| (-381)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2222 (((-1190 |#1|) $) 117 T ELT) (((-1190 $) $ (-936)) NIL (|has| |#1| (-381)) ELT)) (-2218 (((-936) $) 170 (|has| |#1| (-381)) ELT)) (-1805 (((-1190 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1804 (((-1190 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1190 |#1|) #1#) $ $) NIL (|has| |#1| (-381)) ELT)) (-1806 (($ $ (-1190 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) 177 T ELT)) (-3864 (($) NIL (|has| |#1| (-381)) CONST)) (-2629 (($ (-936)) 96 (|has| |#1| (-381)) ELT)) (-4359 (((-114) $) 146 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1868 (((-975 (-1139))) 57 T ELT)) (-2638 (($) 157 (|has| |#1| (-381)) ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) 119 (|has| |#1| (-381)) ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-4358 (((-843 (-936))) 90 T ELT) (((-936)) 91 T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-1973 (((-789) $) 160 (|has| |#1| (-381)) ELT) (((-3 (-789) #1#) $ $) 153 (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4339 (((-136)) NIL T ELT)) (-4186 (($ $ (-789)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4376 (((-843 (-936)) $) NIL T ELT) (((-936) $) NIL T ELT)) (-3601 (((-1190 |#1|)) 122 T ELT)) (-1875 (($) 158 (|has| |#1| (-381)) ELT)) (-1807 (($) 166 (|has| |#1| (-381)) ELT)) (-3640 (((-1286 |#1|) $) 77 T ELT) (((-707 |#1|) (-1286 $)) NIL T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (|has| |#1| (-381)) ELT)) (-4374 (((-875) $) 173 T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ |#1|) 100 T ELT)) (-3101 (($ $) NIL (|has| |#1| (-381)) ELT) (((-709 $) $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3526 (((-789)) 154 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 $)) 143 T ELT) (((-1286 $) (-936)) 98 T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-3057 (($) 67 T CONST)) (-3063 (($) 103 T CONST)) (-4356 (($ $) 107 (|has| |#1| (-381)) ELT) (($ $ (-789)) NIL (|has| |#1| (-381)) ELT)) (-3068 (($ $ (-789)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3452 (((-114) $ $) 65 T ELT)) (-4377 (($ $ $) 175 T ELT) (($ $ |#1|) 176 T ELT)) (-4265 (($ $) 156 T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 86 T ELT)) (** (($ $ (-936)) 179 T ELT) (($ $ (-789)) 180 T ELT) (($ $ (-557)) 178 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 102 T ELT) (($ $ $) 101 T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 174 T ELT))) -(((-358 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1868 ((-975 (-1139)))))) (-363) (-1190 |#1|)) (T -358)) -((-1868 (*1 *2) (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-358 *3 *4)) (-4 *3 (-363)) (-14 *4 (-1190 *3))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-4360 (((-114) $) NIL T ELT)) (-4357 (((-789)) NIL T ELT)) (-3748 ((|#1| $) NIL T ELT) (($ $ (-936)) NIL (|has| |#1| (-381)) ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) NIL (|has| |#1| (-381)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) NIL (|has| |#1| (-381)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) NIL T ELT)) (-3572 ((|#1| $) NIL T ELT)) (-1998 (($ (-1286 |#1|)) NIL T ELT)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3393 (($) NIL (|has| |#1| (-381)) ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-3232 (($) NIL (|has| |#1| (-381)) ELT)) (-1881 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1972 (($ $ (-789)) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4151 (((-114) $) NIL T ELT)) (-4200 (((-936) $) NIL (|has| |#1| (-381)) ELT) (((-843 (-936)) $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-2221 (($) NIL (|has| |#1| (-381)) ELT)) (-2219 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3532 ((|#1| $) NIL T ELT) (($ $ (-936)) NIL (|has| |#1| (-381)) ELT)) (-3863 (((-709 $) $) NIL (|has| |#1| (-381)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2222 (((-1190 |#1|) $) NIL T ELT) (((-1190 $) $ (-936)) NIL (|has| |#1| (-381)) ELT)) (-2218 (((-936) $) NIL (|has| |#1| (-381)) ELT)) (-1805 (((-1190 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1804 (((-1190 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1190 |#1|) #1#) $ $) NIL (|has| |#1| (-381)) ELT)) (-1806 (($ $ (-1190 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3864 (($) NIL (|has| |#1| (-381)) CONST)) (-2629 (($ (-936)) NIL (|has| |#1| (-381)) ELT)) (-4359 (((-114) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1868 (((-975 (-1139))) NIL T ELT)) (-2638 (($) NIL (|has| |#1| (-381)) ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) NIL (|has| |#1| (-381)) ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-4358 (((-843 (-936))) NIL T ELT) (((-936)) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-1973 (((-789) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-789) #1#) $ $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4339 (((-136)) NIL T ELT)) (-4186 (($ $ (-789)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4376 (((-843 (-936)) $) NIL T ELT) (((-936) $) NIL T ELT)) (-3601 (((-1190 |#1|)) NIL T ELT)) (-1875 (($) NIL (|has| |#1| (-381)) ELT)) (-1807 (($) NIL (|has| |#1| (-381)) ELT)) (-3640 (((-1286 |#1|) $) NIL T ELT) (((-707 |#1|) (-1286 $)) NIL T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (|has| |#1| (-381)) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ |#1|) NIL T ELT)) (-3101 (($ $) NIL (|has| |#1| (-381)) ELT) (((-709 $) $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 $)) NIL T ELT) (((-1286 $) (-936)) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-4356 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-789)) NIL (|has| |#1| (-381)) ELT)) (-3068 (($ $ (-789)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-359 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1868 ((-975 (-1139)))))) (-363) (-936)) (T -359)) -((-1868 (*1 *2) (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-359 *3 *4)) (-4 *3 (-363)) (-14 *4 (-936))))) -((-1878 (((-789) (-1286 (-659 (-2 (|:| -3820 |#1|) (|:| -2629 (-1139)))))) 61 T ELT)) (-1869 (((-975 (-1139)) (-1190 |#1|)) 112 T ELT)) (-1870 (((-1286 (-659 (-2 (|:| -3820 |#1|) (|:| -2629 (-1139))))) (-1190 |#1|)) 103 T ELT)) (-1871 (((-707 |#1|) (-1286 (-659 (-2 (|:| -3820 |#1|) (|:| -2629 (-1139)))))) 113 T ELT)) (-1872 (((-3 (-1286 (-659 (-2 (|:| -3820 |#1|) (|:| -2629 (-1139))))) "failed") (-936)) 13 T ELT)) (-1873 (((-3 (-1190 |#1|) (-1286 (-659 (-2 (|:| -3820 |#1|) (|:| -2629 (-1139)))))) (-936)) 18 T ELT))) -(((-360 |#1|) (-10 -7 (-15 -1869 ((-975 (-1139)) (-1190 |#1|))) (-15 -1870 ((-1286 (-659 (-2 (|:| -3820 |#1|) (|:| -2629 (-1139))))) (-1190 |#1|))) (-15 -1871 ((-707 |#1|) (-1286 (-659 (-2 (|:| -3820 |#1|) (|:| -2629 (-1139))))))) (-15 -1878 ((-789) (-1286 (-659 (-2 (|:| -3820 |#1|) (|:| -2629 (-1139))))))) (-15 -1872 ((-3 (-1286 (-659 (-2 (|:| -3820 |#1|) (|:| -2629 (-1139))))) "failed") (-936))) (-15 -1873 ((-3 (-1190 |#1|) (-1286 (-659 (-2 (|:| -3820 |#1|) (|:| -2629 (-1139)))))) (-936)))) (-363)) (T -360)) -((-1873 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-3 (-1190 *4) (-1286 (-659 (-2 (|:| -3820 *4) (|:| -2629 (-1139))))))) (-5 *1 (-360 *4)) (-4 *4 (-363)))) (-1872 (*1 *2 *3) (|partial| -12 (-5 *3 (-936)) (-5 *2 (-1286 (-659 (-2 (|:| -3820 *4) (|:| -2629 (-1139)))))) (-5 *1 (-360 *4)) (-4 *4 (-363)))) (-1878 (*1 *2 *3) (-12 (-5 *3 (-1286 (-659 (-2 (|:| -3820 *4) (|:| -2629 (-1139)))))) (-4 *4 (-363)) (-5 *2 (-789)) (-5 *1 (-360 *4)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-1286 (-659 (-2 (|:| -3820 *4) (|:| -2629 (-1139)))))) (-4 *4 (-363)) (-5 *2 (-707 *4)) (-5 *1 (-360 *4)))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-1190 *4)) (-4 *4 (-363)) (-5 *2 (-1286 (-659 (-2 (|:| -3820 *4) (|:| -2629 (-1139)))))) (-5 *1 (-360 *4)))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-1190 *4)) (-4 *4 (-363)) (-5 *2 (-975 (-1139))) (-5 *1 (-360 *4))))) -((-4374 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) -(((-361 |#1| |#2| |#3|) (-10 -7 (-15 -4374 (|#3| |#1|)) (-15 -4374 (|#1| |#3|))) (-341 |#2|) (-363) (-341 |#2|)) (T -361)) -((-4374 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *2 *4 *3)) (-4 *3 (-341 *4)))) (-4374 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *3 *4 *2)) (-4 *3 (-341 *4))))) -((-1881 (((-114) $) 65 T ELT)) (-4200 (((-843 (-936)) $) 26 T ELT) (((-936) $) 69 T ELT)) (-3863 (((-709 $) $) 21 T ELT)) (-3864 (($) 9 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 120 T ELT)) (-1973 (((-3 (-789) #1="failed") $ $) 98 T ELT) (((-789) $) 84 T ELT)) (-4186 (($ $) 8 T ELT) (($ $ (-789)) NIL T ELT)) (-1875 (($) 58 T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) 41 T ELT)) (-3101 (((-709 $) $) 50 T ELT) (($ $) 47 T ELT))) -(((-362 |#1|) (-10 -7 (-15 -4200 ((-936) |#1|)) (-15 -1973 ((-789) |#1|)) (-15 -1881 ((-114) |#1|)) (-15 -1875 (|#1|)) (-15 -3102 ((-3 (-1286 |#1|) #1="failed") (-707 |#1|))) (-15 -3101 (|#1| |#1|)) (-15 -4186 (|#1| |#1| (-789))) (-15 -4186 (|#1| |#1|)) (-15 -3864 (|#1|)) (-15 -3863 ((-709 |#1|) |#1|)) (-15 -1973 ((-3 (-789) #1#) |#1| |#1|)) (-15 -4200 ((-843 (-936)) |#1|)) (-15 -3101 ((-709 |#1|) |#1|)) (-15 -3107 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|)))) (-363)) (T -362)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 52 T ELT)) (-2271 (($ $) 51 T ELT)) (-2269 (((-114) $) 49 T ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) 110 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4203 (($ $) 88 T ELT)) (-4399 (((-417 $) $) 87 T ELT)) (-1786 (((-114) $ $) 72 T ELT)) (-3536 (((-789)) 120 T ELT)) (-4152 (($) 22 T CONST)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) 104 T ELT)) (-2961 (($ $ $) 68 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-3393 (($) 123 T ELT)) (-2960 (($ $ $) 69 T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 63 T ELT)) (-3232 (($) 108 T ELT)) (-1881 (((-114) $) 107 T ELT)) (-1972 (($ $) 94 T ELT) (($ $ (-789)) 93 T ELT)) (-4151 (((-114) $) 86 T ELT)) (-4200 (((-843 (-936)) $) 96 T ELT) (((-936) $) 105 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3863 (((-709 $) $) 119 T ELT)) (-1783 (((-3 (-659 $) #1="failed") (-659 $) $) 65 T ELT)) (-2218 (((-936) $) 122 T ELT)) (-2100 (($ $ $) 57 T ELT) (($ (-659 $)) 56 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2872 (($ $) 85 T ELT)) (-3864 (($) 118 T CONST)) (-2629 (($ (-936)) 121 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 55 T ELT)) (-3560 (($ $ $) 59 T ELT) (($ (-659 $)) 58 T ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) 111 T ELT)) (-4160 (((-417 $) $) 89 T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3884 (((-3 $ "failed") $ $) 53 T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 62 T ELT)) (-1785 (((-789) $) 71 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 70 T ELT)) (-1973 (((-3 (-789) "failed") $ $) 95 T ELT) (((-789) $) 106 T ELT)) (-4186 (($ $) 117 T ELT) (($ $ (-789)) 115 T ELT)) (-1875 (($) 109 T ELT)) (-3102 (((-3 (-1286 $) "failed") (-707 $)) 112 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-557))) 81 T ELT)) (-3101 (((-709 $) $) 97 T ELT) (($ $) 113 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 50 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $) 116 T ELT) (($ $ (-789)) 114 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ $) 80 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ (-557)) 84 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-557))) 83 T ELT) (($ (-419 (-557)) $) 82 T ELT))) -(((-363) (-142)) (T -363)) -((-3101 (*1 *1 *1) (-4 *1 (-363))) (-3102 (*1 *2 *3) (|partial| -12 (-5 *3 (-707 *1)) (-4 *1 (-363)) (-5 *2 (-1286 *1)))) (-1877 (*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))))) (-1876 (*1 *2 *3) (-12 (-4 *1 (-363)) (-5 *3 (-557)) (-5 *2 (-1208 (-936) (-789))))) (-1875 (*1 *1) (-4 *1 (-363))) (-3232 (*1 *1) (-4 *1 (-363))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-114)))) (-1973 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-789)))) (-4200 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-936)))) (-1874 (*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-414) (-381) (-1171) (-240) (-10 -8 (-15 -3101 ($ $)) (-15 -3102 ((-3 (-1286 $) "failed") (-707 $))) (-15 -1877 ((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557)))))) (-15 -1876 ((-1208 (-936) (-789)) (-557))) (-15 -1875 ($)) (-15 -3232 ($)) (-15 -1881 ((-114) $)) (-15 -1973 ((-789) $)) (-15 -4200 ((-936) $)) (-15 -1874 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-557))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) . T) ((-111 $ $) . T) ((-133) . T) ((-147) . T) ((-631 (-419 (-557))) . T) ((-631 (-557)) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-175) . T) ((-236 $) . T) ((-240) . T) ((-239) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-414) . T) ((-381) . T) ((-464) . T) ((-568) . T) ((-664 (-419 (-557))) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 (-419 (-557))) . T) ((-666 $) . T) ((-658 (-419 (-557))) . T) ((-658 $) . T) ((-735 (-419 (-557))) . T) ((-735 $) . T) ((-744) . T) ((-938) . T) ((-1070 (-419 (-557))) . T) ((-1070 $) . T) ((-1075 (-419 (-557))) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1171) . T) ((-1236) . T) ((-1241) . T)) -((-4347 (((-2 (|:| -2220 (-707 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-707 |#1|))) |#1|) 55 T ELT)) (-4346 (((-2 (|:| -2220 (-707 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-707 |#1|)))) 53 T ELT))) -(((-364 |#1| |#2| |#3|) (-10 -7 (-15 -4346 ((-2 (|:| -2220 (-707 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-707 |#1|))))) (-15 -4347 ((-2 (|:| -2220 (-707 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-707 |#1|))) |#1|))) (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $)))) (-1262 |#1|) (-422 |#1| |#2|)) (T -364)) -((-4347 (*1 *2 *3) (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $))))) (-4 *4 (-1262 *3)) (-5 *2 (-2 (|:| -2220 (-707 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-707 *3)))) (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-4346 (*1 *2) (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $))))) (-4 *4 (-1262 *3)) (-5 *2 (-2 (|:| -2220 (-707 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-707 *3)))) (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-4360 (((-114) $) NIL T ELT)) (-4357 (((-789)) NIL T ELT)) (-3748 (((-923 |#1|) $) NIL T ELT) (($ $ (-936)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-1878 (((-789)) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-923 |#1|) #1#) $) NIL T ELT)) (-3572 (((-923 |#1|) $) NIL T ELT)) (-1998 (($ (-1286 (-923 |#1|))) NIL T ELT)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-923 |#1|) (-381)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3393 (($) NIL (|has| (-923 |#1|) (-381)) ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-3232 (($) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1881 (((-114) $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1972 (($ $ (-789)) NIL (-3955 (|has| (-923 |#1|) (-147)) (|has| (-923 |#1|) (-381))) ELT) (($ $) NIL (-3955 (|has| (-923 |#1|) (-147)) (|has| (-923 |#1|) (-381))) ELT)) (-4151 (((-114) $) NIL T ELT)) (-4200 (((-936) $) NIL (|has| (-923 |#1|) (-381)) ELT) (((-843 (-936)) $) NIL (-3955 (|has| (-923 |#1|) (-147)) (|has| (-923 |#1|) (-381))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-2221 (($) NIL (|has| (-923 |#1|) (-381)) ELT)) (-2219 (((-114) $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-3532 (((-923 |#1|) $) NIL T ELT) (($ $ (-936)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-3863 (((-709 $) $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2222 (((-1190 (-923 |#1|)) $) NIL T ELT) (((-1190 $) $ (-936)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-2218 (((-936) $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1805 (((-1190 (-923 |#1|)) $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1804 (((-1190 (-923 |#1|)) $) NIL (|has| (-923 |#1|) (-381)) ELT) (((-3 (-1190 (-923 |#1|)) #1#) $ $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1806 (($ $ (-1190 (-923 |#1|))) NIL (|has| (-923 |#1|) (-381)) ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3864 (($) NIL (|has| (-923 |#1|) (-381)) CONST)) (-2629 (($ (-936)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-4359 (((-114) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1880 (((-1286 (-659 (-2 (|:| -3820 (-923 |#1|)) (|:| -2629 (-1139)))))) NIL T ELT)) (-1879 (((-707 (-923 |#1|))) NIL T ELT)) (-2638 (($) NIL (|has| (-923 |#1|) (-381)) ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) NIL (|has| (-923 |#1|) (-381)) ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-4358 (((-843 (-936))) NIL T ELT) (((-936)) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-1973 (((-789) $) NIL (|has| (-923 |#1|) (-381)) ELT) (((-3 (-789) #1#) $ $) NIL (-3955 (|has| (-923 |#1|) (-147)) (|has| (-923 |#1|) (-381))) ELT)) (-4339 (((-136)) NIL T ELT)) (-4186 (($ $ (-789)) NIL (|has| (-923 |#1|) (-381)) ELT) (($ $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-4376 (((-843 (-936)) $) NIL T ELT) (((-936) $) NIL T ELT)) (-3601 (((-1190 (-923 |#1|))) NIL T ELT)) (-1875 (($) NIL (|has| (-923 |#1|) (-381)) ELT)) (-1807 (($) NIL (|has| (-923 |#1|) (-381)) ELT)) (-3640 (((-1286 (-923 |#1|)) $) NIL T ELT) (((-707 (-923 |#1|)) (-1286 $)) NIL T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ (-923 |#1|)) NIL T ELT)) (-3101 (($ $) NIL (|has| (-923 |#1|) (-381)) ELT) (((-709 $) $) NIL (-3955 (|has| (-923 |#1|) (-147)) (|has| (-923 |#1|) (-381))) ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 $)) NIL T ELT) (((-1286 $) (-936)) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-4356 (($ $) NIL (|has| (-923 |#1|) (-381)) ELT) (($ $ (-789)) NIL (|has| (-923 |#1|) (-381)) ELT)) (-3068 (($ $ (-789)) NIL (|has| (-923 |#1|) (-381)) ELT) (($ $) NIL (|has| (-923 |#1|) (-381)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ $) NIL T ELT) (($ $ (-923 |#1|)) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ $ (-923 |#1|)) NIL T ELT) (($ (-923 |#1|) $) NIL T ELT))) -(((-365 |#1| |#2|) (-13 (-341 (-923 |#1|)) (-10 -7 (-15 -1880 ((-1286 (-659 (-2 (|:| -3820 (-923 |#1|)) (|:| -2629 (-1139))))))) (-15 -1879 ((-707 (-923 |#1|)))) (-15 -1878 ((-789))))) (-936) (-936)) (T -365)) -((-1880 (*1 *2) (-12 (-5 *2 (-1286 (-659 (-2 (|:| -3820 (-923 *3)) (|:| -2629 (-1139)))))) (-5 *1 (-365 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936)))) (-1879 (*1 *2) (-12 (-5 *2 (-707 (-923 *3))) (-5 *1 (-365 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936)))) (-1878 (*1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-365 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936))))) -((-2965 (((-114) $ $) 73 T ELT)) (-3604 (((-114) $) 88 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-4360 (((-114) $) NIL T ELT)) (-4357 (((-789)) NIL T ELT)) (-3748 ((|#1| $) 106 T ELT) (($ $ (-936)) 104 (|has| |#1| (-381)) ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) 170 (|has| |#1| (-381)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-1878 (((-789)) 103 T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) 187 (|has| |#1| (-381)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) 127 T ELT)) (-3572 ((|#1| $) 105 T ELT)) (-1998 (($ (-1286 |#1|)) 71 T ELT)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-381)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3393 (($) 182 (|has| |#1| (-381)) ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-3232 (($) 171 (|has| |#1| (-381)) ELT)) (-1881 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1972 (($ $ (-789)) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4151 (((-114) $) NIL T ELT)) (-4200 (((-936) $) NIL (|has| |#1| (-381)) ELT) (((-843 (-936)) $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-2221 (($) 113 (|has| |#1| (-381)) ELT)) (-2219 (((-114) $) 200 (|has| |#1| (-381)) ELT)) (-3532 ((|#1| $) 108 T ELT) (($ $ (-936)) 107 (|has| |#1| (-381)) ELT)) (-3863 (((-709 $) $) NIL (|has| |#1| (-381)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2222 (((-1190 |#1|) $) 214 T ELT) (((-1190 $) $ (-936)) NIL (|has| |#1| (-381)) ELT)) (-2218 (((-936) $) 148 (|has| |#1| (-381)) ELT)) (-1805 (((-1190 |#1|) $) 87 (|has| |#1| (-381)) ELT)) (-1804 (((-1190 |#1|) $) 84 (|has| |#1| (-381)) ELT) (((-3 (-1190 |#1|) #1#) $ $) 96 (|has| |#1| (-381)) ELT)) (-1806 (($ $ (-1190 |#1|)) 83 (|has| |#1| (-381)) ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) 218 T ELT)) (-3864 (($) NIL (|has| |#1| (-381)) CONST)) (-2629 (($ (-936)) 150 (|has| |#1| (-381)) ELT)) (-4359 (((-114) $) 123 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1880 (((-1286 (-659 (-2 (|:| -3820 |#1|) (|:| -2629 (-1139)))))) 97 T ELT)) (-1879 (((-707 |#1|)) 101 T ELT)) (-2638 (($) 110 (|has| |#1| (-381)) ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) 173 (|has| |#1| (-381)) ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-4358 (((-843 (-936))) NIL T ELT) (((-936)) 174 T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-1973 (((-789) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-789) #1#) $ $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4339 (((-136)) NIL T ELT)) (-4186 (($ $ (-789)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4376 (((-843 (-936)) $) NIL T ELT) (((-936) $) 75 T ELT)) (-3601 (((-1190 |#1|)) 175 T ELT)) (-1875 (($) 147 (|has| |#1| (-381)) ELT)) (-1807 (($) NIL (|has| |#1| (-381)) ELT)) (-3640 (((-1286 |#1|) $) 121 T ELT) (((-707 |#1|) (-1286 $)) NIL T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (|has| |#1| (-381)) ELT)) (-4374 (((-875) $) 140 T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ |#1|) 70 T ELT)) (-3101 (($ $) NIL (|has| |#1| (-381)) ELT) (((-709 $) $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3526 (((-789)) 180 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 $)) 197 T ELT) (((-1286 $) (-936)) 116 T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-3057 (($) 186 T CONST)) (-3063 (($) 161 T CONST)) (-4356 (($ $) 122 (|has| |#1| (-381)) ELT) (($ $ (-789)) 114 (|has| |#1| (-381)) ELT)) (-3068 (($ $ (-789)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3452 (((-114) $ $) 208 T ELT)) (-4377 (($ $ $) 119 T ELT) (($ $ |#1|) 120 T ELT)) (-4265 (($ $) 202 T ELT) (($ $ $) 206 T ELT)) (-4267 (($ $ $) 204 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) 153 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 211 T ELT) (($ $ $) 164 T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 118 T ELT))) -(((-366 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1880 ((-1286 (-659 (-2 (|:| -3820 |#1|) (|:| -2629 (-1139))))))) (-15 -1879 ((-707 |#1|))) (-15 -1878 ((-789))))) (-363) (-3 (-1190 |#1|) (-1286 (-659 (-2 (|:| -3820 |#1|) (|:| -2629 (-1139))))))) (T -366)) -((-1880 (*1 *2) (-12 (-5 *2 (-1286 (-659 (-2 (|:| -3820 *3) (|:| -2629 (-1139)))))) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1190 *3) *2)))) (-1879 (*1 *2) (-12 (-5 *2 (-707 *3)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1190 *3) (-1286 (-659 (-2 (|:| -3820 *3) (|:| -2629 (-1139))))))))) (-1878 (*1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1190 *3) (-1286 (-659 (-2 (|:| -3820 *3) (|:| -2629 (-1139)))))))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-4360 (((-114) $) NIL T ELT)) (-4357 (((-789)) NIL T ELT)) (-3748 ((|#1| $) NIL T ELT) (($ $ (-936)) NIL (|has| |#1| (-381)) ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) NIL (|has| |#1| (-381)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-1878 (((-789)) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) NIL (|has| |#1| (-381)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) NIL T ELT)) (-3572 ((|#1| $) NIL T ELT)) (-1998 (($ (-1286 |#1|)) NIL T ELT)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3393 (($) NIL (|has| |#1| (-381)) ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-3232 (($) NIL (|has| |#1| (-381)) ELT)) (-1881 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1972 (($ $ (-789)) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4151 (((-114) $) NIL T ELT)) (-4200 (((-936) $) NIL (|has| |#1| (-381)) ELT) (((-843 (-936)) $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-2221 (($) NIL (|has| |#1| (-381)) ELT)) (-2219 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3532 ((|#1| $) NIL T ELT) (($ $ (-936)) NIL (|has| |#1| (-381)) ELT)) (-3863 (((-709 $) $) NIL (|has| |#1| (-381)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2222 (((-1190 |#1|) $) NIL T ELT) (((-1190 $) $ (-936)) NIL (|has| |#1| (-381)) ELT)) (-2218 (((-936) $) NIL (|has| |#1| (-381)) ELT)) (-1805 (((-1190 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1804 (((-1190 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1190 |#1|) #1#) $ $) NIL (|has| |#1| (-381)) ELT)) (-1806 (($ $ (-1190 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3864 (($) NIL (|has| |#1| (-381)) CONST)) (-2629 (($ (-936)) NIL (|has| |#1| (-381)) ELT)) (-4359 (((-114) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1880 (((-1286 (-659 (-2 (|:| -3820 |#1|) (|:| -2629 (-1139)))))) NIL T ELT)) (-1879 (((-707 |#1|)) NIL T ELT)) (-2638 (($) NIL (|has| |#1| (-381)) ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) NIL (|has| |#1| (-381)) ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-4358 (((-843 (-936))) NIL T ELT) (((-936)) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-1973 (((-789) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-789) #1#) $ $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4339 (((-136)) NIL T ELT)) (-4186 (($ $ (-789)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4376 (((-843 (-936)) $) NIL T ELT) (((-936) $) NIL T ELT)) (-3601 (((-1190 |#1|)) NIL T ELT)) (-1875 (($) NIL (|has| |#1| (-381)) ELT)) (-1807 (($) NIL (|has| |#1| (-381)) ELT)) (-3640 (((-1286 |#1|) $) NIL T ELT) (((-707 |#1|) (-1286 $)) NIL T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (|has| |#1| (-381)) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ |#1|) NIL T ELT)) (-3101 (($ $) NIL (|has| |#1| (-381)) ELT) (((-709 $) $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 $)) NIL T ELT) (((-1286 $) (-936)) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-4356 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-789)) NIL (|has| |#1| (-381)) ELT)) (-3068 (($ $ (-789)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-367 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1880 ((-1286 (-659 (-2 (|:| -3820 |#1|) (|:| -2629 (-1139))))))) (-15 -1879 ((-707 |#1|))) (-15 -1878 ((-789))))) (-363) (-936)) (T -367)) -((-1880 (*1 *2) (-12 (-5 *2 (-1286 (-659 (-2 (|:| -3820 *3) (|:| -2629 (-1139)))))) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-936)))) (-1879 (*1 *2) (-12 (-5 *2 (-707 *3)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-936)))) (-1878 (*1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-936))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-4360 (((-114) $) NIL T ELT)) (-4357 (((-789)) NIL T ELT)) (-3748 ((|#1| $) NIL T ELT) (($ $ (-936)) NIL (|has| |#1| (-381)) ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) 129 (|has| |#1| (-381)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) 155 (|has| |#1| (-381)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) 103 T ELT)) (-3572 ((|#1| $) 100 T ELT)) (-1998 (($ (-1286 |#1|)) 95 T ELT)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-381)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3393 (($) 92 (|has| |#1| (-381)) ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-3232 (($) 51 (|has| |#1| (-381)) ELT)) (-1881 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1972 (($ $ (-789)) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4151 (((-114) $) NIL T ELT)) (-4200 (((-936) $) NIL (|has| |#1| (-381)) ELT) (((-843 (-936)) $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-2221 (($) 130 (|has| |#1| (-381)) ELT)) (-2219 (((-114) $) 84 (|has| |#1| (-381)) ELT)) (-3532 ((|#1| $) 47 T ELT) (($ $ (-936)) 52 (|has| |#1| (-381)) ELT)) (-3863 (((-709 $) $) NIL (|has| |#1| (-381)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2222 (((-1190 |#1|) $) 75 T ELT) (((-1190 $) $ (-936)) NIL (|has| |#1| (-381)) ELT)) (-2218 (((-936) $) 107 (|has| |#1| (-381)) ELT)) (-1805 (((-1190 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1804 (((-1190 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1190 |#1|) #1#) $ $) NIL (|has| |#1| (-381)) ELT)) (-1806 (($ $ (-1190 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3864 (($) NIL (|has| |#1| (-381)) CONST)) (-2629 (($ (-936)) 105 (|has| |#1| (-381)) ELT)) (-4359 (((-114) $) 157 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2638 (($) 44 (|has| |#1| (-381)) ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) 124 (|has| |#1| (-381)) ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-4358 (((-843 (-936))) NIL T ELT) (((-936)) 154 T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-1973 (((-789) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-789) #1#) $ $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4339 (((-136)) NIL T ELT)) (-4186 (($ $ (-789)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4376 (((-843 (-936)) $) NIL T ELT) (((-936) $) 67 T ELT)) (-3601 (((-1190 |#1|)) 98 T ELT)) (-1875 (($) 135 (|has| |#1| (-381)) ELT)) (-1807 (($) NIL (|has| |#1| (-381)) ELT)) (-3640 (((-1286 |#1|) $) 63 T ELT) (((-707 |#1|) (-1286 $)) NIL T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (|has| |#1| (-381)) ELT)) (-4374 (((-875) $) 153 T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ |#1|) 97 T ELT)) (-3101 (($ $) NIL (|has| |#1| (-381)) ELT) (((-709 $) $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3526 (((-789)) 159 T CONST)) (-1376 (((-114) $ $) 161 T ELT)) (-2220 (((-1286 $)) 119 T ELT) (((-1286 $) (-936)) 58 T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-3057 (($) 121 T CONST)) (-3063 (($) 40 T CONST)) (-4356 (($ $) 78 (|has| |#1| (-381)) ELT) (($ $ (-789)) NIL (|has| |#1| (-381)) ELT)) (-3068 (($ $ (-789)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3452 (((-114) $ $) 117 T ELT)) (-4377 (($ $ $) 109 T ELT) (($ $ |#1|) 110 T ELT)) (-4265 (($ $) 90 T ELT) (($ $ $) 115 T ELT)) (-4267 (($ $ $) 113 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) 53 T ELT) (($ $ (-557)) 138 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 88 T ELT) (($ $ $) 65 T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 86 T ELT))) -(((-368 |#1| |#2|) (-341 |#1|) (-363) (-1190 |#1|)) (T -368)) -NIL -((-1896 (((-975 (-1190 |#1|)) (-1190 |#1|)) 49 T ELT)) (-3393 (((-1190 |#1|) (-936) (-936)) 159 T ELT) (((-1190 |#1|) (-936)) 155 T ELT)) (-1881 (((-114) (-1190 |#1|)) 110 T ELT)) (-1883 (((-936) (-936)) 85 T ELT)) (-1884 (((-936) (-936)) 94 T ELT)) (-1882 (((-936) (-936)) 83 T ELT)) (-2219 (((-114) (-1190 |#1|)) 114 T ELT)) (-1891 (((-3 (-1190 |#1|) #1="failed") (-1190 |#1|)) 139 T ELT)) (-1894 (((-3 (-1190 |#1|) #1#) (-1190 |#1|)) 144 T ELT)) (-1893 (((-3 (-1190 |#1|) #1#) (-1190 |#1|)) 143 T ELT)) (-1892 (((-3 (-1190 |#1|) #1#) (-1190 |#1|)) 142 T ELT)) (-1890 (((-3 (-1190 |#1|) #1#) (-1190 |#1|)) 134 T ELT)) (-1895 (((-1190 |#1|) (-1190 |#1|)) 71 T ELT)) (-1886 (((-1190 |#1|) (-936)) 149 T ELT)) (-1889 (((-1190 |#1|) (-936)) 152 T ELT)) (-1888 (((-1190 |#1|) (-936)) 151 T ELT)) (-1887 (((-1190 |#1|) (-936)) 150 T ELT)) (-1885 (((-1190 |#1|) (-936)) 147 T ELT))) -(((-369 |#1|) (-10 -7 (-15 -1881 ((-114) (-1190 |#1|))) (-15 -2219 ((-114) (-1190 |#1|))) (-15 -1882 ((-936) (-936))) (-15 -1883 ((-936) (-936))) (-15 -1884 ((-936) (-936))) (-15 -1885 ((-1190 |#1|) (-936))) (-15 -1886 ((-1190 |#1|) (-936))) (-15 -1887 ((-1190 |#1|) (-936))) (-15 -1888 ((-1190 |#1|) (-936))) (-15 -1889 ((-1190 |#1|) (-936))) (-15 -1890 ((-3 (-1190 |#1|) #1="failed") (-1190 |#1|))) (-15 -1891 ((-3 (-1190 |#1|) #1#) (-1190 |#1|))) (-15 -1892 ((-3 (-1190 |#1|) #1#) (-1190 |#1|))) (-15 -1893 ((-3 (-1190 |#1|) #1#) (-1190 |#1|))) (-15 -1894 ((-3 (-1190 |#1|) #1#) (-1190 |#1|))) (-15 -3393 ((-1190 |#1|) (-936))) (-15 -3393 ((-1190 |#1|) (-936) (-936))) (-15 -1895 ((-1190 |#1|) (-1190 |#1|))) (-15 -1896 ((-975 (-1190 |#1|)) (-1190 |#1|)))) (-363)) (T -369)) -((-1896 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-975 (-1190 *4))) (-5 *1 (-369 *4)) (-5 *3 (-1190 *4)))) (-1895 (*1 *2 *2) (-12 (-5 *2 (-1190 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-3393 (*1 *2 *3 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-3393 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1894 (*1 *2 *2) (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1893 (*1 *2 *2) (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1892 (*1 *2 *2) (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1891 (*1 *2 *2) (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1890 (*1 *2 *2) (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1888 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1887 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1884 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-369 *3)) (-4 *3 (-363)))) (-1883 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-369 *3)) (-4 *3 (-363)))) (-1882 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-369 *3)) (-4 *3 (-363)))) (-2219 (*1 *2 *3) (-12 (-5 *3 (-1190 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4)))) (-1881 (*1 *2 *3) (-12 (-5 *3 (-1190 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4))))) -((-1897 ((|#1| (-1190 |#2|)) 60 T ELT))) -(((-370 |#1| |#2|) (-10 -7 (-15 -1897 (|#1| (-1190 |#2|)))) (-13 (-414) (-10 -7 (-15 -4374 (|#1| |#2|)) (-15 -2218 ((-936) |#1|)) (-15 -2220 ((-1286 |#1|) (-936))) (-15 -4356 (|#1| |#1|)))) (-363)) (T -370)) -((-1897 (*1 *2 *3) (-12 (-5 *3 (-1190 *4)) (-4 *4 (-363)) (-4 *2 (-13 (-414) (-10 -7 (-15 -4374 (*2 *4)) (-15 -2218 ((-936) *2)) (-15 -2220 ((-1286 *2) (-936))) (-15 -4356 (*2 *2))))) (-5 *1 (-370 *2 *4))))) -((-3103 (((-3 (-659 |#3|) "failed") (-659 |#3|) |#3|) 40 T ELT))) -(((-371 |#1| |#2| |#3|) (-10 -7 (-15 -3103 ((-3 (-659 |#3|) "failed") (-659 |#3|) |#3|))) (-363) (-1262 |#1|) (-1262 |#2|)) (T -371)) -((-3103 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-659 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-363)) (-5 *1 (-371 *4 *5 *3))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-4360 (((-114) $) NIL T ELT)) (-4357 (((-789)) NIL T ELT)) (-3748 ((|#1| $) NIL T ELT) (($ $ (-936)) NIL (|has| |#1| (-381)) ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) NIL (|has| |#1| (-381)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) NIL (|has| |#1| (-381)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) NIL T ELT)) (-3572 ((|#1| $) NIL T ELT)) (-1998 (($ (-1286 |#1|)) NIL T ELT)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3393 (($) NIL (|has| |#1| (-381)) ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-3232 (($) NIL (|has| |#1| (-381)) ELT)) (-1881 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1972 (($ $ (-789)) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4151 (((-114) $) NIL T ELT)) (-4200 (((-936) $) NIL (|has| |#1| (-381)) ELT) (((-843 (-936)) $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-2221 (($) NIL (|has| |#1| (-381)) ELT)) (-2219 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3532 ((|#1| $) NIL T ELT) (($ $ (-936)) NIL (|has| |#1| (-381)) ELT)) (-3863 (((-709 $) $) NIL (|has| |#1| (-381)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2222 (((-1190 |#1|) $) NIL T ELT) (((-1190 $) $ (-936)) NIL (|has| |#1| (-381)) ELT)) (-2218 (((-936) $) NIL (|has| |#1| (-381)) ELT)) (-1805 (((-1190 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1804 (((-1190 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1190 |#1|) #1#) $ $) NIL (|has| |#1| (-381)) ELT)) (-1806 (($ $ (-1190 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3864 (($) NIL (|has| |#1| (-381)) CONST)) (-2629 (($ (-936)) NIL (|has| |#1| (-381)) ELT)) (-4359 (((-114) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2638 (($) NIL (|has| |#1| (-381)) ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) NIL (|has| |#1| (-381)) ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-4358 (((-843 (-936))) NIL T ELT) (((-936)) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-1973 (((-789) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-789) #1#) $ $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4339 (((-136)) NIL T ELT)) (-4186 (($ $ (-789)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4376 (((-843 (-936)) $) NIL T ELT) (((-936) $) NIL T ELT)) (-3601 (((-1190 |#1|)) NIL T ELT)) (-1875 (($) NIL (|has| |#1| (-381)) ELT)) (-1807 (($) NIL (|has| |#1| (-381)) ELT)) (-3640 (((-1286 |#1|) $) NIL T ELT) (((-707 |#1|) (-1286 $)) NIL T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (|has| |#1| (-381)) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ |#1|) NIL T ELT)) (-3101 (($ $) NIL (|has| |#1| (-381)) ELT) (((-709 $) $) NIL (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 $)) NIL T ELT) (((-1286 $) (-936)) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-4356 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-789)) NIL (|has| |#1| (-381)) ELT)) (-3068 (($ $ (-789)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-372 |#1| |#2|) (-341 |#1|) (-363) (-936)) (T -372)) -NIL -((-2461 (((-114) (-659 (-963 |#1|))) 41 T ELT)) (-2463 (((-659 (-963 |#1|)) (-659 (-963 |#1|))) 53 T ELT)) (-2462 (((-3 (-659 (-963 |#1|)) "failed") (-659 (-963 |#1|))) 48 T ELT))) -(((-373 |#1| |#2|) (-10 -7 (-15 -2461 ((-114) (-659 (-963 |#1|)))) (-15 -2462 ((-3 (-659 (-963 |#1|)) "failed") (-659 (-963 |#1|)))) (-15 -2463 ((-659 (-963 |#1|)) (-659 (-963 |#1|))))) (-464) (-659 (-1196))) (T -373)) -((-2463 (*1 *2 *2) (-12 (-5 *2 (-659 (-963 *3))) (-4 *3 (-464)) (-5 *1 (-373 *3 *4)) (-14 *4 (-659 (-1196))))) (-2462 (*1 *2 *2) (|partial| -12 (-5 *2 (-659 (-963 *3))) (-4 *3 (-464)) (-5 *1 (-373 *3 *4)) (-14 *4 (-659 (-1196))))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-659 (-963 *4))) (-4 *4 (-464)) (-5 *2 (-114)) (-5 *1 (-373 *4 *5)) (-14 *5 (-659 (-1196)))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3536 (((-789) $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3572 ((|#1| $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-2639 (((-114) $) 17 T ELT)) (-2510 ((|#1| $ (-557)) NIL T ELT)) (-2511 (((-557) $ (-557)) NIL T ELT)) (-2502 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2503 (($ (-1 (-557) (-557)) $) 26 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) 28 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1985 (((-659 (-2 (|:| |gen| |#1|) (|:| -4371 (-557)))) $) 30 T ELT)) (-3408 (($ $ $) NIL T ELT)) (-2822 (($ $ $) NIL T ELT)) (-4374 (((-875) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3063 (($) 7 T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT) (($ |#1| (-557)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) -(((-374 |#1|) (-13 (-485) (-1057 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-557))) (-15 -3536 ((-789) $)) (-15 -2511 ((-557) $ (-557))) (-15 -2510 (|#1| $ (-557))) (-15 -2503 ($ (-1 (-557) (-557)) $)) (-15 -2502 ($ (-1 |#1| |#1|) $)) (-15 -1985 ((-659 (-2 (|:| |gen| |#1|) (|:| -4371 (-557)))) $)))) (-1120)) (T -374)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1120)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1120)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-557)) (-5 *1 (-374 *2)) (-4 *2 (-1120)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-374 *3)) (-4 *3 (-1120)))) (-2511 (*1 *2 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-374 *3)) (-4 *3 (-1120)))) (-2510 (*1 *2 *1 *3) (-12 (-5 *3 (-557)) (-5 *1 (-374 *2)) (-4 *2 (-1120)))) (-2503 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-557) (-557))) (-5 *1 (-374 *3)) (-4 *3 (-1120)))) (-2502 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-374 *3)))) (-1985 (*1 *2 *1) (-12 (-5 *2 (-659 (-2 (|:| |gen| *3) (|:| -4371 (-557))))) (-5 *1 (-374 *3)) (-4 *3 (-1120))))) -((-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 13 T ELT)) (-2271 (($ $) 14 T ELT)) (-4399 (((-417 $) $) 31 T ELT)) (-4151 (((-114) $) 27 T ELT)) (-2872 (($ $) 19 T ELT)) (-3560 (($ $ $) 22 T ELT) (($ (-659 $)) NIL T ELT)) (-4160 (((-417 $) $) 32 T ELT)) (-3884 (((-3 $ "failed") $ $) 21 T ELT)) (-1785 (((-789) $) 25 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 36 T ELT)) (-2270 (((-114) $ $) 16 T ELT)) (-4377 (($ $ $) 34 T ELT))) -(((-375 |#1|) (-10 -7 (-15 -4377 (|#1| |#1| |#1|)) (-15 -2872 (|#1| |#1|)) (-15 -4151 ((-114) |#1|)) (-15 -4399 ((-417 |#1|) |#1|)) (-15 -4160 ((-417 |#1|) |#1|)) (-15 -3278 ((-2 (|:| -2182 |#1|) (|:| -3301 |#1|)) |#1| |#1|)) (-15 -1785 ((-789) |#1|)) (-15 -3560 (|#1| (-659 |#1|))) (-15 -3560 (|#1| |#1| |#1|)) (-15 -2270 ((-114) |#1| |#1|)) (-15 -2271 (|#1| |#1|)) (-15 -2272 ((-2 (|:| -1978 |#1|) (|:| -4410 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3884 ((-3 |#1| "failed") |#1| |#1|))) (-376)) (T -375)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 52 T ELT)) (-2271 (($ $) 51 T ELT)) (-2269 (((-114) $) 49 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4203 (($ $) 88 T ELT)) (-4399 (((-417 $) $) 87 T ELT)) (-1786 (((-114) $ $) 72 T ELT)) (-4152 (($) 22 T CONST)) (-2961 (($ $ $) 68 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2960 (($ $ $) 69 T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 63 T ELT)) (-4151 (((-114) $) 86 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-1783 (((-3 (-659 $) #1="failed") (-659 $) $) 65 T ELT)) (-2100 (($ $ $) 57 T ELT) (($ (-659 $)) 56 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2872 (($ $) 85 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 55 T ELT)) (-3560 (($ $ $) 59 T ELT) (($ (-659 $)) 58 T ELT)) (-4160 (((-417 $) $) 89 T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3884 (((-3 $ "failed") $ $) 53 T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 62 T ELT)) (-1785 (((-789) $) 71 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 70 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-557))) 81 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 50 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ $) 80 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ (-557)) 84 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-557))) 83 T ELT) (($ (-419 (-557)) $) 82 T ELT))) -(((-376) (-142)) (T -376)) -((-4377 (*1 *1 *1 *1) (-4 *1 (-376)))) -(-13 (-319) (-1241) (-250) (-10 -8 (-15 -4377 ($ $ $)) (-6 -4421) (-6 -4415))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-557))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) . T) ((-111 $ $) . T) ((-133) . T) ((-631 (-419 (-557))) . T) ((-631 (-557)) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-464) . T) ((-568) . T) ((-664 (-419 (-557))) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 (-419 (-557))) . T) ((-666 $) . T) ((-658 (-419 (-557))) . T) ((-658 $) . T) ((-735 (-419 (-557))) . T) ((-735 $) . T) ((-744) . T) ((-938) . T) ((-1070 (-419 (-557))) . T) ((-1070 $) . T) ((-1075 (-419 (-557))) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T) ((-1241) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-1898 ((|#1| $ |#1|) 35 T ELT)) (-1902 (($ $ (-1178)) 23 T ELT)) (-4047 (((-3 |#1| "failed") $) 34 T ELT)) (-1899 ((|#1| $) 32 T ELT)) (-1903 (($ (-402)) 22 T ELT) (($ (-402) (-1178)) 21 T ELT)) (-3968 (((-402) $) 25 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1900 (((-1178) $) 26 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 20 T ELT)) (-1901 (($ $) 24 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 19 T ELT))) -(((-377 |#1|) (-13 (-378 (-402) |#1|) (-10 -8 (-15 -4047 ((-3 |#1| "failed") $)))) (-1120)) (T -377)) -((-4047 (*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1120))))) -((-2965 (((-114) $ $) 7 T ELT)) (-1898 ((|#2| $ |#2|) 17 T ELT)) (-1902 (($ $ (-1178)) 22 T ELT)) (-1899 ((|#2| $) 18 T ELT)) (-1903 (($ |#1|) 24 T ELT) (($ |#1| (-1178)) 23 T ELT)) (-3968 ((|#1| $) 20 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-1900 (((-1178) $) 19 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1901 (($ $) 21 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-378 |#1| |#2|) (-142) (-1120) (-1120)) (T -378)) -((-1903 (*1 *1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-1903 (*1 *1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *1 (-378 *2 *4)) (-4 *2 (-1120)) (-4 *4 (-1120)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-378 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))) (-1901 (*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1120)))) (-1900 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-5 *2 (-1178)))) (-1899 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120)))) (-1898 (*1 *2 *1 *2) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120))))) -(-13 (-1120) (-10 -8 (-15 -1903 ($ |t#1|)) (-15 -1903 ($ |t#1| (-1178))) (-15 -1902 ($ $ (-1178))) (-15 -1901 ($ $)) (-15 -3968 (|t#1| $)) (-15 -1900 ((-1178) $)) (-15 -1899 (|t#2| $)) (-15 -1898 (|t#2| $ |t#2|)))) -(((-102) . T) ((-628 (-875)) . T) ((-1120) . T) ((-1236) . T)) -((-3639 (((-1286 (-707 |#2|)) (-1286 $)) 67 T ELT)) (-1994 (((-707 |#2|) (-1286 $)) 139 T ELT)) (-1928 ((|#2| $) 36 T ELT)) (-1992 (((-707 |#2|) $ (-1286 $)) 142 T ELT)) (-2633 (((-3 $ #1="failed") $) 89 T ELT)) (-1926 ((|#2| $) 39 T ELT)) (-1906 (((-1190 |#2|) $) 98 T ELT)) (-1996 ((|#2| (-1286 $)) 122 T ELT)) (-1924 (((-1190 |#2|) $) 32 T ELT)) (-1918 (((-114)) 116 T ELT)) (-1998 (($ (-1286 |#2|) (-1286 $)) 132 T ELT)) (-3885 (((-3 $ #1#) $) 93 T ELT)) (-1911 (((-114)) 111 T ELT)) (-1909 (((-114)) 106 T ELT)) (-1913 (((-114)) 58 T ELT)) (-1995 (((-707 |#2|) (-1286 $)) 137 T ELT)) (-1929 ((|#2| $) 35 T ELT)) (-1993 (((-707 |#2|) $ (-1286 $)) 141 T ELT)) (-2634 (((-3 $ #1#) $) 87 T ELT)) (-1927 ((|#2| $) 38 T ELT)) (-1907 (((-1190 |#2|) $) 97 T ELT)) (-1997 ((|#2| (-1286 $)) 120 T ELT)) (-1925 (((-1190 |#2|) $) 30 T ELT)) (-1919 (((-114)) 115 T ELT)) (-1910 (((-114)) 108 T ELT)) (-1912 (((-114)) 56 T ELT)) (-1914 (((-114)) 103 T ELT)) (-1917 (((-114)) 117 T ELT)) (-3640 (((-1286 |#2|) $ (-1286 $)) NIL T ELT) (((-707 |#2|) (-1286 $) (-1286 $)) 128 T ELT)) (-1923 (((-114)) 113 T ELT)) (-1908 (((-659 (-1286 |#2|))) 102 T ELT)) (-1921 (((-114)) 114 T ELT)) (-1922 (((-114)) 112 T ELT)) (-1920 (((-114)) 51 T ELT)) (-1916 (((-114)) 118 T ELT))) -(((-379 |#1| |#2|) (-10 -7 (-15 -1906 ((-1190 |#2|) |#1|)) (-15 -1907 ((-1190 |#2|) |#1|)) (-15 -1908 ((-659 (-1286 |#2|)))) (-15 -2633 ((-3 |#1| #1="failed") |#1|)) (-15 -2634 ((-3 |#1| #1#) |#1|)) (-15 -3885 ((-3 |#1| #1#) |#1|)) (-15 -1909 ((-114))) (-15 -1910 ((-114))) (-15 -1911 ((-114))) (-15 -1912 ((-114))) (-15 -1913 ((-114))) (-15 -1914 ((-114))) (-15 -1916 ((-114))) (-15 -1917 ((-114))) (-15 -1918 ((-114))) (-15 -1919 ((-114))) (-15 -1920 ((-114))) (-15 -1921 ((-114))) (-15 -1922 ((-114))) (-15 -1923 ((-114))) (-15 -1924 ((-1190 |#2|) |#1|)) (-15 -1925 ((-1190 |#2|) |#1|)) (-15 -1994 ((-707 |#2|) (-1286 |#1|))) (-15 -1995 ((-707 |#2|) (-1286 |#1|))) (-15 -1996 (|#2| (-1286 |#1|))) (-15 -1997 (|#2| (-1286 |#1|))) (-15 -1998 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -3640 ((-707 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3640 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -1926 (|#2| |#1|)) (-15 -1927 (|#2| |#1|)) (-15 -1928 (|#2| |#1|)) (-15 -1929 (|#2| |#1|)) (-15 -1992 ((-707 |#2|) |#1| (-1286 |#1|))) (-15 -1993 ((-707 |#2|) |#1| (-1286 |#1|))) (-15 -3639 ((-1286 (-707 |#2|)) (-1286 |#1|)))) (-380 |#2|) (-175)) (T -379)) -((-1923 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1922 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1921 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1920 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1919 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1918 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1917 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1916 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1914 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1913 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1912 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1911 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1910 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1909 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1908 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-659 (-1286 *4))) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1978 (((-3 $ "failed")) 47 (|has| |#1| (-568)) ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-3639 (((-1286 (-707 |#1|)) (-1286 $)) 88 T ELT)) (-1930 (((-1286 $)) 91 T ELT)) (-4152 (($) 22 T CONST)) (-2115 (((-3 (-2 (|:| |particular| $) (|:| -2220 (-659 $))) "failed")) 50 (|has| |#1| (-568)) ELT)) (-1904 (((-3 $ "failed")) 48 (|has| |#1| (-568)) ELT)) (-1994 (((-707 |#1|) (-1286 $)) 75 T ELT)) (-1928 ((|#1| $) 84 T ELT)) (-1992 (((-707 |#1|) $ (-1286 $)) 86 T ELT)) (-2633 (((-3 $ "failed") $) 55 (|has| |#1| (-568)) ELT)) (-2636 (($ $ (-936)) 36 T ELT)) (-1926 ((|#1| $) 82 T ELT)) (-1906 (((-1190 |#1|) $) 52 (|has| |#1| (-568)) ELT)) (-1996 ((|#1| (-1286 $)) 77 T ELT)) (-1924 (((-1190 |#1|) $) 73 T ELT)) (-1918 (((-114)) 67 T ELT)) (-1998 (($ (-1286 |#1|) (-1286 $)) 79 T ELT)) (-3885 (((-3 $ "failed") $) 57 (|has| |#1| (-568)) ELT)) (-3509 (((-936)) 90 T ELT)) (-1915 (((-114)) 64 T ELT)) (-2660 (($ $ (-936)) 43 T ELT)) (-1911 (((-114)) 60 T ELT)) (-1909 (((-114)) 58 T ELT)) (-1913 (((-114)) 62 T ELT)) (-2116 (((-3 (-2 (|:| |particular| $) (|:| -2220 (-659 $))) "failed")) 51 (|has| |#1| (-568)) ELT)) (-1905 (((-3 $ "failed")) 49 (|has| |#1| (-568)) ELT)) (-1995 (((-707 |#1|) (-1286 $)) 76 T ELT)) (-1929 ((|#1| $) 85 T ELT)) (-1993 (((-707 |#1|) $ (-1286 $)) 87 T ELT)) (-2634 (((-3 $ "failed") $) 56 (|has| |#1| (-568)) ELT)) (-2635 (($ $ (-936)) 37 T ELT)) (-1927 ((|#1| $) 83 T ELT)) (-1907 (((-1190 |#1|) $) 53 (|has| |#1| (-568)) ELT)) (-1997 ((|#1| (-1286 $)) 78 T ELT)) (-1925 (((-1190 |#1|) $) 74 T ELT)) (-1919 (((-114)) 68 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-1910 (((-114)) 59 T ELT)) (-1912 (((-114)) 61 T ELT)) (-1914 (((-114)) 63 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-1917 (((-114)) 66 T ELT)) (-3640 (((-1286 |#1|) $ (-1286 $)) 81 T ELT) (((-707 |#1|) (-1286 $) (-1286 $)) 80 T ELT)) (-2101 (((-659 (-963 |#1|)) (-1286 $)) 89 T ELT)) (-2822 (($ $ $) 33 T ELT)) (-1923 (((-114)) 72 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-1908 (((-659 (-1286 |#1|))) 54 (|has| |#1| (-568)) ELT)) (-2823 (($ $ $ $) 34 T ELT)) (-1921 (((-114)) 70 T ELT)) (-2821 (($ $ $) 32 T ELT)) (-1922 (((-114)) 71 T ELT)) (-1920 (((-114)) 69 T ELT)) (-1916 (((-114)) 65 T ELT)) (-3057 (($) 23 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 38 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) -(((-380 |#1|) (-142) (-175)) (T -380)) -((-1930 (*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1286 *1)) (-4 *1 (-380 *3)))) (-3509 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-936)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-659 (-963 *4))))) (-3639 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-1286 (-707 *4))))) (-1993 (*1 *2 *1 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-707 *4)))) (-1992 (*1 *2 *1 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-707 *4)))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1927 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1926 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-3640 (*1 *2 *1 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-1286 *4)))) (-3640 (*1 *2 *3 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-707 *4)))) (-1998 (*1 *1 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1286 *1)) (-4 *4 (-175)) (-4 *1 (-380 *4)))) (-1997 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1996 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1995 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-707 *4)))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-707 *4)))) (-1925 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1190 *3)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1190 *3)))) (-1923 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1922 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1921 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1920 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1919 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1918 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1917 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1916 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1915 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1914 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1913 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1912 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1911 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1910 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1909 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-3885 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-568)))) (-2634 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-568)))) (-2633 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-568)))) (-1908 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-568)) (-5 *2 (-659 (-1286 *3))))) (-1907 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-568)) (-5 *2 (-1190 *3)))) (-1906 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-568)) (-5 *2 (-1190 *3)))) (-2116 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-175)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2220 (-659 *1)))) (-4 *1 (-380 *3)))) (-2115 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-175)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2220 (-659 *1)))) (-4 *1 (-380 *3)))) (-1905 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-568)) (-4 *2 (-175)))) (-1904 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-568)) (-4 *2 (-175)))) (-1978 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-568)) (-4 *2 (-175))))) -(-13 (-762 |t#1|) (-10 -8 (-15 -1930 ((-1286 $))) (-15 -3509 ((-936))) (-15 -2101 ((-659 (-963 |t#1|)) (-1286 $))) (-15 -3639 ((-1286 (-707 |t#1|)) (-1286 $))) (-15 -1993 ((-707 |t#1|) $ (-1286 $))) (-15 -1992 ((-707 |t#1|) $ (-1286 $))) (-15 -1929 (|t#1| $)) (-15 -1928 (|t#1| $)) (-15 -1927 (|t#1| $)) (-15 -1926 (|t#1| $)) (-15 -3640 ((-1286 |t#1|) $ (-1286 $))) (-15 -3640 ((-707 |t#1|) (-1286 $) (-1286 $))) (-15 -1998 ($ (-1286 |t#1|) (-1286 $))) (-15 -1997 (|t#1| (-1286 $))) (-15 -1996 (|t#1| (-1286 $))) (-15 -1995 ((-707 |t#1|) (-1286 $))) (-15 -1994 ((-707 |t#1|) (-1286 $))) (-15 -1925 ((-1190 |t#1|) $)) (-15 -1924 ((-1190 |t#1|) $)) (-15 -1923 ((-114))) (-15 -1922 ((-114))) (-15 -1921 ((-114))) (-15 -1920 ((-114))) (-15 -1919 ((-114))) (-15 -1918 ((-114))) (-15 -1917 ((-114))) (-15 -1916 ((-114))) (-15 -1915 ((-114))) (-15 -1914 ((-114))) (-15 -1913 ((-114))) (-15 -1912 ((-114))) (-15 -1911 ((-114))) (-15 -1910 ((-114))) (-15 -1909 ((-114))) (IF (|has| |t#1| (-568)) (PROGN (-15 -3885 ((-3 $ "failed") $)) (-15 -2634 ((-3 $ "failed") $)) (-15 -2633 ((-3 $ "failed") $)) (-15 -1908 ((-659 (-1286 |t#1|)))) (-15 -1907 ((-1190 |t#1|) $)) (-15 -1906 ((-1190 |t#1|) $)) (-15 -2116 ((-3 (-2 (|:| |particular| $) (|:| -2220 (-659 $))) "failed"))) (-15 -2115 ((-3 (-2 (|:| |particular| $) (|:| -2220 (-659 $))) "failed"))) (-15 -1905 ((-3 $ "failed"))) (-15 -1904 ((-3 $ "failed"))) (-15 -1978 ((-3 $ "failed"))) (-6 -4420)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-666 |#1|) . T) ((-658 |#1|) . T) ((-735 |#1|) . T) ((-738) . T) ((-762 |#1|) . T) ((-779) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) 7 T ELT)) (-3536 (((-789)) 20 T ELT)) (-3393 (($) 17 T ELT)) (-2218 (((-936) $) 18 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2629 (($ (-936)) 19 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-381) (-142)) (T -381)) -((-3536 (*1 *2) (-12 (-4 *1 (-381)) (-5 *2 (-789)))) (-2629 (*1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-381)))) (-2218 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-936)))) (-3393 (*1 *1) (-4 *1 (-381)))) -(-13 (-1120) (-10 -8 (-15 -3536 ((-789))) (-15 -2629 ($ (-936))) (-15 -2218 ((-936) $)) (-15 -3393 ($)))) -(((-102) . T) ((-628 (-875)) . T) ((-1120) . T) ((-1236) . T)) -((-1988 (((-707 |#2|) (-1286 $)) 45 T ELT)) (-1998 (($ (-1286 |#2|) (-1286 $)) 39 T ELT)) (-1987 (((-707 |#2|) $ (-1286 $)) 47 T ELT)) (-4185 ((|#2| (-1286 $)) 13 T ELT)) (-3640 (((-1286 |#2|) $ (-1286 $)) NIL T ELT) (((-707 |#2|) (-1286 $) (-1286 $)) 27 T ELT))) -(((-382 |#1| |#2| |#3|) (-10 -7 (-15 -1988 ((-707 |#2|) (-1286 |#1|))) (-15 -4185 (|#2| (-1286 |#1|))) (-15 -1998 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -3640 ((-707 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3640 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -1987 ((-707 |#2|) |#1| (-1286 |#1|)))) (-383 |#2| |#3|) (-175) (-1262 |#2|)) (T -382)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1988 (((-707 |#1|) (-1286 $)) 58 T ELT)) (-3748 ((|#1| $) 64 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-1998 (($ (-1286 |#1|) (-1286 $)) 60 T ELT)) (-1987 (((-707 |#1|) $ (-1286 $)) 65 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-3509 (((-936)) 66 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3532 ((|#1| $) 63 T ELT)) (-2222 ((|#2| $) 56 (|has| |#1| (-376)) ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4185 ((|#1| (-1286 $)) 59 T ELT)) (-3640 (((-1286 |#1|) $ (-1286 $)) 62 T ELT) (((-707 |#1|) (-1286 $) (-1286 $)) 61 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ |#1|) 49 T ELT)) (-3101 (((-709 $) $) 55 (|has| |#1| (-147)) ELT)) (-2836 ((|#2| $) 57 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) -(((-383 |#1| |#2|) (-142) (-175) (-1262 |t#1|)) (T -383)) -((-3509 (*1 *2) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1262 *3)) (-5 *2 (-936)))) (-1987 (*1 *2 *1 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1262 *4)) (-5 *2 (-707 *4)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-175)))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-175)))) (-3640 (*1 *2 *1 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1262 *4)) (-5 *2 (-1286 *4)))) (-3640 (*1 *2 *3 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1262 *4)) (-5 *2 (-707 *4)))) (-1998 (*1 *1 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1286 *1)) (-4 *4 (-175)) (-4 *1 (-383 *4 *5)) (-4 *5 (-1262 *4)))) (-4185 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-383 *2 *4)) (-4 *4 (-1262 *2)) (-4 *2 (-175)))) (-1988 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1262 *4)) (-5 *2 (-707 *4)))) (-2836 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1262 *3)))) (-2222 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *3 (-376)) (-4 *2 (-1262 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3509 ((-936))) (-15 -1987 ((-707 |t#1|) $ (-1286 $))) (-15 -3748 (|t#1| $)) (-15 -3532 (|t#1| $)) (-15 -3640 ((-1286 |t#1|) $ (-1286 $))) (-15 -3640 ((-707 |t#1|) (-1286 $) (-1286 $))) (-15 -1998 ($ (-1286 |t#1|) (-1286 $))) (-15 -4185 (|t#1| (-1286 $))) (-15 -1988 ((-707 |t#1|) (-1286 $))) (-15 -2836 (|t#2| $)) (IF (|has| |t#1| (-376)) (-15 -2222 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-631 (-557)) . T) ((-631 |#1|) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-658 |#1|) . T) ((-735 |#1|) . T) ((-744) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-1933 (((-114) (-1 (-114) |#2| |#2|) $) NIL T ELT) (((-114) $) 18 T ELT)) (-1931 (($ (-1 (-114) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-3308 (($ (-1 (-114) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2509 (($ $) 25 T ELT)) (-3837 (((-557) (-1 (-114) |#2|) $) NIL T ELT) (((-557) |#2| $) 11 T ELT) (((-557) |#2| $ (-557)) NIL T ELT)) (-3936 (($ (-1 (-114) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) -(((-384 |#1| |#2|) (-10 -7 (-15 -1931 (|#1| |#1|)) (-15 -1931 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -1933 ((-114) |#1|)) (-15 -3308 (|#1| |#1|)) (-15 -3936 (|#1| |#1| |#1|)) (-15 -3837 ((-557) |#2| |#1| (-557))) (-15 -3837 ((-557) |#2| |#1|)) (-15 -3837 ((-557) (-1 (-114) |#2|) |#1|)) (-15 -1933 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -3308 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -2509 (|#1| |#1|)) (-15 -3936 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|))) (-385 |#2|) (-1236)) (T -384)) -NIL -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2411 (((-1292) $ (-557) (-557)) 44 (|has| $ (-6 -4424)) ELT)) (-1933 (((-114) (-1 (-114) |#1| |#1|) $) 107 T ELT) (((-114) $) 101 (|has| |#1| (-859)) ELT)) (-1931 (($ (-1 (-114) |#1| |#1|) $) 98 (|has| $ (-6 -4424)) ELT) (($ $) 97 (-12 (|has| |#1| (-859)) (|has| $ (-6 -4424))) ELT)) (-3308 (($ (-1 (-114) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-859)) ELT)) (-4216 ((|#1| $ (-557) |#1|) 56 (|has| $ (-6 -4424)) ELT) ((|#1| $ (-1253 (-557)) |#1|) 64 (|has| $ (-6 -4424)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4423)) ELT)) (-4152 (($) 7 T CONST)) (-2508 (($ $) 99 (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) 109 T ELT)) (-1465 (($ $) 84 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3824 (($ |#1| $) 83 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4423)) ELT)) (-1717 ((|#1| $ (-557) |#1|) 57 (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-557)) 55 T ELT)) (-3837 (((-557) (-1 (-114) |#1|) $) 106 T ELT) (((-557) |#1| $) 105 (|has| |#1| (-1120)) ELT) (((-557) |#1| $ (-557)) 104 (|has| |#1| (-1120)) ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-4042 (($ (-789) |#1|) 74 T ELT)) (-2413 (((-557) $) 47 (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) 91 (|has| |#1| (-859)) ELT)) (-3936 (($ (-1 (-114) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-859)) ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2414 (((-557) $) 48 (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) 92 (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-2515 (($ |#1| $ (-557)) 66 T ELT) (($ $ $ (-557)) 65 T ELT)) (-2416 (((-659 (-557)) $) 50 T ELT)) (-2417 (((-114) (-557) $) 51 T ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-4229 ((|#1| $) 46 (|has| (-557) (-859)) ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2412 (($ $ |#1|) 45 (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-2415 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) 52 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-4228 ((|#1| $ (-557) |#1|) 54 T ELT) ((|#1| $ (-557)) 53 T ELT) (($ $ (-1253 (-557))) 75 T ELT)) (-2516 (($ $ (-557)) 68 T ELT) (($ $ (-1253 (-557))) 67 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-1932 (($ $ $ (-557)) 100 (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) 10 T ELT)) (-4400 (((-546) $) 85 (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 76 T ELT)) (-4230 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-659 $)) 70 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-2963 (((-114) $ $) 93 (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) 95 (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3083 (((-114) $ $) 94 (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) 96 (|has| |#1| (-859)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-385 |#1|) (-142) (-1236)) (T -385)) -((-3936 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1236)))) (-2509 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1236)))) (-3308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1236)))) (-1933 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1236)) (-5 *2 (-114)))) (-3837 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1236)) (-5 *2 (-557)))) (-3837 (*1 *2 *3 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1236)) (-4 *3 (-1120)) (-5 *2 (-557)))) (-3837 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-557)) (-4 *1 (-385 *3)) (-4 *3 (-1236)) (-4 *3 (-1120)))) (-3936 (*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1236)) (-4 *2 (-859)))) (-3308 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1236)) (-4 *2 (-859)))) (-1933 (*1 *2 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1236)) (-4 *3 (-859)) (-5 *2 (-114)))) (-1932 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-557)) (|has| *1 (-6 -4424)) (-4 *1 (-385 *3)) (-4 *3 (-1236)))) (-2508 (*1 *1 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-385 *2)) (-4 *2 (-1236)))) (-1931 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (|has| *1 (-6 -4424)) (-4 *1 (-385 *3)) (-4 *3 (-1236)))) (-1931 (*1 *1 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-385 *2)) (-4 *2 (-1236)) (-4 *2 (-859))))) -(-13 (-669 |t#1|) (-10 -8 (-6 -4423) (-15 -3936 ($ (-1 (-114) |t#1| |t#1|) $ $)) (-15 -2509 ($ $)) (-15 -3308 ($ (-1 (-114) |t#1| |t#1|) $)) (-15 -1933 ((-114) (-1 (-114) |t#1| |t#1|) $)) (-15 -3837 ((-557) (-1 (-114) |t#1|) $)) (IF (|has| |t#1| (-1120)) (PROGN (-15 -3837 ((-557) |t#1| $)) (-15 -3837 ((-557) |t#1| $ (-557)))) |%noBranch|) (IF (|has| |t#1| (-859)) (PROGN (-6 (-859)) (-15 -3936 ($ $ $)) (-15 -3308 ($ $)) (-15 -1933 ((-114) $))) |%noBranch|) (IF (|has| $ (-6 -4424)) (PROGN (-15 -1932 ($ $ $ (-557))) (-15 -2508 ($ $)) (-15 -1931 ($ (-1 (-114) |t#1| |t#1|) $)) (IF (|has| |t#1| (-859)) (-15 -1931 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-859)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-859)) (|has| |#1| (-628 (-875)))) ((-153 |#1|) . T) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-298 (-557) |#1|) . T) ((-298 (-1253 (-557)) $) . T) ((-300 (-557) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-614 (-557) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-669 |#1|) . T) ((-859) |has| |#1| (-859)) ((-862) |has| |#1| (-859)) ((-1120) -3955 (|has| |#1| (-1120)) (|has| |#1| (-859))) ((-1236) . T)) -((-4269 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-4270 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-4386 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) -(((-386 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4386 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4270 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4269 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1236) (-385 |#1|) (-1236) (-385 |#3|)) (T -386)) -((-4269 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1236)) (-4 *5 (-1236)) (-4 *2 (-385 *5)) (-5 *1 (-386 *6 *4 *5 *2)) (-4 *4 (-385 *6)))) (-4270 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-386 *5 *4 *2 *6)) (-4 *4 (-385 *5)) (-4 *6 (-385 *2)))) (-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-4 *2 (-385 *6)) (-5 *1 (-386 *5 *4 *6 *2)) (-4 *4 (-385 *5))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-4362 (((-659 |#1|) $) 42 T ELT)) (-4375 (($ $ (-789)) 43 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-4367 (((-1311 |#1| |#2|) (-1311 |#1| |#2|) $) 46 T ELT)) (-4364 (($ $) 44 T ELT)) (-4368 (((-1311 |#1| |#2|) (-1311 |#1| |#2|) $) 47 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4196 (($ $ |#1| $) 41 T ELT) (($ $ (-659 |#1|) (-659 $)) 40 T ELT)) (-4376 (((-789) $) 48 T ELT)) (-3948 (($ $ $) 39 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ |#1|) 51 T ELT) (((-1302 |#1| |#2|) $) 50 T ELT) (((-1311 |#1| |#2|) $) 49 T ELT)) (-4382 ((|#2| (-1311 |#1| |#2|) $) 52 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-1934 (($ (-690 |#1|)) 45 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ |#2|) 38 (|has| |#2| (-376)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) -(((-387 |#1| |#2|) (-142) (-859) (-175)) (T -387)) -((-4382 (*1 *2 *3 *1) (-12 (-5 *3 (-1311 *4 *2)) (-4 *1 (-387 *4 *2)) (-4 *4 (-859)) (-4 *2 (-175)))) (-4374 (*1 *1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-859)) (-4 *3 (-175)))) (-4374 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-859)) (-4 *4 (-175)) (-5 *2 (-1302 *3 *4)))) (-4374 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-859)) (-4 *4 (-175)) (-5 *2 (-1311 *3 *4)))) (-4376 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-859)) (-4 *4 (-175)) (-5 *2 (-789)))) (-4368 (*1 *2 *2 *1) (-12 (-5 *2 (-1311 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-859)) (-4 *4 (-175)))) (-4367 (*1 *2 *2 *1) (-12 (-5 *2 (-1311 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-859)) (-4 *4 (-175)))) (-1934 (*1 *1 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-859)) (-4 *1 (-387 *3 *4)) (-4 *4 (-175)))) (-4364 (*1 *1 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-859)) (-4 *3 (-175)))) (-4375 (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-387 *3 *4)) (-4 *3 (-859)) (-4 *4 (-175)))) (-4362 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-859)) (-4 *4 (-175)) (-5 *2 (-659 *3)))) (-4196 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-859)) (-4 *3 (-175)))) (-4196 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 *4)) (-5 *3 (-659 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-859)) (-4 *5 (-175))))) -(-13 (-650 |t#2|) (-10 -8 (-15 -4382 (|t#2| (-1311 |t#1| |t#2|) $)) (-15 -4374 ($ |t#1|)) (-15 -4374 ((-1302 |t#1| |t#2|) $)) (-15 -4374 ((-1311 |t#1| |t#2|) $)) (-15 -4376 ((-789) $)) (-15 -4368 ((-1311 |t#1| |t#2|) (-1311 |t#1| |t#2|) $)) (-15 -4367 ((-1311 |t#1| |t#2|) (-1311 |t#1| |t#2|) $)) (-15 -1934 ($ (-690 |t#1|))) (-15 -4364 ($ $)) (-15 -4375 ($ $ (-789))) (-15 -4362 ((-659 |t#1|) $)) (-15 -4196 ($ $ |t#1| $)) (-15 -4196 ($ $ (-659 |t#1|) (-659 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 |#2|) . T) ((-666 |#2|) . T) ((-650 |#2|) . T) ((-658 |#2|) . T) ((-735 |#2|) . T) ((-1070 |#2|) . T) ((-1075 |#2|) . T) ((-1120) . T) ((-1236) . T)) -((-1937 ((|#2| (-1 (-114) |#1| |#1|) |#2|) 40 T ELT)) (-1935 ((|#2| (-1 (-114) |#1| |#1|) |#2|) 13 T ELT)) (-1936 ((|#2| (-1 (-114) |#1| |#1|) |#2|) 33 T ELT))) -(((-388 |#1| |#2|) (-10 -7 (-15 -1935 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -1936 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -1937 (|#2| (-1 (-114) |#1| |#1|) |#2|))) (-1236) (-13 (-385 |#1|) (-10 -7 (-6 -4424)))) (T -388)) -((-1937 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4424)))))) (-1936 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4424)))))) (-1935 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4424))))))) -((-2491 (((-707 |#2|) (-707 $)) NIL T ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 $) (-1286 $)) NIL T ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) 22 T ELT) (((-707 (-557)) (-707 $)) 14 T ELT))) -(((-389 |#1| |#2|) (-10 -7 (-15 -2491 ((-707 (-557)) (-707 |#1|))) (-15 -2491 ((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 |#1|) (-1286 |#1|))) (-15 -2491 ((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 |#1|) (-1286 |#1|))) (-15 -2491 ((-707 |#2|) (-707 |#1|)))) (-390 |#2|) (-1068)) (T -389)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-2491 (((-707 |#1|) (-707 $)) 35 T ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) 34 T ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) 46 (|has| |#1| (-656 (-557))) ELT) (((-707 (-557)) (-707 $)) 45 (|has| |#1| (-656 (-557))) ELT)) (-2492 (((-707 |#1|) (-1286 $)) 37 T ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 36 T ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) 44 (|has| |#1| (-656 (-557))) ELT) (((-707 (-557)) (-1286 $)) 43 (|has| |#1| (-656 (-557))) ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ |#1| $) 32 T ELT))) -(((-390 |#1|) (-142) (-1068)) (T -390)) -NIL -(-13 (-656 |t#1|) (-10 -7 (IF (|has| |t#1| (-656 (-557))) (-6 (-656 (-557))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-666 (-557)) |has| |#1| (-656 (-557))) ((-666 |#1|) . T) ((-656 (-557)) |has| |#1| (-656 (-557))) ((-656 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 16 T ELT)) (-3529 (((-557) $) 44 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-4199 (($ $) 120 T ELT)) (-3910 (($ $) 81 T ELT)) (-4067 (($ $) 72 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-3436 (($ $) 28 T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-3908 (($ $) 79 T ELT)) (-4066 (($ $) 67 T ELT)) (-4051 (((-557) $) 60 T ELT)) (-2828 (($ $ (-557)) 55 T ELT)) (-3912 (($ $) NIL T ELT)) (-4065 (($ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3527 (($ $) 122 T ELT)) (-3573 (((-3 (-557) #1#) $) 217 T ELT) (((-3 (-419 (-557)) #1#) $) 213 T ELT)) (-3572 (((-557) $) 215 T ELT) (((-419 (-557)) $) 211 T ELT)) (-2961 (($ $ $) NIL T ELT)) (-1946 (((-557) $ $) 110 T ELT)) (-3885 (((-3 $ #1#) $) 125 T ELT)) (-1945 (((-419 (-557)) $ (-789)) 218 T ELT) (((-419 (-557)) $ (-789) (-789)) 210 T ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-2603 (((-936)) 106 T ELT) (((-936) (-936)) 107 (|has| $ (-6 -4414)) ELT)) (-3602 (((-114) $) 38 T ELT)) (-4055 (($) 22 T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL T ELT)) (-1938 (((-1292) (-789)) 177 T ELT)) (-1939 (((-1292)) 182 T ELT) (((-1292) (-789)) 183 T ELT)) (-1941 (((-1292)) 184 T ELT) (((-1292) (-789)) 185 T ELT)) (-1940 (((-1292)) 180 T ELT) (((-1292) (-789)) 181 T ELT)) (-4200 (((-557) $) 50 T ELT)) (-2639 (((-114) $) 21 T ELT)) (-3410 (($ $ (-557)) NIL T ELT)) (-2830 (($ $) 32 T ELT)) (-3532 (($ $) NIL T ELT)) (-3603 (((-114) $) 18 T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2928 (($ $ $) NIL T ELT) (($) NIL (-12 (-2957 (|has| $ (-6 -4406))) (-2957 (|has| $ (-6 -4414)))) ELT)) (-3256 (($ $ $) NIL T ELT) (($) NIL (-12 (-2957 (|has| $ (-6 -4406))) (-2957 (|has| $ (-6 -4414)))) ELT)) (-2604 (((-557) $) 112 T ELT)) (-1944 (($) 90 T ELT) (($ $) 97 T ELT)) (-1943 (($) 96 T ELT) (($ $) 98 T ELT)) (-4370 (($ $) 84 T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) 127 T ELT)) (-1975 (((-936) (-557)) 27 (|has| $ (-6 -4414)) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3528 (($ $) 41 T ELT)) (-3530 (($ $) 119 T ELT)) (-3670 (($ (-557) (-557)) 115 T ELT) (($ (-557) (-557) (-936)) 116 T ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-2630 (((-557) $) 113 T ELT)) (-1942 (($) 99 T ELT)) (-4371 (($ $) 78 T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-3012 (((-936)) 108 T ELT) (((-936) (-936)) 109 (|has| $ (-6 -4414)) ELT)) (-4186 (($ $) 126 T ELT) (($ $ (-789)) NIL T ELT)) (-1974 (((-936) (-557)) 31 (|has| $ (-6 -4414)) ELT)) (-3913 (($ $) NIL T ELT)) (-4064 (($ $) NIL T ELT)) (-3911 (($ $) NIL T ELT)) (-4063 (($ $) NIL T ELT)) (-3909 (($ $) 80 T ELT)) (-4062 (($ $) 71 T ELT)) (-4400 (((-391) $) 202 T ELT) (((-229) $) 204 T ELT) (((-903 (-391)) $) NIL T ELT) (((-1178) $) 188 T ELT) (((-546) $) 200 T ELT) (($ (-229)) 209 T ELT)) (-4374 (((-875) $) 192 T ELT) (($ (-557)) 214 T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ (-557)) 214 T ELT) (($ (-419 (-557))) NIL T ELT) (((-229) $) 205 T ELT)) (-3526 (((-789)) NIL T CONST)) (-3531 (($ $) 121 T ELT)) (-1976 (((-936)) 42 T ELT) (((-936) (-936)) 62 (|has| $ (-6 -4414)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3093 (((-936)) 111 T ELT)) (-3916 (($ $) 87 T ELT)) (-3904 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-3914 (($ $) 85 T ELT)) (-3902 (($ $) 20 T ELT)) (-3918 (($ $) NIL T ELT)) (-3906 (($ $) NIL T ELT)) (-3919 (($ $) NIL T ELT)) (-3907 (($ $) NIL T ELT)) (-3917 (($ $) NIL T ELT)) (-3905 (($ $) NIL T ELT)) (-3915 (($ $) 86 T ELT)) (-3903 (($ $) 33 T ELT)) (-3801 (($ $) 39 T ELT)) (-3057 (($) 17 T CONST)) (-3063 (($) 24 T CONST)) (-3068 (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-2963 (((-114) $ $) 189 T ELT)) (-2964 (((-114) $ $) 26 T ELT)) (-3452 (((-114) $ $) 37 T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 43 T ELT)) (-4377 (($ $ $) 29 T ELT) (($ $ (-557)) 23 T ELT)) (-4265 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-4267 (($ $ $) 54 T ELT)) (** (($ $ (-936)) 65 T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) 91 T ELT) (($ $ (-419 (-557))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-936) $) 61 T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT))) -(((-391) (-13 (-416) (-240) (-629 (-1178)) (-628 (-229)) (-1222) (-629 (-546)) (-633 (-229)) (-10 -8 (-15 -4377 ($ $ (-557))) (-15 ** ($ $ $)) (-15 -2830 ($ $)) (-15 -1946 ((-557) $ $)) (-15 -2828 ($ $ (-557))) (-15 -1945 ((-419 (-557)) $ (-789))) (-15 -1945 ((-419 (-557)) $ (-789) (-789))) (-15 -1944 ($)) (-15 -1943 ($)) (-15 -1942 ($)) (-15 -3904 ($ $ $)) (-15 -1944 ($ $)) (-15 -1943 ($ $)) (-15 -1941 ((-1292))) (-15 -1941 ((-1292) (-789))) (-15 -1940 ((-1292))) (-15 -1940 ((-1292) (-789))) (-15 -1939 ((-1292))) (-15 -1939 ((-1292) (-789))) (-15 -1938 ((-1292) (-789))) (-6 -4414) (-6 -4406)))) (T -391)) -((** (*1 *1 *1 *1) (-5 *1 (-391))) (-4377 (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-391)))) (-2830 (*1 *1 *1) (-5 *1 (-391))) (-1946 (*1 *2 *1 *1) (-12 (-5 *2 (-557)) (-5 *1 (-391)))) (-2828 (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-391)))) (-1945 (*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-5 *2 (-419 (-557))) (-5 *1 (-391)))) (-1945 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-789)) (-5 *2 (-419 (-557))) (-5 *1 (-391)))) (-1944 (*1 *1) (-5 *1 (-391))) (-1943 (*1 *1) (-5 *1 (-391))) (-1942 (*1 *1) (-5 *1 (-391))) (-3904 (*1 *1 *1 *1) (-5 *1 (-391))) (-1944 (*1 *1 *1) (-5 *1 (-391))) (-1943 (*1 *1 *1) (-5 *1 (-391))) (-1941 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-391)))) (-1941 (*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1292)) (-5 *1 (-391)))) (-1940 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-391)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1292)) (-5 *1 (-391)))) (-1939 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-391)))) (-1939 (*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1292)) (-5 *1 (-391)))) (-1938 (*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1292)) (-5 *1 (-391))))) -((-1947 (((-659 (-305 (-963 (-171 |#1|)))) (-305 (-419 (-963 (-171 (-557))))) |#1|) 51 T ELT) (((-659 (-305 (-963 (-171 |#1|)))) (-419 (-963 (-171 (-557)))) |#1|) 50 T ELT) (((-659 (-659 (-305 (-963 (-171 |#1|))))) (-659 (-305 (-419 (-963 (-171 (-557)))))) |#1|) 47 T ELT) (((-659 (-659 (-305 (-963 (-171 |#1|))))) (-659 (-419 (-963 (-171 (-557))))) |#1|) 41 T ELT)) (-1948 (((-659 (-659 (-171 |#1|))) (-659 (-419 (-963 (-171 (-557))))) (-659 (-1196)) |#1|) 30 T ELT) (((-659 (-171 |#1|)) (-419 (-963 (-171 (-557)))) |#1|) 18 T ELT))) -(((-392 |#1|) (-10 -7 (-15 -1947 ((-659 (-659 (-305 (-963 (-171 |#1|))))) (-659 (-419 (-963 (-171 (-557))))) |#1|)) (-15 -1947 ((-659 (-659 (-305 (-963 (-171 |#1|))))) (-659 (-305 (-419 (-963 (-171 (-557)))))) |#1|)) (-15 -1947 ((-659 (-305 (-963 (-171 |#1|)))) (-419 (-963 (-171 (-557)))) |#1|)) (-15 -1947 ((-659 (-305 (-963 (-171 |#1|)))) (-305 (-419 (-963 (-171 (-557))))) |#1|)) (-15 -1948 ((-659 (-171 |#1|)) (-419 (-963 (-171 (-557)))) |#1|)) (-15 -1948 ((-659 (-659 (-171 |#1|))) (-659 (-419 (-963 (-171 (-557))))) (-659 (-1196)) |#1|))) (-13 (-376) (-858))) (T -392)) -((-1948 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-659 (-419 (-963 (-171 (-557)))))) (-5 *4 (-659 (-1196))) (-5 *2 (-659 (-659 (-171 *5)))) (-5 *1 (-392 *5)) (-4 *5 (-13 (-376) (-858))))) (-1948 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-963 (-171 (-557))))) (-5 *2 (-659 (-171 *4))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-858))))) (-1947 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-419 (-963 (-171 (-557)))))) (-5 *2 (-659 (-305 (-963 (-171 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-858))))) (-1947 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-963 (-171 (-557))))) (-5 *2 (-659 (-305 (-963 (-171 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-858))))) (-1947 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-305 (-419 (-963 (-171 (-557))))))) (-5 *2 (-659 (-659 (-305 (-963 (-171 *4)))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-858))))) (-1947 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-419 (-963 (-171 (-557)))))) (-5 *2 (-659 (-659 (-305 (-963 (-171 *4)))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-858)))))) -((-3999 (((-659 (-305 (-963 |#1|))) (-305 (-419 (-963 (-557)))) |#1|) 46 T ELT) (((-659 (-305 (-963 |#1|))) (-419 (-963 (-557))) |#1|) 45 T ELT) (((-659 (-659 (-305 (-963 |#1|)))) (-659 (-305 (-419 (-963 (-557))))) |#1|) 42 T ELT) (((-659 (-659 (-305 (-963 |#1|)))) (-659 (-419 (-963 (-557)))) |#1|) 36 T ELT)) (-1949 (((-659 |#1|) (-419 (-963 (-557))) |#1|) 20 T ELT) (((-659 (-659 |#1|)) (-659 (-419 (-963 (-557)))) (-659 (-1196)) |#1|) 30 T ELT))) -(((-393 |#1|) (-10 -7 (-15 -3999 ((-659 (-659 (-305 (-963 |#1|)))) (-659 (-419 (-963 (-557)))) |#1|)) (-15 -3999 ((-659 (-659 (-305 (-963 |#1|)))) (-659 (-305 (-419 (-963 (-557))))) |#1|)) (-15 -3999 ((-659 (-305 (-963 |#1|))) (-419 (-963 (-557))) |#1|)) (-15 -3999 ((-659 (-305 (-963 |#1|))) (-305 (-419 (-963 (-557)))) |#1|)) (-15 -1949 ((-659 (-659 |#1|)) (-659 (-419 (-963 (-557)))) (-659 (-1196)) |#1|)) (-15 -1949 ((-659 |#1|) (-419 (-963 (-557))) |#1|))) (-13 (-858) (-376))) (T -393)) -((-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-963 (-557)))) (-5 *2 (-659 *4)) (-5 *1 (-393 *4)) (-4 *4 (-13 (-858) (-376))))) (-1949 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-659 (-419 (-963 (-557))))) (-5 *4 (-659 (-1196))) (-5 *2 (-659 (-659 *5))) (-5 *1 (-393 *5)) (-4 *5 (-13 (-858) (-376))))) (-3999 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-419 (-963 (-557))))) (-5 *2 (-659 (-305 (-963 *4)))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-858) (-376))))) (-3999 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-963 (-557)))) (-5 *2 (-659 (-305 (-963 *4)))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-858) (-376))))) (-3999 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-305 (-419 (-963 (-557)))))) (-5 *2 (-659 (-659 (-305 (-963 *4))))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-858) (-376))))) (-3999 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-419 (-963 (-557))))) (-5 *2 (-659 (-659 (-305 (-963 *4))))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-858) (-376)))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-4202 (((-659 (-885 |#2| |#1|)) $) NIL T ELT)) (-1424 (((-3 $ "failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-4387 (($ $) NIL T ELT)) (-3292 (($ |#1| |#2|) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2193 ((|#2| $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 33 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 12 T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) -(((-394 |#1| |#2|) (-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-175)) (-6 (-735 |#1|)) |%noBranch|))) (-1068) (-862)) (T -394)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#2| #1#) $) 29 T ELT)) (-3572 ((|#2| $) 31 T ELT)) (-4387 (($ $) NIL T ELT)) (-2647 (((-789) $) 11 T ELT)) (-3220 (((-659 $) $) 23 T ELT)) (-4365 (((-114) $) NIL T ELT)) (-4366 (($ |#2| |#1|) 21 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1950 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-3293 ((|#2| $) 18 T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-4245 (((-659 |#1|) $) 20 T ELT)) (-4105 ((|#1| $ |#2|) 54 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 32 T CONST)) (-3062 (((-659 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) -(((-395 |#1| |#2|) (-13 (-397 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1068) (-859)) (T -395)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-395 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-859))))) -((-3798 (((-1292) $) 7 T ELT)) (-4374 (((-875) $) 8 T ELT) (($ (-707 (-717))) 14 T ELT) (($ (-659 (-342))) 13 T ELT) (($ (-342)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 11 T ELT))) -(((-396) (-142)) (T -396)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-707 (-717))) (-4 *1 (-396)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-659 (-342))) (-4 *1 (-396)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-396)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) (-4 *1 (-396))))) -(-13 (-408) (-10 -8 (-15 -4374 ($ (-707 (-717)))) (-15 -4374 ($ (-659 (-342)))) (-15 -4374 ($ (-342))) (-15 -4374 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342)))))))) -(((-628 (-875)) . T) ((-408) . T) ((-1236) . T)) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3573 (((-3 |#2| "failed") $) 54 T ELT)) (-3572 ((|#2| $) 55 T ELT)) (-4387 (($ $) 40 T ELT)) (-2647 (((-789) $) 44 T ELT)) (-3220 (((-659 $) $) 45 T ELT)) (-4365 (((-114) $) 48 T ELT)) (-4366 (($ |#2| |#1|) 49 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 50 T ELT)) (-1950 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 41 T ELT)) (-3293 ((|#2| $) 43 T ELT)) (-3590 ((|#1| $) 42 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ |#2|) 53 T ELT)) (-4245 (((-659 |#1|) $) 46 T ELT)) (-4105 ((|#1| $ |#2|) 51 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3062 (((-659 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 47 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 52 T ELT))) -(((-397 |#1| |#2|) (-142) (-1068) (-1120)) (T -397)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1120)))) (-4105 (*1 *2 *1 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1068)))) (-4386 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1120)))) (-4366 (*1 *1 *2 *3) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1120)))) (-4365 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1120)) (-5 *2 (-114)))) (-3062 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1120)) (-5 *2 (-659 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4245 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1120)) (-5 *2 (-659 *3)))) (-3220 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-1120)) (-5 *2 (-659 *1)) (-4 *1 (-397 *3 *4)))) (-2647 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1120)) (-5 *2 (-789)))) (-3293 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1120)))) (-3590 (*1 *2 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1068)))) (-1950 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1120)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4387 (*1 *1 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1120))))) -(-13 (-111 |t#1| |t#1|) (-1057 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4105 (|t#1| $ |t#2|)) (-15 -4386 ($ (-1 |t#1| |t#1|) $)) (-15 -4366 ($ |t#2| |t#1|)) (-15 -4365 ((-114) $)) (-15 -3062 ((-659 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4245 ((-659 |t#1|) $)) (-15 -3220 ((-659 $) $)) (-15 -2647 ((-789) $)) (-15 -3293 (|t#2| $)) (-15 -3590 (|t#1| $)) (-15 -1950 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4387 ($ $)) (IF (|has| |t#1| (-175)) (-6 (-735 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-631 |#2|) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-666 |#1|) . T) ((-658 |#1|) |has| |#1| (-175)) ((-735 |#1|) |has| |#1| (-175)) ((-1057 |#2|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-3573 (((-3 $ "failed") (-707 (-326 (-391)))) 21 T ELT) (((-3 $ "failed") (-707 (-326 (-557)))) 19 T ELT) (((-3 $ "failed") (-707 (-963 (-391)))) 17 T ELT) (((-3 $ "failed") (-707 (-963 (-557)))) 15 T ELT) (((-3 $ "failed") (-707 (-419 (-963 (-391))))) 13 T ELT) (((-3 $ "failed") (-707 (-419 (-963 (-557))))) 11 T ELT)) (-3572 (($ (-707 (-326 (-391)))) 22 T ELT) (($ (-707 (-326 (-557)))) 20 T ELT) (($ (-707 (-963 (-391)))) 18 T ELT) (($ (-707 (-963 (-557)))) 16 T ELT) (($ (-707 (-419 (-963 (-391))))) 14 T ELT) (($ (-707 (-419 (-963 (-557))))) 12 T ELT)) (-3798 (((-1292) $) 7 T ELT)) (-4374 (((-875) $) 8 T ELT) (($ (-659 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 23 T ELT))) -(((-398) (-142)) (T -398)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-659 (-342))) (-4 *1 (-398)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-398)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) (-4 *1 (-398)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-707 (-326 (-391)))) (-4 *1 (-398)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-707 (-326 (-391)))) (-4 *1 (-398)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-707 (-326 (-557)))) (-4 *1 (-398)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-707 (-326 (-557)))) (-4 *1 (-398)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-707 (-963 (-391)))) (-4 *1 (-398)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-707 (-963 (-391)))) (-4 *1 (-398)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-707 (-963 (-557)))) (-4 *1 (-398)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-707 (-963 (-557)))) (-4 *1 (-398)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-707 (-419 (-963 (-391))))) (-4 *1 (-398)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-707 (-419 (-963 (-391))))) (-4 *1 (-398)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-707 (-419 (-963 (-557))))) (-4 *1 (-398)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-707 (-419 (-963 (-557))))) (-4 *1 (-398))))) -(-13 (-408) (-10 -8 (-15 -4374 ($ (-659 (-342)))) (-15 -4374 ($ (-342))) (-15 -4374 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342)))))) (-15 -3572 ($ (-707 (-326 (-391))))) (-15 -3573 ((-3 $ "failed") (-707 (-326 (-391))))) (-15 -3572 ($ (-707 (-326 (-557))))) (-15 -3573 ((-3 $ "failed") (-707 (-326 (-557))))) (-15 -3572 ($ (-707 (-963 (-391))))) (-15 -3573 ((-3 $ "failed") (-707 (-963 (-391))))) (-15 -3572 ($ (-707 (-963 (-557))))) (-15 -3573 ((-3 $ "failed") (-707 (-963 (-557))))) (-15 -3572 ($ (-707 (-419 (-963 (-391)))))) (-15 -3573 ((-3 $ "failed") (-707 (-419 (-963 (-391)))))) (-15 -3572 ($ (-707 (-419 (-963 (-557)))))) (-15 -3573 ((-3 $ "failed") (-707 (-419 (-963 (-557)))))))) -(((-628 (-875)) . T) ((-408) . T) ((-1236) . T)) -((-2965 (((-114) $ $) 7 T ELT)) (-3536 (((-789) $) 40 T ELT)) (-4152 (($) 23 T CONST)) (-4367 (((-3 $ "failed") $ $) 43 T ELT)) (-3573 (((-3 |#1| "failed") $) 51 T ELT)) (-3572 ((|#1| $) 52 T ELT)) (-3885 (((-3 $ "failed") $) 20 T ELT)) (-1951 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2639 (((-114) $) 22 T ELT)) (-2510 ((|#1| $ (-557)) 37 T ELT)) (-2511 (((-789) $ (-557)) 38 T ELT)) (-2928 (($ $ $) 29 (|has| |#1| (-859)) ELT)) (-3256 (($ $ $) 30 (|has| |#1| (-859)) ELT)) (-2502 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2503 (($ (-1 (-789) (-789)) $) 36 T ELT)) (-4368 (((-3 $ "failed") $ $) 44 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-1952 (($ $ $) 45 T ELT)) (-1953 (($ $ $) 46 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-1985 (((-659 (-2 (|:| |gen| |#1|) (|:| -4371 (-789)))) $) 39 T ELT)) (-3278 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3063 (($) 24 T CONST)) (-2963 (((-114) $ $) 31 (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) 33 (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 32 (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) 34 (|has| |#1| (-859)) ELT)) (** (($ $ (-936)) 17 T ELT) (($ $ (-789)) 21 T ELT) (($ |#1| (-789)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) -(((-399 |#1|) (-142) (-1120)) (T -399)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1120)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1120)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-789)) (-4 *1 (-399 *2)) (-4 *2 (-1120)))) (-1953 (*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1120)))) (-1952 (*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1120)))) (-4368 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1120)))) (-4367 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1120)))) (-3278 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1120)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3)))) (-1951 (*1 *2 *1 *1) (-12 (-4 *3 (-1120)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1120)) (-5 *2 (-789)))) (-1985 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1120)) (-5 *2 (-659 (-2 (|:| |gen| *3) (|:| -4371 (-789))))))) (-2511 (*1 *2 *1 *3) (-12 (-5 *3 (-557)) (-4 *1 (-399 *4)) (-4 *4 (-1120)) (-5 *2 (-789)))) (-2510 (*1 *2 *1 *3) (-12 (-5 *3 (-557)) (-4 *1 (-399 *2)) (-4 *2 (-1120)))) (-2503 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-789) (-789))) (-4 *1 (-399 *3)) (-4 *3 (-1120)))) (-2502 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-399 *3)) (-4 *3 (-1120))))) -(-13 (-744) (-1057 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-789))) (-15 -1953 ($ $ $)) (-15 -1952 ($ $ $)) (-15 -4368 ((-3 $ "failed") $ $)) (-15 -4367 ((-3 $ "failed") $ $)) (-15 -3278 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1951 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3536 ((-789) $)) (-15 -1985 ((-659 (-2 (|:| |gen| |t#1|) (|:| -4371 (-789)))) $)) (-15 -2511 ((-789) $ (-557))) (-15 -2510 (|t#1| $ (-557))) (-15 -2503 ($ (-1 (-789) (-789)) $)) (-15 -2502 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-859)) (-6 (-859)) |%noBranch|))) -(((-102) . T) ((-631 |#1|) . T) ((-628 (-875)) . T) ((-744) . T) ((-859) |has| |#1| (-859)) ((-862) |has| |#1| (-859)) ((-1057 |#1|) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3536 (((-789) $) 74 T ELT)) (-4152 (($) NIL T CONST)) (-4367 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3573 (((-3 |#1| #1#) $) NIL T ELT)) (-3572 ((|#1| $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-1951 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2639 (((-114) $) 17 T ELT)) (-2510 ((|#1| $ (-557)) NIL T ELT)) (-2511 (((-789) $ (-557)) NIL T ELT)) (-2928 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-2502 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2503 (($ (-1 (-789) (-789)) $) 37 T ELT)) (-4368 (((-3 $ #1#) $ $) 60 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1952 (($ $ $) 28 T ELT)) (-1953 (($ $ $) 26 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1985 (((-659 (-2 (|:| |gen| |#1|) (|:| -4371 (-789)))) $) 34 T ELT)) (-3278 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-4374 (((-875) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3063 (($) 7 T CONST)) (-2963 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) 83 (|has| |#1| (-859)) ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ |#1| (-789)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) -(((-400 |#1|) (-399 |#1|) (-1120)) (T -400)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 52 T ELT)) (-2271 (($ $) 51 T ELT)) (-2269 (((-114) $) 49 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3573 (((-3 (-557) "failed") $) 59 T ELT)) (-3572 (((-557) $) 60 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-2928 (($ $ $) 61 T ELT)) (-3256 (($ $ $) 62 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3884 (((-3 $ "failed") $ $) 53 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 54 T ELT) (($ (-557)) 58 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 50 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-2963 (((-114) $ $) 63 T ELT)) (-2964 (((-114) $ $) 65 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 64 T ELT)) (-3084 (((-114) $ $) 66 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-401) (-142)) (T -401)) -NIL -(-13 (-568) (-859) (-1057 (-557))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-631 (-557)) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-175) . T) ((-302) . T) ((-568) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 $) . T) ((-658 $) . T) ((-735 $) . T) ((-744) . T) ((-859) . T) ((-862) . T) ((-1057 (-557)) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-1954 (((-114) $) 25 T ELT)) (-1955 (((-114) $) 22 T ELT)) (-4042 (($ (-1178) (-1178) (-1178)) 26 T ELT)) (-3968 (((-1178) $) 16 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1959 (($ (-1178) (-1178) (-1178)) 14 T ELT)) (-1957 (((-1178) $) 17 T ELT)) (-1956 (((-114) $) 18 T ELT)) (-1958 (((-1178) $) 15 T ELT)) (-4374 (((-875) $) 12 T ELT) (($ (-1178)) 13 T ELT) (((-1178) $) 9 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 7 T ELT))) -(((-402) (-403)) (T -402)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-1954 (((-114) $) 20 T ELT)) (-1955 (((-114) $) 21 T ELT)) (-4042 (($ (-1178) (-1178) (-1178)) 19 T ELT)) (-3968 (((-1178) $) 24 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-1959 (($ (-1178) (-1178) (-1178)) 26 T ELT)) (-1957 (((-1178) $) 23 T ELT)) (-1956 (((-114) $) 22 T ELT)) (-1958 (((-1178) $) 25 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-1178)) 28 T ELT) (((-1178) $) 27 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-403) (-142)) (T -403)) -((-1959 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-403)))) (-1958 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1178)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1178)))) (-1957 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1178)))) (-1956 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))) (-1955 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))) (-1954 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))) (-4042 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-403))))) -(-13 (-1120) (-502 (-1178)) (-10 -8 (-15 -1959 ($ (-1178) (-1178) (-1178))) (-15 -1958 ((-1178) $)) (-15 -3968 ((-1178) $)) (-15 -1957 ((-1178) $)) (-15 -1956 ((-114) $)) (-15 -1955 ((-114) $)) (-15 -1954 ((-114) $)) (-15 -4042 ($ (-1178) (-1178) (-1178))))) -(((-102) . T) ((-631 (-1178)) . T) ((-628 (-875)) . T) ((-628 (-1178)) . T) ((-502 (-1178)) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1424 (((-3 $ "failed") $ $) NIL T ELT)) (-1960 (((-875) $) 64 T ELT)) (-4152 (($) NIL T CONST)) (-2636 (($ $ (-936)) NIL T ELT)) (-2660 (($ $ (-936)) NIL T ELT)) (-2635 (($ $ (-936)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2638 (($ (-789)) 38 T ELT)) (-4339 (((-789)) 18 T ELT)) (-1961 (((-875) $) 66 T ELT)) (-2822 (($ $ $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2823 (($ $ $ $) NIL T ELT)) (-2821 (($ $ $) NIL T ELT)) (-3057 (($) 24 T CONST)) (-3452 (((-114) $ $) 41 T ELT)) (-4265 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-4267 (($ $ $) 51 T ELT)) (** (($ $ (-936)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) -(((-404 |#1| |#2| |#3|) (-13 (-762 |#3|) (-10 -8 (-15 -4339 ((-789))) (-15 -1961 ((-875) $)) (-15 -1960 ((-875) $)) (-15 -2638 ($ (-789))))) (-789) (-789) (-175)) (T -404)) -((-4339 (*1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-175)))) (-1961 (*1 *2 *1) (-12 (-5 *2 (-875)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-789)) (-14 *4 (-789)) (-4 *5 (-175)))) (-1960 (*1 *2 *1) (-12 (-5 *2 (-875)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-789)) (-14 *4 (-789)) (-4 *5 (-175)))) (-2638 (*1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-175))))) -((-1966 (((-1178)) 12 T ELT)) (-1963 (((-1167 (-1178))) 30 T ELT)) (-1965 (((-1292) (-1178)) 27 T ELT) (((-1292) (-402)) 26 T ELT)) (-1964 (((-1292)) 28 T ELT)) (-1962 (((-1167 (-1178))) 29 T ELT))) -(((-405) (-10 -7 (-15 -1962 ((-1167 (-1178)))) (-15 -1963 ((-1167 (-1178)))) (-15 -1964 ((-1292))) (-15 -1965 ((-1292) (-402))) (-15 -1965 ((-1292) (-1178))) (-15 -1966 ((-1178))))) (T -405)) -((-1966 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-405)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-405)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1292)) (-5 *1 (-405)))) (-1964 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-405)))) (-1963 (*1 *2) (-12 (-5 *2 (-1167 (-1178))) (-5 *1 (-405)))) (-1962 (*1 *2) (-12 (-5 *2 (-1167 (-1178))) (-5 *1 (-405))))) -((-4200 (((-789) (-346 |#1| |#2| |#3| |#4|)) 16 T ELT))) -(((-406 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4200 ((-789) (-346 |#1| |#2| |#3| |#4|)))) (-13 (-381) (-376)) (-1262 |#1|) (-1262 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -406)) -((-4200 (*1 *2 *3) (-12 (-5 *3 (-346 *4 *5 *6 *7)) (-4 *4 (-13 (-381) (-376))) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-4 *7 (-355 *4 *5 *6)) (-5 *2 (-789)) (-5 *1 (-406 *4 *5 *6 *7))))) -((-1968 (((-659 (-1178)) (-659 (-1178))) 9 T ELT)) (-3798 (((-1292) (-402)) 26 T ELT)) (-1967 (((-1122) (-1196) (-659 (-1196)) (-1199) (-659 (-1196))) 59 T ELT) (((-1122) (-1196) (-659 (-3 (|:| |array| (-659 (-1196))) (|:| |scalar| (-1196)))) (-659 (-659 (-3 (|:| |array| (-659 (-1196))) (|:| |scalar| (-1196))))) (-659 (-1196)) (-1196)) 34 T ELT) (((-1122) (-1196) (-659 (-3 (|:| |array| (-659 (-1196))) (|:| |scalar| (-1196)))) (-659 (-659 (-3 (|:| |array| (-659 (-1196))) (|:| |scalar| (-1196))))) (-659 (-1196))) 33 T ELT))) -(((-407) (-10 -7 (-15 -1967 ((-1122) (-1196) (-659 (-3 (|:| |array| (-659 (-1196))) (|:| |scalar| (-1196)))) (-659 (-659 (-3 (|:| |array| (-659 (-1196))) (|:| |scalar| (-1196))))) (-659 (-1196)))) (-15 -1967 ((-1122) (-1196) (-659 (-3 (|:| |array| (-659 (-1196))) (|:| |scalar| (-1196)))) (-659 (-659 (-3 (|:| |array| (-659 (-1196))) (|:| |scalar| (-1196))))) (-659 (-1196)) (-1196))) (-15 -1967 ((-1122) (-1196) (-659 (-1196)) (-1199) (-659 (-1196)))) (-15 -3798 ((-1292) (-402))) (-15 -1968 ((-659 (-1178)) (-659 (-1178)))))) (T -407)) -((-1968 (*1 *2 *2) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-407)))) (-3798 (*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1292)) (-5 *1 (-407)))) (-1967 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-659 (-1196))) (-5 *5 (-1199)) (-5 *3 (-1196)) (-5 *2 (-1122)) (-5 *1 (-407)))) (-1967 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-659 (-659 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-659 (-3 (|:| |array| (-659 *3)) (|:| |scalar| (-1196))))) (-5 *6 (-659 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1122)) (-5 *1 (-407)))) (-1967 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-659 (-659 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-659 (-3 (|:| |array| (-659 *3)) (|:| |scalar| (-1196))))) (-5 *6 (-659 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1122)) (-5 *1 (-407))))) -((-3798 (((-1292) $) 7 T ELT)) (-4374 (((-875) $) 8 T ELT))) -(((-408) (-142)) (T -408)) -((-3798 (*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-1292))))) -(-13 (-1236) (-628 (-875)) (-10 -8 (-15 -3798 ((-1292) $)))) -(((-628 (-875)) . T) ((-1236) . T)) -((-3573 (((-3 $ "failed") (-326 (-391))) 21 T ELT) (((-3 $ "failed") (-326 (-557))) 19 T ELT) (((-3 $ "failed") (-963 (-391))) 17 T ELT) (((-3 $ "failed") (-963 (-557))) 15 T ELT) (((-3 $ "failed") (-419 (-963 (-391)))) 13 T ELT) (((-3 $ "failed") (-419 (-963 (-557)))) 11 T ELT)) (-3572 (($ (-326 (-391))) 22 T ELT) (($ (-326 (-557))) 20 T ELT) (($ (-963 (-391))) 18 T ELT) (($ (-963 (-557))) 16 T ELT) (($ (-419 (-963 (-391)))) 14 T ELT) (($ (-419 (-963 (-557)))) 12 T ELT)) (-3798 (((-1292) $) 7 T ELT)) (-4374 (((-875) $) 8 T ELT) (($ (-659 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 23 T ELT))) -(((-409) (-142)) (T -409)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-659 (-342))) (-4 *1 (-409)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-409)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) (-4 *1 (-409)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-4 *1 (-409)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-4 *1 (-409)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-326 (-557))) (-4 *1 (-409)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-557))) (-4 *1 (-409)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-963 (-391))) (-4 *1 (-409)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-963 (-391))) (-4 *1 (-409)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-963 (-557))) (-4 *1 (-409)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-963 (-557))) (-4 *1 (-409)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-419 (-963 (-391)))) (-4 *1 (-409)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-963 (-391)))) (-4 *1 (-409)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-419 (-963 (-557)))) (-4 *1 (-409)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-963 (-557)))) (-4 *1 (-409))))) -(-13 (-408) (-10 -8 (-15 -4374 ($ (-659 (-342)))) (-15 -4374 ($ (-342))) (-15 -4374 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342)))))) (-15 -3572 ($ (-326 (-391)))) (-15 -3573 ((-3 $ "failed") (-326 (-391)))) (-15 -3572 ($ (-326 (-557)))) (-15 -3573 ((-3 $ "failed") (-326 (-557)))) (-15 -3572 ($ (-963 (-391)))) (-15 -3573 ((-3 $ "failed") (-963 (-391)))) (-15 -3572 ($ (-963 (-557)))) (-15 -3573 ((-3 $ "failed") (-963 (-557)))) (-15 -3572 ($ (-419 (-963 (-391))))) (-15 -3573 ((-3 $ "failed") (-419 (-963 (-391))))) (-15 -3572 ($ (-419 (-963 (-557))))) (-15 -3573 ((-3 $ "failed") (-419 (-963 (-557))))))) -(((-628 (-875)) . T) ((-408) . T) ((-1236) . T)) -((-3798 (((-1292) $) 35 T ELT)) (-4374 (((-875) $) 97 T ELT) (($ (-342)) 99 T ELT) (($ (-659 (-342))) 98 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 96 T ELT) (($ (-326 (-719))) 52 T ELT) (($ (-326 (-717))) 72 T ELT) (($ (-326 (-712))) 85 T ELT) (($ (-305 (-326 (-719)))) 67 T ELT) (($ (-305 (-326 (-717)))) 80 T ELT) (($ (-305 (-326 (-712)))) 93 T ELT) (($ (-326 (-557))) 104 T ELT) (($ (-326 (-391))) 117 T ELT) (($ (-326 (-171 (-391)))) 130 T ELT) (($ (-305 (-326 (-557)))) 112 T ELT) (($ (-305 (-326 (-391)))) 125 T ELT) (($ (-305 (-326 (-171 (-391))))) 138 T ELT))) -(((-410 |#1| |#2| |#3| |#4|) (-13 (-408) (-10 -8 (-15 -4374 ($ (-342))) (-15 -4374 ($ (-659 (-342)))) (-15 -4374 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342)))))) (-15 -4374 ($ (-326 (-719)))) (-15 -4374 ($ (-326 (-717)))) (-15 -4374 ($ (-326 (-712)))) (-15 -4374 ($ (-305 (-326 (-719))))) (-15 -4374 ($ (-305 (-326 (-717))))) (-15 -4374 ($ (-305 (-326 (-712))))) (-15 -4374 ($ (-326 (-557)))) (-15 -4374 ($ (-326 (-391)))) (-15 -4374 ($ (-326 (-171 (-391))))) (-15 -4374 ($ (-305 (-326 (-557))))) (-15 -4374 ($ (-305 (-326 (-391))))) (-15 -4374 ($ (-305 (-326 (-171 (-391)))))))) (-1196) (-3 (|:| |fst| (-446)) (|:| -4338 "void")) (-659 (-1196)) (-1200)) (T -410)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-342)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1="void"))) (-14 *5 (-659 (-1196))) (-14 *6 (-1200)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-659 (-342))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) (-14 *6 (-1200)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) (-14 *6 (-1200)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-326 (-719))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) (-14 *6 (-1200)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-326 (-717))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) (-14 *6 (-1200)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-326 (-712))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) (-14 *6 (-1200)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-719)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) (-14 *6 (-1200)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-717)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) (-14 *6 (-1200)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-712)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) (-14 *6 (-1200)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-326 (-557))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) (-14 *6 (-1200)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) (-14 *6 (-1200)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) (-14 *6 (-1200)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-557)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) (-14 *6 (-1200)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-391)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) (-14 *6 (-1200)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-171 (-391))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) (-14 *6 (-1200))))) -((-2965 (((-114) $ $) NIL T ELT)) (-1970 ((|#2| $) 38 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1971 (($ (-419 |#2|)) 93 T ELT)) (-1969 (((-659 (-2 (|:| -2630 (-789)) (|:| -4201 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-4186 (($ $ (-789)) 36 T ELT) (($ $) 34 T ELT)) (-4400 (((-419 |#2|) $) 49 T ELT)) (-3948 (($ (-659 (-2 (|:| -2630 (-789)) (|:| -4201 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-4374 (((-875) $) 131 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3068 (($ $ (-789)) 37 T ELT) (($ $) 35 T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4267 (($ |#2| $) 41 T ELT))) -(((-411 |#1| |#2|) (-13 (-1120) (-239) (-629 (-419 |#2|)) (-10 -8 (-15 -4267 ($ |#2| $)) (-15 -1971 ($ (-419 |#2|))) (-15 -1970 (|#2| $)) (-15 -1969 ((-659 (-2 (|:| -2630 (-789)) (|:| -4201 |#2|) (|:| |num| |#2|))) $)) (-15 -3948 ($ (-659 (-2 (|:| -2630 (-789)) (|:| -4201 |#2|) (|:| |num| |#2|))))))) (-13 (-376) (-149)) (-1262 |#1|)) (T -411)) -((-4267 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-376) (-149))) (-5 *1 (-411 *3 *2)) (-4 *2 (-1262 *3)))) (-1971 (*1 *1 *2) (-12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-411 *3 *4)))) (-1970 (*1 *2 *1) (-12 (-4 *2 (-1262 *3)) (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-376) (-149))))) (-1969 (*1 *2 *1) (-12 (-4 *3 (-13 (-376) (-149))) (-5 *2 (-659 (-2 (|:| -2630 (-789)) (|:| -4201 *4) (|:| |num| *4)))) (-5 *1 (-411 *3 *4)) (-4 *4 (-1262 *3)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-659 (-2 (|:| -2630 (-789)) (|:| -4201 *4) (|:| |num| *4)))) (-4 *4 (-1262 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-411 *3 *4))))) -((-2965 (((-114) $ $) 10 (-3955 (|has| |#1| (-899 (-557))) (|has| |#1| (-899 (-391)))) ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) 16 (|has| |#1| (-899 (-391))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) 15 (|has| |#1| (-899 (-557))) ELT)) (-3658 (((-1178) $) 14 (-3955 (|has| |#1| (-899 (-557))) (|has| |#1| (-899 (-391)))) ELT)) (-3659 (((-1139) $) 13 (-3955 (|has| |#1| (-899 (-557))) (|has| |#1| (-899 (-391)))) ELT)) (-4374 (((-875) $) 12 (-3955 (|has| |#1| (-899 (-557))) (|has| |#1| (-899 (-391)))) ELT)) (-1376 (((-114) $ $) 11 (-3955 (|has| |#1| (-899 (-557))) (|has| |#1| (-899 (-391)))) ELT)) (-3452 (((-114) $ $) 9 (-3955 (|has| |#1| (-899 (-557))) (|has| |#1| (-899 (-391)))) ELT))) -(((-412 |#1|) (-142) (-1236)) (T -412)) -NIL -(-13 (-1236) (-10 -7 (IF (|has| |t#1| (-899 (-557))) (-6 (-899 (-557))) |%noBranch|) (IF (|has| |t#1| (-899 (-391))) (-6 (-899 (-391))) |%noBranch|))) -(((-102) -3955 (|has| |#1| (-899 (-557))) (|has| |#1| (-899 (-391)))) ((-628 (-875)) -3955 (|has| |#1| (-899 (-557))) (|has| |#1| (-899 (-391)))) ((-899 (-391)) |has| |#1| (-899 (-391))) ((-899 (-557)) |has| |#1| (-899 (-557))) ((-1120) -3955 (|has| |#1| (-899 (-557))) (|has| |#1| (-899 (-391)))) ((-1236) . T)) -((-1972 (($ $) 10 T ELT) (($ $ (-789)) 12 T ELT))) -(((-413 |#1|) (-10 -7 (-15 -1972 (|#1| |#1| (-789))) (-15 -1972 (|#1| |#1|))) (-414)) (T -413)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 52 T ELT)) (-2271 (($ $) 51 T ELT)) (-2269 (((-114) $) 49 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4203 (($ $) 88 T ELT)) (-4399 (((-417 $) $) 87 T ELT)) (-1786 (((-114) $ $) 72 T ELT)) (-4152 (($) 22 T CONST)) (-2961 (($ $ $) 68 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2960 (($ $ $) 69 T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 63 T ELT)) (-1972 (($ $) 94 T ELT) (($ $ (-789)) 93 T ELT)) (-4151 (((-114) $) 86 T ELT)) (-4200 (((-843 (-936)) $) 96 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-1783 (((-3 (-659 $) #1="failed") (-659 $) $) 65 T ELT)) (-2100 (($ $ $) 57 T ELT) (($ (-659 $)) 56 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2872 (($ $) 85 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 55 T ELT)) (-3560 (($ $ $) 59 T ELT) (($ (-659 $)) 58 T ELT)) (-4160 (((-417 $) $) 89 T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3884 (((-3 $ "failed") $ $) 53 T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 62 T ELT)) (-1785 (((-789) $) 71 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 70 T ELT)) (-1973 (((-3 (-789) "failed") $ $) 95 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-557))) 81 T ELT)) (-3101 (((-709 $) $) 97 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 50 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ $) 80 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ (-557)) 84 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-557))) 83 T ELT) (($ (-419 (-557)) $) 82 T ELT))) -(((-414) (-142)) (T -414)) -((-4200 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-843 (-936))))) (-1973 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-789)))) (-1972 (*1 *1 *1) (-4 *1 (-414))) (-1972 (*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-789))))) -(-13 (-376) (-147) (-10 -8 (-15 -4200 ((-843 (-936)) $)) (-15 -1973 ((-3 (-789) "failed") $ $)) (-15 -1972 ($ $)) (-15 -1972 ($ $ (-789))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-557))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) . T) ((-111 $ $) . T) ((-133) . T) ((-147) . T) ((-631 (-419 (-557))) . T) ((-631 (-557)) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-464) . T) ((-568) . T) ((-664 (-419 (-557))) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 (-419 (-557))) . T) ((-666 $) . T) ((-658 (-419 (-557))) . T) ((-658 $) . T) ((-735 (-419 (-557))) . T) ((-735 $) . T) ((-744) . T) ((-938) . T) ((-1070 (-419 (-557))) . T) ((-1070 $) . T) ((-1075 (-419 (-557))) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T) ((-1241) . T)) -((-3670 (($ (-557) (-557)) 11 T ELT) (($ (-557) (-557) (-936)) NIL T ELT)) (-3012 (((-936)) 19 T ELT) (((-936) (-936)) NIL T ELT))) -(((-415 |#1|) (-10 -7 (-15 -3012 ((-936) (-936))) (-15 -3012 ((-936))) (-15 -3670 (|#1| (-557) (-557) (-936))) (-15 -3670 (|#1| (-557) (-557)))) (-416)) (T -415)) -((-3012 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) (-3012 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-415 *3)) (-4 *3 (-416))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-3529 (((-557) $) 105 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 52 T ELT)) (-2271 (($ $) 51 T ELT)) (-2269 (((-114) $) 49 T ELT)) (-4199 (($ $) 103 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4203 (($ $) 88 T ELT)) (-4399 (((-417 $) $) 87 T ELT)) (-3436 (($ $) 113 T ELT)) (-1786 (((-114) $ $) 72 T ELT)) (-4051 (((-557) $) 130 T ELT)) (-4152 (($) 22 T CONST)) (-3527 (($ $) 102 T ELT)) (-3573 (((-3 (-557) #1="failed") $) 118 T ELT) (((-3 (-419 (-557)) #1#) $) 115 T ELT)) (-3572 (((-557) $) 119 T ELT) (((-419 (-557)) $) 116 T ELT)) (-2961 (($ $ $) 68 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2960 (($ $ $) 69 T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 63 T ELT)) (-4151 (((-114) $) 86 T ELT)) (-2603 (((-936)) 146 T ELT) (((-936) (-936)) 143 (|has| $ (-6 -4414)) ELT)) (-3602 (((-114) $) 128 T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) 109 T ELT)) (-4200 (((-557) $) 152 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3410 (($ $ (-557)) 112 T ELT)) (-3532 (($ $) 108 T ELT)) (-3603 (((-114) $) 129 T ELT)) (-1783 (((-3 (-659 $) #2="failed") (-659 $) $) 65 T ELT)) (-2928 (($ $ $) 122 T ELT) (($) 140 (-12 (-2957 (|has| $ (-6 -4414))) (-2957 (|has| $ (-6 -4406)))) ELT)) (-3256 (($ $ $) 123 T ELT) (($) 139 (-12 (-2957 (|has| $ (-6 -4414))) (-2957 (|has| $ (-6 -4406)))) ELT)) (-2604 (((-557) $) 149 T ELT)) (-2100 (($ $ $) 57 T ELT) (($ (-659 $)) 56 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2872 (($ $) 85 T ELT)) (-1975 (((-936) (-557)) 142 (|has| $ (-6 -4414)) ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 55 T ELT)) (-3560 (($ $ $) 59 T ELT) (($ (-659 $)) 58 T ELT)) (-3528 (($ $) 104 T ELT)) (-3530 (($ $) 106 T ELT)) (-3670 (($ (-557) (-557)) 154 T ELT) (($ (-557) (-557) (-936)) 153 T ELT)) (-4160 (((-417 $) $) 89 T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3884 (((-3 $ "failed") $ $) 53 T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 62 T ELT)) (-2630 (((-557) $) 150 T ELT)) (-1785 (((-789) $) 71 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 70 T ELT)) (-3012 (((-936)) 147 T ELT) (((-936) (-936)) 144 (|has| $ (-6 -4414)) ELT)) (-1974 (((-936) (-557)) 141 (|has| $ (-6 -4414)) ELT)) (-4400 (((-391) $) 121 T ELT) (((-229) $) 120 T ELT) (((-903 (-391)) $) 110 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-557))) 81 T ELT) (($ (-557)) 117 T ELT) (($ (-419 (-557))) 114 T ELT)) (-3526 (((-789)) 37 T CONST)) (-3531 (($ $) 107 T ELT)) (-1976 (((-936)) 148 T ELT) (((-936) (-936)) 145 (|has| $ (-6 -4414)) ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3093 (((-936)) 151 T ELT)) (-2270 (((-114) $ $) 50 T ELT)) (-3801 (($ $) 131 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-2963 (((-114) $ $) 124 T ELT)) (-2964 (((-114) $ $) 126 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 125 T ELT)) (-3084 (((-114) $ $) 127 T ELT)) (-4377 (($ $ $) 80 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ (-557)) 84 T ELT) (($ $ (-419 (-557))) 111 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-557))) 83 T ELT) (($ (-419 (-557)) $) 82 T ELT))) -(((-416) (-142)) (T -416)) -((-3670 (*1 *1 *2 *2) (-12 (-5 *2 (-557)) (-4 *1 (-416)))) (-3670 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-557)) (-5 *3 (-936)) (-4 *1 (-416)))) (-4200 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-557)))) (-3093 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-936)))) (-2630 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-557)))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-557)))) (-1976 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-936)))) (-3012 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-936)))) (-2603 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-936)))) (-1976 (*1 *2 *2) (-12 (-5 *2 (-936)) (|has| *1 (-6 -4414)) (-4 *1 (-416)))) (-3012 (*1 *2 *2) (-12 (-5 *2 (-936)) (|has| *1 (-6 -4414)) (-4 *1 (-416)))) (-2603 (*1 *2 *2) (-12 (-5 *2 (-936)) (|has| *1 (-6 -4414)) (-4 *1 (-416)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-557)) (|has| *1 (-6 -4414)) (-4 *1 (-416)) (-5 *2 (-936)))) (-1974 (*1 *2 *3) (-12 (-5 *3 (-557)) (|has| *1 (-6 -4414)) (-4 *1 (-416)) (-5 *2 (-936)))) (-2928 (*1 *1) (-12 (-4 *1 (-416)) (-2957 (|has| *1 (-6 -4414))) (-2957 (|has| *1 (-6 -4406))))) (-3256 (*1 *1) (-12 (-4 *1 (-416)) (-2957 (|has| *1 (-6 -4414))) (-2957 (|has| *1 (-6 -4406)))))) -(-13 (-1079) (-10 -8 (-6 -4198) (-15 -3670 ($ (-557) (-557))) (-15 -3670 ($ (-557) (-557) (-936))) (-15 -4200 ((-557) $)) (-15 -3093 ((-936))) (-15 -2630 ((-557) $)) (-15 -2604 ((-557) $)) (-15 -1976 ((-936))) (-15 -3012 ((-936))) (-15 -2603 ((-936))) (IF (|has| $ (-6 -4414)) (PROGN (-15 -1976 ((-936) (-936))) (-15 -3012 ((-936) (-936))) (-15 -2603 ((-936) (-936))) (-15 -1975 ((-936) (-557))) (-15 -1974 ((-936) (-557)))) |%noBranch|) (IF (|has| $ (-6 -4406)) |%noBranch| (IF (|has| $ (-6 -4414)) |%noBranch| (PROGN (-15 -2928 ($)) (-15 -3256 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-557))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-631 (-419 (-557))) . T) ((-631 (-557)) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-175) . T) ((-629 (-229)) . T) ((-629 (-391)) . T) ((-629 (-903 (-391))) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-464) . T) ((-568) . T) ((-664 (-419 (-557))) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 (-419 (-557))) . T) ((-666 $) . T) ((-658 (-419 (-557))) . T) ((-658 $) . T) ((-735 (-419 (-557))) . T) ((-735 $) . T) ((-744) . T) ((-810) . T) ((-812) . T) ((-814) . T) ((-817) . T) ((-858) . T) ((-859) . T) ((-862) . T) ((-899 (-391)) . T) ((-938) . T) ((-1021) . T) ((-1039) . T) ((-1079) . T) ((-1057 (-419 (-557))) . T) ((-1057 (-557)) . T) ((-1070 (-419 (-557))) . T) ((-1070 $) . T) ((-1075 (-419 (-557))) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T) ((-1241) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 59 T ELT)) (-1977 (($ $) 77 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 190 T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) 48 T ELT)) (-1978 ((|#1| $) 16 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL (|has| |#1| (-1241)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#1| (-1241)) ELT)) (-1980 (($ |#1| (-557)) 42 T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 |#1| #1#) $) 148 T ELT)) (-3572 (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) ((|#1| $) 73 T ELT)) (-3885 (((-3 $ #1#) $) 164 T ELT)) (-3423 (((-3 (-419 (-557)) #1#) $) 84 (|has| |#1| (-556)) ELT)) (-3422 (((-114) $) 80 (|has| |#1| (-556)) ELT)) (-3421 (((-419 (-557)) $) 91 (|has| |#1| (-556)) ELT)) (-1981 (($ |#1| (-557)) 44 T ELT)) (-4151 (((-114) $) 210 (|has| |#1| (-1241)) ELT)) (-2639 (((-114) $) 61 T ELT)) (-2043 (((-789) $) 51 T ELT)) (-1982 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-557)) 175 T ELT)) (-2510 ((|#1| $ (-557)) 174 T ELT)) (-1983 (((-557) $ (-557)) 173 T ELT)) (-1986 (($ |#1| (-557)) 41 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 183 T ELT)) (-2040 (($ |#1| (-659 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-557))))) 78 T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1984 (($ |#1| (-557)) 43 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-464)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) 191 (|has| |#1| (-464)) ELT)) (-1979 (($ |#1| (-557) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1985 (((-659 (-2 (|:| -4160 |#1|) (|:| -2630 (-557)))) $) 72 T ELT)) (-2161 (((-659 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-557)))) $) 12 T ELT)) (-4160 (((-417 $) $) NIL (|has| |#1| (-1241)) ELT)) (-3884 (((-3 $ #1#) $ $) 176 T ELT)) (-2630 (((-557) $) 167 T ELT)) (-4391 ((|#1| $) 74 T ELT)) (-4196 (($ $ (-659 |#1|) (-659 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-659 (-305 |#1|))) 100 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-659 (-1196)) (-659 |#1|)) 106 (|has| |#1| (-526 (-1196) |#1|)) ELT) (($ $ (-1196) |#1|) NIL (|has| |#1| (-526 (-1196) |#1|)) ELT) (($ $ (-1196) $) NIL (|has| |#1| (-526 (-1196) $)) ELT) (($ $ (-659 (-1196)) (-659 $)) 107 (|has| |#1| (-526 (-1196) $)) ELT) (($ $ (-659 (-305 $))) 103 (|has| |#1| (-321 $)) ELT) (($ $ (-305 $)) NIL (|has| |#1| (-321 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-321 $)) ELT) (($ $ (-659 $) (-659 $)) NIL (|has| |#1| (-321 $)) ELT)) (-4228 (($ $ |#1|) 92 (|has| |#1| (-298 |#1| |#1|)) ELT) (($ $ $) 93 (|has| |#1| (-298 $ $)) ELT)) (-4186 (($ $ (-1 |#1| |#1|)) 182 T ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-789)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-917 (-1196))) ELT)) (-4400 (((-546) $) 39 (|has| |#1| (-629 (-546))) ELT) (((-391) $) 113 (|has| |#1| (-1039)) ELT) (((-229) $) 119 (|has| |#1| (-1039)) ELT)) (-4374 (((-875) $) 146 T ELT) (($ (-557)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-419 (-557))) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT)) (-3526 (((-789)) 66 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-3057 (($) 53 T CONST)) (-3063 (($) 52 T CONST)) (-3068 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-789)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-917 (-1196))) ELT)) (-3452 (((-114) $ $) 159 T ELT)) (-4265 (($ $) 161 T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 180 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) 125 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) -(((-417 |#1|) (-13 (-568) (-234 |#1|) (-38 |#1|) (-351 |#1|) (-424 |#1|) (-10 -8 (-15 -4391 (|#1| $)) (-15 -2630 ((-557) $)) (-15 -2040 ($ |#1| (-659 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-557)))))) (-15 -2161 ((-659 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-557)))) $)) (-15 -1986 ($ |#1| (-557))) (-15 -1985 ((-659 (-2 (|:| -4160 |#1|) (|:| -2630 (-557)))) $)) (-15 -1984 ($ |#1| (-557))) (-15 -1983 ((-557) $ (-557))) (-15 -2510 (|#1| $ (-557))) (-15 -1982 ((-3 #1# #2# #3# #4#) $ (-557))) (-15 -2043 ((-789) $)) (-15 -1981 ($ |#1| (-557))) (-15 -1980 ($ |#1| (-557))) (-15 -1979 ($ |#1| (-557) (-3 #1# #2# #3# #4#))) (-15 -1978 (|#1| $)) (-15 -1977 ($ $)) (-15 -4386 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1039)) (-6 (-1039)) |%noBranch|) (IF (|has| |#1| (-1241)) (-6 (-1241)) |%noBranch|) (IF (|has| |#1| (-629 (-546))) (-6 (-629 (-546))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -3422 ((-114) $)) (-15 -3421 ((-419 (-557)) $)) (-15 -3423 ((-3 (-419 (-557)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-298 $ $)) (-6 (-298 $ $)) |%noBranch|) (IF (|has| |#1| (-321 $)) (-6 (-321 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1196) $)) (-6 (-526 (-1196) $)) |%noBranch|))) (-568)) (T -417)) -((-4386 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-417 *3)))) (-4391 (*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-568)))) (-2630 (*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-417 *3)) (-4 *3 (-568)))) (-2040 (*1 *1 *2 *3) (-12 (-5 *3 (-659 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-557))))) (-4 *2 (-568)) (-5 *1 (-417 *2)))) (-2161 (*1 *2 *1) (-12 (-5 *2 (-659 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-557))))) (-5 *1 (-417 *3)) (-4 *3 (-568)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *3 (-557)) (-5 *1 (-417 *2)) (-4 *2 (-568)))) (-1985 (*1 *2 *1) (-12 (-5 *2 (-659 (-2 (|:| -4160 *3) (|:| -2630 (-557))))) (-5 *1 (-417 *3)) (-4 *3 (-568)))) (-1984 (*1 *1 *2 *3) (-12 (-5 *3 (-557)) (-5 *1 (-417 *2)) (-4 *2 (-568)))) (-1983 (*1 *2 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-417 *3)) (-4 *3 (-568)))) (-2510 (*1 *2 *1 *3) (-12 (-5 *3 (-557)) (-5 *1 (-417 *2)) (-4 *2 (-568)))) (-1982 (*1 *2 *1 *3) (-12 (-5 *3 (-557)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-417 *4)) (-4 *4 (-568)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-417 *3)) (-4 *3 (-568)))) (-1981 (*1 *1 *2 *3) (-12 (-5 *3 (-557)) (-5 *1 (-417 *2)) (-4 *2 (-568)))) (-1980 (*1 *1 *2 *3) (-12 (-5 *3 (-557)) (-5 *1 (-417 *2)) (-4 *2 (-568)))) (-1979 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-557)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-417 *2)) (-4 *2 (-568)))) (-1978 (*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-568)))) (-1977 (*1 *1 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-568)))) (-3422 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-417 *3)) (-4 *3 (-556)) (-4 *3 (-568)))) (-3421 (*1 *2 *1) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-417 *3)) (-4 *3 (-556)) (-4 *3 (-568)))) (-3423 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-557))) (-5 *1 (-417 *3)) (-4 *3 (-556)) (-4 *3 (-568))))) -((-4386 (((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)) 20 T ELT))) -(((-418 |#1| |#2|) (-10 -7 (-15 -4386 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) (-568) (-568)) (T -418)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-417 *6)) (-5 *1 (-418 *5 *6))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 13 T ELT)) (-3529 ((|#1| $) 21 (|has| |#1| (-319)) ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4051 (((-557) $) NIL (|has| |#1| (-840)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1196) #1#) $) NIL (|has| |#1| (-1057 (-1196))) ELT) (((-3 (-419 (-557)) #1#) $) 54 (|has| |#1| (-1057 (-557))) ELT) (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT)) (-3572 ((|#1| $) 15 T ELT) (((-1196) $) NIL (|has| |#1| (-1057 (-1196))) ELT) (((-419 (-557)) $) 51 (|has| |#1| (-1057 (-557))) ELT) (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT)) (-2961 (($ $ $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) NIL T ELT) (((-707 |#1|) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) 32 T ELT)) (-3393 (($) NIL (|has| |#1| (-556)) ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-3602 (((-114) $) NIL (|has| |#1| (-840)) ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (|has| |#1| (-899 (-557))) ELT) (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (|has| |#1| (-899 (-391))) ELT)) (-2639 (((-114) $) 38 T ELT)) (-3395 (($ $) NIL T ELT)) (-3397 ((|#1| $) 55 T ELT)) (-3863 (((-709 $) $) NIL (|has| |#1| (-1171)) ELT)) (-3603 (((-114) $) 22 (|has| |#1| (-840)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2928 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL T ELT) (((-707 |#1|) (-1286 $)) NIL T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3864 (($) NIL (|has| |#1| (-1171)) CONST)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 82 T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3528 (($ $) NIL (|has| |#1| (-319)) ELT)) (-3530 ((|#1| $) 26 (|has| |#1| (-556)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) 135 (|has| |#1| (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) 128 (|has| |#1| (-927)) ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-4196 (($ $ (-659 |#1|) (-659 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-659 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-659 (-1196)) (-659 |#1|)) NIL (|has| |#1| (-526 (-1196) |#1|)) ELT) (($ $ (-1196) |#1|) NIL (|has| |#1| (-526 (-1196) |#1|)) ELT)) (-1785 (((-789) $) NIL T ELT)) (-4228 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-4186 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-789)) NIL (|has| |#1| (-239)) ELT)) (-3394 (($ $) NIL T ELT)) (-3396 ((|#1| $) 57 T ELT)) (-4400 (((-903 (-557)) $) NIL (|has| |#1| (-629 (-903 (-557)))) ELT) (((-903 (-391)) $) NIL (|has| |#1| (-629 (-903 (-391)))) ELT) (((-546) $) NIL (|has| |#1| (-629 (-546))) ELT) (((-391) $) NIL (|has| |#1| (-1039)) ELT) (((-229) $) NIL (|has| |#1| (-1039)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) 112 (-12 (|has| $ (-147)) (|has| |#1| (-927))) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1196)) NIL (|has| |#1| (-1057 (-1196))) ELT)) (-3101 (((-709 $) $) 92 (-3955 (-12 (|has| $ (-147)) (|has| |#1| (-927))) (|has| |#1| (-147))) ELT)) (-3526 (((-789)) 93 T CONST)) (-3531 ((|#1| $) 24 (|has| |#1| (-556)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-3801 (($ $) NIL (|has| |#1| (-840)) ELT)) (-3057 (($) 28 T CONST)) (-3063 (($) 8 T CONST)) (-3068 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-789)) NIL (|has| |#1| (-239)) ELT)) (-2963 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) 48 T ELT)) (-3083 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-4377 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-4265 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-4267 (($ $ $) 35 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) 122 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT))) -(((-419 |#1|) (-13 (-1010 |#1|) (-10 -7 (IF (|has| |#1| (-6 -4410)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4421)) (-6 -4410) |%noBranch|) |%noBranch|) |%noBranch|))) (-568)) (T -419)) -NIL -((-4386 (((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)) 13 T ELT))) -(((-420 |#1| |#2|) (-10 -7 (-15 -4386 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) (-568) (-568)) (T -420)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-420 *5 *6))))) -((-1988 (((-707 |#2|) (-1286 $)) NIL T ELT) (((-707 |#2|)) 18 T ELT)) (-1998 (($ (-1286 |#2|) (-1286 $)) NIL T ELT) (($ (-1286 |#2|)) 24 T ELT)) (-1987 (((-707 |#2|) $ (-1286 $)) NIL T ELT) (((-707 |#2|) $) 40 T ELT)) (-2222 ((|#3| $) 69 T ELT)) (-4185 ((|#2| (-1286 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3640 (((-1286 |#2|) $ (-1286 $)) NIL T ELT) (((-707 |#2|) (-1286 $) (-1286 $)) NIL T ELT) (((-1286 |#2|) $) 22 T ELT) (((-707 |#2|) (-1286 $)) 38 T ELT)) (-4400 (((-1286 |#2|) $) 11 T ELT) (($ (-1286 |#2|)) 13 T ELT)) (-2836 ((|#3| $) 55 T ELT))) -(((-421 |#1| |#2| |#3|) (-10 -7 (-15 -1987 ((-707 |#2|) |#1|)) (-15 -4185 (|#2|)) (-15 -1988 ((-707 |#2|))) (-15 -4400 (|#1| (-1286 |#2|))) (-15 -4400 ((-1286 |#2|) |#1|)) (-15 -1998 (|#1| (-1286 |#2|))) (-15 -3640 ((-707 |#2|) (-1286 |#1|))) (-15 -3640 ((-1286 |#2|) |#1|)) (-15 -2222 (|#3| |#1|)) (-15 -2836 (|#3| |#1|)) (-15 -1988 ((-707 |#2|) (-1286 |#1|))) (-15 -4185 (|#2| (-1286 |#1|))) (-15 -1998 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -3640 ((-707 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3640 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -1987 ((-707 |#2|) |#1| (-1286 |#1|)))) (-422 |#2| |#3|) (-175) (-1262 |#2|)) (T -421)) -((-1988 (*1 *2) (-12 (-4 *4 (-175)) (-4 *5 (-1262 *4)) (-5 *2 (-707 *4)) (-5 *1 (-421 *3 *4 *5)) (-4 *3 (-422 *4 *5)))) (-4185 (*1 *2) (-12 (-4 *4 (-1262 *2)) (-4 *2 (-175)) (-5 *1 (-421 *3 *2 *4)) (-4 *3 (-422 *2 *4))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1988 (((-707 |#1|) (-1286 $)) 58 T ELT) (((-707 |#1|)) 74 T ELT)) (-3748 ((|#1| $) 64 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-1998 (($ (-1286 |#1|) (-1286 $)) 60 T ELT) (($ (-1286 |#1|)) 77 T ELT)) (-1987 (((-707 |#1|) $ (-1286 $)) 65 T ELT) (((-707 |#1|) $) 72 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-3509 (((-936)) 66 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3532 ((|#1| $) 63 T ELT)) (-2222 ((|#2| $) 56 (|has| |#1| (-376)) ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4185 ((|#1| (-1286 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-3640 (((-1286 |#1|) $ (-1286 $)) 62 T ELT) (((-707 |#1|) (-1286 $) (-1286 $)) 61 T ELT) (((-1286 |#1|) $) 79 T ELT) (((-707 |#1|) (-1286 $)) 78 T ELT)) (-4400 (((-1286 |#1|) $) 76 T ELT) (($ (-1286 |#1|)) 75 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ |#1|) 49 T ELT)) (-3101 (((-709 $) $) 55 (|has| |#1| (-147)) ELT)) (-2836 ((|#2| $) 57 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2220 (((-1286 $)) 80 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) -(((-422 |#1| |#2|) (-142) (-175) (-1262 |t#1|)) (T -422)) -((-2220 (*1 *2) (-12 (-4 *3 (-175)) (-4 *4 (-1262 *3)) (-5 *2 (-1286 *1)) (-4 *1 (-422 *3 *4)))) (-3640 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1262 *3)) (-5 *2 (-1286 *3)))) (-3640 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-422 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1262 *4)) (-5 *2 (-707 *4)))) (-1998 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-175)) (-4 *1 (-422 *3 *4)) (-4 *4 (-1262 *3)))) (-4400 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1262 *3)) (-5 *2 (-1286 *3)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-175)) (-4 *1 (-422 *3 *4)) (-4 *4 (-1262 *3)))) (-1988 (*1 *2) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1262 *3)) (-5 *2 (-707 *3)))) (-4185 (*1 *2) (-12 (-4 *1 (-422 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-175)))) (-1987 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1262 *3)) (-5 *2 (-707 *3))))) -(-13 (-383 |t#1| |t#2|) (-10 -8 (-15 -2220 ((-1286 $))) (-15 -3640 ((-1286 |t#1|) $)) (-15 -3640 ((-707 |t#1|) (-1286 $))) (-15 -1998 ($ (-1286 |t#1|))) (-15 -4400 ((-1286 |t#1|) $)) (-15 -4400 ($ (-1286 |t#1|))) (-15 -1988 ((-707 |t#1|))) (-15 -4185 (|t#1|)) (-15 -1987 ((-707 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-631 (-557)) . T) ((-631 |#1|) . T) ((-628 (-875)) . T) ((-383 |#1| |#2|) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-658 |#1|) . T) ((-735 |#1|) . T) ((-744) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-3573 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) 27 T ELT) (((-3 (-557) #1#) $) 19 T ELT)) (-3572 ((|#2| $) NIL T ELT) (((-419 (-557)) $) 24 T ELT) (((-557) $) 14 T ELT)) (-4374 (($ |#2|) NIL T ELT) (($ (-419 (-557))) 22 T ELT) (($ (-557)) 11 T ELT))) -(((-423 |#1| |#2|) (-10 -7 (-15 -4374 (|#1| (-557))) (-15 -3573 ((-3 (-557) #1="failed") |#1|)) (-15 -3572 ((-557) |#1|)) (-15 -4374 (|#1| (-419 (-557)))) (-15 -3573 ((-3 (-419 (-557)) #1#) |#1|)) (-15 -3572 ((-419 (-557)) |#1|)) (-15 -3572 (|#2| |#1|)) (-15 -3573 ((-3 |#2| #1#) |#1|)) (-15 -4374 (|#1| |#2|))) (-424 |#2|) (-1236)) (T -423)) -NIL -((-3573 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-419 (-557)) #1#) $) 16 (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 (-557) #1#) $) 13 (|has| |#1| (-1057 (-557))) ELT)) (-3572 ((|#1| $) 8 T ELT) (((-419 (-557)) $) 17 (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-557) $) 14 (|has| |#1| (-1057 (-557))) ELT)) (-4374 (($ |#1|) 6 T ELT) (($ (-419 (-557))) 15 (|has| |#1| (-1057 (-419 (-557)))) ELT) (($ (-557)) 12 (|has| |#1| (-1057 (-557))) ELT))) -(((-424 |#1|) (-142) (-1236)) (T -424)) -NIL -(-13 (-1057 |t#1|) (-10 -7 (IF (|has| |t#1| (-1057 (-557))) (-6 (-1057 (-557))) |%noBranch|) (IF (|has| |t#1| (-1057 (-419 (-557)))) (-6 (-1057 (-419 (-557)))) |%noBranch|))) -(((-631 (-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((-631 (-557)) |has| |#1| (-1057 (-557))) ((-631 |#1|) . T) ((-1057 (-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((-1057 (-557)) |has| |#1| (-1057 (-557))) ((-1057 |#1|) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3885 (((-3 $ "failed") $) NIL T ELT)) (-1989 ((|#4| (-789) (-1286 |#4|)) 55 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3397 (((-1286 |#4|) $) 15 T ELT)) (-3532 ((|#2| $) 53 T ELT)) (-1990 (($ $) 156 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) 103 T ELT)) (-2178 (($ (-1286 |#4|)) 102 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3396 ((|#1| $) 16 T ELT)) (-3408 (($ $ $) NIL T ELT)) (-2822 (($ $ $) NIL T ELT)) (-4374 (((-875) $) 147 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 |#4|) $) 140 T ELT)) (-3063 (($) 11 T CONST)) (-3452 (((-114) $ $) 39 T ELT)) (-4377 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) 133 T ELT)) (* (($ $ $) 130 T ELT))) -(((-425 |#1| |#2| |#3| |#4|) (-13 (-485) (-10 -8 (-15 -2178 ($ (-1286 |#4|))) (-15 -2220 ((-1286 |#4|) $)) (-15 -3532 (|#2| $)) (-15 -3397 ((-1286 |#4|) $)) (-15 -3396 (|#1| $)) (-15 -1990 ($ $)) (-15 -1989 (|#4| (-789) (-1286 |#4|))))) (-319) (-1010 |#1|) (-1262 |#2|) (-13 (-422 |#2| |#3|) (-1057 |#2|))) (T -425)) -((-2178 (*1 *1 *2) (-12 (-5 *2 (-1286 *6)) (-4 *6 (-13 (-422 *4 *5) (-1057 *4))) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-4 *3 (-319)) (-5 *1 (-425 *3 *4 *5 *6)))) (-2220 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-1286 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1057 *4))))) (-3532 (*1 *2 *1) (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1010 *3)) (-5 *1 (-425 *3 *2 *4 *5)) (-4 *3 (-319)) (-4 *5 (-13 (-422 *2 *4) (-1057 *2))))) (-3397 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-1286 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1057 *4))))) (-3396 (*1 *2 *1) (-12 (-4 *3 (-1010 *2)) (-4 *4 (-1262 *3)) (-4 *2 (-319)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1057 *3))))) (-1990 (*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *3 (-1010 *2)) (-4 *4 (-1262 *3)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1057 *3))))) (-1989 (*1 *2 *3 *4) (-12 (-5 *3 (-789)) (-5 *4 (-1286 *2)) (-4 *5 (-319)) (-4 *6 (-1010 *5)) (-4 *2 (-13 (-422 *6 *7) (-1057 *6))) (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1262 *6))))) -((-4386 (((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)) 35 T ELT))) -(((-426 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4386 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) (-319) (-1010 |#1|) (-1262 |#2|) (-13 (-422 |#2| |#3|) (-1057 |#2|)) (-319) (-1010 |#5|) (-1262 |#6|) (-13 (-422 |#6| |#7|) (-1057 |#6|))) (T -426)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-319)) (-4 *6 (-1010 *5)) (-4 *7 (-1262 *6)) (-4 *8 (-13 (-422 *6 *7) (-1057 *6))) (-4 *9 (-319)) (-4 *10 (-1010 *9)) (-4 *11 (-1262 *10)) (-5 *2 (-425 *9 *10 *11 *12)) (-5 *1 (-426 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-422 *10 *11) (-1057 *10)))))) -((-2965 (((-114) $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3885 (((-3 $ "failed") $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3532 ((|#2| $) 71 T ELT)) (-1991 (($ (-1286 |#4|)) 27 T ELT) (($ (-425 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1057 |#2|)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 37 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 |#4|) $) 28 T ELT)) (-3063 (($) 25 T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ $ $) 82 T ELT))) -(((-427 |#1| |#2| |#3| |#4| |#5|) (-13 (-744) (-10 -8 (-15 -2220 ((-1286 |#4|) $)) (-15 -3532 (|#2| $)) (-15 -1991 ($ (-1286 |#4|))) (IF (|has| |#4| (-1057 |#2|)) (-15 -1991 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-319) (-1010 |#1|) (-1262 |#2|) (-422 |#2| |#3|) (-1286 |#4|)) (T -427)) -((-2220 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-1286 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7)) (-4 *6 (-422 *4 *5)) (-14 *7 *2))) (-3532 (*1 *2 *1) (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1010 *3)) (-5 *1 (-427 *3 *2 *4 *5 *6)) (-4 *3 (-319)) (-4 *5 (-422 *2 *4)) (-14 *6 (-1286 *5)))) (-1991 (*1 *1 *2) (-12 (-5 *2 (-1286 *6)) (-4 *6 (-422 *4 *5)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-4 *3 (-319)) (-5 *1 (-427 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1991 (*1 *1 *2) (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1057 *4)) (-4 *3 (-319)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-4 *6 (-422 *4 *5)) (-14 *7 (-1286 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7))))) -((-4386 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) -(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4386 (|#3| (-1 |#4| |#2|) |#1|))) (-430 |#2|) (-175) (-430 |#4|) (-175)) (T -428)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-430 *6)) (-5 *1 (-428 *4 *5 *2 *6)) (-4 *4 (-430 *5))))) -((-1978 (((-3 $ #1="failed")) 99 T ELT)) (-3639 (((-1286 (-707 |#2|)) (-1286 $)) NIL T ELT) (((-1286 (-707 |#2|))) 104 T ELT)) (-2115 (((-3 (-2 (|:| |particular| $) (|:| -2220 (-659 $))) #1#)) 97 T ELT)) (-1904 (((-3 $ #1#)) 96 T ELT)) (-1994 (((-707 |#2|) (-1286 $)) NIL T ELT) (((-707 |#2|)) 115 T ELT)) (-1992 (((-707 |#2|) $ (-1286 $)) NIL T ELT) (((-707 |#2|) $) 123 T ELT)) (-2109 (((-1190 (-963 |#2|))) 64 T ELT)) (-1996 ((|#2| (-1286 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1998 (($ (-1286 |#2|) (-1286 $)) NIL T ELT) (($ (-1286 |#2|)) 125 T ELT)) (-2116 (((-3 (-2 (|:| |particular| $) (|:| -2220 (-659 $))) #1#)) 95 T ELT)) (-1905 (((-3 $ #1#)) 87 T ELT)) (-1995 (((-707 |#2|) (-1286 $)) NIL T ELT) (((-707 |#2|)) 113 T ELT)) (-1993 (((-707 |#2|) $ (-1286 $)) NIL T ELT) (((-707 |#2|) $) 121 T ELT)) (-2113 (((-1190 (-963 |#2|))) 63 T ELT)) (-1997 ((|#2| (-1286 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3640 (((-1286 |#2|) $ (-1286 $)) NIL T ELT) (((-707 |#2|) (-1286 $) (-1286 $)) NIL T ELT) (((-1286 |#2|) $) 124 T ELT) (((-707 |#2|) (-1286 $)) 133 T ELT)) (-4400 (((-1286 |#2|) $) 109 T ELT) (($ (-1286 |#2|)) 111 T ELT)) (-2101 (((-659 (-963 |#2|)) (-1286 $)) NIL T ELT) (((-659 (-963 |#2|))) 107 T ELT)) (-2942 (($ (-707 |#2|) $) 103 T ELT))) -(((-429 |#1| |#2|) (-10 -7 (-15 -2942 (|#1| (-707 |#2|) |#1|)) (-15 -2109 ((-1190 (-963 |#2|)))) (-15 -2113 ((-1190 (-963 |#2|)))) (-15 -1992 ((-707 |#2|) |#1|)) (-15 -1993 ((-707 |#2|) |#1|)) (-15 -1994 ((-707 |#2|))) (-15 -1995 ((-707 |#2|))) (-15 -1996 (|#2|)) (-15 -1997 (|#2|)) (-15 -4400 (|#1| (-1286 |#2|))) (-15 -4400 ((-1286 |#2|) |#1|)) (-15 -1998 (|#1| (-1286 |#2|))) (-15 -2101 ((-659 (-963 |#2|)))) (-15 -3639 ((-1286 (-707 |#2|)))) (-15 -3640 ((-707 |#2|) (-1286 |#1|))) (-15 -3640 ((-1286 |#2|) |#1|)) (-15 -1978 ((-3 |#1| #1="failed"))) (-15 -1904 ((-3 |#1| #1#))) (-15 -1905 ((-3 |#1| #1#))) (-15 -2115 ((-3 (-2 (|:| |particular| |#1|) (|:| -2220 (-659 |#1|))) #1#))) (-15 -2116 ((-3 (-2 (|:| |particular| |#1|) (|:| -2220 (-659 |#1|))) #1#))) (-15 -1994 ((-707 |#2|) (-1286 |#1|))) (-15 -1995 ((-707 |#2|) (-1286 |#1|))) (-15 -1996 (|#2| (-1286 |#1|))) (-15 -1997 (|#2| (-1286 |#1|))) (-15 -1998 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -3640 ((-707 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3640 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -1992 ((-707 |#2|) |#1| (-1286 |#1|))) (-15 -1993 ((-707 |#2|) |#1| (-1286 |#1|))) (-15 -3639 ((-1286 (-707 |#2|)) (-1286 |#1|))) (-15 -2101 ((-659 (-963 |#2|)) (-1286 |#1|)))) (-430 |#2|) (-175)) (T -429)) -((-3639 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1286 (-707 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2101 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-659 (-963 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-1997 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) (-1996 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) (-1995 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-707 *4)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-1994 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-707 *4)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2113 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1190 (-963 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2109 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1190 (-963 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1978 (((-3 $ #1="failed")) 47 (|has| |#1| (-568)) ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-3639 (((-1286 (-707 |#1|)) (-1286 $)) 88 T ELT) (((-1286 (-707 |#1|))) 114 T ELT)) (-1930 (((-1286 $)) 91 T ELT)) (-4152 (($) 22 T CONST)) (-2115 (((-3 (-2 (|:| |particular| $) (|:| -2220 (-659 $))) #1#)) 50 (|has| |#1| (-568)) ELT)) (-1904 (((-3 $ #1#)) 48 (|has| |#1| (-568)) ELT)) (-1994 (((-707 |#1|) (-1286 $)) 75 T ELT) (((-707 |#1|)) 106 T ELT)) (-1928 ((|#1| $) 84 T ELT)) (-1992 (((-707 |#1|) $ (-1286 $)) 86 T ELT) (((-707 |#1|) $) 104 T ELT)) (-2633 (((-3 $ #1#) $) 55 (|has| |#1| (-568)) ELT)) (-2109 (((-1190 (-963 |#1|))) 102 (|has| |#1| (-376)) ELT)) (-2636 (($ $ (-936)) 36 T ELT)) (-1926 ((|#1| $) 82 T ELT)) (-1906 (((-1190 |#1|) $) 52 (|has| |#1| (-568)) ELT)) (-1996 ((|#1| (-1286 $)) 77 T ELT) ((|#1|) 108 T ELT)) (-1924 (((-1190 |#1|) $) 73 T ELT)) (-1918 (((-114)) 67 T ELT)) (-1998 (($ (-1286 |#1|) (-1286 $)) 79 T ELT) (($ (-1286 |#1|)) 112 T ELT)) (-3885 (((-3 $ #1#) $) 57 (|has| |#1| (-568)) ELT)) (-3509 (((-936)) 90 T ELT)) (-1915 (((-114)) 64 T ELT)) (-2660 (($ $ (-936)) 43 T ELT)) (-1911 (((-114)) 60 T ELT)) (-1909 (((-114)) 58 T ELT)) (-1913 (((-114)) 62 T ELT)) (-2116 (((-3 (-2 (|:| |particular| $) (|:| -2220 (-659 $))) #1#)) 51 (|has| |#1| (-568)) ELT)) (-1905 (((-3 $ #1#)) 49 (|has| |#1| (-568)) ELT)) (-1995 (((-707 |#1|) (-1286 $)) 76 T ELT) (((-707 |#1|)) 107 T ELT)) (-1929 ((|#1| $) 85 T ELT)) (-1993 (((-707 |#1|) $ (-1286 $)) 87 T ELT) (((-707 |#1|) $) 105 T ELT)) (-2634 (((-3 $ #1#) $) 56 (|has| |#1| (-568)) ELT)) (-2113 (((-1190 (-963 |#1|))) 103 (|has| |#1| (-376)) ELT)) (-2635 (($ $ (-936)) 37 T ELT)) (-1927 ((|#1| $) 83 T ELT)) (-1907 (((-1190 |#1|) $) 53 (|has| |#1| (-568)) ELT)) (-1997 ((|#1| (-1286 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1925 (((-1190 |#1|) $) 74 T ELT)) (-1919 (((-114)) 68 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-1910 (((-114)) 59 T ELT)) (-1912 (((-114)) 61 T ELT)) (-1914 (((-114)) 63 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-1917 (((-114)) 66 T ELT)) (-4228 ((|#1| $ (-557)) 118 T ELT)) (-3640 (((-1286 |#1|) $ (-1286 $)) 81 T ELT) (((-707 |#1|) (-1286 $) (-1286 $)) 80 T ELT) (((-1286 |#1|) $) 116 T ELT) (((-707 |#1|) (-1286 $)) 115 T ELT)) (-4400 (((-1286 |#1|) $) 111 T ELT) (($ (-1286 |#1|)) 110 T ELT)) (-2101 (((-659 (-963 |#1|)) (-1286 $)) 89 T ELT) (((-659 (-963 |#1|))) 113 T ELT)) (-2822 (($ $ $) 33 T ELT)) (-1923 (((-114)) 72 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2220 (((-1286 $)) 117 T ELT)) (-1908 (((-659 (-1286 |#1|))) 54 (|has| |#1| (-568)) ELT)) (-2823 (($ $ $ $) 34 T ELT)) (-1921 (((-114)) 70 T ELT)) (-2942 (($ (-707 |#1|) $) 101 T ELT)) (-2821 (($ $ $) 32 T ELT)) (-1922 (((-114)) 71 T ELT)) (-1920 (((-114)) 69 T ELT)) (-1916 (((-114)) 65 T ELT)) (-3057 (($) 23 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 38 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) -(((-430 |#1|) (-142) (-175)) (T -430)) -((-2220 (*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1286 *1)) (-4 *1 (-430 *3)))) (-3640 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1286 *3)))) (-3640 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-430 *4)) (-4 *4 (-175)) (-5 *2 (-707 *4)))) (-3639 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1286 (-707 *3))))) (-2101 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-659 (-963 *3))))) (-1998 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-175)) (-4 *1 (-430 *3)))) (-4400 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1286 *3)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-175)) (-4 *1 (-430 *3)))) (-1997 (*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-175)))) (-1996 (*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-175)))) (-1995 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-707 *3)))) (-1994 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-707 *3)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-707 *3)))) (-1992 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-707 *3)))) (-2113 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-4 *3 (-376)) (-5 *2 (-1190 (-963 *3))))) (-2109 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-4 *3 (-376)) (-5 *2 (-1190 (-963 *3))))) (-2942 (*1 *1 *2 *1) (-12 (-5 *2 (-707 *3)) (-4 *1 (-430 *3)) (-4 *3 (-175))))) -(-13 (-380 |t#1|) (-298 (-557) |t#1|) (-10 -8 (-15 -2220 ((-1286 $))) (-15 -3640 ((-1286 |t#1|) $)) (-15 -3640 ((-707 |t#1|) (-1286 $))) (-15 -3639 ((-1286 (-707 |t#1|)))) (-15 -2101 ((-659 (-963 |t#1|)))) (-15 -1998 ($ (-1286 |t#1|))) (-15 -4400 ((-1286 |t#1|) $)) (-15 -4400 ($ (-1286 |t#1|))) (-15 -1997 (|t#1|)) (-15 -1996 (|t#1|)) (-15 -1995 ((-707 |t#1|))) (-15 -1994 ((-707 |t#1|))) (-15 -1993 ((-707 |t#1|) $)) (-15 -1992 ((-707 |t#1|) $)) (IF (|has| |t#1| (-376)) (PROGN (-15 -2113 ((-1190 (-963 |t#1|)))) (-15 -2109 ((-1190 (-963 |t#1|))))) |%noBranch|) (-15 -2942 ($ (-707 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-628 (-875)) . T) ((-298 (-557) |#1|) . T) ((-380 |#1|) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-666 |#1|) . T) ((-658 |#1|) . T) ((-735 |#1|) . T) ((-738) . T) ((-762 |#1|) . T) ((-779) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-3534 (((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|)) 28 T ELT)) (-1999 (((-417 |#1|) (-417 |#1|) (-417 |#1|)) 17 T ELT))) -(((-431 |#1|) (-10 -7 (-15 -3534 ((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|))) (-15 -1999 ((-417 |#1|) (-417 |#1|) (-417 |#1|)))) (-568)) (T -431)) -((-1999 (*1 *2 *2 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3)))) (-3534 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-417 *4) *4)) (-4 *4 (-568)) (-5 *2 (-417 *4)) (-5 *1 (-431 *4))))) -((-3482 (((-659 (-1196)) $) 81 T ELT)) (-3484 (((-419 (-1190 $)) $ (-626 $)) 313 T ELT)) (-1745 (($ $ (-305 $)) NIL T ELT) (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-659 (-626 $)) (-659 $)) 277 T ELT)) (-3573 (((-3 (-626 $) #1="failed") $) NIL T ELT) (((-3 (-1196) #1#) $) 84 T ELT) (((-3 (-557) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-419 (-963 |#2|)) #1#) $) 363 T ELT) (((-3 (-963 |#2|) #1#) $) 275 T ELT) (((-3 (-419 (-557)) #1#) $) NIL T ELT)) (-3572 (((-626 $) $) NIL T ELT) (((-1196) $) 28 T ELT) (((-557) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-419 (-963 |#2|)) $) 345 T ELT) (((-963 |#2|) $) 272 T ELT) (((-419 (-557)) $) NIL T ELT)) (-4021 (((-115) (-115)) 47 T ELT)) (-3395 (($ $) 99 T ELT)) (-1743 (((-3 (-626 $) #1#) $) 268 T ELT)) (-1742 (((-659 (-626 $)) $) 269 T ELT)) (-3222 (((-3 (-659 $) #1#) $) 287 T ELT)) (-3224 (((-3 (-2 (|:| |val| $) (|:| -2630 (-557))) #1#) $) 294 T ELT)) (-3221 (((-3 (-659 $) #1#) $) 285 T ELT)) (-2000 (((-3 (-2 (|:| -4382 (-557)) (|:| |var| (-626 $))) #1#) $) 304 T ELT)) (-3223 (((-3 (-2 (|:| |var| (-626 $)) (|:| -2630 (-557))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-626 $)) (|:| -2630 (-557))) #1#) $ (-115)) 255 T ELT) (((-3 (-2 (|:| |var| (-626 $)) (|:| -2630 (-557))) #1#) $ (-1196)) 257 T ELT)) (-2003 (((-114) $) 17 T ELT)) (-2002 ((|#2| $) 19 T ELT)) (-4196 (($ $ (-626 $) $) NIL T ELT) (($ $ (-659 (-626 $)) (-659 $)) 276 T ELT) (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-1 $ $))) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-1 $ (-659 $)))) 109 T ELT) (($ $ (-1196) (-1 $ (-659 $))) NIL T ELT) (($ $ (-1196) (-1 $ $)) NIL T ELT) (($ $ (-659 (-115)) (-659 (-1 $ $))) NIL T ELT) (($ $ (-659 (-115)) (-659 (-1 $ (-659 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-659 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT) (($ $ (-1196)) 62 T ELT) (($ $ (-659 (-1196))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-115) $ (-1196)) 65 T ELT) (($ $ (-659 (-115)) (-659 $) (-1196)) 72 T ELT) (($ $ (-659 (-1196)) (-659 (-789)) (-659 (-1 $ $))) 120 T ELT) (($ $ (-659 (-1196)) (-659 (-789)) (-659 (-1 $ (-659 $)))) 282 T ELT) (($ $ (-1196) (-789) (-1 $ (-659 $))) 105 T ELT) (($ $ (-1196) (-789) (-1 $ $)) 104 T ELT)) (-4228 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-659 $)) 119 T ELT)) (-4186 (($ $ (-1196)) 278 T ELT) (($ $ (-659 (-1196))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT)) (-3394 (($ $) 324 T ELT)) (-4400 (((-903 (-557)) $) 297 T ELT) (((-903 (-391)) $) 301 T ELT) (($ (-417 $)) 359 T ELT) (((-546) $) NIL T ELT)) (-4374 (((-875) $) 279 T ELT) (($ (-626 $)) 93 T ELT) (($ (-1196)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1144 |#2| (-626 $))) NIL T ELT) (($ (-419 |#2|)) 329 T ELT) (($ (-963 (-419 |#2|))) 368 T ELT) (($ (-419 (-963 (-419 |#2|)))) 341 T ELT) (($ (-419 (-963 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-963 |#2|)) 216 T ELT) (($ (-557)) NIL T ELT) (($ (-419 (-557))) 373 T ELT)) (-3526 (((-789)) 88 T ELT)) (-2466 (((-114) (-115)) 42 T ELT)) (-2001 (($ (-1196) $) 31 T ELT) (($ (-1196) $ $) 32 T ELT) (($ (-1196) $ $ $) 33 T ELT) (($ (-1196) $ $ $ $) 34 T ELT) (($ (-1196) (-659 $)) 39 T ELT)) (* (($ (-419 (-557)) $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-936) $) NIL T ELT))) -(((-432 |#1| |#2|) (-10 -7 (-15 * (|#1| (-936) |#1|)) (-15 * (|#1| (-789) |#1|)) (-15 * (|#1| (-557) |#1|)) (-15 -4374 (|#1| (-419 (-557)))) (-15 -3573 ((-3 (-419 (-557)) #1="failed") |#1|)) (-15 -3572 ((-419 (-557)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4374 (|#1| (-557))) (-15 -3526 ((-789))) (-15 * (|#1| |#2| |#1|)) (-15 -4400 ((-546) |#1|)) (-15 -4374 (|#1| (-963 |#2|))) (-15 -3573 ((-3 (-963 |#2|) #1#) |#1|)) (-15 -3572 ((-963 |#2|) |#1|)) (-15 -4186 (|#1| |#1| (-659 (-1196)) (-659 (-789)))) (-15 -4186 (|#1| |#1| (-1196) (-789))) (-15 -4186 (|#1| |#1| (-659 (-1196)))) (-15 -4186 (|#1| |#1| (-1196))) (-15 * (|#1| |#1| |#2|)) (-15 -4374 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-557)))) (-15 * (|#1| (-419 (-557)) |#1|)) (-15 -4374 (|#1| (-419 (-963 |#2|)))) (-15 -3573 ((-3 (-419 (-963 |#2|)) #1#) |#1|)) (-15 -3572 ((-419 (-963 |#2|)) |#1|)) (-15 -3484 ((-419 (-1190 |#1|)) |#1| (-626 |#1|))) (-15 -4374 (|#1| (-419 (-963 (-419 |#2|))))) (-15 -4374 (|#1| (-963 (-419 |#2|)))) (-15 -4374 (|#1| (-419 |#2|))) (-15 -3394 (|#1| |#1|)) (-15 -4400 (|#1| (-417 |#1|))) (-15 -4196 (|#1| |#1| (-1196) (-789) (-1 |#1| |#1|))) (-15 -4196 (|#1| |#1| (-1196) (-789) (-1 |#1| (-659 |#1|)))) (-15 -4196 (|#1| |#1| (-659 (-1196)) (-659 (-789)) (-659 (-1 |#1| (-659 |#1|))))) (-15 -4196 (|#1| |#1| (-659 (-1196)) (-659 (-789)) (-659 (-1 |#1| |#1|)))) (-15 -3224 ((-3 (-2 (|:| |val| |#1|) (|:| -2630 (-557))) #1#) |#1|)) (-15 -3223 ((-3 (-2 (|:| |var| (-626 |#1|)) (|:| -2630 (-557))) #1#) |#1| (-1196))) (-15 -3223 ((-3 (-2 (|:| |var| (-626 |#1|)) (|:| -2630 (-557))) #1#) |#1| (-115))) (-15 -3395 (|#1| |#1|)) (-15 -4374 (|#1| (-1144 |#2| (-626 |#1|)))) (-15 -2000 ((-3 (-2 (|:| -4382 (-557)) (|:| |var| (-626 |#1|))) #1#) |#1|)) (-15 -3221 ((-3 (-659 |#1|) #1#) |#1|)) (-15 -3223 ((-3 (-2 (|:| |var| (-626 |#1|)) (|:| -2630 (-557))) #1#) |#1|)) (-15 -3222 ((-3 (-659 |#1|) #1#) |#1|)) (-15 -4196 (|#1| |#1| (-659 (-115)) (-659 |#1|) (-1196))) (-15 -4196 (|#1| |#1| (-115) |#1| (-1196))) (-15 -4196 (|#1| |#1|)) (-15 -4196 (|#1| |#1| (-659 (-1196)))) (-15 -4196 (|#1| |#1| (-1196))) (-15 -2001 (|#1| (-1196) (-659 |#1|))) (-15 -2001 (|#1| (-1196) |#1| |#1| |#1| |#1|)) (-15 -2001 (|#1| (-1196) |#1| |#1| |#1|)) (-15 -2001 (|#1| (-1196) |#1| |#1|)) (-15 -2001 (|#1| (-1196) |#1|)) (-15 -3482 ((-659 (-1196)) |#1|)) (-15 -2002 (|#2| |#1|)) (-15 -2003 ((-114) |#1|)) (-15 -4374 (|#1| |#2|)) (-15 -3573 ((-3 |#2| #1#) |#1|)) (-15 -3572 (|#2| |#1|)) (-15 -3572 ((-557) |#1|)) (-15 -3573 ((-3 (-557) #1#) |#1|)) (-15 -4400 ((-903 (-391)) |#1|)) (-15 -4400 ((-903 (-557)) |#1|)) (-15 -4374 (|#1| (-1196))) (-15 -3573 ((-3 (-1196) #1#) |#1|)) (-15 -3572 ((-1196) |#1|)) (-15 -4196 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -4196 (|#1| |#1| (-115) (-1 |#1| (-659 |#1|)))) (-15 -4196 (|#1| |#1| (-659 (-115)) (-659 (-1 |#1| (-659 |#1|))))) (-15 -4196 (|#1| |#1| (-659 (-115)) (-659 (-1 |#1| |#1|)))) (-15 -4196 (|#1| |#1| (-1196) (-1 |#1| |#1|))) (-15 -4196 (|#1| |#1| (-1196) (-1 |#1| (-659 |#1|)))) (-15 -4196 (|#1| |#1| (-659 (-1196)) (-659 (-1 |#1| (-659 |#1|))))) (-15 -4196 (|#1| |#1| (-659 (-1196)) (-659 (-1 |#1| |#1|)))) (-15 -2466 ((-114) (-115))) (-15 -4021 ((-115) (-115))) (-15 -1742 ((-659 (-626 |#1|)) |#1|)) (-15 -1743 ((-3 (-626 |#1|) #1#) |#1|)) (-15 -1745 (|#1| |#1| (-659 (-626 |#1|)) (-659 |#1|))) (-15 -1745 (|#1| |#1| (-659 (-305 |#1|)))) (-15 -1745 (|#1| |#1| (-305 |#1|))) (-15 -4228 (|#1| (-115) (-659 |#1|))) (-15 -4228 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4228 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4228 (|#1| (-115) |#1| |#1|)) (-15 -4228 (|#1| (-115) |#1|)) (-15 -4196 (|#1| |#1| (-659 |#1|) (-659 |#1|))) (-15 -4196 (|#1| |#1| |#1| |#1|)) (-15 -4196 (|#1| |#1| (-305 |#1|))) (-15 -4196 (|#1| |#1| (-659 (-305 |#1|)))) (-15 -4196 (|#1| |#1| (-659 (-626 |#1|)) (-659 |#1|))) (-15 -4196 (|#1| |#1| (-626 |#1|) |#1|)) (-15 -4374 (|#1| (-626 |#1|))) (-15 -3573 ((-3 (-626 |#1|) #1#) |#1|)) (-15 -3572 ((-626 |#1|) |#1|)) (-15 -4374 ((-875) |#1|))) (-433 |#2|) (-1120)) (T -432)) -((-4021 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1120)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1120)) (-5 *2 (-114)) (-5 *1 (-432 *4 *5)) (-4 *4 (-433 *5)))) (-3526 (*1 *2) (-12 (-4 *4 (-1120)) (-5 *2 (-789)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 129 (|has| |#1| (-25)) ELT)) (-3482 (((-659 (-1196)) $) 220 T ELT)) (-3484 (((-419 (-1190 $)) $ (-626 $)) 188 (|has| |#1| (-568)) ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 160 (|has| |#1| (-568)) ELT)) (-2271 (($ $) 161 (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) 163 (|has| |#1| (-568)) ELT)) (-1741 (((-659 (-626 $)) $) 42 T ELT)) (-1424 (((-3 $ "failed") $ $) 131 (|has| |#1| (-21)) ELT)) (-1745 (($ $ (-305 $)) 54 T ELT) (($ $ (-659 (-305 $))) 53 T ELT) (($ $ (-659 (-626 $)) (-659 $)) 52 T ELT)) (-4203 (($ $) 180 (|has| |#1| (-568)) ELT)) (-4399 (((-417 $) $) 181 (|has| |#1| (-568)) ELT)) (-1786 (((-114) $ $) 171 (|has| |#1| (-568)) ELT)) (-4152 (($) 117 (-3955 (|has| |#1| (-1131)) (|has| |#1| (-25))) CONST)) (-3573 (((-3 (-626 $) #1="failed") $) 67 T ELT) (((-3 (-1196) #1#) $) 233 T ELT) (((-3 (-557) #1#) $) 227 (|has| |#1| (-1057 (-557))) ELT) (((-3 |#1| #1#) $) 224 T ELT) (((-3 (-419 (-963 |#1|)) #1#) $) 186 (|has| |#1| (-568)) ELT) (((-3 (-963 |#1|) #1#) $) 136 (|has| |#1| (-1068)) ELT) (((-3 (-419 (-557)) #1#) $) 111 (-3955 (-12 (|has| |#1| (-1057 (-557))) (|has| |#1| (-568))) (|has| |#1| (-1057 (-419 (-557))))) ELT)) (-3572 (((-626 $) $) 68 T ELT) (((-1196) $) 234 T ELT) (((-557) $) 226 (|has| |#1| (-1057 (-557))) ELT) ((|#1| $) 225 T ELT) (((-419 (-963 |#1|)) $) 187 (|has| |#1| (-568)) ELT) (((-963 |#1|) $) 137 (|has| |#1| (-1068)) ELT) (((-419 (-557)) $) 112 (-3955 (-12 (|has| |#1| (-1057 (-557))) (|has| |#1| (-568))) (|has| |#1| (-1057 (-419 (-557))))) ELT)) (-2961 (($ $ $) 175 (|has| |#1| (-568)) ELT)) (-2491 (((-707 (-557)) (-707 $)) 153 (-2959 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) 152 (-2959 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) 151 (|has| |#1| (-1068)) ELT) (((-707 |#1|) (-707 $)) 150 (|has| |#1| (-1068)) ELT)) (-3885 (((-3 $ "failed") $) 119 (|has| |#1| (-1131)) ELT)) (-2960 (($ $ $) 174 (|has| |#1| (-568)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 169 (|has| |#1| (-568)) ELT)) (-4151 (((-114) $) 182 (|has| |#1| (-568)) ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) 229 (|has| |#1| (-899 (-557))) ELT) (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) 228 (|has| |#1| (-899 (-391))) ELT)) (-2970 (($ $) 49 T ELT) (($ (-659 $)) 48 T ELT)) (-1740 (((-659 (-115)) $) 41 T ELT)) (-4021 (((-115) (-115)) 40 T ELT)) (-2639 (((-114) $) 118 (|has| |#1| (-1131)) ELT)) (-3072 (((-114) $) 20 (|has| $ (-1057 (-557))) ELT)) (-3395 (($ $) 203 (|has| |#1| (-1068)) ELT)) (-3397 (((-1144 |#1| (-626 $)) $) 204 (|has| |#1| (-1068)) ELT)) (-1783 (((-3 (-659 $) #2="failed") (-659 $) $) 178 (|has| |#1| (-568)) ELT)) (-1738 (((-1190 $) (-626 $)) 23 (|has| $ (-1068)) ELT)) (-4386 (($ (-1 $ $) (-626 $)) 34 T ELT)) (-1743 (((-3 (-626 $) "failed") $) 44 T ELT)) (-2492 (((-707 (-557)) (-1286 $)) 155 (-2959 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) 154 (-2959 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 149 (|has| |#1| (-1068)) ELT) (((-707 |#1|) (-1286 $)) 148 (|has| |#1| (-1068)) ELT)) (-2100 (($ (-659 $)) 167 (|has| |#1| (-568)) ELT) (($ $ $) 166 (|has| |#1| (-568)) ELT)) (-3658 (((-1178) $) 11 T ELT)) (-1742 (((-659 (-626 $)) $) 43 T ELT)) (-2447 (($ (-115) $) 36 T ELT) (($ (-115) (-659 $)) 35 T ELT)) (-3222 (((-3 (-659 $) "failed") $) 209 (|has| |#1| (-1131)) ELT)) (-3224 (((-3 (-2 (|:| |val| $) (|:| -2630 (-557))) "failed") $) 200 (|has| |#1| (-1068)) ELT)) (-3221 (((-3 (-659 $) "failed") $) 207 (|has| |#1| (-25)) ELT)) (-2000 (((-3 (-2 (|:| -4382 (-557)) (|:| |var| (-626 $))) "failed") $) 206 (|has| |#1| (-25)) ELT)) (-3223 (((-3 (-2 (|:| |var| (-626 $)) (|:| -2630 (-557))) "failed") $) 208 (|has| |#1| (-1131)) ELT) (((-3 (-2 (|:| |var| (-626 $)) (|:| -2630 (-557))) "failed") $ (-115)) 202 (|has| |#1| (-1068)) ELT) (((-3 (-2 (|:| |var| (-626 $)) (|:| -2630 (-557))) "failed") $ (-1196)) 201 (|has| |#1| (-1068)) ELT)) (-3030 (((-114) $ (-115)) 38 T ELT) (((-114) $ (-1196)) 37 T ELT)) (-2872 (($ $) 121 (-3955 (|has| |#1| (-485)) (|has| |#1| (-568))) ELT)) (-3000 (((-789) $) 45 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-2003 (((-114) $) 222 T ELT)) (-2002 ((|#1| $) 221 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 168 (|has| |#1| (-568)) ELT)) (-3560 (($ (-659 $)) 165 (|has| |#1| (-568)) ELT) (($ $ $) 164 (|has| |#1| (-568)) ELT)) (-1739 (((-114) $ $) 33 T ELT) (((-114) $ (-1196)) 32 T ELT)) (-4160 (((-417 $) $) 179 (|has| |#1| (-568)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 177 (|has| |#1| (-568)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 176 (|has| |#1| (-568)) ELT)) (-3884 (((-3 $ "failed") $ $) 159 (|has| |#1| (-568)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 170 (|has| |#1| (-568)) ELT)) (-3073 (((-114) $) 21 (|has| $ (-1057 (-557))) ELT)) (-4196 (($ $ (-626 $) $) 65 T ELT) (($ $ (-659 (-626 $)) (-659 $)) 64 T ELT) (($ $ (-659 (-305 $))) 63 T ELT) (($ $ (-305 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-659 $) (-659 $)) 60 T ELT) (($ $ (-659 (-1196)) (-659 (-1 $ $))) 31 T ELT) (($ $ (-659 (-1196)) (-659 (-1 $ (-659 $)))) 30 T ELT) (($ $ (-1196) (-1 $ (-659 $))) 29 T ELT) (($ $ (-1196) (-1 $ $)) 28 T ELT) (($ $ (-659 (-115)) (-659 (-1 $ $))) 27 T ELT) (($ $ (-659 (-115)) (-659 (-1 $ (-659 $)))) 26 T ELT) (($ $ (-115) (-1 $ (-659 $))) 25 T ELT) (($ $ (-115) (-1 $ $)) 24 T ELT) (($ $ (-1196)) 214 (|has| |#1| (-629 (-546))) ELT) (($ $ (-659 (-1196))) 213 (|has| |#1| (-629 (-546))) ELT) (($ $) 212 (|has| |#1| (-629 (-546))) ELT) (($ $ (-115) $ (-1196)) 211 (|has| |#1| (-629 (-546))) ELT) (($ $ (-659 (-115)) (-659 $) (-1196)) 210 (|has| |#1| (-629 (-546))) ELT) (($ $ (-659 (-1196)) (-659 (-789)) (-659 (-1 $ $))) 199 (|has| |#1| (-1068)) ELT) (($ $ (-659 (-1196)) (-659 (-789)) (-659 (-1 $ (-659 $)))) 198 (|has| |#1| (-1068)) ELT) (($ $ (-1196) (-789) (-1 $ (-659 $))) 197 (|has| |#1| (-1068)) ELT) (($ $ (-1196) (-789) (-1 $ $)) 196 (|has| |#1| (-1068)) ELT)) (-1785 (((-789) $) 172 (|has| |#1| (-568)) ELT)) (-4228 (($ (-115) $) 59 T ELT) (($ (-115) $ $) 58 T ELT) (($ (-115) $ $ $) 57 T ELT) (($ (-115) $ $ $ $) 56 T ELT) (($ (-115) (-659 $)) 55 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 173 (|has| |#1| (-568)) ELT)) (-1744 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-4186 (($ $ (-1196)) 146 (|has| |#1| (-1068)) ELT) (($ $ (-659 (-1196))) 144 (|has| |#1| (-1068)) ELT) (($ $ (-1196) (-789)) 143 (|has| |#1| (-1068)) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 142 (|has| |#1| (-1068)) ELT)) (-3394 (($ $) 193 (|has| |#1| (-568)) ELT)) (-3396 (((-1144 |#1| (-626 $)) $) 194 (|has| |#1| (-568)) ELT)) (-3601 (($ $) 22 (|has| $ (-1068)) ELT)) (-4400 (((-903 (-557)) $) 231 (|has| |#1| (-629 (-903 (-557)))) ELT) (((-903 (-391)) $) 230 (|has| |#1| (-629 (-903 (-391)))) ELT) (($ (-417 $)) 195 (|has| |#1| (-568)) ELT) (((-546) $) 113 (|has| |#1| (-629 (-546))) ELT)) (-3408 (($ $ $) 124 (|has| |#1| (-485)) ELT)) (-2822 (($ $ $) 125 (|has| |#1| (-485)) ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-626 $)) 66 T ELT) (($ (-1196)) 232 T ELT) (($ |#1|) 223 T ELT) (($ (-1144 |#1| (-626 $))) 205 (|has| |#1| (-1068)) ELT) (($ (-419 |#1|)) 191 (|has| |#1| (-568)) ELT) (($ (-963 (-419 |#1|))) 190 (|has| |#1| (-568)) ELT) (($ (-419 (-963 (-419 |#1|)))) 189 (|has| |#1| (-568)) ELT) (($ (-419 (-963 |#1|))) 185 (|has| |#1| (-568)) ELT) (($ $) 158 (|has| |#1| (-568)) ELT) (($ (-963 |#1|)) 135 (|has| |#1| (-1068)) ELT) (($ (-419 (-557))) 110 (-3955 (|has| |#1| (-568)) (-12 (|has| |#1| (-1057 (-557))) (|has| |#1| (-568))) (|has| |#1| (-1057 (-419 (-557))))) ELT) (($ (-557)) 109 (-3955 (|has| |#1| (-1068)) (|has| |#1| (-1057 (-557)))) ELT)) (-3101 (((-709 $) $) 156 (|has| |#1| (-147)) ELT)) (-3526 (((-789)) 138 (|has| |#1| (-1068)) CONST)) (-2987 (($ $) 51 T ELT) (($ (-659 $)) 50 T ELT)) (-2466 (((-114) (-115)) 39 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 162 (|has| |#1| (-568)) ELT)) (-2001 (($ (-1196) $) 219 T ELT) (($ (-1196) $ $) 218 T ELT) (($ (-1196) $ $ $) 217 T ELT) (($ (-1196) $ $ $ $) 216 T ELT) (($ (-1196) (-659 $)) 215 T ELT)) (-3057 (($) 128 (|has| |#1| (-25)) CONST)) (-3063 (($) 116 (|has| |#1| (-1131)) CONST)) (-3068 (($ $ (-1196)) 145 (|has| |#1| (-1068)) ELT) (($ $ (-659 (-1196))) 141 (|has| |#1| (-1068)) ELT) (($ $ (-1196) (-789)) 140 (|has| |#1| (-1068)) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 139 (|has| |#1| (-1068)) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ (-1144 |#1| (-626 $)) (-1144 |#1| (-626 $))) 192 (|has| |#1| (-568)) ELT) (($ $ $) 122 (-3955 (|has| |#1| (-485)) (|has| |#1| (-568))) ELT)) (-4265 (($ $ $) 134 (|has| |#1| (-21)) ELT) (($ $) 133 (|has| |#1| (-21)) ELT)) (-4267 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-557)) 123 (-3955 (|has| |#1| (-485)) (|has| |#1| (-568))) ELT) (($ $ (-789)) 120 (|has| |#1| (-1131)) ELT) (($ $ (-936)) 115 (|has| |#1| (-1131)) ELT)) (* (($ (-419 (-557)) $) 184 (|has| |#1| (-568)) ELT) (($ $ (-419 (-557))) 183 (|has| |#1| (-568)) ELT) (($ $ |#1|) 157 (|has| |#1| (-175)) ELT) (($ |#1| $) 147 (|has| |#1| (-1068)) ELT) (($ (-557) $) 132 (|has| |#1| (-21)) ELT) (($ (-789) $) 130 (|has| |#1| (-25)) ELT) (($ (-936) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1131)) ELT))) -(((-433 |#1|) (-142) (-1120)) (T -433)) -((-2003 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1120)) (-5 *2 (-114)))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1120)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1120)) (-5 *2 (-659 (-1196))))) (-2001 (*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-4 *1 (-433 *3)) (-4 *3 (-1120)))) (-2001 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1196)) (-4 *1 (-433 *3)) (-4 *3 (-1120)))) (-2001 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1196)) (-4 *1 (-433 *3)) (-4 *3 (-1120)))) (-2001 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1196)) (-4 *1 (-433 *3)) (-4 *3 (-1120)))) (-2001 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-659 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1120)))) (-4196 (*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-4 *1 (-433 *3)) (-4 *3 (-1120)) (-4 *3 (-629 (-546))))) (-4196 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-1196))) (-4 *1 (-433 *3)) (-4 *3 (-1120)) (-4 *3 (-629 (-546))))) (-4196 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1120)) (-4 *2 (-629 (-546))))) (-4196 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1196)) (-4 *1 (-433 *4)) (-4 *4 (-1120)) (-4 *4 (-629 (-546))))) (-4196 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-659 (-115))) (-5 *3 (-659 *1)) (-5 *4 (-1196)) (-4 *1 (-433 *5)) (-4 *5 (-1120)) (-4 *5 (-629 (-546))))) (-3222 (*1 *2 *1) (|partial| -12 (-4 *3 (-1131)) (-4 *3 (-1120)) (-5 *2 (-659 *1)) (-4 *1 (-433 *3)))) (-3223 (*1 *2 *1) (|partial| -12 (-4 *3 (-1131)) (-4 *3 (-1120)) (-5 *2 (-2 (|:| |var| (-626 *1)) (|:| -2630 (-557)))) (-4 *1 (-433 *3)))) (-3221 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1120)) (-5 *2 (-659 *1)) (-4 *1 (-433 *3)))) (-2000 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1120)) (-5 *2 (-2 (|:| -4382 (-557)) (|:| |var| (-626 *1)))) (-4 *1 (-433 *3)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-1144 *3 (-626 *1))) (-4 *3 (-1068)) (-4 *3 (-1120)) (-4 *1 (-433 *3)))) (-3397 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *3 (-1120)) (-5 *2 (-1144 *3 (-626 *1))) (-4 *1 (-433 *3)))) (-3395 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1120)) (-4 *2 (-1068)))) (-3223 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1068)) (-4 *4 (-1120)) (-5 *2 (-2 (|:| |var| (-626 *1)) (|:| -2630 (-557)))) (-4 *1 (-433 *4)))) (-3223 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1196)) (-4 *4 (-1068)) (-4 *4 (-1120)) (-5 *2 (-2 (|:| |var| (-626 *1)) (|:| -2630 (-557)))) (-4 *1 (-433 *4)))) (-3224 (*1 *2 *1) (|partial| -12 (-4 *3 (-1068)) (-4 *3 (-1120)) (-5 *2 (-2 (|:| |val| *1) (|:| -2630 (-557)))) (-4 *1 (-433 *3)))) (-4196 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-659 (-1196))) (-5 *3 (-659 (-789))) (-5 *4 (-659 (-1 *1 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1120)) (-4 *5 (-1068)))) (-4196 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-659 (-1196))) (-5 *3 (-659 (-789))) (-5 *4 (-659 (-1 *1 (-659 *1)))) (-4 *1 (-433 *5)) (-4 *5 (-1120)) (-4 *5 (-1068)))) (-4196 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-789)) (-5 *4 (-1 *1 (-659 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1120)) (-4 *5 (-1068)))) (-4196 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-789)) (-5 *4 (-1 *1 *1)) (-4 *1 (-433 *5)) (-4 *5 (-1120)) (-4 *5 (-1068)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-417 *1)) (-4 *1 (-433 *3)) (-4 *3 (-568)) (-4 *3 (-1120)))) (-3396 (*1 *2 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1120)) (-5 *2 (-1144 *3 (-626 *1))) (-4 *1 (-433 *3)))) (-3394 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1120)) (-4 *2 (-568)))) (-4377 (*1 *1 *2 *2) (-12 (-5 *2 (-1144 *3 (-626 *1))) (-4 *3 (-568)) (-4 *3 (-1120)) (-4 *1 (-433 *3)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1120)) (-4 *1 (-433 *3)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-963 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1120)) (-4 *1 (-433 *3)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-419 (-963 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1120)) (-4 *1 (-433 *3)))) (-3484 (*1 *2 *1 *3) (-12 (-5 *3 (-626 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1120)) (-4 *4 (-568)) (-5 *2 (-419 (-1190 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-433 *3)) (-4 *3 (-1120)) (-4 *3 (-1131))))) -(-13 (-310) (-1057 (-1196)) (-897 |t#1|) (-412 |t#1|) (-424 |t#1|) (-10 -8 (-15 -2003 ((-114) $)) (-15 -2002 (|t#1| $)) (-15 -3482 ((-659 (-1196)) $)) (-15 -2001 ($ (-1196) $)) (-15 -2001 ($ (-1196) $ $)) (-15 -2001 ($ (-1196) $ $ $)) (-15 -2001 ($ (-1196) $ $ $ $)) (-15 -2001 ($ (-1196) (-659 $))) (IF (|has| |t#1| (-629 (-546))) (PROGN (-6 (-629 (-546))) (-15 -4196 ($ $ (-1196))) (-15 -4196 ($ $ (-659 (-1196)))) (-15 -4196 ($ $)) (-15 -4196 ($ $ (-115) $ (-1196))) (-15 -4196 ($ $ (-659 (-115)) (-659 $) (-1196)))) |%noBranch|) (IF (|has| |t#1| (-1131)) (PROGN (-6 (-744)) (-15 ** ($ $ (-789))) (-15 -3222 ((-3 (-659 $) "failed") $)) (-15 -3223 ((-3 (-2 (|:| |var| (-626 $)) (|:| -2630 (-557))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-485)) (-6 (-485)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3221 ((-3 (-659 $) "failed") $)) (-15 -2000 ((-3 (-2 (|:| -4382 (-557)) (|:| |var| (-626 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1068)) (PROGN (-6 (-1068)) (-6 (-1057 (-963 |t#1|))) (-6 (-915 (-1196))) (-6 (-390 |t#1|)) (-15 -4374 ($ (-1144 |t#1| (-626 $)))) (-15 -3397 ((-1144 |t#1| (-626 $)) $)) (-15 -3395 ($ $)) (-15 -3223 ((-3 (-2 (|:| |var| (-626 $)) (|:| -2630 (-557))) "failed") $ (-115))) (-15 -3223 ((-3 (-2 (|:| |var| (-626 $)) (|:| -2630 (-557))) "failed") $ (-1196))) (-15 -3224 ((-3 (-2 (|:| |val| $) (|:| -2630 (-557))) "failed") $)) (-15 -4196 ($ $ (-659 (-1196)) (-659 (-789)) (-659 (-1 $ $)))) (-15 -4196 ($ $ (-659 (-1196)) (-659 (-789)) (-659 (-1 $ (-659 $))))) (-15 -4196 ($ $ (-1196) (-789) (-1 $ (-659 $)))) (-15 -4196 ($ $ (-1196) (-789) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-376)) (-6 (-1057 (-419 (-963 |t#1|)))) (-15 -4400 ($ (-417 $))) (-15 -3396 ((-1144 |t#1| (-626 $)) $)) (-15 -3394 ($ $)) (-15 -4377 ($ (-1144 |t#1| (-626 $)) (-1144 |t#1| (-626 $)))) (-15 -4374 ($ (-419 |t#1|))) (-15 -4374 ($ (-963 (-419 |t#1|)))) (-15 -4374 ($ (-419 (-963 (-419 |t#1|))))) (-15 -3484 ((-419 (-1190 $)) $ (-626 $))) (IF (|has| |t#1| (-1057 (-557))) (-6 (-1057 (-419 (-557)))) |%noBranch|)) |%noBranch|))) -(((-21) -3955 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-23) -3955 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3955 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-419 (-557))) |has| |#1| (-568)) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) |has| |#1| (-568)) ((-111 |#1| |#1|) |has| |#1| (-175)) ((-111 $ $) |has| |#1| (-568)) ((-133) -3955 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) -3955 (|has| |#1| (-1057 (-419 (-557)))) (|has| |#1| (-568))) ((-631 (-419 (-963 |#1|))) |has| |#1| (-568)) ((-631 (-557)) -3955 (|has| |#1| (-1068)) (|has| |#1| (-1057 (-557))) (|has| |#1| (-568)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-631 (-626 $)) . T) ((-631 (-963 |#1|)) |has| |#1| (-1068)) ((-631 (-1196)) . T) ((-631 |#1|) . T) ((-631 $) |has| |#1| (-568)) ((-628 (-875)) . T) ((-175) |has| |#1| (-568)) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-629 (-903 (-391))) |has| |#1| (-629 (-903 (-391)))) ((-629 (-903 (-557))) |has| |#1| (-629 (-903 (-557)))) ((-250) |has| |#1| (-568)) ((-302) |has| |#1| (-568)) ((-319) |has| |#1| (-568)) ((-321 $) . T) ((-310) . T) ((-376) |has| |#1| (-568)) ((-390 |#1|) |has| |#1| (-1068)) ((-412 |#1|) . T) ((-424 |#1|) . T) ((-464) |has| |#1| (-568)) ((-485) |has| |#1| (-485)) ((-526 (-626 $) $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-664 (-419 (-557))) |has| |#1| (-568)) ((-664 (-557)) -3955 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-664 |#1|) -3955 (|has| |#1| (-1068)) (|has| |#1| (-175))) ((-664 $) -3955 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-666 (-419 (-557))) |has| |#1| (-568)) ((-666 (-557)) -12 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068))) ((-666 |#1|) -3955 (|has| |#1| (-1068)) (|has| |#1| (-175))) ((-666 $) -3955 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-658 (-419 (-557))) |has| |#1| (-568)) ((-658 |#1|) |has| |#1| (-175)) ((-658 $) |has| |#1| (-568)) ((-656 (-557)) -12 (|has| |#1| (-656 (-557))) (|has| |#1| (-1068))) ((-656 |#1|) |has| |#1| (-1068)) ((-735 (-419 (-557))) |has| |#1| (-568)) ((-735 |#1|) |has| |#1| (-175)) ((-735 $) |has| |#1| (-568)) ((-744) -3955 (|has| |#1| (-1131)) (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-909 $ (-1196)) |has| |#1| (-1068)) ((-915 (-1196)) |has| |#1| (-1068)) ((-917 (-1196)) |has| |#1| (-1068)) ((-899 (-391)) |has| |#1| (-899 (-391))) ((-899 (-557)) |has| |#1| (-899 (-557))) ((-897 |#1|) . T) ((-938) |has| |#1| (-568)) ((-1057 (-419 (-557))) -3955 (|has| |#1| (-1057 (-419 (-557)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-557))))) ((-1057 (-419 (-963 |#1|))) |has| |#1| (-568)) ((-1057 (-557)) |has| |#1| (-1057 (-557))) ((-1057 (-626 $)) . T) ((-1057 (-963 |#1|)) |has| |#1| (-1068)) ((-1057 (-1196)) . T) ((-1057 |#1|) . T) ((-1070 (-419 (-557))) |has| |#1| (-568)) ((-1070 |#1|) |has| |#1| (-175)) ((-1070 $) |has| |#1| (-568)) ((-1075 (-419 (-557))) |has| |#1| (-568)) ((-1075 |#1|) |has| |#1| (-175)) ((-1075 $) |has| |#1| (-568)) ((-1068) -3955 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1076) -3955 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1131) -3955 (|has| |#1| (-1131)) (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1120) . T) ((-1236) . T) ((-1241) |has| |#1| (-568))) -((-4386 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) -(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4386 (|#4| (-1 |#3| |#1|) |#2|))) (-1068) (-433 |#1|) (-1068) (-433 |#3|)) (T -434)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-433 *6)) (-5 *1 (-434 *5 *4 *6 *2)) (-4 *4 (-433 *5))))) -((-2007 ((|#2| |#2|) 182 T ELT)) (-2004 (((-3 (|:| |%expansion| (-325 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-114)) 60 T ELT))) -(((-435 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2004 ((-3 (|:| |%expansion| (-325 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-114))) (-15 -2007 (|#2| |#2|))) (-13 (-464) (-1057 (-557)) (-656 (-557))) (-13 (-27) (-1222) (-433 |#1|)) (-1196) |#2|) (T -435)) -((-2007 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-435 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1222) (-433 *3))) (-14 *4 (-1196)) (-14 *5 *2))) (-2004 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-3 (|:| |%expansion| (-325 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178)))))) (-5 *1 (-435 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1222) (-433 *5))) (-14 *6 (-1196)) (-14 *7 *3)))) -((-2007 ((|#2| |#2|) 105 T ELT)) (-2005 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-114) (-1178)) 52 T ELT)) (-2006 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-114) (-1178)) 169 T ELT))) -(((-436 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2005 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-114) (-1178))) (-15 -2006 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-114) (-1178))) (-15 -2007 (|#2| |#2|))) (-13 (-464) (-1057 (-557)) (-656 (-557))) (-13 (-27) (-1222) (-433 |#1|) (-10 -8 (-15 -4374 ($ |#3|)))) (-858) (-13 (-1265 |#2| |#3|) (-376) (-1222) (-10 -8 (-15 -4186 ($ $)) (-15 -4240 ($ $)))) (-1002 |#4|) (-1196)) (T -436)) -((-2007 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-4 *2 (-13 (-27) (-1222) (-433 *3) (-10 -8 (-15 -4374 ($ *4))))) (-4 *4 (-858)) (-4 *5 (-13 (-1265 *2 *4) (-376) (-1222) (-10 -8 (-15 -4186 ($ $)) (-15 -4240 ($ $))))) (-5 *1 (-436 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1002 *5)) (-14 *7 (-1196)))) (-2006 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-4 *6 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-4 *3 (-13 (-27) (-1222) (-433 *6) (-10 -8 (-15 -4374 ($ *7))))) (-4 *7 (-858)) (-4 *8 (-13 (-1265 *3 *7) (-376) (-1222) (-10 -8 (-15 -4186 ($ $)) (-15 -4240 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178)))))) (-5 *1 (-436 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1178)) (-4 *9 (-1002 *8)) (-14 *10 (-1196)))) (-2005 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-4 *6 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-4 *3 (-13 (-27) (-1222) (-433 *6) (-10 -8 (-15 -4374 ($ *7))))) (-4 *7 (-858)) (-4 *8 (-13 (-1265 *3 *7) (-376) (-1222) (-10 -8 (-15 -4186 ($ $)) (-15 -4240 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178)))))) (-5 *1 (-436 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1178)) (-4 *9 (-1002 *8)) (-14 *10 (-1196))))) -((-2008 (($) 51 T ELT)) (-3650 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3652 (($ $ $) 46 T ELT)) (-3651 (((-114) $ $) 35 T ELT)) (-3536 (((-789)) 55 T ELT)) (-3655 (($ (-659 |#2|)) 23 T ELT) (($) NIL T ELT)) (-3393 (($) 66 T ELT)) (-3657 (((-114) $ $) 15 T ELT)) (-2928 ((|#2| $) 77 T ELT)) (-3256 ((|#2| $) 75 T ELT)) (-2218 (((-936) $) 70 T ELT)) (-3654 (($ $ $) 42 T ELT)) (-2629 (($ (-936)) 60 T ELT)) (-3653 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-2155 (((-789) (-1 (-114) |#2|) $) NIL T ELT) (((-789) |#2| $) 31 T ELT)) (-3948 (($ (-659 |#2|)) 27 T ELT)) (-2009 (($ $) 53 T ELT)) (-4374 (((-875) $) 40 T ELT)) (-2010 (((-789) $) 24 T ELT)) (-3656 (($ (-659 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3452 (((-114) $ $) 19 T ELT))) -(((-437 |#1| |#2|) (-10 -7 (-15 -3536 ((-789))) (-15 -2629 (|#1| (-936))) (-15 -2218 ((-936) |#1|)) (-15 -3393 (|#1|)) (-15 -2928 (|#2| |#1|)) (-15 -3256 (|#2| |#1|)) (-15 -2008 (|#1|)) (-15 -2009 (|#1| |#1|)) (-15 -2010 ((-789) |#1|)) (-15 -3452 ((-114) |#1| |#1|)) (-15 -4374 ((-875) |#1|)) (-15 -3657 ((-114) |#1| |#1|)) (-15 -3656 (|#1|)) (-15 -3656 (|#1| (-659 |#2|))) (-15 -3655 (|#1|)) (-15 -3655 (|#1| (-659 |#2|))) (-15 -3654 (|#1| |#1| |#1|)) (-15 -3653 (|#1| |#1| |#1|)) (-15 -3653 (|#1| |#1| |#2|)) (-15 -3652 (|#1| |#1| |#1|)) (-15 -3651 ((-114) |#1| |#1|)) (-15 -3650 (|#1| |#1| |#1|)) (-15 -3650 (|#1| |#1| |#2|)) (-15 -3650 (|#1| |#2| |#1|)) (-15 -3948 (|#1| (-659 |#2|))) (-15 -2155 ((-789) |#2| |#1|)) (-15 -2155 ((-789) (-1 (-114) |#2|) |#1|))) (-438 |#2|) (-1120)) (T -437)) -((-3536 (*1 *2) (-12 (-4 *4 (-1120)) (-5 *2 (-789)) (-5 *1 (-437 *3 *4)) (-4 *3 (-438 *4))))) -((-2965 (((-114) $ $) 19 T ELT)) (-2008 (($) 71 (|has| |#1| (-381)) ELT)) (-3650 (($ |#1| $) 86 T ELT) (($ $ |#1|) 85 T ELT) (($ $ $) 84 T ELT)) (-3652 (($ $ $) 82 T ELT)) (-3651 (((-114) $ $) 83 T ELT)) (-3536 (((-789)) 65 (|has| |#1| (-381)) ELT)) (-3655 (($ (-659 |#1|)) 78 T ELT) (($) 77 T ELT)) (-1711 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4423)) ELT)) (-4152 (($) 7 T CONST)) (-1465 (($ $) 62 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3823 (($ |#1| $) 51 (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4423)) ELT)) (-3824 (($ |#1| $) 61 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4423)) ELT)) (-3393 (($) 68 (|has| |#1| (-381)) ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-3657 (((-114) $ $) 74 T ELT)) (-2928 ((|#1| $) 69 (|has| |#1| (-859)) ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3256 ((|#1| $) 70 (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2218 (((-936) $) 67 (|has| |#1| (-381)) ELT)) (-3658 (((-1178) $) 22 T ELT)) (-3654 (($ $ $) 79 T ELT)) (-1387 ((|#1| $) 43 T ELT)) (-4035 (($ |#1| $) 44 T ELT)) (-2629 (($ (-936)) 66 (|has| |#1| (-381)) ELT)) (-3659 (((-1139) $) 21 T ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1388 ((|#1| $) 45 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-3653 (($ $ |#1|) 81 T ELT) (($ $ $) 80 T ELT)) (-1596 (($) 53 T ELT) (($ (-659 |#1|)) 52 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4400 (((-546) $) 63 (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 54 T ELT)) (-2009 (($ $) 72 (|has| |#1| (-381)) ELT)) (-4374 (((-875) $) 17 T ELT)) (-2010 (((-789) $) 73 T ELT)) (-3656 (($ (-659 |#1|)) 76 T ELT) (($) 75 T ELT)) (-1376 (((-114) $ $) 20 T ELT)) (-1389 (($ (-659 |#1|)) 46 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 T ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-438 |#1|) (-142) (-1120)) (T -438)) -((-2010 (*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1120)) (-5 *2 (-789)))) (-2009 (*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1120)) (-4 *2 (-381)))) (-2008 (*1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-381)) (-4 *2 (-1120)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1120)) (-4 *2 (-859)))) (-2928 (*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1120)) (-4 *2 (-859))))) -(-13 (-233 |t#1|) (-1118 |t#1|) (-10 -8 (-6 -4423) (-15 -2010 ((-789) $)) (IF (|has| |t#1| (-381)) (PROGN (-6 (-381)) (-15 -2009 ($ $)) (-15 -2008 ($))) |%noBranch|) (IF (|has| |t#1| (-859)) (PROGN (-15 -3256 (|t#1| $)) (-15 -2928 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-628 (-875)) . T) ((-153 |#1|) . T) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-233 |#1|) . T) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-381) |has| |#1| (-381)) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-1118 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-4269 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-4270 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-4386 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) -(((-439 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4386 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4270 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4269 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1120) (-438 |#1|) (-1120) (-438 |#3|)) (T -439)) -((-4269 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1120)) (-4 *5 (-1120)) (-4 *2 (-438 *5)) (-5 *1 (-439 *6 *4 *5 *2)) (-4 *4 (-438 *6)))) (-4270 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1120)) (-4 *2 (-1120)) (-5 *1 (-439 *5 *4 *2 *6)) (-4 *4 (-438 *5)) (-4 *6 (-438 *2)))) (-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-438 *6)) (-5 *1 (-439 *5 *4 *6 *2)) (-4 *4 (-438 *5))))) -((-2011 (((-594 |#2|) |#2| (-1196)) 36 T ELT)) (-2313 (((-594 |#2|) |#2| (-1196)) 21 T ELT)) (-2362 ((|#2| |#2| (-1196)) 26 T ELT))) -(((-440 |#1| |#2|) (-10 -7 (-15 -2313 ((-594 |#2|) |#2| (-1196))) (-15 -2011 ((-594 |#2|) |#2| (-1196))) (-15 -2362 (|#2| |#2| (-1196)))) (-13 (-319) (-149) (-1057 (-557)) (-656 (-557))) (-13 (-1222) (-29 |#1|))) (T -440)) -((-2362 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-440 *4 *2)) (-4 *2 (-13 (-1222) (-29 *4))))) (-2011 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-594 *3)) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1222) (-29 *5))))) (-2313 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-594 *3)) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1222) (-29 *5)))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-2013 (($ |#2| |#1|) 37 T ELT)) (-2012 (($ |#2| |#1|) 35 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-343 |#2|)) 25 T ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 10 T CONST)) (-3063 (($) 16 T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 36 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-441 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4410)) (IF (|has| |#1| (-6 -4410)) (-6 -4410) |%noBranch|) |%noBranch|) (-15 -4374 ($ |#1|)) (-15 -4374 ($ (-343 |#2|))) (-15 -2013 ($ |#2| |#1|)) (-15 -2012 ($ |#2| |#1|)))) (-13 (-175) (-38 (-419 (-557)))) (-13 (-859) (-21))) (T -441)) -((-4374 (*1 *1 *2) (-12 (-5 *1 (-441 *2 *3)) (-4 *2 (-13 (-175) (-38 (-419 (-557))))) (-4 *3 (-13 (-859) (-21))))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-343 *4)) (-4 *4 (-13 (-859) (-21))) (-5 *1 (-441 *3 *4)) (-4 *3 (-13 (-175) (-38 (-419 (-557))))))) (-2013 (*1 *1 *2 *3) (-12 (-5 *1 (-441 *3 *2)) (-4 *3 (-13 (-175) (-38 (-419 (-557))))) (-4 *2 (-13 (-859) (-21))))) (-2012 (*1 *1 *2 *3) (-12 (-5 *1 (-441 *3 *2)) (-4 *3 (-13 (-175) (-38 (-419 (-557))))) (-4 *2 (-13 (-859) (-21)))))) -((-4240 (((-3 |#2| (-659 |#2|)) |#2| (-1196)) 115 T ELT))) -(((-442 |#1| |#2|) (-10 -7 (-15 -4240 ((-3 |#2| (-659 |#2|)) |#2| (-1196)))) (-13 (-319) (-149) (-1057 (-557)) (-656 (-557))) (-13 (-1222) (-977) (-29 |#1|))) (T -442)) -((-4240 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-3 *3 (-659 *3))) (-5 *1 (-442 *5 *3)) (-4 *3 (-13 (-1222) (-977) (-29 *5)))))) -((-3804 ((|#2| |#2| |#2|) 31 T ELT)) (-4021 (((-115) (-115)) 43 T ELT)) (-2015 ((|#2| |#2|) 63 T ELT)) (-2014 ((|#2| |#2|) 66 T ELT)) (-3803 ((|#2| |#2|) 30 T ELT)) (-3807 ((|#2| |#2| |#2|) 33 T ELT)) (-3809 ((|#2| |#2| |#2|) 35 T ELT)) (-3806 ((|#2| |#2| |#2|) 32 T ELT)) (-3808 ((|#2| |#2| |#2|) 34 T ELT)) (-2466 (((-114) (-115)) 41 T ELT)) (-3811 ((|#2| |#2|) 37 T ELT)) (-3810 ((|#2| |#2|) 36 T ELT)) (-3801 ((|#2| |#2|) 25 T ELT)) (-3805 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3802 ((|#2| |#2| |#2|) 29 T ELT))) -(((-443 |#1| |#2|) (-10 -7 (-15 -2466 ((-114) (-115))) (-15 -4021 ((-115) (-115))) (-15 -3801 (|#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -3805 (|#2| |#2| |#2|)) (-15 -3802 (|#2| |#2| |#2|)) (-15 -3803 (|#2| |#2|)) (-15 -3804 (|#2| |#2| |#2|)) (-15 -3806 (|#2| |#2| |#2|)) (-15 -3807 (|#2| |#2| |#2|)) (-15 -3808 (|#2| |#2| |#2|)) (-15 -3809 (|#2| |#2| |#2|)) (-15 -3810 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -2014 (|#2| |#2|)) (-15 -2015 (|#2| |#2|))) (-568) (-433 |#1|)) (T -443)) -((-2015 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-2014 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3810 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3809 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3808 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3807 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3806 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3804 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3803 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3802 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3805 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-4021 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4)) (-4 *4 (-433 *3)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-114)) (-5 *1 (-443 *4 *5)) (-4 *5 (-433 *4))))) -((-3232 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1190 |#2|)) (|:| |pol2| (-1190 |#2|)) (|:| |prim| (-1190 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-659 (-1190 |#2|))) (|:| |prim| (-1190 |#2|))) (-659 |#2|)) 65 T ELT))) -(((-444 |#1| |#2|) (-10 -7 (-15 -3232 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-659 (-1190 |#2|))) (|:| |prim| (-1190 |#2|))) (-659 |#2|))) (IF (|has| |#2| (-27)) (-15 -3232 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1190 |#2|)) (|:| |pol2| (-1190 |#2|)) (|:| |prim| (-1190 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-568) (-149)) (-433 |#1|)) (T -444)) -((-3232 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-568) (-149))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1190 *3)) (|:| |pol2| (-1190 *3)) (|:| |prim| (-1190 *3)))) (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-433 *4)))) (-3232 (*1 *2 *3) (-12 (-5 *3 (-659 *5)) (-4 *5 (-433 *4)) (-4 *4 (-13 (-568) (-149))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-659 (-1190 *5))) (|:| |prim| (-1190 *5)))) (-5 *1 (-444 *4 *5))))) -((-2017 (((-1292)) 18 T ELT)) (-2016 (((-1190 (-419 (-557))) |#2| (-626 |#2|)) 40 T ELT) (((-419 (-557)) |#2|) 24 T ELT))) -(((-445 |#1| |#2|) (-10 -7 (-15 -2016 ((-419 (-557)) |#2|)) (-15 -2016 ((-1190 (-419 (-557))) |#2| (-626 |#2|))) (-15 -2017 ((-1292)))) (-13 (-568) (-1057 (-557))) (-433 |#1|)) (T -445)) -((-2017 (*1 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-557)))) (-5 *2 (-1292)) (-5 *1 (-445 *3 *4)) (-4 *4 (-433 *3)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *4 (-626 *3)) (-4 *3 (-433 *5)) (-4 *5 (-13 (-568) (-1057 (-557)))) (-5 *2 (-1190 (-419 (-557)))) (-5 *1 (-445 *5 *3)))) (-2016 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-557)))) (-5 *2 (-419 (-557))) (-5 *1 (-445 *4 *3)) (-4 *3 (-433 *4))))) -((-4073 (((-114) $) 33 T ELT)) (-2018 (((-114) $) 35 T ELT)) (-3675 (((-114) $) 36 T ELT)) (-2020 (((-114) $) 39 T ELT)) (-2022 (((-114) $) 34 T ELT)) (-2021 (((-114) $) 38 T ELT)) (-4374 (((-875) $) 20 T ELT) (($ (-1178)) 32 T ELT) (($ (-1196)) 30 T ELT) (((-1196) $) 24 T ELT) (((-1122) $) 23 T ELT)) (-2019 (((-114) $) 37 T ELT)) (-3452 (((-114) $ $) 17 T ELT))) -(((-446) (-13 (-628 (-875)) (-10 -8 (-15 -4374 ($ (-1178))) (-15 -4374 ($ (-1196))) (-15 -4374 ((-1196) $)) (-15 -4374 ((-1122) $)) (-15 -4073 ((-114) $)) (-15 -2022 ((-114) $)) (-15 -3675 ((-114) $)) (-15 -2021 ((-114) $)) (-15 -2020 ((-114) $)) (-15 -2019 ((-114) $)) (-15 -2018 ((-114) $)) (-15 -3452 ((-114) $ $))))) (T -446)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-446)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-446)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-446)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-446)))) (-4073 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-2022 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-3675 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-2021 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-2019 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-2018 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-3452 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446))))) -((-2024 (((-3 (-417 (-1190 (-419 (-557)))) #1="failed") |#3|) 72 T ELT)) (-2023 (((-417 |#3|) |#3|) 34 T ELT)) (-2026 (((-3 (-417 (-1190 (-48))) #1#) |#3|) 46 (|has| |#2| (-1057 (-48))) ELT)) (-2025 (((-3 (|:| |overq| (-1190 (-419 (-557)))) (|:| |overan| (-1190 (-48))) (|:| -3036 (-114))) |#3|) 37 T ELT))) -(((-447 |#1| |#2| |#3|) (-10 -7 (-15 -2023 ((-417 |#3|) |#3|)) (-15 -2024 ((-3 (-417 (-1190 (-419 (-557)))) #1="failed") |#3|)) (-15 -2025 ((-3 (|:| |overq| (-1190 (-419 (-557)))) (|:| |overan| (-1190 (-48))) (|:| -3036 (-114))) |#3|)) (IF (|has| |#2| (-1057 (-48))) (-15 -2026 ((-3 (-417 (-1190 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-568) (-1057 (-557))) (-433 |#1|) (-1262 |#2|)) (T -447)) -((-2026 (*1 *2 *3) (|partial| -12 (-4 *5 (-1057 (-48))) (-4 *4 (-13 (-568) (-1057 (-557)))) (-4 *5 (-433 *4)) (-5 *2 (-417 (-1190 (-48)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5)))) (-2025 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-557)))) (-4 *5 (-433 *4)) (-5 *2 (-3 (|:| |overq| (-1190 (-419 (-557)))) (|:| |overan| (-1190 (-48))) (|:| -3036 (-114)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5)))) (-2024 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1057 (-557)))) (-4 *5 (-433 *4)) (-5 *2 (-417 (-1190 (-419 (-557))))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5)))) (-2023 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-557)))) (-4 *5 (-433 *4)) (-5 *2 (-417 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5))))) -((-2965 (((-114) $ $) NIL T ELT)) (-2035 (((-3 (|:| |fst| (-446)) (|:| -4338 #1="void")) $) 11 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2033 (($) 35 T ELT)) (-2030 (($) 41 T ELT)) (-2031 (($) 37 T ELT)) (-2028 (($) 39 T ELT)) (-2032 (($) 36 T ELT)) (-2029 (($) 38 T ELT)) (-2027 (($) 40 T ELT)) (-2034 (((-114) $) 8 T ELT)) (-2818 (((-659 (-963 (-557))) $) 19 T ELT)) (-3948 (($ (-3 (|:| |fst| (-446)) (|:| -4338 #1#)) (-659 (-1196)) (-114)) 29 T ELT) (($ (-3 (|:| |fst| (-446)) (|:| -4338 #1#)) (-659 (-963 (-557))) (-114)) 30 T ELT)) (-4374 (((-875) $) 24 T ELT) (($ (-446)) 32 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-448) (-13 (-1120) (-10 -8 (-15 -4374 ($ (-446))) (-15 -2035 ((-3 (|:| |fst| (-446)) (|:| -4338 #1="void")) $)) (-15 -2818 ((-659 (-963 (-557))) $)) (-15 -2034 ((-114) $)) (-15 -3948 ($ (-3 (|:| |fst| (-446)) (|:| -4338 #1#)) (-659 (-1196)) (-114))) (-15 -3948 ($ (-3 (|:| |fst| (-446)) (|:| -4338 #1#)) (-659 (-963 (-557))) (-114))) (-15 -2033 ($)) (-15 -2032 ($)) (-15 -2031 ($)) (-15 -2030 ($)) (-15 -2029 ($)) (-15 -2028 ($)) (-15 -2027 ($))))) (T -448)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-448)))) (-2035 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4338 #1="void"))) (-5 *1 (-448)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-659 (-963 (-557)))) (-5 *1 (-448)))) (-2034 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-3948 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-5 *3 (-659 (-1196))) (-5 *4 (-114)) (-5 *1 (-448)))) (-3948 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-5 *3 (-659 (-963 (-557)))) (-5 *4 (-114)) (-5 *1 (-448)))) (-2033 (*1 *1) (-5 *1 (-448))) (-2032 (*1 *1) (-5 *1 (-448))) (-2031 (*1 *1) (-5 *1 (-448))) (-2030 (*1 *1) (-5 *1 (-448))) (-2029 (*1 *1) (-5 *1 (-448))) (-2028 (*1 *1) (-5 *1 (-448))) (-2027 (*1 *1) (-5 *1 (-448)))) -((-2965 (((-114) $ $) NIL T ELT)) (-1898 (((-1178) $ (-1178)) NIL T ELT)) (-1902 (($ $ (-1178)) NIL T ELT)) (-1899 (((-1178) $) NIL T ELT)) (-2039 (((-402) (-402) (-402)) 17 T ELT) (((-402) (-402)) 15 T ELT)) (-1903 (($ (-402)) NIL T ELT) (($ (-402) (-1178)) NIL T ELT)) (-3968 (((-402) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1900 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2038 (((-1292) (-1178)) 9 T ELT)) (-2037 (((-1292) (-1178)) 10 T ELT)) (-2036 (((-1292)) 11 T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1901 (($ $) 39 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-449) (-13 (-378 (-402) (-1178)) (-10 -7 (-15 -2039 ((-402) (-402) (-402))) (-15 -2039 ((-402) (-402))) (-15 -2038 ((-1292) (-1178))) (-15 -2037 ((-1292) (-1178))) (-15 -2036 ((-1292)))))) (T -449)) -((-2039 (*1 *2 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-449)))) (-2039 (*1 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-449)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-449)))) (-2037 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-449)))) (-2036 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-449))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3968 (((-1196) $) 8 T ELT)) (-3658 (((-1178) $) 17 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 11 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 14 T ELT))) -(((-450 |#1|) (-13 (-1120) (-10 -8 (-15 -3968 ((-1196) $)))) (-1196)) (T -450)) -((-3968 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-450 *3)) (-14 *3 *2)))) -((-2965 (((-114) $ $) NIL T ELT)) (-3735 (((-1134) $) 7 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 9 T ELT))) -(((-451) (-13 (-1120) (-10 -8 (-15 -3735 ((-1134) $))))) (T -451)) -((-3735 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-451))))) -((-3798 (((-1292) $) 7 T ELT)) (-4374 (((-875) $) 8 T ELT) (($ (-1286 (-717))) 14 T ELT) (($ (-659 (-342))) 13 T ELT) (($ (-342)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 11 T ELT))) -(((-452) (-142)) (T -452)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1286 (-717))) (-4 *1 (-452)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-659 (-342))) (-4 *1 (-452)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-452)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) (-4 *1 (-452))))) -(-13 (-408) (-10 -8 (-15 -4374 ($ (-1286 (-717)))) (-15 -4374 ($ (-659 (-342)))) (-15 -4374 ($ (-342))) (-15 -4374 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342)))))))) -(((-628 (-875)) . T) ((-408) . T) ((-1236) . T)) -((-3573 (((-3 $ "failed") (-1286 (-326 (-391)))) 21 T ELT) (((-3 $ "failed") (-1286 (-326 (-557)))) 19 T ELT) (((-3 $ "failed") (-1286 (-963 (-391)))) 17 T ELT) (((-3 $ "failed") (-1286 (-963 (-557)))) 15 T ELT) (((-3 $ "failed") (-1286 (-419 (-963 (-391))))) 13 T ELT) (((-3 $ "failed") (-1286 (-419 (-963 (-557))))) 11 T ELT)) (-3572 (($ (-1286 (-326 (-391)))) 22 T ELT) (($ (-1286 (-326 (-557)))) 20 T ELT) (($ (-1286 (-963 (-391)))) 18 T ELT) (($ (-1286 (-963 (-557)))) 16 T ELT) (($ (-1286 (-419 (-963 (-391))))) 14 T ELT) (($ (-1286 (-419 (-963 (-557))))) 12 T ELT)) (-3798 (((-1292) $) 7 T ELT)) (-4374 (((-875) $) 8 T ELT) (($ (-659 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) 23 T ELT))) -(((-453) (-142)) (T -453)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-659 (-342))) (-4 *1 (-453)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-453)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) (-4 *1 (-453)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-1286 (-326 (-391)))) (-4 *1 (-453)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-326 (-391)))) (-4 *1 (-453)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-1286 (-326 (-557)))) (-4 *1 (-453)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-326 (-557)))) (-4 *1 (-453)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-1286 (-963 (-391)))) (-4 *1 (-453)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-963 (-391)))) (-4 *1 (-453)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-1286 (-963 (-557)))) (-4 *1 (-453)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-963 (-557)))) (-4 *1 (-453)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-1286 (-419 (-963 (-391))))) (-4 *1 (-453)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-419 (-963 (-391))))) (-4 *1 (-453)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-1286 (-419 (-963 (-557))))) (-4 *1 (-453)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-419 (-963 (-557))))) (-4 *1 (-453))))) -(-13 (-408) (-10 -8 (-15 -4374 ($ (-659 (-342)))) (-15 -4374 ($ (-342))) (-15 -4374 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342)))))) (-15 -3572 ($ (-1286 (-326 (-391))))) (-15 -3573 ((-3 $ "failed") (-1286 (-326 (-391))))) (-15 -3572 ($ (-1286 (-326 (-557))))) (-15 -3573 ((-3 $ "failed") (-1286 (-326 (-557))))) (-15 -3572 ($ (-1286 (-963 (-391))))) (-15 -3573 ((-3 $ "failed") (-1286 (-963 (-391))))) (-15 -3572 ($ (-1286 (-963 (-557))))) (-15 -3573 ((-3 $ "failed") (-1286 (-963 (-557))))) (-15 -3572 ($ (-1286 (-419 (-963 (-391)))))) (-15 -3573 ((-3 $ "failed") (-1286 (-419 (-963 (-391)))))) (-15 -3572 ($ (-1286 (-419 (-963 (-557)))))) (-15 -3573 ((-3 $ "failed") (-1286 (-419 (-963 (-557)))))))) -(((-628 (-875)) . T) ((-408) . T) ((-1236) . T)) -((-2045 (((-114)) 18 T ELT)) (-2046 (((-114) (-114)) 19 T ELT)) (-2047 (((-114)) 14 T ELT)) (-2048 (((-114) (-114)) 15 T ELT)) (-2050 (((-114)) 16 T ELT)) (-2051 (((-114) (-114)) 17 T ELT)) (-2042 (((-936) (-936)) 22 T ELT) (((-936)) 21 T ELT)) (-2043 (((-789) (-659 (-2 (|:| -4160 |#1|) (|:| -4376 (-557))))) 52 T ELT)) (-2041 (((-936) (-936)) 24 T ELT) (((-936)) 23 T ELT)) (-2044 (((-2 (|:| -2975 (-557)) (|:| -1985 (-659 |#1|))) |#1|) 94 T ELT)) (-2040 (((-417 |#1|) (-2 (|:| |contp| (-557)) (|:| -1985 (-659 (-2 (|:| |irr| |#1|) (|:| -2624 (-557))))))) 176 T ELT)) (-4162 (((-2 (|:| |contp| (-557)) (|:| -1985 (-659 (-2 (|:| |irr| |#1|) (|:| -2624 (-557)))))) |#1| (-114)) 209 T ELT)) (-4161 (((-417 |#1|) |#1| (-789) (-789)) 224 T ELT) (((-417 |#1|) |#1| (-659 (-789)) (-789)) 221 T ELT) (((-417 |#1|) |#1| (-659 (-789))) 223 T ELT) (((-417 |#1|) |#1| (-789)) 222 T ELT) (((-417 |#1|) |#1|) 220 T ELT)) (-2062 (((-3 |#1| #1="failed") (-936) |#1| (-659 (-789)) (-789) (-114)) 226 T ELT) (((-3 |#1| #1#) (-936) |#1| (-659 (-789)) (-789)) 227 T ELT) (((-3 |#1| #1#) (-936) |#1| (-659 (-789))) 229 T ELT) (((-3 |#1| #1#) (-936) |#1| (-789)) 228 T ELT) (((-3 |#1| #1#) (-936) |#1|) 230 T ELT)) (-4160 (((-417 |#1|) |#1| (-789) (-789)) 219 T ELT) (((-417 |#1|) |#1| (-659 (-789)) (-789)) 215 T ELT) (((-417 |#1|) |#1| (-659 (-789))) 217 T ELT) (((-417 |#1|) |#1| (-789)) 216 T ELT) (((-417 |#1|) |#1|) 214 T ELT)) (-2049 (((-114) |#1|) 43 T ELT)) (-2061 (((-754 (-789)) (-659 (-2 (|:| -4160 |#1|) (|:| -4376 (-557))))) 99 T ELT)) (-2052 (((-2 (|:| |contp| (-557)) (|:| -1985 (-659 (-2 (|:| |irr| |#1|) (|:| -2624 (-557)))))) |#1| (-114) (-1116 (-789)) (-789)) 213 T ELT))) -(((-454 |#1|) (-10 -7 (-15 -2040 ((-417 |#1|) (-2 (|:| |contp| (-557)) (|:| -1985 (-659 (-2 (|:| |irr| |#1|) (|:| -2624 (-557)))))))) (-15 -2061 ((-754 (-789)) (-659 (-2 (|:| -4160 |#1|) (|:| -4376 (-557)))))) (-15 -2041 ((-936))) (-15 -2041 ((-936) (-936))) (-15 -2042 ((-936))) (-15 -2042 ((-936) (-936))) (-15 -2043 ((-789) (-659 (-2 (|:| -4160 |#1|) (|:| -4376 (-557)))))) (-15 -2044 ((-2 (|:| -2975 (-557)) (|:| -1985 (-659 |#1|))) |#1|)) (-15 -2045 ((-114))) (-15 -2046 ((-114) (-114))) (-15 -2047 ((-114))) (-15 -2048 ((-114) (-114))) (-15 -2049 ((-114) |#1|)) (-15 -2050 ((-114))) (-15 -2051 ((-114) (-114))) (-15 -4160 ((-417 |#1|) |#1|)) (-15 -4160 ((-417 |#1|) |#1| (-789))) (-15 -4160 ((-417 |#1|) |#1| (-659 (-789)))) (-15 -4160 ((-417 |#1|) |#1| (-659 (-789)) (-789))) (-15 -4160 ((-417 |#1|) |#1| (-789) (-789))) (-15 -4161 ((-417 |#1|) |#1|)) (-15 -4161 ((-417 |#1|) |#1| (-789))) (-15 -4161 ((-417 |#1|) |#1| (-659 (-789)))) (-15 -4161 ((-417 |#1|) |#1| (-659 (-789)) (-789))) (-15 -4161 ((-417 |#1|) |#1| (-789) (-789))) (-15 -2062 ((-3 |#1| #1="failed") (-936) |#1|)) (-15 -2062 ((-3 |#1| #1#) (-936) |#1| (-789))) (-15 -2062 ((-3 |#1| #1#) (-936) |#1| (-659 (-789)))) (-15 -2062 ((-3 |#1| #1#) (-936) |#1| (-659 (-789)) (-789))) (-15 -2062 ((-3 |#1| #1#) (-936) |#1| (-659 (-789)) (-789) (-114))) (-15 -4162 ((-2 (|:| |contp| (-557)) (|:| -1985 (-659 (-2 (|:| |irr| |#1|) (|:| -2624 (-557)))))) |#1| (-114))) (-15 -2052 ((-2 (|:| |contp| (-557)) (|:| -1985 (-659 (-2 (|:| |irr| |#1|) (|:| -2624 (-557)))))) |#1| (-114) (-1116 (-789)) (-789)))) (-1262 (-557))) (T -454)) -((-2052 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-1116 (-789))) (-5 *6 (-789)) (-5 *2 (-2 (|:| |contp| (-557)) (|:| -1985 (-659 (-2 (|:| |irr| *3) (|:| -2624 (-557))))))) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-4162 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *2 (-2 (|:| |contp| (-557)) (|:| -1985 (-659 (-2 (|:| |irr| *3) (|:| -2624 (-557))))))) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-2062 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-936)) (-5 *4 (-659 (-789))) (-5 *5 (-789)) (-5 *6 (-114)) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-557))))) (-2062 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-936)) (-5 *4 (-659 (-789))) (-5 *5 (-789)) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-557))))) (-2062 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-936)) (-5 *4 (-659 (-789))) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-557))))) (-2062 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-936)) (-5 *4 (-789)) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-557))))) (-2062 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-936)) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-557))))) (-4161 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-789)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-4161 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-659 (-789))) (-5 *5 (-789)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-659 (-789))) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-789)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-4161 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-4160 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-789)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-4160 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-659 (-789))) (-5 *5 (-789)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-4160 (*1 *2 *3 *4) (-12 (-5 *4 (-659 (-789))) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-4160 (*1 *2 *3 *4) (-12 (-5 *4 (-789)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-4160 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-2051 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-2050 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-2049 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-2048 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-2047 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-2046 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-2045 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-2044 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2975 (-557)) (|:| -1985 (-659 *3)))) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-659 (-2 (|:| -4160 *4) (|:| -4376 (-557))))) (-4 *4 (-1262 (-557))) (-5 *2 (-789)) (-5 *1 (-454 *4)))) (-2042 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-2042 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-2041 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-2041 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) (-2061 (*1 *2 *3) (-12 (-5 *3 (-659 (-2 (|:| -4160 *4) (|:| -4376 (-557))))) (-4 *4 (-1262 (-557))) (-5 *2 (-754 (-789))) (-5 *1 (-454 *4)))) (-2040 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-557)) (|:| -1985 (-659 (-2 (|:| |irr| *4) (|:| -2624 (-557))))))) (-4 *4 (-1262 (-557))) (-5 *2 (-417 *4)) (-5 *1 (-454 *4))))) -((-2056 (((-557) |#2|) 52 T ELT) (((-557) |#2| (-789)) 51 T ELT)) (-2055 (((-557) |#2|) 64 T ELT)) (-2057 ((|#3| |#2|) 26 T ELT)) (-3532 ((|#3| |#2| (-936)) 15 T ELT)) (-4261 ((|#3| |#2|) 16 T ELT)) (-2058 ((|#3| |#2|) 9 T ELT)) (-3000 ((|#3| |#2|) 10 T ELT)) (-2054 ((|#3| |#2| (-936)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-2053 (((-557) |#2|) 66 T ELT))) -(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -2053 ((-557) |#2|)) (-15 -2054 (|#3| |#2|)) (-15 -2054 (|#3| |#2| (-936))) (-15 -2055 ((-557) |#2|)) (-15 -2056 ((-557) |#2| (-789))) (-15 -2056 ((-557) |#2|)) (-15 -3532 (|#3| |#2| (-936))) (-15 -2057 (|#3| |#2|)) (-15 -2058 (|#3| |#2|)) (-15 -3000 (|#3| |#2|)) (-15 -4261 (|#3| |#2|))) (-1068) (-1262 |#1|) (-13 (-416) (-1057 |#1|) (-376) (-1222) (-296))) (T -455)) -((-4261 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-376) (-1222) (-296))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) (-3000 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-376) (-1222) (-296))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) (-2058 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-376) (-1222) (-296))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) (-2057 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-376) (-1222) (-296))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) (-3532 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-4 *5 (-1068)) (-4 *2 (-13 (-416) (-1057 *5) (-376) (-1222) (-296))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1262 *5)))) (-2056 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-557)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1262 *4)) (-4 *5 (-13 (-416) (-1057 *4) (-376) (-1222) (-296))))) (-2056 (*1 *2 *3 *4) (-12 (-5 *4 (-789)) (-4 *5 (-1068)) (-5 *2 (-557)) (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1262 *5)) (-4 *6 (-13 (-416) (-1057 *5) (-376) (-1222) (-296))))) (-2055 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-557)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1262 *4)) (-4 *5 (-13 (-416) (-1057 *4) (-376) (-1222) (-296))))) (-2054 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-4 *5 (-1068)) (-4 *2 (-13 (-416) (-1057 *5) (-376) (-1222) (-296))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1262 *5)))) (-2054 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-376) (-1222) (-296))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) (-2053 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-557)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1262 *4)) (-4 *5 (-13 (-416) (-1057 *4) (-376) (-1222) (-296)))))) -((-3772 ((|#2| (-1286 |#1|)) 42 T ELT)) (-2060 ((|#2| |#2| |#1|) 58 T ELT)) (-2059 ((|#2| |#2| |#1|) 49 T ELT)) (-2509 ((|#2| |#2|) 44 T ELT)) (-3589 (((-114) |#2|) 32 T ELT)) (-2063 (((-659 |#2|) (-936) (-417 |#2|)) 21 T ELT)) (-2062 ((|#2| (-936) (-417 |#2|)) 25 T ELT)) (-2061 (((-754 (-789)) (-417 |#2|)) 29 T ELT))) -(((-456 |#1| |#2|) (-10 -7 (-15 -3589 ((-114) |#2|)) (-15 -3772 (|#2| (-1286 |#1|))) (-15 -2509 (|#2| |#2|)) (-15 -2059 (|#2| |#2| |#1|)) (-15 -2060 (|#2| |#2| |#1|)) (-15 -2061 ((-754 (-789)) (-417 |#2|))) (-15 -2062 (|#2| (-936) (-417 |#2|))) (-15 -2063 ((-659 |#2|) (-936) (-417 |#2|)))) (-1068) (-1262 |#1|)) (T -456)) -((-2063 (*1 *2 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-417 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-1068)) (-5 *2 (-659 *6)) (-5 *1 (-456 *5 *6)))) (-2062 (*1 *2 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-417 *2)) (-4 *2 (-1262 *5)) (-5 *1 (-456 *5 *2)) (-4 *5 (-1068)))) (-2061 (*1 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-1068)) (-5 *2 (-754 (-789))) (-5 *1 (-456 *4 *5)))) (-2060 (*1 *2 *2 *3) (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3)))) (-2059 (*1 *2 *2 *3) (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3)))) (-2509 (*1 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3)))) (-3772 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-1068)) (-4 *2 (-1262 *4)) (-5 *1 (-456 *4 *2)))) (-3589 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-114)) (-5 *1 (-456 *4 *3)) (-4 *3 (-1262 *4))))) -((-2066 (((-789)) 59 T ELT)) (-2070 (((-789)) 29 (|has| |#1| (-416)) ELT) (((-789) (-789)) 28 (|has| |#1| (-416)) ELT)) (-2069 (((-557) |#1|) 25 (|has| |#1| (-416)) ELT)) (-2068 (((-557) |#1|) 27 (|has| |#1| (-416)) ELT)) (-2065 (((-789)) 58 T ELT) (((-789) (-789)) 57 T ELT)) (-2064 ((|#1| (-789) (-557)) 37 T ELT)) (-2067 (((-1292)) 61 T ELT))) -(((-457 |#1|) (-10 -7 (-15 -2064 (|#1| (-789) (-557))) (-15 -2065 ((-789) (-789))) (-15 -2065 ((-789))) (-15 -2066 ((-789))) (-15 -2067 ((-1292))) (IF (|has| |#1| (-416)) (PROGN (-15 -2068 ((-557) |#1|)) (-15 -2069 ((-557) |#1|)) (-15 -2070 ((-789) (-789))) (-15 -2070 ((-789)))) |%noBranch|)) (-1068)) (T -457)) -((-2070 (*1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))) (-2070 (*1 *2 *2) (-12 (-5 *2 (-789)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))) (-2069 (*1 *2 *3) (-12 (-5 *2 (-557)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))) (-2068 (*1 *2 *3) (-12 (-5 *2 (-557)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))) (-2067 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))) (-2066 (*1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))) (-2065 (*1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))) (-2065 (*1 *2 *2) (-12 (-5 *2 (-789)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))) (-2064 (*1 *2 *3 *4) (-12 (-5 *3 (-789)) (-5 *4 (-557)) (-5 *1 (-457 *2)) (-4 *2 (-1068))))) -((-2071 (((-659 (-557)) (-557)) 76 T ELT)) (-4151 (((-114) (-171 (-557))) 84 T ELT)) (-4160 (((-417 (-171 (-557))) (-171 (-557))) 75 T ELT))) -(((-458) (-10 -7 (-15 -4160 ((-417 (-171 (-557))) (-171 (-557)))) (-15 -2071 ((-659 (-557)) (-557))) (-15 -4151 ((-114) (-171 (-557)))))) (T -458)) -((-4151 (*1 *2 *3) (-12 (-5 *3 (-171 (-557))) (-5 *2 (-114)) (-5 *1 (-458)))) (-2071 (*1 *2 *3) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-458)) (-5 *3 (-557)))) (-4160 (*1 *2 *3) (-12 (-5 *2 (-417 (-171 (-557)))) (-5 *1 (-458)) (-5 *3 (-171 (-557)))))) -((-3345 ((|#4| |#4| (-659 |#4|)) 20 (|has| |#1| (-376)) ELT)) (-2463 (((-659 |#4|) (-659 |#4|) (-1178) (-1178)) 46 T ELT) (((-659 |#4|) (-659 |#4|) (-1178)) 45 T ELT) (((-659 |#4|) (-659 |#4|)) 34 T ELT))) -(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2463 ((-659 |#4|) (-659 |#4|))) (-15 -2463 ((-659 |#4|) (-659 |#4|) (-1178))) (-15 -2463 ((-659 |#4|) (-659 |#4|) (-1178) (-1178))) (IF (|has| |#1| (-376)) (-15 -3345 (|#4| |#4| (-659 |#4|))) |%noBranch|)) (-464) (-813) (-859) (-967 |#1| |#2| |#3|)) (T -459)) -((-3345 (*1 *2 *2 *3) (-12 (-5 *3 (-659 *2)) (-4 *2 (-967 *4 *5 *6)) (-4 *4 (-376)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-459 *4 *5 *6 *2)))) (-2463 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-659 *7)) (-5 *3 (-1178)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-459 *4 *5 *6 *7)))) (-2463 (*1 *2 *2 *3) (-12 (-5 *2 (-659 *7)) (-5 *3 (-1178)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-459 *4 *5 *6 *7)))) (-2463 (*1 *2 *2) (-12 (-5 *2 (-659 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-459 *3 *4 *5 *6))))) -((-2072 ((|#4| |#4| (-659 |#4|)) 82 T ELT)) (-2073 (((-659 |#4|) (-659 |#4|) (-1178) (-1178)) 22 T ELT) (((-659 |#4|) (-659 |#4|) (-1178)) 21 T ELT) (((-659 |#4|) (-659 |#4|)) 13 T ELT))) -(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2072 (|#4| |#4| (-659 |#4|))) (-15 -2073 ((-659 |#4|) (-659 |#4|))) (-15 -2073 ((-659 |#4|) (-659 |#4|) (-1178))) (-15 -2073 ((-659 |#4|) (-659 |#4|) (-1178) (-1178)))) (-319) (-813) (-859) (-967 |#1| |#2| |#3|)) (T -460)) -((-2073 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-659 *7)) (-5 *3 (-1178)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-460 *4 *5 *6 *7)))) (-2073 (*1 *2 *2 *3) (-12 (-5 *2 (-659 *7)) (-5 *3 (-1178)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-460 *4 *5 *6 *7)))) (-2073 (*1 *2 *2) (-12 (-5 *2 (-659 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-319)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-460 *3 *4 *5 *6)))) (-2072 (*1 *2 *2 *3) (-12 (-5 *3 (-659 *2)) (-4 *2 (-967 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-460 *4 *5 *6 *2))))) -((-2075 (((-659 (-659 |#4|)) (-659 |#4|) (-114)) 90 T ELT) (((-659 (-659 |#4|)) (-659 |#4|)) 89 T ELT) (((-659 (-659 |#4|)) (-659 |#4|) (-659 |#4|) (-114)) 83 T ELT) (((-659 (-659 |#4|)) (-659 |#4|) (-659 |#4|)) 84 T ELT)) (-2074 (((-659 (-659 |#4|)) (-659 |#4|) (-114)) 56 T ELT) (((-659 (-659 |#4|)) (-659 |#4|)) 78 T ELT))) -(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2074 ((-659 (-659 |#4|)) (-659 |#4|))) (-15 -2074 ((-659 (-659 |#4|)) (-659 |#4|) (-114))) (-15 -2075 ((-659 (-659 |#4|)) (-659 |#4|) (-659 |#4|))) (-15 -2075 ((-659 (-659 |#4|)) (-659 |#4|) (-659 |#4|) (-114))) (-15 -2075 ((-659 (-659 |#4|)) (-659 |#4|))) (-15 -2075 ((-659 (-659 |#4|)) (-659 |#4|) (-114)))) (-13 (-319) (-149)) (-813) (-859) (-967 |#1| |#2| |#3|)) (T -461)) -((-2075 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *8 (-967 *5 *6 *7)) (-5 *2 (-659 (-659 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-659 *8)))) (-2075 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-967 *4 *5 *6)) (-5 *2 (-659 (-659 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-659 *7)))) (-2075 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *8 (-967 *5 *6 *7)) (-5 *2 (-659 (-659 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-659 *8)))) (-2075 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-967 *4 *5 *6)) (-5 *2 (-659 (-659 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-659 *7)))) (-2074 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *8 (-967 *5 *6 *7)) (-5 *2 (-659 (-659 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-659 *8)))) (-2074 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-967 *4 *5 *6)) (-5 *2 (-659 (-659 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-659 *7))))) -((-2099 (((-789) |#4|) 12 T ELT)) (-2087 (((-659 (-2 (|:| |totdeg| (-789)) (|:| -2212 |#4|))) |#4| (-789) (-659 (-2 (|:| |totdeg| (-789)) (|:| -2212 |#4|)))) 39 T ELT)) (-2089 (((-659 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-659 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-659 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-2088 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-2077 ((|#4| |#4| (-659 |#4|)) 54 T ELT)) (-2085 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-659 |#4|)) 96 T ELT)) (-2092 (((-1292) |#4|) 59 T ELT)) (-2095 (((-1292) (-659 |#4|)) 69 T ELT)) (-2093 (((-557) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-557) (-557) (-557)) 66 T ELT)) (-2096 (((-1292) (-557)) 110 T ELT)) (-2090 (((-659 |#4|) (-659 |#4|)) 104 T ELT)) (-2098 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-789)) (|:| -2212 |#4|)) |#4| (-789)) 31 T ELT)) (-2091 (((-557) |#4|) 109 T ELT)) (-2086 ((|#4| |#4|) 37 T ELT)) (-2078 (((-659 |#4|) (-659 |#4|) (-557) (-557)) 74 T ELT)) (-2094 (((-557) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-557) (-557) (-557) (-557)) 123 T ELT)) (-2097 (((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-2079 (((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-2084 (((-659 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-659 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-2083 (((-659 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-659 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-2080 (((-114) |#2| |#2|) 75 T ELT)) (-2082 (((-659 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-659 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-2081 (((-114) |#2| |#2| |#2| |#2|) 80 T ELT)) (-2076 ((|#4| |#4| (-659 |#4|)) 97 T ELT))) -(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2076 (|#4| |#4| (-659 |#4|))) (-15 -2077 (|#4| |#4| (-659 |#4|))) (-15 -2078 ((-659 |#4|) (-659 |#4|) (-557) (-557))) (-15 -2079 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2080 ((-114) |#2| |#2|)) (-15 -2081 ((-114) |#2| |#2| |#2| |#2|)) (-15 -2082 ((-659 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-659 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2083 ((-659 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-659 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2084 ((-659 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-659 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2085 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-659 |#4|))) (-15 -2086 (|#4| |#4|)) (-15 -2087 ((-659 (-2 (|:| |totdeg| (-789)) (|:| -2212 |#4|))) |#4| (-789) (-659 (-2 (|:| |totdeg| (-789)) (|:| -2212 |#4|))))) (-15 -2088 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2089 ((-659 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-659 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-659 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2090 ((-659 |#4|) (-659 |#4|))) (-15 -2091 ((-557) |#4|)) (-15 -2092 ((-1292) |#4|)) (-15 -2093 ((-557) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-557) (-557) (-557))) (-15 -2094 ((-557) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-557) (-557) (-557) (-557))) (-15 -2095 ((-1292) (-659 |#4|))) (-15 -2096 ((-1292) (-557))) (-15 -2097 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2098 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-789)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-789)) (|:| -2212 |#4|)) |#4| (-789))) (-15 -2099 ((-789) |#4|))) (-464) (-813) (-859) (-967 |#1| |#2| |#3|)) (T -462)) -((-2099 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-789)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-967 *4 *5 *6)))) (-2098 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-789)) (|:| -2212 *4))) (-5 *5 (-789)) (-4 *4 (-967 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-462 *6 *7 *8 *4)))) (-2097 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-789)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-813)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-557)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-1292)) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *7 (-967 *4 *5 *6)))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-659 *7)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-1292)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2094 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-557)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-789)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-813)) (-4 *4 (-967 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-859)) (-5 *1 (-462 *5 *6 *7 *4)))) (-2093 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-557)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-789)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-813)) (-4 *4 (-967 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-859)) (-5 *1 (-462 *5 *6 *7 *4)))) (-2092 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-1292)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-967 *4 *5 *6)))) (-2091 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-557)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-967 *4 *5 *6)))) (-2090 (*1 *2 *2) (-12 (-5 *2 (-659 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-462 *3 *4 *5 *6)))) (-2089 (*1 *2 *2 *2) (-12 (-5 *2 (-659 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-789)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-813)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-859)) (-5 *1 (-462 *3 *4 *5 *6)))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-789)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-813)) (-4 *2 (-967 *4 *5 *6)) (-5 *1 (-462 *4 *5 *6 *2)) (-4 *4 (-464)) (-4 *6 (-859)))) (-2087 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-659 (-2 (|:| |totdeg| (-789)) (|:| -2212 *3)))) (-5 *4 (-789)) (-4 *3 (-967 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *1 (-462 *5 *6 *7 *3)))) (-2086 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-967 *3 *4 *5)))) (-2085 (*1 *2 *3 *4) (-12 (-5 *4 (-659 *3)) (-4 *3 (-967 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-462 *5 *6 *7 *3)))) (-2084 (*1 *2 *3 *2) (-12 (-5 *2 (-659 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-789)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-813)) (-4 *6 (-967 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-859)) (-5 *1 (-462 *4 *3 *5 *6)))) (-2083 (*1 *2 *2) (-12 (-5 *2 (-659 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-789)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-813)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-859)) (-5 *1 (-462 *3 *4 *5 *6)))) (-2082 (*1 *2 *3 *2) (-12 (-5 *2 (-659 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-789)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-813)) (-4 *3 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-859)) (-5 *1 (-462 *4 *5 *6 *3)))) (-2081 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-813)) (-4 *5 (-859)) (-5 *2 (-114)) (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-967 *4 *3 *5)))) (-2080 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-813)) (-4 *5 (-859)) (-5 *2 (-114)) (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-967 *4 *3 *5)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-789)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-813)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2078 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-659 *7)) (-5 *3 (-557)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2077 (*1 *2 *2 *3) (-12 (-5 *3 (-659 *2)) (-4 *2 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-462 *4 *5 *6 *2)))) (-2076 (*1 *2 *2 *3) (-12 (-5 *3 (-659 *2)) (-4 *2 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-462 *4 *5 *6 *2))))) -((-2100 (($ $ $) 14 T ELT) (($ (-659 $)) 21 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 45 T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) 22 T ELT))) -(((-463 |#1|) (-10 -7 (-15 -3107 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|))) (-15 -2100 (|#1| (-659 |#1|))) (-15 -2100 (|#1| |#1| |#1|)) (-15 -3560 (|#1| (-659 |#1|))) (-15 -3560 (|#1| |#1| |#1|))) (-464)) (T -463)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 52 T ELT)) (-2271 (($ $) 51 T ELT)) (-2269 (((-114) $) 49 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-2100 (($ $ $) 57 T ELT) (($ (-659 $)) 56 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 55 T ELT)) (-3560 (($ $ $) 59 T ELT) (($ (-659 $)) 58 T ELT)) (-3884 (((-3 $ "failed") $ $) 53 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 54 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 50 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-464) (-142)) (T -464)) -((-3560 (*1 *1 *1 *1) (-4 *1 (-464))) (-3560 (*1 *1 *2) (-12 (-5 *2 (-659 *1)) (-4 *1 (-464)))) (-2100 (*1 *1 *1 *1) (-4 *1 (-464))) (-2100 (*1 *1 *2) (-12 (-5 *2 (-659 *1)) (-4 *1 (-464)))) (-3107 (*1 *2 *2 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-464))))) -(-13 (-568) (-10 -8 (-15 -3560 ($ $ $)) (-15 -3560 ($ (-659 $))) (-15 -2100 ($ $ $)) (-15 -2100 ($ (-659 $))) (-15 -3107 ((-1190 $) (-1190 $) (-1190 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-631 (-557)) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-175) . T) ((-302) . T) ((-568) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 $) . T) ((-658 $) . T) ((-735 $) . T) ((-744) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1978 (((-3 $ #1="failed")) NIL (|has| (-419 (-963 |#1|)) (-568)) ELT)) (-1424 (((-3 $ #1#) $ $) NIL T ELT)) (-3639 (((-1286 (-707 (-419 (-963 |#1|)))) (-1286 $)) NIL T ELT) (((-1286 (-707 (-419 (-963 |#1|))))) NIL T ELT)) (-1930 (((-1286 $)) NIL T ELT)) (-4152 (($) NIL T CONST)) (-2115 (((-3 (-2 (|:| |particular| $) (|:| -2220 (-659 $))) #1#)) NIL T ELT)) (-1904 (((-3 $ #1#)) NIL (|has| (-419 (-963 |#1|)) (-568)) ELT)) (-1994 (((-707 (-419 (-963 |#1|))) (-1286 $)) NIL T ELT) (((-707 (-419 (-963 |#1|)))) NIL T ELT)) (-1928 (((-419 (-963 |#1|)) $) NIL T ELT)) (-1992 (((-707 (-419 (-963 |#1|))) $ (-1286 $)) NIL T ELT) (((-707 (-419 (-963 |#1|))) $) NIL T ELT)) (-2633 (((-3 $ #1#) $) NIL (|has| (-419 (-963 |#1|)) (-568)) ELT)) (-2109 (((-1190 (-963 (-419 (-963 |#1|))))) NIL (|has| (-419 (-963 |#1|)) (-376)) ELT) (((-1190 (-419 (-963 |#1|)))) 91 (|has| |#1| (-568)) ELT)) (-2636 (($ $ (-936)) NIL T ELT)) (-1926 (((-419 (-963 |#1|)) $) NIL T ELT)) (-1906 (((-1190 (-419 (-963 |#1|))) $) 89 (|has| (-419 (-963 |#1|)) (-568)) ELT)) (-1996 (((-419 (-963 |#1|)) (-1286 $)) NIL T ELT) (((-419 (-963 |#1|))) NIL T ELT)) (-1924 (((-1190 (-419 (-963 |#1|))) $) NIL T ELT)) (-1918 (((-114)) NIL T ELT)) (-1998 (($ (-1286 (-419 (-963 |#1|))) (-1286 $)) 115 T ELT) (($ (-1286 (-419 (-963 |#1|)))) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL (|has| (-419 (-963 |#1|)) (-568)) ELT)) (-3509 (((-936)) NIL T ELT)) (-1915 (((-114)) NIL T ELT)) (-2660 (($ $ (-936)) NIL T ELT)) (-1911 (((-114)) NIL T ELT)) (-1909 (((-114)) NIL T ELT)) (-1913 (((-114)) NIL T ELT)) (-2116 (((-3 (-2 (|:| |particular| $) (|:| -2220 (-659 $))) #1#)) NIL T ELT)) (-1905 (((-3 $ #1#)) NIL (|has| (-419 (-963 |#1|)) (-568)) ELT)) (-1995 (((-707 (-419 (-963 |#1|))) (-1286 $)) NIL T ELT) (((-707 (-419 (-963 |#1|)))) NIL T ELT)) (-1929 (((-419 (-963 |#1|)) $) NIL T ELT)) (-1993 (((-707 (-419 (-963 |#1|))) $ (-1286 $)) NIL T ELT) (((-707 (-419 (-963 |#1|))) $) NIL T ELT)) (-2634 (((-3 $ #1#) $) NIL (|has| (-419 (-963 |#1|)) (-568)) ELT)) (-2113 (((-1190 (-963 (-419 (-963 |#1|))))) NIL (|has| (-419 (-963 |#1|)) (-376)) ELT) (((-1190 (-419 (-963 |#1|)))) 90 (|has| |#1| (-568)) ELT)) (-2635 (($ $ (-936)) NIL T ELT)) (-1927 (((-419 (-963 |#1|)) $) NIL T ELT)) (-1907 (((-1190 (-419 (-963 |#1|))) $) 86 (|has| (-419 (-963 |#1|)) (-568)) ELT)) (-1997 (((-419 (-963 |#1|)) (-1286 $)) NIL T ELT) (((-419 (-963 |#1|))) NIL T ELT)) (-1925 (((-1190 (-419 (-963 |#1|))) $) NIL T ELT)) (-1919 (((-114)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1910 (((-114)) NIL T ELT)) (-1912 (((-114)) NIL T ELT)) (-1914 (((-114)) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2103 (((-419 (-963 |#1|)) $ $) 77 (|has| |#1| (-568)) ELT)) (-2107 (((-419 (-963 |#1|)) $) 101 (|has| |#1| (-568)) ELT)) (-2106 (((-419 (-963 |#1|)) $) 105 (|has| |#1| (-568)) ELT)) (-2108 (((-1190 (-419 (-963 |#1|))) $) 95 (|has| |#1| (-568)) ELT)) (-2102 (((-419 (-963 |#1|))) 78 (|has| |#1| (-568)) ELT)) (-2105 (((-419 (-963 |#1|)) $ $) 70 (|has| |#1| (-568)) ELT)) (-2111 (((-419 (-963 |#1|)) $) 100 (|has| |#1| (-568)) ELT)) (-2110 (((-419 (-963 |#1|)) $) 104 (|has| |#1| (-568)) ELT)) (-2112 (((-1190 (-419 (-963 |#1|))) $) 94 (|has| |#1| (-568)) ELT)) (-2104 (((-419 (-963 |#1|))) 74 (|has| |#1| (-568)) ELT)) (-2114 (($) 111 T ELT) (($ (-1196)) 119 T ELT) (($ (-1286 (-1196))) 118 T ELT) (($ (-1286 $)) 106 T ELT) (($ (-1196) (-1286 $)) 117 T ELT) (($ (-1286 (-1196)) (-1286 $)) 116 T ELT)) (-1917 (((-114)) NIL T ELT)) (-4228 (((-419 (-963 |#1|)) $ (-557)) NIL T ELT)) (-3640 (((-1286 (-419 (-963 |#1|))) $ (-1286 $)) 108 T ELT) (((-707 (-419 (-963 |#1|))) (-1286 $) (-1286 $)) NIL T ELT) (((-1286 (-419 (-963 |#1|))) $) 44 T ELT) (((-707 (-419 (-963 |#1|))) (-1286 $)) NIL T ELT)) (-4400 (((-1286 (-419 (-963 |#1|))) $) NIL T ELT) (($ (-1286 (-419 (-963 |#1|)))) 41 T ELT)) (-2101 (((-659 (-963 (-419 (-963 |#1|)))) (-1286 $)) NIL T ELT) (((-659 (-963 (-419 (-963 |#1|))))) NIL T ELT) (((-659 (-963 |#1|)) (-1286 $)) 109 (|has| |#1| (-568)) ELT) (((-659 (-963 |#1|))) 110 (|has| |#1| (-568)) ELT)) (-2822 (($ $ $) NIL T ELT)) (-1923 (((-114)) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-1286 (-419 (-963 |#1|)))) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 $)) 66 T ELT)) (-1908 (((-659 (-1286 (-419 (-963 |#1|))))) NIL (|has| (-419 (-963 |#1|)) (-568)) ELT)) (-2823 (($ $ $ $) NIL T ELT)) (-1921 (((-114)) NIL T ELT)) (-2942 (($ (-707 (-419 (-963 |#1|))) $) NIL T ELT)) (-2821 (($ $ $) NIL T ELT)) (-1922 (((-114)) NIL T ELT)) (-1920 (((-114)) NIL T ELT)) (-1916 (((-114)) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) 107 T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-419 (-963 |#1|))) NIL T ELT) (($ (-419 (-963 |#1|)) $) NIL T ELT) (($ (-1161 |#2| (-419 (-963 |#1|))) $) NIL T ELT))) -(((-465 |#1| |#2| |#3| |#4|) (-13 (-430 (-419 (-963 |#1|))) (-666 (-1161 |#2| (-419 (-963 |#1|)))) (-10 -8 (-15 -4374 ($ (-1286 (-419 (-963 |#1|))))) (-15 -2116 ((-3 (-2 (|:| |particular| $) (|:| -2220 (-659 $))) #1="failed"))) (-15 -2115 ((-3 (-2 (|:| |particular| $) (|:| -2220 (-659 $))) #1#))) (-15 -2114 ($)) (-15 -2114 ($ (-1196))) (-15 -2114 ($ (-1286 (-1196)))) (-15 -2114 ($ (-1286 $))) (-15 -2114 ($ (-1196) (-1286 $))) (-15 -2114 ($ (-1286 (-1196)) (-1286 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -2113 ((-1190 (-419 (-963 |#1|))))) (-15 -2112 ((-1190 (-419 (-963 |#1|))) $)) (-15 -2111 ((-419 (-963 |#1|)) $)) (-15 -2110 ((-419 (-963 |#1|)) $)) (-15 -2109 ((-1190 (-419 (-963 |#1|))))) (-15 -2108 ((-1190 (-419 (-963 |#1|))) $)) (-15 -2107 ((-419 (-963 |#1|)) $)) (-15 -2106 ((-419 (-963 |#1|)) $)) (-15 -2105 ((-419 (-963 |#1|)) $ $)) (-15 -2104 ((-419 (-963 |#1|)))) (-15 -2103 ((-419 (-963 |#1|)) $ $)) (-15 -2102 ((-419 (-963 |#1|)))) (-15 -2101 ((-659 (-963 |#1|)) (-1286 $))) (-15 -2101 ((-659 (-963 |#1|))))) |%noBranch|))) (-175) (-936) (-659 (-1196)) (-1286 (-707 |#1|))) (T -465)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1286 (-419 (-963 *3)))) (-4 *3 (-175)) (-14 *6 (-1286 (-707 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))))) (-2116 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -2220 (-659 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) (-14 *6 (-1286 (-707 *3))))) (-2115 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -2220 (-659 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) (-14 *6 (-1286 (-707 *3))))) (-2114 (*1 *1) (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-175)) (-14 *3 (-936)) (-14 *4 (-659 (-1196))) (-14 *5 (-1286 (-707 *2))))) (-2114 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 *2)) (-14 *6 (-1286 (-707 *3))))) (-2114 (*1 *1 *2) (-12 (-5 *2 (-1286 (-1196))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) (-14 *6 (-1286 (-707 *3))))) (-2114 (*1 *1 *2) (-12 (-5 *2 (-1286 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) (-14 *6 (-1286 (-707 *3))))) (-2114 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1286 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-936)) (-14 *6 (-659 *2)) (-14 *7 (-1286 (-707 *4))))) (-2114 (*1 *1 *2 *3) (-12 (-5 *2 (-1286 (-1196))) (-5 *3 (-1286 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-936)) (-14 *6 (-659 (-1196))) (-14 *7 (-1286 (-707 *4))))) (-2113 (*1 *2) (-12 (-5 *2 (-1190 (-419 (-963 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) (-14 *6 (-1286 (-707 *3))))) (-2112 (*1 *2 *1) (-12 (-5 *2 (-1190 (-419 (-963 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) (-14 *6 (-1286 (-707 *3))))) (-2111 (*1 *2 *1) (-12 (-5 *2 (-419 (-963 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) (-14 *6 (-1286 (-707 *3))))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-419 (-963 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) (-14 *6 (-1286 (-707 *3))))) (-2109 (*1 *2) (-12 (-5 *2 (-1190 (-419 (-963 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) (-14 *6 (-1286 (-707 *3))))) (-2108 (*1 *2 *1) (-12 (-5 *2 (-1190 (-419 (-963 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) (-14 *6 (-1286 (-707 *3))))) (-2107 (*1 *2 *1) (-12 (-5 *2 (-419 (-963 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) (-14 *6 (-1286 (-707 *3))))) (-2106 (*1 *2 *1) (-12 (-5 *2 (-419 (-963 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) (-14 *6 (-1286 (-707 *3))))) (-2105 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-963 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) (-14 *6 (-1286 (-707 *3))))) (-2104 (*1 *2) (-12 (-5 *2 (-419 (-963 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) (-14 *6 (-1286 (-707 *3))))) (-2103 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-963 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) (-14 *6 (-1286 (-707 *3))))) (-2102 (*1 *2) (-12 (-5 *2 (-419 (-963 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) (-14 *6 (-1286 (-707 *3))))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-1286 (-465 *4 *5 *6 *7))) (-5 *2 (-659 (-963 *4))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-175)) (-14 *5 (-936)) (-14 *6 (-659 (-1196))) (-14 *7 (-1286 (-707 *4))))) (-2101 (*1 *2) (-12 (-5 *2 (-659 (-963 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) (-14 *6 (-1286 (-707 *3)))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 18 T ELT)) (-3482 (((-659 (-876 |#1|)) $) 87 T ELT)) (-3484 (((-1190 $) $ (-876 |#1|)) 52 T ELT) (((-1190 |#2|) $) 139 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#2| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#2| (-568)) ELT)) (-3218 (((-789) $) 27 T ELT) (((-789) $ (-659 (-876 |#1|))) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-4203 (($ $) NIL (|has| |#2| (-464)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#2| (-464)) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#2| #1#) $) 50 T ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#2| (-1057 (-419 (-557)))) ELT) (((-3 (-557) #1#) $) NIL (|has| |#2| (-1057 (-557))) ELT) (((-3 (-876 |#1|) #1#) $) NIL T ELT)) (-3572 ((|#2| $) 48 T ELT) (((-419 (-557)) $) NIL (|has| |#2| (-1057 (-419 (-557)))) ELT) (((-557) $) NIL (|has| |#2| (-1057 (-557))) ELT) (((-876 |#1|) $) NIL T ELT)) (-4184 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2146 (($ $ (-659 (-557))) 94 T ELT)) (-4387 (($ $) 80 T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 $) (-1286 $)) NIL T ELT) (((-707 |#2|) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3921 (($ $) NIL (|has| |#2| (-464)) ELT) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3217 (((-659 $) $) NIL T ELT)) (-4151 (((-114) $) NIL (|has| |#2| (-927)) ELT)) (-1802 (($ $ |#2| |#3| $) NIL T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-391))) (|has| |#2| (-899 (-391)))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-557))) (|has| |#2| (-899 (-557)))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-2647 (((-789) $) 65 T ELT)) (-3485 (($ (-1190 |#2|) (-876 |#1|)) 144 T ELT) (($ (-1190 $) (-876 |#1|)) 58 T ELT)) (-3220 (((-659 $) $) NIL T ELT)) (-4365 (((-114) $) 68 T ELT)) (-3292 (($ |#2| |#3|) 35 T ELT) (($ $ (-876 |#1|) (-789)) 37 T ELT) (($ $ (-659 (-876 |#1|)) (-659 (-789))) NIL T ELT)) (-4191 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $ (-876 |#1|)) NIL T ELT)) (-3219 ((|#3| $) NIL T ELT) (((-789) $ (-876 |#1|)) 56 T ELT) (((-659 (-789)) $ (-659 (-876 |#1|))) 63 T ELT)) (-1803 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-4386 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3483 (((-3 (-876 |#1|) #1#) $) 45 T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL T ELT) (((-707 |#2|) (-1286 $)) NIL T ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#2| $) 47 T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3222 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3221 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -2630 (-789))) #1#) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2003 (((-114) $) 46 T ELT)) (-2002 ((|#2| $) 137 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#2| (-464)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) 150 (|has| |#2| (-464)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-4160 (((-417 $) $) NIL (|has| |#2| (-927)) ELT)) (-3884 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-568)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-568)) ELT)) (-4196 (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ (-876 |#1|) |#2|) 101 T ELT) (($ $ (-659 (-876 |#1|)) (-659 |#2|)) 107 T ELT) (($ $ (-876 |#1|) $) 99 T ELT) (($ $ (-659 (-876 |#1|)) (-659 $)) 125 T ELT)) (-4185 (($ $ (-876 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4186 (($ $ (-659 (-876 |#1|)) (-659 (-789))) NIL T ELT) (($ $ (-876 |#1|) (-789)) NIL T ELT) (($ $ (-659 (-876 |#1|))) NIL T ELT) (($ $ (-876 |#1|)) 59 T ELT)) (-4376 ((|#3| $) 79 T ELT) (((-789) $ (-876 |#1|)) 42 T ELT) (((-659 (-789)) $ (-659 (-876 |#1|))) 62 T ELT)) (-4400 (((-903 (-391)) $) NIL (-12 (|has| (-876 |#1|) (-629 (-903 (-391)))) (|has| |#2| (-629 (-903 (-391))))) ELT) (((-903 (-557)) $) NIL (-12 (|has| (-876 |#1|) (-629 (-903 (-557)))) (|has| |#2| (-629 (-903 (-557))))) ELT) (((-546) $) NIL (-12 (|has| (-876 |#1|) (-629 (-546))) (|has| |#2| (-629 (-546)))) ELT)) (-3216 ((|#2| $) 146 (|has| |#2| (-464)) ELT) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-927))) ELT)) (-4374 (((-875) $) 174 T ELT) (($ (-557)) NIL T ELT) (($ |#2|) 100 T ELT) (($ (-876 |#1|)) 39 T ELT) (($ (-419 (-557))) NIL (-3955 (|has| |#2| (-38 (-419 (-557)))) (|has| |#2| (-1057 (-419 (-557))))) ELT) (($ $) NIL (|has| |#2| (-568)) ELT)) (-4245 (((-659 |#2|) $) NIL T ELT)) (-4105 ((|#2| $ |#3|) NIL T ELT) (($ $ (-876 |#1|) (-789)) NIL T ELT) (($ $ (-659 (-876 |#1|)) (-659 (-789))) NIL T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| |#2| (-927))) (|has| |#2| (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-1801 (($ $ $ (-789)) NIL (|has| |#2| (-175)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL (|has| |#2| (-568)) ELT)) (-3057 (($) 22 T CONST)) (-3063 (($) 31 T CONST)) (-3068 (($ $ (-659 (-876 |#1|)) (-659 (-789))) NIL T ELT) (($ $ (-876 |#1|) (-789)) NIL T ELT) (($ $ (-659 (-876 |#1|))) NIL T ELT) (($ $ (-876 |#1|)) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#2|) 76 (|has| |#2| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 132 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) 130 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 36 T ELT) (($ $ (-419 (-557))) NIL (|has| |#2| (-38 (-419 (-557)))) ELT) (($ (-419 (-557)) $) NIL (|has| |#2| (-38 (-419 (-557)))) ELT) (($ |#2| $) 75 T ELT) (($ $ |#2|) NIL T ELT))) -(((-466 |#1| |#2| |#3|) (-13 (-967 |#2| |#3| (-876 |#1|)) (-10 -8 (-15 -2146 ($ $ (-659 (-557)))))) (-659 (-1196)) (-1068) (-245 (-4385 |#1|) (-789))) (T -466)) -((-2146 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-557))) (-14 *3 (-659 (-1196))) (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-245 (-4385 *3) (-789)))))) -((-2120 (((-114) |#1| (-659 |#2|)) 90 T ELT)) (-2118 (((-3 (-1286 (-659 |#2|)) #1="failed") (-789) |#1| (-659 |#2|)) 99 T ELT)) (-2119 (((-3 (-659 |#2|) #1#) |#2| |#1| (-1286 (-659 |#2|))) 101 T ELT)) (-2245 ((|#2| |#2| |#1|) 35 T ELT)) (-2117 (((-789) |#2| (-659 |#2|)) 26 T ELT))) -(((-467 |#1| |#2|) (-10 -7 (-15 -2245 (|#2| |#2| |#1|)) (-15 -2117 ((-789) |#2| (-659 |#2|))) (-15 -2118 ((-3 (-1286 (-659 |#2|)) #1="failed") (-789) |#1| (-659 |#2|))) (-15 -2119 ((-3 (-659 |#2|) #1#) |#2| |#1| (-1286 (-659 |#2|)))) (-15 -2120 ((-114) |#1| (-659 |#2|)))) (-319) (-1262 |#1|)) (T -467)) -((-2120 (*1 *2 *3 *4) (-12 (-5 *4 (-659 *5)) (-4 *5 (-1262 *3)) (-4 *3 (-319)) (-5 *2 (-114)) (-5 *1 (-467 *3 *5)))) (-2119 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1286 (-659 *3))) (-4 *4 (-319)) (-5 *2 (-659 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1262 *4)))) (-2118 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-789)) (-4 *4 (-319)) (-4 *6 (-1262 *4)) (-5 *2 (-1286 (-659 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-659 *6)))) (-2117 (*1 *2 *3 *4) (-12 (-5 *4 (-659 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-319)) (-5 *2 (-789)) (-5 *1 (-467 *5 *3)))) (-2245 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1262 *3))))) -((-4160 (((-417 |#5|) |#5|) 24 T ELT))) -(((-468 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4160 ((-417 |#5|) |#5|))) (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $)) (-15 -4259 ((-3 $ "failed") (-1196))))) (-813) (-568) (-568) (-967 |#4| |#2| |#1|)) (T -468)) -((-4160 (*1 *2 *3) (-12 (-4 *4 (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $)) (-15 -4259 ((-3 $ "failed") (-1196)))))) (-4 *5 (-813)) (-4 *7 (-568)) (-5 *2 (-417 *3)) (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) (-4 *3 (-967 *7 *5 *4))))) -((-3099 ((|#3|) 43 T ELT)) (-3107 (((-1190 |#4|) (-1190 |#4|) (-1190 |#4|)) 34 T ELT))) -(((-469 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3107 ((-1190 |#4|) (-1190 |#4|) (-1190 |#4|))) (-15 -3099 (|#3|))) (-813) (-859) (-927) (-967 |#3| |#1| |#2|)) (T -469)) -((-3099 (*1 *2) (-12 (-4 *3 (-813)) (-4 *4 (-859)) (-4 *2 (-927)) (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-967 *2 *3 *4)))) (-3107 (*1 *2 *2 *2) (-12 (-5 *2 (-1190 *6)) (-4 *6 (-967 *5 *3 *4)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *5 (-927)) (-5 *1 (-469 *3 *4 *5 *6))))) -((-4160 (((-417 (-1190 |#1|)) (-1190 |#1|)) 43 T ELT))) -(((-470 |#1|) (-10 -7 (-15 -4160 ((-417 (-1190 |#1|)) (-1190 |#1|)))) (-319)) (T -470)) -((-4160 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-417 (-1190 *4))) (-5 *1 (-470 *4)) (-5 *3 (-1190 *4))))) -((-4157 (((-51) |#2| (-1196) (-305 |#2|) (-1253 (-789))) 44 T ELT) (((-51) (-1 |#2| (-557)) (-305 |#2|) (-1253 (-789))) 43 T ELT) (((-51) |#2| (-1196) (-305 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-557)) (-305 |#2|)) 29 T ELT)) (-4246 (((-51) |#2| (-1196) (-305 |#2|) (-1253 (-419 (-557))) (-419 (-557))) 88 T ELT) (((-51) (-1 |#2| (-419 (-557))) (-305 |#2|) (-1253 (-419 (-557))) (-419 (-557))) 87 T ELT) (((-51) |#2| (-1196) (-305 |#2|) (-1253 (-557))) 86 T ELT) (((-51) (-1 |#2| (-557)) (-305 |#2|) (-1253 (-557))) 85 T ELT) (((-51) |#2| (-1196) (-305 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-557)) (-305 |#2|)) 79 T ELT)) (-4210 (((-51) |#2| (-1196) (-305 |#2|) (-1253 (-419 (-557))) (-419 (-557))) 74 T ELT) (((-51) (-1 |#2| (-419 (-557))) (-305 |#2|) (-1253 (-419 (-557))) (-419 (-557))) 72 T ELT)) (-4207 (((-51) |#2| (-1196) (-305 |#2|) (-1253 (-557))) 51 T ELT) (((-51) (-1 |#2| (-557)) (-305 |#2|) (-1253 (-557))) 50 T ELT))) -(((-471 |#1| |#2|) (-10 -7 (-15 -4157 ((-51) (-1 |#2| (-557)) (-305 |#2|))) (-15 -4157 ((-51) |#2| (-1196) (-305 |#2|))) (-15 -4157 ((-51) (-1 |#2| (-557)) (-305 |#2|) (-1253 (-789)))) (-15 -4157 ((-51) |#2| (-1196) (-305 |#2|) (-1253 (-789)))) (-15 -4207 ((-51) (-1 |#2| (-557)) (-305 |#2|) (-1253 (-557)))) (-15 -4207 ((-51) |#2| (-1196) (-305 |#2|) (-1253 (-557)))) (-15 -4210 ((-51) (-1 |#2| (-419 (-557))) (-305 |#2|) (-1253 (-419 (-557))) (-419 (-557)))) (-15 -4210 ((-51) |#2| (-1196) (-305 |#2|) (-1253 (-419 (-557))) (-419 (-557)))) (-15 -4246 ((-51) (-1 |#2| (-557)) (-305 |#2|))) (-15 -4246 ((-51) |#2| (-1196) (-305 |#2|))) (-15 -4246 ((-51) (-1 |#2| (-557)) (-305 |#2|) (-1253 (-557)))) (-15 -4246 ((-51) |#2| (-1196) (-305 |#2|) (-1253 (-557)))) (-15 -4246 ((-51) (-1 |#2| (-419 (-557))) (-305 |#2|) (-1253 (-419 (-557))) (-419 (-557)))) (-15 -4246 ((-51) |#2| (-1196) (-305 |#2|) (-1253 (-419 (-557))) (-419 (-557))))) (-13 (-568) (-1057 (-557)) (-656 (-557))) (-13 (-27) (-1222) (-433 |#1|))) (T -471)) -((-4246 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1196)) (-5 *5 (-305 *3)) (-5 *6 (-1253 (-419 (-557)))) (-5 *7 (-419 (-557))) (-4 *3 (-13 (-27) (-1222) (-433 *8))) (-4 *8 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-471 *8 *3)))) (-4246 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-557)))) (-5 *4 (-305 *8)) (-5 *5 (-1253 (-419 (-557)))) (-5 *6 (-419 (-557))) (-4 *8 (-13 (-27) (-1222) (-433 *7))) (-4 *7 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *8)))) (-4246 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1196)) (-5 *5 (-305 *3)) (-5 *6 (-1253 (-557))) (-4 *3 (-13 (-27) (-1222) (-433 *7))) (-4 *7 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *3)))) (-4246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-557))) (-5 *4 (-305 *7)) (-5 *5 (-1253 (-557))) (-4 *7 (-13 (-27) (-1222) (-433 *6))) (-4 *6 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *7)))) (-4246 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1196)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *6))) (-4 *6 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *3)))) (-4246 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-557))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1222) (-433 *5))) (-4 *5 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-471 *5 *6)))) (-4210 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1196)) (-5 *5 (-305 *3)) (-5 *6 (-1253 (-419 (-557)))) (-5 *7 (-419 (-557))) (-4 *3 (-13 (-27) (-1222) (-433 *8))) (-4 *8 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-471 *8 *3)))) (-4210 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-557)))) (-5 *4 (-305 *8)) (-5 *5 (-1253 (-419 (-557)))) (-5 *6 (-419 (-557))) (-4 *8 (-13 (-27) (-1222) (-433 *7))) (-4 *7 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *8)))) (-4207 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1196)) (-5 *5 (-305 *3)) (-5 *6 (-1253 (-557))) (-4 *3 (-13 (-27) (-1222) (-433 *7))) (-4 *7 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *3)))) (-4207 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-557))) (-5 *4 (-305 *7)) (-5 *5 (-1253 (-557))) (-4 *7 (-13 (-27) (-1222) (-433 *6))) (-4 *6 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *7)))) (-4157 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1196)) (-5 *5 (-305 *3)) (-5 *6 (-1253 (-789))) (-4 *3 (-13 (-27) (-1222) (-433 *7))) (-4 *7 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *3)))) (-4157 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-557))) (-5 *4 (-305 *7)) (-5 *5 (-1253 (-789))) (-4 *7 (-13 (-27) (-1222) (-433 *6))) (-4 *6 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *7)))) (-4157 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1196)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *6))) (-4 *6 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *3)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-557))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1222) (-433 *5))) (-4 *5 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) (-5 *1 (-471 *5 *6))))) -((-2245 ((|#2| |#2| |#1|) 15 T ELT)) (-2122 (((-659 |#2|) |#2| (-659 |#2|) |#1| (-936)) 82 T ELT)) (-2121 (((-2 (|:| |plist| (-659 |#2|)) (|:| |modulo| |#1|)) |#2| (-659 |#2|) |#1| (-936)) 71 T ELT))) -(((-472 |#1| |#2|) (-10 -7 (-15 -2121 ((-2 (|:| |plist| (-659 |#2|)) (|:| |modulo| |#1|)) |#2| (-659 |#2|) |#1| (-936))) (-15 -2122 ((-659 |#2|) |#2| (-659 |#2|) |#1| (-936))) (-15 -2245 (|#2| |#2| |#1|))) (-319) (-1262 |#1|)) (T -472)) -((-2245 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1262 *3)))) (-2122 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-659 *3)) (-5 *5 (-936)) (-4 *3 (-1262 *4)) (-4 *4 (-319)) (-5 *1 (-472 *4 *3)))) (-2121 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-936)) (-4 *5 (-319)) (-4 *3 (-1262 *5)) (-5 *2 (-2 (|:| |plist| (-659 *3)) (|:| |modulo| *5))) (-5 *1 (-472 *5 *3)) (-5 *4 (-659 *3))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 28 T ELT)) (-4135 (($ |#3|) 25 T ELT)) (-1424 (((-3 $ "failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-4387 (($ $) 32 T ELT)) (-2123 (($ |#2| |#4| $) 33 T ELT)) (-3292 (($ |#2| (-731 |#3| |#4| |#5|)) 24 T ELT)) (-3293 (((-731 |#3| |#4| |#5|) $) 15 T ELT)) (-2125 ((|#3| $) 19 T ELT)) (-2126 ((|#4| $) 17 T ELT)) (-3590 ((|#2| $) 29 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-2124 (($ |#2| |#3| |#4|) 26 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 36 T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 34 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-473 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-735 |#6|) (-735 |#2|) (-10 -8 (-15 -3590 (|#2| $)) (-15 -3293 ((-731 |#3| |#4| |#5|) $)) (-15 -2126 (|#4| $)) (-15 -2125 (|#3| $)) (-15 -4387 ($ $)) (-15 -3292 ($ |#2| (-731 |#3| |#4| |#5|))) (-15 -4135 ($ |#3|)) (-15 -2124 ($ |#2| |#3| |#4|)) (-15 -2123 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-659 (-1196)) (-175) (-859) (-245 (-4385 |#1|) (-789)) (-1 (-114) (-2 (|:| -2629 |#3|) (|:| -2630 |#4|)) (-2 (|:| -2629 |#3|) (|:| -2630 |#4|))) (-967 |#2| |#4| (-876 |#1|))) (T -473)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-659 (-1196))) (-4 *4 (-175)) (-4 *6 (-245 (-4385 *3) (-789))) (-14 *7 (-1 (-114) (-2 (|:| -2629 *5) (|:| -2630 *6)) (-2 (|:| -2629 *5) (|:| -2630 *6)))) (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-859)) (-4 *2 (-967 *4 *6 (-876 *3))))) (-3590 (*1 *2 *1) (-12 (-14 *3 (-659 (-1196))) (-4 *5 (-245 (-4385 *3) (-789))) (-14 *6 (-1 (-114) (-2 (|:| -2629 *4) (|:| -2630 *5)) (-2 (|:| -2629 *4) (|:| -2630 *5)))) (-4 *2 (-175)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-859)) (-4 *7 (-967 *2 *5 (-876 *3))))) (-3293 (*1 *2 *1) (-12 (-14 *3 (-659 (-1196))) (-4 *4 (-175)) (-4 *6 (-245 (-4385 *3) (-789))) (-14 *7 (-1 (-114) (-2 (|:| -2629 *5) (|:| -2630 *6)) (-2 (|:| -2629 *5) (|:| -2630 *6)))) (-5 *2 (-731 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) (-4 *5 (-859)) (-4 *8 (-967 *4 *6 (-876 *3))))) (-2126 (*1 *2 *1) (-12 (-14 *3 (-659 (-1196))) (-4 *4 (-175)) (-14 *6 (-1 (-114) (-2 (|:| -2629 *5) (|:| -2630 *2)) (-2 (|:| -2629 *5) (|:| -2630 *2)))) (-4 *2 (-245 (-4385 *3) (-789))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) (-4 *5 (-859)) (-4 *7 (-967 *4 *2 (-876 *3))))) (-2125 (*1 *2 *1) (-12 (-14 *3 (-659 (-1196))) (-4 *4 (-175)) (-4 *5 (-245 (-4385 *3) (-789))) (-14 *6 (-1 (-114) (-2 (|:| -2629 *2) (|:| -2630 *5)) (-2 (|:| -2629 *2) (|:| -2630 *5)))) (-4 *2 (-859)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *7 (-967 *4 *5 (-876 *3))))) (-4387 (*1 *1 *1) (-12 (-14 *2 (-659 (-1196))) (-4 *3 (-175)) (-4 *5 (-245 (-4385 *2) (-789))) (-14 *6 (-1 (-114) (-2 (|:| -2629 *4) (|:| -2630 *5)) (-2 (|:| -2629 *4) (|:| -2630 *5)))) (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-859)) (-4 *7 (-967 *3 *5 (-876 *2))))) (-3292 (*1 *1 *2 *3) (-12 (-5 *3 (-731 *5 *6 *7)) (-4 *5 (-859)) (-4 *6 (-245 (-4385 *4) (-789))) (-14 *7 (-1 (-114) (-2 (|:| -2629 *5) (|:| -2630 *6)) (-2 (|:| -2629 *5) (|:| -2630 *6)))) (-14 *4 (-659 (-1196))) (-4 *2 (-175)) (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-967 *2 *6 (-876 *4))))) (-4135 (*1 *1 *2) (-12 (-14 *3 (-659 (-1196))) (-4 *4 (-175)) (-4 *5 (-245 (-4385 *3) (-789))) (-14 *6 (-1 (-114) (-2 (|:| -2629 *2) (|:| -2630 *5)) (-2 (|:| -2629 *2) (|:| -2630 *5)))) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-859)) (-4 *7 (-967 *4 *5 (-876 *3))))) (-2124 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-659 (-1196))) (-4 *2 (-175)) (-4 *4 (-245 (-4385 *5) (-789))) (-14 *6 (-1 (-114) (-2 (|:| -2629 *3) (|:| -2630 *4)) (-2 (|:| -2629 *3) (|:| -2630 *4)))) (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-859)) (-4 *7 (-967 *2 *4 (-876 *5))))) (-2123 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-659 (-1196))) (-4 *2 (-175)) (-4 *3 (-245 (-4385 *4) (-789))) (-14 *6 (-1 (-114) (-2 (|:| -2629 *5) (|:| -2630 *3)) (-2 (|:| -2629 *5) (|:| -2630 *3)))) (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-859)) (-4 *7 (-967 *2 *3 (-876 *4)))))) -((-2127 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) -(((-474 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2127 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-813) (-859) (-568) (-967 |#3| |#1| |#2|) (-13 (-1057 (-419 (-557))) (-376) (-10 -8 (-15 -4374 ($ |#4|)) (-15 -3397 (|#4| $)) (-15 -3396 (|#4| $))))) (T -474)) -((-2127 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-859)) (-4 *5 (-813)) (-4 *6 (-568)) (-4 *7 (-967 *6 *5 *3)) (-5 *1 (-474 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1057 (-419 (-557))) (-376) (-10 -8 (-15 -4374 ($ *7)) (-15 -3397 (*7 $)) (-15 -3396 (*7 $)))))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3482 (((-659 |#3|) $) 41 T ELT)) (-3307 (((-114) $) NIL T ELT)) (-3298 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-3308 (((-2 (|:| |under| $) (|:| -3530 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4138 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4152 (($) NIL T CONST)) (-3303 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-3305 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3304 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3306 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-3299 (((-659 |#4|) (-659 |#4|) $) NIL (|has| |#1| (-568)) ELT)) (-3300 (((-659 |#4|) (-659 |#4|) $) NIL (|has| |#1| (-568)) ELT)) (-3573 (((-3 $ #1="failed") (-659 |#4|)) 49 T ELT)) (-3572 (($ (-659 |#4|)) NIL T ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT)) (-3824 (($ |#4| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3301 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)) ELT)) (-4270 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4423)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3288 (((-659 |#4|) $) 18 (|has| $ (-6 -4423)) ELT)) (-3596 ((|#3| $) 47 T ELT)) (-3005 (((-659 |#4|) $) 14 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#4| $) 26 (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT)) (-2158 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-3313 (((-659 |#3|) $) NIL T ELT)) (-3312 (((-114) |#3| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3302 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1466 (((-3 |#4| #1#) (-1 (-114) |#4|) $) NIL T ELT)) (-2156 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 |#4|) (-659 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-659 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) 39 T ELT)) (-3991 (($) 17 T ELT)) (-2155 (((-789) |#4| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT) (((-789) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) 16 T ELT)) (-4400 (((-546) $) NIL (|has| |#4| (-629 (-546))) ELT) (($ (-659 |#4|)) 51 T ELT)) (-3948 (($ (-659 |#4|)) 13 T ELT)) (-3309 (($ $ |#3|) NIL T ELT)) (-3311 (($ $ |#3|) NIL T ELT)) (-3310 (($ $ |#3|) NIL T ELT)) (-4374 (((-875) $) 38 T ELT) (((-659 |#4|) $) 50 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 30 T ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-475 |#1| |#2| |#3| |#4|) (-13 (-995 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4400 ($ (-659 |#4|))) (-6 -4423) (-6 -4424))) (-1068) (-813) (-859) (-1084 |#1| |#2| |#3|)) (T -475)) -((-4400 (*1 *1 *2) (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-475 *3 *4 *5 *6))))) -((-3057 (($) 11 T ELT)) (-3063 (($) 13 T ELT)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) -(((-476 |#1| |#2| |#3|) (-10 -7 (-15 -3063 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3057 (|#1|))) (-477 |#2| |#3|) (-175) (-23)) (T -476)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3573 (((-3 |#1| "failed") $) 30 T ELT)) (-3572 ((|#1| $) 31 T ELT)) (-4372 (($ $ $) 27 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4376 ((|#2| $) 23 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 22 T CONST)) (-3063 (($) 28 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) -(((-477 |#1| |#2|) (-142) (-175) (-23)) (T -477)) -((-3063 (*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-4372 (*1 *1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23))))) -(-13 (-482 |t#1| |t#2|) (-1057 |t#1|) (-10 -8 (-15 (-3063) ($) -4380) (-15 -4372 ($ $ $)))) -(((-102) . T) ((-631 |#1|) . T) ((-628 (-875)) . T) ((-482 |#1| |#2|) . T) ((-1057 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-2128 (((-1286 (-1286 (-557))) (-1286 (-1286 (-557))) (-936)) 26 T ELT)) (-2129 (((-1286 (-1286 (-557))) (-936)) 21 T ELT))) -(((-478) (-10 -7 (-15 -2128 ((-1286 (-1286 (-557))) (-1286 (-1286 (-557))) (-936))) (-15 -2129 ((-1286 (-1286 (-557))) (-936))))) (T -478)) -((-2129 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1286 (-1286 (-557)))) (-5 *1 (-478)))) (-2128 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 (-1286 (-557)))) (-5 *3 (-936)) (-5 *1 (-478))))) -((-3169 (((-557) (-557)) 32 T ELT) (((-557)) 24 T ELT)) (-3173 (((-557) (-557)) 28 T ELT) (((-557)) 20 T ELT)) (-3171 (((-557) (-557)) 30 T ELT) (((-557)) 22 T ELT)) (-2131 (((-114) (-114)) 14 T ELT) (((-114)) 12 T ELT)) (-2130 (((-114) (-114)) 13 T ELT) (((-114)) 11 T ELT)) (-2132 (((-114) (-114)) 26 T ELT) (((-114)) 17 T ELT))) -(((-479) (-10 -7 (-15 -2130 ((-114))) (-15 -2131 ((-114))) (-15 -2130 ((-114) (-114))) (-15 -2131 ((-114) (-114))) (-15 -2132 ((-114))) (-15 -3171 ((-557))) (-15 -3173 ((-557))) (-15 -3169 ((-557))) (-15 -2132 ((-114) (-114))) (-15 -3171 ((-557) (-557))) (-15 -3173 ((-557) (-557))) (-15 -3169 ((-557) (-557))))) (T -479)) -((-3169 (*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-479)))) (-3173 (*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-479)))) (-3171 (*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-479)))) (-2132 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) (-3169 (*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-479)))) (-3173 (*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-479)))) (-3171 (*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-479)))) (-2132 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) (-2131 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) (-2130 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) (-2131 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) (-2130 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479))))) -((-2965 (((-114) $ $) NIL T ELT)) (-4279 (((-659 (-391)) $) 34 T ELT) (((-659 (-391)) $ (-659 (-391))) 145 T ELT)) (-2137 (((-659 (-1108 (-391))) $) 16 T ELT) (((-659 (-1108 (-391))) $ (-659 (-1108 (-391)))) 142 T ELT)) (-2134 (((-659 (-659 (-960 (-229)))) (-659 (-659 (-960 (-229)))) (-659 (-886))) 58 T ELT)) (-2138 (((-659 (-659 (-960 (-229)))) $) 137 T ELT)) (-4134 (((-1292) $ (-960 (-229)) (-886)) 162 T ELT)) (-2139 (($ $) 136 T ELT) (($ (-659 (-659 (-960 (-229))))) 148 T ELT) (($ (-659 (-659 (-960 (-229)))) (-659 (-886)) (-659 (-886)) (-659 (-936))) 147 T ELT) (($ (-659 (-659 (-960 (-229)))) (-659 (-886)) (-659 (-886)) (-659 (-936)) (-659 (-270))) 149 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-4288 (((-557) $) 110 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2140 (($) 146 T ELT)) (-2133 (((-659 (-229)) (-659 (-659 (-960 (-229))))) 89 T ELT)) (-2136 (((-1292) $ (-659 (-960 (-229))) (-886) (-886) (-936)) 154 T ELT) (((-1292) $ (-960 (-229))) 156 T ELT) (((-1292) $ (-960 (-229)) (-886) (-886) (-936)) 155 T ELT)) (-4374 (((-875) $) 168 T ELT) (($ (-659 (-659 (-960 (-229))))) 163 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2135 (((-1292) $ (-960 (-229))) 161 T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-480) (-13 (-1120) (-10 -8 (-15 -2140 ($)) (-15 -2139 ($ $)) (-15 -2139 ($ (-659 (-659 (-960 (-229)))))) (-15 -2139 ($ (-659 (-659 (-960 (-229)))) (-659 (-886)) (-659 (-886)) (-659 (-936)))) (-15 -2139 ($ (-659 (-659 (-960 (-229)))) (-659 (-886)) (-659 (-886)) (-659 (-936)) (-659 (-270)))) (-15 -2138 ((-659 (-659 (-960 (-229)))) $)) (-15 -4288 ((-557) $)) (-15 -2137 ((-659 (-1108 (-391))) $)) (-15 -2137 ((-659 (-1108 (-391))) $ (-659 (-1108 (-391))))) (-15 -4279 ((-659 (-391)) $)) (-15 -4279 ((-659 (-391)) $ (-659 (-391)))) (-15 -2136 ((-1292) $ (-659 (-960 (-229))) (-886) (-886) (-936))) (-15 -2136 ((-1292) $ (-960 (-229)))) (-15 -2136 ((-1292) $ (-960 (-229)) (-886) (-886) (-936))) (-15 -2135 ((-1292) $ (-960 (-229)))) (-15 -4134 ((-1292) $ (-960 (-229)) (-886))) (-15 -4374 ($ (-659 (-659 (-960 (-229)))))) (-15 -4374 ((-875) $)) (-15 -2134 ((-659 (-659 (-960 (-229)))) (-659 (-659 (-960 (-229)))) (-659 (-886)))) (-15 -2133 ((-659 (-229)) (-659 (-659 (-960 (-229))))))))) (T -480)) -((-4374 (*1 *2 *1) (-12 (-5 *2 (-875)) (-5 *1 (-480)))) (-2140 (*1 *1) (-5 *1 (-480))) (-2139 (*1 *1 *1) (-5 *1 (-480))) (-2139 (*1 *1 *2) (-12 (-5 *2 (-659 (-659 (-960 (-229))))) (-5 *1 (-480)))) (-2139 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-659 (-659 (-960 (-229))))) (-5 *3 (-659 (-886))) (-5 *4 (-659 (-936))) (-5 *1 (-480)))) (-2139 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-659 (-659 (-960 (-229))))) (-5 *3 (-659 (-886))) (-5 *4 (-659 (-936))) (-5 *5 (-659 (-270))) (-5 *1 (-480)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-659 (-659 (-960 (-229))))) (-5 *1 (-480)))) (-4288 (*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-480)))) (-2137 (*1 *2 *1) (-12 (-5 *2 (-659 (-1108 (-391)))) (-5 *1 (-480)))) (-2137 (*1 *2 *1 *2) (-12 (-5 *2 (-659 (-1108 (-391)))) (-5 *1 (-480)))) (-4279 (*1 *2 *1) (-12 (-5 *2 (-659 (-391))) (-5 *1 (-480)))) (-4279 (*1 *2 *1 *2) (-12 (-5 *2 (-659 (-391))) (-5 *1 (-480)))) (-2136 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-659 (-960 (-229)))) (-5 *4 (-886)) (-5 *5 (-936)) (-5 *2 (-1292)) (-5 *1 (-480)))) (-2136 (*1 *2 *1 *3) (-12 (-5 *3 (-960 (-229))) (-5 *2 (-1292)) (-5 *1 (-480)))) (-2136 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-960 (-229))) (-5 *4 (-886)) (-5 *5 (-936)) (-5 *2 (-1292)) (-5 *1 (-480)))) (-2135 (*1 *2 *1 *3) (-12 (-5 *3 (-960 (-229))) (-5 *2 (-1292)) (-5 *1 (-480)))) (-4134 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-960 (-229))) (-5 *4 (-886)) (-5 *2 (-1292)) (-5 *1 (-480)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-659 (-659 (-960 (-229))))) (-5 *1 (-480)))) (-2134 (*1 *2 *2 *3) (-12 (-5 *2 (-659 (-659 (-960 (-229))))) (-5 *3 (-659 (-886))) (-5 *1 (-480)))) (-2133 (*1 *2 *3) (-12 (-5 *3 (-659 (-659 (-960 (-229))))) (-5 *2 (-659 (-229))) (-5 *1 (-480))))) -((-4265 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) -(((-481 |#1| |#2| |#3|) (-10 -7 (-15 -4265 (|#1| |#1| |#1|)) (-15 -4265 (|#1| |#1|))) (-482 |#2| |#3|) (-175) (-23)) (T -481)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4376 ((|#2| $) 23 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 22 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) -(((-482 |#1| |#2|) (-142) (-175) (-23)) (T -482)) -((-4376 (*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-175)) (-4 *2 (-23)))) (-3057 (*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-4265 (*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-4267 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-4265 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23))))) -(-13 (-1120) (-10 -8 (-15 -4376 (|t#2| $)) (-15 (-3057) ($) -4380) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4265 ($ $)) (-15 -4267 ($ $ $)) (-15 -4265 ($ $ $)))) -(((-102) . T) ((-628 (-875)) . T) ((-1120) . T) ((-1236) . T)) -((-2142 (((-3 (-659 (-493 |#1| |#2|)) "failed") (-659 (-493 |#1| |#2|)) (-659 (-876 |#1|))) 135 T ELT)) (-2141 (((-659 (-659 (-255 |#1| |#2|))) (-659 (-255 |#1| |#2|)) (-659 (-876 |#1|))) 132 T ELT)) (-2143 (((-2 (|:| |dpolys| (-659 (-255 |#1| |#2|))) (|:| |coords| (-659 (-557)))) (-659 (-255 |#1| |#2|)) (-659 (-876 |#1|))) 87 T ELT))) -(((-483 |#1| |#2| |#3|) (-10 -7 (-15 -2141 ((-659 (-659 (-255 |#1| |#2|))) (-659 (-255 |#1| |#2|)) (-659 (-876 |#1|)))) (-15 -2142 ((-3 (-659 (-493 |#1| |#2|)) "failed") (-659 (-493 |#1| |#2|)) (-659 (-876 |#1|)))) (-15 -2143 ((-2 (|:| |dpolys| (-659 (-255 |#1| |#2|))) (|:| |coords| (-659 (-557)))) (-659 (-255 |#1| |#2|)) (-659 (-876 |#1|))))) (-659 (-1196)) (-464) (-464)) (T -483)) -((-2143 (*1 *2 *3 *4) (-12 (-5 *4 (-659 (-876 *5))) (-14 *5 (-659 (-1196))) (-4 *6 (-464)) (-5 *2 (-2 (|:| |dpolys| (-659 (-255 *5 *6))) (|:| |coords| (-659 (-557))))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-659 (-255 *5 *6))) (-4 *7 (-464)))) (-2142 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-659 (-493 *4 *5))) (-5 *3 (-659 (-876 *4))) (-14 *4 (-659 (-1196))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) (-4 *6 (-464)))) (-2141 (*1 *2 *3 *4) (-12 (-5 *4 (-659 (-876 *5))) (-14 *5 (-659 (-1196))) (-4 *6 (-464)) (-5 *2 (-659 (-659 (-255 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-659 (-255 *5 *6))) (-4 *7 (-464))))) -((-3885 (((-3 $ "failed") $) 11 T ELT)) (-3408 (($ $ $) 22 T ELT)) (-2822 (($ $ $) 23 T ELT)) (-4377 (($ $ $) 9 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) 21 T ELT))) -(((-484 |#1|) (-10 -7 (-15 -2822 (|#1| |#1| |#1|)) (-15 -3408 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-557))) (-15 -4377 (|#1| |#1| |#1|)) (-15 -3885 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-789))) (-15 ** (|#1| |#1| (-936)))) (-485)) (T -484)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-4152 (($) 23 T CONST)) (-3885 (((-3 $ "failed") $) 20 T ELT)) (-2639 (((-114) $) 22 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2872 (($ $) 30 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3408 (($ $ $) 27 T ELT)) (-2822 (($ $ $) 26 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3063 (($) 24 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ $) 29 T ELT)) (** (($ $ (-936)) 17 T ELT) (($ $ (-789)) 21 T ELT) (($ $ (-557)) 28 T ELT)) (* (($ $ $) 18 T ELT))) -(((-485) (-142)) (T -485)) -((-2872 (*1 *1 *1) (-4 *1 (-485))) (-4377 (*1 *1 *1 *1) (-4 *1 (-485))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-557)))) (-3408 (*1 *1 *1 *1) (-4 *1 (-485))) (-2822 (*1 *1 *1 *1) (-4 *1 (-485)))) -(-13 (-744) (-10 -8 (-15 -2872 ($ $)) (-15 -4377 ($ $ $)) (-15 ** ($ $ (-557))) (-6 -4420) (-15 -3408 ($ $ $)) (-15 -2822 ($ $ $)))) -(((-102) . T) ((-628 (-875)) . T) ((-744) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3482 (((-659 (-1101)) $) NIL T ELT)) (-4259 (((-1196) $) 18 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-4199 (($ $ (-419 (-557))) NIL T ELT) (($ $ (-419 (-557)) (-419 (-557))) NIL T ELT)) (-4202 (((-1174 (-2 (|:| |k| (-419 (-557))) (|:| |c| |#1|))) $) NIL T ELT)) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3436 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1786 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3908 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4066 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4246 (($ (-789) (-1174 (-2 (|:| |k| (-419 (-557))) (|:| |c| |#1|)))) NIL T ELT)) (-3912 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4065 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4152 (($) NIL T CONST)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4387 (($ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-2960 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL (|has| |#1| (-376)) ELT)) (-4151 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3291 (((-114) $) NIL T ELT)) (-4055 (($) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4200 (((-419 (-557)) $) NIL T ELT) (((-419 (-557)) $ (-419 (-557))) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3410 (($ $ (-557)) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4205 (($ $ (-936)) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-419 (-557))) NIL T ELT) (($ $ (-1101) (-419 (-557))) NIL T ELT) (($ $ (-659 (-1101)) (-659 (-419 (-557)))) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-4370 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4240 (($ $) 29 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-1196)) 35 (-3955 (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-29 (-557))) (|has| |#1| (-977)) (|has| |#1| (-1222))) (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-15 -4240 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -3482 ((-659 (-1196)) |#1|))))) ELT) (($ $ (-1283 |#2|)) 30 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-376)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4160 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4197 (($ $ (-419 (-557))) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL (|has| |#1| (-568)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-4371 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4196 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-557))))) ELT)) (-1785 (((-789) $) NIL (|has| |#1| (-376)) ELT)) (-4228 ((|#1| $ (-419 (-557))) NIL T ELT) (($ $ $) NIL (|has| (-419 (-557)) (-1131)) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4186 (($ $ (-1196)) 28 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT) (($ $ (-789)) NIL (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT) (($ $ (-1283 |#2|)) 16 T ELT)) (-4376 (((-419 (-557)) $) NIL T ELT)) (-3913 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4064 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4063 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4062 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3290 (($ $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1283 |#2|)) NIL T ELT) (($ (-1267 |#1| |#2| |#3|)) 9 T ELT) (($ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $) NIL (|has| |#1| (-568)) ELT)) (-4105 ((|#1| $ (-419 (-557))) NIL T ELT)) (-3101 (((-709 $) $) NIL (|has| |#1| (-147)) ELT)) (-3526 (((-789)) NIL T CONST)) (-4201 ((|#1| $) 21 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3904 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3914 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3902 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3906 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4198 ((|#1| $ (-419 (-557))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-557))))) (|has| |#1| (-15 -4374 (|#1| (-1196))))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3917 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3915 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3903 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $ (-1196)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT) (($ $ (-789)) NIL (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT) (($ $ (-1283 |#2|)) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-486 |#1| |#2| |#3|) (-13 (-1269 |#1|) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -4374 ($ (-1283 |#2|))) (-15 -4374 ($ (-1267 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-557)))) (-15 -4240 ($ $ (-1283 |#2|))) |%noBranch|))) (-1068) (-1196) |#1|) (T -486)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-1267 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1196)) (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) (-4240 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068)) (-14 *5 *3)))) -((-2965 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4025 (($) NIL T ELT) (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-2411 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-4216 ((|#2| $ |#1| |#2|) 18 T ELT)) (-1711 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-2444 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-4152 (($) NIL T CONST)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT)) (-3823 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3824 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (|has| $ (-6 -4423)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-1717 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#2| $ |#1|) NIL T ELT)) (-3288 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2413 ((|#1| $) NIL (|has| |#1| (-859)) ELT)) (-3005 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-2414 ((|#1| $) NIL (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| |#2| (-1120))) ELT)) (-2882 (((-659 |#1|) $) NIL T ELT)) (-2445 (((-114) |#1| $) NIL T ELT)) (-1387 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-4035 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-2416 (((-659 |#1|) $) NIL T ELT)) (-2417 (((-114) |#1| $) NIL T ELT)) (-3659 (((-1139) $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| |#2| (-1120))) ELT)) (-4229 ((|#2| $) NIL (|has| |#1| (-859)) ELT)) (-1466 (((-3 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) #1#) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT)) (-2412 (($ $ |#2|) NIL (|has| $ (-6 -4424)) ELT)) (-1388 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-2156 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-659 |#2|) (-659 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-659 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-2418 (((-659 |#2|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1596 (($) NIL T ELT) (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-2155 (((-789) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-789) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT) (((-789) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-629 (-546))) ELT)) (-3948 (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-4374 (((-875) $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-628 (-875))) (|has| |#2| (-628 (-875)))) ELT)) (-1376 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1389 (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-487 |#1| |#2| |#3| |#4|) (-1213 |#1| |#2|) (-1120) (-1120) (-1213 |#1| |#2|) |#2|) (T -487)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-4109 (((-659 (-2 (|:| -4289 $) (|:| -1903 (-659 |#4|)))) (-659 |#4|)) NIL T ELT)) (-4110 (((-659 $) (-659 |#4|)) NIL T ELT)) (-3482 (((-659 |#3|) $) NIL T ELT)) (-3307 (((-114) $) NIL T ELT)) (-3298 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-4121 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4116 ((|#4| |#4| $) NIL T ELT)) (-3308 (((-2 (|:| |under| $) (|:| -3530 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4138 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3303 (((-114) $) 29 (|has| |#1| (-568)) ELT)) (-3305 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3304 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3306 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-4117 (((-659 |#4|) (-659 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3299 (((-659 |#4|) (-659 |#4|) $) NIL (|has| |#1| (-568)) ELT)) (-3300 (((-659 |#4|) (-659 |#4|) $) NIL (|has| |#1| (-568)) ELT)) (-3573 (((-3 $ #1#) (-659 |#4|)) NIL T ELT)) (-3572 (($ (-659 |#4|)) NIL T ELT)) (-4227 (((-3 $ #1#) $) 45 T ELT)) (-4113 ((|#4| |#4| $) NIL T ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT)) (-3824 (($ |#4| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3301 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)) ELT)) (-4122 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4111 ((|#4| |#4| $) NIL T ELT)) (-4270 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4423)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4423)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4124 (((-2 (|:| -4289 (-659 |#4|)) (|:| -1903 (-659 |#4|))) $) NIL T ELT)) (-3288 (((-659 |#4|) $) 18 (|has| $ (-6 -4423)) ELT)) (-4123 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3596 ((|#3| $) 38 T ELT)) (-3005 (((-659 |#4|) $) 19 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#4| $) 27 (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT)) (-2158 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3313 (((-659 |#3|) $) NIL T ELT)) (-3312 (((-114) |#3| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-4226 (((-3 |#4| #1#) $) 42 T ELT)) (-4125 (((-659 |#4|) $) NIL T ELT)) (-4119 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4114 ((|#4| |#4| $) NIL T ELT)) (-4127 (((-114) $ $) NIL T ELT)) (-3302 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)) ELT)) (-4120 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4115 ((|#4| |#4| $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4229 (((-3 |#4| #1#) $) 40 T ELT)) (-1466 (((-3 |#4| #1#) (-1 (-114) |#4|) $) NIL T ELT)) (-4107 (((-3 $ #1#) $ |#4|) 58 T ELT)) (-4197 (($ $ |#4|) NIL T ELT)) (-2156 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 |#4|) (-659 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-659 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) 17 T ELT)) (-3991 (($) 14 T ELT)) (-4376 (((-789) $) NIL T ELT)) (-2155 (((-789) |#4| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT) (((-789) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) 13 T ELT)) (-4400 (((-546) $) NIL (|has| |#4| (-629 (-546))) ELT)) (-3948 (($ (-659 |#4|)) 22 T ELT)) (-3309 (($ $ |#3|) 52 T ELT)) (-3311 (($ $ |#3|) 54 T ELT)) (-4112 (($ $) NIL T ELT)) (-3310 (($ $ |#3|) NIL T ELT)) (-4374 (((-875) $) 35 T ELT) (((-659 |#4|) $) 46 T ELT)) (-4106 (((-789) $) NIL (|has| |#3| (-381)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-4126 (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |#4|))) #1#) (-659 |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |#4|))) #1#) (-659 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4118 (((-114) $ (-1 (-114) |#4| (-659 |#4|))) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4108 (((-659 |#3|) $) NIL T ELT)) (-4361 (((-114) |#3| $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-488 |#1| |#2| |#3| |#4|) (-1231 |#1| |#2| |#3| |#4|) (-568) (-813) (-859) (-1084 |#1| |#2| |#3|)) (T -488)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL T ELT)) (-3572 (((-557) $) NIL T ELT) (((-419 (-557)) $) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-4055 (($) 17 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-4400 (((-391) $) 21 T ELT) (((-229) $) 24 T ELT) (((-419 (-1190 (-557))) $) 18 T ELT) (((-546) $) 53 T ELT)) (-4374 (((-875) $) 51 T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (((-229) $) 23 T ELT) (((-391) $) 20 T ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-3057 (($) 37 T CONST)) (-3063 (($) 8 T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT))) -(((-489) (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))) (-1039) (-628 (-229)) (-628 (-391)) (-629 (-419 (-1190 (-557)))) (-629 (-546)) (-10 -8 (-15 -4055 ($))))) (T -489)) -((-4055 (*1 *1) (-5 *1 (-489)))) -((-2965 (((-114) $ $) NIL T ELT)) (-3946 (((-1154) $) 11 T ELT)) (-3947 (((-1154) $) 9 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 17 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-490) (-13 (-1102) (-10 -8 (-15 -3947 ((-1154) $)) (-15 -3946 ((-1154) $))))) (T -490)) -((-3947 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-490)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-490))))) -((-2965 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4025 (($) NIL T ELT) (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-2411 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-4216 ((|#2| $ |#1| |#2|) 16 T ELT)) (-1711 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-2444 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-4152 (($) NIL T CONST)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT)) (-3823 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3824 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (|has| $ (-6 -4423)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-1717 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#2| $ |#1|) NIL T ELT)) (-3288 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2413 ((|#1| $) NIL (|has| |#1| (-859)) ELT)) (-3005 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-2414 ((|#1| $) NIL (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| |#2| (-1120))) ELT)) (-2882 (((-659 |#1|) $) 13 T ELT)) (-2445 (((-114) |#1| $) NIL T ELT)) (-1387 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-4035 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-2416 (((-659 |#1|) $) NIL T ELT)) (-2417 (((-114) |#1| $) NIL T ELT)) (-3659 (((-1139) $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| |#2| (-1120))) ELT)) (-4229 ((|#2| $) NIL (|has| |#1| (-859)) ELT)) (-1466 (((-3 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) #1#) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT)) (-2412 (($ $ |#2|) NIL (|has| $ (-6 -4424)) ELT)) (-1388 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-2156 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-659 |#2|) (-659 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-659 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-2418 (((-659 |#2|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) 19 T ELT)) (-4228 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1596 (($) NIL T ELT) (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-2155 (((-789) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-789) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT) (((-789) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-629 (-546))) ELT)) (-3948 (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-4374 (((-875) $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-628 (-875))) (|has| |#2| (-628 (-875)))) ELT)) (-1376 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1389 (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 11 (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4385 (((-789) $) 15 (|has| $ (-6 -4423)) ELT))) -(((-491 |#1| |#2| |#3|) (-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4423))) (-1120) (-1120) (-1178)) (T -491)) -NIL -((-2144 (((-557) (-557) (-557)) 19 T ELT)) (-2145 (((-114) (-557) (-557) (-557) (-557)) 28 T ELT)) (-3875 (((-1286 (-659 (-557))) (-789) (-789)) 42 T ELT))) -(((-492) (-10 -7 (-15 -2144 ((-557) (-557) (-557))) (-15 -2145 ((-114) (-557) (-557) (-557) (-557))) (-15 -3875 ((-1286 (-659 (-557))) (-789) (-789))))) (T -492)) -((-3875 (*1 *2 *3 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1286 (-659 (-557)))) (-5 *1 (-492)))) (-2145 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-557)) (-5 *2 (-114)) (-5 *1 (-492)))) (-2144 (*1 *2 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-492))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3482 (((-659 (-876 |#1|)) $) NIL T ELT)) (-3484 (((-1190 $) $ (-876 |#1|)) NIL T ELT) (((-1190 |#2|) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#2| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#2| (-568)) ELT)) (-3218 (((-789) $) NIL T ELT) (((-789) $ (-659 (-876 |#1|))) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-4203 (($ $) NIL (|has| |#2| (-464)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#2| (-464)) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#2| (-1057 (-419 (-557)))) ELT) (((-3 (-557) #1#) $) NIL (|has| |#2| (-1057 (-557))) ELT) (((-3 (-876 |#1|) #1#) $) NIL T ELT)) (-3572 ((|#2| $) NIL T ELT) (((-419 (-557)) $) NIL (|has| |#2| (-1057 (-419 (-557)))) ELT) (((-557) $) NIL (|has| |#2| (-1057 (-557))) ELT) (((-876 |#1|) $) NIL T ELT)) (-4184 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2146 (($ $ (-659 (-557))) NIL T ELT)) (-4387 (($ $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 $) (-1286 $)) NIL T ELT) (((-707 |#2|) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3921 (($ $) NIL (|has| |#2| (-464)) ELT) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3217 (((-659 $) $) NIL T ELT)) (-4151 (((-114) $) NIL (|has| |#2| (-927)) ELT)) (-1802 (($ $ |#2| (-494 (-4385 |#1|) (-789)) $) NIL T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-391))) (|has| |#2| (-899 (-391)))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-557))) (|has| |#2| (-899 (-557)))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-2647 (((-789) $) NIL T ELT)) (-3485 (($ (-1190 |#2|) (-876 |#1|)) NIL T ELT) (($ (-1190 $) (-876 |#1|)) NIL T ELT)) (-3220 (((-659 $) $) NIL T ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#2| (-494 (-4385 |#1|) (-789))) NIL T ELT) (($ $ (-876 |#1|) (-789)) NIL T ELT) (($ $ (-659 (-876 |#1|)) (-659 (-789))) NIL T ELT)) (-4191 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $ (-876 |#1|)) NIL T ELT)) (-3219 (((-494 (-4385 |#1|) (-789)) $) NIL T ELT) (((-789) $ (-876 |#1|)) NIL T ELT) (((-659 (-789)) $ (-659 (-876 |#1|))) NIL T ELT)) (-1803 (($ (-1 (-494 (-4385 |#1|) (-789)) (-494 (-4385 |#1|) (-789))) $) NIL T ELT)) (-4386 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3483 (((-3 (-876 |#1|) #1#) $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL T ELT) (((-707 |#2|) (-1286 $)) NIL T ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#2| $) NIL T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3222 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3221 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -2630 (-789))) #1#) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2003 (((-114) $) NIL T ELT)) (-2002 ((|#2| $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#2| (-464)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-4160 (((-417 $) $) NIL (|has| |#2| (-927)) ELT)) (-3884 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-568)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-568)) ELT)) (-4196 (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ (-876 |#1|) |#2|) NIL T ELT) (($ $ (-659 (-876 |#1|)) (-659 |#2|)) NIL T ELT) (($ $ (-876 |#1|) $) NIL T ELT) (($ $ (-659 (-876 |#1|)) (-659 $)) NIL T ELT)) (-4185 (($ $ (-876 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4186 (($ $ (-659 (-876 |#1|)) (-659 (-789))) NIL T ELT) (($ $ (-876 |#1|) (-789)) NIL T ELT) (($ $ (-659 (-876 |#1|))) NIL T ELT) (($ $ (-876 |#1|)) NIL T ELT)) (-4376 (((-494 (-4385 |#1|) (-789)) $) NIL T ELT) (((-789) $ (-876 |#1|)) NIL T ELT) (((-659 (-789)) $ (-659 (-876 |#1|))) NIL T ELT)) (-4400 (((-903 (-391)) $) NIL (-12 (|has| (-876 |#1|) (-629 (-903 (-391)))) (|has| |#2| (-629 (-903 (-391))))) ELT) (((-903 (-557)) $) NIL (-12 (|has| (-876 |#1|) (-629 (-903 (-557)))) (|has| |#2| (-629 (-903 (-557))))) ELT) (((-546) $) NIL (-12 (|has| (-876 |#1|) (-629 (-546))) (|has| |#2| (-629 (-546)))) ELT)) (-3216 ((|#2| $) NIL (|has| |#2| (-464)) ELT) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-927))) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-876 |#1|)) NIL T ELT) (($ (-419 (-557))) NIL (-3955 (|has| |#2| (-38 (-419 (-557)))) (|has| |#2| (-1057 (-419 (-557))))) ELT) (($ $) NIL (|has| |#2| (-568)) ELT)) (-4245 (((-659 |#2|) $) NIL T ELT)) (-4105 ((|#2| $ (-494 (-4385 |#1|) (-789))) NIL T ELT) (($ $ (-876 |#1|) (-789)) NIL T ELT) (($ $ (-659 (-876 |#1|)) (-659 (-789))) NIL T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| |#2| (-927))) (|has| |#2| (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-1801 (($ $ $ (-789)) NIL (|has| |#2| (-175)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL (|has| |#2| (-568)) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $ (-659 (-876 |#1|)) (-659 (-789))) NIL T ELT) (($ $ (-876 |#1|) (-789)) NIL T ELT) (($ $ (-659 (-876 |#1|))) NIL T ELT) (($ $ (-876 |#1|)) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL (|has| |#2| (-38 (-419 (-557)))) ELT) (($ (-419 (-557)) $) NIL (|has| |#2| (-38 (-419 (-557)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-493 |#1| |#2|) (-13 (-967 |#2| (-494 (-4385 |#1|) (-789)) (-876 |#1|)) (-10 -8 (-15 -2146 ($ $ (-659 (-557)))))) (-659 (-1196)) (-1068)) (T -493)) -((-2146 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-493 *3 *4)) (-14 *3 (-659 (-1196))) (-4 *4 (-1068))))) -((-2965 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3604 (((-114) $) NIL (|has| |#2| (-23)) ELT)) (-4135 (($ (-936)) NIL (|has| |#2| (-1068)) ELT)) (-2411 (((-1292) $ (-557) (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-2871 (($ $ $) NIL (|has| |#2| (-813)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-133)) ELT)) (-3536 (((-789)) NIL (|has| |#2| (-381)) ELT)) (-4216 ((|#2| $ (-557) |#2|) NIL (|has| $ (-6 -4424)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) NIL (-12 (|has| |#2| (-1057 (-557))) (|has| |#2| (-1120))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (-12 (|has| |#2| (-1057 (-419 (-557)))) (|has| |#2| (-1120))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1120)) ELT)) (-3572 (((-557) $) NIL (-12 (|has| |#2| (-1057 (-557))) (|has| |#2| (-1120))) ELT) (((-419 (-557)) $) NIL (-12 (|has| |#2| (-1057 (-419 (-557)))) (|has| |#2| (-1120))) ELT) ((|#2| $) NIL (|has| |#2| (-1120)) ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (-12 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (-12 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 $) (-1286 $)) NIL (|has| |#2| (-1068)) ELT) (((-707 |#2|) (-707 $)) NIL (|has| |#2| (-1068)) ELT)) (-3885 (((-3 $ #1#) $) NIL (|has| |#2| (-1068)) ELT)) (-3393 (($) NIL (|has| |#2| (-381)) ELT)) (-1717 ((|#2| $ (-557) |#2|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#2| $ (-557)) 11 T ELT)) (-3602 (((-114) $) NIL (|has| |#2| (-813)) ELT)) (-3288 (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2639 (((-114) $) NIL (|has| |#2| (-1068)) ELT)) (-2413 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) NIL (|has| |#2| (-859)) ELT)) (-3005 (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-2414 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#2| (-859)) ELT)) (-2158 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2218 (((-936) $) NIL (|has| |#2| (-381)) ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (-12 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (-12 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL (|has| |#2| (-1068)) ELT) (((-707 |#2|) (-1286 $)) NIL (|has| |#2| (-1068)) ELT)) (-3658 (((-1178) $) NIL (|has| |#2| (-1120)) ELT)) (-2416 (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) (-557) $) NIL T ELT)) (-2629 (($ (-936)) NIL (|has| |#2| (-381)) ELT)) (-3659 (((-1139) $) NIL (|has| |#2| (-1120)) ELT)) (-4229 ((|#2| $) NIL (|has| (-557) (-859)) ELT)) (-2412 (($ $ |#2|) NIL (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-659 |#2|) (-659 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-2418 (((-659 |#2|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#2| $ (-557) |#2|) NIL T ELT) ((|#2| $ (-557)) NIL T ELT)) (-4264 ((|#2| $ $) NIL (|has| |#2| (-1068)) ELT)) (-1598 (($ (-1286 |#2|)) NIL T ELT)) (-4339 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-4186 (($ $ (-789)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1068))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1068))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1196)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068)) ELT) (($ $ (-1 |#2| |#2|) (-789)) NIL (|has| |#2| (-1068)) ELT)) (-2155 (((-789) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-4374 (((-1286 |#2|) $) NIL T ELT) (($ (-557)) NIL (-3955 (-12 (|has| |#2| (-1057 (-557))) (|has| |#2| (-1120))) (|has| |#2| (-1068))) ELT) (($ (-419 (-557))) NIL (-12 (|has| |#2| (-1057 (-419 (-557)))) (|has| |#2| (-1120))) ELT) (($ |#2|) NIL (|has| |#2| (-1120)) ELT) (((-875) $) NIL (|has| |#2| (-628 (-875))) ELT)) (-3526 (((-789)) NIL (|has| |#2| (-1068)) CONST)) (-1376 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3057 (($) NIL (|has| |#2| (-23)) CONST)) (-3063 (($) NIL (|has| |#2| (-1068)) CONST)) (-3068 (($ $ (-789)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1068))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1068))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1196)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068)) ELT) (($ $ (-1 |#2| |#2|) (-789)) NIL (|has| |#2| (-1068)) ELT)) (-2963 (((-114) $ $) NIL (|has| |#2| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#2| (-859)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3083 (((-114) $ $) NIL (|has| |#2| (-859)) ELT)) (-3084 (((-114) $ $) 17 (|has| |#2| (-859)) ELT)) (-4377 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4265 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-4267 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-789)) NIL (|has| |#2| (-1068)) ELT) (($ $ (-936)) NIL (|has| |#2| (-1068)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1068)) ELT) (($ $ |#2|) NIL (|has| |#2| (-744)) ELT) (($ |#2| $) NIL (|has| |#2| (-744)) ELT) (($ (-557) $) NIL (|has| |#2| (-21)) ELT) (($ (-789) $) NIL (|has| |#2| (-23)) ELT) (($ (-936) $) NIL (|has| |#2| (-25)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-494 |#1| |#2|) (-245 |#1| |#2|) (-789) (-813)) (T -494)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-2147 (((-659 (-888)) $) 15 T ELT)) (-3968 (((-518) $) 13 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2148 (($ (-518) (-659 (-888))) 11 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 22 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-495) (-13 (-1102) (-10 -8 (-15 -2148 ($ (-518) (-659 (-888)))) (-15 -3968 ((-518) $)) (-15 -2147 ((-659 (-888)) $))))) (T -495)) -((-2148 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-659 (-888))) (-5 *1 (-495)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) (-2147 (*1 *2 *1) (-12 (-5 *2 (-659 (-888))) (-5 *1 (-495))))) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4152 (($) NIL T CONST)) (-3288 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3255 (($ $ $) 48 T ELT)) (-3936 (($ $ $) 47 T ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3256 ((|#1| $) 40 T ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-1387 ((|#1| $) 41 T ELT)) (-4035 (($ |#1| $) 18 T ELT)) (-2149 (($ (-659 |#1|)) 19 T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-1388 ((|#1| $) 34 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) 11 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-4374 (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1389 (($ (-659 |#1|)) 45 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 29 (|has| $ (-6 -4423)) ELT))) -(((-496 |#1|) (-13 (-987 |#1|) (-10 -8 (-15 -2149 ($ (-659 |#1|))))) (-859)) (T -496)) -((-2149 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-859)) (-5 *1 (-496 *3))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-4270 (($ $) 71 T ELT)) (-1837 (((-114) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2178 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 45 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2638 (((-3 |#4| #1#) $) 117 T ELT)) (-1838 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-557)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3853 (((-2 (|:| -2553 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-4374 (((-875) $) 110 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 32 T CONST)) (-3452 (((-114) $ $) 121 T ELT)) (-4265 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 72 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 77 T ELT))) -(((-497 |#1| |#2| |#3| |#4|) (-349 |#1| |#2| |#3| |#4|) (-376) (-1262 |#1|) (-1262 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -497)) -NIL -((-2153 (((-557) (-659 (-557))) 53 T ELT)) (-2150 ((|#1| (-659 |#1|)) 94 T ELT)) (-2152 (((-659 |#1|) (-659 |#1|)) 95 T ELT)) (-2151 (((-659 |#1|) (-659 |#1|)) 97 T ELT)) (-3560 ((|#1| (-659 |#1|)) 96 T ELT)) (-3216 (((-659 (-557)) (-659 |#1|)) 56 T ELT))) -(((-498 |#1|) (-10 -7 (-15 -3560 (|#1| (-659 |#1|))) (-15 -2150 (|#1| (-659 |#1|))) (-15 -2151 ((-659 |#1|) (-659 |#1|))) (-15 -2152 ((-659 |#1|) (-659 |#1|))) (-15 -3216 ((-659 (-557)) (-659 |#1|))) (-15 -2153 ((-557) (-659 (-557))))) (-1262 (-557))) (T -498)) -((-2153 (*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-557)) (-5 *1 (-498 *4)) (-4 *4 (-1262 *2)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-659 *4)) (-4 *4 (-1262 (-557))) (-5 *2 (-659 (-557))) (-5 *1 (-498 *4)))) (-2152 (*1 *2 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1262 (-557))) (-5 *1 (-498 *3)))) (-2151 (*1 *2 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1262 (-557))) (-5 *1 (-498 *3)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-659 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1262 (-557))))) (-3560 (*1 *2 *3) (-12 (-5 *3 (-659 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1262 (-557)))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3529 (((-557) $) NIL (|has| (-557) (-319)) ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| (-557) (-927)) ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| (-557) (-927)) ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4051 (((-557) $) NIL (|has| (-557) (-840)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) NIL T ELT) (((-3 (-1196) #1#) $) NIL (|has| (-557) (-1057 (-1196))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| (-557) (-1057 (-557))) ELT) (((-3 (-557) #1#) $) NIL (|has| (-557) (-1057 (-557))) ELT)) (-3572 (((-557) $) NIL T ELT) (((-1196) $) NIL (|has| (-557) (-1057 (-1196))) ELT) (((-419 (-557)) $) NIL (|has| (-557) (-1057 (-557))) ELT) (((-557) $) NIL (|has| (-557) (-1057 (-557))) ELT)) (-2961 (($ $ $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| (-557) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| (-557) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL T ELT) (((-707 (-557)) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3393 (($) NIL (|has| (-557) (-556)) ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-3602 (((-114) $) NIL (|has| (-557) (-840)) ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (|has| (-557) (-899 (-557))) ELT) (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (|has| (-557) (-899 (-391))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-3395 (($ $) NIL T ELT)) (-3397 (((-557) $) NIL T ELT)) (-3863 (((-709 $) $) NIL (|has| (-557) (-1171)) ELT)) (-3603 (((-114) $) NIL (|has| (-557) (-840)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2928 (($ $ $) NIL (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| (-557) (-859)) ELT)) (-4386 (($ (-1 (-557) (-557)) $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| (-557) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| (-557) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL T ELT) (((-707 (-557)) (-1286 $)) NIL T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3864 (($) NIL (|has| (-557) (-1171)) CONST)) (-2154 (($ (-419 (-557))) 9 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3528 (($ $) NIL (|has| (-557) (-319)) ELT) (((-419 (-557)) $) NIL T ELT)) (-3530 (((-557) $) NIL (|has| (-557) (-556)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (|has| (-557) (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (|has| (-557) (-927)) ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-4196 (($ $ (-659 (-557)) (-659 (-557))) NIL (|has| (-557) (-321 (-557))) ELT) (($ $ (-557) (-557)) NIL (|has| (-557) (-321 (-557))) ELT) (($ $ (-305 (-557))) NIL (|has| (-557) (-321 (-557))) ELT) (($ $ (-659 (-305 (-557)))) NIL (|has| (-557) (-321 (-557))) ELT) (($ $ (-659 (-1196)) (-659 (-557))) NIL (|has| (-557) (-526 (-1196) (-557))) ELT) (($ $ (-1196) (-557)) NIL (|has| (-557) (-526 (-1196) (-557))) ELT)) (-1785 (((-789) $) NIL T ELT)) (-4228 (($ $ (-557)) NIL (|has| (-557) (-298 (-557) (-557))) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-4186 (($ $ (-1 (-557) (-557))) NIL T ELT) (($ $ (-1 (-557) (-557)) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $) NIL (|has| (-557) (-239)) ELT) (($ $ (-789)) NIL (|has| (-557) (-239)) ELT)) (-3394 (($ $) NIL T ELT)) (-3396 (((-557) $) NIL T ELT)) (-4400 (((-903 (-557)) $) NIL (|has| (-557) (-629 (-903 (-557)))) ELT) (((-903 (-391)) $) NIL (|has| (-557) (-629 (-903 (-391)))) ELT) (((-546) $) NIL (|has| (-557) (-629 (-546))) ELT) (((-391) $) NIL (|has| (-557) (-1039)) ELT) (((-229) $) NIL (|has| (-557) (-1039)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| (-557) (-927))) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) 8 T ELT) (($ (-557)) NIL T ELT) (($ (-1196)) NIL (|has| (-557) (-1057 (-1196))) ELT) (((-419 (-557)) $) NIL T ELT) (((-1023 16) $) 10 T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| (-557) (-927))) (|has| (-557) (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-3531 (((-557) $) NIL (|has| (-557) (-556)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-3801 (($ $) NIL (|has| (-557) (-840)) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $ (-1 (-557) (-557))) NIL T ELT) (($ $ (-1 (-557) (-557)) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $) NIL (|has| (-557) (-239)) ELT) (($ $ (-789)) NIL (|has| (-557) (-239)) ELT)) (-2963 (((-114) $ $) NIL (|has| (-557) (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| (-557) (-859)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL (|has| (-557) (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| (-557) (-859)) ELT)) (-4377 (($ $ $) NIL T ELT) (($ (-557) (-557)) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ (-557)) NIL T ELT))) -(((-499) (-13 (-1010 (-557)) (-628 (-419 (-557))) (-628 (-1023 16)) (-10 -8 (-15 -3528 ((-419 (-557)) $)) (-15 -2154 ($ (-419 (-557))))))) (T -499)) -((-3528 (*1 *2 *1) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-499)))) (-2154 (*1 *1 *2) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-499))))) -((-3005 (((-659 |#2|) $) 31 T ELT)) (-3661 (((-114) |#2| $) 39 T ELT)) (-2156 (((-114) (-1 (-114) |#2|) $) 26 T ELT)) (-4196 (($ $ (-659 (-305 |#2|))) 13 T ELT) (($ $ (-305 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-659 |#2|) (-659 |#2|)) NIL T ELT)) (-2155 (((-789) (-1 (-114) |#2|) $) 30 T ELT) (((-789) |#2| $) 37 T ELT)) (-4374 (((-875) $) 45 T ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) 23 T ELT)) (-3452 (((-114) $ $) 35 T ELT)) (-4385 (((-789) $) 18 T ELT))) -(((-500 |#1| |#2|) (-10 -7 (-15 -3452 ((-114) |#1| |#1|)) (-15 -4374 ((-875) |#1|)) (-15 -4196 (|#1| |#1| (-659 |#2|) (-659 |#2|))) (-15 -4196 (|#1| |#1| |#2| |#2|)) (-15 -4196 (|#1| |#1| (-305 |#2|))) (-15 -4196 (|#1| |#1| (-659 (-305 |#2|)))) (-15 -3661 ((-114) |#2| |#1|)) (-15 -2155 ((-789) |#2| |#1|)) (-15 -3005 ((-659 |#2|) |#1|)) (-15 -2155 ((-789) (-1 (-114) |#2|) |#1|)) (-15 -2156 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2157 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4385 ((-789) |#1|))) (-501 |#2|) (-1236)) (T -500)) -NIL -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4152 (($) 7 T CONST)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-501 |#1|) (-142) (-1236)) (T -501)) -((-4386 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1236)))) (-2158 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4424)) (-4 *1 (-501 *3)) (-4 *3 (-1236)))) (-2157 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4423)) (-4 *1 (-501 *4)) (-4 *4 (-1236)) (-5 *2 (-114)))) (-2156 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4423)) (-4 *1 (-501 *4)) (-4 *4 (-1236)) (-5 *2 (-114)))) (-2155 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4423)) (-4 *1 (-501 *4)) (-4 *4 (-1236)) (-5 *2 (-789)))) (-3288 (*1 *2 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) (-5 *2 (-659 *3)))) (-3005 (*1 *2 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) (-5 *2 (-659 *3)))) (-2155 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) (-4 *3 (-1120)) (-5 *2 (-789)))) (-3661 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) (-4 *3 (-1120)) (-5 *2 (-114))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-628 (-875))) (-6 (-628 (-875))) |%noBranch|) (IF (|has| |t#1| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#1| (-1120)) (-6 (-1120)) |%noBranch|) (IF (|has| |t#1| (-1120)) (IF (|has| |t#1| (-321 |t#1|)) (-6 (-321 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4386 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4424)) (-15 -2158 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4423)) (PROGN (-15 -2157 ((-114) (-1 (-114) |t#1|) $)) (-15 -2156 ((-114) (-1 (-114) |t#1|) $)) (-15 -2155 ((-789) (-1 (-114) |t#1|) $)) (-15 -3288 ((-659 |t#1|) $)) (-15 -3005 ((-659 |t#1|) $)) (IF (|has| |t#1| (-1120)) (PROGN (-15 -2155 ((-789) |t#1| $)) (-15 -3661 ((-114) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-628 (-875)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1236) . T)) -((-4374 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) -(((-502 |#1|) (-142) (-1236)) (T -502)) -NIL -(-13 (-628 |t#1|) (-631 |t#1|)) -(((-631 |#1|) . T) ((-628 |#1|) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2159 (($ (-1178)) 8 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 15 T ELT) (((-1178) $) 12 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 11 T ELT))) -(((-503) (-13 (-1120) (-628 (-1178)) (-10 -8 (-15 -2159 ($ (-1178)))))) (T -503)) -((-2159 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-503))))) -((-3910 (($ $) 15 T ELT)) (-3908 (($ $) 24 T ELT)) (-3912 (($ $) 12 T ELT)) (-3913 (($ $) 10 T ELT)) (-3911 (($ $) 17 T ELT)) (-3909 (($ $) 22 T ELT))) -(((-504 |#1|) (-10 -7 (-15 -3909 (|#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3912 (|#1| |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -3910 (|#1| |#1|))) (-505)) (T -504)) -NIL -((-3910 (($ $) 11 T ELT)) (-3908 (($ $) 10 T ELT)) (-3912 (($ $) 9 T ELT)) (-3913 (($ $) 8 T ELT)) (-3911 (($ $) 7 T ELT)) (-3909 (($ $) 6 T ELT))) -(((-505) (-142)) (T -505)) -((-3910 (*1 *1 *1) (-4 *1 (-505))) (-3908 (*1 *1 *1) (-4 *1 (-505))) (-3912 (*1 *1 *1) (-4 *1 (-505))) (-3913 (*1 *1 *1) (-4 *1 (-505))) (-3911 (*1 *1 *1) (-4 *1 (-505))) (-3909 (*1 *1 *1) (-4 *1 (-505)))) -(-13 (-10 -8 (-15 -3909 ($ $)) (-15 -3911 ($ $)) (-15 -3913 ($ $)) (-15 -3912 ($ $)) (-15 -3908 ($ $)) (-15 -3910 ($ $)))) -((-4160 (((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)) 54 T ELT))) -(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4160 ((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)))) (-376) (-1262 |#1|) (-13 (-376) (-149) (-742 |#1| |#2|)) (-1262 |#3|)) (T -506)) -((-4160 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-376)) (-4 *7 (-13 (-376) (-149) (-742 *5 *6))) (-5 *2 (-417 *3)) (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1262 *7))))) -((-2965 (((-114) $ $) NIL T ELT)) (-1748 (((-659 $) (-1190 $) (-1196)) NIL T ELT) (((-659 $) (-1190 $)) NIL T ELT) (((-659 $) (-963 $)) NIL T ELT)) (-1321 (($ (-1190 $) (-1196)) NIL T ELT) (($ (-1190 $)) NIL T ELT) (($ (-963 $)) NIL T ELT)) (-3604 (((-114) $) 39 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-2160 (((-114) $ $) 72 T ELT)) (-1741 (((-659 (-626 $)) $) 49 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1745 (($ $ (-305 $)) NIL T ELT) (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-659 (-626 $)) (-659 $)) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-3436 (($ $) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-1322 (((-659 $) (-1190 $) (-1196)) NIL T ELT) (((-659 $) (-1190 $)) NIL T ELT) (((-659 $) (-963 $)) NIL T ELT)) (-3599 (($ (-1190 $) (-1196)) NIL T ELT) (($ (-1190 $)) NIL T ELT) (($ (-963 $)) NIL T ELT)) (-3573 (((-3 (-626 $) #1#) $) NIL T ELT) (((-3 (-557) #1#) $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL T ELT)) (-3572 (((-626 $) $) NIL T ELT) (((-557) $) NIL T ELT) (((-419 (-557)) $) 54 T ELT)) (-2961 (($ $ $) NIL T ELT)) (-2491 (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL T ELT) (((-707 (-557)) (-707 $)) NIL T ELT) (((-2 (|:| -1781 (-707 (-419 (-557)))) (|:| |vec| (-1286 (-419 (-557))))) (-707 $) (-1286 $)) NIL T ELT) (((-707 (-419 (-557))) (-707 $)) NIL T ELT)) (-4270 (($ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-2970 (($ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-1740 (((-659 (-115)) $) NIL T ELT)) (-4021 (((-115) (-115)) NIL T ELT)) (-2639 (((-114) $) 42 T ELT)) (-3072 (((-114) $) NIL (|has| $ (-1057 (-557))) ELT)) (-3397 (((-1144 (-557) (-626 $)) $) 37 T ELT)) (-3410 (($ $ (-557)) NIL T ELT)) (-3532 (((-1190 $) (-1190 $) (-626 $)) 86 T ELT) (((-1190 $) (-1190 $) (-659 (-626 $))) 61 T ELT) (($ $ (-626 $)) 75 T ELT) (($ $ (-659 (-626 $))) 76 T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-1738 (((-1190 $) (-626 $)) 73 (|has| $ (-1068)) ELT)) (-4386 (($ (-1 $ $) (-626 $)) NIL T ELT)) (-1743 (((-3 (-626 $) #1#) $) NIL T ELT)) (-2492 (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL T ELT) (((-707 (-557)) (-1286 $)) NIL T ELT) (((-2 (|:| -1781 (-707 (-419 (-557)))) (|:| |vec| (-1286 (-419 (-557))))) (-1286 $) $) NIL T ELT) (((-707 (-419 (-557))) (-1286 $)) NIL T ELT)) (-2100 (($ (-659 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1742 (((-659 (-626 $)) $) NIL T ELT)) (-2447 (($ (-115) $) NIL T ELT) (($ (-115) (-659 $)) NIL T ELT)) (-3030 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1196)) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3000 (((-789) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ (-659 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1739 (((-114) $ $) NIL T ELT) (((-114) $ (-1196)) NIL T ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-3073 (((-114) $) NIL (|has| $ (-1057 (-557))) ELT)) (-4196 (($ $ (-626 $) $) NIL T ELT) (($ $ (-659 (-626 $)) (-659 $)) NIL T ELT) (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-1 $ $))) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-1 $ (-659 $)))) NIL T ELT) (($ $ (-1196) (-1 $ (-659 $))) NIL T ELT) (($ $ (-1196) (-1 $ $)) NIL T ELT) (($ $ (-659 (-115)) (-659 (-1 $ $))) NIL T ELT) (($ $ (-659 (-115)) (-659 (-1 $ (-659 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-659 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-4228 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-659 $)) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-1744 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4186 (($ $) 36 T ELT) (($ $ (-789)) NIL T ELT)) (-3396 (((-1144 (-557) (-626 $)) $) 20 T ELT)) (-3601 (($ $) NIL (|has| $ (-1068)) ELT)) (-4400 (((-391) $) 100 T ELT) (((-229) $) 108 T ELT) (((-171 (-391)) $) 116 T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-626 $)) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ $) NIL T ELT) (($ (-557)) NIL T ELT) (($ (-1144 (-557) (-626 $))) 21 T ELT)) (-3526 (((-789)) NIL T CONST)) (-2987 (($ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-2466 (((-114) (-115)) 92 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-3057 (($) 10 T CONST)) (-3063 (($) 22 T CONST)) (-3068 (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-3452 (((-114) $ $) 24 T ELT)) (-4377 (($ $ $) 44 T ELT)) (-4265 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-419 (-557))) NIL T ELT) (($ $ (-557)) 47 T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-936)) NIL T ELT)) (* (($ (-419 (-557)) $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-557) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-936) $) NIL T ELT))) -(((-507) (-13 (-310) (-27) (-1057 (-557)) (-1057 (-419 (-557))) (-656 (-557)) (-1039) (-656 (-419 (-557))) (-149) (-629 (-171 (-391))) (-240) (-631 (-1144 (-557) (-626 $))) (-10 -8 (-15 -3397 ((-1144 (-557) (-626 $)) $)) (-15 -3396 ((-1144 (-557) (-626 $)) $)) (-15 -4270 ($ $)) (-15 -2160 ((-114) $ $)) (-15 -3532 ((-1190 $) (-1190 $) (-626 $))) (-15 -3532 ((-1190 $) (-1190 $) (-659 (-626 $)))) (-15 -3532 ($ $ (-626 $))) (-15 -3532 ($ $ (-659 (-626 $))))))) (T -507)) -((-3397 (*1 *2 *1) (-12 (-5 *2 (-1144 (-557) (-626 (-507)))) (-5 *1 (-507)))) (-3396 (*1 *2 *1) (-12 (-5 *2 (-1144 (-557) (-626 (-507)))) (-5 *1 (-507)))) (-4270 (*1 *1 *1) (-5 *1 (-507))) (-2160 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-507)))) (-3532 (*1 *2 *2 *3) (-12 (-5 *2 (-1190 (-507))) (-5 *3 (-626 (-507))) (-5 *1 (-507)))) (-3532 (*1 *2 *2 *3) (-12 (-5 *2 (-1190 (-507))) (-5 *3 (-659 (-626 (-507)))) (-5 *1 (-507)))) (-3532 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-507))) (-5 *1 (-507)))) (-3532 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-626 (-507)))) (-5 *1 (-507))))) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2411 (((-1292) $ (-557) (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-1933 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-859)) ELT)) (-1931 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-859))) ELT)) (-3308 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-859)) ELT)) (-4216 ((|#1| $ (-557) |#1|) 42 (|has| $ (-6 -4424)) ELT) ((|#1| $ (-1253 (-557)) |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4152 (($) NIL T CONST)) (-2508 (($ $) NIL (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) NIL T ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-1717 ((|#1| $ (-557) |#1|) 38 (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-557)) 37 T ELT)) (-3837 (((-557) (-1 (-114) |#1|) $) NIL T ELT) (((-557) |#1| $) NIL (|has| |#1| (-1120)) ELT) (((-557) |#1| $ (-557)) NIL (|has| |#1| (-1120)) ELT)) (-3288 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4042 (($ (-789) |#1|) 21 T ELT)) (-2413 (((-557) $) 17 (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3936 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2414 (((-557) $) 39 (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 28 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 31 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 34 T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-2515 (($ |#1| $ (-557)) NIL T ELT) (($ $ $ (-557)) NIL T ELT)) (-2416 (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) (-557) $) NIL T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-4229 ((|#1| $) NIL (|has| (-557) (-859)) ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2412 (($ $ |#1|) 15 (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) 19 T ELT)) (-4228 ((|#1| $ (-557) |#1|) NIL T ELT) ((|#1| $ (-557)) 41 T ELT) (($ $ (-1253 (-557))) NIL T ELT)) (-2516 (($ $ (-557)) NIL T ELT) (($ $ (-1253 (-557))) NIL T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-1932 (($ $ $ (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) 13 T ELT)) (-4400 (((-546) $) NIL (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 24 T ELT)) (-4230 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-4374 (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2963 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3083 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-4385 (((-789) $) 11 (|has| $ (-6 -4423)) ELT))) -(((-508 |#1| |#2|) (-19 |#1|) (-1236) (-557)) (T -508)) -NIL -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4216 ((|#1| $ (-557) (-557) |#1|) NIL T ELT)) (-1362 (($ $ (-557) (-508 |#1| |#3|)) NIL T ELT)) (-1361 (($ $ (-557) (-508 |#1| |#2|)) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3512 (((-508 |#1| |#3|) $ (-557)) NIL T ELT)) (-1717 ((|#1| $ (-557) (-557) |#1|) NIL T ELT)) (-3513 ((|#1| $ (-557) (-557)) NIL T ELT)) (-3288 (((-659 |#1|) $) NIL T ELT)) (-3515 (((-789) $) NIL T ELT)) (-4042 (($ (-789) (-789) |#1|) NIL T ELT)) (-3514 (((-789) $) NIL T ELT)) (-3519 (((-557) $) NIL T ELT)) (-3517 (((-557) $) NIL T ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3518 (((-557) $) NIL T ELT)) (-3516 (((-557) $) NIL T ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-2412 (($ $ |#1|) NIL T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#1| $ (-557) (-557)) NIL T ELT) ((|#1| $ (-557) (-557) |#1|) NIL T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-3511 (((-508 |#1| |#2|) $ (-557)) NIL T ELT)) (-4374 (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-509 |#1| |#2| |#3|) (-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) (-1236) (-557) (-557)) (T -509)) -NIL -((-2162 (((-659 (-2 (|:| -2220 (-707 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-707 |#2|)))) (-2 (|:| -2220 (-707 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-707 |#2|))) (-789) (-789)) 32 T ELT)) (-2161 (((-659 (-1190 |#1|)) |#1| (-789) (-789) (-789)) 43 T ELT)) (-2290 (((-2 (|:| -2220 (-707 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-707 |#2|))) (-659 |#3|) (-659 (-2 (|:| -2220 (-707 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-707 |#2|)))) (-789)) 107 T ELT))) -(((-510 |#1| |#2| |#3|) (-10 -7 (-15 -2161 ((-659 (-1190 |#1|)) |#1| (-789) (-789) (-789))) (-15 -2162 ((-659 (-2 (|:| -2220 (-707 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-707 |#2|)))) (-2 (|:| -2220 (-707 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-707 |#2|))) (-789) (-789))) (-15 -2290 ((-2 (|:| -2220 (-707 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-707 |#2|))) (-659 |#3|) (-659 (-2 (|:| -2220 (-707 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-707 |#2|)))) (-789)))) (-363) (-1262 |#1|) (-1262 |#2|)) (T -510)) -((-2290 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-659 *8)) (-5 *4 (-659 (-2 (|:| -2220 (-707 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-707 *7))))) (-5 *5 (-789)) (-4 *8 (-1262 *7)) (-4 *7 (-1262 *6)) (-4 *6 (-363)) (-5 *2 (-2 (|:| -2220 (-707 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-707 *7)))) (-5 *1 (-510 *6 *7 *8)))) (-2162 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-789)) (-4 *5 (-363)) (-4 *6 (-1262 *5)) (-5 *2 (-659 (-2 (|:| -2220 (-707 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-707 *6))))) (-5 *1 (-510 *5 *6 *7)) (-5 *3 (-2 (|:| -2220 (-707 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-707 *6)))) (-4 *7 (-1262 *6)))) (-2161 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-789)) (-4 *3 (-363)) (-4 *5 (-1262 *3)) (-5 *2 (-659 (-1190 *3))) (-5 *1 (-510 *3 *5 *6)) (-4 *6 (-1262 *5))))) -((-2168 (((-2 (|:| -2220 (-707 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-707 |#1|))) (-2 (|:| -2220 (-707 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-707 |#1|))) (-2 (|:| -2220 (-707 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-707 |#1|)))) 70 T ELT)) (-2163 ((|#1| (-707 |#1|) |#1| (-789)) 24 T ELT)) (-2165 (((-789) (-789) (-789)) 34 T ELT)) (-2167 (((-707 |#1|) (-707 |#1|) (-707 |#1|)) 50 T ELT)) (-2166 (((-707 |#1|) (-707 |#1|) (-707 |#1|) |#1|) 58 T ELT) (((-707 |#1|) (-707 |#1|) (-707 |#1|)) 55 T ELT)) (-2164 ((|#1| (-707 |#1|) (-707 |#1|) |#1| (-557)) 28 T ELT)) (-3747 ((|#1| (-707 |#1|)) 18 T ELT))) -(((-511 |#1| |#2| |#3|) (-10 -7 (-15 -3747 (|#1| (-707 |#1|))) (-15 -2163 (|#1| (-707 |#1|) |#1| (-789))) (-15 -2164 (|#1| (-707 |#1|) (-707 |#1|) |#1| (-557))) (-15 -2165 ((-789) (-789) (-789))) (-15 -2166 ((-707 |#1|) (-707 |#1|) (-707 |#1|))) (-15 -2166 ((-707 |#1|) (-707 |#1|) (-707 |#1|) |#1|)) (-15 -2167 ((-707 |#1|) (-707 |#1|) (-707 |#1|))) (-15 -2168 ((-2 (|:| -2220 (-707 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-707 |#1|))) (-2 (|:| -2220 (-707 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-707 |#1|))) (-2 (|:| -2220 (-707 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-707 |#1|)))))) (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $)))) (-1262 |#1|) (-422 |#1| |#2|)) (T -511)) -((-2168 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2220 (-707 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-707 *3)))) (-4 *3 (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $))))) (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2167 (*1 *2 *2 *2) (-12 (-5 *2 (-707 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $))))) (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2166 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-707 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $))))) (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2166 (*1 *2 *2 *2) (-12 (-5 *2 (-707 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $))))) (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2165 (*1 *2 *2 *2) (-12 (-5 *2 (-789)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $))))) (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2164 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-707 *2)) (-5 *4 (-557)) (-4 *2 (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $))))) (-4 *5 (-1262 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-422 *2 *5)))) (-2163 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-707 *2)) (-5 *4 (-789)) (-4 *2 (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $))))) (-4 *5 (-1262 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-422 *2 *5)))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-707 *2)) (-4 *4 (-1262 *2)) (-4 *2 (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $))))) (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-422 *2 *4))))) -((-2965 (((-114) $ $) NIL T ELT)) (-2524 (($ $) NIL T ELT)) (-3740 (($ $ $) 41 T ELT)) (-2411 (((-1292) $ (-557) (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-1933 (((-114) $) NIL (|has| (-114) (-859)) ELT) (((-114) (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-1931 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-114) (-859))) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4424)) ELT)) (-3308 (($ $) NIL (|has| (-114) (-859)) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-4216 (((-114) $ (-1253 (-557)) (-114)) NIL (|has| $ (-6 -4424)) ELT) (((-114) $ (-557) (-114)) 43 (|has| $ (-6 -4424)) ELT)) (-4138 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4423)) ELT)) (-4152 (($) NIL T CONST)) (-2508 (($ $) NIL (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) NIL T ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-114) (-1120))) ELT)) (-3824 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4423)) ELT) (($ (-114) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-114) (-1120))) ELT)) (-4270 (((-114) (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) NIL (-12 (|has| $ (-6 -4423)) (|has| (-114) (-1120))) ELT)) (-1717 (((-114) $ (-557) (-114)) NIL (|has| $ (-6 -4424)) ELT)) (-3513 (((-114) $ (-557)) NIL T ELT)) (-3837 (((-557) (-114) $ (-557)) NIL (|has| (-114) (-1120)) ELT) (((-557) (-114) $) NIL (|has| (-114) (-1120)) ELT) (((-557) (-1 (-114) (-114)) $) NIL T ELT)) (-3288 (((-659 (-114)) $) NIL (|has| $ (-6 -4423)) ELT)) (-2958 (($ $ $) 39 T ELT)) (-2957 (($ $) NIL T ELT)) (-1412 (($ $ $) NIL T ELT)) (-4042 (($ (-789) (-114)) 27 T ELT)) (-1413 (($ $ $) NIL T ELT)) (-2413 (((-557) $) 8 (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) NIL T ELT)) (-3936 (($ $ $) NIL (|has| (-114) (-859)) ELT) (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT)) (-3005 (((-659 (-114)) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-114) (-1120))) ELT)) (-2414 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL T ELT)) (-2158 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-114) (-114) (-114)) $ $) 36 T ELT) (($ (-1 (-114) (-114)) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2515 (($ $ $ (-557)) NIL T ELT) (($ (-114) $ (-557)) NIL T ELT)) (-2416 (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) (-557) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4229 (((-114) $) NIL (|has| (-557) (-859)) ELT)) (-1466 (((-3 (-114) "failed") (-1 (-114) (-114)) $) NIL T ELT)) (-2412 (($ $ (-114)) NIL (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-114)) (-659 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1120))) ELT) (($ $ (-114) (-114)) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1120))) ELT) (($ $ (-305 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1120))) ELT) (($ $ (-659 (-305 (-114)))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-114) (-1120))) ELT)) (-2418 (((-659 (-114)) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) 29 T ELT)) (-4228 (($ $ (-1253 (-557))) NIL T ELT) (((-114) $ (-557)) 22 T ELT) (((-114) $ (-557) (-114)) NIL T ELT)) (-2516 (($ $ (-1253 (-557))) NIL T ELT) (($ $ (-557)) NIL T ELT)) (-2155 (((-789) (-114) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-114) (-1120))) ELT) (((-789) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4423)) ELT)) (-1932 (($ $ $ (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) 30 T ELT)) (-4400 (((-546) $) NIL (|has| (-114) (-629 (-546))) ELT)) (-3948 (($ (-659 (-114))) NIL T ELT)) (-4230 (($ (-659 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-114) $) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-4374 (((-875) $) 26 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4423)) ELT)) (-2959 (($ $ $) 37 T ELT)) (-2522 (($ $ $) NIL T ELT)) (-3737 (($ $ $) 46 T ELT)) (-3739 (($ $) 44 T ELT)) (-3738 (($ $ $) 45 T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 31 T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 32 T ELT)) (-2523 (($ $ $) NIL T ELT)) (-4385 (((-789) $) 13 (|has| $ (-6 -4423)) ELT))) -(((-512 |#1|) (-13 (-125) (-10 -8 (-15 -3739 ($ $)) (-15 -3737 ($ $ $)) (-15 -3738 ($ $ $)))) (-557)) (T -512)) -((-3739 (*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-557)))) (-3737 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-557)))) (-3738 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-557))))) -((-2170 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1190 |#4|)) 35 T ELT)) (-2169 (((-1190 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1190 |#4|)) 22 T ELT)) (-2171 (((-3 (-707 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-707 (-1190 |#4|))) 46 T ELT)) (-2172 (((-1190 (-1190 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) -(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2169 (|#2| (-1 |#1| |#4|) (-1190 |#4|))) (-15 -2169 ((-1190 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2170 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1190 |#4|))) (-15 -2171 ((-3 (-707 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-707 (-1190 |#4|)))) (-15 -2172 ((-1190 (-1190 |#4|)) (-1 |#4| |#1|) |#3|))) (-1068) (-1262 |#1|) (-1262 |#2|) (-1068)) (T -513)) -((-2172 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *6 (-1262 *5)) (-5 *2 (-1190 (-1190 *7))) (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1262 *6)))) (-2171 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-707 (-1190 *8))) (-4 *5 (-1068)) (-4 *8 (-1068)) (-4 *6 (-1262 *5)) (-5 *2 (-707 *6)) (-5 *1 (-513 *5 *6 *7 *8)) (-4 *7 (-1262 *6)))) (-2170 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1190 *7)) (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *2 (-1262 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1262 *2)))) (-2169 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *4 (-1262 *5)) (-5 *2 (-1190 *7)) (-5 *1 (-513 *5 *4 *6 *7)) (-4 *6 (-1262 *4)))) (-2169 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1190 *7)) (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *2 (-1262 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1262 *2))))) -((-2965 (((-114) $ $) NIL T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2173 (((-1292) $) 25 T ELT)) (-4228 (((-1178) $ (-1196)) 30 T ELT)) (-4045 (((-1292) $) 19 T ELT)) (-4374 (((-875) $) 27 T ELT) (($ (-1178)) 26 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 11 T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 9 T ELT))) -(((-514) (-13 (-859) (-631 (-1178)) (-10 -8 (-15 -4228 ((-1178) $ (-1196))) (-15 -4045 ((-1292) $)) (-15 -2173 ((-1292) $))))) (T -514)) -((-4228 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1178)) (-5 *1 (-514)))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-514)))) (-2173 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-514))))) -((-4169 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-4167 ((|#1| |#4|) 10 T ELT)) (-4168 ((|#3| |#4|) 17 T ELT))) -(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4167 (|#1| |#4|)) (-15 -4168 (|#3| |#4|)) (-15 -4169 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-568) (-1010 |#1|) (-385 |#1|) (-385 |#2|)) (T -515)) -((-4169 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-385 *4)) (-4 *3 (-385 *5)))) (-4168 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4)) (-4 *2 (-385 *4)) (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-385 *5)))) (-4167 (*1 *2 *3) (-12 (-4 *4 (-1010 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-385 *4))))) -((-2965 (((-114) $ $) NIL T ELT)) (-2183 (((-114) $ (-659 |#3|)) 126 T ELT) (((-114) $) 127 T ELT)) (-3604 (((-114) $) 177 T ELT)) (-2175 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-659 |#3|)) 121 T ELT)) (-2174 (((-1185 (-659 (-963 |#1|)) (-659 (-305 (-963 |#1|)))) (-659 |#4|)) 170 (|has| |#3| (-629 (-1196))) ELT)) (-2182 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2639 (((-114) $) 176 T ELT)) (-2179 (($ $) 131 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3654 (($ $ $) 99 T ELT) (($ (-659 $)) 101 T ELT)) (-2184 (((-114) |#4| $) 129 T ELT)) (-2185 (((-114) $ $) 82 T ELT)) (-2178 (($ (-659 |#4|)) 106 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2177 (($ (-659 |#4|)) 174 T ELT)) (-2176 (((-114) $) 175 T ELT)) (-2463 (($ $) 85 T ELT)) (-3094 (((-659 |#4|) $) 73 T ELT)) (-2181 (((-2 (|:| |mval| (-707 |#1|)) (|:| |invmval| (-707 |#1|)) (|:| |genIdeal| $)) $ (-659 |#3|)) NIL T ELT)) (-2186 (((-114) |#4| $) 89 T ELT)) (-4339 (((-557) $ (-659 |#3|)) 133 T ELT) (((-557) $) 134 T ELT)) (-4374 (((-875) $) 173 T ELT) (($ (-659 |#4|)) 102 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2180 (($ (-2 (|:| |mval| (-707 |#1|)) (|:| |invmval| (-707 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3452 (((-114) $ $) 84 T ELT)) (-4267 (($ $ $) 109 T ELT)) (** (($ $ (-789)) 115 T ELT)) (* (($ $ $) 113 T ELT))) -(((-516 |#1| |#2| |#3| |#4|) (-13 (-1120) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-789))) (-15 -4267 ($ $ $)) (-15 -2639 ((-114) $)) (-15 -3604 ((-114) $)) (-15 -2186 ((-114) |#4| $)) (-15 -2185 ((-114) $ $)) (-15 -2184 ((-114) |#4| $)) (-15 -2183 ((-114) $ (-659 |#3|))) (-15 -2183 ((-114) $)) (-15 -3654 ($ $ $)) (-15 -3654 ($ (-659 $))) (-15 -2182 ($ $ $)) (-15 -2182 ($ $ |#4|)) (-15 -2463 ($ $)) (-15 -2181 ((-2 (|:| |mval| (-707 |#1|)) (|:| |invmval| (-707 |#1|)) (|:| |genIdeal| $)) $ (-659 |#3|))) (-15 -2180 ($ (-2 (|:| |mval| (-707 |#1|)) (|:| |invmval| (-707 |#1|)) (|:| |genIdeal| $)))) (-15 -4339 ((-557) $ (-659 |#3|))) (-15 -4339 ((-557) $)) (-15 -2179 ($ $)) (-15 -2178 ($ (-659 |#4|))) (-15 -2177 ($ (-659 |#4|))) (-15 -2176 ((-114) $)) (-15 -3094 ((-659 |#4|) $)) (-15 -4374 ($ (-659 |#4|))) (-15 -2175 ($ $ |#4|)) (-15 -2175 ($ $ |#4| (-659 |#3|))) (IF (|has| |#3| (-629 (-1196))) (-15 -2174 ((-1185 (-659 (-963 |#1|)) (-659 (-305 (-963 |#1|)))) (-659 |#4|))) |%noBranch|))) (-376) (-813) (-859) (-967 |#1| |#2| |#3|)) (T -516)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-813)) (-4 *4 (-859)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-967 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) (-4267 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-813)) (-4 *4 (-859)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-967 *2 *3 *4)))) (-2639 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-114)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) (-3604 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-114)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) (-2186 (*1 *2 *3 *1) (-12 (-4 *4 (-376)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-967 *4 *5 *6)))) (-2185 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-114)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) (-2184 (*1 *2 *3 *1) (-12 (-4 *4 (-376)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-967 *4 *5 *6)))) (-2183 (*1 *2 *1 *3) (-12 (-5 *3 (-659 *6)) (-4 *6 (-859)) (-4 *4 (-376)) (-4 *5 (-813)) (-5 *2 (-114)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-967 *4 *5 *6)))) (-2183 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-114)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) (-3654 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-813)) (-4 *4 (-859)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-967 *2 *3 *4)))) (-3654 (*1 *1 *2) (-12 (-5 *2 (-659 (-516 *3 *4 *5 *6))) (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) (-2182 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-813)) (-4 *4 (-859)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-967 *2 *3 *4)))) (-2182 (*1 *1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-967 *3 *4 *5)))) (-2463 (*1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-813)) (-4 *4 (-859)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-967 *2 *3 *4)))) (-2181 (*1 *2 *1 *3) (-12 (-5 *3 (-659 *6)) (-4 *6 (-859)) (-4 *4 (-376)) (-4 *5 (-813)) (-5 *2 (-2 (|:| |mval| (-707 *4)) (|:| |invmval| (-707 *4)) (|:| |genIdeal| (-516 *4 *5 *6 *7)))) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-967 *4 *5 *6)))) (-2180 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-707 *3)) (|:| |invmval| (-707 *3)) (|:| |genIdeal| (-516 *3 *4 *5 *6)))) (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) (-4339 (*1 *2 *1 *3) (-12 (-5 *3 (-659 *6)) (-4 *6 (-859)) (-4 *4 (-376)) (-4 *5 (-813)) (-5 *2 (-557)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-967 *4 *5 *6)))) (-4339 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-557)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) (-2179 (*1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-813)) (-4 *4 (-859)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-967 *2 *3 *4)))) (-2178 (*1 *1 *2) (-12 (-5 *2 (-659 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2177 (*1 *1 *2) (-12 (-5 *2 (-659 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2176 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-114)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) (-3094 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-659 *6)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-659 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2175 (*1 *1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-967 *3 *4 *5)))) (-2175 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-659 *6)) (-4 *6 (-859)) (-4 *4 (-376)) (-4 *5 (-813)) (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-967 *4 *5 *6)))) (-2174 (*1 *2 *3) (-12 (-5 *3 (-659 *7)) (-4 *7 (-967 *4 *5 *6)) (-4 *6 (-629 (-1196))) (-4 *4 (-376)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-1185 (-659 (-963 *4)) (-659 (-305 (-963 *4))))) (-5 *1 (-516 *4 *5 *6 *7))))) -((-2187 (((-114) (-516 (-419 (-557)) (-246 |#2| (-789)) (-876 |#1|) (-255 |#1| (-419 (-557))))) 177 T ELT)) (-2188 (((-114) (-516 (-419 (-557)) (-246 |#2| (-789)) (-876 |#1|) (-255 |#1| (-419 (-557))))) 178 T ELT)) (-2189 (((-516 (-419 (-557)) (-246 |#2| (-789)) (-876 |#1|) (-255 |#1| (-419 (-557)))) (-516 (-419 (-557)) (-246 |#2| (-789)) (-876 |#1|) (-255 |#1| (-419 (-557))))) 128 T ELT)) (-4151 (((-114) (-516 (-419 (-557)) (-246 |#2| (-789)) (-876 |#1|) (-255 |#1| (-419 (-557))))) NIL T ELT)) (-2190 (((-659 (-516 (-419 (-557)) (-246 |#2| (-789)) (-876 |#1|) (-255 |#1| (-419 (-557))))) (-516 (-419 (-557)) (-246 |#2| (-789)) (-876 |#1|) (-255 |#1| (-419 (-557))))) 180 T ELT)) (-2191 (((-516 (-419 (-557)) (-246 |#2| (-789)) (-876 |#1|) (-255 |#1| (-419 (-557)))) (-516 (-419 (-557)) (-246 |#2| (-789)) (-876 |#1|) (-255 |#1| (-419 (-557)))) (-659 (-876 |#1|))) 196 T ELT))) -(((-517 |#1| |#2|) (-10 -7 (-15 -2187 ((-114) (-516 (-419 (-557)) (-246 |#2| (-789)) (-876 |#1|) (-255 |#1| (-419 (-557)))))) (-15 -2188 ((-114) (-516 (-419 (-557)) (-246 |#2| (-789)) (-876 |#1|) (-255 |#1| (-419 (-557)))))) (-15 -4151 ((-114) (-516 (-419 (-557)) (-246 |#2| (-789)) (-876 |#1|) (-255 |#1| (-419 (-557)))))) (-15 -2189 ((-516 (-419 (-557)) (-246 |#2| (-789)) (-876 |#1|) (-255 |#1| (-419 (-557)))) (-516 (-419 (-557)) (-246 |#2| (-789)) (-876 |#1|) (-255 |#1| (-419 (-557)))))) (-15 -2190 ((-659 (-516 (-419 (-557)) (-246 |#2| (-789)) (-876 |#1|) (-255 |#1| (-419 (-557))))) (-516 (-419 (-557)) (-246 |#2| (-789)) (-876 |#1|) (-255 |#1| (-419 (-557)))))) (-15 -2191 ((-516 (-419 (-557)) (-246 |#2| (-789)) (-876 |#1|) (-255 |#1| (-419 (-557)))) (-516 (-419 (-557)) (-246 |#2| (-789)) (-876 |#1|) (-255 |#1| (-419 (-557)))) (-659 (-876 |#1|))))) (-659 (-1196)) (-789)) (T -517)) -((-2191 (*1 *2 *2 *3) (-12 (-5 *2 (-516 (-419 (-557)) (-246 *5 (-789)) (-876 *4) (-255 *4 (-419 (-557))))) (-5 *3 (-659 (-876 *4))) (-14 *4 (-659 (-1196))) (-14 *5 (-789)) (-5 *1 (-517 *4 *5)))) (-2190 (*1 *2 *3) (-12 (-14 *4 (-659 (-1196))) (-14 *5 (-789)) (-5 *2 (-659 (-516 (-419 (-557)) (-246 *5 (-789)) (-876 *4) (-255 *4 (-419 (-557)))))) (-5 *1 (-517 *4 *5)) (-5 *3 (-516 (-419 (-557)) (-246 *5 (-789)) (-876 *4) (-255 *4 (-419 (-557))))))) (-2189 (*1 *2 *2) (-12 (-5 *2 (-516 (-419 (-557)) (-246 *4 (-789)) (-876 *3) (-255 *3 (-419 (-557))))) (-14 *3 (-659 (-1196))) (-14 *4 (-789)) (-5 *1 (-517 *3 *4)))) (-4151 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-557)) (-246 *5 (-789)) (-876 *4) (-255 *4 (-419 (-557))))) (-14 *4 (-659 (-1196))) (-14 *5 (-789)) (-5 *2 (-114)) (-5 *1 (-517 *4 *5)))) (-2188 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-557)) (-246 *5 (-789)) (-876 *4) (-255 *4 (-419 (-557))))) (-14 *4 (-659 (-1196))) (-14 *5 (-789)) (-5 *2 (-114)) (-5 *1 (-517 *4 *5)))) (-2187 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-557)) (-246 *5 (-789)) (-876 *4) (-255 *4 (-419 (-557))))) (-14 *4 (-659 (-1196))) (-14 *5 (-789)) (-5 *2 (-114)) (-5 *1 (-517 *4 *5))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2192 (($) 6 T ELT)) (-4374 (((-875) $) 10 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-518) (-13 (-1120) (-10 -8 (-15 -2192 ($))))) (T -518)) -((-2192 (*1 *1) (-5 *1 (-518)))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-4202 (((-659 (-885 |#2| |#1|)) $) 12 T ELT)) (-1424 (((-3 $ "failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-4387 (($ $) NIL T ELT)) (-3292 (($ |#1| |#2|) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2193 ((|#2| $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 16 T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) 15 T ELT) (($ $ $) 39 T ELT)) (-4267 (($ $ $) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 26 T ELT))) -(((-519 |#1| |#2|) (-13 (-21) (-521 |#1| |#2|)) (-21) (-862)) (T -519)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 17 T ELT)) (-4202 (((-659 (-885 |#2| |#1|)) $) 14 T ELT)) (-4152 (($) NIL T CONST)) (-4387 (($ $) 44 T ELT)) (-3292 (($ |#1| |#2|) 41 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 43 T ELT)) (-2193 ((|#2| $) NIL T ELT)) (-3590 ((|#1| $) 45 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 13 T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4267 (($ $ $) 31 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) 40 T ELT))) -(((-520 |#1| |#2|) (-13 (-23) (-521 |#1| |#2|)) (-23) (-862)) (T -520)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-4202 (((-659 (-885 |#2| |#1|)) $) 15 T ELT)) (-4387 (($ $) 16 T ELT)) (-3292 (($ |#1| |#2|) 19 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 20 T ELT)) (-2193 ((|#2| $) 17 T ELT)) (-3590 ((|#1| $) 18 T ELT)) (-3658 (((-1178) $) 14 (-12 (|has| |#2| (-1120)) (|has| |#1| (-1120))) ELT)) (-3659 (((-1139) $) 13 (-12 (|has| |#2| (-1120)) (|has| |#1| (-1120))) ELT)) (-4374 (((-875) $) 12 (-12 (|has| |#2| (-1120)) (|has| |#1| (-1120))) ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-521 |#1| |#2|) (-142) (-102) (-862)) (T -521)) -((-4386 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-862)))) (-3292 (*1 *1 *2 *3) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-862)))) (-3590 (*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-862)) (-4 *2 (-102)))) (-2193 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-102)) (-4 *2 (-862)))) (-4387 (*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-862)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-862)) (-5 *2 (-659 (-885 *4 *3)))))) -(-13 (-102) (-10 -8 (IF (|has| |t#1| (-1120)) (IF (|has| |t#2| (-1120)) (-6 (-1120)) |%noBranch|) |%noBranch|) (-15 -4386 ($ (-1 |t#1| |t#1|) $)) (-15 -3292 ($ |t#1| |t#2|)) (-15 -3590 (|t#1| $)) (-15 -2193 (|t#2| $)) (-15 -4387 ($ $)) (-15 -4202 ((-659 (-885 |t#2| |t#1|)) $)))) -(((-102) . T) ((-628 (-875)) -12 (|has| |#1| (-1120)) (|has| |#2| (-1120))) ((-1120) -12 (|has| |#1| (-1120)) (|has| |#2| (-1120))) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-4202 (((-659 (-885 |#2| |#1|)) $) 39 T ELT)) (-4387 (($ $) 34 T ELT)) (-3292 (($ |#1| |#2|) 30 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 32 T ELT)) (-2193 ((|#2| $) 38 T ELT)) (-3590 ((|#1| $) 37 T ELT)) (-3658 (((-1178) $) NIL (-12 (|has| |#1| (-1120)) (|has| |#2| (-1120))) ELT)) (-3659 (((-1139) $) NIL (-12 (|has| |#1| (-1120)) (|has| |#2| (-1120))) ELT)) (-4374 (((-875) $) 28 (-12 (|has| |#1| (-1120)) (|has| |#2| (-1120))) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 21 T ELT))) -(((-522 |#1| |#2|) (-521 |#1| |#2|) (-102) (-862)) (T -522)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-4202 (((-659 (-885 |#2| |#1|)) $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-4387 (($ $) NIL T ELT)) (-3602 (((-114) $) NIL T ELT)) (-3292 (($ |#1| |#2|) NIL T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2193 ((|#2| $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 22 T ELT)) (-4267 (($ $ $) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT))) -(((-523 |#1| |#2|) (-13 (-812) (-521 |#1| |#2|)) (-812) (-862)) (T -523)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-4202 (((-659 (-885 |#2| |#1|)) $) NIL T ELT)) (-2871 (($ $ $) 23 T ELT)) (-1424 (((-3 $ "failed") $ $) 19 T ELT)) (-4152 (($) NIL T CONST)) (-4387 (($ $) NIL T ELT)) (-3602 (((-114) $) NIL T ELT)) (-3292 (($ |#1| |#2|) NIL T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2193 ((|#2| $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT))) -(((-524 |#1| |#2|) (-13 (-813) (-521 |#1| |#2|)) (-813) (-859)) (T -524)) -NIL -((-4196 (($ $ (-659 |#2|) (-659 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) -(((-525 |#1| |#2| |#3|) (-10 -7 (-15 -4196 (|#1| |#1| |#2| |#3|)) (-15 -4196 (|#1| |#1| (-659 |#2|) (-659 |#3|)))) (-526 |#2| |#3|) (-1120) (-1236)) (T -525)) -NIL -((-4196 (($ $ (-659 |#1|) (-659 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) -(((-526 |#1| |#2|) (-142) (-1120) (-1236)) (T -526)) -((-4196 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 *4)) (-5 *3 (-659 *5)) (-4 *1 (-526 *4 *5)) (-4 *4 (-1120)) (-4 *5 (-1236)))) (-4196 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1236))))) -(-13 (-10 -8 (-15 -4196 ($ $ |t#1| |t#2|)) (-15 -4196 ($ $ (-659 |t#1|) (-659 |t#2|))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 17 T ELT)) (-4202 (((-659 (-2 (|:| |gen| |#1|) (|:| -4371 |#2|))) $) 19 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3536 (((-789) $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) NIL T ELT)) (-3572 ((|#1| $) NIL T ELT)) (-2510 ((|#1| $ (-557)) 24 T ELT)) (-1800 ((|#2| $ (-557)) 22 T ELT)) (-2502 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1799 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1798 (($ $ $) 55 (|has| |#2| (-812)) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-4105 ((|#2| |#1| $) 51 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 11 T CONST)) (-3452 (((-114) $ $) 30 T ELT)) (-4267 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) -(((-527 |#1| |#2| |#3|) (-335 |#1| |#2|) (-1120) (-133) |#2|) (T -527)) -NIL -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2411 (((-1292) $ (-557) (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-1933 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-859)) ELT)) (-1931 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-859))) ELT)) (-3308 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-859)) ELT)) (-2194 (((-114) (-114)) 32 T ELT)) (-4216 ((|#1| $ (-557) |#1|) 42 (|has| $ (-6 -4424)) ELT) ((|#1| $ (-1253 (-557)) |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-1711 (($ (-1 (-114) |#1|) $) 79 T ELT)) (-4138 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4152 (($) NIL T CONST)) (-2508 (($ $) NIL (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) NIL T ELT)) (-2592 (($ $) 83 (|has| |#1| (-1120)) ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3823 (($ |#1| $) NIL (|has| |#1| (-1120)) ELT) (($ (-1 (-114) |#1|) $) 66 T ELT)) (-3824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-1717 ((|#1| $ (-557) |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-557)) NIL T ELT)) (-3837 (((-557) (-1 (-114) |#1|) $) NIL T ELT) (((-557) |#1| $) NIL (|has| |#1| (-1120)) ELT) (((-557) |#1| $ (-557)) NIL (|has| |#1| (-1120)) ELT)) (-2195 (($ $ (-557)) 19 T ELT)) (-2196 (((-789) $) 13 T ELT)) (-3288 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4042 (($ (-789) |#1|) 31 T ELT)) (-2413 (((-557) $) 29 (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3255 (($ $ $) NIL (|has| |#1| (-859)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 57 T ELT)) (-3936 (($ (-1 (-114) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2414 (((-557) $) 28 (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-4035 (($ $ $ (-557)) 75 T ELT) (($ |#1| $ (-557)) 59 T ELT)) (-2515 (($ |#1| $ (-557)) NIL T ELT) (($ $ $ (-557)) NIL T ELT)) (-2416 (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) (-557) $) NIL T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-2197 (($ (-659 |#1|)) 43 T ELT)) (-4229 ((|#1| $) NIL (|has| (-557) (-859)) ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2412 (($ $ |#1|) 24 (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 62 T ELT)) (-2415 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) 21 T ELT)) (-4228 ((|#1| $ (-557) |#1|) NIL T ELT) ((|#1| $ (-557)) 55 T ELT) (($ $ (-1253 (-557))) NIL T ELT)) (-1712 (($ $ (-1253 (-557))) 73 T ELT) (($ $ (-557)) 67 T ELT)) (-2516 (($ $ (-557)) NIL T ELT) (($ $ (-1253 (-557))) NIL T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-1932 (($ $ $ (-557)) 63 (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) 53 T ELT)) (-4400 (((-546) $) NIL (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) NIL T ELT)) (-4219 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-4230 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-4374 (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2963 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3083 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-4385 (((-789) $) 22 (|has| $ (-6 -4423)) ELT))) -(((-528 |#1| |#2|) (-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2197 ($ (-659 |#1|))) (-15 -2196 ((-789) $)) (-15 -2195 ($ $ (-557))) (-15 -2194 ((-114) (-114))))) (-1236) (-557)) (T -528)) -((-2197 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1236)) (-5 *1 (-528 *3 *4)) (-14 *4 (-557)))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) (-14 *4 (-557)))) (-2195 (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) (-14 *4 *2))) (-2194 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) (-14 *4 (-557))))) -((-2965 (((-114) $ $) NIL T ELT)) (-2199 (((-1154) $) 11 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2198 (((-1154) $) 13 T ELT)) (-4350 (((-1154) $) 9 T ELT)) (-4374 (((-875) $) 19 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-529) (-13 (-1102) (-10 -8 (-15 -4350 ((-1154) $)) (-15 -2199 ((-1154) $)) (-15 -2198 ((-1154) $))))) (T -529)) -((-4350 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529)))) (-2199 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529)))) (-2198 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-4360 (((-114) $) NIL T ELT)) (-4357 (((-789)) NIL T ELT)) (-3748 (((-592 |#1|) $) NIL T ELT) (($ $ (-936)) NIL (|has| (-592 |#1|) (-381)) ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) NIL (|has| (-592 |#1|) (-381)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) NIL (|has| (-592 |#1|) (-381)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-592 |#1|) #1#) $) NIL T ELT)) (-3572 (((-592 |#1|) $) NIL T ELT)) (-1998 (($ (-1286 (-592 |#1|))) NIL T ELT)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-592 |#1|) (-381)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3393 (($) NIL (|has| (-592 |#1|) (-381)) ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-3232 (($) NIL (|has| (-592 |#1|) (-381)) ELT)) (-1881 (((-114) $) NIL (|has| (-592 |#1|) (-381)) ELT)) (-1972 (($ $ (-789)) NIL (-3955 (|has| (-592 |#1|) (-147)) (|has| (-592 |#1|) (-381))) ELT) (($ $) NIL (-3955 (|has| (-592 |#1|) (-147)) (|has| (-592 |#1|) (-381))) ELT)) (-4151 (((-114) $) NIL T ELT)) (-4200 (((-936) $) NIL (|has| (-592 |#1|) (-381)) ELT) (((-843 (-936)) $) NIL (-3955 (|has| (-592 |#1|) (-147)) (|has| (-592 |#1|) (-381))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-2221 (($) NIL (|has| (-592 |#1|) (-381)) ELT)) (-2219 (((-114) $) NIL (|has| (-592 |#1|) (-381)) ELT)) (-3532 (((-592 |#1|) $) NIL T ELT) (($ $ (-936)) NIL (|has| (-592 |#1|) (-381)) ELT)) (-3863 (((-709 $) $) NIL (|has| (-592 |#1|) (-381)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2222 (((-1190 (-592 |#1|)) $) NIL T ELT) (((-1190 $) $ (-936)) NIL (|has| (-592 |#1|) (-381)) ELT)) (-2218 (((-936) $) NIL (|has| (-592 |#1|) (-381)) ELT)) (-1805 (((-1190 (-592 |#1|)) $) NIL (|has| (-592 |#1|) (-381)) ELT)) (-1804 (((-1190 (-592 |#1|)) $) NIL (|has| (-592 |#1|) (-381)) ELT) (((-3 (-1190 (-592 |#1|)) #1#) $ $) NIL (|has| (-592 |#1|) (-381)) ELT)) (-1806 (($ $ (-1190 (-592 |#1|))) NIL (|has| (-592 |#1|) (-381)) ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3864 (($) NIL (|has| (-592 |#1|) (-381)) CONST)) (-2629 (($ (-936)) NIL (|has| (-592 |#1|) (-381)) ELT)) (-4359 (((-114) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2638 (($) NIL (|has| (-592 |#1|) (-381)) ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) NIL (|has| (-592 |#1|) (-381)) ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-4358 (((-843 (-936))) NIL T ELT) (((-936)) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-1973 (((-789) $) NIL (|has| (-592 |#1|) (-381)) ELT) (((-3 (-789) #1#) $ $) NIL (-3955 (|has| (-592 |#1|) (-147)) (|has| (-592 |#1|) (-381))) ELT)) (-4339 (((-136)) NIL T ELT)) (-4186 (($ $ (-789)) NIL (|has| (-592 |#1|) (-381)) ELT) (($ $) NIL (|has| (-592 |#1|) (-381)) ELT)) (-4376 (((-843 (-936)) $) NIL T ELT) (((-936) $) NIL T ELT)) (-3601 (((-1190 (-592 |#1|))) NIL T ELT)) (-1875 (($) NIL (|has| (-592 |#1|) (-381)) ELT)) (-1807 (($) NIL (|has| (-592 |#1|) (-381)) ELT)) (-3640 (((-1286 (-592 |#1|)) $) NIL T ELT) (((-707 (-592 |#1|)) (-1286 $)) NIL T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (|has| (-592 |#1|) (-381)) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ (-592 |#1|)) NIL T ELT)) (-3101 (($ $) NIL (|has| (-592 |#1|) (-381)) ELT) (((-709 $) $) NIL (-3955 (|has| (-592 |#1|) (-147)) (|has| (-592 |#1|) (-381))) ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 $)) NIL T ELT) (((-1286 $) (-936)) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-4356 (($ $) NIL (|has| (-592 |#1|) (-381)) ELT) (($ $ (-789)) NIL (|has| (-592 |#1|) (-381)) ELT)) (-3068 (($ $ (-789)) NIL (|has| (-592 |#1|) (-381)) ELT) (($ $) NIL (|has| (-592 |#1|) (-381)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ $) NIL T ELT) (($ $ (-592 |#1|)) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ $ (-592 |#1|)) NIL T ELT) (($ (-592 |#1|) $) NIL T ELT))) -(((-530 |#1| |#2|) (-341 (-592 |#1|)) (-936) (-936)) (T -530)) -NIL -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4216 ((|#1| $ (-557) (-557) |#1|) 51 T ELT)) (-1362 (($ $ (-557) |#4|) NIL T ELT)) (-1361 (($ $ (-557) |#5|) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3512 ((|#4| $ (-557)) NIL T ELT)) (-1717 ((|#1| $ (-557) (-557) |#1|) 50 T ELT)) (-3513 ((|#1| $ (-557) (-557)) 45 T ELT)) (-3288 (((-659 |#1|) $) NIL T ELT)) (-3515 (((-789) $) 33 T ELT)) (-4042 (($ (-789) (-789) |#1|) 30 T ELT)) (-3514 (((-789) $) 38 T ELT)) (-3519 (((-557) $) 31 T ELT)) (-3517 (((-557) $) 32 T ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3518 (((-557) $) 37 T ELT)) (-3516 (((-557) $) 39 T ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3658 (((-1178) $) 55 (|has| |#1| (-1120)) ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-2412 (($ $ |#1|) NIL T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) 14 T ELT)) (-3991 (($) 16 T ELT)) (-4228 ((|#1| $ (-557) (-557)) 48 T ELT) ((|#1| $ (-557) (-557) |#1|) NIL T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-3511 ((|#5| $ (-557)) NIL T ELT)) (-4374 (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-531 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1236) (-557) (-557) (-385 |#1|) (-385 |#1|)) (T -531)) -NIL -((-3510 ((|#4| |#4|) 38 T ELT)) (-3509 (((-789) |#4|) 45 T ELT)) (-3508 (((-789) |#4|) 46 T ELT)) (-3507 (((-659 |#3|) |#4|) 57 (|has| |#3| (-6 -4424)) ELT)) (-4016 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-2200 ((|#4| |#4|) 61 T ELT)) (-3746 ((|#1| |#4|) 60 T ELT))) -(((-532 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3510 (|#4| |#4|)) (-15 -3509 ((-789) |#4|)) (-15 -3508 ((-789) |#4|)) (IF (|has| |#3| (-6 -4424)) (-15 -3507 ((-659 |#3|) |#4|)) |%noBranch|) (-15 -3746 (|#1| |#4|)) (-15 -2200 (|#4| |#4|)) (-15 -4016 ((-3 |#4| "failed") |#4|))) (-376) (-385 |#1|) (-385 |#1|) (-704 |#1| |#2| |#3|)) (T -532)) -((-4016 (*1 *2 *2) (|partial| -12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-532 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5)))) (-2200 (*1 *2 *2) (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-532 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5)))) (-3746 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-376)) (-5 *1 (-532 *2 *4 *5 *3)) (-4 *3 (-704 *2 *4 *5)))) (-3507 (*1 *2 *3) (-12 (|has| *6 (-6 -4424)) (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-659 *6)) (-5 *1 (-532 *4 *5 *6 *3)) (-4 *3 (-704 *4 *5 *6)))) (-3508 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-789)) (-5 *1 (-532 *4 *5 *6 *3)) (-4 *3 (-704 *4 *5 *6)))) (-3509 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-789)) (-5 *1 (-532 *4 *5 *6 *3)) (-4 *3 (-704 *4 *5 *6)))) (-3510 (*1 *2 *2) (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-532 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5))))) -((-3510 ((|#8| |#4|) 20 T ELT)) (-3507 (((-659 |#3|) |#4|) 29 (|has| |#7| (-6 -4424)) ELT)) (-4016 (((-3 |#8| "failed") |#4|) 23 T ELT))) -(((-533 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3510 (|#8| |#4|)) (-15 -4016 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4424)) (-15 -3507 ((-659 |#3|) |#4|)) |%noBranch|)) (-568) (-385 |#1|) (-385 |#1|) (-704 |#1| |#2| |#3|) (-1010 |#1|) (-385 |#5|) (-385 |#5|) (-704 |#5| |#6| |#7|)) (T -533)) -((-3507 (*1 *2 *3) (-12 (|has| *9 (-6 -4424)) (-4 *4 (-568)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1010 *4)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)) (-5 *2 (-659 *6)) (-5 *1 (-533 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-704 *4 *5 *6)) (-4 *10 (-704 *7 *8 *9)))) (-4016 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1010 *4)) (-4 *2 (-704 *7 *8 *9)) (-5 *1 (-533 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-704 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) (-3510 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1010 *4)) (-4 *2 (-704 *7 *8 *9)) (-5 *1 (-533 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-704 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7))))) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4266 (($ (-789) (-789)) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3832 (($ (-612 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-3521 (((-114) $) NIL T ELT)) (-2566 (($ $ (-557) (-557)) 21 T ELT)) (-2565 (($ $ (-557) (-557)) NIL T ELT)) (-2564 (($ $ (-557) (-557) (-557) (-557)) NIL T ELT)) (-2569 (($ $) NIL T ELT)) (-3523 (((-114) $) NIL T ELT)) (-2563 (($ $ (-557) (-557) $) NIL T ELT)) (-4216 ((|#1| $ (-557) (-557) |#1|) NIL T ELT) (($ $ (-659 (-557)) (-659 (-557)) $) NIL T ELT)) (-1362 (($ $ (-557) (-612 |#1| |#3|)) NIL T ELT)) (-1361 (($ $ (-557) (-612 |#1| |#2|)) NIL T ELT)) (-3751 (($ (-789) |#1|) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3510 (($ $) 30 (|has| |#1| (-319)) ELT)) (-3512 (((-612 |#1| |#3|) $ (-557)) NIL T ELT)) (-3509 (((-789) $) 33 (|has| |#1| (-568)) ELT)) (-1717 ((|#1| $ (-557) (-557) |#1|) NIL T ELT)) (-3513 ((|#1| $ (-557) (-557)) NIL T ELT)) (-3288 (((-659 |#1|) $) NIL T ELT)) (-3508 (((-789) $) 35 (|has| |#1| (-568)) ELT)) (-3507 (((-659 (-612 |#1| |#2|)) $) 38 (|has| |#1| (-568)) ELT)) (-3515 (((-789) $) NIL T ELT)) (-4042 (($ (-789) (-789) |#1|) NIL T ELT)) (-3514 (((-789) $) NIL T ELT)) (-3745 ((|#1| $) 28 (|has| |#1| (-6 (-4425 #1="*"))) ELT)) (-3519 (((-557) $) 10 T ELT)) (-3517 (((-557) $) NIL T ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3518 (((-557) $) 13 T ELT)) (-3516 (((-557) $) NIL T ELT)) (-3524 (($ (-659 (-659 |#1|))) NIL T ELT) (($ (-789) (-789) (-1 |#1| (-557) (-557))) NIL T ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-4020 (((-659 (-659 |#1|)) $) NIL T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-4016 (((-3 $ #2="failed") $) 42 (|has| |#1| (-376)) ELT)) (-2568 (($ $ $) NIL T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-2412 (($ $ |#1|) NIL T ELT)) (-3884 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-568)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#1| $ (-557) (-557)) NIL T ELT) ((|#1| $ (-557) (-557) |#1|) NIL T ELT) (($ $ (-659 (-557)) (-659 (-557))) NIL T ELT)) (-3750 (($ (-659 |#1|)) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3522 (((-114) $) NIL T ELT)) (-3746 ((|#1| $) 26 (|has| |#1| (-6 (-4425 #1#))) ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-3511 (((-612 |#1| |#2|) $ (-557)) NIL T ELT)) (-4374 (($ (-612 |#1| |#2|)) NIL T ELT) (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3520 (((-114) $) NIL T ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL (|has| |#1| (-376)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-557) $) NIL T ELT) (((-612 |#1| |#2|) $ (-612 |#1| |#2|)) NIL T ELT) (((-612 |#1| |#3|) (-612 |#1| |#3|) $) NIL T ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-534 |#1| |#2| |#3|) (-704 |#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) (-1068) (-557) (-557)) (T -534)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2201 (((-659 (-1237)) $) 13 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 19 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT) (($ (-659 (-1237))) 11 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-535) (-13 (-1102) (-10 -8 (-15 -4374 ($ (-659 (-1237)))) (-15 -2201 ((-659 (-1237)) $))))) (T -535)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-659 (-1237))) (-5 *1 (-535)))) (-2201 (*1 *2 *1) (-12 (-5 *2 (-659 (-1237))) (-5 *1 (-535))))) -((-2965 (((-114) $ $) NIL T ELT)) (-2202 (((-1154) $) 14 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3868 (((-518) $) 11 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 21 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-536) (-13 (-1102) (-10 -8 (-15 -3868 ((-518) $)) (-15 -2202 ((-1154) $))))) (T -536)) -((-3868 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-536)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-536))))) -((-2208 (((-709 (-1245)) $) 15 T ELT)) (-2204 (((-709 (-1243)) $) 38 T ELT)) (-2206 (((-709 (-1242)) $) 29 T ELT)) (-2209 (((-709 (-561)) $) 12 T ELT)) (-2205 (((-709 (-559)) $) 42 T ELT)) (-2207 (((-709 (-558)) $) 33 T ELT)) (-2203 (((-789) $ (-131)) 54 T ELT))) -(((-537 |#1|) (-10 -7 (-15 -2203 ((-789) |#1| (-131))) (-15 -2204 ((-709 (-1243)) |#1|)) (-15 -2205 ((-709 (-559)) |#1|)) (-15 -2206 ((-709 (-1242)) |#1|)) (-15 -2207 ((-709 (-558)) |#1|)) (-15 -2208 ((-709 (-1245)) |#1|)) (-15 -2209 ((-709 (-561)) |#1|))) (-538)) (T -537)) -NIL -((-2208 (((-709 (-1245)) $) 12 T ELT)) (-2204 (((-709 (-1243)) $) 8 T ELT)) (-2206 (((-709 (-1242)) $) 10 T ELT)) (-2209 (((-709 (-561)) $) 13 T ELT)) (-2205 (((-709 (-559)) $) 9 T ELT)) (-2207 (((-709 (-558)) $) 11 T ELT)) (-2203 (((-789) $ (-131)) 7 T ELT)) (-2210 (((-709 (-130)) $) 14 T ELT)) (-1901 (($ $) 6 T ELT))) -(((-538) (-142)) (T -538)) -((-2210 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-709 (-130))))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-709 (-561))))) (-2208 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-709 (-1245))))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-709 (-558))))) (-2206 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-709 (-1242))))) (-2205 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-709 (-559))))) (-2204 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-709 (-1243))))) (-2203 (*1 *2 *1 *3) (-12 (-4 *1 (-538)) (-5 *3 (-131)) (-5 *2 (-789))))) -(-13 (-176) (-10 -8 (-15 -2210 ((-709 (-130)) $)) (-15 -2209 ((-709 (-561)) $)) (-15 -2208 ((-709 (-1245)) $)) (-15 -2207 ((-709 (-558)) $)) (-15 -2206 ((-709 (-1242)) $)) (-15 -2205 ((-709 (-559)) $)) (-15 -2204 ((-709 (-1243)) $)) (-15 -2203 ((-789) $ (-131))))) -(((-176) . T)) -((-2213 (((-1190 |#1|) (-789)) 114 T ELT)) (-3748 (((-1286 |#1|) (-1286 |#1|) (-936)) 107 T ELT)) (-2211 (((-1292) (-1286 (-659 (-2 (|:| -3820 |#1|) (|:| -2629 (-1139))))) |#1|) 122 T ELT)) (-2215 (((-1286 |#1|) (-1286 |#1|) (-789)) 53 T ELT)) (-3393 (((-1286 |#1|) (-936)) 109 T ELT)) (-2217 (((-1286 |#1|) (-1286 |#1|) (-557)) 30 T ELT)) (-2212 (((-1190 |#1|) (-1286 |#1|)) 115 T ELT)) (-2221 (((-1286 |#1|) (-936)) 136 T ELT)) (-2219 (((-114) (-1286 |#1|)) 119 T ELT)) (-3532 (((-1286 |#1|) (-1286 |#1|) (-936)) 99 T ELT)) (-2222 (((-1190 |#1|) (-1286 |#1|)) 130 T ELT)) (-2218 (((-936) (-1286 |#1|)) 95 T ELT)) (-2872 (((-1286 |#1|) (-1286 |#1|)) 38 T ELT)) (-2629 (((-1286 |#1|) (-936) (-936)) 139 T ELT)) (-2216 (((-1286 |#1|) (-1286 |#1|) (-1139) (-1139)) 29 T ELT)) (-2214 (((-1286 |#1|) (-1286 |#1|) (-789) (-1139)) 54 T ELT)) (-2220 (((-1286 (-1286 |#1|)) (-936)) 135 T ELT)) (-4377 (((-1286 |#1|) (-1286 |#1|) (-1286 |#1|)) 120 T ELT)) (** (((-1286 |#1|) (-1286 |#1|) (-557)) 67 T ELT)) (* (((-1286 |#1|) (-1286 |#1|) (-1286 |#1|)) 31 T ELT))) -(((-539 |#1|) (-10 -7 (-15 -2211 ((-1292) (-1286 (-659 (-2 (|:| -3820 |#1|) (|:| -2629 (-1139))))) |#1|)) (-15 -3393 ((-1286 |#1|) (-936))) (-15 -2629 ((-1286 |#1|) (-936) (-936))) (-15 -2212 ((-1190 |#1|) (-1286 |#1|))) (-15 -2213 ((-1190 |#1|) (-789))) (-15 -2214 ((-1286 |#1|) (-1286 |#1|) (-789) (-1139))) (-15 -2215 ((-1286 |#1|) (-1286 |#1|) (-789))) (-15 -2216 ((-1286 |#1|) (-1286 |#1|) (-1139) (-1139))) (-15 -2217 ((-1286 |#1|) (-1286 |#1|) (-557))) (-15 ** ((-1286 |#1|) (-1286 |#1|) (-557))) (-15 * ((-1286 |#1|) (-1286 |#1|) (-1286 |#1|))) (-15 -4377 ((-1286 |#1|) (-1286 |#1|) (-1286 |#1|))) (-15 -3532 ((-1286 |#1|) (-1286 |#1|) (-936))) (-15 -3748 ((-1286 |#1|) (-1286 |#1|) (-936))) (-15 -2872 ((-1286 |#1|) (-1286 |#1|))) (-15 -2218 ((-936) (-1286 |#1|))) (-15 -2219 ((-114) (-1286 |#1|))) (-15 -2220 ((-1286 (-1286 |#1|)) (-936))) (-15 -2221 ((-1286 |#1|) (-936))) (-15 -2222 ((-1190 |#1|) (-1286 |#1|)))) (-363)) (T -539)) -((-2222 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-363)) (-5 *2 (-1190 *4)) (-5 *1 (-539 *4)))) (-2221 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1286 *4)) (-5 *1 (-539 *4)) (-4 *4 (-363)))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1286 (-1286 *4))) (-5 *1 (-539 *4)) (-4 *4 (-363)))) (-2219 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-539 *4)))) (-2218 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-363)) (-5 *2 (-936)) (-5 *1 (-539 *4)))) (-2872 (*1 *2 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-363)) (-5 *1 (-539 *3)))) (-3748 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-936)) (-4 *4 (-363)) (-5 *1 (-539 *4)))) (-3532 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-936)) (-4 *4 (-363)) (-5 *1 (-539 *4)))) (-4377 (*1 *2 *2 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-363)) (-5 *1 (-539 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-363)) (-5 *1 (-539 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-557)) (-4 *4 (-363)) (-5 *1 (-539 *4)))) (-2217 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-557)) (-4 *4 (-363)) (-5 *1 (-539 *4)))) (-2216 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1139)) (-4 *4 (-363)) (-5 *1 (-539 *4)))) (-2215 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-789)) (-4 *4 (-363)) (-5 *1 (-539 *4)))) (-2214 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1286 *5)) (-5 *3 (-789)) (-5 *4 (-1139)) (-4 *5 (-363)) (-5 *1 (-539 *5)))) (-2213 (*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1190 *4)) (-5 *1 (-539 *4)) (-4 *4 (-363)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-363)) (-5 *2 (-1190 *4)) (-5 *1 (-539 *4)))) (-2629 (*1 *2 *3 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1286 *4)) (-5 *1 (-539 *4)) (-4 *4 (-363)))) (-3393 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1286 *4)) (-5 *1 (-539 *4)) (-4 *4 (-363)))) (-2211 (*1 *2 *3 *4) (-12 (-5 *3 (-1286 (-659 (-2 (|:| -3820 *4) (|:| -2629 (-1139)))))) (-4 *4 (-363)) (-5 *2 (-1292)) (-5 *1 (-539 *4))))) -((-2208 (((-709 (-1245)) $) NIL T ELT)) (-2204 (((-709 (-1243)) $) NIL T ELT)) (-2206 (((-709 (-1242)) $) NIL T ELT)) (-2209 (((-709 (-561)) $) NIL T ELT)) (-2205 (((-709 (-559)) $) NIL T ELT)) (-2207 (((-709 (-558)) $) NIL T ELT)) (-2203 (((-789) $ (-131)) NIL T ELT)) (-2210 (((-709 (-130)) $) 26 T ELT)) (-2223 (((-1139) $ (-1139)) 31 T ELT)) (-3837 (((-1139) $) 30 T ELT)) (-2955 (((-114) $) 20 T ELT)) (-2225 (($ (-402)) 14 T ELT) (($ (-1178)) 16 T ELT)) (-2224 (((-114) $) 27 T ELT)) (-4374 (((-875) $) 34 T ELT)) (-1901 (($ $) 28 T ELT))) -(((-540) (-13 (-538) (-628 (-875)) (-10 -8 (-15 -2225 ($ (-402))) (-15 -2225 ($ (-1178))) (-15 -2224 ((-114) $)) (-15 -2955 ((-114) $)) (-15 -3837 ((-1139) $)) (-15 -2223 ((-1139) $ (-1139)))))) (T -540)) -((-2225 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-540)))) (-2225 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-540)))) (-2224 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-540)))) (-2955 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-540)))) (-3837 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-540)))) (-2223 (*1 *2 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-540))))) -((-2227 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2226 (((-1 |#1| |#1|)) 10 T ELT))) -(((-541 |#1|) (-10 -7 (-15 -2226 ((-1 |#1| |#1|))) (-15 -2227 ((-1 |#1| |#1|) |#1|))) (-13 (-744) (-25))) (T -541)) -((-2227 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-541 *3)) (-4 *3 (-13 (-744) (-25))))) (-2226 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-541 *3)) (-4 *3 (-13 (-744) (-25)))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-4202 (((-659 (-885 |#1| (-789))) $) NIL T ELT)) (-2871 (($ $ $) NIL T ELT)) (-1424 (((-3 $ "failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-4387 (($ $) NIL T ELT)) (-3602 (((-114) $) NIL T ELT)) (-3292 (($ (-789) |#1|) NIL T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-4386 (($ (-1 (-789) (-789)) $) NIL T ELT)) (-2193 ((|#1| $) NIL T ELT)) (-3590 (((-789) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 27 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT))) -(((-542 |#1|) (-13 (-813) (-521 (-789) |#1|)) (-859)) (T -542)) -NIL -((-2229 (((-659 |#2|) (-1190 |#1|) |#3|) 98 T ELT)) (-2230 (((-659 (-2 (|:| |outval| |#2|) (|:| |outmult| (-557)) (|:| |outvect| (-659 (-707 |#2|))))) (-707 |#1|) |#3| (-1 (-417 (-1190 |#1|)) (-1190 |#1|))) 114 T ELT)) (-2228 (((-1190 |#1|) (-707 |#1|)) 110 T ELT))) -(((-543 |#1| |#2| |#3|) (-10 -7 (-15 -2228 ((-1190 |#1|) (-707 |#1|))) (-15 -2229 ((-659 |#2|) (-1190 |#1|) |#3|)) (-15 -2230 ((-659 (-2 (|:| |outval| |#2|) (|:| |outmult| (-557)) (|:| |outvect| (-659 (-707 |#2|))))) (-707 |#1|) |#3| (-1 (-417 (-1190 |#1|)) (-1190 |#1|))))) (-376) (-376) (-13 (-376) (-858))) (T -543)) -((-2230 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-707 *6)) (-5 *5 (-1 (-417 (-1190 *6)) (-1190 *6))) (-4 *6 (-376)) (-5 *2 (-659 (-2 (|:| |outval| *7) (|:| |outmult| (-557)) (|:| |outvect| (-659 (-707 *7)))))) (-5 *1 (-543 *6 *7 *4)) (-4 *7 (-376)) (-4 *4 (-13 (-376) (-858))))) (-2229 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 *5)) (-4 *5 (-376)) (-5 *2 (-659 *6)) (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-858))))) (-2228 (*1 *2 *3) (-12 (-5 *3 (-707 *4)) (-4 *4 (-376)) (-5 *2 (-1190 *4)) (-5 *1 (-543 *4 *5 *6)) (-4 *5 (-376)) (-4 *6 (-13 (-376) (-858)))))) -((-2952 (((-709 (-1245)) $ (-1245)) NIL T ELT)) (-2953 (((-709 (-561)) $ (-561)) NIL T ELT)) (-2951 (((-789) $ (-131)) 39 T ELT)) (-2954 (((-709 (-130)) $ (-130)) 40 T ELT)) (-2208 (((-709 (-1245)) $) NIL T ELT)) (-2204 (((-709 (-1243)) $) NIL T ELT)) (-2206 (((-709 (-1242)) $) NIL T ELT)) (-2209 (((-709 (-561)) $) NIL T ELT)) (-2205 (((-709 (-559)) $) NIL T ELT)) (-2207 (((-709 (-558)) $) NIL T ELT)) (-2203 (((-789) $ (-131)) 35 T ELT)) (-2210 (((-709 (-130)) $) 37 T ELT)) (-2826 (((-114) $) 27 T ELT)) (-2827 (((-709 $) (-590) (-971)) 18 T ELT) (((-709 $) (-503) (-971)) 24 T ELT)) (-4374 (((-875) $) 48 T ELT)) (-1901 (($ $) 42 T ELT))) -(((-544) (-13 (-785 (-590)) (-628 (-875)) (-10 -8 (-15 -2827 ((-709 $) (-503) (-971)))))) (T -544)) -((-2827 (*1 *2 *3 *4) (-12 (-5 *3 (-503)) (-5 *4 (-971)) (-5 *2 (-709 (-544))) (-5 *1 (-544))))) -((-2924 (((-853 (-557))) 12 T ELT)) (-2923 (((-853 (-557))) 14 T ELT)) (-2908 (((-843 (-557))) 9 T ELT))) -(((-545) (-10 -7 (-15 -2908 ((-843 (-557)))) (-15 -2924 ((-853 (-557)))) (-15 -2923 ((-853 (-557)))))) (T -545)) -((-2923 (*1 *2) (-12 (-5 *2 (-853 (-557))) (-5 *1 (-545)))) (-2924 (*1 *2) (-12 (-5 *2 (-853 (-557))) (-5 *1 (-545)))) (-2908 (*1 *2) (-12 (-5 *2 (-843 (-557))) (-5 *1 (-545))))) -((-2965 (((-114) $ $) NIL T ELT)) (-2234 (((-1178) $) 55 T ELT)) (-3676 (((-114) $) 51 T ELT)) (-3672 (((-1196) $) 52 T ELT)) (-3677 (((-114) $) 49 T ELT)) (-3961 (((-1178) $) 50 T ELT)) (-2233 (($ (-1178)) 56 T ELT)) (-3679 (((-114) $) NIL T ELT)) (-3681 (((-114) $) NIL T ELT)) (-3678 (((-114) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2236 (($ $ (-659 (-1196))) 21 T ELT)) (-2239 (((-51) $) 23 T ELT)) (-3675 (((-114) $) NIL T ELT)) (-3671 (((-557) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2612 (($ $ (-659 (-1196)) (-1196)) 73 T ELT)) (-3674 (((-114) $) NIL T ELT)) (-3670 (((-229) $) NIL T ELT)) (-2235 (($ $) 44 T ELT)) (-3669 (((-875) $) NIL T ELT)) (-3682 (((-114) $ $) NIL T ELT)) (-4228 (($ $ (-557)) NIL T ELT) (($ $ (-659 (-557))) NIL T ELT)) (-3673 (((-659 $) $) 30 T ELT)) (-2232 (((-1196) (-659 $)) 57 T ELT)) (-4400 (($ (-1178)) NIL T ELT) (($ (-1196)) 19 T ELT) (($ (-557)) 8 T ELT) (($ (-229)) 28 T ELT) (($ (-875)) NIL T ELT) (($ (-659 $)) 65 T ELT) (((-1122) $) 12 T ELT) (($ (-1122)) 13 T ELT)) (-2231 (((-1196) (-1196) (-659 $)) 60 T ELT)) (-4374 (((-875) $) 54 T ELT)) (-3667 (($ $) 59 T ELT)) (-3668 (($ $) 58 T ELT)) (-2237 (($ $ (-659 $)) 66 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3680 (((-114) $) 29 T ELT)) (-3057 (($) 9 T CONST)) (-3063 (($) 11 T CONST)) (-3452 (((-114) $ $) 74 T ELT)) (-4377 (($ $ $) 82 T ELT)) (-4267 (($ $ $) 75 T ELT)) (** (($ $ (-789)) 81 T ELT) (($ $ (-557)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-4385 (((-557) $) NIL T ELT))) -(((-546) (-13 (-1123 (-1178) (-1196) (-557) (-229) (-875)) (-629 (-1122)) (-10 -8 (-15 -2239 ((-51) $)) (-15 -4400 ($ (-1122))) (-15 -2237 ($ $ (-659 $))) (-15 -2612 ($ $ (-659 (-1196)) (-1196))) (-15 -2236 ($ $ (-659 (-1196)))) (-15 -4267 ($ $ $)) (-15 * ($ $ $)) (-15 -4377 ($ $ $)) (-15 ** ($ $ (-789))) (-15 ** ($ $ (-557))) (-15 0 ($) -4380) (-15 1 ($) -4380) (-15 -2235 ($ $)) (-15 -2234 ((-1178) $)) (-15 -2233 ($ (-1178))) (-15 -2232 ((-1196) (-659 $))) (-15 -2231 ((-1196) (-1196) (-659 $)))))) (T -546)) -((-2239 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-546)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-546)))) (-2237 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-546))) (-5 *1 (-546)))) (-2612 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 (-1196))) (-5 *3 (-1196)) (-5 *1 (-546)))) (-2236 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-1196))) (-5 *1 (-546)))) (-4267 (*1 *1 *1 *1) (-5 *1 (-546))) (* (*1 *1 *1 *1) (-5 *1 (-546))) (-4377 (*1 *1 *1 *1) (-5 *1 (-546))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-546)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-546)))) (-3057 (*1 *1) (-5 *1 (-546))) (-3063 (*1 *1) (-5 *1 (-546))) (-2235 (*1 *1 *1) (-5 *1 (-546))) (-2234 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-546)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-546)))) (-2232 (*1 *2 *3) (-12 (-5 *3 (-659 (-546))) (-5 *2 (-1196)) (-5 *1 (-546)))) (-2231 (*1 *2 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-659 (-546))) (-5 *1 (-546))))) -((-2238 (((-546) (-1196)) 15 T ELT)) (-2239 ((|#1| (-546)) 20 T ELT))) -(((-547 |#1|) (-10 -7 (-15 -2238 ((-546) (-1196))) (-15 -2239 (|#1| (-546)))) (-1236)) (T -547)) -((-2239 (*1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-547 *2)) (-4 *2 (-1236)))) (-2238 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-546)) (-5 *1 (-547 *4)) (-4 *4 (-1236))))) -((-3871 ((|#2| |#2|) 17 T ELT)) (-3869 ((|#2| |#2|) 13 T ELT)) (-3872 ((|#2| |#2| (-557) (-557)) 20 T ELT)) (-3870 ((|#2| |#2|) 15 T ELT))) -(((-548 |#1| |#2|) (-10 -7 (-15 -3869 (|#2| |#2|)) (-15 -3870 (|#2| |#2|)) (-15 -3871 (|#2| |#2|)) (-15 -3872 (|#2| |#2| (-557) (-557)))) (-13 (-568) (-149)) (-1279 |#1|)) (T -548)) -((-3872 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-557)) (-4 *4 (-13 (-568) (-149))) (-5 *1 (-548 *4 *2)) (-4 *2 (-1279 *4)))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-149))) (-5 *1 (-548 *3 *2)) (-4 *2 (-1279 *3)))) (-3870 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-149))) (-5 *1 (-548 *3 *2)) (-4 *2 (-1279 *3)))) (-3869 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-149))) (-5 *1 (-548 *3 *2)) (-4 *2 (-1279 *3))))) -((-2242 (((-659 (-305 (-963 |#2|))) (-659 |#2|) (-659 (-1196))) 32 T ELT)) (-2240 (((-659 |#2|) (-963 |#1|) |#3|) 54 T ELT) (((-659 |#2|) (-1190 |#1|) |#3|) 53 T ELT)) (-2241 (((-659 (-659 |#2|)) (-659 (-963 |#1|)) (-659 (-963 |#1|)) (-659 (-1196)) |#3|) 106 T ELT))) -(((-549 |#1| |#2| |#3|) (-10 -7 (-15 -2240 ((-659 |#2|) (-1190 |#1|) |#3|)) (-15 -2240 ((-659 |#2|) (-963 |#1|) |#3|)) (-15 -2241 ((-659 (-659 |#2|)) (-659 (-963 |#1|)) (-659 (-963 |#1|)) (-659 (-1196)) |#3|)) (-15 -2242 ((-659 (-305 (-963 |#2|))) (-659 |#2|) (-659 (-1196))))) (-464) (-376) (-13 (-376) (-858))) (T -549)) -((-2242 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6)) (-5 *4 (-659 (-1196))) (-4 *6 (-376)) (-5 *2 (-659 (-305 (-963 *6)))) (-5 *1 (-549 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-13 (-376) (-858))))) (-2241 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-659 (-963 *6))) (-5 *4 (-659 (-1196))) (-4 *6 (-464)) (-5 *2 (-659 (-659 *7))) (-5 *1 (-549 *6 *7 *5)) (-4 *7 (-376)) (-4 *5 (-13 (-376) (-858))))) (-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-963 *5)) (-4 *5 (-464)) (-5 *2 (-659 *6)) (-5 *1 (-549 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-858))))) (-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 *5)) (-4 *5 (-464)) (-5 *2 (-659 *6)) (-5 *1 (-549 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-858)))))) -((-2245 ((|#2| |#2| |#1|) 17 T ELT)) (-2243 ((|#2| (-659 |#2|)) 30 T ELT)) (-2244 ((|#2| (-659 |#2|)) 51 T ELT))) -(((-550 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2243 (|#2| (-659 |#2|))) (-15 -2244 (|#2| (-659 |#2|))) (-15 -2245 (|#2| |#2| |#1|))) (-319) (-1262 |#1|) |#1| (-1 |#1| |#1| (-789))) (T -550)) -((-2245 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-789))) (-5 *1 (-550 *3 *2 *4 *5)) (-4 *2 (-1262 *3)))) (-2244 (*1 *2 *3) (-12 (-5 *3 (-659 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-550 *4 *2 *5 *6)) (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-789))))) (-2243 (*1 *2 *3) (-12 (-5 *3 (-659 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-550 *4 *2 *5 *6)) (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-789)))))) -((-4160 (((-417 (-1190 |#4|)) (-1190 |#4|) (-1 (-417 (-1190 |#3|)) (-1190 |#3|))) 89 T ELT) (((-417 |#4|) |#4| (-1 (-417 (-1190 |#3|)) (-1190 |#3|))) 212 T ELT))) -(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4160 ((-417 |#4|) |#4| (-1 (-417 (-1190 |#3|)) (-1190 |#3|)))) (-15 -4160 ((-417 (-1190 |#4|)) (-1190 |#4|) (-1 (-417 (-1190 |#3|)) (-1190 |#3|))))) (-859) (-813) (-13 (-319) (-149)) (-967 |#3| |#2| |#1|)) (T -551)) -((-4160 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 (-1190 *7)) (-1190 *7))) (-4 *7 (-13 (-319) (-149))) (-4 *5 (-859)) (-4 *6 (-813)) (-4 *8 (-967 *7 *6 *5)) (-5 *2 (-417 (-1190 *8))) (-5 *1 (-551 *5 *6 *7 *8)) (-5 *3 (-1190 *8)))) (-4160 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 (-1190 *7)) (-1190 *7))) (-4 *7 (-13 (-319) (-149))) (-4 *5 (-859)) (-4 *6 (-813)) (-5 *2 (-417 *3)) (-5 *1 (-551 *5 *6 *7 *3)) (-4 *3 (-967 *7 *6 *5))))) -((-3871 ((|#4| |#4|) 74 T ELT)) (-3869 ((|#4| |#4|) 70 T ELT)) (-3872 ((|#4| |#4| (-557) (-557)) 76 T ELT)) (-3870 ((|#4| |#4|) 72 T ELT))) -(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3869 (|#4| |#4|)) (-15 -3870 (|#4| |#4|)) (-15 -3871 (|#4| |#4|)) (-15 -3872 (|#4| |#4| (-557) (-557)))) (-13 (-376) (-381) (-629 (-557))) (-1262 |#1|) (-742 |#1| |#2|) (-1279 |#3|)) (T -552)) -((-3872 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-557)) (-4 *4 (-13 (-376) (-381) (-629 *3))) (-4 *5 (-1262 *4)) (-4 *6 (-742 *4 *5)) (-5 *1 (-552 *4 *5 *6 *2)) (-4 *2 (-1279 *6)))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-629 (-557)))) (-4 *4 (-1262 *3)) (-4 *5 (-742 *3 *4)) (-5 *1 (-552 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) (-3870 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-629 (-557)))) (-4 *4 (-1262 *3)) (-4 *5 (-742 *3 *4)) (-5 *1 (-552 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) (-3869 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-629 (-557)))) (-4 *4 (-1262 *3)) (-4 *5 (-742 *3 *4)) (-5 *1 (-552 *3 *4 *5 *2)) (-4 *2 (-1279 *5))))) -((-3871 ((|#2| |#2|) 27 T ELT)) (-3869 ((|#2| |#2|) 23 T ELT)) (-3872 ((|#2| |#2| (-557) (-557)) 29 T ELT)) (-3870 ((|#2| |#2|) 25 T ELT))) -(((-553 |#1| |#2|) (-10 -7 (-15 -3869 (|#2| |#2|)) (-15 -3870 (|#2| |#2|)) (-15 -3871 (|#2| |#2|)) (-15 -3872 (|#2| |#2| (-557) (-557)))) (-13 (-376) (-381) (-629 (-557))) (-1279 |#1|)) (T -553)) -((-3872 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-557)) (-4 *4 (-13 (-376) (-381) (-629 *3))) (-5 *1 (-553 *4 *2)) (-4 *2 (-1279 *4)))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-629 (-557)))) (-5 *1 (-553 *3 *2)) (-4 *2 (-1279 *3)))) (-3870 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-629 (-557)))) (-5 *1 (-553 *3 *2)) (-4 *2 (-1279 *3)))) (-3869 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-629 (-557)))) (-5 *1 (-553 *3 *2)) (-4 *2 (-1279 *3))))) -((-2246 (((-3 (-557) #1="failed") |#2| |#1| (-1 (-3 (-557) #1#) |#1|)) 18 T ELT) (((-3 (-557) #1#) |#2| |#1| (-557) (-1 (-3 (-557) #1#) |#1|)) 14 T ELT) (((-3 (-557) #1#) |#2| (-557) (-1 (-3 (-557) #1#) |#1|)) 30 T ELT))) -(((-554 |#1| |#2|) (-10 -7 (-15 -2246 ((-3 (-557) #1="failed") |#2| (-557) (-1 (-3 (-557) #1#) |#1|))) (-15 -2246 ((-3 (-557) #1#) |#2| |#1| (-557) (-1 (-3 (-557) #1#) |#1|))) (-15 -2246 ((-3 (-557) #1#) |#2| |#1| (-1 (-3 (-557) #1#) |#1|)))) (-1068) (-1262 |#1|)) (T -554)) -((-2246 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-557) #1="failed") *4)) (-4 *4 (-1068)) (-5 *2 (-557)) (-5 *1 (-554 *4 *3)) (-4 *3 (-1262 *4)))) (-2246 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-557) #1#) *4)) (-4 *4 (-1068)) (-5 *2 (-557)) (-5 *1 (-554 *4 *3)) (-4 *3 (-1262 *4)))) (-2246 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-557) #1#) *5)) (-4 *5 (-1068)) (-5 *2 (-557)) (-5 *1 (-554 *5 *3)) (-4 *3 (-1262 *5))))) -((-2255 (($ $ $) 87 T ELT)) (-4399 (((-417 $) $) 50 T ELT)) (-3573 (((-3 (-557) #1="failed") $) 62 T ELT)) (-3572 (((-557) $) 40 T ELT)) (-3423 (((-3 (-419 (-557)) #1#) $) 80 T ELT)) (-3422 (((-114) $) 24 T ELT)) (-3421 (((-419 (-557)) $) 78 T ELT)) (-4151 (((-114) $) 53 T ELT)) (-2248 (($ $ $ $) 94 T ELT)) (-1481 (($ $ $) 60 T ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) 75 T ELT)) (-3863 (((-709 $) $) 70 T ELT)) (-2252 (($ $) 22 T ELT)) (-2247 (($ $ $) 92 T ELT)) (-3864 (($) 63 T ELT)) (-1479 (($ $) 56 T ELT)) (-4160 (((-417 $) $) 48 T ELT)) (-3073 (((-114) $) 15 T ELT)) (-1785 (((-789) $) 30 T ELT)) (-4186 (($ $) 11 T ELT) (($ $ (-789)) NIL T ELT)) (-3818 (($ $) 16 T ELT)) (-4400 (((-557) $) NIL T ELT) (((-546) $) 39 T ELT) (((-903 (-557)) $) 43 T ELT) (((-391) $) 33 T ELT) (((-229) $) 36 T ELT)) (-3526 (((-789)) 9 T ELT)) (-2257 (((-114) $ $) 19 T ELT)) (-3502 (($ $ $) 58 T ELT))) -(((-555 |#1|) (-10 -7 (-15 -2247 (|#1| |#1| |#1|)) (-15 -2248 (|#1| |#1| |#1| |#1|)) (-15 -2252 (|#1| |#1|)) (-15 -3818 (|#1| |#1|)) (-15 -3423 ((-3 (-419 (-557)) #1="failed") |#1|)) (-15 -3421 ((-419 (-557)) |#1|)) (-15 -3422 ((-114) |#1|)) (-15 -2255 (|#1| |#1| |#1|)) (-15 -2257 ((-114) |#1| |#1|)) (-15 -3073 ((-114) |#1|)) (-15 -3864 (|#1|)) (-15 -3863 ((-709 |#1|) |#1|)) (-15 -4400 ((-229) |#1|)) (-15 -4400 ((-391) |#1|)) (-15 -1481 (|#1| |#1| |#1|)) (-15 -1479 (|#1| |#1|)) (-15 -3502 (|#1| |#1| |#1|)) (-15 -3195 ((-901 (-557) |#1|) |#1| (-903 (-557)) (-901 (-557) |#1|))) (-15 -4400 ((-903 (-557)) |#1|)) (-15 -4400 ((-546) |#1|)) (-15 -3573 ((-3 (-557) #1#) |#1|)) (-15 -3572 ((-557) |#1|)) (-15 -4400 ((-557) |#1|)) (-15 -4186 (|#1| |#1| (-789))) (-15 -4186 (|#1| |#1|)) (-15 -1785 ((-789) |#1|)) (-15 -4160 ((-417 |#1|) |#1|)) (-15 -4399 ((-417 |#1|) |#1|)) (-15 -4151 ((-114) |#1|)) (-15 -3526 ((-789)))) (-556)) (T -555)) -((-3526 (*1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-555 *3)) (-4 *3 (-556))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 52 T ELT)) (-2271 (($ $) 51 T ELT)) (-2269 (((-114) $) 49 T ELT)) (-2255 (($ $ $) 99 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-2250 (($ $ $ $) 88 T ELT)) (-4203 (($ $) 63 T ELT)) (-4399 (((-417 $) $) 64 T ELT)) (-1786 (((-114) $ $) 142 T ELT)) (-4051 (((-557) $) 131 T ELT)) (-2828 (($ $ $) 102 T ELT)) (-4152 (($) 22 T CONST)) (-3573 (((-3 (-557) "failed") $) 123 T ELT)) (-3572 (((-557) $) 124 T ELT)) (-2961 (($ $ $) 146 T ELT)) (-2491 (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) 121 T ELT) (((-707 (-557)) (-707 $)) 120 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-3423 (((-3 (-419 (-557)) "failed") $) 96 T ELT)) (-3422 (((-114) $) 98 T ELT)) (-3421 (((-419 (-557)) $) 97 T ELT)) (-3393 (($) 95 T ELT) (($ $) 94 T ELT)) (-2960 (($ $ $) 145 T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 140 T ELT)) (-4151 (((-114) $) 65 T ELT)) (-2248 (($ $ $ $) 86 T ELT)) (-2256 (($ $ $) 100 T ELT)) (-3602 (((-114) $) 133 T ELT)) (-1481 (($ $ $) 111 T ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) 114 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3072 (((-114) $) 106 T ELT)) (-3863 (((-709 $) $) 108 T ELT)) (-3603 (((-114) $) 132 T ELT)) (-1783 (((-3 (-659 $) #1="failed") (-659 $) $) 149 T ELT)) (-2249 (($ $ $ $) 87 T ELT)) (-2928 (($ $ $) 139 T ELT)) (-3256 (($ $ $) 138 T ELT)) (-2252 (($ $) 90 T ELT)) (-4261 (($ $) 103 T ELT)) (-2492 (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) 119 T ELT) (((-707 (-557)) (-1286 $)) 118 T ELT)) (-2100 (($ $ $) 57 T ELT) (($ (-659 $)) 56 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2247 (($ $ $) 85 T ELT)) (-3864 (($) 107 T CONST)) (-2254 (($ $) 92 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 55 T ELT)) (-3560 (($ $ $) 59 T ELT) (($ (-659 $)) 58 T ELT)) (-1479 (($ $) 112 T ELT)) (-4160 (((-417 $) $) 62 T ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 148 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 147 T ELT)) (-3884 (((-3 $ "failed") $ $) 53 T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 141 T ELT)) (-3073 (((-114) $) 105 T ELT)) (-1785 (((-789) $) 143 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 144 T ELT)) (-4186 (($ $) 129 T ELT) (($ $ (-789)) 127 T ELT)) (-2253 (($ $) 91 T ELT)) (-3818 (($ $) 93 T ELT)) (-4400 (((-557) $) 125 T ELT) (((-546) $) 116 T ELT) (((-903 (-557)) $) 115 T ELT) (((-391) $) 110 T ELT) (((-229) $) 109 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 54 T ELT) (($ (-557)) 122 T ELT)) (-3526 (((-789)) 37 T CONST)) (-2257 (((-114) $ $) 101 T ELT)) (-3502 (($ $ $) 113 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3093 (($) 104 T ELT)) (-2270 (((-114) $ $) 50 T ELT)) (-2251 (($ $ $ $) 89 T ELT)) (-3801 (($ $) 130 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $) 128 T ELT) (($ $ (-789)) 126 T ELT)) (-2963 (((-114) $ $) 137 T ELT)) (-2964 (((-114) $ $) 135 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 136 T ELT)) (-3084 (((-114) $ $) 134 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-557) $) 117 T ELT))) -(((-556) (-142)) (T -556)) -((-3072 (*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-114)))) (-3073 (*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-114)))) (-3093 (*1 *1) (-4 *1 (-556))) (-4261 (*1 *1 *1) (-4 *1 (-556))) (-2828 (*1 *1 *1 *1) (-4 *1 (-556))) (-2257 (*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-114)))) (-2256 (*1 *1 *1 *1) (-4 *1 (-556))) (-2255 (*1 *1 *1 *1) (-4 *1 (-556))) (-3422 (*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-114)))) (-3421 (*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-419 (-557))))) (-3423 (*1 *2 *1) (|partial| -12 (-4 *1 (-556)) (-5 *2 (-419 (-557))))) (-3393 (*1 *1) (-4 *1 (-556))) (-3393 (*1 *1 *1) (-4 *1 (-556))) (-3818 (*1 *1 *1) (-4 *1 (-556))) (-2254 (*1 *1 *1) (-4 *1 (-556))) (-2253 (*1 *1 *1) (-4 *1 (-556))) (-2252 (*1 *1 *1) (-4 *1 (-556))) (-2251 (*1 *1 *1 *1 *1) (-4 *1 (-556))) (-2250 (*1 *1 *1 *1 *1) (-4 *1 (-556))) (-2249 (*1 *1 *1 *1 *1) (-4 *1 (-556))) (-2248 (*1 *1 *1 *1 *1) (-4 *1 (-556))) (-2247 (*1 *1 *1 *1) (-4 *1 (-556)))) -(-13 (-1241) (-319) (-840) (-240) (-629 (-557)) (-1057 (-557)) (-656 (-557)) (-629 (-546)) (-629 (-903 (-557))) (-899 (-557)) (-145) (-1039) (-149) (-1171) (-10 -8 (-15 -3072 ((-114) $)) (-15 -3073 ((-114) $)) (-6 -4422) (-15 -3093 ($)) (-15 -4261 ($ $)) (-15 -2828 ($ $ $)) (-15 -2257 ((-114) $ $)) (-15 -2256 ($ $ $)) (-15 -2255 ($ $ $)) (-15 -3422 ((-114) $)) (-15 -3421 ((-419 (-557)) $)) (-15 -3423 ((-3 (-419 (-557)) "failed") $)) (-15 -3393 ($)) (-15 -3393 ($ $)) (-15 -3818 ($ $)) (-15 -2254 ($ $)) (-15 -2253 ($ $)) (-15 -2252 ($ $)) (-15 -2251 ($ $ $ $)) (-15 -2250 ($ $ $ $)) (-15 -2249 ($ $ $ $)) (-15 -2248 ($ $ $ $)) (-15 -2247 ($ $ $)) (-6 -4421))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-631 (-557)) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-145) . T) ((-175) . T) ((-629 (-229)) . T) ((-629 (-391)) . T) ((-629 (-546)) . T) ((-629 (-557)) . T) ((-629 (-903 (-557))) . T) ((-236 $) . T) ((-240) . T) ((-239) . T) ((-302) . T) ((-319) . T) ((-464) . T) ((-568) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 (-557)) . T) ((-666 $) . T) ((-658 $) . T) ((-656 (-557)) . T) ((-735 $) . T) ((-744) . T) ((-810) . T) ((-812) . T) ((-814) . T) ((-817) . T) ((-840) . T) ((-858) . T) ((-859) . T) ((-862) . T) ((-899 (-557)) . T) ((-938) . T) ((-1039) . T) ((-1057 (-557)) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1171) . T) ((-1236) . T) ((-1241) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 8 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 84 T ELT)) (-2271 (($ $) 85 T ELT)) (-2269 (((-114) $) NIL T ELT)) (-2255 (($ $ $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2250 (($ $ $ $) 32 T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4051 (((-557) $) NIL T ELT)) (-2828 (($ $ $) 76 T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) NIL T ELT)) (-3572 (((-557) $) NIL T ELT)) (-2961 (($ $ $) 48 T ELT)) (-2491 (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) 59 T ELT) (((-707 (-557)) (-707 $)) 55 T ELT)) (-3885 (((-3 $ #1#) $) 81 T ELT)) (-3423 (((-3 (-419 (-557)) #1#) $) NIL T ELT)) (-3422 (((-114) $) NIL T ELT)) (-3421 (((-419 (-557)) $) NIL T ELT)) (-3393 (($) 61 T ELT) (($ $) 62 T ELT)) (-2960 (($ $ $) 75 T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-2248 (($ $ $ $) NIL T ELT)) (-2256 (($ $ $) 52 T ELT)) (-3602 (((-114) $) 22 T ELT)) (-1481 (($ $ $) NIL T ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL T ELT)) (-2639 (((-114) $) 9 T ELT)) (-3072 (((-114) $) 69 T ELT)) (-3863 (((-709 $) $) NIL T ELT)) (-3603 (((-114) $) 21 T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2249 (($ $ $ $) 34 T ELT)) (-2928 (($ $ $) 72 T ELT)) (-3256 (($ $ $) 71 T ELT)) (-2252 (($ $) NIL T ELT)) (-4261 (($ $) 29 T ELT)) (-2492 (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL T ELT) (((-707 (-557)) (-1286 $)) NIL T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) 47 T ELT)) (-2247 (($ $ $) NIL T ELT)) (-3864 (($) NIL T CONST)) (-2254 (($ $) 15 T ELT)) (-3659 (((-1139) $) 19 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 117 T ELT)) (-3560 (($ $ $) 82 T ELT) (($ (-659 $)) NIL T ELT)) (-1479 (($ $) NIL T ELT)) (-4160 (((-417 $) $) 103 T ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-3073 (((-114) $) 70 T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 74 T ELT)) (-4186 (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-2253 (($ $) 17 T ELT)) (-3818 (($ $) 13 T ELT)) (-4400 (((-557) $) 28 T ELT) (((-546) $) 43 T ELT) (((-903 (-557)) $) NIL T ELT) (((-391) $) 37 T ELT) (((-229) $) 40 T ELT)) (-4374 (((-875) $) 26 T ELT) (($ (-557)) 27 T ELT) (($ $) NIL T ELT) (($ (-557)) 27 T ELT)) (-3526 (((-789)) NIL T CONST)) (-2257 (((-114) $ $) NIL T ELT)) (-3502 (($ $ $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3093 (($) 12 T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-2251 (($ $ $ $) 31 T ELT)) (-3801 (($ $) 60 T ELT)) (-3057 (($) 10 T CONST)) (-3063 (($) 11 T CONST)) (-3068 (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-2963 (((-114) $ $) 30 T ELT)) (-2964 (((-114) $ $) 63 T ELT)) (-3452 (((-114) $ $) 7 T ELT)) (-3083 (((-114) $ $) 64 T ELT)) (-3084 (((-114) $ $) 20 T ELT)) (-4265 (($ $) 44 T ELT) (($ $ $) 16 T ELT)) (-4267 (($ $ $) 14 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) 68 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 66 T ELT) (($ $ $) 65 T ELT) (($ (-557) $) 66 T ELT))) -(((-557) (-13 (-556) (-10 -7 (-6 -4410) (-6 -4415) (-6 -4411)))) (T -557)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3393 (($) NIL T ELT)) (-2928 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3256 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2218 (((-936) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2629 (($ (-936)) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT))) -(((-558) (-13 (-855) (-10 -8 (-15 -4152 ($) -4380)))) (T -558)) -((-4152 (*1 *1) (-5 *1 (-558)))) -((-557) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-2965 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3393 (($) NIL T ELT)) (-2928 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3256 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2218 (((-936) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2629 (($ (-936)) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT))) -(((-559) (-13 (-855) (-10 -8 (-15 -4152 ($) -4380)))) (T -559)) -((-4152 (*1 *1) (-5 *1 (-559)))) -((-557) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-2965 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3393 (($) NIL T ELT)) (-2928 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3256 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2218 (((-936) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2629 (($ (-936)) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT))) -(((-560) (-13 (-855) (-10 -8 (-15 -4152 ($) -4380)))) (T -560)) -((-4152 (*1 *1) (-5 *1 (-560)))) -((-557) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-2965 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3393 (($) NIL T ELT)) (-2928 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3256 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2218 (((-936) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2629 (($ (-936)) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT))) -(((-561) (-13 (-855) (-10 -8 (-15 -4152 ($) -4380)))) (T -561)) -((-4152 (*1 *1) (-5 *1 (-561)))) -((-557) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-2965 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4025 (($) NIL T ELT) (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-2411 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-4216 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1711 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-2444 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT)) (-3823 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3824 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (|has| $ (-6 -4423)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-1717 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#2| $ |#1|) NIL T ELT)) (-3288 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2413 ((|#1| $) NIL (|has| |#1| (-859)) ELT)) (-3005 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-2414 ((|#1| $) NIL (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| |#2| (-1120))) ELT)) (-2882 (((-659 |#1|) $) NIL T ELT)) (-2445 (((-114) |#1| $) NIL T ELT)) (-1387 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-4035 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-2416 (((-659 |#1|) $) NIL T ELT)) (-2417 (((-114) |#1| $) NIL T ELT)) (-3659 (((-1139) $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| |#2| (-1120))) ELT)) (-4229 ((|#2| $) NIL (|has| |#1| (-859)) ELT)) (-1466 (((-3 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) #1#) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT)) (-2412 (($ $ |#2|) NIL (|has| $ (-6 -4424)) ELT)) (-1388 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-2156 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-659 |#2|) (-659 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-659 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-2418 (((-659 |#2|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1596 (($) NIL T ELT) (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-2155 (((-789) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-789) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT) (((-789) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-629 (-546))) ELT)) (-3948 (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-4374 (((-875) $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-628 (-875))) (|has| |#2| (-628 (-875)))) ELT)) (-1376 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1389 (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-562 |#1| |#2| |#3|) (-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4423))) (-1120) (-1120) (-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4423)))) (T -562)) -NIL -((-2258 (((-594 |#2|) |#2| (-626 |#2|) (-626 |#2|) (-1 (-1190 |#2|) (-1190 |#2|))) 50 T ELT))) -(((-563 |#1| |#2|) (-10 -7 (-15 -2258 ((-594 |#2|) |#2| (-626 |#2|) (-626 |#2|) (-1 (-1190 |#2|) (-1190 |#2|))))) (-568) (-13 (-27) (-433 |#1|))) (T -563)) -((-2258 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-626 *3)) (-5 *5 (-1 (-1190 *3) (-1190 *3))) (-4 *3 (-13 (-27) (-433 *6))) (-4 *6 (-568)) (-5 *2 (-594 *3)) (-5 *1 (-563 *6 *3))))) -((-2260 (((-594 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2261 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2259 (((-594 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) -(((-564 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2259 ((-594 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2260 ((-594 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2261 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-568) (-1057 (-557))) (-13 (-27) (-433 |#1|)) (-1262 |#2|) (-1262 (-419 |#3|)) (-355 |#2| |#3| |#4|)) (T -564)) -((-2261 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-27) (-433 *4))) (-4 *4 (-13 (-568) (-1057 (-557)))) (-4 *7 (-1262 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) (-4 *2 (-355 *5 *6 *7)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1262 *6)) (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-568) (-1057 (-557)))) (-4 *8 (-1262 (-419 *7))) (-5 *2 (-594 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8)))) (-2259 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1262 *6)) (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-568) (-1057 (-557)))) (-4 *8 (-1262 (-419 *7))) (-5 *2 (-594 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8))))) -((-2264 (((-114) (-557) (-557)) 12 T ELT)) (-2262 (((-557) (-557)) 7 T ELT)) (-2263 (((-557) (-557) (-557)) 10 T ELT))) -(((-565) (-10 -7 (-15 -2262 ((-557) (-557))) (-15 -2263 ((-557) (-557) (-557))) (-15 -2264 ((-114) (-557) (-557))))) (T -565)) -((-2264 (*1 *2 *3 *3) (-12 (-5 *3 (-557)) (-5 *2 (-114)) (-5 *1 (-565)))) (-2263 (*1 *2 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-565)))) (-2262 (*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-565))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-3001 ((|#1| $) 74 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 52 T ELT)) (-2271 (($ $) 51 T ELT)) (-2269 (((-114) $) 49 T ELT)) (-3910 (($ $) 104 T ELT)) (-4067 (($ $) 87 T ELT)) (-2871 ((|#1| $) 75 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-3436 (($ $) 86 T ELT)) (-3908 (($ $) 103 T ELT)) (-4066 (($ $) 88 T ELT)) (-3912 (($ $) 102 T ELT)) (-4065 (($ $) 89 T ELT)) (-4152 (($) 22 T CONST)) (-3573 (((-3 (-557) "failed") $) 82 T ELT)) (-3572 (((-557) $) 83 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2267 (($ |#1| |#1|) 79 T ELT)) (-3602 (((-114) $) 73 T ELT)) (-4055 (($) 114 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3410 (($ $ (-557)) 85 T ELT)) (-3603 (((-114) $) 72 T ELT)) (-2928 (($ $ $) 115 T ELT)) (-3256 (($ $ $) 116 T ELT)) (-4370 (($ $) 111 T ELT)) (-2100 (($ $ $) 57 T ELT) (($ (-659 $)) 56 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2268 (($ |#1| |#1|) 80 T ELT) (($ |#1|) 78 T ELT) (($ (-419 (-557))) 77 T ELT)) (-2266 ((|#1| $) 76 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 55 T ELT)) (-3560 (($ $ $) 59 T ELT) (($ (-659 $)) 58 T ELT)) (-3884 (((-3 $ "failed") $ $) 53 T ELT)) (-4371 (($ $) 112 T ELT)) (-3913 (($ $) 101 T ELT)) (-4064 (($ $) 90 T ELT)) (-3911 (($ $) 100 T ELT)) (-4063 (($ $) 91 T ELT)) (-3909 (($ $) 99 T ELT)) (-4062 (($ $) 92 T ELT)) (-2265 (((-114) $ |#1|) 71 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 54 T ELT) (($ (-557)) 81 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-3916 (($ $) 110 T ELT)) (-3904 (($ $) 98 T ELT)) (-2270 (((-114) $ $) 50 T ELT)) (-3914 (($ $) 109 T ELT)) (-3902 (($ $) 97 T ELT)) (-3918 (($ $) 108 T ELT)) (-3906 (($ $) 96 T ELT)) (-3919 (($ $) 107 T ELT)) (-3907 (($ $) 95 T ELT)) (-3917 (($ $) 106 T ELT)) (-3905 (($ $) 94 T ELT)) (-3915 (($ $) 105 T ELT)) (-3903 (($ $) 93 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-2963 (((-114) $ $) 117 T ELT)) (-2964 (((-114) $ $) 119 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 118 T ELT)) (-3084 (((-114) $ $) 120 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ $) 113 T ELT) (($ $ (-419 (-557))) 84 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-566 |#1|) (-142) (-13 (-416) (-1222))) (T -566)) -((-2268 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-2267 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-2268 (*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-2268 (*1 *1 *2) (-12 (-5 *2 (-419 (-557))) (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))))) (-2266 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-2871 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-3602 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-114)))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-114)))) (-2265 (*1 *2 *1 *3) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-114))))) -(-13 (-464) (-859) (-1222) (-1021) (-1057 (-557)) (-10 -8 (-6 -4198) (-15 -2268 ($ |t#1| |t#1|)) (-15 -2267 ($ |t#1| |t#1|)) (-15 -2268 ($ |t#1|)) (-15 -2268 ($ (-419 (-557)))) (-15 -2266 (|t#1| $)) (-15 -2871 (|t#1| $)) (-15 -3001 (|t#1| $)) (-15 -3602 ((-114) $)) (-15 -3603 ((-114) $)) (-15 -2265 ((-114) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-631 (-557)) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-175) . T) ((-296) . T) ((-302) . T) ((-464) . T) ((-505) . T) ((-568) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 $) . T) ((-658 $) . T) ((-735 $) . T) ((-744) . T) ((-859) . T) ((-862) . T) ((-1021) . T) ((-1057 (-557)) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1222) . T) ((-1225) . T) ((-1236) . T)) -((-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 9 T ELT)) (-2271 (($ $) 11 T ELT)) (-2269 (((-114) $) 20 T ELT)) (-3885 (((-3 $ "failed") $) 16 T ELT)) (-2270 (((-114) $ $) 22 T ELT))) -(((-567 |#1|) (-10 -7 (-15 -2269 ((-114) |#1|)) (-15 -2270 ((-114) |#1| |#1|)) (-15 -2271 (|#1| |#1|)) (-15 -2272 ((-2 (|:| -1978 |#1|) (|:| -4410 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3885 ((-3 |#1| "failed") |#1|))) (-568)) (T -567)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 52 T ELT)) (-2271 (($ $) 51 T ELT)) (-2269 (((-114) $) 49 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3884 (((-3 $ "failed") $ $) 53 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 54 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 50 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-568) (-142)) (T -568)) -((-3884 (*1 *1 *1 *1) (|partial| -4 *1 (-568))) (-2272 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1978 *1) (|:| -4410 *1) (|:| |associate| *1))) (-4 *1 (-568)))) (-2271 (*1 *1 *1) (-4 *1 (-568))) (-2270 (*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-114)))) (-2269 (*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-114))))) -(-13 (-175) (-38 $) (-302) (-10 -8 (-15 -3884 ((-3 $ "failed") $ $)) (-15 -2272 ((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $)) (-15 -2271 ($ $)) (-15 -2270 ((-114) $ $)) (-15 -2269 ((-114) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-631 (-557)) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-175) . T) ((-302) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 $) . T) ((-658 $) . T) ((-735 $) . T) ((-744) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2274 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1196) (-659 |#2|)) 38 T ELT)) (-2276 (((-594 |#2|) |#2| (-1196)) 63 T ELT)) (-2275 (((-3 |#2| #1#) |#2| (-1196)) 156 T ELT)) (-2277 (((-3 (-2 (|:| -2349 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1196) (-626 |#2|) (-659 (-626 |#2|))) 159 T ELT)) (-2273 (((-3 (-2 (|:| -2349 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1196) |#2|) 41 T ELT))) -(((-569 |#1| |#2|) (-10 -7 (-15 -2273 ((-3 (-2 (|:| -2349 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1196) |#2|)) (-15 -2274 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1196) (-659 |#2|))) (-15 -2275 ((-3 |#2| #1#) |#2| (-1196))) (-15 -2276 ((-594 |#2|) |#2| (-1196))) (-15 -2277 ((-3 (-2 (|:| -2349 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1196) (-626 |#2|) (-659 (-626 |#2|))))) (-13 (-464) (-149) (-1057 (-557)) (-656 (-557))) (-13 (-27) (-1222) (-433 |#1|))) (T -569)) -((-2277 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1196)) (-5 *6 (-659 (-626 *3))) (-5 *5 (-626 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *7))) (-4 *7 (-13 (-464) (-149) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-2 (|:| -2349 *3) (|:| |coeff| *3))) (-5 *1 (-569 *7 *3)))) (-2276 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-464) (-149) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-594 *3)) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5))))) (-2275 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-149) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-433 *4))))) (-2274 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-659 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *6))) (-4 *6 (-13 (-464) (-149) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6 *3)))) (-2273 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-13 (-464) (-149) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-2 (|:| -2349 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5)))))) -((-4399 (((-417 |#1|) |#1|) 17 T ELT)) (-4160 (((-417 |#1|) |#1|) 32 T ELT)) (-2279 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2278 (((-417 |#1|) |#1|) 59 T ELT))) -(((-570 |#1|) (-10 -7 (-15 -4160 ((-417 |#1|) |#1|)) (-15 -4399 ((-417 |#1|) |#1|)) (-15 -2278 ((-417 |#1|) |#1|)) (-15 -2279 ((-3 |#1| "failed") |#1|))) (-556)) (T -570)) -((-2279 (*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-556)))) (-2278 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-570 *3)) (-4 *3 (-556)))) (-4399 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-570 *3)) (-4 *3 (-556)))) (-4160 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-570 *3)) (-4 *3 (-556))))) -((-2280 (($) 9 T ELT)) (-2283 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-229))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1636 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 34 T ELT)) (-2882 (((-659 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $) 31 T ELT)) (-4035 (($ (-2 (|:| -4288 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2284 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-229))) (|:| |notEvaluated| #6#))) (|:| -1636 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) 28 T ELT)) (-2282 (($ (-659 (-2 (|:| -4288 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2284 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-229))) (|:| |notEvaluated| #6#))) (|:| -1636 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) 26 T ELT)) (-2284 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-229))) (|:| |notEvaluated| #6#))) (|:| -1636 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 38 T ELT)) (-2418 (((-659 (-2 (|:| -4288 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2284 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-229))) (|:| |notEvaluated| #6#))) (|:| -1636 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) 36 T ELT)) (-2281 (((-1292)) 11 T ELT))) -(((-571) (-10 -8 (-15 -2280 ($)) (-15 -2281 ((-1292))) (-15 -2882 ((-659 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -2282 ($ (-659 (-2 (|:| -4288 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2284 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-229))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1636 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -4035 ($ (-2 (|:| -4288 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2284 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-229))) (|:| |notEvaluated| #6#))) (|:| -1636 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2283 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-229))) (|:| |notEvaluated| #6#))) (|:| -1636 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2418 ((-659 (-2 (|:| -4288 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2284 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-229))) (|:| |notEvaluated| #6#))) (|:| -1636 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2284 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-229))) (|:| |notEvaluated| #6#))) (|:| -1636 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -571)) -((-2284 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-229))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1636 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))) (-5 *1 (-571)))) (-2418 (*1 *2 *1) (-12 (-5 *2 (-659 (-2 (|:| -4288 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2284 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-229))) (|:| |notEvaluated| #6#))) (|:| -1636 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-571)))) (-2283 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-229))) (|:| |notEvaluated| #6#))) (|:| -1636 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))) (-5 *1 (-571)))) (-4035 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4288 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2284 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-229))) (|:| |notEvaluated| #6#))) (|:| -1636 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) (-5 *1 (-571)))) (-2282 (*1 *1 *2) (-12 (-5 *2 (-659 (-2 (|:| -4288 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2284 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-229))) (|:| |notEvaluated| #6#))) (|:| -1636 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-571)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-659 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-5 *1 (-571)))) (-2281 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-571)))) (-2280 (*1 *1) (-5 *1 (-571)))) -((-3484 (((-1190 (-419 (-1190 |#2|))) |#2| (-626 |#2|) (-626 |#2|) (-1190 |#2|)) 35 T ELT)) (-2287 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-626 |#2|) (-626 |#2|) (-659 |#2|) (-626 |#2|) |#2| (-419 (-1190 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-626 |#2|) (-626 |#2|) (-659 |#2|) |#2| (-1190 |#2|)) 115 T ELT)) (-2285 (((-594 |#2|) |#2| (-626 |#2|) (-626 |#2|) (-626 |#2|) |#2| (-419 (-1190 |#2|))) 85 T ELT) (((-594 |#2|) |#2| (-626 |#2|) (-626 |#2|) |#2| (-1190 |#2|)) 55 T ELT)) (-2286 (((-3 (-2 (|:| -2349 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-626 |#2|) (-626 |#2|) |#2| (-626 |#2|) |#2| (-419 (-1190 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2349 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-626 |#2|) (-626 |#2|) |#2| |#2| (-1190 |#2|)) 114 T ELT)) (-2288 (((-3 |#2| #1#) |#2| |#2| (-626 |#2|) (-626 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1196)) (-626 |#2|) |#2| (-419 (-1190 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-626 |#2|) (-626 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1196)) |#2| (-1190 |#2|)) 116 T ELT)) (-2289 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2220 (-659 |#2|))) |#3| |#2| (-626 |#2|) (-626 |#2|) (-626 |#2|) |#2| (-419 (-1190 |#2|))) 133 (|has| |#3| (-676 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2220 (-659 |#2|))) |#3| |#2| (-626 |#2|) (-626 |#2|) |#2| (-1190 |#2|)) 132 (|has| |#3| (-676 |#2|)) ELT)) (-3485 ((|#2| (-1190 (-419 (-1190 |#2|))) (-626 |#2|) |#2|) 53 T ELT)) (-3478 (((-1190 (-419 (-1190 |#2|))) (-1190 |#2|) (-626 |#2|)) 34 T ELT))) -(((-572 |#1| |#2| |#3|) (-10 -7 (-15 -2285 ((-594 |#2|) |#2| (-626 |#2|) (-626 |#2|) |#2| (-1190 |#2|))) (-15 -2285 ((-594 |#2|) |#2| (-626 |#2|) (-626 |#2|) (-626 |#2|) |#2| (-419 (-1190 |#2|)))) (-15 -2286 ((-3 (-2 (|:| -2349 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-626 |#2|) (-626 |#2|) |#2| |#2| (-1190 |#2|))) (-15 -2286 ((-3 (-2 (|:| -2349 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-626 |#2|) (-626 |#2|) |#2| (-626 |#2|) |#2| (-419 (-1190 |#2|)))) (-15 -2287 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-626 |#2|) (-626 |#2|) (-659 |#2|) |#2| (-1190 |#2|))) (-15 -2287 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-626 |#2|) (-626 |#2|) (-659 |#2|) (-626 |#2|) |#2| (-419 (-1190 |#2|)))) (-15 -2288 ((-3 |#2| #1#) |#2| |#2| (-626 |#2|) (-626 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1196)) |#2| (-1190 |#2|))) (-15 -2288 ((-3 |#2| #1#) |#2| |#2| (-626 |#2|) (-626 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1196)) (-626 |#2|) |#2| (-419 (-1190 |#2|)))) (-15 -3484 ((-1190 (-419 (-1190 |#2|))) |#2| (-626 |#2|) (-626 |#2|) (-1190 |#2|))) (-15 -3485 (|#2| (-1190 (-419 (-1190 |#2|))) (-626 |#2|) |#2|)) (-15 -3478 ((-1190 (-419 (-1190 |#2|))) (-1190 |#2|) (-626 |#2|))) (IF (|has| |#3| (-676 |#2|)) (PROGN (-15 -2289 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2220 (-659 |#2|))) |#3| |#2| (-626 |#2|) (-626 |#2|) |#2| (-1190 |#2|))) (-15 -2289 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2220 (-659 |#2|))) |#3| |#2| (-626 |#2|) (-626 |#2|) (-626 |#2|) |#2| (-419 (-1190 |#2|))))) |%noBranch|)) (-13 (-464) (-1057 (-557)) (-149) (-656 (-557))) (-13 (-433 |#1|) (-27) (-1222)) (-1120)) (T -572)) -((-2289 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-626 *4)) (-5 *6 (-419 (-1190 *4))) (-4 *4 (-13 (-433 *7) (-27) (-1222))) (-4 *7 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2220 (-659 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-676 *4)) (-4 *3 (-1120)))) (-2289 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-626 *4)) (-5 *6 (-1190 *4)) (-4 *4 (-13 (-433 *7) (-27) (-1222))) (-4 *7 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2220 (-659 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-676 *4)) (-4 *3 (-1120)))) (-3478 (*1 *2 *3 *4) (-12 (-5 *4 (-626 *6)) (-4 *6 (-13 (-433 *5) (-27) (-1222))) (-4 *5 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) (-5 *2 (-1190 (-419 (-1190 *6)))) (-5 *1 (-572 *5 *6 *7)) (-5 *3 (-1190 *6)) (-4 *7 (-1120)))) (-3485 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1190 (-419 (-1190 *2)))) (-5 *4 (-626 *2)) (-4 *2 (-13 (-433 *5) (-27) (-1222))) (-4 *5 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1120)))) (-3484 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-626 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) (-5 *2 (-1190 (-419 (-1190 *3)))) (-5 *1 (-572 *6 *3 *7)) (-5 *5 (-1190 *3)) (-4 *7 (-1120)))) (-2288 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-626 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1196))) (-5 *5 (-419 (-1190 *2))) (-4 *2 (-13 (-433 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1120)))) (-2288 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-626 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1196))) (-5 *5 (-1190 *2)) (-4 *2 (-13 (-433 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1120)))) (-2287 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-626 *3)) (-5 *5 (-659 *3)) (-5 *6 (-419 (-1190 *3))) (-4 *3 (-13 (-433 *7) (-27) (-1222))) (-4 *7 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1120)))) (-2287 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-626 *3)) (-5 *5 (-659 *3)) (-5 *6 (-1190 *3)) (-4 *3 (-13 (-433 *7) (-27) (-1222))) (-4 *7 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1120)))) (-2286 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-626 *3)) (-5 *5 (-419 (-1190 *3))) (-4 *3 (-13 (-433 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) (-5 *2 (-2 (|:| -2349 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1120)))) (-2286 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-626 *3)) (-5 *5 (-1190 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) (-5 *2 (-2 (|:| -2349 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1120)))) (-2285 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-626 *3)) (-5 *5 (-419 (-1190 *3))) (-4 *3 (-13 (-433 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) (-5 *2 (-594 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1120)))) (-2285 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-626 *3)) (-5 *5 (-1190 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) (-5 *2 (-594 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1120))))) -((-2299 (((-557) (-557) (-789)) 87 T ELT)) (-2298 (((-557) (-557)) 85 T ELT)) (-2297 (((-557) (-557)) 82 T ELT)) (-2296 (((-557) (-557)) 89 T ELT)) (-3204 (((-557) (-557) (-557)) 67 T ELT)) (-2295 (((-557) (-557) (-557)) 64 T ELT)) (-2294 (((-419 (-557)) (-557)) 29 T ELT)) (-2293 (((-557) (-557)) 34 T ELT)) (-2292 (((-557) (-557)) 76 T ELT)) (-3201 (((-557) (-557)) 47 T ELT)) (-2291 (((-659 (-557)) (-557)) 81 T ELT)) (-2290 (((-557) (-557) (-557) (-557) (-557)) 60 T ELT)) (-3197 (((-419 (-557)) (-557)) 56 T ELT))) -(((-573) (-10 -7 (-15 -3197 ((-419 (-557)) (-557))) (-15 -2290 ((-557) (-557) (-557) (-557) (-557))) (-15 -2291 ((-659 (-557)) (-557))) (-15 -3201 ((-557) (-557))) (-15 -2292 ((-557) (-557))) (-15 -2293 ((-557) (-557))) (-15 -2294 ((-419 (-557)) (-557))) (-15 -2295 ((-557) (-557) (-557))) (-15 -3204 ((-557) (-557) (-557))) (-15 -2296 ((-557) (-557))) (-15 -2297 ((-557) (-557))) (-15 -2298 ((-557) (-557))) (-15 -2299 ((-557) (-557) (-789))))) (T -573)) -((-2299 (*1 *2 *2 *3) (-12 (-5 *2 (-557)) (-5 *3 (-789)) (-5 *1 (-573)))) (-2298 (*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-573)))) (-2297 (*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-573)))) (-2296 (*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-573)))) (-3204 (*1 *2 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-573)))) (-2295 (*1 *2 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-573)))) (-2294 (*1 *2 *3) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-573)) (-5 *3 (-557)))) (-2293 (*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-573)))) (-2292 (*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-573)))) (-3201 (*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-573)))) (-2291 (*1 *2 *3) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-573)) (-5 *3 (-557)))) (-2290 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-573)))) (-3197 (*1 *2 *3) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-573)) (-5 *3 (-557))))) -((-2300 (((-2 (|:| |answer| |#4|) (|:| -2348 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) -(((-574 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2300 ((-2 (|:| |answer| |#4|) (|:| -2348 |#4|)) |#4| (-1 |#2| |#2|)))) (-376) (-1262 |#1|) (-1262 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -574)) -((-2300 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-376)) (-4 *7 (-1262 (-419 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2348 *3))) (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-355 *5 *6 *7))))) -((-2300 (((-2 (|:| |answer| (-419 |#2|)) (|:| -2348 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 18 T ELT))) -(((-575 |#1| |#2|) (-10 -7 (-15 -2300 ((-2 (|:| |answer| (-419 |#2|)) (|:| -2348 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) (-376) (-1262 |#1|)) (T -575)) -((-2300 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |answer| (-419 *6)) (|:| -2348 (-419 *6)) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6))))) -((-3067 (((-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178))) (|:| |extra| (-1054))) (-787) (-1082)) 116 T ELT) (((-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178))) (|:| |extra| (-1054))) (-787)) 118 T ELT)) (-4240 (((-3 (-1054) #1="failed") (-326 (-391)) (-1111 (-853 (-391))) (-1196)) 195 T ELT) (((-3 (-1054) #1#) (-326 (-391)) (-1111 (-853 (-391))) (-1178)) 194 T ELT) (((-1054) (-326 (-391)) (-659 (-1108 (-853 (-391)))) (-391) (-391) (-1082)) 199 T ELT) (((-1054) (-326 (-391)) (-659 (-1108 (-853 (-391)))) (-391) (-391)) 200 T ELT) (((-1054) (-326 (-391)) (-659 (-1108 (-853 (-391)))) (-391)) 201 T ELT) (((-1054) (-326 (-391)) (-659 (-1108 (-853 (-391))))) 202 T ELT) (((-1054) (-326 (-391)) (-1108 (-853 (-391)))) 190 T ELT) (((-1054) (-326 (-391)) (-1108 (-853 (-391))) (-391)) 189 T ELT) (((-1054) (-326 (-391)) (-1108 (-853 (-391))) (-391) (-391)) 185 T ELT) (((-1054) (-787)) 177 T ELT) (((-1054) (-326 (-391)) (-1108 (-853 (-391))) (-391) (-391) (-1082)) 184 T ELT))) -(((-576) (-10 -7 (-15 -4240 ((-1054) (-326 (-391)) (-1108 (-853 (-391))) (-391) (-391) (-1082))) (-15 -4240 ((-1054) (-787))) (-15 -4240 ((-1054) (-326 (-391)) (-1108 (-853 (-391))) (-391) (-391))) (-15 -4240 ((-1054) (-326 (-391)) (-1108 (-853 (-391))) (-391))) (-15 -4240 ((-1054) (-326 (-391)) (-1108 (-853 (-391))))) (-15 -4240 ((-1054) (-326 (-391)) (-659 (-1108 (-853 (-391)))))) (-15 -4240 ((-1054) (-326 (-391)) (-659 (-1108 (-853 (-391)))) (-391))) (-15 -4240 ((-1054) (-326 (-391)) (-659 (-1108 (-853 (-391)))) (-391) (-391))) (-15 -4240 ((-1054) (-326 (-391)) (-659 (-1108 (-853 (-391)))) (-391) (-391) (-1082))) (-15 -3067 ((-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178))) (|:| |extra| (-1054))) (-787))) (-15 -3067 ((-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178))) (|:| |extra| (-1054))) (-787) (-1082))) (-15 -4240 ((-3 (-1054) #1="failed") (-326 (-391)) (-1111 (-853 (-391))) (-1178))) (-15 -4240 ((-3 (-1054) #1#) (-326 (-391)) (-1111 (-853 (-391))) (-1196))))) (T -576)) -((-4240 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1111 (-853 (-391)))) (-5 *5 (-1196)) (-5 *2 (-1054)) (-5 *1 (-576)))) (-4240 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1111 (-853 (-391)))) (-5 *5 (-1178)) (-5 *2 (-1054)) (-5 *1 (-576)))) (-3067 (*1 *2 *3 *4) (-12 (-5 *3 (-787)) (-5 *4 (-1082)) (-5 *2 (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178))) (|:| |extra| (-1054)))) (-5 *1 (-576)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178))) (|:| |extra| (-1054)))) (-5 *1 (-576)))) (-4240 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-659 (-1108 (-853 (-391))))) (-5 *5 (-391)) (-5 *6 (-1082)) (-5 *2 (-1054)) (-5 *1 (-576)))) (-4240 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-659 (-1108 (-853 (-391))))) (-5 *5 (-391)) (-5 *2 (-1054)) (-5 *1 (-576)))) (-4240 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-659 (-1108 (-853 (-391))))) (-5 *5 (-391)) (-5 *2 (-1054)) (-5 *1 (-576)))) (-4240 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-659 (-1108 (-853 (-391))))) (-5 *2 (-1054)) (-5 *1 (-576)))) (-4240 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1108 (-853 (-391)))) (-5 *2 (-1054)) (-5 *1 (-576)))) (-4240 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1108 (-853 (-391)))) (-5 *5 (-391)) (-5 *2 (-1054)) (-5 *1 (-576)))) (-4240 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1108 (-853 (-391)))) (-5 *5 (-391)) (-5 *2 (-1054)) (-5 *1 (-576)))) (-4240 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1054)) (-5 *1 (-576)))) (-4240 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1108 (-853 (-391)))) (-5 *5 (-391)) (-5 *6 (-1082)) (-5 *2 (-1054)) (-5 *1 (-576))))) -((-2303 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-626 |#2|) (-626 |#2|) (-659 |#2|)) 195 T ELT)) (-2301 (((-594 |#2|) |#2| (-626 |#2|) (-626 |#2|)) 97 T ELT)) (-2302 (((-3 (-2 (|:| -2349 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-626 |#2|) (-626 |#2|) |#2|) 191 T ELT)) (-2304 (((-3 |#2| #1#) |#2| |#2| |#2| (-626 |#2|) (-626 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1196))) 200 T ELT)) (-2305 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2220 (-659 |#2|))) |#3| |#2| (-626 |#2|) (-626 |#2|) (-1196)) 209 (|has| |#3| (-676 |#2|)) ELT))) -(((-577 |#1| |#2| |#3|) (-10 -7 (-15 -2301 ((-594 |#2|) |#2| (-626 |#2|) (-626 |#2|))) (-15 -2302 ((-3 (-2 (|:| -2349 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-626 |#2|) (-626 |#2|) |#2|)) (-15 -2303 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-626 |#2|) (-626 |#2|) (-659 |#2|))) (-15 -2304 ((-3 |#2| #1#) |#2| |#2| |#2| (-626 |#2|) (-626 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1196)))) (IF (|has| |#3| (-676 |#2|)) (-15 -2305 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2220 (-659 |#2|))) |#3| |#2| (-626 |#2|) (-626 |#2|) (-1196))) |%noBranch|)) (-13 (-464) (-1057 (-557)) (-149) (-656 (-557))) (-13 (-433 |#1|) (-27) (-1222)) (-1120)) (T -577)) -((-2305 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-626 *4)) (-5 *6 (-1196)) (-4 *4 (-13 (-433 *7) (-27) (-1222))) (-4 *7 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2220 (-659 *4)))) (-5 *1 (-577 *7 *4 *3)) (-4 *3 (-676 *4)) (-4 *3 (-1120)))) (-2304 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-626 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1196))) (-4 *2 (-13 (-433 *5) (-27) (-1222))) (-4 *5 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) (-5 *1 (-577 *5 *2 *6)) (-4 *6 (-1120)))) (-2303 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-626 *3)) (-5 *5 (-659 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-577 *6 *3 *7)) (-4 *7 (-1120)))) (-2302 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-626 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1222))) (-4 *5 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) (-5 *2 (-2 (|:| -2349 *3) (|:| |coeff| *3))) (-5 *1 (-577 *5 *3 *6)) (-4 *6 (-1120)))) (-2301 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-626 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1222))) (-4 *5 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) (-5 *2 (-594 *3)) (-5 *1 (-577 *5 *3 *6)) (-4 *6 (-1120))))) -((-2306 (((-2 (|:| -2555 |#2|) (|:| |nconst| |#2|)) |#2| (-1196)) 64 T ELT)) (-2308 (((-3 |#2| #1="failed") |#2| (-1196) (-853 |#2|) (-853 |#2|)) 175 (-12 (|has| |#2| (-1158)) (|has| |#1| (-629 (-903 (-557)))) (|has| |#1| (-899 (-557)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1196)) 155 (-12 (|has| |#2| (-645)) (|has| |#1| (-629 (-903 (-557)))) (|has| |#1| (-899 (-557)))) ELT)) (-2307 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1196)) 157 (-12 (|has| |#2| (-645)) (|has| |#1| (-629 (-903 (-557)))) (|has| |#1| (-899 (-557)))) ELT))) -(((-578 |#1| |#2|) (-10 -7 (-15 -2306 ((-2 (|:| -2555 |#2|) (|:| |nconst| |#2|)) |#2| (-1196))) (IF (|has| |#1| (-629 (-903 (-557)))) (IF (|has| |#1| (-899 (-557))) (PROGN (IF (|has| |#2| (-645)) (PROGN (-15 -2307 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1196))) (-15 -2308 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1196)))) |%noBranch|) (IF (|has| |#2| (-1158)) (-15 -2308 ((-3 |#2| #1#) |#2| (-1196) (-853 |#2|) (-853 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1057 (-557)) (-464) (-656 (-557))) (-13 (-27) (-1222) (-433 |#1|))) (T -578)) -((-2308 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1196)) (-5 *4 (-853 *2)) (-4 *2 (-1158)) (-4 *2 (-13 (-27) (-1222) (-433 *5))) (-4 *5 (-629 (-903 (-557)))) (-4 *5 (-899 (-557))) (-4 *5 (-13 (-1057 (-557)) (-464) (-656 (-557)))) (-5 *1 (-578 *5 *2)))) (-2308 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-629 (-903 (-557)))) (-4 *5 (-899 (-557))) (-4 *5 (-13 (-1057 (-557)) (-464) (-656 (-557)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-578 *5 *3)) (-4 *3 (-645)) (-4 *3 (-13 (-27) (-1222) (-433 *5))))) (-2307 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-629 (-903 (-557)))) (-4 *5 (-899 (-557))) (-4 *5 (-13 (-1057 (-557)) (-464) (-656 (-557)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-578 *5 *3)) (-4 *3 (-645)) (-4 *3 (-13 (-27) (-1222) (-433 *5))))) (-2306 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-1057 (-557)) (-464) (-656 (-557)))) (-5 *2 (-2 (|:| -2555 *3) (|:| |nconst| *3))) (-5 *1 (-578 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5)))))) -((-2311 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) #1="failed") (-419 |#2|) (-659 (-419 |#2|))) 41 T ELT)) (-4240 (((-594 (-419 |#2|)) (-419 |#2|)) 28 T ELT)) (-2309 (((-3 (-419 |#2|) #1#) (-419 |#2|)) 17 T ELT)) (-2310 (((-3 (-2 (|:| -2349 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-419 |#2|)) 48 T ELT))) -(((-579 |#1| |#2|) (-10 -7 (-15 -4240 ((-594 (-419 |#2|)) (-419 |#2|))) (-15 -2309 ((-3 (-419 |#2|) #1="failed") (-419 |#2|))) (-15 -2310 ((-3 (-2 (|:| -2349 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-419 |#2|))) (-15 -2311 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) #1#) (-419 |#2|) (-659 (-419 |#2|))))) (-13 (-376) (-149) (-1057 (-557))) (-1262 |#1|)) (T -579)) -((-2311 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-659 (-419 *6))) (-5 *3 (-419 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-376) (-149) (-1057 (-557)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-579 *5 *6)))) (-2310 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1057 (-557)))) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| -2349 (-419 *5)) (|:| |coeff| (-419 *5)))) (-5 *1 (-579 *4 *5)) (-5 *3 (-419 *5)))) (-2309 (*1 *2 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-13 (-376) (-149) (-1057 (-557)))) (-5 *1 (-579 *3 *4)))) (-4240 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1057 (-557)))) (-4 *5 (-1262 *4)) (-5 *2 (-594 (-419 *5))) (-5 *1 (-579 *4 *5)) (-5 *3 (-419 *5))))) -((-2312 (((-3 (-557) "failed") |#1|) 14 T ELT)) (-3675 (((-114) |#1|) 13 T ELT)) (-3671 (((-557) |#1|) 9 T ELT))) -(((-580 |#1|) (-10 -7 (-15 -3671 ((-557) |#1|)) (-15 -3675 ((-114) |#1|)) (-15 -2312 ((-3 (-557) "failed") |#1|))) (-1057 (-557))) (T -580)) -((-2312 (*1 *2 *3) (|partial| -12 (-5 *2 (-557)) (-5 *1 (-580 *3)) (-4 *3 (-1057 *2)))) (-3675 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-580 *3)) (-4 *3 (-1057 (-557))))) (-3671 (*1 *2 *3) (-12 (-5 *2 (-557)) (-5 *1 (-580 *3)) (-4 *3 (-1057 *2))))) -((-2315 (((-3 (-2 (|:| |mainpart| (-419 (-963 |#1|))) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| (-419 (-963 |#1|))) (|:| |logand| (-419 (-963 |#1|))))))) #1="failed") (-419 (-963 |#1|)) (-1196) (-659 (-419 (-963 |#1|)))) 48 T ELT)) (-2313 (((-594 (-419 (-963 |#1|))) (-419 (-963 |#1|)) (-1196)) 28 T ELT)) (-2314 (((-3 (-419 (-963 |#1|)) #1#) (-419 (-963 |#1|)) (-1196)) 23 T ELT)) (-2316 (((-3 (-2 (|:| -2349 (-419 (-963 |#1|))) (|:| |coeff| (-419 (-963 |#1|)))) #1#) (-419 (-963 |#1|)) (-1196) (-419 (-963 |#1|))) 35 T ELT))) -(((-581 |#1|) (-10 -7 (-15 -2313 ((-594 (-419 (-963 |#1|))) (-419 (-963 |#1|)) (-1196))) (-15 -2314 ((-3 (-419 (-963 |#1|)) #1="failed") (-419 (-963 |#1|)) (-1196))) (-15 -2315 ((-3 (-2 (|:| |mainpart| (-419 (-963 |#1|))) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| (-419 (-963 |#1|))) (|:| |logand| (-419 (-963 |#1|))))))) #1#) (-419 (-963 |#1|)) (-1196) (-659 (-419 (-963 |#1|))))) (-15 -2316 ((-3 (-2 (|:| -2349 (-419 (-963 |#1|))) (|:| |coeff| (-419 (-963 |#1|)))) #1#) (-419 (-963 |#1|)) (-1196) (-419 (-963 |#1|))))) (-13 (-568) (-1057 (-557)) (-149))) (T -581)) -((-2316 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-557)) (-149))) (-5 *2 (-2 (|:| -2349 (-419 (-963 *5))) (|:| |coeff| (-419 (-963 *5))))) (-5 *1 (-581 *5)) (-5 *3 (-419 (-963 *5))))) (-2315 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-659 (-419 (-963 *6)))) (-5 *3 (-419 (-963 *6))) (-4 *6 (-13 (-568) (-1057 (-557)) (-149))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-581 *6)))) (-2314 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-419 (-963 *4))) (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-557)) (-149))) (-5 *1 (-581 *4)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-557)) (-149))) (-5 *2 (-594 (-419 (-963 *5)))) (-5 *1 (-581 *5)) (-5 *3 (-419 (-963 *5)))))) -((-2965 (((-114) $ $) 77 T ELT)) (-3604 (((-114) $) 49 T ELT)) (-3001 ((|#1| $) 39 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) 81 T ELT)) (-3910 (($ $) 142 T ELT)) (-4067 (($ $) 120 T ELT)) (-2871 ((|#1| $) 37 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3436 (($ $) NIL T ELT)) (-3908 (($ $) 144 T ELT)) (-4066 (($ $) 116 T ELT)) (-3912 (($ $) 146 T ELT)) (-4065 (($ $) 124 T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) 95 T ELT)) (-3572 (((-557) $) 97 T ELT)) (-3885 (((-3 $ #1#) $) 80 T ELT)) (-2267 (($ |#1| |#1|) 35 T ELT)) (-3602 (((-114) $) 44 T ELT)) (-4055 (($) 106 T ELT)) (-2639 (((-114) $) 56 T ELT)) (-3410 (($ $ (-557)) NIL T ELT)) (-3603 (((-114) $) 46 T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-4370 (($ $) 108 T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2268 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-419 (-557))) 94 T ELT)) (-2266 ((|#1| $) 36 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) 83 T ELT) (($ (-659 $)) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) 82 T ELT)) (-4371 (($ $) 110 T ELT)) (-3913 (($ $) 150 T ELT)) (-4064 (($ $) 122 T ELT)) (-3911 (($ $) 152 T ELT)) (-4063 (($ $) 126 T ELT)) (-3909 (($ $) 148 T ELT)) (-4062 (($ $) 118 T ELT)) (-2265 (((-114) $ |#1|) 42 T ELT)) (-4374 (((-875) $) 102 T ELT) (($ (-557)) 85 T ELT) (($ $) NIL T ELT) (($ (-557)) 85 T ELT)) (-3526 (((-789)) 104 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3916 (($ $) 164 T ELT)) (-3904 (($ $) 132 T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-3914 (($ $) 162 T ELT)) (-3902 (($ $) 128 T ELT)) (-3918 (($ $) 160 T ELT)) (-3906 (($ $) 140 T ELT)) (-3919 (($ $) 158 T ELT)) (-3907 (($ $) 138 T ELT)) (-3917 (($ $) 156 T ELT)) (-3905 (($ $) 134 T ELT)) (-3915 (($ $) 154 T ELT)) (-3903 (($ $) 130 T ELT)) (-3057 (($) 30 T CONST)) (-3063 (($) 10 T CONST)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 50 T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 48 T ELT)) (-4265 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-4267 (($ $ $) 53 T ELT)) (** (($ $ (-936)) 73 T ELT) (($ $ (-789)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-419 (-557))) 166 T ELT)) (* (($ (-936) $) 67 T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 66 T ELT) (($ $ $) 62 T ELT))) -(((-582 |#1|) (-566 |#1|) (-13 (-416) (-1222))) (T -582)) -NIL -((-3103 (((-3 (-659 (-1190 (-557))) "failed") (-659 (-1190 (-557))) (-1190 (-557))) 27 T ELT))) -(((-583) (-10 -7 (-15 -3103 ((-3 (-659 (-1190 (-557))) "failed") (-659 (-1190 (-557))) (-1190 (-557)))))) (T -583)) -((-3103 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-659 (-1190 (-557)))) (-5 *3 (-1190 (-557))) (-5 *1 (-583))))) -((-2317 (((-659 (-626 |#2|)) (-659 (-626 |#2|)) (-1196)) 19 T ELT)) (-2320 (((-659 (-626 |#2|)) (-659 |#2|) (-1196)) 23 T ELT)) (-3650 (((-659 (-626 |#2|)) (-659 (-626 |#2|)) (-659 (-626 |#2|))) 11 T ELT)) (-2321 ((|#2| |#2| (-1196)) 59 (|has| |#1| (-568)) ELT)) (-2322 ((|#2| |#2| (-1196)) 87 (-12 (|has| |#2| (-296)) (|has| |#1| (-464))) ELT)) (-2319 (((-626 |#2|) (-626 |#2|) (-659 (-626 |#2|)) (-1196)) 25 T ELT)) (-2318 (((-626 |#2|) (-659 (-626 |#2|))) 24 T ELT)) (-2323 (((-594 |#2|) |#2| (-1196) (-1 (-594 |#2|) |#2| (-1196)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196))) 115 (-12 (|has| |#2| (-296)) (|has| |#2| (-645)) (|has| |#2| (-1057 (-1196))) (|has| |#1| (-629 (-903 (-557)))) (|has| |#1| (-464)) (|has| |#1| (-899 (-557)))) ELT))) -(((-584 |#1| |#2|) (-10 -7 (-15 -2317 ((-659 (-626 |#2|)) (-659 (-626 |#2|)) (-1196))) (-15 -2318 ((-626 |#2|) (-659 (-626 |#2|)))) (-15 -2319 ((-626 |#2|) (-626 |#2|) (-659 (-626 |#2|)) (-1196))) (-15 -3650 ((-659 (-626 |#2|)) (-659 (-626 |#2|)) (-659 (-626 |#2|)))) (-15 -2320 ((-659 (-626 |#2|)) (-659 |#2|) (-1196))) (IF (|has| |#1| (-568)) (-15 -2321 (|#2| |#2| (-1196))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-296)) (PROGN (-15 -2322 (|#2| |#2| (-1196))) (IF (|has| |#1| (-629 (-903 (-557)))) (IF (|has| |#1| (-899 (-557))) (IF (|has| |#2| (-645)) (IF (|has| |#2| (-1057 (-1196))) (-15 -2323 ((-594 |#2|) |#2| (-1196) (-1 (-594 |#2|) |#2| (-1196)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1120) (-433 |#1|)) (T -584)) -((-2323 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-594 *3) *3 (-1196))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1196))) (-4 *3 (-296)) (-4 *3 (-645)) (-4 *3 (-1057 *4)) (-4 *3 (-433 *7)) (-5 *4 (-1196)) (-4 *7 (-629 (-903 (-557)))) (-4 *7 (-464)) (-4 *7 (-899 (-557))) (-4 *7 (-1120)) (-5 *2 (-594 *3)) (-5 *1 (-584 *7 *3)))) (-2322 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-464)) (-4 *4 (-1120)) (-5 *1 (-584 *4 *2)) (-4 *2 (-296)) (-4 *2 (-433 *4)))) (-2321 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-4 *4 (-1120)) (-5 *1 (-584 *4 *2)) (-4 *2 (-433 *4)))) (-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6)) (-5 *4 (-1196)) (-4 *6 (-433 *5)) (-4 *5 (-1120)) (-5 *2 (-659 (-626 *6))) (-5 *1 (-584 *5 *6)))) (-3650 (*1 *2 *2 *2) (-12 (-5 *2 (-659 (-626 *4))) (-4 *4 (-433 *3)) (-4 *3 (-1120)) (-5 *1 (-584 *3 *4)))) (-2319 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-659 (-626 *6))) (-5 *4 (-1196)) (-5 *2 (-626 *6)) (-4 *6 (-433 *5)) (-4 *5 (-1120)) (-5 *1 (-584 *5 *6)))) (-2318 (*1 *2 *3) (-12 (-5 *3 (-659 (-626 *5))) (-4 *4 (-1120)) (-5 *2 (-626 *5)) (-5 *1 (-584 *4 *5)) (-4 *5 (-433 *4)))) (-2317 (*1 *2 *2 *3) (-12 (-5 *2 (-659 (-626 *5))) (-5 *3 (-1196)) (-4 *5 (-433 *4)) (-4 *4 (-1120)) (-5 *1 (-584 *4 *5))))) -((-2326 (((-2 (|:| |answer| (-594 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-659 |#1|) #1="failed") (-557) |#1| |#1|)) 199 T ELT)) (-2329 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2349 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-659 (-419 |#2|))) 174 T ELT)) (-2332 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-659 (-419 |#2|))) 171 T ELT)) (-2333 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2349 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2324 (((-2 (|:| |answer| (-594 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2349 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2331 (((-3 (-2 (|:| -2349 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|)) 202 T ELT)) (-2327 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2349 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2349 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-419 |#2|)) 205 T ELT)) (-2335 (((-2 (|:| |ir| (-594 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2336 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2330 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3537 |#1|) (|:| |sol?| (-114))) (-557) |#1|) (-659 (-419 |#2|))) 178 T ELT)) (-2334 (((-3 (-638 |#1| |#2|) #1#) (-638 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3537 |#1|) (|:| |sol?| (-114))) (-557) |#1|)) 166 T ELT)) (-2325 (((-2 (|:| |answer| (-594 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3537 |#1|) (|:| |sol?| (-114))) (-557) |#1|)) 189 T ELT)) (-2328 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2349 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3537 |#1|) (|:| |sol?| (-114))) (-557) |#1|) (-419 |#2|)) 210 T ELT))) -(((-585 |#1| |#2|) (-10 -7 (-15 -2324 ((-2 (|:| |answer| (-594 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2349 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2325 ((-2 (|:| |answer| (-594 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3537 |#1|) (|:| |sol?| (-114))) (-557) |#1|))) (-15 -2326 ((-2 (|:| |answer| (-594 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-659 |#1|) #1#) (-557) |#1| |#1|))) (-15 -2327 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2349 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2349 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-419 |#2|))) (-15 -2328 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2349 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3537 |#1|) (|:| |sol?| (-114))) (-557) |#1|) (-419 |#2|))) (-15 -2329 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2349 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-659 (-419 |#2|)))) (-15 -2330 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3537 |#1|) (|:| |sol?| (-114))) (-557) |#1|) (-659 (-419 |#2|)))) (-15 -2331 ((-3 (-2 (|:| -2349 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -2332 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-659 (-419 |#2|)))) (-15 -2333 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2349 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2334 ((-3 (-638 |#1| |#2|) #1#) (-638 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3537 |#1|) (|:| |sol?| (-114))) (-557) |#1|))) (-15 -2335 ((-2 (|:| |ir| (-594 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2336 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-376) (-1262 |#1|)) (T -585)) -((-2336 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-585 *5 *3)))) (-2335 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |ir| (-594 (-419 *6))) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-585 *5 *6)) (-5 *3 (-419 *6)))) (-2334 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-638 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3537 *4) (|:| |sol?| (-114))) (-557) *4)) (-4 *4 (-376)) (-4 *5 (-1262 *4)) (-5 *1 (-585 *4 *5)))) (-2333 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2349 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-376)) (-5 *1 (-585 *4 *2)) (-4 *2 (-1262 *4)))) (-2332 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-659 (-419 *7))) (-4 *7 (-1262 *6)) (-5 *3 (-419 *7)) (-4 *6 (-376)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-585 *6 *7)))) (-2331 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -2349 (-419 *6)) (|:| |coeff| (-419 *6)))) (-5 *1 (-585 *5 *6)) (-5 *3 (-419 *6)))) (-2330 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3537 *7) (|:| |sol?| (-114))) (-557) *7)) (-5 *6 (-659 (-419 *8))) (-4 *7 (-376)) (-4 *8 (-1262 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-585 *7 *8)))) (-2329 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2349 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-659 (-419 *8))) (-4 *7 (-376)) (-4 *8 (-1262 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-585 *7 *8)))) (-2328 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3537 *6) (|:| |sol?| (-114))) (-557) *6)) (-4 *6 (-376)) (-4 *7 (-1262 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -2349 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-585 *6 *7)) (-5 *3 (-419 *7)))) (-2327 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2349 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-376)) (-4 *7 (-1262 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -2349 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-585 *6 *7)) (-5 *3 (-419 *7)))) (-2326 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-659 *6) "failed") (-557) *6 *6)) (-4 *6 (-376)) (-4 *7 (-1262 *6)) (-5 *2 (-2 (|:| |answer| (-594 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-585 *6 *7)) (-5 *3 (-419 *7)))) (-2325 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3537 *6) (|:| |sol?| (-114))) (-557) *6)) (-4 *6 (-376)) (-4 *7 (-1262 *6)) (-5 *2 (-2 (|:| |answer| (-594 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-585 *6 *7)) (-5 *3 (-419 *7)))) (-2324 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2349 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-376)) (-4 *7 (-1262 *6)) (-5 *2 (-2 (|:| |answer| (-594 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-585 *6 *7)) (-5 *3 (-419 *7))))) -((-2337 (((-3 |#2| "failed") |#2| (-1196) (-1196)) 10 T ELT))) -(((-586 |#1| |#2|) (-10 -7 (-15 -2337 ((-3 |#2| "failed") |#2| (-1196) (-1196)))) (-13 (-319) (-149) (-1057 (-557)) (-656 (-557))) (-13 (-1222) (-977) (-1158) (-29 |#1|))) (T -586)) -((-2337 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1196)) (-4 *4 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-586 *4 *2)) (-4 *2 (-13 (-1222) (-977) (-1158) (-29 *4)))))) -((-2952 (((-709 (-1245)) $ (-1245)) 27 T ELT)) (-2953 (((-709 (-561)) $ (-561)) 26 T ELT)) (-2951 (((-789) $ (-131)) 28 T ELT)) (-2954 (((-709 (-130)) $ (-130)) 25 T ELT)) (-2208 (((-709 (-1245)) $) 12 T ELT)) (-2204 (((-709 (-1243)) $) 8 T ELT)) (-2206 (((-709 (-1242)) $) 10 T ELT)) (-2209 (((-709 (-561)) $) 13 T ELT)) (-2205 (((-709 (-559)) $) 9 T ELT)) (-2207 (((-709 (-558)) $) 11 T ELT)) (-2203 (((-789) $ (-131)) 7 T ELT)) (-2210 (((-709 (-130)) $) 14 T ELT)) (-1901 (($ $) 6 T ELT))) -(((-587) (-142)) (T -587)) -NIL -(-13 (-538) (-873)) -(((-176) . T) ((-538) . T) ((-873) . T)) -((-2952 (((-709 (-1245)) $ (-1245)) NIL T ELT)) (-2953 (((-709 (-561)) $ (-561)) NIL T ELT)) (-2951 (((-789) $ (-131)) NIL T ELT)) (-2954 (((-709 (-130)) $ (-130)) NIL T ELT)) (-2208 (((-709 (-1245)) $) NIL T ELT)) (-2204 (((-709 (-1243)) $) NIL T ELT)) (-2206 (((-709 (-1242)) $) NIL T ELT)) (-2209 (((-709 (-561)) $) NIL T ELT)) (-2205 (((-709 (-559)) $) NIL T ELT)) (-2207 (((-709 (-558)) $) NIL T ELT)) (-2203 (((-789) $ (-131)) NIL T ELT)) (-2210 (((-709 (-130)) $) NIL T ELT)) (-2955 (((-114) $) NIL T ELT)) (-2338 (($ (-402)) 14 T ELT) (($ (-1178)) 16 T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1901 (($ $) NIL T ELT))) -(((-588) (-13 (-587) (-628 (-875)) (-10 -8 (-15 -2338 ($ (-402))) (-15 -2338 ($ (-1178))) (-15 -2955 ((-114) $))))) (T -588)) -((-2338 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-588)))) (-2338 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-588)))) (-2955 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-588))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3878 (($) 7 T CONST)) (-3658 (((-1178) $) NIL T ELT)) (-2341 (($) 6 T CONST)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 15 T ELT)) (-2339 (($) 9 T CONST)) (-2340 (($) 8 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 11 T ELT))) -(((-589) (-13 (-1120) (-10 -8 (-15 -2341 ($) -4380) (-15 -3878 ($) -4380) (-15 -2340 ($) -4380) (-15 -2339 ($) -4380)))) (T -589)) -((-2341 (*1 *1) (-5 *1 (-589))) (-3878 (*1 *1) (-5 *1 (-589))) (-2340 (*1 *1) (-5 *1 (-589))) (-2339 (*1 *1) (-5 *1 (-589)))) -((-2965 (((-114) $ $) NIL T ELT)) (-2342 (((-709 $) (-503)) 21 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2344 (($ (-1178)) 14 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 33 T ELT)) (-2343 (((-216 4 (-130)) $) 24 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 26 T ELT))) -(((-590) (-13 (-1120) (-10 -8 (-15 -2344 ($ (-1178))) (-15 -2343 ((-216 4 (-130)) $)) (-15 -2342 ((-709 $) (-503)))))) (T -590)) -((-2344 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-590)))) (-2343 (*1 *2 *1) (-12 (-5 *2 (-216 4 (-130))) (-5 *1 (-590)))) (-2342 (*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-709 (-590))) (-5 *1 (-590))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3436 (($ $ (-557)) 76 T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3008 (($ (-1190 (-557)) (-557)) 82 T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) 66 T ELT)) (-3009 (($ $) 43 T ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4200 (((-789) $) 16 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-3011 (((-557)) 37 T ELT)) (-3010 (((-557) $) 41 T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-4197 (($ $ (-557)) 24 T ELT)) (-3884 (((-3 $ #1#) $ $) 72 T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-1785 (((-789) $) 17 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 73 T ELT)) (-3012 (((-1174 (-557)) $) 19 T ELT)) (-3290 (($ $) 26 T ELT)) (-4374 (((-875) $) 103 T ELT) (($ (-557)) 61 T ELT) (($ $) NIL T ELT)) (-3526 (((-789)) 15 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-4198 (((-557) $ (-557)) 46 T ELT)) (-3057 (($) 44 T CONST)) (-3063 (($) 21 T CONST)) (-3452 (((-114) $ $) 52 T ELT)) (-4265 (($ $) 60 T ELT) (($ $ $) 48 T ELT)) (-4267 (($ $ $) 59 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 62 T ELT) (($ $ $) 63 T ELT))) -(((-591 |#1| |#2|) (-882 |#1|) (-557) (-114)) (T -591)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 30 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-4360 (((-114) $) NIL T ELT)) (-4357 (((-789)) NIL T ELT)) (-3748 (($ $ (-936)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) 59 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 $ #1#) $) 95 T ELT)) (-3572 (($ $) 94 T ELT)) (-1998 (($ (-1286 $)) 93 T ELT)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) 47 T ELT)) (-3393 (($) NIL T ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-3232 (($) 61 T ELT)) (-1881 (((-114) $) NIL T ELT)) (-1972 (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-4200 (((-843 (-936)) $) NIL T ELT) (((-936) $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-2221 (($) 49 (|has| $ (-381)) ELT)) (-2219 (((-114) $) NIL (|has| $ (-381)) ELT)) (-3532 (($ $ (-936)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-3863 (((-709 $) $) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2222 (((-1190 $) $ (-936)) NIL (|has| $ (-381)) ELT) (((-1190 $) $) 104 T ELT)) (-2218 (((-936) $) 67 T ELT)) (-1805 (((-1190 $) $) NIL (|has| $ (-381)) ELT)) (-1804 (((-3 (-1190 $) #1#) $ $) NIL (|has| $ (-381)) ELT) (((-1190 $) $) NIL (|has| $ (-381)) ELT)) (-1806 (($ $ (-1190 $)) NIL (|has| $ (-381)) ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3864 (($) NIL T CONST)) (-2629 (($ (-936)) 60 T ELT)) (-4359 (((-114) $) 87 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2638 (($) 28 (|has| $ (-381)) ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) 54 T ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-4358 (((-936)) 86 T ELT) (((-843 (-936))) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-1973 (((-3 (-789) #1#) $ $) NIL T ELT) (((-789) $) NIL T ELT)) (-4339 (((-136)) NIL T ELT)) (-4186 (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-4376 (((-936) $) 85 T ELT) (((-843 (-936)) $) NIL T ELT)) (-3601 (((-1190 $)) 102 T ELT)) (-1875 (($) 66 T ELT)) (-1807 (($) 50 (|has| $ (-381)) ELT)) (-3640 (((-707 $) (-1286 $)) NIL T ELT) (((-1286 $) $) 91 T ELT)) (-4400 (((-557) $) 42 T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) 45 T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL T ELT)) (-3101 (((-709 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3526 (((-789)) 51 T CONST)) (-1376 (((-114) $ $) 107 T ELT)) (-2220 (((-1286 $) (-936)) 97 T ELT) (((-1286 $)) 96 T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-3057 (($) 31 T CONST)) (-3063 (($) 27 T CONST)) (-4356 (($ $ (-789)) NIL (|has| $ (-381)) ELT) (($ $) NIL (|has| $ (-381)) ELT)) (-3068 (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) 34 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT))) -(((-592 |#1|) (-13 (-363) (-341 $) (-629 (-557))) (-936)) (T -592)) -NIL -((-2345 (((-1292) (-1178)) 10 T ELT))) -(((-593) (-10 -7 (-15 -2345 ((-1292) (-1178))))) (T -593)) -((-2345 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-593))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) 77 T ELT)) (-3572 ((|#1| $) NIL T ELT)) (-2349 ((|#1| $) 30 T ELT)) (-2347 (((-659 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2350 (($ |#1| (-659 (-2 (|:| |scalar| (-419 (-557))) (|:| |coeff| (-1190 |#1|)) (|:| |logand| (-1190 |#1|)))) (-659 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2348 (((-659 (-2 (|:| |scalar| (-419 (-557))) (|:| |coeff| (-1190 |#1|)) (|:| |logand| (-1190 |#1|)))) $) 31 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3231 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1196)) 49 (|has| |#1| (-1057 (-1196))) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2346 (((-114) $) 35 T ELT)) (-4186 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1196)) 90 (|has| |#1| (-915 (-1196))) ELT)) (-4374 (((-875) $) 110 T ELT) (($ |#1|) 29 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 18 T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 86 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 16 T ELT) (($ (-419 (-557)) $) 41 T ELT) (($ $ (-419 (-557))) NIL T ELT))) -(((-594 |#1|) (-13 (-735 (-419 (-557))) (-1057 |#1|) (-10 -8 (-15 -2350 ($ |#1| (-659 (-2 (|:| |scalar| (-419 (-557))) (|:| |coeff| (-1190 |#1|)) (|:| |logand| (-1190 |#1|)))) (-659 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2349 (|#1| $)) (-15 -2348 ((-659 (-2 (|:| |scalar| (-419 (-557))) (|:| |coeff| (-1190 |#1|)) (|:| |logand| (-1190 |#1|)))) $)) (-15 -2347 ((-659 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2346 ((-114) $)) (-15 -3231 ($ |#1| |#1|)) (-15 -4186 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-915 (-1196))) (-15 -4186 (|#1| $ (-1196))) |%noBranch|) (IF (|has| |#1| (-1057 (-1196))) (-15 -3231 ($ |#1| (-1196))) |%noBranch|))) (-376)) (T -594)) -((-2350 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-659 (-2 (|:| |scalar| (-419 (-557))) (|:| |coeff| (-1190 *2)) (|:| |logand| (-1190 *2))))) (-5 *4 (-659 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-376)) (-5 *1 (-594 *2)))) (-2349 (*1 *2 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-376)))) (-2348 (*1 *2 *1) (-12 (-5 *2 (-659 (-2 (|:| |scalar| (-419 (-557))) (|:| |coeff| (-1190 *3)) (|:| |logand| (-1190 *3))))) (-5 *1 (-594 *3)) (-4 *3 (-376)))) (-2347 (*1 *2 *1) (-12 (-5 *2 (-659 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-594 *3)) (-4 *3 (-376)))) (-2346 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-594 *3)) (-4 *3 (-376)))) (-3231 (*1 *1 *2 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-376)))) (-4186 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-594 *2)) (-4 *2 (-376)))) (-4186 (*1 *2 *1 *3) (-12 (-4 *2 (-376)) (-4 *2 (-915 *3)) (-5 *1 (-594 *2)) (-5 *3 (-1196)))) (-3231 (*1 *1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *1 (-594 *2)) (-4 *2 (-1057 *3)) (-4 *2 (-376))))) -((-4386 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2349 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2349 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-594 |#2|) (-1 |#2| |#1|) (-594 |#1|)) 30 T ELT))) -(((-595 |#1| |#2|) (-10 -7 (-15 -4386 ((-594 |#2|) (-1 |#2| |#1|) (-594 |#1|))) (-15 -4386 ((-3 (-2 (|:| -2349 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2349 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -4386 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -4386 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-376) (-376)) (T -595)) -((-4386 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-595 *5 *6)))) (-4386 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-376)) (-4 *2 (-376)) (-5 *1 (-595 *5 *2)))) (-4386 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2349 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-2 (|:| -2349 *6) (|:| |coeff| *6))) (-5 *1 (-595 *5 *6)))) (-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-594 *5)) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-594 *6)) (-5 *1 (-595 *5 *6))))) -((-3836 (((-594 |#2|) (-594 |#2|)) 42 T ELT)) (-4391 (((-659 |#2|) (-594 |#2|)) 44 T ELT)) (-2361 ((|#2| (-594 |#2|)) 50 T ELT))) -(((-596 |#1| |#2|) (-10 -7 (-15 -3836 ((-594 |#2|) (-594 |#2|))) (-15 -4391 ((-659 |#2|) (-594 |#2|))) (-15 -2361 (|#2| (-594 |#2|)))) (-13 (-464) (-1057 (-557)) (-656 (-557))) (-13 (-29 |#1|) (-1222))) (T -596)) -((-2361 (*1 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-13 (-29 *4) (-1222))) (-5 *1 (-596 *4 *2)) (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))))) (-4391 (*1 *2 *3) (-12 (-5 *3 (-594 *5)) (-4 *5 (-13 (-29 *4) (-1222))) (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-659 *5)) (-5 *1 (-596 *4 *5)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-594 *4)) (-4 *4 (-13 (-29 *3) (-1222))) (-4 *3 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-596 *3 *4))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2353 (($ (-518) (-607)) 14 T ELT)) (-2351 (($ (-518) (-607) $) 16 T ELT)) (-2352 (($ (-518) (-607)) 15 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-1201)) 7 T ELT) (((-1201) $) 6 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-597) (-13 (-1120) (-502 (-1201)) (-10 -8 (-15 -2353 ($ (-518) (-607))) (-15 -2352 ($ (-518) (-607))) (-15 -2351 ($ (-518) (-607) $))))) (T -597)) -((-2353 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-607)) (-5 *1 (-597)))) (-2352 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-607)) (-5 *1 (-597)))) (-2351 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-607)) (-5 *1 (-597))))) -((-2357 (((-114) |#1|) 16 T ELT)) (-2358 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2355 (((-2 (|:| -3093 |#1|) (|:| -2630 (-789))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-789)) 18 T ELT)) (-2354 (((-114) |#1| (-789)) 19 T ELT)) (-2359 ((|#1| |#1|) 41 T ELT)) (-2356 ((|#1| |#1| (-789)) 44 T ELT))) -(((-598 |#1|) (-10 -7 (-15 -2354 ((-114) |#1| (-789))) (-15 -2355 ((-3 |#1| #1="failed") |#1| (-789))) (-15 -2355 ((-2 (|:| -3093 |#1|) (|:| -2630 (-789))) |#1|)) (-15 -2356 (|#1| |#1| (-789))) (-15 -2357 ((-114) |#1|)) (-15 -2358 ((-3 |#1| #1#) |#1|)) (-15 -2359 (|#1| |#1|))) (-556)) (T -598)) -((-2359 (*1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-556)))) (-2358 (*1 *2 *2) (|partial| -12 (-5 *1 (-598 *2)) (-4 *2 (-556)))) (-2357 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-598 *3)) (-4 *3 (-556)))) (-2356 (*1 *2 *2 *3) (-12 (-5 *3 (-789)) (-5 *1 (-598 *2)) (-4 *2 (-556)))) (-2355 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3093 *3) (|:| -2630 (-789)))) (-5 *1 (-598 *3)) (-4 *3 (-556)))) (-2355 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-789)) (-5 *1 (-598 *2)) (-4 *2 (-556)))) (-2354 (*1 *2 *3 *4) (-12 (-5 *4 (-789)) (-5 *2 (-114)) (-5 *1 (-598 *3)) (-4 *3 (-556))))) -((-2360 (((-1190 |#1|) (-936)) 44 T ELT))) -(((-599 |#1|) (-10 -7 (-15 -2360 ((-1190 |#1|) (-936)))) (-363)) (T -599)) -((-2360 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-599 *4)) (-4 *4 (-363))))) -((-3836 (((-594 (-419 (-963 |#1|))) (-594 (-419 (-963 |#1|)))) 27 T ELT)) (-4240 (((-3 (-326 |#1|) (-659 (-326 |#1|))) (-419 (-963 |#1|)) (-1196)) 34 (|has| |#1| (-149)) ELT)) (-4391 (((-659 (-326 |#1|)) (-594 (-419 (-963 |#1|)))) 19 T ELT)) (-2362 (((-326 |#1|) (-419 (-963 |#1|)) (-1196)) 32 (|has| |#1| (-149)) ELT)) (-2361 (((-326 |#1|) (-594 (-419 (-963 |#1|)))) 21 T ELT))) -(((-600 |#1|) (-10 -7 (-15 -3836 ((-594 (-419 (-963 |#1|))) (-594 (-419 (-963 |#1|))))) (-15 -4391 ((-659 (-326 |#1|)) (-594 (-419 (-963 |#1|))))) (-15 -2361 ((-326 |#1|) (-594 (-419 (-963 |#1|))))) (IF (|has| |#1| (-149)) (PROGN (-15 -4240 ((-3 (-326 |#1|) (-659 (-326 |#1|))) (-419 (-963 |#1|)) (-1196))) (-15 -2362 ((-326 |#1|) (-419 (-963 |#1|)) (-1196)))) |%noBranch|)) (-13 (-464) (-1057 (-557)) (-656 (-557)))) (T -600)) -((-2362 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-1196)) (-4 *5 (-149)) (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-326 *5)) (-5 *1 (-600 *5)))) (-4240 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-1196)) (-4 *5 (-149)) (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-3 (-326 *5) (-659 (-326 *5)))) (-5 *1 (-600 *5)))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-594 (-419 (-963 *4)))) (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-326 *4)) (-5 *1 (-600 *4)))) (-4391 (*1 *2 *3) (-12 (-5 *3 (-594 (-419 (-963 *4)))) (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-659 (-326 *4))) (-5 *1 (-600 *4)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-594 (-419 (-963 *3)))) (-4 *3 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-600 *3))))) -((-2364 (((-659 (-707 (-557))) (-659 (-936)) (-659 (-919 (-557)))) 80 T ELT) (((-659 (-707 (-557))) (-659 (-936))) 81 T ELT) (((-707 (-557)) (-659 (-936)) (-919 (-557))) 74 T ELT)) (-2363 (((-789) (-659 (-936))) 71 T ELT))) -(((-601) (-10 -7 (-15 -2363 ((-789) (-659 (-936)))) (-15 -2364 ((-707 (-557)) (-659 (-936)) (-919 (-557)))) (-15 -2364 ((-659 (-707 (-557))) (-659 (-936)))) (-15 -2364 ((-659 (-707 (-557))) (-659 (-936)) (-659 (-919 (-557))))))) (T -601)) -((-2364 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-936))) (-5 *4 (-659 (-919 (-557)))) (-5 *2 (-659 (-707 (-557)))) (-5 *1 (-601)))) (-2364 (*1 *2 *3) (-12 (-5 *3 (-659 (-936))) (-5 *2 (-659 (-707 (-557)))) (-5 *1 (-601)))) (-2364 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-936))) (-5 *4 (-919 (-557))) (-5 *2 (-707 (-557))) (-5 *1 (-601)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-659 (-936))) (-5 *2 (-789)) (-5 *1 (-601))))) -((-3629 (((-659 |#5|) |#5| (-114)) 97 T ELT)) (-2365 (((-114) |#5| (-659 |#5|)) 34 T ELT))) -(((-602 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3629 ((-659 |#5|) |#5| (-114))) (-15 -2365 ((-114) |#5| (-659 |#5|)))) (-13 (-319) (-149)) (-813) (-859) (-1084 |#1| |#2| |#3|) (-1128 |#1| |#2| |#3| |#4|)) (T -602)) -((-2365 (*1 *2 *3 *4) (-12 (-5 *4 (-659 *3)) (-4 *3 (-1128 *5 *6 *7 *8)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-602 *5 *6 *7 *8 *3)))) (-3629 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-659 *3)) (-5 *1 (-602 *5 *6 *7 *8 *3)) (-4 *3 (-1128 *5 *6 *7 *8))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3946 (((-1154) $) 11 T ELT)) (-3947 (((-1154) $) 9 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 17 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-603) (-13 (-1102) (-10 -8 (-15 -3947 ((-1154) $)) (-15 -3946 ((-1154) $))))) (T -603)) -((-3947 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-603)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-603))))) -((-3950 (((-2 (|:| |num| |#4|) (|:| |den| (-557))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-557))) |#4| |#2| (-1108 |#4|)) 32 T ELT))) -(((-604 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3950 ((-2 (|:| |num| |#4|) (|:| |den| (-557))) |#4| |#2| (-1108 |#4|))) (-15 -3950 ((-2 (|:| |num| |#4|) (|:| |den| (-557))) |#4| |#2|))) (-813) (-859) (-568) (-967 |#3| |#1| |#2|)) (T -604)) -((-3950 (*1 *2 *3 *4) (-12 (-4 *5 (-813)) (-4 *4 (-859)) (-4 *6 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-557)))) (-5 *1 (-604 *5 *4 *6 *3)) (-4 *3 (-967 *6 *5 *4)))) (-3950 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1108 *3)) (-4 *3 (-967 *7 *6 *4)) (-4 *6 (-813)) (-4 *4 (-859)) (-4 *7 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-557)))) (-5 *1 (-604 *6 *4 *7 *3))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 71 T ELT)) (-3482 (((-659 (-1101)) $) NIL T ELT)) (-4259 (((-1196) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-4199 (($ $ (-557)) 58 T ELT) (($ $ (-557) (-557)) 59 T ELT)) (-4202 (((-1174 (-2 (|:| |k| (-557)) (|:| |c| |#1|))) $) 65 T ELT)) (-2396 (($ $) 109 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2394 (((-875) (-1174 (-2 (|:| |k| (-557)) (|:| |c| |#1|))) (-1045 (-853 (-557))) (-1196) |#1| (-419 (-557))) 241 T ELT)) (-4246 (($ (-1174 (-2 (|:| |k| (-557)) (|:| |c| |#1|)))) 36 T ELT)) (-4152 (($) NIL T CONST)) (-4387 (($ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3291 (((-114) $) NIL T ELT)) (-4200 (((-557) $) 63 T ELT) (((-557) $ (-557)) 64 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-4205 (($ $ (-936)) 83 T ELT)) (-4243 (($ (-1 |#1| (-557)) $) 80 T ELT)) (-4365 (((-114) $) 26 T ELT)) (-3292 (($ |#1| (-557)) 22 T ELT) (($ $ (-1101) (-557)) NIL T ELT) (($ $ (-659 (-1101)) (-659 (-557))) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2400 (($ (-1045 (-853 (-557))) (-1174 (-2 (|:| |k| (-557)) (|:| |c| |#1|)))) 13 T ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-4240 (($ $) 161 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2397 (((-3 $ #1#) $ $ (-114)) 108 T ELT)) (-2395 (($ $ $) 116 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2398 (((-1174 (-2 (|:| |k| (-557)) (|:| |c| |#1|))) $) 15 T ELT)) (-2399 (((-1045 (-853 (-557))) $) 14 T ELT)) (-4197 (($ $ (-557)) 47 T ELT)) (-3884 (((-3 $ #1#) $ $) NIL (|has| |#1| (-568)) ELT)) (-4196 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-557)))) ELT)) (-4228 ((|#1| $ (-557)) 62 T ELT) (($ $ $) NIL (|has| (-557) (-1131)) ELT)) (-4186 (($ $ (-1196)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-557) |#1|))) ELT) (($ $ (-789)) NIL (|has| |#1| (-15 * (|#1| (-557) |#1|))) ELT)) (-4376 (((-557) $) NIL T ELT)) (-3290 (($ $) 48 T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) 29 T ELT) (($ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $) NIL (|has| |#1| (-568)) ELT) (($ |#1|) 28 (|has| |#1| (-175)) ELT)) (-4105 ((|#1| $ (-557)) 61 T ELT)) (-3101 (((-709 $) $) NIL (|has| |#1| (-147)) ELT)) (-3526 (((-789)) 39 T CONST)) (-4201 ((|#1| $) NIL T ELT)) (-2375 (($ $) 198 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2387 (($ $) 169 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2377 (($ $) 202 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2389 (($ $) 174 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2373 (($ $) 201 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2385 (($ $) 173 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2392 (($ $ (-419 (-557))) 177 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2393 (($ $ |#1|) 157 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2390 (($ $) 204 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2391 (($ $) 160 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2372 (($ $) 203 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2384 (($ $) 175 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2374 (($ $) 199 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2386 (($ $) 171 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2376 (($ $) 200 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2388 (($ $) 172 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2369 (($ $) 209 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2381 (($ $) 185 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2371 (($ $) 206 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2383 (($ $) 181 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2367 (($ $) 213 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2379 (($ $) 189 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2366 (($ $) 215 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2378 (($ $) 191 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2368 (($ $) 211 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2380 (($ $) 187 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2370 (($ $) 208 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2382 (($ $) 183 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-4198 ((|#1| $ (-557)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-557)))) (|has| |#1| (-15 -4374 (|#1| (-1196))))) ELT)) (-3057 (($) 30 T CONST)) (-3063 (($) 40 T CONST)) (-3068 (($ $ (-1196)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-557) |#1|))) ELT) (($ $ (-789)) NIL (|has| |#1| (-15 * (|#1| (-557) |#1|))) ELT)) (-3452 (((-114) $ $) 73 T ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-4267 (($ $ $) 88 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) 111 T ELT)) (* (($ (-936) $) 98 T ELT) (($ (-789) $) 96 T ELT) (($ (-557) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-605 |#1|) (-13 (-1265 |#1| (-557)) (-10 -8 (-15 -2400 ($ (-1045 (-853 (-557))) (-1174 (-2 (|:| |k| (-557)) (|:| |c| |#1|))))) (-15 -2399 ((-1045 (-853 (-557))) $)) (-15 -2398 ((-1174 (-2 (|:| |k| (-557)) (|:| |c| |#1|))) $)) (-15 -4246 ($ (-1174 (-2 (|:| |k| (-557)) (|:| |c| |#1|))))) (-15 -4365 ((-114) $)) (-15 -4243 ($ (-1 |#1| (-557)) $)) (-15 -2397 ((-3 $ "failed") $ $ (-114))) (-15 -2396 ($ $)) (-15 -2395 ($ $ $)) (-15 -2394 ((-875) (-1174 (-2 (|:| |k| (-557)) (|:| |c| |#1|))) (-1045 (-853 (-557))) (-1196) |#1| (-419 (-557)))) (IF (|has| |#1| (-38 (-419 (-557)))) (PROGN (-15 -4240 ($ $)) (-15 -2393 ($ $ |#1|)) (-15 -2392 ($ $ (-419 (-557)))) (-15 -2391 ($ $)) (-15 -2390 ($ $)) (-15 -2389 ($ $)) (-15 -2388 ($ $)) (-15 -2387 ($ $)) (-15 -2386 ($ $)) (-15 -2385 ($ $)) (-15 -2384 ($ $)) (-15 -2383 ($ $)) (-15 -2382 ($ $)) (-15 -2381 ($ $)) (-15 -2380 ($ $)) (-15 -2379 ($ $)) (-15 -2378 ($ $)) (-15 -2377 ($ $)) (-15 -2376 ($ $)) (-15 -2375 ($ $)) (-15 -2374 ($ $)) (-15 -2373 ($ $)) (-15 -2372 ($ $)) (-15 -2371 ($ $)) (-15 -2370 ($ $)) (-15 -2369 ($ $)) (-15 -2368 ($ $)) (-15 -2367 ($ $)) (-15 -2366 ($ $))) |%noBranch|))) (-1068)) (T -605)) -((-4365 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-605 *3)) (-4 *3 (-1068)))) (-2400 (*1 *1 *2 *3) (-12 (-5 *2 (-1045 (-853 (-557)))) (-5 *3 (-1174 (-2 (|:| |k| (-557)) (|:| |c| *4)))) (-4 *4 (-1068)) (-5 *1 (-605 *4)))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-1045 (-853 (-557)))) (-5 *1 (-605 *3)) (-4 *3 (-1068)))) (-2398 (*1 *2 *1) (-12 (-5 *2 (-1174 (-2 (|:| |k| (-557)) (|:| |c| *3)))) (-5 *1 (-605 *3)) (-4 *3 (-1068)))) (-4246 (*1 *1 *2) (-12 (-5 *2 (-1174 (-2 (|:| |k| (-557)) (|:| |c| *3)))) (-4 *3 (-1068)) (-5 *1 (-605 *3)))) (-4243 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-557))) (-4 *3 (-1068)) (-5 *1 (-605 *3)))) (-2397 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-114)) (-5 *1 (-605 *3)) (-4 *3 (-1068)))) (-2396 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1068)))) (-2395 (*1 *1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1068)))) (-2394 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1174 (-2 (|:| |k| (-557)) (|:| |c| *6)))) (-5 *4 (-1045 (-853 (-557)))) (-5 *5 (-1196)) (-5 *7 (-419 (-557))) (-4 *6 (-1068)) (-5 *2 (-875)) (-5 *1 (-605 *6)))) (-4240 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2393 (*1 *1 *1 *2) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2392 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-605 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1068)))) (-2391 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2390 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2389 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2388 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2387 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2386 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2385 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2384 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2383 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2382 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2381 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2380 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2379 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2378 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2377 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2376 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2375 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2374 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2373 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2372 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2371 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2370 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2369 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2368 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2367 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) (-2366 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 63 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4246 (($ (-1174 |#1|)) 9 T ELT)) (-4152 (($) NIL T CONST)) (-3885 (((-3 $ #1#) $) 44 T ELT)) (-3291 (((-114) $) 56 T ELT)) (-4200 (((-789) $) 61 T ELT) (((-789) $ (-789)) 60 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) 46 (|has| |#1| (-568)) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL (|has| |#1| (-568)) ELT)) (-4245 (((-1174 |#1|) $) 25 T ELT)) (-3526 (((-789)) 55 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3057 (($) 10 T CONST)) (-3063 (($) 14 T CONST)) (-3452 (((-114) $ $) 24 T ELT)) (-4265 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-4267 (($ $ $) 27 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) 53 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-557)) 38 T ELT))) -(((-606 |#1|) (-13 (-1068) (-111 |#1| |#1|) (-10 -8 (-15 -4245 ((-1174 |#1|) $)) (-15 -4246 ($ (-1174 |#1|))) (-15 -3291 ((-114) $)) (-15 -4200 ((-789) $)) (-15 -4200 ((-789) $ (-789))) (-15 * ($ $ (-557))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) (-1068)) (T -606)) -((-4245 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1068)))) (-4246 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-606 *3)))) (-3291 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-606 *3)) (-4 *3 (-1068)))) (-4200 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-606 *3)) (-4 *3 (-1068)))) (-4200 (*1 *2 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-606 *3)) (-4 *3 (-1068)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-606 *3)) (-4 *3 (-1068))))) -((-2965 (((-114) $ $) NIL T ELT)) (-2403 (($) 8 T CONST)) (-2404 (($) 7 T CONST)) (-2401 (($ $ (-659 $)) 16 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2405 (($) 6 T CONST)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-1201)) 15 T ELT) (((-1201) $) 10 T ELT)) (-2402 (($) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-607) (-13 (-1120) (-502 (-1201)) (-10 -8 (-15 -2405 ($) -4380) (-15 -2404 ($) -4380) (-15 -2403 ($) -4380) (-15 -2402 ($) -4380) (-15 -2401 ($ $ (-659 $)))))) (T -607)) -((-2405 (*1 *1) (-5 *1 (-607))) (-2404 (*1 *1) (-5 *1 (-607))) (-2403 (*1 *1) (-5 *1 (-607))) (-2402 (*1 *1) (-5 *1 (-607))) (-2401 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-607))) (-5 *1 (-607))))) -((-4386 (((-611 |#2|) (-1 |#2| |#1|) (-611 |#1|)) 15 T ELT))) -(((-608 |#1| |#2|) (-13 (-1236) (-10 -7 (-15 -4386 ((-611 |#2|) (-1 |#2| |#1|) (-611 |#1|))))) (-1236) (-1236)) (T -608)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-611 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-611 *6)) (-5 *1 (-608 *5 *6))))) -((-4386 (((-1174 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-1174 |#2|)) 20 T ELT) (((-1174 |#3|) (-1 |#3| |#1| |#2|) (-1174 |#1|) (-611 |#2|)) 19 T ELT) (((-611 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-611 |#2|)) 18 T ELT))) -(((-609 |#1| |#2| |#3|) (-10 -7 (-15 -4386 ((-611 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-611 |#2|))) (-15 -4386 ((-1174 |#3|) (-1 |#3| |#1| |#2|) (-1174 |#1|) (-611 |#2|))) (-15 -4386 ((-1174 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-1174 |#2|)))) (-1236) (-1236) (-1236)) (T -609)) -((-4386 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-1174 *7)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1174 *8)) (-5 *1 (-609 *6 *7 *8)))) (-4386 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1174 *6)) (-5 *5 (-611 *7)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1174 *8)) (-5 *1 (-609 *6 *7 *8)))) (-4386 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-611 *7)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-611 *8)) (-5 *1 (-609 *6 *7 *8))))) -((-2410 ((|#3| |#3| (-659 (-626 |#3|)) (-659 (-1196))) 57 T ELT)) (-2409 (((-171 |#2|) |#3|) 122 T ELT)) (-2406 ((|#3| (-171 |#2|)) 46 T ELT)) (-2407 ((|#2| |#3|) 21 T ELT)) (-2408 ((|#3| |#2|) 35 T ELT))) -(((-610 |#1| |#2| |#3|) (-10 -7 (-15 -2406 (|#3| (-171 |#2|))) (-15 -2407 (|#2| |#3|)) (-15 -2408 (|#3| |#2|)) (-15 -2409 ((-171 |#2|) |#3|)) (-15 -2410 (|#3| |#3| (-659 (-626 |#3|)) (-659 (-1196))))) (-568) (-13 (-433 |#1|) (-1021) (-1222)) (-13 (-433 (-171 |#1|)) (-1021) (-1222))) (T -610)) -((-2410 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-659 (-626 *2))) (-5 *4 (-659 (-1196))) (-4 *2 (-13 (-433 (-171 *5)) (-1021) (-1222))) (-4 *5 (-568)) (-5 *1 (-610 *5 *6 *2)) (-4 *6 (-13 (-433 *5) (-1021) (-1222))))) (-2409 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-610 *4 *5 *3)) (-4 *5 (-13 (-433 *4) (-1021) (-1222))) (-4 *3 (-13 (-433 (-171 *4)) (-1021) (-1222))))) (-2408 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-433 (-171 *4)) (-1021) (-1222))) (-5 *1 (-610 *4 *3 *2)) (-4 *3 (-13 (-433 *4) (-1021) (-1222))))) (-2407 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-433 *4) (-1021) (-1222))) (-5 *1 (-610 *4 *2 *3)) (-4 *3 (-13 (-433 (-171 *4)) (-1021) (-1222))))) (-2406 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-433 *4) (-1021) (-1222))) (-4 *4 (-568)) (-4 *2 (-13 (-433 (-171 *4)) (-1021) (-1222))) (-5 *1 (-610 *4 *5 *2))))) -((-4138 (($ (-1 (-114) |#1|) $) 19 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3875 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3874 (($ (-1 (-114) |#1|) $) 15 T ELT)) (-3873 (($ (-1 (-114) |#1|) $) 17 T ELT)) (-3948 (((-1174 |#1|) $) 20 T ELT)) (-4374 (((-875) $) 25 T ELT))) -(((-611 |#1|) (-13 (-628 (-875)) (-10 -8 (-15 -4386 ($ (-1 |#1| |#1|) $)) (-15 -3874 ($ (-1 (-114) |#1|) $)) (-15 -3873 ($ (-1 (-114) |#1|) $)) (-15 -4138 ($ (-1 (-114) |#1|) $)) (-15 -3875 ($ (-1 |#1| |#1|) |#1|)) (-15 -3948 ((-1174 |#1|) $)))) (-1236)) (T -611)) -((-4386 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-611 *3)))) (-3874 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1236)) (-5 *1 (-611 *3)))) (-3873 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1236)) (-5 *1 (-611 *3)))) (-4138 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1236)) (-5 *1 (-611 *3)))) (-3875 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-611 *3)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-611 *3)) (-4 *3 (-1236))))) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4266 (($ (-789)) NIL (|has| |#1| (-23)) ELT)) (-2411 (((-1292) $ (-557) (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-1933 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-859)) ELT)) (-1931 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-859))) ELT)) (-3308 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-859)) ELT)) (-4216 ((|#1| $ (-557) |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| $ (-1253 (-557)) |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4152 (($) NIL T CONST)) (-2508 (($ $) NIL (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) NIL T ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-1717 ((|#1| $ (-557) |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-557)) NIL T ELT)) (-3837 (((-557) (-1 (-114) |#1|) $) NIL T ELT) (((-557) |#1| $) NIL (|has| |#1| (-1120)) ELT) (((-557) |#1| $ (-557)) NIL (|has| |#1| (-1120)) ELT)) (-3288 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4263 (((-707 |#1|) $ $) NIL (|has| |#1| (-1068)) ELT)) (-4042 (($ (-789) |#1|) NIL T ELT)) (-2413 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3936 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2414 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4260 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))) ELT)) (-4261 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))) ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-2515 (($ |#1| $ (-557)) NIL T ELT) (($ $ $ (-557)) NIL T ELT)) (-2416 (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) (-557) $) NIL T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-4229 ((|#1| $) NIL (|has| (-557) (-859)) ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2412 (($ $ |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#1| $ (-557) |#1|) NIL T ELT) ((|#1| $ (-557)) NIL T ELT) (($ $ (-1253 (-557))) NIL T ELT)) (-4264 ((|#1| $ $) NIL (|has| |#1| (-1068)) ELT)) (-2516 (($ $ (-557)) NIL T ELT) (($ $ (-1253 (-557))) NIL T ELT)) (-4262 (($ $ $) NIL (|has| |#1| (-1068)) ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-1932 (($ $ $ (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) NIL (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) NIL T ELT)) (-4230 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-4374 (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2963 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3083 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-4265 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-4267 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-557) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-744)) ELT) (($ $ |#1|) NIL (|has| |#1| (-744)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-612 |#1| |#2|) (-1285 |#1|) (-1236) (-557)) (T -612)) -NIL -((-2411 (((-1292) $ |#2| |#2|) 35 T ELT)) (-2413 ((|#2| $) 23 T ELT)) (-2414 ((|#2| $) 21 T ELT)) (-2158 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-4386 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-4229 ((|#3| $) 26 T ELT)) (-2412 (($ $ |#3|) 33 T ELT)) (-2415 (((-114) |#3| $) 17 T ELT)) (-2418 (((-659 |#3|) $) 15 T ELT)) (-4228 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) -(((-613 |#1| |#2| |#3|) (-10 -7 (-15 -2411 ((-1292) |#1| |#2| |#2|)) (-15 -2412 (|#1| |#1| |#3|)) (-15 -4229 (|#3| |#1|)) (-15 -2413 (|#2| |#1|)) (-15 -2414 (|#2| |#1|)) (-15 -2415 ((-114) |#3| |#1|)) (-15 -2418 ((-659 |#3|) |#1|)) (-15 -4228 (|#3| |#1| |#2|)) (-15 -4228 (|#3| |#1| |#2| |#3|)) (-15 -2158 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4386 (|#1| (-1 |#3| |#3|) |#1|))) (-614 |#2| |#3|) (-1120) (-1236)) (T -613)) -NIL -((-2965 (((-114) $ $) 19 (|has| |#2| (-102)) ELT)) (-2411 (((-1292) $ |#1| |#1|) 44 (|has| $ (-6 -4424)) ELT)) (-4216 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -4424)) ELT)) (-4152 (($) 7 T CONST)) (-1717 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -4424)) ELT)) (-3513 ((|#2| $ |#1|) 55 T ELT)) (-3288 (((-659 |#2|) $) 30 (|has| $ (-6 -4423)) ELT)) (-2413 ((|#1| $) 47 (|has| |#1| (-859)) ELT)) (-3005 (((-659 |#2|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#2| $) 27 (-12 (|has| |#2| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2414 ((|#1| $) 48 (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3658 (((-1178) $) 22 (|has| |#2| (-1120)) ELT)) (-2416 (((-659 |#1|) $) 50 T ELT)) (-2417 (((-114) |#1| $) 51 T ELT)) (-3659 (((-1139) $) 21 (|has| |#2| (-1120)) ELT)) (-4229 ((|#2| $) 46 (|has| |#1| (-859)) ELT)) (-2412 (($ $ |#2|) 45 (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) |#2|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#2|))) 26 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-305 |#2|)) 25 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-659 |#2|) (-659 |#2|)) 23 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-2415 (((-114) |#2| $) 49 (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-2418 (((-659 |#2|) $) 52 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-4228 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-2155 (((-789) (-1 (-114) |#2|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#2| $) 28 (-12 (|has| |#2| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4374 (((-875) $) 17 (|has| |#2| (-628 (-875))) ELT)) (-1376 (((-114) $ $) 20 (|has| |#2| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#2| (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-614 |#1| |#2|) (-142) (-1120) (-1236)) (T -614)) -((-2418 (*1 *2 *1) (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1236)) (-5 *2 (-659 *4)))) (-2417 (*1 *2 *3 *1) (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1236)) (-5 *2 (-114)))) (-2416 (*1 *2 *1) (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1236)) (-5 *2 (-659 *3)))) (-2415 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-614 *4 *3)) (-4 *4 (-1120)) (-4 *3 (-1236)) (-4 *3 (-1120)) (-5 *2 (-114)))) (-2414 (*1 *2 *1) (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1120)) (-4 *2 (-859)))) (-2413 (*1 *2 *1) (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1120)) (-4 *2 (-859)))) (-4229 (*1 *2 *1) (-12 (-4 *1 (-614 *3 *2)) (-4 *3 (-1120)) (-4 *3 (-859)) (-4 *2 (-1236)))) (-2412 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-614 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1236)))) (-2411 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-614 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1236)) (-5 *2 (-1292))))) -(-13 (-501 |t#2|) (-300 |t#1| |t#2|) (-10 -8 (-15 -2418 ((-659 |t#2|) $)) (-15 -2417 ((-114) |t#1| $)) (-15 -2416 ((-659 |t#1|) $)) (IF (|has| |t#2| (-1120)) (IF (|has| $ (-6 -4423)) (-15 -2415 ((-114) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-859)) (PROGN (-15 -2414 (|t#1| $)) (-15 -2413 (|t#1| $)) (-15 -4229 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4424)) (PROGN (-15 -2412 ($ $ |t#2|)) (-15 -2411 ((-1292) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) -3955 (|has| |#2| (-1120)) (|has| |#2| (-102))) ((-628 (-875)) -3955 (|has| |#2| (-1120)) (|has| |#2| (-628 (-875)))) ((-298 |#1| |#2|) . T) ((-300 |#1| |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ((-1120) |has| |#2| (-1120)) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT) (((-1237) $) 14 T ELT) (($ (-659 (-1237))) 13 T ELT)) (-2419 (((-659 (-1237)) $) 10 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-615) (-13 (-1102) (-628 (-1237)) (-10 -8 (-15 -4374 ($ (-659 (-1237)))) (-15 -2419 ((-659 (-1237)) $))))) (T -615)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-659 (-1237))) (-5 *1 (-615)))) (-2419 (*1 *2 *1) (-12 (-5 *2 (-659 (-1237))) (-5 *1 (-615))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1978 (((-3 $ #1="failed")) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-1424 (((-3 $ #1#) $ $) NIL T ELT)) (-3639 (((-1286 (-707 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1286 (-707 |#1|)) (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1930 (((-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4152 (($) NIL T CONST)) (-2115 (((-3 (-2 (|:| |particular| $) (|:| -2220 (-659 $))) #1#)) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-1904 (((-3 $ #1#)) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-1994 (((-707 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-707 |#1|) (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1928 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1992 (((-707 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-707 |#1|) $ (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2633 (((-3 $ #1#) $) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-2109 (((-1190 (-963 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-376))) ELT)) (-2636 (($ $ (-936)) NIL T ELT)) (-1926 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1906 (((-1190 |#1|) $) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-1996 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1924 (((-1190 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1918 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1998 (($ (-1286 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (($ (-1286 |#1|) (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3885 (((-3 $ #1#) $) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-3509 (((-936)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1915 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2660 (($ $ (-936)) NIL T ELT)) (-1911 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1909 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1913 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2116 (((-3 (-2 (|:| |particular| $) (|:| -2220 (-659 $))) #1#)) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-1905 (((-3 $ #1#)) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-1995 (((-707 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-707 |#1|) (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1929 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1993 (((-707 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-707 |#1|) $ (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2634 (((-3 $ #1#) $) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-2113 (((-1190 (-963 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-376))) ELT)) (-2635 (($ $ (-936)) NIL T ELT)) (-1927 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1907 (((-1190 |#1|) $) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-1997 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1925 (((-1190 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1919 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1910 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1912 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1914 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1917 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4228 ((|#1| $ (-557)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-3640 (((-707 |#1|) (-1286 $)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1286 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-707 |#1|) (-1286 $) (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT) (((-1286 |#1|) $ (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4400 (($ (-1286 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1286 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2101 (((-659 (-963 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-659 (-963 |#1|)) (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2822 (($ $ $) NIL T ELT)) (-1923 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4374 (((-875) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 $)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-1908 (((-659 (-1286 |#1|))) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-2823 (($ $ $ $) NIL T ELT)) (-1921 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2942 (($ (-707 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2821 (($ $ $) NIL T ELT)) (-1922 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1920 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1916 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3057 (($) NIL T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) 24 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-616 |#1| |#2|) (-13 (-762 |#1|) (-628 |#2|) (-10 -8 (-15 -4374 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) (-175) (-762 |#1|)) (T -616)) -((-4374 (*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-616 *3 *2)) (-4 *2 (-762 *3))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-130)) 6 T ELT) (((-130) $) 7 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-617) (-13 (-1120) (-502 (-130)))) (T -617)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-2524 (($ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2421 (($) 12 T CONST)) (-2443 (($) 10 T CONST)) (-2420 (($) 13 T CONST)) (-2439 (($) 11 T CONST)) (-2436 (($) 14 T CONST)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2522 (($ $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-2523 (($ $ $) NIL T ELT))) -(((-618) (-13 (-1120) (-680) (-10 -8 (-15 -2443 ($) -4380) (-15 -2439 ($) -4380) (-15 -2421 ($) -4380) (-15 -2420 ($) -4380) (-15 -2436 ($) -4380)))) (T -618)) -((-2443 (*1 *1) (-5 *1 (-618))) (-2439 (*1 *1) (-5 *1 (-618))) (-2421 (*1 *1) (-5 *1 (-618))) (-2420 (*1 *1) (-5 *1 (-618))) (-2436 (*1 *1) (-5 *1 (-618)))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2432 (($) 11 T CONST)) (-2426 (($) 17 T CONST)) (-2422 (($) 21 T CONST)) (-2424 (($) 19 T CONST)) (-2429 (($) 14 T CONST)) (-2423 (($) 20 T CONST)) (-2431 (($) 12 T CONST)) (-2430 (($) 13 T CONST)) (-2425 (($) 18 T CONST)) (-2428 (($) 15 T CONST)) (-2427 (($) 16 T CONST)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (((-130) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-619) (-13 (-1120) (-628 (-130)) (-10 -8 (-15 -2432 ($) -4380) (-15 -2431 ($) -4380) (-15 -2430 ($) -4380) (-15 -2429 ($) -4380) (-15 -2428 ($) -4380) (-15 -2427 ($) -4380) (-15 -2426 ($) -4380) (-15 -2425 ($) -4380) (-15 -2424 ($) -4380) (-15 -2423 ($) -4380) (-15 -2422 ($) -4380)))) (T -619)) -((-2432 (*1 *1) (-5 *1 (-619))) (-2431 (*1 *1) (-5 *1 (-619))) (-2430 (*1 *1) (-5 *1 (-619))) (-2429 (*1 *1) (-5 *1 (-619))) (-2428 (*1 *1) (-5 *1 (-619))) (-2427 (*1 *1) (-5 *1 (-619))) (-2426 (*1 *1) (-5 *1 (-619))) (-2425 (*1 *1) (-5 *1 (-619))) (-2424 (*1 *1) (-5 *1 (-619))) (-2423 (*1 *1) (-5 *1 (-619))) (-2422 (*1 *1) (-5 *1 (-619)))) -((-2965 (((-114) $ $) NIL T ELT)) (-2524 (($ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2434 (($) 15 T CONST)) (-2433 (($) 16 T CONST)) (-2440 (($) 13 T CONST)) (-2443 (($) 10 T CONST)) (-2441 (($) 12 T CONST)) (-2442 (($) 11 T CONST)) (-2439 (($) 14 T CONST)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2522 (($ $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-2523 (($ $ $) NIL T ELT))) -(((-620) (-13 (-1120) (-680) (-10 -8 (-15 -2443 ($) -4380) (-15 -2442 ($) -4380) (-15 -2441 ($) -4380) (-15 -2440 ($) -4380) (-15 -2439 ($) -4380) (-15 -2434 ($) -4380) (-15 -2433 ($) -4380)))) (T -620)) -((-2443 (*1 *1) (-5 *1 (-620))) (-2442 (*1 *1) (-5 *1 (-620))) (-2441 (*1 *1) (-5 *1 (-620))) (-2440 (*1 *1) (-5 *1 (-620))) (-2439 (*1 *1) (-5 *1 (-620))) (-2434 (*1 *1) (-5 *1 (-620))) (-2433 (*1 *1) (-5 *1 (-620)))) -((-2965 (((-114) $ $) NIL T ELT)) (-2524 (($ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2438 (($) 15 T CONST)) (-2435 (($) 18 T CONST)) (-2440 (($) 13 T CONST)) (-2443 (($) 10 T CONST)) (-2441 (($) 12 T CONST)) (-2442 (($) 11 T CONST)) (-2437 (($) 16 T CONST)) (-2439 (($) 14 T CONST)) (-2436 (($) 17 T CONST)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2522 (($ $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-2523 (($ $ $) NIL T ELT))) -(((-621) (-13 (-1120) (-680) (-10 -8 (-15 -2443 ($) -4380) (-15 -2442 ($) -4380) (-15 -2441 ($) -4380) (-15 -2440 ($) -4380) (-15 -2439 ($) -4380) (-15 -2438 ($) -4380) (-15 -2437 ($) -4380) (-15 -2436 ($) -4380) (-15 -2435 ($) -4380)))) (T -621)) -((-2443 (*1 *1) (-5 *1 (-621))) (-2442 (*1 *1) (-5 *1 (-621))) (-2441 (*1 *1) (-5 *1 (-621))) (-2440 (*1 *1) (-5 *1 (-621))) (-2439 (*1 *1) (-5 *1 (-621))) (-2438 (*1 *1) (-5 *1 (-621))) (-2437 (*1 *1) (-5 *1 (-621))) (-2436 (*1 *1) (-5 *1 (-621))) (-2435 (*1 *1) (-5 *1 (-621)))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 19 T ELT) (($ (-617)) 12 T ELT) (((-617) $) 11 T ELT) (($ (-130)) NIL T ELT) (((-130) $) 14 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-622) (-13 (-1120) (-502 (-617)) (-502 (-130)))) (T -622)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-1898 (((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) $ (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) 40 T ELT)) (-4025 (($ (-659 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2411 (((-1292) $ (-1178) (-1178)) NIL (|has| $ (-6 -4424)) ELT)) (-4216 ((|#1| $ (-1178) |#1|) 50 T ELT)) (-1711 (($ (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-2444 (((-3 |#1| #1="failed") (-1178) $) 53 T ELT)) (-4152 (($) NIL T CONST)) (-1902 (($ $ (-1178)) 25 T ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1120))) ELT)) (-3823 (((-3 |#1| #1#) (-1178) $) 54 T ELT) (($ (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4423)) ELT) (($ (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) $) NIL (|has| $ (-6 -4423)) ELT)) (-3824 (($ (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4423)) ELT) (($ (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1120))) ELT)) (-4270 (((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $ (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) NIL (|has| $ (-6 -4423)) ELT) (((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $ (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1120))) ELT)) (-1899 (((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) $) 39 T ELT)) (-1717 ((|#1| $ (-1178) |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-1178)) NIL T ELT)) (-3288 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-2483 (($ $) 55 T ELT)) (-1903 (($ (-402)) 23 T ELT) (($ (-402) (-1178)) 22 T ELT)) (-3968 (((-402) $) 41 T ELT)) (-2413 (((-1178) $) NIL (|has| (-1178) (-859)) ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) (((-114) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1120))) ELT)) (-2414 (((-1178) $) NIL (|has| (-1178) (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2882 (((-659 (-1178)) $) 46 T ELT)) (-2445 (((-114) (-1178) $) NIL T ELT)) (-1900 (((-1178) $) 42 T ELT)) (-1387 (((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) $) NIL T ELT)) (-4035 (($ (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) $) NIL T ELT)) (-2416 (((-659 (-1178)) $) NIL T ELT)) (-2417 (((-114) (-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4229 ((|#1| $) NIL (|has| (-1178) (-859)) ELT)) (-1466 (((-3 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) #1#) (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL T ELT)) (-2412 (($ $ |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-1388 (((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) $) NIL T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) (-659 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)))) NIL (-12 (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-321 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)))) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1120))) ELT) (($ $ (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) NIL (-12 (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-321 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)))) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1120))) ELT) (($ $ (-305 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)))) NIL (-12 (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-321 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)))) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1120))) ELT) (($ $ (-659 (-305 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))))) NIL (-12 (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-321 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)))) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) 44 T ELT)) (-4228 ((|#1| $ (-1178) |#1|) NIL T ELT) ((|#1| $ (-1178)) 49 T ELT)) (-1596 (($ (-659 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) (((-789) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1120))) ELT) (((-789) (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) NIL (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-629 (-546))) ELT)) (-3948 (($ (-659 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)))) NIL T ELT)) (-4374 (((-875) $) 21 T ELT)) (-1901 (($ $) 26 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-1389 (($ (-659 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)))) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 20 T ELT)) (-4385 (((-789) $) 48 (|has| $ (-6 -4423)) ELT))) -(((-623 |#1|) (-13 (-378 (-402) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) (-1213 (-1178) |#1|) (-10 -8 (-6 -4423) (-15 -2483 ($ $)))) (-1120)) (T -623)) -((-2483 (*1 *1 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1120))))) -((-3661 (((-114) (-2 (|:| -4288 |#2|) (|:| -2284 |#3|)) $) 16 T ELT)) (-2882 (((-659 |#2|) $) 20 T ELT)) (-2445 (((-114) |#2| $) 12 T ELT))) -(((-624 |#1| |#2| |#3|) (-10 -7 (-15 -2882 ((-659 |#2|) |#1|)) (-15 -2445 ((-114) |#2| |#1|)) (-15 -3661 ((-114) (-2 (|:| -4288 |#2|) (|:| -2284 |#3|)) |#1|))) (-625 |#2| |#3|) (-1120) (-1120)) (T -624)) -NIL -((-2965 (((-114) $ $) 19 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) ELT)) (-1711 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 49 (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 59 (|has| $ (-6 -4423)) ELT)) (-2444 (((-3 |#2| "failed") |#1| $) 65 T ELT)) (-4152 (($) 7 T CONST)) (-1465 (($ $) 62 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| $ (-6 -4423))) ELT)) (-3823 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 51 (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 50 (|has| $ (-6 -4423)) ELT) (((-3 |#2| "failed") |#1| $) 66 T ELT)) (-3824 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 61 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 58 (|has| $ (-6 -4423)) ELT)) (-4270 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 60 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| $ (-6 -4423))) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 57 (|has| $ (-6 -4423)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 56 (|has| $ (-6 -4423)) ELT)) (-3288 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 30 (|has| $ (-6 -4423)) ELT)) (-3005 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 35 T ELT)) (-3658 (((-1178) $) 22 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) ELT)) (-2882 (((-659 |#1|) $) 67 T ELT)) (-2445 (((-114) |#1| $) 68 T ELT)) (-1387 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 43 T ELT)) (-4035 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 44 T ELT)) (-3659 (((-1139) $) 21 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) ELT)) (-1466 (((-3 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) "failed") (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 55 T ELT)) (-1388 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 45 T ELT)) (-2156 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) 26 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) 25 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 24 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) 23 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-1596 (($) 53 T ELT) (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) 52 T ELT)) (-2155 (((-789) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4400 (((-546) $) 63 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-629 (-546))) ELT)) (-3948 (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) 54 T ELT)) (-4374 (((-875) $) 17 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-628 (-875))) ELT)) (-1376 (((-114) $ $) 20 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) ELT)) (-1389 (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) 46 T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-625 |#1| |#2|) (-142) (-1120) (-1120)) (T -625)) -((-2445 (*1 *2 *3 *1) (-12 (-4 *1 (-625 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-5 *2 (-114)))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-625 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-5 *2 (-659 *3)))) (-3823 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-625 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120)))) (-2444 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-625 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120))))) -(-13 (-233 (-2 (|:| -4288 |t#1|) (|:| -2284 |t#2|))) (-10 -8 (-15 -2445 ((-114) |t#1| $)) (-15 -2882 ((-659 |t#1|) $)) (-15 -3823 ((-3 |t#2| "failed") |t#1| $)) (-15 -2444 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-102) -3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102))) ((-628 (-875)) -3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-628 (-875)))) ((-153 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-629 (-546)) |has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-629 (-546))) ((-233 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-242 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) -12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ((-501 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-526 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) -12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ((-1120) |has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-2446 (((-3 (-1196) "failed") $) 46 T ELT)) (-1425 (((-1292) $ (-789)) 22 T ELT)) (-3837 (((-789) $) 20 T ELT)) (-4021 (((-115) $) 9 T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2447 (($ (-115) (-659 |#1|) (-789)) 32 T ELT) (($ (-1196)) 33 T ELT)) (-3030 (((-114) $ (-115)) 15 T ELT) (((-114) $ (-1196)) 13 T ELT)) (-3000 (((-789) $) 17 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4400 (((-903 (-557)) $) 99 (|has| |#1| (-629 (-903 (-557)))) ELT) (((-903 (-391)) $) 106 (|has| |#1| (-629 (-903 (-391)))) ELT) (((-546) $) 92 (|has| |#1| (-629 (-546))) ELT)) (-4374 (((-875) $) 74 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2448 (((-659 |#1|) $) 19 T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 51 T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 53 T ELT))) -(((-626 |#1|) (-13 (-134) (-859) (-897 |#1|) (-10 -8 (-15 -4021 ((-115) $)) (-15 -2448 ((-659 |#1|) $)) (-15 -3000 ((-789) $)) (-15 -2447 ($ (-115) (-659 |#1|) (-789))) (-15 -2447 ($ (-1196))) (-15 -2446 ((-3 (-1196) "failed") $)) (-15 -3030 ((-114) $ (-115))) (-15 -3030 ((-114) $ (-1196))) (IF (|has| |#1| (-629 (-546))) (-6 (-629 (-546))) |%noBranch|))) (-1120)) (T -626)) -((-4021 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-626 *3)) (-4 *3 (-1120)))) (-2448 (*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-626 *3)) (-4 *3 (-1120)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-626 *3)) (-4 *3 (-1120)))) (-2447 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-659 *5)) (-5 *4 (-789)) (-4 *5 (-1120)) (-5 *1 (-626 *5)))) (-2447 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-626 *3)) (-4 *3 (-1120)))) (-2446 (*1 *2 *1) (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-626 *3)) (-4 *3 (-1120)))) (-3030 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-626 *4)) (-4 *4 (-1120)))) (-3030 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-114)) (-5 *1 (-626 *4)) (-4 *4 (-1120))))) -((-2449 (((-626 |#2|) |#1|) 17 T ELT)) (-2450 (((-3 |#1| "failed") (-626 |#2|)) 21 T ELT))) -(((-627 |#1| |#2|) (-10 -7 (-15 -2449 ((-626 |#2|) |#1|)) (-15 -2450 ((-3 |#1| "failed") (-626 |#2|)))) (-1120) (-1120)) (T -627)) -((-2450 (*1 *2 *3) (|partial| -12 (-5 *3 (-626 *4)) (-4 *4 (-1120)) (-4 *2 (-1120)) (-5 *1 (-627 *2 *4)))) (-2449 (*1 *2 *3) (-12 (-5 *2 (-626 *4)) (-5 *1 (-627 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120))))) -((-4374 ((|#1| $) 6 T ELT))) -(((-628 |#1|) (-142) (-1236)) (T -628)) -((-4374 (*1 *2 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1236))))) -(-13 (-10 -8 (-15 -4374 (|t#1| $)))) -((-4400 ((|#1| $) 6 T ELT))) -(((-629 |#1|) (-142) (-1236)) (T -629)) -((-4400 (*1 *2 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1236))))) -(-13 (-10 -8 (-15 -4400 (|t#1| $)))) -((-2451 (((-3 (-1190 (-419 |#2|)) #1="failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-417 |#2|) |#2|)) 15 T ELT) (((-3 (-1190 (-419 |#2|)) #1#) (-419 |#2|) (-419 |#2|) (-419 |#2|)) 16 T ELT))) -(((-630 |#1| |#2|) (-10 -7 (-15 -2451 ((-3 (-1190 (-419 |#2|)) #1="failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -2451 ((-3 (-1190 (-419 |#2|)) #1#) (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-417 |#2|) |#2|)))) (-13 (-149) (-27) (-1057 (-557)) (-1057 (-419 (-557)))) (-1262 |#1|)) (T -630)) -((-2451 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-149) (-27) (-1057 (-557)) (-1057 (-419 (-557))))) (-5 *2 (-1190 (-419 *6))) (-5 *1 (-630 *5 *6)) (-5 *3 (-419 *6)))) (-2451 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-149) (-27) (-1057 (-557)) (-1057 (-419 (-557))))) (-4 *5 (-1262 *4)) (-5 *2 (-1190 (-419 *5))) (-5 *1 (-630 *4 *5)) (-5 *3 (-419 *5))))) -((-4374 (($ |#1|) 6 T ELT))) -(((-631 |#1|) (-142) (-1236)) (T -631)) -((-4374 (*1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1236))))) -(-13 (-10 -8 (-15 -4374 ($ |t#1|)))) -((-2965 (((-114) $ $) NIL T ELT)) (-2524 (($ $) NIL T ELT)) (-2452 (($) 14 T CONST)) (-3254 (($) 15 T CONST)) (-2958 (($ $ $) 29 T ELT)) (-2957 (($ $) 27 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3252 (($ $ $) 30 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3253 (($) 11 T CONST)) (-3251 (($ $ $) 31 T ELT)) (-4374 (((-875) $) 35 T ELT)) (-3992 (((-114) $ (|[\|\|]| -3253)) 24 T ELT) (((-114) $ (|[\|\|]| -2452)) 26 T ELT) (((-114) $ (|[\|\|]| -3254)) 21 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2959 (($ $ $) 28 T ELT)) (-2522 (($ $ $) NIL T ELT)) (-3452 (((-114) $ $) 18 T ELT)) (-2523 (($ $ $) NIL T ELT))) -(((-632) (-13 (-986) (-10 -8 (-15 -2452 ($) -4380) (-15 -3992 ((-114) $ (|[\|\|]| -3253))) (-15 -3992 ((-114) $ (|[\|\|]| -2452))) (-15 -3992 ((-114) $ (|[\|\|]| -3254)))))) (T -632)) -((-2452 (*1 *1) (-5 *1 (-632))) (-3992 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3253)) (-5 *2 (-114)) (-5 *1 (-632)))) (-3992 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2452)) (-5 *2 (-114)) (-5 *1 (-632)))) (-3992 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3254)) (-5 *2 (-114)) (-5 *1 (-632))))) -((-4400 (($ |#1|) 6 T ELT))) -(((-633 |#1|) (-142) (-1236)) (T -633)) -((-4400 (*1 *1 *2) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1236))))) -(-13 (-10 -8 (-15 -4400 ($ |t#1|)))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4051 (((-557) $) NIL (|has| |#1| (-858)) ELT)) (-4152 (($) NIL T CONST)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3602 (((-114) $) NIL (|has| |#1| (-858)) ELT)) (-2639 (((-114) $) NIL T ELT)) (-3397 ((|#1| $) 13 T ELT)) (-3603 (((-114) $) NIL (|has| |#1| (-858)) ELT)) (-2928 (($ $ $) NIL (|has| |#1| (-858)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-858)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3396 ((|#3| $) 15 T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3526 (((-789)) 20 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3801 (($ $) NIL (|has| |#1| (-858)) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) 12 T CONST)) (-2963 (((-114) $ $) NIL (|has| |#1| (-858)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-858)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL (|has| |#1| (-858)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-858)) ELT)) (-4377 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-634 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (-15 -4377 ($ $ |#3|)) (-15 -4377 ($ |#1| |#3|)) (-15 -3397 (|#1| $)) (-15 -3396 (|#3| $)))) (-38 |#2|) (-175) (|SubsetCategory| (-744) |#2|)) (T -634)) -((-4377 (*1 *1 *1 *2) (-12 (-4 *4 (-175)) (-5 *1 (-634 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-744) *4)))) (-4377 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-634 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-744) *4)))) (-3397 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-38 *3)) (-5 *1 (-634 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-744) *3)))) (-3396 (*1 *2 *1) (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-744) *4)) (-5 *1 (-634 *3 *4 *2)) (-4 *3 (-38 *4))))) -((-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-635 |#1| |#2|) (-10 -7 (-15 -4374 (|#1| |#2|)) (-15 -4374 (|#1| (-557))) (-15 -4374 ((-875) |#1|))) (-636 |#2|) (-1068)) (T -635)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ |#1|) 46 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 47 T ELT))) -(((-636 |#1|) (-142) (-1068)) (T -636)) -((-4374 (*1 *1 *2) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1068))))) -(-13 (-1068) (-666 |t#1|) (-10 -8 (-15 -4374 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-631 (-557)) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-744) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2453 ((|#2| |#2| (-1196) (-1196)) 16 T ELT))) -(((-637 |#1| |#2|) (-10 -7 (-15 -2453 (|#2| |#2| (-1196) (-1196)))) (-13 (-319) (-149) (-1057 (-557)) (-656 (-557))) (-13 (-1222) (-977) (-29 |#1|))) (T -637)) -((-2453 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-637 *4 *2)) (-4 *2 (-13 (-1222) (-977) (-29 *4)))))) -((-2965 (((-114) $ $) 64 T ELT)) (-3604 (((-114) $) 58 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-2454 ((|#1| $) 55 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1786 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4179 (((-2 (|:| -1970 $) (|:| -1969 (-419 |#2|))) (-419 |#2|)) 111 (|has| |#1| (-376)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3572 (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4387 (($ $) 27 T ELT)) (-3885 (((-3 $ #1#) $) 88 T ELT)) (-2960 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL (|has| |#1| (-376)) ELT)) (-4200 (((-557) $) 22 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-4365 (((-114) $) 40 T ELT)) (-3292 (($ |#1| (-557)) 24 T ELT)) (-3590 ((|#1| $) 57 T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-376)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) 101 (|has| |#1| (-376)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3884 (((-3 $ #1#) $ $) 93 T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-1785 (((-789) $) 115 (|has| |#1| (-376)) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 114 (|has| |#1| (-376)) ELT)) (-4186 (($ $ (-1 |#2| |#2|) (-789)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-789)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#2| (-917 (-1196))) ELT)) (-4376 (((-557) $) 38 T ELT)) (-4400 (((-419 |#2|) $) 47 T ELT)) (-4374 (((-875) $) 69 T ELT) (($ (-557)) 35 T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-4105 ((|#1| $ (-557)) 72 T ELT)) (-3101 (((-709 $) $) NIL (|has| |#1| (-147)) ELT)) (-3526 (((-789)) 32 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-3057 (($) 9 T CONST)) (-3063 (($) 14 T CONST)) (-3068 (($ $ (-1 |#2| |#2|) (-789)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-789)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#2| (-917 (-1196))) ELT)) (-3452 (((-114) $ $) 21 T ELT)) (-4265 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 90 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 49 T ELT))) -(((-638 |#1| |#2|) (-13 (-234 |#2|) (-568) (-629 (-419 |#2|)) (-424 |#1|) (-1057 |#2|) (-10 -8 (-15 -4365 ((-114) $)) (-15 -4376 ((-557) $)) (-15 -4200 ((-557) $)) (-15 -4387 ($ $)) (-15 -3590 (|#1| $)) (-15 -2454 (|#1| $)) (-15 -4105 (|#1| $ (-557))) (-15 -3292 ($ |#1| (-557))) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-319)) (-15 -4179 ((-2 (|:| -1970 $) (|:| -1969 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) (-568) (-1262 |#1|)) (T -638)) -((-4365 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-114)) (-5 *1 (-638 *3 *4)) (-4 *4 (-1262 *3)))) (-4376 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-557)) (-5 *1 (-638 *3 *4)) (-4 *4 (-1262 *3)))) (-4200 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-557)) (-5 *1 (-638 *3 *4)) (-4 *4 (-1262 *3)))) (-4387 (*1 *1 *1) (-12 (-4 *2 (-568)) (-5 *1 (-638 *2 *3)) (-4 *3 (-1262 *2)))) (-3590 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-638 *2 *3)) (-4 *3 (-1262 *2)))) (-2454 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-638 *2 *3)) (-4 *3 (-1262 *2)))) (-4105 (*1 *2 *1 *3) (-12 (-5 *3 (-557)) (-4 *2 (-568)) (-5 *1 (-638 *2 *4)) (-4 *4 (-1262 *2)))) (-3292 (*1 *1 *2 *3) (-12 (-5 *3 (-557)) (-4 *2 (-568)) (-5 *1 (-638 *2 *4)) (-4 *4 (-1262 *2)))) (-4179 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *4 (-568)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| -1970 (-638 *4 *5)) (|:| -1969 (-419 *5)))) (-5 *1 (-638 *4 *5)) (-5 *3 (-419 *5))))) -((-4110 (((-659 |#6|) (-659 |#4|) (-114)) 54 T ELT)) (-2455 ((|#6| |#6|) 48 T ELT))) -(((-639 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2455 (|#6| |#6|)) (-15 -4110 ((-659 |#6|) (-659 |#4|) (-114)))) (-464) (-813) (-859) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|) (-1128 |#1| |#2| |#3| |#4|)) (T -639)) -((-4110 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *8)) (-5 *4 (-114)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-659 *10)) (-5 *1 (-639 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *10 (-1128 *5 *6 *7 *8)))) (-2455 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-639 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *2 (-1128 *3 *4 *5 *6))))) -((-2456 (((-114) |#3| (-789) (-659 |#3|)) 30 T ELT)) (-2457 (((-3 (-2 (|:| |polfac| (-659 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-659 (-1190 |#3|)))) "failed") |#3| (-659 (-1190 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1985 (-659 (-2 (|:| |irr| |#4|) (|:| -2624 (-557)))))) (-659 |#3|) (-659 |#1|) (-659 |#3|)) 68 T ELT))) -(((-640 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2456 ((-114) |#3| (-789) (-659 |#3|))) (-15 -2457 ((-3 (-2 (|:| |polfac| (-659 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-659 (-1190 |#3|)))) "failed") |#3| (-659 (-1190 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1985 (-659 (-2 (|:| |irr| |#4|) (|:| -2624 (-557)))))) (-659 |#3|) (-659 |#1|) (-659 |#3|)))) (-859) (-813) (-319) (-967 |#3| |#2| |#1|)) (T -640)) -((-2457 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1985 (-659 (-2 (|:| |irr| *10) (|:| -2624 (-557))))))) (-5 *6 (-659 *3)) (-5 *7 (-659 *8)) (-4 *8 (-859)) (-4 *3 (-319)) (-4 *10 (-967 *3 *9 *8)) (-4 *9 (-813)) (-5 *2 (-2 (|:| |polfac| (-659 *10)) (|:| |correct| *3) (|:| |corrfact| (-659 (-1190 *3))))) (-5 *1 (-640 *8 *9 *3 *10)) (-5 *4 (-659 (-1190 *3))))) (-2456 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-789)) (-5 *5 (-659 *3)) (-4 *3 (-319)) (-4 *6 (-859)) (-4 *7 (-813)) (-5 *2 (-114)) (-5 *1 (-640 *6 *7 *3 *8)) (-4 *8 (-967 *3 *7 *6))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3946 (((-1154) $) 11 T ELT)) (-3947 (((-1154) $) 9 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 17 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-641) (-13 (-1102) (-10 -8 (-15 -3947 ((-1154) $)) (-15 -3946 ((-1154) $))))) (T -641)) -((-3947 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-641)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-641))))) -((-2965 (((-114) $ $) NIL T ELT)) (-4362 (((-659 |#1|) $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3885 (((-3 $ "failed") $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-4364 (($ $) 77 T ELT)) (-4370 (((-682 |#1| |#2|) $) 60 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) 81 T ELT)) (-2458 (((-659 (-305 |#2|)) $ $) 42 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4371 (($ (-682 |#1| |#2|)) 56 T ELT)) (-3408 (($ $ $) NIL T ELT)) (-2822 (($ $ $) NIL T ELT)) (-4374 (((-875) $) 66 T ELT) (((-1302 |#1| |#2|) $) NIL T ELT) (((-1307 |#1| |#2|) $) 74 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3063 (($) 61 T CONST)) (-2459 (((-659 (-2 (|:| |k| (-690 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2460 (((-659 (-682 |#1| |#2|)) (-659 |#1|)) 73 T ELT)) (-3062 (((-659 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3452 (((-114) $ $) 62 T ELT)) (-4377 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ $ $) 52 T ELT))) -(((-642 |#1| |#2| |#3|) (-13 (-485) (-10 -8 (-15 -4371 ($ (-682 |#1| |#2|))) (-15 -4370 ((-682 |#1| |#2|) $)) (-15 -3062 ((-659 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $)) (-15 -4374 ((-1302 |#1| |#2|) $)) (-15 -4374 ((-1307 |#1| |#2|) $)) (-15 -4364 ($ $)) (-15 -4362 ((-659 |#1|) $)) (-15 -2460 ((-659 (-682 |#1| |#2|)) (-659 |#1|))) (-15 -2459 ((-659 (-2 (|:| |k| (-690 |#1|)) (|:| |c| |#2|))) $)) (-15 -2458 ((-659 (-305 |#2|)) $ $)))) (-859) (-13 (-175) (-735 (-419 (-557)))) (-936)) (T -642)) -((-4371 (*1 *1 *2) (-12 (-5 *2 (-682 *3 *4)) (-4 *3 (-859)) (-4 *4 (-13 (-175) (-735 (-419 (-557))))) (-5 *1 (-642 *3 *4 *5)) (-14 *5 (-936)))) (-4370 (*1 *2 *1) (-12 (-5 *2 (-682 *3 *4)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-859)) (-4 *4 (-13 (-175) (-735 (-419 (-557))))) (-14 *5 (-936)))) (-3062 (*1 *2 *1) (-12 (-5 *2 (-659 (-2 (|:| |k| (-906 *3)) (|:| |c| *4)))) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-859)) (-4 *4 (-13 (-175) (-735 (-419 (-557))))) (-14 *5 (-936)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-859)) (-4 *4 (-13 (-175) (-735 (-419 (-557))))) (-14 *5 (-936)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-859)) (-4 *4 (-13 (-175) (-735 (-419 (-557))))) (-14 *5 (-936)))) (-4364 (*1 *1 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-859)) (-4 *3 (-13 (-175) (-735 (-419 (-557))))) (-14 *4 (-936)))) (-4362 (*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-859)) (-4 *4 (-13 (-175) (-735 (-419 (-557))))) (-14 *5 (-936)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-659 *4)) (-4 *4 (-859)) (-5 *2 (-659 (-682 *4 *5))) (-5 *1 (-642 *4 *5 *6)) (-4 *5 (-13 (-175) (-735 (-419 (-557))))) (-14 *6 (-936)))) (-2459 (*1 *2 *1) (-12 (-5 *2 (-659 (-2 (|:| |k| (-690 *3)) (|:| |c| *4)))) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-859)) (-4 *4 (-13 (-175) (-735 (-419 (-557))))) (-14 *5 (-936)))) (-2458 (*1 *2 *1 *1) (-12 (-5 *2 (-659 (-305 *4))) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-859)) (-4 *4 (-13 (-175) (-735 (-419 (-557))))) (-14 *5 (-936))))) -((-4110 (((-659 (-1165 |#1| (-542 (-876 |#2|)) (-876 |#2|) (-798 |#1| (-876 |#2|)))) (-659 (-798 |#1| (-876 |#2|))) (-114)) 103 T ELT) (((-659 (-1065 |#1| |#2|)) (-659 (-798 |#1| (-876 |#2|))) (-114)) 77 T ELT)) (-2461 (((-114) (-659 (-798 |#1| (-876 |#2|)))) 26 T ELT)) (-2465 (((-659 (-1165 |#1| (-542 (-876 |#2|)) (-876 |#2|) (-798 |#1| (-876 |#2|)))) (-659 (-798 |#1| (-876 |#2|))) (-114)) 102 T ELT)) (-2464 (((-659 (-1065 |#1| |#2|)) (-659 (-798 |#1| (-876 |#2|))) (-114)) 76 T ELT)) (-2463 (((-659 (-798 |#1| (-876 |#2|))) (-659 (-798 |#1| (-876 |#2|)))) 30 T ELT)) (-2462 (((-3 (-659 (-798 |#1| (-876 |#2|))) "failed") (-659 (-798 |#1| (-876 |#2|)))) 29 T ELT))) -(((-643 |#1| |#2|) (-10 -7 (-15 -2461 ((-114) (-659 (-798 |#1| (-876 |#2|))))) (-15 -2462 ((-3 (-659 (-798 |#1| (-876 |#2|))) "failed") (-659 (-798 |#1| (-876 |#2|))))) (-15 -2463 ((-659 (-798 |#1| (-876 |#2|))) (-659 (-798 |#1| (-876 |#2|))))) (-15 -2464 ((-659 (-1065 |#1| |#2|)) (-659 (-798 |#1| (-876 |#2|))) (-114))) (-15 -2465 ((-659 (-1165 |#1| (-542 (-876 |#2|)) (-876 |#2|) (-798 |#1| (-876 |#2|)))) (-659 (-798 |#1| (-876 |#2|))) (-114))) (-15 -4110 ((-659 (-1065 |#1| |#2|)) (-659 (-798 |#1| (-876 |#2|))) (-114))) (-15 -4110 ((-659 (-1165 |#1| (-542 (-876 |#2|)) (-876 |#2|) (-798 |#1| (-876 |#2|)))) (-659 (-798 |#1| (-876 |#2|))) (-114)))) (-464) (-659 (-1196))) (T -643)) -((-4110 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-798 *5 (-876 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) (-14 *6 (-659 (-1196))) (-5 *2 (-659 (-1165 *5 (-542 (-876 *6)) (-876 *6) (-798 *5 (-876 *6))))) (-5 *1 (-643 *5 *6)))) (-4110 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-798 *5 (-876 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) (-14 *6 (-659 (-1196))) (-5 *2 (-659 (-1065 *5 *6))) (-5 *1 (-643 *5 *6)))) (-2465 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-798 *5 (-876 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) (-14 *6 (-659 (-1196))) (-5 *2 (-659 (-1165 *5 (-542 (-876 *6)) (-876 *6) (-798 *5 (-876 *6))))) (-5 *1 (-643 *5 *6)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-798 *5 (-876 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) (-14 *6 (-659 (-1196))) (-5 *2 (-659 (-1065 *5 *6))) (-5 *1 (-643 *5 *6)))) (-2463 (*1 *2 *2) (-12 (-5 *2 (-659 (-798 *3 (-876 *4)))) (-4 *3 (-464)) (-14 *4 (-659 (-1196))) (-5 *1 (-643 *3 *4)))) (-2462 (*1 *2 *2) (|partial| -12 (-5 *2 (-659 (-798 *3 (-876 *4)))) (-4 *3 (-464)) (-14 *4 (-659 (-1196))) (-5 *1 (-643 *3 *4)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-659 (-798 *4 (-876 *5)))) (-4 *4 (-464)) (-14 *5 (-659 (-1196))) (-5 *2 (-114)) (-5 *1 (-643 *4 *5))))) -((-4021 (((-115) (-115)) 88 T ELT)) (-2469 ((|#2| |#2|) 28 T ELT)) (-3231 ((|#2| |#2| (-1111 |#2|)) 84 T ELT) ((|#2| |#2| (-1196)) 50 T ELT)) (-2467 ((|#2| |#2|) 27 T ELT)) (-2468 ((|#2| |#2|) 29 T ELT)) (-2466 (((-114) (-115)) 33 T ELT)) (-2471 ((|#2| |#2|) 24 T ELT)) (-2472 ((|#2| |#2|) 26 T ELT)) (-2470 ((|#2| |#2|) 25 T ELT))) -(((-644 |#1| |#2|) (-10 -7 (-15 -2466 ((-114) (-115))) (-15 -4021 ((-115) (-115))) (-15 -2472 (|#2| |#2|)) (-15 -2471 (|#2| |#2|)) (-15 -2470 (|#2| |#2|)) (-15 -2469 (|#2| |#2|)) (-15 -2467 (|#2| |#2|)) (-15 -2468 (|#2| |#2|)) (-15 -3231 (|#2| |#2| (-1196))) (-15 -3231 (|#2| |#2| (-1111 |#2|)))) (-568) (-13 (-433 |#1|) (-1021) (-1222))) (T -644)) -((-3231 (*1 *2 *2 *3) (-12 (-5 *3 (-1111 *2)) (-4 *2 (-13 (-433 *4) (-1021) (-1222))) (-4 *4 (-568)) (-5 *1 (-644 *4 *2)))) (-3231 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-644 *4 *2)) (-4 *2 (-13 (-433 *4) (-1021) (-1222))))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-644 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021) (-1222))))) (-2467 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-644 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021) (-1222))))) (-2469 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-644 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021) (-1222))))) (-2470 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-644 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021) (-1222))))) (-2471 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-644 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021) (-1222))))) (-2472 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-644 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021) (-1222))))) (-4021 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-644 *3 *4)) (-4 *4 (-13 (-433 *3) (-1021) (-1222))))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-114)) (-5 *1 (-644 *4 *5)) (-4 *5 (-13 (-433 *4) (-1021) (-1222)))))) -((-3910 (($ $) 38 T ELT)) (-4067 (($ $) 21 T ELT)) (-3908 (($ $) 37 T ELT)) (-4066 (($ $) 22 T ELT)) (-3912 (($ $) 36 T ELT)) (-4065 (($ $) 23 T ELT)) (-4055 (($) 48 T ELT)) (-4370 (($ $) 45 T ELT)) (-2469 (($ $) 17 T ELT)) (-3231 (($ $ (-1111 $)) 7 T ELT) (($ $ (-1196)) 6 T ELT)) (-4371 (($ $) 46 T ELT)) (-2467 (($ $) 15 T ELT)) (-2468 (($ $) 16 T ELT)) (-3913 (($ $) 35 T ELT)) (-4064 (($ $) 24 T ELT)) (-3911 (($ $) 34 T ELT)) (-4063 (($ $) 25 T ELT)) (-3909 (($ $) 33 T ELT)) (-4062 (($ $) 26 T ELT)) (-3916 (($ $) 44 T ELT)) (-3904 (($ $) 32 T ELT)) (-3914 (($ $) 43 T ELT)) (-3902 (($ $) 31 T ELT)) (-3918 (($ $) 42 T ELT)) (-3906 (($ $) 30 T ELT)) (-3919 (($ $) 41 T ELT)) (-3907 (($ $) 29 T ELT)) (-3917 (($ $) 40 T ELT)) (-3905 (($ $) 28 T ELT)) (-3915 (($ $) 39 T ELT)) (-3903 (($ $) 27 T ELT)) (-2471 (($ $) 19 T ELT)) (-2472 (($ $) 20 T ELT)) (-2470 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) -(((-645) (-142)) (T -645)) -((-2472 (*1 *1 *1) (-4 *1 (-645))) (-2471 (*1 *1 *1) (-4 *1 (-645))) (-2470 (*1 *1 *1) (-4 *1 (-645))) (-2469 (*1 *1 *1) (-4 *1 (-645))) (-2468 (*1 *1 *1) (-4 *1 (-645))) (-2467 (*1 *1 *1) (-4 *1 (-645)))) -(-13 (-977) (-1222) (-10 -8 (-15 -2472 ($ $)) (-15 -2471 ($ $)) (-15 -2470 ($ $)) (-15 -2469 ($ $)) (-15 -2468 ($ $)) (-15 -2467 ($ $)))) -(((-35) . T) ((-95) . T) ((-296) . T) ((-505) . T) ((-977) . T) ((-1222) . T) ((-1225) . T)) -((-2482 (((-493 |#1| |#2|) (-255 |#1| |#2|)) 65 T ELT)) (-2475 (((-659 (-255 |#1| |#2|)) (-659 (-493 |#1| |#2|))) 90 T ELT)) (-2476 (((-493 |#1| |#2|) (-659 (-493 |#1| |#2|)) (-876 |#1|)) 92 T ELT) (((-493 |#1| |#2|) (-659 (-493 |#1| |#2|)) (-659 (-493 |#1| |#2|)) (-876 |#1|)) 91 T ELT)) (-2473 (((-2 (|:| |gblist| (-659 (-255 |#1| |#2|))) (|:| |gvlist| (-659 (-557)))) (-659 (-493 |#1| |#2|))) 136 T ELT)) (-2480 (((-659 (-493 |#1| |#2|)) (-876 |#1|) (-659 (-493 |#1| |#2|)) (-659 (-493 |#1| |#2|))) 105 T ELT)) (-2474 (((-2 (|:| |glbase| (-659 (-255 |#1| |#2|))) (|:| |glval| (-659 (-557)))) (-659 (-255 |#1| |#2|))) 147 T ELT)) (-2478 (((-1286 |#2|) (-493 |#1| |#2|) (-659 (-493 |#1| |#2|))) 70 T ELT)) (-2477 (((-659 (-493 |#1| |#2|)) (-659 (-493 |#1| |#2|))) 47 T ELT)) (-2481 (((-255 |#1| |#2|) (-255 |#1| |#2|) (-659 (-255 |#1| |#2|))) 61 T ELT)) (-2479 (((-255 |#1| |#2|) (-659 |#2|) (-255 |#1| |#2|) (-659 (-255 |#1| |#2|))) 113 T ELT))) -(((-646 |#1| |#2|) (-10 -7 (-15 -2473 ((-2 (|:| |gblist| (-659 (-255 |#1| |#2|))) (|:| |gvlist| (-659 (-557)))) (-659 (-493 |#1| |#2|)))) (-15 -2474 ((-2 (|:| |glbase| (-659 (-255 |#1| |#2|))) (|:| |glval| (-659 (-557)))) (-659 (-255 |#1| |#2|)))) (-15 -2475 ((-659 (-255 |#1| |#2|)) (-659 (-493 |#1| |#2|)))) (-15 -2476 ((-493 |#1| |#2|) (-659 (-493 |#1| |#2|)) (-659 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -2476 ((-493 |#1| |#2|) (-659 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -2477 ((-659 (-493 |#1| |#2|)) (-659 (-493 |#1| |#2|)))) (-15 -2478 ((-1286 |#2|) (-493 |#1| |#2|) (-659 (-493 |#1| |#2|)))) (-15 -2479 ((-255 |#1| |#2|) (-659 |#2|) (-255 |#1| |#2|) (-659 (-255 |#1| |#2|)))) (-15 -2480 ((-659 (-493 |#1| |#2|)) (-876 |#1|) (-659 (-493 |#1| |#2|)) (-659 (-493 |#1| |#2|)))) (-15 -2481 ((-255 |#1| |#2|) (-255 |#1| |#2|) (-659 (-255 |#1| |#2|)))) (-15 -2482 ((-493 |#1| |#2|) (-255 |#1| |#2|)))) (-659 (-1196)) (-464)) (T -646)) -((-2482 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-659 (-1196))) (-4 *5 (-464)) (-5 *2 (-493 *4 *5)) (-5 *1 (-646 *4 *5)))) (-2481 (*1 *2 *2 *3) (-12 (-5 *3 (-659 (-255 *4 *5))) (-5 *2 (-255 *4 *5)) (-14 *4 (-659 (-1196))) (-4 *5 (-464)) (-5 *1 (-646 *4 *5)))) (-2480 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-659 (-493 *4 *5))) (-5 *3 (-876 *4)) (-14 *4 (-659 (-1196))) (-4 *5 (-464)) (-5 *1 (-646 *4 *5)))) (-2479 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-659 *6)) (-5 *4 (-659 (-255 *5 *6))) (-4 *6 (-464)) (-5 *2 (-255 *5 *6)) (-14 *5 (-659 (-1196))) (-5 *1 (-646 *5 *6)))) (-2478 (*1 *2 *3 *4) (-12 (-5 *4 (-659 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) (-14 *5 (-659 (-1196))) (-4 *6 (-464)) (-5 *2 (-1286 *6)) (-5 *1 (-646 *5 *6)))) (-2477 (*1 *2 *2) (-12 (-5 *2 (-659 (-493 *3 *4))) (-14 *3 (-659 (-1196))) (-4 *4 (-464)) (-5 *1 (-646 *3 *4)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-493 *5 *6))) (-5 *4 (-876 *5)) (-14 *5 (-659 (-1196))) (-5 *2 (-493 *5 *6)) (-5 *1 (-646 *5 *6)) (-4 *6 (-464)))) (-2476 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-659 (-493 *5 *6))) (-5 *4 (-876 *5)) (-14 *5 (-659 (-1196))) (-5 *2 (-493 *5 *6)) (-5 *1 (-646 *5 *6)) (-4 *6 (-464)))) (-2475 (*1 *2 *3) (-12 (-5 *3 (-659 (-493 *4 *5))) (-14 *4 (-659 (-1196))) (-4 *5 (-464)) (-5 *2 (-659 (-255 *4 *5))) (-5 *1 (-646 *4 *5)))) (-2474 (*1 *2 *3) (-12 (-14 *4 (-659 (-1196))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |glbase| (-659 (-255 *4 *5))) (|:| |glval| (-659 (-557))))) (-5 *1 (-646 *4 *5)) (-5 *3 (-659 (-255 *4 *5))))) (-2473 (*1 *2 *3) (-12 (-5 *3 (-659 (-493 *4 *5))) (-14 *4 (-659 (-1196))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |gblist| (-659 (-255 *4 *5))) (|:| |gvlist| (-659 (-557))))) (-5 *1 (-646 *4 *5))))) -((-2965 (((-114) $ $) NIL (-3955 (|has| (-51) (-102)) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-102))) ELT)) (-4025 (($) NIL T ELT) (($ (-659 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))))) NIL T ELT)) (-2411 (((-1292) $ (-1178) (-1178)) NIL (|has| $ (-6 -4424)) ELT)) (-4216 (((-51) $ (-1178) (-51)) NIL T ELT) (((-51) $ (-1196) (-51)) 16 T ELT)) (-1711 (($ (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT)) (-2444 (((-3 (-51) #1="failed") (-1178) $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-1120))) ELT)) (-3823 (($ (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) $) NIL (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT) (((-3 (-51) #1#) (-1178) $) NIL T ELT)) (-3824 (($ (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-1120))) ELT) (($ (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 (((-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-1 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) $ (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-1120))) ELT) (((-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-1 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) $ (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) NIL (|has| $ (-6 -4423)) ELT) (((-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-1 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT)) (-1717 (((-51) $ (-1178) (-51)) NIL (|has| $ (-6 -4424)) ELT)) (-3513 (((-51) $ (-1178)) NIL T ELT)) (-3288 (((-659 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 (-51)) $) NIL (|has| $ (-6 -4423)) ELT)) (-2483 (($ $) NIL T ELT)) (-2413 (((-1178) $) NIL (|has| (-1178) (-859)) ELT)) (-3005 (((-659 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 (-51)) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-1120))) ELT) (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-51) (-1120))) ELT)) (-2414 (((-1178) $) NIL (|has| (-1178) (-859)) ELT)) (-2158 (($ (-1 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2484 (($ (-402)) 8 T ELT)) (-3658 (((-1178) $) NIL (-3955 (|has| (-51) (-1120)) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-1120))) ELT)) (-2882 (((-659 (-1178)) $) NIL T ELT)) (-2445 (((-114) (-1178) $) NIL T ELT)) (-1387 (((-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) $) NIL T ELT)) (-4035 (($ (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) $) NIL T ELT)) (-2416 (((-659 (-1178)) $) NIL T ELT)) (-2417 (((-114) (-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL (-3955 (|has| (-51) (-1120)) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-1120))) ELT)) (-4229 (((-51) $) NIL (|has| (-1178) (-859)) ELT)) (-1466 (((-3 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) #1#) (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) $) NIL T ELT)) (-2412 (($ $ (-51)) NIL (|has| $ (-6 -4424)) ELT)) (-1388 (((-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) $) NIL T ELT)) (-2156 (((-114) (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))))) NIL (-12 (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-321 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))))) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-1120))) ELT) (($ $ (-305 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))))) NIL (-12 (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-321 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))))) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-1120))) ELT) (($ $ (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) NIL (-12 (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-321 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))))) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-1120))) ELT) (($ $ (-659 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) (-659 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))))) NIL (-12 (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-321 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))))) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-1120))) ELT) (($ $ (-659 (-51)) (-659 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1120))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1120))) ELT) (($ $ (-305 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1120))) ELT) (($ $ (-659 (-305 (-51)))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-51) (-1120))) ELT)) (-2418 (((-659 (-51)) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 (((-51) $ (-1178)) NIL T ELT) (((-51) $ (-1178) (-51)) NIL T ELT) (((-51) $ (-1196)) 14 T ELT)) (-1596 (($) NIL T ELT) (($ (-659 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))))) NIL T ELT)) (-2155 (((-789) (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-1120))) ELT) (((-789) (-51) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-51) (-1120))) ELT) (((-789) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) NIL (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-629 (-546))) ELT)) (-3948 (($ (-659 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))))) NIL T ELT)) (-4374 (((-875) $) NIL (-3955 (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-628 (-875))) (|has| (-51) (-628 (-875)))) ELT)) (-1376 (((-114) $ $) NIL (-3955 (|has| (-51) (-102)) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-102))) ELT)) (-1389 (($ (-659 (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))))) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) NIL (-3955 (|has| (-51) (-102)) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 (-51))) (-102))) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-647) (-13 (-1213 (-1178) (-51)) (-298 (-1196) (-51)) (-10 -8 (-15 -2484 ($ (-402))) (-15 -2483 ($ $)) (-15 -4216 ((-51) $ (-1196) (-51)))))) (T -647)) -((-2484 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-647)))) (-2483 (*1 *1 *1) (-5 *1 (-647))) (-4216 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1196)) (-5 *1 (-647))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1978 (((-3 $ #1="failed")) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-1424 (((-3 $ #1#) $ $) NIL T ELT)) (-3639 (((-1286 (-707 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1286 (-707 |#1|)) (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1930 (((-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4152 (($) NIL T CONST)) (-2115 (((-3 (-2 (|:| |particular| $) (|:| -2220 (-659 $))) #1#)) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-1904 (((-3 $ #1#)) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-1994 (((-707 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-707 |#1|) (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1928 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1992 (((-707 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-707 |#1|) $ (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2633 (((-3 $ #1#) $) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-2109 (((-1190 (-963 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-376))) ELT)) (-2636 (($ $ (-936)) NIL T ELT)) (-1926 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1906 (((-1190 |#1|) $) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-1996 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1924 (((-1190 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1918 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1998 (($ (-1286 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (($ (-1286 |#1|) (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3885 (((-3 $ #1#) $) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-3509 (((-936)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1915 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2660 (($ $ (-936)) NIL T ELT)) (-1911 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1909 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1913 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2116 (((-3 (-2 (|:| |particular| $) (|:| -2220 (-659 $))) #1#)) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-1905 (((-3 $ #1#)) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-1995 (((-707 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-707 |#1|) (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1929 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1993 (((-707 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-707 |#1|) $ (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2634 (((-3 $ #1#) $) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-2113 (((-1190 (-963 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-376))) ELT)) (-2635 (($ $ (-936)) NIL T ELT)) (-1927 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1907 (((-1190 |#1|) $) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-1997 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1925 (((-1190 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1919 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1910 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1912 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1914 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1917 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4228 ((|#1| $ (-557)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-3640 (((-707 |#1|) (-1286 $)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1286 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-707 |#1|) (-1286 $) (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT) (((-1286 |#1|) $ (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4400 (($ (-1286 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1286 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2101 (((-659 (-963 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-659 (-963 |#1|)) (-1286 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2822 (($ $ $) NIL T ELT)) (-1923 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4374 (((-875) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 $)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-1908 (((-659 (-1286 |#1|))) NIL (-3955 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-568)))) ELT)) (-2823 (($ $ $ $) NIL T ELT)) (-1921 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2942 (($ (-707 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2821 (($ $ $) NIL T ELT)) (-1922 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1920 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1916 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3057 (($) 18 T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) 19 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-648 |#1| |#2|) (-13 (-762 |#1|) (-628 |#2|) (-10 -8 (-15 -4374 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) (-175) (-762 |#1|)) (T -648)) -((-4374 (*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-648 *3 *2)) (-4 *2 (-762 *3))))) -((-4377 (($ $ |#2|) 10 T ELT))) -(((-649 |#1| |#2|) (-10 -7 (-15 -4377 (|#1| |#1| |#2|))) (-650 |#2|) (-175)) (T -649)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3948 (($ $ $) 39 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ |#1|) 38 (|has| |#1| (-376)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-650 |#1|) (-142) (-175)) (T -650)) -((-3948 (*1 *1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-175)))) (-4377 (*1 *1 *1 *2) (-12 (-4 *1 (-650 *2)) (-4 *2 (-175)) (-4 *2 (-376))))) -(-13 (-735 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3948 ($ $ $)) (IF (|has| |t#1| (-376)) (-15 -4377 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-666 |#1|) . T) ((-658 |#1|) . T) ((-735 |#1|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-2486 (((-3 (-853 |#2|) #1="failed") |#2| (-305 |#2|) (-1178)) 105 T ELT) (((-3 (-853 |#2|) (-2 (|:| |leftHandLimit| (-3 (-853 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-853 |#2|) #1#))) #1#) |#2| (-305 (-853 |#2|))) 130 T ELT)) (-2485 (((-3 (-843 |#2|) #1#) |#2| (-305 (-843 |#2|))) 135 T ELT))) -(((-651 |#1| |#2|) (-10 -7 (-15 -2486 ((-3 (-853 |#2|) (-2 (|:| |leftHandLimit| (-3 (-853 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-853 |#2|) #1#))) #1#) |#2| (-305 (-853 |#2|)))) (-15 -2485 ((-3 (-843 |#2|) #1#) |#2| (-305 (-843 |#2|)))) (-15 -2486 ((-3 (-853 |#2|) #1#) |#2| (-305 |#2|) (-1178)))) (-13 (-464) (-1057 (-557)) (-656 (-557))) (-13 (-27) (-1222) (-433 |#1|))) (T -651)) -((-2486 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1178)) (-4 *3 (-13 (-27) (-1222) (-433 *6))) (-4 *6 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-853 *3)) (-5 *1 (-651 *6 *3)))) (-2485 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-305 (-843 *3))) (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-843 *3)) (-5 *1 (-651 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5))))) (-2486 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-853 *3))) (-4 *3 (-13 (-27) (-1222) (-433 *5))) (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-3 (-853 *3) (-2 (|:| |leftHandLimit| (-3 (-853 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-853 *3) #1#))) "failed")) (-5 *1 (-651 *5 *3))))) -((-2486 (((-3 (-853 (-419 (-963 |#1|))) #1="failed") (-419 (-963 |#1|)) (-305 (-419 (-963 |#1|))) (-1178)) 86 T ELT) (((-3 (-853 (-419 (-963 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-419 (-963 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-853 (-419 (-963 |#1|))) #1#))) #1#) (-419 (-963 |#1|)) (-305 (-419 (-963 |#1|)))) 20 T ELT) (((-3 (-853 (-419 (-963 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-419 (-963 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-853 (-419 (-963 |#1|))) #1#))) #1#) (-419 (-963 |#1|)) (-305 (-853 (-963 |#1|)))) 35 T ELT)) (-2485 (((-843 (-419 (-963 |#1|))) (-419 (-963 |#1|)) (-305 (-419 (-963 |#1|)))) 23 T ELT) (((-843 (-419 (-963 |#1|))) (-419 (-963 |#1|)) (-305 (-843 (-963 |#1|)))) 43 T ELT))) -(((-652 |#1|) (-10 -7 (-15 -2486 ((-3 (-853 (-419 (-963 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-419 (-963 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-853 (-419 (-963 |#1|))) #1#))) #1#) (-419 (-963 |#1|)) (-305 (-853 (-963 |#1|))))) (-15 -2486 ((-3 (-853 (-419 (-963 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-419 (-963 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-853 (-419 (-963 |#1|))) #1#))) #1#) (-419 (-963 |#1|)) (-305 (-419 (-963 |#1|))))) (-15 -2485 ((-843 (-419 (-963 |#1|))) (-419 (-963 |#1|)) (-305 (-843 (-963 |#1|))))) (-15 -2485 ((-843 (-419 (-963 |#1|))) (-419 (-963 |#1|)) (-305 (-419 (-963 |#1|))))) (-15 -2486 ((-3 (-853 (-419 (-963 |#1|))) #1#) (-419 (-963 |#1|)) (-305 (-419 (-963 |#1|))) (-1178)))) (-464)) (T -652)) -((-2486 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 (-419 (-963 *6)))) (-5 *5 (-1178)) (-5 *3 (-419 (-963 *6))) (-4 *6 (-464)) (-5 *2 (-853 *3)) (-5 *1 (-652 *6)))) (-2485 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-419 (-963 *5)))) (-5 *3 (-419 (-963 *5))) (-4 *5 (-464)) (-5 *2 (-843 *3)) (-5 *1 (-652 *5)))) (-2485 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-843 (-963 *5)))) (-4 *5 (-464)) (-5 *2 (-843 (-419 (-963 *5)))) (-5 *1 (-652 *5)) (-5 *3 (-419 (-963 *5))))) (-2486 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-419 (-963 *5)))) (-5 *3 (-419 (-963 *5))) (-4 *5 (-464)) (-5 *2 (-3 (-853 *3) (-2 (|:| |leftHandLimit| (-3 (-853 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-853 *3) #1#))) #2="failed")) (-5 *1 (-652 *5)))) (-2486 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-853 (-963 *5)))) (-4 *5 (-464)) (-5 *2 (-3 (-853 (-419 (-963 *5))) (-2 (|:| |leftHandLimit| (-3 (-853 (-419 (-963 *5))) #1#)) (|:| |rightHandLimit| (-3 (-853 (-419 (-963 *5))) #1#))) #2#)) (-5 *1 (-652 *5)) (-5 *3 (-419 (-963 *5)))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) NIL T ELT)) (-3393 (($) NIL T ELT)) (-2928 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3256 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2218 (((-936) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2629 (($ (-936)) 11 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3250 (($ (-218 |#1|)) 12 T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-876 |#1|)) 7 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT))) -(((-653 |#1|) (-13 (-855) (-631 (-876 |#1|)) (-10 -8 (-15 -3250 ($ (-218 |#1|))))) (-659 (-1196))) (T -653)) -((-3250 (*1 *1 *2) (-12 (-5 *2 (-218 *3)) (-14 *3 (-659 (-1196))) (-5 *1 (-653 *3))))) -((-2489 (((-3 (-1286 (-419 |#1|)) #1="failed") (-1286 |#2|) |#2|) 64 (-2957 (|has| |#1| (-376))) ELT) (((-3 (-1286 |#1|) #1#) (-1286 |#2|) |#2|) 49 (|has| |#1| (-376)) ELT)) (-2487 (((-114) (-1286 |#2|)) 33 T ELT)) (-2488 (((-3 (-1286 |#1|) #1#) (-1286 |#2|)) 40 T ELT))) -(((-654 |#1| |#2|) (-10 -7 (-15 -2487 ((-114) (-1286 |#2|))) (-15 -2488 ((-3 (-1286 |#1|) #1="failed") (-1286 |#2|))) (IF (|has| |#1| (-376)) (-15 -2489 ((-3 (-1286 |#1|) #1#) (-1286 |#2|) |#2|)) (-15 -2489 ((-3 (-1286 (-419 |#1|)) #1#) (-1286 |#2|) |#2|)))) (-568) (-13 (-1068) (-656 |#1|))) (T -654)) -((-2489 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1068) (-656 *5))) (-2957 (-4 *5 (-376))) (-4 *5 (-568)) (-5 *2 (-1286 (-419 *5))) (-5 *1 (-654 *5 *4)))) (-2489 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1068) (-656 *5))) (-4 *5 (-376)) (-4 *5 (-568)) (-5 *2 (-1286 *5)) (-5 *1 (-654 *5 *4)))) (-2488 (*1 *2 *3) (|partial| -12 (-5 *3 (-1286 *5)) (-4 *5 (-13 (-1068) (-656 *4))) (-4 *4 (-568)) (-5 *2 (-1286 *4)) (-5 *1 (-654 *4 *5)))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-1286 *5)) (-4 *5 (-13 (-1068) (-656 *4))) (-4 *4 (-568)) (-5 *2 (-114)) (-5 *1 (-654 *4 *5))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-4202 (((-659 (-885 (-653 |#2|) |#1|)) $) NIL T ELT)) (-1424 (((-3 $ "failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-4387 (($ $) NIL T ELT)) (-3292 (($ |#1| (-653 |#2|)) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2490 (($ (-659 |#1|)) 25 T ELT)) (-2193 (((-653 |#2|) $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4339 (((-136)) 16 T ELT)) (-3640 (((-1286 |#1|) $) 44 T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-653 |#2|)) 11 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 20 T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#1|) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 17 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-655 |#1| |#2|) (-13 (-1294 |#1|) (-631 (-653 |#2|)) (-521 |#1| (-653 |#2|)) (-10 -8 (-15 -2490 ($ (-659 |#1|))) (-15 -3640 ((-1286 |#1|) $)))) (-376) (-659 (-1196))) (T -655)) -((-2490 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-376)) (-5 *1 (-655 *3 *4)) (-14 *4 (-659 (-1196))))) (-3640 (*1 *2 *1) (-12 (-5 *2 (-1286 *3)) (-5 *1 (-655 *3 *4)) (-4 *3 (-376)) (-14 *4 (-659 (-1196)))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-2491 (((-707 |#1|) (-707 $)) 35 T ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) 34 T ELT)) (-2492 (((-707 |#1|) (-1286 $)) 37 T ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 36 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ |#1| $) 32 T ELT))) -(((-656 |#1|) (-142) (-1068)) (T -656)) -((-2492 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-656 *4)) (-4 *4 (-1068)) (-5 *2 (-707 *4)))) (-2492 (*1 *2 *3 *1) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-656 *4)) (-4 *4 (-1068)) (-5 *2 (-2 (|:| -1781 (-707 *4)) (|:| |vec| (-1286 *4)))))) (-2491 (*1 *2 *3) (-12 (-5 *3 (-707 *1)) (-4 *1 (-656 *4)) (-4 *4 (-1068)) (-5 *2 (-707 *4)))) (-2491 (*1 *2 *3 *4) (-12 (-5 *3 (-707 *1)) (-5 *4 (-1286 *1)) (-4 *1 (-656 *5)) (-4 *5 (-1068)) (-5 *2 (-2 (|:| -1781 (-707 *5)) (|:| |vec| (-1286 *5))))))) -(-13 (-666 |t#1|) (-10 -8 (-15 -2492 ((-707 |t#1|) (-1286 $))) (-15 -2492 ((-2 (|:| -1781 (-707 |t#1|)) (|:| |vec| (-1286 |t#1|))) (-1286 $) $)) (-15 -2491 ((-707 |t#1|) (-707 $))) (-15 -2491 ((-2 (|:| -1781 (-707 |t#1|)) (|:| |vec| (-1286 |t#1|))) (-707 $) (-1286 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-666 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1424 (((-3 $ "failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-2493 (($ (-659 |#1|)) 23 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4228 ((|#1| $ (-655 |#1| |#2|)) 46 T ELT)) (-4339 (((-136)) 13 T ELT)) (-3640 (((-1286 |#1|) $) 42 T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 18 T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#1|) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 14 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-657 |#1| |#2|) (-13 (-1294 |#1|) (-298 (-655 |#1| |#2|) |#1|) (-10 -8 (-15 -2493 ($ (-659 |#1|))) (-15 -3640 ((-1286 |#1|) $)))) (-376) (-659 (-1196))) (T -657)) -((-2493 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-376)) (-5 *1 (-657 *3 *4)) (-14 *4 (-659 (-1196))))) (-3640 (*1 *2 *1) (-12 (-5 *2 (-1286 *3)) (-5 *1 (-657 *3 *4)) (-4 *3 (-376)) (-14 *4 (-659 (-1196)))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) -(((-658 |#1|) (-142) (-1131)) (T -658)) -NIL -(-13 (-664 |t#1|) (-1070 |t#1|)) -(((-102) . T) ((-628 (-875)) . T) ((-664 |#1|) . T) ((-1070 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3820 ((|#1| $) NIL T ELT)) (-4223 ((|#1| $) NIL T ELT)) (-4225 (($ $) NIL T ELT)) (-2411 (((-1292) $ (-557) (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-4213 (($ $ (-557)) 71 (|has| $ (-6 -4424)) ELT)) (-1933 (((-114) $) NIL (|has| |#1| (-859)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-1931 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-859))) ELT) (($ (-1 (-114) |#1| |#1|) $) 68 (|has| $ (-6 -4424)) ELT)) (-3308 (($ $) NIL (|has| |#1| (-859)) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3860 (((-114) $ (-789)) NIL T ELT)) (-3424 ((|#1| $ |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-4215 (($ $ $) 26 (|has| $ (-6 -4424)) ELT)) (-4214 ((|#1| $ |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-4217 ((|#1| $ |#1|) 24 (|has| $ (-6 -4424)) ELT)) (-4216 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-6 -4424)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-6 -4424)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| $ (-1253 (-557)) |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| $ (-557) |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-3425 (($ $ (-659 $)) NIL (|has| $ (-6 -4424)) ELT)) (-2496 (($ $ $) 77 (|has| |#1| (-1120)) ELT)) (-2495 (($ $ $) 78 (|has| |#1| (-1120)) ELT)) (-2494 (($ $ $) 81 (|has| |#1| (-1120)) ELT)) (-1711 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-4138 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4224 ((|#1| $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-2508 (($ $) 31 (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) 32 T ELT)) (-4227 (($ $) 21 T ELT) (($ $ (-789)) 36 T ELT)) (-2592 (($ $) 66 (|has| |#1| (-1120)) ELT)) (-1465 (($ $) 76 (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3823 (($ |#1| $) NIL (|has| |#1| (-1120)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3824 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-1717 ((|#1| $ (-557) |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-557)) NIL T ELT)) (-3861 (((-114) $) NIL T ELT)) (-3837 (((-557) |#1| $ (-557)) NIL (|has| |#1| (-1120)) ELT) (((-557) |#1| $) NIL (|has| |#1| (-1120)) ELT) (((-557) (-1 (-114) |#1|) $) NIL T ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-2498 (((-114) $) 9 T ELT)) (-3430 (((-659 $) $) NIL T ELT)) (-3426 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-2499 (($) 7 T CONST)) (-4042 (($ (-789) |#1|) NIL T ELT)) (-4147 (((-114) $ (-789)) NIL T ELT)) (-2413 (((-557) $) 35 (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3255 (($ $ $) NIL (|has| |#1| (-859)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 69 T ELT)) (-3936 (($ $ $) NIL (|has| |#1| (-859)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 64 (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2414 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3960 (($ |#1|) NIL T ELT)) (-4144 (((-114) $ (-789)) NIL T ELT)) (-3429 (((-659 |#1|) $) NIL T ELT)) (-3945 (((-114) $) NIL T ELT)) (-3658 (((-1178) $) 62 (|has| |#1| (-1120)) ELT)) (-4226 ((|#1| $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-4035 (($ $ $ (-557)) NIL T ELT) (($ |#1| $ (-557)) NIL T ELT)) (-2515 (($ $ $ (-557)) NIL T ELT) (($ |#1| $ (-557)) NIL T ELT)) (-2416 (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) (-557) $) NIL T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-4229 ((|#1| $) 16 T ELT) (($ $ (-789)) NIL T ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2412 (($ $ |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-3862 (((-114) $) NIL T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 15 T ELT)) (-2415 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) NIL T ELT)) (-3821 (((-114) $) 20 T ELT)) (-3991 (($) 19 T ELT)) (-4228 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1253 (-557))) NIL T ELT) ((|#1| $ (-557)) 80 T ELT) ((|#1| $ (-557) |#1|) NIL T ELT)) (-3428 (((-557) $ $) NIL T ELT)) (-1712 (($ $ (-1253 (-557))) NIL T ELT) (($ $ (-557)) NIL T ELT)) (-2516 (($ $ (-1253 (-557))) NIL T ELT) (($ $ (-557)) NIL T ELT)) (-4061 (((-114) $) 39 T ELT)) (-4220 (($ $) NIL T ELT)) (-4218 (($ $) NIL (|has| $ (-6 -4424)) ELT)) (-4221 (((-789) $) NIL T ELT)) (-4222 (($ $) 44 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-1932 (($ $ $ (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) 40 T ELT)) (-4400 (((-546) $) 89 (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 29 T ELT)) (-3879 (($ |#1| $) 10 T ELT)) (-4219 (($ $ $) 65 T ELT) (($ $ |#1|) NIL T ELT)) (-4230 (($ $ $) 75 T ELT) (($ |#1| $) 14 T ELT) (($ (-659 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4374 (((-875) $) 54 (|has| |#1| (-628 (-875))) ELT)) (-3940 (((-659 $) $) NIL T ELT)) (-3427 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2497 (($ $ $) 11 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2963 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) 58 (|has| |#1| (-102)) ELT)) (-3083 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-4385 (((-789) $) 13 (|has| $ (-6 -4423)) ELT))) -(((-659 |#1|) (-13 (-684 |#1|) (-10 -8 (-15 -2499 ($) -4380) (-15 -2498 ((-114) $)) (-15 -3879 ($ |#1| $)) (-15 -2497 ($ $ $)) (IF (|has| |#1| (-1120)) (PROGN (-15 -2496 ($ $ $)) (-15 -2495 ($ $ $)) (-15 -2494 ($ $ $))) |%noBranch|))) (-1236)) (T -659)) -((-2499 (*1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1236)))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-659 *3)) (-4 *3 (-1236)))) (-3879 (*1 *1 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1236)))) (-2497 (*1 *1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1236)))) (-2496 (*1 *1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1120)) (-4 *2 (-1236)))) (-2495 (*1 *1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1120)) (-4 *2 (-1236)))) (-2494 (*1 *1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1120)) (-4 *2 (-1236))))) -((-4269 (((-659 |#2|) (-1 |#2| |#1| |#2|) (-659 |#1|) |#2|) 16 T ELT)) (-4270 ((|#2| (-1 |#2| |#1| |#2|) (-659 |#1|) |#2|) 18 T ELT)) (-4386 (((-659 |#2|) (-1 |#2| |#1|) (-659 |#1|)) 13 T ELT))) -(((-660 |#1| |#2|) (-10 -7 (-15 -4269 ((-659 |#2|) (-1 |#2| |#1| |#2|) (-659 |#1|) |#2|)) (-15 -4270 (|#2| (-1 |#2| |#1| |#2|) (-659 |#1|) |#2|)) (-15 -4386 ((-659 |#2|) (-1 |#2| |#1|) (-659 |#1|)))) (-1236) (-1236)) (T -660)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-659 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-659 *6)) (-5 *1 (-660 *5 *6)))) (-4270 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-659 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-660 *5 *2)))) (-4269 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-659 *6)) (-4 *6 (-1236)) (-4 *5 (-1236)) (-5 *2 (-659 *5)) (-5 *1 (-660 *6 *5))))) -((-3840 ((|#2| (-659 |#1|) (-659 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-659 |#1|) (-659 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-659 |#1|) (-659 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-659 |#1|) (-659 |#2|) |#2|) 17 T ELT) ((|#2| (-659 |#1|) (-659 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-659 |#1|) (-659 |#2|)) 12 T ELT))) -(((-661 |#1| |#2|) (-10 -7 (-15 -3840 ((-1 |#2| |#1|) (-659 |#1|) (-659 |#2|))) (-15 -3840 (|#2| (-659 |#1|) (-659 |#2|) |#1|)) (-15 -3840 ((-1 |#2| |#1|) (-659 |#1|) (-659 |#2|) |#2|)) (-15 -3840 (|#2| (-659 |#1|) (-659 |#2|) |#1| |#2|)) (-15 -3840 ((-1 |#2| |#1|) (-659 |#1|) (-659 |#2|) (-1 |#2| |#1|))) (-15 -3840 (|#2| (-659 |#1|) (-659 |#2|) |#1| (-1 |#2| |#1|)))) (-1120) (-1236)) (T -661)) -((-3840 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-659 *5)) (-5 *4 (-659 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1120)) (-4 *2 (-1236)) (-5 *1 (-661 *5 *2)))) (-3840 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-659 *5)) (-5 *4 (-659 *6)) (-4 *5 (-1120)) (-4 *6 (-1236)) (-5 *1 (-661 *5 *6)))) (-3840 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-659 *5)) (-5 *4 (-659 *2)) (-4 *5 (-1120)) (-4 *2 (-1236)) (-5 *1 (-661 *5 *2)))) (-3840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-659 *6)) (-5 *4 (-659 *5)) (-4 *6 (-1120)) (-4 *5 (-1236)) (-5 *2 (-1 *5 *6)) (-5 *1 (-661 *6 *5)))) (-3840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-659 *5)) (-5 *4 (-659 *2)) (-4 *5 (-1120)) (-4 *2 (-1236)) (-5 *1 (-661 *5 *2)))) (-3840 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *5)) (-5 *4 (-659 *6)) (-4 *5 (-1120)) (-4 *6 (-1236)) (-5 *2 (-1 *6 *5)) (-5 *1 (-661 *5 *6))))) -((-4386 (((-659 |#3|) (-1 |#3| |#1| |#2|) (-659 |#1|) (-659 |#2|)) 21 T ELT))) -(((-662 |#1| |#2| |#3|) (-10 -7 (-15 -4386 ((-659 |#3|) (-1 |#3| |#1| |#2|) (-659 |#1|) (-659 |#2|)))) (-1236) (-1236) (-1236)) (T -662)) -((-4386 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-659 *6)) (-5 *5 (-659 *7)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-659 *8)) (-5 *1 (-662 *6 *7 *8))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 11 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-663 |#1|) (-13 (-1102) (-628 |#1|)) (-1120)) (T -663)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) -(((-664 |#1|) (-142) (-1131)) (T -664)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1131))))) -(-13 (-1120) (-10 -8 (-15 * ($ |t#1| $)))) -(((-102) . T) ((-628 (-875)) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2500 (($ |#1| |#1| $) 44 T ELT)) (-1711 (($ (-1 (-114) |#1|) $) 60 (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4152 (($) NIL T CONST)) (-2592 (($ $) 46 T ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3823 (($ |#1| $) 57 (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4423)) ELT)) (-3824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3288 (((-659 |#1|) $) 9 (|has| $ (-6 -4423)) ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-1387 ((|#1| $) 48 T ELT)) (-4035 (($ |#1| $) 29 T ELT) (($ |#1| $ (-789)) 43 T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-1388 ((|#1| $) 51 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) 23 T ELT)) (-3991 (($) 28 T ELT)) (-2501 (((-114) $) 55 T ELT)) (-2591 (((-659 (-2 (|:| -2284 |#1|) (|:| -2155 (-789)))) $) 68 T ELT)) (-1596 (($) 26 T ELT) (($ (-659 |#1|)) 19 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 64 (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) 20 T ELT)) (-4400 (((-546) $) 35 (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) NIL T ELT)) (-4374 (((-875) $) 14 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1389 (($ (-659 |#1|)) 24 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 70 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 17 (|has| $ (-6 -4423)) ELT))) -(((-665 |#1|) (-13 (-713 |#1|) (-10 -8 (-6 -4423) (-15 -2501 ((-114) $)) (-15 -2500 ($ |#1| |#1| $)))) (-1120)) (T -665)) -((-2501 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-665 *3)) (-4 *3 (-1120)))) (-2500 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1120))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ |#1| $) 32 T ELT))) -(((-666 |#1|) (-142) (-1076)) (T -666)) -NIL -(-13 (-21) (-664 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3536 (((-789) $) 17 T ELT)) (-2506 (($ $ |#1|) 69 T ELT)) (-2508 (($ $) 39 T ELT)) (-2509 (($ $) 37 T ELT)) (-3573 (((-3 |#1| "failed") $) 61 T ELT)) (-3572 ((|#1| $) NIL T ELT)) (-2543 (($ |#1| |#2| $) 79 T ELT) (($ $ $) 81 T ELT)) (-3951 (((-875) $ (-1 (-875) (-875) (-875)) (-1 (-875) (-875) (-875)) (-557)) 56 T ELT)) (-2510 ((|#1| $ (-557)) 35 T ELT)) (-2511 ((|#2| $ (-557)) 34 T ELT)) (-2502 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2503 (($ (-1 |#2| |#2|) $) 47 T ELT)) (-2507 (($) 11 T ELT)) (-2513 (($ |#1| |#2|) 24 T ELT)) (-2512 (($ (-659 (-2 (|:| |gen| |#1|) (|:| -4371 |#2|)))) 25 T ELT)) (-2514 (((-659 (-2 (|:| |gen| |#1|) (|:| -4371 |#2|))) $) 14 T ELT)) (-2505 (($ |#1| $) 71 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2504 (((-114) $ $) 76 T ELT)) (-4374 (((-875) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 27 T ELT))) -(((-667 |#1| |#2| |#3|) (-13 (-1120) (-1057 |#1|) (-10 -8 (-15 -3951 ((-875) $ (-1 (-875) (-875) (-875)) (-1 (-875) (-875) (-875)) (-557))) (-15 -2514 ((-659 (-2 (|:| |gen| |#1|) (|:| -4371 |#2|))) $)) (-15 -2513 ($ |#1| |#2|)) (-15 -2512 ($ (-659 (-2 (|:| |gen| |#1|) (|:| -4371 |#2|))))) (-15 -2511 (|#2| $ (-557))) (-15 -2510 (|#1| $ (-557))) (-15 -2509 ($ $)) (-15 -2508 ($ $)) (-15 -3536 ((-789) $)) (-15 -2507 ($)) (-15 -2506 ($ $ |#1|)) (-15 -2505 ($ |#1| $)) (-15 -2543 ($ |#1| |#2| $)) (-15 -2543 ($ $ $)) (-15 -2504 ((-114) $ $)) (-15 -2503 ($ (-1 |#2| |#2|) $)) (-15 -2502 ($ (-1 |#1| |#1|) $)))) (-1120) (-23) |#2|) (T -667)) -((-3951 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-875) (-875) (-875))) (-5 *4 (-557)) (-5 *2 (-875)) (-5 *1 (-667 *5 *6 *7)) (-4 *5 (-1120)) (-4 *6 (-23)) (-14 *7 *6))) (-2514 (*1 *2 *1) (-12 (-5 *2 (-659 (-2 (|:| |gen| *3) (|:| -4371 *4)))) (-5 *1 (-667 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-23)) (-14 *5 *4))) (-2513 (*1 *1 *2 *3) (-12 (-5 *1 (-667 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3))) (-2512 (*1 *1 *2) (-12 (-5 *2 (-659 (-2 (|:| |gen| *3) (|:| -4371 *4)))) (-4 *3 (-1120)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-667 *3 *4 *5)))) (-2511 (*1 *2 *1 *3) (-12 (-5 *3 (-557)) (-4 *2 (-23)) (-5 *1 (-667 *4 *2 *5)) (-4 *4 (-1120)) (-14 *5 *2))) (-2510 (*1 *2 *1 *3) (-12 (-5 *3 (-557)) (-4 *2 (-1120)) (-5 *1 (-667 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2509 (*1 *1 *1) (-12 (-5 *1 (-667 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3))) (-2508 (*1 *1 *1) (-12 (-5 *1 (-667 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-667 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-23)) (-14 *5 *4))) (-2507 (*1 *1) (-12 (-5 *1 (-667 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3))) (-2506 (*1 *1 *1 *2) (-12 (-5 *1 (-667 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3))) (-2505 (*1 *1 *2 *1) (-12 (-5 *1 (-667 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3))) (-2543 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-667 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3))) (-2543 (*1 *1 *1 *1) (-12 (-5 *1 (-667 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3))) (-2504 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-667 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-23)) (-14 *5 *4))) (-2503 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-667 *3 *4 *5)) (-4 *3 (-1120)))) (-2502 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-667 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -((-2414 (((-557) $) 30 T ELT)) (-2515 (($ |#2| $ (-557)) 26 T ELT) (($ $ $ (-557)) NIL T ELT)) (-2416 (((-659 (-557)) $) 12 T ELT)) (-2417 (((-114) (-557) $) 17 T ELT)) (-4230 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT))) -(((-668 |#1| |#2|) (-10 -7 (-15 -2515 (|#1| |#1| |#1| (-557))) (-15 -2515 (|#1| |#2| |#1| (-557))) (-15 -4230 (|#1| (-659 |#1|))) (-15 -4230 (|#1| |#1| |#1|)) (-15 -4230 (|#1| |#2| |#1|)) (-15 -4230 (|#1| |#1| |#2|)) (-15 -2414 ((-557) |#1|)) (-15 -2416 ((-659 (-557)) |#1|)) (-15 -2417 ((-114) (-557) |#1|))) (-669 |#2|) (-1236)) (T -668)) -NIL -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2411 (((-1292) $ (-557) (-557)) 44 (|has| $ (-6 -4424)) ELT)) (-4216 ((|#1| $ (-557) |#1|) 56 (|has| $ (-6 -4424)) ELT) ((|#1| $ (-1253 (-557)) |#1|) 64 (|has| $ (-6 -4424)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4423)) ELT)) (-4152 (($) 7 T CONST)) (-1465 (($ $) 84 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3824 (($ |#1| $) 83 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4423)) ELT)) (-1717 ((|#1| $ (-557) |#1|) 57 (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-557)) 55 T ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-4042 (($ (-789) |#1|) 74 T ELT)) (-2413 (((-557) $) 47 (|has| (-557) (-859)) ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2414 (((-557) $) 48 (|has| (-557) (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-2515 (($ |#1| $ (-557)) 66 T ELT) (($ $ $ (-557)) 65 T ELT)) (-2416 (((-659 (-557)) $) 50 T ELT)) (-2417 (((-114) (-557) $) 51 T ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-4229 ((|#1| $) 46 (|has| (-557) (-859)) ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2412 (($ $ |#1|) 45 (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-2415 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) 52 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-4228 ((|#1| $ (-557) |#1|) 54 T ELT) ((|#1| $ (-557)) 53 T ELT) (($ $ (-1253 (-557))) 75 T ELT)) (-2516 (($ $ (-557)) 68 T ELT) (($ $ (-1253 (-557))) 67 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4400 (((-546) $) 85 (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 76 T ELT)) (-4230 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-659 $)) 70 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-669 |#1|) (-142) (-1236)) (T -669)) -((-4042 (*1 *1 *2 *3) (-12 (-5 *2 (-789)) (-4 *1 (-669 *3)) (-4 *3 (-1236)))) (-4230 (*1 *1 *1 *2) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1236)))) (-4230 (*1 *1 *2 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1236)))) (-4230 (*1 *1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1236)))) (-4230 (*1 *1 *2) (-12 (-5 *2 (-659 *1)) (-4 *1 (-669 *3)) (-4 *3 (-1236)))) (-4386 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-669 *3)) (-4 *3 (-1236)))) (-2516 (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-4 *1 (-669 *3)) (-4 *3 (-1236)))) (-2516 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 (-557))) (-4 *1 (-669 *3)) (-4 *3 (-1236)))) (-2515 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-557)) (-4 *1 (-669 *2)) (-4 *2 (-1236)))) (-2515 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-557)) (-4 *1 (-669 *3)) (-4 *3 (-1236)))) (-4216 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1253 (-557))) (|has| *1 (-6 -4424)) (-4 *1 (-669 *2)) (-4 *2 (-1236))))) -(-13 (-614 (-557) |t#1|) (-153 |t#1|) (-298 (-1253 (-557)) $) (-10 -8 (-15 -4042 ($ (-789) |t#1|)) (-15 -4230 ($ $ |t#1|)) (-15 -4230 ($ |t#1| $)) (-15 -4230 ($ $ $)) (-15 -4230 ($ (-659 $))) (-15 -4386 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2516 ($ $ (-557))) (-15 -2516 ($ $ (-1253 (-557)))) (-15 -2515 ($ |t#1| $ (-557))) (-15 -2515 ($ $ $ (-557))) (IF (|has| $ (-6 -4424)) (-15 -4216 (|t#1| $ (-1253 (-557)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-628 (-875)))) ((-153 |#1|) . T) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-298 (-557) |#1|) . T) ((-298 (-1253 (-557)) $) . T) ((-300 (-557) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-614 (-557) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 15 T ELT)) (-1424 (((-3 $ "failed") $ $) NIL T ELT)) (-4051 (((-557) $) NIL (|has| |#1| (-810)) ELT)) (-4152 (($) NIL T CONST)) (-3602 (((-114) $) NIL (|has| |#1| (-810)) ELT)) (-3397 ((|#1| $) 23 T ELT)) (-3603 (((-114) $) NIL (|has| |#1| (-810)) ELT)) (-2928 (($ $ $) NIL (|has| |#1| (-810)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-810)) ELT)) (-3658 (((-1178) $) 48 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3396 ((|#3| $) 24 T ELT)) (-4374 (((-875) $) 43 T ELT)) (-1376 (((-114) $ $) 22 T ELT)) (-3801 (($ $) NIL (|has| |#1| (-810)) ELT)) (-3057 (($) 10 T CONST)) (-2963 (((-114) $ $) NIL (|has| |#1| (-810)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-810)) ELT)) (-3452 (((-114) $ $) 20 T ELT)) (-3083 (((-114) $ $) NIL (|has| |#1| (-810)) ELT)) (-3084 (((-114) $ $) 26 (|has| |#1| (-810)) ELT)) (-4377 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-4265 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 29 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) -(((-670 |#1| |#2| |#3|) (-13 (-735 |#2|) (-10 -8 (IF (|has| |#1| (-810)) (-6 (-810)) |%noBranch|) (-15 -4377 ($ $ |#3|)) (-15 -4377 ($ |#1| |#3|)) (-15 -3397 (|#1| $)) (-15 -3396 (|#3| $)))) (-735 |#2|) (-175) (|SubsetCategory| (-744) |#2|)) (T -670)) -((-4377 (*1 *1 *1 *2) (-12 (-4 *4 (-175)) (-5 *1 (-670 *3 *4 *2)) (-4 *3 (-735 *4)) (-4 *2 (|SubsetCategory| (-744) *4)))) (-4377 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-670 *2 *4 *3)) (-4 *2 (-735 *4)) (-4 *3 (|SubsetCategory| (-744) *4)))) (-3397 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-735 *3)) (-5 *1 (-670 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-744) *3)))) (-3396 (*1 *2 *1) (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-744) *4)) (-5 *1 (-670 *3 *4 *2)) (-4 *3 (-735 *4))))) -((-3999 (((-3 |#2| #1="failed") |#3| |#2| (-1196) |#2| (-659 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2220 (-659 |#2|))) #1#) |#3| |#2| (-1196)) 44 T ELT))) -(((-671 |#1| |#2| |#3|) (-10 -7 (-15 -3999 ((-3 (-2 (|:| |particular| |#2|) (|:| -2220 (-659 |#2|))) #1="failed") |#3| |#2| (-1196))) (-15 -3999 ((-3 |#2| #1#) |#3| |#2| (-1196) |#2| (-659 |#2|)))) (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149)) (-13 (-29 |#1|) (-1222) (-977)) (-676 |#2|)) (T -671)) -((-3999 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-659 *2)) (-4 *2 (-13 (-29 *6) (-1222) (-977))) (-4 *6 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) (-5 *1 (-671 *6 *2 *3)) (-4 *3 (-676 *2)))) (-3999 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1196)) (-4 *6 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) (-4 *4 (-13 (-29 *6) (-1222) (-977))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2220 (-659 *4)))) (-5 *1 (-671 *6 *4 *3)) (-4 *3 (-676 *4))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2517 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2519 (($ $ $) 28 (|has| |#1| (-376)) ELT)) (-2520 (($ $ (-789)) 31 (|has| |#1| (-376)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-2933 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2934 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2935 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2931 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2932 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2946 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3573 (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3572 (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) ((|#1| $) NIL T ELT)) (-4387 (($ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3921 (($ $) NIL (|has| |#1| (-464)) ELT)) (-2639 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-789)) NIL T ELT)) (-2944 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-568)) ELT)) (-2943 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-568)) ELT)) (-3219 (((-789) $) NIL T ELT)) (-2939 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2940 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2937 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2938 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2945 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3590 ((|#1| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3884 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-568)) ELT)) (-4228 ((|#1| $ |#1|) 24 T ELT)) (-2521 (($ $ $) 33 (|has| |#1| (-376)) ELT)) (-4376 (((-789) $) NIL T ELT)) (-3216 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4374 (((-875) $) 20 T ELT) (($ (-557)) NIL T ELT) (($ (-419 (-557))) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (($ |#1|) NIL T ELT)) (-4245 (((-659 |#1|) $) NIL T ELT)) (-4105 ((|#1| $ (-789)) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2942 ((|#1| $ |#1| |#1|) 23 T ELT)) (-2914 (($ $) NIL T ELT)) (-3057 (($) 21 T CONST)) (-3063 (($) 8 T CONST)) (-3068 (($) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-672 |#1| |#2|) (-676 |#1|) (-1068) (-1 |#1| |#1|)) (T -672)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2517 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2519 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2520 (($ $ (-789)) NIL (|has| |#1| (-376)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-2933 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2934 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2935 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2931 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2932 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2946 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3573 (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3572 (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) ((|#1| $) NIL T ELT)) (-4387 (($ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3921 (($ $) NIL (|has| |#1| (-464)) ELT)) (-2639 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-789)) NIL T ELT)) (-2944 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-568)) ELT)) (-2943 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-568)) ELT)) (-3219 (((-789) $) NIL T ELT)) (-2939 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2940 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2937 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2938 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2945 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3590 ((|#1| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3884 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-568)) ELT)) (-4228 ((|#1| $ |#1|) NIL T ELT)) (-2521 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4376 (((-789) $) NIL T ELT)) (-3216 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ (-419 (-557))) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (($ |#1|) NIL T ELT)) (-4245 (((-659 |#1|) $) NIL T ELT)) (-4105 ((|#1| $ (-789)) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2942 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2914 (($ $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-673 |#1|) (-676 |#1|) (-240)) (T -673)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2517 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2519 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2520 (($ $ (-789)) NIL (|has| |#1| (-376)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-2933 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2934 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2935 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2931 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2932 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2946 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3573 (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3572 (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) ((|#1| $) NIL T ELT)) (-4387 (($ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3921 (($ $) NIL (|has| |#1| (-464)) ELT)) (-2639 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-789)) NIL T ELT)) (-2944 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-568)) ELT)) (-2943 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-568)) ELT)) (-3219 (((-789) $) NIL T ELT)) (-2939 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2940 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2937 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2938 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2945 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3590 ((|#1| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3884 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-568)) ELT)) (-4228 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2521 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4376 (((-789) $) NIL T ELT)) (-3216 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ (-419 (-557))) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (($ |#1|) NIL T ELT)) (-4245 (((-659 |#1|) $) NIL T ELT)) (-4105 ((|#1| $ (-789)) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2942 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2914 (($ $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-674 |#1| |#2|) (-13 (-676 |#1|) (-298 |#2| |#2|)) (-240) (-13 (-666 |#1|) (-10 -8 (-15 -4186 ($ $))))) (T -674)) -NIL -((-2517 (($ $) 29 T ELT)) (-2914 (($ $) 27 T ELT)) (-3068 (($) 13 T ELT))) -(((-675 |#1| |#2|) (-10 -7 (-15 -2517 (|#1| |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -3068 (|#1|))) (-676 |#2|) (-1068)) (T -675)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2517 (($ $) 93 (|has| |#1| (-376)) ELT)) (-2519 (($ $ $) 95 (|has| |#1| (-376)) ELT)) (-2520 (($ $ (-789)) 94 (|has| |#1| (-376)) ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-2933 (($ $ $) 55 (|has| |#1| (-376)) ELT)) (-2934 (($ $ $) 56 (|has| |#1| (-376)) ELT)) (-2935 (($ $ $) 58 (|has| |#1| (-376)) ELT)) (-2931 (($ $ $) 53 (|has| |#1| (-376)) ELT)) (-2930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 52 (|has| |#1| (-376)) ELT)) (-2932 (((-3 $ #1="failed") $ $) 54 (|has| |#1| (-376)) ELT)) (-2946 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 57 (|has| |#1| (-376)) ELT)) (-3573 (((-3 (-557) #2="failed") $) 85 (|has| |#1| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #2#) $) 82 (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 |#1| #2#) $) 79 T ELT)) (-3572 (((-557) $) 84 (|has| |#1| (-1057 (-557))) ELT) (((-419 (-557)) $) 81 (|has| |#1| (-1057 (-419 (-557)))) ELT) ((|#1| $) 80 T ELT)) (-4387 (($ $) 74 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-3921 (($ $) 65 (|has| |#1| (-464)) ELT)) (-2639 (((-114) $) 40 T ELT)) (-3292 (($ |#1| (-789)) 72 T ELT)) (-2944 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 67 (|has| |#1| (-568)) ELT)) (-2943 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 68 (|has| |#1| (-568)) ELT)) (-3219 (((-789) $) 76 T ELT)) (-2939 (($ $ $) 62 (|has| |#1| (-376)) ELT)) (-2940 (($ $ $) 63 (|has| |#1| (-376)) ELT)) (-2929 (($ $ $) 51 (|has| |#1| (-376)) ELT)) (-2937 (($ $ $) 60 (|has| |#1| (-376)) ELT)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 59 (|has| |#1| (-376)) ELT)) (-2938 (((-3 $ #1#) $ $) 61 (|has| |#1| (-376)) ELT)) (-2945 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 64 (|has| |#1| (-376)) ELT)) (-3590 ((|#1| $) 75 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3884 (((-3 $ #1#) $ |#1|) 69 (|has| |#1| (-568)) ELT)) (-4228 ((|#1| $ |#1|) 98 T ELT)) (-2521 (($ $ $) 92 (|has| |#1| (-376)) ELT)) (-4376 (((-789) $) 77 T ELT)) (-3216 ((|#1| $) 66 (|has| |#1| (-464)) ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ (-419 (-557))) 83 (|has| |#1| (-1057 (-419 (-557)))) ELT) (($ |#1|) 78 T ELT)) (-4245 (((-659 |#1|) $) 71 T ELT)) (-4105 ((|#1| $ (-789)) 73 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2942 ((|#1| $ |#1| |#1|) 70 T ELT)) (-2914 (($ $) 96 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($) 97 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 87 T ELT) (($ |#1| $) 86 T ELT))) -(((-676 |#1|) (-142) (-1068)) (T -676)) -((-3068 (*1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1068)))) (-2914 (*1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1068)))) (-2519 (*1 *1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1068)) (-4 *2 (-376)))) (-2520 (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-676 *3)) (-4 *3 (-1068)) (-4 *3 (-376)))) (-2517 (*1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1068)) (-4 *2 (-376)))) (-2521 (*1 *1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1068)) (-4 *2 (-376))))) -(-13 (-864 |t#1|) (-298 |t#1| |t#1|) (-10 -8 (-15 -3068 ($)) (-15 -2914 ($ $)) (IF (|has| |t#1| (-376)) (PROGN (-15 -2519 ($ $ $)) (-15 -2520 ($ $ (-789))) (-15 -2517 ($ $)) (-15 -2521 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-631 (-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((-631 (-557)) . T) ((-631 |#1|) . T) ((-628 (-875)) . T) ((-298 |#1| |#1|) . T) ((-424 |#1|) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-658 |#1|) |has| |#1| (-175)) ((-735 |#1|) |has| |#1| (-175)) ((-744) . T) ((-1057 (-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((-1057 (-557)) |has| |#1| (-1057 (-557))) ((-1057 |#1|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T) ((-864 |#1|) . T)) -((-2518 (((-659 (-673 (-419 |#2|))) (-673 (-419 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-4160 (((-659 (-673 (-419 |#2|))) (-673 (-419 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-659 (-673 (-419 |#2|))) (-673 (-419 |#2|)) (-1 (-659 |#1|) |#2|)) 19 T ELT))) -(((-677 |#1| |#2|) (-10 -7 (-15 -4160 ((-659 (-673 (-419 |#2|))) (-673 (-419 |#2|)) (-1 (-659 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4160 ((-659 (-673 (-419 |#2|))) (-673 (-419 |#2|)))) (-15 -2518 ((-659 (-673 (-419 |#2|))) (-673 (-419 |#2|))))) |%noBranch|)) (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557)))) (-1262 |#1|)) (T -677)) -((-2518 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) (-4 *5 (-1262 *4)) (-5 *2 (-659 (-673 (-419 *5)))) (-5 *1 (-677 *4 *5)) (-5 *3 (-673 (-419 *5))))) (-4160 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) (-4 *5 (-1262 *4)) (-5 *2 (-659 (-673 (-419 *5)))) (-5 *1 (-677 *4 *5)) (-5 *3 (-673 (-419 *5))))) (-4160 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-659 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) (-4 *6 (-1262 *5)) (-5 *2 (-659 (-673 (-419 *6)))) (-5 *1 (-677 *5 *6)) (-5 *3 (-673 (-419 *6)))))) -((-2519 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2520 ((|#2| |#2| (-789) (-1 |#1| |#1|)) 45 T ELT)) (-2521 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) -(((-678 |#1| |#2|) (-10 -7 (-15 -2519 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2520 (|#2| |#2| (-789) (-1 |#1| |#1|))) (-15 -2521 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-376) (-676 |#1|)) (T -678)) -((-2521 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-678 *4 *2)) (-4 *2 (-676 *4)))) (-2520 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-789)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-5 *1 (-678 *5 *2)) (-4 *2 (-676 *5)))) (-2519 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-678 *4 *2)) (-4 *2 (-676 *4))))) -((-2522 (($ $ $) 9 T ELT))) -(((-679 |#1|) (-10 -7 (-15 -2522 (|#1| |#1| |#1|))) (-680)) (T -679)) -NIL -((-2524 (($ $) 8 T ELT)) (-2522 (($ $ $) 6 T ELT)) (-2523 (($ $ $) 7 T ELT))) -(((-680) (-142)) (T -680)) -((-2524 (*1 *1 *1) (-4 *1 (-680))) (-2523 (*1 *1 *1 *1) (-4 *1 (-680))) (-2522 (*1 *1 *1 *1) (-4 *1 (-680)))) -(-13 (-1236) (-10 -8 (-15 -2524 ($ $)) (-15 -2523 ($ $ $)) (-15 -2522 ($ $ $)))) -(((-1236) . T)) -((-2525 (((-3 (-659 (-1190 |#1|)) "failed") (-659 (-1190 |#1|)) (-1190 |#1|)) 33 T ELT))) -(((-681 |#1|) (-10 -7 (-15 -2525 ((-3 (-659 (-1190 |#1|)) "failed") (-659 (-1190 |#1|)) (-1190 |#1|)))) (-927)) (T -681)) -((-2525 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-659 (-1190 *4))) (-5 *3 (-1190 *4)) (-4 *4 (-927)) (-5 *1 (-681 *4))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-4362 (((-659 |#1|) $) 84 T ELT)) (-4375 (($ $ (-789)) 94 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-4367 (((-1311 |#1| |#2|) (-1311 |#1| |#2|) $) 50 T ELT)) (-3573 (((-3 (-690 |#1|) #1#) $) NIL T ELT)) (-3572 (((-690 |#1|) $) NIL T ELT)) (-4387 (($ $) 93 T ELT)) (-2647 (((-789) $) NIL T ELT)) (-3220 (((-659 $) $) NIL T ELT)) (-4365 (((-114) $) NIL T ELT)) (-4366 (($ (-690 |#1|) |#2|) 70 T ELT)) (-4364 (($ $) 89 T ELT)) (-4386 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4368 (((-1311 |#1| |#2|) (-1311 |#1| |#2|) $) 49 T ELT)) (-1950 (((-2 (|:| |k| (-690 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3293 (((-690 |#1|) $) NIL T ELT)) (-3590 ((|#2| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4196 (($ $ |#1| $) 32 T ELT) (($ $ (-659 |#1|) (-659 $)) 34 T ELT)) (-4376 (((-789) $) 91 T ELT)) (-3948 (($ $ $) 20 T ELT) (($ (-690 |#1|) (-690 |#1|)) 79 T ELT) (($ (-690 |#1|) $) 77 T ELT) (($ $ (-690 |#1|)) 78 T ELT)) (-4374 (((-875) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1302 |#1| |#2|) $) 60 T ELT) (((-1311 |#1| |#2|) $) 43 T ELT) (($ (-690 |#1|)) 27 T ELT)) (-4245 (((-659 |#2|) $) NIL T ELT)) (-4105 ((|#2| $ (-690 |#1|)) NIL T ELT)) (-4382 ((|#2| (-1311 |#1| |#2|) $) 45 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 23 T CONST)) (-3062 (((-659 (-2 (|:| |k| (-690 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-4373 (((-3 $ #1#) (-1302 |#1| |#2|)) 62 T ELT)) (-1934 (($ (-690 |#1|)) 14 T ELT)) (-3452 (((-114) $ $) 46 T ELT)) (-4377 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4265 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 31 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-690 |#1|)) NIL T ELT))) -(((-682 |#1| |#2|) (-13 (-387 |#1| |#2|) (-397 |#2| (-690 |#1|)) (-10 -8 (-15 -4373 ((-3 $ "failed") (-1302 |#1| |#2|))) (-15 -3948 ($ (-690 |#1|) (-690 |#1|))) (-15 -3948 ($ (-690 |#1|) $)) (-15 -3948 ($ $ (-690 |#1|))))) (-859) (-175)) (T -682)) -((-4373 (*1 *1 *2) (|partial| -12 (-5 *2 (-1302 *3 *4)) (-4 *3 (-859)) (-4 *4 (-175)) (-5 *1 (-682 *3 *4)))) (-3948 (*1 *1 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-859)) (-5 *1 (-682 *3 *4)) (-4 *4 (-175)))) (-3948 (*1 *1 *2 *1) (-12 (-5 *2 (-690 *3)) (-4 *3 (-859)) (-5 *1 (-682 *3 *4)) (-4 *4 (-175)))) (-3948 (*1 *1 *1 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-859)) (-5 *1 (-682 *3 *4)) (-4 *4 (-175))))) -((-1933 (((-114) $) NIL T ELT) (((-114) (-1 (-114) |#2| |#2|) $) 59 T ELT)) (-1931 (($ $) NIL T ELT) (($ (-1 (-114) |#2| |#2|) $) 12 T ELT)) (-1711 (($ (-1 (-114) |#2|) $) 29 T ELT)) (-2508 (($ $) 65 T ELT)) (-2592 (($ $) 74 T ELT)) (-3823 (($ |#2| $) NIL T ELT) (($ (-1 (-114) |#2|) $) 43 T ELT)) (-4270 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3837 (((-557) |#2| $ (-557)) 71 T ELT) (((-557) |#2| $) NIL T ELT) (((-557) (-1 (-114) |#2|) $) 54 T ELT)) (-4042 (($ (-789) |#2|) 63 T ELT)) (-3255 (($ $ $) NIL T ELT) (($ (-1 (-114) |#2| |#2|) $ $) 31 T ELT)) (-3936 (($ $ $) NIL T ELT) (($ (-1 (-114) |#2| |#2|) $ $) 24 T ELT)) (-4386 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3960 (($ |#2|) 15 T ELT)) (-4035 (($ $ $ (-557)) 42 T ELT) (($ |#2| $ (-557)) 40 T ELT)) (-1466 (((-3 |#2| "failed") (-1 (-114) |#2|) $) 53 T ELT)) (-1712 (($ $ (-1253 (-557))) 51 T ELT) (($ $ (-557)) 44 T ELT)) (-1932 (($ $ $ (-557)) 70 T ELT)) (-3818 (($ $) 68 T ELT)) (-3084 (((-114) $ $) 76 T ELT))) -(((-683 |#1| |#2|) (-10 -7 (-15 -3960 (|#1| |#2|)) (-15 -1712 (|#1| |#1| (-557))) (-15 -1712 (|#1| |#1| (-1253 (-557)))) (-15 -3823 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4035 (|#1| |#2| |#1| (-557))) (-15 -4035 (|#1| |#1| |#1| (-557))) (-15 -3255 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -1711 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3823 (|#1| |#2| |#1|)) (-15 -2592 (|#1| |#1|)) (-15 -3255 (|#1| |#1| |#1|)) (-15 -3936 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -1933 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -3837 ((-557) (-1 (-114) |#2|) |#1|)) (-15 -3837 ((-557) |#2| |#1|)) (-15 -3837 ((-557) |#2| |#1| (-557))) (-15 -3936 (|#1| |#1| |#1|)) (-15 -1933 ((-114) |#1|)) (-15 -1932 (|#1| |#1| |#1| (-557))) (-15 -2508 (|#1| |#1|)) (-15 -1931 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -1931 (|#1| |#1|)) (-15 -3084 ((-114) |#1| |#1|)) (-15 -4270 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4270 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4270 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1466 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -4042 (|#1| (-789) |#2|)) (-15 -4386 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4386 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3818 (|#1| |#1|))) (-684 |#2|) (-1236)) (T -683)) -NIL -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3820 ((|#1| $) 52 T ELT)) (-4223 ((|#1| $) 71 T ELT)) (-4225 (($ $) 73 T ELT)) (-2411 (((-1292) $ (-557) (-557)) 107 (|has| $ (-6 -4424)) ELT)) (-4213 (($ $ (-557)) 58 (|has| $ (-6 -4424)) ELT)) (-1933 (((-114) $) 153 (|has| |#1| (-859)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) 147 T ELT)) (-1931 (($ $) 157 (-12 (|has| |#1| (-859)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) |#1| |#1|) $) 156 (|has| $ (-6 -4424)) ELT)) (-3308 (($ $) 152 (|has| |#1| (-859)) ELT) (($ (-1 (-114) |#1| |#1|) $) 146 T ELT)) (-3860 (((-114) $ (-789)) 90 T ELT)) (-3424 ((|#1| $ |#1|) 43 (|has| $ (-6 -4424)) ELT)) (-4215 (($ $ $) 62 (|has| $ (-6 -4424)) ELT)) (-4214 ((|#1| $ |#1|) 60 (|has| $ (-6 -4424)) ELT)) (-4217 ((|#1| $ |#1|) 64 (|has| $ (-6 -4424)) ELT)) (-4216 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4424)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -4424)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -4424)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -4424)) ELT) ((|#1| $ (-1253 (-557)) |#1|) 127 (|has| $ (-6 -4424)) ELT) ((|#1| $ (-557) |#1|) 96 (|has| $ (-6 -4424)) ELT)) (-3425 (($ $ (-659 $)) 45 (|has| $ (-6 -4424)) ELT)) (-1711 (($ (-1 (-114) |#1|) $) 140 T ELT)) (-4138 (($ (-1 (-114) |#1|) $) 112 (|has| $ (-6 -4423)) ELT)) (-4224 ((|#1| $) 72 T ELT)) (-4152 (($) 7 T CONST)) (-2508 (($ $) 155 (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) 145 T ELT)) (-4227 (($ $) 79 T ELT) (($ $ (-789)) 77 T ELT)) (-2592 (($ $) 142 (|has| |#1| (-1120)) ELT)) (-1465 (($ $) 109 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3823 (($ |#1| $) 141 (|has| |#1| (-1120)) ELT) (($ (-1 (-114) |#1|) $) 136 T ELT)) (-3824 (($ (-1 (-114) |#1|) $) 113 (|has| $ (-6 -4423)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-1717 ((|#1| $ (-557) |#1|) 95 (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-557)) 97 T ELT)) (-3861 (((-114) $) 93 T ELT)) (-3837 (((-557) |#1| $ (-557)) 150 (|has| |#1| (-1120)) ELT) (((-557) |#1| $) 149 (|has| |#1| (-1120)) ELT) (((-557) (-1 (-114) |#1|) $) 148 T ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-3430 (((-659 $) $) 54 T ELT)) (-3426 (((-114) $ $) 46 (|has| |#1| (-1120)) ELT)) (-4042 (($ (-789) |#1|) 119 T ELT)) (-4147 (((-114) $ (-789)) 91 T ELT)) (-2413 (((-557) $) 105 (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) 163 (|has| |#1| (-859)) ELT)) (-3255 (($ $ $) 143 (|has| |#1| (-859)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 139 T ELT)) (-3936 (($ $ $) 151 (|has| |#1| (-859)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 144 T ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2414 (((-557) $) 104 (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) 162 (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3960 (($ |#1|) 133 T ELT)) (-4144 (((-114) $ (-789)) 92 T ELT)) (-3429 (((-659 |#1|) $) 49 T ELT)) (-3945 (((-114) $) 53 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-4226 ((|#1| $) 76 T ELT) (($ $ (-789)) 74 T ELT)) (-4035 (($ $ $ (-557)) 138 T ELT) (($ |#1| $ (-557)) 137 T ELT)) (-2515 (($ $ $ (-557)) 126 T ELT) (($ |#1| $ (-557)) 125 T ELT)) (-2416 (((-659 (-557)) $) 102 T ELT)) (-2417 (((-114) (-557) $) 101 T ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-4229 ((|#1| $) 82 T ELT) (($ $ (-789)) 80 T ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 116 T ELT)) (-2412 (($ $ |#1|) 106 (|has| $ (-6 -4424)) ELT)) (-3862 (((-114) $) 94 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-2415 (((-114) |#1| $) 103 (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) 100 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-4228 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1253 (-557))) 118 T ELT) ((|#1| $ (-557)) 99 T ELT) ((|#1| $ (-557) |#1|) 98 T ELT)) (-3428 (((-557) $ $) 48 T ELT)) (-1712 (($ $ (-1253 (-557))) 135 T ELT) (($ $ (-557)) 134 T ELT)) (-2516 (($ $ (-1253 (-557))) 124 T ELT) (($ $ (-557)) 123 T ELT)) (-4061 (((-114) $) 50 T ELT)) (-4220 (($ $) 68 T ELT)) (-4218 (($ $) 65 (|has| $ (-6 -4424)) ELT)) (-4221 (((-789) $) 69 T ELT)) (-4222 (($ $) 70 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-1932 (($ $ $ (-557)) 154 (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) 10 T ELT)) (-4400 (((-546) $) 108 (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 117 T ELT)) (-4219 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-4230 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-659 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-3940 (((-659 $) $) 55 T ELT)) (-3427 (((-114) $ $) 47 (|has| |#1| (-1120)) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-2963 (((-114) $ $) 161 (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) 159 (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3083 (((-114) $ $) 160 (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) 158 (|has| |#1| (-859)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-684 |#1|) (-142) (-1236)) (T -684)) -((-3960 (*1 *1 *2) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1236))))) -(-13 (-1169 |t#1|) (-385 |t#1|) (-294 |t#1|) (-10 -8 (-15 -3960 ($ |t#1|)))) -(((-34) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-859)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-859)) (|has| |#1| (-628 (-875)))) ((-153 |#1|) . T) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-298 (-557) |#1|) . T) ((-298 (-1253 (-557)) $) . T) ((-300 (-557) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-294 |#1|) . T) ((-385 |#1|) . T) ((-501 |#1|) . T) ((-614 (-557) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-669 |#1|) . T) ((-859) |has| |#1| (-859)) ((-862) |has| |#1| (-859)) ((-1029 |#1|) . T) ((-1120) -3955 (|has| |#1| (-1120)) (|has| |#1| (-859))) ((-1169 |#1|) . T) ((-1236) . T) ((-1275 |#1|) . T)) -((-3999 (((-659 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2220 (-659 |#3|)))) |#4| (-659 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2220 (-659 |#3|))) |#4| |#3|) 60 T ELT)) (-3509 (((-789) |#4| |#3|) 18 T ELT)) (-3758 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2526 (((-114) |#4| |#3|) 14 T ELT))) -(((-685 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3999 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2220 (-659 |#3|))) |#4| |#3|)) (-15 -3999 ((-659 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2220 (-659 |#3|)))) |#4| (-659 |#3|))) (-15 -3758 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2526 ((-114) |#4| |#3|)) (-15 -3509 ((-789) |#4| |#3|))) (-376) (-13 (-385 |#1|) (-10 -7 (-6 -4424))) (-13 (-385 |#1|) (-10 -7 (-6 -4424))) (-704 |#1| |#2| |#3|)) (T -685)) -((-3509 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4424)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4424)))) (-5 *2 (-789)) (-5 *1 (-685 *5 *6 *4 *3)) (-4 *3 (-704 *5 *6 *4)))) (-2526 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4424)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4424)))) (-5 *2 (-114)) (-5 *1 (-685 *5 *6 *4 *3)) (-4 *3 (-704 *5 *6 *4)))) (-3758 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-376)) (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4424)))) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4424)))) (-5 *1 (-685 *4 *5 *2 *3)) (-4 *3 (-704 *4 *5 *2)))) (-3999 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4424)))) (-4 *7 (-13 (-385 *5) (-10 -7 (-6 -4424)))) (-5 *2 (-659 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2220 (-659 *7))))) (-5 *1 (-685 *5 *6 *7 *3)) (-5 *4 (-659 *7)) (-4 *3 (-704 *5 *6 *7)))) (-3999 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4424)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4424)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2220 (-659 *4)))) (-5 *1 (-685 *5 *6 *4 *3)) (-4 *3 (-704 *5 *6 *4))))) -((-3999 (((-659 (-2 (|:| |particular| (-3 (-1286 |#1|) #1="failed")) (|:| -2220 (-659 (-1286 |#1|))))) (-659 (-659 |#1|)) (-659 (-1286 |#1|))) 22 T ELT) (((-659 (-2 (|:| |particular| (-3 (-1286 |#1|) #1#)) (|:| -2220 (-659 (-1286 |#1|))))) (-707 |#1|) (-659 (-1286 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1286 |#1|) #1#)) (|:| -2220 (-659 (-1286 |#1|)))) (-659 (-659 |#1|)) (-1286 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1286 |#1|) #1#)) (|:| -2220 (-659 (-1286 |#1|)))) (-707 |#1|) (-1286 |#1|)) 14 T ELT)) (-3509 (((-789) (-707 |#1|) (-1286 |#1|)) 30 T ELT)) (-3758 (((-3 (-1286 |#1|) #1#) (-707 |#1|) (-1286 |#1|)) 24 T ELT)) (-2526 (((-114) (-707 |#1|) (-1286 |#1|)) 27 T ELT))) -(((-686 |#1|) (-10 -7 (-15 -3999 ((-2 (|:| |particular| (-3 (-1286 |#1|) #1="failed")) (|:| -2220 (-659 (-1286 |#1|)))) (-707 |#1|) (-1286 |#1|))) (-15 -3999 ((-2 (|:| |particular| (-3 (-1286 |#1|) #1#)) (|:| -2220 (-659 (-1286 |#1|)))) (-659 (-659 |#1|)) (-1286 |#1|))) (-15 -3999 ((-659 (-2 (|:| |particular| (-3 (-1286 |#1|) #1#)) (|:| -2220 (-659 (-1286 |#1|))))) (-707 |#1|) (-659 (-1286 |#1|)))) (-15 -3999 ((-659 (-2 (|:| |particular| (-3 (-1286 |#1|) #1#)) (|:| -2220 (-659 (-1286 |#1|))))) (-659 (-659 |#1|)) (-659 (-1286 |#1|)))) (-15 -3758 ((-3 (-1286 |#1|) #1#) (-707 |#1|) (-1286 |#1|))) (-15 -2526 ((-114) (-707 |#1|) (-1286 |#1|))) (-15 -3509 ((-789) (-707 |#1|) (-1286 |#1|)))) (-376)) (T -686)) -((-3509 (*1 *2 *3 *4) (-12 (-5 *3 (-707 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-376)) (-5 *2 (-789)) (-5 *1 (-686 *5)))) (-2526 (*1 *2 *3 *4) (-12 (-5 *3 (-707 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-376)) (-5 *2 (-114)) (-5 *1 (-686 *5)))) (-3758 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1286 *4)) (-5 *3 (-707 *4)) (-4 *4 (-376)) (-5 *1 (-686 *4)))) (-3999 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-659 *5))) (-4 *5 (-376)) (-5 *2 (-659 (-2 (|:| |particular| (-3 (-1286 *5) #1="failed")) (|:| -2220 (-659 (-1286 *5)))))) (-5 *1 (-686 *5)) (-5 *4 (-659 (-1286 *5))))) (-3999 (*1 *2 *3 *4) (-12 (-5 *3 (-707 *5)) (-4 *5 (-376)) (-5 *2 (-659 (-2 (|:| |particular| (-3 (-1286 *5) #1#)) (|:| -2220 (-659 (-1286 *5)))))) (-5 *1 (-686 *5)) (-5 *4 (-659 (-1286 *5))))) (-3999 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-659 *5))) (-4 *5 (-376)) (-5 *2 (-2 (|:| |particular| (-3 (-1286 *5) #1#)) (|:| -2220 (-659 (-1286 *5))))) (-5 *1 (-686 *5)) (-5 *4 (-1286 *5)))) (-3999 (*1 *2 *3 *4) (-12 (-5 *3 (-707 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |particular| (-3 (-1286 *5) #1#)) (|:| -2220 (-659 (-1286 *5))))) (-5 *1 (-686 *5)) (-5 *4 (-1286 *5))))) -((-2527 (((-2 (|:| |particular| (-3 (-1286 (-419 |#4|)) "failed")) (|:| -2220 (-659 (-1286 (-419 |#4|))))) (-659 |#4|) (-659 |#3|)) 51 T ELT))) -(((-687 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2527 ((-2 (|:| |particular| (-3 (-1286 (-419 |#4|)) "failed")) (|:| -2220 (-659 (-1286 (-419 |#4|))))) (-659 |#4|) (-659 |#3|)))) (-568) (-813) (-859) (-967 |#1| |#2| |#3|)) (T -687)) -((-2527 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *8)) (-5 *4 (-659 *7)) (-4 *7 (-859)) (-4 *8 (-967 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-813)) (-5 *2 (-2 (|:| |particular| (-3 (-1286 (-419 *8)) "failed")) (|:| -2220 (-659 (-1286 (-419 *8)))))) (-5 *1 (-687 *5 *6 *7 *8))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1978 (((-3 $ #1="failed")) NIL (|has| |#2| (-568)) ELT)) (-3748 ((|#2| $) NIL T ELT)) (-3521 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1#) $ $) NIL T ELT)) (-3639 (((-1286 (-707 |#2|))) NIL T ELT) (((-1286 (-707 |#2|)) (-1286 $)) NIL T ELT)) (-3523 (((-114) $) NIL T ELT)) (-1930 (((-1286 $)) 41 T ELT)) (-3751 (($ |#2|) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3510 (($ $) NIL (|has| |#2| (-319)) ELT)) (-3512 (((-246 |#1| |#2|) $ (-557)) NIL T ELT)) (-2115 (((-3 (-2 (|:| |particular| $) (|:| -2220 (-659 $))) #1#)) NIL (|has| |#2| (-568)) ELT)) (-1904 (((-3 $ #1#)) NIL (|has| |#2| (-568)) ELT)) (-1994 (((-707 |#2|)) NIL T ELT) (((-707 |#2|) (-1286 $)) NIL T ELT)) (-1928 ((|#2| $) NIL T ELT)) (-1992 (((-707 |#2|) $) NIL T ELT) (((-707 |#2|) $ (-1286 $)) NIL T ELT)) (-2633 (((-3 $ #1#) $) NIL (|has| |#2| (-568)) ELT)) (-2109 (((-1190 (-963 |#2|))) NIL (|has| |#2| (-376)) ELT)) (-2636 (($ $ (-936)) NIL T ELT)) (-1926 ((|#2| $) NIL T ELT)) (-1906 (((-1190 |#2|) $) NIL (|has| |#2| (-568)) ELT)) (-1996 ((|#2|) NIL T ELT) ((|#2| (-1286 $)) NIL T ELT)) (-1924 (((-1190 |#2|) $) NIL T ELT)) (-1918 (((-114)) NIL T ELT)) (-3573 (((-3 (-557) #1#) $) NIL (|has| |#2| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#2| (-1057 (-419 (-557)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3572 (((-557) $) NIL (|has| |#2| (-1057 (-557))) ELT) (((-419 (-557)) $) NIL (|has| |#2| (-1057 (-419 (-557)))) ELT) ((|#2| $) NIL T ELT)) (-1998 (($ (-1286 |#2|)) NIL T ELT) (($ (-1286 |#2|) (-1286 $)) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 $) (-1286 $)) NIL T ELT) (((-707 |#2|) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3509 (((-789) $) NIL (|has| |#2| (-568)) ELT) (((-936)) 42 T ELT)) (-3513 ((|#2| $ (-557) (-557)) NIL T ELT)) (-1915 (((-114)) NIL T ELT)) (-2660 (($ $ (-936)) NIL T ELT)) (-3288 (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2639 (((-114) $) NIL T ELT)) (-3508 (((-789) $) NIL (|has| |#2| (-568)) ELT)) (-3507 (((-659 (-246 |#1| |#2|)) $) NIL (|has| |#2| (-568)) ELT)) (-3515 (((-789) $) NIL T ELT)) (-1911 (((-114)) NIL T ELT)) (-3514 (((-789) $) NIL T ELT)) (-3745 ((|#2| $) NIL (|has| |#2| (-6 (-4425 #2="*"))) ELT)) (-3519 (((-557) $) NIL T ELT)) (-3517 (((-557) $) NIL T ELT)) (-3005 (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-3518 (((-557) $) NIL T ELT)) (-3516 (((-557) $) NIL T ELT)) (-3524 (($ (-659 (-659 |#2|))) NIL T ELT)) (-2158 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4020 (((-659 (-659 |#2|)) $) NIL T ELT)) (-1909 (((-114)) NIL T ELT)) (-1913 (((-114)) NIL T ELT)) (-2116 (((-3 (-2 (|:| |particular| $) (|:| -2220 (-659 $))) #1#)) NIL (|has| |#2| (-568)) ELT)) (-1905 (((-3 $ #1#)) NIL (|has| |#2| (-568)) ELT)) (-1995 (((-707 |#2|)) NIL T ELT) (((-707 |#2|) (-1286 $)) NIL T ELT)) (-1929 ((|#2| $) NIL T ELT)) (-1993 (((-707 |#2|) $) NIL T ELT) (((-707 |#2|) $ (-1286 $)) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL T ELT) (((-707 |#2|) (-1286 $)) NIL T ELT)) (-2634 (((-3 $ #1#) $) NIL (|has| |#2| (-568)) ELT)) (-2113 (((-1190 (-963 |#2|))) NIL (|has| |#2| (-376)) ELT)) (-2635 (($ $ (-936)) NIL T ELT)) (-1927 ((|#2| $) NIL T ELT)) (-1907 (((-1190 |#2|) $) NIL (|has| |#2| (-568)) ELT)) (-1997 ((|#2|) NIL T ELT) ((|#2| (-1286 $)) NIL T ELT)) (-1925 (((-1190 |#2|) $) NIL T ELT)) (-1919 (((-114)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1910 (((-114)) NIL T ELT)) (-1912 (((-114)) NIL T ELT)) (-1914 (((-114)) NIL T ELT)) (-4016 (((-3 $ #1#) $) NIL (|has| |#2| (-376)) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1917 (((-114)) NIL T ELT)) (-3884 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-568)) ELT)) (-2156 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-659 |#2|) (-659 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#2| $ (-557) (-557) |#2|) NIL T ELT) ((|#2| $ (-557) (-557)) 27 T ELT) ((|#2| $ (-557)) NIL T ELT)) (-4186 (($ $ (-1 |#2| |#2|) (-789)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-789)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#2| (-917 (-1196))) ELT)) (-3747 ((|#2| $) NIL T ELT)) (-3750 (($ (-659 |#2|)) NIL T ELT)) (-3522 (((-114) $) NIL T ELT)) (-3749 (((-246 |#1| |#2|) $) NIL T ELT)) (-3746 ((|#2| $) NIL (|has| |#2| (-6 (-4425 #2#))) ELT)) (-2155 (((-789) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-3640 (((-707 |#2|) (-1286 $)) NIL T ELT) (((-1286 |#2|) $) NIL T ELT) (((-707 |#2|) (-1286 $) (-1286 $)) NIL T ELT) (((-1286 |#2|) $ (-1286 $)) 30 T ELT)) (-4400 (($ (-1286 |#2|)) NIL T ELT) (((-1286 |#2|) $) NIL T ELT)) (-2101 (((-659 (-963 |#2|))) NIL T ELT) (((-659 (-963 |#2|)) (-1286 $)) NIL T ELT)) (-2822 (($ $ $) NIL T ELT)) (-1923 (((-114)) NIL T ELT)) (-3511 (((-246 |#1| |#2|) $ (-557)) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ (-419 (-557))) NIL (|has| |#2| (-1057 (-419 (-557)))) ELT) (($ |#2|) NIL T ELT) (((-707 |#2|) $) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 $)) 40 T ELT)) (-1908 (((-659 (-1286 |#2|))) NIL (|has| |#2| (-568)) ELT)) (-2823 (($ $ $ $) NIL T ELT)) (-1921 (((-114)) NIL T ELT)) (-2942 (($ (-707 |#2|) $) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3520 (((-114) $) NIL T ELT)) (-2821 (($ $ $) NIL T ELT)) (-1922 (((-114)) NIL T ELT)) (-1920 (((-114)) NIL T ELT)) (-1916 (((-114)) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $ (-1 |#2| |#2|) (-789)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-789)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#2| (-917 (-1196))) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL (|has| |#2| (-376)) ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) NIL T ELT) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) NIL T ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-688 |#1| |#2|) (-13 (-1142 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-628 (-707 |#2|)) (-430 |#2|)) (-936) (-175)) (T -688)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3664 (((-659 (-1154)) $) 10 T ELT)) (-4374 (((-875) $) 16 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-689) (-13 (-1102) (-10 -8 (-15 -3664 ((-659 (-1154)) $))))) (T -689)) -((-3664 (*1 *2 *1) (-12 (-5 *2 (-659 (-1154))) (-5 *1 (-689))))) -((-2965 (((-114) $ $) NIL T ELT)) (-4362 (((-659 |#1|) $) NIL T ELT)) (-3537 (($ $) 62 T ELT)) (-3061 (((-114) $) NIL T ELT)) (-3573 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3572 ((|#1| $) NIL T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-2530 (((-3 $ #1#) (-839 |#1|)) 28 T ELT)) (-2532 (((-114) (-839 |#1|)) 18 T ELT)) (-2531 (($ (-839 |#1|)) 29 T ELT)) (-2905 (((-114) $ $) 36 T ELT)) (-4261 (((-936) $) 43 T ELT)) (-3538 (($ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4160 (((-659 $) (-839 |#1|)) 20 T ELT)) (-4374 (((-875) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-839 |#1|) $) 47 T ELT) (((-695 |#1|) $) 52 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2529 (((-58 (-659 $)) (-659 |#1|) (-936)) 67 T ELT)) (-2528 (((-659 $) (-659 |#1|) (-936)) 70 T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 63 T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 46 T ELT))) -(((-690 |#1|) (-13 (-859) (-1057 |#1|) (-10 -8 (-15 -3061 ((-114) $)) (-15 -3538 ($ $)) (-15 -3537 ($ $)) (-15 -4261 ((-936) $)) (-15 -2905 ((-114) $ $)) (-15 -4374 ((-839 |#1|) $)) (-15 -4374 ((-695 |#1|) $)) (-15 -4160 ((-659 $) (-839 |#1|))) (-15 -2532 ((-114) (-839 |#1|))) (-15 -2531 ($ (-839 |#1|))) (-15 -2530 ((-3 $ "failed") (-839 |#1|))) (-15 -4362 ((-659 |#1|) $)) (-15 -2529 ((-58 (-659 $)) (-659 |#1|) (-936))) (-15 -2528 ((-659 $) (-659 |#1|) (-936))))) (-859)) (T -690)) -((-3061 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-690 *3)) (-4 *3 (-859)))) (-3538 (*1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-859)))) (-3537 (*1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-859)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-690 *3)) (-4 *3 (-859)))) (-2905 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-690 *3)) (-4 *3 (-859)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-839 *3)) (-5 *1 (-690 *3)) (-4 *3 (-859)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-695 *3)) (-5 *1 (-690 *3)) (-4 *3 (-859)))) (-4160 (*1 *2 *3) (-12 (-5 *3 (-839 *4)) (-4 *4 (-859)) (-5 *2 (-659 (-690 *4))) (-5 *1 (-690 *4)))) (-2532 (*1 *2 *3) (-12 (-5 *3 (-839 *4)) (-4 *4 (-859)) (-5 *2 (-114)) (-5 *1 (-690 *4)))) (-2531 (*1 *1 *2) (-12 (-5 *2 (-839 *3)) (-4 *3 (-859)) (-5 *1 (-690 *3)))) (-2530 (*1 *1 *2) (|partial| -12 (-5 *2 (-839 *3)) (-4 *3 (-859)) (-5 *1 (-690 *3)))) (-4362 (*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-690 *3)) (-4 *3 (-859)))) (-2529 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *5)) (-5 *4 (-936)) (-4 *5 (-859)) (-5 *2 (-58 (-659 (-690 *5)))) (-5 *1 (-690 *5)))) (-2528 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *5)) (-5 *4 (-936)) (-4 *5 (-859)) (-5 *2 (-659 (-690 *5))) (-5 *1 (-690 *5))))) -((-3820 ((|#2| $) 100 T ELT)) (-4225 (($ $) 121 T ELT)) (-3860 (((-114) $ (-789)) 35 T ELT)) (-4227 (($ $) 109 T ELT) (($ $ (-789)) 112 T ELT)) (-3861 (((-114) $) 122 T ELT)) (-3430 (((-659 $) $) 96 T ELT)) (-3426 (((-114) $ $) 92 T ELT)) (-4147 (((-114) $ (-789)) 33 T ELT)) (-2413 (((-557) $) 66 T ELT)) (-2414 (((-557) $) 65 T ELT)) (-4144 (((-114) $ (-789)) 31 T ELT)) (-3945 (((-114) $) 98 T ELT)) (-4226 ((|#2| $) 113 T ELT) (($ $ (-789)) 117 T ELT)) (-2515 (($ $ $ (-557)) 83 T ELT) (($ |#2| $ (-557)) 82 T ELT)) (-2416 (((-659 (-557)) $) 64 T ELT)) (-2417 (((-114) (-557) $) 59 T ELT)) (-4229 ((|#2| $) NIL T ELT) (($ $ (-789)) 108 T ELT)) (-4197 (($ $ (-557)) 125 T ELT)) (-3862 (((-114) $) 124 T ELT)) (-2156 (((-114) (-1 (-114) |#2|) $) 42 T ELT)) (-2418 (((-659 |#2|) $) 46 T ELT)) (-4228 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1253 (-557))) 79 T ELT) ((|#2| $ (-557)) 57 T ELT) ((|#2| $ (-557) |#2|) 58 T ELT)) (-3428 (((-557) $ $) 91 T ELT)) (-2516 (($ $ (-1253 (-557))) 78 T ELT) (($ $ (-557)) 72 T ELT)) (-4061 (((-114) $) 87 T ELT)) (-4220 (($ $) 105 T ELT)) (-4221 (((-789) $) 104 T ELT)) (-4222 (($ $) 103 T ELT)) (-3948 (($ (-659 |#2|)) 53 T ELT)) (-3290 (($ $) 126 T ELT)) (-3940 (((-659 $) $) 90 T ELT)) (-3427 (((-114) $ $) 89 T ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) 41 T ELT)) (-3452 (((-114) $ $) 20 T ELT)) (-4385 (((-789) $) 39 T ELT))) -(((-691 |#1| |#2|) (-10 -7 (-15 -3452 ((-114) |#1| |#1|)) (-15 -3290 (|#1| |#1|)) (-15 -4197 (|#1| |#1| (-557))) (-15 -3860 ((-114) |#1| (-789))) (-15 -4147 ((-114) |#1| (-789))) (-15 -4144 ((-114) |#1| (-789))) (-15 -3861 ((-114) |#1|)) (-15 -3862 ((-114) |#1|)) (-15 -4228 (|#2| |#1| (-557) |#2|)) (-15 -4228 (|#2| |#1| (-557))) (-15 -2418 ((-659 |#2|) |#1|)) (-15 -2417 ((-114) (-557) |#1|)) (-15 -2416 ((-659 (-557)) |#1|)) (-15 -2414 ((-557) |#1|)) (-15 -2413 ((-557) |#1|)) (-15 -3948 (|#1| (-659 |#2|))) (-15 -4228 (|#1| |#1| (-1253 (-557)))) (-15 -2516 (|#1| |#1| (-557))) (-15 -2516 (|#1| |#1| (-1253 (-557)))) (-15 -2515 (|#1| |#2| |#1| (-557))) (-15 -2515 (|#1| |#1| |#1| (-557))) (-15 -4220 (|#1| |#1|)) (-15 -4221 ((-789) |#1|)) (-15 -4222 (|#1| |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -4226 (|#1| |#1| (-789))) (-15 -4228 (|#2| |#1| "last")) (-15 -4226 (|#2| |#1|)) (-15 -4227 (|#1| |#1| (-789))) (-15 -4228 (|#1| |#1| "rest")) (-15 -4227 (|#1| |#1|)) (-15 -4229 (|#1| |#1| (-789))) (-15 -4228 (|#2| |#1| "first")) (-15 -4229 (|#2| |#1|)) (-15 -3426 ((-114) |#1| |#1|)) (-15 -3427 ((-114) |#1| |#1|)) (-15 -3428 ((-557) |#1| |#1|)) (-15 -4061 ((-114) |#1|)) (-15 -4228 (|#2| |#1| "value")) (-15 -3820 (|#2| |#1|)) (-15 -3945 ((-114) |#1|)) (-15 -3430 ((-659 |#1|) |#1|)) (-15 -3940 ((-659 |#1|) |#1|)) (-15 -2156 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2157 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4385 ((-789) |#1|))) (-692 |#2|) (-1236)) (T -691)) -NIL -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3820 ((|#1| $) 52 T ELT)) (-4223 ((|#1| $) 71 T ELT)) (-4225 (($ $) 73 T ELT)) (-2411 (((-1292) $ (-557) (-557)) 107 (|has| $ (-6 -4424)) ELT)) (-4213 (($ $ (-557)) 58 (|has| $ (-6 -4424)) ELT)) (-3860 (((-114) $ (-789)) 90 T ELT)) (-3424 ((|#1| $ |#1|) 43 (|has| $ (-6 -4424)) ELT)) (-4215 (($ $ $) 62 (|has| $ (-6 -4424)) ELT)) (-4214 ((|#1| $ |#1|) 60 (|has| $ (-6 -4424)) ELT)) (-4217 ((|#1| $ |#1|) 64 (|has| $ (-6 -4424)) ELT)) (-4216 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4424)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -4424)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -4424)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -4424)) ELT) ((|#1| $ (-1253 (-557)) |#1|) 127 (|has| $ (-6 -4424)) ELT) ((|#1| $ (-557) |#1|) 96 (|has| $ (-6 -4424)) ELT)) (-3425 (($ $ (-659 $)) 45 (|has| $ (-6 -4424)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) 112 T ELT)) (-4224 ((|#1| $) 72 T ELT)) (-4152 (($) 7 T CONST)) (-2534 (($ $) 135 T ELT)) (-4227 (($ $) 79 T ELT) (($ $ (-789)) 77 T ELT)) (-1465 (($ $) 109 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3824 (($ |#1| $) 110 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) |#1|) $) 113 T ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-1717 ((|#1| $ (-557) |#1|) 95 (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-557)) 97 T ELT)) (-3861 (((-114) $) 93 T ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-2533 (((-789) $) 134 T ELT)) (-3430 (((-659 $) $) 54 T ELT)) (-3426 (((-114) $ $) 46 (|has| |#1| (-1120)) ELT)) (-4042 (($ (-789) |#1|) 119 T ELT)) (-4147 (((-114) $ (-789)) 91 T ELT)) (-2413 (((-557) $) 105 (|has| (-557) (-859)) ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2414 (((-557) $) 104 (|has| (-557) (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-4144 (((-114) $ (-789)) 92 T ELT)) (-3429 (((-659 |#1|) $) 49 T ELT)) (-3945 (((-114) $) 53 T ELT)) (-2536 (($ $) 137 T ELT)) (-2537 (((-114) $) 138 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-4226 ((|#1| $) 76 T ELT) (($ $ (-789)) 74 T ELT)) (-2515 (($ $ $ (-557)) 126 T ELT) (($ |#1| $ (-557)) 125 T ELT)) (-2416 (((-659 (-557)) $) 102 T ELT)) (-2417 (((-114) (-557) $) 101 T ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-2535 ((|#1| $) 136 T ELT)) (-4229 ((|#1| $) 82 T ELT) (($ $ (-789)) 80 T ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 116 T ELT)) (-2412 (($ $ |#1|) 106 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-557)) 133 T ELT)) (-3862 (((-114) $) 94 T ELT)) (-2538 (((-114) $) 139 T ELT)) (-2539 (((-114) $) 140 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-2415 (((-114) |#1| $) 103 (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) 100 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-4228 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1253 (-557))) 118 T ELT) ((|#1| $ (-557)) 99 T ELT) ((|#1| $ (-557) |#1|) 98 T ELT)) (-3428 (((-557) $ $) 48 T ELT)) (-2516 (($ $ (-1253 (-557))) 124 T ELT) (($ $ (-557)) 123 T ELT)) (-4061 (((-114) $) 50 T ELT)) (-4220 (($ $) 68 T ELT)) (-4218 (($ $) 65 (|has| $ (-6 -4424)) ELT)) (-4221 (((-789) $) 69 T ELT)) (-4222 (($ $) 70 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4400 (((-546) $) 108 (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 117 T ELT)) (-4219 (($ $ $) 67 (|has| $ (-6 -4424)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -4424)) ELT)) (-4230 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-659 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3290 (($ $) 132 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-3940 (((-659 $) $) 55 T ELT)) (-3427 (((-114) $ $) 47 (|has| |#1| (-1120)) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-692 |#1|) (-142) (-1236)) (T -692)) -((-3824 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-692 *3)) (-4 *3 (-1236)))) (-4138 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-692 *3)) (-4 *3 (-1236)))) (-2539 (*1 *2 *1) (-12 (-4 *1 (-692 *3)) (-4 *3 (-1236)) (-5 *2 (-114)))) (-2538 (*1 *2 *1) (-12 (-4 *1 (-692 *3)) (-4 *3 (-1236)) (-5 *2 (-114)))) (-2537 (*1 *2 *1) (-12 (-4 *1 (-692 *3)) (-4 *3 (-1236)) (-5 *2 (-114)))) (-2536 (*1 *1 *1) (-12 (-4 *1 (-692 *2)) (-4 *2 (-1236)))) (-2535 (*1 *2 *1) (-12 (-4 *1 (-692 *2)) (-4 *2 (-1236)))) (-2534 (*1 *1 *1) (-12 (-4 *1 (-692 *2)) (-4 *2 (-1236)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-692 *3)) (-4 *3 (-1236)) (-5 *2 (-789)))) (-4197 (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-4 *1 (-692 *3)) (-4 *3 (-1236)))) (-3290 (*1 *1 *1) (-12 (-4 *1 (-692 *2)) (-4 *2 (-1236))))) -(-13 (-1169 |t#1|) (-10 -8 (-15 -3824 ($ (-1 (-114) |t#1|) $)) (-15 -4138 ($ (-1 (-114) |t#1|) $)) (-15 -2539 ((-114) $)) (-15 -2538 ((-114) $)) (-15 -2537 ((-114) $)) (-15 -2536 ($ $)) (-15 -2535 (|t#1| $)) (-15 -2534 ($ $)) (-15 -2533 ((-789) $)) (-15 -4197 ($ $ (-557))) (-15 -3290 ($ $)))) -(((-34) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-628 (-875)))) ((-153 |#1|) . T) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-298 (-557) |#1|) . T) ((-298 (-1253 (-557)) $) . T) ((-300 (-557) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-614 (-557) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-669 |#1|) . T) ((-1029 |#1|) . T) ((-1120) |has| |#1| (-1120)) ((-1169 |#1|) . T) ((-1236) . T) ((-1275 |#1|) . T)) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2545 (($ (-789) (-789) (-789)) 53 (|has| |#1| (-1068)) ELT)) (-2542 ((|#1| $ (-789) (-789) (-789) |#1|) 47 T ELT)) (-4152 (($) NIL T CONST)) (-2543 (($ $ $) 57 (|has| |#1| (-1068)) ELT)) (-3288 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2540 (((-1286 (-789)) $) 12 T ELT)) (-2541 (($ (-1196) $ $) 34 T ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-2544 (($ (-789)) 55 (|has| |#1| (-1068)) ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#1| $ (-789) (-789) (-789)) 44 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-3948 (($ (-659 (-659 (-659 |#1|)))) 67 T ELT)) (-4374 (($ (-975 (-975 (-975 |#1|)))) 23 T ELT) (((-975 (-975 (-975 |#1|))) $) 19 T ELT) (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-693 |#1|) (-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1068)) (PROGN (-15 -2545 ($ (-789) (-789) (-789))) (-15 -2544 ($ (-789))) (-15 -2543 ($ $ $))) |%noBranch|) (-15 -3948 ($ (-659 (-659 (-659 |#1|))))) (-15 -4228 (|#1| $ (-789) (-789) (-789))) (-15 -2542 (|#1| $ (-789) (-789) (-789) |#1|)) (-15 -4374 ($ (-975 (-975 (-975 |#1|))))) (-15 -4374 ((-975 (-975 (-975 |#1|))) $)) (-15 -2541 ($ (-1196) $ $)) (-15 -2540 ((-1286 (-789)) $)))) (-1120)) (T -693)) -((-2545 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-789)) (-5 *1 (-693 *3)) (-4 *3 (-1068)) (-4 *3 (-1120)))) (-2544 (*1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-693 *3)) (-4 *3 (-1068)) (-4 *3 (-1120)))) (-2543 (*1 *1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-1068)) (-4 *2 (-1120)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-659 (-659 (-659 *3)))) (-4 *3 (-1120)) (-5 *1 (-693 *3)))) (-4228 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-789)) (-5 *1 (-693 *2)) (-4 *2 (-1120)))) (-2542 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-789)) (-5 *1 (-693 *2)) (-4 *2 (-1120)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-975 (-975 (-975 *3)))) (-4 *3 (-1120)) (-5 *1 (-693 *3)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-975 (-975 (-975 *3)))) (-5 *1 (-693 *3)) (-4 *3 (-1120)))) (-2541 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-693 *3)) (-4 *3 (-1120)))) (-2540 (*1 *2 *1) (-12 (-5 *2 (-1286 (-789))) (-5 *1 (-693 *3)) (-4 *3 (-1120))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3594 (((-495) $) 10 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 19 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-3649 (((-1154) $) 12 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-694) (-13 (-1102) (-10 -8 (-15 -3594 ((-495) $)) (-15 -3649 ((-1154) $))))) (T -694)) -((-3594 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-694)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-694))))) -((-2965 (((-114) $ $) NIL T ELT)) (-4362 (((-659 |#1|) $) 15 T ELT)) (-3537 (($ $) 19 T ELT)) (-3061 (((-114) $) 20 T ELT)) (-3573 (((-3 |#1| "failed") $) 23 T ELT)) (-3572 ((|#1| $) 21 T ELT)) (-4227 (($ $) 37 T ELT)) (-4364 (($ $) 25 T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-2905 (((-114) $ $) 46 T ELT)) (-4261 (((-936) $) 40 T ELT)) (-3538 (($ $) 18 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4229 ((|#1| $) 36 T ELT)) (-4374 (((-875) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-839 |#1|) $) 28 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 13 T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) -(((-695 |#1|) (-13 (-859) (-1057 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4374 ((-839 |#1|) $)) (-15 -4229 (|#1| $)) (-15 -3538 ($ $)) (-15 -4261 ((-936) $)) (-15 -2905 ((-114) $ $)) (-15 -4364 ($ $)) (-15 -4227 ($ $)) (-15 -3061 ((-114) $)) (-15 -3537 ($ $)) (-15 -4362 ((-659 |#1|) $)))) (-859)) (T -695)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-859)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-839 *3)) (-5 *1 (-695 *3)) (-4 *3 (-859)))) (-4229 (*1 *2 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-859)))) (-3538 (*1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-859)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-695 *3)) (-4 *3 (-859)))) (-2905 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-695 *3)) (-4 *3 (-859)))) (-4364 (*1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-859)))) (-4227 (*1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-859)))) (-3061 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-695 *3)) (-4 *3 (-859)))) (-3537 (*1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-859)))) (-4362 (*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-695 *3)) (-4 *3 (-859))))) -((-2554 ((|#1| (-1 |#1| (-789) |#1|) (-789) |#1|) 11 T ELT)) (-2546 ((|#1| (-1 |#1| |#1|) (-789) |#1|) 9 T ELT))) -(((-696 |#1|) (-10 -7 (-15 -2546 (|#1| (-1 |#1| |#1|) (-789) |#1|)) (-15 -2554 (|#1| (-1 |#1| (-789) |#1|) (-789) |#1|))) (-1120)) (T -696)) -((-2554 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-789) *2)) (-5 *4 (-789)) (-4 *2 (-1120)) (-5 *1 (-696 *2)))) (-2546 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-789)) (-4 *2 (-1120)) (-5 *1 (-696 *2))))) -((-2548 ((|#2| |#1| |#2|) 9 T ELT)) (-2547 ((|#1| |#1| |#2|) 8 T ELT))) -(((-697 |#1| |#2|) (-10 -7 (-15 -2547 (|#1| |#1| |#2|)) (-15 -2548 (|#2| |#1| |#2|))) (-1120) (-1120)) (T -697)) -((-2548 (*1 *2 *3 *2) (-12 (-5 *1 (-697 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120)))) (-2547 (*1 *2 *2 *3) (-12 (-5 *1 (-697 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120))))) -((-2549 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) -(((-698 |#1| |#2| |#3|) (-10 -7 (-15 -2549 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1120) (-1120) (-1120)) (T -698)) -((-2549 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120)) (-5 *1 (-698 *5 *6 *2))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3734 (((-1237) $) 21 T ELT)) (-3733 (((-659 (-1237)) $) 19 T ELT)) (-2550 (($ (-659 (-1237)) (-1237)) 14 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 29 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT) (((-1237) $) 22 T ELT) (($ (-1134)) 10 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-699) (-13 (-1102) (-628 (-1237)) (-10 -8 (-15 -4374 ($ (-1134))) (-15 -2550 ($ (-659 (-1237)) (-1237))) (-15 -3733 ((-659 (-1237)) $)) (-15 -3734 ((-1237) $))))) (T -699)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-699)))) (-2550 (*1 *1 *2 *3) (-12 (-5 *2 (-659 (-1237))) (-5 *3 (-1237)) (-5 *1 (-699)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-659 (-1237))) (-5 *1 (-699)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-699))))) -((-2554 (((-1 |#1| (-789) |#1|) (-1 |#1| (-789) |#1|)) 26 T ELT)) (-2551 (((-1 |#1|) |#1|) 8 T ELT)) (-2553 ((|#1| |#1|) 19 T ELT)) (-2552 (((-659 |#1|) (-1 (-659 |#1|) (-659 |#1|)) (-557)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-4374 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-789)) 23 T ELT))) -(((-700 |#1|) (-10 -7 (-15 -2551 ((-1 |#1|) |#1|)) (-15 -4374 ((-1 |#1|) |#1|)) (-15 -2552 (|#1| (-1 |#1| |#1|))) (-15 -2552 ((-659 |#1|) (-1 (-659 |#1|) (-659 |#1|)) (-557))) (-15 -2553 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-789))) (-15 -2554 ((-1 |#1| (-789) |#1|) (-1 |#1| (-789) |#1|)))) (-1120)) (T -700)) -((-2554 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-789) *3)) (-4 *3 (-1120)) (-5 *1 (-700 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-789)) (-4 *4 (-1120)) (-5 *1 (-700 *4)))) (-2553 (*1 *2 *2) (-12 (-5 *1 (-700 *2)) (-4 *2 (-1120)))) (-2552 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-659 *5) (-659 *5))) (-5 *4 (-557)) (-5 *2 (-659 *5)) (-5 *1 (-700 *5)) (-4 *5 (-1120)))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-700 *2)) (-4 *2 (-1120)))) (-4374 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-700 *3)) (-4 *3 (-1120)))) (-2551 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-700 *3)) (-4 *3 (-1120))))) -((-2557 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2556 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-4380 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2555 (((-1 |#2| |#1|) |#2|) 11 T ELT))) -(((-701 |#1| |#2|) (-10 -7 (-15 -2555 ((-1 |#2| |#1|) |#2|)) (-15 -2556 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4380 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2557 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1120) (-1120)) (T -701)) -((-2557 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-5 *2 (-1 *5 *4)) (-5 *1 (-701 *4 *5)))) (-4380 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1120)) (-5 *2 (-1 *5 *4)) (-5 *1 (-701 *4 *5)) (-4 *4 (-1120)))) (-2556 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-5 *2 (-1 *5)) (-5 *1 (-701 *4 *5)))) (-2555 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-701 *4 *3)) (-4 *4 (-1120)) (-4 *3 (-1120))))) -((-2562 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2558 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2559 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2560 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2561 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) -(((-702 |#1| |#2| |#3|) (-10 -7 (-15 -2558 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2559 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2560 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2561 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2562 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1120) (-1120) (-1120)) (T -702)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-1 *7 *5)) (-5 *1 (-702 *5 *6 *7)))) (-2562 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-702 *4 *5 *6)))) (-2561 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-702 *4 *5 *6)) (-4 *4 (-1120)))) (-2560 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-702 *4 *5 *6)) (-4 *5 (-1120)))) (-2559 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *4 *5 *6)))) (-2558 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1120)) (-4 *4 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *5 *4 *6))))) -((-4266 (($ (-789) (-789)) 42 T ELT)) (-2567 (($ $ $) 73 T ELT)) (-3832 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3521 (((-114) $) 36 T ELT)) (-2566 (($ $ (-557) (-557)) 84 T ELT)) (-2565 (($ $ (-557) (-557)) 85 T ELT)) (-2564 (($ $ (-557) (-557) (-557) (-557)) 90 T ELT)) (-2569 (($ $) 71 T ELT)) (-3523 (((-114) $) 15 T ELT)) (-2563 (($ $ (-557) (-557) $) 91 T ELT)) (-4216 ((|#2| $ (-557) (-557) |#2|) NIL T ELT) (($ $ (-659 (-557)) (-659 (-557)) $) 89 T ELT)) (-3751 (($ (-789) |#2|) 55 T ELT)) (-3524 (($ (-659 (-659 |#2|))) 51 T ELT) (($ (-789) (-789) (-1 |#2| (-557) (-557))) 53 T ELT)) (-4020 (((-659 (-659 |#2|)) $) 80 T ELT)) (-2568 (($ $ $) 72 T ELT)) (-3884 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-4228 ((|#2| $ (-557) (-557)) NIL T ELT) ((|#2| $ (-557) (-557) |#2|) NIL T ELT) (($ $ (-659 (-557)) (-659 (-557))) 88 T ELT)) (-3750 (($ (-659 |#2|)) 56 T ELT) (($ (-659 $)) 58 T ELT)) (-3522 (((-114) $) 28 T ELT)) (-4374 (($ |#4|) 63 T ELT) (((-875) $) NIL T ELT)) (-3520 (((-114) $) 38 T ELT)) (-4377 (($ $ |#2|) 124 T ELT)) (-4265 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-4267 (($ $ $) 93 T ELT)) (** (($ $ (-789)) 111 T ELT) (($ $ (-557)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-557) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) -(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4374 ((-875) |#1|)) (-15 ** (|#1| |#1| (-557))) (-15 -4377 (|#1| |#1| |#2|)) (-15 -3884 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-789))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-557) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4265 (|#1| |#1|)) (-15 -4265 (|#1| |#1| |#1|)) (-15 -4267 (|#1| |#1| |#1|)) (-15 -2563 (|#1| |#1| (-557) (-557) |#1|)) (-15 -2564 (|#1| |#1| (-557) (-557) (-557) (-557))) (-15 -2565 (|#1| |#1| (-557) (-557))) (-15 -2566 (|#1| |#1| (-557) (-557))) (-15 -4216 (|#1| |#1| (-659 (-557)) (-659 (-557)) |#1|)) (-15 -4228 (|#1| |#1| (-659 (-557)) (-659 (-557)))) (-15 -4020 ((-659 (-659 |#2|)) |#1|)) (-15 -2567 (|#1| |#1| |#1|)) (-15 -2568 (|#1| |#1| |#1|)) (-15 -2569 (|#1| |#1|)) (-15 -3832 (|#1| |#1|)) (-15 -3832 (|#1| |#3|)) (-15 -4374 (|#1| |#4|)) (-15 -3750 (|#1| (-659 |#1|))) (-15 -3750 (|#1| (-659 |#2|))) (-15 -3751 (|#1| (-789) |#2|)) (-15 -3524 (|#1| (-789) (-789) (-1 |#2| (-557) (-557)))) (-15 -3524 (|#1| (-659 (-659 |#2|)))) (-15 -4266 (|#1| (-789) (-789))) (-15 -3520 ((-114) |#1|)) (-15 -3521 ((-114) |#1|)) (-15 -3522 ((-114) |#1|)) (-15 -3523 ((-114) |#1|)) (-15 -4216 (|#2| |#1| (-557) (-557) |#2|)) (-15 -4228 (|#2| |#1| (-557) (-557) |#2|)) (-15 -4228 (|#2| |#1| (-557) (-557)))) (-704 |#2| |#3| |#4|) (-1068) (-385 |#2|) (-385 |#2|)) (T -703)) -NIL -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4266 (($ (-789) (-789)) 103 T ELT)) (-2567 (($ $ $) 92 T ELT)) (-3832 (($ |#2|) 96 T ELT) (($ $) 95 T ELT)) (-3521 (((-114) $) 105 T ELT)) (-2566 (($ $ (-557) (-557)) 88 T ELT)) (-2565 (($ $ (-557) (-557)) 87 T ELT)) (-2564 (($ $ (-557) (-557) (-557) (-557)) 86 T ELT)) (-2569 (($ $) 94 T ELT)) (-3523 (((-114) $) 107 T ELT)) (-2563 (($ $ (-557) (-557) $) 85 T ELT)) (-4216 ((|#1| $ (-557) (-557) |#1|) 48 T ELT) (($ $ (-659 (-557)) (-659 (-557)) $) 89 T ELT)) (-1362 (($ $ (-557) |#2|) 46 T ELT)) (-1361 (($ $ (-557) |#3|) 45 T ELT)) (-3751 (($ (-789) |#1|) 100 T ELT)) (-4152 (($) 7 T CONST)) (-3510 (($ $) 72 (|has| |#1| (-319)) ELT)) (-3512 ((|#2| $ (-557)) 50 T ELT)) (-3509 (((-789) $) 71 (|has| |#1| (-568)) ELT)) (-1717 ((|#1| $ (-557) (-557) |#1|) 47 T ELT)) (-3513 ((|#1| $ (-557) (-557)) 52 T ELT)) (-3288 (((-659 |#1|) $) 30 T ELT)) (-3508 (((-789) $) 70 (|has| |#1| (-568)) ELT)) (-3507 (((-659 |#3|) $) 69 (|has| |#1| (-568)) ELT)) (-3515 (((-789) $) 55 T ELT)) (-4042 (($ (-789) (-789) |#1|) 61 T ELT)) (-3514 (((-789) $) 54 T ELT)) (-3745 ((|#1| $) 67 (|has| |#1| (-6 (-4425 #1="*"))) ELT)) (-3519 (((-557) $) 59 T ELT)) (-3517 (((-557) $) 57 T ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3518 (((-557) $) 58 T ELT)) (-3516 (((-557) $) 56 T ELT)) (-3524 (($ (-659 (-659 |#1|))) 102 T ELT) (($ (-789) (-789) (-1 |#1| (-557) (-557))) 101 T ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-4020 (((-659 (-659 |#1|)) $) 91 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-4016 (((-3 $ "failed") $) 66 (|has| |#1| (-376)) ELT)) (-2568 (($ $ $) 93 T ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-2412 (($ $ |#1|) 60 T ELT)) (-3884 (((-3 $ "failed") $ |#1|) 74 (|has| |#1| (-568)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-4228 ((|#1| $ (-557) (-557)) 53 T ELT) ((|#1| $ (-557) (-557) |#1|) 51 T ELT) (($ $ (-659 (-557)) (-659 (-557))) 90 T ELT)) (-3750 (($ (-659 |#1|)) 99 T ELT) (($ (-659 $)) 98 T ELT)) (-3522 (((-114) $) 106 T ELT)) (-3746 ((|#1| $) 68 (|has| |#1| (-6 (-4425 #1#))) ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-3511 ((|#3| $ (-557)) 49 T ELT)) (-4374 (($ |#3|) 97 T ELT) (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3520 (((-114) $) 104 T ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4377 (($ $ |#1|) 73 (|has| |#1| (-376)) ELT)) (-4265 (($ $ $) 83 T ELT) (($ $) 82 T ELT)) (-4267 (($ $ $) 84 T ELT)) (** (($ $ (-789)) 75 T ELT) (($ $ (-557)) 65 (|has| |#1| (-376)) ELT)) (* (($ $ $) 81 T ELT) (($ |#1| $) 80 T ELT) (($ $ |#1|) 79 T ELT) (($ (-557) $) 78 T ELT) ((|#3| $ |#3|) 77 T ELT) ((|#2| |#2| $) 76 T ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-704 |#1| |#2| |#3|) (-142) (-1068) (-385 |t#1|) (-385 |t#1|)) (T -704)) -((-3523 (*1 *2 *1) (-12 (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-4266 (*1 *1 *2 *2) (-12 (-5 *2 (-789)) (-4 *3 (-1068)) (-4 *1 (-704 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-659 (-659 *3))) (-4 *3 (-1068)) (-4 *1 (-704 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3524 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-789)) (-5 *3 (-1 *4 (-557) (-557))) (-4 *4 (-1068)) (-4 *1 (-704 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-3751 (*1 *1 *2 *3) (-12 (-5 *2 (-789)) (-4 *3 (-1068)) (-4 *1 (-704 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3750 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1068)) (-4 *1 (-704 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3750 (*1 *1 *2) (-12 (-5 *2 (-659 *1)) (-4 *3 (-1068)) (-4 *1 (-704 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4374 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-4 *1 (-704 *3 *4 *2)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (-3832 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-4 *1 (-704 *3 *2 *4)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (-3832 (*1 *1 *1) (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2569 (*1 *1 *1) (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2568 (*1 *1 *1 *1) (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2567 (*1 *1 *1 *1) (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4020 (*1 *2 *1) (-12 (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-659 (-659 *3))))) (-4228 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-659 (-557))) (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4216 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-659 (-557))) (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2566 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-557)) (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2565 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-557)) (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2564 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-557)) (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2563 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-557)) (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4267 (*1 *1 *1 *1) (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4265 (*1 *1 *1 *1) (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4265 (*1 *1 *1) (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-557)) (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-704 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-704 *3 *2 *4)) (-4 *3 (-1068)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3884 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-568)))) (-4377 (*1 *1 *1 *2) (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-376)))) (-3510 (*1 *1 *1) (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-319)))) (-3509 (*1 *2 *1) (-12 (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-568)) (-5 *2 (-789)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-568)) (-5 *2 (-789)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-568)) (-5 *2 (-659 *5)))) (-3746 (*1 *2 *1) (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4425 #1="*"))) (-4 *2 (-1068)))) (-3745 (*1 *2 *1) (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4425 #1#))) (-4 *2 (-1068)))) (-4016 (*1 *1 *1) (|partial| -12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-376)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-376))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4424) (-6 -4423) (-15 -3523 ((-114) $)) (-15 -3522 ((-114) $)) (-15 -3521 ((-114) $)) (-15 -3520 ((-114) $)) (-15 -4266 ($ (-789) (-789))) (-15 -3524 ($ (-659 (-659 |t#1|)))) (-15 -3524 ($ (-789) (-789) (-1 |t#1| (-557) (-557)))) (-15 -3751 ($ (-789) |t#1|)) (-15 -3750 ($ (-659 |t#1|))) (-15 -3750 ($ (-659 $))) (-15 -4374 ($ |t#3|)) (-15 -3832 ($ |t#2|)) (-15 -3832 ($ $)) (-15 -2569 ($ $)) (-15 -2568 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -4020 ((-659 (-659 |t#1|)) $)) (-15 -4228 ($ $ (-659 (-557)) (-659 (-557)))) (-15 -4216 ($ $ (-659 (-557)) (-659 (-557)) $)) (-15 -2566 ($ $ (-557) (-557))) (-15 -2565 ($ $ (-557) (-557))) (-15 -2564 ($ $ (-557) (-557) (-557) (-557))) (-15 -2563 ($ $ (-557) (-557) $)) (-15 -4267 ($ $ $)) (-15 -4265 ($ $ $)) (-15 -4265 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-557) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-789))) (IF (|has| |t#1| (-568)) (-15 -3884 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-376)) (-15 -4377 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-319)) (-15 -3510 ($ $)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -3509 ((-789) $)) (-15 -3508 ((-789) $)) (-15 -3507 ((-659 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4425 "*"))) (PROGN (-15 -3746 (|t#1| $)) (-15 -3745 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-15 -4016 ((-3 $ "failed") $)) (-15 ** ($ $ (-557)))) |%noBranch|))) -(((-34) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-628 (-875)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-57 |#1| |#2| |#3|) . T) ((-1236) . T)) -((-4270 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-4386 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) -(((-705 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4386 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4386 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -4270 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1068) (-385 |#1|) (-385 |#1|) (-704 |#1| |#2| |#3|) (-1068) (-385 |#5|) (-385 |#5|) (-704 |#5| |#6| |#7|)) (T -705)) -((-4270 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1068)) (-4 *2 (-1068)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *8 (-385 *2)) (-4 *9 (-385 *2)) (-5 *1 (-705 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-704 *5 *6 *7)) (-4 *10 (-704 *2 *8 *9)))) (-4386 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1068)) (-4 *8 (-1068)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-704 *8 *9 *10)) (-5 *1 (-705 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-704 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) (-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1068)) (-4 *8 (-1068)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-704 *8 *9 *10)) (-5 *1 (-705 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-704 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8))))) -((-3510 ((|#4| |#4|) 92 (|has| |#1| (-319)) ELT)) (-3509 (((-789) |#4|) 121 (|has| |#1| (-568)) ELT)) (-3508 (((-789) |#4|) 96 (|has| |#1| (-568)) ELT)) (-3507 (((-659 |#3|) |#4|) 103 (|has| |#1| (-568)) ELT)) (-2608 (((-2 (|:| -2182 |#1|) (|:| -3301 |#1|)) |#1| |#1|) 137 (|has| |#1| (-319)) ELT)) (-3745 ((|#1| |#4|) 52 T ELT)) (-2574 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-568)) ELT)) (-4016 (((-3 |#4| #1#) |#4|) 100 (|has| |#1| (-376)) ELT)) (-2573 ((|#4| |#4|) 88 (|has| |#1| (-568)) ELT)) (-2571 ((|#4| |#4| |#1| (-557) (-557)) 60 T ELT)) (-2570 ((|#4| |#4| (-557) (-557)) 55 T ELT)) (-2572 ((|#4| |#4| |#1| (-557) (-557)) 65 T ELT)) (-3746 ((|#1| |#4|) 98 T ELT)) (-2914 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-568)) ELT))) -(((-706 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3746 (|#1| |#4|)) (-15 -3745 (|#1| |#4|)) (-15 -2570 (|#4| |#4| (-557) (-557))) (-15 -2571 (|#4| |#4| |#1| (-557) (-557))) (-15 -2572 (|#4| |#4| |#1| (-557) (-557))) (IF (|has| |#1| (-568)) (PROGN (-15 -3509 ((-789) |#4|)) (-15 -3508 ((-789) |#4|)) (-15 -3507 ((-659 |#3|) |#4|)) (-15 -2573 (|#4| |#4|)) (-15 -2574 ((-3 |#4| #1="failed") |#4|)) (-15 -2914 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-319)) (PROGN (-15 -3510 (|#4| |#4|)) (-15 -2608 ((-2 (|:| -2182 |#1|) (|:| -3301 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4016 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-175) (-385 |#1|) (-385 |#1|) (-704 |#1| |#2| |#3|)) (T -706)) -((-4016 (*1 *2 *2) (|partial| -12 (-4 *3 (-376)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-706 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5)))) (-2608 (*1 *2 *3 *3) (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-2 (|:| -2182 *3) (|:| -3301 *3))) (-5 *1 (-706 *3 *4 *5 *6)) (-4 *6 (-704 *3 *4 *5)))) (-3510 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-706 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5)))) (-2914 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-706 *4 *5 *6 *3)) (-4 *3 (-704 *4 *5 *6)))) (-2574 (*1 *2 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-706 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5)))) (-2573 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-706 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5)))) (-3507 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-659 *6)) (-5 *1 (-706 *4 *5 *6 *3)) (-4 *3 (-704 *4 *5 *6)))) (-3508 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-789)) (-5 *1 (-706 *4 *5 *6 *3)) (-4 *3 (-704 *4 *5 *6)))) (-3509 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-789)) (-5 *1 (-706 *4 *5 *6 *3)) (-4 *3 (-704 *4 *5 *6)))) (-2572 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-557)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-706 *3 *5 *6 *2)) (-4 *2 (-704 *3 *5 *6)))) (-2571 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-557)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-706 *3 *5 *6 *2)) (-4 *2 (-704 *3 *5 *6)))) (-2570 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-557)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *1 (-706 *4 *5 *6 *2)) (-4 *2 (-704 *4 *5 *6)))) (-3745 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175)) (-5 *1 (-706 *2 *4 *5 *3)) (-4 *3 (-704 *2 *4 *5)))) (-3746 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175)) (-5 *1 (-706 *2 *4 *5 *3)) (-4 *3 (-704 *2 *4 *5))))) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4266 (($ (-789) (-789)) 64 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3832 (($ (-1286 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3521 (((-114) $) NIL T ELT)) (-2566 (($ $ (-557) (-557)) 22 T ELT)) (-2565 (($ $ (-557) (-557)) NIL T ELT)) (-2564 (($ $ (-557) (-557) (-557) (-557)) NIL T ELT)) (-2569 (($ $) NIL T ELT)) (-3523 (((-114) $) NIL T ELT)) (-2563 (($ $ (-557) (-557) $) NIL T ELT)) (-4216 ((|#1| $ (-557) (-557) |#1|) NIL T ELT) (($ $ (-659 (-557)) (-659 (-557)) $) NIL T ELT)) (-1362 (($ $ (-557) (-1286 |#1|)) NIL T ELT)) (-1361 (($ $ (-557) (-1286 |#1|)) NIL T ELT)) (-3751 (($ (-789) |#1|) 37 T ELT)) (-4152 (($) NIL T CONST)) (-3510 (($ $) 46 (|has| |#1| (-319)) ELT)) (-3512 (((-1286 |#1|) $ (-557)) NIL T ELT)) (-3509 (((-789) $) 48 (|has| |#1| (-568)) ELT)) (-1717 ((|#1| $ (-557) (-557) |#1|) 69 T ELT)) (-3513 ((|#1| $ (-557) (-557)) NIL T ELT)) (-3288 (((-659 |#1|) $) NIL T ELT)) (-3508 (((-789) $) 50 (|has| |#1| (-568)) ELT)) (-3507 (((-659 (-1286 |#1|)) $) 53 (|has| |#1| (-568)) ELT)) (-3515 (((-789) $) 32 T ELT)) (-4042 (($ (-789) (-789) |#1|) NIL T ELT)) (-3514 (((-789) $) 33 T ELT)) (-3745 ((|#1| $) 44 (|has| |#1| (-6 (-4425 #1="*"))) ELT)) (-3519 (((-557) $) 10 T ELT)) (-3517 (((-557) $) 11 T ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3518 (((-557) $) 14 T ELT)) (-3516 (((-557) $) 65 T ELT)) (-3524 (($ (-659 (-659 |#1|))) NIL T ELT) (($ (-789) (-789) (-1 |#1| (-557) (-557))) NIL T ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-4020 (((-659 (-659 |#1|)) $) 76 T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-4016 (((-3 $ #2="failed") $) 60 (|has| |#1| (-376)) ELT)) (-2568 (($ $ $) NIL T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-2412 (($ $ |#1|) NIL T ELT)) (-3884 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-568)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#1| $ (-557) (-557)) NIL T ELT) ((|#1| $ (-557) (-557) |#1|) NIL T ELT) (($ $ (-659 (-557)) (-659 (-557))) NIL T ELT)) (-3750 (($ (-659 |#1|)) NIL T ELT) (($ (-659 $)) NIL T ELT) (($ (-1286 |#1|)) 70 T ELT)) (-3522 (((-114) $) NIL T ELT)) (-3746 ((|#1| $) 42 (|has| |#1| (-6 (-4425 #1#))) ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) 80 (|has| |#1| (-629 (-546))) ELT)) (-3511 (((-1286 |#1|) $ (-557)) NIL T ELT)) (-4374 (($ (-1286 |#1|)) NIL T ELT) (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3520 (((-114) $) NIL T ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-789)) 38 T ELT) (($ $ (-557)) 62 (|has| |#1| (-376)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-557) $) NIL T ELT) (((-1286 |#1|) $ (-1286 |#1|)) NIL T ELT) (((-1286 |#1|) (-1286 |#1|) $) NIL T ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-707 |#1|) (-13 (-704 |#1| (-1286 |#1|) (-1286 |#1|)) (-10 -8 (-15 -3750 ($ (-1286 |#1|))) (IF (|has| |#1| (-629 (-546))) (-6 (-629 (-546))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4016 ((-3 $ "failed") $)) |%noBranch|))) (-1068)) (T -707)) -((-4016 (*1 *1 *1) (|partial| -12 (-5 *1 (-707 *2)) (-4 *2 (-376)) (-4 *2 (-1068)))) (-3750 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1068)) (-5 *1 (-707 *3))))) -((-2580 (((-707 |#1|) (-707 |#1|) (-707 |#1|) (-707 |#1|)) 37 T ELT)) (-2579 (((-707 |#1|) (-707 |#1|) (-707 |#1|) |#1|) 32 T ELT)) (-2581 (((-707 |#1|) (-707 |#1|) (-707 |#1|) (-707 |#1|) (-707 |#1|) (-789)) 43 T ELT)) (-2576 (((-707 |#1|) (-707 |#1|) (-707 |#1|) (-707 |#1|)) 25 T ELT)) (-2577 (((-707 |#1|) (-707 |#1|) (-707 |#1|) (-707 |#1|)) 29 T ELT) (((-707 |#1|) (-707 |#1|) (-707 |#1|)) 27 T ELT)) (-2578 (((-707 |#1|) (-707 |#1|) |#1| (-707 |#1|)) 31 T ELT)) (-2575 (((-707 |#1|) (-707 |#1|) (-707 |#1|)) 23 T ELT)) (** (((-707 |#1|) (-707 |#1|) (-789)) 46 T ELT))) -(((-708 |#1|) (-10 -7 (-15 -2575 ((-707 |#1|) (-707 |#1|) (-707 |#1|))) (-15 -2576 ((-707 |#1|) (-707 |#1|) (-707 |#1|) (-707 |#1|))) (-15 -2577 ((-707 |#1|) (-707 |#1|) (-707 |#1|))) (-15 -2577 ((-707 |#1|) (-707 |#1|) (-707 |#1|) (-707 |#1|))) (-15 -2578 ((-707 |#1|) (-707 |#1|) |#1| (-707 |#1|))) (-15 -2579 ((-707 |#1|) (-707 |#1|) (-707 |#1|) |#1|)) (-15 -2580 ((-707 |#1|) (-707 |#1|) (-707 |#1|) (-707 |#1|))) (-15 -2581 ((-707 |#1|) (-707 |#1|) (-707 |#1|) (-707 |#1|) (-707 |#1|) (-789))) (-15 ** ((-707 |#1|) (-707 |#1|) (-789)))) (-1068)) (T -708)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-707 *4)) (-5 *3 (-789)) (-4 *4 (-1068)) (-5 *1 (-708 *4)))) (-2581 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-707 *4)) (-5 *3 (-789)) (-4 *4 (-1068)) (-5 *1 (-708 *4)))) (-2580 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-707 *3)) (-4 *3 (-1068)) (-5 *1 (-708 *3)))) (-2579 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-707 *3)) (-4 *3 (-1068)) (-5 *1 (-708 *3)))) (-2578 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-707 *3)) (-4 *3 (-1068)) (-5 *1 (-708 *3)))) (-2577 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-707 *3)) (-4 *3 (-1068)) (-5 *1 (-708 *3)))) (-2577 (*1 *2 *2 *2) (-12 (-5 *2 (-707 *3)) (-4 *3 (-1068)) (-5 *1 (-708 *3)))) (-2576 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-707 *3)) (-4 *3 (-1068)) (-5 *1 (-708 *3)))) (-2575 (*1 *2 *2 *2) (-12 (-5 *2 (-707 *3)) (-4 *3 (-1068)) (-5 *1 (-708 *3))))) -((-3573 (((-3 |#1| "failed") $) 18 T ELT)) (-3572 ((|#1| $) NIL T ELT)) (-2582 (($) 7 T CONST)) (-2583 (($ |#1|) 8 T ELT)) (-4374 (($ |#1|) 16 T ELT) (((-875) $) 23 T ELT)) (-3992 (((-114) $ (|[\|\|]| |#1|)) 14 T ELT) (((-114) $ (|[\|\|]| -2582)) 11 T ELT)) (-3998 ((|#1| $) 15 T ELT))) -(((-709 |#1|) (-13 (-1282) (-1057 |#1|) (-628 (-875)) (-10 -8 (-15 -2583 ($ |#1|)) (-15 -3992 ((-114) $ (|[\|\|]| |#1|))) (-15 -3992 ((-114) $ (|[\|\|]| -2582))) (-15 -3998 (|#1| $)) (-15 -2582 ($) -4380))) (-628 (-875))) (T -709)) -((-2583 (*1 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-628 (-875))))) (-3992 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-628 (-875))) (-5 *2 (-114)) (-5 *1 (-709 *4)))) (-3992 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2582)) (-5 *2 (-114)) (-5 *1 (-709 *4)) (-4 *4 (-628 (-875))))) (-3998 (*1 *2 *1) (-12 (-5 *1 (-709 *2)) (-4 *2 (-628 (-875))))) (-2582 (*1 *1) (-12 (-5 *1 (-709 *2)) (-4 *2 (-628 (-875)))))) -((-2586 ((|#2| |#2| |#4|) 29 T ELT)) (-2589 (((-707 |#2|) |#3| |#4|) 35 T ELT)) (-2587 (((-707 |#2|) |#2| |#4|) 34 T ELT)) (-2584 (((-1286 |#2|) |#2| |#4|) 16 T ELT)) (-2585 ((|#2| |#3| |#4|) 28 T ELT)) (-2590 (((-707 |#2|) |#3| |#4| (-789) (-789)) 48 T ELT)) (-2588 (((-707 |#2|) |#2| |#4| (-789)) 47 T ELT))) -(((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2584 ((-1286 |#2|) |#2| |#4|)) (-15 -2585 (|#2| |#3| |#4|)) (-15 -2586 (|#2| |#2| |#4|)) (-15 -2587 ((-707 |#2|) |#2| |#4|)) (-15 -2588 ((-707 |#2|) |#2| |#4| (-789))) (-15 -2589 ((-707 |#2|) |#3| |#4|)) (-15 -2590 ((-707 |#2|) |#3| |#4| (-789) (-789)))) (-1120) (-915 |#1|) (-385 |#2|) (-13 (-385 |#1|) (-10 -7 (-6 -4423)))) (T -710)) -((-2590 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-789)) (-4 *6 (-1120)) (-4 *7 (-915 *6)) (-5 *2 (-707 *7)) (-5 *1 (-710 *6 *7 *3 *4)) (-4 *3 (-385 *7)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4423)))))) (-2589 (*1 *2 *3 *4) (-12 (-4 *5 (-1120)) (-4 *6 (-915 *5)) (-5 *2 (-707 *6)) (-5 *1 (-710 *5 *6 *3 *4)) (-4 *3 (-385 *6)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4423)))))) (-2588 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-789)) (-4 *6 (-1120)) (-4 *3 (-915 *6)) (-5 *2 (-707 *3)) (-5 *1 (-710 *6 *3 *7 *4)) (-4 *7 (-385 *3)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4423)))))) (-2587 (*1 *2 *3 *4) (-12 (-4 *5 (-1120)) (-4 *3 (-915 *5)) (-5 *2 (-707 *3)) (-5 *1 (-710 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4423)))))) (-2586 (*1 *2 *2 *3) (-12 (-4 *4 (-1120)) (-4 *2 (-915 *4)) (-5 *1 (-710 *4 *2 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4423)))))) (-2585 (*1 *2 *3 *4) (-12 (-4 *5 (-1120)) (-4 *2 (-915 *5)) (-5 *1 (-710 *5 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4423)))))) (-2584 (*1 *2 *3 *4) (-12 (-4 *5 (-1120)) (-4 *3 (-915 *5)) (-5 *2 (-1286 *3)) (-5 *1 (-710 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4423))))))) -((-4169 (((-2 (|:| |num| (-707 |#1|)) (|:| |den| |#1|)) (-707 |#2|)) 20 T ELT)) (-4167 ((|#1| (-707 |#2|)) 9 T ELT)) (-4168 (((-707 |#1|) (-707 |#2|)) 18 T ELT))) -(((-711 |#1| |#2|) (-10 -7 (-15 -4167 (|#1| (-707 |#2|))) (-15 -4168 ((-707 |#1|) (-707 |#2|))) (-15 -4169 ((-2 (|:| |num| (-707 |#1|)) (|:| |den| |#1|)) (-707 |#2|)))) (-568) (-1010 |#1|)) (T -711)) -((-4169 (*1 *2 *3) (-12 (-5 *3 (-707 *5)) (-4 *5 (-1010 *4)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| (-707 *4)) (|:| |den| *4))) (-5 *1 (-711 *4 *5)))) (-4168 (*1 *2 *3) (-12 (-5 *3 (-707 *5)) (-4 *5 (-1010 *4)) (-4 *4 (-568)) (-5 *2 (-707 *4)) (-5 *1 (-711 *4 *5)))) (-4167 (*1 *2 *3) (-12 (-5 *3 (-707 *4)) (-4 *4 (-1010 *2)) (-4 *2 (-568)) (-5 *1 (-711 *2 *4))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-1988 (((-707 (-717))) NIL T ELT) (((-707 (-717)) (-1286 $)) NIL T ELT)) (-3748 (((-717) $) NIL T ELT)) (-3910 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-4067 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) NIL (|has| (-717) (-363)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-717) (-319)) (|has| (-717) (-927))) ELT)) (-4203 (($ $) NIL (-3955 (-12 (|has| (-717) (-319)) (|has| (-717) (-927))) (|has| (-717) (-376))) ELT)) (-4399 (((-417 $) $) NIL (-3955 (-12 (|has| (-717) (-319)) (|has| (-717) (-927))) (|has| (-717) (-376))) ELT)) (-3436 (($ $) NIL (-12 (|has| (-717) (-1021)) (|has| (-717) (-1222))) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-717) (-319)) (|has| (-717) (-927))) ELT)) (-1786 (((-114) $ $) NIL (|has| (-717) (-319)) ELT)) (-3536 (((-789)) NIL (|has| (-717) (-381)) ELT)) (-3908 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-4066 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-3912 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-4065 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) NIL T ELT) (((-3 (-717) #1#) $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| (-717) (-1057 (-419 (-557)))) ELT)) (-3572 (((-557) $) NIL T ELT) (((-717) $) NIL T ELT) (((-419 (-557)) $) NIL (|has| (-717) (-1057 (-419 (-557)))) ELT)) (-1998 (($ (-1286 (-717))) NIL T ELT) (($ (-1286 (-717)) (-1286 $)) NIL T ELT)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-717) (-363)) ELT)) (-2961 (($ $ $) NIL (|has| (-717) (-319)) ELT)) (-1987 (((-707 (-717)) $) NIL T ELT) (((-707 (-717)) $ (-1286 $)) NIL T ELT)) (-2491 (((-707 (-717)) (-707 $)) NIL T ELT) (((-2 (|:| -1781 (-707 (-717))) (|:| |vec| (-1286 (-717)))) (-707 $) (-1286 $)) NIL T ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| (-717) (-656 (-557))) ELT) (((-707 (-557)) (-707 $)) NIL (|has| (-717) (-656 (-557))) ELT)) (-4270 (((-3 $ #1#) (-419 (-1190 (-717)))) NIL (|has| (-717) (-376)) ELT) (($ (-1190 (-717))) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-4071 (((-717) $) 29 T ELT)) (-3423 (((-3 (-419 (-557)) #1#) $) NIL (|has| (-717) (-556)) ELT)) (-3422 (((-114) $) NIL (|has| (-717) (-556)) ELT)) (-3421 (((-419 (-557)) $) NIL (|has| (-717) (-556)) ELT)) (-3509 (((-936)) NIL T ELT)) (-3393 (($) NIL (|has| (-717) (-381)) ELT)) (-2960 (($ $ $) NIL (|has| (-717) (-319)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL (|has| (-717) (-319)) ELT)) (-3232 (($) NIL (|has| (-717) (-363)) ELT)) (-1881 (((-114) $) NIL (|has| (-717) (-363)) ELT)) (-1972 (($ $) NIL (|has| (-717) (-363)) ELT) (($ $ (-789)) NIL (|has| (-717) (-363)) ELT)) (-4151 (((-114) $) NIL (-3955 (-12 (|has| (-717) (-319)) (|has| (-717) (-927))) (|has| (-717) (-376))) ELT)) (-1487 (((-2 (|:| |r| (-717)) (|:| |phi| (-717))) $) NIL (-12 (|has| (-717) (-1079)) (|has| (-717) (-1222))) ELT)) (-4055 (($) NIL (|has| (-717) (-1222)) ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (|has| (-717) (-899 (-391))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (|has| (-717) (-899 (-557))) ELT)) (-4200 (((-843 (-936)) $) NIL (|has| (-717) (-363)) ELT) (((-936) $) NIL (|has| (-717) (-363)) ELT)) (-2639 (((-114) $) NIL T ELT)) (-3410 (($ $ (-557)) NIL (-12 (|has| (-717) (-1021)) (|has| (-717) (-1222))) ELT)) (-3532 (((-717) $) NIL T ELT)) (-3863 (((-709 $) $) NIL (|has| (-717) (-363)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL (|has| (-717) (-319)) ELT)) (-2222 (((-1190 (-717)) $) NIL (|has| (-717) (-376)) ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-4386 (($ (-1 (-717) (-717)) $) NIL T ELT)) (-2218 (((-936) $) NIL (|has| (-717) (-381)) ELT)) (-4370 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-3478 (((-1190 (-717)) $) NIL T ELT)) (-2492 (((-707 (-717)) (-1286 $)) NIL T ELT) (((-2 (|:| -1781 (-707 (-717))) (|:| |vec| (-1286 (-717)))) (-1286 $) $) NIL T ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| (-717) (-656 (-557))) ELT) (((-707 (-557)) (-1286 $)) NIL (|has| (-717) (-656 (-557))) ELT)) (-2100 (($ (-659 $)) NIL (|has| (-717) (-319)) ELT) (($ $ $) NIL (|has| (-717) (-319)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL (|has| (-717) (-376)) ELT)) (-3864 (($) NIL (|has| (-717) (-363)) CONST)) (-2629 (($ (-936)) NIL (|has| (-717) (-381)) ELT)) (-1489 (($) NIL T ELT)) (-4072 (((-717) $) 31 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2638 (($) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| (-717) (-319)) ELT)) (-3560 (($ (-659 $)) NIL (|has| (-717) (-319)) ELT) (($ $ $) NIL (|has| (-717) (-319)) ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) NIL (|has| (-717) (-363)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-717) (-319)) (|has| (-717) (-927))) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-717) (-319)) (|has| (-717) (-927))) ELT)) (-4160 (((-417 $) $) NIL (-3955 (-12 (|has| (-717) (-319)) (|has| (-717) (-927))) (|has| (-717) (-376))) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-717) (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| (-717) (-319)) ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ (-717)) NIL (|has| (-717) (-568)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL (|has| (-717) (-319)) ELT)) (-4371 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-4196 (($ $ (-1196) (-717)) NIL (|has| (-717) (-526 (-1196) (-717))) ELT) (($ $ (-659 (-1196)) (-659 (-717))) NIL (|has| (-717) (-526 (-1196) (-717))) ELT) (($ $ (-659 (-305 (-717)))) NIL (|has| (-717) (-321 (-717))) ELT) (($ $ (-305 (-717))) NIL (|has| (-717) (-321 (-717))) ELT) (($ $ (-717) (-717)) NIL (|has| (-717) (-321 (-717))) ELT) (($ $ (-659 (-717)) (-659 (-717))) NIL (|has| (-717) (-321 (-717))) ELT)) (-1785 (((-789) $) NIL (|has| (-717) (-319)) ELT)) (-4228 (($ $ (-717)) NIL (|has| (-717) (-298 (-717) (-717))) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| (-717) (-319)) ELT)) (-4185 (((-717)) NIL T ELT) (((-717) (-1286 $)) NIL T ELT)) (-1973 (((-3 (-789) #1#) $ $) NIL (|has| (-717) (-363)) ELT) (((-789) $) NIL (|has| (-717) (-363)) ELT)) (-4186 (($ $ (-1 (-717) (-717)) (-789)) NIL T ELT) (($ $ (-1 (-717) (-717))) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-3955 (-12 (|has| (-717) (-376)) (|has| (-717) (-915 (-1196)))) (|has| (-717) (-917 (-1196)))) ELT) (($ $ (-1196) (-789)) NIL (-3955 (-12 (|has| (-717) (-376)) (|has| (-717) (-915 (-1196)))) (|has| (-717) (-917 (-1196)))) ELT) (($ $ (-659 (-1196))) NIL (-3955 (-12 (|has| (-717) (-376)) (|has| (-717) (-915 (-1196)))) (|has| (-717) (-917 (-1196)))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| (-717) (-376)) (|has| (-717) (-915 (-1196)))) (|has| (-717) (-917 (-1196)))) ELT) (($ $ (-789)) NIL (-3955 (-12 (|has| (-717) (-240)) (|has| (-717) (-376))) (|has| (-717) (-239))) ELT) (($ $) NIL (-3955 (-12 (|has| (-717) (-240)) (|has| (-717) (-376))) (|has| (-717) (-239))) ELT)) (-2637 (((-707 (-717)) (-1286 $) (-1 (-717) (-717))) NIL (|has| (-717) (-376)) ELT)) (-3601 (((-1190 (-717))) NIL T ELT)) (-3913 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-4064 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-1875 (($) NIL (|has| (-717) (-363)) ELT)) (-3911 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-4063 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-3909 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-4062 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-3640 (((-707 (-717)) (-1286 $)) NIL T ELT) (((-1286 (-717)) $) NIL T ELT) (((-707 (-717)) (-1286 $) (-1286 $)) NIL T ELT) (((-1286 (-717)) $ (-1286 $)) NIL T ELT)) (-4400 (((-546) $) NIL (|has| (-717) (-629 (-546))) ELT) (((-171 (-229)) $) NIL (|has| (-717) (-1039)) ELT) (((-171 (-391)) $) NIL (|has| (-717) (-1039)) ELT) (((-903 (-391)) $) NIL (|has| (-717) (-629 (-903 (-391)))) ELT) (((-903 (-557)) $) NIL (|has| (-717) (-629 (-903 (-557)))) ELT) (($ (-1190 (-717))) NIL T ELT) (((-1190 (-717)) $) NIL T ELT) (($ (-1286 (-717))) NIL T ELT) (((-1286 (-717)) $) NIL T ELT)) (-3408 (($ $) NIL T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-3955 (-12 (|has| (-717) (-319)) (|has| $ (-147)) (|has| (-717) (-927))) (|has| (-717) (-363))) ELT)) (-1488 (($ (-717) (-717)) 12 T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-557)) NIL T ELT) (($ (-717)) NIL T ELT) (($ (-171 (-391))) 13 T ELT) (($ (-171 (-557))) 19 T ELT) (($ (-171 (-717))) 28 T ELT) (($ (-171 (-719))) 25 T ELT) (((-171 (-391)) $) 33 T ELT) (($ (-419 (-557))) NIL (-3955 (|has| (-717) (-376)) (|has| (-717) (-1057 (-419 (-557))))) ELT)) (-3101 (($ $) NIL (|has| (-717) (-363)) ELT) (((-709 $) $) NIL (-3955 (-12 (|has| (-717) (-319)) (|has| $ (-147)) (|has| (-717) (-927))) (|has| (-717) (-147))) ELT)) (-2836 (((-1190 (-717)) $) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 $)) NIL T ELT)) (-3916 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-3904 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-3914 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-3902 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-3918 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-3906 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-2448 (((-717) $) NIL (|has| (-717) (-1222)) ELT)) (-3919 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-3907 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-3917 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-3905 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-3915 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-3903 (($ $) NIL (|has| (-717) (-1222)) ELT)) (-3801 (($ $) NIL (|has| (-717) (-1079)) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $ (-1 (-717) (-717)) (-789)) NIL T ELT) (($ $ (-1 (-717) (-717))) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-3955 (-12 (|has| (-717) (-376)) (|has| (-717) (-915 (-1196)))) (|has| (-717) (-917 (-1196)))) ELT) (($ $ (-1196) (-789)) NIL (-3955 (-12 (|has| (-717) (-376)) (|has| (-717) (-915 (-1196)))) (|has| (-717) (-917 (-1196)))) ELT) (($ $ (-659 (-1196))) NIL (-3955 (-12 (|has| (-717) (-376)) (|has| (-717) (-915 (-1196)))) (|has| (-717) (-917 (-1196)))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| (-717) (-376)) (|has| (-717) (-915 (-1196)))) (|has| (-717) (-917 (-1196)))) ELT) (($ $ (-789)) NIL (-3955 (-12 (|has| (-717) (-240)) (|has| (-717) (-376))) (|has| (-717) (-239))) ELT) (($ $) NIL (-3955 (-12 (|has| (-717) (-240)) (|has| (-717) (-376))) (|has| (-717) (-239))) ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-4377 (($ $ $) NIL (|has| (-717) (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ $) NIL (|has| (-717) (-1222)) ELT) (($ $ (-419 (-557))) NIL (-12 (|has| (-717) (-1021)) (|has| (-717) (-1222))) ELT) (($ $ (-557)) NIL (|has| (-717) (-376)) ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-717) $) NIL T ELT) (($ $ (-717)) NIL T ELT) (($ (-419 (-557)) $) NIL (|has| (-717) (-376)) ELT) (($ $ (-419 (-557))) NIL (|has| (-717) (-376)) ELT))) -(((-712) (-13 (-401) (-168 (-717)) (-10 -8 (-15 -4374 ($ (-171 (-391)))) (-15 -4374 ($ (-171 (-557)))) (-15 -4374 ($ (-171 (-717)))) (-15 -4374 ($ (-171 (-719)))) (-15 -4374 ((-171 (-391)) $))))) (T -712)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-712)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-171 (-557))) (-5 *1 (-712)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-171 (-717))) (-5 *1 (-712)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-171 (-719))) (-5 *1 (-712)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-712))))) -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1711 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4423)) ELT)) (-4152 (($) 7 T CONST)) (-2592 (($ $) 66 T ELT)) (-1465 (($ $) 62 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3823 (($ |#1| $) 51 (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4423)) ELT)) (-3824 (($ |#1| $) 61 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4423)) ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-1387 ((|#1| $) 43 T ELT)) (-4035 (($ |#1| $) 44 T ELT) (($ |#1| $ (-789)) 67 T ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1388 ((|#1| $) 45 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-2591 (((-659 (-2 (|:| -2284 |#1|) (|:| -2155 (-789)))) $) 65 T ELT)) (-1596 (($) 53 T ELT) (($ (-659 |#1|)) 52 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4400 (((-546) $) 63 (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 54 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1389 (($ (-659 |#1|)) 46 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-713 |#1|) (-142) (-1120)) (T -713)) -((-4035 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-789)) (-4 *1 (-713 *2)) (-4 *2 (-1120)))) (-2592 (*1 *1 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1120)))) (-2591 (*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-1120)) (-5 *2 (-659 (-2 (|:| -2284 *3) (|:| -2155 (-789)))))))) -(-13 (-242 |t#1|) (-10 -8 (-15 -4035 ($ |t#1| $ (-789))) (-15 -2592 ($ $)) (-15 -2591 ((-659 (-2 (|:| -2284 |t#1|) (|:| -2155 (-789)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-628 (-875)))) ((-153 |#1|) . T) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1236) . T)) -((-2595 (((-659 |#1|) (-659 (-2 (|:| -4160 |#1|) (|:| -4376 (-557)))) (-557)) 66 T ELT)) (-2593 ((|#1| |#1| (-557)) 63 T ELT)) (-3560 ((|#1| |#1| |#1| (-557)) 46 T ELT)) (-4160 (((-659 |#1|) |#1| (-557)) 49 T ELT)) (-2596 ((|#1| |#1| (-557) |#1| (-557)) 40 T ELT)) (-2594 (((-659 (-2 (|:| -4160 |#1|) (|:| -4376 (-557)))) |#1| (-557)) 62 T ELT))) -(((-714 |#1|) (-10 -7 (-15 -3560 (|#1| |#1| |#1| (-557))) (-15 -2593 (|#1| |#1| (-557))) (-15 -4160 ((-659 |#1|) |#1| (-557))) (-15 -2594 ((-659 (-2 (|:| -4160 |#1|) (|:| -4376 (-557)))) |#1| (-557))) (-15 -2595 ((-659 |#1|) (-659 (-2 (|:| -4160 |#1|) (|:| -4376 (-557)))) (-557))) (-15 -2596 (|#1| |#1| (-557) |#1| (-557)))) (-1262 (-557))) (T -714)) -((-2596 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-557)) (-5 *1 (-714 *2)) (-4 *2 (-1262 *3)))) (-2595 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-2 (|:| -4160 *5) (|:| -4376 (-557))))) (-5 *4 (-557)) (-4 *5 (-1262 *4)) (-5 *2 (-659 *5)) (-5 *1 (-714 *5)))) (-2594 (*1 *2 *3 *4) (-12 (-5 *4 (-557)) (-5 *2 (-659 (-2 (|:| -4160 *3) (|:| -4376 *4)))) (-5 *1 (-714 *3)) (-4 *3 (-1262 *4)))) (-4160 (*1 *2 *3 *4) (-12 (-5 *4 (-557)) (-5 *2 (-659 *3)) (-5 *1 (-714 *3)) (-4 *3 (-1262 *4)))) (-2593 (*1 *2 *2 *3) (-12 (-5 *3 (-557)) (-5 *1 (-714 *2)) (-4 *2 (-1262 *3)))) (-3560 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-557)) (-5 *1 (-714 *2)) (-4 *2 (-1262 *3))))) -((-2600 (((-1 (-960 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))) 17 T ELT)) (-2597 (((-1152 (-229)) (-1152 (-229)) (-1 (-960 (-229)) (-229) (-229)) (-1108 (-229)) (-1108 (-229)) (-659 (-270))) 53 T ELT) (((-1152 (-229)) (-1 (-960 (-229)) (-229) (-229)) (-1108 (-229)) (-1108 (-229)) (-659 (-270))) 55 T ELT) (((-1152 (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1="undefined") (-1108 (-229)) (-1108 (-229)) (-659 (-270))) 57 T ELT)) (-2599 (((-1152 (-229)) (-326 (-557)) (-326 (-557)) (-326 (-557)) (-1 (-229) (-229)) (-1108 (-229)) (-659 (-270))) NIL T ELT)) (-2598 (((-1152 (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1#) (-1108 (-229)) (-1108 (-229)) (-659 (-270))) 58 T ELT))) -(((-715) (-10 -7 (-15 -2597 ((-1152 (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1="undefined") (-1108 (-229)) (-1108 (-229)) (-659 (-270)))) (-15 -2597 ((-1152 (-229)) (-1 (-960 (-229)) (-229) (-229)) (-1108 (-229)) (-1108 (-229)) (-659 (-270)))) (-15 -2597 ((-1152 (-229)) (-1152 (-229)) (-1 (-960 (-229)) (-229) (-229)) (-1108 (-229)) (-1108 (-229)) (-659 (-270)))) (-15 -2598 ((-1152 (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1#) (-1108 (-229)) (-1108 (-229)) (-659 (-270)))) (-15 -2599 ((-1152 (-229)) (-326 (-557)) (-326 (-557)) (-326 (-557)) (-1 (-229) (-229)) (-1108 (-229)) (-659 (-270)))) (-15 -2600 ((-1 (-960 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229) (-229)))))) (T -715)) -((-2600 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1 (-229) (-229) (-229) (-229))) (-5 *2 (-1 (-960 (-229)) (-229) (-229))) (-5 *1 (-715)))) (-2599 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-326 (-557))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1108 (-229))) (-5 *6 (-659 (-270))) (-5 *2 (-1152 (-229))) (-5 *1 (-715)))) (-2598 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) #1="undefined")) (-5 *5 (-1108 (-229))) (-5 *6 (-659 (-270))) (-5 *2 (-1152 (-229))) (-5 *1 (-715)))) (-2597 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1152 (-229))) (-5 *3 (-1 (-960 (-229)) (-229) (-229))) (-5 *4 (-1108 (-229))) (-5 *5 (-659 (-270))) (-5 *1 (-715)))) (-2597 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-960 (-229)) (-229) (-229))) (-5 *4 (-1108 (-229))) (-5 *5 (-659 (-270))) (-5 *2 (-1152 (-229))) (-5 *1 (-715)))) (-2597 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) #1#)) (-5 *5 (-1108 (-229))) (-5 *6 (-659 (-270))) (-5 *2 (-1152 (-229))) (-5 *1 (-715))))) -((-4160 (((-417 (-1190 |#4|)) (-1190 |#4|)) 86 T ELT) (((-417 |#4|) |#4|) 269 T ELT))) -(((-716 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4160 ((-417 |#4|) |#4|)) (-15 -4160 ((-417 (-1190 |#4|)) (-1190 |#4|)))) (-859) (-813) (-363) (-967 |#3| |#2| |#1|)) (T -716)) -((-4160 (*1 *2 *3) (-12 (-4 *4 (-859)) (-4 *5 (-813)) (-4 *6 (-363)) (-4 *7 (-967 *6 *5 *4)) (-5 *2 (-417 (-1190 *7))) (-5 *1 (-716 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) (-4160 (*1 *2 *3) (-12 (-4 *4 (-859)) (-4 *5 (-813)) (-4 *6 (-363)) (-5 *2 (-417 *3)) (-5 *1 (-716 *4 *5 *6 *3)) (-4 *3 (-967 *6 *5 *4))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 97 T ELT)) (-3529 (((-557) $) 34 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-4199 (($ $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-3436 (($ $) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4051 (((-557) $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3527 (($ $) NIL T ELT)) (-3573 (((-3 (-557) #1#) $) 85 T ELT) (((-3 (-419 (-557)) #1#) $) 28 T ELT) (((-3 (-391) #1#) $) 82 T ELT)) (-3572 (((-557) $) 87 T ELT) (((-419 (-557)) $) 79 T ELT) (((-391) $) 80 T ELT)) (-2961 (($ $ $) 109 T ELT)) (-3885 (((-3 $ #1#) $) 100 T ELT)) (-2960 (($ $ $) 108 T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-2603 (((-936)) 89 T ELT) (((-936) (-936)) 88 T ELT)) (-3602 (((-114) $) NIL T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL T ELT)) (-4200 (((-557) $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3410 (($ $ (-557)) NIL T ELT)) (-3532 (($ $) NIL T ELT)) (-3603 (((-114) $) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2601 (((-557) (-557)) 94 T ELT) (((-557)) 95 T ELT)) (-2928 (($ $ $) NIL T ELT) (($) NIL (-12 (-2957 (|has| $ (-6 -4406))) (-2957 (|has| $ (-6 -4414)))) ELT)) (-2602 (((-557) (-557)) 92 T ELT) (((-557)) 93 T ELT)) (-3256 (($ $ $) NIL T ELT) (($) NIL (-12 (-2957 (|has| $ (-6 -4406))) (-2957 (|has| $ (-6 -4414)))) ELT)) (-2604 (((-557) $) 17 T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) 104 T ELT)) (-1975 (((-936) (-557)) NIL (|has| $ (-6 -4414)) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3528 (($ $) NIL T ELT)) (-3530 (($ $) NIL T ELT)) (-3670 (($ (-557) (-557)) NIL T ELT) (($ (-557) (-557) (-936)) NIL T ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) 105 T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-2630 (((-557) $) 24 T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 107 T ELT)) (-3012 (((-936)) NIL T ELT) (((-936) (-936)) NIL (|has| $ (-6 -4414)) ELT)) (-1974 (((-936) (-557)) NIL (|has| $ (-6 -4414)) ELT)) (-4400 (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (((-903 (-391)) $) NIL T ELT)) (-4374 (((-875) $) 63 T ELT) (($ (-557)) 75 T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) 78 T ELT) (($ (-557)) 75 T ELT) (($ (-419 (-557))) 78 T ELT) (($ (-391)) 72 T ELT) (((-391) $) 61 T ELT) (($ (-719)) 66 T ELT)) (-3526 (((-789)) 119 T CONST)) (-3346 (($ (-557) (-557) (-936)) 54 T ELT)) (-3531 (($ $) NIL T ELT)) (-1976 (((-936)) NIL T ELT) (((-936) (-936)) NIL (|has| $ (-6 -4414)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3093 (((-936)) 91 T ELT) (((-936) (-936)) 90 T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-3801 (($ $) NIL T ELT)) (-3057 (($) 37 T CONST)) (-3063 (($) 18 T CONST)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 96 T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 118 T ELT)) (-4377 (($ $ $) 77 T ELT)) (-4265 (($ $) 115 T ELT) (($ $ $) 116 T ELT)) (-4267 (($ $ $) 114 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT) (($ $ (-419 (-557))) 103 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 110 T ELT) (($ $ $) 101 T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT))) -(((-717) (-13 (-416) (-401) (-376) (-1057 (-391)) (-1057 (-419 (-557))) (-149) (-10 -8 (-15 -2603 ((-936) (-936))) (-15 -2603 ((-936))) (-15 -3093 ((-936) (-936))) (-15 -2602 ((-557) (-557))) (-15 -2602 ((-557))) (-15 -2601 ((-557) (-557))) (-15 -2601 ((-557))) (-15 -4374 ((-391) $)) (-15 -4374 ($ (-719))) (-15 -2604 ((-557) $)) (-15 -2630 ((-557) $)) (-15 -3346 ($ (-557) (-557) (-936)))))) (T -717)) -((-2630 (*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-717)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-717)))) (-2603 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-717)))) (-2603 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-717)))) (-3093 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-717)))) (-2602 (*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-717)))) (-2602 (*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-717)))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-717)))) (-2601 (*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-717)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-717)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-717)))) (-3346 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-557)) (-5 *3 (-936)) (-5 *1 (-717))))) -((-2607 (((-707 |#1|) (-707 |#1|) |#1| |#1|) 85 T ELT)) (-3510 (((-707 |#1|) (-707 |#1|) |#1|) 66 T ELT)) (-2606 (((-707 |#1|) (-707 |#1|) |#1|) 86 T ELT)) (-2605 (((-707 |#1|) (-707 |#1|)) 67 T ELT)) (-2608 (((-2 (|:| -2182 |#1|) (|:| -3301 |#1|)) |#1| |#1|) 84 T ELT))) -(((-718 |#1|) (-10 -7 (-15 -2605 ((-707 |#1|) (-707 |#1|))) (-15 -3510 ((-707 |#1|) (-707 |#1|) |#1|)) (-15 -2606 ((-707 |#1|) (-707 |#1|) |#1|)) (-15 -2607 ((-707 |#1|) (-707 |#1|) |#1| |#1|)) (-15 -2608 ((-2 (|:| -2182 |#1|) (|:| -3301 |#1|)) |#1| |#1|))) (-319)) (T -718)) -((-2608 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2182 *3) (|:| -3301 *3))) (-5 *1 (-718 *3)) (-4 *3 (-319)))) (-2607 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-707 *3)) (-4 *3 (-319)) (-5 *1 (-718 *3)))) (-2606 (*1 *2 *2 *3) (-12 (-5 *2 (-707 *3)) (-4 *3 (-319)) (-5 *1 (-718 *3)))) (-3510 (*1 *2 *2 *3) (-12 (-5 *2 (-707 *3)) (-4 *3 (-319)) (-5 *1 (-718 *3)))) (-2605 (*1 *2 *2) (-12 (-5 *2 (-707 *3)) (-4 *3 (-319)) (-5 *1 (-718 *3))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-2255 (($ $ $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2250 (($ $ $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4051 (((-557) $) NIL T ELT)) (-2828 (($ $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) 31 T ELT)) (-3572 (((-557) $) 29 T ELT)) (-2961 (($ $ $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL T ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3423 (((-3 (-419 (-557)) #1#) $) NIL T ELT)) (-3422 (((-114) $) NIL T ELT)) (-3421 (((-419 (-557)) $) NIL T ELT)) (-3393 (($ $) NIL T ELT) (($) NIL T ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-2248 (($ $ $ $) NIL T ELT)) (-2256 (($ $ $) NIL T ELT)) (-3602 (((-114) $) NIL T ELT)) (-1481 (($ $ $) NIL T ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3072 (((-114) $) NIL T ELT)) (-3863 (((-709 $) $) NIL T ELT)) (-3603 (((-114) $) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2249 (($ $ $ $) NIL T ELT)) (-2928 (($ $ $) NIL T ELT)) (-2609 (((-936) (-936)) 10 T ELT) (((-936)) 9 T ELT)) (-3256 (($ $ $) NIL T ELT)) (-2252 (($ $) NIL T ELT)) (-4261 (($ $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL T ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL T ELT)) (-2100 (($ (-659 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2247 (($ $ $) NIL T ELT)) (-3864 (($) NIL T CONST)) (-2254 (($ $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ (-659 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1479 (($ $) NIL T ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-3073 (((-114) $) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-4186 (($ $ (-789)) NIL T ELT) (($ $) NIL T ELT)) (-2253 (($ $) NIL T ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-229) $) NIL T ELT) (((-391) $) NIL T ELT) (((-903 (-557)) $) NIL T ELT) (((-546) $) NIL T ELT) (((-557) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) 28 T ELT) (($ $) NIL T ELT) (($ (-557)) 28 T ELT) (((-326 $) (-326 (-557))) 18 T ELT)) (-3526 (((-789)) NIL T CONST)) (-2257 (((-114) $ $) NIL T ELT)) (-3502 (($ $ $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3093 (($) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-2251 (($ $ $ $) NIL T ELT)) (-3801 (($ $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $ (-789)) NIL T ELT) (($ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-719) (-13 (-401) (-556) (-10 -8 (-15 -2609 ((-936) (-936))) (-15 -2609 ((-936))) (-15 -4374 ((-326 $) (-326 (-557))))))) (T -719)) -((-2609 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-719)))) (-2609 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-719)))) (-4374 (*1 *2 *3) (-12 (-5 *3 (-326 (-557))) (-5 *2 (-326 (-719))) (-5 *1 (-719))))) -((-2615 (((-1 |#4| |#2| |#3|) |#1| (-1196) (-1196)) 19 T ELT)) (-2610 (((-1 |#4| |#2| |#3|) (-1196)) 12 T ELT))) -(((-720 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2610 ((-1 |#4| |#2| |#3|) (-1196))) (-15 -2615 ((-1 |#4| |#2| |#3|) |#1| (-1196) (-1196)))) (-629 (-546)) (-1236) (-1236) (-1236)) (T -720)) -((-2615 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1196)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-720 *3 *5 *6 *7)) (-4 *3 (-629 (-546))) (-4 *5 (-1236)) (-4 *6 (-1236)) (-4 *7 (-1236)))) (-2610 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-720 *4 *5 *6 *7)) (-4 *4 (-629 (-546))) (-4 *5 (-1236)) (-4 *6 (-1236)) (-4 *7 (-1236))))) -((-2611 (((-1 (-229) (-229) (-229)) |#1| (-1196) (-1196)) 43 T ELT) (((-1 (-229) (-229)) |#1| (-1196)) 48 T ELT))) -(((-721 |#1|) (-10 -7 (-15 -2611 ((-1 (-229) (-229)) |#1| (-1196))) (-15 -2611 ((-1 (-229) (-229) (-229)) |#1| (-1196) (-1196)))) (-629 (-546))) (T -721)) -((-2611 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1196)) (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-721 *3)) (-4 *3 (-629 (-546))))) (-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-5 *2 (-1 (-229) (-229))) (-5 *1 (-721 *3)) (-4 *3 (-629 (-546)))))) -((-2612 (((-1196) |#1| (-1196) (-659 (-1196))) 10 T ELT) (((-1196) |#1| (-1196) (-1196) (-1196)) 13 T ELT) (((-1196) |#1| (-1196) (-1196)) 12 T ELT) (((-1196) |#1| (-1196)) 11 T ELT))) -(((-722 |#1|) (-10 -7 (-15 -2612 ((-1196) |#1| (-1196))) (-15 -2612 ((-1196) |#1| (-1196) (-1196))) (-15 -2612 ((-1196) |#1| (-1196) (-1196) (-1196))) (-15 -2612 ((-1196) |#1| (-1196) (-659 (-1196))))) (-629 (-546))) (T -722)) -((-2612 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-659 (-1196))) (-5 *2 (-1196)) (-5 *1 (-722 *3)) (-4 *3 (-629 (-546))))) (-2612 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-722 *3)) (-4 *3 (-629 (-546))))) (-2612 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-722 *3)) (-4 *3 (-629 (-546))))) (-2612 (*1 *2 *3 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-722 *3)) (-4 *3 (-629 (-546)))))) -((-2613 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) -(((-723 |#1| |#2|) (-10 -7 (-15 -2613 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1236) (-1236)) (T -723)) -((-2613 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-723 *3 *4)) (-4 *3 (-1236)) (-4 *4 (-1236))))) -((-2614 (((-1 |#3| |#2|) (-1196)) 11 T ELT)) (-2615 (((-1 |#3| |#2|) |#1| (-1196)) 21 T ELT))) -(((-724 |#1| |#2| |#3|) (-10 -7 (-15 -2614 ((-1 |#3| |#2|) (-1196))) (-15 -2615 ((-1 |#3| |#2|) |#1| (-1196)))) (-629 (-546)) (-1236) (-1236)) (T -724)) -((-2615 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-5 *2 (-1 *6 *5)) (-5 *1 (-724 *3 *5 *6)) (-4 *3 (-629 (-546))) (-4 *5 (-1236)) (-4 *6 (-1236)))) (-2614 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1 *6 *5)) (-5 *1 (-724 *4 *5 *6)) (-4 *4 (-629 (-546))) (-4 *5 (-1236)) (-4 *6 (-1236))))) -((-2618 (((-3 (-659 (-1190 |#4|)) #1="failed") (-1190 |#4|) (-659 |#2|) (-659 (-1190 |#4|)) (-659 |#3|) (-659 |#4|) (-659 (-659 (-2 (|:| -3477 (-789)) (|:| |pcoef| |#4|)))) (-659 (-789)) (-1286 (-659 (-1190 |#3|))) |#3|) 92 T ELT)) (-2617 (((-3 (-659 (-1190 |#4|)) #1#) (-1190 |#4|) (-659 |#2|) (-659 (-1190 |#3|)) (-659 |#3|) (-659 |#4|) (-659 (-789)) |#3|) 110 T ELT)) (-2616 (((-3 (-659 (-1190 |#4|)) #1#) (-1190 |#4|) (-659 |#2|) (-659 |#3|) (-659 (-789)) (-659 (-1190 |#4|)) (-1286 (-659 (-1190 |#3|))) |#3|) 48 T ELT))) -(((-725 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2616 ((-3 (-659 (-1190 |#4|)) #1="failed") (-1190 |#4|) (-659 |#2|) (-659 |#3|) (-659 (-789)) (-659 (-1190 |#4|)) (-1286 (-659 (-1190 |#3|))) |#3|)) (-15 -2617 ((-3 (-659 (-1190 |#4|)) #1#) (-1190 |#4|) (-659 |#2|) (-659 (-1190 |#3|)) (-659 |#3|) (-659 |#4|) (-659 (-789)) |#3|)) (-15 -2618 ((-3 (-659 (-1190 |#4|)) #1#) (-1190 |#4|) (-659 |#2|) (-659 (-1190 |#4|)) (-659 |#3|) (-659 |#4|) (-659 (-659 (-2 (|:| -3477 (-789)) (|:| |pcoef| |#4|)))) (-659 (-789)) (-1286 (-659 (-1190 |#3|))) |#3|))) (-813) (-859) (-319) (-967 |#3| |#1| |#2|)) (T -725)) -((-2618 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-659 (-1190 *13))) (-5 *3 (-1190 *13)) (-5 *4 (-659 *12)) (-5 *5 (-659 *10)) (-5 *6 (-659 *13)) (-5 *7 (-659 (-659 (-2 (|:| -3477 (-789)) (|:| |pcoef| *13))))) (-5 *8 (-659 (-789))) (-5 *9 (-1286 (-659 (-1190 *10)))) (-4 *12 (-859)) (-4 *10 (-319)) (-4 *13 (-967 *10 *11 *12)) (-4 *11 (-813)) (-5 *1 (-725 *11 *12 *10 *13)))) (-2617 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-659 *11)) (-5 *5 (-659 (-1190 *9))) (-5 *6 (-659 *9)) (-5 *7 (-659 *12)) (-5 *8 (-659 (-789))) (-4 *11 (-859)) (-4 *9 (-319)) (-4 *12 (-967 *9 *10 *11)) (-4 *10 (-813)) (-5 *2 (-659 (-1190 *12))) (-5 *1 (-725 *10 *11 *9 *12)) (-5 *3 (-1190 *12)))) (-2616 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-659 (-1190 *11))) (-5 *3 (-1190 *11)) (-5 *4 (-659 *10)) (-5 *5 (-659 *8)) (-5 *6 (-659 (-789))) (-5 *7 (-1286 (-659 (-1190 *8)))) (-4 *10 (-859)) (-4 *8 (-319)) (-4 *11 (-967 *8 *9 *10)) (-4 *9 (-813)) (-5 *1 (-725 *9 *10 *8 *11))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-4387 (($ $) 53 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3292 (($ |#1| (-789)) 51 T ELT)) (-3219 (((-789) $) 55 T ELT)) (-3590 ((|#1| $) 54 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4376 (((-789) $) 56 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ |#1|) 50 (|has| |#1| (-175)) ELT)) (-4105 ((|#1| $ (-789)) 52 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 58 T ELT) (($ |#1| $) 57 T ELT))) -(((-726 |#1|) (-142) (-1068)) (T -726)) -((-4376 (*1 *2 *1) (-12 (-4 *1 (-726 *3)) (-4 *3 (-1068)) (-5 *2 (-789)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-726 *3)) (-4 *3 (-1068)) (-5 *2 (-789)))) (-3590 (*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-1068)))) (-4387 (*1 *1 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-1068)))) (-4105 (*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-4 *1 (-726 *2)) (-4 *2 (-1068)))) (-3292 (*1 *1 *2 *3) (-12 (-5 *3 (-789)) (-4 *1 (-726 *2)) (-4 *2 (-1068))))) -(-13 (-1068) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4376 ((-789) $)) (-15 -3219 ((-789) $)) (-15 -3590 (|t#1| $)) (-15 -4387 ($ $)) (-15 -4105 (|t#1| $ (-789))) (-15 -3292 ($ |t#1| (-789))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-631 (-557)) . T) ((-631 |#1|) |has| |#1| (-175)) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-658 |#1|) |has| |#1| (-175)) ((-735 |#1|) |has| |#1| (-175)) ((-744) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-4386 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) -(((-727 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4386 (|#6| (-1 |#4| |#1|) |#3|))) (-568) (-1262 |#1|) (-1262 (-419 |#2|)) (-568) (-1262 |#4|) (-1262 (-419 |#5|))) (T -727)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568)) (-4 *6 (-1262 *5)) (-4 *2 (-1262 (-419 *8))) (-5 *1 (-727 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1262 (-419 *6))) (-4 *8 (-1262 *7))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2619 (((-1178) (-875)) 38 T ELT)) (-4045 (((-1292) (-1178)) 31 T ELT)) (-2621 (((-1178) (-875)) 28 T ELT)) (-2620 (((-1178) (-875)) 29 T ELT)) (-4374 (((-875) $) NIL T ELT) (((-1178) (-875)) 27 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-728) (-13 (-1120) (-10 -7 (-15 -4374 ((-1178) (-875))) (-15 -2621 ((-1178) (-875))) (-15 -2620 ((-1178) (-875))) (-15 -2619 ((-1178) (-875))) (-15 -4045 ((-1292) (-1178)))))) (T -728)) -((-4374 (*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1178)) (-5 *1 (-728)))) (-2621 (*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1178)) (-5 *1 (-728)))) (-2620 (*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1178)) (-5 *1 (-728)))) (-2619 (*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1178)) (-5 *1 (-728)))) (-4045 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-728))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-2961 (($ $ $) NIL T ELT)) (-4270 (($ |#1| |#2|) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-3011 ((|#2| $) NIL T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-2631 (((-3 $ #1#) $ $) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT))) -(((-729 |#1| |#2| |#3| |#4| |#5|) (-13 (-376) (-10 -8 (-15 -3011 (|#2| $)) (-15 -4374 (|#1| $)) (-15 -4270 ($ |#1| |#2|)) (-15 -2631 ((-3 $ #1="failed") $ $)))) (-175) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -729)) -((-3011 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-729 *3 *2 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4374 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-729 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4270 (*1 *1 *2 *3) (-12 (-5 *1 (-729 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2631 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-729 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 36 T ELT)) (-4195 (((-1286 |#1|) $ (-789)) NIL T ELT)) (-3482 (((-659 (-1101)) $) NIL T ELT)) (-4193 (($ (-1190 |#1|)) NIL T ELT)) (-3484 (((-1190 $) $ (-1101)) NIL T ELT) (((-1190 |#1|) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-3218 (((-789) $) NIL T ELT) (((-789) $ (-659 (-1101))) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4183 (($ $ $) NIL (|has| |#1| (-568)) ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-4203 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-1786 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3536 (((-789)) 54 (|has| |#1| (-381)) ELT)) (-4189 (($ $ (-789)) NIL T ELT)) (-4188 (($ $ (-789)) NIL T ELT)) (-2628 ((|#2| |#2|) 50 T ELT)) (-4179 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 (-1101) #1#) $) NIL T ELT)) (-3572 ((|#1| $) NIL T ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-1101) $) NIL T ELT)) (-4184 (($ $ $ (-1101)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) NIL (|has| |#1| (-175)) ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4387 (($ $) 40 T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) NIL T ELT) (((-707 |#1|) (-707 $)) NIL T ELT)) (-4270 (($ |#2|) 48 T ELT)) (-3885 (((-3 $ #1#) $) 97 T ELT)) (-3393 (($) 58 (|has| |#1| (-381)) ELT)) (-2960 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4187 (($ $ $) NIL T ELT)) (-4181 (($ $ $) NIL (|has| |#1| (-568)) ELT)) (-4180 (((-2 (|:| -4382 |#1|) (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-568)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL (|has| |#1| (-376)) ELT)) (-3921 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1101)) NIL (|has| |#1| (-464)) ELT)) (-3217 (((-659 $) $) NIL T ELT)) (-4151 (((-114) $) NIL (|has| |#1| (-927)) ELT)) (-2624 (((-975 $)) 88 T ELT)) (-1802 (($ $ |#1| (-789) $) NIL T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (-12 (|has| (-1101) (-899 (-391))) (|has| |#1| (-899 (-391)))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (-12 (|has| (-1101) (-899 (-557))) (|has| |#1| (-899 (-557)))) ELT)) (-4200 (((-789) $ $) NIL (|has| |#1| (-568)) ELT)) (-2639 (((-114) $) NIL T ELT)) (-2647 (((-789) $) NIL T ELT)) (-3863 (((-709 $) $) NIL (|has| |#1| (-1171)) ELT)) (-3485 (($ (-1190 |#1|) (-1101)) NIL T ELT) (($ (-1190 $) (-1101)) NIL T ELT)) (-4205 (($ $ (-789)) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-3220 (((-659 $) $) NIL T ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-789)) 85 T ELT) (($ $ (-1101) (-789)) NIL T ELT) (($ $ (-659 (-1101)) (-659 (-789))) NIL T ELT)) (-4191 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $ (-1101)) NIL T ELT) (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-3011 ((|#2|) 51 T ELT)) (-3219 (((-789) $) NIL T ELT) (((-789) $ (-1101)) NIL T ELT) (((-659 (-789)) $ (-659 (-1101))) NIL T ELT)) (-1803 (($ (-1 (-789) (-789)) $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4194 (((-1190 |#1|) $) NIL T ELT)) (-3483 (((-3 (-1101) #1#) $) NIL T ELT)) (-2218 (((-936) $) NIL (|has| |#1| (-381)) ELT)) (-3478 ((|#2| $) 47 T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL T ELT) (((-707 |#1|) (-1286 $)) NIL T ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) 34 T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-4190 (((-2 (|:| -2182 $) (|:| -3301 $)) $ (-789)) NIL T ELT)) (-3222 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3221 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-2 (|:| |var| (-1101)) (|:| -2630 (-789))) #1#) $) NIL T ELT)) (-4240 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3864 (($) NIL (|has| |#1| (-1171)) CONST)) (-2629 (($ (-936)) NIL (|has| |#1| (-381)) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2003 (((-114) $) NIL T ELT)) (-2002 ((|#1| $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-464)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-2622 (($ $) 87 (|has| |#1| (-363)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-4160 (((-417 $) $) NIL (|has| |#1| (-927)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3884 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-568)) ELT) (((-3 $ #1#) $ $) 96 (|has| |#1| (-568)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-4196 (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ (-1101) |#1|) NIL T ELT) (($ $ (-659 (-1101)) (-659 |#1|)) NIL T ELT) (($ $ (-1101) $) NIL T ELT) (($ $ (-659 (-1101)) (-659 $)) NIL T ELT)) (-1785 (((-789) $) NIL (|has| |#1| (-376)) ELT)) (-4228 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568)) ELT) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)) ELT)) (-4192 (((-3 $ #1#) $ (-789)) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 98 (|has| |#1| (-376)) ELT)) (-4185 (($ $ (-1101)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) NIL (|has| |#1| (-175)) ELT)) (-4186 (($ $ (-659 (-1101)) (-659 (-789))) NIL T ELT) (($ $ (-1101) (-789)) NIL T ELT) (($ $ (-659 (-1101))) NIL T ELT) (($ $ (-1101)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-917 (-1196))) ELT)) (-4376 (((-789) $) 38 T ELT) (((-789) $ (-1101)) NIL T ELT) (((-659 (-789)) $ (-659 (-1101))) NIL T ELT)) (-4400 (((-903 (-391)) $) NIL (-12 (|has| (-1101) (-629 (-903 (-391)))) (|has| |#1| (-629 (-903 (-391))))) ELT) (((-903 (-557)) $) NIL (-12 (|has| (-1101) (-629 (-903 (-557)))) (|has| |#1| (-629 (-903 (-557))))) ELT) (((-546) $) NIL (-12 (|has| (-1101) (-629 (-546))) (|has| |#1| (-629 (-546)))) ELT)) (-3216 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1101)) NIL (|has| |#1| (-464)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-927))) ELT)) (-2623 (((-975 $)) 42 T ELT)) (-4182 (((-3 $ #1#) $ $) NIL (|has| |#1| (-568)) ELT) (((-3 (-419 $) #1#) (-419 $) $) NIL (|has| |#1| (-568)) ELT)) (-4374 (((-875) $) 68 T ELT) (($ (-557)) NIL T ELT) (($ |#1|) 65 T ELT) (($ (-1101)) NIL T ELT) (($ |#2|) 75 T ELT) (($ (-419 (-557))) NIL (-3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) ELT) (($ $) NIL (|has| |#1| (-568)) ELT)) (-4245 (((-659 |#1|) $) NIL T ELT)) (-4105 ((|#1| $ (-789)) 70 T ELT) (($ $ (-1101) (-789)) NIL T ELT) (($ $ (-659 (-1101)) (-659 (-789))) NIL T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| |#1| (-927))) (|has| |#1| (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-1801 (($ $ $ (-789)) NIL (|has| |#1| (-175)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3057 (($) 25 T CONST)) (-2627 (((-1286 |#1|) $) 83 T ELT)) (-2626 (($ (-1286 |#1|)) 57 T ELT)) (-3063 (($) 8 T CONST)) (-3068 (($ $ (-659 (-1101)) (-659 (-789))) NIL T ELT) (($ $ (-1101) (-789)) NIL T ELT) (($ $ (-659 (-1101))) NIL T ELT) (($ $ (-1101)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-917 (-1196))) ELT)) (-2625 (((-1286 |#1|) $) NIL T ELT)) (-3452 (((-114) $ $) 76 T ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $) 79 T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 39 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) 92 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 64 T ELT) (($ $ $) 82 T ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ |#1| $) 62 T ELT) (($ $ |#1|) NIL T ELT))) -(((-730 |#1| |#2|) (-13 (-1262 |#1|) (-631 |#2|) (-10 -8 (-15 -2628 (|#2| |#2|)) (-15 -3011 (|#2|)) (-15 -4270 ($ |#2|)) (-15 -3478 (|#2| $)) (-15 -2627 ((-1286 |#1|) $)) (-15 -2626 ($ (-1286 |#1|))) (-15 -2625 ((-1286 |#1|) $)) (-15 -2624 ((-975 $))) (-15 -2623 ((-975 $))) (IF (|has| |#1| (-363)) (-15 -2622 ($ $)) |%noBranch|) (IF (|has| |#1| (-381)) (-6 (-381)) |%noBranch|))) (-1068) (-1262 |#1|)) (T -730)) -((-2628 (*1 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-730 *3 *2)) (-4 *2 (-1262 *3)))) (-3011 (*1 *2) (-12 (-4 *2 (-1262 *3)) (-5 *1 (-730 *3 *2)) (-4 *3 (-1068)))) (-4270 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-730 *3 *2)) (-4 *2 (-1262 *3)))) (-3478 (*1 *2 *1) (-12 (-4 *2 (-1262 *3)) (-5 *1 (-730 *3 *2)) (-4 *3 (-1068)))) (-2627 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-1286 *3)) (-5 *1 (-730 *3 *4)) (-4 *4 (-1262 *3)))) (-2626 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1068)) (-5 *1 (-730 *3 *4)) (-4 *4 (-1262 *3)))) (-2625 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-1286 *3)) (-5 *1 (-730 *3 *4)) (-4 *4 (-1262 *3)))) (-2624 (*1 *2) (-12 (-4 *3 (-1068)) (-5 *2 (-975 (-730 *3 *4))) (-5 *1 (-730 *3 *4)) (-4 *4 (-1262 *3)))) (-2623 (*1 *2) (-12 (-4 *3 (-1068)) (-5 *2 (-975 (-730 *3 *4))) (-5 *1 (-730 *3 *4)) (-4 *4 (-1262 *3)))) (-2622 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *2 (-1068)) (-5 *1 (-730 *2 *3)) (-4 *3 (-1262 *2))))) -((-2965 (((-114) $ $) NIL T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2629 ((|#1| $) 13 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2630 ((|#2| $) 12 T ELT)) (-3948 (($ |#1| |#2|) 16 T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-2 (|:| -2629 |#1|) (|:| -2630 |#2|))) 15 T ELT) (((-2 (|:| -2629 |#1|) (|:| -2630 |#2|)) $) 14 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 11 T ELT))) -(((-731 |#1| |#2| |#3|) (-13 (-859) (-502 (-2 (|:| -2629 |#1|) (|:| -2630 |#2|))) (-10 -8 (-15 -2630 (|#2| $)) (-15 -2629 (|#1| $)) (-15 -3948 ($ |#1| |#2|)))) (-859) (-1120) (-1 (-114) (-2 (|:| -2629 |#1|) (|:| -2630 |#2|)) (-2 (|:| -2629 |#1|) (|:| -2630 |#2|)))) (T -731)) -((-2630 (*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-731 *3 *2 *4)) (-4 *3 (-859)) (-14 *4 (-1 (-114) (-2 (|:| -2629 *3) (|:| -2630 *2)) (-2 (|:| -2629 *3) (|:| -2630 *2)))))) (-2629 (*1 *2 *1) (-12 (-4 *2 (-859)) (-5 *1 (-731 *2 *3 *4)) (-4 *3 (-1120)) (-14 *4 (-1 (-114) (-2 (|:| -2629 *2) (|:| -2630 *3)) (-2 (|:| -2629 *2) (|:| -2630 *3)))))) (-3948 (*1 *1 *2 *3) (-12 (-5 *1 (-731 *2 *3 *4)) (-4 *2 (-859)) (-4 *3 (-1120)) (-14 *4 (-1 (-114) (-2 (|:| -2629 *2) (|:| -2630 *3)) (-2 (|:| -2629 *2) (|:| -2630 *3))))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 66 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-115) #1#) $) 107 T ELT)) (-3572 ((|#1| $) NIL T ELT) (((-115) $) 39 T ELT)) (-3885 (((-3 $ #1#) $) 102 T ELT)) (-2910 ((|#2| (-115) |#2|) 93 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-2909 (($ |#1| (-374 (-115))) 14 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2911 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2912 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-4228 ((|#2| $ |#2|) 33 T ELT)) (-2913 ((|#1| |#1|) 117 (|has| |#1| (-175)) ELT)) (-4374 (((-875) $) 73 T ELT) (($ (-557)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-115)) 23 T ELT)) (-3101 (((-709 $) $) NIL (|has| |#1| (-147)) ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2914 (($ $) 111 (|has| |#1| (-175)) ELT) (($ $ $) 115 (|has| |#1| (-175)) ELT)) (-3057 (($) 21 T CONST)) (-3063 (($) 9 T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 83 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ (-115) (-557)) NIL T ELT) (($ $ (-557)) 64 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-175)) ELT) (($ $ |#1|) 109 (|has| |#1| (-175)) ELT))) -(((-732 |#1| |#2|) (-13 (-1068) (-1057 |#1|) (-1057 (-115)) (-298 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -2914 ($ $)) (-15 -2914 ($ $ $)) (-15 -2913 (|#1| |#1|))) |%noBranch|) (-15 -2912 ($ $ (-1 |#2| |#2|))) (-15 -2911 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-557))) (-15 ** ($ $ (-557))) (-15 -2910 (|#2| (-115) |#2|)) (-15 -2909 ($ |#1| (-374 (-115)))))) (-1068) (-666 |#1|)) (T -732)) -((-2914 (*1 *1 *1) (-12 (-4 *2 (-175)) (-4 *2 (-1068)) (-5 *1 (-732 *2 *3)) (-4 *3 (-666 *2)))) (-2914 (*1 *1 *1 *1) (-12 (-4 *2 (-175)) (-4 *2 (-1068)) (-5 *1 (-732 *2 *3)) (-4 *3 (-666 *2)))) (-2913 (*1 *2 *2) (-12 (-4 *2 (-175)) (-4 *2 (-1068)) (-5 *1 (-732 *2 *3)) (-4 *3 (-666 *2)))) (-2912 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-666 *3)) (-4 *3 (-1068)) (-5 *1 (-732 *3 *4)))) (-2911 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-666 *3)) (-4 *3 (-1068)) (-5 *1 (-732 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-557)) (-4 *4 (-1068)) (-5 *1 (-732 *4 *5)) (-4 *5 (-666 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-4 *3 (-1068)) (-5 *1 (-732 *3 *4)) (-4 *4 (-666 *3)))) (-2910 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1068)) (-5 *1 (-732 *4 *2)) (-4 *2 (-666 *4)))) (-2909 (*1 *1 *2 *3) (-12 (-5 *3 (-374 (-115))) (-4 *2 (-1068)) (-5 *1 (-732 *2 *4)) (-4 *4 (-666 *2))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 33 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-4270 (($ |#1| |#2|) 25 T ELT)) (-3885 (((-3 $ #1#) $) 51 T ELT)) (-2639 (((-114) $) 35 T ELT)) (-3011 ((|#2| $) 12 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) 52 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2631 (((-3 $ #1#) $ $) 50 T ELT)) (-4374 (((-875) $) 24 T ELT) (($ (-557)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3526 (((-789)) 28 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 16 T CONST)) (-3063 (($) 30 T CONST)) (-3452 (((-114) $ $) 41 T ELT)) (-4265 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-4267 (($ $ $) 43 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 21 T ELT) (($ $ $) 20 T ELT))) -(((-733 |#1| |#2| |#3| |#4| |#5|) (-13 (-1068) (-10 -8 (-15 -3011 (|#2| $)) (-15 -4374 (|#1| $)) (-15 -4270 ($ |#1| |#2|)) (-15 -2631 ((-3 $ #1="failed") $ $)) (-15 -3885 ((-3 $ #1#) $)) (-15 -2872 ($ $)))) (-175) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -733)) -((-3885 (*1 *1 *1) (|partial| -12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-3011 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-733 *3 *2 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4374 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4270 (*1 *1 *2 *3) (-12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2631 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2872 (*1 *1 *1) (-12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -((* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) -(((-734 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-557) |#1|)) (-15 * (|#1| (-789) |#1|)) (-15 * (|#1| (-936) |#1|))) (-735 |#2|) (-175)) (T -734)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-735 |#1|) (-142) (-175)) (T -735)) -NIL -(-13 (-111 |t#1| |t#1|) (-658 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-666 |#1|) . T) ((-658 |#1|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-2828 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-4275 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-4152 (($) NIL T CONST)) (-3885 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-2632 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) 16 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4196 ((|#1| $ |#1|) 24 T ELT) (((-843 |#1|) $ (-843 |#1|)) 32 T ELT)) (-3408 (($ $ $) NIL T ELT)) (-2822 (($ $ $) NIL T ELT)) (-4374 (((-875) $) 39 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3063 (($) 9 T CONST)) (-3452 (((-114) $ $) 48 T ELT)) (-4377 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ $ $) 14 T ELT))) -(((-736 |#1|) (-13 (-485) (-10 -8 (-15 -2632 ($ |#1| |#1| |#1| |#1|)) (-15 -2828 ($ |#1|)) (-15 -4275 ($ |#1|)) (-15 -3885 ($)) (-15 -2828 ($ $ |#1|)) (-15 -4275 ($ $ |#1|)) (-15 -3885 ($ $)) (-15 -4196 (|#1| $ |#1|)) (-15 -4196 ((-843 |#1|) $ (-843 |#1|))))) (-376)) (T -736)) -((-2632 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-736 *2)) (-4 *2 (-376)))) (-2828 (*1 *1 *2) (-12 (-5 *1 (-736 *2)) (-4 *2 (-376)))) (-4275 (*1 *1 *2) (-12 (-5 *1 (-736 *2)) (-4 *2 (-376)))) (-3885 (*1 *1) (-12 (-5 *1 (-736 *2)) (-4 *2 (-376)))) (-2828 (*1 *1 *1 *2) (-12 (-5 *1 (-736 *2)) (-4 *2 (-376)))) (-4275 (*1 *1 *1 *2) (-12 (-5 *1 (-736 *2)) (-4 *2 (-376)))) (-3885 (*1 *1 *1) (-12 (-5 *1 (-736 *2)) (-4 *2 (-376)))) (-4196 (*1 *2 *1 *2) (-12 (-5 *1 (-736 *2)) (-4 *2 (-376)))) (-4196 (*1 *2 *1 *2) (-12 (-5 *2 (-843 *3)) (-4 *3 (-376)) (-5 *1 (-736 *3))))) -((-2636 (($ $ (-936)) 19 T ELT)) (-2635 (($ $ (-936)) 20 T ELT)) (** (($ $ (-936)) 10 T ELT))) -(((-737 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-936))) (-15 -2635 (|#1| |#1| (-936))) (-15 -2636 (|#1| |#1| (-936)))) (-738)) (T -737)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-2636 (($ $ (-936)) 19 T ELT)) (-2635 (($ $ (-936)) 18 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (** (($ $ (-936)) 17 T ELT)) (* (($ $ $) 20 T ELT))) -(((-738) (-142)) (T -738)) -((* (*1 *1 *1 *1) (-4 *1 (-738))) (-2636 (*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-936)))) (-2635 (*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-936)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-936))))) -(-13 (-1120) (-10 -8 (-15 * ($ $ $)) (-15 -2636 ($ $ (-936))) (-15 -2635 ($ $ (-936))) (-15 ** ($ $ (-936))))) -(((-102) . T) ((-628 (-875)) . T) ((-1120) . T) ((-1236) . T)) -((-2636 (($ $ (-936)) NIL T ELT) (($ $ (-789)) 18 T ELT)) (-2639 (((-114) $) 10 T ELT)) (-2635 (($ $ (-936)) NIL T ELT) (($ $ (-789)) 19 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) 16 T ELT))) -(((-739 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-789))) (-15 -2635 (|#1| |#1| (-789))) (-15 -2636 (|#1| |#1| (-789))) (-15 -2639 ((-114) |#1|)) (-15 ** (|#1| |#1| (-936))) (-15 -2635 (|#1| |#1| (-936))) (-15 -2636 (|#1| |#1| (-936)))) (-740)) (T -739)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-2633 (((-3 $ "failed") $) 22 T ELT)) (-2636 (($ $ (-936)) 19 T ELT) (($ $ (-789)) 27 T ELT)) (-3885 (((-3 $ "failed") $) 24 T ELT)) (-2639 (((-114) $) 28 T ELT)) (-2634 (((-3 $ "failed") $) 23 T ELT)) (-2635 (($ $ (-936)) 18 T ELT) (($ $ (-789)) 26 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3063 (($) 29 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (** (($ $ (-936)) 17 T ELT) (($ $ (-789)) 25 T ELT)) (* (($ $ $) 20 T ELT))) -(((-740) (-142)) (T -740)) -((-3063 (*1 *1) (-4 *1 (-740))) (-2639 (*1 *2 *1) (-12 (-4 *1 (-740)) (-5 *2 (-114)))) (-2636 (*1 *1 *1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-789)))) (-2635 (*1 *1 *1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-789)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-789)))) (-3885 (*1 *1 *1) (|partial| -4 *1 (-740))) (-2634 (*1 *1 *1) (|partial| -4 *1 (-740))) (-2633 (*1 *1 *1) (|partial| -4 *1 (-740)))) -(-13 (-738) (-10 -8 (-15 (-3063) ($) -4380) (-15 -2639 ((-114) $)) (-15 -2636 ($ $ (-789))) (-15 -2635 ($ $ (-789))) (-15 ** ($ $ (-789))) (-15 -3885 ((-3 $ "failed") $)) (-15 -2634 ((-3 $ "failed") $)) (-15 -2633 ((-3 $ "failed") $)))) -(((-102) . T) ((-628 (-875)) . T) ((-738) . T) ((-1120) . T) ((-1236) . T)) -((-3536 (((-789)) 39 T ELT)) (-3573 (((-3 (-557) #1="failed") $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3572 (((-557) $) NIL T ELT) (((-419 (-557)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-4270 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-419 |#3|)) 49 T ELT)) (-3885 (((-3 $ #1#) $) 69 T ELT)) (-3393 (($) 43 T ELT)) (-3532 ((|#2| $) 21 T ELT)) (-2638 (($) 18 T ELT)) (-4186 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-789)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196))) NIL T ELT) (($ $ (-1196)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $) NIL T ELT)) (-2637 (((-707 |#2|) (-1286 $) (-1 |#2| |#2|)) 64 T ELT)) (-4400 (((-1286 |#2|) $) NIL T ELT) (($ (-1286 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2836 ((|#3| $) 36 T ELT)) (-2220 (((-1286 $)) 33 T ELT))) -(((-741 |#1| |#2| |#3|) (-10 -7 (-15 -4186 (|#1| |#1|)) (-15 -4186 (|#1| |#1| (-789))) (-15 -4186 (|#1| |#1| (-1196))) (-15 -4186 (|#1| |#1| (-659 (-1196)))) (-15 -4186 (|#1| |#1| (-1196) (-789))) (-15 -4186 (|#1| |#1| (-659 (-1196)) (-659 (-789)))) (-15 -3393 (|#1|)) (-15 -3536 ((-789))) (-15 -4186 (|#1| |#1| (-1 |#2| |#2|) (-789))) (-15 -4186 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2637 ((-707 |#2|) (-1286 |#1|) (-1 |#2| |#2|))) (-15 -4270 ((-3 |#1| #1="failed") (-419 |#3|))) (-15 -4400 (|#1| |#3|)) (-15 -4270 (|#1| |#3|)) (-15 -2638 (|#1|)) (-15 -3573 ((-3 |#2| #1#) |#1|)) (-15 -3572 (|#2| |#1|)) (-15 -3572 ((-419 (-557)) |#1|)) (-15 -3573 ((-3 (-419 (-557)) #1#) |#1|)) (-15 -3572 ((-557) |#1|)) (-15 -3573 ((-3 (-557) #1#) |#1|)) (-15 -4400 (|#3| |#1|)) (-15 -4400 (|#1| (-1286 |#2|))) (-15 -4400 ((-1286 |#2|) |#1|)) (-15 -2220 ((-1286 |#1|))) (-15 -2836 (|#3| |#1|)) (-15 -3532 (|#2| |#1|)) (-15 -3885 ((-3 |#1| #1#) |#1|))) (-742 |#2| |#3|) (-175) (-1262 |#2|)) (T -741)) -((-3536 (*1 *2) (-12 (-4 *4 (-175)) (-4 *5 (-1262 *4)) (-5 *2 (-789)) (-5 *1 (-741 *3 *4 *5)) (-4 *3 (-742 *4 *5))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 111 (|has| |#1| (-376)) ELT)) (-2271 (($ $) 112 (|has| |#1| (-376)) ELT)) (-2269 (((-114) $) 114 (|has| |#1| (-376)) ELT)) (-1988 (((-707 |#1|) (-1286 $)) 58 T ELT) (((-707 |#1|)) 74 T ELT)) (-3748 ((|#1| $) 64 T ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) 164 (|has| |#1| (-363)) ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4203 (($ $) 131 (|has| |#1| (-376)) ELT)) (-4399 (((-417 $) $) 132 (|has| |#1| (-376)) ELT)) (-1786 (((-114) $ $) 122 (|has| |#1| (-376)) ELT)) (-3536 (((-789)) 105 (|has| |#1| (-381)) ELT)) (-4152 (($) 22 T CONST)) (-3573 (((-3 (-557) #1="failed") $) 191 (|has| |#1| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) 189 (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 |#1| #1#) $) 186 T ELT)) (-3572 (((-557) $) 190 (|has| |#1| (-1057 (-557))) ELT) (((-419 (-557)) $) 188 (|has| |#1| (-1057 (-419 (-557)))) ELT) ((|#1| $) 187 T ELT)) (-1998 (($ (-1286 |#1|) (-1286 $)) 60 T ELT) (($ (-1286 |#1|)) 77 T ELT)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| |#1| (-363)) ELT)) (-2961 (($ $ $) 126 (|has| |#1| (-376)) ELT)) (-1987 (((-707 |#1|) $ (-1286 $)) 65 T ELT) (((-707 |#1|) $) 72 T ELT)) (-2491 (((-707 (-557)) (-707 $)) 183 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) 182 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) 181 T ELT) (((-707 |#1|) (-707 $)) 180 T ELT)) (-4270 (($ |#2|) 175 T ELT) (((-3 $ "failed") (-419 |#2|)) 172 (|has| |#1| (-376)) ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-3509 (((-936)) 66 T ELT)) (-3393 (($) 108 (|has| |#1| (-381)) ELT)) (-2960 (($ $ $) 125 (|has| |#1| (-376)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 120 (|has| |#1| (-376)) ELT)) (-3232 (($) 166 (|has| |#1| (-363)) ELT)) (-1881 (((-114) $) 167 (|has| |#1| (-363)) ELT)) (-1972 (($ $ (-789)) 158 (|has| |#1| (-363)) ELT) (($ $) 157 (|has| |#1| (-363)) ELT)) (-4151 (((-114) $) 133 (|has| |#1| (-376)) ELT)) (-4200 (((-936) $) 169 (|has| |#1| (-363)) ELT) (((-843 (-936)) $) 155 (|has| |#1| (-363)) ELT)) (-2639 (((-114) $) 40 T ELT)) (-3532 ((|#1| $) 63 T ELT)) (-3863 (((-709 $) $) 159 (|has| |#1| (-363)) ELT)) (-1783 (((-3 (-659 $) #2="failed") (-659 $) $) 129 (|has| |#1| (-376)) ELT)) (-2222 ((|#2| $) 56 (|has| |#1| (-376)) ELT)) (-2218 (((-936) $) 107 (|has| |#1| (-381)) ELT)) (-3478 ((|#2| $) 173 T ELT)) (-2492 (((-707 (-557)) (-1286 $)) 185 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) 184 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 179 T ELT) (((-707 |#1|) (-1286 $)) 178 T ELT)) (-2100 (($ (-659 $)) 118 (|has| |#1| (-376)) ELT) (($ $ $) 117 (|has| |#1| (-376)) ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2872 (($ $) 134 (|has| |#1| (-376)) ELT)) (-3864 (($) 160 (|has| |#1| (-363)) CONST)) (-2629 (($ (-936)) 106 (|has| |#1| (-381)) ELT)) (-3659 (((-1139) $) 12 T ELT)) (-2638 (($) 177 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 119 (|has| |#1| (-376)) ELT)) (-3560 (($ (-659 $)) 116 (|has| |#1| (-376)) ELT) (($ $ $) 115 (|has| |#1| (-376)) ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) 163 (|has| |#1| (-363)) ELT)) (-4160 (((-417 $) $) 130 (|has| |#1| (-376)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 127 (|has| |#1| (-376)) ELT)) (-3884 (((-3 $ "failed") $ $) 110 (|has| |#1| (-376)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 121 (|has| |#1| (-376)) ELT)) (-1785 (((-789) $) 123 (|has| |#1| (-376)) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 124 (|has| |#1| (-376)) ELT)) (-4185 ((|#1| (-1286 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-1973 (((-789) $) 168 (|has| |#1| (-363)) ELT) (((-3 (-789) "failed") $ $) 156 (|has| |#1| (-363)) ELT)) (-4186 (($ $ (-789)) 153 (-3955 (-2959 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) 151 (-3955 (-2959 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 147 (-2959 (|has| |#1| (-917 (-1196))) (|has| |#1| (-376))) ELT) (($ $ (-1196) (-789)) 146 (-2959 (|has| |#1| (-917 (-1196))) (|has| |#1| (-376))) ELT) (($ $ (-659 (-1196))) 145 (-2959 (|has| |#1| (-917 (-1196))) (|has| |#1| (-376))) ELT) (($ $ (-1196)) 143 (-2959 (|has| |#1| (-917 (-1196))) (|has| |#1| (-376))) ELT) (($ $ (-1 |#1| |#1|)) 142 (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-789)) 141 (|has| |#1| (-376)) ELT)) (-2637 (((-707 |#1|) (-1286 $) (-1 |#1| |#1|)) 171 (|has| |#1| (-376)) ELT)) (-3601 ((|#2|) 176 T ELT)) (-1875 (($) 165 (|has| |#1| (-363)) ELT)) (-3640 (((-1286 |#1|) $ (-1286 $)) 62 T ELT) (((-707 |#1|) (-1286 $) (-1286 $)) 61 T ELT) (((-1286 |#1|) $) 79 T ELT) (((-707 |#1|) (-1286 $)) 78 T ELT)) (-4400 (((-1286 |#1|) $) 76 T ELT) (($ (-1286 |#1|)) 75 T ELT) ((|#2| $) 192 T ELT) (($ |#2|) 174 T ELT)) (-3102 (((-3 (-1286 $) "failed") (-707 $)) 162 (|has| |#1| (-363)) ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ |#1|) 49 T ELT) (($ $) 109 (|has| |#1| (-376)) ELT) (($ (-419 (-557))) 104 (-3955 (|has| |#1| (-376)) (|has| |#1| (-1057 (-419 (-557))))) ELT)) (-3101 (($ $) 161 (|has| |#1| (-363)) ELT) (((-709 $) $) 55 (|has| |#1| (-147)) ELT)) (-2836 ((|#2| $) 57 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2220 (((-1286 $)) 80 T ELT)) (-2270 (((-114) $ $) 113 (|has| |#1| (-376)) ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $ (-789)) 154 (-3955 (-2959 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) 152 (-3955 (-2959 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 150 (-2959 (|has| |#1| (-917 (-1196))) (|has| |#1| (-376))) ELT) (($ $ (-1196) (-789)) 149 (-2959 (|has| |#1| (-917 (-1196))) (|has| |#1| (-376))) ELT) (($ $ (-659 (-1196))) 148 (-2959 (|has| |#1| (-917 (-1196))) (|has| |#1| (-376))) ELT) (($ $ (-1196)) 144 (-2959 (|has| |#1| (-917 (-1196))) (|has| |#1| (-376))) ELT) (($ $ (-1 |#1| |#1|)) 140 (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-789)) 139 (|has| |#1| (-376)) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ $) 138 (|has| |#1| (-376)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ (-557)) 135 (|has| |#1| (-376)) ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ (-419 (-557)) $) 137 (|has| |#1| (-376)) ELT) (($ $ (-419 (-557))) 136 (|has| |#1| (-376)) ELT))) -(((-742 |#1| |#2|) (-142) (-175) (-1262 |t#1|)) (T -742)) -((-2638 (*1 *1) (-12 (-4 *2 (-175)) (-4 *1 (-742 *2 *3)) (-4 *3 (-1262 *2)))) (-3601 (*1 *2) (-12 (-4 *1 (-742 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1262 *3)))) (-4270 (*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-742 *3 *2)) (-4 *2 (-1262 *3)))) (-4400 (*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-742 *3 *2)) (-4 *2 (-1262 *3)))) (-3478 (*1 *2 *1) (-12 (-4 *1 (-742 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1262 *3)))) (-4270 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-376)) (-4 *3 (-175)) (-4 *1 (-742 *3 *4)))) (-2637 (*1 *2 *3 *4) (-12 (-5 *3 (-1286 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-4 *1 (-742 *5 *6)) (-4 *5 (-175)) (-4 *6 (-1262 *5)) (-5 *2 (-707 *5))))) -(-13 (-422 |t#1| |t#2|) (-175) (-629 |t#2|) (-424 |t#1|) (-390 |t#1|) (-10 -8 (-15 -2638 ($)) (-15 -3601 (|t#2|)) (-15 -4270 ($ |t#2|)) (-15 -4400 ($ |t#2|)) (-15 -3478 (|t#2| $)) (IF (|has| |t#1| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-6 (-376)) (-6 (-234 |t#1|)) (-15 -4270 ((-3 $ "failed") (-419 |t#2|))) (-15 -2637 ((-707 |t#1|) (-1286 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-557))) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-38 |#1|) . T) ((-38 $) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -3955 (|has| |#1| (-363)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) -3955 (|has| |#1| (-1057 (-419 (-557)))) (|has| |#1| (-363)) (|has| |#1| (-376))) ((-631 (-557)) . T) ((-631 |#1|) . T) ((-631 $) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-628 (-875)) . T) ((-175) . T) ((-629 |#2|) . T) ((-236 $) -3955 (|has| |#1| (-363)) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-234 |#1|) |has| |#1| (-376)) ((-240) -3955 (|has| |#1| (-363)) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-239) -3955 (|has| |#1| (-363)) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-274 |#1|) |has| |#1| (-376)) ((-250) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-302) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-319) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-376) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-414) |has| |#1| (-363)) ((-381) -3955 (|has| |#1| (-363)) (|has| |#1| (-381))) ((-363) |has| |#1| (-363)) ((-383 |#1| |#2|) . T) ((-422 |#1| |#2|) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-464) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-568) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-664 (-419 (-557))) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 (-419 (-557))) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-666 (-557)) |has| |#1| (-656 (-557))) ((-666 |#1|) . T) ((-666 $) . T) ((-658 (-419 (-557))) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-658 |#1|) . T) ((-658 $) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-656 (-557)) |has| |#1| (-656 (-557))) ((-656 |#1|) . T) ((-735 (-419 (-557))) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-735 |#1|) . T) ((-735 $) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-744) . T) ((-909 $ (-1196)) -3955 (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1196)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196))))) ((-915 (-1196)) -12 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196)))) ((-917 (-1196)) -3955 (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1196)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-915 (-1196))))) ((-938) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1057 (-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((-1057 (-557)) |has| |#1| (-1057 (-557))) ((-1057 |#1|) . T) ((-1070 (-419 (-557))) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1070 |#1|) . T) ((-1070 $) . T) ((-1075 (-419 (-557))) -3955 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1075 |#1|) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1171) |has| |#1| (-363)) ((-1236) . T) ((-1241) -3955 (|has| |#1| (-363)) (|has| |#1| (-376)))) -((-4152 (($) 11 T ELT)) (-3885 (((-3 $ "failed") $) 14 T ELT)) (-2639 (((-114) $) 10 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) 20 T ELT))) -(((-743 |#1|) (-10 -7 (-15 -3885 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-789))) (-15 -2639 ((-114) |#1|)) (-15 -4152 (|#1|)) (-15 ** (|#1| |#1| (-936)))) (-744)) (T -743)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-4152 (($) 23 T CONST)) (-3885 (((-3 $ "failed") $) 20 T ELT)) (-2639 (((-114) $) 22 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3063 (($) 24 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (** (($ $ (-936)) 17 T ELT) (($ $ (-789)) 21 T ELT)) (* (($ $ $) 18 T ELT))) -(((-744) (-142)) (T -744)) -((-3063 (*1 *1) (-4 *1 (-744))) (-4152 (*1 *1) (-4 *1 (-744))) (-2639 (*1 *2 *1) (-12 (-4 *1 (-744)) (-5 *2 (-114)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-789)))) (-3885 (*1 *1 *1) (|partial| -4 *1 (-744)))) -(-13 (-1131) (-10 -8 (-15 (-3063) ($) -4380) (-15 -4152 ($) -4380) (-15 -2639 ((-114) $)) (-15 ** ($ $ (-789))) (-15 -3885 ((-3 $ "failed") $)))) -(((-102) . T) ((-628 (-875)) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2640 (((-2 (|:| -3490 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3836 (((-2 (|:| -3490 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2641 ((|#2| (-419 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3853 (((-2 (|:| |poly| |#2|) (|:| -3490 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)) 48 T ELT))) -(((-745 |#1| |#2|) (-10 -7 (-15 -3836 ((-2 (|:| -3490 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2640 ((-2 (|:| -3490 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2641 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -3853 ((-2 (|:| |poly| |#2|) (|:| -3490 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) (-376) (-1262 |#1|)) (T -745)) -((-3853 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3490 (-419 *6)) (|:| |special| (-419 *6)))) (-5 *1 (-745 *5 *6)) (-5 *3 (-419 *6)))) (-2641 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1262 *5)) (-5 *1 (-745 *5 *2)) (-4 *5 (-376)))) (-2640 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3490 (-417 *3)) (|:| |special| (-417 *3)))) (-5 *1 (-745 *5 *3)))) (-3836 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3490 *3) (|:| |special| *3))) (-5 *1 (-745 *5 *3))))) -((-2642 ((|#7| (-659 |#5|) |#6|) NIL T ELT)) (-4386 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) -(((-746 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4386 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2642 (|#7| (-659 |#5|) |#6|))) (-859) (-813) (-813) (-1068) (-1068) (-967 |#4| |#2| |#1|) (-967 |#5| |#3| |#1|)) (T -746)) -((-2642 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *9)) (-4 *9 (-1068)) (-4 *5 (-859)) (-4 *6 (-813)) (-4 *8 (-1068)) (-4 *2 (-967 *9 *7 *5)) (-5 *1 (-746 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-813)) (-4 *4 (-967 *8 *6 *5)))) (-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1068)) (-4 *9 (-1068)) (-4 *5 (-859)) (-4 *6 (-813)) (-4 *2 (-967 *9 *7 *5)) (-5 *1 (-746 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-813)) (-4 *4 (-967 *8 *6 *5))))) -((-4386 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) -(((-747 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4386 (|#7| (-1 |#2| |#1|) |#6|))) (-859) (-859) (-813) (-813) (-1068) (-967 |#5| |#3| |#1|) (-967 |#5| |#4| |#2|)) (T -747)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-859)) (-4 *6 (-859)) (-4 *7 (-813)) (-4 *9 (-1068)) (-4 *2 (-967 *9 *8 *6)) (-5 *1 (-747 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-813)) (-4 *4 (-967 *9 *7 *5))))) -((-4160 (((-417 |#4|) |#4|) 42 T ELT))) -(((-748 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4160 ((-417 |#4|) |#4|))) (-813) (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $)) (-15 -4259 ((-3 $ "failed") (-1196))))) (-319) (-967 (-963 |#3|) |#1| |#2|)) (T -748)) -((-4160 (*1 *2 *3) (-12 (-4 *4 (-813)) (-4 *5 (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $)) (-15 -4259 ((-3 $ "failed") (-1196)))))) (-4 *6 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-748 *4 *5 *6 *3)) (-4 *3 (-967 (-963 *6) *4 *5))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3482 (((-659 (-876 |#1|)) $) NIL T ELT)) (-3484 (((-1190 $) $ (-876 |#1|)) NIL T ELT) (((-1190 |#2|) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#2| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#2| (-568)) ELT)) (-3218 (((-789) $) NIL T ELT) (((-789) $ (-659 (-876 |#1|))) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-4203 (($ $) NIL (|has| |#2| (-464)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#2| (-464)) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#2| (-1057 (-419 (-557)))) ELT) (((-3 (-557) #1#) $) NIL (|has| |#2| (-1057 (-557))) ELT) (((-3 (-876 |#1|) #1#) $) NIL T ELT)) (-3572 ((|#2| $) NIL T ELT) (((-419 (-557)) $) NIL (|has| |#2| (-1057 (-419 (-557)))) ELT) (((-557) $) NIL (|has| |#2| (-1057 (-557))) ELT) (((-876 |#1|) $) NIL T ELT)) (-4184 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4387 (($ $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 $) (-1286 $)) NIL T ELT) (((-707 |#2|) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3921 (($ $) NIL (|has| |#2| (-464)) ELT) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3217 (((-659 $) $) NIL T ELT)) (-4151 (((-114) $) NIL (|has| |#2| (-927)) ELT)) (-1802 (($ $ |#2| (-542 (-876 |#1|)) $) NIL T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-391))) (|has| |#2| (-899 (-391)))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-557))) (|has| |#2| (-899 (-557)))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-2647 (((-789) $) NIL T ELT)) (-3485 (($ (-1190 |#2|) (-876 |#1|)) NIL T ELT) (($ (-1190 $) (-876 |#1|)) NIL T ELT)) (-3220 (((-659 $) $) NIL T ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#2| (-542 (-876 |#1|))) NIL T ELT) (($ $ (-876 |#1|) (-789)) NIL T ELT) (($ $ (-659 (-876 |#1|)) (-659 (-789))) NIL T ELT)) (-4191 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $ (-876 |#1|)) NIL T ELT)) (-3219 (((-542 (-876 |#1|)) $) NIL T ELT) (((-789) $ (-876 |#1|)) NIL T ELT) (((-659 (-789)) $ (-659 (-876 |#1|))) NIL T ELT)) (-1803 (($ (-1 (-542 (-876 |#1|)) (-542 (-876 |#1|))) $) NIL T ELT)) (-4386 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3483 (((-3 (-876 |#1|) #1#) $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL T ELT) (((-707 |#2|) (-1286 $)) NIL T ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#2| $) NIL T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3222 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3221 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -2630 (-789))) #1#) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2003 (((-114) $) NIL T ELT)) (-2002 ((|#2| $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#2| (-464)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-4160 (((-417 $) $) NIL (|has| |#2| (-927)) ELT)) (-3884 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-568)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-568)) ELT)) (-4196 (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ (-876 |#1|) |#2|) NIL T ELT) (($ $ (-659 (-876 |#1|)) (-659 |#2|)) NIL T ELT) (($ $ (-876 |#1|) $) NIL T ELT) (($ $ (-659 (-876 |#1|)) (-659 $)) NIL T ELT)) (-4185 (($ $ (-876 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4186 (($ $ (-659 (-876 |#1|)) (-659 (-789))) NIL T ELT) (($ $ (-876 |#1|) (-789)) NIL T ELT) (($ $ (-659 (-876 |#1|))) NIL T ELT) (($ $ (-876 |#1|)) NIL T ELT)) (-4376 (((-542 (-876 |#1|)) $) NIL T ELT) (((-789) $ (-876 |#1|)) NIL T ELT) (((-659 (-789)) $ (-659 (-876 |#1|))) NIL T ELT)) (-4400 (((-903 (-391)) $) NIL (-12 (|has| (-876 |#1|) (-629 (-903 (-391)))) (|has| |#2| (-629 (-903 (-391))))) ELT) (((-903 (-557)) $) NIL (-12 (|has| (-876 |#1|) (-629 (-903 (-557)))) (|has| |#2| (-629 (-903 (-557))))) ELT) (((-546) $) NIL (-12 (|has| (-876 |#1|) (-629 (-546))) (|has| |#2| (-629 (-546)))) ELT)) (-3216 ((|#2| $) NIL (|has| |#2| (-464)) ELT) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-927))) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-876 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-568)) ELT) (($ (-419 (-557))) NIL (-3955 (|has| |#2| (-38 (-419 (-557)))) (|has| |#2| (-1057 (-419 (-557))))) ELT)) (-4245 (((-659 |#2|) $) NIL T ELT)) (-4105 ((|#2| $ (-542 (-876 |#1|))) NIL T ELT) (($ $ (-876 |#1|) (-789)) NIL T ELT) (($ $ (-659 (-876 |#1|)) (-659 (-789))) NIL T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| |#2| (-927))) (|has| |#2| (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-1801 (($ $ $ (-789)) NIL (|has| |#2| (-175)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL (|has| |#2| (-568)) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $ (-659 (-876 |#1|)) (-659 (-789))) NIL T ELT) (($ $ (-876 |#1|) (-789)) NIL T ELT) (($ $ (-659 (-876 |#1|))) NIL T ELT) (($ $ (-876 |#1|)) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL (|has| |#2| (-38 (-419 (-557)))) ELT) (($ (-419 (-557)) $) NIL (|has| |#2| (-38 (-419 (-557)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-749 |#1| |#2|) (-967 |#2| (-542 (-876 |#1|)) (-876 |#1|)) (-659 (-1196)) (-1068)) (T -749)) -NIL -((-2643 (((-2 (|:| -2871 (-963 |#3|)) (|:| -2266 (-963 |#3|))) |#4|) 14 T ELT)) (-3385 ((|#4| |#4| |#2|) 33 T ELT)) (-2646 ((|#4| (-419 (-963 |#3|)) |#2|) 62 T ELT)) (-2645 ((|#4| (-1190 (-963 |#3|)) |#2|) 74 T ELT)) (-2644 ((|#4| (-1190 |#4|) |#2|) 49 T ELT)) (-3384 ((|#4| |#4| |#2|) 52 T ELT)) (-4160 (((-417 |#4|) |#4|) 40 T ELT))) -(((-750 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2643 ((-2 (|:| -2871 (-963 |#3|)) (|:| -2266 (-963 |#3|))) |#4|)) (-15 -3384 (|#4| |#4| |#2|)) (-15 -2644 (|#4| (-1190 |#4|) |#2|)) (-15 -3385 (|#4| |#4| |#2|)) (-15 -2645 (|#4| (-1190 (-963 |#3|)) |#2|)) (-15 -2646 (|#4| (-419 (-963 |#3|)) |#2|)) (-15 -4160 ((-417 |#4|) |#4|))) (-813) (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $)))) (-568) (-967 (-419 (-963 |#3|)) |#1| |#2|)) (T -750)) -((-4160 (*1 *2 *3) (-12 (-4 *4 (-813)) (-4 *5 (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $))))) (-4 *6 (-568)) (-5 *2 (-417 *3)) (-5 *1 (-750 *4 *5 *6 *3)) (-4 *3 (-967 (-419 (-963 *6)) *4 *5)))) (-2646 (*1 *2 *3 *4) (-12 (-4 *6 (-568)) (-4 *2 (-967 *3 *5 *4)) (-5 *1 (-750 *5 *4 *6 *2)) (-5 *3 (-419 (-963 *6))) (-4 *5 (-813)) (-4 *4 (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $))))))) (-2645 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 (-963 *6))) (-4 *6 (-568)) (-4 *2 (-967 (-419 (-963 *6)) *5 *4)) (-5 *1 (-750 *5 *4 *6 *2)) (-4 *5 (-813)) (-4 *4 (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $))))))) (-3385 (*1 *2 *2 *3) (-12 (-4 *4 (-813)) (-4 *3 (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $))))) (-4 *5 (-568)) (-5 *1 (-750 *4 *3 *5 *2)) (-4 *2 (-967 (-419 (-963 *5)) *4 *3)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 *2)) (-4 *2 (-967 (-419 (-963 *6)) *5 *4)) (-5 *1 (-750 *5 *4 *6 *2)) (-4 *5 (-813)) (-4 *4 (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $))))) (-4 *6 (-568)))) (-3384 (*1 *2 *2 *3) (-12 (-4 *4 (-813)) (-4 *3 (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $))))) (-4 *5 (-568)) (-5 *1 (-750 *4 *3 *5 *2)) (-4 *2 (-967 (-419 (-963 *5)) *4 *3)))) (-2643 (*1 *2 *3) (-12 (-4 *4 (-813)) (-4 *5 (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $))))) (-4 *6 (-568)) (-5 *2 (-2 (|:| -2871 (-963 *6)) (|:| -2266 (-963 *6)))) (-5 *1 (-750 *4 *5 *6 *3)) (-4 *3 (-967 (-419 (-963 *6)) *4 *5))))) -((-4160 (((-417 |#4|) |#4|) 54 T ELT))) -(((-751 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4160 ((-417 |#4|) |#4|))) (-813) (-859) (-13 (-319) (-149)) (-967 (-419 |#3|) |#1| |#2|)) (T -751)) -((-4160 (*1 *2 *3) (-12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-417 *3)) (-5 *1 (-751 *4 *5 *6 *3)) (-4 *3 (-967 (-419 *6) *4 *5))))) -((-4386 (((-753 |#2| |#3|) (-1 |#2| |#1|) (-753 |#1| |#3|)) 18 T ELT))) -(((-752 |#1| |#2| |#3|) (-10 -7 (-15 -4386 ((-753 |#2| |#3|) (-1 |#2| |#1|) (-753 |#1| |#3|)))) (-1068) (-1068) (-744)) (T -752)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-753 *5 *7)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-744)) (-5 *2 (-753 *6 *7)) (-5 *1 (-752 *5 *6 *7))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 36 T ELT)) (-4202 (((-659 (-2 (|:| -4382 |#1|) (|:| -4366 |#2|))) $) 37 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3536 (((-789)) 22 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3572 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-4387 (($ $) 99 (|has| |#2| (-859)) ELT)) (-3885 (((-3 $ #1#) $) 83 T ELT)) (-3393 (($) 48 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-2647 (((-789) $) 70 T ELT)) (-3220 (((-659 $) $) 52 T ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#1| |#2|) 17 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2218 (((-936) $) 43 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-3293 ((|#2| $) 98 (|has| |#2| (-859)) ELT)) (-3590 ((|#1| $) 97 (|has| |#2| (-859)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2629 (($ (-936)) 35 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 96 T ELT) (($ (-557)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-659 (-2 (|:| -4382 |#1|) (|:| -4366 |#2|)))) 11 T ELT)) (-4245 (((-659 |#1|) $) 54 T ELT)) (-4105 ((|#1| $ |#2|) 114 T ELT)) (-3101 (((-709 $) $) NIL (|has| |#1| (-147)) ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 12 T CONST)) (-3063 (($) 44 T CONST)) (-3452 (((-114) $ $) 104 T ELT)) (-4265 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 33 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) -(((-753 |#1| |#2|) (-13 (-1068) (-1057 |#2|) (-1057 |#1|) (-10 -8 (-15 -3292 ($ |#1| |#2|)) (-15 -4105 (|#1| $ |#2|)) (-15 -4374 ($ (-659 (-2 (|:| -4382 |#1|) (|:| -4366 |#2|))))) (-15 -4202 ((-659 (-2 (|:| -4382 |#1|) (|:| -4366 |#2|))) $)) (-15 -4386 ($ (-1 |#1| |#1|) $)) (-15 -4365 ((-114) $)) (-15 -4245 ((-659 |#1|) $)) (-15 -3220 ((-659 $) $)) (-15 -2647 ((-789) $)) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-859)) (PROGN (-15 -3293 (|#2| $)) (-15 -3590 (|#1| $)) (-15 -4387 ($ $))) |%noBranch|))) (-1068) (-744)) (T -753)) -((-3292 (*1 *1 *2 *3) (-12 (-5 *1 (-753 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-744)))) (-4105 (*1 *2 *1 *3) (-12 (-4 *2 (-1068)) (-5 *1 (-753 *2 *3)) (-4 *3 (-744)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-659 (-2 (|:| -4382 *3) (|:| -4366 *4)))) (-4 *3 (-1068)) (-4 *4 (-744)) (-5 *1 (-753 *3 *4)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-659 (-2 (|:| -4382 *3) (|:| -4366 *4)))) (-5 *1 (-753 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-744)))) (-4386 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-753 *3 *4)) (-4 *4 (-744)))) (-4365 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-753 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-744)))) (-4245 (*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-753 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-744)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-659 (-753 *3 *4))) (-5 *1 (-753 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-744)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-753 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-744)))) (-3293 (*1 *2 *1) (-12 (-4 *2 (-744)) (-4 *2 (-859)) (-5 *1 (-753 *3 *2)) (-4 *3 (-1068)))) (-3590 (*1 *2 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-753 *2 *3)) (-4 *3 (-859)) (-4 *3 (-744)))) (-4387 (*1 *1 *1) (-12 (-5 *1 (-753 *2 *3)) (-4 *3 (-859)) (-4 *2 (-1068)) (-4 *3 (-744))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3650 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3652 (($ $ $) 99 T ELT)) (-3651 (((-114) $ $) 107 T ELT)) (-3655 (($ (-659 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1711 (($ (-1 (-114) |#1|) $) 86 (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4152 (($) NIL T CONST)) (-2592 (($ $) 88 T ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3823 (($ |#1| $) 71 (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4423)) ELT) (($ |#1| $ (-557)) 78 T ELT) (($ (-1 (-114) |#1|) $ (-557)) 81 T ELT)) (-3824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (($ |#1| $ (-557)) 83 T ELT) (($ (-1 (-114) |#1|) $ (-557)) 84 T ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3288 (((-659 |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-3657 (((-114) $ $) 106 T ELT)) (-2648 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-659 |#1|)) 23 T ELT)) (-3005 (((-659 |#1|) $) 38 T ELT)) (-3661 (((-114) |#1| $) 66 (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3654 (($ $ $) 97 T ELT)) (-1387 ((|#1| $) 63 T ELT)) (-4035 (($ |#1| $) 64 T ELT) (($ |#1| $ (-789)) 89 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-1388 ((|#1| $) 62 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) 57 T ELT)) (-3991 (($) 14 T ELT)) (-2591 (((-659 (-2 (|:| -2284 |#1|) (|:| -2155 (-789)))) $) 56 T ELT)) (-3653 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1596 (($) 16 T ELT) (($ (-659 |#1|)) 25 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 69 (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) 82 T ELT)) (-4400 (((-546) $) 36 (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 22 T ELT)) (-4374 (((-875) $) 50 T ELT)) (-3656 (($ (-659 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-1389 (($ (-659 |#1|)) 24 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 103 T ELT)) (-4385 (((-789) $) 68 (|has| $ (-6 -4423)) ELT))) -(((-754 |#1|) (-13 (-755 |#1|) (-10 -8 (-6 -4423) (-6 -4424) (-15 -2648 ($)) (-15 -2648 ($ |#1|)) (-15 -2648 ($ (-659 |#1|))) (-15 -3005 ((-659 |#1|) $)) (-15 -3824 ($ |#1| $ (-557))) (-15 -3824 ($ (-1 (-114) |#1|) $ (-557))) (-15 -3823 ($ |#1| $ (-557))) (-15 -3823 ($ (-1 (-114) |#1|) $ (-557))))) (-1120)) (T -754)) -((-2648 (*1 *1) (-12 (-5 *1 (-754 *2)) (-4 *2 (-1120)))) (-2648 (*1 *1 *2) (-12 (-5 *1 (-754 *2)) (-4 *2 (-1120)))) (-2648 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-5 *1 (-754 *3)))) (-3005 (*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-754 *3)) (-4 *3 (-1120)))) (-3824 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-557)) (-5 *1 (-754 *2)) (-4 *2 (-1120)))) (-3824 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-557)) (-4 *4 (-1120)) (-5 *1 (-754 *4)))) (-3823 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-557)) (-5 *1 (-754 *2)) (-4 *2 (-1120)))) (-3823 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-557)) (-4 *4 (-1120)) (-5 *1 (-754 *4))))) -((-2965 (((-114) $ $) 19 T ELT)) (-3650 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3652 (($ $ $) 77 T ELT)) (-3651 (((-114) $ $) 78 T ELT)) (-3655 (($ (-659 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1711 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4423)) ELT)) (-4152 (($) 7 T CONST)) (-2592 (($ $) 66 T ELT)) (-1465 (($ $) 62 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3823 (($ |#1| $) 51 (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4423)) ELT)) (-3824 (($ |#1| $) 61 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4423)) ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-3657 (((-114) $ $) 69 T ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3658 (((-1178) $) 22 T ELT)) (-3654 (($ $ $) 74 T ELT)) (-1387 ((|#1| $) 43 T ELT)) (-4035 (($ |#1| $) 44 T ELT) (($ |#1| $ (-789)) 67 T ELT)) (-3659 (((-1139) $) 21 T ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1388 ((|#1| $) 45 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-2591 (((-659 (-2 (|:| -2284 |#1|) (|:| -2155 (-789)))) $) 65 T ELT)) (-3653 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1596 (($) 53 T ELT) (($ (-659 |#1|)) 52 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4400 (((-546) $) 63 (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 54 T ELT)) (-4374 (((-875) $) 17 T ELT)) (-3656 (($ (-659 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1376 (((-114) $ $) 20 T ELT)) (-1389 (($ (-659 |#1|)) 46 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 T ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-755 |#1|) (-142) (-1120)) (T -755)) -NIL -(-13 (-713 |t#1|) (-1118 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-628 (-875)) . T) ((-153 |#1|) . T) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-713 |#1|) . T) ((-1118 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-2649 (((-1292) (-1178)) 8 T ELT))) -(((-756) (-10 -7 (-15 -2649 ((-1292) (-1178))))) (T -756)) -((-2649 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-756))))) -((-2650 (((-659 |#1|) (-659 |#1|) (-659 |#1|)) 15 T ELT))) -(((-757 |#1|) (-10 -7 (-15 -2650 ((-659 |#1|) (-659 |#1|) (-659 |#1|)))) (-859)) (T -757)) -((-2650 (*1 *2 *2 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-859)) (-5 *1 (-757 *3))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-3482 (((-659 |#2|) $) 156 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 149 (|has| |#1| (-568)) ELT)) (-2271 (($ $) 148 (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) 146 (|has| |#1| (-568)) ELT)) (-3910 (($ $) 105 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4067 (($ $) 88 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-3436 (($ $) 87 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3908 (($ $) 104 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4066 (($ $) 89 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3912 (($ $) 103 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4065 (($ $) 90 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4152 (($) 22 T CONST)) (-4387 (($ $) 140 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-4242 (((-963 |#1|) $ (-789)) 118 T ELT) (((-963 |#1|) $ (-789) (-789)) 117 T ELT)) (-3291 (((-114) $) 157 T ELT)) (-4055 (($) 115 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4200 (((-789) $ |#2|) 120 T ELT) (((-789) $ |#2| (-789)) 119 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3410 (($ $ (-557)) 86 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4365 (((-114) $) 138 T ELT)) (-3292 (($ $ (-659 |#2|) (-659 (-542 |#2|))) 155 T ELT) (($ $ |#2| (-542 |#2|)) 154 T ELT) (($ |#1| (-542 |#2|)) 139 T ELT) (($ $ |#2| (-789)) 122 T ELT) (($ $ (-659 |#2|) (-659 (-789))) 121 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 137 T ELT)) (-4370 (($ $) 112 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3293 (($ $) 135 T ELT)) (-3590 ((|#1| $) 134 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-4240 (($ $ |#2|) 116 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4197 (($ $ (-789)) 123 T ELT)) (-3884 (((-3 $ "failed") $ $) 150 (|has| |#1| (-568)) ELT)) (-4371 (($ $) 113 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4196 (($ $ |#2| $) 131 T ELT) (($ $ (-659 |#2|) (-659 $)) 130 T ELT) (($ $ (-659 (-305 $))) 129 T ELT) (($ $ (-305 $)) 128 T ELT) (($ $ $ $) 127 T ELT) (($ $ (-659 $) (-659 $)) 126 T ELT)) (-4186 (($ $ (-659 |#2|) (-659 (-789))) 49 T ELT) (($ $ |#2| (-789)) 48 T ELT) (($ $ (-659 |#2|)) 47 T ELT) (($ $ |#2|) 45 T ELT)) (-4376 (((-542 |#2|) $) 136 T ELT)) (-3913 (($ $) 102 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4064 (($ $) 91 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3911 (($ $) 101 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4063 (($ $) 92 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3909 (($ $) 100 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4062 (($ $) 93 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3290 (($ $) 158 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ |#1|) 153 (|has| |#1| (-175)) ELT) (($ $) 151 (|has| |#1| (-568)) ELT) (($ (-419 (-557))) 143 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4105 ((|#1| $ (-542 |#2|)) 141 T ELT) (($ $ |#2| (-789)) 125 T ELT) (($ $ (-659 |#2|) (-659 (-789))) 124 T ELT)) (-3101 (((-709 $) $) 152 (|has| |#1| (-147)) ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-3916 (($ $) 111 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3904 (($ $) 99 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2270 (((-114) $ $) 147 (|has| |#1| (-568)) ELT)) (-3914 (($ $) 110 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3902 (($ $) 98 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3918 (($ $) 109 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3906 (($ $) 97 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3919 (($ $) 108 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3907 (($ $) 96 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3917 (($ $) 107 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3905 (($ $) 95 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3915 (($ $) 106 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3903 (($ $) 94 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $ (-659 |#2|) (-659 (-789))) 52 T ELT) (($ $ |#2| (-789)) 51 T ELT) (($ $ (-659 |#2|)) 50 T ELT) (($ $ |#2|) 46 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ |#1|) 142 (|has| |#1| (-376)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ $) 114 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) 85 (|has| |#1| (-38 (-419 (-557)))) ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-557))) 145 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ (-419 (-557)) $) 144 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ |#1| $) 133 T ELT) (($ $ |#1|) 132 T ELT))) -(((-758 |#1| |#2|) (-142) (-1068) (-859)) (T -758)) -((-4105 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-789)) (-4 *1 (-758 *4 *2)) (-4 *4 (-1068)) (-4 *2 (-859)))) (-4105 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 *5)) (-5 *3 (-659 (-789))) (-4 *1 (-758 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-859)))) (-4197 (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-758 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-859)))) (-3292 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-789)) (-4 *1 (-758 *4 *2)) (-4 *4 (-1068)) (-4 *2 (-859)))) (-3292 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 *5)) (-5 *3 (-659 (-789))) (-4 *1 (-758 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-859)))) (-4200 (*1 *2 *1 *3) (-12 (-4 *1 (-758 *4 *3)) (-4 *4 (-1068)) (-4 *3 (-859)) (-5 *2 (-789)))) (-4200 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-789)) (-4 *1 (-758 *4 *3)) (-4 *4 (-1068)) (-4 *3 (-859)))) (-4242 (*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-4 *1 (-758 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-859)) (-5 *2 (-963 *4)))) (-4242 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-789)) (-4 *1 (-758 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-859)) (-5 *2 (-963 *4)))) (-4240 (*1 *1 *1 *2) (-12 (-4 *1 (-758 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-859)) (-4 *3 (-38 (-419 (-557))))))) -(-13 (-915 |t#2|) (-992 |t#1| (-542 |t#2|) |t#2|) (-526 |t#2| $) (-321 $) (-10 -8 (-15 -4105 ($ $ |t#2| (-789))) (-15 -4105 ($ $ (-659 |t#2|) (-659 (-789)))) (-15 -4197 ($ $ (-789))) (-15 -3292 ($ $ |t#2| (-789))) (-15 -3292 ($ $ (-659 |t#2|) (-659 (-789)))) (-15 -4200 ((-789) $ |t#2|)) (-15 -4200 ((-789) $ |t#2| (-789))) (-15 -4242 ((-963 |t#1|) $ (-789))) (-15 -4242 ((-963 |t#1|) $ (-789) (-789))) (IF (|has| |t#1| (-38 (-419 (-557)))) (PROGN (-15 -4240 ($ $ |t#2|)) (-6 (-1021)) (-6 (-1222))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-542 |#2|)) . T) ((-25) . T) ((-38 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-557)))) ((-95) |has| |#1| (-38 (-419 (-557)))) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-631 (-557)) . T) ((-631 |#1|) |has| |#1| (-175)) ((-631 $) |has| |#1| (-568)) ((-628 (-875)) . T) ((-175) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-296) |has| |#1| (-38 (-419 (-557)))) ((-302) |has| |#1| (-568)) ((-321 $) . T) ((-505) |has| |#1| (-38 (-419 (-557)))) ((-526 |#2| $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-664 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-666 |#1|) . T) ((-666 $) . T) ((-658 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-658 |#1|) |has| |#1| (-175)) ((-658 $) |has| |#1| (-568)) ((-735 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-735 |#1|) |has| |#1| (-175)) ((-735 $) |has| |#1| (-568)) ((-744) . T) ((-909 $ |#2|) . T) ((-915 |#2|) . T) ((-917 |#2|) . T) ((-992 |#1| (-542 |#2|) |#2|) . T) ((-1021) |has| |#1| (-38 (-419 (-557)))) ((-1070 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-1070 |#1|) . T) ((-1070 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-1075 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-1075 |#1|) . T) ((-1075 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1222) |has| |#1| (-38 (-419 (-557)))) ((-1225) |has| |#1| (-38 (-419 (-557)))) ((-1236) . T)) -((-4160 (((-417 (-1190 |#4|)) (-1190 |#4|)) 30 T ELT) (((-417 |#4|) |#4|) 26 T ELT))) -(((-759 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4160 ((-417 |#4|) |#4|)) (-15 -4160 ((-417 (-1190 |#4|)) (-1190 |#4|)))) (-859) (-813) (-13 (-319) (-149)) (-967 |#3| |#2| |#1|)) (T -759)) -((-4160 (*1 *2 *3) (-12 (-4 *4 (-859)) (-4 *5 (-813)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-967 *6 *5 *4)) (-5 *2 (-417 (-1190 *7))) (-5 *1 (-759 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) (-4160 (*1 *2 *3) (-12 (-4 *4 (-859)) (-4 *5 (-813)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-417 *3)) (-5 *1 (-759 *4 *5 *6 *3)) (-4 *3 (-967 *6 *5 *4))))) -((-2653 (((-417 |#4|) |#4| |#2|) 141 T ELT)) (-2651 (((-417 |#4|) |#4|) NIL T ELT)) (-4399 (((-417 (-1190 |#4|)) (-1190 |#4|)) 128 T ELT) (((-417 |#4|) |#4|) 52 T ELT)) (-2655 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-659 (-2 (|:| -4160 (-1190 |#4|)) (|:| -2630 (-557)))))) (-1190 |#4|) (-659 |#2|) (-659 (-659 |#3|))) 81 T ELT)) (-2659 (((-1190 |#3|) (-1190 |#3|) (-557)) 168 T ELT)) (-2658 (((-659 (-789)) (-1190 |#4|) (-659 |#2|) (-789)) 75 T ELT)) (-3478 (((-3 (-659 (-1190 |#4|)) "failed") (-1190 |#4|) (-1190 |#3|) (-1190 |#3|) |#4| (-659 |#2|) (-659 (-789)) (-659 |#3|)) 79 T ELT)) (-2656 (((-2 (|:| |upol| (-1190 |#3|)) (|:| |Lval| (-659 |#3|)) (|:| |Lfact| (-659 (-2 (|:| -4160 (-1190 |#3|)) (|:| -2630 (-557))))) (|:| |ctpol| |#3|)) (-1190 |#4|) (-659 |#2|) (-659 (-659 |#3|))) 27 T ELT)) (-2654 (((-2 (|:| -2212 (-1190 |#4|)) (|:| |polval| (-1190 |#3|))) (-1190 |#4|) (-1190 |#3|) (-557)) 72 T ELT)) (-2652 (((-557) (-659 (-2 (|:| -4160 (-1190 |#3|)) (|:| -2630 (-557))))) 164 T ELT)) (-2657 ((|#4| (-557) (-417 |#4|)) 73 T ELT)) (-3775 (((-114) (-659 (-2 (|:| -4160 (-1190 |#3|)) (|:| -2630 (-557)))) (-659 (-2 (|:| -4160 (-1190 |#3|)) (|:| -2630 (-557))))) NIL T ELT))) -(((-760 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4399 ((-417 |#4|) |#4|)) (-15 -4399 ((-417 (-1190 |#4|)) (-1190 |#4|))) (-15 -2651 ((-417 |#4|) |#4|)) (-15 -2652 ((-557) (-659 (-2 (|:| -4160 (-1190 |#3|)) (|:| -2630 (-557)))))) (-15 -2653 ((-417 |#4|) |#4| |#2|)) (-15 -2654 ((-2 (|:| -2212 (-1190 |#4|)) (|:| |polval| (-1190 |#3|))) (-1190 |#4|) (-1190 |#3|) (-557))) (-15 -2655 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-659 (-2 (|:| -4160 (-1190 |#4|)) (|:| -2630 (-557)))))) (-1190 |#4|) (-659 |#2|) (-659 (-659 |#3|)))) (-15 -2656 ((-2 (|:| |upol| (-1190 |#3|)) (|:| |Lval| (-659 |#3|)) (|:| |Lfact| (-659 (-2 (|:| -4160 (-1190 |#3|)) (|:| -2630 (-557))))) (|:| |ctpol| |#3|)) (-1190 |#4|) (-659 |#2|) (-659 (-659 |#3|)))) (-15 -2657 (|#4| (-557) (-417 |#4|))) (-15 -3775 ((-114) (-659 (-2 (|:| -4160 (-1190 |#3|)) (|:| -2630 (-557)))) (-659 (-2 (|:| -4160 (-1190 |#3|)) (|:| -2630 (-557)))))) (-15 -3478 ((-3 (-659 (-1190 |#4|)) "failed") (-1190 |#4|) (-1190 |#3|) (-1190 |#3|) |#4| (-659 |#2|) (-659 (-789)) (-659 |#3|))) (-15 -2658 ((-659 (-789)) (-1190 |#4|) (-659 |#2|) (-789))) (-15 -2659 ((-1190 |#3|) (-1190 |#3|) (-557)))) (-813) (-859) (-319) (-967 |#3| |#1| |#2|)) (T -760)) -((-2659 (*1 *2 *2 *3) (-12 (-5 *2 (-1190 *6)) (-5 *3 (-557)) (-4 *6 (-319)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-760 *4 *5 *6 *7)) (-4 *7 (-967 *6 *4 *5)))) (-2658 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1190 *9)) (-5 *4 (-659 *7)) (-4 *7 (-859)) (-4 *9 (-967 *8 *6 *7)) (-4 *6 (-813)) (-4 *8 (-319)) (-5 *2 (-659 (-789))) (-5 *1 (-760 *6 *7 *8 *9)) (-5 *5 (-789)))) (-3478 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1190 *11)) (-5 *6 (-659 *10)) (-5 *7 (-659 (-789))) (-5 *8 (-659 *11)) (-4 *10 (-859)) (-4 *11 (-319)) (-4 *9 (-813)) (-4 *5 (-967 *11 *9 *10)) (-5 *2 (-659 (-1190 *5))) (-5 *1 (-760 *9 *10 *11 *5)) (-5 *3 (-1190 *5)))) (-3775 (*1 *2 *3 *3) (-12 (-5 *3 (-659 (-2 (|:| -4160 (-1190 *6)) (|:| -2630 (-557))))) (-4 *6 (-319)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-114)) (-5 *1 (-760 *4 *5 *6 *7)) (-4 *7 (-967 *6 *4 *5)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-557)) (-5 *4 (-417 *2)) (-4 *2 (-967 *7 *5 *6)) (-5 *1 (-760 *5 *6 *7 *2)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-319)))) (-2656 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1190 *9)) (-5 *4 (-659 *7)) (-5 *5 (-659 (-659 *8))) (-4 *7 (-859)) (-4 *8 (-319)) (-4 *9 (-967 *8 *6 *7)) (-4 *6 (-813)) (-5 *2 (-2 (|:| |upol| (-1190 *8)) (|:| |Lval| (-659 *8)) (|:| |Lfact| (-659 (-2 (|:| -4160 (-1190 *8)) (|:| -2630 (-557))))) (|:| |ctpol| *8))) (-5 *1 (-760 *6 *7 *8 *9)))) (-2655 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-659 *7)) (-5 *5 (-659 (-659 *8))) (-4 *7 (-859)) (-4 *8 (-319)) (-4 *6 (-813)) (-4 *9 (-967 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-659 (-2 (|:| -4160 (-1190 *9)) (|:| -2630 (-557))))))) (-5 *1 (-760 *6 *7 *8 *9)) (-5 *3 (-1190 *9)))) (-2654 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-557)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *8 (-319)) (-4 *9 (-967 *8 *6 *7)) (-5 *2 (-2 (|:| -2212 (-1190 *9)) (|:| |polval| (-1190 *8)))) (-5 *1 (-760 *6 *7 *8 *9)) (-5 *3 (-1190 *9)) (-5 *4 (-1190 *8)))) (-2653 (*1 *2 *3 *4) (-12 (-4 *5 (-813)) (-4 *4 (-859)) (-4 *6 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-760 *5 *4 *6 *3)) (-4 *3 (-967 *6 *5 *4)))) (-2652 (*1 *2 *3) (-12 (-5 *3 (-659 (-2 (|:| -4160 (-1190 *6)) (|:| -2630 (-557))))) (-4 *6 (-319)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-557)) (-5 *1 (-760 *4 *5 *6 *7)) (-4 *7 (-967 *6 *4 *5)))) (-2651 (*1 *2 *3) (-12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-760 *4 *5 *6 *3)) (-4 *3 (-967 *6 *4 *5)))) (-4399 (*1 *2 *3) (-12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-319)) (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-417 (-1190 *7))) (-5 *1 (-760 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) (-4399 (*1 *2 *3) (-12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-760 *4 *5 *6 *3)) (-4 *3 (-967 *6 *4 *5))))) -((-2660 (($ $ (-936)) 17 T ELT))) -(((-761 |#1| |#2|) (-10 -7 (-15 -2660 (|#1| |#1| (-936)))) (-762 |#2|) (-175)) (T -761)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-2636 (($ $ (-936)) 36 T ELT)) (-2660 (($ $ (-936)) 43 T ELT)) (-2635 (($ $ (-936)) 37 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-2822 (($ $ $) 33 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2823 (($ $ $ $) 34 T ELT)) (-2821 (($ $ $) 32 T ELT)) (-3057 (($) 23 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 38 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) -(((-762 |#1|) (-142) (-175)) (T -762)) -((-2660 (*1 *1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-762 *3)) (-4 *3 (-175))))) -(-13 (-779) (-735 |t#1|) (-10 -8 (-15 -2660 ($ $ (-936))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-666 |#1|) . T) ((-658 |#1|) . T) ((-735 |#1|) . T) ((-738) . T) ((-779) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-2662 (((-1054) (-707 (-229)) (-557) (-114) (-557)) 26 T ELT)) (-2661 (((-1054) (-707 (-229)) (-557) (-114) (-557)) 25 T ELT))) -(((-763) (-10 -7 (-15 -2661 ((-1054) (-707 (-229)) (-557) (-114) (-557))) (-15 -2662 ((-1054) (-707 (-229)) (-557) (-114) (-557))))) (T -763)) -((-2662 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-707 (-229))) (-5 *4 (-557)) (-5 *5 (-114)) (-5 *2 (-1054)) (-5 *1 (-763)))) (-2661 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-707 (-229))) (-5 *4 (-557)) (-5 *5 (-114)) (-5 *2 (-1054)) (-5 *1 (-763))))) -((-2665 (((-1054) (-557) (-557) (-557) (-707 (-229)) (-229) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) 43 T ELT)) (-2664 (((-1054) (-557) (-557) (-707 (-229)) (-229) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) 39 T ELT)) (-2663 (((-1054) (-229) (-229) (-229) (-229) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3493)))) 32 T ELT))) -(((-764) (-10 -7 (-15 -2663 ((-1054) (-229) (-229) (-229) (-229) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3493))))) (-15 -2664 ((-1054) (-557) (-557) (-707 (-229)) (-229) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN))))) (-15 -2665 ((-1054) (-557) (-557) (-557) (-707 (-229)) (-229) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN))))))) (T -764)) -((-2665 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1054)) (-5 *1 (-764)))) (-2664 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1054)) (-5 *1 (-764)))) (-2663 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3493)))) (-5 *2 (-1054)) (-5 *1 (-764))))) -((-2677 (((-1054) (-557) (-557) (-707 (-229)) (-557)) 34 T ELT)) (-2676 (((-1054) (-557) (-557) (-707 (-229)) (-557)) 33 T ELT)) (-2675 (((-1054) (-557) (-707 (-229)) (-557)) 32 T ELT)) (-2674 (((-1054) (-557) (-707 (-229)) (-557)) 31 T ELT)) (-2673 (((-1054) (-557) (-557) (-1178) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557)) 30 T ELT)) (-2672 (((-1054) (-557) (-557) (-1178) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557)) 29 T ELT)) (-2671 (((-1054) (-557) (-557) (-1178) (-707 (-229)) (-707 (-229)) (-557)) 28 T ELT)) (-2670 (((-1054) (-557) (-557) (-1178) (-707 (-229)) (-707 (-229)) (-557)) 27 T ELT)) (-2669 (((-1054) (-557) (-557) (-707 (-229)) (-707 (-229)) (-557)) 24 T ELT)) (-2668 (((-1054) (-557) (-707 (-229)) (-707 (-229)) (-557)) 23 T ELT)) (-2667 (((-1054) (-557) (-707 (-229)) (-557)) 22 T ELT)) (-2666 (((-1054) (-557) (-707 (-229)) (-557)) 21 T ELT))) -(((-765) (-10 -7 (-15 -2666 ((-1054) (-557) (-707 (-229)) (-557))) (-15 -2667 ((-1054) (-557) (-707 (-229)) (-557))) (-15 -2668 ((-1054) (-557) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2669 ((-1054) (-557) (-557) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2670 ((-1054) (-557) (-557) (-1178) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2671 ((-1054) (-557) (-557) (-1178) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2672 ((-1054) (-557) (-557) (-1178) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2673 ((-1054) (-557) (-557) (-1178) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2674 ((-1054) (-557) (-707 (-229)) (-557))) (-15 -2675 ((-1054) (-557) (-707 (-229)) (-557))) (-15 -2676 ((-1054) (-557) (-557) (-707 (-229)) (-557))) (-15 -2677 ((-1054) (-557) (-557) (-707 (-229)) (-557))))) (T -765)) -((-2677 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-765)))) (-2676 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-765)))) (-2675 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-765)))) (-2674 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-765)))) (-2673 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-557)) (-5 *4 (-1178)) (-5 *5 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-765)))) (-2672 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-557)) (-5 *4 (-1178)) (-5 *5 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-765)))) (-2671 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-557)) (-5 *4 (-1178)) (-5 *5 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-765)))) (-2670 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-557)) (-5 *4 (-1178)) (-5 *5 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-765)))) (-2669 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-765)))) (-2668 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-765)))) (-2667 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-765)))) (-2666 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-765))))) -((-2689 (((-1054) (-557) (-707 (-229)) (-707 (-229)) (-557) (-229) (-557) (-557) (-707 (-229)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) 52 T ELT)) (-2688 (((-1054) (-707 (-229)) (-707 (-229)) (-557) (-557)) 51 T ELT)) (-2687 (((-1054) (-557) (-707 (-229)) (-707 (-229)) (-557) (-229) (-557) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) 50 T ELT)) (-2686 (((-1054) (-229) (-229) (-557) (-557) (-557) (-557)) 46 T ELT)) (-2685 (((-1054) (-229) (-229) (-557) (-229) (-557) (-557) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 45 T ELT)) (-2684 (((-1054) (-229) (-229) (-229) (-229) (-229) (-557) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 44 T ELT)) (-2683 (((-1054) (-229) (-229) (-229) (-229) (-557) (-229) (-229) (-557) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 43 T ELT)) (-2682 (((-1054) (-229) (-229) (-229) (-557) (-229) (-229) (-557) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 42 T ELT)) (-2681 (((-1054) (-229) (-557) (-229) (-229) (-557) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3493)))) 38 T ELT)) (-2680 (((-1054) (-229) (-229) (-557) (-707 (-229)) (-229) (-229) (-557) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3493)))) 37 T ELT)) (-2679 (((-1054) (-229) (-229) (-229) (-229) (-557) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3493)))) 33 T ELT)) (-2678 (((-1054) (-229) (-229) (-229) (-229) (-557) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3493)))) 32 T ELT))) -(((-766) (-10 -7 (-15 -2678 ((-1054) (-229) (-229) (-229) (-229) (-557) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3493))))) (-15 -2679 ((-1054) (-229) (-229) (-229) (-229) (-557) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3493))))) (-15 -2680 ((-1054) (-229) (-229) (-557) (-707 (-229)) (-229) (-229) (-557) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3493))))) (-15 -2681 ((-1054) (-229) (-557) (-229) (-229) (-557) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3493))))) (-15 -2682 ((-1054) (-229) (-229) (-229) (-557) (-229) (-229) (-557) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2683 ((-1054) (-229) (-229) (-229) (-229) (-557) (-229) (-229) (-557) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2684 ((-1054) (-229) (-229) (-229) (-229) (-229) (-557) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2685 ((-1054) (-229) (-229) (-557) (-229) (-557) (-557) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2686 ((-1054) (-229) (-229) (-557) (-557) (-557) (-557))) (-15 -2687 ((-1054) (-557) (-707 (-229)) (-707 (-229)) (-557) (-229) (-557) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))) (-15 -2688 ((-1054) (-707 (-229)) (-707 (-229)) (-557) (-557))) (-15 -2689 ((-1054) (-557) (-707 (-229)) (-707 (-229)) (-557) (-229) (-557) (-557) (-707 (-229)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))))) (T -766)) -((-2689 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2688 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-707 (-229))) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2687 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2686 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2685 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2684 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2683 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2682 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2681 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3493)))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2680 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-557)) (-5 *5 (-707 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3493)))) (-5 *3 (-229)) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2679 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3493)))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2678 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3493)))) (-5 *2 (-1054)) (-5 *1 (-766))))) -((-2697 (((-1054) (-557) (-557) (-557) (-557) (-229) (-557) (-557) (-557) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-229) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP)))) 76 T ELT)) (-2696 (((-1054) (-707 (-229)) (-557) (-557) (-229) (-557) (-557) (-229) (-229) (-707 (-229)) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))) (-402) (-402)) 69 T ELT) (((-1054) (-707 (-229)) (-557) (-557) (-229) (-557) (-557) (-229) (-229) (-707 (-229)) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) 68 T ELT)) (-2695 (((-1054) (-229) (-229) (-557) (-229) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG)))) 57 T ELT)) (-2694 (((-1054) (-707 (-229)) (-707 (-229)) (-557) (-229) (-229) (-229) (-557) (-557) (-557) (-707 (-229)) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) 50 T ELT)) (-2693 (((-1054) (-229) (-557) (-557) (-1178) (-557) (-229) (-707 (-229)) (-229) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) 49 T ELT)) (-2692 (((-1054) (-229) (-557) (-557) (-229) (-1178) (-229) (-707 (-229)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) 45 T ELT)) (-2691 (((-1054) (-229) (-557) (-557) (-229) (-229) (-707 (-229)) (-229) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) 42 T ELT)) (-2690 (((-1054) (-229) (-557) (-557) (-557) (-229) (-707 (-229)) (-229) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) 38 T ELT))) -(((-767) (-10 -7 (-15 -2690 ((-1054) (-229) (-557) (-557) (-557) (-229) (-707 (-229)) (-229) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2691 ((-1054) (-229) (-557) (-557) (-229) (-229) (-707 (-229)) (-229) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -2692 ((-1054) (-229) (-557) (-557) (-229) (-1178) (-229) (-707 (-229)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2693 ((-1054) (-229) (-557) (-557) (-1178) (-557) (-229) (-707 (-229)) (-229) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2694 ((-1054) (-707 (-229)) (-707 (-229)) (-557) (-229) (-229) (-229) (-557) (-557) (-557) (-707 (-229)) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -2695 ((-1054) (-229) (-229) (-557) (-229) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG))))) (-15 -2696 ((-1054) (-707 (-229)) (-557) (-557) (-229) (-557) (-557) (-229) (-229) (-707 (-229)) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))))) (-15 -2696 ((-1054) (-707 (-229)) (-557) (-557) (-229) (-557) (-557) (-229) (-229) (-707 (-229)) (-557) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))) (-402) (-402))) (-15 -2697 ((-1054) (-557) (-557) (-557) (-557) (-229) (-557) (-557) (-557) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-229) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP))))))) (T -767)) -((-2697 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP)))) (-5 *4 (-229)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2696 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-707 (-229))) (-5 *4 (-557)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-402)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2696 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-707 (-229))) (-5 *4 (-557)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2695 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-557)) (-5 *5 (-707 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-229)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2694 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-707 (-229))) (-5 *4 (-557)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2693 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-557)) (-5 *5 (-1178)) (-5 *6 (-707 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2692 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-557)) (-5 *5 (-1178)) (-5 *6 (-707 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2691 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-557)) (-5 *5 (-707 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *3 (-229)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2690 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-557)) (-5 *5 (-707 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1054)) (-5 *1 (-767))))) -((-2700 (((-1054) (-229) (-229) (-557) (-557) (-707 (-229)) (-707 (-229)) (-229) (-229) (-557) (-557) (-707 (-229)) (-707 (-229)) (-229) (-229) (-557) (-557) (-707 (-229)) (-707 (-229)) (-229) (-557) (-557) (-557) (-693 (-229)) (-557)) 46 T ELT)) (-2699 (((-1054) (-229) (-229) (-229) (-229) (-557) (-557) (-557) (-1178) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY)))) 41 T ELT)) (-2698 (((-1054) (-557) (-557) (-557) (-557) (-229) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557)) 23 T ELT))) -(((-768) (-10 -7 (-15 -2698 ((-1054) (-557) (-557) (-557) (-557) (-229) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2699 ((-1054) (-229) (-229) (-229) (-229) (-557) (-557) (-557) (-1178) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY))))) (-15 -2700 ((-1054) (-229) (-229) (-557) (-557) (-707 (-229)) (-707 (-229)) (-229) (-229) (-557) (-557) (-707 (-229)) (-707 (-229)) (-229) (-229) (-557) (-557) (-707 (-229)) (-707 (-229)) (-229) (-557) (-557) (-557) (-693 (-229)) (-557))))) (T -768)) -((-2700 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-557)) (-5 *5 (-707 (-229))) (-5 *6 (-693 (-229))) (-5 *3 (-229)) (-5 *2 (-1054)) (-5 *1 (-768)))) (-2699 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *5 (-1178)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1054)) (-5 *1 (-768)))) (-2698 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) (-5 *4 (-229)) (-5 *2 (-1054)) (-5 *1 (-768))))) -((-2710 (((-1054) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-229) (-707 (-229)) (-229) (-229) (-557)) 35 T ELT)) (-2709 (((-1054) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557) (-557) (-229) (-229) (-557)) 34 T ELT)) (-2708 (((-1054) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-557)) (-707 (-229)) (-229) (-229) (-557)) 33 T ELT)) (-2707 (((-1054) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557)) 29 T ELT)) (-2706 (((-1054) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557)) 28 T ELT)) (-2705 (((-1054) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-229) (-229) (-557)) 27 T ELT)) (-2704 (((-1054) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557) (-707 (-229)) (-557)) 24 T ELT)) (-2703 (((-1054) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557) (-707 (-229)) (-557)) 23 T ELT)) (-2702 (((-1054) (-557) (-707 (-229)) (-707 (-229)) (-557)) 22 T ELT)) (-2701 (((-1054) (-557) (-707 (-229)) (-707 (-229)) (-557) (-557) (-557)) 21 T ELT))) -(((-769) (-10 -7 (-15 -2701 ((-1054) (-557) (-707 (-229)) (-707 (-229)) (-557) (-557) (-557))) (-15 -2702 ((-1054) (-557) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2703 ((-1054) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557) (-707 (-229)) (-557))) (-15 -2704 ((-1054) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557) (-707 (-229)) (-557))) (-15 -2705 ((-1054) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-229) (-229) (-557))) (-15 -2706 ((-1054) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2707 ((-1054) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2708 ((-1054) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-557)) (-707 (-229)) (-229) (-229) (-557))) (-15 -2709 ((-1054) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557) (-557) (-229) (-229) (-557))) (-15 -2710 ((-1054) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-229) (-707 (-229)) (-229) (-229) (-557))))) (T -769)) -((-2710 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-229)) (-5 *2 (-1054)) (-5 *1 (-769)))) (-2709 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-229)) (-5 *2 (-1054)) (-5 *1 (-769)))) (-2708 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-707 (-229))) (-5 *5 (-707 (-557))) (-5 *6 (-229)) (-5 *3 (-557)) (-5 *2 (-1054)) (-5 *1 (-769)))) (-2707 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-769)))) (-2706 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-769)))) (-2705 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-229)) (-5 *2 (-1054)) (-5 *1 (-769)))) (-2704 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-769)))) (-2703 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-769)))) (-2702 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-769)))) (-2701 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-769))))) -((-2728 (((-1054) (-557) (-557) (-707 (-229)) (-707 (-229)) (-557) (-707 (-229)) (-707 (-229)) (-557) (-557) (-557)) 45 T ELT)) (-2727 (((-1054) (-557) (-557) (-557) (-229) (-707 (-229)) (-707 (-229)) (-557)) 44 T ELT)) (-2726 (((-1054) (-557) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557) (-557) (-557)) 43 T ELT)) (-2725 (((-1054) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557)) 42 T ELT)) (-2724 (((-1054) (-1178) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-229) (-557) (-557) (-557) (-557) (-557) (-707 (-229)) (-557) (-707 (-229)) (-707 (-229)) (-557)) 41 T ELT)) (-2723 (((-1054) (-1178) (-557) (-707 (-229)) (-557) (-707 (-229)) (-707 (-229)) (-229) (-557) (-557) (-557) (-557) (-557) (-707 (-229)) (-557) (-707 (-229)) (-707 (-229)) (-707 (-557)) (-557)) 40 T ELT)) (-2722 (((-1054) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-557)) (-557) (-557) (-557) (-229) (-707 (-229)) (-557)) 39 T ELT)) (-2721 (((-1054) (-1178) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-229) (-557) (-557) (-557) (-707 (-229)) (-557) (-707 (-229)) (-707 (-557))) 38 T ELT)) (-2720 (((-1054) (-557) (-707 (-229)) (-707 (-229)) (-557)) 35 T ELT)) (-2719 (((-1054) (-557) (-707 (-229)) (-707 (-229)) (-229) (-557) (-557)) 34 T ELT)) (-2718 (((-1054) (-557) (-707 (-229)) (-707 (-229)) (-229) (-557)) 33 T ELT)) (-2717 (((-1054) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557)) 32 T ELT)) (-2716 (((-1054) (-557) (-229) (-229) (-707 (-229)) (-557) (-557) (-229) (-557)) 31 T ELT)) (-2715 (((-1054) (-557) (-229) (-229) (-707 (-229)) (-557) (-557) (-229) (-557) (-557) (-557)) 30 T ELT)) (-2714 (((-1054) (-557) (-229) (-229) (-707 (-229)) (-557) (-557) (-557) (-557) (-557)) 29 T ELT)) (-2713 (((-1054) (-557) (-557) (-557) (-229) (-229) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557) (-707 (-229)) (-707 (-229)) (-557) (-707 (-557)) (-557) (-557) (-557)) 28 T ELT)) (-2712 (((-1054) (-557) (-707 (-229)) (-229) (-557)) 24 T ELT)) (-2711 (((-1054) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557)) 21 T ELT))) -(((-770) (-10 -7 (-15 -2711 ((-1054) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2712 ((-1054) (-557) (-707 (-229)) (-229) (-557))) (-15 -2713 ((-1054) (-557) (-557) (-557) (-229) (-229) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557) (-707 (-229)) (-707 (-229)) (-557) (-707 (-557)) (-557) (-557) (-557))) (-15 -2714 ((-1054) (-557) (-229) (-229) (-707 (-229)) (-557) (-557) (-557) (-557) (-557))) (-15 -2715 ((-1054) (-557) (-229) (-229) (-707 (-229)) (-557) (-557) (-229) (-557) (-557) (-557))) (-15 -2716 ((-1054) (-557) (-229) (-229) (-707 (-229)) (-557) (-557) (-229) (-557))) (-15 -2717 ((-1054) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2718 ((-1054) (-557) (-707 (-229)) (-707 (-229)) (-229) (-557))) (-15 -2719 ((-1054) (-557) (-707 (-229)) (-707 (-229)) (-229) (-557) (-557))) (-15 -2720 ((-1054) (-557) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2721 ((-1054) (-1178) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-229) (-557) (-557) (-557) (-707 (-229)) (-557) (-707 (-229)) (-707 (-557)))) (-15 -2722 ((-1054) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-557)) (-557) (-557) (-557) (-229) (-707 (-229)) (-557))) (-15 -2723 ((-1054) (-1178) (-557) (-707 (-229)) (-557) (-707 (-229)) (-707 (-229)) (-229) (-557) (-557) (-557) (-557) (-557) (-707 (-229)) (-557) (-707 (-229)) (-707 (-229)) (-707 (-557)) (-557))) (-15 -2724 ((-1054) (-1178) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-229) (-557) (-557) (-557) (-557) (-557) (-707 (-229)) (-557) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2725 ((-1054) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2726 ((-1054) (-557) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557) (-557) (-557))) (-15 -2727 ((-1054) (-557) (-557) (-557) (-229) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2728 ((-1054) (-557) (-557) (-707 (-229)) (-707 (-229)) (-557) (-707 (-229)) (-707 (-229)) (-557) (-557) (-557))))) (T -770)) -((-2728 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2727 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) (-5 *4 (-229)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2726 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2725 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2724 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-557)) (-5 *5 (-707 (-229))) (-5 *6 (-229)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2723 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1178)) (-5 *5 (-707 (-229))) (-5 *6 (-229)) (-5 *7 (-707 (-557))) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2722 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-707 (-229))) (-5 *5 (-707 (-557))) (-5 *6 (-229)) (-5 *3 (-557)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2721 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1178)) (-5 *5 (-707 (-229))) (-5 *6 (-229)) (-5 *7 (-707 (-557))) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2720 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2719 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-229)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2718 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-229)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2717 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2716 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) (-5 *4 (-229)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2715 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) (-5 *4 (-229)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2714 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) (-5 *4 (-229)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2713 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-707 (-229))) (-5 *6 (-707 (-557))) (-5 *3 (-557)) (-5 *4 (-229)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2712 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-229)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2711 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-770))))) -((-2736 (((-1054) (-557) (-557) (-557) (-229) (-707 (-229)) (-557) (-707 (-229)) (-557)) 64 T ELT)) (-2735 (((-1054) (-557) (-557) (-557) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557) (-557) (-114) (-229) (-557) (-229) (-229) (-114) (-229) (-229) (-229) (-229) (-114) (-557) (-557) (-557) (-557) (-557) (-229) (-229) (-229) (-557) (-557) (-557) (-557) (-557) (-707 (-557)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) 63 T ELT)) (-2734 (((-1054) (-557) (-557) (-557) (-557) (-557) (-557) (-557) (-557) (-229) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-114) (-114) (-114) (-557) (-557) (-707 (-229)) (-707 (-557)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS)))) 59 T ELT)) (-2733 (((-1054) (-557) (-557) (-557) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-114) (-557) (-557) (-707 (-229)) (-557)) 52 T ELT)) (-2732 (((-1054) (-557) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) 51 T ELT)) (-2731 (((-1054) (-557) (-557) (-557) (-557) (-707 (-229)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2)))) 47 T ELT)) (-2730 (((-1054) (-557) (-557) (-557) (-557) (-707 (-229)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) 43 T ELT)) (-2729 (((-1054) (-557) (-229) (-229) (-557) (-229) (-114) (-229) (-229) (-557) (-557) (-557) (-557) (-707 (-229)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) 39 T ELT))) -(((-771) (-10 -7 (-15 -2729 ((-1054) (-557) (-229) (-229) (-557) (-229) (-114) (-229) (-229) (-557) (-557) (-557) (-557) (-707 (-229)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -2730 ((-1054) (-557) (-557) (-557) (-557) (-707 (-229)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1))))) (-15 -2731 ((-1054) (-557) (-557) (-557) (-557) (-707 (-229)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2))))) (-15 -2732 ((-1054) (-557) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1))))) (-15 -2733 ((-1054) (-557) (-557) (-557) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-114) (-557) (-557) (-707 (-229)) (-557))) (-15 -2734 ((-1054) (-557) (-557) (-557) (-557) (-557) (-557) (-557) (-557) (-229) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-114) (-114) (-114) (-557) (-557) (-707 (-229)) (-707 (-557)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS))))) (-15 -2735 ((-1054) (-557) (-557) (-557) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557) (-557) (-114) (-229) (-557) (-229) (-229) (-114) (-229) (-229) (-229) (-229) (-114) (-557) (-557) (-557) (-557) (-557) (-229) (-229) (-229) (-557) (-557) (-557) (-557) (-557) (-707 (-557)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -2736 ((-1054) (-557) (-557) (-557) (-229) (-707 (-229)) (-557) (-707 (-229)) (-557))))) (T -771)) -((-2736 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) (-5 *4 (-229)) (-5 *2 (-1054)) (-5 *1 (-771)))) (-2735 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-707 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) (-5 *7 (-707 (-557))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-557)) (-5 *2 (-1054)) (-5 *1 (-771)))) (-2734 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-707 (-229))) (-5 *6 (-114)) (-5 *7 (-707 (-557))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-557)) (-5 *4 (-229)) (-5 *2 (-1054)) (-5 *1 (-771)))) (-2733 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-114)) (-5 *2 (-1054)) (-5 *1 (-771)))) (-2732 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1054)) (-5 *1 (-771)))) (-2731 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1054)) (-5 *1 (-771)))) (-2730 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1054)) (-5 *1 (-771)))) (-2729 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-557)) (-5 *5 (-114)) (-5 *6 (-707 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-229)) (-5 *2 (-1054)) (-5 *1 (-771))))) -((-2746 (((-1054) (-1178) (-557) (-557) (-557) (-557) (-707 (-171 (-229))) (-707 (-171 (-229))) (-557)) 47 T ELT)) (-2745 (((-1054) (-1178) (-1178) (-557) (-557) (-707 (-171 (-229))) (-557) (-707 (-171 (-229))) (-557) (-557) (-707 (-171 (-229))) (-557)) 46 T ELT)) (-2744 (((-1054) (-557) (-557) (-557) (-707 (-171 (-229))) (-557)) 45 T ELT)) (-2743 (((-1054) (-1178) (-557) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-557)) 40 T ELT)) (-2742 (((-1054) (-1178) (-1178) (-557) (-557) (-707 (-229)) (-557) (-707 (-229)) (-557) (-557) (-707 (-229)) (-557)) 39 T ELT)) (-2741 (((-1054) (-557) (-557) (-557) (-707 (-229)) (-557)) 36 T ELT)) (-2740 (((-1054) (-557) (-707 (-229)) (-557) (-707 (-557)) (-557)) 35 T ELT)) (-2739 (((-1054) (-557) (-557) (-557) (-557) (-659 (-114)) (-707 (-229)) (-707 (-557)) (-707 (-557)) (-229) (-229) (-557)) 34 T ELT)) (-2738 (((-1054) (-557) (-557) (-557) (-707 (-557)) (-707 (-557)) (-707 (-557)) (-707 (-557)) (-114) (-229) (-114) (-707 (-557)) (-707 (-229)) (-557)) 33 T ELT)) (-2737 (((-1054) (-557) (-557) (-557) (-557) (-229) (-114) (-114) (-659 (-114)) (-707 (-229)) (-707 (-557)) (-707 (-557)) (-557)) 32 T ELT))) -(((-772) (-10 -7 (-15 -2737 ((-1054) (-557) (-557) (-557) (-557) (-229) (-114) (-114) (-659 (-114)) (-707 (-229)) (-707 (-557)) (-707 (-557)) (-557))) (-15 -2738 ((-1054) (-557) (-557) (-557) (-707 (-557)) (-707 (-557)) (-707 (-557)) (-707 (-557)) (-114) (-229) (-114) (-707 (-557)) (-707 (-229)) (-557))) (-15 -2739 ((-1054) (-557) (-557) (-557) (-557) (-659 (-114)) (-707 (-229)) (-707 (-557)) (-707 (-557)) (-229) (-229) (-557))) (-15 -2740 ((-1054) (-557) (-707 (-229)) (-557) (-707 (-557)) (-557))) (-15 -2741 ((-1054) (-557) (-557) (-557) (-707 (-229)) (-557))) (-15 -2742 ((-1054) (-1178) (-1178) (-557) (-557) (-707 (-229)) (-557) (-707 (-229)) (-557) (-557) (-707 (-229)) (-557))) (-15 -2743 ((-1054) (-1178) (-557) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2744 ((-1054) (-557) (-557) (-557) (-707 (-171 (-229))) (-557))) (-15 -2745 ((-1054) (-1178) (-1178) (-557) (-557) (-707 (-171 (-229))) (-557) (-707 (-171 (-229))) (-557) (-557) (-707 (-171 (-229))) (-557))) (-15 -2746 ((-1054) (-1178) (-557) (-557) (-557) (-557) (-707 (-171 (-229))) (-707 (-171 (-229))) (-557))))) (T -772)) -((-2746 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-557)) (-5 *5 (-707 (-171 (-229)))) (-5 *2 (-1054)) (-5 *1 (-772)))) (-2745 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-557)) (-5 *5 (-707 (-171 (-229)))) (-5 *2 (-1054)) (-5 *1 (-772)))) (-2744 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-171 (-229)))) (-5 *2 (-1054)) (-5 *1 (-772)))) (-2743 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-557)) (-5 *5 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-772)))) (-2742 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-557)) (-5 *5 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-772)))) (-2741 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-772)))) (-2740 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-707 (-229))) (-5 *5 (-707 (-557))) (-5 *3 (-557)) (-5 *2 (-1054)) (-5 *1 (-772)))) (-2739 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-659 (-114))) (-5 *5 (-707 (-229))) (-5 *6 (-707 (-557))) (-5 *7 (-229)) (-5 *3 (-557)) (-5 *2 (-1054)) (-5 *1 (-772)))) (-2738 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-707 (-557))) (-5 *5 (-114)) (-5 *7 (-707 (-229))) (-5 *3 (-557)) (-5 *6 (-229)) (-5 *2 (-1054)) (-5 *1 (-772)))) (-2737 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-659 (-114))) (-5 *7 (-707 (-229))) (-5 *8 (-707 (-557))) (-5 *3 (-557)) (-5 *4 (-229)) (-5 *5 (-114)) (-5 *2 (-1054)) (-5 *1 (-772))))) -((-2761 (((-1054) (-557) (-557) (-557) (-557) (-557) (-114) (-557) (-114) (-557) (-707 (-171 (-229))) (-707 (-171 (-229))) (-557)) 76 T ELT)) (-2760 (((-1054) (-557) (-557) (-557) (-557) (-557) (-114) (-557) (-114) (-557) (-707 (-229)) (-707 (-229)) (-557)) 68 T ELT)) (-2759 (((-1054) (-557) (-557) (-229) (-557) (-557) (-557) (-557) (-557) (-557) (-557) (-707 (-229)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))) (-402)) 56 T ELT) (((-1054) (-557) (-557) (-229) (-557) (-557) (-557) (-557) (-557) (-557) (-557) (-707 (-229)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) 55 T ELT)) (-2758 (((-1054) (-557) (-557) (-557) (-229) (-114) (-557) (-707 (-229)) (-707 (-229)) (-557)) 37 T ELT)) (-2757 (((-1054) (-557) (-557) (-229) (-229) (-557) (-557) (-707 (-229)) (-557)) 33 T ELT)) (-2756 (((-1054) (-707 (-229)) (-557) (-707 (-229)) (-557) (-557) (-557) (-557) (-557)) 30 T ELT)) (-2755 (((-1054) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-557)) 29 T ELT)) (-2754 (((-1054) (-557) (-557) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-557)) 28 T ELT)) (-2753 (((-1054) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-557)) 27 T ELT)) (-2752 (((-1054) (-557) (-557) (-557) (-557) (-707 (-229)) (-557)) 26 T ELT)) (-2751 (((-1054) (-557) (-557) (-707 (-229)) (-557)) 25 T ELT)) (-2750 (((-1054) (-557) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-557)) 24 T ELT)) (-2749 (((-1054) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-557)) 23 T ELT)) (-2748 (((-1054) (-707 (-229)) (-557) (-557) (-557) (-557)) 22 T ELT)) (-2747 (((-1054) (-557) (-557) (-707 (-229)) (-557)) 21 T ELT))) -(((-773) (-10 -7 (-15 -2747 ((-1054) (-557) (-557) (-707 (-229)) (-557))) (-15 -2748 ((-1054) (-707 (-229)) (-557) (-557) (-557) (-557))) (-15 -2749 ((-1054) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2750 ((-1054) (-557) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2751 ((-1054) (-557) (-557) (-707 (-229)) (-557))) (-15 -2752 ((-1054) (-557) (-557) (-557) (-557) (-707 (-229)) (-557))) (-15 -2753 ((-1054) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2754 ((-1054) (-557) (-557) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2755 ((-1054) (-557) (-557) (-557) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2756 ((-1054) (-707 (-229)) (-557) (-707 (-229)) (-557) (-557) (-557) (-557) (-557))) (-15 -2757 ((-1054) (-557) (-557) (-229) (-229) (-557) (-557) (-707 (-229)) (-557))) (-15 -2758 ((-1054) (-557) (-557) (-557) (-229) (-114) (-557) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2759 ((-1054) (-557) (-557) (-229) (-557) (-557) (-557) (-557) (-557) (-557) (-557) (-707 (-229)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))))) (-15 -2759 ((-1054) (-557) (-557) (-229) (-557) (-557) (-557) (-557) (-557) (-557) (-557) (-707 (-229)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))) (-402))) (-15 -2760 ((-1054) (-557) (-557) (-557) (-557) (-557) (-114) (-557) (-114) (-557) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2761 ((-1054) (-557) (-557) (-557) (-557) (-557) (-114) (-557) (-114) (-557) (-707 (-171 (-229))) (-707 (-171 (-229))) (-557))))) (T -773)) -((-2761 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-557)) (-5 *4 (-114)) (-5 *5 (-707 (-171 (-229)))) (-5 *2 (-1054)) (-5 *1 (-773)))) (-2760 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-557)) (-5 *4 (-114)) (-5 *5 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-773)))) (-2759 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-402)) (-5 *4 (-229)) (-5 *2 (-1054)) (-5 *1 (-773)))) (-2759 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-229)) (-5 *2 (-1054)) (-5 *1 (-773)))) (-2758 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-557)) (-5 *5 (-114)) (-5 *6 (-707 (-229))) (-5 *4 (-229)) (-5 *2 (-1054)) (-5 *1 (-773)))) (-2757 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) (-5 *4 (-229)) (-5 *2 (-1054)) (-5 *1 (-773)))) (-2756 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-707 (-229))) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-773)))) (-2755 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-773)))) (-2754 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-773)))) (-2753 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-773)))) (-2752 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-773)))) (-2751 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-773)))) (-2750 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-773)))) (-2749 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-773)))) (-2748 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-707 (-229))) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-773)))) (-2747 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-773))))) -((-2772 (((-1054) (-557) (-557) (-229) (-229) (-229) (-229) (-557) (-557) (-557) (-557) (-707 (-229)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) 64 T ELT)) (-2771 (((-1054) (-557) (-707 (-229)) (-557) (-707 (-229)) (-707 (-557)) (-557) (-707 (-229)) (-557) (-557) (-557) (-557)) 60 T ELT)) (-2770 (((-1054) (-557) (-707 (-229)) (-114) (-229) (-557) (-557) (-557) (-557) (-229) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) 59 T ELT)) (-2769 (((-1054) (-557) (-557) (-707 (-229)) (-557) (-707 (-557)) (-557) (-707 (-557)) (-707 (-229)) (-707 (-557)) (-707 (-557)) (-707 (-229)) (-707 (-229)) (-707 (-557)) (-557)) 37 T ELT)) (-2768 (((-1054) (-557) (-557) (-557) (-229) (-557) (-707 (-229)) (-707 (-229)) (-557)) 36 T ELT)) (-2767 (((-1054) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557)) 33 T ELT)) (-2766 (((-1054) (-557) (-707 (-229)) (-557) (-707 (-557)) (-707 (-557)) (-557) (-707 (-557)) (-707 (-229))) 32 T ELT)) (-2765 (((-1054) (-707 (-229)) (-557) (-707 (-229)) (-557) (-557) (-557)) 28 T ELT)) (-2764 (((-1054) (-557) (-707 (-229)) (-557) (-707 (-229)) (-557)) 27 T ELT)) (-2763 (((-1054) (-557) (-707 (-229)) (-557) (-707 (-229)) (-557)) 26 T ELT)) (-2762 (((-1054) (-557) (-707 (-171 (-229))) (-557) (-557) (-557) (-557) (-707 (-171 (-229))) (-557)) 22 T ELT))) -(((-774) (-10 -7 (-15 -2762 ((-1054) (-557) (-707 (-171 (-229))) (-557) (-557) (-557) (-557) (-707 (-171 (-229))) (-557))) (-15 -2763 ((-1054) (-557) (-707 (-229)) (-557) (-707 (-229)) (-557))) (-15 -2764 ((-1054) (-557) (-707 (-229)) (-557) (-707 (-229)) (-557))) (-15 -2765 ((-1054) (-707 (-229)) (-557) (-707 (-229)) (-557) (-557) (-557))) (-15 -2766 ((-1054) (-557) (-707 (-229)) (-557) (-707 (-557)) (-707 (-557)) (-557) (-707 (-557)) (-707 (-229)))) (-15 -2767 ((-1054) (-557) (-557) (-707 (-229)) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2768 ((-1054) (-557) (-557) (-557) (-229) (-557) (-707 (-229)) (-707 (-229)) (-557))) (-15 -2769 ((-1054) (-557) (-557) (-707 (-229)) (-557) (-707 (-557)) (-557) (-707 (-557)) (-707 (-229)) (-707 (-557)) (-707 (-557)) (-707 (-229)) (-707 (-229)) (-707 (-557)) (-557))) (-15 -2770 ((-1054) (-557) (-707 (-229)) (-114) (-229) (-557) (-557) (-557) (-557) (-229) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE))))) (-15 -2771 ((-1054) (-557) (-707 (-229)) (-557) (-707 (-229)) (-707 (-557)) (-557) (-707 (-229)) (-557) (-557) (-557) (-557))) (-15 -2772 ((-1054) (-557) (-557) (-229) (-229) (-229) (-229) (-557) (-557) (-557) (-557) (-707 (-229)) (-557) (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD))))))) (T -774)) -((-2772 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) (-5 *4 (-229)) (-5 *2 (-1054)) (-5 *1 (-774)))) (-2771 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-707 (-229))) (-5 *5 (-707 (-557))) (-5 *3 (-557)) (-5 *2 (-1054)) (-5 *1 (-774)))) (-2770 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1054)) (-5 *1 (-774)))) (-2769 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-707 (-229))) (-5 *5 (-707 (-557))) (-5 *3 (-557)) (-5 *2 (-1054)) (-5 *1 (-774)))) (-2768 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) (-5 *4 (-229)) (-5 *2 (-1054)) (-5 *1 (-774)))) (-2767 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-774)))) (-2766 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-707 (-229))) (-5 *5 (-707 (-557))) (-5 *3 (-557)) (-5 *2 (-1054)) (-5 *1 (-774)))) (-2765 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-707 (-229))) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-774)))) (-2764 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-774)))) (-2763 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-774)))) (-2762 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-171 (-229)))) (-5 *2 (-1054)) (-5 *1 (-774))))) -((-2776 (((-1054) (-1178) (-557) (-557) (-707 (-229)) (-557) (-557) (-707 (-229))) 29 T ELT)) (-2775 (((-1054) (-1178) (-557) (-557) (-707 (-229))) 28 T ELT)) (-2774 (((-1054) (-1178) (-557) (-557) (-707 (-229)) (-557) (-707 (-557)) (-557) (-707 (-229))) 27 T ELT)) (-2773 (((-1054) (-557) (-557) (-557) (-707 (-229))) 21 T ELT))) -(((-775) (-10 -7 (-15 -2773 ((-1054) (-557) (-557) (-557) (-707 (-229)))) (-15 -2774 ((-1054) (-1178) (-557) (-557) (-707 (-229)) (-557) (-707 (-557)) (-557) (-707 (-229)))) (-15 -2775 ((-1054) (-1178) (-557) (-557) (-707 (-229)))) (-15 -2776 ((-1054) (-1178) (-557) (-557) (-707 (-229)) (-557) (-557) (-707 (-229)))))) (T -775)) -((-2776 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1178)) (-5 *4 (-557)) (-5 *5 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-775)))) (-2775 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1178)) (-5 *4 (-557)) (-5 *5 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-775)))) (-2774 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1178)) (-5 *5 (-707 (-229))) (-5 *6 (-707 (-557))) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-775)))) (-2773 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-775))))) -((-2814 (((-1054) (-229) (-229) (-229) (-229) (-557)) 62 T ELT)) (-2813 (((-1054) (-229) (-229) (-229) (-557)) 61 T ELT)) (-2812 (((-1054) (-229) (-229) (-229) (-557)) 60 T ELT)) (-2811 (((-1054) (-229) (-229) (-557)) 59 T ELT)) (-2810 (((-1054) (-229) (-557)) 58 T ELT)) (-2809 (((-1054) (-229) (-557)) 57 T ELT)) (-2808 (((-1054) (-229) (-557)) 56 T ELT)) (-2807 (((-1054) (-229) (-557)) 55 T ELT)) (-2806 (((-1054) (-229) (-557)) 54 T ELT)) (-2805 (((-1054) (-229) (-557)) 53 T ELT)) (-2804 (((-1054) (-229) (-171 (-229)) (-557) (-1178) (-557)) 52 T ELT)) (-2803 (((-1054) (-229) (-171 (-229)) (-557) (-1178) (-557)) 51 T ELT)) (-2802 (((-1054) (-229) (-557)) 50 T ELT)) (-2801 (((-1054) (-229) (-557)) 49 T ELT)) (-2800 (((-1054) (-229) (-557)) 48 T ELT)) (-2799 (((-1054) (-229) (-557)) 47 T ELT)) (-2798 (((-1054) (-557) (-229) (-171 (-229)) (-557) (-1178) (-557)) 46 T ELT)) (-2797 (((-1054) (-1178) (-171 (-229)) (-1178) (-557)) 45 T ELT)) (-2796 (((-1054) (-1178) (-171 (-229)) (-1178) (-557)) 44 T ELT)) (-2795 (((-1054) (-229) (-171 (-229)) (-557) (-1178) (-557)) 43 T ELT)) (-2794 (((-1054) (-229) (-171 (-229)) (-557) (-1178) (-557)) 42 T ELT)) (-2793 (((-1054) (-229) (-557)) 39 T ELT)) (-2792 (((-1054) (-229) (-557)) 38 T ELT)) (-2791 (((-1054) (-229) (-557)) 37 T ELT)) (-2790 (((-1054) (-229) (-557)) 36 T ELT)) (-2789 (((-1054) (-229) (-557)) 35 T ELT)) (-2788 (((-1054) (-229) (-557)) 34 T ELT)) (-2787 (((-1054) (-229) (-557)) 33 T ELT)) (-2786 (((-1054) (-229) (-557)) 32 T ELT)) (-2785 (((-1054) (-229) (-557)) 31 T ELT)) (-2784 (((-1054) (-229) (-557)) 30 T ELT)) (-2783 (((-1054) (-229) (-229) (-229) (-557)) 29 T ELT)) (-2782 (((-1054) (-229) (-557)) 28 T ELT)) (-2781 (((-1054) (-229) (-557)) 27 T ELT)) (-2780 (((-1054) (-229) (-557)) 26 T ELT)) (-2779 (((-1054) (-229) (-557)) 25 T ELT)) (-2778 (((-1054) (-229) (-557)) 24 T ELT)) (-2777 (((-1054) (-171 (-229)) (-557)) 21 T ELT))) -(((-776) (-10 -7 (-15 -2777 ((-1054) (-171 (-229)) (-557))) (-15 -2778 ((-1054) (-229) (-557))) (-15 -2779 ((-1054) (-229) (-557))) (-15 -2780 ((-1054) (-229) (-557))) (-15 -2781 ((-1054) (-229) (-557))) (-15 -2782 ((-1054) (-229) (-557))) (-15 -2783 ((-1054) (-229) (-229) (-229) (-557))) (-15 -2784 ((-1054) (-229) (-557))) (-15 -2785 ((-1054) (-229) (-557))) (-15 -2786 ((-1054) (-229) (-557))) (-15 -2787 ((-1054) (-229) (-557))) (-15 -2788 ((-1054) (-229) (-557))) (-15 -2789 ((-1054) (-229) (-557))) (-15 -2790 ((-1054) (-229) (-557))) (-15 -2791 ((-1054) (-229) (-557))) (-15 -2792 ((-1054) (-229) (-557))) (-15 -2793 ((-1054) (-229) (-557))) (-15 -2794 ((-1054) (-229) (-171 (-229)) (-557) (-1178) (-557))) (-15 -2795 ((-1054) (-229) (-171 (-229)) (-557) (-1178) (-557))) (-15 -2796 ((-1054) (-1178) (-171 (-229)) (-1178) (-557))) (-15 -2797 ((-1054) (-1178) (-171 (-229)) (-1178) (-557))) (-15 -2798 ((-1054) (-557) (-229) (-171 (-229)) (-557) (-1178) (-557))) (-15 -2799 ((-1054) (-229) (-557))) (-15 -2800 ((-1054) (-229) (-557))) (-15 -2801 ((-1054) (-229) (-557))) (-15 -2802 ((-1054) (-229) (-557))) (-15 -2803 ((-1054) (-229) (-171 (-229)) (-557) (-1178) (-557))) (-15 -2804 ((-1054) (-229) (-171 (-229)) (-557) (-1178) (-557))) (-15 -2805 ((-1054) (-229) (-557))) (-15 -2806 ((-1054) (-229) (-557))) (-15 -2807 ((-1054) (-229) (-557))) (-15 -2808 ((-1054) (-229) (-557))) (-15 -2809 ((-1054) (-229) (-557))) (-15 -2810 ((-1054) (-229) (-557))) (-15 -2811 ((-1054) (-229) (-229) (-557))) (-15 -2812 ((-1054) (-229) (-229) (-229) (-557))) (-15 -2813 ((-1054) (-229) (-229) (-229) (-557))) (-15 -2814 ((-1054) (-229) (-229) (-229) (-229) (-557))))) (T -776)) -((-2814 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2813 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2812 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2811 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2810 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2809 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2807 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2806 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2805 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2804 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-557)) (-5 *6 (-1178)) (-5 *3 (-229)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2803 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-557)) (-5 *6 (-1178)) (-5 *3 (-229)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2802 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2801 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2800 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2799 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2798 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-557)) (-5 *5 (-171 (-229))) (-5 *6 (-1178)) (-5 *4 (-229)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2797 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1178)) (-5 *4 (-171 (-229))) (-5 *5 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2796 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1178)) (-5 *4 (-171 (-229))) (-5 *5 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2795 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-557)) (-5 *6 (-1178)) (-5 *3 (-229)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2794 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-557)) (-5 *6 (-1178)) (-5 *3 (-229)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2792 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2791 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2789 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2788 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2787 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2786 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2785 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2784 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2783 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2780 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2779 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776)))) (-2777 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-229))) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -((-2820 (((-1292)) 20 T ELT)) (-2816 (((-1178)) 35 T ELT)) (-2815 (((-1178)) 34 T ELT)) (-2818 (((-1122) (-1196) (-707 (-557))) 48 T ELT) (((-1122) (-1196) (-707 (-229))) 44 T ELT)) (-2819 (((-114)) 19 T ELT)) (-2817 (((-1178) (-1178)) 38 T ELT))) -(((-777) (-10 -7 (-15 -2815 ((-1178))) (-15 -2816 ((-1178))) (-15 -2817 ((-1178) (-1178))) (-15 -2818 ((-1122) (-1196) (-707 (-229)))) (-15 -2818 ((-1122) (-1196) (-707 (-557)))) (-15 -2819 ((-114))) (-15 -2820 ((-1292))))) (T -777)) -((-2820 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-777)))) (-2819 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-777)))) (-2818 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-707 (-557))) (-5 *2 (-1122)) (-5 *1 (-777)))) (-2818 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-707 (-229))) (-5 *2 (-1122)) (-5 *1 (-777)))) (-2817 (*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-777)))) (-2816 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-777)))) (-2815 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-777))))) -((-2822 (($ $ $) 10 T ELT)) (-2823 (($ $ $ $) 9 T ELT)) (-2821 (($ $ $) 12 T ELT))) -(((-778 |#1|) (-10 -7 (-15 -2821 (|#1| |#1| |#1|)) (-15 -2822 (|#1| |#1| |#1|)) (-15 -2823 (|#1| |#1| |#1| |#1|))) (-779)) (T -778)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-2636 (($ $ (-936)) 36 T ELT)) (-2635 (($ $ (-936)) 37 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-2822 (($ $ $) 33 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2823 (($ $ $ $) 34 T ELT)) (-2821 (($ $ $) 32 T ELT)) (-3057 (($) 23 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 38 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 35 T ELT))) -(((-779) (-142)) (T -779)) -((-2823 (*1 *1 *1 *1 *1) (-4 *1 (-779))) (-2822 (*1 *1 *1 *1) (-4 *1 (-779))) (-2821 (*1 *1 *1 *1) (-4 *1 (-779)))) -(-13 (-21) (-738) (-10 -8 (-15 -2823 ($ $ $ $)) (-15 -2822 ($ $ $)) (-15 -2821 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-738) . T) ((-1120) . T) ((-1236) . T)) -((-4374 (((-875) $) NIL T ELT) (($ (-557)) 10 T ELT))) -(((-780 |#1|) (-10 -7 (-15 -4374 (|#1| (-557))) (-15 -4374 ((-875) |#1|))) (-781)) (T -780)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-2633 (((-3 $ #1="failed") $) 48 T ELT)) (-2636 (($ $ (-936)) 36 T ELT) (($ $ (-789)) 43 T ELT)) (-3885 (((-3 $ #1#) $) 46 T ELT)) (-2639 (((-114) $) 42 T ELT)) (-2634 (((-3 $ #1#) $) 47 T ELT)) (-2635 (($ $ (-936)) 37 T ELT) (($ $ (-789)) 44 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-2822 (($ $ $) 33 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 39 T ELT)) (-3526 (((-789)) 40 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2823 (($ $ $ $) 34 T ELT)) (-2821 (($ $ $) 32 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 41 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 38 T ELT) (($ $ (-789)) 45 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 35 T ELT))) -(((-781) (-142)) (T -781)) -((-3526 (*1 *2) (-12 (-4 *1 (-781)) (-5 *2 (-789)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-557)) (-4 *1 (-781))))) -(-13 (-779) (-740) (-10 -8 (-15 -3526 ((-789)) -4380) (-15 -4374 ($ (-557))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-738) . T) ((-740) . T) ((-779) . T) ((-1120) . T) ((-1236) . T)) -((-2825 (((-659 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-557)) (|:| |outvect| (-659 (-707 (-171 |#1|)))))) (-707 (-171 (-419 (-557)))) |#1|) 33 T ELT)) (-2824 (((-659 (-171 |#1|)) (-707 (-171 (-419 (-557)))) |#1|) 23 T ELT)) (-2836 (((-963 (-171 (-419 (-557)))) (-707 (-171 (-419 (-557)))) (-1196)) 20 T ELT) (((-963 (-171 (-419 (-557)))) (-707 (-171 (-419 (-557))))) 19 T ELT))) -(((-782 |#1|) (-10 -7 (-15 -2836 ((-963 (-171 (-419 (-557)))) (-707 (-171 (-419 (-557)))))) (-15 -2836 ((-963 (-171 (-419 (-557)))) (-707 (-171 (-419 (-557)))) (-1196))) (-15 -2824 ((-659 (-171 |#1|)) (-707 (-171 (-419 (-557)))) |#1|)) (-15 -2825 ((-659 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-557)) (|:| |outvect| (-659 (-707 (-171 |#1|)))))) (-707 (-171 (-419 (-557)))) |#1|))) (-13 (-376) (-858))) (T -782)) -((-2825 (*1 *2 *3 *4) (-12 (-5 *3 (-707 (-171 (-419 (-557))))) (-5 *2 (-659 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-557)) (|:| |outvect| (-659 (-707 (-171 *4))))))) (-5 *1 (-782 *4)) (-4 *4 (-13 (-376) (-858))))) (-2824 (*1 *2 *3 *4) (-12 (-5 *3 (-707 (-171 (-419 (-557))))) (-5 *2 (-659 (-171 *4))) (-5 *1 (-782 *4)) (-4 *4 (-13 (-376) (-858))))) (-2836 (*1 *2 *3 *4) (-12 (-5 *3 (-707 (-171 (-419 (-557))))) (-5 *4 (-1196)) (-5 *2 (-963 (-171 (-419 (-557))))) (-5 *1 (-782 *5)) (-4 *5 (-13 (-376) (-858))))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-707 (-171 (-419 (-557))))) (-5 *2 (-963 (-171 (-419 (-557))))) (-5 *1 (-782 *4)) (-4 *4 (-13 (-376) (-858)))))) -((-3013 (((-177 (-557)) |#1|) 27 T ELT))) -(((-783 |#1|) (-10 -7 (-15 -3013 ((-177 (-557)) |#1|))) (-416)) (T -783)) -((-3013 (*1 *2 *3) (-12 (-5 *2 (-177 (-557))) (-5 *1 (-783 *3)) (-4 *3 (-416))))) -((-2939 ((|#1| |#1| |#1|) 28 T ELT)) (-2940 ((|#1| |#1| |#1|) 27 T ELT)) (-2929 ((|#1| |#1| |#1|) 38 T ELT)) (-2937 ((|#1| |#1| |#1|) 33 T ELT)) (-2938 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2945 (((-2 (|:| -2182 |#1|) (|:| -3301 |#1|)) |#1| |#1|) 26 T ELT))) -(((-784 |#1| |#2|) (-10 -7 (-15 -2945 ((-2 (|:| -2182 |#1|) (|:| -3301 |#1|)) |#1| |#1|)) (-15 -2940 (|#1| |#1| |#1|)) (-15 -2939 (|#1| |#1| |#1|)) (-15 -2938 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2937 (|#1| |#1| |#1|)) (-15 -2929 (|#1| |#1| |#1|))) (-726 |#2|) (-376)) (T -784)) -((-2929 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-784 *2 *3)) (-4 *2 (-726 *3)))) (-2937 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-784 *2 *3)) (-4 *2 (-726 *3)))) (-2938 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-376)) (-5 *1 (-784 *2 *3)) (-4 *2 (-726 *3)))) (-2939 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-784 *2 *3)) (-4 *2 (-726 *3)))) (-2940 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-784 *2 *3)) (-4 *2 (-726 *3)))) (-2945 (*1 *2 *3 *3) (-12 (-4 *4 (-376)) (-5 *2 (-2 (|:| -2182 *3) (|:| -3301 *3))) (-5 *1 (-784 *3 *4)) (-4 *3 (-726 *4))))) -((-2952 (((-709 (-1245)) $ (-1245)) 27 T ELT)) (-2953 (((-709 (-561)) $ (-561)) 26 T ELT)) (-2951 (((-789) $ (-131)) 28 T ELT)) (-2954 (((-709 (-130)) $ (-130)) 25 T ELT)) (-2208 (((-709 (-1245)) $) 12 T ELT)) (-2204 (((-709 (-1243)) $) 8 T ELT)) (-2206 (((-709 (-1242)) $) 10 T ELT)) (-2209 (((-709 (-561)) $) 13 T ELT)) (-2205 (((-709 (-559)) $) 9 T ELT)) (-2207 (((-709 (-558)) $) 11 T ELT)) (-2203 (((-789) $ (-131)) 7 T ELT)) (-2210 (((-709 (-130)) $) 14 T ELT)) (-2826 (((-114) $) 32 T ELT)) (-2827 (((-709 $) |#1| (-971)) 33 T ELT)) (-1901 (($ $) 6 T ELT))) -(((-785 |#1|) (-142) (-1120)) (T -785)) -((-2827 (*1 *2 *3 *4) (-12 (-5 *4 (-971)) (-4 *3 (-1120)) (-5 *2 (-709 *1)) (-4 *1 (-785 *3)))) (-2826 (*1 *2 *1) (-12 (-4 *1 (-785 *3)) (-4 *3 (-1120)) (-5 *2 (-114))))) -(-13 (-587) (-10 -8 (-15 -2827 ((-709 $) |t#1| (-971))) (-15 -2826 ((-114) $)))) -(((-176) . T) ((-538) . T) ((-587) . T) ((-873) . T)) -((-4347 (((-2 (|:| -2220 (-707 (-557))) (|:| |basisDen| (-557)) (|:| |basisInv| (-707 (-557)))) (-557)) 72 T ELT)) (-4346 (((-2 (|:| -2220 (-707 (-557))) (|:| |basisDen| (-557)) (|:| |basisInv| (-707 (-557))))) 70 T ELT)) (-4185 (((-557)) 86 T ELT))) -(((-786 |#1| |#2|) (-10 -7 (-15 -4185 ((-557))) (-15 -4346 ((-2 (|:| -2220 (-707 (-557))) (|:| |basisDen| (-557)) (|:| |basisInv| (-707 (-557)))))) (-15 -4347 ((-2 (|:| -2220 (-707 (-557))) (|:| |basisDen| (-557)) (|:| |basisInv| (-707 (-557)))) (-557)))) (-1262 (-557)) (-422 (-557) |#1|)) (T -786)) -((-4347 (*1 *2 *3) (-12 (-5 *3 (-557)) (-4 *4 (-1262 *3)) (-5 *2 (-2 (|:| -2220 (-707 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-707 *3)))) (-5 *1 (-786 *4 *5)) (-4 *5 (-422 *3 *4)))) (-4346 (*1 *2) (-12 (-4 *3 (-1262 (-557))) (-5 *2 (-2 (|:| -2220 (-707 (-557))) (|:| |basisDen| (-557)) (|:| |basisInv| (-707 (-557))))) (-5 *1 (-786 *3 *4)) (-4 *4 (-422 (-557) *3)))) (-4185 (*1 *2) (-12 (-4 *3 (-1262 *2)) (-5 *2 (-557)) (-5 *1 (-786 *3 *4)) (-4 *4 (-422 *2 *3))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3572 (((-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) $) 21 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 20 T ELT) (($ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 13 T ELT) (($ (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 16 T ELT) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) 18 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-787) (-13 (-1120) (-10 -8 (-15 -4374 ($ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4374 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4374 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (-15 -3572 ((-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) $))))) (T -787)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-787)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-787)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-5 *1 (-787)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-5 *1 (-787))))) -((-2902 (((-659 (-659 (-305 (-419 (-963 |#1|))))) (-659 (-963 |#1|))) 18 T ELT) (((-659 (-659 (-305 (-419 (-963 |#1|))))) (-659 (-963 |#1|)) (-659 (-1196))) 17 T ELT)) (-3999 (((-659 (-659 (-305 (-419 (-963 |#1|))))) (-659 (-963 |#1|))) 20 T ELT) (((-659 (-659 (-305 (-419 (-963 |#1|))))) (-659 (-963 |#1|)) (-659 (-1196))) 19 T ELT))) -(((-788 |#1|) (-10 -7 (-15 -2902 ((-659 (-659 (-305 (-419 (-963 |#1|))))) (-659 (-963 |#1|)) (-659 (-1196)))) (-15 -2902 ((-659 (-659 (-305 (-419 (-963 |#1|))))) (-659 (-963 |#1|)))) (-15 -3999 ((-659 (-659 (-305 (-419 (-963 |#1|))))) (-659 (-963 |#1|)) (-659 (-1196)))) (-15 -3999 ((-659 (-659 (-305 (-419 (-963 |#1|))))) (-659 (-963 |#1|))))) (-568)) (T -788)) -((-3999 (*1 *2 *3) (-12 (-5 *3 (-659 (-963 *4))) (-4 *4 (-568)) (-5 *2 (-659 (-659 (-305 (-419 (-963 *4)))))) (-5 *1 (-788 *4)))) (-3999 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-963 *5))) (-5 *4 (-659 (-1196))) (-4 *5 (-568)) (-5 *2 (-659 (-659 (-305 (-419 (-963 *5)))))) (-5 *1 (-788 *5)))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-659 (-963 *4))) (-4 *4 (-568)) (-5 *2 (-659 (-659 (-305 (-419 (-963 *4)))))) (-5 *1 (-788 *4)))) (-2902 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-963 *5))) (-5 *4 (-659 (-1196))) (-4 *5 (-568)) (-5 *2 (-659 (-659 (-305 (-419 (-963 *5)))))) (-5 *1 (-788 *5))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2871 (($ $ $) 10 T ELT)) (-1424 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2828 (($ $ (-557)) 11 T ELT)) (-4152 (($) NIL T CONST)) (-2961 (($ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3393 (($ $) NIL T ELT)) (-2960 (($ $ $) NIL T ELT)) (-3602 (((-114) $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3560 (($ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 6 T CONST)) (-3063 (($) NIL T CONST)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-789)) NIL T ELT) (($ $ (-936)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-789) (-13 (-813) (-744) (-10 -8 (-15 -2960 ($ $ $)) (-15 -2961 ($ $ $)) (-15 -3560 ($ $ $)) (-15 -3278 ((-2 (|:| -2182 $) (|:| -3301 $)) $ $)) (-15 -3884 ((-3 $ "failed") $ $)) (-15 -2828 ($ $ (-557))) (-15 -3393 ($ $)) (-6 (-4425 "*"))))) (T -789)) -((-2960 (*1 *1 *1 *1) (-5 *1 (-789))) (-2961 (*1 *1 *1 *1) (-5 *1 (-789))) (-3560 (*1 *1 *1 *1) (-5 *1 (-789))) (-3278 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2182 (-789)) (|:| -3301 (-789)))) (-5 *1 (-789)))) (-3884 (*1 *1 *1 *1) (|partial| -5 *1 (-789))) (-2828 (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-789)))) (-3393 (*1 *1 *1) (-5 *1 (-789)))) -((-557) (|%not| (|%ilt| |#1| 0))) -((-3999 (((-3 |#2| "failed") |#2| |#2| (-115) (-1196)) 37 T ELT))) -(((-790 |#1| |#2|) (-10 -7 (-15 -3999 ((-3 |#2| "failed") |#2| |#2| (-115) (-1196)))) (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149)) (-13 (-29 |#1|) (-1222) (-977))) (T -790)) -((-3999 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1196)) (-4 *5 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) (-5 *1 (-790 *5 *2)) (-4 *2 (-13 (-29 *5) (-1222) (-977)))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 7 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 9 T ELT))) -(((-791) (-1120)) (T -791)) -NIL -((-4374 (((-791) |#1|) 8 T ELT))) -(((-792 |#1|) (-10 -7 (-15 -4374 ((-791) |#1|))) (-1236)) (T -792)) -((-4374 (*1 *2 *3) (-12 (-5 *2 (-791)) (-5 *1 (-792 *3)) (-4 *3 (-1236))))) -((-3532 ((|#2| |#4|) 35 T ELT))) -(((-793 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3532 (|#2| |#4|))) (-464) (-1262 |#1|) (-742 |#1| |#2|) (-1262 |#3|)) (T -793)) -((-3532 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-742 *4 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-793 *4 *2 *5 *3)) (-4 *3 (-1262 *5))))) -((-3885 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2831 (((-1292) (-1178) (-1178) |#4| |#5|) 33 T ELT)) (-2829 ((|#4| |#4| |#5|) 74 T ELT)) (-2830 (((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) |#4| |#5|) 79 T ELT)) (-2832 (((-659 (-2 (|:| |val| (-114)) (|:| -1741 |#5|))) |#4| |#5|) 16 T ELT))) -(((-794 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3885 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2829 (|#4| |#4| |#5|)) (-15 -2830 ((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) |#4| |#5|)) (-15 -2831 ((-1292) (-1178) (-1178) |#4| |#5|)) (-15 -2832 ((-659 (-2 (|:| |val| (-114)) (|:| -1741 |#5|))) |#4| |#5|))) (-464) (-813) (-859) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -794)) -((-2832 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-659 (-2 (|:| |val| (-114)) (|:| -1741 *4)))) (-5 *1 (-794 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-2831 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1178)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) (-4 *4 (-1084 *6 *7 *8)) (-5 *2 (-1292)) (-5 *1 (-794 *6 *7 *8 *4 *5)) (-4 *5 (-1090 *6 *7 *8 *4)))) (-2830 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *4)))) (-5 *1 (-794 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-2829 (*1 *2 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *2 (-1084 *4 *5 *6)) (-5 *1 (-794 *4 *5 *6 *2 *3)) (-4 *3 (-1090 *4 *5 *6 *2)))) (-3885 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-794 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) -((-3573 (((-3 (-1190 (-1190 |#1|)) "failed") |#4|) 53 T ELT)) (-2833 (((-659 |#4|) |#4|) 22 T ELT)) (-4356 ((|#4| |#4|) 17 T ELT))) -(((-795 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2833 ((-659 |#4|) |#4|)) (-15 -3573 ((-3 (-1190 (-1190 |#1|)) "failed") |#4|)) (-15 -4356 (|#4| |#4|))) (-363) (-341 |#1|) (-1262 |#2|) (-1262 |#3|) (-936)) (T -795)) -((-4356 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-341 *3)) (-4 *5 (-1262 *4)) (-5 *1 (-795 *3 *4 *5 *2 *6)) (-4 *2 (-1262 *5)) (-14 *6 (-936)))) (-3573 (*1 *2 *3) (|partial| -12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1262 *5)) (-5 *2 (-1190 (-1190 *4))) (-5 *1 (-795 *4 *5 *6 *3 *7)) (-4 *3 (-1262 *6)) (-14 *7 (-936)))) (-2833 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1262 *5)) (-5 *2 (-659 *3)) (-5 *1 (-795 *4 *5 *6 *3 *7)) (-4 *3 (-1262 *6)) (-14 *7 (-936))))) -((-2834 (((-2 (|:| |deter| (-659 (-1190 |#5|))) (|:| |dterm| (-659 (-659 (-2 (|:| -3477 (-789)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-659 |#1|)) (|:| |nlead| (-659 |#5|))) (-1190 |#5|) (-659 |#1|) (-659 |#5|)) 72 T ELT)) (-2835 (((-659 (-789)) |#1|) 20 T ELT))) -(((-796 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2834 ((-2 (|:| |deter| (-659 (-1190 |#5|))) (|:| |dterm| (-659 (-659 (-2 (|:| -3477 (-789)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-659 |#1|)) (|:| |nlead| (-659 |#5|))) (-1190 |#5|) (-659 |#1|) (-659 |#5|))) (-15 -2835 ((-659 (-789)) |#1|))) (-1262 |#4|) (-813) (-859) (-319) (-967 |#4| |#2| |#3|)) (T -796)) -((-2835 (*1 *2 *3) (-12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-319)) (-5 *2 (-659 (-789))) (-5 *1 (-796 *3 *4 *5 *6 *7)) (-4 *3 (-1262 *6)) (-4 *7 (-967 *6 *4 *5)))) (-2834 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1262 *9)) (-4 *7 (-813)) (-4 *8 (-859)) (-4 *9 (-319)) (-4 *10 (-967 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-659 (-1190 *10))) (|:| |dterm| (-659 (-659 (-2 (|:| -3477 (-789)) (|:| |pcoef| *10))))) (|:| |nfacts| (-659 *6)) (|:| |nlead| (-659 *10)))) (-5 *1 (-796 *6 *7 *8 *9 *10)) (-5 *3 (-1190 *10)) (-5 *4 (-659 *6)) (-5 *5 (-659 *10))))) -((-2838 (((-659 (-2 (|:| |outval| |#1|) (|:| |outmult| (-557)) (|:| |outvect| (-659 (-707 |#1|))))) (-707 (-419 (-557))) |#1|) 31 T ELT)) (-2837 (((-659 |#1|) (-707 (-419 (-557))) |#1|) 21 T ELT)) (-2836 (((-963 (-419 (-557))) (-707 (-419 (-557))) (-1196)) 18 T ELT) (((-963 (-419 (-557))) (-707 (-419 (-557)))) 17 T ELT))) -(((-797 |#1|) (-10 -7 (-15 -2836 ((-963 (-419 (-557))) (-707 (-419 (-557))))) (-15 -2836 ((-963 (-419 (-557))) (-707 (-419 (-557))) (-1196))) (-15 -2837 ((-659 |#1|) (-707 (-419 (-557))) |#1|)) (-15 -2838 ((-659 (-2 (|:| |outval| |#1|) (|:| |outmult| (-557)) (|:| |outvect| (-659 (-707 |#1|))))) (-707 (-419 (-557))) |#1|))) (-13 (-376) (-858))) (T -797)) -((-2838 (*1 *2 *3 *4) (-12 (-5 *3 (-707 (-419 (-557)))) (-5 *2 (-659 (-2 (|:| |outval| *4) (|:| |outmult| (-557)) (|:| |outvect| (-659 (-707 *4)))))) (-5 *1 (-797 *4)) (-4 *4 (-13 (-376) (-858))))) (-2837 (*1 *2 *3 *4) (-12 (-5 *3 (-707 (-419 (-557)))) (-5 *2 (-659 *4)) (-5 *1 (-797 *4)) (-4 *4 (-13 (-376) (-858))))) (-2836 (*1 *2 *3 *4) (-12 (-5 *3 (-707 (-419 (-557)))) (-5 *4 (-1196)) (-5 *2 (-963 (-419 (-557)))) (-5 *1 (-797 *5)) (-4 *5 (-13 (-376) (-858))))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-707 (-419 (-557)))) (-5 *2 (-963 (-419 (-557)))) (-5 *1 (-797 *4)) (-4 *4 (-13 (-376) (-858)))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 36 T ELT)) (-3482 (((-659 |#2|) $) NIL T ELT)) (-3484 (((-1190 $) $ |#2|) NIL T ELT) (((-1190 |#1|) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-3218 (((-789) $) NIL T ELT) (((-789) $ (-659 |#2|)) NIL T ELT)) (-4225 (($ $) 30 T ELT)) (-3582 (((-114) $ $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4183 (($ $ $) 110 (|has| |#1| (-568)) ELT)) (-3564 (((-659 $) $ $) 123 (|has| |#1| (-568)) ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-4203 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-963 (-419 (-557)))) NIL (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#2| (-629 (-1196)))) ELT) (((-3 $ #1#) (-963 (-557))) NIL (-3955 (-12 (|has| |#1| (-38 (-557))) (|has| |#2| (-629 (-1196))) (-2957 (|has| |#1| (-38 (-419 (-557)))))) (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#2| (-629 (-1196))))) ELT) (((-3 $ #1#) (-963 |#1|)) NIL (-3955 (-12 (|has| |#2| (-629 (-1196))) (-2957 (|has| |#1| (-38 (-419 (-557))))) (-2957 (|has| |#1| (-38 (-557))))) (-12 (|has| |#1| (-38 (-557))) (|has| |#2| (-629 (-1196))) (-2957 (|has| |#1| (-38 (-419 (-557))))) (-2957 (|has| |#1| (-556)))) (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#2| (-629 (-1196))) (-2957 (|has| |#1| (-1010 (-557)))))) ELT) (((-3 (-1144 |#1| |#2|) #1#) $) 21 T ELT)) (-3572 ((|#1| $) NIL T ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) ((|#2| $) NIL T ELT) (($ (-963 (-419 (-557)))) NIL (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#2| (-629 (-1196)))) ELT) (($ (-963 (-557))) NIL (-3955 (-12 (|has| |#1| (-38 (-557))) (|has| |#2| (-629 (-1196))) (-2957 (|has| |#1| (-38 (-419 (-557)))))) (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#2| (-629 (-1196))))) ELT) (($ (-963 |#1|)) NIL (-3955 (-12 (|has| |#2| (-629 (-1196))) (-2957 (|has| |#1| (-38 (-419 (-557))))) (-2957 (|has| |#1| (-38 (-557))))) (-12 (|has| |#1| (-38 (-557))) (|has| |#2| (-629 (-1196))) (-2957 (|has| |#1| (-38 (-419 (-557))))) (-2957 (|has| |#1| (-556)))) (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#2| (-629 (-1196))) (-2957 (|has| |#1| (-1010 (-557)))))) ELT) (((-1144 |#1| |#2|) $) NIL T ELT)) (-4184 (($ $ $ |#2|) NIL (|has| |#1| (-175)) ELT) (($ $ $) 121 (|has| |#1| (-568)) ELT)) (-4387 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) NIL T ELT) (((-707 |#1|) (-707 $)) NIL T ELT)) (-4122 (((-114) $ $) NIL T ELT) (((-114) $ (-659 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3588 (((-114) $) NIL T ELT)) (-4180 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 81 T ELT)) (-3559 (($ $) 136 (|has| |#1| (-464)) ELT)) (-3921 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ |#2|) NIL (|has| |#1| (-464)) ELT)) (-3217 (((-659 $) $) NIL T ELT)) (-4151 (((-114) $) NIL (|has| |#1| (-927)) ELT)) (-3570 (($ $) NIL (|has| |#1| (-568)) ELT)) (-3571 (($ $) NIL (|has| |#1| (-568)) ELT)) (-3581 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3580 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1802 (($ $ |#1| (-542 |#2|) $) NIL T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (-12 (|has| |#1| (-899 (-391))) (|has| |#2| (-899 (-391)))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (-12 (|has| |#1| (-899 (-557))) (|has| |#2| (-899 (-557)))) ELT)) (-2639 (((-114) $) 57 T ELT)) (-2647 (((-789) $) NIL T ELT)) (-4123 (((-114) $ $) NIL T ELT) (((-114) $ (-659 $)) NIL T ELT)) (-3561 (($ $ $ $ $) 107 (|has| |#1| (-568)) ELT)) (-3596 ((|#2| $) 22 T ELT)) (-3485 (($ (-1190 |#1|) |#2|) NIL T ELT) (($ (-1190 $) |#2|) NIL T ELT)) (-3220 (((-659 $) $) NIL T ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-542 |#2|)) NIL T ELT) (($ $ |#2| (-789)) 38 T ELT) (($ $ (-659 |#2|) (-659 (-789))) NIL T ELT)) (-3575 (($ $ $) 63 T ELT)) (-4191 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $ |#2|) NIL T ELT)) (-3589 (((-114) $) NIL T ELT)) (-3219 (((-542 |#2|) $) NIL T ELT) (((-789) $ |#2|) NIL T ELT) (((-659 (-789)) $ (-659 |#2|)) NIL T ELT)) (-3595 (((-789) $) 23 T ELT)) (-1803 (($ (-1 (-542 |#2|) (-542 |#2|)) $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3483 (((-3 |#2| #1#) $) NIL T ELT)) (-3556 (($ $) NIL (|has| |#1| (-464)) ELT)) (-3557 (($ $) NIL (|has| |#1| (-464)) ELT)) (-3584 (((-659 $) $) NIL T ELT)) (-3587 (($ $) 39 T ELT)) (-3558 (($ $) NIL (|has| |#1| (-464)) ELT)) (-3585 (((-659 $) $) 43 T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL T ELT) (((-707 |#1|) (-1286 $)) NIL T ELT)) (-3586 (($ $) 41 T ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3574 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3899 (-789))) $ $) 96 T ELT)) (-3576 (((-2 (|:| -4382 $) (|:| |gap| (-789)) (|:| -2182 $) (|:| -3301 $)) $ $) 78 T ELT) (((-2 (|:| -4382 $) (|:| |gap| (-789)) (|:| -2182 $) (|:| -3301 $)) $ $ |#2|) NIL T ELT)) (-3577 (((-2 (|:| -4382 $) (|:| |gap| (-789)) (|:| -3301 $)) $ $) NIL T ELT) (((-2 (|:| -4382 $) (|:| |gap| (-789)) (|:| -3301 $)) $ $ |#2|) NIL T ELT)) (-3579 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3578 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3606 (($ $ $) 125 (|has| |#1| (-568)) ELT)) (-3592 (((-659 $) $) 32 T ELT)) (-3222 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3221 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-2 (|:| |var| |#2|) (|:| -2630 (-789))) #1#) $) NIL T ELT)) (-4119 (((-114) $ $) NIL T ELT) (((-114) $ (-659 $)) NIL T ELT)) (-4114 (($ $ $) NIL T ELT)) (-3864 (($ $) 24 T ELT)) (-4127 (((-114) $ $) NIL T ELT)) (-4120 (((-114) $ $) NIL T ELT) (((-114) $ (-659 $)) NIL T ELT)) (-4115 (($ $ $) NIL T ELT)) (-3594 (($ $) 26 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3565 (((-2 (|:| -3560 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-568)) ELT)) (-3566 (((-2 (|:| -3560 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-568)) ELT)) (-2003 (((-114) $) 56 T ELT)) (-2002 ((|#1| $) 58 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-464)) ELT)) (-3560 ((|#1| |#1| $) 133 (|has| |#1| (-464)) ELT) (($ (-659 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-4160 (((-417 $) $) NIL (|has| |#1| (-927)) ELT)) (-3567 (((-2 (|:| -3560 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-568)) ELT)) (-3884 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-568)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-568)) ELT)) (-3568 (($ $ |#1|) 129 (|has| |#1| (-568)) ELT) (($ $ $) NIL (|has| |#1| (-568)) ELT)) (-3569 (($ $ |#1|) 128 (|has| |#1| (-568)) ELT) (($ $ $) NIL (|has| |#1| (-568)) ELT)) (-4196 (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-659 |#2|) (-659 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-659 |#2|) (-659 $)) NIL T ELT)) (-4185 (($ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-4186 (($ $ (-659 |#2|) (-659 (-789))) NIL T ELT) (($ $ |#2| (-789)) NIL T ELT) (($ $ (-659 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-4376 (((-542 |#2|) $) NIL T ELT) (((-789) $ |#2|) 45 T ELT) (((-659 (-789)) $ (-659 |#2|)) NIL T ELT)) (-3593 (($ $) NIL T ELT)) (-3591 (($ $) 35 T ELT)) (-4400 (((-903 (-391)) $) NIL (-12 (|has| |#1| (-629 (-903 (-391)))) (|has| |#2| (-629 (-903 (-391))))) ELT) (((-903 (-557)) $) NIL (-12 (|has| |#1| (-629 (-903 (-557)))) (|has| |#2| (-629 (-903 (-557))))) ELT) (((-546) $) NIL (-12 (|has| |#1| (-629 (-546))) (|has| |#2| (-629 (-546)))) ELT) (($ (-963 (-419 (-557)))) NIL (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#2| (-629 (-1196)))) ELT) (($ (-963 (-557))) NIL (-3955 (-12 (|has| |#1| (-38 (-557))) (|has| |#2| (-629 (-1196))) (-2957 (|has| |#1| (-38 (-419 (-557)))))) (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#2| (-629 (-1196))))) ELT) (($ (-963 |#1|)) NIL (|has| |#2| (-629 (-1196))) ELT) (((-1178) $) NIL (-12 (|has| |#1| (-1057 (-557))) (|has| |#2| (-629 (-1196)))) ELT) (((-963 |#1|) $) NIL (|has| |#2| (-629 (-1196))) ELT)) (-3216 ((|#1| $) 132 (|has| |#1| (-464)) ELT) (($ $ |#2|) NIL (|has| |#1| (-464)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-927))) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-963 |#1|) $) NIL (|has| |#2| (-629 (-1196))) ELT) (((-1144 |#1| |#2|) $) 18 T ELT) (($ (-1144 |#1| |#2|)) 19 T ELT) (($ (-419 (-557))) NIL (-3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) ELT) (($ $) NIL (|has| |#1| (-568)) ELT)) (-4245 (((-659 |#1|) $) NIL T ELT)) (-4105 ((|#1| $ (-542 |#2|)) NIL T ELT) (($ $ |#2| (-789)) 47 T ELT) (($ $ (-659 |#2|) (-659 (-789))) NIL T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| |#1| (-927))) (|has| |#1| (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-1801 (($ $ $ (-789)) NIL (|has| |#1| (-175)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3057 (($) 13 T CONST)) (-3583 (((-3 (-114) #1#) $ $) NIL T ELT)) (-3063 (($) 37 T CONST)) (-3562 (($ $ $ $ (-789)) 105 (|has| |#1| (-568)) ELT)) (-3563 (($ $ $ (-789)) 104 (|has| |#1| (-568)) ELT)) (-3068 (($ $ (-659 |#2|) (-659 (-789))) NIL T ELT) (($ $ |#2| (-789)) NIL T ELT) (($ $ (-659 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-4267 (($ $ $) 85 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) 70 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) -(((-798 |#1| |#2|) (-13 (-1084 |#1| (-542 |#2|) |#2|) (-628 (-1144 |#1| |#2|)) (-1057 (-1144 |#1| |#2|))) (-1068) (-859)) (T -798)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 12 T ELT)) (-4195 (((-1286 |#1|) $ (-789)) NIL T ELT)) (-3482 (((-659 (-1101)) $) NIL T ELT)) (-4193 (($ (-1190 |#1|)) NIL T ELT)) (-3484 (((-1190 $) $ (-1101)) NIL T ELT) (((-1190 |#1|) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-3218 (((-789) $) NIL T ELT) (((-789) $ (-659 (-1101))) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2842 (((-659 $) $ $) 54 (|has| |#1| (-568)) ELT)) (-4183 (($ $ $) 50 (|has| |#1| (-568)) ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-4203 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-1786 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4189 (($ $ (-789)) NIL T ELT)) (-4188 (($ $ (-789)) NIL T ELT)) (-4179 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 (-1101) #1#) $) NIL T ELT) (((-3 (-1190 |#1|) #1#) $) 10 T ELT)) (-3572 ((|#1| $) NIL T ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-1101) $) NIL T ELT) (((-1190 |#1|) $) NIL T ELT)) (-4184 (($ $ $ (-1101)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) 58 (|has| |#1| (-175)) ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4387 (($ $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) NIL T ELT) (((-707 |#1|) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-2960 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4187 (($ $ $) NIL T ELT)) (-4181 (($ $ $) 87 (|has| |#1| (-568)) ELT)) (-4180 (((-2 (|:| -4382 |#1|) (|:| -2182 $) (|:| -3301 $)) $ $) 86 (|has| |#1| (-568)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL (|has| |#1| (-376)) ELT)) (-3921 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1101)) NIL (|has| |#1| (-464)) ELT)) (-3217 (((-659 $) $) NIL T ELT)) (-4151 (((-114) $) NIL (|has| |#1| (-927)) ELT)) (-1802 (($ $ |#1| (-789) $) NIL T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (-12 (|has| (-1101) (-899 (-391))) (|has| |#1| (-899 (-391)))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (-12 (|has| (-1101) (-899 (-557))) (|has| |#1| (-899 (-557)))) ELT)) (-4200 (((-789) $ $) NIL (|has| |#1| (-568)) ELT)) (-2639 (((-114) $) NIL T ELT)) (-2647 (((-789) $) NIL T ELT)) (-3863 (((-709 $) $) NIL (|has| |#1| (-1171)) ELT)) (-3485 (($ (-1190 |#1|) (-1101)) NIL T ELT) (($ (-1190 $) (-1101)) NIL T ELT)) (-4205 (($ $ (-789)) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-3220 (((-659 $) $) NIL T ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-789)) NIL T ELT) (($ $ (-1101) (-789)) NIL T ELT) (($ $ (-659 (-1101)) (-659 (-789))) NIL T ELT)) (-3575 (($ $ $) 27 T ELT)) (-4191 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $ (-1101)) NIL T ELT) (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-3219 (((-789) $) NIL T ELT) (((-789) $ (-1101)) NIL T ELT) (((-659 (-789)) $ (-659 (-1101))) NIL T ELT)) (-1803 (($ (-1 (-789) (-789)) $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4194 (((-1190 |#1|) $) NIL T ELT)) (-3483 (((-3 (-1101) #1#) $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL T ELT) (((-707 |#1|) (-1286 $)) NIL T ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3574 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3899 (-789))) $ $) 37 T ELT)) (-2844 (($ $ $) 41 T ELT)) (-2843 (($ $ $) 47 T ELT)) (-3576 (((-2 (|:| -4382 |#1|) (|:| |gap| (-789)) (|:| -2182 $) (|:| -3301 $)) $ $) 46 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3606 (($ $ $) 56 (|has| |#1| (-568)) ELT)) (-4190 (((-2 (|:| -2182 $) (|:| -3301 $)) $ (-789)) NIL T ELT)) (-3222 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3221 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-2 (|:| |var| (-1101)) (|:| -2630 (-789))) #1#) $) NIL T ELT)) (-4240 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3864 (($) NIL (|has| |#1| (-1171)) CONST)) (-3659 (((-1139) $) NIL T ELT)) (-3565 (((-2 (|:| -3560 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-568)) ELT)) (-3566 (((-2 (|:| -3560 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-568)) ELT)) (-2839 (((-2 (|:| -4184 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-568)) ELT)) (-2840 (((-2 (|:| -4184 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-568)) ELT)) (-2003 (((-114) $) 13 T ELT)) (-2002 ((|#1| $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-464)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-4166 (($ $ (-789) |#1| $) 26 T ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-4160 (((-417 $) $) NIL (|has| |#1| (-927)) ELT)) (-3567 (((-2 (|:| -3560 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-568)) ELT)) (-2841 (((-2 (|:| -4184 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-568)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3884 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-568)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-568)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-4196 (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ (-1101) |#1|) NIL T ELT) (($ $ (-659 (-1101)) (-659 |#1|)) NIL T ELT) (($ $ (-1101) $) NIL T ELT) (($ $ (-659 (-1101)) (-659 $)) NIL T ELT)) (-1785 (((-789) $) NIL (|has| |#1| (-376)) ELT)) (-4228 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568)) ELT) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)) ELT)) (-4192 (((-3 $ #1#) $ (-789)) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4185 (($ $ (-1101)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) NIL (|has| |#1| (-175)) ELT)) (-4186 (($ $ (-659 (-1101)) (-659 (-789))) NIL T ELT) (($ $ (-1101) (-789)) NIL T ELT) (($ $ (-659 (-1101))) NIL T ELT) (($ $ (-1101)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-917 (-1196))) ELT)) (-4376 (((-789) $) NIL T ELT) (((-789) $ (-1101)) NIL T ELT) (((-659 (-789)) $ (-659 (-1101))) NIL T ELT)) (-4400 (((-903 (-391)) $) NIL (-12 (|has| (-1101) (-629 (-903 (-391)))) (|has| |#1| (-629 (-903 (-391))))) ELT) (((-903 (-557)) $) NIL (-12 (|has| (-1101) (-629 (-903 (-557)))) (|has| |#1| (-629 (-903 (-557))))) ELT) (((-546) $) NIL (-12 (|has| (-1101) (-629 (-546))) (|has| |#1| (-629 (-546)))) ELT)) (-3216 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1101)) NIL (|has| |#1| (-464)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-927))) ELT)) (-4182 (((-3 $ #1#) $ $) NIL (|has| |#1| (-568)) ELT) (((-3 (-419 $) #1#) (-419 $) $) NIL (|has| |#1| (-568)) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1101)) NIL T ELT) (((-1190 |#1|) $) 7 T ELT) (($ (-1190 |#1|)) 8 T ELT) (($ (-419 (-557))) NIL (-3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) ELT) (($ $) NIL (|has| |#1| (-568)) ELT)) (-4245 (((-659 |#1|) $) NIL T ELT)) (-4105 ((|#1| $ (-789)) NIL T ELT) (($ $ (-1101) (-789)) NIL T ELT) (($ $ (-659 (-1101)) (-659 (-789))) NIL T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| |#1| (-927))) (|has| |#1| (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-1801 (($ $ $ (-789)) NIL (|has| |#1| (-175)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3057 (($) 28 T CONST)) (-3063 (($) 32 T CONST)) (-3068 (($ $ (-659 (-1101)) (-659 (-789))) NIL T ELT) (($ $ (-1101) (-789)) NIL T ELT) (($ $ (-659 (-1101))) NIL T ELT) (($ $ (-1101)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-917 (-1196))) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) -(((-799 |#1|) (-13 (-1262 |#1|) (-628 (-1190 |#1|)) (-1057 (-1190 |#1|)) (-10 -8 (-15 -4166 ($ $ (-789) |#1| $)) (-15 -3575 ($ $ $)) (-15 -3574 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3899 (-789))) $ $)) (-15 -2844 ($ $ $)) (-15 -3576 ((-2 (|:| -4382 |#1|) (|:| |gap| (-789)) (|:| -2182 $) (|:| -3301 $)) $ $)) (-15 -2843 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -2842 ((-659 $) $ $)) (-15 -3606 ($ $ $)) (-15 -3567 ((-2 (|:| -3560 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3566 ((-2 (|:| -3560 $) (|:| |coef1| $)) $ $)) (-15 -3565 ((-2 (|:| -3560 $) (|:| |coef2| $)) $ $)) (-15 -2841 ((-2 (|:| -4184 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2840 ((-2 (|:| -4184 |#1|) (|:| |coef1| $)) $ $)) (-15 -2839 ((-2 (|:| -4184 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1068)) (T -799)) -((-4166 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-789)) (-5 *1 (-799 *3)) (-4 *3 (-1068)))) (-3575 (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1068)))) (-3574 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-799 *3)) (|:| |polden| *3) (|:| -3899 (-789)))) (-5 *1 (-799 *3)) (-4 *3 (-1068)))) (-2844 (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1068)))) (-3576 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4382 *3) (|:| |gap| (-789)) (|:| -2182 (-799 *3)) (|:| -3301 (-799 *3)))) (-5 *1 (-799 *3)) (-4 *3 (-1068)))) (-2843 (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1068)))) (-2842 (*1 *2 *1 *1) (-12 (-5 *2 (-659 (-799 *3))) (-5 *1 (-799 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-3606 (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-568)) (-4 *2 (-1068)))) (-3567 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3560 (-799 *3)) (|:| |coef1| (-799 *3)) (|:| |coef2| (-799 *3)))) (-5 *1 (-799 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-3566 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3560 (-799 *3)) (|:| |coef1| (-799 *3)))) (-5 *1 (-799 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-3565 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3560 (-799 *3)) (|:| |coef2| (-799 *3)))) (-5 *1 (-799 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-2841 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4184 *3) (|:| |coef1| (-799 *3)) (|:| |coef2| (-799 *3)))) (-5 *1 (-799 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-2840 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4184 *3) (|:| |coef1| (-799 *3)))) (-5 *1 (-799 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-2839 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4184 *3) (|:| |coef2| (-799 *3)))) (-5 *1 (-799 *3)) (-4 *3 (-568)) (-4 *3 (-1068))))) -((-4386 (((-799 |#2|) (-1 |#2| |#1|) (-799 |#1|)) 13 T ELT))) -(((-800 |#1| |#2|) (-10 -7 (-15 -4386 ((-799 |#2|) (-1 |#2| |#1|) (-799 |#1|)))) (-1068) (-1068)) (T -800)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-799 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-799 *6)) (-5 *1 (-800 *5 *6))))) -((-2846 ((|#1| (-789) |#1|) 33 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3200 ((|#1| (-789) |#1|) 23 T ELT)) (-2845 ((|#1| (-789) |#1|) 35 (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-801 |#1|) (-10 -7 (-15 -3200 (|#1| (-789) |#1|)) (IF (|has| |#1| (-38 (-419 (-557)))) (PROGN (-15 -2845 (|#1| (-789) |#1|)) (-15 -2846 (|#1| (-789) |#1|))) |%noBranch|)) (-175)) (T -801)) -((-2846 (*1 *2 *3 *2) (-12 (-5 *3 (-789)) (-5 *1 (-801 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-175)))) (-2845 (*1 *2 *3 *2) (-12 (-5 *3 (-789)) (-5 *1 (-801 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-175)))) (-3200 (*1 *2 *3 *2) (-12 (-5 *3 (-789)) (-5 *1 (-801 *2)) (-4 *2 (-175))))) -((-2965 (((-114) $ $) 7 T ELT)) (-4109 (((-659 (-2 (|:| -4289 $) (|:| -1903 (-659 |#4|)))) (-659 |#4|)) 90 T ELT)) (-4110 (((-659 $) (-659 |#4|)) 91 T ELT) (((-659 $) (-659 |#4|) (-114)) 118 T ELT)) (-3482 (((-659 |#3|) $) 37 T ELT)) (-3307 (((-114) $) 30 T ELT)) (-3298 (((-114) $) 21 (|has| |#1| (-568)) ELT)) (-4121 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4116 ((|#4| |#4| $) 97 T ELT)) (-4203 (((-659 (-2 (|:| |val| |#4|) (|:| -1741 $))) |#4| $) 133 T ELT)) (-3308 (((-2 (|:| |under| $) (|:| -3530 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4138 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4423)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-4152 (($) 46 T CONST)) (-3303 (((-114) $) 26 (|has| |#1| (-568)) ELT)) (-3305 (((-114) $ $) 28 (|has| |#1| (-568)) ELT)) (-3304 (((-114) $ $) 27 (|has| |#1| (-568)) ELT)) (-3306 (((-114) $) 29 (|has| |#1| (-568)) ELT)) (-4117 (((-659 |#4|) (-659 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3299 (((-659 |#4|) (-659 |#4|) $) 22 (|has| |#1| (-568)) ELT)) (-3300 (((-659 |#4|) (-659 |#4|) $) 23 (|has| |#1| (-568)) ELT)) (-3573 (((-3 $ "failed") (-659 |#4|)) 40 T ELT)) (-3572 (($ (-659 |#4|)) 39 T ELT)) (-4227 (((-3 $ #1#) $) 87 T ELT)) (-4113 ((|#4| |#4| $) 94 T ELT)) (-1465 (($ $) 69 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3824 (($ |#4| $) 68 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4423)) ELT)) (-3301 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-568)) ELT)) (-4122 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4111 ((|#4| |#4| $) 92 T ELT)) (-4270 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4423)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4423)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4124 (((-2 (|:| -4289 (-659 |#4|)) (|:| -1903 (-659 |#4|))) $) 110 T ELT)) (-3613 (((-114) |#4| $) 143 T ELT)) (-3611 (((-114) |#4| $) 140 T ELT)) (-3614 (((-114) |#4| $) 144 T ELT) (((-114) $) 141 T ELT)) (-3288 (((-659 |#4|) $) 53 (|has| $ (-6 -4423)) ELT)) (-4123 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3596 ((|#3| $) 38 T ELT)) (-3005 (((-659 |#4|) $) 54 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3313 (((-659 |#3|) $) 36 T ELT)) (-3312 (((-114) |#3| $) 35 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3607 (((-3 |#4| (-659 $)) |#4| |#4| $) 135 T ELT)) (-3606 (((-659 (-2 (|:| |val| |#4|) (|:| -1741 $))) |#4| |#4| $) 134 T ELT)) (-4226 (((-3 |#4| #1#) $) 88 T ELT)) (-3608 (((-659 $) |#4| $) 136 T ELT)) (-3610 (((-3 (-114) (-659 $)) |#4| $) 139 T ELT)) (-3609 (((-659 (-2 (|:| |val| (-114)) (|:| -1741 $))) |#4| $) 138 T ELT) (((-114) |#4| $) 137 T ELT)) (-3654 (((-659 $) |#4| $) 132 T ELT) (((-659 $) (-659 |#4|) $) 131 T ELT) (((-659 $) (-659 |#4|) (-659 $)) 130 T ELT) (((-659 $) |#4| (-659 $)) 129 T ELT)) (-3858 (($ |#4| $) 124 T ELT) (($ (-659 |#4|) $) 123 T ELT)) (-4125 (((-659 |#4|) $) 112 T ELT)) (-4119 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4114 ((|#4| |#4| $) 95 T ELT)) (-4127 (((-114) $ $) 115 T ELT)) (-3302 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-568)) ELT)) (-4120 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4115 ((|#4| |#4| $) 96 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4229 (((-3 |#4| #1#) $) 89 T ELT)) (-1466 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4107 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-4197 (($ $ |#4|) 82 T ELT) (((-659 $) |#4| $) 122 T ELT) (((-659 $) |#4| (-659 $)) 121 T ELT) (((-659 $) (-659 |#4|) $) 120 T ELT) (((-659 $) (-659 |#4|) (-659 $)) 119 T ELT)) (-2156 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 |#4|) (-659 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-659 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT)) (-1327 (((-114) $ $) 42 T ELT)) (-3821 (((-114) $) 45 T ELT)) (-3991 (($) 44 T ELT)) (-4376 (((-789) $) 111 T ELT)) (-2155 (((-789) |#4| $) 55 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT) (((-789) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) 43 T ELT)) (-4400 (((-546) $) 70 (|has| |#4| (-629 (-546))) ELT)) (-3948 (($ (-659 |#4|)) 61 T ELT)) (-3309 (($ $ |#3|) 32 T ELT)) (-3311 (($ $ |#3|) 34 T ELT)) (-4112 (($ $) 93 T ELT)) (-3310 (($ $ |#3|) 33 T ELT)) (-4374 (((-875) $) 13 T ELT) (((-659 |#4|) $) 41 T ELT)) (-4106 (((-789) $) 81 (|has| |#3| (-381)) ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-4126 (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |#4|))) #1#) (-659 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |#4|))) #1#) (-659 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4118 (((-114) $ (-1 (-114) |#4| (-659 |#4|))) 103 T ELT)) (-3605 (((-659 $) |#4| $) 128 T ELT) (((-659 $) |#4| (-659 $)) 127 T ELT) (((-659 $) (-659 |#4|) $) 126 T ELT) (((-659 $) (-659 |#4|) (-659 $)) 125 T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4423)) ELT)) (-4108 (((-659 |#3|) $) 86 T ELT)) (-3612 (((-114) |#4| $) 142 T ELT)) (-4361 (((-114) |#3| $) 85 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4385 (((-789) $) 47 (|has| $ (-6 -4423)) ELT))) -(((-802 |#1| |#2| |#3| |#4|) (-142) (-464) (-813) (-859) (-1084 |t#1| |t#2| |t#3|)) (T -802)) -NIL -(-13 (-1090 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-628 (-659 |#4|)) . T) ((-628 (-875)) . T) ((-153 |#4|) . T) ((-629 (-546)) |has| |#4| (-629 (-546))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1090 |#1| |#2| |#3| |#4|) . T) ((-1120) . T) ((-1231 |#1| |#2| |#3| |#4|) . T) ((-1236) . T)) -((-2849 (((-3 (-391) #1="failed") (-326 |#1|) (-936)) 62 (-12 (|has| |#1| (-568)) (|has| |#1| (-859))) ELT) (((-3 (-391) #1#) (-326 |#1|)) 54 (-12 (|has| |#1| (-568)) (|has| |#1| (-859))) ELT) (((-3 (-391) #1#) (-419 (-963 |#1|)) (-936)) 41 (|has| |#1| (-568)) ELT) (((-3 (-391) #1#) (-419 (-963 |#1|))) 40 (|has| |#1| (-568)) ELT) (((-3 (-391) #1#) (-963 |#1|) (-936)) 31 (|has| |#1| (-1068)) ELT) (((-3 (-391) #1#) (-963 |#1|)) 30 (|has| |#1| (-1068)) ELT)) (-2847 (((-391) (-326 |#1|) (-936)) 99 (-12 (|has| |#1| (-568)) (|has| |#1| (-859))) ELT) (((-391) (-326 |#1|)) 94 (-12 (|has| |#1| (-568)) (|has| |#1| (-859))) ELT) (((-391) (-419 (-963 |#1|)) (-936)) 91 (|has| |#1| (-568)) ELT) (((-391) (-419 (-963 |#1|))) 90 (|has| |#1| (-568)) ELT) (((-391) (-963 |#1|) (-936)) 86 (|has| |#1| (-1068)) ELT) (((-391) (-963 |#1|)) 85 (|has| |#1| (-1068)) ELT) (((-391) |#1| (-936)) 76 T ELT) (((-391) |#1|) 22 T ELT)) (-2850 (((-3 (-171 (-391)) #1#) (-326 (-171 |#1|)) (-936)) 71 (-12 (|has| |#1| (-568)) (|has| |#1| (-859))) ELT) (((-3 (-171 (-391)) #1#) (-326 (-171 |#1|))) 70 (-12 (|has| |#1| (-568)) (|has| |#1| (-859))) ELT) (((-3 (-171 (-391)) #1#) (-326 |#1|) (-936)) 63 (-12 (|has| |#1| (-568)) (|has| |#1| (-859))) ELT) (((-3 (-171 (-391)) #1#) (-326 |#1|)) 61 (-12 (|has| |#1| (-568)) (|has| |#1| (-859))) ELT) (((-3 (-171 (-391)) #1#) (-419 (-963 (-171 |#1|))) (-936)) 46 (|has| |#1| (-568)) ELT) (((-3 (-171 (-391)) #1#) (-419 (-963 (-171 |#1|)))) 45 (|has| |#1| (-568)) ELT) (((-3 (-171 (-391)) #1#) (-419 (-963 |#1|)) (-936)) 39 (|has| |#1| (-568)) ELT) (((-3 (-171 (-391)) #1#) (-419 (-963 |#1|))) 38 (|has| |#1| (-568)) ELT) (((-3 (-171 (-391)) #1#) (-963 |#1|) (-936)) 28 (|has| |#1| (-1068)) ELT) (((-3 (-171 (-391)) #1#) (-963 |#1|)) 26 (|has| |#1| (-1068)) ELT) (((-3 (-171 (-391)) #1#) (-963 (-171 |#1|)) (-936)) 18 (|has| |#1| (-175)) ELT) (((-3 (-171 (-391)) #1#) (-963 (-171 |#1|))) 15 (|has| |#1| (-175)) ELT)) (-2848 (((-171 (-391)) (-326 (-171 |#1|)) (-936)) 102 (-12 (|has| |#1| (-568)) (|has| |#1| (-859))) ELT) (((-171 (-391)) (-326 (-171 |#1|))) 101 (-12 (|has| |#1| (-568)) (|has| |#1| (-859))) ELT) (((-171 (-391)) (-326 |#1|) (-936)) 100 (-12 (|has| |#1| (-568)) (|has| |#1| (-859))) ELT) (((-171 (-391)) (-326 |#1|)) 98 (-12 (|has| |#1| (-568)) (|has| |#1| (-859))) ELT) (((-171 (-391)) (-419 (-963 (-171 |#1|))) (-936)) 93 (|has| |#1| (-568)) ELT) (((-171 (-391)) (-419 (-963 (-171 |#1|)))) 92 (|has| |#1| (-568)) ELT) (((-171 (-391)) (-419 (-963 |#1|)) (-936)) 89 (|has| |#1| (-568)) ELT) (((-171 (-391)) (-419 (-963 |#1|))) 88 (|has| |#1| (-568)) ELT) (((-171 (-391)) (-963 |#1|) (-936)) 84 (|has| |#1| (-1068)) ELT) (((-171 (-391)) (-963 |#1|)) 83 (|has| |#1| (-1068)) ELT) (((-171 (-391)) (-963 (-171 |#1|)) (-936)) 78 (|has| |#1| (-175)) ELT) (((-171 (-391)) (-963 (-171 |#1|))) 77 (|has| |#1| (-175)) ELT) (((-171 (-391)) (-171 |#1|) (-936)) 80 (|has| |#1| (-175)) ELT) (((-171 (-391)) (-171 |#1|)) 79 (|has| |#1| (-175)) ELT) (((-171 (-391)) |#1| (-936)) 27 T ELT) (((-171 (-391)) |#1|) 25 T ELT))) -(((-803 |#1|) (-10 -7 (-15 -2847 ((-391) |#1|)) (-15 -2847 ((-391) |#1| (-936))) (-15 -2848 ((-171 (-391)) |#1|)) (-15 -2848 ((-171 (-391)) |#1| (-936))) (IF (|has| |#1| (-175)) (PROGN (-15 -2848 ((-171 (-391)) (-171 |#1|))) (-15 -2848 ((-171 (-391)) (-171 |#1|) (-936))) (-15 -2848 ((-171 (-391)) (-963 (-171 |#1|)))) (-15 -2848 ((-171 (-391)) (-963 (-171 |#1|)) (-936)))) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-15 -2847 ((-391) (-963 |#1|))) (-15 -2847 ((-391) (-963 |#1|) (-936))) (-15 -2848 ((-171 (-391)) (-963 |#1|))) (-15 -2848 ((-171 (-391)) (-963 |#1|) (-936)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2847 ((-391) (-419 (-963 |#1|)))) (-15 -2847 ((-391) (-419 (-963 |#1|)) (-936))) (-15 -2848 ((-171 (-391)) (-419 (-963 |#1|)))) (-15 -2848 ((-171 (-391)) (-419 (-963 |#1|)) (-936))) (-15 -2848 ((-171 (-391)) (-419 (-963 (-171 |#1|))))) (-15 -2848 ((-171 (-391)) (-419 (-963 (-171 |#1|))) (-936))) (IF (|has| |#1| (-859)) (PROGN (-15 -2847 ((-391) (-326 |#1|))) (-15 -2847 ((-391) (-326 |#1|) (-936))) (-15 -2848 ((-171 (-391)) (-326 |#1|))) (-15 -2848 ((-171 (-391)) (-326 |#1|) (-936))) (-15 -2848 ((-171 (-391)) (-326 (-171 |#1|)))) (-15 -2848 ((-171 (-391)) (-326 (-171 |#1|)) (-936)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-15 -2850 ((-3 (-171 (-391)) #1="failed") (-963 (-171 |#1|)))) (-15 -2850 ((-3 (-171 (-391)) #1#) (-963 (-171 |#1|)) (-936)))) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-15 -2849 ((-3 (-391) #1#) (-963 |#1|))) (-15 -2849 ((-3 (-391) #1#) (-963 |#1|) (-936))) (-15 -2850 ((-3 (-171 (-391)) #1#) (-963 |#1|))) (-15 -2850 ((-3 (-171 (-391)) #1#) (-963 |#1|) (-936)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2849 ((-3 (-391) #1#) (-419 (-963 |#1|)))) (-15 -2849 ((-3 (-391) #1#) (-419 (-963 |#1|)) (-936))) (-15 -2850 ((-3 (-171 (-391)) #1#) (-419 (-963 |#1|)))) (-15 -2850 ((-3 (-171 (-391)) #1#) (-419 (-963 |#1|)) (-936))) (-15 -2850 ((-3 (-171 (-391)) #1#) (-419 (-963 (-171 |#1|))))) (-15 -2850 ((-3 (-171 (-391)) #1#) (-419 (-963 (-171 |#1|))) (-936))) (IF (|has| |#1| (-859)) (PROGN (-15 -2849 ((-3 (-391) #1#) (-326 |#1|))) (-15 -2849 ((-3 (-391) #1#) (-326 |#1|) (-936))) (-15 -2850 ((-3 (-171 (-391)) #1#) (-326 |#1|))) (-15 -2850 ((-3 (-171 (-391)) #1#) (-326 |#1|) (-936))) (-15 -2850 ((-3 (-171 (-391)) #1#) (-326 (-171 |#1|)))) (-15 -2850 ((-3 (-171 (-391)) #1#) (-326 (-171 |#1|)) (-936)))) |%noBranch|)) |%noBranch|)) (-629 (-391))) (T -803)) -((-2850 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-568)) (-4 *5 (-859)) (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) (-2850 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-859)) (-4 *4 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) (-2850 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-936)) (-4 *5 (-568)) (-4 *5 (-859)) (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) (-2850 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-859)) (-4 *4 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) (-2849 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-936)) (-4 *5 (-568)) (-4 *5 (-859)) (-4 *5 (-629 *2)) (-5 *2 (-391)) (-5 *1 (-803 *5)))) (-2849 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-859)) (-4 *4 (-629 *2)) (-5 *2 (-391)) (-5 *1 (-803 *4)))) (-2850 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-963 (-171 *5)))) (-5 *4 (-936)) (-4 *5 (-568)) (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) (-2850 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-963 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) (-2850 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-936)) (-4 *5 (-568)) (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) (-2850 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-963 *4))) (-4 *4 (-568)) (-4 *4 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) (-2849 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-936)) (-4 *5 (-568)) (-4 *5 (-629 *2)) (-5 *2 (-391)) (-5 *1 (-803 *5)))) (-2849 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-963 *4))) (-4 *4 (-568)) (-4 *4 (-629 *2)) (-5 *2 (-391)) (-5 *1 (-803 *4)))) (-2850 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-963 *5)) (-5 *4 (-936)) (-4 *5 (-1068)) (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) (-2850 (*1 *2 *3) (|partial| -12 (-5 *3 (-963 *4)) (-4 *4 (-1068)) (-4 *4 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) (-2849 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-963 *5)) (-5 *4 (-936)) (-4 *5 (-1068)) (-4 *5 (-629 *2)) (-5 *2 (-391)) (-5 *1 (-803 *5)))) (-2849 (*1 *2 *3) (|partial| -12 (-5 *3 (-963 *4)) (-4 *4 (-1068)) (-4 *4 (-629 *2)) (-5 *2 (-391)) (-5 *1 (-803 *4)))) (-2850 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-963 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-175)) (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) (-2850 (*1 *2 *3) (|partial| -12 (-5 *3 (-963 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-568)) (-4 *5 (-859)) (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-859)) (-4 *4 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-936)) (-4 *5 (-568)) (-4 *5 (-859)) (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-859)) (-4 *4 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) (-2847 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-936)) (-4 *5 (-568)) (-4 *5 (-859)) (-4 *5 (-629 *2)) (-5 *2 (-391)) (-5 *1 (-803 *5)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-859)) (-4 *4 (-629 *2)) (-5 *2 (-391)) (-5 *1 (-803 *4)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-963 (-171 *5)))) (-5 *4 (-936)) (-4 *5 (-568)) (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-419 (-963 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-936)) (-4 *5 (-568)) (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-419 (-963 *4))) (-4 *4 (-568)) (-4 *4 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) (-2847 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-936)) (-4 *5 (-568)) (-4 *5 (-629 *2)) (-5 *2 (-391)) (-5 *1 (-803 *5)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-419 (-963 *4))) (-4 *4 (-568)) (-4 *4 (-629 *2)) (-5 *2 (-391)) (-5 *1 (-803 *4)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-963 *5)) (-5 *4 (-936)) (-4 *5 (-1068)) (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-963 *4)) (-4 *4 (-1068)) (-4 *4 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) (-2847 (*1 *2 *3 *4) (-12 (-5 *3 (-963 *5)) (-5 *4 (-936)) (-4 *5 (-1068)) (-4 *5 (-629 *2)) (-5 *2 (-391)) (-5 *1 (-803 *5)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-963 *4)) (-4 *4 (-1068)) (-4 *4 (-629 *2)) (-5 *2 (-391)) (-5 *1 (-803 *4)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-963 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-175)) (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-963 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-936)) (-4 *5 (-175)) (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-175)) (-4 *4 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-5 *2 (-171 (-391))) (-5 *1 (-803 *3)) (-4 *3 (-629 (-391))))) (-2848 (*1 *2 *3) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-803 *3)) (-4 *3 (-629 (-391))))) (-2847 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-5 *2 (-391)) (-5 *1 (-803 *3)) (-4 *3 (-629 *2)))) (-2847 (*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-803 *3)) (-4 *3 (-629 *2))))) -((-2854 (((-936) (-1178)) 90 T ELT)) (-2856 (((-3 (-391) "failed") (-1178)) 36 T ELT)) (-2855 (((-391) (-1178)) 34 T ELT)) (-2852 (((-936) (-1178)) 64 T ELT)) (-2853 (((-1178) (-936)) 74 T ELT)) (-2851 (((-1178) (-936)) 63 T ELT))) -(((-804) (-10 -7 (-15 -2851 ((-1178) (-936))) (-15 -2852 ((-936) (-1178))) (-15 -2853 ((-1178) (-936))) (-15 -2854 ((-936) (-1178))) (-15 -2855 ((-391) (-1178))) (-15 -2856 ((-3 (-391) "failed") (-1178))))) (T -804)) -((-2856 (*1 *2 *3) (|partial| -12 (-5 *3 (-1178)) (-5 *2 (-391)) (-5 *1 (-804)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-391)) (-5 *1 (-804)))) (-2854 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-936)) (-5 *1 (-804)))) (-2853 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1178)) (-5 *1 (-804)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-936)) (-5 *1 (-804)))) (-2851 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1178)) (-5 *1 (-804))))) -((-2965 (((-114) $ $) 7 T ELT)) (-2857 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) 19 T ELT) (((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054)) 17 T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 20 T ELT) (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 18 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-805) (-142)) (T -805)) -((-3067 (*1 *2 *3 *4) (-12 (-4 *1 (-805)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054)))))) (-2857 (*1 *2 *3 *2) (-12 (-4 *1 (-805)) (-5 *2 (-1054)) (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-3067 (*1 *2 *3 *4) (-12 (-4 *1 (-805)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054)))))) (-2857 (*1 *2 *3 *2) (-12 (-4 *1 (-805)) (-5 *2 (-1054)) (-5 *3 (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) -(-13 (-1120) (-10 -7 (-15 -3067 ((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2857 ((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054))) (-15 -3067 ((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2857 ((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1054))))) -(((-102) . T) ((-628 (-875)) . T) ((-1120) . T) ((-1236) . T)) -((-2860 (((-1292) (-1286 (-391)) (-557) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1605 (-391))) (-391) (-1286 (-391)) (-1 (-1292) (-1286 (-391)) (-1286 (-391)) (-391)) (-1286 (-391)) (-1286 (-391)) (-1286 (-391)) (-1286 (-391)) (-1286 (-391)) (-1286 (-391)) (-1286 (-391))) 54 T ELT) (((-1292) (-1286 (-391)) (-557) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1605 (-391))) (-391) (-1286 (-391)) (-1 (-1292) (-1286 (-391)) (-1286 (-391)) (-391))) 51 T ELT)) (-2861 (((-1292) (-1286 (-391)) (-557) (-391) (-391) (-557) (-1 (-1292) (-1286 (-391)) (-1286 (-391)) (-391))) 61 T ELT)) (-2859 (((-1292) (-1286 (-391)) (-557) (-391) (-391) (-391) (-391) (-557) (-1 (-1292) (-1286 (-391)) (-1286 (-391)) (-391))) 49 T ELT)) (-2858 (((-1292) (-1286 (-391)) (-557) (-391) (-391) (-1 (-1292) (-1286 (-391)) (-1286 (-391)) (-391)) (-1286 (-391)) (-1286 (-391)) (-1286 (-391)) (-1286 (-391))) 63 T ELT) (((-1292) (-1286 (-391)) (-557) (-391) (-391) (-1 (-1292) (-1286 (-391)) (-1286 (-391)) (-391))) 62 T ELT))) -(((-806) (-10 -7 (-15 -2858 ((-1292) (-1286 (-391)) (-557) (-391) (-391) (-1 (-1292) (-1286 (-391)) (-1286 (-391)) (-391)))) (-15 -2858 ((-1292) (-1286 (-391)) (-557) (-391) (-391) (-1 (-1292) (-1286 (-391)) (-1286 (-391)) (-391)) (-1286 (-391)) (-1286 (-391)) (-1286 (-391)) (-1286 (-391)))) (-15 -2859 ((-1292) (-1286 (-391)) (-557) (-391) (-391) (-391) (-391) (-557) (-1 (-1292) (-1286 (-391)) (-1286 (-391)) (-391)))) (-15 -2860 ((-1292) (-1286 (-391)) (-557) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1605 (-391))) (-391) (-1286 (-391)) (-1 (-1292) (-1286 (-391)) (-1286 (-391)) (-391)))) (-15 -2860 ((-1292) (-1286 (-391)) (-557) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1605 (-391))) (-391) (-1286 (-391)) (-1 (-1292) (-1286 (-391)) (-1286 (-391)) (-391)) (-1286 (-391)) (-1286 (-391)) (-1286 (-391)) (-1286 (-391)) (-1286 (-391)) (-1286 (-391)) (-1286 (-391)))) (-15 -2861 ((-1292) (-1286 (-391)) (-557) (-391) (-391) (-557) (-1 (-1292) (-1286 (-391)) (-1286 (-391)) (-391)))))) (T -806)) -((-2861 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-557)) (-5 *6 (-1 (-1292) (-1286 *5) (-1286 *5) (-391))) (-5 *3 (-1286 (-391))) (-5 *5 (-391)) (-5 *2 (-1292)) (-5 *1 (-806)))) (-2860 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-557)) (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1605 (-391)))) (-5 *7 (-1 (-1292) (-1286 *5) (-1286 *5) (-391))) (-5 *3 (-1286 (-391))) (-5 *5 (-391)) (-5 *2 (-1292)) (-5 *1 (-806)))) (-2860 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-557)) (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1605 (-391)))) (-5 *7 (-1 (-1292) (-1286 *5) (-1286 *5) (-391))) (-5 *3 (-1286 (-391))) (-5 *5 (-391)) (-5 *2 (-1292)) (-5 *1 (-806)))) (-2859 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-557)) (-5 *6 (-1 (-1292) (-1286 *5) (-1286 *5) (-391))) (-5 *3 (-1286 (-391))) (-5 *5 (-391)) (-5 *2 (-1292)) (-5 *1 (-806)))) (-2858 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-557)) (-5 *6 (-1 (-1292) (-1286 *5) (-1286 *5) (-391))) (-5 *3 (-1286 (-391))) (-5 *5 (-391)) (-5 *2 (-1292)) (-5 *1 (-806)))) (-2858 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-557)) (-5 *6 (-1 (-1292) (-1286 *5) (-1286 *5) (-391))) (-5 *3 (-1286 (-391))) (-5 *5 (-391)) (-5 *2 (-1292)) (-5 *1 (-806))))) -((-2870 (((-2 (|:| -3820 (-391)) (|:| -1737 (-391)) (|:| |totalpts| (-557)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-557) (-557)) 65 T ELT)) (-2867 (((-2 (|:| -3820 (-391)) (|:| -1737 (-391)) (|:| |totalpts| (-557)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-557) (-557)) 40 T ELT)) (-2869 (((-2 (|:| -3820 (-391)) (|:| -1737 (-391)) (|:| |totalpts| (-557)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-557) (-557)) 64 T ELT)) (-2866 (((-2 (|:| -3820 (-391)) (|:| -1737 (-391)) (|:| |totalpts| (-557)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-557) (-557)) 38 T ELT)) (-2868 (((-2 (|:| -3820 (-391)) (|:| -1737 (-391)) (|:| |totalpts| (-557)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-557) (-557)) 63 T ELT)) (-2865 (((-2 (|:| -3820 (-391)) (|:| -1737 (-391)) (|:| |totalpts| (-557)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-557) (-557)) 24 T ELT)) (-2864 (((-2 (|:| -3820 (-391)) (|:| -1737 (-391)) (|:| |totalpts| (-557)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-557) (-557) (-557)) 41 T ELT)) (-2863 (((-2 (|:| -3820 (-391)) (|:| -1737 (-391)) (|:| |totalpts| (-557)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-557) (-557) (-557)) 39 T ELT)) (-2862 (((-2 (|:| -3820 (-391)) (|:| -1737 (-391)) (|:| |totalpts| (-557)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-557) (-557) (-557)) 37 T ELT))) -(((-807) (-10 -7 (-15 -2862 ((-2 (|:| -3820 (-391)) (|:| -1737 (-391)) (|:| |totalpts| (-557)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-557) (-557) (-557))) (-15 -2863 ((-2 (|:| -3820 (-391)) (|:| -1737 (-391)) (|:| |totalpts| (-557)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-557) (-557) (-557))) (-15 -2864 ((-2 (|:| -3820 (-391)) (|:| -1737 (-391)) (|:| |totalpts| (-557)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-557) (-557) (-557))) (-15 -2865 ((-2 (|:| -3820 (-391)) (|:| -1737 (-391)) (|:| |totalpts| (-557)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-557) (-557))) (-15 -2866 ((-2 (|:| -3820 (-391)) (|:| -1737 (-391)) (|:| |totalpts| (-557)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-557) (-557))) (-15 -2867 ((-2 (|:| -3820 (-391)) (|:| -1737 (-391)) (|:| |totalpts| (-557)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-557) (-557))) (-15 -2868 ((-2 (|:| -3820 (-391)) (|:| -1737 (-391)) (|:| |totalpts| (-557)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-557) (-557))) (-15 -2869 ((-2 (|:| -3820 (-391)) (|:| -1737 (-391)) (|:| |totalpts| (-557)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-557) (-557))) (-15 -2870 ((-2 (|:| -3820 (-391)) (|:| -1737 (-391)) (|:| |totalpts| (-557)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-557) (-557))))) (T -807)) -((-2870 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3820 *4) (|:| -1737 *4) (|:| |totalpts| (-557)) (|:| |success| (-114)))) (-5 *1 (-807)) (-5 *5 (-557)))) (-2869 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3820 *4) (|:| -1737 *4) (|:| |totalpts| (-557)) (|:| |success| (-114)))) (-5 *1 (-807)) (-5 *5 (-557)))) (-2868 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3820 *4) (|:| -1737 *4) (|:| |totalpts| (-557)) (|:| |success| (-114)))) (-5 *1 (-807)) (-5 *5 (-557)))) (-2867 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3820 *4) (|:| -1737 *4) (|:| |totalpts| (-557)) (|:| |success| (-114)))) (-5 *1 (-807)) (-5 *5 (-557)))) (-2866 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3820 *4) (|:| -1737 *4) (|:| |totalpts| (-557)) (|:| |success| (-114)))) (-5 *1 (-807)) (-5 *5 (-557)))) (-2865 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3820 *4) (|:| -1737 *4) (|:| |totalpts| (-557)) (|:| |success| (-114)))) (-5 *1 (-807)) (-5 *5 (-557)))) (-2864 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3820 *4) (|:| -1737 *4) (|:| |totalpts| (-557)) (|:| |success| (-114)))) (-5 *1 (-807)) (-5 *5 (-557)))) (-2863 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3820 *4) (|:| -1737 *4) (|:| |totalpts| (-557)) (|:| |success| (-114)))) (-5 *1 (-807)) (-5 *5 (-557)))) (-2862 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3820 *4) (|:| -1737 *4) (|:| |totalpts| (-557)) (|:| |success| (-114)))) (-5 *1 (-807)) (-5 *5 (-557))))) -((-4133 (((-1232 |#1|) |#1| (-229) (-557)) 69 T ELT))) -(((-808 |#1|) (-10 -7 (-15 -4133 ((-1232 |#1|) |#1| (-229) (-557)))) (-993)) (T -808)) -((-4133 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-229)) (-5 *5 (-557)) (-5 *2 (-1232 *3)) (-5 *1 (-808 *3)) (-4 *3 (-993))))) -((-4051 (((-557) $) 17 T ELT)) (-3603 (((-114) $) 10 T ELT)) (-3801 (($ $) 19 T ELT))) -(((-809 |#1|) (-10 -7 (-15 -3801 (|#1| |#1|)) (-15 -4051 ((-557) |#1|)) (-15 -3603 ((-114) |#1|))) (-810)) (T -809)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 31 T ELT)) (-1424 (((-3 $ "failed") $ $) 34 T ELT)) (-4051 (((-557) $) 37 T ELT)) (-4152 (($) 30 T CONST)) (-3602 (((-114) $) 28 T ELT)) (-3603 (((-114) $) 38 T ELT)) (-2928 (($ $ $) 23 T ELT)) (-3256 (($ $ $) 22 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3801 (($ $) 36 T ELT)) (-3057 (($) 29 T CONST)) (-2963 (((-114) $ $) 21 T ELT)) (-2964 (((-114) $ $) 19 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 20 T ELT)) (-3084 (((-114) $ $) 18 T ELT)) (-4265 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-4267 (($ $ $) 25 T ELT)) (* (($ (-936) $) 26 T ELT) (($ (-789) $) 32 T ELT) (($ (-557) $) 39 T ELT))) -(((-810) (-142)) (T -810)) -((-3603 (*1 *2 *1) (-12 (-4 *1 (-810)) (-5 *2 (-114)))) (-4051 (*1 *2 *1) (-12 (-4 *1 (-810)) (-5 *2 (-557)))) (-3801 (*1 *1 *1) (-4 *1 (-810)))) -(-13 (-817) (-21) (-10 -8 (-15 -3603 ((-114) $)) (-15 -4051 ((-557) $)) (-15 -3801 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-812) . T) ((-814) . T) ((-817) . T) ((-859) . T) ((-862) . T) ((-1120) . T) ((-1236) . T)) -((-3602 (((-114) $) 10 T ELT))) -(((-811 |#1|) (-10 -7 (-15 -3602 ((-114) |#1|))) (-812)) (T -811)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 31 T ELT)) (-4152 (($) 30 T CONST)) (-3602 (((-114) $) 28 T ELT)) (-2928 (($ $ $) 23 T ELT)) (-3256 (($ $ $) 22 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 29 T CONST)) (-2963 (((-114) $ $) 21 T ELT)) (-2964 (((-114) $ $) 19 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 20 T ELT)) (-3084 (((-114) $ $) 18 T ELT)) (-4267 (($ $ $) 25 T ELT)) (* (($ (-936) $) 26 T ELT) (($ (-789) $) 32 T ELT))) -(((-812) (-142)) (T -812)) -((-3602 (*1 *2 *1) (-12 (-4 *1 (-812)) (-5 *2 (-114))))) -(-13 (-814) (-23) (-10 -8 (-15 -3602 ((-114) $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-628 (-875)) . T) ((-814) . T) ((-859) . T) ((-862) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 31 T ELT)) (-2871 (($ $ $) 35 T ELT)) (-1424 (((-3 $ "failed") $ $) 34 T ELT)) (-4152 (($) 30 T CONST)) (-3602 (((-114) $) 28 T ELT)) (-2928 (($ $ $) 23 T ELT)) (-3256 (($ $ $) 22 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 29 T CONST)) (-2963 (((-114) $ $) 21 T ELT)) (-2964 (((-114) $ $) 19 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 20 T ELT)) (-3084 (((-114) $ $) 18 T ELT)) (-4267 (($ $ $) 25 T ELT)) (* (($ (-936) $) 26 T ELT) (($ (-789) $) 32 T ELT))) -(((-813) (-142)) (T -813)) -((-2871 (*1 *1 *1 *1) (-4 *1 (-813)))) -(-13 (-817) (-10 -8 (-15 -2871 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-628 (-875)) . T) ((-812) . T) ((-814) . T) ((-817) . T) ((-859) . T) ((-862) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) 7 T ELT)) (-2928 (($ $ $) 23 T ELT)) (-3256 (($ $ $) 22 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2963 (((-114) $ $) 21 T ELT)) (-2964 (((-114) $ $) 19 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 20 T ELT)) (-3084 (((-114) $ $) 18 T ELT)) (-4267 (($ $ $) 25 T ELT)) (* (($ (-936) $) 26 T ELT))) -(((-814) (-142)) (T -814)) -NIL -(-13 (-859) (-25)) -(((-25) . T) ((-102) . T) ((-628 (-875)) . T) ((-859) . T) ((-862) . T) ((-1120) . T) ((-1236) . T)) -((-3604 (((-114) $) 42 T ELT)) (-3573 (((-3 (-557) #1="failed") $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3572 (((-557) $) NIL T ELT) (((-419 (-557)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3423 (((-3 (-419 (-557)) #1#) $) 78 T ELT)) (-3422 (((-114) $) 72 T ELT)) (-3421 (((-419 (-557)) $) 76 T ELT)) (-3532 ((|#2| $) 26 T ELT)) (-4386 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2872 (($ $) 58 T ELT)) (-4400 (((-546) $) 67 T ELT)) (-3408 (($ $) 21 T ELT)) (-4374 (((-875) $) 53 T ELT) (($ (-557)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-419 (-557))) NIL T ELT)) (-3526 (((-789)) 10 T ELT)) (-3801 ((|#2| $) 71 T ELT)) (-3452 (((-114) $ $) 30 T ELT)) (-3084 (((-114) $ $) 69 T ELT)) (-4265 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 31 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) -(((-815 |#1| |#2|) (-10 -7 (-15 -3084 ((-114) |#1| |#1|)) (-15 -4400 ((-546) |#1|)) (-15 -2872 (|#1| |#1|)) (-15 -3423 ((-3 (-419 (-557)) #1="failed") |#1|)) (-15 -3421 ((-419 (-557)) |#1|)) (-15 -3422 ((-114) |#1|)) (-15 -3801 (|#2| |#1|)) (-15 -3532 (|#2| |#1|)) (-15 -3408 (|#1| |#1|)) (-15 -4386 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3573 ((-3 |#2| #1#) |#1|)) (-15 -3572 (|#2| |#1|)) (-15 -3572 ((-419 (-557)) |#1|)) (-15 -3573 ((-3 (-419 (-557)) #1#) |#1|)) (-15 -4374 (|#1| (-419 (-557)))) (-15 -3572 ((-557) |#1|)) (-15 -3573 ((-3 (-557) #1#) |#1|)) (-15 -4374 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3526 ((-789))) (-15 -4374 (|#1| (-557))) (-15 * (|#1| |#1| |#1|)) (-15 -4265 (|#1| |#1| |#1|)) (-15 -4265 (|#1| |#1|)) (-15 * (|#1| (-557) |#1|)) (-15 * (|#1| (-789) |#1|)) (-15 -3604 ((-114) |#1|)) (-15 * (|#1| (-936) |#1|)) (-15 -4267 (|#1| |#1| |#1|)) (-15 -4374 ((-875) |#1|)) (-15 -3452 ((-114) |#1| |#1|))) (-816 |#2|) (-175)) (T -815)) -((-3526 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-789)) (-5 *1 (-815 *3 *4)) (-4 *3 (-816 *4))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-3536 (((-789)) 64 (|has| |#1| (-381)) ELT)) (-4152 (($) 22 T CONST)) (-3573 (((-3 (-557) #1="failed") $) 106 (|has| |#1| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) 103 (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 |#1| #1#) $) 100 T ELT)) (-3572 (((-557) $) 105 (|has| |#1| (-1057 (-557))) ELT) (((-419 (-557)) $) 102 (|has| |#1| (-1057 (-419 (-557)))) ELT) ((|#1| $) 101 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-4071 ((|#1| $) 90 T ELT)) (-3423 (((-3 (-419 (-557)) "failed") $) 77 (|has| |#1| (-556)) ELT)) (-3422 (((-114) $) 79 (|has| |#1| (-556)) ELT)) (-3421 (((-419 (-557)) $) 78 (|has| |#1| (-556)) ELT)) (-3393 (($) 67 (|has| |#1| (-381)) ELT)) (-2639 (((-114) $) 40 T ELT)) (-2877 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 81 T ELT)) (-3532 ((|#1| $) 82 T ELT)) (-2928 (($ $ $) 68 (|has| |#1| (-859)) ELT)) (-3256 (($ $ $) 69 (|has| |#1| (-859)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-2218 (((-936) $) 66 (|has| |#1| (-381)) ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2872 (($ $) 76 (|has| |#1| (-376)) ELT)) (-2629 (($ (-936)) 65 (|has| |#1| (-381)) ELT)) (-2874 ((|#1| $) 87 T ELT)) (-2875 ((|#1| $) 88 T ELT)) (-2876 ((|#1| $) 89 T ELT)) (-3405 ((|#1| $) 83 T ELT)) (-3406 ((|#1| $) 84 T ELT)) (-3407 ((|#1| $) 85 T ELT)) (-2873 ((|#1| $) 86 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4196 (($ $ (-659 |#1|) (-659 |#1|)) 98 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 97 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 96 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-659 (-305 |#1|))) 95 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-659 (-1196)) (-659 |#1|)) 94 (|has| |#1| (-526 (-1196) |#1|)) ELT) (($ $ (-1196) |#1|) 93 (|has| |#1| (-526 (-1196) |#1|)) ELT)) (-4228 (($ $ |#1|) 99 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4400 (((-546) $) 74 (|has| |#1| (-629 (-546))) ELT)) (-3408 (($ $) 91 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-419 (-557))) 104 (|has| |#1| (-1057 (-419 (-557)))) ELT)) (-3101 (((-709 $) $) 75 (|has| |#1| (-147)) ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-3801 ((|#1| $) 80 (|has| |#1| (-1079)) ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-2963 (((-114) $ $) 70 (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) 72 (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 71 (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) 73 (|has| |#1| (-859)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) -(((-816 |#1|) (-142) (-175)) (T -816)) -((-3408 (*1 *1 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)))) (-4071 (*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)))) (-2876 (*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)))) (-2875 (*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)))) (-2874 (*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)))) (-2873 (*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)))) (-2877 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)) (-4 *2 (-1079)))) (-3422 (*1 *2 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-175)) (-4 *3 (-556)) (-5 *2 (-114)))) (-3421 (*1 *2 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-175)) (-4 *3 (-556)) (-5 *2 (-419 (-557))))) (-3423 (*1 *2 *1) (|partial| -12 (-4 *1 (-816 *3)) (-4 *3 (-175)) (-4 *3 (-556)) (-5 *2 (-419 (-557))))) (-2872 (*1 *1 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)) (-4 *2 (-376))))) -(-13 (-38 |t#1|) (-424 |t#1|) (-351 |t#1|) (-10 -8 (-15 -3408 ($ $)) (-15 -4071 (|t#1| $)) (-15 -2876 (|t#1| $)) (-15 -2875 (|t#1| $)) (-15 -2874 (|t#1| $)) (-15 -2873 (|t#1| $)) (-15 -3407 (|t#1| $)) (-15 -3406 (|t#1| $)) (-15 -3405 (|t#1| $)) (-15 -3532 (|t#1| $)) (-15 -2877 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |t#1| (-629 (-546))) (-6 (-629 (-546))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1079)) (-15 -3801 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -3422 ((-114) $)) (-15 -3421 ((-419 (-557)) $)) (-15 -3423 ((-3 (-419 (-557)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-376)) (-15 -2872 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((-631 (-557)) . T) ((-631 |#1|) . T) ((-628 (-875)) . T) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-381) |has| |#1| (-381)) ((-351 |#1|) . T) ((-424 |#1|) . T) ((-526 (-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-658 |#1|) . T) ((-735 |#1|) . T) ((-744) . T) ((-859) |has| |#1| (-859)) ((-862) |has| |#1| (-859)) ((-1057 (-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((-1057 (-557)) |has| |#1| (-1057 (-557))) ((-1057 |#1|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 31 T ELT)) (-1424 (((-3 $ "failed") $ $) 34 T ELT)) (-4152 (($) 30 T CONST)) (-3602 (((-114) $) 28 T ELT)) (-2928 (($ $ $) 23 T ELT)) (-3256 (($ $ $) 22 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 29 T CONST)) (-2963 (((-114) $ $) 21 T ELT)) (-2964 (((-114) $ $) 19 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 20 T ELT)) (-3084 (((-114) $ $) 18 T ELT)) (-4267 (($ $ $) 25 T ELT)) (* (($ (-936) $) 26 T ELT) (($ (-789) $) 32 T ELT))) -(((-817) (-142)) (T -817)) -NIL -(-13 (-812) (-133)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-628 (-875)) . T) ((-812) . T) ((-814) . T) ((-859) . T) ((-862) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3536 (((-789)) NIL (|has| |#1| (-381)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-1015 |#1|) #1#) $) 35 T ELT) (((-3 (-557) #1#) $) NIL (-3955 (|has| (-1015 |#1|) (-1057 (-557))) (|has| |#1| (-1057 (-557)))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (-3955 (|has| (-1015 |#1|) (-1057 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) ELT)) (-3572 ((|#1| $) NIL T ELT) (((-1015 |#1|) $) 33 T ELT) (((-557) $) NIL (-3955 (|has| (-1015 |#1|) (-1057 (-557))) (|has| |#1| (-1057 (-557)))) ELT) (((-419 (-557)) $) NIL (-3955 (|has| (-1015 |#1|) (-1057 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-4071 ((|#1| $) 16 T ELT)) (-3423 (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-556)) ELT)) (-3422 (((-114) $) NIL (|has| |#1| (-556)) ELT)) (-3421 (((-419 (-557)) $) NIL (|has| |#1| (-556)) ELT)) (-3393 (($) NIL (|has| |#1| (-381)) ELT)) (-2639 (((-114) $) NIL T ELT)) (-2877 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-1015 |#1|) (-1015 |#1|)) 29 T ELT)) (-3532 ((|#1| $) NIL T ELT)) (-2928 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2218 (((-936) $) NIL (|has| |#1| (-381)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2629 (($ (-936)) NIL (|has| |#1| (-381)) ELT)) (-2874 ((|#1| $) 22 T ELT)) (-2875 ((|#1| $) 20 T ELT)) (-2876 ((|#1| $) 18 T ELT)) (-3405 ((|#1| $) 26 T ELT)) (-3406 ((|#1| $) 25 T ELT)) (-3407 ((|#1| $) 24 T ELT)) (-2873 ((|#1| $) 23 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4196 (($ $ (-659 |#1|) (-659 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-659 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-659 (-1196)) (-659 |#1|)) NIL (|has| |#1| (-526 (-1196) |#1|)) ELT) (($ $ (-1196) |#1|) NIL (|has| |#1| (-526 (-1196) |#1|)) ELT)) (-4228 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4400 (((-546) $) NIL (|has| |#1| (-629 (-546))) ELT)) (-3408 (($ $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1015 |#1|)) 30 T ELT) (($ (-419 (-557))) NIL (-3955 (|has| (-1015 |#1|) (-1057 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) ELT)) (-3101 (((-709 $) $) NIL (|has| |#1| (-147)) ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3801 ((|#1| $) NIL (|has| |#1| (-1079)) ELT)) (-3057 (($) 8 T CONST)) (-3063 (($) 12 T CONST)) (-2963 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-818 |#1|) (-13 (-816 |#1|) (-424 (-1015 |#1|)) (-10 -8 (-15 -2877 ($ (-1015 |#1|) (-1015 |#1|))))) (-175)) (T -818)) -((-2877 (*1 *1 *2 *2) (-12 (-5 *2 (-1015 *3)) (-4 *3 (-175)) (-5 *1 (-818 *3))))) -((-4386 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) -(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4386 (|#3| (-1 |#4| |#2|) |#1|))) (-816 |#2|) (-175) (-816 |#4|) (-175)) (T -819)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-816 *6)) (-5 *1 (-819 *4 *5 *2 *6)) (-4 *4 (-816 *5))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 18 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2878 (((-1054) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 17 T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-820) (-142)) (T -820)) -((-3067 (*1 *2 *3 *4) (-12 (-4 *1 (-820)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)))))) (-2878 (*1 *2 *3) (-12 (-4 *1 (-820)) (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-1054))))) -(-13 (-1120) (-10 -7 (-15 -3067 ((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2878 ((-1054) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) -(((-102) . T) ((-628 (-875)) . T) ((-1120) . T) ((-1236) . T)) -((-2879 (((-2 (|:| |particular| |#2|) (|:| -2220 (-659 |#2|))) |#3| |#2| (-1196)) 19 T ELT))) -(((-821 |#1| |#2| |#3|) (-10 -7 (-15 -2879 ((-2 (|:| |particular| |#2|) (|:| -2220 (-659 |#2|))) |#3| |#2| (-1196)))) (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149)) (-13 (-29 |#1|) (-1222) (-977)) (-676 |#2|)) (T -821)) -((-2879 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1196)) (-4 *6 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) (-4 *4 (-13 (-29 *6) (-1222) (-977))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2220 (-659 *4)))) (-5 *1 (-821 *6 *4 *3)) (-4 *3 (-676 *4))))) -((-3999 (((-3 |#2| #1="failed") |#2| (-115) (-305 |#2|) (-659 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-305 |#2|) (-115) (-305 |#2|) (-659 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2220 (-659 |#2|))) |#2| #1#) |#2| (-115) (-1196)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2220 (-659 |#2|))) |#2| #1#) (-305 |#2|) (-115) (-1196)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -2220 (-659 (-1286 |#2|)))) #1#) (-659 |#2|) (-659 (-115)) (-1196)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -2220 (-659 (-1286 |#2|)))) #1#) (-659 (-305 |#2|)) (-659 (-115)) (-1196)) 26 T ELT) (((-3 (-659 (-1286 |#2|)) #1#) (-707 |#2|) (-1196)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -2220 (-659 (-1286 |#2|)))) #1#) (-707 |#2|) (-1286 |#2|) (-1196)) 35 T ELT))) -(((-822 |#1| |#2|) (-10 -7 (-15 -3999 ((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -2220 (-659 (-1286 |#2|)))) #1="failed") (-707 |#2|) (-1286 |#2|) (-1196))) (-15 -3999 ((-3 (-659 (-1286 |#2|)) #1#) (-707 |#2|) (-1196))) (-15 -3999 ((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -2220 (-659 (-1286 |#2|)))) #1#) (-659 (-305 |#2|)) (-659 (-115)) (-1196))) (-15 -3999 ((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -2220 (-659 (-1286 |#2|)))) #1#) (-659 |#2|) (-659 (-115)) (-1196))) (-15 -3999 ((-3 (-2 (|:| |particular| |#2|) (|:| -2220 (-659 |#2|))) |#2| #1#) (-305 |#2|) (-115) (-1196))) (-15 -3999 ((-3 (-2 (|:| |particular| |#2|) (|:| -2220 (-659 |#2|))) |#2| #1#) |#2| (-115) (-1196))) (-15 -3999 ((-3 |#2| #1#) (-305 |#2|) (-115) (-305 |#2|) (-659 |#2|))) (-15 -3999 ((-3 |#2| #1#) |#2| (-115) (-305 |#2|) (-659 |#2|)))) (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149)) (-13 (-29 |#1|) (-1222) (-977))) (T -822)) -((-3999 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-305 *2)) (-5 *5 (-659 *2)) (-4 *2 (-13 (-29 *6) (-1222) (-977))) (-4 *6 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) (-5 *1 (-822 *6 *2)))) (-3999 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-305 *2)) (-5 *4 (-115)) (-5 *5 (-659 *2)) (-4 *2 (-13 (-29 *6) (-1222) (-977))) (-5 *1 (-822 *6 *2)) (-4 *6 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))))) (-3999 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1196)) (-4 *6 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2220 (-659 *3))) *3 #1="failed")) (-5 *1 (-822 *6 *3)) (-4 *3 (-13 (-29 *6) (-1222) (-977))))) (-3999 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-977))) (-4 *6 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2220 (-659 *7))) *7 #1#)) (-5 *1 (-822 *6 *7)))) (-3999 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-659 *7)) (-5 *4 (-659 (-115))) (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-977))) (-4 *6 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) (-5 *2 (-2 (|:| |particular| (-1286 *7)) (|:| -2220 (-659 (-1286 *7))))) (-5 *1 (-822 *6 *7)))) (-3999 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-659 (-305 *7))) (-5 *4 (-659 (-115))) (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-977))) (-4 *6 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) (-5 *2 (-2 (|:| |particular| (-1286 *7)) (|:| -2220 (-659 (-1286 *7))))) (-5 *1 (-822 *6 *7)))) (-3999 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-707 *6)) (-5 *4 (-1196)) (-4 *6 (-13 (-29 *5) (-1222) (-977))) (-4 *5 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) (-5 *2 (-659 (-1286 *6))) (-5 *1 (-822 *5 *6)))) (-3999 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-707 *7)) (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-977))) (-4 *6 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) (-5 *2 (-2 (|:| |particular| (-1286 *7)) (|:| -2220 (-659 (-1286 *7))))) (-5 *1 (-822 *6 *7)) (-5 *4 (-1286 *7))))) -((-2880 (($) 9 T ELT)) (-2884 (((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 30 T ELT)) (-2882 (((-659 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $) 27 T ELT)) (-4035 (($ (-2 (|:| -4288 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2284 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) 24 T ELT)) (-2883 (($ (-659 (-2 (|:| -4288 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2284 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) 22 T ELT)) (-2881 (((-1292)) 11 T ELT))) -(((-823) (-10 -8 (-15 -2880 ($)) (-15 -2881 ((-1292))) (-15 -2882 ((-659 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -2883 ($ (-659 (-2 (|:| -4288 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2284 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))))) (-15 -4035 ($ (-2 (|:| -4288 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2284 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-15 -2884 ((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -823)) -((-2884 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *1 (-823)))) (-4035 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4288 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2284 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) (-5 *1 (-823)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-659 (-2 (|:| -4288 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2284 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-5 *1 (-823)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-659 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-5 *1 (-823)))) (-2881 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-823)))) (-2880 (*1 *1) (-5 *1 (-823)))) -((-3888 ((|#2| |#2| (-1196)) 17 T ELT)) (-2885 ((|#2| |#2| (-1196)) 56 T ELT)) (-2886 (((-1 |#2| |#2|) (-1196)) 11 T ELT))) -(((-824 |#1| |#2|) (-10 -7 (-15 -3888 (|#2| |#2| (-1196))) (-15 -2885 (|#2| |#2| (-1196))) (-15 -2886 ((-1 |#2| |#2|) (-1196)))) (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149)) (-13 (-29 |#1|) (-1222) (-977))) (T -824)) -((-2886 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) (-5 *2 (-1 *5 *5)) (-5 *1 (-824 *4 *5)) (-4 *5 (-13 (-29 *4) (-1222) (-977))))) (-2885 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) (-5 *1 (-824 *4 *2)) (-4 *2 (-13 (-29 *4) (-1222) (-977))))) (-3888 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) (-5 *1 (-824 *4 *2)) (-4 *2 (-13 (-29 *4) (-1222) (-977)))))) -((-3999 (((-1054) (-1286 (-326 (-391))) (-391) (-391) (-659 (-391)) (-326 (-391)) (-659 (-391)) (-391) (-391)) 129 T ELT) (((-1054) (-1286 (-326 (-391))) (-391) (-391) (-659 (-391)) (-326 (-391)) (-659 (-391)) (-391)) 130 T ELT) (((-1054) (-1286 (-326 (-391))) (-391) (-391) (-659 (-391)) (-659 (-391)) (-391)) 132 T ELT) (((-1054) (-1286 (-326 (-391))) (-391) (-391) (-659 (-391)) (-326 (-391)) (-391)) 134 T ELT) (((-1054) (-1286 (-326 (-391))) (-391) (-391) (-659 (-391)) (-391)) 135 T ELT) (((-1054) (-1286 (-326 (-391))) (-391) (-391) (-659 (-391))) 137 T ELT) (((-1054) (-828) (-1082)) 121 T ELT) (((-1054) (-828)) 122 T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178)))) (-828) (-1082)) 80 T ELT) (((-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178)))) (-828)) 82 T ELT))) -(((-825) (-10 -7 (-15 -3999 ((-1054) (-828))) (-15 -3999 ((-1054) (-828) (-1082))) (-15 -3999 ((-1054) (-1286 (-326 (-391))) (-391) (-391) (-659 (-391)))) (-15 -3999 ((-1054) (-1286 (-326 (-391))) (-391) (-391) (-659 (-391)) (-391))) (-15 -3999 ((-1054) (-1286 (-326 (-391))) (-391) (-391) (-659 (-391)) (-326 (-391)) (-391))) (-15 -3999 ((-1054) (-1286 (-326 (-391))) (-391) (-391) (-659 (-391)) (-659 (-391)) (-391))) (-15 -3999 ((-1054) (-1286 (-326 (-391))) (-391) (-391) (-659 (-391)) (-326 (-391)) (-659 (-391)) (-391))) (-15 -3999 ((-1054) (-1286 (-326 (-391))) (-391) (-391) (-659 (-391)) (-326 (-391)) (-659 (-391)) (-391) (-391))) (-15 -3067 ((-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178)))) (-828))) (-15 -3067 ((-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178)))) (-828) (-1082))))) (T -825)) -((-3067 (*1 *2 *3 *4) (-12 (-5 *3 (-828)) (-5 *4 (-1082)) (-5 *2 (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178))))) (-5 *1 (-825)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-828)) (-5 *2 (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178))))) (-5 *1 (-825)))) (-3999 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-659 (-391))) (-5 *6 (-326 (-391))) (-5 *4 (-391)) (-5 *2 (-1054)) (-5 *1 (-825)))) (-3999 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-659 (-391))) (-5 *6 (-326 (-391))) (-5 *4 (-391)) (-5 *2 (-1054)) (-5 *1 (-825)))) (-3999 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1286 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-659 *4)) (-5 *2 (-1054)) (-5 *1 (-825)))) (-3999 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-659 (-391))) (-5 *6 (-326 (-391))) (-5 *4 (-391)) (-5 *2 (-1054)) (-5 *1 (-825)))) (-3999 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1286 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-659 *4)) (-5 *2 (-1054)) (-5 *1 (-825)))) (-3999 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1286 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-659 *4)) (-5 *2 (-1054)) (-5 *1 (-825)))) (-3999 (*1 *2 *3 *4) (-12 (-5 *3 (-828)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-825)))) (-3999 (*1 *2 *3) (-12 (-5 *3 (-828)) (-5 *2 (-1054)) (-5 *1 (-825))))) -((-2887 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2220 (-659 |#4|))) (-673 |#4|) |#4|) 33 T ELT))) -(((-826 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2887 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2220 (-659 |#4|))) (-673 |#4|) |#4|))) (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557)))) (-1262 |#1|) (-1262 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -826)) -((-2887 (*1 *2 *3 *4) (-12 (-5 *3 (-673 *4)) (-4 *4 (-355 *5 *6 *7)) (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2220 (-659 *4)))) (-5 *1 (-826 *5 *6 *7 *4))))) -((-4169 (((-2 (|:| -3682 |#3|) (|:| |rh| (-659 (-419 |#2|)))) |#4| (-659 (-419 |#2|))) 53 T ELT)) (-2889 (((-659 (-2 (|:| -4201 |#2|) (|:| -3642 |#2|))) |#4| |#2|) 62 T ELT) (((-659 (-2 (|:| -4201 |#2|) (|:| -3642 |#2|))) |#4|) 61 T ELT) (((-659 (-2 (|:| -4201 |#2|) (|:| -3642 |#2|))) |#3| |#2|) 20 T ELT) (((-659 (-2 (|:| -4201 |#2|) (|:| -3642 |#2|))) |#3|) 21 T ELT)) (-2890 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2888 ((|#2| |#3| (-659 (-419 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-419 |#2|)) 105 T ELT))) -(((-827 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2888 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -2888 (|#2| |#3| (-659 (-419 |#2|)))) (-15 -2889 ((-659 (-2 (|:| -4201 |#2|) (|:| -3642 |#2|))) |#3|)) (-15 -2889 ((-659 (-2 (|:| -4201 |#2|) (|:| -3642 |#2|))) |#3| |#2|)) (-15 -2890 (|#2| |#3| |#1|)) (-15 -2889 ((-659 (-2 (|:| -4201 |#2|) (|:| -3642 |#2|))) |#4|)) (-15 -2889 ((-659 (-2 (|:| -4201 |#2|) (|:| -3642 |#2|))) |#4| |#2|)) (-15 -2890 (|#2| |#4| |#1|)) (-15 -4169 ((-2 (|:| -3682 |#3|) (|:| |rh| (-659 (-419 |#2|)))) |#4| (-659 (-419 |#2|))))) (-13 (-376) (-149) (-1057 (-419 (-557)))) (-1262 |#1|) (-676 |#2|) (-676 (-419 |#2|))) (T -827)) -((-4169 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *6 (-1262 *5)) (-5 *2 (-2 (|:| -3682 *7) (|:| |rh| (-659 (-419 *6))))) (-5 *1 (-827 *5 *6 *7 *3)) (-5 *4 (-659 (-419 *6))) (-4 *7 (-676 *6)) (-4 *3 (-676 (-419 *6))))) (-2890 (*1 *2 *3 *4) (-12 (-4 *2 (-1262 *4)) (-5 *1 (-827 *4 *2 *5 *3)) (-4 *4 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *5 (-676 *2)) (-4 *3 (-676 (-419 *2))))) (-2889 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *4 (-1262 *5)) (-5 *2 (-659 (-2 (|:| -4201 *4) (|:| -3642 *4)))) (-5 *1 (-827 *5 *4 *6 *3)) (-4 *6 (-676 *4)) (-4 *3 (-676 (-419 *4))))) (-2889 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *5 (-1262 *4)) (-5 *2 (-659 (-2 (|:| -4201 *5) (|:| -3642 *5)))) (-5 *1 (-827 *4 *5 *6 *3)) (-4 *6 (-676 *5)) (-4 *3 (-676 (-419 *5))))) (-2890 (*1 *2 *3 *4) (-12 (-4 *2 (-1262 *4)) (-5 *1 (-827 *4 *2 *3 *5)) (-4 *4 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *3 (-676 *2)) (-4 *5 (-676 (-419 *2))))) (-2889 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *4 (-1262 *5)) (-5 *2 (-659 (-2 (|:| -4201 *4) (|:| -3642 *4)))) (-5 *1 (-827 *5 *4 *3 *6)) (-4 *3 (-676 *4)) (-4 *6 (-676 (-419 *4))))) (-2889 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *5 (-1262 *4)) (-5 *2 (-659 (-2 (|:| -4201 *5) (|:| -3642 *5)))) (-5 *1 (-827 *4 *5 *3 *6)) (-4 *3 (-676 *5)) (-4 *6 (-676 (-419 *5))))) (-2888 (*1 *2 *3 *4) (-12 (-5 *4 (-659 (-419 *2))) (-4 *2 (-1262 *5)) (-5 *1 (-827 *5 *2 *3 *6)) (-4 *5 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *3 (-676 *2)) (-4 *6 (-676 (-419 *2))))) (-2888 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1262 *5)) (-5 *1 (-827 *5 *2 *3 *6)) (-4 *5 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *3 (-676 *2)) (-4 *6 (-676 *4))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3572 (((-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) $) 13 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 15 T ELT) (($ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 12 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-828) (-13 (-1120) (-10 -8 (-15 -4374 ($ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3572 ((-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) $))))) (T -828)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-828)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-828))))) -((-2898 (((-659 (-2 (|:| |frac| (-419 |#2|)) (|:| -3682 |#3|))) |#3| (-1 (-659 |#2|) |#2| (-1190 |#2|)) (-1 (-417 |#2|) |#2|)) 156 T ELT)) (-2899 (((-659 (-2 (|:| |poly| |#2|) (|:| -3682 |#3|))) |#3| (-1 (-659 |#1|) |#2|)) 52 T ELT)) (-2892 (((-659 (-2 (|:| |deg| (-789)) (|:| -3682 |#2|))) |#3|) 123 T ELT)) (-2891 ((|#2| |#3|) 42 T ELT)) (-2893 (((-659 (-2 (|:| -4380 |#1|) (|:| -3682 |#3|))) |#3| (-1 (-659 |#1|) |#2|)) 100 T ELT)) (-2894 ((|#3| |#3| (-419 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) -(((-829 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2891 (|#2| |#3|)) (-15 -2892 ((-659 (-2 (|:| |deg| (-789)) (|:| -3682 |#2|))) |#3|)) (-15 -2893 ((-659 (-2 (|:| -4380 |#1|) (|:| -3682 |#3|))) |#3| (-1 (-659 |#1|) |#2|))) (-15 -2899 ((-659 (-2 (|:| |poly| |#2|) (|:| -3682 |#3|))) |#3| (-1 (-659 |#1|) |#2|))) (-15 -2898 ((-659 (-2 (|:| |frac| (-419 |#2|)) (|:| -3682 |#3|))) |#3| (-1 (-659 |#2|) |#2| (-1190 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2894 (|#3| |#3| |#2|)) (-15 -2894 (|#3| |#3| (-419 |#2|)))) (-13 (-376) (-149) (-1057 (-419 (-557)))) (-1262 |#1|) (-676 |#2|) (-676 (-419 |#2|))) (T -829)) -((-2894 (*1 *2 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *5 (-1262 *4)) (-5 *1 (-829 *4 *5 *2 *6)) (-4 *2 (-676 *5)) (-4 *6 (-676 *3)))) (-2894 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *3 (-1262 *4)) (-5 *1 (-829 *4 *3 *2 *5)) (-4 *2 (-676 *3)) (-4 *5 (-676 (-419 *3))))) (-2898 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-659 *7) *7 (-1190 *7))) (-5 *5 (-1 (-417 *7) *7)) (-4 *7 (-1262 *6)) (-4 *6 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-5 *2 (-659 (-2 (|:| |frac| (-419 *7)) (|:| -3682 *3)))) (-5 *1 (-829 *6 *7 *3 *8)) (-4 *3 (-676 *7)) (-4 *8 (-676 (-419 *7))))) (-2899 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-659 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *6 (-1262 *5)) (-5 *2 (-659 (-2 (|:| |poly| *6) (|:| -3682 *3)))) (-5 *1 (-829 *5 *6 *3 *7)) (-4 *3 (-676 *6)) (-4 *7 (-676 (-419 *6))))) (-2893 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-659 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *6 (-1262 *5)) (-5 *2 (-659 (-2 (|:| -4380 *5) (|:| -3682 *3)))) (-5 *1 (-829 *5 *6 *3 *7)) (-4 *3 (-676 *6)) (-4 *7 (-676 (-419 *6))))) (-2892 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *5 (-1262 *4)) (-5 *2 (-659 (-2 (|:| |deg| (-789)) (|:| -3682 *5)))) (-5 *1 (-829 *4 *5 *3 *6)) (-4 *3 (-676 *5)) (-4 *6 (-676 (-419 *5))))) (-2891 (*1 *2 *3) (-12 (-4 *2 (-1262 *4)) (-5 *1 (-829 *4 *2 *3 *5)) (-4 *4 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *3 (-676 *2)) (-4 *5 (-676 (-419 *2)))))) -((-2895 (((-2 (|:| -2220 (-659 (-419 |#2|))) (|:| -1781 (-707 |#1|))) (-674 |#2| (-419 |#2|)) (-659 (-419 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-419 |#2|) #1="failed")) (|:| -2220 (-659 (-419 |#2|)))) (-674 |#2| (-419 |#2|)) (-419 |#2|)) 145 T ELT) (((-2 (|:| -2220 (-659 (-419 |#2|))) (|:| -1781 (-707 |#1|))) (-673 (-419 |#2|)) (-659 (-419 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-419 |#2|) #1#)) (|:| -2220 (-659 (-419 |#2|)))) (-673 (-419 |#2|)) (-419 |#2|)) 138 T ELT)) (-2896 ((|#2| (-674 |#2| (-419 |#2|))) 86 T ELT) ((|#2| (-673 (-419 |#2|))) 89 T ELT))) -(((-830 |#1| |#2|) (-10 -7 (-15 -2895 ((-2 (|:| |particular| (-3 (-419 |#2|) #1="failed")) (|:| -2220 (-659 (-419 |#2|)))) (-673 (-419 |#2|)) (-419 |#2|))) (-15 -2895 ((-2 (|:| -2220 (-659 (-419 |#2|))) (|:| -1781 (-707 |#1|))) (-673 (-419 |#2|)) (-659 (-419 |#2|)))) (-15 -2895 ((-2 (|:| |particular| (-3 (-419 |#2|) #1#)) (|:| -2220 (-659 (-419 |#2|)))) (-674 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -2895 ((-2 (|:| -2220 (-659 (-419 |#2|))) (|:| -1781 (-707 |#1|))) (-674 |#2| (-419 |#2|)) (-659 (-419 |#2|)))) (-15 -2896 (|#2| (-673 (-419 |#2|)))) (-15 -2896 (|#2| (-674 |#2| (-419 |#2|))))) (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557)))) (-1262 |#1|)) (T -830)) -((-2896 (*1 *2 *3) (-12 (-5 *3 (-674 *2 (-419 *2))) (-4 *2 (-1262 *4)) (-5 *1 (-830 *4 *2)) (-4 *4 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))))) (-2896 (*1 *2 *3) (-12 (-5 *3 (-673 (-419 *2))) (-4 *2 (-1262 *4)) (-5 *1 (-830 *4 *2)) (-4 *4 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))))) (-2895 (*1 *2 *3 *4) (-12 (-5 *3 (-674 *6 (-419 *6))) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) (-5 *2 (-2 (|:| -2220 (-659 (-419 *6))) (|:| -1781 (-707 *5)))) (-5 *1 (-830 *5 *6)) (-5 *4 (-659 (-419 *6))))) (-2895 (*1 *2 *3 *4) (-12 (-5 *3 (-674 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2220 (-659 *4)))) (-5 *1 (-830 *5 *6)))) (-2895 (*1 *2 *3 *4) (-12 (-5 *3 (-673 (-419 *6))) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) (-5 *2 (-2 (|:| -2220 (-659 (-419 *6))) (|:| -1781 (-707 *5)))) (-5 *1 (-830 *5 *6)) (-5 *4 (-659 (-419 *6))))) (-2895 (*1 *2 *3 *4) (-12 (-5 *3 (-673 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2220 (-659 *4)))) (-5 *1 (-830 *5 *6))))) -((-2897 (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#1|))) |#5| |#4|) 49 T ELT))) -(((-831 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2897 ((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#1|))) |#5| |#4|))) (-376) (-676 |#1|) (-1262 |#1|) (-742 |#1| |#3|) (-676 |#4|)) (T -831)) -((-2897 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *7 (-1262 *5)) (-4 *4 (-742 *5 *7)) (-5 *2 (-2 (|:| -1781 (-707 *6)) (|:| |vec| (-1286 *5)))) (-5 *1 (-831 *5 *6 *7 *4 *3)) (-4 *6 (-676 *5)) (-4 *3 (-676 *4))))) -((-2898 (((-659 (-2 (|:| |frac| (-419 |#2|)) (|:| -3682 (-674 |#2| (-419 |#2|))))) (-674 |#2| (-419 |#2|)) (-1 (-417 |#2|) |#2|)) 47 T ELT)) (-2900 (((-659 (-419 |#2|)) (-674 |#2| (-419 |#2|)) (-1 (-417 |#2|) |#2|)) 167 (|has| |#1| (-27)) ELT) (((-659 (-419 |#2|)) (-674 |#2| (-419 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-659 (-419 |#2|)) (-673 (-419 |#2|)) (-1 (-417 |#2|) |#2|)) 168 (|has| |#1| (-27)) ELT) (((-659 (-419 |#2|)) (-673 (-419 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-659 (-419 |#2|)) (-674 |#2| (-419 |#2|)) (-1 (-659 |#1|) |#2|) (-1 (-417 |#2|) |#2|)) 38 T ELT) (((-659 (-419 |#2|)) (-674 |#2| (-419 |#2|)) (-1 (-659 |#1|) |#2|)) 39 T ELT) (((-659 (-419 |#2|)) (-673 (-419 |#2|)) (-1 (-659 |#1|) |#2|) (-1 (-417 |#2|) |#2|)) 36 T ELT) (((-659 (-419 |#2|)) (-673 (-419 |#2|)) (-1 (-659 |#1|) |#2|)) 37 T ELT)) (-2899 (((-659 (-2 (|:| |poly| |#2|) (|:| -3682 (-674 |#2| (-419 |#2|))))) (-674 |#2| (-419 |#2|)) (-1 (-659 |#1|) |#2|)) 96 T ELT))) -(((-832 |#1| |#2|) (-10 -7 (-15 -2900 ((-659 (-419 |#2|)) (-673 (-419 |#2|)) (-1 (-659 |#1|) |#2|))) (-15 -2900 ((-659 (-419 |#2|)) (-673 (-419 |#2|)) (-1 (-659 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -2900 ((-659 (-419 |#2|)) (-674 |#2| (-419 |#2|)) (-1 (-659 |#1|) |#2|))) (-15 -2900 ((-659 (-419 |#2|)) (-674 |#2| (-419 |#2|)) (-1 (-659 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -2898 ((-659 (-2 (|:| |frac| (-419 |#2|)) (|:| -3682 (-674 |#2| (-419 |#2|))))) (-674 |#2| (-419 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2899 ((-659 (-2 (|:| |poly| |#2|) (|:| -3682 (-674 |#2| (-419 |#2|))))) (-674 |#2| (-419 |#2|)) (-1 (-659 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2900 ((-659 (-419 |#2|)) (-673 (-419 |#2|)))) (-15 -2900 ((-659 (-419 |#2|)) (-673 (-419 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2900 ((-659 (-419 |#2|)) (-674 |#2| (-419 |#2|)))) (-15 -2900 ((-659 (-419 |#2|)) (-674 |#2| (-419 |#2|)) (-1 (-417 |#2|) |#2|)))) |%noBranch|)) (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557)))) (-1262 |#1|)) (T -832)) -((-2900 (*1 *2 *3 *4) (-12 (-5 *3 (-674 *6 (-419 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) (-5 *2 (-659 (-419 *6))) (-5 *1 (-832 *5 *6)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-674 *5 (-419 *5))) (-4 *5 (-1262 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) (-5 *2 (-659 (-419 *5))) (-5 *1 (-832 *4 *5)))) (-2900 (*1 *2 *3 *4) (-12 (-5 *3 (-673 (-419 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) (-5 *2 (-659 (-419 *6))) (-5 *1 (-832 *5 *6)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-673 (-419 *5))) (-4 *5 (-1262 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) (-5 *2 (-659 (-419 *5))) (-5 *1 (-832 *4 *5)))) (-2899 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-659 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) (-4 *6 (-1262 *5)) (-5 *2 (-659 (-2 (|:| |poly| *6) (|:| -3682 (-674 *6 (-419 *6)))))) (-5 *1 (-832 *5 *6)) (-5 *3 (-674 *6 (-419 *6))))) (-2898 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) (-5 *2 (-659 (-2 (|:| |frac| (-419 *6)) (|:| -3682 (-674 *6 (-419 *6)))))) (-5 *1 (-832 *5 *6)) (-5 *3 (-674 *6 (-419 *6))))) (-2900 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-674 *7 (-419 *7))) (-5 *4 (-1 (-659 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) (-4 *6 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) (-4 *7 (-1262 *6)) (-5 *2 (-659 (-419 *7))) (-5 *1 (-832 *6 *7)))) (-2900 (*1 *2 *3 *4) (-12 (-5 *3 (-674 *6 (-419 *6))) (-5 *4 (-1 (-659 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) (-4 *6 (-1262 *5)) (-5 *2 (-659 (-419 *6))) (-5 *1 (-832 *5 *6)))) (-2900 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-673 (-419 *7))) (-5 *4 (-1 (-659 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) (-4 *6 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) (-4 *7 (-1262 *6)) (-5 *2 (-659 (-419 *7))) (-5 *1 (-832 *6 *7)))) (-2900 (*1 *2 *3 *4) (-12 (-5 *3 (-673 (-419 *6))) (-5 *4 (-1 (-659 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) (-4 *6 (-1262 *5)) (-5 *2 (-659 (-419 *6))) (-5 *1 (-832 *5 *6))))) -((-2901 (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#1|))) (-707 |#2|) (-1286 |#1|)) 110 T ELT) (((-2 (|:| A (-707 |#1|)) (|:| |eqs| (-659 (-2 (|:| C (-707 |#1|)) (|:| |g| (-1286 |#1|)) (|:| -3682 |#2|) (|:| |rh| |#1|))))) (-707 |#1|) (-1286 |#1|)) 15 T ELT)) (-2902 (((-2 (|:| |particular| (-3 (-1286 |#1|) #1="failed")) (|:| -2220 (-659 (-1286 |#1|)))) (-707 |#2|) (-1286 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2220 (-659 |#1|))) |#2| |#1|)) 116 T ELT)) (-3999 (((-3 (-2 (|:| |particular| (-1286 |#1|)) (|:| -2220 (-707 |#1|))) #1#) (-707 |#1|) (-1286 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2220 (-659 |#1|))) #1#) |#2| |#1|)) 54 T ELT))) -(((-833 |#1| |#2|) (-10 -7 (-15 -2901 ((-2 (|:| A (-707 |#1|)) (|:| |eqs| (-659 (-2 (|:| C (-707 |#1|)) (|:| |g| (-1286 |#1|)) (|:| -3682 |#2|) (|:| |rh| |#1|))))) (-707 |#1|) (-1286 |#1|))) (-15 -2901 ((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#1|))) (-707 |#2|) (-1286 |#1|))) (-15 -3999 ((-3 (-2 (|:| |particular| (-1286 |#1|)) (|:| -2220 (-707 |#1|))) #1="failed") (-707 |#1|) (-1286 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2220 (-659 |#1|))) #1#) |#2| |#1|))) (-15 -2902 ((-2 (|:| |particular| (-3 (-1286 |#1|) #1#)) (|:| -2220 (-659 (-1286 |#1|)))) (-707 |#2|) (-1286 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2220 (-659 |#1|))) |#2| |#1|)))) (-376) (-676 |#1|)) (T -833)) -((-2902 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-707 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2220 (-659 *6))) *7 *6)) (-4 *6 (-376)) (-4 *7 (-676 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1286 *6) "failed")) (|:| -2220 (-659 (-1286 *6))))) (-5 *1 (-833 *6 *7)) (-5 *4 (-1286 *6)))) (-3999 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2220 (-659 *6))) "failed") *7 *6)) (-4 *6 (-376)) (-4 *7 (-676 *6)) (-5 *2 (-2 (|:| |particular| (-1286 *6)) (|:| -2220 (-707 *6)))) (-5 *1 (-833 *6 *7)) (-5 *3 (-707 *6)) (-5 *4 (-1286 *6)))) (-2901 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-676 *5)) (-5 *2 (-2 (|:| -1781 (-707 *6)) (|:| |vec| (-1286 *5)))) (-5 *1 (-833 *5 *6)) (-5 *3 (-707 *6)) (-5 *4 (-1286 *5)))) (-2901 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| A (-707 *5)) (|:| |eqs| (-659 (-2 (|:| C (-707 *5)) (|:| |g| (-1286 *5)) (|:| -3682 *6) (|:| |rh| *5)))))) (-5 *1 (-833 *5 *6)) (-5 *3 (-707 *5)) (-5 *4 (-1286 *5)) (-4 *6 (-676 *5))))) -((-2903 (((-707 |#1|) (-659 |#1|) (-789)) 14 T ELT) (((-707 |#1|) (-659 |#1|)) 15 T ELT)) (-2904 (((-3 (-1286 |#1|) #1="failed") |#2| |#1| (-659 |#1|)) 39 T ELT)) (-3758 (((-3 |#1| #1#) |#2| |#1| (-659 |#1|) (-1 |#1| |#1|)) 46 T ELT))) -(((-834 |#1| |#2|) (-10 -7 (-15 -2903 ((-707 |#1|) (-659 |#1|))) (-15 -2903 ((-707 |#1|) (-659 |#1|) (-789))) (-15 -2904 ((-3 (-1286 |#1|) #1="failed") |#2| |#1| (-659 |#1|))) (-15 -3758 ((-3 |#1| #1#) |#2| |#1| (-659 |#1|) (-1 |#1| |#1|)))) (-376) (-676 |#1|)) (T -834)) -((-3758 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-659 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-376)) (-5 *1 (-834 *2 *3)) (-4 *3 (-676 *2)))) (-2904 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-659 *4)) (-4 *4 (-376)) (-5 *2 (-1286 *4)) (-5 *1 (-834 *4 *3)) (-4 *3 (-676 *4)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *5)) (-5 *4 (-789)) (-4 *5 (-376)) (-5 *2 (-707 *5)) (-5 *1 (-834 *5 *6)) (-4 *6 (-676 *5)))) (-2903 (*1 *2 *3) (-12 (-5 *3 (-659 *4)) (-4 *4 (-376)) (-5 *2 (-707 *4)) (-5 *1 (-834 *4 *5)) (-4 *5 (-676 *4))))) -((-2965 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3604 (((-114) $) NIL (|has| |#2| (-23)) ELT)) (-4135 (($ (-936)) NIL (|has| |#2| (-1068)) ELT)) (-2411 (((-1292) $ (-557) (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-2871 (($ $ $) NIL (|has| |#2| (-813)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-133)) ELT)) (-3536 (((-789)) NIL (|has| |#2| (-381)) ELT)) (-4216 ((|#2| $ (-557) |#2|) NIL (|has| $ (-6 -4424)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) NIL (-12 (|has| |#2| (-1057 (-557))) (|has| |#2| (-1120))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (-12 (|has| |#2| (-1057 (-419 (-557)))) (|has| |#2| (-1120))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1120)) ELT)) (-3572 (((-557) $) NIL (-12 (|has| |#2| (-1057 (-557))) (|has| |#2| (-1120))) ELT) (((-419 (-557)) $) NIL (-12 (|has| |#2| (-1057 (-419 (-557)))) (|has| |#2| (-1120))) ELT) ((|#2| $) NIL (|has| |#2| (-1120)) ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (-12 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (-12 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 $) (-1286 $)) NIL (|has| |#2| (-1068)) ELT) (((-707 |#2|) (-707 $)) NIL (|has| |#2| (-1068)) ELT)) (-3885 (((-3 $ #1#) $) NIL (|has| |#2| (-1068)) ELT)) (-3393 (($) NIL (|has| |#2| (-381)) ELT)) (-1717 ((|#2| $ (-557) |#2|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#2| $ (-557)) NIL T ELT)) (-3602 (((-114) $) NIL (|has| |#2| (-813)) ELT)) (-3288 (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2639 (((-114) $) NIL (|has| |#2| (-1068)) ELT)) (-2413 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) NIL (|has| |#2| (-859)) ELT)) (-3005 (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-2414 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#2| (-859)) ELT)) (-2158 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2218 (((-936) $) NIL (|has| |#2| (-381)) ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (-12 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (-12 (|has| |#2| (-656 (-557))) (|has| |#2| (-1068))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL (|has| |#2| (-1068)) ELT) (((-707 |#2|) (-1286 $)) NIL (|has| |#2| (-1068)) ELT)) (-3658 (((-1178) $) NIL (|has| |#2| (-1120)) ELT)) (-2416 (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) (-557) $) NIL T ELT)) (-2629 (($ (-936)) NIL (|has| |#2| (-381)) ELT)) (-3659 (((-1139) $) NIL (|has| |#2| (-1120)) ELT)) (-4229 ((|#2| $) NIL (|has| (-557) (-859)) ELT)) (-2412 (($ $ |#2|) NIL (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-659 |#2|) (-659 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-2418 (((-659 |#2|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#2| $ (-557) |#2|) NIL T ELT) ((|#2| $ (-557)) NIL T ELT)) (-4264 ((|#2| $ $) NIL (|has| |#2| (-1068)) ELT)) (-1598 (($ (-1286 |#2|)) NIL T ELT)) (-4339 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-4186 (($ $ (-789)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1068))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1068))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1196)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068)) ELT) (($ $ (-1 |#2| |#2|) (-789)) NIL (|has| |#2| (-1068)) ELT)) (-2155 (((-789) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-4374 (((-1286 |#2|) $) NIL T ELT) (($ (-557)) NIL (-3955 (-12 (|has| |#2| (-1057 (-557))) (|has| |#2| (-1120))) (|has| |#2| (-1068))) ELT) (($ (-419 (-557))) NIL (-12 (|has| |#2| (-1057 (-419 (-557)))) (|has| |#2| (-1120))) ELT) (($ |#2|) NIL (|has| |#2| (-1120)) ELT) (((-875) $) NIL (|has| |#2| (-628 (-875))) ELT)) (-3526 (((-789)) NIL (|has| |#2| (-1068)) CONST)) (-1376 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3057 (($) NIL (|has| |#2| (-23)) CONST)) (-3063 (($) NIL (|has| |#2| (-1068)) CONST)) (-3068 (($ $ (-789)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1068))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1068))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1196)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068)) ELT) (($ $ (-1 |#2| |#2|) (-789)) NIL (|has| |#2| (-1068)) ELT)) (-2963 (((-114) $ $) NIL (|has| |#2| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#2| (-859)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3083 (((-114) $ $) NIL (|has| |#2| (-859)) ELT)) (-3084 (((-114) $ $) 11 (|has| |#2| (-859)) ELT)) (-4377 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4265 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-4267 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-789)) NIL (|has| |#2| (-1068)) ELT) (($ $ (-936)) NIL (|has| |#2| (-1068)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1068)) ELT) (($ $ |#2|) NIL (|has| |#2| (-744)) ELT) (($ |#2| $) NIL (|has| |#2| (-744)) ELT) (($ (-557) $) NIL (|has| |#2| (-21)) ELT) (($ (-789) $) NIL (|has| |#2| (-23)) ELT) (($ (-936) $) NIL (|has| |#2| (-25)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-835 |#1| |#2| |#3|) (-245 |#1| |#2|) (-789) (-813) (-1 (-114) (-1286 |#2|) (-1286 |#2|))) (T -835)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1618 (((-659 (-789)) $) NIL T ELT) (((-659 (-789)) $ (-1196)) NIL T ELT)) (-1652 (((-789) $) NIL T ELT) (((-789) $ (-1196)) NIL T ELT)) (-3482 (((-659 (-838 (-1196))) $) NIL T ELT)) (-3484 (((-1190 $) $ (-838 (-1196))) NIL T ELT) (((-1190 |#1|) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-3218 (((-789) $) NIL T ELT) (((-789) $ (-659 (-838 (-1196)))) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-4203 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-1614 (($ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 (-838 (-1196)) #1#) $) NIL T ELT) (((-3 (-1196) #1#) $) NIL T ELT) (((-3 (-1144 |#1| (-1196)) #1#) $) NIL T ELT)) (-3572 ((|#1| $) NIL T ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-838 (-1196)) $) NIL T ELT) (((-1196) $) NIL T ELT) (((-1144 |#1| (-1196)) $) NIL T ELT)) (-4184 (($ $ $ (-838 (-1196))) NIL (|has| |#1| (-175)) ELT)) (-4387 (($ $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) NIL T ELT) (((-707 |#1|) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3921 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ (-838 (-1196))) NIL (|has| |#1| (-464)) ELT)) (-3217 (((-659 $) $) NIL T ELT)) (-4151 (((-114) $) NIL (|has| |#1| (-927)) ELT)) (-1802 (($ $ |#1| (-542 (-838 (-1196))) $) NIL T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (-12 (|has| (-838 (-1196)) (-899 (-391))) (|has| |#1| (-899 (-391)))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (-12 (|has| (-838 (-1196)) (-899 (-557))) (|has| |#1| (-899 (-557)))) ELT)) (-4200 (((-789) $ (-1196)) NIL T ELT) (((-789) $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-2647 (((-789) $) NIL T ELT)) (-3485 (($ (-1190 |#1|) (-838 (-1196))) NIL T ELT) (($ (-1190 $) (-838 (-1196))) NIL T ELT)) (-3220 (((-659 $) $) NIL T ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-542 (-838 (-1196)))) NIL T ELT) (($ $ (-838 (-1196)) (-789)) NIL T ELT) (($ $ (-659 (-838 (-1196))) (-659 (-789))) NIL T ELT)) (-4191 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $ (-838 (-1196))) NIL T ELT)) (-3219 (((-542 (-838 (-1196))) $) NIL T ELT) (((-789) $ (-838 (-1196))) NIL T ELT) (((-659 (-789)) $ (-659 (-838 (-1196)))) NIL T ELT)) (-1803 (($ (-1 (-542 (-838 (-1196))) (-542 (-838 (-1196)))) $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1653 (((-1 $ (-789)) (-1196)) NIL T ELT) (((-1 $ (-789)) $) NIL (|has| |#1| (-240)) ELT)) (-3483 (((-3 (-838 (-1196)) #1#) $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL T ELT) (((-707 |#1|) (-1286 $)) NIL T ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-1616 (((-838 (-1196)) $) NIL T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1617 (((-114) $) NIL T ELT)) (-3222 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3221 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-2 (|:| |var| (-838 (-1196))) (|:| -2630 (-789))) #1#) $) NIL T ELT)) (-1615 (($ $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2003 (((-114) $) NIL T ELT)) (-2002 ((|#1| $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-464)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-4160 (((-417 $) $) NIL (|has| |#1| (-927)) ELT)) (-3884 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-568)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-568)) ELT)) (-4196 (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ (-838 (-1196)) |#1|) NIL T ELT) (($ $ (-659 (-838 (-1196))) (-659 |#1|)) NIL T ELT) (($ $ (-838 (-1196)) $) NIL T ELT) (($ $ (-659 (-838 (-1196))) (-659 $)) NIL T ELT) (($ $ (-1196) $) NIL (|has| |#1| (-240)) ELT) (($ $ (-659 (-1196)) (-659 $)) NIL (|has| |#1| (-240)) ELT) (($ $ (-1196) |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-659 (-1196)) (-659 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-4185 (($ $ (-838 (-1196))) NIL (|has| |#1| (-175)) ELT)) (-4186 (($ $ (-659 (-838 (-1196))) (-659 (-789))) NIL T ELT) (($ $ (-838 (-1196)) (-789)) NIL T ELT) (($ $ (-659 (-838 (-1196)))) NIL T ELT) (($ $ (-838 (-1196))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-789)) NIL (|has| |#1| (-239)) ELT)) (-1619 (((-659 (-1196)) $) NIL T ELT)) (-4376 (((-542 (-838 (-1196))) $) NIL T ELT) (((-789) $ (-838 (-1196))) NIL T ELT) (((-659 (-789)) $ (-659 (-838 (-1196)))) NIL T ELT) (((-789) $ (-1196)) NIL T ELT)) (-4400 (((-903 (-391)) $) NIL (-12 (|has| (-838 (-1196)) (-629 (-903 (-391)))) (|has| |#1| (-629 (-903 (-391))))) ELT) (((-903 (-557)) $) NIL (-12 (|has| (-838 (-1196)) (-629 (-903 (-557)))) (|has| |#1| (-629 (-903 (-557))))) ELT) (((-546) $) NIL (-12 (|has| (-838 (-1196)) (-629 (-546))) (|has| |#1| (-629 (-546)))) ELT)) (-3216 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ (-838 (-1196))) NIL (|has| |#1| (-464)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-927))) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-838 (-1196))) NIL T ELT) (($ (-1196)) NIL T ELT) (($ (-1144 |#1| (-1196))) NIL T ELT) (($ (-419 (-557))) NIL (-3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) ELT) (($ $) NIL (|has| |#1| (-568)) ELT)) (-4245 (((-659 |#1|) $) NIL T ELT)) (-4105 ((|#1| $ (-542 (-838 (-1196)))) NIL T ELT) (($ $ (-838 (-1196)) (-789)) NIL T ELT) (($ $ (-659 (-838 (-1196))) (-659 (-789))) NIL T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| |#1| (-927))) (|has| |#1| (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-1801 (($ $ $ (-789)) NIL (|has| |#1| (-175)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $ (-659 (-838 (-1196))) (-659 (-789))) NIL T ELT) (($ $ (-838 (-1196)) (-789)) NIL T ELT) (($ $ (-659 (-838 (-1196)))) NIL T ELT) (($ $ (-838 (-1196))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-789)) NIL (|has| |#1| (-239)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-836 |#1|) (-13 (-262 |#1| (-1196) (-838 (-1196)) (-542 (-838 (-1196)))) (-1057 (-1144 |#1| (-1196)))) (-1068)) (T -836)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#2| (-376)) ELT)) (-2271 (($ $) NIL (|has| |#2| (-376)) ELT)) (-2269 (((-114) $) NIL (|has| |#2| (-376)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL (|has| |#2| (-376)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#2| (-376)) ELT)) (-1786 (((-114) $ $) NIL (|has| |#2| (-376)) ELT)) (-4152 (($) NIL T CONST)) (-2961 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-2960 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL (|has| |#2| (-376)) ELT)) (-4151 (((-114) $) NIL (|has| |#2| (-376)) ELT)) (-2639 (((-114) $) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL (|has| |#2| (-376)) ELT)) (-2100 (($ (-659 $)) NIL (|has| |#2| (-376)) ELT) (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) 20 (|has| |#2| (-376)) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#2| (-376)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#2| (-376)) ELT) (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-4160 (((-417 $) $) NIL (|has| |#2| (-376)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3884 (((-3 $ #1#) $ $) NIL (|has| |#2| (-376)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL (|has| |#2| (-376)) ELT)) (-1785 (((-789) $) NIL (|has| |#2| (-376)) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-4186 (($ $) 13 T ELT) (($ $ (-789)) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-419 (-557))) NIL (|has| |#2| (-376)) ELT) (($ $) NIL (|has| |#2| (-376)) ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL (|has| |#2| (-376)) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ $) 15 (|has| |#2| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-789)) NIL T ELT) (($ $ (-936)) NIL T ELT) (($ $ (-557)) 18 (|has| |#2| (-376)) ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-419 (-557)) $) NIL (|has| |#2| (-376)) ELT) (($ $ (-419 (-557))) NIL (|has| |#2| (-376)) ELT))) -(((-837 |#1| |#2| |#3|) (-13 (-111 $ $) (-240) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-376)) (-6 (-376)) |%noBranch|))) (-1120) (-915 |#1|) |#1|) (T -837)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-1652 (((-789) $) NIL T ELT)) (-4259 ((|#1| $) 10 T ELT)) (-3573 (((-3 |#1| "failed") $) NIL T ELT)) (-3572 ((|#1| $) NIL T ELT)) (-4200 (((-789) $) 11 T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-1653 (($ |#1| (-789)) 9 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4186 (($ $ (-789)) NIL T ELT) (($ $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3068 (($ $ (-789)) NIL T ELT) (($ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT))) -(((-838 |#1|) (-277 |#1|) (-859)) (T -838)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-4362 (((-659 |#1|) $) 38 T ELT)) (-3536 (((-789) $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-4367 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 28 T ELT)) (-3573 (((-3 |#1| #1#) $) NIL T ELT)) (-3572 ((|#1| $) NIL T ELT)) (-4227 (($ $) 42 T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-1951 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-2510 ((|#1| $ (-557)) NIL T ELT)) (-2511 (((-789) $ (-557)) NIL T ELT)) (-4364 (($ $) 54 T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-2502 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2503 (($ (-1 (-789) (-789)) $) NIL T ELT)) (-4368 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 25 T ELT)) (-2905 (((-114) $ $) 51 T ELT)) (-4261 (((-789) $) 34 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1952 (($ $ $) NIL T ELT)) (-1953 (($ $ $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4229 ((|#1| $) 41 T ELT)) (-1985 (((-659 (-2 (|:| |gen| |#1|) (|:| -4371 (-789)))) $) NIL T ELT)) (-3278 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2962 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3063 (($) 7 T CONST)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 53 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ |#1| (-789)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-839 |#1|) (-13 (-399 |#1|) (-857) (-10 -8 (-15 -4229 (|#1| $)) (-15 -4227 ($ $)) (-15 -4364 ($ $)) (-15 -2905 ((-114) $ $)) (-15 -4368 ((-3 $ #1="failed") $ |#1|)) (-15 -4367 ((-3 $ #1#) $ |#1|)) (-15 -2962 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -4261 ((-789) $)) (-15 -4362 ((-659 |#1|) $)))) (-859)) (T -839)) -((-4229 (*1 *2 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-859)))) (-4227 (*1 *1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-859)))) (-4364 (*1 *1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-859)))) (-2905 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-839 *3)) (-4 *3 (-859)))) (-4368 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-839 *2)) (-4 *2 (-859)))) (-4367 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-839 *2)) (-4 *2 (-859)))) (-2962 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-839 *3)) (|:| |rm| (-839 *3)))) (-5 *1 (-839 *3)) (-4 *3 (-859)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-839 *3)) (-4 *3 (-859)))) (-4362 (*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-839 *3)) (-4 *3 (-859))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 52 T ELT)) (-2271 (($ $) 51 T ELT)) (-2269 (((-114) $) 49 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4051 (((-557) $) 65 T ELT)) (-4152 (($) 22 T CONST)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-3602 (((-114) $) 63 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3603 (((-114) $) 64 T ELT)) (-2928 (($ $ $) 57 T ELT)) (-3256 (($ $ $) 58 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3884 (((-3 $ "failed") $ $) 53 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 54 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 50 T ELT)) (-3801 (($ $) 66 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-2963 (((-114) $ $) 59 T ELT)) (-2964 (((-114) $ $) 61 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 60 T ELT)) (-3084 (((-114) $ $) 62 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-840) (-142)) (T -840)) -NIL -(-13 (-568) (-858)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-631 (-557)) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-175) . T) ((-302) . T) ((-568) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 $) . T) ((-658 $) . T) ((-735 $) . T) ((-744) . T) ((-810) . T) ((-812) . T) ((-814) . T) ((-817) . T) ((-858) . T) ((-859) . T) ((-862) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-4387 (($ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-2906 ((|#1| $) 10 T ELT)) (-2907 (($ |#1|) 9 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3292 (($ |#2| (-789)) NIL T ELT)) (-3219 (((-789) $) NIL T ELT)) (-3590 ((|#2| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4186 (($ $) NIL (|has| |#1| (-240)) ELT) (($ $ (-789)) NIL (|has| |#1| (-240)) ELT)) (-4376 (((-789) $) NIL T ELT)) (-4374 (((-875) $) 17 T ELT) (($ (-557)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-175)) ELT)) (-4105 ((|#2| $ (-789)) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $) NIL (|has| |#1| (-240)) ELT) (($ $ (-789)) NIL (|has| |#1| (-240)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-841 |#1| |#2|) (-13 (-726 |#2|) (-10 -8 (IF (|has| |#1| (-240)) (-6 (-240)) |%noBranch|) (-15 -2907 ($ |#1|)) (-15 -2906 (|#1| $)))) (-726 |#2|) (-1068)) (T -841)) -((-2907 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-841 *2 *3)) (-4 *2 (-726 *3)))) (-2906 (*1 *2 *1) (-12 (-4 *2 (-726 *3)) (-5 *1 (-841 *2 *3)) (-4 *3 (-1068))))) -((-2965 (((-114) $ $) 19 T ELT)) (-3650 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3652 (($ $ $) 77 T ELT)) (-3651 (((-114) $ $) 78 T ELT)) (-3655 (($ (-659 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1711 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4423)) ELT)) (-4152 (($) 7 T CONST)) (-2592 (($ $) 66 T ELT)) (-1465 (($ $) 62 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3823 (($ |#1| $) 51 (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4423)) ELT)) (-3824 (($ |#1| $) 61 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4423)) ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-3657 (((-114) $ $) 69 T ELT)) (-2928 ((|#1| $) 83 T ELT)) (-3255 (($ $ $) 86 T ELT)) (-3936 (($ $ $) 85 T ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3256 ((|#1| $) 84 T ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3658 (((-1178) $) 22 T ELT)) (-3654 (($ $ $) 74 T ELT)) (-1387 ((|#1| $) 43 T ELT)) (-4035 (($ |#1| $) 44 T ELT) (($ |#1| $ (-789)) 67 T ELT)) (-3659 (((-1139) $) 21 T ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1388 ((|#1| $) 45 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-2591 (((-659 (-2 (|:| -2284 |#1|) (|:| -2155 (-789)))) $) 65 T ELT)) (-3653 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1596 (($) 53 T ELT) (($ (-659 |#1|)) 52 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4400 (((-546) $) 63 (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 54 T ELT)) (-4374 (((-875) $) 17 T ELT)) (-3656 (($ (-659 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1376 (((-114) $ $) 20 T ELT)) (-1389 (($ (-659 |#1|)) 46 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 T ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-842 |#1|) (-142) (-859)) (T -842)) -((-2928 (*1 *2 *1) (-12 (-4 *1 (-842 *2)) (-4 *2 (-859))))) -(-13 (-755 |t#1|) (-987 |t#1|) (-10 -8 (-15 -2928 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-628 (-875)) . T) ((-153 |#1|) . T) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-713 |#1|) . T) ((-755 |#1|) . T) ((-987 |#1|) . T) ((-1118 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL (|has| |#1| (-21)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-4051 (((-557) $) NIL (|has| |#1| (-858)) ELT)) (-4152 (($) NIL (|has| |#1| (-21)) CONST)) (-3573 (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3572 (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) ((|#1| $) 9 T ELT)) (-3885 (((-3 $ #1#) $) 42 (|has| |#1| (-858)) ELT)) (-3423 (((-3 (-419 (-557)) #1#) $) 52 (|has| |#1| (-556)) ELT)) (-3422 (((-114) $) 46 (|has| |#1| (-556)) ELT)) (-3421 (((-419 (-557)) $) 49 (|has| |#1| (-556)) ELT)) (-3602 (((-114) $) NIL (|has| |#1| (-858)) ELT)) (-2639 (((-114) $) NIL (|has| |#1| (-858)) ELT)) (-3603 (((-114) $) NIL (|has| |#1| (-858)) ELT)) (-2928 (($ $ $) NIL (|has| |#1| (-858)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-858)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2908 (($) 13 T ELT)) (-2921 (((-114) $) 12 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2922 (((-114) $) 11 T ELT)) (-4374 (((-875) $) 18 T ELT) (($ (-419 (-557))) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (($ |#1|) 8 T ELT) (($ (-557)) NIL (-3955 (|has| |#1| (-858)) (|has| |#1| (-1057 (-557)))) ELT)) (-3526 (((-789)) 36 (|has| |#1| (-858)) CONST)) (-1376 (((-114) $ $) 54 T ELT)) (-3801 (($ $) NIL (|has| |#1| (-858)) ELT)) (-3057 (($) 23 (|has| |#1| (-21)) CONST)) (-3063 (($) 33 (|has| |#1| (-858)) CONST)) (-2963 (((-114) $ $) NIL (|has| |#1| (-858)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-858)) ELT)) (-3452 (((-114) $ $) 21 T ELT)) (-3083 (((-114) $ $) NIL (|has| |#1| (-858)) ELT)) (-3084 (((-114) $ $) 45 (|has| |#1| (-858)) ELT)) (-4265 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-4267 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-936)) NIL (|has| |#1| (-858)) ELT) (($ $ (-789)) NIL (|has| |#1| (-858)) ELT)) (* (($ $ $) 39 (|has| |#1| (-858)) ELT) (($ (-557) $) 27 (|has| |#1| (-21)) ELT) (($ (-789) $) NIL (|has| |#1| (-21)) ELT) (($ (-936) $) NIL (|has| |#1| (-21)) ELT))) -(((-843 |#1|) (-13 (-1120) (-424 |#1|) (-10 -8 (-15 -2908 ($)) (-15 -2922 ((-114) $)) (-15 -2921 ((-114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -3422 ((-114) $)) (-15 -3421 ((-419 (-557)) $)) (-15 -3423 ((-3 (-419 (-557)) "failed") $))) |%noBranch|))) (-1120)) (T -843)) -((-2908 (*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1120)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-843 *3)) (-4 *3 (-1120)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-843 *3)) (-4 *3 (-1120)))) (-3422 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-843 *3)) (-4 *3 (-556)) (-4 *3 (-1120)))) (-3421 (*1 *2 *1) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-843 *3)) (-4 *3 (-556)) (-4 *3 (-1120)))) (-3423 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-557))) (-5 *1 (-843 *3)) (-4 *3 (-556)) (-4 *3 (-1120))))) -((-4386 (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|)) 12 T ELT) (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|)) 13 T ELT))) -(((-844 |#1| |#2|) (-10 -7 (-15 -4386 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|))) (-15 -4386 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|)))) (-1120) (-1120)) (T -844)) -((-4386 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-843 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *1 (-844 *5 *6)))) (-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-843 *6)) (-5 *1 (-844 *5 *6))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-115) #1#) $) NIL T ELT)) (-3572 ((|#1| $) NIL T ELT) (((-115) $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-2910 ((|#1| (-115) |#1|) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-2909 (($ |#1| (-374 (-115))) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2911 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2912 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-4228 ((|#1| $ |#1|) NIL T ELT)) (-2913 ((|#1| |#1|) NIL (|has| |#1| (-175)) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-115)) NIL T ELT)) (-3101 (((-709 $) $) NIL (|has| |#1| (-147)) ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2914 (($ $) NIL (|has| |#1| (-175)) ELT) (($ $ $) NIL (|has| |#1| (-175)) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ (-115) (-557)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) -(((-845 |#1|) (-13 (-1068) (-1057 |#1|) (-1057 (-115)) (-298 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -2914 ($ $)) (-15 -2914 ($ $ $)) (-15 -2913 (|#1| |#1|))) |%noBranch|) (-15 -2912 ($ $ (-1 |#1| |#1|))) (-15 -2911 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-557))) (-15 ** ($ $ (-557))) (-15 -2910 (|#1| (-115) |#1|)) (-15 -2909 ($ |#1| (-374 (-115)))))) (-1068)) (T -845)) -((-2914 (*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-175)) (-4 *2 (-1068)))) (-2914 (*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-175)) (-4 *2 (-1068)))) (-2913 (*1 *2 *2) (-12 (-5 *1 (-845 *2)) (-4 *2 (-175)) (-4 *2 (-1068)))) (-2912 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-845 *3)))) (-2911 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-845 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-557)) (-5 *1 (-845 *4)) (-4 *4 (-1068)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-845 *3)) (-4 *3 (-1068)))) (-2910 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-845 *2)) (-4 *2 (-1068)))) (-2909 (*1 *1 *2 *3) (-12 (-5 *3 (-374 (-115))) (-5 *1 (-845 *2)) (-4 *2 (-1068))))) -((-3030 (((-114) $ |#2|) 14 T ELT)) (-4374 (((-875) $) 11 T ELT))) -(((-846 |#1| |#2|) (-10 -7 (-15 -3030 ((-114) |#1| |#2|)) (-15 -4374 ((-875) |#1|))) (-847 |#2|) (-1120)) (T -846)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3968 ((|#1| $) 19 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3030 (((-114) $ |#1|) 17 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2915 (((-55) $) 18 T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-847 |#1|) (-142) (-1120)) (T -847)) -((-3968 (*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1120)))) (-2915 (*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1120)) (-5 *2 (-55)))) (-3030 (*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1120)) (-5 *2 (-114))))) -(-13 (-1120) (-10 -8 (-15 -3968 (|t#1| $)) (-15 -2915 ((-55) $)) (-15 -3030 ((-114) $ |t#1|)))) -(((-102) . T) ((-628 (-875)) . T) ((-1120) . T) ((-1236) . T)) -((-2916 (((-217 (-514)) (-1178)) 9 T ELT))) -(((-848) (-10 -7 (-15 -2916 ((-217 (-514)) (-1178))))) (T -848)) -((-2916 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-217 (-514))) (-5 *1 (-848))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3735 (((-1134) $) 10 T ELT)) (-3968 (((-518) $) 9 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3030 (((-114) $ (-518)) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3948 (($ (-518) (-1134)) 8 T ELT)) (-4374 (((-875) $) 25 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2915 (((-55) $) 20 T ELT)) (-3452 (((-114) $ $) 12 T ELT))) -(((-849) (-13 (-847 (-518)) (-10 -8 (-15 -3735 ((-1134) $)) (-15 -3948 ($ (-518) (-1134)))))) (T -849)) -((-3735 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-849)))) (-3948 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1134)) (-5 *1 (-849))))) -((-2965 (((-114) $ $) 7 T ELT)) (-2917 (((-1054) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) 18 T ELT) (((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) 17 T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) 20 T ELT) (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) 19 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-850) (-142)) (T -850)) -((-3067 (*1 *2 *3 *4) (-12 (-4 *1 (-850)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) (-5 *2 (-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)))))) (-3067 (*1 *2 *3 *4) (-12 (-4 *1 (-850)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) (-5 *2 (-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)))))) (-2917 (*1 *2 *3) (-12 (-4 *1 (-850)) (-5 *3 (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) (-5 *2 (-1054)))) (-2917 (*1 *2 *3) (-12 (-4 *1 (-850)) (-5 *3 (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) (-5 *2 (-1054))))) -(-13 (-1120) (-10 -7 (-15 -3067 ((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229))))))) (-15 -3067 ((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229)))))) (-15 -2917 ((-1054) (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229)))))) (-15 -2917 ((-1054) (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229))))))))) -(((-102) . T) ((-628 (-875)) . T) ((-1120) . T) ((-1236) . T)) -((-2918 (((-1054) (-659 (-326 (-391))) (-659 (-391))) 164 T ELT) (((-1054) (-326 (-391)) (-659 (-391))) 162 T ELT) (((-1054) (-326 (-391)) (-659 (-391)) (-659 (-853 (-391))) (-659 (-853 (-391)))) 160 T ELT) (((-1054) (-326 (-391)) (-659 (-391)) (-659 (-853 (-391))) (-659 (-326 (-391))) (-659 (-853 (-391)))) 158 T ELT) (((-1054) (-852)) 125 T ELT) (((-1054) (-852) (-1082)) 124 T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178)))) (-852) (-1082)) 85 T ELT) (((-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178)))) (-852)) 87 T ELT)) (-2919 (((-1054) (-659 (-326 (-391))) (-659 (-391))) 165 T ELT) (((-1054) (-852)) 148 T ELT))) -(((-851) (-10 -7 (-15 -3067 ((-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178)))) (-852))) (-15 -3067 ((-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178)))) (-852) (-1082))) (-15 -2918 ((-1054) (-852) (-1082))) (-15 -2918 ((-1054) (-852))) (-15 -2919 ((-1054) (-852))) (-15 -2918 ((-1054) (-326 (-391)) (-659 (-391)) (-659 (-853 (-391))) (-659 (-326 (-391))) (-659 (-853 (-391))))) (-15 -2918 ((-1054) (-326 (-391)) (-659 (-391)) (-659 (-853 (-391))) (-659 (-853 (-391))))) (-15 -2918 ((-1054) (-326 (-391)) (-659 (-391)))) (-15 -2918 ((-1054) (-659 (-326 (-391))) (-659 (-391)))) (-15 -2919 ((-1054) (-659 (-326 (-391))) (-659 (-391)))))) (T -851)) -((-2919 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-326 (-391)))) (-5 *4 (-659 (-391))) (-5 *2 (-1054)) (-5 *1 (-851)))) (-2918 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-326 (-391)))) (-5 *4 (-659 (-391))) (-5 *2 (-1054)) (-5 *1 (-851)))) (-2918 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-659 (-391))) (-5 *2 (-1054)) (-5 *1 (-851)))) (-2918 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-659 (-391))) (-5 *5 (-659 (-853 (-391)))) (-5 *2 (-1054)) (-5 *1 (-851)))) (-2918 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-659 (-391))) (-5 *5 (-659 (-853 (-391)))) (-5 *6 (-659 (-326 (-391)))) (-5 *3 (-326 (-391))) (-5 *2 (-1054)) (-5 *1 (-851)))) (-2919 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1054)) (-5 *1 (-851)))) (-2918 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1054)) (-5 *1 (-851)))) (-2918 (*1 *2 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-851)))) (-3067 (*1 *2 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1082)) (-5 *2 (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178))))) (-5 *1 (-851)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178))))) (-5 *1 (-851))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3572 (((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229)))))) $) 21 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 20 T ELT) (($ (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) 14 T ELT) (($ (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) 16 T ELT) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))))) 18 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-852) (-13 (-1120) (-10 -8 (-15 -4374 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229))))))) (-15 -4374 ($ (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229)))))) (-15 -4374 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229)))))))) (-15 -3572 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229)))))) $))))) (T -852)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) (-5 *1 (-852)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) (-5 *1 (-852)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))))) (-5 *1 (-852)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) (|:| |ub| (-659 (-853 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))))) (-5 *1 (-852))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL (|has| |#1| (-21)) ELT)) (-2920 (((-1139) $) 31 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-4051 (((-557) $) NIL (|has| |#1| (-858)) ELT)) (-4152 (($) NIL (|has| |#1| (-21)) CONST)) (-3573 (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3572 (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) ((|#1| $) 9 T ELT)) (-3885 (((-3 $ #1#) $) 57 (|has| |#1| (-858)) ELT)) (-3423 (((-3 (-419 (-557)) #1#) $) 65 (|has| |#1| (-556)) ELT)) (-3422 (((-114) $) 60 (|has| |#1| (-556)) ELT)) (-3421 (((-419 (-557)) $) 63 (|has| |#1| (-556)) ELT)) (-3602 (((-114) $) NIL (|has| |#1| (-858)) ELT)) (-2924 (($) 14 T ELT)) (-2639 (((-114) $) NIL (|has| |#1| (-858)) ELT)) (-3603 (((-114) $) NIL (|has| |#1| (-858)) ELT)) (-2923 (($) 16 T ELT)) (-2928 (($ $ $) NIL (|has| |#1| (-858)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-858)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2921 (((-114) $) 12 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2922 (((-114) $) 11 T ELT)) (-4374 (((-875) $) 24 T ELT) (($ (-419 (-557))) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (($ |#1|) 8 T ELT) (($ (-557)) NIL (-3955 (|has| |#1| (-858)) (|has| |#1| (-1057 (-557)))) ELT)) (-3526 (((-789)) 50 (|has| |#1| (-858)) CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3801 (($ $) NIL (|has| |#1| (-858)) ELT)) (-3057 (($) 37 (|has| |#1| (-21)) CONST)) (-3063 (($) 47 (|has| |#1| (-858)) CONST)) (-2963 (((-114) $ $) NIL (|has| |#1| (-858)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-858)) ELT)) (-3452 (((-114) $ $) 35 T ELT)) (-3083 (((-114) $ $) NIL (|has| |#1| (-858)) ELT)) (-3084 (((-114) $ $) 59 (|has| |#1| (-858)) ELT)) (-4265 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-4267 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-936)) NIL (|has| |#1| (-858)) ELT) (($ $ (-789)) NIL (|has| |#1| (-858)) ELT)) (* (($ $ $) 54 (|has| |#1| (-858)) ELT) (($ (-557) $) 41 (|has| |#1| (-21)) ELT) (($ (-789) $) NIL (|has| |#1| (-21)) ELT) (($ (-936) $) NIL (|has| |#1| (-21)) ELT))) -(((-853 |#1|) (-13 (-1120) (-424 |#1|) (-10 -8 (-15 -2924 ($)) (-15 -2923 ($)) (-15 -2922 ((-114) $)) (-15 -2921 ((-114) $)) (-15 -2920 ((-1139) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -3422 ((-114) $)) (-15 -3421 ((-419 (-557)) $)) (-15 -3423 ((-3 (-419 (-557)) "failed") $))) |%noBranch|))) (-1120)) (T -853)) -((-2924 (*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1120)))) (-2923 (*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1120)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-853 *3)) (-4 *3 (-1120)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-853 *3)) (-4 *3 (-1120)))) (-2920 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-853 *3)) (-4 *3 (-1120)))) (-3422 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-853 *3)) (-4 *3 (-556)) (-4 *3 (-1120)))) (-3421 (*1 *2 *1) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-853 *3)) (-4 *3 (-556)) (-4 *3 (-1120)))) (-3423 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-557))) (-5 *1 (-853 *3)) (-4 *3 (-556)) (-4 *3 (-1120))))) -((-4386 (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|) (-853 |#2|) (-853 |#2|)) 13 T ELT) (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)) 14 T ELT))) -(((-854 |#1| |#2|) (-10 -7 (-15 -4386 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|))) (-15 -4386 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|) (-853 |#2|) (-853 |#2|)))) (-1120) (-1120)) (T -854)) -((-4386 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-853 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *1 (-854 *5 *6)))) (-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-853 *6)) (-5 *1 (-854 *5 *6))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3536 (((-789)) 27 T ELT)) (-3393 (($) 30 T ELT)) (-2928 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-3256 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2218 (((-936) $) 29 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2629 (($ (-936)) 28 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2963 (((-114) $ $) 21 T ELT)) (-2964 (((-114) $ $) 19 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 20 T ELT)) (-3084 (((-114) $ $) 18 T ELT))) -(((-855) (-142)) (T -855)) -((-2928 (*1 *1) (-4 *1 (-855))) (-3256 (*1 *1) (-4 *1 (-855)))) -(-13 (-859) (-381) (-10 -8 (-15 -2928 ($) -4380) (-15 -3256 ($) -4380))) -(((-102) . T) ((-628 (-875)) . T) ((-381) . T) ((-859) . T) ((-862) . T) ((-1120) . T) ((-1236) . T)) -((-2926 (((-114) (-1286 |#2|) (-1286 |#2|)) 19 T ELT)) (-2927 (((-114) (-1286 |#2|) (-1286 |#2|)) 20 T ELT)) (-2925 (((-114) (-1286 |#2|) (-1286 |#2|)) 16 T ELT))) -(((-856 |#1| |#2|) (-10 -7 (-15 -2925 ((-114) (-1286 |#2|) (-1286 |#2|))) (-15 -2926 ((-114) (-1286 |#2|) (-1286 |#2|))) (-15 -2927 ((-114) (-1286 |#2|) (-1286 |#2|)))) (-789) (-812)) (T -856)) -((-2927 (*1 *2 *3 *3) (-12 (-5 *3 (-1286 *5)) (-4 *5 (-812)) (-5 *2 (-114)) (-5 *1 (-856 *4 *5)) (-14 *4 (-789)))) (-2926 (*1 *2 *3 *3) (-12 (-5 *3 (-1286 *5)) (-4 *5 (-812)) (-5 *2 (-114)) (-5 *1 (-856 *4 *5)) (-14 *4 (-789)))) (-2925 (*1 *2 *3 *3) (-12 (-5 *3 (-1286 *5)) (-4 *5 (-812)) (-5 *2 (-114)) (-5 *1 (-856 *4 *5)) (-14 *4 (-789))))) -((-2965 (((-114) $ $) 7 T ELT)) (-4152 (($) 29 T CONST)) (-3885 (((-3 $ "failed") $) 32 T ELT)) (-2639 (((-114) $) 30 T ELT)) (-2928 (($ $ $) 23 T ELT)) (-3256 (($ $ $) 22 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3063 (($) 28 T CONST)) (-2963 (((-114) $ $) 21 T ELT)) (-2964 (((-114) $ $) 19 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 20 T ELT)) (-3084 (((-114) $ $) 18 T ELT)) (** (($ $ (-936)) 26 T ELT) (($ $ (-789)) 31 T ELT)) (* (($ $ $) 25 T ELT))) -(((-857) (-142)) (T -857)) -NIL -(-13 (-869) (-744)) -(((-102) . T) ((-628 (-875)) . T) ((-744) . T) ((-869) . T) ((-859) . T) ((-862) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 31 T ELT)) (-1424 (((-3 $ "failed") $ $) 34 T ELT)) (-4051 (((-557) $) 37 T ELT)) (-4152 (($) 30 T CONST)) (-3885 (((-3 $ "failed") $) 49 T ELT)) (-3602 (((-114) $) 28 T ELT)) (-2639 (((-114) $) 51 T ELT)) (-3603 (((-114) $) 38 T ELT)) (-2928 (($ $ $) 23 T ELT)) (-3256 (($ $ $) 22 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 53 T ELT)) (-3526 (((-789)) 54 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-3801 (($ $) 36 T ELT)) (-3057 (($) 29 T CONST)) (-3063 (($) 52 T CONST)) (-2963 (((-114) $ $) 21 T ELT)) (-2964 (((-114) $ $) 19 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 20 T ELT)) (-3084 (((-114) $ $) 18 T ELT)) (-4265 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-4267 (($ $ $) 25 T ELT)) (** (($ $ (-789)) 50 T ELT) (($ $ (-936)) 47 T ELT)) (* (($ (-936) $) 26 T ELT) (($ (-789) $) 32 T ELT) (($ (-557) $) 39 T ELT) (($ $ $) 48 T ELT))) -(((-858) (-142)) (T -858)) -NIL -(-13 (-810) (-1068) (-744)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-631 (-557)) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 $) . T) ((-744) . T) ((-810) . T) ((-812) . T) ((-814) . T) ((-817) . T) ((-859) . T) ((-862) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) 7 T ELT)) (-2928 (($ $ $) 23 T ELT)) (-3256 (($ $ $) 22 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2963 (((-114) $ $) 21 T ELT)) (-2964 (((-114) $ $) 19 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 20 T ELT)) (-3084 (((-114) $ $) 18 T ELT))) -(((-859) (-142)) (T -859)) -NIL -(-13 (-1120) (-862)) -(((-102) . T) ((-628 (-875)) . T) ((-862) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-4374 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-875) $) 15 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 12 T ELT))) -(((-860 |#1| |#2|) (-13 (-862) (-502 |#1|) (-10 -7 (IF (|has| |#1| (-628 (-875))) (-6 (-628 (-875))) |%noBranch|))) (-1236) (-1 (-114) |#1| |#1|)) (T -860)) -NIL -((-2928 (($ $ $) 16 T ELT)) (-3256 (($ $ $) 15 T ELT)) (-1376 (((-114) $ $) 17 T ELT)) (-2963 (((-114) $ $) 12 T ELT)) (-2964 (((-114) $ $) 9 T ELT)) (-3452 (((-114) $ $) 14 T ELT)) (-3083 (((-114) $ $) 11 T ELT))) -(((-861 |#1|) (-10 -7 (-15 -2928 (|#1| |#1| |#1|)) (-15 -3256 (|#1| |#1| |#1|)) (-15 -2963 ((-114) |#1| |#1|)) (-15 -3083 ((-114) |#1| |#1|)) (-15 -2964 ((-114) |#1| |#1|)) (-15 -1376 ((-114) |#1| |#1|)) (-15 -3452 ((-114) |#1| |#1|))) (-862)) (T -861)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-2928 (($ $ $) 10 T ELT)) (-3256 (($ $ $) 11 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2963 (((-114) $ $) 12 T ELT)) (-2964 (((-114) $ $) 14 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 13 T ELT)) (-3084 (((-114) $ $) 15 T ELT))) -(((-862) (-142)) (T -862)) -((-3084 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-114)))) (-2964 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-114)))) (-3083 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-114)))) (-2963 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-114)))) (-3256 (*1 *1 *1 *1) (-4 *1 (-862))) (-2928 (*1 *1 *1 *1) (-4 *1 (-862)))) -(-13 (-102) (-10 -8 (-15 -3084 ((-114) $ $)) (-15 -2964 ((-114) $ $)) (-15 -3083 ((-114) $ $)) (-15 -2963 ((-114) $ $)) (-15 -3256 ($ $ $)) (-15 -2928 ($ $ $)))) -(((-102) . T) ((-1236) . T)) -((-2933 (($ $ $) 49 T ELT)) (-2934 (($ $ $) 48 T ELT)) (-2935 (($ $ $) 46 T ELT)) (-2931 (($ $ $) 55 T ELT)) (-2930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 50 T ELT)) (-2932 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3573 (((-3 (-557) #1#) $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3921 (($ $) 39 T ELT)) (-2939 (($ $ $) 43 T ELT)) (-2940 (($ $ $) 42 T ELT)) (-2929 (($ $ $) 51 T ELT)) (-2937 (($ $ $) 57 T ELT)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 45 T ELT)) (-2938 (((-3 $ #1#) $ $) 52 T ELT)) (-3884 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-3216 ((|#2| $) 36 T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ |#2|) 13 T ELT)) (-4245 (((-659 |#2|) $) 21 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) -(((-863 |#1| |#2|) (-10 -7 (-15 -2929 (|#1| |#1| |#1|)) (-15 -2930 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2638 |#1|)) |#1| |#1|)) (-15 -2931 (|#1| |#1| |#1|)) (-15 -2932 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2933 (|#1| |#1| |#1|)) (-15 -2934 (|#1| |#1| |#1|)) (-15 -2935 (|#1| |#1| |#1|)) (-15 -2936 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2638 |#1|)) |#1| |#1|)) (-15 -2937 (|#1| |#1| |#1|)) (-15 -2938 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2939 (|#1| |#1| |#1|)) (-15 -2940 (|#1| |#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -3216 (|#2| |#1|)) (-15 -3884 ((-3 |#1| #1#) |#1| |#2|)) (-15 -4245 ((-659 |#2|) |#1|)) (-15 -4374 (|#1| |#2|)) (-15 -3573 ((-3 |#2| #1#) |#1|)) (-15 -3573 ((-3 (-419 (-557)) #1#) |#1|)) (-15 -4374 (|#1| (-419 (-557)))) (-15 -3573 ((-3 (-557) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4374 (|#1| (-557))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-557) |#1|)) (-15 * (|#1| (-789) |#1|)) (-15 * (|#1| (-936) |#1|)) (-15 -4374 ((-875) |#1|))) (-864 |#2|) (-1068)) (T -863)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-2933 (($ $ $) 55 (|has| |#1| (-376)) ELT)) (-2934 (($ $ $) 56 (|has| |#1| (-376)) ELT)) (-2935 (($ $ $) 58 (|has| |#1| (-376)) ELT)) (-2931 (($ $ $) 53 (|has| |#1| (-376)) ELT)) (-2930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 52 (|has| |#1| (-376)) ELT)) (-2932 (((-3 $ "failed") $ $) 54 (|has| |#1| (-376)) ELT)) (-2946 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 57 (|has| |#1| (-376)) ELT)) (-3573 (((-3 (-557) #1="failed") $) 85 (|has| |#1| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) 82 (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3572 (((-557) $) 84 (|has| |#1| (-1057 (-557))) ELT) (((-419 (-557)) $) 81 (|has| |#1| (-1057 (-419 (-557)))) ELT) ((|#1| $) 80 T ELT)) (-4387 (($ $) 74 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-3921 (($ $) 65 (|has| |#1| (-464)) ELT)) (-2639 (((-114) $) 40 T ELT)) (-3292 (($ |#1| (-789)) 72 T ELT)) (-2944 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 67 (|has| |#1| (-568)) ELT)) (-2943 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 68 (|has| |#1| (-568)) ELT)) (-3219 (((-789) $) 76 T ELT)) (-2939 (($ $ $) 62 (|has| |#1| (-376)) ELT)) (-2940 (($ $ $) 63 (|has| |#1| (-376)) ELT)) (-2929 (($ $ $) 51 (|has| |#1| (-376)) ELT)) (-2937 (($ $ $) 60 (|has| |#1| (-376)) ELT)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 59 (|has| |#1| (-376)) ELT)) (-2938 (((-3 $ "failed") $ $) 61 (|has| |#1| (-376)) ELT)) (-2945 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 64 (|has| |#1| (-376)) ELT)) (-3590 ((|#1| $) 75 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3884 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-568)) ELT)) (-4376 (((-789) $) 77 T ELT)) (-3216 ((|#1| $) 66 (|has| |#1| (-464)) ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ (-419 (-557))) 83 (|has| |#1| (-1057 (-419 (-557)))) ELT) (($ |#1|) 78 T ELT)) (-4245 (((-659 |#1|) $) 71 T ELT)) (-4105 ((|#1| $ (-789)) 73 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2942 ((|#1| $ |#1| |#1|) 70 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 87 T ELT) (($ |#1| $) 86 T ELT))) -(((-864 |#1|) (-142) (-1068)) (T -864)) -((-4376 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-789)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-789)))) (-3590 (*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)))) (-4387 (*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)))) (-4105 (*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-4 *1 (-864 *2)) (-4 *2 (-1068)))) (-3292 (*1 *1 *2 *3) (-12 (-5 *3 (-789)) (-4 *1 (-864 *2)) (-4 *2 (-1068)))) (-4245 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-659 *3)))) (-2942 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)))) (-3884 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))) (-2943 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -2182 *1) (|:| -3301 *1))) (-4 *1 (-864 *3)))) (-2944 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -2182 *1) (|:| -3301 *1))) (-4 *1 (-864 *3)))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-464)))) (-3921 (*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-464)))) (-2945 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -2182 *1) (|:| -3301 *1))) (-4 *1 (-864 *3)))) (-2940 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-376)))) (-2939 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-376)))) (-2938 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-376)))) (-2937 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-376)))) (-2936 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2638 *1))) (-4 *1 (-864 *3)))) (-2935 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-376)))) (-2946 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -2182 *1) (|:| -3301 *1))) (-4 *1 (-864 *3)))) (-2934 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-376)))) (-2933 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-376)))) (-2932 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-376)))) (-2931 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-376)))) (-2930 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2638 *1))) (-4 *1 (-864 *3)))) (-2929 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-376))))) -(-13 (-1068) (-111 |t#1| |t#1|) (-424 |t#1|) (-10 -8 (-15 -4376 ((-789) $)) (-15 -3219 ((-789) $)) (-15 -3590 (|t#1| $)) (-15 -4387 ($ $)) (-15 -4105 (|t#1| $ (-789))) (-15 -3292 ($ |t#1| (-789))) (-15 -4245 ((-659 |t#1|) $)) (-15 -2942 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -3884 ((-3 $ "failed") $ |t#1|)) (-15 -2943 ((-2 (|:| -2182 $) (|:| -3301 $)) $ $)) (-15 -2944 ((-2 (|:| -2182 $) (|:| -3301 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3216 (|t#1| $)) (-15 -3921 ($ $))) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-15 -2945 ((-2 (|:| -2182 $) (|:| -3301 $)) $ $)) (-15 -2940 ($ $ $)) (-15 -2939 ($ $ $)) (-15 -2938 ((-3 $ "failed") $ $)) (-15 -2937 ($ $ $)) (-15 -2936 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $)) (-15 -2935 ($ $ $)) (-15 -2946 ((-2 (|:| -2182 $) (|:| -3301 $)) $ $)) (-15 -2934 ($ $ $)) (-15 -2933 ($ $ $)) (-15 -2932 ((-3 $ "failed") $ $)) (-15 -2931 ($ $ $)) (-15 -2930 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $)) (-15 -2929 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-631 (-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((-631 (-557)) . T) ((-631 |#1|) . T) ((-628 (-875)) . T) ((-424 |#1|) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-658 |#1|) |has| |#1| (-175)) ((-735 |#1|) |has| |#1| (-175)) ((-744) . T) ((-1057 (-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((-1057 (-557)) |has| |#1| (-1057 (-557))) ((-1057 |#1|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2941 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2946 (((-2 (|:| -2182 |#2|) (|:| -3301 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-376)) ELT)) (-2944 (((-2 (|:| -2182 |#2|) (|:| -3301 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-568)) ELT)) (-2943 (((-2 (|:| -2182 |#2|) (|:| -3301 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-568)) ELT)) (-2945 (((-2 (|:| -2182 |#2|) (|:| -3301 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-376)) ELT)) (-2942 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33 T ELT))) -(((-865 |#1| |#2|) (-10 -7 (-15 -2941 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2942 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -2943 ((-2 (|:| -2182 |#2|) (|:| -3301 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2944 ((-2 (|:| -2182 |#2|) (|:| -3301 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -2945 ((-2 (|:| -2182 |#2|) (|:| -3301 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2946 ((-2 (|:| -2182 |#2|) (|:| -3301 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1068) (-864 |#1|)) (T -865)) -((-2946 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1068)) (-5 *2 (-2 (|:| -2182 *3) (|:| -3301 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-2945 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1068)) (-5 *2 (-2 (|:| -2182 *3) (|:| -3301 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-2944 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1068)) (-5 *2 (-2 (|:| -2182 *3) (|:| -3301 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-2943 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1068)) (-5 *2 (-2 (|:| -2182 *3) (|:| -3301 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-2942 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1068)) (-5 *1 (-865 *2 *3)) (-4 *3 (-864 *2)))) (-2941 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1068)) (-5 *1 (-865 *5 *2)) (-4 *2 (-864 *5))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-2933 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2934 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2935 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2931 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2932 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2946 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 34 (|has| |#1| (-376)) ELT)) (-3573 (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3572 (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) ((|#1| $) NIL T ELT)) (-4387 (($ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3921 (($ $) NIL (|has| |#1| (-464)) ELT)) (-3951 (((-875) $ (-875)) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-789)) NIL T ELT)) (-2944 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 30 (|has| |#1| (-568)) ELT)) (-2943 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 28 (|has| |#1| (-568)) ELT)) (-3219 (((-789) $) NIL T ELT)) (-2939 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2940 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2937 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2938 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2945 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 32 (|has| |#1| (-376)) ELT)) (-3590 ((|#1| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3884 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-568)) ELT)) (-4376 (((-789) $) NIL T ELT)) (-3216 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ (-419 (-557))) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (($ |#1|) NIL T ELT)) (-4245 (((-659 |#1|) $) NIL T ELT)) (-4105 ((|#1| $ (-789)) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2942 ((|#1| $ |#1| |#1|) 15 T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) 23 T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) 19 T ELT) (($ $ (-789)) 24 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-866 |#1| |#2| |#3|) (-13 (-864 |#1|) (-10 -8 (-15 -3951 ((-875) $ (-875))))) (-1068) (-99 |#1|) (-1 |#1| |#1|)) (T -866)) -((-3951 (*1 *2 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-866 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-2933 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2934 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2935 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2931 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-2932 (((-3 $ #1#) $ $) NIL (|has| |#2| (-376)) ELT)) (-2946 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3573 (((-3 (-557) #1#) $) NIL (|has| |#2| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#2| (-1057 (-419 (-557)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3572 (((-557) $) NIL (|has| |#2| (-1057 (-557))) ELT) (((-419 (-557)) $) NIL (|has| |#2| (-1057 (-419 (-557)))) ELT) ((|#2| $) NIL T ELT)) (-4387 (($ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3921 (($ $) NIL (|has| |#2| (-464)) ELT)) (-2639 (((-114) $) NIL T ELT)) (-3292 (($ |#2| (-789)) 17 T ELT)) (-2944 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#2| (-568)) ELT)) (-2943 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#2| (-568)) ELT)) (-3219 (((-789) $) NIL T ELT)) (-2939 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2940 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2929 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2937 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-2938 (((-3 $ #1#) $ $) NIL (|has| |#2| (-376)) ELT)) (-2945 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3590 ((|#2| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3884 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-568)) ELT)) (-4376 (((-789) $) NIL T ELT)) (-3216 ((|#2| $) NIL (|has| |#2| (-464)) ELT)) (-4374 (((-875) $) 24 T ELT) (($ (-557)) NIL T ELT) (($ (-419 (-557))) NIL (|has| |#2| (-1057 (-419 (-557)))) ELT) (($ |#2|) NIL T ELT) (($ (-1283 |#1|)) 19 T ELT)) (-4245 (((-659 |#2|) $) NIL T ELT)) (-4105 ((|#2| $ (-789)) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2942 ((|#2| $ |#2| |#2|) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) 13 T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-867 |#1| |#2| |#3| |#4|) (-13 (-864 |#2|) (-631 (-1283 |#1|))) (-1196) (-1068) (-99 |#2|) (-1 |#2| |#2|)) (T -867)) -NIL -((-2949 ((|#1| (-789) |#1|) 45 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2948 ((|#1| (-789) (-789) |#1|) 36 T ELT) ((|#1| (-789) |#1|) 24 T ELT)) (-2947 ((|#1| (-789) |#1|) 40 T ELT)) (-3199 ((|#1| (-789) |#1|) 38 T ELT)) (-3198 ((|#1| (-789) |#1|) 37 T ELT))) -(((-868 |#1|) (-10 -7 (-15 -3198 (|#1| (-789) |#1|)) (-15 -3199 (|#1| (-789) |#1|)) (-15 -2947 (|#1| (-789) |#1|)) (-15 -2948 (|#1| (-789) |#1|)) (-15 -2948 (|#1| (-789) (-789) |#1|)) (IF (|has| |#1| (-38 (-419 (-557)))) (-15 -2949 (|#1| (-789) |#1|)) |%noBranch|)) (-175)) (T -868)) -((-2949 (*1 *2 *3 *2) (-12 (-5 *3 (-789)) (-5 *1 (-868 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-175)))) (-2948 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-789)) (-5 *1 (-868 *2)) (-4 *2 (-175)))) (-2948 (*1 *2 *3 *2) (-12 (-5 *3 (-789)) (-5 *1 (-868 *2)) (-4 *2 (-175)))) (-2947 (*1 *2 *3 *2) (-12 (-5 *3 (-789)) (-5 *1 (-868 *2)) (-4 *2 (-175)))) (-3199 (*1 *2 *3 *2) (-12 (-5 *3 (-789)) (-5 *1 (-868 *2)) (-4 *2 (-175)))) (-3198 (*1 *2 *3 *2) (-12 (-5 *3 (-789)) (-5 *1 (-868 *2)) (-4 *2 (-175))))) -((-2965 (((-114) $ $) 7 T ELT)) (-2928 (($ $ $) 23 T ELT)) (-3256 (($ $ $) 22 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2963 (((-114) $ $) 21 T ELT)) (-2964 (((-114) $ $) 19 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 20 T ELT)) (-3084 (((-114) $ $) 18 T ELT)) (** (($ $ (-936)) 26 T ELT)) (* (($ $ $) 25 T ELT))) -(((-869) (-142)) (T -869)) -NIL -(-13 (-859) (-1131)) -(((-102) . T) ((-628 (-875)) . T) ((-859) . T) ((-862) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3820 (((-557) $) 14 T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 20 T ELT) (($ (-557)) 13 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 9 T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 11 T ELT))) -(((-870) (-13 (-859) (-10 -8 (-15 -4374 ($ (-557))) (-15 -3820 ((-557) $))))) (T -870)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-870)))) (-3820 (*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-870))))) -((-2950 (((-1292) (-659 (-51))) 23 T ELT)) (-3878 (((-1292) (-1178) (-875)) 13 T ELT) (((-1292) (-875)) 8 T ELT) (((-1292) (-1178)) 10 T ELT))) -(((-871) (-10 -7 (-15 -3878 ((-1292) (-1178))) (-15 -3878 ((-1292) (-875))) (-15 -3878 ((-1292) (-1178) (-875))) (-15 -2950 ((-1292) (-659 (-51)))))) (T -871)) -((-2950 (*1 *2 *3) (-12 (-5 *3 (-659 (-51))) (-5 *2 (-1292)) (-5 *1 (-871)))) (-3878 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-875)) (-5 *2 (-1292)) (-5 *1 (-871)))) (-3878 (*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1292)) (-5 *1 (-871)))) (-3878 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-871))))) -((-2952 (((-709 (-1245)) $ (-1245)) 15 T ELT)) (-2953 (((-709 (-561)) $ (-561)) 12 T ELT)) (-2951 (((-789) $ (-131)) 30 T ELT))) -(((-872 |#1|) (-10 -7 (-15 -2951 ((-789) |#1| (-131))) (-15 -2952 ((-709 (-1245)) |#1| (-1245))) (-15 -2953 ((-709 (-561)) |#1| (-561)))) (-873)) (T -872)) -NIL -((-2952 (((-709 (-1245)) $ (-1245)) 8 T ELT)) (-2953 (((-709 (-561)) $ (-561)) 9 T ELT)) (-2951 (((-789) $ (-131)) 7 T ELT)) (-2954 (((-709 (-130)) $ (-130)) 10 T ELT)) (-1901 (($ $) 6 T ELT))) -(((-873) (-142)) (T -873)) -((-2954 (*1 *2 *1 *3) (-12 (-4 *1 (-873)) (-5 *2 (-709 (-130))) (-5 *3 (-130)))) (-2953 (*1 *2 *1 *3) (-12 (-4 *1 (-873)) (-5 *2 (-709 (-561))) (-5 *3 (-561)))) (-2952 (*1 *2 *1 *3) (-12 (-4 *1 (-873)) (-5 *2 (-709 (-1245))) (-5 *3 (-1245)))) (-2951 (*1 *2 *1 *3) (-12 (-4 *1 (-873)) (-5 *3 (-131)) (-5 *2 (-789))))) -(-13 (-176) (-10 -8 (-15 -2954 ((-709 (-130)) $ (-130))) (-15 -2953 ((-709 (-561)) $ (-561))) (-15 -2952 ((-709 (-1245)) $ (-1245))) (-15 -2951 ((-789) $ (-131))))) -(((-176) . T)) -((-2952 (((-709 (-1245)) $ (-1245)) NIL T ELT)) (-2953 (((-709 (-561)) $ (-561)) NIL T ELT)) (-2951 (((-789) $ (-131)) NIL T ELT)) (-2954 (((-709 (-130)) $ (-130)) 22 T ELT)) (-2956 (($ (-402)) 12 T ELT) (($ (-1178)) 14 T ELT)) (-2955 (((-114) $) 19 T ELT)) (-4374 (((-875) $) 26 T ELT)) (-1901 (($ $) 23 T ELT))) -(((-874) (-13 (-873) (-628 (-875)) (-10 -8 (-15 -2956 ($ (-402))) (-15 -2956 ($ (-1178))) (-15 -2955 ((-114) $))))) (T -874)) -((-2956 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-874)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-874)))) (-2955 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-874))))) -((-2965 (((-114) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2986 (($ $ $) 125 T ELT)) (-3001 (((-557) $) 31 T ELT) (((-557)) 36 T ELT)) (-2996 (($ (-557)) 53 T ELT)) (-2993 (($ $ $) 54 T ELT) (($ (-659 $)) 84 T ELT)) (-2977 (($ $ (-659 $)) 82 T ELT)) (-2998 (((-557) $) 34 T ELT)) (-2980 (($ $ $) 73 T ELT)) (-3950 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2999 (((-557) $) 33 T ELT)) (-2981 (($ $ $) 72 T ELT)) (-3961 (($ $) 114 T ELT)) (-2984 (($ $ $) 129 T ELT)) (-2967 (($ (-659 $)) 61 T ELT)) (-3966 (($ $ (-659 $)) 79 T ELT)) (-2995 (($ (-557) (-557)) 55 T ELT)) (-3008 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3537 (($ $ (-557)) 43 T ELT) (($ $) 46 T ELT)) (-2961 (($ $ $) 97 T ELT)) (-2982 (($ $ $) 132 T ELT)) (-2976 (($ $) 115 T ELT)) (-2960 (($ $ $) 98 T ELT)) (-2972 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-3236 (((-1292) $) 10 T ELT)) (-2975 (($ $) 118 T ELT) (($ $ (-789)) 122 T ELT)) (-2978 (($ $ $) 75 T ELT)) (-2979 (($ $ $) 74 T ELT)) (-2992 (($ $ (-659 $)) 110 T ELT)) (-2990 (($ $ $) 113 T ELT)) (-2969 (($ (-659 $)) 59 T ELT)) (-2970 (($ $) 70 T ELT) (($ (-659 $)) 71 T ELT)) (-2973 (($ $ $) 123 T ELT)) (-2974 (($ $) 116 T ELT)) (-2985 (($ $ $) 128 T ELT)) (-3951 (($ (-557)) 21 T ELT) (($ (-1196)) 23 T ELT) (($ (-1178)) 30 T ELT) (($ (-229)) 25 T ELT)) (-2958 (($ $ $) 101 T ELT)) (-2957 (($ $) 102 T ELT)) (-3003 (((-1292) (-1178)) 15 T ELT)) (-3004 (($ (-1178)) 14 T ELT)) (-3524 (($ (-659 (-659 $))) 58 T ELT)) (-3538 (($ $ (-557)) 42 T ELT) (($ $) 45 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2988 (($ $ $) 131 T ELT)) (-3888 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2989 (((-114) $) 108 T ELT)) (-2991 (($ $ (-659 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2997 (($ (-557)) 39 T ELT)) (-3000 (((-557) $) 32 T ELT) (((-557)) 35 T ELT)) (-2994 (($ $ $) 40 T ELT) (($ (-659 $)) 83 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3884 (($ $ $) 99 T ELT)) (-3991 (($) 13 T ELT)) (-4228 (($ $ (-659 $)) 109 T ELT)) (-3002 (((-1178) (-1178)) 8 T ELT)) (-4264 (($ $) 117 T ELT) (($ $ (-789)) 121 T ELT)) (-2962 (($ $ $) 96 T ELT)) (-4186 (($ $ (-789)) 139 T ELT)) (-2968 (($ (-659 $)) 60 T ELT)) (-4374 (((-875) $) 19 T ELT)) (-4201 (($ $ (-557)) 41 T ELT) (($ $) 44 T ELT)) (-2971 (($ $) 68 T ELT) (($ (-659 $)) 69 T ELT)) (-3656 (($ $) 66 T ELT) (($ (-659 $)) 67 T ELT)) (-2987 (($ $) 124 T ELT)) (-2966 (($ (-659 $)) 65 T ELT)) (-3502 (($ $ $) 105 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2983 (($ $ $) 130 T ELT)) (-2959 (($ $ $) 100 T ELT)) (-4165 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2963 (($ $ $) 89 T ELT)) (-2964 (($ $ $) 87 T ELT)) (-3452 (((-114) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-3083 (($ $ $) 88 T ELT)) (-3084 (($ $ $) 86 T ELT)) (-4377 (($ $ $) 94 T ELT)) (-4265 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-4267 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) -(((-875) (-13 (-1120) (-10 -8 (-15 -3236 ((-1292) $)) (-15 -3004 ($ (-1178))) (-15 -3003 ((-1292) (-1178))) (-15 -3951 ($ (-557))) (-15 -3951 ($ (-1196))) (-15 -3951 ($ (-1178))) (-15 -3951 ($ (-229))) (-15 -3991 ($)) (-15 -3002 ((-1178) (-1178))) (-15 -3001 ((-557) $)) (-15 -3000 ((-557) $)) (-15 -3001 ((-557))) (-15 -3000 ((-557))) (-15 -2999 ((-557) $)) (-15 -2998 ((-557) $)) (-15 -2997 ($ (-557))) (-15 -2996 ($ (-557))) (-15 -2995 ($ (-557) (-557))) (-15 -3538 ($ $ (-557))) (-15 -3537 ($ $ (-557))) (-15 -4201 ($ $ (-557))) (-15 -3538 ($ $)) (-15 -3537 ($ $)) (-15 -4201 ($ $)) (-15 -2994 ($ $ $)) (-15 -2993 ($ $ $)) (-15 -2994 ($ (-659 $))) (-15 -2993 ($ (-659 $))) (-15 -2992 ($ $ (-659 $))) (-15 -2991 ($ $ (-659 $))) (-15 -2991 ($ $ $ $)) (-15 -2990 ($ $ $)) (-15 -2989 ((-114) $)) (-15 -4228 ($ $ (-659 $))) (-15 -3961 ($ $)) (-15 -2988 ($ $ $)) (-15 -2987 ($ $)) (-15 -3524 ($ (-659 (-659 $)))) (-15 -2986 ($ $ $)) (-15 -3008 ($ $)) (-15 -3008 ($ $ $)) (-15 -2985 ($ $ $)) (-15 -2984 ($ $ $)) (-15 -2983 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -4186 ($ $ (-789))) (-15 -3502 ($ $ $)) (-15 -2981 ($ $ $)) (-15 -2980 ($ $ $)) (-15 -2979 ($ $ $)) (-15 -2978 ($ $ $)) (-15 -3966 ($ $ (-659 $))) (-15 -2977 ($ $ (-659 $))) (-15 -2976 ($ $)) (-15 -4264 ($ $)) (-15 -4264 ($ $ (-789))) (-15 -2975 ($ $)) (-15 -2975 ($ $ (-789))) (-15 -2974 ($ $)) (-15 -2973 ($ $ $)) (-15 -3950 ($ $)) (-15 -3950 ($ $ $)) (-15 -3950 ($ $ $ $)) (-15 -2972 ($ $)) (-15 -2972 ($ $ $)) (-15 -2972 ($ $ $ $)) (-15 -3888 ($ $)) (-15 -3888 ($ $ $)) (-15 -3888 ($ $ $ $)) (-15 -3656 ($ $)) (-15 -3656 ($ (-659 $))) (-15 -2971 ($ $)) (-15 -2971 ($ (-659 $))) (-15 -2970 ($ $)) (-15 -2970 ($ (-659 $))) (-15 -2969 ($ (-659 $))) (-15 -2968 ($ (-659 $))) (-15 -2967 ($ (-659 $))) (-15 -2966 ($ (-659 $))) (-15 -3452 ($ $ $)) (-15 -2965 ($ $ $)) (-15 -3084 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -3083 ($ $ $)) (-15 -2963 ($ $ $)) (-15 -4267 ($ $ $)) (-15 -4265 ($ $ $)) (-15 -4265 ($ $)) (-15 * ($ $ $)) (-15 -4377 ($ $ $)) (-15 ** ($ $ $)) (-15 -2962 ($ $ $)) (-15 -2961 ($ $ $)) (-15 -2960 ($ $ $)) (-15 -3884 ($ $ $)) (-15 -2959 ($ $ $)) (-15 -2958 ($ $ $)) (-15 -2957 ($ $)) (-15 -4165 ($ $ $)) (-15 -4165 ($ $))))) (T -875)) -((-3236 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-875)))) (-3004 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-875)))) (-3003 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-875)))) (-3951 (*1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-875)))) (-3951 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-875)))) (-3951 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-875)))) (-3951 (*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-875)))) (-3991 (*1 *1) (-5 *1 (-875))) (-3002 (*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-875)))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-875)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-875)))) (-3001 (*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-875)))) (-3000 (*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-875)))) (-2999 (*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-875)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-875)))) (-2997 (*1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-875)))) (-2996 (*1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-875)))) (-2995 (*1 *1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-875)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-875)))) (-3537 (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-875)))) (-4201 (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-875)))) (-3538 (*1 *1 *1) (-5 *1 (-875))) (-3537 (*1 *1 *1) (-5 *1 (-875))) (-4201 (*1 *1 *1) (-5 *1 (-875))) (-2994 (*1 *1 *1 *1) (-5 *1 (-875))) (-2993 (*1 *1 *1 *1) (-5 *1 (-875))) (-2994 (*1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875)))) (-2993 (*1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875)))) (-2992 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875)))) (-2991 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875)))) (-2991 (*1 *1 *1 *1 *1) (-5 *1 (-875))) (-2990 (*1 *1 *1 *1) (-5 *1 (-875))) (-2989 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-875)))) (-4228 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875)))) (-3961 (*1 *1 *1) (-5 *1 (-875))) (-2988 (*1 *1 *1 *1) (-5 *1 (-875))) (-2987 (*1 *1 *1) (-5 *1 (-875))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-659 (-659 (-875)))) (-5 *1 (-875)))) (-2986 (*1 *1 *1 *1) (-5 *1 (-875))) (-3008 (*1 *1 *1) (-5 *1 (-875))) (-3008 (*1 *1 *1 *1) (-5 *1 (-875))) (-2985 (*1 *1 *1 *1) (-5 *1 (-875))) (-2984 (*1 *1 *1 *1) (-5 *1 (-875))) (-2983 (*1 *1 *1 *1) (-5 *1 (-875))) (-2982 (*1 *1 *1 *1) (-5 *1 (-875))) (-4186 (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-875)))) (-3502 (*1 *1 *1 *1) (-5 *1 (-875))) (-2981 (*1 *1 *1 *1) (-5 *1 (-875))) (-2980 (*1 *1 *1 *1) (-5 *1 (-875))) (-2979 (*1 *1 *1 *1) (-5 *1 (-875))) (-2978 (*1 *1 *1 *1) (-5 *1 (-875))) (-3966 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875)))) (-2977 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875)))) (-2976 (*1 *1 *1) (-5 *1 (-875))) (-4264 (*1 *1 *1) (-5 *1 (-875))) (-4264 (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-875)))) (-2975 (*1 *1 *1) (-5 *1 (-875))) (-2975 (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-875)))) (-2974 (*1 *1 *1) (-5 *1 (-875))) (-2973 (*1 *1 *1 *1) (-5 *1 (-875))) (-3950 (*1 *1 *1) (-5 *1 (-875))) (-3950 (*1 *1 *1 *1) (-5 *1 (-875))) (-3950 (*1 *1 *1 *1 *1) (-5 *1 (-875))) (-2972 (*1 *1 *1) (-5 *1 (-875))) (-2972 (*1 *1 *1 *1) (-5 *1 (-875))) (-2972 (*1 *1 *1 *1 *1) (-5 *1 (-875))) (-3888 (*1 *1 *1) (-5 *1 (-875))) (-3888 (*1 *1 *1 *1) (-5 *1 (-875))) (-3888 (*1 *1 *1 *1 *1) (-5 *1 (-875))) (-3656 (*1 *1 *1) (-5 *1 (-875))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875)))) (-2971 (*1 *1 *1) (-5 *1 (-875))) (-2971 (*1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875)))) (-2970 (*1 *1 *1) (-5 *1 (-875))) (-2970 (*1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875)))) (-2969 (*1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875)))) (-2968 (*1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875)))) (-2967 (*1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875)))) (-2966 (*1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875)))) (-3452 (*1 *1 *1 *1) (-5 *1 (-875))) (-2965 (*1 *1 *1 *1) (-5 *1 (-875))) (-3084 (*1 *1 *1 *1) (-5 *1 (-875))) (-2964 (*1 *1 *1 *1) (-5 *1 (-875))) (-3083 (*1 *1 *1 *1) (-5 *1 (-875))) (-2963 (*1 *1 *1 *1) (-5 *1 (-875))) (-4267 (*1 *1 *1 *1) (-5 *1 (-875))) (-4265 (*1 *1 *1 *1) (-5 *1 (-875))) (-4265 (*1 *1 *1) (-5 *1 (-875))) (* (*1 *1 *1 *1) (-5 *1 (-875))) (-4377 (*1 *1 *1 *1) (-5 *1 (-875))) (** (*1 *1 *1 *1) (-5 *1 (-875))) (-2962 (*1 *1 *1 *1) (-5 *1 (-875))) (-2961 (*1 *1 *1 *1) (-5 *1 (-875))) (-2960 (*1 *1 *1 *1) (-5 *1 (-875))) (-3884 (*1 *1 *1 *1) (-5 *1 (-875))) (-2959 (*1 *1 *1 *1) (-5 *1 (-875))) (-2958 (*1 *1 *1 *1) (-5 *1 (-875))) (-2957 (*1 *1 *1) (-5 *1 (-875))) (-4165 (*1 *1 *1 *1) (-5 *1 (-875))) (-4165 (*1 *1 *1) (-5 *1 (-875)))) -((-2965 (((-114) $ $) NIL T ELT)) (-4259 (((-3 $ "failed") (-1196)) 36 T ELT)) (-3536 (((-789)) 32 T ELT)) (-3393 (($) NIL T ELT)) (-2928 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3256 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2218 (((-936) $) 29 T ELT)) (-3658 (((-1178) $) 43 T ELT)) (-2629 (($ (-936)) 28 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4400 (((-1196) $) 13 T ELT) (((-546) $) 19 T ELT) (((-903 (-391)) $) 26 T ELT) (((-903 (-557)) $) 22 T ELT)) (-4374 (((-875) $) 16 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 40 T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 38 T ELT))) -(((-876 |#1|) (-13 (-855) (-629 (-1196)) (-629 (-546)) (-629 (-903 (-391))) (-629 (-903 (-557))) (-10 -8 (-15 -4259 ((-3 $ "failed") (-1196))))) (-659 (-1196))) (T -876)) -((-4259 (*1 *1 *2) (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-876 *3)) (-14 *3 (-659 *2))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3968 (((-518) $) 9 T ELT)) (-3005 (((-659 (-451)) $) 13 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 21 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 16 T ELT))) -(((-877) (-13 (-1120) (-10 -8 (-15 -3968 ((-518) $)) (-15 -3005 ((-659 (-451)) $))))) (T -877)) -((-3968 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-877)))) (-3005 (*1 *2 *1) (-12 (-5 *2 (-659 (-451))) (-5 *1 (-877))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ (-963 |#1|)) NIL T ELT) (((-963 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT)) (-3526 (((-789)) NIL T CONST)) (-4351 (((-1292) (-789)) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) -(((-878 |#1| |#2| |#3| |#4|) (-13 (-1068) (-502 (-963 |#1|)) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4377 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4351 ((-1292) (-789))))) (-1068) (-659 (-1196)) (-659 (-789)) (-789)) (T -878)) -((-4377 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-878 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *2 (-1068)) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-789))) (-14 *5 (-789)))) (-4351 (*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1292)) (-5 *1 (-878 *4 *5 *6 *7)) (-4 *4 (-1068)) (-14 *5 (-659 (-1196))) (-14 *6 (-659 *3)) (-14 *7 *3)))) -((-3006 (((-3 (-177 |#3|) #1="failed") (-789) (-789) |#2| |#2|) 38 T ELT)) (-3007 (((-3 (-419 |#3|) #1#) (-789) (-789) |#2| |#2|) 29 T ELT))) -(((-879 |#1| |#2| |#3|) (-10 -7 (-15 -3007 ((-3 (-419 |#3|) #1="failed") (-789) (-789) |#2| |#2|)) (-15 -3006 ((-3 (-177 |#3|) #1#) (-789) (-789) |#2| |#2|))) (-376) (-1279 |#1|) (-1262 |#1|)) (T -879)) -((-3006 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-789)) (-4 *5 (-376)) (-5 *2 (-177 *6)) (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1279 *5)) (-4 *6 (-1262 *5)))) (-3007 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-789)) (-4 *5 (-376)) (-5 *2 (-419 *6)) (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1279 *5)) (-4 *6 (-1262 *5))))) -((-3007 (((-3 (-419 (-1255 |#2| |#1|)) #1="failed") (-789) (-789) (-1276 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-419 (-1255 |#2| |#1|)) #1#) (-789) (-789) (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|)) 28 T ELT))) -(((-880 |#1| |#2| |#3|) (-10 -7 (-15 -3007 ((-3 (-419 (-1255 |#2| |#1|)) #1="failed") (-789) (-789) (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|))) (-15 -3007 ((-3 (-419 (-1255 |#2| |#1|)) #1#) (-789) (-789) (-1276 |#1| |#2| |#3|)))) (-376) (-1196) |#1|) (T -880)) -((-3007 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-789)) (-5 *4 (-1276 *5 *6 *7)) (-4 *5 (-376)) (-14 *6 (-1196)) (-14 *7 *5) (-5 *2 (-419 (-1255 *6 *5))) (-5 *1 (-880 *5 *6 *7)))) (-3007 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-789)) (-5 *4 (-1276 *5 *6 *7)) (-4 *5 (-376)) (-14 *6 (-1196)) (-14 *7 *5) (-5 *2 (-419 (-1255 *6 *5))) (-5 *1 (-880 *5 *6 *7))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3436 (($ $ (-557)) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3008 (($ (-1190 (-557)) (-557)) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3009 (($ $) NIL T ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4200 (((-789) $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-3011 (((-557)) NIL T ELT)) (-3010 (((-557) $) NIL T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-4197 (($ $ (-557)) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-3012 (((-1174 (-557)) $) NIL T ELT)) (-3290 (($ $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-4198 (((-557) $ (-557)) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-881 |#1|) (-882 |#1|) (-557)) (T -881)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 52 T ELT)) (-2271 (($ $) 51 T ELT)) (-2269 (((-114) $) 49 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-3436 (($ $ (-557)) 75 T ELT)) (-1786 (((-114) $ $) 72 T ELT)) (-4152 (($) 22 T CONST)) (-3008 (($ (-1190 (-557)) (-557)) 74 T ELT)) (-2961 (($ $ $) 68 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-3009 (($ $) 77 T ELT)) (-2960 (($ $ $) 69 T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 63 T ELT)) (-4200 (((-789) $) 82 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-1783 (((-3 (-659 $) #1="failed") (-659 $) $) 65 T ELT)) (-3011 (((-557)) 79 T ELT)) (-3010 (((-557) $) 78 T ELT)) (-2100 (($ $ $) 57 T ELT) (($ (-659 $)) 56 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 55 T ELT)) (-3560 (($ $ $) 59 T ELT) (($ (-659 $)) 58 T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-4197 (($ $ (-557)) 81 T ELT)) (-3884 (((-3 $ "failed") $ $) 53 T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 62 T ELT)) (-1785 (((-789) $) 71 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 70 T ELT)) (-3012 (((-1174 (-557)) $) 83 T ELT)) (-3290 (($ $) 80 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 54 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 50 T ELT)) (-4198 (((-557) $ (-557)) 76 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-882 |#1|) (-142) (-557)) (T -882)) -((-3012 (*1 *2 *1) (-12 (-4 *1 (-882 *3)) (-5 *2 (-1174 (-557))))) (-4200 (*1 *2 *1) (-12 (-4 *1 (-882 *3)) (-5 *2 (-789)))) (-4197 (*1 *1 *1 *2) (-12 (-4 *1 (-882 *3)) (-5 *2 (-557)))) (-3290 (*1 *1 *1) (-4 *1 (-882 *2))) (-3011 (*1 *2) (-12 (-4 *1 (-882 *3)) (-5 *2 (-557)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-882 *3)) (-5 *2 (-557)))) (-3009 (*1 *1 *1) (-4 *1 (-882 *2))) (-4198 (*1 *2 *1 *2) (-12 (-4 *1 (-882 *3)) (-5 *2 (-557)))) (-3436 (*1 *1 *1 *2) (-12 (-4 *1 (-882 *3)) (-5 *2 (-557)))) (-3008 (*1 *1 *2 *3) (-12 (-5 *2 (-1190 (-557))) (-5 *3 (-557)) (-4 *1 (-882 *4))))) -(-13 (-319) (-149) (-10 -8 (-15 -3012 ((-1174 (-557)) $)) (-15 -4200 ((-789) $)) (-15 -4197 ($ $ (-557))) (-15 -3290 ($ $)) (-15 -3011 ((-557))) (-15 -3010 ((-557) $)) (-15 -3009 ($ $)) (-15 -4198 ((-557) $ (-557))) (-15 -3436 ($ $ (-557))) (-15 -3008 ($ (-1190 (-557)) (-557))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-631 (-557)) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-175) . T) ((-302) . T) ((-319) . T) ((-464) . T) ((-568) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 $) . T) ((-658 $) . T) ((-735 $) . T) ((-744) . T) ((-938) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3529 (((-881 |#1|) $) NIL (|has| (-881 |#1|) (-319)) ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| (-881 |#1|) (-927)) ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| (-881 |#1|) (-927)) ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4051 (((-557) $) NIL (|has| (-881 |#1|) (-840)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-881 |#1|) #1#) $) NIL T ELT) (((-3 (-1196) #1#) $) NIL (|has| (-881 |#1|) (-1057 (-1196))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| (-881 |#1|) (-1057 (-557))) ELT) (((-3 (-557) #1#) $) NIL (|has| (-881 |#1|) (-1057 (-557))) ELT)) (-3572 (((-881 |#1|) $) NIL T ELT) (((-1196) $) NIL (|has| (-881 |#1|) (-1057 (-1196))) ELT) (((-419 (-557)) $) NIL (|has| (-881 |#1|) (-1057 (-557))) ELT) (((-557) $) NIL (|has| (-881 |#1|) (-1057 (-557))) ELT)) (-4158 (($ $) NIL T ELT) (($ (-557) $) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| (-881 |#1|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| (-881 |#1|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-881 |#1|))) (|:| |vec| (-1286 (-881 |#1|)))) (-707 $) (-1286 $)) NIL T ELT) (((-707 (-881 |#1|)) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3393 (($) NIL (|has| (-881 |#1|) (-556)) ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-3602 (((-114) $) NIL (|has| (-881 |#1|) (-840)) ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (|has| (-881 |#1|) (-899 (-557))) ELT) (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (|has| (-881 |#1|) (-899 (-391))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-3395 (($ $) NIL T ELT)) (-3397 (((-881 |#1|) $) NIL T ELT)) (-3863 (((-709 $) $) NIL (|has| (-881 |#1|) (-1171)) ELT)) (-3603 (((-114) $) NIL (|has| (-881 |#1|) (-840)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2928 (($ $ $) NIL (|has| (-881 |#1|) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| (-881 |#1|) (-859)) ELT)) (-4386 (($ (-1 (-881 |#1|) (-881 |#1|)) $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| (-881 |#1|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| (-881 |#1|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-881 |#1|))) (|:| |vec| (-1286 (-881 |#1|)))) (-1286 $) $) NIL T ELT) (((-707 (-881 |#1|)) (-1286 $)) NIL T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3864 (($) NIL (|has| (-881 |#1|) (-1171)) CONST)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3528 (($ $) NIL (|has| (-881 |#1|) (-319)) ELT)) (-3530 (((-881 |#1|) $) NIL (|has| (-881 |#1|) (-556)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (|has| (-881 |#1|) (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (|has| (-881 |#1|) (-927)) ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-4196 (($ $ (-659 (-881 |#1|)) (-659 (-881 |#1|))) NIL (|has| (-881 |#1|) (-321 (-881 |#1|))) ELT) (($ $ (-881 |#1|) (-881 |#1|)) NIL (|has| (-881 |#1|) (-321 (-881 |#1|))) ELT) (($ $ (-305 (-881 |#1|))) NIL (|has| (-881 |#1|) (-321 (-881 |#1|))) ELT) (($ $ (-659 (-305 (-881 |#1|)))) NIL (|has| (-881 |#1|) (-321 (-881 |#1|))) ELT) (($ $ (-659 (-1196)) (-659 (-881 |#1|))) NIL (|has| (-881 |#1|) (-526 (-1196) (-881 |#1|))) ELT) (($ $ (-1196) (-881 |#1|)) NIL (|has| (-881 |#1|) (-526 (-1196) (-881 |#1|))) ELT)) (-1785 (((-789) $) NIL T ELT)) (-4228 (($ $ (-881 |#1|)) NIL (|has| (-881 |#1|) (-298 (-881 |#1|) (-881 |#1|))) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-4186 (($ $ (-1 (-881 |#1|) (-881 |#1|))) NIL T ELT) (($ $ (-1 (-881 |#1|) (-881 |#1|)) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| (-881 |#1|) (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| (-881 |#1|) (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| (-881 |#1|) (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| (-881 |#1|) (-917 (-1196))) ELT) (($ $) NIL (|has| (-881 |#1|) (-239)) ELT) (($ $ (-789)) NIL (|has| (-881 |#1|) (-239)) ELT)) (-3394 (($ $) NIL T ELT)) (-3396 (((-881 |#1|) $) NIL T ELT)) (-4400 (((-903 (-557)) $) NIL (|has| (-881 |#1|) (-629 (-903 (-557)))) ELT) (((-903 (-391)) $) NIL (|has| (-881 |#1|) (-629 (-903 (-391)))) ELT) (((-546) $) NIL (|has| (-881 |#1|) (-629 (-546))) ELT) (((-391) $) NIL (|has| (-881 |#1|) (-1039)) ELT) (((-229) $) NIL (|has| (-881 |#1|) (-1039)) ELT)) (-3013 (((-177 (-419 (-557))) $) NIL T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| (-881 |#1|) (-927))) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ (-881 |#1|)) NIL T ELT) (($ (-1196)) NIL (|has| (-881 |#1|) (-1057 (-1196))) ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| (-881 |#1|) (-927))) (|has| (-881 |#1|) (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-3531 (((-881 |#1|) $) NIL (|has| (-881 |#1|) (-556)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-4198 (((-419 (-557)) $ (-557)) NIL T ELT)) (-3801 (($ $) NIL (|has| (-881 |#1|) (-840)) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $ (-1 (-881 |#1|) (-881 |#1|))) NIL T ELT) (($ $ (-1 (-881 |#1|) (-881 |#1|)) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| (-881 |#1|) (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| (-881 |#1|) (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| (-881 |#1|) (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| (-881 |#1|) (-917 (-1196))) ELT) (($ $) NIL (|has| (-881 |#1|) (-239)) ELT) (($ $ (-789)) NIL (|has| (-881 |#1|) (-239)) ELT)) (-2963 (((-114) $ $) NIL (|has| (-881 |#1|) (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| (-881 |#1|) (-859)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL (|has| (-881 |#1|) (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| (-881 |#1|) (-859)) ELT)) (-4377 (($ $ $) NIL T ELT) (($ (-881 |#1|) (-881 |#1|)) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ (-881 |#1|) $) NIL T ELT) (($ $ (-881 |#1|)) NIL T ELT))) -(((-883 |#1|) (-13 (-1010 (-881 |#1|)) (-10 -8 (-15 -4198 ((-419 (-557)) $ (-557))) (-15 -3013 ((-177 (-419 (-557))) $)) (-15 -4158 ($ $)) (-15 -4158 ($ (-557) $)))) (-557)) (T -883)) -((-4198 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-883 *4)) (-14 *4 *3) (-5 *3 (-557)))) (-3013 (*1 *2 *1) (-12 (-5 *2 (-177 (-419 (-557)))) (-5 *1 (-883 *3)) (-14 *3 (-557)))) (-4158 (*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-14 *2 (-557)))) (-4158 (*1 *1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-883 *3)) (-14 *3 *2)))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3529 ((|#2| $) NIL (|has| |#2| (-319)) ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4051 (((-557) $) NIL (|has| |#2| (-840)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1196) #1#) $) NIL (|has| |#2| (-1057 (-1196))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#2| (-1057 (-557))) ELT) (((-3 (-557) #1#) $) NIL (|has| |#2| (-1057 (-557))) ELT)) (-3572 ((|#2| $) NIL T ELT) (((-1196) $) NIL (|has| |#2| (-1057 (-1196))) ELT) (((-419 (-557)) $) NIL (|has| |#2| (-1057 (-557))) ELT) (((-557) $) NIL (|has| |#2| (-1057 (-557))) ELT)) (-4158 (($ $) 35 T ELT) (($ (-557) $) 38 T ELT)) (-2961 (($ $ $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 $) (-1286 $)) NIL T ELT) (((-707 |#2|) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) 64 T ELT)) (-3393 (($) NIL (|has| |#2| (-556)) ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-3602 (((-114) $) NIL (|has| |#2| (-840)) ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (|has| |#2| (-899 (-557))) ELT) (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (|has| |#2| (-899 (-391))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-3395 (($ $) NIL T ELT)) (-3397 ((|#2| $) NIL T ELT)) (-3863 (((-709 $) $) NIL (|has| |#2| (-1171)) ELT)) (-3603 (((-114) $) NIL (|has| |#2| (-840)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2928 (($ $ $) NIL (|has| |#2| (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#2| (-859)) ELT)) (-4386 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL T ELT) (((-707 |#2|) (-1286 $)) NIL T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) 60 T ELT)) (-3864 (($) NIL (|has| |#2| (-1171)) CONST)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3528 (($ $) NIL (|has| |#2| (-319)) ELT)) (-3530 ((|#2| $) NIL (|has| |#2| (-556)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-4196 (($ $ (-659 |#2|) (-659 |#2|)) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-305 |#2|)) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-659 (-305 |#2|))) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-659 (-1196)) (-659 |#2|)) NIL (|has| |#2| (-526 (-1196) |#2|)) ELT) (($ $ (-1196) |#2|) NIL (|has| |#2| (-526 (-1196) |#2|)) ELT)) (-1785 (((-789) $) NIL T ELT)) (-4228 (($ $ |#2|) NIL (|has| |#2| (-298 |#2| |#2|)) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-4186 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-789)) NIL (|has| |#2| (-239)) ELT)) (-3394 (($ $) NIL T ELT)) (-3396 ((|#2| $) NIL T ELT)) (-4400 (((-903 (-557)) $) NIL (|has| |#2| (-629 (-903 (-557)))) ELT) (((-903 (-391)) $) NIL (|has| |#2| (-629 (-903 (-391)))) ELT) (((-546) $) NIL (|has| |#2| (-629 (-546))) ELT) (((-391) $) NIL (|has| |#2| (-1039)) ELT) (((-229) $) NIL (|has| |#2| (-1039)) ELT)) (-3013 (((-177 (-419 (-557))) $) 78 T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-927))) ELT)) (-4374 (((-875) $) 106 T ELT) (($ (-557)) 20 T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1196)) NIL (|has| |#2| (-1057 (-1196))) ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| |#2| (-927))) (|has| |#2| (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-3531 ((|#2| $) NIL (|has| |#2| (-556)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-4198 (((-419 (-557)) $ (-557)) 71 T ELT)) (-3801 (($ $) NIL (|has| |#2| (-840)) ELT)) (-3057 (($) 15 T CONST)) (-3063 (($) 17 T CONST)) (-3068 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-789)) NIL (|has| |#2| (-239)) ELT)) (-2963 (((-114) $ $) NIL (|has| |#2| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#2| (-859)) ELT)) (-3452 (((-114) $ $) 46 T ELT)) (-3083 (((-114) $ $) NIL (|has| |#2| (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#2| (-859)) ELT)) (-4377 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-4265 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-4267 (($ $ $) 48 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) 61 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) -(((-884 |#1| |#2|) (-13 (-1010 |#2|) (-10 -8 (-15 -4198 ((-419 (-557)) $ (-557))) (-15 -3013 ((-177 (-419 (-557))) $)) (-15 -4158 ($ $)) (-15 -4158 ($ (-557) $)))) (-557) (-882 |#1|)) (T -884)) -((-4198 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-419 (-557))) (-5 *1 (-884 *4 *5)) (-5 *3 (-557)) (-4 *5 (-882 *4)))) (-3013 (*1 *2 *1) (-12 (-14 *3 (-557)) (-5 *2 (-177 (-419 (-557)))) (-5 *1 (-884 *3 *4)) (-4 *4 (-882 *3)))) (-4158 (*1 *1 *1) (-12 (-14 *2 (-557)) (-5 *1 (-884 *2 *3)) (-4 *3 (-882 *2)))) (-4158 (*1 *1 *2 *1) (-12 (-5 *2 (-557)) (-14 *3 *2) (-5 *1 (-884 *3 *4)) (-4 *4 (-882 *3))))) -((-2965 (((-114) $ $) NIL (-12 (|has| |#1| (-1120)) (|has| |#2| (-1120))) ELT)) (-4224 ((|#2| $) 12 T ELT)) (-3014 (($ |#1| |#2|) 9 T ELT)) (-3658 (((-1178) $) NIL (-12 (|has| |#1| (-1120)) (|has| |#2| (-1120))) ELT)) (-3659 (((-1139) $) NIL (-12 (|has| |#1| (-1120)) (|has| |#2| (-1120))) ELT)) (-4229 ((|#1| $) 11 T ELT)) (-3948 (($ |#1| |#2|) 10 T ELT)) (-4374 (((-875) $) 18 (-3955 (-12 (|has| |#1| (-628 (-875))) (|has| |#2| (-628 (-875)))) (-12 (|has| |#1| (-1120)) (|has| |#2| (-1120)))) ELT)) (-1376 (((-114) $ $) NIL (-12 (|has| |#1| (-1120)) (|has| |#2| (-1120))) ELT)) (-3452 (((-114) $ $) 23 (-12 (|has| |#1| (-1120)) (|has| |#2| (-1120))) ELT))) -(((-885 |#1| |#2|) (-13 (-1236) (-10 -8 (IF (|has| |#1| (-628 (-875))) (IF (|has| |#2| (-628 (-875))) (-6 (-628 (-875))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1120)) (IF (|has| |#2| (-1120)) (-6 (-1120)) |%noBranch|) |%noBranch|) (-15 -3014 ($ |#1| |#2|)) (-15 -3948 ($ |#1| |#2|)) (-15 -4229 (|#1| $)) (-15 -4224 (|#2| $)))) (-1236) (-1236)) (T -885)) -((-3014 (*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1236)) (-4 *3 (-1236)))) (-3948 (*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1236)) (-4 *3 (-1236)))) (-4229 (*1 *2 *1) (-12 (-4 *2 (-1236)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1236)))) (-4224 (*1 *2 *1) (-12 (-4 *2 (-1236)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1236))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3356 (((-557) $) 16 T ELT)) (-3016 (($ (-159)) 13 T ELT)) (-3015 (($ (-159)) 14 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3355 (((-159) $) 15 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3018 (($ (-159)) 11 T ELT)) (-3019 (($ (-159)) 10 T ELT)) (-4374 (((-875) $) 24 T ELT) (($ (-159)) 17 T ELT)) (-3017 (($ (-159)) 12 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-886) (-13 (-1120) (-631 (-159)) (-10 -8 (-15 -3019 ($ (-159))) (-15 -3018 ($ (-159))) (-15 -3017 ($ (-159))) (-15 -3016 ($ (-159))) (-15 -3015 ($ (-159))) (-15 -3355 ((-159) $)) (-15 -3356 ((-557) $))))) (T -886)) -((-3019 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-886)))) (-3018 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-886)))) (-3017 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-886)))) (-3016 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-886)))) (-3015 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-886)))) (-3355 (*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-886)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-886))))) -((-4374 (((-326 (-557)) (-419 (-963 (-48)))) 23 T ELT) (((-326 (-557)) (-963 (-48))) 18 T ELT))) -(((-887) (-10 -7 (-15 -4374 ((-326 (-557)) (-963 (-48)))) (-15 -4374 ((-326 (-557)) (-419 (-963 (-48))))))) (T -887)) -((-4374 (*1 *2 *3) (-12 (-5 *3 (-419 (-963 (-48)))) (-5 *2 (-326 (-557))) (-5 *1 (-887)))) (-4374 (*1 *2 *3) (-12 (-5 *3 (-963 (-48))) (-5 *2 (-326 (-557))) (-5 *1 (-887))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 18 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-3992 (((-114) $ (|[\|\|]| (-518))) 9 T ELT) (((-114) $ (|[\|\|]| (-1178))) 13 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3998 (((-518) $) 10 T ELT) (((-1178) $) 14 T ELT)) (-3452 (((-114) $ $) 15 T ELT))) -(((-888) (-13 (-1102) (-1282) (-10 -8 (-15 -3992 ((-114) $ (|[\|\|]| (-518)))) (-15 -3998 ((-518) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-1178)))) (-15 -3998 ((-1178) $))))) (T -888)) -((-3992 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)) (-5 *1 (-888)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-888)))) (-3992 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-114)) (-5 *1 (-888)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-888))))) -((-4386 (((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)) 15 T ELT))) -(((-889 |#1| |#2|) (-10 -7 (-15 -4386 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) (-1236) (-1236)) (T -889)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6))))) -((-3789 (($ |#1| |#1|) 8 T ELT)) (-3022 ((|#1| $ (-789)) 15 T ELT))) -(((-890 |#1|) (-10 -8 (-15 -3789 ($ |#1| |#1|)) (-15 -3022 (|#1| $ (-789)))) (-1236)) (T -890)) -((-3022 (*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-5 *1 (-890 *2)) (-4 *2 (-1236)))) (-3789 (*1 *1 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1236))))) -((-4386 (((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)) 15 T ELT))) -(((-891 |#1| |#2|) (-10 -7 (-15 -4386 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) (-1236) (-1236)) (T -891)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6))))) -((-3789 (($ |#1| |#1| |#1|) 8 T ELT)) (-3022 ((|#1| $ (-789)) 15 T ELT))) -(((-892 |#1|) (-10 -8 (-15 -3789 ($ |#1| |#1| |#1|)) (-15 -3022 (|#1| $ (-789)))) (-1236)) (T -892)) -((-3022 (*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-5 *1 (-892 *2)) (-4 *2 (-1236)))) (-3789 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1236))))) -((-3020 (((-659 (-1201)) (-1178)) 9 T ELT))) -(((-893) (-10 -7 (-15 -3020 ((-659 (-1201)) (-1178))))) (T -893)) -((-3020 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-659 (-1201))) (-5 *1 (-893))))) -((-4386 (((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)) 15 T ELT))) -(((-894 |#1| |#2|) (-10 -7 (-15 -4386 ((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)))) (-1236) (-1236)) (T -894)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-895 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-895 *6)) (-5 *1 (-894 *5 *6))))) -((-3021 (($ |#1| |#1| |#1|) 8 T ELT)) (-3022 ((|#1| $ (-789)) 15 T ELT))) -(((-895 |#1|) (-10 -8 (-15 -3021 ($ |#1| |#1| |#1|)) (-15 -3022 (|#1| $ (-789)))) (-1236)) (T -895)) -((-3022 (*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-5 *1 (-895 *2)) (-4 *2 (-1236)))) (-3021 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-1236))))) -((-3025 (((-1174 (-659 (-557))) (-659 (-557)) (-1174 (-659 (-557)))) 41 T ELT)) (-3024 (((-1174 (-659 (-557))) (-659 (-557)) (-659 (-557))) 31 T ELT)) (-3026 (((-1174 (-659 (-557))) (-659 (-557))) 53 T ELT) (((-1174 (-659 (-557))) (-659 (-557)) (-659 (-557))) 50 T ELT)) (-3027 (((-1174 (-659 (-557))) (-557)) 55 T ELT)) (-3023 (((-1174 (-659 (-936))) (-1174 (-659 (-936)))) 22 T ELT)) (-3408 (((-659 (-936)) (-659 (-936))) 18 T ELT))) -(((-896) (-10 -7 (-15 -3408 ((-659 (-936)) (-659 (-936)))) (-15 -3023 ((-1174 (-659 (-936))) (-1174 (-659 (-936))))) (-15 -3024 ((-1174 (-659 (-557))) (-659 (-557)) (-659 (-557)))) (-15 -3025 ((-1174 (-659 (-557))) (-659 (-557)) (-1174 (-659 (-557))))) (-15 -3026 ((-1174 (-659 (-557))) (-659 (-557)) (-659 (-557)))) (-15 -3026 ((-1174 (-659 (-557))) (-659 (-557)))) (-15 -3027 ((-1174 (-659 (-557))) (-557))))) (T -896)) -((-3027 (*1 *2 *3) (-12 (-5 *2 (-1174 (-659 (-557)))) (-5 *1 (-896)) (-5 *3 (-557)))) (-3026 (*1 *2 *3) (-12 (-5 *2 (-1174 (-659 (-557)))) (-5 *1 (-896)) (-5 *3 (-659 (-557))))) (-3026 (*1 *2 *3 *3) (-12 (-5 *2 (-1174 (-659 (-557)))) (-5 *1 (-896)) (-5 *3 (-659 (-557))))) (-3025 (*1 *2 *3 *2) (-12 (-5 *2 (-1174 (-659 (-557)))) (-5 *3 (-659 (-557))) (-5 *1 (-896)))) (-3024 (*1 *2 *3 *3) (-12 (-5 *2 (-1174 (-659 (-557)))) (-5 *1 (-896)) (-5 *3 (-659 (-557))))) (-3023 (*1 *2 *2) (-12 (-5 *2 (-1174 (-659 (-936)))) (-5 *1 (-896)))) (-3408 (*1 *2 *2) (-12 (-5 *2 (-659 (-936))) (-5 *1 (-896))))) -((-4400 (((-903 (-391)) $) 9 (|has| |#1| (-629 (-903 (-391)))) ELT) (((-903 (-557)) $) 8 (|has| |#1| (-629 (-903 (-557)))) ELT))) -(((-897 |#1|) (-142) (-1236)) (T -897)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-629 (-903 (-557)))) (-6 (-629 (-903 (-557)))) |%noBranch|) (IF (|has| |t#1| (-629 (-903 (-391)))) (-6 (-629 (-903 (-391)))) |%noBranch|))) -(((-629 (-903 (-391))) |has| |#1| (-629 (-903 (-391)))) ((-629 (-903 (-557))) |has| |#1| (-629 (-903 (-557))))) -((-2965 (((-114) $ $) NIL T ELT)) (-4042 (($) 14 T ELT)) (-3029 (($ (-901 |#1| |#2|) (-901 |#1| |#3|)) 28 T ELT)) (-3028 (((-901 |#1| |#3|) $) 16 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3037 (((-114) $) 22 T ELT)) (-3036 (($) 19 T ELT)) (-4374 (((-875) $) 31 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3249 (((-901 |#1| |#2|) $) 15 T ELT)) (-3452 (((-114) $ $) 26 T ELT))) -(((-898 |#1| |#2| |#3|) (-13 (-1120) (-10 -8 (-15 -3037 ((-114) $)) (-15 -3036 ($)) (-15 -4042 ($)) (-15 -3029 ($ (-901 |#1| |#2|) (-901 |#1| |#3|))) (-15 -3249 ((-901 |#1| |#2|) $)) (-15 -3028 ((-901 |#1| |#3|) $)))) (-1120) (-1120) (-684 |#2|)) (T -898)) -((-3037 (*1 *2 *1) (-12 (-4 *4 (-1120)) (-5 *2 (-114)) (-5 *1 (-898 *3 *4 *5)) (-4 *3 (-1120)) (-4 *5 (-684 *4)))) (-3036 (*1 *1) (-12 (-4 *3 (-1120)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1120)) (-4 *4 (-684 *3)))) (-4042 (*1 *1) (-12 (-4 *3 (-1120)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1120)) (-4 *4 (-684 *3)))) (-3029 (*1 *1 *2 *3) (-12 (-5 *2 (-901 *4 *5)) (-5 *3 (-901 *4 *6)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-684 *5)) (-5 *1 (-898 *4 *5 *6)))) (-3249 (*1 *2 *1) (-12 (-4 *4 (-1120)) (-5 *2 (-901 *3 *4)) (-5 *1 (-898 *3 *4 *5)) (-4 *3 (-1120)) (-4 *5 (-684 *4)))) (-3028 (*1 *2 *1) (-12 (-4 *4 (-1120)) (-5 *2 (-901 *3 *5)) (-5 *1 (-898 *3 *4 *5)) (-4 *3 (-1120)) (-4 *5 (-684 *4))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3195 (((-901 |#1| $) $ (-903 |#1|) (-901 |#1| $)) 17 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-899 |#1|) (-142) (-1120)) (T -899)) -((-3195 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-901 *4 *1)) (-5 *3 (-903 *4)) (-4 *1 (-899 *4)) (-4 *4 (-1120))))) -(-13 (-1120) (-10 -8 (-15 -3195 ((-901 |t#1| $) $ (-903 |t#1|) (-901 |t#1| $))))) -(((-102) . T) ((-628 (-875)) . T) ((-1120) . T) ((-1236) . T)) -((-3030 (((-114) (-659 |#2|) |#3|) 23 T ELT) (((-114) |#2| |#3|) 18 T ELT)) (-3031 (((-901 |#1| |#2|) |#2| |#3|) 45 (-12 (-2957 (|has| |#2| (-1057 (-1196)))) (-2957 (|has| |#2| (-1068)))) ELT) (((-659 (-305 (-963 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1068)) (-2957 (|has| |#2| (-1057 (-1196))))) ELT) (((-659 (-305 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1057 (-1196))) ELT) (((-898 |#1| |#2| (-659 |#2|)) (-659 |#2|) |#3|) 21 T ELT))) -(((-900 |#1| |#2| |#3|) (-10 -7 (-15 -3030 ((-114) |#2| |#3|)) (-15 -3030 ((-114) (-659 |#2|) |#3|)) (-15 -3031 ((-898 |#1| |#2| (-659 |#2|)) (-659 |#2|) |#3|)) (IF (|has| |#2| (-1057 (-1196))) (-15 -3031 ((-659 (-305 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1068)) (-15 -3031 ((-659 (-305 (-963 |#2|))) |#2| |#3|)) (-15 -3031 ((-901 |#1| |#2|) |#2| |#3|))))) (-1120) (-899 |#1|) (-629 (-903 |#1|))) (T -900)) -((-3031 (*1 *2 *3 *4) (-12 (-4 *5 (-1120)) (-5 *2 (-901 *5 *3)) (-5 *1 (-900 *5 *3 *4)) (-2957 (-4 *3 (-1057 (-1196)))) (-2957 (-4 *3 (-1068))) (-4 *3 (-899 *5)) (-4 *4 (-629 (-903 *5))))) (-3031 (*1 *2 *3 *4) (-12 (-4 *5 (-1120)) (-5 *2 (-659 (-305 (-963 *3)))) (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-1068)) (-2957 (-4 *3 (-1057 (-1196)))) (-4 *3 (-899 *5)) (-4 *4 (-629 (-903 *5))))) (-3031 (*1 *2 *3 *4) (-12 (-4 *5 (-1120)) (-5 *2 (-659 (-305 *3))) (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-1057 (-1196))) (-4 *3 (-899 *5)) (-4 *4 (-629 (-903 *5))))) (-3031 (*1 *2 *3 *4) (-12 (-4 *5 (-1120)) (-4 *6 (-899 *5)) (-5 *2 (-898 *5 *6 (-659 *6))) (-5 *1 (-900 *5 *6 *4)) (-5 *3 (-659 *6)) (-4 *4 (-629 (-903 *5))))) (-3030 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6)) (-4 *6 (-899 *5)) (-4 *5 (-1120)) (-5 *2 (-114)) (-5 *1 (-900 *5 *6 *4)) (-4 *4 (-629 (-903 *5))))) (-3030 (*1 *2 *3 *4) (-12 (-4 *5 (-1120)) (-5 *2 (-114)) (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-899 *5)) (-4 *4 (-629 (-903 *5)))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3650 (($ $ $) 40 T ELT)) (-3058 (((-3 (-114) #1="failed") $ (-903 |#1|)) 37 T ELT)) (-4042 (($) 12 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3033 (($ (-903 |#1|) |#2| $) 20 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3035 (((-3 |#2| #1#) (-903 |#1|) $) 51 T ELT)) (-3037 (((-114) $) 15 T ELT)) (-3036 (($) 13 T ELT)) (-3673 (((-659 (-2 (|:| -4288 (-1196)) (|:| -2284 |#2|))) $) 25 T ELT)) (-3948 (($ (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 |#2|)))) 23 T ELT)) (-4374 (((-875) $) 45 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3032 (($ (-903 |#1|) |#2| $ |#2|) 49 T ELT)) (-3034 (($ (-903 |#1|) |#2| $) 48 T ELT)) (-3452 (((-114) $ $) 42 T ELT))) -(((-901 |#1| |#2|) (-13 (-1120) (-10 -8 (-15 -3037 ((-114) $)) (-15 -3036 ($)) (-15 -4042 ($)) (-15 -3650 ($ $ $)) (-15 -3035 ((-3 |#2| #1="failed") (-903 |#1|) $)) (-15 -3034 ($ (-903 |#1|) |#2| $)) (-15 -3033 ($ (-903 |#1|) |#2| $)) (-15 -3032 ($ (-903 |#1|) |#2| $ |#2|)) (-15 -3673 ((-659 (-2 (|:| -4288 (-1196)) (|:| -2284 |#2|))) $)) (-15 -3948 ($ (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 |#2|))))) (-15 -3058 ((-3 (-114) #1#) $ (-903 |#1|))))) (-1120) (-1120)) (T -901)) -((-3037 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-901 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))) (-3036 (*1 *1) (-12 (-5 *1 (-901 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-4042 (*1 *1) (-12 (-5 *1 (-901 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-3650 (*1 *1 *1 *1) (-12 (-5 *1 (-901 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-3035 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1120)) (-4 *2 (-1120)) (-5 *1 (-901 *4 *2)))) (-3034 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1120)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1120)))) (-3033 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1120)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1120)))) (-3032 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1120)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1120)))) (-3673 (*1 *2 *1) (-12 (-5 *2 (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 *4)))) (-5 *1 (-901 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 *4)))) (-4 *4 (-1120)) (-5 *1 (-901 *3 *4)) (-4 *3 (-1120)))) (-3058 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1120)) (-5 *2 (-114)) (-5 *1 (-901 *4 *5)) (-4 *5 (-1120))))) -((-4386 (((-901 |#1| |#3|) (-1 |#3| |#2|) (-901 |#1| |#2|)) 22 T ELT))) -(((-902 |#1| |#2| |#3|) (-10 -7 (-15 -4386 ((-901 |#1| |#3|) (-1 |#3| |#2|) (-901 |#1| |#2|)))) (-1120) (-1120) (-1120)) (T -902)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-901 *5 *6)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-901 *5 *7)) (-5 *1 (-902 *5 *6 *7))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3045 (($ $ (-659 (-51))) 74 T ELT)) (-3482 (((-659 $) $) 139 T ELT)) (-3042 (((-2 (|:| |var| (-659 (-1196))) (|:| |pred| (-51))) $) 30 T ELT)) (-3676 (((-114) $) 35 T ELT)) (-3043 (($ $ (-659 (-1196)) (-51)) 31 T ELT)) (-3046 (($ $ (-659 (-51))) 73 T ELT)) (-3573 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1196) #1#) $) 167 T ELT)) (-3572 ((|#1| $) 68 T ELT) (((-1196) $) NIL T ELT)) (-3040 (($ $) 126 T ELT)) (-3052 (((-114) $) 55 T ELT)) (-3047 (((-659 (-51)) $) 50 T ELT)) (-3044 (($ (-1196) (-114) (-114) (-114)) 75 T ELT)) (-3038 (((-3 (-659 $) #1#) (-659 $)) 82 T ELT)) (-3049 (((-114) $) 58 T ELT)) (-3050 (((-114) $) 57 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3222 (((-3 (-659 $) #1#) $) 41 T ELT)) (-3055 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-3224 (((-3 (-2 (|:| |val| $) (|:| -2630 $)) #1#) $) 97 T ELT)) (-3221 (((-3 (-659 $) #1#) $) 40 T ELT)) (-3056 (((-3 (-659 $) #1#) $ (-115)) 124 T ELT) (((-3 (-2 (|:| -2907 (-115)) (|:| |arg| (-659 $))) #1#) $) 107 T ELT)) (-3054 (((-3 (-659 $) #1#) $) 42 T ELT)) (-3223 (((-3 (-2 (|:| |val| $) (|:| -2630 (-789))) #1#) $) 45 T ELT)) (-3053 (((-114) $) 34 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3041 (((-114) $) 28 T ELT)) (-3048 (((-114) $) 52 T ELT)) (-3039 (((-659 (-51)) $) 130 T ELT)) (-3051 (((-114) $) 56 T ELT)) (-4228 (($ (-115) (-659 $)) 104 T ELT)) (-3741 (((-789) $) 33 T ELT)) (-3818 (($ $) 72 T ELT)) (-4400 (($ (-659 $)) 69 T ELT)) (-4381 (((-114) $) 32 T ELT)) (-4374 (((-875) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1196)) 76 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3059 (($ $ (-51)) 129 T ELT)) (-3057 (($) 103 T CONST)) (-3063 (($) 83 T CONST)) (-3452 (((-114) $ $) 93 T ELT)) (-4377 (($ $ $) 117 T ELT)) (-4267 (($ $ $) 121 T ELT)) (** (($ $ (-789)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) -(((-903 |#1|) (-13 (-1120) (-1057 |#1|) (-1057 (-1196)) (-10 -8 (-15 0 ($) -4380) (-15 1 ($) -4380) (-15 -3221 ((-3 (-659 $) #1="failed") $)) (-15 -3222 ((-3 (-659 $) #1#) $)) (-15 -3056 ((-3 (-659 $) #1#) $ (-115))) (-15 -3056 ((-3 (-2 (|:| -2907 (-115)) (|:| |arg| (-659 $))) #1#) $)) (-15 -3223 ((-3 (-2 (|:| |val| $) (|:| -2630 (-789))) #1#) $)) (-15 -3055 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -3054 ((-3 (-659 $) #1#) $)) (-15 -3224 ((-3 (-2 (|:| |val| $) (|:| -2630 $)) #1#) $)) (-15 -4228 ($ (-115) (-659 $))) (-15 -4267 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-789))) (-15 ** ($ $ $)) (-15 -4377 ($ $ $)) (-15 -3741 ((-789) $)) (-15 -4400 ($ (-659 $))) (-15 -3818 ($ $)) (-15 -3053 ((-114) $)) (-15 -3052 ((-114) $)) (-15 -3676 ((-114) $)) (-15 -4381 ((-114) $)) (-15 -3051 ((-114) $)) (-15 -3050 ((-114) $)) (-15 -3049 ((-114) $)) (-15 -3048 ((-114) $)) (-15 -3047 ((-659 (-51)) $)) (-15 -3046 ($ $ (-659 (-51)))) (-15 -3045 ($ $ (-659 (-51)))) (-15 -3044 ($ (-1196) (-114) (-114) (-114))) (-15 -3043 ($ $ (-659 (-1196)) (-51))) (-15 -3042 ((-2 (|:| |var| (-659 (-1196))) (|:| |pred| (-51))) $)) (-15 -3041 ((-114) $)) (-15 -3040 ($ $)) (-15 -3059 ($ $ (-51))) (-15 -3039 ((-659 (-51)) $)) (-15 -3482 ((-659 $) $)) (-15 -3038 ((-3 (-659 $) #1#) (-659 $))))) (-1120)) (T -903)) -((-3057 (*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1120)))) (-3063 (*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1120)))) (-3221 (*1 *2 *1) (|partial| -12 (-5 *2 (-659 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3222 (*1 *2 *1) (|partial| -12 (-5 *2 (-659 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3056 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-659 (-903 *4))) (-5 *1 (-903 *4)) (-4 *4 (-1120)))) (-3056 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2907 (-115)) (|:| |arg| (-659 (-903 *3))))) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3223 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -2630 (-789)))) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3055 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-903 *3)) (|:| |den| (-903 *3)))) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3054 (*1 *2 *1) (|partial| -12 (-5 *2 (-659 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3224 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -2630 (-903 *3)))) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-4228 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-659 (-903 *4))) (-5 *1 (-903 *4)) (-4 *4 (-1120)))) (-4267 (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1120)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1120)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1120)))) (-4377 (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1120)))) (-3741 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-659 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3818 (*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1120)))) (-3053 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3052 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3676 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-4381 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3050 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3049 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3048 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3047 (*1 *2 *1) (-12 (-5 *2 (-659 (-51))) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3046 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-51))) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3045 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-51))) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3044 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-114)) (-5 *1 (-903 *4)) (-4 *4 (-1120)))) (-3043 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 (-1196))) (-5 *3 (-51)) (-5 *1 (-903 *4)) (-4 *4 (-1120)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-659 (-1196))) (|:| |pred| (-51)))) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3041 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3040 (*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1120)))) (-3059 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3039 (*1 *2 *1) (-12 (-5 *2 (-659 (-51))) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3482 (*1 *2 *1) (-12 (-5 *2 (-659 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) (-3038 (*1 *2 *2) (|partial| -12 (-5 *2 (-659 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1120))))) -((-3625 (((-903 |#1|) (-903 |#1|) (-659 (-1196)) (-1 (-114) (-659 |#2|))) 32 T ELT) (((-903 |#1|) (-903 |#1|) (-659 (-1 (-114) |#2|))) 46 T ELT) (((-903 |#1|) (-903 |#1|) (-1 (-114) |#2|)) 35 T ELT)) (-3058 (((-114) (-659 |#2|) (-903 |#1|)) 42 T ELT) (((-114) |#2| (-903 |#1|)) 36 T ELT)) (-3949 (((-1 (-114) |#2|) (-903 |#1|)) 16 T ELT)) (-3060 (((-659 |#2|) (-903 |#1|)) 24 T ELT)) (-3059 (((-903 |#1|) (-903 |#1|) |#2|) 20 T ELT))) -(((-904 |#1| |#2|) (-10 -7 (-15 -3625 ((-903 |#1|) (-903 |#1|) (-1 (-114) |#2|))) (-15 -3625 ((-903 |#1|) (-903 |#1|) (-659 (-1 (-114) |#2|)))) (-15 -3625 ((-903 |#1|) (-903 |#1|) (-659 (-1196)) (-1 (-114) (-659 |#2|)))) (-15 -3949 ((-1 (-114) |#2|) (-903 |#1|))) (-15 -3058 ((-114) |#2| (-903 |#1|))) (-15 -3058 ((-114) (-659 |#2|) (-903 |#1|))) (-15 -3059 ((-903 |#1|) (-903 |#1|) |#2|)) (-15 -3060 ((-659 |#2|) (-903 |#1|)))) (-1120) (-1236)) (T -904)) -((-3060 (*1 *2 *3) (-12 (-5 *3 (-903 *4)) (-4 *4 (-1120)) (-5 *2 (-659 *5)) (-5 *1 (-904 *4 *5)) (-4 *5 (-1236)))) (-3059 (*1 *2 *2 *3) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1120)) (-5 *1 (-904 *4 *3)) (-4 *3 (-1236)))) (-3058 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1120)) (-4 *6 (-1236)) (-5 *2 (-114)) (-5 *1 (-904 *5 *6)))) (-3058 (*1 *2 *3 *4) (-12 (-5 *4 (-903 *5)) (-4 *5 (-1120)) (-5 *2 (-114)) (-5 *1 (-904 *5 *3)) (-4 *3 (-1236)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-903 *4)) (-4 *4 (-1120)) (-5 *2 (-1 (-114) *5)) (-5 *1 (-904 *4 *5)) (-4 *5 (-1236)))) (-3625 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-903 *5)) (-5 *3 (-659 (-1196))) (-5 *4 (-1 (-114) (-659 *6))) (-4 *5 (-1120)) (-4 *6 (-1236)) (-5 *1 (-904 *5 *6)))) (-3625 (*1 *2 *2 *3) (-12 (-5 *2 (-903 *4)) (-5 *3 (-659 (-1 (-114) *5))) (-4 *4 (-1120)) (-4 *5 (-1236)) (-5 *1 (-904 *4 *5)))) (-3625 (*1 *2 *2 *3) (-12 (-5 *2 (-903 *4)) (-5 *3 (-1 (-114) *5)) (-4 *4 (-1120)) (-4 *5 (-1236)) (-5 *1 (-904 *4 *5))))) -((-4386 (((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)) 19 T ELT))) -(((-905 |#1| |#2|) (-10 -7 (-15 -4386 ((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)))) (-1120) (-1120)) (T -905)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-903 *6)) (-5 *1 (-905 *5 *6))))) -((-2965 (((-114) $ $) NIL T ELT)) (-4362 (((-659 |#1|) $) 19 T ELT)) (-3061 (((-114) $) 49 T ELT)) (-3573 (((-3 (-690 |#1|) "failed") $) 55 T ELT)) (-3572 (((-690 |#1|) $) 53 T ELT)) (-4227 (($ $) 23 T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-4261 (((-789) $) 60 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4229 (((-690 |#1|) $) 21 T ELT)) (-4374 (((-875) $) 47 T ELT) (($ (-690 |#1|)) 26 T ELT) (((-839 |#1|) $) 36 T ELT) (($ |#1|) 25 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3063 (($) 9 T CONST)) (-3062 (((-659 (-690 |#1|)) $) 28 T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 12 T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 66 T ELT))) -(((-906 |#1|) (-13 (-859) (-1057 (-690 |#1|)) (-10 -8 (-15 1 ($) -4380) (-15 -4374 ((-839 |#1|) $)) (-15 -4374 ($ |#1|)) (-15 -4229 ((-690 |#1|) $)) (-15 -4261 ((-789) $)) (-15 -3062 ((-659 (-690 |#1|)) $)) (-15 -4227 ($ $)) (-15 -3061 ((-114) $)) (-15 -4362 ((-659 |#1|) $)))) (-859)) (T -906)) -((-3063 (*1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-859)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-839 *3)) (-5 *1 (-906 *3)) (-4 *3 (-859)))) (-4374 (*1 *1 *2) (-12 (-5 *1 (-906 *2)) (-4 *2 (-859)))) (-4229 (*1 *2 *1) (-12 (-5 *2 (-690 *3)) (-5 *1 (-906 *3)) (-4 *3 (-859)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-906 *3)) (-4 *3 (-859)))) (-3062 (*1 *2 *1) (-12 (-5 *2 (-659 (-690 *3))) (-5 *1 (-906 *3)) (-4 *3 (-859)))) (-4227 (*1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-859)))) (-3061 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-906 *3)) (-4 *3 (-859)))) (-4362 (*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-906 *3)) (-4 *3 (-859))))) -((-3892 ((|#1| |#1| |#1|) 19 T ELT))) -(((-907 |#1| |#2|) (-10 -7 (-15 -3892 (|#1| |#1| |#1|))) (-1262 |#2|) (-1068)) (T -907)) -((-3892 (*1 *2 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-907 *2 *3)) (-4 *2 (-1262 *3))))) -((-3068 ((|#2| $ |#3|) 10 T ELT))) -(((-908 |#1| |#2| |#3|) (-10 -7 (-15 -3068 (|#2| |#1| |#3|))) (-909 |#2| |#3|) (-1236) (-1236)) (T -908)) -NIL -((-4186 ((|#1| $ |#2|) 7 T ELT)) (-3068 ((|#1| $ |#2|) 6 T ELT))) -(((-909 |#1| |#2|) (-142) (-1236) (-1236)) (T -909)) -((-4186 (*1 *2 *1 *3) (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1236)))) (-3068 (*1 *2 *1 *3) (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1236))))) -(-13 (-1236) (-10 -8 (-15 -4186 (|t#1| $ |t#2|)) (-15 -3068 (|t#1| $ |t#2|)))) -(((-1236) . T)) -((-2965 (((-114) $ $) 7 T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |pde| (-659 (-326 (-229)))) (|:| |constraints| (-659 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) (|:| |dFinish| (-707 (-229)))))) (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) (|:| |tol| (-229)))) 18 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3064 (((-1054) (-2 (|:| |pde| (-659 (-326 (-229)))) (|:| |constraints| (-659 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) (|:| |dFinish| (-707 (-229)))))) (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) (|:| |tol| (-229)))) 17 T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-910) (-142)) (T -910)) -((-3067 (*1 *2 *3 *4) (-12 (-4 *1 (-910)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |pde| (-659 (-326 (-229)))) (|:| |constraints| (-659 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) (|:| |dFinish| (-707 (-229)))))) (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) (|:| |tol| (-229)))) (-5 *2 (-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)))))) (-3064 (*1 *2 *3) (-12 (-4 *1 (-910)) (-5 *3 (-2 (|:| |pde| (-659 (-326 (-229)))) (|:| |constraints| (-659 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) (|:| |dFinish| (-707 (-229)))))) (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) (|:| |tol| (-229)))) (-5 *2 (-1054))))) -(-13 (-1120) (-10 -7 (-15 -3067 ((-2 (|:| -3067 (-391)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |pde| (-659 (-326 (-229)))) (|:| |constraints| (-659 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) (|:| |dFinish| (-707 (-229)))))) (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) (|:| |tol| (-229))))) (-15 -3064 ((-1054) (-2 (|:| |pde| (-659 (-326 (-229)))) (|:| |constraints| (-659 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) (|:| |dFinish| (-707 (-229)))))) (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) (|:| |tol| (-229))))))) -(((-102) . T) ((-628 (-875)) . T) ((-1120) . T) ((-1236) . T)) -((-3066 ((|#1| |#1| (-789)) 26 T ELT)) (-3065 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3853 (((-3 (-2 (|:| -3538 |#1|) (|:| -3537 |#1|)) #1#) |#1| (-789) (-789)) 29 T ELT) (((-659 |#1|) |#1|) 38 T ELT))) -(((-911 |#1| |#2|) (-10 -7 (-15 -3853 ((-659 |#1|) |#1|)) (-15 -3853 ((-3 (-2 (|:| -3538 |#1|) (|:| -3537 |#1|)) #1="failed") |#1| (-789) (-789))) (-15 -3065 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3066 (|#1| |#1| (-789)))) (-1262 |#2|) (-376)) (T -911)) -((-3066 (*1 *2 *2 *3) (-12 (-5 *3 (-789)) (-4 *4 (-376)) (-5 *1 (-911 *2 *4)) (-4 *2 (-1262 *4)))) (-3065 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-376)) (-5 *1 (-911 *2 *3)) (-4 *2 (-1262 *3)))) (-3853 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-789)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3538 *3) (|:| -3537 *3))) (-5 *1 (-911 *3 *5)) (-4 *3 (-1262 *5)))) (-3853 (*1 *2 *3) (-12 (-4 *4 (-376)) (-5 *2 (-659 *3)) (-5 *1 (-911 *3 *4)) (-4 *3 (-1262 *4))))) -((-3999 (((-1054) (-391) (-391) (-391) (-391) (-789) (-789) (-659 (-326 (-391))) (-659 (-659 (-326 (-391)))) (-1178)) 103 T ELT) (((-1054) (-391) (-391) (-391) (-391) (-789) (-789) (-659 (-326 (-391))) (-659 (-659 (-326 (-391)))) (-1178) (-229)) 100 T ELT) (((-1054) (-913) (-1082)) 92 T ELT) (((-1054) (-913)) 93 T ELT)) (-3067 (((-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178)))) (-913) (-1082)) 62 T ELT) (((-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178)))) (-913)) 64 T ELT))) -(((-912) (-10 -7 (-15 -3999 ((-1054) (-913))) (-15 -3999 ((-1054) (-913) (-1082))) (-15 -3999 ((-1054) (-391) (-391) (-391) (-391) (-789) (-789) (-659 (-326 (-391))) (-659 (-659 (-326 (-391)))) (-1178) (-229))) (-15 -3999 ((-1054) (-391) (-391) (-391) (-391) (-789) (-789) (-659 (-326 (-391))) (-659 (-659 (-326 (-391)))) (-1178))) (-15 -3067 ((-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178)))) (-913))) (-15 -3067 ((-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178)))) (-913) (-1082))))) (T -912)) -((-3067 (*1 *2 *3 *4) (-12 (-5 *3 (-913)) (-5 *4 (-1082)) (-5 *2 (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178))))) (-5 *1 (-912)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) (|:| |explanations| (-659 (-1178))))) (-5 *1 (-912)))) (-3999 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-789)) (-5 *6 (-659 (-659 (-326 *3)))) (-5 *7 (-1178)) (-5 *5 (-659 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1054)) (-5 *1 (-912)))) (-3999 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-789)) (-5 *6 (-659 (-659 (-326 *3)))) (-5 *7 (-1178)) (-5 *8 (-229)) (-5 *5 (-659 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1054)) (-5 *1 (-912)))) (-3999 (*1 *2 *3 *4) (-12 (-5 *3 (-913)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-912)))) (-3999 (*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-1054)) (-5 *1 (-912))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3572 (((-2 (|:| |pde| (-659 (-326 (-229)))) (|:| |constraints| (-659 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) (|:| |dFinish| (-707 (-229)))))) (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) (|:| |tol| (-229))) $) 19 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 21 T ELT) (($ (-2 (|:| |pde| (-659 (-326 (-229)))) (|:| |constraints| (-659 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) (|:| |dFinish| (-707 (-229)))))) (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) (|:| |tol| (-229)))) 18 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-913) (-13 (-1120) (-10 -8 (-15 -4374 ($ (-2 (|:| |pde| (-659 (-326 (-229)))) (|:| |constraints| (-659 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) (|:| |dFinish| (-707 (-229)))))) (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) (|:| |tol| (-229))))) (-15 -3572 ((-2 (|:| |pde| (-659 (-326 (-229)))) (|:| |constraints| (-659 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) (|:| |dFinish| (-707 (-229)))))) (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) (|:| |tol| (-229))) $))))) (T -913)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-659 (-326 (-229)))) (|:| |constraints| (-659 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) (|:| |dFinish| (-707 (-229)))))) (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) (|:| |tol| (-229)))) (-5 *1 (-913)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-659 (-326 (-229)))) (|:| |constraints| (-659 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) (|:| |dFinish| (-707 (-229)))))) (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) (|:| |tol| (-229)))) (-5 *1 (-913))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4186 (($ $ (-659 |#2|) (-659 (-789))) 44 T ELT) (($ $ |#2| (-789)) 43 T ELT) (($ $ (-659 |#2|)) 42 T ELT) (($ $ |#2|) 40 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3068 (($ $ (-659 |#2|) (-659 (-789))) 47 T ELT) (($ $ |#2| (-789)) 46 T ELT) (($ $ (-659 |#2|)) 45 T ELT) (($ $ |#2|) 41 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-914 |#1| |#2|) (-142) (-1068) (-1120)) (T -914)) -NIL -(-13 (-111 |t#1| |t#1|) (-917 |t#2|) (-10 -7 (IF (|has| |t#1| (-175)) (-6 (-735 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-666 |#1|) . T) ((-658 |#1|) |has| |#1| (-175)) ((-735 |#1|) |has| |#1| (-175)) ((-909 $ |#2|) . T) ((-917 |#2|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4186 (($ $ (-659 |#1|) (-659 (-789))) 49 T ELT) (($ $ |#1| (-789)) 48 T ELT) (($ $ (-659 |#1|)) 47 T ELT) (($ $ |#1|) 45 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $ (-659 |#1|) (-659 (-789))) 52 T ELT) (($ $ |#1| (-789)) 51 T ELT) (($ $ (-659 |#1|)) 50 T ELT) (($ $ |#1|) 46 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-915 |#1|) (-142) (-1120)) (T -915)) -NIL -(-13 (-1068) (-917 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-631 (-557)) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 $) . T) ((-744) . T) ((-909 $ |#1|) . T) ((-917 |#1|) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-4186 (($ $ |#2|) NIL T ELT) (($ $ (-659 |#2|)) 10 T ELT) (($ $ |#2| (-789)) 12 T ELT) (($ $ (-659 |#2|) (-659 (-789))) 15 T ELT)) (-3068 (($ $ |#2|) 16 T ELT) (($ $ (-659 |#2|)) 18 T ELT) (($ $ |#2| (-789)) 19 T ELT) (($ $ (-659 |#2|) (-659 (-789))) 21 T ELT))) -(((-916 |#1| |#2|) (-10 -7 (-15 -3068 (|#1| |#1| (-659 |#2|) (-659 (-789)))) (-15 -3068 (|#1| |#1| |#2| (-789))) (-15 -3068 (|#1| |#1| (-659 |#2|))) (-15 -4186 (|#1| |#1| (-659 |#2|) (-659 (-789)))) (-15 -4186 (|#1| |#1| |#2| (-789))) (-15 -4186 (|#1| |#1| (-659 |#2|))) (-15 -3068 (|#1| |#1| |#2|)) (-15 -4186 (|#1| |#1| |#2|))) (-917 |#2|) (-1120)) (T -916)) -NIL -((-4186 (($ $ |#1|) 7 T ELT) (($ $ (-659 |#1|)) 15 T ELT) (($ $ |#1| (-789)) 14 T ELT) (($ $ (-659 |#1|) (-659 (-789))) 13 T ELT)) (-3068 (($ $ |#1|) 6 T ELT) (($ $ (-659 |#1|)) 12 T ELT) (($ $ |#1| (-789)) 11 T ELT) (($ $ (-659 |#1|) (-659 (-789))) 10 T ELT))) -(((-917 |#1|) (-142) (-1120)) (T -917)) -((-4186 (*1 *1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *1 (-917 *3)) (-4 *3 (-1120)))) (-4186 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-789)) (-4 *1 (-917 *2)) (-4 *2 (-1120)))) (-4186 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 *4)) (-5 *3 (-659 (-789))) (-4 *1 (-917 *4)) (-4 *4 (-1120)))) (-3068 (*1 *1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *1 (-917 *3)) (-4 *3 (-1120)))) (-3068 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-789)) (-4 *1 (-917 *2)) (-4 *2 (-1120)))) (-3068 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 *4)) (-5 *3 (-659 (-789))) (-4 *1 (-917 *4)) (-4 *4 (-1120))))) -(-13 (-909 $ |t#1|) (-10 -8 (-15 -4186 ($ $ (-659 |t#1|))) (-15 -4186 ($ $ |t#1| (-789))) (-15 -4186 ($ $ (-659 |t#1|) (-659 (-789)))) (-15 -3068 ($ $ (-659 |t#1|))) (-15 -3068 ($ $ |t#1| (-789))) (-15 -3068 ($ $ (-659 |t#1|) (-659 (-789)))))) -(((-909 $ |#1|) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3820 ((|#1| $) 26 T ELT)) (-3424 ((|#1| $ |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-1405 (($ $ $) NIL (|has| $ (-6 -4424)) ELT)) (-1406 (($ $ $) NIL (|has| $ (-6 -4424)) ELT)) (-4216 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4424)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4424)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4424)) ELT)) (-3425 (($ $ (-659 $)) NIL (|has| $ (-6 -4424)) ELT)) (-4152 (($) NIL T CONST)) (-3537 (($ $) 25 T ELT)) (-3069 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-3288 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3430 (((-659 $) $) NIL T ELT)) (-3426 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3538 (($ $) 23 T ELT)) (-3429 (((-659 |#1|) $) NIL T ELT)) (-3945 (((-114) $) 20 T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3428 (((-557) $ $) NIL T ELT)) (-4061 (((-114) $) NIL T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-4374 (((-1223 |#1|) $) 9 T ELT) (((-875) $) 29 (|has| |#1| (-628 (-875))) ELT)) (-3940 (((-659 $) $) NIL T ELT)) (-3427 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-918 |#1|) (-13 (-121 |#1|) (-628 (-1223 |#1|)) (-10 -8 (-15 -3069 ($ |#1|)) (-15 -3069 ($ $ $)))) (-1120)) (T -918)) -((-3069 (*1 *1 *2) (-12 (-5 *1 (-918 *2)) (-4 *2 (-1120)))) (-3069 (*1 *1 *1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-1120))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3085 (((-1116 |#1|) $) 60 T ELT)) (-3308 (((-659 $) (-659 $)) 103 T ELT)) (-4051 (((-557) $) 83 T ELT)) (-4152 (($) NIL T CONST)) (-3885 (((-3 $ "failed") $) NIL T ELT)) (-4200 (((-789) $) 80 T ELT)) (-3089 (((-1116 |#1|) $ |#1|) 70 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3072 (((-114) $) 88 T ELT)) (-3074 (((-789) $) 84 T ELT)) (-2928 (($ $ $) NIL (-3955 (|has| |#1| (-381)) (|has| |#1| (-859))) ELT)) (-3256 (($ $ $) NIL (-3955 (|has| |#1| (-381)) (|has| |#1| (-859))) ELT)) (-3078 (((-2 (|:| |preimage| (-659 |#1|)) (|:| |image| (-659 |#1|))) $) 55 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) 130 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3071 (((-1116 |#1|) $) 136 (|has| |#1| (-381)) ELT)) (-3073 (((-114) $) 81 T ELT)) (-4228 ((|#1| $ |#1|) 68 T ELT)) (-4376 (((-789) $) 62 T ELT)) (-3080 (($ (-659 (-659 |#1|))) 118 T ELT)) (-3075 (((-990) $) 74 T ELT)) (-3081 (($ (-659 |#1|)) 32 T ELT)) (-3408 (($ $ $) NIL T ELT)) (-2822 (($ $ $) NIL T ELT)) (-3077 (($ (-659 (-659 |#1|))) 57 T ELT)) (-3076 (($ (-659 (-659 |#1|))) 123 T ELT)) (-3070 (($ (-659 |#1|)) 132 T ELT)) (-4374 (((-875) $) 117 T ELT) (($ (-659 (-659 |#1|))) 91 T ELT) (($ (-659 |#1|)) 92 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3063 (($) 24 T CONST)) (-2963 (((-114) $ $) NIL (-3955 (|has| |#1| (-381)) (|has| |#1| (-859))) ELT)) (-2964 (((-114) $ $) NIL (-3955 (|has| |#1| (-381)) (|has| |#1| (-859))) ELT)) (-3452 (((-114) $ $) 66 T ELT)) (-3083 (((-114) $ $) NIL (-3955 (|has| |#1| (-381)) (|has| |#1| (-859))) ELT)) (-3084 (((-114) $ $) 90 T ELT)) (-4377 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ $ $) 33 T ELT))) -(((-919 |#1|) (-13 (-921 |#1|) (-10 -8 (-15 -3078 ((-2 (|:| |preimage| (-659 |#1|)) (|:| |image| (-659 |#1|))) $)) (-15 -3077 ($ (-659 (-659 |#1|)))) (-15 -4374 ($ (-659 (-659 |#1|)))) (-15 -4374 ($ (-659 |#1|))) (-15 -3076 ($ (-659 (-659 |#1|)))) (-15 -4376 ((-789) $)) (-15 -3075 ((-990) $)) (-15 -4200 ((-789) $)) (-15 -3074 ((-789) $)) (-15 -4051 ((-557) $)) (-15 -3073 ((-114) $)) (-15 -3072 ((-114) $)) (-15 -3308 ((-659 $) (-659 $))) (IF (|has| |#1| (-381)) (-15 -3071 ((-1116 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -3070 ($ (-659 |#1|))) (IF (|has| |#1| (-381)) (-15 -3070 ($ (-659 |#1|))) |%noBranch|)))) (-1120)) (T -919)) -((-3078 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-659 *3)) (|:| |image| (-659 *3)))) (-5 *1 (-919 *3)) (-4 *3 (-1120)))) (-3077 (*1 *1 *2) (-12 (-5 *2 (-659 (-659 *3))) (-4 *3 (-1120)) (-5 *1 (-919 *3)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-659 (-659 *3))) (-4 *3 (-1120)) (-5 *1 (-919 *3)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-5 *1 (-919 *3)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-659 (-659 *3))) (-4 *3 (-1120)) (-5 *1 (-919 *3)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-919 *3)) (-4 *3 (-1120)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-990)) (-5 *1 (-919 *3)) (-4 *3 (-1120)))) (-4200 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-919 *3)) (-4 *3 (-1120)))) (-3074 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-919 *3)) (-4 *3 (-1120)))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-919 *3)) (-4 *3 (-1120)))) (-3073 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-919 *3)) (-4 *3 (-1120)))) (-3072 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-919 *3)) (-4 *3 (-1120)))) (-3308 (*1 *2 *2) (-12 (-5 *2 (-659 (-919 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1120)))) (-3071 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-919 *3)) (-4 *3 (-381)) (-4 *3 (-1120)))) (-3070 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-5 *1 (-919 *3))))) -((-3079 ((|#2| (-1161 |#1| |#2|)) 48 T ELT))) -(((-920 |#1| |#2|) (-10 -7 (-15 -3079 (|#2| (-1161 |#1| |#2|)))) (-936) (-13 (-1068) (-10 -7 (-6 (-4425 "*"))))) (T -920)) -((-3079 (*1 *2 *3) (-12 (-5 *3 (-1161 *4 *2)) (-14 *4 (-936)) (-4 *2 (-13 (-1068) (-10 -7 (-6 (-4425 "*"))))) (-5 *1 (-920 *4 *2))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3085 (((-1116 |#1|) $) 42 T ELT)) (-4152 (($) 23 T CONST)) (-3885 (((-3 $ "failed") $) 20 T ELT)) (-3089 (((-1116 |#1|) $ |#1|) 41 T ELT)) (-2639 (((-114) $) 22 T ELT)) (-2928 (($ $ $) 35 (-3955 (|has| |#1| (-859)) (|has| |#1| (-381))) ELT)) (-3256 (($ $ $) 36 (-3955 (|has| |#1| (-859)) (|has| |#1| (-381))) ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2872 (($ $) 30 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4228 ((|#1| $ |#1|) 45 T ELT)) (-3080 (($ (-659 (-659 |#1|))) 43 T ELT)) (-3081 (($ (-659 |#1|)) 44 T ELT)) (-3408 (($ $ $) 27 T ELT)) (-2822 (($ $ $) 26 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3063 (($) 24 T CONST)) (-2963 (((-114) $ $) 37 (-3955 (|has| |#1| (-859)) (|has| |#1| (-381))) ELT)) (-2964 (((-114) $ $) 39 (-3955 (|has| |#1| (-859)) (|has| |#1| (-381))) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 38 (-3955 (|has| |#1| (-859)) (|has| |#1| (-381))) ELT)) (-3084 (((-114) $ $) 40 T ELT)) (-4377 (($ $ $) 29 T ELT)) (** (($ $ (-936)) 17 T ELT) (($ $ (-789)) 21 T ELT) (($ $ (-557)) 28 T ELT)) (* (($ $ $) 18 T ELT))) -(((-921 |#1|) (-142) (-1120)) (T -921)) -((-3081 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-4 *1 (-921 *3)))) (-3080 (*1 *1 *2) (-12 (-5 *2 (-659 (-659 *3))) (-4 *3 (-1120)) (-4 *1 (-921 *3)))) (-3085 (*1 *2 *1) (-12 (-4 *1 (-921 *3)) (-4 *3 (-1120)) (-5 *2 (-1116 *3)))) (-3089 (*1 *2 *1 *3) (-12 (-4 *1 (-921 *3)) (-4 *3 (-1120)) (-5 *2 (-1116 *3)))) (-3084 (*1 *2 *1 *1) (-12 (-4 *1 (-921 *3)) (-4 *3 (-1120)) (-5 *2 (-114))))) -(-13 (-485) (-298 |t#1| |t#1|) (-10 -8 (-15 -3081 ($ (-659 |t#1|))) (-15 -3080 ($ (-659 (-659 |t#1|)))) (-15 -3085 ((-1116 |t#1|) $)) (-15 -3089 ((-1116 |t#1|) $ |t#1|)) (-15 -3084 ((-114) $ $)) (IF (|has| |t#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |t#1| (-381)) (-6 (-859)) |%noBranch|))) -(((-102) . T) ((-628 (-875)) . T) ((-298 |#1| |#1|) . T) ((-485) . T) ((-744) . T) ((-859) -3955 (|has| |#1| (-859)) (|has| |#1| (-381))) ((-862) -3955 (|has| |#1| (-859)) (|has| |#1| (-381))) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3091 (((-659 (-659 (-789))) $) 163 T ELT)) (-3087 (((-659 (-789)) (-919 |#1|) $) 191 T ELT)) (-3086 (((-659 (-789)) (-919 |#1|) $) 192 T ELT)) (-3085 (((-1116 |#1|) $) 155 T ELT)) (-3092 (((-659 (-919 |#1|)) $) 152 T ELT)) (-3393 (((-919 |#1|) $ (-557)) 157 T ELT) (((-919 |#1|) $) 158 T ELT)) (-3090 (($ (-659 (-919 |#1|))) 165 T ELT)) (-4200 (((-789) $) 159 T ELT)) (-3088 (((-1116 (-1116 |#1|)) $) 189 T ELT)) (-3089 (((-1116 |#1|) $ |#1|) 180 T ELT) (((-1116 (-1116 |#1|)) $ (-1116 |#1|)) 201 T ELT) (((-1116 (-659 |#1|)) $ (-659 |#1|)) 204 T ELT)) (-3661 (((-114) (-919 |#1|) $) 140 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3082 (((-1292) $) 145 T ELT) (((-1292) $ (-557) (-557)) 205 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3094 (((-659 (-919 |#1|)) $) 146 T ELT)) (-4228 (((-919 |#1|) $ (-789)) 153 T ELT)) (-4376 (((-789) $) 160 T ELT)) (-4374 (((-875) $) 177 T ELT) (((-659 (-919 |#1|)) $) 28 T ELT) (($ (-659 (-919 |#1|))) 164 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3093 (((-659 |#1|) $) 162 T ELT)) (-3452 (((-114) $ $) 198 T ELT)) (-3083 (((-114) $ $) 195 T ELT)) (-3084 (((-114) $ $) 194 T ELT))) -(((-922 |#1|) (-13 (-1120) (-10 -8 (-15 -4374 ((-659 (-919 |#1|)) $)) (-15 -3094 ((-659 (-919 |#1|)) $)) (-15 -4228 ((-919 |#1|) $ (-789))) (-15 -3393 ((-919 |#1|) $ (-557))) (-15 -3393 ((-919 |#1|) $)) (-15 -4200 ((-789) $)) (-15 -4376 ((-789) $)) (-15 -3093 ((-659 |#1|) $)) (-15 -3092 ((-659 (-919 |#1|)) $)) (-15 -3091 ((-659 (-659 (-789))) $)) (-15 -4374 ($ (-659 (-919 |#1|)))) (-15 -3090 ($ (-659 (-919 |#1|)))) (-15 -3089 ((-1116 |#1|) $ |#1|)) (-15 -3088 ((-1116 (-1116 |#1|)) $)) (-15 -3089 ((-1116 (-1116 |#1|)) $ (-1116 |#1|))) (-15 -3089 ((-1116 (-659 |#1|)) $ (-659 |#1|))) (-15 -3661 ((-114) (-919 |#1|) $)) (-15 -3087 ((-659 (-789)) (-919 |#1|) $)) (-15 -3086 ((-659 (-789)) (-919 |#1|) $)) (-15 -3085 ((-1116 |#1|) $)) (-15 -3084 ((-114) $ $)) (-15 -3083 ((-114) $ $)) (-15 -3082 ((-1292) $)) (-15 -3082 ((-1292) $ (-557) (-557))))) (-1120)) (T -922)) -((-4374 (*1 *2 *1) (-12 (-5 *2 (-659 (-919 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-3094 (*1 *2 *1) (-12 (-5 *2 (-659 (-919 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-4228 (*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-5 *2 (-919 *4)) (-5 *1 (-922 *4)) (-4 *4 (-1120)))) (-3393 (*1 *2 *1 *3) (-12 (-5 *3 (-557)) (-5 *2 (-919 *4)) (-5 *1 (-922 *4)) (-4 *4 (-1120)))) (-3393 (*1 *2 *1) (-12 (-5 *2 (-919 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-4200 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-3093 (*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-3092 (*1 *2 *1) (-12 (-5 *2 (-659 (-919 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-3091 (*1 *2 *1) (-12 (-5 *2 (-659 (-659 (-789)))) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-659 (-919 *3))) (-4 *3 (-1120)) (-5 *1 (-922 *3)))) (-3090 (*1 *1 *2) (-12 (-5 *2 (-659 (-919 *3))) (-4 *3 (-1120)) (-5 *1 (-922 *3)))) (-3089 (*1 *2 *1 *3) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-1116 (-1116 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-3089 (*1 *2 *1 *3) (-12 (-4 *4 (-1120)) (-5 *2 (-1116 (-1116 *4))) (-5 *1 (-922 *4)) (-5 *3 (-1116 *4)))) (-3089 (*1 *2 *1 *3) (-12 (-4 *4 (-1120)) (-5 *2 (-1116 (-659 *4))) (-5 *1 (-922 *4)) (-5 *3 (-659 *4)))) (-3661 (*1 *2 *3 *1) (-12 (-5 *3 (-919 *4)) (-4 *4 (-1120)) (-5 *2 (-114)) (-5 *1 (-922 *4)))) (-3087 (*1 *2 *3 *1) (-12 (-5 *3 (-919 *4)) (-4 *4 (-1120)) (-5 *2 (-659 (-789))) (-5 *1 (-922 *4)))) (-3086 (*1 *2 *3 *1) (-12 (-5 *3 (-919 *4)) (-4 *4 (-1120)) (-5 *2 (-659 (-789))) (-5 *1 (-922 *4)))) (-3085 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-3084 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-3083 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-3082 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) (-3082 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-557)) (-5 *2 (-1292)) (-5 *1 (-922 *4)) (-4 *4 (-1120))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-4360 (((-114) $) NIL T ELT)) (-4357 (((-789)) NIL T ELT)) (-3748 (($ $ (-936)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 $ #1#) $) NIL T ELT)) (-3572 (($ $) NIL T ELT)) (-1998 (($ (-1286 $)) NIL T ELT)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3393 (($) NIL T ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-3232 (($) NIL T ELT)) (-1881 (((-114) $) NIL T ELT)) (-1972 (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-4200 (((-843 (-936)) $) NIL T ELT) (((-936) $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-2221 (($) NIL (|has| $ (-381)) ELT)) (-2219 (((-114) $) NIL (|has| $ (-381)) ELT)) (-3532 (($ $ (-936)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-3863 (((-709 $) $) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2222 (((-1190 $) $ (-936)) NIL (|has| $ (-381)) ELT) (((-1190 $) $) NIL T ELT)) (-2218 (((-936) $) NIL T ELT)) (-1805 (((-1190 $) $) NIL (|has| $ (-381)) ELT)) (-1804 (((-3 (-1190 $) #1#) $ $) NIL (|has| $ (-381)) ELT) (((-1190 $) $) NIL (|has| $ (-381)) ELT)) (-1806 (($ $ (-1190 $)) NIL (|has| $ (-381)) ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3864 (($) NIL T CONST)) (-2629 (($ (-936)) NIL T ELT)) (-4359 (((-114) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2638 (($) NIL (|has| $ (-381)) ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) NIL T ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-4358 (((-936)) NIL T ELT) (((-843 (-936))) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-1973 (((-3 (-789) #1#) $ $) NIL T ELT) (((-789) $) NIL T ELT)) (-4339 (((-136)) NIL T ELT)) (-4186 (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-4376 (((-936) $) NIL T ELT) (((-843 (-936)) $) NIL T ELT)) (-3601 (((-1190 $)) NIL T ELT)) (-1875 (($) NIL T ELT)) (-1807 (($) NIL (|has| $ (-381)) ELT)) (-3640 (((-707 $) (-1286 $)) NIL T ELT) (((-1286 $) $) NIL T ELT)) (-4400 (((-557) $) NIL T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL T ELT)) (-3101 (((-709 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 $) (-936)) NIL T ELT) (((-1286 $)) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-4356 (($ $ (-789)) NIL (|has| $ (-381)) ELT) (($ $) NIL (|has| $ (-381)) ELT)) (-3068 (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT))) -(((-923 |#1|) (-13 (-363) (-341 $) (-629 (-557))) (-936)) (T -923)) -NIL -((-3096 (((-3 (-659 (-1190 |#4|)) #1="failed") (-659 (-1190 |#4|)) (-1190 |#4|)) 164 T ELT)) (-3099 ((|#1|) 101 T ELT)) (-3098 (((-417 (-1190 |#4|)) (-1190 |#4|)) 173 T ELT)) (-3100 (((-417 (-1190 |#4|)) (-659 |#3|) (-1190 |#4|)) 83 T ELT)) (-3097 (((-417 (-1190 |#4|)) (-1190 |#4|)) 183 T ELT)) (-3095 (((-3 (-659 (-1190 |#4|)) #1#) (-659 (-1190 |#4|)) (-1190 |#4|) |#3|) 117 T ELT))) -(((-924 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3096 ((-3 (-659 (-1190 |#4|)) #1="failed") (-659 (-1190 |#4|)) (-1190 |#4|))) (-15 -3097 ((-417 (-1190 |#4|)) (-1190 |#4|))) (-15 -3098 ((-417 (-1190 |#4|)) (-1190 |#4|))) (-15 -3099 (|#1|)) (-15 -3095 ((-3 (-659 (-1190 |#4|)) #1#) (-659 (-1190 |#4|)) (-1190 |#4|) |#3|)) (-15 -3100 ((-417 (-1190 |#4|)) (-659 |#3|) (-1190 |#4|)))) (-927) (-813) (-859) (-967 |#1| |#2| |#3|)) (T -924)) -((-3100 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *7)) (-4 *7 (-859)) (-4 *5 (-927)) (-4 *6 (-813)) (-4 *8 (-967 *5 *6 *7)) (-5 *2 (-417 (-1190 *8))) (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-1190 *8)))) (-3095 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-659 (-1190 *7))) (-5 *3 (-1190 *7)) (-4 *7 (-967 *5 *6 *4)) (-4 *5 (-927)) (-4 *6 (-813)) (-4 *4 (-859)) (-5 *1 (-924 *5 *6 *4 *7)))) (-3099 (*1 *2) (-12 (-4 *3 (-813)) (-4 *4 (-859)) (-4 *2 (-927)) (-5 *1 (-924 *2 *3 *4 *5)) (-4 *5 (-967 *2 *3 *4)))) (-3098 (*1 *2 *3) (-12 (-4 *4 (-927)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-967 *4 *5 *6)) (-5 *2 (-417 (-1190 *7))) (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) (-3097 (*1 *2 *3) (-12 (-4 *4 (-927)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-967 *4 *5 *6)) (-5 *2 (-417 (-1190 *7))) (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) (-3096 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-659 (-1190 *7))) (-5 *3 (-1190 *7)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-927)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-924 *4 *5 *6 *7))))) -((-3096 (((-3 (-659 (-1190 |#2|)) "failed") (-659 (-1190 |#2|)) (-1190 |#2|)) 39 T ELT)) (-3099 ((|#1|) 71 T ELT)) (-3098 (((-417 (-1190 |#2|)) (-1190 |#2|)) 125 T ELT)) (-3100 (((-417 (-1190 |#2|)) (-1190 |#2|)) 109 T ELT)) (-3097 (((-417 (-1190 |#2|)) (-1190 |#2|)) 136 T ELT))) -(((-925 |#1| |#2|) (-10 -7 (-15 -3096 ((-3 (-659 (-1190 |#2|)) "failed") (-659 (-1190 |#2|)) (-1190 |#2|))) (-15 -3097 ((-417 (-1190 |#2|)) (-1190 |#2|))) (-15 -3098 ((-417 (-1190 |#2|)) (-1190 |#2|))) (-15 -3099 (|#1|)) (-15 -3100 ((-417 (-1190 |#2|)) (-1190 |#2|)))) (-927) (-1262 |#1|)) (T -925)) -((-3100 (*1 *2 *3) (-12 (-4 *4 (-927)) (-4 *5 (-1262 *4)) (-5 *2 (-417 (-1190 *5))) (-5 *1 (-925 *4 *5)) (-5 *3 (-1190 *5)))) (-3099 (*1 *2) (-12 (-4 *2 (-927)) (-5 *1 (-925 *2 *3)) (-4 *3 (-1262 *2)))) (-3098 (*1 *2 *3) (-12 (-4 *4 (-927)) (-4 *5 (-1262 *4)) (-5 *2 (-417 (-1190 *5))) (-5 *1 (-925 *4 *5)) (-5 *3 (-1190 *5)))) (-3097 (*1 *2 *3) (-12 (-4 *4 (-927)) (-4 *5 (-1262 *4)) (-5 *2 (-417 (-1190 *5))) (-5 *1 (-925 *4 *5)) (-5 *3 (-1190 *5)))) (-3096 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-659 (-1190 *5))) (-5 *3 (-1190 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-927)) (-5 *1 (-925 *4 *5))))) -((-3103 (((-3 (-659 (-1190 $)) "failed") (-659 (-1190 $)) (-1190 $)) 46 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 18 T ELT)) (-3101 (((-709 $) $) 40 T ELT))) -(((-926 |#1|) (-10 -7 (-15 -3101 ((-709 |#1|) |#1|)) (-15 -3103 ((-3 (-659 (-1190 |#1|)) "failed") (-659 (-1190 |#1|)) (-1190 |#1|))) (-15 -3107 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|)))) (-927)) (T -926)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 52 T ELT)) (-2271 (($ $) 51 T ELT)) (-2269 (((-114) $) 49 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) 72 T ELT)) (-4203 (($ $) 63 T ELT)) (-4399 (((-417 $) $) 64 T ELT)) (-3103 (((-3 (-659 (-1190 $)) "failed") (-659 (-1190 $)) (-1190 $)) 69 T ELT)) (-4152 (($) 22 T CONST)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-4151 (((-114) $) 65 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-2100 (($ $ $) 57 T ELT) (($ (-659 $)) 56 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 55 T ELT)) (-3560 (($ $ $) 59 T ELT) (($ (-659 $)) 58 T ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) 70 T ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) 71 T ELT)) (-4160 (((-417 $) $) 62 T ELT)) (-3884 (((-3 $ "failed") $ $) 53 T ELT)) (-3102 (((-3 (-1286 $) "failed") (-707 $)) 68 (|has| $ (-147)) ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 54 T ELT)) (-3101 (((-709 $) $) 67 (|has| $ (-147)) ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 50 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-927) (-142)) (T -927)) -((-3107 (*1 *2 *2 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-927)))) (-3106 (*1 *2 *3) (-12 (-4 *1 (-927)) (-5 *2 (-417 (-1190 *1))) (-5 *3 (-1190 *1)))) (-3105 (*1 *2 *3) (-12 (-4 *1 (-927)) (-5 *2 (-417 (-1190 *1))) (-5 *3 (-1190 *1)))) (-3104 (*1 *2 *3) (-12 (-4 *1 (-927)) (-5 *2 (-417 (-1190 *1))) (-5 *3 (-1190 *1)))) (-3103 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-659 (-1190 *1))) (-5 *3 (-1190 *1)) (-4 *1 (-927)))) (-3102 (*1 *2 *3) (|partial| -12 (-5 *3 (-707 *1)) (-4 *1 (-147)) (-4 *1 (-927)) (-5 *2 (-1286 *1)))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-709 *1)) (-4 *1 (-147)) (-4 *1 (-927))))) -(-13 (-1241) (-10 -8 (-15 -3106 ((-417 (-1190 $)) (-1190 $))) (-15 -3105 ((-417 (-1190 $)) (-1190 $))) (-15 -3104 ((-417 (-1190 $)) (-1190 $))) (-15 -3107 ((-1190 $) (-1190 $) (-1190 $))) (-15 -3103 ((-3 (-659 (-1190 $)) "failed") (-659 (-1190 $)) (-1190 $))) (IF (|has| $ (-147)) (PROGN (-15 -3102 ((-3 (-1286 $) "failed") (-707 $))) (-15 -3101 ((-709 $) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-631 (-557)) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-175) . T) ((-302) . T) ((-464) . T) ((-568) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 $) . T) ((-658 $) . T) ((-735 $) . T) ((-744) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T) ((-1241) . T)) -((-3109 (((-3 (-2 (|:| -4200 (-789)) (|:| -2612 |#5|)) #1="failed") (-346 |#2| |#3| |#4| |#5|)) 77 T ELT)) (-3108 (((-114) (-346 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-4200 (((-3 (-789) #1#) (-346 |#2| |#3| |#4| |#5|)) 15 T ELT))) -(((-928 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4200 ((-3 (-789) #1="failed") (-346 |#2| |#3| |#4| |#5|))) (-15 -3108 ((-114) (-346 |#2| |#3| |#4| |#5|))) (-15 -3109 ((-3 (-2 (|:| -4200 (-789)) (|:| -2612 |#5|)) #1#) (-346 |#2| |#3| |#4| |#5|)))) (-13 (-568) (-1057 (-557))) (-433 |#1|) (-1262 |#2|) (-1262 (-419 |#3|)) (-355 |#2| |#3| |#4|)) (T -928)) -((-3109 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-568) (-1057 (-557)))) (-5 *2 (-2 (|:| -4200 (-789)) (|:| -2612 *8))) (-5 *1 (-928 *4 *5 *6 *7 *8)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-568) (-1057 (-557)))) (-5 *2 (-114)) (-5 *1 (-928 *4 *5 *6 *7 *8)))) (-4200 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-568) (-1057 (-557)))) (-5 *2 (-789)) (-5 *1 (-928 *4 *5 *6 *7 *8))))) -((-3109 (((-3 (-2 (|:| -4200 (-789)) (|:| -2612 |#3|)) #1="failed") (-346 (-419 (-557)) |#1| |#2| |#3|)) 64 T ELT)) (-3108 (((-114) (-346 (-419 (-557)) |#1| |#2| |#3|)) 16 T ELT)) (-4200 (((-3 (-789) #1#) (-346 (-419 (-557)) |#1| |#2| |#3|)) 14 T ELT))) -(((-929 |#1| |#2| |#3|) (-10 -7 (-15 -4200 ((-3 (-789) #1="failed") (-346 (-419 (-557)) |#1| |#2| |#3|))) (-15 -3108 ((-114) (-346 (-419 (-557)) |#1| |#2| |#3|))) (-15 -3109 ((-3 (-2 (|:| -4200 (-789)) (|:| -2612 |#3|)) #1#) (-346 (-419 (-557)) |#1| |#2| |#3|)))) (-1262 (-419 (-557))) (-1262 (-419 |#1|)) (-355 (-419 (-557)) |#1| |#2|)) (T -929)) -((-3109 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 (-419 (-557)) *4 *5 *6)) (-4 *4 (-1262 (-419 (-557)))) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-355 (-419 (-557)) *4 *5)) (-5 *2 (-2 (|:| -4200 (-789)) (|:| -2612 *6))) (-5 *1 (-929 *4 *5 *6)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-346 (-419 (-557)) *4 *5 *6)) (-4 *4 (-1262 (-419 (-557)))) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-355 (-419 (-557)) *4 *5)) (-5 *2 (-114)) (-5 *1 (-929 *4 *5 *6)))) (-4200 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 (-419 (-557)) *4 *5 *6)) (-4 *4 (-1262 (-419 (-557)))) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-355 (-419 (-557)) *4 *5)) (-5 *2 (-789)) (-5 *1 (-929 *4 *5 *6))))) -((-3114 ((|#2| |#2|) 26 T ELT)) (-3112 (((-557) (-659 (-2 (|:| |den| (-557)) (|:| |gcdnum| (-557))))) 15 T ELT)) (-3110 (((-936) (-557)) 38 T ELT)) (-3113 (((-557) |#2|) 45 T ELT)) (-3111 (((-557) |#2|) 21 T ELT) (((-2 (|:| |den| (-557)) (|:| |gcdnum| (-557))) |#1|) 20 T ELT))) -(((-930 |#1| |#2|) (-10 -7 (-15 -3110 ((-936) (-557))) (-15 -3111 ((-2 (|:| |den| (-557)) (|:| |gcdnum| (-557))) |#1|)) (-15 -3111 ((-557) |#2|)) (-15 -3112 ((-557) (-659 (-2 (|:| |den| (-557)) (|:| |gcdnum| (-557)))))) (-15 -3113 ((-557) |#2|)) (-15 -3114 (|#2| |#2|))) (-1262 (-419 (-557))) (-1262 (-419 |#1|))) (T -930)) -((-3114 (*1 *2 *2) (-12 (-4 *3 (-1262 (-419 (-557)))) (-5 *1 (-930 *3 *2)) (-4 *2 (-1262 (-419 *3))))) (-3113 (*1 *2 *3) (-12 (-4 *4 (-1262 (-419 *2))) (-5 *2 (-557)) (-5 *1 (-930 *4 *3)) (-4 *3 (-1262 (-419 *4))))) (-3112 (*1 *2 *3) (-12 (-5 *3 (-659 (-2 (|:| |den| (-557)) (|:| |gcdnum| (-557))))) (-4 *4 (-1262 (-419 *2))) (-5 *2 (-557)) (-5 *1 (-930 *4 *5)) (-4 *5 (-1262 (-419 *4))))) (-3111 (*1 *2 *3) (-12 (-4 *4 (-1262 (-419 *2))) (-5 *2 (-557)) (-5 *1 (-930 *4 *3)) (-4 *3 (-1262 (-419 *4))))) (-3111 (*1 *2 *3) (-12 (-4 *3 (-1262 (-419 (-557)))) (-5 *2 (-2 (|:| |den| (-557)) (|:| |gcdnum| (-557)))) (-5 *1 (-930 *3 *4)) (-4 *4 (-1262 (-419 *3))))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-557)) (-4 *4 (-1262 (-419 *3))) (-5 *2 (-936)) (-5 *1 (-930 *4 *5)) (-4 *5 (-1262 (-419 *4)))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3529 ((|#1| $) 99 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-2961 (($ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) 93 T ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-3122 (($ |#1| (-417 |#1|)) 91 T ELT)) (-3116 (((-1190 |#1|) |#1| |#1|) 52 T ELT)) (-3115 (($ $) 60 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3117 (((-557) $) 96 T ELT)) (-3118 (($ $ (-557)) 98 T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3119 ((|#1| $) 95 T ELT)) (-3120 (((-417 |#1|) $) 94 T ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) 92 T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-3121 (($ $) 49 T ELT)) (-4374 (((-875) $) 123 T ELT) (($ (-557)) 72 T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ |#1|) 40 T ELT) (((-419 |#1|) $) 77 T ELT) (($ (-419 (-417 |#1|))) 85 T ELT)) (-3526 (((-789)) 70 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-3057 (($) 24 T CONST)) (-3063 (($) 12 T CONST)) (-3452 (((-114) $ $) 86 T ELT)) (-4377 (($ $ $) NIL T ELT)) (-4265 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 48 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) -(((-931 |#1|) (-13 (-376) (-38 |#1|) (-10 -8 (-15 -4374 ((-419 |#1|) $)) (-15 -4374 ($ (-419 (-417 |#1|)))) (-15 -3121 ($ $)) (-15 -3120 ((-417 |#1|) $)) (-15 -3119 (|#1| $)) (-15 -3118 ($ $ (-557))) (-15 -3117 ((-557) $)) (-15 -3116 ((-1190 |#1|) |#1| |#1|)) (-15 -3115 ($ $)) (-15 -3122 ($ |#1| (-417 |#1|))) (-15 -3529 (|#1| $)))) (-319)) (T -931)) -((-4374 (*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-931 *3)) (-4 *3 (-319)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-419 (-417 *3))) (-4 *3 (-319)) (-5 *1 (-931 *3)))) (-3121 (*1 *1 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-319)))) (-3120 (*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-931 *3)) (-4 *3 (-319)))) (-3119 (*1 *2 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-319)))) (-3118 (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-931 *3)) (-4 *3 (-319)))) (-3117 (*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-931 *3)) (-4 *3 (-319)))) (-3116 (*1 *2 *3 *3) (-12 (-5 *2 (-1190 *3)) (-5 *1 (-931 *3)) (-4 *3 (-319)))) (-3115 (*1 *1 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-319)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *3 (-417 *2)) (-4 *2 (-319)) (-5 *1 (-931 *2)))) (-3529 (*1 *2 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-319))))) -((-3122 (((-51) (-963 |#1|) (-417 (-963 |#1|)) (-1196)) 17 T ELT) (((-51) (-419 (-963 |#1|)) (-1196)) 18 T ELT))) -(((-932 |#1|) (-10 -7 (-15 -3122 ((-51) (-419 (-963 |#1|)) (-1196))) (-15 -3122 ((-51) (-963 |#1|) (-417 (-963 |#1|)) (-1196)))) (-13 (-319) (-149))) (T -932)) -((-3122 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-417 (-963 *6))) (-5 *5 (-1196)) (-5 *3 (-963 *6)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-932 *6)))) (-3122 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-1196)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-932 *5))))) -((-3123 ((|#4| (-659 |#4|)) 148 T ELT) (((-1190 |#4|) (-1190 |#4|) (-1190 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3560 (((-1190 |#4|) (-659 (-1190 |#4|))) 141 T ELT) (((-1190 |#4|) (-1190 |#4|) (-1190 |#4|)) 61 T ELT) ((|#4| (-659 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) -(((-933 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3560 (|#4| |#4| |#4|)) (-15 -3560 (|#4| (-659 |#4|))) (-15 -3560 ((-1190 |#4|) (-1190 |#4|) (-1190 |#4|))) (-15 -3560 ((-1190 |#4|) (-659 (-1190 |#4|)))) (-15 -3123 (|#4| |#4| |#4|)) (-15 -3123 ((-1190 |#4|) (-1190 |#4|) (-1190 |#4|))) (-15 -3123 (|#4| (-659 |#4|)))) (-813) (-859) (-319) (-967 |#3| |#1| |#2|)) (T -933)) -((-3123 (*1 *2 *3) (-12 (-5 *3 (-659 *2)) (-4 *2 (-967 *6 *4 *5)) (-5 *1 (-933 *4 *5 *6 *2)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-319)))) (-3123 (*1 *2 *2 *2) (-12 (-5 *2 (-1190 *6)) (-4 *6 (-967 *5 *3 *4)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *5 (-319)) (-5 *1 (-933 *3 *4 *5 *6)))) (-3123 (*1 *2 *2 *2) (-12 (-4 *3 (-813)) (-4 *4 (-859)) (-4 *5 (-319)) (-5 *1 (-933 *3 *4 *5 *2)) (-4 *2 (-967 *5 *3 *4)))) (-3560 (*1 *2 *3) (-12 (-5 *3 (-659 (-1190 *7))) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-319)) (-5 *2 (-1190 *7)) (-5 *1 (-933 *4 *5 *6 *7)) (-4 *7 (-967 *6 *4 *5)))) (-3560 (*1 *2 *2 *2) (-12 (-5 *2 (-1190 *6)) (-4 *6 (-967 *5 *3 *4)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *5 (-319)) (-5 *1 (-933 *3 *4 *5 *6)))) (-3560 (*1 *2 *3) (-12 (-5 *3 (-659 *2)) (-4 *2 (-967 *6 *4 *5)) (-5 *1 (-933 *4 *5 *6 *2)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-319)))) (-3560 (*1 *2 *2 *2) (-12 (-4 *3 (-813)) (-4 *4 (-859)) (-4 *5 (-319)) (-5 *1 (-933 *3 *4 *5 *2)) (-4 *2 (-967 *5 *3 *4))))) -((-3136 (((-922 (-557)) (-990)) 38 T ELT) (((-922 (-557)) (-659 (-557))) 34 T ELT)) (-3124 (((-922 (-557)) (-659 (-557))) 66 T ELT) (((-922 (-557)) (-936)) 67 T ELT)) (-3135 (((-922 (-557))) 39 T ELT)) (-3133 (((-922 (-557))) 53 T ELT) (((-922 (-557)) (-659 (-557))) 52 T ELT)) (-3132 (((-922 (-557))) 51 T ELT) (((-922 (-557)) (-659 (-557))) 50 T ELT)) (-3131 (((-922 (-557))) 49 T ELT) (((-922 (-557)) (-659 (-557))) 48 T ELT)) (-3130 (((-922 (-557))) 47 T ELT) (((-922 (-557)) (-659 (-557))) 46 T ELT)) (-3129 (((-922 (-557))) 45 T ELT) (((-922 (-557)) (-659 (-557))) 44 T ELT)) (-3134 (((-922 (-557))) 55 T ELT) (((-922 (-557)) (-659 (-557))) 54 T ELT)) (-3128 (((-922 (-557)) (-659 (-557))) 71 T ELT) (((-922 (-557)) (-936)) 73 T ELT)) (-3127 (((-922 (-557)) (-659 (-557))) 68 T ELT) (((-922 (-557)) (-936)) 69 T ELT)) (-3125 (((-922 (-557)) (-659 (-557))) 64 T ELT) (((-922 (-557)) (-936)) 65 T ELT)) (-3126 (((-922 (-557)) (-659 (-936))) 57 T ELT))) -(((-934) (-10 -7 (-15 -3124 ((-922 (-557)) (-936))) (-15 -3124 ((-922 (-557)) (-659 (-557)))) (-15 -3125 ((-922 (-557)) (-936))) (-15 -3125 ((-922 (-557)) (-659 (-557)))) (-15 -3126 ((-922 (-557)) (-659 (-936)))) (-15 -3127 ((-922 (-557)) (-936))) (-15 -3127 ((-922 (-557)) (-659 (-557)))) (-15 -3128 ((-922 (-557)) (-936))) (-15 -3128 ((-922 (-557)) (-659 (-557)))) (-15 -3129 ((-922 (-557)) (-659 (-557)))) (-15 -3129 ((-922 (-557)))) (-15 -3130 ((-922 (-557)) (-659 (-557)))) (-15 -3130 ((-922 (-557)))) (-15 -3131 ((-922 (-557)) (-659 (-557)))) (-15 -3131 ((-922 (-557)))) (-15 -3132 ((-922 (-557)) (-659 (-557)))) (-15 -3132 ((-922 (-557)))) (-15 -3133 ((-922 (-557)) (-659 (-557)))) (-15 -3133 ((-922 (-557)))) (-15 -3134 ((-922 (-557)) (-659 (-557)))) (-15 -3134 ((-922 (-557)))) (-15 -3135 ((-922 (-557)))) (-15 -3136 ((-922 (-557)) (-659 (-557)))) (-15 -3136 ((-922 (-557)) (-990))))) (T -934)) -((-3136 (*1 *2 *3) (-12 (-5 *3 (-990)) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3135 (*1 *2) (-12 (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3134 (*1 *2) (-12 (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3134 (*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3133 (*1 *2) (-12 (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3132 (*1 *2) (-12 (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3131 (*1 *2) (-12 (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3131 (*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3130 (*1 *2) (-12 (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3129 (*1 *2) (-12 (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3126 (*1 *2 *3) (-12 (-5 *3 (-659 (-936))) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3125 (*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3125 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3124 (*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) (-3124 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-922 (-557))) (-5 *1 (-934))))) -((-3138 (((-659 (-963 |#1|)) (-659 (-963 |#1|)) (-659 (-1196))) 14 T ELT)) (-3137 (((-659 (-963 |#1|)) (-659 (-963 |#1|)) (-659 (-1196))) 13 T ELT))) -(((-935 |#1|) (-10 -7 (-15 -3137 ((-659 (-963 |#1|)) (-659 (-963 |#1|)) (-659 (-1196)))) (-15 -3138 ((-659 (-963 |#1|)) (-659 (-963 |#1|)) (-659 (-1196))))) (-464)) (T -935)) -((-3138 (*1 *2 *2 *3) (-12 (-5 *2 (-659 (-963 *4))) (-5 *3 (-659 (-1196))) (-4 *4 (-464)) (-5 *1 (-935 *4)))) (-3137 (*1 *2 *2 *3) (-12 (-5 *2 (-659 (-963 *4))) (-5 *3 (-659 (-1196))) (-4 *4 (-464)) (-5 *1 (-935 *4))))) -((-2965 (((-114) $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3885 (((-3 $ "failed") $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3560 (($ $ $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3063 (($) NIL T CONST)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-789)) NIL T ELT) (($ $ (-936)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-936) (-13 (-814) (-744) (-10 -8 (-15 -3560 ($ $ $)) (-6 (-4425 "*"))))) (T -936)) -((-3560 (*1 *1 *1 *1) (-5 *1 (-936)))) -((-789) (|%ilt| 0 |#1|)) -((-4374 (((-326 |#1|) (-489)) 16 T ELT))) -(((-937 |#1|) (-10 -7 (-15 -4374 ((-326 |#1|) (-489)))) (-568)) (T -937)) -((-4374 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-937 *4)) (-4 *4 (-568))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 52 T ELT)) (-2271 (($ $) 51 T ELT)) (-2269 (((-114) $) 49 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 63 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-2100 (($ $ $) 57 T ELT) (($ (-659 $)) 56 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 55 T ELT)) (-3560 (($ $ $) 59 T ELT) (($ (-659 $)) 58 T ELT)) (-3884 (((-3 $ "failed") $ $) 53 T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 62 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 54 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 50 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-938) (-142)) (T -938)) -((-3140 (*1 *2 *3) (-12 (-4 *1 (-938)) (-5 *2 (-2 (|:| -4382 (-659 *1)) (|:| -2638 *1))) (-5 *3 (-659 *1)))) (-3139 (*1 *2 *3 *1) (-12 (-4 *1 (-938)) (-5 *2 (-709 (-659 *1))) (-5 *3 (-659 *1))))) -(-13 (-464) (-10 -8 (-15 -3140 ((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $))) (-15 -3139 ((-709 (-659 $)) (-659 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-631 (-557)) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-175) . T) ((-302) . T) ((-464) . T) ((-568) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 $) . T) ((-658 $) . T) ((-735 $) . T) ((-744) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-3506 (((-1190 |#2|) (-659 |#2|) (-659 |#2|)) 17 T ELT) (((-1255 |#1| |#2|) (-1255 |#1| |#2|) (-659 |#2|) (-659 |#2|)) 13 T ELT))) -(((-939 |#1| |#2|) (-10 -7 (-15 -3506 ((-1255 |#1| |#2|) (-1255 |#1| |#2|) (-659 |#2|) (-659 |#2|))) (-15 -3506 ((-1190 |#2|) (-659 |#2|) (-659 |#2|)))) (-1196) (-376)) (T -939)) -((-3506 (*1 *2 *3 *3) (-12 (-5 *3 (-659 *5)) (-4 *5 (-376)) (-5 *2 (-1190 *5)) (-5 *1 (-939 *4 *5)) (-14 *4 (-1196)))) (-3506 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1255 *4 *5)) (-5 *3 (-659 *5)) (-14 *4 (-1196)) (-4 *5 (-376)) (-5 *1 (-939 *4 *5))))) -((-3141 ((|#2| (-659 |#1|) (-659 |#1|)) 28 T ELT))) -(((-940 |#1| |#2|) (-10 -7 (-15 -3141 (|#2| (-659 |#1|) (-659 |#1|)))) (-376) (-1262 |#1|)) (T -940)) -((-3141 (*1 *2 *3 *3) (-12 (-5 *3 (-659 *4)) (-4 *4 (-376)) (-4 *2 (-1262 *4)) (-5 *1 (-940 *4 *2))))) -((-3143 (((-557) (-659 (-2 (|:| |eqzro| (-659 |#4|)) (|:| |neqzro| (-659 |#4|)) (|:| |wcond| (-659 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|))))))))) (-1178)) 175 T ELT)) (-3162 ((|#4| |#4|) 194 T ELT)) (-3147 (((-659 (-419 (-963 |#1|))) (-659 (-1196))) 146 T ELT)) (-3161 (((-2 (|:| |eqzro| (-659 |#4|)) (|:| |neqzro| (-659 |#4|)) (|:| |wcond| (-659 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-659 (-557))) (|:| |cols| (-659 (-557)))) (-707 |#4|) (-659 (-419 (-963 |#1|))) (-659 (-659 |#4|)) (-789) (-789) (-557)) 88 T ELT)) (-3151 (((-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|)))))) (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|)))))) (-659 |#4|)) 69 T ELT)) (-3160 (((-707 |#4|) (-707 |#4|) (-659 |#4|)) 65 T ELT)) (-3144 (((-659 (-2 (|:| |eqzro| (-659 |#4|)) (|:| |neqzro| (-659 |#4|)) (|:| |wcond| (-659 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|))))))))) (-1178)) 187 T ELT)) (-3142 (((-557) (-707 |#4|) (-936) (-1178)) 167 T ELT) (((-557) (-707 |#4|) (-659 (-1196)) (-936) (-1178)) 166 T ELT) (((-557) (-707 |#4|) (-659 |#4|) (-936) (-1178)) 165 T ELT) (((-557) (-707 |#4|) (-1178)) 154 T ELT) (((-557) (-707 |#4|) (-659 (-1196)) (-1178)) 153 T ELT) (((-557) (-707 |#4|) (-659 |#4|) (-1178)) 152 T ELT) (((-659 (-2 (|:| |eqzro| (-659 |#4|)) (|:| |neqzro| (-659 |#4|)) (|:| |wcond| (-659 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|))))))))) (-707 |#4|) (-936)) 151 T ELT) (((-659 (-2 (|:| |eqzro| (-659 |#4|)) (|:| |neqzro| (-659 |#4|)) (|:| |wcond| (-659 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|))))))))) (-707 |#4|) (-659 (-1196)) (-936)) 150 T ELT) (((-659 (-2 (|:| |eqzro| (-659 |#4|)) (|:| |neqzro| (-659 |#4|)) (|:| |wcond| (-659 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|))))))))) (-707 |#4|) (-659 |#4|) (-936)) 149 T ELT) (((-659 (-2 (|:| |eqzro| (-659 |#4|)) (|:| |neqzro| (-659 |#4|)) (|:| |wcond| (-659 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|))))))))) (-707 |#4|)) 148 T ELT) (((-659 (-2 (|:| |eqzro| (-659 |#4|)) (|:| |neqzro| (-659 |#4|)) (|:| |wcond| (-659 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|))))))))) (-707 |#4|) (-659 (-1196))) 147 T ELT) (((-659 (-2 (|:| |eqzro| (-659 |#4|)) (|:| |neqzro| (-659 |#4|)) (|:| |wcond| (-659 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|))))))))) (-707 |#4|) (-659 |#4|)) 143 T ELT)) (-3148 ((|#4| (-963 |#1|)) 80 T ELT)) (-3158 (((-114) (-659 |#4|) (-659 (-659 |#4|))) 191 T ELT)) (-3157 (((-659 (-659 (-557))) (-557) (-557)) 161 T ELT)) (-3156 (((-659 (-659 |#4|)) (-659 (-659 |#4|))) 106 T ELT)) (-3155 (((-789) (-659 (-2 (|:| -3509 (-789)) (|:| |eqns| (-659 (-2 (|:| |det| |#4|) (|:| |rows| (-659 (-557))) (|:| |cols| (-659 (-557)))))) (|:| |fgb| (-659 |#4|))))) 100 T ELT)) (-3154 (((-789) (-659 (-2 (|:| -3509 (-789)) (|:| |eqns| (-659 (-2 (|:| |det| |#4|) (|:| |rows| (-659 (-557))) (|:| |cols| (-659 (-557)))))) (|:| |fgb| (-659 |#4|))))) 99 T ELT)) (-3163 (((-114) (-659 (-963 |#1|))) 19 T ELT) (((-114) (-659 |#4|)) 15 T ELT)) (-3149 (((-2 (|:| |sysok| (-114)) (|:| |z0| (-659 |#4|)) (|:| |n0| (-659 |#4|))) (-659 |#4|) (-659 |#4|)) 84 T ELT)) (-3153 (((-659 |#4|) |#4|) 57 T ELT)) (-3146 (((-659 (-419 (-963 |#1|))) (-659 |#4|)) 142 T ELT) (((-707 (-419 (-963 |#1|))) (-707 |#4|)) 66 T ELT) (((-419 (-963 |#1|)) |#4|) 139 T ELT)) (-3145 (((-2 (|:| |rgl| (-659 (-2 (|:| |eqzro| (-659 |#4|)) (|:| |neqzro| (-659 |#4|)) (|:| |wcond| (-659 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|)))))))))) (|:| |rgsz| (-557))) (-707 |#4|) (-659 (-419 (-963 |#1|))) (-789) (-1178) (-557)) 112 T ELT)) (-3150 (((-659 (-2 (|:| -3509 (-789)) (|:| |eqns| (-659 (-2 (|:| |det| |#4|) (|:| |rows| (-659 (-557))) (|:| |cols| (-659 (-557)))))) (|:| |fgb| (-659 |#4|)))) (-707 |#4|) (-789)) 98 T ELT)) (-3159 (((-659 (-2 (|:| |det| |#4|) (|:| |rows| (-659 (-557))) (|:| |cols| (-659 (-557))))) (-707 |#4|) (-789)) 121 T ELT)) (-3152 (((-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|)))))) (-2 (|:| -1781 (-707 (-419 (-963 |#1|)))) (|:| |vec| (-659 (-419 (-963 |#1|)))) (|:| -3509 (-789)) (|:| |rows| (-659 (-557))) (|:| |cols| (-659 (-557))))) 56 T ELT))) -(((-941 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3142 ((-659 (-2 (|:| |eqzro| (-659 |#4|)) (|:| |neqzro| (-659 |#4|)) (|:| |wcond| (-659 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|))))))))) (-707 |#4|) (-659 |#4|))) (-15 -3142 ((-659 (-2 (|:| |eqzro| (-659 |#4|)) (|:| |neqzro| (-659 |#4|)) (|:| |wcond| (-659 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|))))))))) (-707 |#4|) (-659 (-1196)))) (-15 -3142 ((-659 (-2 (|:| |eqzro| (-659 |#4|)) (|:| |neqzro| (-659 |#4|)) (|:| |wcond| (-659 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|))))))))) (-707 |#4|))) (-15 -3142 ((-659 (-2 (|:| |eqzro| (-659 |#4|)) (|:| |neqzro| (-659 |#4|)) (|:| |wcond| (-659 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|))))))))) (-707 |#4|) (-659 |#4|) (-936))) (-15 -3142 ((-659 (-2 (|:| |eqzro| (-659 |#4|)) (|:| |neqzro| (-659 |#4|)) (|:| |wcond| (-659 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|))))))))) (-707 |#4|) (-659 (-1196)) (-936))) (-15 -3142 ((-659 (-2 (|:| |eqzro| (-659 |#4|)) (|:| |neqzro| (-659 |#4|)) (|:| |wcond| (-659 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|))))))))) (-707 |#4|) (-936))) (-15 -3142 ((-557) (-707 |#4|) (-659 |#4|) (-1178))) (-15 -3142 ((-557) (-707 |#4|) (-659 (-1196)) (-1178))) (-15 -3142 ((-557) (-707 |#4|) (-1178))) (-15 -3142 ((-557) (-707 |#4|) (-659 |#4|) (-936) (-1178))) (-15 -3142 ((-557) (-707 |#4|) (-659 (-1196)) (-936) (-1178))) (-15 -3142 ((-557) (-707 |#4|) (-936) (-1178))) (-15 -3143 ((-557) (-659 (-2 (|:| |eqzro| (-659 |#4|)) (|:| |neqzro| (-659 |#4|)) (|:| |wcond| (-659 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|))))))))) (-1178))) (-15 -3144 ((-659 (-2 (|:| |eqzro| (-659 |#4|)) (|:| |neqzro| (-659 |#4|)) (|:| |wcond| (-659 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|))))))))) (-1178))) (-15 -3145 ((-2 (|:| |rgl| (-659 (-2 (|:| |eqzro| (-659 |#4|)) (|:| |neqzro| (-659 |#4|)) (|:| |wcond| (-659 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|)))))))))) (|:| |rgsz| (-557))) (-707 |#4|) (-659 (-419 (-963 |#1|))) (-789) (-1178) (-557))) (-15 -3146 ((-419 (-963 |#1|)) |#4|)) (-15 -3146 ((-707 (-419 (-963 |#1|))) (-707 |#4|))) (-15 -3146 ((-659 (-419 (-963 |#1|))) (-659 |#4|))) (-15 -3147 ((-659 (-419 (-963 |#1|))) (-659 (-1196)))) (-15 -3148 (|#4| (-963 |#1|))) (-15 -3149 ((-2 (|:| |sysok| (-114)) (|:| |z0| (-659 |#4|)) (|:| |n0| (-659 |#4|))) (-659 |#4|) (-659 |#4|))) (-15 -3150 ((-659 (-2 (|:| -3509 (-789)) (|:| |eqns| (-659 (-2 (|:| |det| |#4|) (|:| |rows| (-659 (-557))) (|:| |cols| (-659 (-557)))))) (|:| |fgb| (-659 |#4|)))) (-707 |#4|) (-789))) (-15 -3151 ((-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|)))))) (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|)))))) (-659 |#4|))) (-15 -3152 ((-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|)))))) (-2 (|:| -1781 (-707 (-419 (-963 |#1|)))) (|:| |vec| (-659 (-419 (-963 |#1|)))) (|:| -3509 (-789)) (|:| |rows| (-659 (-557))) (|:| |cols| (-659 (-557)))))) (-15 -3153 ((-659 |#4|) |#4|)) (-15 -3154 ((-789) (-659 (-2 (|:| -3509 (-789)) (|:| |eqns| (-659 (-2 (|:| |det| |#4|) (|:| |rows| (-659 (-557))) (|:| |cols| (-659 (-557)))))) (|:| |fgb| (-659 |#4|)))))) (-15 -3155 ((-789) (-659 (-2 (|:| -3509 (-789)) (|:| |eqns| (-659 (-2 (|:| |det| |#4|) (|:| |rows| (-659 (-557))) (|:| |cols| (-659 (-557)))))) (|:| |fgb| (-659 |#4|)))))) (-15 -3156 ((-659 (-659 |#4|)) (-659 (-659 |#4|)))) (-15 -3157 ((-659 (-659 (-557))) (-557) (-557))) (-15 -3158 ((-114) (-659 |#4|) (-659 (-659 |#4|)))) (-15 -3159 ((-659 (-2 (|:| |det| |#4|) (|:| |rows| (-659 (-557))) (|:| |cols| (-659 (-557))))) (-707 |#4|) (-789))) (-15 -3160 ((-707 |#4|) (-707 |#4|) (-659 |#4|))) (-15 -3161 ((-2 (|:| |eqzro| (-659 |#4|)) (|:| |neqzro| (-659 |#4|)) (|:| |wcond| (-659 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 |#1|)))) (|:| -2220 (-659 (-1286 (-419 (-963 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-659 (-557))) (|:| |cols| (-659 (-557)))) (-707 |#4|) (-659 (-419 (-963 |#1|))) (-659 (-659 |#4|)) (-789) (-789) (-557))) (-15 -3162 (|#4| |#4|)) (-15 -3163 ((-114) (-659 |#4|))) (-15 -3163 ((-114) (-659 (-963 |#1|))))) (-13 (-319) (-149)) (-13 (-859) (-629 (-1196))) (-813) (-967 |#1| |#3| |#2|)) (T -941)) -((-3163 (*1 *2 *3) (-12 (-5 *3 (-659 (-963 *4))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) (-5 *2 (-114)) (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-967 *4 *6 *5)))) (-3163 (*1 *2 *3) (-12 (-5 *3 (-659 *7)) (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) (-5 *2 (-114)) (-5 *1 (-941 *4 *5 *6 *7)))) (-3162 (*1 *2 *2) (-12 (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-859) (-629 (-1196)))) (-4 *5 (-813)) (-5 *1 (-941 *3 *4 *5 *2)) (-4 *2 (-967 *3 *5 *4)))) (-3161 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-659 (-557))) (|:| |cols| (-659 (-557))))) (-5 *4 (-707 *12)) (-5 *5 (-659 (-419 (-963 *9)))) (-5 *6 (-659 (-659 *12))) (-5 *7 (-789)) (-5 *8 (-557)) (-4 *9 (-13 (-319) (-149))) (-4 *12 (-967 *9 *11 *10)) (-4 *10 (-13 (-859) (-629 (-1196)))) (-4 *11 (-813)) (-5 *2 (-2 (|:| |eqzro| (-659 *12)) (|:| |neqzro| (-659 *12)) (|:| |wcond| (-659 (-963 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 *9)))) (|:| -2220 (-659 (-1286 (-419 (-963 *9))))))))) (-5 *1 (-941 *9 *10 *11 *12)))) (-3160 (*1 *2 *2 *3) (-12 (-5 *2 (-707 *7)) (-5 *3 (-659 *7)) (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) (-5 *1 (-941 *4 *5 *6 *7)))) (-3159 (*1 *2 *3 *4) (-12 (-5 *3 (-707 *8)) (-5 *4 (-789)) (-4 *8 (-967 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-859) (-629 (-1196)))) (-4 *7 (-813)) (-5 *2 (-659 (-2 (|:| |det| *8) (|:| |rows| (-659 (-557))) (|:| |cols| (-659 (-557)))))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3158 (*1 *2 *3 *4) (-12 (-5 *4 (-659 (-659 *8))) (-5 *3 (-659 *8)) (-4 *8 (-967 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-859) (-629 (-1196)))) (-4 *7 (-813)) (-5 *2 (-114)) (-5 *1 (-941 *5 *6 *7 *8)))) (-3157 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) (-5 *2 (-659 (-659 (-557)))) (-5 *1 (-941 *4 *5 *6 *7)) (-5 *3 (-557)) (-4 *7 (-967 *4 *6 *5)))) (-3156 (*1 *2 *2) (-12 (-5 *2 (-659 (-659 *6))) (-4 *6 (-967 *3 *5 *4)) (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-859) (-629 (-1196)))) (-4 *5 (-813)) (-5 *1 (-941 *3 *4 *5 *6)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-659 (-2 (|:| -3509 (-789)) (|:| |eqns| (-659 (-2 (|:| |det| *7) (|:| |rows| (-659 (-557))) (|:| |cols| (-659 (-557)))))) (|:| |fgb| (-659 *7))))) (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) (-5 *2 (-789)) (-5 *1 (-941 *4 *5 *6 *7)))) (-3154 (*1 *2 *3) (-12 (-5 *3 (-659 (-2 (|:| -3509 (-789)) (|:| |eqns| (-659 (-2 (|:| |det| *7) (|:| |rows| (-659 (-557))) (|:| |cols| (-659 (-557)))))) (|:| |fgb| (-659 *7))))) (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) (-5 *2 (-789)) (-5 *1 (-941 *4 *5 *6 *7)))) (-3153 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) (-5 *2 (-659 *3)) (-5 *1 (-941 *4 *5 *6 *3)) (-4 *3 (-967 *4 *6 *5)))) (-3152 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1781 (-707 (-419 (-963 *4)))) (|:| |vec| (-659 (-419 (-963 *4)))) (|:| -3509 (-789)) (|:| |rows| (-659 (-557))) (|:| |cols| (-659 (-557))))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) (-5 *2 (-2 (|:| |partsol| (-1286 (-419 (-963 *4)))) (|:| -2220 (-659 (-1286 (-419 (-963 *4))))))) (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-967 *4 *6 *5)))) (-3151 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1286 (-419 (-963 *4)))) (|:| -2220 (-659 (-1286 (-419 (-963 *4))))))) (-5 *3 (-659 *7)) (-4 *4 (-13 (-319) (-149))) (-4 *7 (-967 *4 *6 *5)) (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) (-5 *1 (-941 *4 *5 *6 *7)))) (-3150 (*1 *2 *3 *4) (-12 (-5 *3 (-707 *8)) (-4 *8 (-967 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-859) (-629 (-1196)))) (-4 *7 (-813)) (-5 *2 (-659 (-2 (|:| -3509 (-789)) (|:| |eqns| (-659 (-2 (|:| |det| *8) (|:| |rows| (-659 (-557))) (|:| |cols| (-659 (-557)))))) (|:| |fgb| (-659 *8))))) (-5 *1 (-941 *5 *6 *7 *8)) (-5 *4 (-789)))) (-3149 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) (-4 *7 (-967 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-114)) (|:| |z0| (-659 *7)) (|:| |n0| (-659 *7)))) (-5 *1 (-941 *4 *5 *6 *7)) (-5 *3 (-659 *7)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-963 *4)) (-4 *4 (-13 (-319) (-149))) (-4 *2 (-967 *4 *6 *5)) (-5 *1 (-941 *4 *5 *6 *2)) (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-659 (-1196))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) (-5 *2 (-659 (-419 (-963 *4)))) (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-967 *4 *6 *5)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-659 *7)) (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) (-5 *2 (-659 (-419 (-963 *4)))) (-5 *1 (-941 *4 *5 *6 *7)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-707 *7)) (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) (-5 *2 (-707 (-419 (-963 *4)))) (-5 *1 (-941 *4 *5 *6 *7)))) (-3146 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) (-5 *2 (-419 (-963 *4))) (-5 *1 (-941 *4 *5 *6 *3)) (-4 *3 (-967 *4 *6 *5)))) (-3145 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-707 *11)) (-5 *4 (-659 (-419 (-963 *8)))) (-5 *5 (-789)) (-5 *6 (-1178)) (-4 *8 (-13 (-319) (-149))) (-4 *11 (-967 *8 *10 *9)) (-4 *9 (-13 (-859) (-629 (-1196)))) (-4 *10 (-813)) (-5 *2 (-2 (|:| |rgl| (-659 (-2 (|:| |eqzro| (-659 *11)) (|:| |neqzro| (-659 *11)) (|:| |wcond| (-659 (-963 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 *8)))) (|:| -2220 (-659 (-1286 (-419 (-963 *8)))))))))) (|:| |rgsz| (-557)))) (-5 *1 (-941 *8 *9 *10 *11)) (-5 *7 (-557)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) (-5 *2 (-659 (-2 (|:| |eqzro| (-659 *7)) (|:| |neqzro| (-659 *7)) (|:| |wcond| (-659 (-963 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 *4)))) (|:| -2220 (-659 (-1286 (-419 (-963 *4)))))))))) (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-967 *4 *6 *5)))) (-3143 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-2 (|:| |eqzro| (-659 *8)) (|:| |neqzro| (-659 *8)) (|:| |wcond| (-659 (-963 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 *5)))) (|:| -2220 (-659 (-1286 (-419 (-963 *5)))))))))) (-5 *4 (-1178)) (-4 *5 (-13 (-319) (-149))) (-4 *8 (-967 *5 *7 *6)) (-4 *6 (-13 (-859) (-629 (-1196)))) (-4 *7 (-813)) (-5 *2 (-557)) (-5 *1 (-941 *5 *6 *7 *8)))) (-3142 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-707 *9)) (-5 *4 (-936)) (-5 *5 (-1178)) (-4 *9 (-967 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-859) (-629 (-1196)))) (-4 *8 (-813)) (-5 *2 (-557)) (-5 *1 (-941 *6 *7 *8 *9)))) (-3142 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-707 *10)) (-5 *4 (-659 (-1196))) (-5 *5 (-936)) (-5 *6 (-1178)) (-4 *10 (-967 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) (-4 *8 (-13 (-859) (-629 (-1196)))) (-4 *9 (-813)) (-5 *2 (-557)) (-5 *1 (-941 *7 *8 *9 *10)))) (-3142 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-707 *10)) (-5 *4 (-659 *10)) (-5 *5 (-936)) (-5 *6 (-1178)) (-4 *10 (-967 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) (-4 *8 (-13 (-859) (-629 (-1196)))) (-4 *9 (-813)) (-5 *2 (-557)) (-5 *1 (-941 *7 *8 *9 *10)))) (-3142 (*1 *2 *3 *4) (-12 (-5 *3 (-707 *8)) (-5 *4 (-1178)) (-4 *8 (-967 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-859) (-629 (-1196)))) (-4 *7 (-813)) (-5 *2 (-557)) (-5 *1 (-941 *5 *6 *7 *8)))) (-3142 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-707 *9)) (-5 *4 (-659 (-1196))) (-5 *5 (-1178)) (-4 *9 (-967 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-859) (-629 (-1196)))) (-4 *8 (-813)) (-5 *2 (-557)) (-5 *1 (-941 *6 *7 *8 *9)))) (-3142 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-707 *9)) (-5 *4 (-659 *9)) (-5 *5 (-1178)) (-4 *9 (-967 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-859) (-629 (-1196)))) (-4 *8 (-813)) (-5 *2 (-557)) (-5 *1 (-941 *6 *7 *8 *9)))) (-3142 (*1 *2 *3 *4) (-12 (-5 *3 (-707 *8)) (-5 *4 (-936)) (-4 *8 (-967 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-859) (-629 (-1196)))) (-4 *7 (-813)) (-5 *2 (-659 (-2 (|:| |eqzro| (-659 *8)) (|:| |neqzro| (-659 *8)) (|:| |wcond| (-659 (-963 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 *5)))) (|:| -2220 (-659 (-1286 (-419 (-963 *5)))))))))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3142 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-707 *9)) (-5 *4 (-659 (-1196))) (-5 *5 (-936)) (-4 *9 (-967 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-859) (-629 (-1196)))) (-4 *8 (-813)) (-5 *2 (-659 (-2 (|:| |eqzro| (-659 *9)) (|:| |neqzro| (-659 *9)) (|:| |wcond| (-659 (-963 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 *6)))) (|:| -2220 (-659 (-1286 (-419 (-963 *6)))))))))) (-5 *1 (-941 *6 *7 *8 *9)))) (-3142 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-707 *9)) (-5 *5 (-936)) (-4 *9 (-967 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-859) (-629 (-1196)))) (-4 *8 (-813)) (-5 *2 (-659 (-2 (|:| |eqzro| (-659 *9)) (|:| |neqzro| (-659 *9)) (|:| |wcond| (-659 (-963 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 *6)))) (|:| -2220 (-659 (-1286 (-419 (-963 *6)))))))))) (-5 *1 (-941 *6 *7 *8 *9)) (-5 *4 (-659 *9)))) (-3142 (*1 *2 *3) (-12 (-5 *3 (-707 *7)) (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) (-5 *2 (-659 (-2 (|:| |eqzro| (-659 *7)) (|:| |neqzro| (-659 *7)) (|:| |wcond| (-659 (-963 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 *4)))) (|:| -2220 (-659 (-1286 (-419 (-963 *4)))))))))) (-5 *1 (-941 *4 *5 *6 *7)))) (-3142 (*1 *2 *3 *4) (-12 (-5 *3 (-707 *8)) (-5 *4 (-659 (-1196))) (-4 *8 (-967 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-859) (-629 (-1196)))) (-4 *7 (-813)) (-5 *2 (-659 (-2 (|:| |eqzro| (-659 *8)) (|:| |neqzro| (-659 *8)) (|:| |wcond| (-659 (-963 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 *5)))) (|:| -2220 (-659 (-1286 (-419 (-963 *5)))))))))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3142 (*1 *2 *3 *4) (-12 (-5 *3 (-707 *8)) (-4 *8 (-967 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-859) (-629 (-1196)))) (-4 *7 (-813)) (-5 *2 (-659 (-2 (|:| |eqzro| (-659 *8)) (|:| |neqzro| (-659 *8)) (|:| |wcond| (-659 (-963 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-963 *5)))) (|:| -2220 (-659 (-1286 (-419 (-963 *5)))))))))) (-5 *1 (-941 *5 *6 *7 *8)) (-5 *4 (-659 *8))))) -((-4302 (($ $ (-1108 (-229))) 125 T ELT) (($ $ (-1108 (-229)) (-1108 (-229))) 126 T ELT)) (-3295 (((-1108 (-229)) $) 73 T ELT)) (-3296 (((-1108 (-229)) $) 72 T ELT)) (-3187 (((-1108 (-229)) $) 74 T ELT)) (-3168 (((-557) (-557)) 66 T ELT)) (-3172 (((-557) (-557)) 61 T ELT)) (-3170 (((-557) (-557)) 64 T ELT)) (-3166 (((-114) (-114)) 68 T ELT)) (-3169 (((-557)) 65 T ELT)) (-3534 (($ $ (-1108 (-229))) 129 T ELT) (($ $) 130 T ELT)) (-3189 (($ (-1 (-960 (-229)) (-229)) (-1108 (-229))) 148 T ELT) (($ (-1 (-960 (-229)) (-229)) (-1108 (-229)) (-1108 (-229)) (-1108 (-229))) 149 T ELT)) (-3175 (($ (-1 (-229) (-229)) (-1108 (-229))) 156 T ELT) (($ (-1 (-229) (-229))) 160 T ELT)) (-3188 (($ (-1 (-229) (-229)) (-1108 (-229))) 144 T ELT) (($ (-1 (-229) (-229)) (-1108 (-229)) (-1108 (-229))) 145 T ELT) (($ (-659 (-1 (-229) (-229))) (-1108 (-229))) 153 T ELT) (($ (-659 (-1 (-229) (-229))) (-1108 (-229)) (-1108 (-229))) 154 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1108 (-229))) 146 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1108 (-229)) (-1108 (-229)) (-1108 (-229))) 147 T ELT) (($ $ (-1108 (-229))) 131 T ELT)) (-3174 (((-114) $) 69 T ELT)) (-3165 (((-557)) 70 T ELT)) (-3173 (((-557)) 59 T ELT)) (-3171 (((-557)) 62 T ELT)) (-3297 (((-659 (-659 (-960 (-229)))) $) 35 T ELT)) (-3164 (((-114) (-114)) 71 T ELT)) (-4374 (((-875) $) 174 T ELT)) (-3167 (((-114)) 67 T ELT))) -(((-942) (-13 (-972) (-10 -8 (-15 -3188 ($ (-1 (-229) (-229)) (-1108 (-229)))) (-15 -3188 ($ (-1 (-229) (-229)) (-1108 (-229)) (-1108 (-229)))) (-15 -3188 ($ (-659 (-1 (-229) (-229))) (-1108 (-229)))) (-15 -3188 ($ (-659 (-1 (-229) (-229))) (-1108 (-229)) (-1108 (-229)))) (-15 -3188 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1108 (-229)))) (-15 -3188 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1108 (-229)) (-1108 (-229)) (-1108 (-229)))) (-15 -3189 ($ (-1 (-960 (-229)) (-229)) (-1108 (-229)))) (-15 -3189 ($ (-1 (-960 (-229)) (-229)) (-1108 (-229)) (-1108 (-229)) (-1108 (-229)))) (-15 -3175 ($ (-1 (-229) (-229)) (-1108 (-229)))) (-15 -3175 ($ (-1 (-229) (-229)))) (-15 -3188 ($ $ (-1108 (-229)))) (-15 -3174 ((-114) $)) (-15 -4302 ($ $ (-1108 (-229)))) (-15 -4302 ($ $ (-1108 (-229)) (-1108 (-229)))) (-15 -3534 ($ $ (-1108 (-229)))) (-15 -3534 ($ $)) (-15 -3187 ((-1108 (-229)) $)) (-15 -3173 ((-557))) (-15 -3172 ((-557) (-557))) (-15 -3171 ((-557))) (-15 -3170 ((-557) (-557))) (-15 -3169 ((-557))) (-15 -3168 ((-557) (-557))) (-15 -3167 ((-114))) (-15 -3166 ((-114) (-114))) (-15 -3165 ((-557))) (-15 -3164 ((-114) (-114)))))) (T -942)) -((-3188 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1108 (-229))) (-5 *1 (-942)))) (-3188 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1108 (-229))) (-5 *1 (-942)))) (-3188 (*1 *1 *2 *3) (-12 (-5 *2 (-659 (-1 (-229) (-229)))) (-5 *3 (-1108 (-229))) (-5 *1 (-942)))) (-3188 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-659 (-1 (-229) (-229)))) (-5 *3 (-1108 (-229))) (-5 *1 (-942)))) (-3188 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1108 (-229))) (-5 *1 (-942)))) (-3188 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1108 (-229))) (-5 *1 (-942)))) (-3189 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-960 (-229)) (-229))) (-5 *3 (-1108 (-229))) (-5 *1 (-942)))) (-3189 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-960 (-229)) (-229))) (-5 *3 (-1108 (-229))) (-5 *1 (-942)))) (-3175 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1108 (-229))) (-5 *1 (-942)))) (-3175 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-942)))) (-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-1108 (-229))) (-5 *1 (-942)))) (-3174 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-942)))) (-4302 (*1 *1 *1 *2) (-12 (-5 *2 (-1108 (-229))) (-5 *1 (-942)))) (-4302 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1108 (-229))) (-5 *1 (-942)))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-1108 (-229))) (-5 *1 (-942)))) (-3534 (*1 *1 *1) (-5 *1 (-942))) (-3187 (*1 *2 *1) (-12 (-5 *2 (-1108 (-229))) (-5 *1 (-942)))) (-3173 (*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-942)))) (-3172 (*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-942)))) (-3171 (*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-942)))) (-3170 (*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-942)))) (-3169 (*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-942)))) (-3168 (*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-942)))) (-3167 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-942)))) (-3166 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-942)))) (-3165 (*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-942)))) (-3164 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-942))))) -((-3175 (((-942) |#1| (-1196)) 17 T ELT) (((-942) |#1| (-1196) (-1108 (-229))) 21 T ELT)) (-3188 (((-942) |#1| |#1| (-1196) (-1108 (-229))) 19 T ELT) (((-942) |#1| (-1196) (-1108 (-229))) 15 T ELT))) -(((-943 |#1|) (-10 -7 (-15 -3188 ((-942) |#1| (-1196) (-1108 (-229)))) (-15 -3188 ((-942) |#1| |#1| (-1196) (-1108 (-229)))) (-15 -3175 ((-942) |#1| (-1196) (-1108 (-229)))) (-15 -3175 ((-942) |#1| (-1196)))) (-629 (-546))) (T -943)) -((-3175 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-5 *2 (-942)) (-5 *1 (-943 *3)) (-4 *3 (-629 (-546))))) (-3175 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1196)) (-5 *5 (-1108 (-229))) (-5 *2 (-942)) (-5 *1 (-943 *3)) (-4 *3 (-629 (-546))))) (-3188 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1196)) (-5 *5 (-1108 (-229))) (-5 *2 (-942)) (-5 *1 (-943 *3)) (-4 *3 (-629 (-546))))) (-3188 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1196)) (-5 *5 (-1108 (-229))) (-5 *2 (-942)) (-5 *1 (-943 *3)) (-4 *3 (-629 (-546)))))) -((-4302 (($ $ (-1108 (-229)) (-1108 (-229)) (-1108 (-229))) 123 T ELT)) (-3294 (((-1108 (-229)) $) 64 T ELT)) (-3295 (((-1108 (-229)) $) 63 T ELT)) (-3296 (((-1108 (-229)) $) 62 T ELT)) (-3186 (((-659 (-659 (-229))) $) 69 T ELT)) (-3187 (((-1108 (-229)) $) 65 T ELT)) (-3180 (((-557) (-557)) 57 T ELT)) (-3184 (((-557) (-557)) 52 T ELT)) (-3182 (((-557) (-557)) 55 T ELT)) (-3178 (((-114) (-114)) 59 T ELT)) (-3181 (((-557)) 56 T ELT)) (-3534 (($ $ (-1108 (-229))) 126 T ELT) (($ $) 127 T ELT)) (-3189 (($ (-1 (-960 (-229)) (-229)) (-1108 (-229))) 133 T ELT) (($ (-1 (-960 (-229)) (-229)) (-1108 (-229)) (-1108 (-229)) (-1108 (-229)) (-1108 (-229))) 134 T ELT)) (-3188 (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1108 (-229))) 140 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1108 (-229)) (-1108 (-229)) (-1108 (-229)) (-1108 (-229))) 141 T ELT) (($ $ (-1108 (-229))) 129 T ELT)) (-3177 (((-557)) 60 T ELT)) (-3185 (((-557)) 50 T ELT)) (-3183 (((-557)) 53 T ELT)) (-3297 (((-659 (-659 (-960 (-229)))) $) 157 T ELT)) (-3176 (((-114) (-114)) 61 T ELT)) (-4374 (((-875) $) 155 T ELT)) (-3179 (((-114)) 58 T ELT))) -(((-944) (-13 (-993) (-10 -8 (-15 -3189 ($ (-1 (-960 (-229)) (-229)) (-1108 (-229)))) (-15 -3189 ($ (-1 (-960 (-229)) (-229)) (-1108 (-229)) (-1108 (-229)) (-1108 (-229)) (-1108 (-229)))) (-15 -3188 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1108 (-229)))) (-15 -3188 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1108 (-229)) (-1108 (-229)) (-1108 (-229)) (-1108 (-229)))) (-15 -3188 ($ $ (-1108 (-229)))) (-15 -4302 ($ $ (-1108 (-229)) (-1108 (-229)) (-1108 (-229)))) (-15 -3534 ($ $ (-1108 (-229)))) (-15 -3534 ($ $)) (-15 -3187 ((-1108 (-229)) $)) (-15 -3186 ((-659 (-659 (-229))) $)) (-15 -3185 ((-557))) (-15 -3184 ((-557) (-557))) (-15 -3183 ((-557))) (-15 -3182 ((-557) (-557))) (-15 -3181 ((-557))) (-15 -3180 ((-557) (-557))) (-15 -3179 ((-114))) (-15 -3178 ((-114) (-114))) (-15 -3177 ((-557))) (-15 -3176 ((-114) (-114)))))) (T -944)) -((-3189 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-960 (-229)) (-229))) (-5 *3 (-1108 (-229))) (-5 *1 (-944)))) (-3189 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-960 (-229)) (-229))) (-5 *3 (-1108 (-229))) (-5 *1 (-944)))) (-3188 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1108 (-229))) (-5 *1 (-944)))) (-3188 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1108 (-229))) (-5 *1 (-944)))) (-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-1108 (-229))) (-5 *1 (-944)))) (-4302 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1108 (-229))) (-5 *1 (-944)))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-1108 (-229))) (-5 *1 (-944)))) (-3534 (*1 *1 *1) (-5 *1 (-944))) (-3187 (*1 *2 *1) (-12 (-5 *2 (-1108 (-229))) (-5 *1 (-944)))) (-3186 (*1 *2 *1) (-12 (-5 *2 (-659 (-659 (-229)))) (-5 *1 (-944)))) (-3185 (*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-944)))) (-3184 (*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-944)))) (-3183 (*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-944)))) (-3182 (*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-944)))) (-3181 (*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-944)))) (-3180 (*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-944)))) (-3179 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-944)))) (-3178 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-944)))) (-3177 (*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-944)))) (-3176 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-944))))) -((-3190 (((-659 (-1108 (-229))) (-659 (-659 (-960 (-229))))) 34 T ELT))) -(((-945) (-10 -7 (-15 -3190 ((-659 (-1108 (-229))) (-659 (-659 (-960 (-229)))))))) (T -945)) -((-3190 (*1 *2 *3) (-12 (-5 *3 (-659 (-659 (-960 (-229))))) (-5 *2 (-659 (-1108 (-229)))) (-5 *1 (-945))))) -((-3192 (((-326 (-557)) (-1196)) 16 T ELT)) (-3193 (((-326 (-557)) (-1196)) 14 T ELT)) (-4380 (((-326 (-557)) (-1196)) 12 T ELT)) (-3191 (((-326 (-557)) (-1196) (-518)) 19 T ELT))) -(((-946) (-10 -7 (-15 -3191 ((-326 (-557)) (-1196) (-518))) (-15 -4380 ((-326 (-557)) (-1196))) (-15 -3192 ((-326 (-557)) (-1196))) (-15 -3193 ((-326 (-557)) (-1196))))) (T -946)) -((-3193 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-557))) (-5 *1 (-946)))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-557))) (-5 *1 (-946)))) (-4380 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-557))) (-5 *1 (-946)))) (-3191 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-518)) (-5 *2 (-326 (-557))) (-5 *1 (-946))))) -((-3192 ((|#2| |#2|) 28 T ELT)) (-3193 ((|#2| |#2|) 29 T ELT)) (-4380 ((|#2| |#2|) 27 T ELT)) (-3191 ((|#2| |#2| (-518)) 26 T ELT))) -(((-947 |#1| |#2|) (-10 -7 (-15 -3191 (|#2| |#2| (-518))) (-15 -4380 (|#2| |#2|)) (-15 -3192 (|#2| |#2|)) (-15 -3193 (|#2| |#2|))) (-1120) (-433 |#1|)) (T -947)) -((-3193 (*1 *2 *2) (-12 (-4 *3 (-1120)) (-5 *1 (-947 *3 *2)) (-4 *2 (-433 *3)))) (-3192 (*1 *2 *2) (-12 (-4 *3 (-1120)) (-5 *1 (-947 *3 *2)) (-4 *2 (-433 *3)))) (-4380 (*1 *2 *2) (-12 (-4 *3 (-1120)) (-5 *1 (-947 *3 *2)) (-4 *2 (-433 *3)))) (-3191 (*1 *2 *2 *3) (-12 (-5 *3 (-518)) (-4 *4 (-1120)) (-5 *1 (-947 *4 *2)) (-4 *2 (-433 *4))))) -((-3195 (((-901 |#1| |#3|) |#2| (-903 |#1|) (-901 |#1| |#3|)) 25 T ELT)) (-3194 (((-1 (-114) |#2|) (-1 (-114) |#3|)) 13 T ELT))) -(((-948 |#1| |#2| |#3|) (-10 -7 (-15 -3194 ((-1 (-114) |#2|) (-1 (-114) |#3|))) (-15 -3195 ((-901 |#1| |#3|) |#2| (-903 |#1|) (-901 |#1| |#3|)))) (-1120) (-899 |#1|) (-13 (-1120) (-1057 |#2|))) (T -948)) -((-3195 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1120)) (-4 *6 (-13 (-1120) (-1057 *3))) (-4 *3 (-899 *5)) (-5 *1 (-948 *5 *3 *6)))) (-3194 (*1 *2 *3) (-12 (-5 *3 (-1 (-114) *6)) (-4 *6 (-13 (-1120) (-1057 *5))) (-4 *5 (-899 *4)) (-4 *4 (-1120)) (-5 *2 (-1 (-114) *5)) (-5 *1 (-948 *4 *5 *6))))) -((-3195 (((-901 |#1| |#3|) |#3| (-903 |#1|) (-901 |#1| |#3|)) 30 T ELT))) -(((-949 |#1| |#2| |#3|) (-10 -7 (-15 -3195 ((-901 |#1| |#3|) |#3| (-903 |#1|) (-901 |#1| |#3|)))) (-1120) (-13 (-568) (-899 |#1|)) (-13 (-433 |#2|) (-629 (-903 |#1|)) (-899 |#1|) (-1057 (-626 $)))) (T -949)) -((-3195 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 *3)) (-4 *5 (-1120)) (-4 *3 (-13 (-433 *6) (-629 *4) (-899 *5) (-1057 (-626 $)))) (-5 *4 (-903 *5)) (-4 *6 (-13 (-568) (-899 *5))) (-5 *1 (-949 *5 *6 *3))))) -((-3195 (((-901 (-557) |#1|) |#1| (-903 (-557)) (-901 (-557) |#1|)) 13 T ELT))) -(((-950 |#1|) (-10 -7 (-15 -3195 ((-901 (-557) |#1|) |#1| (-903 (-557)) (-901 (-557) |#1|)))) (-556)) (T -950)) -((-3195 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 (-557) *3)) (-5 *4 (-903 (-557))) (-4 *3 (-556)) (-5 *1 (-950 *3))))) -((-3195 (((-901 |#1| |#2|) (-626 |#2|) (-903 |#1|) (-901 |#1| |#2|)) 57 T ELT))) -(((-951 |#1| |#2|) (-10 -7 (-15 -3195 ((-901 |#1| |#2|) (-626 |#2|) (-903 |#1|) (-901 |#1| |#2|)))) (-1120) (-13 (-1120) (-1057 (-626 $)) (-629 (-903 |#1|)) (-899 |#1|))) (T -951)) -((-3195 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 *6)) (-5 *3 (-626 *6)) (-4 *5 (-1120)) (-4 *6 (-13 (-1120) (-1057 (-626 $)) (-629 *4) (-899 *5))) (-5 *4 (-903 *5)) (-5 *1 (-951 *5 *6))))) -((-3195 (((-898 |#1| |#2| |#3|) |#3| (-903 |#1|) (-898 |#1| |#2| |#3|)) 17 T ELT))) -(((-952 |#1| |#2| |#3|) (-10 -7 (-15 -3195 ((-898 |#1| |#2| |#3|) |#3| (-903 |#1|) (-898 |#1| |#2| |#3|)))) (-1120) (-899 |#1|) (-684 |#2|)) (T -952)) -((-3195 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 *5 *6 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1120)) (-4 *6 (-899 *5)) (-4 *3 (-684 *6)) (-5 *1 (-952 *5 *6 *3))))) -((-3195 (((-901 |#1| |#5|) |#5| (-903 |#1|) (-901 |#1| |#5|)) 17 (|has| |#3| (-899 |#1|)) ELT) (((-901 |#1| |#5|) |#5| (-903 |#1|) (-901 |#1| |#5|) (-1 (-901 |#1| |#5|) |#3| (-903 |#1|) (-901 |#1| |#5|))) 16 T ELT))) -(((-953 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3195 ((-901 |#1| |#5|) |#5| (-903 |#1|) (-901 |#1| |#5|) (-1 (-901 |#1| |#5|) |#3| (-903 |#1|) (-901 |#1| |#5|)))) (IF (|has| |#3| (-899 |#1|)) (-15 -3195 ((-901 |#1| |#5|) |#5| (-903 |#1|) (-901 |#1| |#5|))) |%noBranch|)) (-1120) (-813) (-859) (-13 (-1068) (-899 |#1|)) (-13 (-967 |#4| |#2| |#3|) (-629 (-903 |#1|)))) (T -953)) -((-3195 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 *3)) (-4 *5 (-1120)) (-4 *3 (-13 (-967 *8 *6 *7) (-629 *4))) (-5 *4 (-903 *5)) (-4 *7 (-899 *5)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *8 (-13 (-1068) (-899 *5))) (-5 *1 (-953 *5 *6 *7 *8 *3)))) (-3195 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-901 *6 *3) *8 (-903 *6) (-901 *6 *3))) (-4 *8 (-859)) (-5 *2 (-901 *6 *3)) (-5 *4 (-903 *6)) (-4 *6 (-1120)) (-4 *3 (-13 (-967 *9 *7 *8) (-629 *4))) (-4 *7 (-813)) (-4 *9 (-13 (-1068) (-899 *6))) (-5 *1 (-953 *6 *7 *8 *9 *3))))) -((-3625 (((-326 (-557)) (-1196) (-659 (-1 (-114) |#1|))) 18 T ELT) (((-326 (-557)) (-1196) (-1 (-114) |#1|)) 15 T ELT))) -(((-954 |#1|) (-10 -7 (-15 -3625 ((-326 (-557)) (-1196) (-1 (-114) |#1|))) (-15 -3625 ((-326 (-557)) (-1196) (-659 (-1 (-114) |#1|))))) (-1236)) (T -954)) -((-3625 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-659 (-1 (-114) *5))) (-4 *5 (-1236)) (-5 *2 (-326 (-557))) (-5 *1 (-954 *5)))) (-3625 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-1 (-114) *5)) (-4 *5 (-1236)) (-5 *2 (-326 (-557))) (-5 *1 (-954 *5))))) -((-3625 ((|#2| |#2| (-659 (-1 (-114) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-114) |#3|)) 13 T ELT))) -(((-955 |#1| |#2| |#3|) (-10 -7 (-15 -3625 (|#2| |#2| (-1 (-114) |#3|))) (-15 -3625 (|#2| |#2| (-659 (-1 (-114) |#3|))))) (-1120) (-433 |#1|) (-1236)) (T -955)) -((-3625 (*1 *2 *2 *3) (-12 (-5 *3 (-659 (-1 (-114) *5))) (-4 *5 (-1236)) (-4 *4 (-1120)) (-5 *1 (-955 *4 *2 *5)) (-4 *2 (-433 *4)))) (-3625 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *5)) (-4 *5 (-1236)) (-4 *4 (-1120)) (-5 *1 (-955 *4 *2 *5)) (-4 *2 (-433 *4))))) -((-3195 (((-901 |#1| |#3|) |#3| (-903 |#1|) (-901 |#1| |#3|)) 25 T ELT))) -(((-956 |#1| |#2| |#3|) (-10 -7 (-15 -3195 ((-901 |#1| |#3|) |#3| (-903 |#1|) (-901 |#1| |#3|)))) (-1120) (-13 (-568) (-899 |#1|) (-629 (-903 |#1|))) (-1010 |#2|)) (T -956)) -((-3195 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 *3)) (-4 *5 (-1120)) (-4 *3 (-1010 *6)) (-4 *6 (-13 (-568) (-899 *5) (-629 *4))) (-5 *4 (-903 *5)) (-5 *1 (-956 *5 *6 *3))))) -((-3195 (((-901 |#1| (-1196)) (-1196) (-903 |#1|) (-901 |#1| (-1196))) 18 T ELT))) -(((-957 |#1|) (-10 -7 (-15 -3195 ((-901 |#1| (-1196)) (-1196) (-903 |#1|) (-901 |#1| (-1196))))) (-1120)) (T -957)) -((-3195 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 (-1196))) (-5 *3 (-1196)) (-5 *4 (-903 *5)) (-4 *5 (-1120)) (-5 *1 (-957 *5))))) -((-3196 (((-901 |#1| |#3|) (-659 |#3|) (-659 (-903 |#1|)) (-901 |#1| |#3|) (-1 (-901 |#1| |#3|) |#3| (-903 |#1|) (-901 |#1| |#3|))) 34 T ELT)) (-3195 (((-901 |#1| |#3|) (-659 |#3|) (-659 (-903 |#1|)) (-1 |#3| (-659 |#3|)) (-901 |#1| |#3|) (-1 (-901 |#1| |#3|) |#3| (-903 |#1|) (-901 |#1| |#3|))) 33 T ELT))) -(((-958 |#1| |#2| |#3|) (-10 -7 (-15 -3195 ((-901 |#1| |#3|) (-659 |#3|) (-659 (-903 |#1|)) (-1 |#3| (-659 |#3|)) (-901 |#1| |#3|) (-1 (-901 |#1| |#3|) |#3| (-903 |#1|) (-901 |#1| |#3|)))) (-15 -3196 ((-901 |#1| |#3|) (-659 |#3|) (-659 (-903 |#1|)) (-901 |#1| |#3|) (-1 (-901 |#1| |#3|) |#3| (-903 |#1|) (-901 |#1| |#3|))))) (-1120) (-1068) (-13 (-1068) (-629 (-903 |#1|)) (-1057 |#2|))) (T -958)) -((-3196 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-659 *8)) (-5 *4 (-659 (-903 *6))) (-5 *5 (-1 (-901 *6 *8) *8 (-903 *6) (-901 *6 *8))) (-4 *6 (-1120)) (-4 *8 (-13 (-1068) (-629 (-903 *6)) (-1057 *7))) (-5 *2 (-901 *6 *8)) (-4 *7 (-1068)) (-5 *1 (-958 *6 *7 *8)))) (-3195 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-659 (-903 *7))) (-5 *5 (-1 *9 (-659 *9))) (-5 *6 (-1 (-901 *7 *9) *9 (-903 *7) (-901 *7 *9))) (-4 *7 (-1120)) (-4 *9 (-13 (-1068) (-629 (-903 *7)) (-1057 *8))) (-5 *2 (-901 *7 *9)) (-5 *3 (-659 *9)) (-4 *8 (-1068)) (-5 *1 (-958 *7 *8 *9))))) -((-3204 (((-1190 (-419 (-557))) (-557)) 80 T ELT)) (-3203 (((-1190 (-557)) (-557)) 83 T ELT)) (-3752 (((-1190 (-557)) (-557)) 77 T ELT)) (-3202 (((-557) (-1190 (-557))) 73 T ELT)) (-3201 (((-1190 (-419 (-557))) (-557)) 66 T ELT)) (-3200 (((-1190 (-557)) (-557)) 49 T ELT)) (-3199 (((-1190 (-557)) (-557)) 85 T ELT)) (-3198 (((-1190 (-557)) (-557)) 84 T ELT)) (-3197 (((-1190 (-419 (-557))) (-557)) 68 T ELT))) -(((-959) (-10 -7 (-15 -3197 ((-1190 (-419 (-557))) (-557))) (-15 -3198 ((-1190 (-557)) (-557))) (-15 -3199 ((-1190 (-557)) (-557))) (-15 -3200 ((-1190 (-557)) (-557))) (-15 -3201 ((-1190 (-419 (-557))) (-557))) (-15 -3202 ((-557) (-1190 (-557)))) (-15 -3752 ((-1190 (-557)) (-557))) (-15 -3203 ((-1190 (-557)) (-557))) (-15 -3204 ((-1190 (-419 (-557))) (-557))))) (T -959)) -((-3204 (*1 *2 *3) (-12 (-5 *2 (-1190 (-419 (-557)))) (-5 *1 (-959)) (-5 *3 (-557)))) (-3203 (*1 *2 *3) (-12 (-5 *2 (-1190 (-557))) (-5 *1 (-959)) (-5 *3 (-557)))) (-3752 (*1 *2 *3) (-12 (-5 *2 (-1190 (-557))) (-5 *1 (-959)) (-5 *3 (-557)))) (-3202 (*1 *2 *3) (-12 (-5 *3 (-1190 (-557))) (-5 *2 (-557)) (-5 *1 (-959)))) (-3201 (*1 *2 *3) (-12 (-5 *2 (-1190 (-419 (-557)))) (-5 *1 (-959)) (-5 *3 (-557)))) (-3200 (*1 *2 *3) (-12 (-5 *2 (-1190 (-557))) (-5 *1 (-959)) (-5 *3 (-557)))) (-3199 (*1 *2 *3) (-12 (-5 *2 (-1190 (-557))) (-5 *1 (-959)) (-5 *3 (-557)))) (-3198 (*1 *2 *3) (-12 (-5 *2 (-1190 (-557))) (-5 *1 (-959)) (-5 *3 (-557)))) (-3197 (*1 *2 *3) (-12 (-5 *2 (-1190 (-419 (-557)))) (-5 *1 (-959)) (-5 *3 (-557))))) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4266 (($ (-789)) NIL (|has| |#1| (-23)) ELT)) (-2411 (((-1292) $ (-557) (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-1933 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-859)) ELT)) (-1931 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-859))) ELT)) (-3308 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-859)) ELT)) (-4216 ((|#1| $ (-557) |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| $ (-1253 (-557)) |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4152 (($) NIL T CONST)) (-2508 (($ $) NIL (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) NIL T ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-1717 ((|#1| $ (-557) |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-557)) NIL T ELT)) (-3837 (((-557) (-1 (-114) |#1|) $) NIL T ELT) (((-557) |#1| $) NIL (|has| |#1| (-1120)) ELT) (((-557) |#1| $ (-557)) NIL (|has| |#1| (-1120)) ELT)) (-4134 (($ (-659 |#1|)) 9 T ELT)) (-3288 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4263 (((-707 |#1|) $ $) NIL (|has| |#1| (-1068)) ELT)) (-4042 (($ (-789) |#1|) NIL T ELT)) (-2413 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3936 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2414 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4260 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))) ELT)) (-4261 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))) ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-2515 (($ |#1| $ (-557)) NIL T ELT) (($ $ $ (-557)) NIL T ELT)) (-2416 (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) (-557) $) NIL T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-4229 ((|#1| $) NIL (|has| (-557) (-859)) ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2412 (($ $ |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-659 |#1|)) 25 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#1| $ (-557) |#1|) NIL T ELT) ((|#1| $ (-557)) 18 T ELT) (($ $ (-1253 (-557))) NIL T ELT)) (-4264 ((|#1| $ $) NIL (|has| |#1| (-1068)) ELT)) (-4339 (((-936) $) 13 T ELT)) (-2516 (($ $ (-557)) NIL T ELT) (($ $ (-1253 (-557))) NIL T ELT)) (-4262 (($ $ $) 23 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-1932 (($ $ $ (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) NIL (|has| |#1| (-629 (-546))) ELT) (($ (-659 |#1|)) 14 T ELT)) (-3948 (($ (-659 |#1|)) NIL T ELT)) (-4230 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-659 $)) NIL T ELT)) (-4374 (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2963 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3083 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-4265 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-4267 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-557) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-744)) ELT) (($ $ |#1|) NIL (|has| |#1| (-744)) ELT)) (-4385 (((-789) $) 11 (|has| $ (-6 -4423)) ELT))) -(((-960 |#1|) (-999 |#1|) (-1068)) (T -960)) -NIL -((-3207 (((-493 |#1| |#2|) (-963 |#2|)) 22 T ELT)) (-3210 (((-255 |#1| |#2|) (-963 |#2|)) 35 T ELT)) (-3208 (((-963 |#2|) (-493 |#1| |#2|)) 27 T ELT)) (-3206 (((-255 |#1| |#2|) (-493 |#1| |#2|)) 57 T ELT)) (-3209 (((-963 |#2|) (-255 |#1| |#2|)) 32 T ELT)) (-3205 (((-493 |#1| |#2|) (-255 |#1| |#2|)) 48 T ELT))) -(((-961 |#1| |#2|) (-10 -7 (-15 -3205 ((-493 |#1| |#2|) (-255 |#1| |#2|))) (-15 -3206 ((-255 |#1| |#2|) (-493 |#1| |#2|))) (-15 -3207 ((-493 |#1| |#2|) (-963 |#2|))) (-15 -3208 ((-963 |#2|) (-493 |#1| |#2|))) (-15 -3209 ((-963 |#2|) (-255 |#1| |#2|))) (-15 -3210 ((-255 |#1| |#2|) (-963 |#2|)))) (-659 (-1196)) (-1068)) (T -961)) -((-3210 (*1 *2 *3) (-12 (-5 *3 (-963 *5)) (-4 *5 (-1068)) (-5 *2 (-255 *4 *5)) (-5 *1 (-961 *4 *5)) (-14 *4 (-659 (-1196))))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-659 (-1196))) (-4 *5 (-1068)) (-5 *2 (-963 *5)) (-5 *1 (-961 *4 *5)))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-659 (-1196))) (-4 *5 (-1068)) (-5 *2 (-963 *5)) (-5 *1 (-961 *4 *5)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-963 *5)) (-4 *5 (-1068)) (-5 *2 (-493 *4 *5)) (-5 *1 (-961 *4 *5)) (-14 *4 (-659 (-1196))))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-659 (-1196))) (-4 *5 (-1068)) (-5 *2 (-255 *4 *5)) (-5 *1 (-961 *4 *5)))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-659 (-1196))) (-4 *5 (-1068)) (-5 *2 (-493 *4 *5)) (-5 *1 (-961 *4 *5))))) -((-3211 (((-659 |#2|) |#2| |#2|) 10 T ELT)) (-3214 (((-789) (-659 |#1|)) 47 (|has| |#1| (-858)) ELT)) (-3212 (((-659 |#2|) |#2|) 11 T ELT)) (-3215 (((-789) (-659 |#1|) (-557) (-557)) 52 (|has| |#1| (-858)) ELT)) (-3213 ((|#1| |#2|) 37 (|has| |#1| (-858)) ELT))) -(((-962 |#1| |#2|) (-10 -7 (-15 -3211 ((-659 |#2|) |#2| |#2|)) (-15 -3212 ((-659 |#2|) |#2|)) (IF (|has| |#1| (-858)) (PROGN (-15 -3213 (|#1| |#2|)) (-15 -3214 ((-789) (-659 |#1|))) (-15 -3215 ((-789) (-659 |#1|) (-557) (-557)))) |%noBranch|)) (-376) (-1262 |#1|)) (T -962)) -((-3215 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-659 *5)) (-5 *4 (-557)) (-4 *5 (-858)) (-4 *5 (-376)) (-5 *2 (-789)) (-5 *1 (-962 *5 *6)) (-4 *6 (-1262 *5)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-659 *4)) (-4 *4 (-858)) (-4 *4 (-376)) (-5 *2 (-789)) (-5 *1 (-962 *4 *5)) (-4 *5 (-1262 *4)))) (-3213 (*1 *2 *3) (-12 (-4 *2 (-376)) (-4 *2 (-858)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1262 *2)))) (-3212 (*1 *2 *3) (-12 (-4 *4 (-376)) (-5 *2 (-659 *3)) (-5 *1 (-962 *4 *3)) (-4 *3 (-1262 *4)))) (-3211 (*1 *2 *3 *3) (-12 (-4 *4 (-376)) (-5 *2 (-659 *3)) (-5 *1 (-962 *4 *3)) (-4 *3 (-1262 *4))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3482 (((-659 (-1196)) $) 16 T ELT)) (-3484 (((-1190 $) $ (-1196)) 21 T ELT) (((-1190 |#1|) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-3218 (((-789) $) NIL T ELT) (((-789) $ (-659 (-1196))) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-4203 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 (-1196) #1#) $) NIL T ELT)) (-3572 ((|#1| $) NIL T ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-1196) $) NIL T ELT)) (-4184 (($ $ $ (-1196)) NIL (|has| |#1| (-175)) ELT)) (-4387 (($ $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) NIL T ELT) (((-707 |#1|) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3921 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1196)) NIL (|has| |#1| (-464)) ELT)) (-3217 (((-659 $) $) NIL T ELT)) (-4151 (((-114) $) NIL (|has| |#1| (-927)) ELT)) (-1802 (($ $ |#1| (-542 (-1196)) $) NIL T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (-12 (|has| (-1196) (-899 (-391))) (|has| |#1| (-899 (-391)))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (-12 (|has| (-1196) (-899 (-557))) (|has| |#1| (-899 (-557)))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-2647 (((-789) $) NIL T ELT)) (-3485 (($ (-1190 |#1|) (-1196)) NIL T ELT) (($ (-1190 $) (-1196)) NIL T ELT)) (-3220 (((-659 $) $) NIL T ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-542 (-1196))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT)) (-4191 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $ (-1196)) NIL T ELT)) (-3219 (((-542 (-1196)) $) NIL T ELT) (((-789) $ (-1196)) NIL T ELT) (((-659 (-789)) $ (-659 (-1196))) NIL T ELT)) (-1803 (($ (-1 (-542 (-1196)) (-542 (-1196))) $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3483 (((-3 (-1196) #1#) $) 19 T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL T ELT) (((-707 |#1|) (-1286 $)) NIL T ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3222 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3221 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-2 (|:| |var| (-1196)) (|:| -2630 (-789))) #1#) $) NIL T ELT)) (-4240 (($ $ (-1196)) 29 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2003 (((-114) $) NIL T ELT)) (-2002 ((|#1| $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-464)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-4160 (((-417 $) $) NIL (|has| |#1| (-927)) ELT)) (-3884 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-568)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-568)) ELT)) (-4196 (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ (-1196) |#1|) NIL T ELT) (($ $ (-659 (-1196)) (-659 |#1|)) NIL T ELT) (($ $ (-1196) $) NIL T ELT) (($ $ (-659 (-1196)) (-659 $)) NIL T ELT)) (-4185 (($ $ (-1196)) NIL (|has| |#1| (-175)) ELT)) (-4186 (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196))) NIL T ELT) (($ $ (-1196)) NIL T ELT)) (-4376 (((-542 (-1196)) $) NIL T ELT) (((-789) $ (-1196)) NIL T ELT) (((-659 (-789)) $ (-659 (-1196))) NIL T ELT)) (-4400 (((-903 (-391)) $) NIL (-12 (|has| (-1196) (-629 (-903 (-391)))) (|has| |#1| (-629 (-903 (-391))))) ELT) (((-903 (-557)) $) NIL (-12 (|has| (-1196) (-629 (-903 (-557)))) (|has| |#1| (-629 (-903 (-557))))) ELT) (((-546) $) NIL (-12 (|has| (-1196) (-629 (-546))) (|has| |#1| (-629 (-546)))) ELT)) (-3216 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1196)) NIL (|has| |#1| (-464)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-927))) ELT)) (-4374 (((-875) $) 25 T ELT) (($ (-557)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1196)) 27 T ELT) (($ (-419 (-557))) NIL (-3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) ELT) (($ $) NIL (|has| |#1| (-568)) ELT)) (-4245 (((-659 |#1|) $) NIL T ELT)) (-4105 ((|#1| $ (-542 (-1196))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| |#1| (-927))) (|has| |#1| (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-1801 (($ $ $ (-789)) NIL (|has| |#1| (-175)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196))) NIL T ELT) (($ $ (-1196)) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-963 |#1|) (-13 (-967 |#1| (-542 (-1196)) (-1196)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-557)))) (-15 -4240 ($ $ (-1196))) |%noBranch|))) (-1068)) (T -963)) -((-4240 (*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-963 *3)) (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068))))) -((-4386 (((-963 |#2|) (-1 |#2| |#1|) (-963 |#1|)) 19 T ELT))) -(((-964 |#1| |#2|) (-10 -7 (-15 -4386 ((-963 |#2|) (-1 |#2| |#1|) (-963 |#1|)))) (-1068) (-1068)) (T -964)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-963 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-963 *6)) (-5 *1 (-964 *5 *6))))) -((-3484 (((-1255 |#1| (-963 |#2|)) (-963 |#2|) (-1283 |#1|)) 18 T ELT))) -(((-965 |#1| |#2|) (-10 -7 (-15 -3484 ((-1255 |#1| (-963 |#2|)) (-963 |#2|) (-1283 |#1|)))) (-1196) (-1068)) (T -965)) -((-3484 (*1 *2 *3 *4) (-12 (-5 *4 (-1283 *5)) (-14 *5 (-1196)) (-4 *6 (-1068)) (-5 *2 (-1255 *5 (-963 *6))) (-5 *1 (-965 *5 *6)) (-5 *3 (-963 *6))))) -((-3218 (((-789) $) 88 T ELT) (((-789) $ (-659 |#4|)) 93 T ELT)) (-4203 (($ $) 213 T ELT)) (-4399 (((-417 $) $) 205 T ELT)) (-3103 (((-3 (-659 (-1190 $)) #1="failed") (-659 (-1190 $)) (-1190 $)) 141 T ELT)) (-3573 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL T ELT) (((-3 (-557) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3572 ((|#2| $) NIL T ELT) (((-419 (-557)) $) NIL T ELT) (((-557) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-4184 (($ $ $ |#4|) 95 T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL T ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL T ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 $) (-1286 $)) 131 T ELT) (((-707 |#2|) (-707 $)) 121 T ELT)) (-3921 (($ $) 220 T ELT) (($ $ |#4|) 223 T ELT)) (-3217 (((-659 $) $) 77 T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) 239 T ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) 232 T ELT)) (-3220 (((-659 $) $) 34 T ELT)) (-3292 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-789)) NIL T ELT) (($ $ (-659 |#4|) (-659 (-789))) 71 T ELT)) (-4191 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $ |#4|) 202 T ELT)) (-3222 (((-3 (-659 $) #1#) $) 52 T ELT)) (-3221 (((-3 (-659 $) #1#) $) 39 T ELT)) (-3223 (((-3 (-2 (|:| |var| |#4|) (|:| -2630 (-789))) #1#) $) 57 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 134 T ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) 147 T ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) 145 T ELT)) (-4160 (((-417 $) $) 165 T ELT)) (-4196 (($ $ (-659 (-305 $))) 24 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-659 |#4|) (-659 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-659 |#4|) (-659 $)) NIL T ELT)) (-4185 (($ $ |#4|) 97 T ELT)) (-4400 (((-903 (-391)) $) 253 T ELT) (((-903 (-557)) $) 246 T ELT) (((-546) $) 261 T ELT)) (-3216 ((|#2| $) NIL T ELT) (($ $ |#4|) 215 T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) 184 T ELT)) (-4105 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-789)) 62 T ELT) (($ $ (-659 |#4|) (-659 (-789))) 69 T ELT)) (-3101 (((-709 $) $) 194 T ELT)) (-1376 (((-114) $ $) 226 T ELT))) -(((-966 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3107 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|))) (-15 -4399 ((-417 |#1|) |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -3101 ((-709 |#1|) |#1|)) (-15 -4400 ((-546) |#1|)) (-15 -4400 ((-903 (-557)) |#1|)) (-15 -4400 ((-903 (-391)) |#1|)) (-15 -3195 ((-901 (-557) |#1|) |#1| (-903 (-557)) (-901 (-557) |#1|))) (-15 -3195 ((-901 (-391) |#1|) |#1| (-903 (-391)) (-901 (-391) |#1|))) (-15 -4160 ((-417 |#1|) |#1|)) (-15 -3105 ((-417 (-1190 |#1|)) (-1190 |#1|))) (-15 -3104 ((-417 (-1190 |#1|)) (-1190 |#1|))) (-15 -3103 ((-3 (-659 (-1190 |#1|)) #1="failed") (-659 (-1190 |#1|)) (-1190 |#1|))) (-15 -3102 ((-3 (-1286 |#1|) #1#) (-707 |#1|))) (-15 -3921 (|#1| |#1| |#4|)) (-15 -3216 (|#1| |#1| |#4|)) (-15 -4185 (|#1| |#1| |#4|)) (-15 -4184 (|#1| |#1| |#1| |#4|)) (-15 -3217 ((-659 |#1|) |#1|)) (-15 -3218 ((-789) |#1| (-659 |#4|))) (-15 -3218 ((-789) |#1|)) (-15 -3223 ((-3 (-2 (|:| |var| |#4|) (|:| -2630 (-789))) #1#) |#1|)) (-15 -3222 ((-3 (-659 |#1|) #1#) |#1|)) (-15 -3221 ((-3 (-659 |#1|) #1#) |#1|)) (-15 -3292 (|#1| |#1| (-659 |#4|) (-659 (-789)))) (-15 -3292 (|#1| |#1| |#4| (-789))) (-15 -4191 ((-2 (|:| -2182 |#1|) (|:| -3301 |#1|)) |#1| |#1| |#4|)) (-15 -3220 ((-659 |#1|) |#1|)) (-15 -4105 (|#1| |#1| (-659 |#4|) (-659 (-789)))) (-15 -4105 (|#1| |#1| |#4| (-789))) (-15 -2491 ((-707 |#2|) (-707 |#1|))) (-15 -2491 ((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 |#1|) (-1286 |#1|))) (-15 -2491 ((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 |#1|) (-1286 |#1|))) (-15 -2491 ((-707 (-557)) (-707 |#1|))) (-15 -3573 ((-3 |#4| #1#) |#1|)) (-15 -3572 (|#4| |#1|)) (-15 -4196 (|#1| |#1| (-659 |#4|) (-659 |#1|))) (-15 -4196 (|#1| |#1| |#4| |#1|)) (-15 -4196 (|#1| |#1| (-659 |#4|) (-659 |#2|))) (-15 -4196 (|#1| |#1| |#4| |#2|)) (-15 -4196 (|#1| |#1| (-659 |#1|) (-659 |#1|))) (-15 -4196 (|#1| |#1| |#1| |#1|)) (-15 -4196 (|#1| |#1| (-305 |#1|))) (-15 -4196 (|#1| |#1| (-659 (-305 |#1|)))) (-15 -3292 (|#1| |#2| |#3|)) (-15 -4105 (|#2| |#1| |#3|)) (-15 -3573 ((-3 (-557) #1#) |#1|)) (-15 -3572 ((-557) |#1|)) (-15 -3573 ((-3 (-419 (-557)) #1#) |#1|)) (-15 -3572 ((-419 (-557)) |#1|)) (-15 -3572 (|#2| |#1|)) (-15 -3573 ((-3 |#2| #1#) |#1|)) (-15 -3216 (|#2| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -1376 ((-114) |#1| |#1|))) (-967 |#2| |#3| |#4|) (-1068) (-813) (-859)) (T -966)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-3482 (((-659 |#3|) $) 120 T ELT)) (-3484 (((-1190 $) $ |#3|) 135 T ELT) (((-1190 |#1|) $) 134 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 97 (|has| |#1| (-568)) ELT)) (-2271 (($ $) 98 (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) 100 (|has| |#1| (-568)) ELT)) (-3218 (((-789) $) 122 T ELT) (((-789) $ (-659 |#3|)) 121 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) 110 (|has| |#1| (-927)) ELT)) (-4203 (($ $) 108 (|has| |#1| (-464)) ELT)) (-4399 (((-417 $) $) 107 (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1="failed") (-659 (-1190 $)) (-1190 $)) 113 (|has| |#1| (-927)) ELT)) (-4152 (($) 22 T CONST)) (-3573 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-419 (-557)) #2#) $) 175 (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 (-557) #2#) $) 173 (|has| |#1| (-1057 (-557))) ELT) (((-3 |#3| #2#) $) 150 T ELT)) (-3572 ((|#1| $) 177 T ELT) (((-419 (-557)) $) 176 (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-557) $) 174 (|has| |#1| (-1057 (-557))) ELT) ((|#3| $) 151 T ELT)) (-4184 (($ $ $ |#3|) 118 (|has| |#1| (-175)) ELT)) (-4387 (($ $) 168 T ELT)) (-2491 (((-707 (-557)) (-707 $)) 146 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) 145 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) 144 T ELT) (((-707 |#1|) (-707 $)) 143 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-3921 (($ $) 190 (|has| |#1| (-464)) ELT) (($ $ |#3|) 115 (|has| |#1| (-464)) ELT)) (-3217 (((-659 $) $) 119 T ELT)) (-4151 (((-114) $) 106 (|has| |#1| (-927)) ELT)) (-1802 (($ $ |#1| |#2| $) 186 T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) 94 (-12 (|has| |#3| (-899 (-391))) (|has| |#1| (-899 (-391)))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) 93 (-12 (|has| |#3| (-899 (-557))) (|has| |#1| (-899 (-557)))) ELT)) (-2639 (((-114) $) 40 T ELT)) (-2647 (((-789) $) 183 T ELT)) (-3485 (($ (-1190 |#1|) |#3|) 127 T ELT) (($ (-1190 $) |#3|) 126 T ELT)) (-3220 (((-659 $) $) 136 T ELT)) (-4365 (((-114) $) 166 T ELT)) (-3292 (($ |#1| |#2|) 167 T ELT) (($ $ |#3| (-789)) 129 T ELT) (($ $ (-659 |#3|) (-659 (-789))) 128 T ELT)) (-4191 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $ |#3|) 130 T ELT)) (-3219 ((|#2| $) 184 T ELT) (((-789) $ |#3|) 132 T ELT) (((-659 (-789)) $ (-659 |#3|)) 131 T ELT)) (-1803 (($ (-1 |#2| |#2|) $) 185 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3483 (((-3 |#3| "failed") $) 133 T ELT)) (-2492 (((-707 (-557)) (-1286 $)) 148 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) 147 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 142 T ELT) (((-707 |#1|) (-1286 $)) 141 T ELT)) (-3293 (($ $) 163 T ELT)) (-3590 ((|#1| $) 162 T ELT)) (-2100 (($ (-659 $)) 104 (|has| |#1| (-464)) ELT) (($ $ $) 103 (|has| |#1| (-464)) ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3222 (((-3 (-659 $) "failed") $) 124 T ELT)) (-3221 (((-3 (-659 $) "failed") $) 125 T ELT)) (-3223 (((-3 (-2 (|:| |var| |#3|) (|:| -2630 (-789))) "failed") $) 123 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-2003 (((-114) $) 180 T ELT)) (-2002 ((|#1| $) 181 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 105 (|has| |#1| (-464)) ELT)) (-3560 (($ (-659 $)) 102 (|has| |#1| (-464)) ELT) (($ $ $) 101 (|has| |#1| (-464)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) 112 (|has| |#1| (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) 111 (|has| |#1| (-927)) ELT)) (-4160 (((-417 $) $) 109 (|has| |#1| (-927)) ELT)) (-3884 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-568)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-568)) ELT)) (-4196 (($ $ (-659 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-659 $) (-659 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-659 |#3|) (-659 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-659 |#3|) (-659 $)) 152 T ELT)) (-4185 (($ $ |#3|) 117 (|has| |#1| (-175)) ELT)) (-4186 (($ $ (-659 |#3|) (-659 (-789))) 49 T ELT) (($ $ |#3| (-789)) 48 T ELT) (($ $ (-659 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT)) (-4376 ((|#2| $) 164 T ELT) (((-789) $ |#3|) 140 T ELT) (((-659 (-789)) $ (-659 |#3|)) 139 T ELT)) (-4400 (((-903 (-391)) $) 92 (-12 (|has| |#3| (-629 (-903 (-391)))) (|has| |#1| (-629 (-903 (-391))))) ELT) (((-903 (-557)) $) 91 (-12 (|has| |#3| (-629 (-903 (-557)))) (|has| |#1| (-629 (-903 (-557))))) ELT) (((-546) $) 90 (-12 (|has| |#3| (-629 (-546))) (|has| |#1| (-629 (-546)))) ELT)) (-3216 ((|#1| $) 189 (|has| |#1| (-464)) ELT) (($ $ |#3|) 116 (|has| |#1| (-464)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) 114 (-2959 (|has| $ (-147)) (|has| |#1| (-927))) ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (($ $) 95 (|has| |#1| (-568)) ELT) (($ (-419 (-557))) 88 (-3955 (|has| |#1| (-1057 (-419 (-557)))) (|has| |#1| (-38 (-419 (-557))))) ELT)) (-4245 (((-659 |#1|) $) 182 T ELT)) (-4105 ((|#1| $ |#2|) 169 T ELT) (($ $ |#3| (-789)) 138 T ELT) (($ $ (-659 |#3|) (-659 (-789))) 137 T ELT)) (-3101 (((-709 $) $) 89 (-3955 (-2959 (|has| $ (-147)) (|has| |#1| (-927))) (|has| |#1| (-147))) ELT)) (-3526 (((-789)) 37 T CONST)) (-1801 (($ $ $ (-789)) 187 (|has| |#1| (-175)) ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 99 (|has| |#1| (-568)) ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $ (-659 |#3|) (-659 (-789))) 52 T ELT) (($ $ |#3| (-789)) 51 T ELT) (($ $ (-659 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ |#1|) 170 (|has| |#1| (-376)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-557))) 172 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ (-419 (-557)) $) 171 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) -(((-967 |#1| |#2| |#3|) (-142) (-1068) (-813) (-859)) (T -967)) -((-3921 (*1 *1 *1) (-12 (-4 *1 (-967 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *2 (-464)))) (-4376 (*1 *2 *1 *3) (-12 (-4 *1 (-967 *4 *5 *3)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *3 (-859)) (-5 *2 (-789)))) (-4376 (*1 *2 *1 *3) (-12 (-5 *3 (-659 *6)) (-4 *1 (-967 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-659 (-789))))) (-4105 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-789)) (-4 *1 (-967 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *2 (-859)))) (-4105 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 *6)) (-5 *3 (-659 (-789))) (-4 *1 (-967 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *6 (-859)))) (-3220 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-659 *1)) (-4 *1 (-967 *3 *4 *5)))) (-3484 (*1 *2 *1 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *3 (-859)) (-5 *2 (-1190 *1)) (-4 *1 (-967 *4 *5 *3)))) (-3484 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-1190 *3)))) (-3483 (*1 *2 *1) (|partial| -12 (-4 *1 (-967 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)))) (-3219 (*1 *2 *1 *3) (-12 (-4 *1 (-967 *4 *5 *3)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *3 (-859)) (-5 *2 (-789)))) (-3219 (*1 *2 *1 *3) (-12 (-5 *3 (-659 *6)) (-4 *1 (-967 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-659 (-789))))) (-4191 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *3 (-859)) (-5 *2 (-2 (|:| -2182 *1) (|:| -3301 *1))) (-4 *1 (-967 *4 *5 *3)))) (-3292 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-789)) (-4 *1 (-967 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *2 (-859)))) (-3292 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 *6)) (-5 *3 (-659 (-789))) (-4 *1 (-967 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *6 (-859)))) (-3485 (*1 *1 *2 *3) (-12 (-5 *2 (-1190 *4)) (-4 *4 (-1068)) (-4 *1 (-967 *4 *5 *3)) (-4 *5 (-813)) (-4 *3 (-859)))) (-3485 (*1 *1 *2 *3) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-967 *4 *5 *3)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *3 (-859)))) (-3221 (*1 *2 *1) (|partial| -12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-659 *1)) (-4 *1 (-967 *3 *4 *5)))) (-3222 (*1 *2 *1) (|partial| -12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-659 *1)) (-4 *1 (-967 *3 *4 *5)))) (-3223 (*1 *2 *1) (|partial| -12 (-4 *1 (-967 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-2 (|:| |var| *5) (|:| -2630 (-789)))))) (-3218 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-789)))) (-3218 (*1 *2 *1 *3) (-12 (-5 *3 (-659 *6)) (-4 *1 (-967 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-789)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-659 *5)))) (-3217 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-659 *1)) (-4 *1 (-967 *3 *4 *5)))) (-4184 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-967 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)) (-4 *3 (-175)))) (-4185 (*1 *1 *1 *2) (-12 (-4 *1 (-967 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)) (-4 *3 (-175)))) (-3216 (*1 *1 *1 *2) (-12 (-4 *1 (-967 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)) (-4 *3 (-464)))) (-3921 (*1 *1 *1 *2) (-12 (-4 *1 (-967 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)) (-4 *3 (-464)))) (-4203 (*1 *1 *1) (-12 (-4 *1 (-967 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *2 (-464)))) (-4399 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-417 *1)) (-4 *1 (-967 *3 *4 *5))))) -(-13 (-915 |t#3|) (-338 |t#1| |t#2|) (-321 $) (-526 |t#3| |t#1|) (-526 |t#3| $) (-1057 |t#3|) (-390 |t#1|) (-10 -8 (-15 -4376 ((-789) $ |t#3|)) (-15 -4376 ((-659 (-789)) $ (-659 |t#3|))) (-15 -4105 ($ $ |t#3| (-789))) (-15 -4105 ($ $ (-659 |t#3|) (-659 (-789)))) (-15 -3220 ((-659 $) $)) (-15 -3484 ((-1190 $) $ |t#3|)) (-15 -3484 ((-1190 |t#1|) $)) (-15 -3483 ((-3 |t#3| "failed") $)) (-15 -3219 ((-789) $ |t#3|)) (-15 -3219 ((-659 (-789)) $ (-659 |t#3|))) (-15 -4191 ((-2 (|:| -2182 $) (|:| -3301 $)) $ $ |t#3|)) (-15 -3292 ($ $ |t#3| (-789))) (-15 -3292 ($ $ (-659 |t#3|) (-659 (-789)))) (-15 -3485 ($ (-1190 |t#1|) |t#3|)) (-15 -3485 ($ (-1190 $) |t#3|)) (-15 -3221 ((-3 (-659 $) "failed") $)) (-15 -3222 ((-3 (-659 $) "failed") $)) (-15 -3223 ((-3 (-2 (|:| |var| |t#3|) (|:| -2630 (-789))) "failed") $)) (-15 -3218 ((-789) $)) (-15 -3218 ((-789) $ (-659 |t#3|))) (-15 -3482 ((-659 |t#3|) $)) (-15 -3217 ((-659 $) $)) (IF (|has| |t#1| (-629 (-546))) (IF (|has| |t#3| (-629 (-546))) (-6 (-629 (-546))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-629 (-903 (-557)))) (IF (|has| |t#3| (-629 (-903 (-557)))) (-6 (-629 (-903 (-557)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-629 (-903 (-391)))) (IF (|has| |t#3| (-629 (-903 (-391)))) (-6 (-629 (-903 (-391)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-899 (-557))) (IF (|has| |t#3| (-899 (-557))) (-6 (-899 (-557))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-899 (-391))) (IF (|has| |t#3| (-899 (-391))) (-6 (-899 (-391))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-15 -4184 ($ $ $ |t#3|)) (-15 -4185 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-6 (-464)) (-15 -3216 ($ $ |t#3|)) (-15 -3921 ($ $)) (-15 -3921 ($ $ |t#3|)) (-15 -4399 ((-417 $) $)) (-15 -4203 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4421)) (-6 -4421) |%noBranch|) (IF (|has| |t#1| (-927)) (-6 (-927)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) -3955 (|has| |#1| (-1057 (-419 (-557)))) (|has| |#1| (-38 (-419 (-557))))) ((-631 (-557)) . T) ((-631 |#1|) . T) ((-631 |#3|) . T) ((-631 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-628 (-875)) . T) ((-175) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-629 (-546)) -12 (|has| |#1| (-629 (-546))) (|has| |#3| (-629 (-546)))) ((-629 (-903 (-391))) -12 (|has| |#1| (-629 (-903 (-391)))) (|has| |#3| (-629 (-903 (-391))))) ((-629 (-903 (-557))) -12 (|has| |#1| (-629 (-903 (-557)))) (|has| |#3| (-629 (-903 (-557))))) ((-302) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-321 $) . T) ((-338 |#1| |#2|) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-464) -3955 (|has| |#1| (-927)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-664 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-666 (-557)) |has| |#1| (-656 (-557))) ((-666 |#1|) . T) ((-666 $) . T) ((-658 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-658 |#1|) |has| |#1| (-175)) ((-658 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-656 (-557)) |has| |#1| (-656 (-557))) ((-656 |#1|) . T) ((-735 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-735 |#1|) |has| |#1| (-175)) ((-735 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-744) . T) ((-909 $ |#3|) . T) ((-915 |#3|) . T) ((-917 |#3|) . T) ((-899 (-391)) -12 (|has| |#1| (-899 (-391))) (|has| |#3| (-899 (-391)))) ((-899 (-557)) -12 (|has| |#1| (-899 (-557))) (|has| |#3| (-899 (-557)))) ((-927) |has| |#1| (-927)) ((-1057 (-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((-1057 (-557)) |has| |#1| (-1057 (-557))) ((-1057 |#1|) . T) ((-1057 |#3|) . T) ((-1070 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-1070 |#1|) . T) ((-1070 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1075 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-1075 |#1|) . T) ((-1075 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T) ((-1241) |has| |#1| (-927))) -((-3482 (((-659 |#2|) |#5|) 40 T ELT)) (-3484 (((-1190 |#5|) |#5| |#2| (-1190 |#5|)) 23 T ELT) (((-419 (-1190 |#5|)) |#5| |#2|) 16 T ELT)) (-3485 ((|#5| (-419 (-1190 |#5|)) |#2|) 30 T ELT)) (-3483 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-3222 (((-3 (-659 |#5|) #1#) |#5|) 64 T ELT)) (-3224 (((-3 (-2 (|:| |val| |#5|) (|:| -2630 (-557))) #1#) |#5|) 53 T ELT)) (-3221 (((-3 (-659 |#5|) #1#) |#5|) 66 T ELT)) (-3223 (((-3 (-2 (|:| |var| |#2|) (|:| -2630 (-557))) #1#) |#5|) 56 T ELT))) -(((-968 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3482 ((-659 |#2|) |#5|)) (-15 -3483 ((-3 |#2| #1="failed") |#5|)) (-15 -3484 ((-419 (-1190 |#5|)) |#5| |#2|)) (-15 -3485 (|#5| (-419 (-1190 |#5|)) |#2|)) (-15 -3484 ((-1190 |#5|) |#5| |#2| (-1190 |#5|))) (-15 -3221 ((-3 (-659 |#5|) #1#) |#5|)) (-15 -3222 ((-3 (-659 |#5|) #1#) |#5|)) (-15 -3223 ((-3 (-2 (|:| |var| |#2|) (|:| -2630 (-557))) #1#) |#5|)) (-15 -3224 ((-3 (-2 (|:| |val| |#5|) (|:| -2630 (-557))) #1#) |#5|))) (-813) (-859) (-1068) (-967 |#3| |#1| |#2|) (-13 (-376) (-10 -8 (-15 -4374 ($ |#4|)) (-15 -3397 (|#4| $)) (-15 -3396 (|#4| $))))) (T -968)) -((-3224 (*1 *2 *3) (|partial| -12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1068)) (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2630 (-557)))) (-5 *1 (-968 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4374 ($ *7)) (-15 -3397 (*7 $)) (-15 -3396 (*7 $))))))) (-3223 (*1 *2 *3) (|partial| -12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1068)) (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2630 (-557)))) (-5 *1 (-968 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4374 ($ *7)) (-15 -3397 (*7 $)) (-15 -3396 (*7 $))))))) (-3222 (*1 *2 *3) (|partial| -12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1068)) (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-659 *3)) (-5 *1 (-968 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4374 ($ *7)) (-15 -3397 (*7 $)) (-15 -3396 (*7 $))))))) (-3221 (*1 *2 *3) (|partial| -12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1068)) (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-659 *3)) (-5 *1 (-968 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4374 ($ *7)) (-15 -3397 (*7 $)) (-15 -3396 (*7 $))))))) (-3484 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1190 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4374 ($ *7)) (-15 -3397 (*7 $)) (-15 -3396 (*7 $))))) (-4 *7 (-967 *6 *5 *4)) (-4 *5 (-813)) (-4 *4 (-859)) (-4 *6 (-1068)) (-5 *1 (-968 *5 *4 *6 *7 *3)))) (-3485 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1190 *2))) (-4 *5 (-813)) (-4 *4 (-859)) (-4 *6 (-1068)) (-4 *2 (-13 (-376) (-10 -8 (-15 -4374 ($ *7)) (-15 -3397 (*7 $)) (-15 -3396 (*7 $))))) (-5 *1 (-968 *5 *4 *6 *7 *2)) (-4 *7 (-967 *6 *5 *4)))) (-3484 (*1 *2 *3 *4) (-12 (-4 *5 (-813)) (-4 *4 (-859)) (-4 *6 (-1068)) (-4 *7 (-967 *6 *5 *4)) (-5 *2 (-419 (-1190 *3))) (-5 *1 (-968 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4374 ($ *7)) (-15 -3397 (*7 $)) (-15 -3396 (*7 $))))))) (-3483 (*1 *2 *3) (|partial| -12 (-4 *4 (-813)) (-4 *5 (-1068)) (-4 *6 (-967 *5 *4 *2)) (-4 *2 (-859)) (-5 *1 (-968 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4374 ($ *6)) (-15 -3397 (*6 $)) (-15 -3396 (*6 $))))))) (-3482 (*1 *2 *3) (-12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1068)) (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-659 *5)) (-5 *1 (-968 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4374 ($ *7)) (-15 -3397 (*7 $)) (-15 -3396 (*7 $)))))))) -((-4386 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) -(((-969 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4386 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-813) (-859) (-1068) (-967 |#3| |#1| |#2|) (-13 (-1120) (-10 -8 (-15 -4267 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-789)))))) (T -969)) -((-4386 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-859)) (-4 *8 (-1068)) (-4 *6 (-813)) (-4 *2 (-13 (-1120) (-10 -8 (-15 -4267 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-789)))))) (-5 *1 (-969 *6 *7 *8 *5 *2)) (-4 *5 (-967 *8 *6 *7))))) -((-3225 (((-2 (|:| -2630 (-789)) (|:| -4382 |#5|) (|:| |radicand| |#5|)) |#3| (-789)) 48 T ELT)) (-3226 (((-2 (|:| -2630 (-789)) (|:| -4382 |#5|) (|:| |radicand| |#5|)) (-419 (-557)) (-789)) 43 T ELT)) (-3228 (((-2 (|:| -2630 (-789)) (|:| -4382 |#4|) (|:| |radicand| (-659 |#4|))) |#4| (-789)) 64 T ELT)) (-3227 (((-2 (|:| -2630 (-789)) (|:| -4382 |#5|) (|:| |radicand| |#5|)) |#5| (-789)) 73 (|has| |#3| (-464)) ELT))) -(((-970 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3225 ((-2 (|:| -2630 (-789)) (|:| -4382 |#5|) (|:| |radicand| |#5|)) |#3| (-789))) (-15 -3226 ((-2 (|:| -2630 (-789)) (|:| -4382 |#5|) (|:| |radicand| |#5|)) (-419 (-557)) (-789))) (IF (|has| |#3| (-464)) (-15 -3227 ((-2 (|:| -2630 (-789)) (|:| -4382 |#5|) (|:| |radicand| |#5|)) |#5| (-789))) |%noBranch|) (-15 -3228 ((-2 (|:| -2630 (-789)) (|:| -4382 |#4|) (|:| |radicand| (-659 |#4|))) |#4| (-789)))) (-813) (-859) (-568) (-967 |#3| |#1| |#2|) (-13 (-376) (-10 -8 (-15 -4374 ($ |#4|)) (-15 -3397 (|#4| $)) (-15 -3396 (|#4| $))))) (T -970)) -((-3228 (*1 *2 *3 *4) (-12 (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-568)) (-4 *3 (-967 *7 *5 *6)) (-5 *2 (-2 (|:| -2630 (-789)) (|:| -4382 *3) (|:| |radicand| (-659 *3)))) (-5 *1 (-970 *5 *6 *7 *3 *8)) (-5 *4 (-789)) (-4 *8 (-13 (-376) (-10 -8 (-15 -4374 ($ *3)) (-15 -3397 (*3 $)) (-15 -3396 (*3 $))))))) (-3227 (*1 *2 *3 *4) (-12 (-4 *7 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-568)) (-4 *8 (-967 *7 *5 *6)) (-5 *2 (-2 (|:| -2630 (-789)) (|:| -4382 *3) (|:| |radicand| *3))) (-5 *1 (-970 *5 *6 *7 *8 *3)) (-5 *4 (-789)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4374 ($ *8)) (-15 -3397 (*8 $)) (-15 -3396 (*8 $))))))) (-3226 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-557))) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-568)) (-4 *8 (-967 *7 *5 *6)) (-5 *2 (-2 (|:| -2630 (-789)) (|:| -4382 *9) (|:| |radicand| *9))) (-5 *1 (-970 *5 *6 *7 *8 *9)) (-5 *4 (-789)) (-4 *9 (-13 (-376) (-10 -8 (-15 -4374 ($ *8)) (-15 -3397 (*8 $)) (-15 -3396 (*8 $))))))) (-3225 (*1 *2 *3 *4) (-12 (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-568)) (-4 *7 (-967 *3 *5 *6)) (-5 *2 (-2 (|:| -2630 (-789)) (|:| -4382 *8) (|:| |radicand| *8))) (-5 *1 (-970 *5 *6 *3 *7 *8)) (-5 *4 (-789)) (-4 *8 (-13 (-376) (-10 -8 (-15 -4374 ($ *7)) (-15 -3397 (*7 $)) (-15 -3396 (*7 $)))))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3229 (($ (-1139)) 8 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 15 T ELT) (((-1139) $) 12 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 11 T ELT))) -(((-971) (-13 (-1120) (-628 (-1139)) (-10 -8 (-15 -3229 ($ (-1139)))))) (T -971)) -((-3229 (*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-971))))) -((-3295 (((-1108 (-229)) $) 8 T ELT)) (-3296 (((-1108 (-229)) $) 9 T ELT)) (-3297 (((-659 (-659 (-960 (-229)))) $) 10 T ELT)) (-4374 (((-875) $) 6 T ELT))) -(((-972) (-142)) (T -972)) -((-3297 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-659 (-659 (-960 (-229))))))) (-3296 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1108 (-229))))) (-3295 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1108 (-229)))))) -(-13 (-628 (-875)) (-10 -8 (-15 -3297 ((-659 (-659 (-960 (-229)))) $)) (-15 -3296 ((-1108 (-229)) $)) (-15 -3295 ((-1108 (-229)) $)))) -(((-628 (-875)) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 79 (|has| |#1| (-568)) ELT)) (-2271 (($ $) 80 (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 |#1| #1#) $) 34 T ELT)) (-3572 (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) ((|#1| $) NIL T ELT)) (-4387 (($ $) 31 T ELT)) (-3885 (((-3 $ #1#) $) 42 T ELT)) (-3921 (($ $) NIL (|has| |#1| (-464)) ELT)) (-1802 (($ $ |#1| |#2| $) 63 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-2647 (((-789) $) 17 T ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#1| |#2|) NIL T ELT)) (-3219 ((|#2| $) 24 T ELT)) (-1803 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3293 (($ $) 28 T ELT)) (-3590 ((|#1| $) 26 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2003 (((-114) $) 51 T ELT)) (-2002 ((|#1| $) NIL T ELT)) (-4166 (($ $ |#2| |#1| $) 91 (-12 (|has| |#2| (-133)) (|has| |#1| (-568))) ELT)) (-3884 (((-3 $ #1#) $ $) 92 (|has| |#1| (-568)) ELT) (((-3 $ #1#) $ |#1|) 86 (|has| |#1| (-568)) ELT)) (-4376 ((|#2| $) 22 T ELT)) (-3216 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) 46 T ELT) (($ $) NIL (|has| |#1| (-568)) ELT) (($ |#1|) 41 T ELT) (($ (-419 (-557))) NIL (-3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) ELT)) (-4245 (((-659 |#1|) $) NIL T ELT)) (-4105 ((|#1| $ |#2|) 37 T ELT)) (-3101 (((-709 $) $) NIL (|has| |#1| (-147)) ELT)) (-3526 (((-789)) 15 T CONST)) (-1801 (($ $ $ (-789)) 75 (|has| |#1| (-175)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) 85 (|has| |#1| (-568)) ELT)) (-3057 (($) 27 T CONST)) (-3063 (($) 12 T CONST)) (-3452 (((-114) $ $) 84 T ELT)) (-4377 (($ $ |#1|) 93 (|has| |#1| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) 70 T ELT) (($ $ (-789)) 68 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 67 T ELT) (($ $ |#1|) 65 T ELT) (($ |#1| $) 64 T ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-973 |#1| |#2|) (-13 (-338 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-133)) (-15 -4166 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4421)) (-6 -4421) |%noBranch|))) (-1068) (-812)) (T -973)) -((-4166 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-973 *3 *2)) (-4 *2 (-133)) (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *2 (-812))))) -((-3230 (((-3 (-707 |#1|) "failed") |#2| (-936)) 18 T ELT))) -(((-974 |#1| |#2|) (-10 -7 (-15 -3230 ((-3 (-707 |#1|) "failed") |#2| (-936)))) (-568) (-676 |#1|)) (T -974)) -((-3230 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-936)) (-4 *5 (-568)) (-5 *2 (-707 *5)) (-5 *1 (-974 *5 *3)) (-4 *3 (-676 *5))))) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2411 (((-1292) $ (-557) (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-1933 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-859)) ELT)) (-1931 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-859))) ELT)) (-3308 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-859)) ELT)) (-4216 ((|#1| $ (-557) |#1|) 20 (|has| $ (-6 -4424)) ELT) ((|#1| $ (-1253 (-557)) |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4152 (($) NIL T CONST)) (-2508 (($ $) NIL (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) NIL T ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-1717 ((|#1| $ (-557) |#1|) 19 (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-557)) 17 T ELT)) (-3837 (((-557) (-1 (-114) |#1|) $) NIL T ELT) (((-557) |#1| $) NIL (|has| |#1| (-1120)) ELT) (((-557) |#1| $ (-557)) NIL (|has| |#1| (-1120)) ELT)) (-3288 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4042 (($ (-789) |#1|) 16 T ELT)) (-2413 (((-557) $) 11 (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3936 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2414 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-2515 (($ |#1| $ (-557)) NIL T ELT) (($ $ $ (-557)) NIL T ELT)) (-2416 (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) (-557) $) NIL T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-4229 ((|#1| $) NIL (|has| (-557) (-859)) ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2412 (($ $ |#1|) 21 (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) 13 T ELT)) (-4228 ((|#1| $ (-557) |#1|) NIL T ELT) ((|#1| $ (-557)) 18 T ELT) (($ $ (-1253 (-557))) NIL T ELT)) (-2516 (($ $ (-557)) NIL T ELT) (($ $ (-1253 (-557))) NIL T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-1932 (($ $ $ (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) 22 T ELT)) (-4400 (((-546) $) NIL (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 15 T ELT)) (-4230 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-4374 (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2963 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3083 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-4385 (((-789) $) 8 (|has| $ (-6 -4423)) ELT))) -(((-975 |#1|) (-19 |#1|) (-1236)) (T -975)) -NIL -((-4269 (((-975 |#2|) (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|) 16 T ELT)) (-4270 ((|#2| (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|) 18 T ELT)) (-4386 (((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)) 13 T ELT))) -(((-976 |#1| |#2|) (-10 -7 (-15 -4269 ((-975 |#2|) (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|)) (-15 -4270 (|#2| (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|)) (-15 -4386 ((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)))) (-1236) (-1236)) (T -976)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-975 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-975 *6)) (-5 *1 (-976 *5 *6)))) (-4270 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-975 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-976 *5 *2)))) (-4269 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-975 *6)) (-4 *6 (-1236)) (-4 *5 (-1236)) (-5 *2 (-975 *5)) (-5 *1 (-976 *6 *5))))) -((-3231 (($ $ (-1111 $)) 7 T ELT) (($ $ (-1196)) 6 T ELT))) -(((-977) (-142)) (T -977)) -((-3231 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-977)))) (-3231 (*1 *1 *1 *2) (-12 (-4 *1 (-977)) (-5 *2 (-1196))))) -(-13 (-10 -8 (-15 -3231 ($ $ (-1196))) (-15 -3231 ($ $ (-1111 $))))) -((-3232 (((-2 (|:| -4382 (-659 (-557))) (|:| |poly| (-659 (-1190 |#1|))) (|:| |prim| (-1190 |#1|))) (-659 (-963 |#1|)) (-659 (-1196)) (-1196)) 26 T ELT) (((-2 (|:| -4382 (-659 (-557))) (|:| |poly| (-659 (-1190 |#1|))) (|:| |prim| (-1190 |#1|))) (-659 (-963 |#1|)) (-659 (-1196))) 27 T ELT) (((-2 (|:| |coef1| (-557)) (|:| |coef2| (-557)) (|:| |prim| (-1190 |#1|))) (-963 |#1|) (-1196) (-963 |#1|) (-1196)) 49 T ELT))) -(((-978 |#1|) (-10 -7 (-15 -3232 ((-2 (|:| |coef1| (-557)) (|:| |coef2| (-557)) (|:| |prim| (-1190 |#1|))) (-963 |#1|) (-1196) (-963 |#1|) (-1196))) (-15 -3232 ((-2 (|:| -4382 (-659 (-557))) (|:| |poly| (-659 (-1190 |#1|))) (|:| |prim| (-1190 |#1|))) (-659 (-963 |#1|)) (-659 (-1196)))) (-15 -3232 ((-2 (|:| -4382 (-659 (-557))) (|:| |poly| (-659 (-1190 |#1|))) (|:| |prim| (-1190 |#1|))) (-659 (-963 |#1|)) (-659 (-1196)) (-1196)))) (-13 (-376) (-149))) (T -978)) -((-3232 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-659 (-963 *6))) (-5 *4 (-659 (-1196))) (-5 *5 (-1196)) (-4 *6 (-13 (-376) (-149))) (-5 *2 (-2 (|:| -4382 (-659 (-557))) (|:| |poly| (-659 (-1190 *6))) (|:| |prim| (-1190 *6)))) (-5 *1 (-978 *6)))) (-3232 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-963 *5))) (-5 *4 (-659 (-1196))) (-4 *5 (-13 (-376) (-149))) (-5 *2 (-2 (|:| -4382 (-659 (-557))) (|:| |poly| (-659 (-1190 *5))) (|:| |prim| (-1190 *5)))) (-5 *1 (-978 *5)))) (-3232 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-963 *5)) (-5 *4 (-1196)) (-4 *5 (-13 (-376) (-149))) (-5 *2 (-2 (|:| |coef1| (-557)) (|:| |coef2| (-557)) (|:| |prim| (-1190 *5)))) (-5 *1 (-978 *5))))) -((-3235 (((-659 |#1|) |#1| |#1|) 47 T ELT)) (-4151 (((-114) |#1|) 44 T ELT)) (-3234 ((|#1| |#1|) 80 T ELT)) (-3233 ((|#1| |#1|) 79 T ELT))) -(((-979 |#1|) (-10 -7 (-15 -4151 ((-114) |#1|)) (-15 -3233 (|#1| |#1|)) (-15 -3234 (|#1| |#1|)) (-15 -3235 ((-659 |#1|) |#1| |#1|))) (-556)) (T -979)) -((-3235 (*1 *2 *3 *3) (-12 (-5 *2 (-659 *3)) (-5 *1 (-979 *3)) (-4 *3 (-556)))) (-3234 (*1 *2 *2) (-12 (-5 *1 (-979 *2)) (-4 *2 (-556)))) (-3233 (*1 *2 *2) (-12 (-5 *1 (-979 *2)) (-4 *2 (-556)))) (-4151 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-979 *3)) (-4 *3 (-556))))) -((-3236 (((-1292) (-875)) 9 T ELT))) -(((-980) (-10 -7 (-15 -3236 ((-1292) (-875))))) (T -980)) -((-3236 (*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1292)) (-5 *1 (-980))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL (-3955 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-813)) (|has| |#2| (-813)))) ELT)) (-2871 (($ $ $) 65 (-12 (|has| |#1| (-813)) (|has| |#2| (-813))) ELT)) (-1424 (((-3 $ #1="failed") $ $) 52 (-3955 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-813)) (|has| |#2| (-813)))) ELT)) (-3536 (((-789)) 36 (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3237 ((|#2| $) 22 T ELT)) (-3238 ((|#1| $) 21 T ELT)) (-4152 (($) NIL (-3955 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-744)) (|has| |#2| (-744))) (-12 (|has| |#1| (-813)) (|has| |#2| (-813)))) CONST)) (-3885 (((-3 $ #1#) $) NIL (-3955 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-744)) (|has| |#2| (-744)))) ELT)) (-3393 (($) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3602 (((-114) $) NIL (-12 (|has| |#1| (-813)) (|has| |#2| (-813))) ELT)) (-2639 (((-114) $) NIL (-3955 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-744)) (|has| |#2| (-744)))) ELT)) (-2928 (($ $ $) NIL (-3955 (-12 (|has| |#1| (-813)) (|has| |#2| (-813))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))) ELT)) (-3256 (($ $ $) NIL (-3955 (-12 (|has| |#1| (-813)) (|has| |#2| (-813))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))) ELT)) (-3239 (($ |#1| |#2|) 20 T ELT)) (-2218 (((-936) $) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) 39 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) ELT)) (-2629 (($ (-936)) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3408 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) ELT)) (-2822 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) ELT)) (-4374 (((-875) $) 14 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 42 (-3955 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-813)) (|has| |#2| (-813)))) CONST)) (-3063 (($) 25 (-3955 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-744)) (|has| |#2| (-744)))) CONST)) (-2963 (((-114) $ $) NIL (-3955 (-12 (|has| |#1| (-813)) (|has| |#2| (-813))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))) ELT)) (-2964 (((-114) $ $) NIL (-3955 (-12 (|has| |#1| (-813)) (|has| |#2| (-813))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))) ELT)) (-3452 (((-114) $ $) 19 T ELT)) (-3083 (((-114) $ $) NIL (-3955 (-12 (|has| |#1| (-813)) (|has| |#2| (-813))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))) ELT)) (-3084 (((-114) $ $) 69 (-3955 (-12 (|has| |#1| (-813)) (|has| |#2| (-813))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))) ELT)) (-4377 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) ELT)) (-4265 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-4267 (($ $ $) 45 (-3955 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-813)) (|has| |#2| (-813)))) ELT)) (** (($ $ (-557)) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) ELT) (($ $ (-789)) 32 (-3955 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-744)) (|has| |#2| (-744)))) ELT) (($ $ (-936)) NIL (-3955 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-744)) (|has| |#2| (-744)))) ELT)) (* (($ (-557) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-789) $) 48 (-3955 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-813)) (|has| |#2| (-813)))) ELT) (($ (-936) $) NIL (-3955 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-813)) (|has| |#2| (-813)))) ELT) (($ $ $) 28 (-3955 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-744)) (|has| |#2| (-744)))) ELT))) -(((-981 |#1| |#2|) (-13 (-1120) (-10 -8 (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-744)) (IF (|has| |#2| (-744)) (-6 (-744)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-133)) (IF (|has| |#2| (-133)) (-6 (-133)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-813)) (IF (|has| |#2| (-813)) (-6 (-813)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-859)) (IF (|has| |#2| (-859)) (-6 (-859)) |%noBranch|) |%noBranch|) (-15 -3239 ($ |#1| |#2|)) (-15 -3238 (|#1| $)) (-15 -3237 (|#2| $)))) (-1120) (-1120)) (T -981)) -((-3239 (*1 *1 *2 *3) (-12 (-5 *1 (-981 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-3238 (*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1120)))) (-3237 (*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-981 *3 *2)) (-4 *3 (-1120))))) -((-3820 (((-1122) $) 12 T ELT)) (-3240 (($ (-518) (-1122)) 14 T ELT)) (-3968 (((-518) $) 9 T ELT)) (-4374 (((-875) $) 24 T ELT))) -(((-982) (-13 (-628 (-875)) (-10 -8 (-15 -3968 ((-518) $)) (-15 -3820 ((-1122) $)) (-15 -3240 ($ (-518) (-1122)))))) (T -982)) -((-3968 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-982)))) (-3820 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-982)))) (-3240 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1122)) (-5 *1 (-982))))) -((-2965 (((-114) $ $) NIL T ELT)) (-2524 (($ $) NIL T ELT)) (-3254 (($) 17 T CONST)) (-2958 (($ $ $) 37 T ELT)) (-2957 (($ $) 29 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3245 (((-709 (-885 $ $)) $) 62 T ELT)) (-3247 (((-709 $) $) 52 T ELT)) (-3244 (((-709 (-885 $ $)) $) 63 T ELT)) (-3243 (((-709 (-885 $ $)) $) 64 T ELT)) (-3248 (((-709 |#1|) $) 43 T ELT)) (-3246 (((-709 (-885 $ $)) $) 61 T ELT)) (-3252 (($ $ $) 38 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3253 (($) 16 T CONST)) (-3251 (($ $ $) 39 T ELT)) (-3241 (($ $ $) 36 T ELT)) (-3242 (($ $ $) 34 T ELT)) (-4374 (((-875) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2959 (($ $ $) 35 T ELT)) (-2522 (($ $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-2523 (($ $ $) NIL T ELT))) -(((-983 |#1|) (-13 (-986) (-631 |#1|) (-10 -8 (-15 -3248 ((-709 |#1|) $)) (-15 -3247 ((-709 $) $)) (-15 -3246 ((-709 (-885 $ $)) $)) (-15 -3245 ((-709 (-885 $ $)) $)) (-15 -3244 ((-709 (-885 $ $)) $)) (-15 -3243 ((-709 (-885 $ $)) $)) (-15 -3242 ($ $ $)) (-15 -3241 ($ $ $)))) (-1120)) (T -983)) -((-3248 (*1 *2 *1) (-12 (-5 *2 (-709 *3)) (-5 *1 (-983 *3)) (-4 *3 (-1120)))) (-3247 (*1 *2 *1) (-12 (-5 *2 (-709 (-983 *3))) (-5 *1 (-983 *3)) (-4 *3 (-1120)))) (-3246 (*1 *2 *1) (-12 (-5 *2 (-709 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) (-4 *3 (-1120)))) (-3245 (*1 *2 *1) (-12 (-5 *2 (-709 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) (-4 *3 (-1120)))) (-3244 (*1 *2 *1) (-12 (-5 *2 (-709 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) (-4 *3 (-1120)))) (-3243 (*1 *2 *1) (-12 (-5 *2 (-709 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) (-4 *3 (-1120)))) (-3242 (*1 *1 *1 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1120)))) (-3241 (*1 *1 *1 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1120))))) -((-4077 (((-983 |#1|) (-983 |#1|)) 46 T ELT)) (-3250 (((-983 |#1|) (-983 |#1|)) 22 T ELT)) (-3249 (((-1116 |#1|) (-983 |#1|)) 41 T ELT))) -(((-984 |#1|) (-13 (-1236) (-10 -7 (-15 -3250 ((-983 |#1|) (-983 |#1|))) (-15 -3249 ((-1116 |#1|) (-983 |#1|))) (-15 -4077 ((-983 |#1|) (-983 |#1|))))) (-1120)) (T -984)) -((-3250 (*1 *2 *2) (-12 (-5 *2 (-983 *3)) (-4 *3 (-1120)) (-5 *1 (-984 *3)))) (-3249 (*1 *2 *3) (-12 (-5 *3 (-983 *4)) (-4 *4 (-1120)) (-5 *2 (-1116 *4)) (-5 *1 (-984 *4)))) (-4077 (*1 *2 *2) (-12 (-5 *2 (-983 *3)) (-4 *3 (-1120)) (-5 *1 (-984 *3))))) -((-4386 (((-983 |#2|) (-1 |#2| |#1|) (-983 |#1|)) 29 T ELT))) -(((-985 |#1| |#2|) (-13 (-1236) (-10 -7 (-15 -4386 ((-983 |#2|) (-1 |#2| |#1|) (-983 |#1|))))) (-1120) (-1120)) (T -985)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-983 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-983 *6)) (-5 *1 (-985 *5 *6))))) -((-2965 (((-114) $ $) 19 T ELT)) (-2524 (($ $) 8 T ELT)) (-3254 (($) 17 T CONST)) (-2958 (($ $ $) 9 T ELT)) (-2957 (($ $) 11 T ELT)) (-3658 (((-1178) $) 23 T ELT)) (-3252 (($ $ $) 15 T ELT)) (-3659 (((-1139) $) 22 T ELT)) (-3253 (($) 16 T CONST)) (-3251 (($ $ $) 14 T ELT)) (-4374 (((-875) $) 21 T ELT)) (-1376 (((-114) $ $) 20 T ELT)) (-2959 (($ $ $) 10 T ELT)) (-2522 (($ $ $) 6 T ELT)) (-3452 (((-114) $ $) 18 T ELT)) (-2523 (($ $ $) 7 T ELT))) -(((-986) (-142)) (T -986)) -((-3254 (*1 *1) (-4 *1 (-986))) (-3253 (*1 *1) (-4 *1 (-986))) (-3252 (*1 *1 *1 *1) (-4 *1 (-986))) (-3251 (*1 *1 *1 *1) (-4 *1 (-986)))) -(-13 (-113) (-1120) (-10 -8 (-15 -3254 ($) -4380) (-15 -3253 ($) -4380) (-15 -3252 ($ $ $)) (-15 -3251 ($ $ $)))) -(((-102) . T) ((-113) . T) ((-628 (-875)) . T) ((-680) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4152 (($) 7 T CONST)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-3255 (($ $ $) 47 T ELT)) (-3936 (($ $ $) 48 T ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3256 ((|#1| $) 49 T ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-1387 ((|#1| $) 43 T ELT)) (-4035 (($ |#1| $) 44 T ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-1388 ((|#1| $) 45 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1389 (($ (-659 |#1|)) 46 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-987 |#1|) (-142) (-859)) (T -987)) -((-3256 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-859)))) (-3936 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-859)))) (-3255 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-859))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4423) (-15 -3256 (|t#1| $)) (-15 -3936 ($ $ $)) (-15 -3255 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-628 (-875)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1236) . T)) -((-3268 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3560 |#2|)) |#2| |#2|) 105 T ELT)) (-4183 ((|#2| |#2| |#2|) 103 T ELT)) (-3269 (((-2 (|:| |coef2| |#2|) (|:| -3560 |#2|)) |#2| |#2|) 107 T ELT)) (-3270 (((-2 (|:| |coef1| |#2|) (|:| -3560 |#2|)) |#2| |#2|) 109 T ELT)) (-3277 (((-2 (|:| |coef2| |#2|) (|:| -3275 |#1|)) |#2| |#2|) 132 (|has| |#1| (-464)) ELT)) (-3284 (((-2 (|:| |coef2| |#2|) (|:| -4184 |#1|)) |#2| |#2|) 56 T ELT)) (-3258 (((-2 (|:| |coef2| |#2|) (|:| -4184 |#1|)) |#2| |#2|) 80 T ELT)) (-3259 (((-2 (|:| |coef1| |#2|) (|:| -4184 |#1|)) |#2| |#2|) 82 T ELT)) (-3267 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-3262 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-789)) 89 T ELT)) (-3272 (((-2 (|:| |coef2| |#2|) (|:| -4185 |#1|)) |#2|) 121 T ELT)) (-3265 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-789)) 92 T ELT)) (-3274 (((-659 (-789)) |#2| |#2|) 102 T ELT)) (-3282 ((|#1| |#2| |#2|) 50 T ELT)) (-3276 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3275 |#1|)) |#2| |#2|) 130 (|has| |#1| (-464)) ELT)) (-3275 ((|#1| |#2| |#2|) 128 (|has| |#1| (-464)) ELT)) (-3283 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4184 |#1|)) |#2| |#2|) 54 T ELT)) (-3257 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4184 |#1|)) |#2| |#2|) 79 T ELT)) (-4184 ((|#1| |#2| |#2|) 76 T ELT)) (-4180 (((-2 (|:| -4382 |#1|) (|:| -2182 |#2|) (|:| -3301 |#2|)) |#2| |#2|) 41 T ELT)) (-3281 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-3266 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3606 ((|#2| |#2| |#2|) 93 T ELT)) (-3261 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-789)) 87 T ELT)) (-3260 ((|#2| |#2| |#2| (-789)) 85 T ELT)) (-3560 ((|#2| |#2| |#2|) 136 (|has| |#1| (-464)) ELT)) (-3884 (((-1286 |#2|) (-1286 |#2|) |#1|) 22 T ELT)) (-3278 (((-2 (|:| -2182 |#2|) (|:| -3301 |#2|)) |#2| |#2|) 46 T ELT)) (-3271 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4185 |#1|)) |#2|) 119 T ELT)) (-4185 ((|#1| |#2|) 116 T ELT)) (-3264 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-789)) 91 T ELT)) (-3263 ((|#2| |#2| |#2| (-789)) 90 T ELT)) (-3273 (((-659 |#2|) |#2| |#2|) 99 T ELT)) (-3280 ((|#2| |#2| |#1| |#1| (-789)) 62 T ELT)) (-3279 ((|#1| |#1| |#1| (-789)) 61 T ELT)) (* (((-1286 |#2|) |#1| (-1286 |#2|)) 17 T ELT))) -(((-988 |#1| |#2|) (-10 -7 (-15 -4184 (|#1| |#2| |#2|)) (-15 -3257 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4184 |#1|)) |#2| |#2|)) (-15 -3258 ((-2 (|:| |coef2| |#2|) (|:| -4184 |#1|)) |#2| |#2|)) (-15 -3259 ((-2 (|:| |coef1| |#2|) (|:| -4184 |#1|)) |#2| |#2|)) (-15 -3260 (|#2| |#2| |#2| (-789))) (-15 -3261 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-789))) (-15 -3262 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-789))) (-15 -3263 (|#2| |#2| |#2| (-789))) (-15 -3264 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-789))) (-15 -3265 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-789))) (-15 -3606 (|#2| |#2| |#2|)) (-15 -3266 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3267 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4183 (|#2| |#2| |#2|)) (-15 -3268 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3560 |#2|)) |#2| |#2|)) (-15 -3269 ((-2 (|:| |coef2| |#2|) (|:| -3560 |#2|)) |#2| |#2|)) (-15 -3270 ((-2 (|:| |coef1| |#2|) (|:| -3560 |#2|)) |#2| |#2|)) (-15 -4185 (|#1| |#2|)) (-15 -3271 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4185 |#1|)) |#2|)) (-15 -3272 ((-2 (|:| |coef2| |#2|) (|:| -4185 |#1|)) |#2|)) (-15 -3273 ((-659 |#2|) |#2| |#2|)) (-15 -3274 ((-659 (-789)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -3275 (|#1| |#2| |#2|)) (-15 -3276 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3275 |#1|)) |#2| |#2|)) (-15 -3277 ((-2 (|:| |coef2| |#2|) (|:| -3275 |#1|)) |#2| |#2|)) (-15 -3560 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1286 |#2|) |#1| (-1286 |#2|))) (-15 -3884 ((-1286 |#2|) (-1286 |#2|) |#1|)) (-15 -4180 ((-2 (|:| -4382 |#1|) (|:| -2182 |#2|) (|:| -3301 |#2|)) |#2| |#2|)) (-15 -3278 ((-2 (|:| -2182 |#2|) (|:| -3301 |#2|)) |#2| |#2|)) (-15 -3279 (|#1| |#1| |#1| (-789))) (-15 -3280 (|#2| |#2| |#1| |#1| (-789))) (-15 -3281 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3282 (|#1| |#2| |#2|)) (-15 -3283 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4184 |#1|)) |#2| |#2|)) (-15 -3284 ((-2 (|:| |coef2| |#2|) (|:| -4184 |#1|)) |#2| |#2|))) (-568) (-1262 |#1|)) (T -988)) -((-3284 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4184 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-3283 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4184 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-3282 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1262 *2)))) (-3281 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1262 *3)))) (-3280 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-789)) (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1262 *3)))) (-3279 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-789)) (-4 *2 (-568)) (-5 *1 (-988 *2 *4)) (-4 *4 (-1262 *2)))) (-3278 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2182 *3) (|:| -3301 *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-4180 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -4382 *4) (|:| -2182 *3) (|:| -3301 *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-3884 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-568)) (-5 *1 (-988 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-568)) (-5 *1 (-988 *3 *4)))) (-3560 (*1 *2 *2 *2) (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1262 *3)))) (-3277 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3275 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-3276 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3275 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-3275 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1262 *2)))) (-3274 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-659 (-789))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-659 *3)) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-3272 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4185 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-3271 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4185 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-4185 (*1 *2 *3) (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1262 *2)))) (-3270 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3560 *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3560 *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-3268 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3560 *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-4183 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1262 *3)))) (-3267 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-3266 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-3606 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1262 *3)))) (-3265 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-789)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *5 *3)) (-4 *3 (-1262 *5)))) (-3264 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-789)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *5 *3)) (-4 *3 (-1262 *5)))) (-3263 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-789)) (-4 *4 (-568)) (-5 *1 (-988 *4 *2)) (-4 *2 (-1262 *4)))) (-3262 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-789)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *5 *3)) (-4 *3 (-1262 *5)))) (-3261 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-789)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *5 *3)) (-4 *3 (-1262 *5)))) (-3260 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-789)) (-4 *4 (-568)) (-5 *1 (-988 *4 *2)) (-4 *2 (-1262 *4)))) (-3259 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4184 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-3258 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4184 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-3257 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4184 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-4184 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1262 *2))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3734 (((-1237) $) 13 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3622 (((-1154) $) 10 T ELT)) (-4374 (((-875) $) 20 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-989) (-13 (-1102) (-10 -8 (-15 -3622 ((-1154) $)) (-15 -3734 ((-1237) $))))) (T -989)) -((-3622 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-989)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-989))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 40 T ELT)) (-1424 (((-3 $ "failed") $ $) 54 T ELT)) (-4152 (($) NIL T CONST)) (-3286 (((-659 (-885 (-936) (-936))) $) 67 T ELT)) (-3602 (((-114) $) NIL T ELT)) (-3285 (((-936) $) 94 T ELT)) (-3288 (((-659 (-936)) $) 17 T ELT)) (-3287 (((-1174 $) (-789)) 39 T ELT)) (-3289 (($ (-659 (-936))) 16 T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3408 (($ $) 70 T ELT)) (-4374 (((-875) $) 90 T ELT) (((-659 (-936)) $) 11 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 8 T CONST)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 44 T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 42 T ELT)) (-4267 (($ $ $) 46 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) 49 T ELT)) (-4385 (((-789) $) 22 T ELT))) -(((-990) (-13 (-817) (-628 (-659 (-936))) (-10 -8 (-15 -3289 ($ (-659 (-936)))) (-15 -3288 ((-659 (-936)) $)) (-15 -4385 ((-789) $)) (-15 -3287 ((-1174 $) (-789))) (-15 -3286 ((-659 (-885 (-936) (-936))) $)) (-15 -3285 ((-936) $)) (-15 -3408 ($ $))))) (T -990)) -((-3289 (*1 *1 *2) (-12 (-5 *2 (-659 (-936))) (-5 *1 (-990)))) (-3288 (*1 *2 *1) (-12 (-5 *2 (-659 (-936))) (-5 *1 (-990)))) (-4385 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-990)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1174 (-990))) (-5 *1 (-990)))) (-3286 (*1 *2 *1) (-12 (-5 *2 (-659 (-885 (-936) (-936)))) (-5 *1 (-990)))) (-3285 (*1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-990)))) (-3408 (*1 *1 *1) (-5 *1 (-990)))) -((-4377 (($ $ |#2|) 31 T ELT)) (-4265 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-419 (-557)) $) 27 T ELT) (($ $ (-419 (-557))) 29 T ELT))) -(((-991 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-419 (-557)))) (-15 * (|#1| (-419 (-557)) |#1|)) (-15 -4377 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4265 (|#1| |#1| |#1|)) (-15 -4265 (|#1| |#1|)) (-15 * (|#1| (-557) |#1|)) (-15 * (|#1| (-789) |#1|)) (-15 * (|#1| (-936) |#1|))) (-992 |#2| |#3| |#4|) (-1068) (-812) (-859)) (T -991)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-3482 (((-659 |#3|) $) 92 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 68 (|has| |#1| (-568)) ELT)) (-2271 (($ $) 69 (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) 71 (|has| |#1| (-568)) ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-4387 (($ $) 77 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-3291 (((-114) $) 91 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-4365 (((-114) $) 79 T ELT)) (-3292 (($ |#1| |#2|) 78 T ELT) (($ $ |#3| |#2|) 94 T ELT) (($ $ (-659 |#3|) (-659 |#2|)) 93 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3293 (($ $) 82 T ELT)) (-3590 ((|#1| $) 83 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3884 (((-3 $ "failed") $ $) 67 (|has| |#1| (-568)) ELT)) (-4376 ((|#2| $) 81 T ELT)) (-3290 (($ $) 90 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ (-419 (-557))) 74 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $) 66 (|has| |#1| (-568)) ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT)) (-4105 ((|#1| $ |#2|) 76 T ELT)) (-3101 (((-709 $) $) 65 (|has| |#1| (-147)) ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 70 (|has| |#1| (-568)) ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-557)) $) 73 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) 72 (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-992 |#1| |#2| |#3|) (-142) (-1068) (-812) (-859)) (T -992)) -((-3590 (*1 *2 *1) (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *3 (-812)) (-4 *4 (-859)) (-4 *2 (-1068)))) (-3293 (*1 *1 *1) (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-812)) (-4 *4 (-859)))) (-4376 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *2 *4)) (-4 *3 (-1068)) (-4 *4 (-859)) (-4 *2 (-812)))) (-3292 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-992 *4 *3 *2)) (-4 *4 (-1068)) (-4 *3 (-812)) (-4 *2 (-859)))) (-3292 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 *6)) (-5 *3 (-659 *5)) (-4 *1 (-992 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-812)) (-4 *6 (-859)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-812)) (-4 *5 (-859)) (-5 *2 (-659 *5)))) (-3291 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-812)) (-4 *5 (-859)) (-5 *2 (-114)))) (-3290 (*1 *1 *1) (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-812)) (-4 *4 (-859))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3292 ($ $ |t#3| |t#2|)) (-15 -3292 ($ $ (-659 |t#3|) (-659 |t#2|))) (-15 -3293 ($ $)) (-15 -3590 (|t#1| $)) (-15 -4376 (|t#2| $)) (-15 -3482 ((-659 |t#3|) $)) (-15 -3291 ((-114) $)) (-15 -3290 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-631 (-557)) . T) ((-631 |#1|) |has| |#1| (-175)) ((-631 $) |has| |#1| (-568)) ((-628 (-875)) . T) ((-175) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-302) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-664 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-666 |#1|) . T) ((-666 $) . T) ((-658 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-658 |#1|) |has| |#1| (-175)) ((-658 $) |has| |#1| (-568)) ((-735 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-735 |#1|) |has| |#1| (-175)) ((-735 $) |has| |#1| (-568)) ((-744) . T) ((-1070 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-1070 |#1|) . T) ((-1070 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-1075 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-1075 |#1|) . T) ((-1075 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-3294 (((-1108 (-229)) $) 8 T ELT)) (-3295 (((-1108 (-229)) $) 9 T ELT)) (-3296 (((-1108 (-229)) $) 10 T ELT)) (-3297 (((-659 (-659 (-960 (-229)))) $) 11 T ELT)) (-4374 (((-875) $) 6 T ELT))) -(((-993) (-142)) (T -993)) -((-3297 (*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-659 (-659 (-960 (-229))))))) (-3296 (*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1108 (-229))))) (-3295 (*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1108 (-229))))) (-3294 (*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1108 (-229)))))) -(-13 (-628 (-875)) (-10 -8 (-15 -3297 ((-659 (-659 (-960 (-229)))) $)) (-15 -3296 ((-1108 (-229)) $)) (-15 -3295 ((-1108 (-229)) $)) (-15 -3294 ((-1108 (-229)) $)))) -(((-628 (-875)) . T)) -((-3482 (((-659 |#4|) $) 23 T ELT)) (-3307 (((-114) $) 55 T ELT)) (-3298 (((-114) $) 54 T ELT)) (-3308 (((-2 (|:| |under| $) (|:| -3530 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-3303 (((-114) $) 56 T ELT)) (-3305 (((-114) $ $) 62 T ELT)) (-3304 (((-114) $ $) 65 T ELT)) (-3306 (((-114) $) 60 T ELT)) (-3299 (((-659 |#5|) (-659 |#5|) $) 98 T ELT)) (-3300 (((-659 |#5|) (-659 |#5|) $) 95 T ELT)) (-3301 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-3313 (((-659 |#4|) $) 27 T ELT)) (-3312 (((-114) |#4| $) 34 T ELT)) (-3302 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-3309 (($ $ |#4|) 39 T ELT)) (-3311 (($ $ |#4|) 38 T ELT)) (-3310 (($ $ |#4|) 40 T ELT)) (-3452 (((-114) $ $) 46 T ELT))) -(((-994 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3298 ((-114) |#1|)) (-15 -3299 ((-659 |#5|) (-659 |#5|) |#1|)) (-15 -3300 ((-659 |#5|) (-659 |#5|) |#1|)) (-15 -3301 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3302 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3303 ((-114) |#1|)) (-15 -3304 ((-114) |#1| |#1|)) (-15 -3305 ((-114) |#1| |#1|)) (-15 -3306 ((-114) |#1|)) (-15 -3307 ((-114) |#1|)) (-15 -3308 ((-2 (|:| |under| |#1|) (|:| -3530 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3309 (|#1| |#1| |#4|)) (-15 -3310 (|#1| |#1| |#4|)) (-15 -3311 (|#1| |#1| |#4|)) (-15 -3312 ((-114) |#4| |#1|)) (-15 -3313 ((-659 |#4|) |#1|)) (-15 -3482 ((-659 |#4|) |#1|)) (-15 -3452 ((-114) |#1| |#1|))) (-995 |#2| |#3| |#4| |#5|) (-1068) (-813) (-859) (-1084 |#2| |#3| |#4|)) (T -994)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3482 (((-659 |#3|) $) 37 T ELT)) (-3307 (((-114) $) 30 T ELT)) (-3298 (((-114) $) 21 (|has| |#1| (-568)) ELT)) (-3308 (((-2 (|:| |under| $) (|:| -3530 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4138 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4423)) ELT)) (-4152 (($) 46 T CONST)) (-3303 (((-114) $) 26 (|has| |#1| (-568)) ELT)) (-3305 (((-114) $ $) 28 (|has| |#1| (-568)) ELT)) (-3304 (((-114) $ $) 27 (|has| |#1| (-568)) ELT)) (-3306 (((-114) $) 29 (|has| |#1| (-568)) ELT)) (-3299 (((-659 |#4|) (-659 |#4|) $) 22 (|has| |#1| (-568)) ELT)) (-3300 (((-659 |#4|) (-659 |#4|) $) 23 (|has| |#1| (-568)) ELT)) (-3573 (((-3 $ "failed") (-659 |#4|)) 40 T ELT)) (-3572 (($ (-659 |#4|)) 39 T ELT)) (-1465 (($ $) 69 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3824 (($ |#4| $) 68 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4423)) ELT)) (-3301 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-568)) ELT)) (-4270 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4423)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4423)) ELT)) (-3288 (((-659 |#4|) $) 53 (|has| $ (-6 -4423)) ELT)) (-3596 ((|#3| $) 38 T ELT)) (-3005 (((-659 |#4|) $) 54 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3313 (((-659 |#3|) $) 36 T ELT)) (-3312 (((-114) |#3| $) 35 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3302 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-568)) ELT)) (-3659 (((-1139) $) 12 T ELT)) (-1466 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-2156 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 |#4|) (-659 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-659 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT)) (-1327 (((-114) $ $) 42 T ELT)) (-3821 (((-114) $) 45 T ELT)) (-3991 (($) 44 T ELT)) (-2155 (((-789) |#4| $) 55 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT) (((-789) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) 43 T ELT)) (-4400 (((-546) $) 70 (|has| |#4| (-629 (-546))) ELT)) (-3948 (($ (-659 |#4|)) 61 T ELT)) (-3309 (($ $ |#3|) 32 T ELT)) (-3311 (($ $ |#3|) 34 T ELT)) (-3310 (($ $ |#3|) 33 T ELT)) (-4374 (((-875) $) 13 T ELT) (((-659 |#4|) $) 41 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4385 (((-789) $) 47 (|has| $ (-6 -4423)) ELT))) -(((-995 |#1| |#2| |#3| |#4|) (-142) (-1068) (-813) (-859) (-1084 |t#1| |t#2| |t#3|)) (T -995)) -((-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *1 (-995 *3 *4 *5 *6)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *1 (-995 *3 *4 *5 *6)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-1084 *3 *4 *2)) (-4 *2 (-859)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-659 *5)))) (-3313 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-659 *5)))) (-3312 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *3 *6)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *3 (-859)) (-4 *6 (-1084 *4 *5 *3)) (-5 *2 (-114)))) (-3311 (*1 *1 *1 *2) (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)) (-4 *5 (-1084 *3 *4 *2)))) (-3310 (*1 *1 *1 *2) (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)) (-4 *5 (-1084 *3 *4 *2)))) (-3309 (*1 *1 *1 *2) (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)) (-4 *5 (-1084 *3 *4 *2)))) (-3308 (*1 *2 *1 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *3 (-859)) (-4 *6 (-1084 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3530 *1) (|:| |upper| *1))) (-4 *1 (-995 *4 *5 *3 *6)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-114)))) (-3306 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-114)))) (-3305 (*1 *2 *1 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-114)))) (-3304 (*1 *2 *1 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-114)))) (-3303 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-114)))) (-3302 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3301 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3300 (*1 *2 *2 *1) (-12 (-5 *2 (-659 *6)) (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)))) (-3299 (*1 *2 *2 *1) (-12 (-5 *2 (-659 *6)) (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-114))))) -(-13 (-1120) (-153 |t#4|) (-628 (-659 |t#4|)) (-10 -8 (-6 -4423) (-15 -3573 ((-3 $ "failed") (-659 |t#4|))) (-15 -3572 ($ (-659 |t#4|))) (-15 -3596 (|t#3| $)) (-15 -3482 ((-659 |t#3|) $)) (-15 -3313 ((-659 |t#3|) $)) (-15 -3312 ((-114) |t#3| $)) (-15 -3311 ($ $ |t#3|)) (-15 -3310 ($ $ |t#3|)) (-15 -3309 ($ $ |t#3|)) (-15 -3308 ((-2 (|:| |under| $) (|:| -3530 $) (|:| |upper| $)) $ |t#3|)) (-15 -3307 ((-114) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -3306 ((-114) $)) (-15 -3305 ((-114) $ $)) (-15 -3304 ((-114) $ $)) (-15 -3303 ((-114) $)) (-15 -3302 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3301 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3300 ((-659 |t#4|) (-659 |t#4|) $)) (-15 -3299 ((-659 |t#4|) (-659 |t#4|) $)) (-15 -3298 ((-114) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-628 (-659 |#4|)) . T) ((-628 (-875)) . T) ((-153 |#4|) . T) ((-629 (-546)) |has| |#4| (-629 (-546))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ((-1120) . T) ((-1236) . T)) -((-3315 (((-659 |#4|) |#4| |#4|) 137 T ELT)) (-3338 (((-659 |#4|) (-659 |#4|) (-114)) 125 (|has| |#1| (-464)) ELT) (((-659 |#4|) (-659 |#4|)) 126 (|has| |#1| (-464)) ELT)) (-3325 (((-2 (|:| |goodPols| (-659 |#4|)) (|:| |badPols| (-659 |#4|))) (-659 |#4|)) 44 T ELT)) (-3324 (((-114) |#4|) 43 T ELT)) (-3337 (((-659 |#4|) |#4|) 121 (|has| |#1| (-464)) ELT)) (-3320 (((-2 (|:| |goodPols| (-659 |#4|)) (|:| |badPols| (-659 |#4|))) (-1 (-114) |#4|) (-659 |#4|)) 24 T ELT)) (-3321 (((-2 (|:| |goodPols| (-659 |#4|)) (|:| |badPols| (-659 |#4|))) (-659 (-1 (-114) |#4|)) (-659 |#4|)) 30 T ELT)) (-3322 (((-2 (|:| |goodPols| (-659 |#4|)) (|:| |badPols| (-659 |#4|))) (-659 (-1 (-114) |#4|)) (-659 |#4|)) 31 T ELT)) (-3333 (((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -3742 (-659 |#4|))) "failed") (-659 |#4|)) 90 T ELT)) (-3335 (((-659 |#4|) (-659 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-3336 (((-659 |#4|) (-659 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129 T ELT)) (-3314 (((-659 |#4|) (-659 |#4|)) 128 T ELT)) (-3330 (((-659 |#4|) (-659 |#4|) (-659 |#4|) (-114)) 59 T ELT) (((-659 |#4|) (-659 |#4|) (-659 |#4|)) 61 T ELT)) (-3331 ((|#4| |#4| (-659 |#4|)) 60 T ELT)) (-3339 (((-659 |#4|) (-659 |#4|) (-659 |#4|)) 133 (|has| |#1| (-464)) ELT)) (-3341 (((-659 |#4|) (-659 |#4|) (-659 |#4|)) 136 (|has| |#1| (-464)) ELT)) (-3340 (((-659 |#4|) (-659 |#4|) (-659 |#4|)) 135 (|has| |#1| (-464)) ELT)) (-3316 (((-659 |#4|) (-659 |#4|) (-659 |#4|) (-1 (-659 |#4|) (-659 |#4|))) 105 T ELT) (((-659 |#4|) (-659 |#4|) (-659 |#4|)) 107 T ELT) (((-659 |#4|) (-659 |#4|) |#4|) 141 T ELT) (((-659 |#4|) |#4| |#4|) 138 T ELT) (((-659 |#4|) (-659 |#4|)) 106 T ELT)) (-3344 (((-659 |#4|) (-659 |#4|) (-659 |#4|)) 118 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-3323 (((-2 (|:| |goodPols| (-659 |#4|)) (|:| |badPols| (-659 |#4|))) (-659 |#4|)) 52 T ELT)) (-3319 (((-114) (-659 |#4|)) 79 T ELT)) (-3318 (((-114) (-659 |#4|) (-659 (-659 |#4|))) 67 T ELT)) (-3327 (((-2 (|:| |goodPols| (-659 |#4|)) (|:| |badPols| (-659 |#4|))) (-659 |#4|)) 37 T ELT)) (-3326 (((-114) |#4|) 36 T ELT)) (-3343 (((-659 |#4|) (-659 |#4|)) 116 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-3342 (((-659 |#4|) (-659 |#4|)) 117 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-3332 (((-659 |#4|) (-659 |#4|)) 83 T ELT)) (-3334 (((-659 |#4|) (-659 |#4|)) 97 T ELT)) (-3317 (((-114) (-659 |#4|) (-659 |#4|)) 65 T ELT)) (-3329 (((-2 (|:| |goodPols| (-659 |#4|)) (|:| |badPols| (-659 |#4|))) (-659 |#4|)) 50 T ELT)) (-3328 (((-114) |#4|) 45 T ELT))) -(((-996 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3316 ((-659 |#4|) (-659 |#4|))) (-15 -3316 ((-659 |#4|) |#4| |#4|)) (-15 -3314 ((-659 |#4|) (-659 |#4|))) (-15 -3315 ((-659 |#4|) |#4| |#4|)) (-15 -3316 ((-659 |#4|) (-659 |#4|) |#4|)) (-15 -3316 ((-659 |#4|) (-659 |#4|) (-659 |#4|))) (-15 -3316 ((-659 |#4|) (-659 |#4|) (-659 |#4|) (-1 (-659 |#4|) (-659 |#4|)))) (-15 -3317 ((-114) (-659 |#4|) (-659 |#4|))) (-15 -3318 ((-114) (-659 |#4|) (-659 (-659 |#4|)))) (-15 -3319 ((-114) (-659 |#4|))) (-15 -3320 ((-2 (|:| |goodPols| (-659 |#4|)) (|:| |badPols| (-659 |#4|))) (-1 (-114) |#4|) (-659 |#4|))) (-15 -3321 ((-2 (|:| |goodPols| (-659 |#4|)) (|:| |badPols| (-659 |#4|))) (-659 (-1 (-114) |#4|)) (-659 |#4|))) (-15 -3322 ((-2 (|:| |goodPols| (-659 |#4|)) (|:| |badPols| (-659 |#4|))) (-659 (-1 (-114) |#4|)) (-659 |#4|))) (-15 -3323 ((-2 (|:| |goodPols| (-659 |#4|)) (|:| |badPols| (-659 |#4|))) (-659 |#4|))) (-15 -3324 ((-114) |#4|)) (-15 -3325 ((-2 (|:| |goodPols| (-659 |#4|)) (|:| |badPols| (-659 |#4|))) (-659 |#4|))) (-15 -3326 ((-114) |#4|)) (-15 -3327 ((-2 (|:| |goodPols| (-659 |#4|)) (|:| |badPols| (-659 |#4|))) (-659 |#4|))) (-15 -3328 ((-114) |#4|)) (-15 -3329 ((-2 (|:| |goodPols| (-659 |#4|)) (|:| |badPols| (-659 |#4|))) (-659 |#4|))) (-15 -3330 ((-659 |#4|) (-659 |#4|) (-659 |#4|))) (-15 -3330 ((-659 |#4|) (-659 |#4|) (-659 |#4|) (-114))) (-15 -3331 (|#4| |#4| (-659 |#4|))) (-15 -3332 ((-659 |#4|) (-659 |#4|))) (-15 -3333 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -3742 (-659 |#4|))) "failed") (-659 |#4|))) (-15 -3334 ((-659 |#4|) (-659 |#4|))) (-15 -3335 ((-659 |#4|) (-659 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3336 ((-659 |#4|) (-659 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3337 ((-659 |#4|) |#4|)) (-15 -3338 ((-659 |#4|) (-659 |#4|))) (-15 -3338 ((-659 |#4|) (-659 |#4|) (-114))) (-15 -3339 ((-659 |#4|) (-659 |#4|) (-659 |#4|))) (-15 -3340 ((-659 |#4|) (-659 |#4|) (-659 |#4|))) (-15 -3341 ((-659 |#4|) (-659 |#4|) (-659 |#4|)))) |%noBranch|) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (PROGN (-15 -3342 ((-659 |#4|) (-659 |#4|))) (-15 -3343 ((-659 |#4|) (-659 |#4|))) (-15 -3344 ((-659 |#4|) (-659 |#4|) (-659 |#4|)))) |%noBranch|) |%noBranch|)) (-568) (-813) (-859) (-1084 |#1| |#2| |#3|)) (T -996)) -((-3344 (*1 *2 *2 *2) (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3343 (*1 *2 *2) (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3342 (*1 *2 *2) (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3341 (*1 *2 *2 *2) (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3340 (*1 *2 *2 *2) (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3339 (*1 *2 *2 *2) (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3338 (*1 *2 *2 *3) (-12 (-5 *2 (-659 *7)) (-5 *3 (-114)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-996 *4 *5 *6 *7)))) (-3338 (*1 *2 *2) (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3337 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-659 *3)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-3336 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-659 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *1 (-996 *5 *6 *7 *8)))) (-3335 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-659 *9)) (-5 *3 (-1 (-114) *9)) (-5 *4 (-1 (-114) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-813)) (-4 *8 (-859)) (-5 *1 (-996 *6 *7 *8 *9)))) (-3334 (*1 *2 *2) (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3333 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -3742 (-659 *7)))) (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-659 *7)))) (-3332 (*1 *2 *2) (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3331 (*1 *2 *2 *3) (-12 (-5 *3 (-659 *2)) (-4 *2 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-996 *4 *5 *6 *2)))) (-3330 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-659 *7)) (-5 *3 (-114)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-996 *4 *5 *6 *7)))) (-3330 (*1 *2 *2 *2) (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3329 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-659 *7)) (|:| |badPols| (-659 *7)))) (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-659 *7)))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-659 *7)) (|:| |badPols| (-659 *7)))) (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-659 *7)))) (-3326 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-3325 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-659 *7)) (|:| |badPols| (-659 *7)))) (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-659 *7)))) (-3324 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-3323 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-659 *7)) (|:| |badPols| (-659 *7)))) (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-659 *7)))) (-3322 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-1 (-114) *8))) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-2 (|:| |goodPols| (-659 *8)) (|:| |badPols| (-659 *8)))) (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-659 *8)))) (-3321 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-1 (-114) *8))) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-2 (|:| |goodPols| (-659 *8)) (|:| |badPols| (-659 *8)))) (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-659 *8)))) (-3320 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-114) *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-2 (|:| |goodPols| (-659 *8)) (|:| |badPols| (-659 *8)))) (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-659 *8)))) (-3319 (*1 *2 *3) (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-996 *4 *5 *6 *7)))) (-3318 (*1 *2 *3 *4) (-12 (-5 *4 (-659 (-659 *8))) (-5 *3 (-659 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-114)) (-5 *1 (-996 *5 *6 *7 *8)))) (-3317 (*1 *2 *3 *3) (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-996 *4 *5 *6 *7)))) (-3316 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-659 *7) (-659 *7))) (-5 *2 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-996 *4 *5 *6 *7)))) (-3316 (*1 *2 *2 *2) (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3316 (*1 *2 *2 *3) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-996 *4 *5 *6 *3)))) (-3315 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-659 *3)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-3314 (*1 *2 *2) (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3316 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-659 *3)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-3316 (*1 *2 *2) (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6))))) -((-3345 (((-2 (|:| R (-707 |#1|)) (|:| A (-707 |#1|)) (|:| |Ainv| (-707 |#1|))) (-707 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-3347 (((-659 (-2 (|:| C (-707 |#1|)) (|:| |g| (-1286 |#1|)))) (-707 |#1|) (-1286 |#1|)) 45 T ELT)) (-3346 (((-707 |#1|) (-707 |#1|) (-707 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16 T ELT))) -(((-997 |#1|) (-10 -7 (-15 -3345 ((-2 (|:| R (-707 |#1|)) (|:| A (-707 |#1|)) (|:| |Ainv| (-707 |#1|))) (-707 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3346 ((-707 |#1|) (-707 |#1|) (-707 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3347 ((-659 (-2 (|:| C (-707 |#1|)) (|:| |g| (-1286 |#1|)))) (-707 |#1|) (-1286 |#1|)))) (-376)) (T -997)) -((-3347 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-659 (-2 (|:| C (-707 *5)) (|:| |g| (-1286 *5))))) (-5 *1 (-997 *5)) (-5 *3 (-707 *5)) (-5 *4 (-1286 *5)))) (-3346 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-707 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-5 *1 (-997 *5)))) (-3345 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-376)) (-5 *2 (-2 (|:| R (-707 *6)) (|:| A (-707 *6)) (|:| |Ainv| (-707 *6)))) (-5 *1 (-997 *6)) (-5 *3 (-707 *6))))) -((-4399 (((-417 |#4|) |#4|) 61 T ELT))) -(((-998 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4399 ((-417 |#4|) |#4|))) (-859) (-813) (-464) (-967 |#3| |#2| |#1|)) (T -998)) -((-4399 (*1 *2 *3) (-12 (-4 *4 (-859)) (-4 *5 (-813)) (-4 *6 (-464)) (-5 *2 (-417 *3)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-967 *6 *5 *4))))) -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4266 (($ (-789)) 121 (|has| |#1| (-23)) ELT)) (-2411 (((-1292) $ (-557) (-557)) 44 (|has| $ (-6 -4424)) ELT)) (-1933 (((-114) (-1 (-114) |#1| |#1|) $) 107 T ELT) (((-114) $) 101 (|has| |#1| (-859)) ELT)) (-1931 (($ (-1 (-114) |#1| |#1|) $) 98 (|has| $ (-6 -4424)) ELT) (($ $) 97 (-12 (|has| |#1| (-859)) (|has| $ (-6 -4424))) ELT)) (-3308 (($ (-1 (-114) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-859)) ELT)) (-4216 ((|#1| $ (-557) |#1|) 56 (|has| $ (-6 -4424)) ELT) ((|#1| $ (-1253 (-557)) |#1|) 64 (|has| $ (-6 -4424)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4423)) ELT)) (-4152 (($) 7 T CONST)) (-2508 (($ $) 99 (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) 109 T ELT)) (-1465 (($ $) 84 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3824 (($ |#1| $) 83 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4423)) ELT)) (-1717 ((|#1| $ (-557) |#1|) 57 (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-557)) 55 T ELT)) (-3837 (((-557) (-1 (-114) |#1|) $) 106 T ELT) (((-557) |#1| $) 105 (|has| |#1| (-1120)) ELT) (((-557) |#1| $ (-557)) 104 (|has| |#1| (-1120)) ELT)) (-4134 (($ (-659 |#1|)) 127 T ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-4263 (((-707 |#1|) $ $) 114 (|has| |#1| (-1068)) ELT)) (-4042 (($ (-789) |#1|) 74 T ELT)) (-2413 (((-557) $) 47 (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) 91 (|has| |#1| (-859)) ELT)) (-3936 (($ (-1 (-114) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-859)) ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2414 (((-557) $) 48 (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) 92 (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-4260 ((|#1| $) 111 (-12 (|has| |#1| (-1068)) (|has| |#1| (-1021))) ELT)) (-4261 ((|#1| $) 112 (-12 (|has| |#1| (-1068)) (|has| |#1| (-1021))) ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-2515 (($ |#1| $ (-557)) 66 T ELT) (($ $ $ (-557)) 65 T ELT)) (-2416 (((-659 (-557)) $) 50 T ELT)) (-2417 (((-114) (-557) $) 51 T ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-4229 ((|#1| $) 46 (|has| (-557) (-859)) ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2412 (($ $ |#1|) 45 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-659 |#1|)) 125 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-2415 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) 52 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-4228 ((|#1| $ (-557) |#1|) 54 T ELT) ((|#1| $ (-557)) 53 T ELT) (($ $ (-1253 (-557))) 75 T ELT)) (-4264 ((|#1| $ $) 115 (|has| |#1| (-1068)) ELT)) (-4339 (((-936) $) 126 T ELT)) (-2516 (($ $ (-557)) 68 T ELT) (($ $ (-1253 (-557))) 67 T ELT)) (-4262 (($ $ $) 113 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-1932 (($ $ $ (-557)) 100 (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) 10 T ELT)) (-4400 (((-546) $) 85 (|has| |#1| (-629 (-546))) ELT) (($ (-659 |#1|)) 128 T ELT)) (-3948 (($ (-659 |#1|)) 76 T ELT)) (-4230 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-659 $)) 70 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-2963 (((-114) $ $) 93 (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) 95 (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3083 (((-114) $ $) 94 (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) 96 (|has| |#1| (-859)) ELT)) (-4265 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-4267 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-557) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-744)) ELT) (($ $ |#1|) 116 (|has| |#1| (-744)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-999 |#1|) (-142) (-1068)) (T -999)) -((-4134 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1068)) (-4 *1 (-999 *3)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1068)) (-5 *2 (-936)))) (-4262 (*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1068)))) (-4197 (*1 *1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *1 (-999 *3)) (-4 *3 (-1068))))) -(-13 (-1285 |t#1|) (-633 (-659 |t#1|)) (-10 -8 (-15 -4134 ($ (-659 |t#1|))) (-15 -4339 ((-936) $)) (-15 -4262 ($ $ $)) (-15 -4197 ($ $ (-659 |t#1|))))) -(((-34) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-859)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-859)) (|has| |#1| (-628 (-875)))) ((-153 |#1|) . T) ((-633 (-659 |#1|)) . T) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-298 (-557) |#1|) . T) ((-298 (-1253 (-557)) $) . T) ((-300 (-557) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-385 |#1|) . T) ((-501 |#1|) . T) ((-614 (-557) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-669 |#1|) . T) ((-19 |#1|) . T) ((-859) |has| |#1| (-859)) ((-862) |has| |#1| (-859)) ((-1120) -3955 (|has| |#1| (-1120)) (|has| |#1| (-859))) ((-1236) . T) ((-1285 |#1|) . T)) -((-4386 (((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|)) 17 T ELT))) -(((-1000 |#1| |#2|) (-10 -7 (-15 -4386 ((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|)))) (-1068) (-1068)) (T -1000)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-960 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-960 *6)) (-5 *1 (-1000 *5 *6))))) -((-3350 ((|#1| (-960 |#1|)) 14 T ELT)) (-3349 ((|#1| (-960 |#1|)) 13 T ELT)) (-3348 ((|#1| (-960 |#1|)) 12 T ELT)) (-3352 ((|#1| (-960 |#1|)) 16 T ELT)) (-3356 ((|#1| (-960 |#1|)) 24 T ELT)) (-3351 ((|#1| (-960 |#1|)) 15 T ELT)) (-3353 ((|#1| (-960 |#1|)) 17 T ELT)) (-3355 ((|#1| (-960 |#1|)) 23 T ELT)) (-3354 ((|#1| (-960 |#1|)) 22 T ELT))) -(((-1001 |#1|) (-10 -7 (-15 -3348 (|#1| (-960 |#1|))) (-15 -3349 (|#1| (-960 |#1|))) (-15 -3350 (|#1| (-960 |#1|))) (-15 -3351 (|#1| (-960 |#1|))) (-15 -3352 (|#1| (-960 |#1|))) (-15 -3353 (|#1| (-960 |#1|))) (-15 -3354 (|#1| (-960 |#1|))) (-15 -3355 (|#1| (-960 |#1|))) (-15 -3356 (|#1| (-960 |#1|)))) (-1068)) (T -1001)) -((-3356 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) -((-3374 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-3362 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-3372 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-3360 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-3376 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-3364 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-3357 (((-3 |#1| "failed") |#1| (-789)) 1 T ELT)) (-3359 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-3358 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-3377 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-3365 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-3375 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-3363 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-3373 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-3361 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-3380 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-3368 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-3378 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-3366 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-3382 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-3370 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-3383 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-3371 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-3381 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-3369 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-3379 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-3367 (((-3 |#1| "failed") |#1|) 11 T ELT))) -(((-1002 |#1|) (-142) (-1222)) (T -1002)) -((-3383 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3382 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3381 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3380 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3379 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3378 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3377 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3376 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3375 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3374 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3373 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3372 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3371 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3370 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3369 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3368 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3367 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3366 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3365 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3364 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3363 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3362 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3361 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3360 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3359 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3358 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3357 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-789)) (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(-13 (-10 -7 (-15 -3357 ((-3 |t#1| "failed") |t#1| (-789))) (-15 -3358 ((-3 |t#1| "failed") |t#1|)) (-15 -3359 ((-3 |t#1| "failed") |t#1|)) (-15 -3360 ((-3 |t#1| "failed") |t#1|)) (-15 -3361 ((-3 |t#1| "failed") |t#1|)) (-15 -3362 ((-3 |t#1| "failed") |t#1|)) (-15 -3363 ((-3 |t#1| "failed") |t#1|)) (-15 -3364 ((-3 |t#1| "failed") |t#1|)) (-15 -3365 ((-3 |t#1| "failed") |t#1|)) (-15 -3366 ((-3 |t#1| "failed") |t#1|)) (-15 -3367 ((-3 |t#1| "failed") |t#1|)) (-15 -3368 ((-3 |t#1| "failed") |t#1|)) (-15 -3369 ((-3 |t#1| "failed") |t#1|)) (-15 -3370 ((-3 |t#1| "failed") |t#1|)) (-15 -3371 ((-3 |t#1| "failed") |t#1|)) (-15 -3372 ((-3 |t#1| "failed") |t#1|)) (-15 -3373 ((-3 |t#1| "failed") |t#1|)) (-15 -3374 ((-3 |t#1| "failed") |t#1|)) (-15 -3375 ((-3 |t#1| "failed") |t#1|)) (-15 -3376 ((-3 |t#1| "failed") |t#1|)) (-15 -3377 ((-3 |t#1| "failed") |t#1|)) (-15 -3378 ((-3 |t#1| "failed") |t#1|)) (-15 -3379 ((-3 |t#1| "failed") |t#1|)) (-15 -3380 ((-3 |t#1| "failed") |t#1|)) (-15 -3381 ((-3 |t#1| "failed") |t#1|)) (-15 -3382 ((-3 |t#1| "failed") |t#1|)) (-15 -3383 ((-3 |t#1| "failed") |t#1|)))) -((-3385 ((|#4| |#4| (-659 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-3384 ((|#4| |#4| (-659 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-4386 ((|#4| (-1 |#4| (-963 |#1|)) |#4|) 31 T ELT))) -(((-1003 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3384 (|#4| |#4| |#3|)) (-15 -3384 (|#4| |#4| (-659 |#3|))) (-15 -3385 (|#4| |#4| |#3|)) (-15 -3385 (|#4| |#4| (-659 |#3|))) (-15 -4386 (|#4| (-1 |#4| (-963 |#1|)) |#4|))) (-1068) (-813) (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $)) (-15 -4259 ((-3 $ "failed") (-1196))))) (-967 (-963 |#1|) |#2| |#3|)) (T -1003)) -((-4386 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-963 *4))) (-4 *4 (-1068)) (-4 *2 (-967 (-963 *4) *5 *6)) (-4 *5 (-813)) (-4 *6 (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $)) (-15 -4259 ((-3 $ #1="failed") (-1196)))))) (-5 *1 (-1003 *4 *5 *6 *2)))) (-3385 (*1 *2 *2 *3) (-12 (-5 *3 (-659 *6)) (-4 *6 (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $)) (-15 -4259 ((-3 $ #1#) (-1196)))))) (-4 *4 (-1068)) (-4 *5 (-813)) (-5 *1 (-1003 *4 *5 *6 *2)) (-4 *2 (-967 (-963 *4) *5 *6)))) (-3385 (*1 *2 *2 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *3 (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $)) (-15 -4259 ((-3 $ #1#) (-1196)))))) (-5 *1 (-1003 *4 *5 *3 *2)) (-4 *2 (-967 (-963 *4) *5 *3)))) (-3384 (*1 *2 *2 *3) (-12 (-5 *3 (-659 *6)) (-4 *6 (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $)) (-15 -4259 ((-3 $ #1#) (-1196)))))) (-4 *4 (-1068)) (-4 *5 (-813)) (-5 *1 (-1003 *4 *5 *6 *2)) (-4 *2 (-967 (-963 *4) *5 *6)))) (-3384 (*1 *2 *2 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *3 (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $)) (-15 -4259 ((-3 $ #1#) (-1196)))))) (-5 *1 (-1003 *4 *5 *3 *2)) (-4 *2 (-967 (-963 *4) *5 *3))))) -((-3386 ((|#2| |#3|) 35 T ELT)) (-4347 (((-2 (|:| -2220 (-707 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-707 |#2|))) |#2|) 79 T ELT)) (-4346 (((-2 (|:| -2220 (-707 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-707 |#2|)))) 100 T ELT))) -(((-1004 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4346 ((-2 (|:| -2220 (-707 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-707 |#2|))))) (-15 -4347 ((-2 (|:| -2220 (-707 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-707 |#2|))) |#2|)) (-15 -3386 (|#2| |#3|))) (-363) (-1262 |#1|) (-1262 |#2|) (-742 |#2| |#3|)) (T -1004)) -((-3386 (*1 *2 *3) (-12 (-4 *3 (-1262 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-1004 *4 *2 *3 *5)) (-4 *4 (-363)) (-4 *5 (-742 *2 *3)))) (-4347 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 *3)) (-5 *2 (-2 (|:| -2220 (-707 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-707 *3)))) (-5 *1 (-1004 *4 *3 *5 *6)) (-4 *6 (-742 *3 *5)))) (-4346 (*1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| -2220 (-707 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-707 *4)))) (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-742 *4 *5))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3819 (((-3 (-114) #1="failed") $) 71 T ELT)) (-4077 (($ $) 36 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-3390 (($ $ (-3 (-114) #1#)) 72 T ELT)) (-3391 (($ (-659 |#4|) |#4|) 25 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3387 (($ $) 69 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3821 (((-114) $) 70 T ELT)) (-3991 (($) 30 T ELT)) (-3388 ((|#4| $) 74 T ELT)) (-3389 (((-659 |#4|) $) 73 T ELT)) (-4374 (((-875) $) 68 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1005 |#1| |#2| |#3| |#4|) (-13 (-1120) (-628 (-875)) (-10 -8 (-15 -3991 ($)) (-15 -3391 ($ (-659 |#4|) |#4|)) (-15 -3819 ((-3 (-114) #1="failed") $)) (-15 -3390 ($ $ (-3 (-114) #1#))) (-15 -3821 ((-114) $)) (-15 -3389 ((-659 |#4|) $)) (-15 -3388 (|#4| $)) (-15 -3387 ($ $)) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (-15 -4077 ($ $)) |%noBranch|) |%noBranch|))) (-464) (-859) (-813) (-967 |#1| |#3| |#2|)) (T -1005)) -((-3991 (*1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-859)) (-4 *4 (-813)) (-5 *1 (-1005 *2 *3 *4 *5)) (-4 *5 (-967 *2 *4 *3)))) (-3391 (*1 *1 *2 *3) (-12 (-5 *2 (-659 *3)) (-4 *3 (-967 *4 *6 *5)) (-4 *4 (-464)) (-4 *5 (-859)) (-4 *6 (-813)) (-5 *1 (-1005 *4 *5 *6 *3)))) (-3819 (*1 *2 *1) (|partial| -12 (-4 *3 (-464)) (-4 *4 (-859)) (-4 *5 (-813)) (-5 *2 (-114)) (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-967 *3 *5 *4)))) (-3390 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-114) "failed")) (-4 *3 (-464)) (-4 *4 (-859)) (-4 *5 (-813)) (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-967 *3 *5 *4)))) (-3821 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-859)) (-4 *5 (-813)) (-5 *2 (-114)) (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-967 *3 *5 *4)))) (-3389 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-859)) (-4 *5 (-813)) (-5 *2 (-659 *6)) (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-967 *3 *5 *4)))) (-3388 (*1 *2 *1) (-12 (-4 *2 (-967 *3 *5 *4)) (-5 *1 (-1005 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-859)) (-4 *5 (-813)))) (-3387 (*1 *1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-859)) (-4 *4 (-813)) (-5 *1 (-1005 *2 *3 *4 *5)) (-4 *5 (-967 *2 *4 *3)))) (-4077 (*1 *1 *1) (-12 (-4 *2 (-149)) (-4 *2 (-319)) (-4 *2 (-464)) (-4 *3 (-859)) (-4 *4 (-813)) (-5 *1 (-1005 *2 *3 *4 *5)) (-4 *5 (-967 *2 *4 *3))))) -((-3392 (((-1005 (-419 (-557)) (-876 |#1|) (-246 |#2| (-789)) (-255 |#1| (-419 (-557)))) (-1005 (-419 (-557)) (-876 |#1|) (-246 |#2| (-789)) (-255 |#1| (-419 (-557))))) 82 T ELT))) -(((-1006 |#1| |#2|) (-10 -7 (-15 -3392 ((-1005 (-419 (-557)) (-876 |#1|) (-246 |#2| (-789)) (-255 |#1| (-419 (-557)))) (-1005 (-419 (-557)) (-876 |#1|) (-246 |#2| (-789)) (-255 |#1| (-419 (-557))))))) (-659 (-1196)) (-789)) (T -1006)) -((-3392 (*1 *2 *2) (-12 (-5 *2 (-1005 (-419 (-557)) (-876 *3) (-246 *4 (-789)) (-255 *3 (-419 (-557))))) (-14 *3 (-659 (-1196))) (-14 *4 (-789)) (-5 *1 (-1006 *3 *4))))) -((-3686 (((-114) |#5| |#5|) 44 T ELT)) (-3689 (((-114) |#5| |#5|) 59 T ELT)) (-3694 (((-114) |#5| (-659 |#5|)) 81 T ELT) (((-114) |#5| |#5|) 68 T ELT)) (-3690 (((-114) (-659 |#4|) (-659 |#4|)) 65 T ELT)) (-3696 (((-114) (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|)) (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) 70 T ELT)) (-3685 (((-1292)) 32 T ELT)) (-3684 (((-1292) (-1178) (-1178) (-1178)) 28 T ELT)) (-3695 (((-659 |#5|) (-659 |#5|)) 100 T ELT)) (-3697 (((-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|)))) 92 T ELT)) (-3698 (((-659 (-2 (|:| -3682 (-659 |#4|)) (|:| -1741 |#5|) (|:| |ineq| (-659 |#4|)))) (-659 |#4|) (-659 |#5|) (-114) (-114)) 122 T ELT)) (-3688 (((-114) |#5| |#5|) 53 T ELT)) (-3693 (((-3 (-114) #1="failed") |#5| |#5|) 78 T ELT)) (-3691 (((-114) (-659 |#4|) (-659 |#4|)) 64 T ELT)) (-3692 (((-114) (-659 |#4|) (-659 |#4|)) 66 T ELT)) (-4127 (((-114) (-659 |#4|) (-659 |#4|)) 67 T ELT)) (-3699 (((-3 (-2 (|:| -3682 (-659 |#4|)) (|:| -1741 |#5|) (|:| |ineq| (-659 |#4|))) #1#) (-659 |#4|) |#5| (-659 |#4|) (-114) (-114) (-114) (-114) (-114)) 117 T ELT)) (-3687 (((-659 |#5|) (-659 |#5|)) 49 T ELT))) -(((-1007 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3684 ((-1292) (-1178) (-1178) (-1178))) (-15 -3685 ((-1292))) (-15 -3686 ((-114) |#5| |#5|)) (-15 -3687 ((-659 |#5|) (-659 |#5|))) (-15 -3688 ((-114) |#5| |#5|)) (-15 -3689 ((-114) |#5| |#5|)) (-15 -3690 ((-114) (-659 |#4|) (-659 |#4|))) (-15 -3691 ((-114) (-659 |#4|) (-659 |#4|))) (-15 -3692 ((-114) (-659 |#4|) (-659 |#4|))) (-15 -4127 ((-114) (-659 |#4|) (-659 |#4|))) (-15 -3693 ((-3 (-114) #1="failed") |#5| |#5|)) (-15 -3694 ((-114) |#5| |#5|)) (-15 -3694 ((-114) |#5| (-659 |#5|))) (-15 -3695 ((-659 |#5|) (-659 |#5|))) (-15 -3696 ((-114) (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|)) (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|)))) (-15 -3697 ((-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) (-15 -3698 ((-659 (-2 (|:| -3682 (-659 |#4|)) (|:| -1741 |#5|) (|:| |ineq| (-659 |#4|)))) (-659 |#4|) (-659 |#5|) (-114) (-114))) (-15 -3699 ((-3 (-2 (|:| -3682 (-659 |#4|)) (|:| -1741 |#5|) (|:| |ineq| (-659 |#4|))) #1#) (-659 |#4|) |#5| (-659 |#4|) (-114) (-114) (-114) (-114) (-114)))) (-464) (-813) (-859) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -1007)) -((-3699 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) (-4 *9 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| -3682 (-659 *9)) (|:| -1741 *4) (|:| |ineq| (-659 *9)))) (-5 *1 (-1007 *6 *7 *8 *9 *4)) (-5 *3 (-659 *9)) (-4 *4 (-1090 *6 *7 *8 *9)))) (-3698 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-659 *10)) (-5 *5 (-114)) (-4 *10 (-1090 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) (-4 *9 (-1084 *6 *7 *8)) (-5 *2 (-659 (-2 (|:| -3682 (-659 *9)) (|:| -1741 *10) (|:| |ineq| (-659 *9))))) (-5 *1 (-1007 *6 *7 *8 *9 *10)) (-5 *3 (-659 *9)))) (-3697 (*1 *2 *2) (-12 (-5 *2 (-659 (-2 (|:| |val| (-659 *6)) (|:| -1741 *7)))) (-4 *6 (-1084 *3 *4 *5)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))) (-3696 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-659 *7)) (|:| -1741 *8))) (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7 *8)))) (-3695 (*1 *2 *2) (-12 (-5 *2 (-659 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))) (-3694 (*1 *2 *3 *4) (-12 (-5 *4 (-659 *3)) (-4 *3 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1007 *5 *6 *7 *8 *3)))) (-3694 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3693 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-4127 (*1 *2 *3 *3) (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3692 (*1 *2 *3 *3) (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3691 (*1 *2 *3 *3) (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3690 (*1 *2 *3 *3) (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3689 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3688 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3687 (*1 *2 *2) (-12 (-5 *2 (-659 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))) (-3686 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3685 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-3684 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) -((-4259 (((-1196) $) 15 T ELT)) (-3820 (((-1178) $) 16 T ELT)) (-3642 (($ (-1196) (-1178)) 14 T ELT)) (-4374 (((-875) $) 13 T ELT))) -(((-1008) (-13 (-628 (-875)) (-10 -8 (-15 -3642 ($ (-1196) (-1178))) (-15 -4259 ((-1196) $)) (-15 -3820 ((-1178) $))))) (T -1008)) -((-3642 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1178)) (-5 *1 (-1008)))) (-4259 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1008)))) (-3820 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1008))))) -((-3573 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1196) #1#) $) 72 T ELT) (((-3 (-419 (-557)) #1#) $) NIL T ELT) (((-3 (-557) #1#) $) 102 T ELT)) (-3572 ((|#2| $) NIL T ELT) (((-1196) $) 67 T ELT) (((-419 (-557)) $) NIL T ELT) (((-557) $) 99 T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL T ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL T ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 $) (-1286 $)) 121 T ELT) (((-707 |#2|) (-707 $)) 35 T ELT)) (-3393 (($) 105 T ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) 82 T ELT) (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) 91 T ELT)) (-3395 (($ $) 10 T ELT)) (-3863 (((-709 $) $) 27 T ELT)) (-4386 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3864 (($) 16 T ELT)) (-3528 (($ $) 61 T ELT)) (-4186 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-789)) NIL T ELT) (($ $ (-1196)) NIL T ELT) (($ $ (-659 (-1196))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-3394 (($ $) 12 T ELT)) (-4400 (((-903 (-557)) $) 77 T ELT) (((-903 (-391)) $) 86 T ELT) (((-546) $) 47 T ELT) (((-391) $) 51 T ELT) (((-229) $) 55 T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1196)) 64 T ELT)) (-3526 (((-789)) 38 T ELT)) (-3084 (((-114) $ $) 57 T ELT))) -(((-1009 |#1| |#2|) (-10 -7 (-15 -3084 ((-114) |#1| |#1|)) (-15 -4186 (|#1| |#1| (-789))) (-15 -4186 (|#1| |#1|)) (-15 -4186 (|#1| |#1| (-659 (-1196)) (-659 (-789)))) (-15 -4186 (|#1| |#1| (-1196) (-789))) (-15 -4186 (|#1| |#1| (-659 (-1196)))) (-15 -4186 (|#1| |#1| (-1196))) (-15 -3864 (|#1|)) (-15 -3863 ((-709 |#1|) |#1|)) (-15 -3573 ((-3 (-557) #1="failed") |#1|)) (-15 -3572 ((-557) |#1|)) (-15 -3573 ((-3 (-419 (-557)) #1#) |#1|)) (-15 -3572 ((-419 (-557)) |#1|)) (-15 -4400 ((-229) |#1|)) (-15 -4400 ((-391) |#1|)) (-15 -4400 ((-546) |#1|)) (-15 -4374 (|#1| (-1196))) (-15 -3573 ((-3 (-1196) #1#) |#1|)) (-15 -3572 ((-1196) |#1|)) (-15 -3393 (|#1|)) (-15 -3528 (|#1| |#1|)) (-15 -3394 (|#1| |#1|)) (-15 -3395 (|#1| |#1|)) (-15 -3195 ((-901 (-391) |#1|) |#1| (-903 (-391)) (-901 (-391) |#1|))) (-15 -3195 ((-901 (-557) |#1|) |#1| (-903 (-557)) (-901 (-557) |#1|))) (-15 -4400 ((-903 (-391)) |#1|)) (-15 -4400 ((-903 (-557)) |#1|)) (-15 -2491 ((-707 |#2|) (-707 |#1|))) (-15 -2491 ((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 |#1|) (-1286 |#1|))) (-15 -2491 ((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 |#1|) (-1286 |#1|))) (-15 -2491 ((-707 (-557)) (-707 |#1|))) (-15 -4186 (|#1| |#1| (-1 |#2| |#2|) (-789))) (-15 -4186 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4386 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3573 ((-3 |#2| #1#) |#1|)) (-15 -3572 (|#2| |#1|)) (-15 -4374 (|#1| |#2|)) (-15 -4374 (|#1| (-419 (-557)))) (-15 -4374 (|#1| |#1|)) (-15 -3526 ((-789))) (-15 -4374 (|#1| (-557))) (-15 -4374 ((-875) |#1|))) (-1010 |#2|) (-568)) (T -1009)) -((-3526 (*1 *2) (-12 (-4 *4 (-568)) (-5 *2 (-789)) (-5 *1 (-1009 *3 *4)) (-4 *3 (-1010 *4))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-3529 ((|#1| $) 170 (|has| |#1| (-319)) ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 52 T ELT)) (-2271 (($ $) 51 T ELT)) (-2269 (((-114) $) 49 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) 161 (|has| |#1| (-927)) ELT)) (-4203 (($ $) 88 T ELT)) (-4399 (((-417 $) $) 87 T ELT)) (-3103 (((-3 (-659 (-1190 $)) #1="failed") (-659 (-1190 $)) (-1190 $)) 164 (|has| |#1| (-927)) ELT)) (-1786 (((-114) $ $) 72 T ELT)) (-4051 (((-557) $) 151 (|has| |#1| (-840)) ELT)) (-4152 (($) 22 T CONST)) (-3573 (((-3 |#1| #2="failed") $) 200 T ELT) (((-3 (-1196) #2#) $) 159 (|has| |#1| (-1057 (-1196))) ELT) (((-3 (-419 (-557)) #2#) $) 142 (|has| |#1| (-1057 (-557))) ELT) (((-3 (-557) #2#) $) 140 (|has| |#1| (-1057 (-557))) ELT)) (-3572 ((|#1| $) 201 T ELT) (((-1196) $) 160 (|has| |#1| (-1057 (-1196))) ELT) (((-419 (-557)) $) 143 (|has| |#1| (-1057 (-557))) ELT) (((-557) $) 141 (|has| |#1| (-1057 (-557))) ELT)) (-2961 (($ $ $) 68 T ELT)) (-2491 (((-707 (-557)) (-707 $)) 185 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) 184 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) 183 T ELT) (((-707 |#1|) (-707 $)) 182 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-3393 (($) 168 (|has| |#1| (-556)) ELT)) (-2960 (($ $ $) 69 T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 63 T ELT)) (-4151 (((-114) $) 86 T ELT)) (-3602 (((-114) $) 153 (|has| |#1| (-840)) ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) 177 (|has| |#1| (-899 (-557))) ELT) (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) 176 (|has| |#1| (-899 (-391))) ELT)) (-2639 (((-114) $) 40 T ELT)) (-3395 (($ $) 172 T ELT)) (-3397 ((|#1| $) 174 T ELT)) (-3863 (((-709 $) $) 139 (|has| |#1| (-1171)) ELT)) (-3603 (((-114) $) 152 (|has| |#1| (-840)) ELT)) (-1783 (((-3 (-659 $) #3="failed") (-659 $) $) 65 T ELT)) (-2928 (($ $ $) 144 (|has| |#1| (-859)) ELT)) (-3256 (($ $ $) 145 (|has| |#1| (-859)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 192 T ELT)) (-2492 (((-707 (-557)) (-1286 $)) 187 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) 186 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 181 T ELT) (((-707 |#1|) (-1286 $)) 180 T ELT)) (-2100 (($ $ $) 57 T ELT) (($ (-659 $)) 56 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2872 (($ $) 85 T ELT)) (-3864 (($) 138 (|has| |#1| (-1171)) CONST)) (-3659 (((-1139) $) 12 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 55 T ELT)) (-3560 (($ $ $) 59 T ELT) (($ (-659 $)) 58 T ELT)) (-3528 (($ $) 169 (|has| |#1| (-319)) ELT)) (-3530 ((|#1| $) 166 (|has| |#1| (-556)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) 163 (|has| |#1| (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) 162 (|has| |#1| (-927)) ELT)) (-4160 (((-417 $) $) 89 T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 66 T ELT)) (-3884 (((-3 $ "failed") $ $) 53 T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 62 T ELT)) (-4196 (($ $ (-659 |#1|) (-659 |#1|)) 198 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 197 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 196 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-659 (-305 |#1|))) 195 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-659 (-1196)) (-659 |#1|)) 194 (|has| |#1| (-526 (-1196) |#1|)) ELT) (($ $ (-1196) |#1|) 193 (|has| |#1| (-526 (-1196) |#1|)) ELT)) (-1785 (((-789) $) 71 T ELT)) (-4228 (($ $ |#1|) 199 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 70 T ELT)) (-4186 (($ $ (-1 |#1| |#1|)) 191 T ELT) (($ $ (-1 |#1| |#1|) (-789)) 190 T ELT) (($ $) 137 (|has| |#1| (-239)) ELT) (($ $ (-789)) 135 (|has| |#1| (-239)) ELT) (($ $ (-1196)) 133 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) 131 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) 130 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 129 (|has| |#1| (-917 (-1196))) ELT)) (-3394 (($ $) 171 T ELT)) (-3396 ((|#1| $) 173 T ELT)) (-4400 (((-903 (-557)) $) 179 (|has| |#1| (-629 (-903 (-557)))) ELT) (((-903 (-391)) $) 178 (|has| |#1| (-629 (-903 (-391)))) ELT) (((-546) $) 156 (|has| |#1| (-629 (-546))) ELT) (((-391) $) 155 (|has| |#1| (-1039)) ELT) (((-229) $) 154 (|has| |#1| (-1039)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) 165 (-2959 (|has| $ (-147)) (|has| |#1| (-927))) ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-557))) 81 T ELT) (($ |#1|) 204 T ELT) (($ (-1196)) 158 (|has| |#1| (-1057 (-1196))) ELT)) (-3101 (((-709 $) $) 157 (-3955 (|has| |#1| (-147)) (-2959 (|has| $ (-147)) (|has| |#1| (-927)))) ELT)) (-3526 (((-789)) 37 T CONST)) (-3531 ((|#1| $) 167 (|has| |#1| (-556)) ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 50 T ELT)) (-3801 (($ $) 150 (|has| |#1| (-840)) ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $ (-1 |#1| |#1|)) 189 T ELT) (($ $ (-1 |#1| |#1|) (-789)) 188 T ELT) (($ $) 136 (|has| |#1| (-239)) ELT) (($ $ (-789)) 134 (|has| |#1| (-239)) ELT) (($ $ (-1196)) 132 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) 128 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) 127 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 126 (|has| |#1| (-917 (-1196))) ELT)) (-2963 (((-114) $ $) 146 (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) 148 (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 147 (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) 149 (|has| |#1| (-859)) ELT)) (-4377 (($ $ $) 80 T ELT) (($ |#1| |#1|) 175 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ (-557)) 84 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-557))) 83 T ELT) (($ (-419 (-557)) $) 82 T ELT) (($ |#1| $) 203 T ELT) (($ $ |#1|) 202 T ELT))) -(((-1010 |#1|) (-142) (-568)) (T -1010)) -((-4377 (*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)))) (-3396 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)))) (-3395 (*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)))) (-3394 (*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)))) (-3529 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-319)))) (-3528 (*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-319)))) (-3393 (*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-556)) (-4 *2 (-568)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-556)))) (-3530 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-556))))) -(-13 (-376) (-38 |t#1|) (-1057 |t#1|) (-351 |t#1|) (-234 |t#1|) (-390 |t#1|) (-897 |t#1|) (-412 |t#1|) (-10 -8 (-15 -4377 ($ |t#1| |t#1|)) (-15 -3397 (|t#1| $)) (-15 -3396 (|t#1| $)) (-15 -3395 ($ $)) (-15 -3394 ($ $)) (IF (|has| |t#1| (-1171)) (-6 (-1171)) |%noBranch|) (IF (|has| |t#1| (-1057 (-557))) (PROGN (-6 (-1057 (-557))) (-6 (-1057 (-419 (-557))))) |%noBranch|) (IF (|has| |t#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |t#1| (-840)) (-6 (-840)) |%noBranch|) (IF (|has| |t#1| (-1039)) (-6 (-1039)) |%noBranch|) (IF (|has| |t#1| (-629 (-546))) (-6 (-629 (-546))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1057 (-1196))) (-6 (-1057 (-1196))) |%noBranch|) (IF (|has| |t#1| (-319)) (PROGN (-15 -3529 (|t#1| $)) (-15 -3528 ($ $))) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -3393 ($)) (-15 -3531 (|t#1| $)) (-15 -3530 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-927)) (-6 (-927)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-557))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) . T) ((-631 (-557)) . T) ((-631 (-1196)) |has| |#1| (-1057 (-1196))) ((-631 |#1|) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-175) . T) ((-629 (-229)) |has| |#1| (-1039)) ((-629 (-391)) |has| |#1| (-1039)) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-629 (-903 (-391))) |has| |#1| (-629 (-903 (-391)))) ((-629 (-903 (-557))) |has| |#1| (-629 (-903 (-557)))) ((-236 $) -3955 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -3955 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) . T) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) . T) ((-319) . T) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-376) . T) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-412 |#1|) . T) ((-464) . T) ((-526 (-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-568) . T) ((-664 (-419 (-557))) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 (-419 (-557))) . T) ((-666 (-557)) |has| |#1| (-656 (-557))) ((-666 |#1|) . T) ((-666 $) . T) ((-658 (-419 (-557))) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-656 (-557)) |has| |#1| (-656 (-557))) ((-656 |#1|) . T) ((-735 (-419 (-557))) . T) ((-735 |#1|) . T) ((-735 $) . T) ((-744) . T) ((-810) |has| |#1| (-840)) ((-812) |has| |#1| (-840)) ((-814) |has| |#1| (-840)) ((-817) |has| |#1| (-840)) ((-840) |has| |#1| (-840)) ((-858) |has| |#1| (-840)) ((-859) -3955 (|has| |#1| (-859)) (|has| |#1| (-840))) ((-862) -3955 (|has| |#1| (-859)) (|has| |#1| (-840))) ((-909 $ (-1196)) -3955 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-915 (-1196)) |has| |#1| (-915 (-1196))) ((-917 (-1196)) -3955 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-899 (-391)) |has| |#1| (-899 (-391))) ((-899 (-557)) |has| |#1| (-899 (-557))) ((-897 |#1|) . T) ((-927) |has| |#1| (-927)) ((-938) . T) ((-1039) |has| |#1| (-1039)) ((-1057 (-419 (-557))) |has| |#1| (-1057 (-557))) ((-1057 (-557)) |has| |#1| (-1057 (-557))) ((-1057 (-1196)) |has| |#1| (-1057 (-1196))) ((-1057 |#1|) . T) ((-1070 (-419 (-557))) . T) ((-1070 |#1|) . T) ((-1070 $) . T) ((-1075 (-419 (-557))) . T) ((-1075 |#1|) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1171) |has| |#1| (-1171)) ((-1236) . T) ((-1241) . T)) -((-4386 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) -(((-1011 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4386 (|#4| (-1 |#2| |#1|) |#3|))) (-568) (-568) (-1010 |#1|) (-1010 |#2|)) (T -1011)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-4 *2 (-1010 *6)) (-5 *1 (-1011 *5 *6 *4 *2)) (-4 *4 (-1010 *5))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1424 (((-3 $ "failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3398 (($ (-1161 |#1| |#2|)) 11 T ELT)) (-3524 (((-1161 |#1| |#2|) $) 12 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4228 ((|#2| $ (-246 |#1| |#2|)) 16 T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT))) -(((-1012 |#1| |#2|) (-13 (-21) (-298 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -3398 ($ (-1161 |#1| |#2|))) (-15 -3524 ((-1161 |#1| |#2|) $)))) (-936) (-376)) (T -1012)) -((-3398 (*1 *1 *2) (-12 (-5 *2 (-1161 *3 *4)) (-14 *3 (-936)) (-4 *4 (-376)) (-5 *1 (-1012 *3 *4)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-1161 *3 *4)) (-5 *1 (-1012 *3 *4)) (-14 *3 (-936)) (-4 *4 (-376))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3622 (((-1154) $) 9 T ELT)) (-4374 (((-875) $) 15 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1013) (-13 (-1102) (-10 -8 (-15 -3622 ((-1154) $))))) (T -1013)) -((-3622 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1013))))) -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4152 (($) 7 T CONST)) (-3401 (($ $) 50 T ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-4261 (((-789) $) 49 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-1387 ((|#1| $) 43 T ELT)) (-4035 (($ |#1| $) 44 T ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-3400 ((|#1| $) 48 T ELT)) (-1388 ((|#1| $) 45 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-3403 ((|#1| |#1| $) 52 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-3402 ((|#1| $) 51 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1389 (($ (-659 |#1|)) 46 T ELT)) (-3399 ((|#1| $) 47 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-1014 |#1|) (-142) (-1236)) (T -1014)) -((-3403 (*1 *2 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1236)))) (-3402 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1236)))) (-3401 (*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1236)))) (-4261 (*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1236)) (-5 *2 (-789)))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1236)))) (-3399 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1236))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4423) (-15 -3403 (|t#1| |t#1| $)) (-15 -3402 (|t#1| $)) (-15 -3401 ($ $)) (-15 -4261 ((-789) $)) (-15 -3400 (|t#1| $)) (-15 -3399 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-628 (-875)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3572 (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) ((|#1| $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) NIL T ELT) (((-707 |#1|) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-4071 ((|#1| $) 12 T ELT)) (-3423 (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-556)) ELT)) (-3422 (((-114) $) NIL (|has| |#1| (-556)) ELT)) (-3421 (((-419 (-557)) $) NIL (|has| |#1| (-556)) ELT)) (-3404 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3532 ((|#1| $) NIL T ELT)) (-2928 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL T ELT) (((-707 |#1|) (-1286 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3405 ((|#1| $) 15 T ELT)) (-3406 ((|#1| $) 14 T ELT)) (-3407 ((|#1| $) 13 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4196 (($ $ (-659 |#1|) (-659 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-659 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-659 (-1196)) (-659 |#1|)) NIL (|has| |#1| (-526 (-1196) |#1|)) ELT) (($ $ (-1196) |#1|) NIL (|has| |#1| (-526 (-1196) |#1|)) ELT)) (-4228 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4186 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-789)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-917 (-1196))) ELT)) (-4400 (((-546) $) NIL (|has| |#1| (-629 (-546))) ELT)) (-3408 (($ $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-419 (-557))) NIL (-3955 (|has| |#1| (-376)) (|has| |#1| (-1057 (-419 (-557))))) ELT)) (-3101 (((-709 $) $) NIL (|has| |#1| (-147)) ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3801 ((|#1| $) NIL (|has| |#1| (-1079)) ELT)) (-3057 (($) 8 T CONST)) (-3063 (($) 10 T CONST)) (-3068 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-789)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-917 (-1196))) ELT)) (-2963 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-376)) ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-376)) ELT))) -(((-1015 |#1|) (-1017 |#1|) (-175)) (T -1015)) -NIL -((-3604 (((-114) $) 43 T ELT)) (-3573 (((-3 (-557) #1="failed") $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3572 (((-557) $) NIL T ELT) (((-419 (-557)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3423 (((-3 (-419 (-557)) #1#) $) 78 T ELT)) (-3422 (((-114) $) 72 T ELT)) (-3421 (((-419 (-557)) $) 76 T ELT)) (-2639 (((-114) $) 42 T ELT)) (-3532 ((|#2| $) 22 T ELT)) (-4386 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2872 (($ $) 58 T ELT)) (-4186 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-789)) NIL T ELT) (($ $ (-1196)) NIL T ELT) (($ $ (-659 (-1196))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-4400 (((-546) $) 67 T ELT)) (-3408 (($ $) 17 T ELT)) (-4374 (((-875) $) 53 T ELT) (($ (-557)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-419 (-557))) NIL T ELT)) (-3526 (((-789)) 10 T ELT)) (-3801 ((|#2| $) 71 T ELT)) (-3452 (((-114) $ $) 26 T ELT)) (-3084 (((-114) $ $) 69 T ELT)) (-4265 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-4267 (($ $ $) 27 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT))) -(((-1016 |#1| |#2|) (-10 -7 (-15 -4374 (|#1| (-419 (-557)))) (-15 -4186 (|#1| |#1| (-789))) (-15 -4186 (|#1| |#1|)) (-15 -4186 (|#1| |#1| (-659 (-1196)) (-659 (-789)))) (-15 -4186 (|#1| |#1| (-1196) (-789))) (-15 -4186 (|#1| |#1| (-659 (-1196)))) (-15 -4186 (|#1| |#1| (-1196))) (-15 -3084 ((-114) |#1| |#1|)) (-15 * (|#1| (-419 (-557)) |#1|)) (-15 * (|#1| |#1| (-419 (-557)))) (-15 -2872 (|#1| |#1|)) (-15 -4400 ((-546) |#1|)) (-15 -3423 ((-3 (-419 (-557)) #1="failed") |#1|)) (-15 -3421 ((-419 (-557)) |#1|)) (-15 -3422 ((-114) |#1|)) (-15 -3801 (|#2| |#1|)) (-15 -3532 (|#2| |#1|)) (-15 -3408 (|#1| |#1|)) (-15 -4386 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4186 (|#1| |#1| (-1 |#2| |#2|) (-789))) (-15 -4186 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3573 ((-3 |#2| #1#) |#1|)) (-15 -3572 (|#2| |#1|)) (-15 -3572 ((-419 (-557)) |#1|)) (-15 -3573 ((-3 (-419 (-557)) #1#) |#1|)) (-15 -3572 ((-557) |#1|)) (-15 -3573 ((-3 (-557) #1#) |#1|)) (-15 -4374 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3526 ((-789))) (-15 -4374 (|#1| (-557))) (-15 -2639 ((-114) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4265 (|#1| |#1| |#1|)) (-15 -4265 (|#1| |#1|)) (-15 * (|#1| (-557) |#1|)) (-15 * (|#1| (-789) |#1|)) (-15 -3604 ((-114) |#1|)) (-15 * (|#1| (-936) |#1|)) (-15 -4267 (|#1| |#1| |#1|)) (-15 -4374 ((-875) |#1|)) (-15 -3452 ((-114) |#1| |#1|))) (-1017 |#2|) (-175)) (T -1016)) -((-3526 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-789)) (-5 *1 (-1016 *3 *4)) (-4 *3 (-1017 *4))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3573 (((-3 (-557) #1="failed") $) 140 (|has| |#1| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) 138 (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 |#1| #1#) $) 135 T ELT)) (-3572 (((-557) $) 139 (|has| |#1| (-1057 (-557))) ELT) (((-419 (-557)) $) 137 (|has| |#1| (-1057 (-419 (-557)))) ELT) ((|#1| $) 136 T ELT)) (-2491 (((-707 (-557)) (-707 $)) 120 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) 119 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) 118 T ELT) (((-707 |#1|) (-707 $)) 117 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-4071 ((|#1| $) 108 T ELT)) (-3423 (((-3 (-419 (-557)) "failed") $) 104 (|has| |#1| (-556)) ELT)) (-3422 (((-114) $) 106 (|has| |#1| (-556)) ELT)) (-3421 (((-419 (-557)) $) 105 (|has| |#1| (-556)) ELT)) (-3404 (($ |#1| |#1| |#1| |#1|) 109 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3532 ((|#1| $) 110 T ELT)) (-2928 (($ $ $) 92 (|has| |#1| (-859)) ELT)) (-3256 (($ $ $) 93 (|has| |#1| (-859)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 123 T ELT)) (-2492 (((-707 (-557)) (-1286 $)) 122 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) 121 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 116 T ELT) (((-707 |#1|) (-1286 $)) 115 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2872 (($ $) 101 (|has| |#1| (-376)) ELT)) (-3405 ((|#1| $) 111 T ELT)) (-3406 ((|#1| $) 112 T ELT)) (-3407 ((|#1| $) 113 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4196 (($ $ (-659 |#1|) (-659 |#1|)) 129 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 128 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 127 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-659 (-305 |#1|))) 126 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-659 (-1196)) (-659 |#1|)) 125 (|has| |#1| (-526 (-1196) |#1|)) ELT) (($ $ (-1196) |#1|) 124 (|has| |#1| (-526 (-1196) |#1|)) ELT)) (-4228 (($ $ |#1|) 130 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4186 (($ $ (-1 |#1| |#1|)) 134 T ELT) (($ $ (-1 |#1| |#1|) (-789)) 133 T ELT) (($ $) 91 (|has| |#1| (-239)) ELT) (($ $ (-789)) 89 (|has| |#1| (-239)) ELT) (($ $ (-1196)) 87 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) 85 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) 84 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 83 (|has| |#1| (-917 (-1196))) ELT)) (-4400 (((-546) $) 102 (|has| |#1| (-629 (-546))) ELT)) (-3408 (($ $) 114 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-419 (-557))) 79 (-3955 (|has| |#1| (-376)) (|has| |#1| (-1057 (-419 (-557))))) ELT)) (-3101 (((-709 $) $) 103 (|has| |#1| (-147)) ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-3801 ((|#1| $) 107 (|has| |#1| (-1079)) ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $ (-1 |#1| |#1|)) 132 T ELT) (($ $ (-1 |#1| |#1|) (-789)) 131 T ELT) (($ $) 90 (|has| |#1| (-239)) ELT) (($ $ (-789)) 88 (|has| |#1| (-239)) ELT) (($ $ (-1196)) 86 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) 82 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) 81 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 80 (|has| |#1| (-917 (-1196))) ELT)) (-2963 (((-114) $ $) 94 (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) 96 (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 95 (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) 97 (|has| |#1| (-859)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ (-557)) 100 (|has| |#1| (-376)) ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ $ (-419 (-557))) 99 (|has| |#1| (-376)) ELT) (($ (-419 (-557)) $) 98 (|has| |#1| (-376)) ELT))) -(((-1017 |#1|) (-142) (-175)) (T -1017)) -((-3408 (*1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-175)))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-175)))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-175)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-175)))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-175)))) (-3404 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-175)))) (-4071 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-175)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-175)) (-4 *2 (-1079)))) (-3422 (*1 *2 *1) (-12 (-4 *1 (-1017 *3)) (-4 *3 (-175)) (-4 *3 (-556)) (-5 *2 (-114)))) (-3421 (*1 *2 *1) (-12 (-4 *1 (-1017 *3)) (-4 *3 (-175)) (-4 *3 (-556)) (-5 *2 (-419 (-557))))) (-3423 (*1 *2 *1) (|partial| -12 (-4 *1 (-1017 *3)) (-4 *3 (-175)) (-4 *3 (-556)) (-5 *2 (-419 (-557)))))) -(-13 (-38 |t#1|) (-424 |t#1|) (-234 |t#1|) (-351 |t#1|) (-390 |t#1|) (-10 -8 (-15 -3408 ($ $)) (-15 -3407 (|t#1| $)) (-15 -3406 (|t#1| $)) (-15 -3405 (|t#1| $)) (-15 -3532 (|t#1| $)) (-15 -3404 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4071 (|t#1| $)) (IF (|has| |t#1| (-302)) (-6 (-302)) |%noBranch|) (IF (|has| |t#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-250)) |%noBranch|) (IF (|has| |t#1| (-629 (-546))) (-6 (-629 (-546))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1079)) (-15 -3801 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -3422 ((-114) $)) (-15 -3421 ((-419 (-557)) $)) (-15 -3423 ((-3 (-419 (-557)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-557))) |has| |#1| (-376)) ((-38 |#1|) . T) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) |has| |#1| (-376)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3955 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) -3955 (|has| |#1| (-1057 (-419 (-557)))) (|has| |#1| (-376))) ((-631 (-557)) . T) ((-631 |#1|) . T) ((-628 (-875)) . T) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-236 $) -3955 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -3955 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) |has| |#1| (-376)) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) -3955 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-526 (-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-664 (-419 (-557))) |has| |#1| (-376)) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 (-419 (-557))) |has| |#1| (-376)) ((-666 (-557)) |has| |#1| (-656 (-557))) ((-666 |#1|) . T) ((-666 $) . T) ((-658 (-419 (-557))) |has| |#1| (-376)) ((-658 |#1|) . T) ((-656 (-557)) |has| |#1| (-656 (-557))) ((-656 |#1|) . T) ((-735 (-419 (-557))) |has| |#1| (-376)) ((-735 |#1|) . T) ((-744) . T) ((-859) |has| |#1| (-859)) ((-862) |has| |#1| (-859)) ((-909 $ (-1196)) -3955 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-915 (-1196)) |has| |#1| (-915 (-1196))) ((-917 (-1196)) -3955 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-1057 (-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((-1057 (-557)) |has| |#1| (-1057 (-557))) ((-1057 |#1|) . T) ((-1070 (-419 (-557))) |has| |#1| (-376)) ((-1070 |#1|) . T) ((-1070 $) -3955 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-1075 (-419 (-557))) |has| |#1| (-376)) ((-1075 |#1|) . T) ((-1075 $) -3955 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-4386 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) -(((-1018 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4386 (|#3| (-1 |#4| |#2|) |#1|))) (-1017 |#2|) (-175) (-1017 |#4|) (-175)) (T -1018)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-1017 *6)) (-5 *1 (-1018 *4 *5 *2 *6)) (-4 *4 (-1017 *5))))) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4152 (($) NIL T CONST)) (-3401 (($ $) 23 T ELT)) (-3409 (($ (-659 |#1|)) 33 T ELT)) (-3288 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4261 (((-789) $) 26 T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-1387 ((|#1| $) 28 T ELT)) (-4035 (($ |#1| $) 17 T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-3400 ((|#1| $) 27 T ELT)) (-1388 ((|#1| $) 22 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3403 ((|#1| |#1| $) 16 T ELT)) (-3821 (((-114) $) 18 T ELT)) (-3991 (($) NIL T ELT)) (-3402 ((|#1| $) 21 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-4374 (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1389 (($ (-659 |#1|)) NIL T ELT)) (-3399 ((|#1| $) 30 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-1019 |#1|) (-13 (-1014 |#1|) (-10 -8 (-15 -3409 ($ (-659 |#1|))))) (-1120)) (T -1019)) -((-3409 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-5 *1 (-1019 *3))))) -((-3436 (($ $) 12 T ELT)) (-3410 (($ $ (-557)) 13 T ELT))) -(((-1020 |#1|) (-10 -7 (-15 -3436 (|#1| |#1|)) (-15 -3410 (|#1| |#1| (-557)))) (-1021)) (T -1020)) -NIL -((-3436 (($ $) 6 T ELT)) (-3410 (($ $ (-557)) 7 T ELT)) (** (($ $ (-419 (-557))) 8 T ELT))) -(((-1021) (-142)) (T -1021)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-419 (-557))))) (-3410 (*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-557)))) (-3436 (*1 *1 *1) (-4 *1 (-1021)))) -(-13 (-10 -8 (-15 -3436 ($ $)) (-15 -3410 ($ $ (-557))) (-15 ** ($ $ (-419 (-557)))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1848 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2271 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2269 (((-114) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1988 (((-707 (-419 |#2|)) (-1286 $)) NIL T ELT) (((-707 (-419 |#2|))) NIL T ELT)) (-3748 (((-419 |#2|) $) NIL T ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4399 (((-417 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1786 (((-114) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3536 (((-789)) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1862 (((-114)) NIL T ELT)) (-1861 (((-114) |#1|) 162 T ELT) (((-114) |#2|) 166 T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) NIL (|has| (-419 |#2|) (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| (-419 |#2|) (-1057 (-419 (-557)))) ELT) (((-3 (-419 |#2|) #1#) $) NIL T ELT)) (-3572 (((-557) $) NIL (|has| (-419 |#2|) (-1057 (-557))) ELT) (((-419 (-557)) $) NIL (|has| (-419 |#2|) (-1057 (-419 (-557)))) ELT) (((-419 |#2|) $) NIL T ELT)) (-1998 (($ (-1286 (-419 |#2|)) (-1286 $)) NIL T ELT) (($ (-1286 (-419 |#2|))) 79 T ELT) (($ (-1286 |#2|) |#2|) NIL T ELT)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-363)) ELT)) (-2961 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1987 (((-707 (-419 |#2|)) $ (-1286 $)) NIL T ELT) (((-707 (-419 |#2|)) $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| (-419 |#2|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| (-419 |#2|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-419 |#2|))) (|:| |vec| (-1286 (-419 |#2|)))) (-707 $) (-1286 $)) NIL T ELT) (((-707 (-419 |#2|)) (-707 $)) NIL T ELT)) (-1853 (((-1286 $) (-1286 $)) NIL T ELT)) (-4270 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-419 |#3|)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-1840 (((-659 (-659 |#1|))) NIL (|has| |#1| (-381)) ELT)) (-1865 (((-114) |#1| |#1|) NIL T ELT)) (-3509 (((-936)) NIL T ELT)) (-3393 (($) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1860 (((-114)) NIL T ELT)) (-1859 (((-114) |#1|) 61 T ELT) (((-114) |#2|) 164 T ELT)) (-2960 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3921 (($ $) NIL T ELT)) (-3232 (($) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1881 (((-114) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1972 (($ $ (-789)) NIL (|has| (-419 |#2|) (-363)) ELT) (($ $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4151 (((-114) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4200 (((-936) $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-843 (-936)) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-2639 (((-114) $) NIL T ELT)) (-3795 (((-789)) NIL T ELT)) (-1854 (((-1286 $) (-1286 $)) NIL T ELT)) (-3532 (((-419 |#2|) $) NIL T ELT)) (-1841 (((-659 (-963 |#1|)) (-1196)) NIL (|has| |#1| (-376)) ELT)) (-3863 (((-709 $) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2222 ((|#3| $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2218 (((-936) $) NIL (|has| (-419 |#2|) (-381)) ELT)) (-3478 ((|#3| $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| (-419 |#2|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| (-419 |#2|) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-419 |#2|))) (|:| |vec| (-1286 (-419 |#2|)))) (-1286 $) $) NIL T ELT) (((-707 (-419 |#2|)) (-1286 $)) NIL T ELT)) (-2100 (($ (-659 $)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1849 (((-707 (-419 |#2|))) 57 T ELT)) (-1851 (((-707 (-419 |#2|))) 56 T ELT)) (-2872 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1846 (($ (-1286 |#2|) |#2|) 80 T ELT)) (-1850 (((-707 (-419 |#2|))) 55 T ELT)) (-1852 (((-707 (-419 |#2|))) 54 T ELT)) (-1845 (((-2 (|:| |num| (-707 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1847 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1858 (((-1286 $)) 51 T ELT)) (-4346 (((-1286 $)) 50 T ELT)) (-1857 (((-114) $) NIL T ELT)) (-1856 (((-114) $) NIL T ELT) (((-114) $ |#1|) NIL T ELT) (((-114) $ |#2|) NIL T ELT)) (-3864 (($) NIL (|has| (-419 |#2|) (-363)) CONST)) (-2629 (($ (-936)) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1843 (((-3 |#2| #1#)) 70 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1867 (((-789)) NIL T ELT)) (-2638 (($) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3560 (($ (-659 $)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4160 (((-417 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-419 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3884 (((-3 $ #1#) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1785 (((-789) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4228 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1844 (((-3 |#2| #1#)) 68 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4185 (((-419 |#2|) (-1286 $)) NIL T ELT) (((-419 |#2|)) 47 T ELT)) (-1973 (((-789) $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-3 (-789) #1#) $ $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4186 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-789)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-3955 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196))))) ELT) (($ $ (-1196) (-789)) NIL (-3955 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196))))) ELT) (($ $ (-659 (-1196))) NIL (-3955 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196))))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196))))) ELT) (($ $ (-789)) NIL (-3955 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) NIL (-3955 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-2637 (((-707 (-419 |#2|)) (-1286 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3601 ((|#3|) 58 T ELT)) (-1875 (($) NIL (|has| (-419 |#2|) (-363)) ELT)) (-3640 (((-1286 (-419 |#2|)) $ (-1286 $)) NIL T ELT) (((-707 (-419 |#2|)) (-1286 $) (-1286 $)) NIL T ELT) (((-1286 (-419 |#2|)) $) 81 T ELT) (((-707 (-419 |#2|)) (-1286 $)) NIL T ELT)) (-4400 (((-1286 (-419 |#2|)) $) NIL T ELT) (($ (-1286 (-419 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1855 (((-1286 $) (-1286 $)) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ (-419 |#2|)) NIL T ELT) (($ (-419 (-557))) NIL (-3955 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-1057 (-419 (-557))))) ELT) (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3101 (($ $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-709 $) $) NIL (|has| (-419 |#2|) (-147)) ELT)) (-2836 ((|#3| $) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-1864 (((-114)) 65 T ELT)) (-1863 (((-114) |#1|) 167 T ELT) (((-114) |#2|) 168 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 $)) NIL T ELT)) (-2270 (((-114) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1842 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1866 (((-114)) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-789)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-3955 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196))))) ELT) (($ $ (-1196) (-789)) NIL (-3955 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196))))) ELT) (($ $ (-659 (-1196))) NIL (-3955 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196))))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1196))))) ELT) (($ $ (-789)) NIL (-3955 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) NIL (-3955 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL (|has| (-419 |#2|) (-376)) ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 |#2|)) NIL T ELT) (($ (-419 |#2|) $) NIL T ELT) (($ (-419 (-557)) $) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-419 (-557))) NIL (|has| (-419 |#2|) (-376)) ELT))) -(((-1022 |#1| |#2| |#3| |#4| |#5|) (-355 |#1| |#2| |#3|) (-1241) (-1262 |#1|) (-1262 (-419 |#2|)) (-419 |#2|) (-789)) (T -1022)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3416 (((-659 (-557)) $) 73 T ELT)) (-3412 (($ (-659 (-557))) 81 T ELT)) (-3529 (((-557) $) 48 (|has| (-557) (-319)) ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| (-557) (-927)) ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| (-557) (-927)) ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4051 (((-557) $) NIL (|has| (-557) (-840)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) 60 T ELT) (((-3 (-1196) #1#) $) NIL (|has| (-557) (-1057 (-1196))) ELT) (((-3 (-419 (-557)) #1#) $) 57 (|has| (-557) (-1057 (-557))) ELT) (((-3 (-557) #1#) $) 60 (|has| (-557) (-1057 (-557))) ELT)) (-3572 (((-557) $) NIL T ELT) (((-1196) $) NIL (|has| (-557) (-1057 (-1196))) ELT) (((-419 (-557)) $) NIL (|has| (-557) (-1057 (-557))) ELT) (((-557) $) NIL (|has| (-557) (-1057 (-557))) ELT)) (-2961 (($ $ $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| (-557) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| (-557) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL T ELT) (((-707 (-557)) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3393 (($) NIL (|has| (-557) (-556)) ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-3414 (((-659 (-557)) $) 79 T ELT)) (-3602 (((-114) $) NIL (|has| (-557) (-840)) ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (|has| (-557) (-899 (-557))) ELT) (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (|has| (-557) (-899 (-391))) ELT)) (-2639 (((-114) $) NIL T ELT)) (-3395 (($ $) NIL T ELT)) (-3397 (((-557) $) 45 T ELT)) (-3863 (((-709 $) $) NIL (|has| (-557) (-1171)) ELT)) (-3603 (((-114) $) NIL (|has| (-557) (-840)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2928 (($ $ $) NIL (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| (-557) (-859)) ELT)) (-4386 (($ (-1 (-557) (-557)) $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| (-557) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| (-557) (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL T ELT) (((-707 (-557)) (-1286 $)) NIL T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3864 (($) NIL (|has| (-557) (-1171)) CONST)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3528 (($ $) NIL (|has| (-557) (-319)) ELT) (((-419 (-557)) $) 50 T ELT)) (-3415 (((-1174 (-557)) $) 78 T ELT)) (-3411 (($ (-659 (-557)) (-659 (-557))) 82 T ELT)) (-3530 (((-557) $) 64 (|has| (-557) (-556)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (|has| (-557) (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (|has| (-557) (-927)) ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-4196 (($ $ (-659 (-557)) (-659 (-557))) NIL (|has| (-557) (-321 (-557))) ELT) (($ $ (-557) (-557)) NIL (|has| (-557) (-321 (-557))) ELT) (($ $ (-305 (-557))) NIL (|has| (-557) (-321 (-557))) ELT) (($ $ (-659 (-305 (-557)))) NIL (|has| (-557) (-321 (-557))) ELT) (($ $ (-659 (-1196)) (-659 (-557))) NIL (|has| (-557) (-526 (-1196) (-557))) ELT) (($ $ (-1196) (-557)) NIL (|has| (-557) (-526 (-1196) (-557))) ELT)) (-1785 (((-789) $) NIL T ELT)) (-4228 (($ $ (-557)) NIL (|has| (-557) (-298 (-557) (-557))) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-4186 (($ $ (-1 (-557) (-557))) NIL T ELT) (($ $ (-1 (-557) (-557)) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $) 15 (|has| (-557) (-239)) ELT) (($ $ (-789)) NIL (|has| (-557) (-239)) ELT)) (-3394 (($ $) NIL T ELT)) (-3396 (((-557) $) 47 T ELT)) (-3413 (((-659 (-557)) $) 80 T ELT)) (-4400 (((-903 (-557)) $) NIL (|has| (-557) (-629 (-903 (-557)))) ELT) (((-903 (-391)) $) NIL (|has| (-557) (-629 (-903 (-391)))) ELT) (((-546) $) NIL (|has| (-557) (-629 (-546))) ELT) (((-391) $) NIL (|has| (-557) (-1039)) ELT) (((-229) $) NIL (|has| (-557) (-1039)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| (-557) (-927))) ELT)) (-4374 (((-875) $) 108 T ELT) (($ (-557)) 51 T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) 27 T ELT) (($ (-557)) 51 T ELT) (($ (-1196)) NIL (|has| (-557) (-1057 (-1196))) ELT) (((-419 (-557)) $) 25 T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| (-557) (-927))) (|has| (-557) (-147))) ELT)) (-3526 (((-789)) 13 T CONST)) (-3531 (((-557) $) 62 (|has| (-557) (-556)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-3801 (($ $) NIL (|has| (-557) (-840)) ELT)) (-3057 (($) 14 T CONST)) (-3063 (($) 17 T CONST)) (-3068 (($ $ (-1 (-557) (-557))) NIL T ELT) (($ $ (-1 (-557) (-557)) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| (-557) (-917 (-1196))) ELT) (($ $) NIL (|has| (-557) (-239)) ELT) (($ $ (-789)) NIL (|has| (-557) (-239)) ELT)) (-2963 (((-114) $ $) NIL (|has| (-557) (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| (-557) (-859)) ELT)) (-3452 (((-114) $ $) 21 T ELT)) (-3083 (((-114) $ $) NIL (|has| (-557) (-859)) ELT)) (-3084 (((-114) $ $) 40 (|has| (-557) (-859)) ELT)) (-4377 (($ $ $) 36 T ELT) (($ (-557) (-557)) 38 T ELT)) (-4265 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-4267 (($ $ $) 28 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ (-557) $) 32 T ELT) (($ $ (-557)) NIL T ELT))) -(((-1023 |#1|) (-13 (-1010 (-557)) (-628 (-419 (-557))) (-10 -8 (-15 -3528 ((-419 (-557)) $)) (-15 -3416 ((-659 (-557)) $)) (-15 -3415 ((-1174 (-557)) $)) (-15 -3414 ((-659 (-557)) $)) (-15 -3413 ((-659 (-557)) $)) (-15 -3412 ($ (-659 (-557)))) (-15 -3411 ($ (-659 (-557)) (-659 (-557)))))) (-557)) (T -1023)) -((-3528 (*1 *2 *1) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-1023 *3)) (-14 *3 (-557)))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-1023 *3)) (-14 *3 (-557)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-1174 (-557))) (-5 *1 (-1023 *3)) (-14 *3 (-557)))) (-3414 (*1 *2 *1) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-1023 *3)) (-14 *3 (-557)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-1023 *3)) (-14 *3 (-557)))) (-3412 (*1 *1 *2) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-1023 *3)) (-14 *3 (-557)))) (-3411 (*1 *1 *2 *2) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-1023 *3)) (-14 *3 (-557))))) -((-3417 (((-51) (-419 (-557)) (-557)) 9 T ELT))) -(((-1024) (-10 -7 (-15 -3417 ((-51) (-419 (-557)) (-557))))) (T -1024)) -((-3417 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-557))) (-5 *4 (-557)) (-5 *2 (-51)) (-5 *1 (-1024))))) -((-3536 (((-557)) 21 T ELT)) (-3420 (((-557)) 26 T ELT)) (-3419 (((-1292) (-557)) 24 T ELT)) (-3418 (((-557) (-557)) 27 T ELT) (((-557)) 20 T ELT))) -(((-1025) (-10 -7 (-15 -3418 ((-557))) (-15 -3536 ((-557))) (-15 -3418 ((-557) (-557))) (-15 -3419 ((-1292) (-557))) (-15 -3420 ((-557))))) (T -1025)) -((-3420 (*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-1025)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-557)) (-5 *2 (-1292)) (-5 *1 (-1025)))) (-3418 (*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-1025)))) (-3536 (*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-1025)))) (-3418 (*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-1025))))) -((-4161 (((-417 |#1|) |#1|) 43 T ELT)) (-4160 (((-417 |#1|) |#1|) 41 T ELT))) -(((-1026 |#1|) (-10 -7 (-15 -4160 ((-417 |#1|) |#1|)) (-15 -4161 ((-417 |#1|) |#1|))) (-1262 (-419 (-557)))) (T -1026)) -((-4161 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1026 *3)) (-4 *3 (-1262 (-419 (-557)))))) (-4160 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1026 *3)) (-4 *3 (-1262 (-419 (-557))))))) -((-3423 (((-3 (-419 (-557)) "failed") |#1|) 15 T ELT)) (-3422 (((-114) |#1|) 14 T ELT)) (-3421 (((-419 (-557)) |#1|) 10 T ELT))) -(((-1027 |#1|) (-10 -7 (-15 -3421 ((-419 (-557)) |#1|)) (-15 -3422 ((-114) |#1|)) (-15 -3423 ((-3 (-419 (-557)) "failed") |#1|))) (-1057 (-419 (-557)))) (T -1027)) -((-3423 (*1 *2 *3) (|partial| -12 (-5 *2 (-419 (-557))) (-5 *1 (-1027 *3)) (-4 *3 (-1057 *2)))) (-3422 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-1027 *3)) (-4 *3 (-1057 (-419 (-557)))))) (-3421 (*1 *2 *3) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-1027 *3)) (-4 *3 (-1057 *2))))) -((-4216 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-4228 ((|#2| $ #1#) 10 T ELT)) (-3427 (((-114) $ $) 18 T ELT))) -(((-1028 |#1| |#2|) (-10 -7 (-15 -4216 (|#2| |#1| #1="value" |#2|)) (-15 -3427 ((-114) |#1| |#1|)) (-15 -4228 (|#2| |#1| #1#))) (-1029 |#2|) (-1236)) (T -1028)) -NIL -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3820 ((|#1| $) 52 T ELT)) (-3424 ((|#1| $ |#1|) 43 (|has| $ (-6 -4424)) ELT)) (-4216 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -4424)) ELT)) (-3425 (($ $ (-659 $)) 45 (|has| $ (-6 -4424)) ELT)) (-4152 (($) 7 T CONST)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-3430 (((-659 $) $) 54 T ELT)) (-3426 (((-114) $ $) 46 (|has| |#1| (-1120)) ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3429 (((-659 |#1|) $) 49 T ELT)) (-3945 (((-114) $) 53 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-4228 ((|#1| $ "value") 51 T ELT)) (-3428 (((-557) $ $) 48 T ELT)) (-4061 (((-114) $) 50 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-3940 (((-659 $) $) 55 T ELT)) (-3427 (((-114) $ $) 47 (|has| |#1| (-1120)) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-1029 |#1|) (-142) (-1236)) (T -1029)) -((-3940 (*1 *2 *1) (-12 (-4 *3 (-1236)) (-5 *2 (-659 *1)) (-4 *1 (-1029 *3)))) (-3430 (*1 *2 *1) (-12 (-4 *3 (-1236)) (-5 *2 (-659 *1)) (-4 *1 (-1029 *3)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-5 *2 (-114)))) (-3820 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-1236)))) (-4228 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1029 *2)) (-4 *2 (-1236)))) (-4061 (*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-5 *2 (-114)))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-5 *2 (-659 *3)))) (-3428 (*1 *2 *1 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-5 *2 (-557)))) (-3427 (*1 *2 *1 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-4 *3 (-1120)) (-5 *2 (-114)))) (-3426 (*1 *2 *1 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-4 *3 (-1120)) (-5 *2 (-114)))) (-3425 (*1 *1 *1 *2) (-12 (-5 *2 (-659 *1)) (|has| *1 (-6 -4424)) (-4 *1 (-1029 *3)) (-4 *3 (-1236)))) (-4216 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4424)) (-4 *1 (-1029 *2)) (-4 *2 (-1236)))) (-3424 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-1029 *2)) (-4 *2 (-1236))))) -(-13 (-501 |t#1|) (-10 -8 (-15 -3940 ((-659 $) $)) (-15 -3430 ((-659 $) $)) (-15 -3945 ((-114) $)) (-15 -3820 (|t#1| $)) (-15 -4228 (|t#1| $ "value")) (-15 -4061 ((-114) $)) (-15 -3429 ((-659 |t#1|) $)) (-15 -3428 ((-557) $ $)) (IF (|has| |t#1| (-1120)) (PROGN (-15 -3427 ((-114) $ $)) (-15 -3426 ((-114) $ $))) |%noBranch|) (IF (|has| $ (-6 -4424)) (PROGN (-15 -3425 ($ $ (-659 $))) (-15 -4216 (|t#1| $ "value" |t#1|)) (-15 -3424 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-628 (-875)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1236) . T)) -((-3436 (($ $) 9 T ELT) (($ $ (-936)) 49 T ELT) (($ (-419 (-557))) 13 T ELT) (($ (-557)) 15 T ELT)) (-3599 (((-3 $ #1="failed") (-1190 $) (-936) (-875)) 24 T ELT) (((-3 $ #1#) (-1190 $) (-936)) 32 T ELT)) (-3410 (($ $ (-557)) 58 T ELT)) (-3526 (((-789)) 18 T ELT)) (-3600 (((-659 $) (-1190 $)) NIL T ELT) (((-659 $) (-1190 (-419 (-557)))) 63 T ELT) (((-659 $) (-1190 (-557))) 68 T ELT) (((-659 $) (-963 $)) 72 T ELT) (((-659 $) (-963 (-419 (-557)))) 76 T ELT) (((-659 $) (-963 (-557))) 80 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT) (($ $ (-419 (-557))) 53 T ELT))) -(((-1030 |#1|) (-10 -7 (-15 -3436 (|#1| (-557))) (-15 -3436 (|#1| (-419 (-557)))) (-15 -3436 (|#1| |#1| (-936))) (-15 -3600 ((-659 |#1|) (-963 (-557)))) (-15 -3600 ((-659 |#1|) (-963 (-419 (-557))))) (-15 -3600 ((-659 |#1|) (-963 |#1|))) (-15 -3600 ((-659 |#1|) (-1190 (-557)))) (-15 -3600 ((-659 |#1|) (-1190 (-419 (-557))))) (-15 -3600 ((-659 |#1|) (-1190 |#1|))) (-15 -3599 ((-3 |#1| #1="failed") (-1190 |#1|) (-936))) (-15 -3599 ((-3 |#1| #1#) (-1190 |#1|) (-936) (-875))) (-15 ** (|#1| |#1| (-419 (-557)))) (-15 -3410 (|#1| |#1| (-557))) (-15 -3436 (|#1| |#1|)) (-15 ** (|#1| |#1| (-557))) (-15 -3526 ((-789))) (-15 ** (|#1| |#1| (-789))) (-15 ** (|#1| |#1| (-936)))) (-1031)) (T -1030)) -((-3526 (*1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-1030 *3)) (-4 *3 (-1031))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 108 T ELT)) (-2271 (($ $) 109 T ELT)) (-2269 (((-114) $) 111 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4203 (($ $) 128 T ELT)) (-4399 (((-417 $) $) 129 T ELT)) (-3436 (($ $) 92 T ELT) (($ $ (-936)) 78 T ELT) (($ (-419 (-557))) 77 T ELT) (($ (-557)) 76 T ELT)) (-1786 (((-114) $ $) 119 T ELT)) (-4051 (((-557) $) 145 T ELT)) (-4152 (($) 22 T CONST)) (-3599 (((-3 $ "failed") (-1190 $) (-936) (-875)) 86 T ELT) (((-3 $ "failed") (-1190 $) (-936)) 85 T ELT)) (-3573 (((-3 (-557) #1="failed") $) 105 (|has| (-419 (-557)) (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) 103 (|has| (-419 (-557)) (-1057 (-419 (-557)))) ELT) (((-3 (-419 (-557)) #1#) $) 100 T ELT)) (-3572 (((-557) $) 104 (|has| (-419 (-557)) (-1057 (-557))) ELT) (((-419 (-557)) $) 102 (|has| (-419 (-557)) (-1057 (-419 (-557)))) ELT) (((-419 (-557)) $) 101 T ELT)) (-3432 (($ $ (-875)) 75 T ELT)) (-3431 (($ $ (-875)) 74 T ELT)) (-2961 (($ $ $) 123 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2960 (($ $ $) 122 T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 117 T ELT)) (-4151 (((-114) $) 130 T ELT)) (-3602 (((-114) $) 143 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3410 (($ $ (-557)) 91 T ELT)) (-3603 (((-114) $) 144 T ELT)) (-1783 (((-3 (-659 $) #2="failed") (-659 $) $) 126 T ELT)) (-2928 (($ $ $) 137 T ELT)) (-3256 (($ $ $) 138 T ELT)) (-3433 (((-3 (-1190 $) "failed") $) 87 T ELT)) (-3435 (((-3 (-875) "failed") $) 89 T ELT)) (-3434 (((-3 (-1190 $) "failed") $) 88 T ELT)) (-2100 (($ (-659 $)) 115 T ELT) (($ $ $) 114 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2872 (($ $) 131 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 116 T ELT)) (-3560 (($ (-659 $)) 113 T ELT) (($ $ $) 112 T ELT)) (-4160 (((-417 $) $) 127 T ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 125 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 124 T ELT)) (-3884 (((-3 $ "failed") $ $) 107 T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 118 T ELT)) (-1785 (((-789) $) 120 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 121 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ (-419 (-557))) 135 T ELT) (($ $) 106 T ELT) (($ (-419 (-557))) 99 T ELT) (($ (-557)) 98 T ELT) (($ (-419 (-557))) 95 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 110 T ELT)) (-4198 (((-419 (-557)) $ $) 73 T ELT)) (-3600 (((-659 $) (-1190 $)) 84 T ELT) (((-659 $) (-1190 (-419 (-557)))) 83 T ELT) (((-659 $) (-1190 (-557))) 82 T ELT) (((-659 $) (-963 $)) 81 T ELT) (((-659 $) (-963 (-419 (-557)))) 80 T ELT) (((-659 $) (-963 (-557))) 79 T ELT)) (-3801 (($ $) 146 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-2963 (((-114) $ $) 139 T ELT)) (-2964 (((-114) $ $) 141 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 140 T ELT)) (-3084 (((-114) $ $) 142 T ELT)) (-4377 (($ $ $) 136 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ (-557)) 132 T ELT) (($ $ (-419 (-557))) 90 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-419 (-557)) $) 134 T ELT) (($ $ (-419 (-557))) 133 T ELT) (($ (-557) $) 97 T ELT) (($ $ (-557)) 96 T ELT) (($ (-419 (-557)) $) 94 T ELT) (($ $ (-419 (-557))) 93 T ELT))) -(((-1031) (-142)) (T -1031)) -((-3436 (*1 *1 *1) (-4 *1 (-1031))) (-3435 (*1 *2 *1) (|partial| -12 (-4 *1 (-1031)) (-5 *2 (-875)))) (-3434 (*1 *2 *1) (|partial| -12 (-5 *2 (-1190 *1)) (-4 *1 (-1031)))) (-3433 (*1 *2 *1) (|partial| -12 (-5 *2 (-1190 *1)) (-4 *1 (-1031)))) (-3599 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1190 *1)) (-5 *3 (-936)) (-5 *4 (-875)) (-4 *1 (-1031)))) (-3599 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1190 *1)) (-5 *3 (-936)) (-4 *1 (-1031)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-1190 *1)) (-4 *1 (-1031)) (-5 *2 (-659 *1)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-1190 (-419 (-557)))) (-5 *2 (-659 *1)) (-4 *1 (-1031)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-1190 (-557))) (-5 *2 (-659 *1)) (-4 *1 (-1031)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-963 *1)) (-4 *1 (-1031)) (-5 *2 (-659 *1)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-963 (-419 (-557)))) (-5 *2 (-659 *1)) (-4 *1 (-1031)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-963 (-557))) (-5 *2 (-659 *1)) (-4 *1 (-1031)))) (-3436 (*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-936)))) (-3436 (*1 *1 *2) (-12 (-5 *2 (-419 (-557))) (-4 *1 (-1031)))) (-3436 (*1 *1 *2) (-12 (-5 *2 (-557)) (-4 *1 (-1031)))) (-3432 (*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-875)))) (-3431 (*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-875)))) (-4198 (*1 *2 *1 *1) (-12 (-4 *1 (-1031)) (-5 *2 (-419 (-557)))))) -(-13 (-149) (-858) (-175) (-376) (-424 (-419 (-557))) (-38 (-557)) (-38 (-419 (-557))) (-1021) (-10 -8 (-15 -3435 ((-3 (-875) "failed") $)) (-15 -3434 ((-3 (-1190 $) "failed") $)) (-15 -3433 ((-3 (-1190 $) "failed") $)) (-15 -3599 ((-3 $ "failed") (-1190 $) (-936) (-875))) (-15 -3599 ((-3 $ "failed") (-1190 $) (-936))) (-15 -3600 ((-659 $) (-1190 $))) (-15 -3600 ((-659 $) (-1190 (-419 (-557))))) (-15 -3600 ((-659 $) (-1190 (-557)))) (-15 -3600 ((-659 $) (-963 $))) (-15 -3600 ((-659 $) (-963 (-419 (-557))))) (-15 -3600 ((-659 $) (-963 (-557)))) (-15 -3436 ($ $ (-936))) (-15 -3436 ($ $)) (-15 -3436 ($ (-419 (-557)))) (-15 -3436 ($ (-557))) (-15 -3432 ($ $ (-875))) (-15 -3431 ($ $ (-875))) (-15 -4198 ((-419 (-557)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-557))) . T) ((-38 (-557)) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) . T) ((-111 (-557) (-557)) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-631 (-419 (-557))) . T) ((-631 (-557)) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-424 (-419 (-557))) . T) ((-464) . T) ((-568) . T) ((-664 (-419 (-557))) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 (-419 (-557))) . T) ((-666 (-557)) . T) ((-666 $) . T) ((-658 (-419 (-557))) . T) ((-658 (-557)) . T) ((-658 $) . T) ((-735 (-419 (-557))) . T) ((-735 (-557)) . T) ((-735 $) . T) ((-744) . T) ((-810) . T) ((-812) . T) ((-814) . T) ((-817) . T) ((-858) . T) ((-859) . T) ((-862) . T) ((-938) . T) ((-1021) . T) ((-1057 (-419 (-557))) . T) ((-1057 (-557)) |has| (-419 (-557)) (-1057 (-557))) ((-1070 (-419 (-557))) . T) ((-1070 (-557)) . T) ((-1070 $) . T) ((-1075 (-419 (-557))) . T) ((-1075 (-557)) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T) ((-1241) . T)) -((-3437 (((-2 (|:| |ans| |#2|) (|:| -3537 |#2|) (|:| |sol?| (-114))) (-557) |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-659 |#2|)) (-1 (-3 (-2 (|:| -2349 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT))) -(((-1032 |#1| |#2|) (-10 -7 (-15 -3437 ((-2 (|:| |ans| |#2|) (|:| -3537 |#2|) (|:| |sol?| (-114))) (-557) |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-659 |#2|)) (-1 (-3 (-2 (|:| -2349 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-464) (-149) (-1057 (-557)) (-656 (-557))) (-13 (-1222) (-27) (-433 |#1|))) (T -1032)) -((-3437 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1196)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-659 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2349 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1222) (-27) (-433 *8))) (-4 *8 (-13 (-464) (-149) (-1057 *3) (-656 *3))) (-5 *3 (-557)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3537 *4) (|:| |sol?| (-114)))) (-5 *1 (-1032 *8 *4))))) -((-3438 (((-3 (-659 |#2|) #1="failed") (-557) |#2| |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-659 |#2|)) (-1 (-3 (-2 (|:| -2349 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT))) -(((-1033 |#1| |#2|) (-10 -7 (-15 -3438 ((-3 (-659 |#2|) #1="failed") (-557) |#2| |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-659 |#2|)) (-1 (-3 (-2 (|:| -2349 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-464) (-149) (-1057 (-557)) (-656 (-557))) (-13 (-1222) (-27) (-433 |#1|))) (T -1033)) -((-3438 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1196)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-659 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2349 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1222) (-27) (-433 *8))) (-4 *8 (-13 (-464) (-149) (-1057 *3) (-656 *3))) (-5 *3 (-557)) (-5 *2 (-659 *4)) (-5 *1 (-1033 *8 *4))))) -((-3441 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-114)))) (|:| -3682 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-557)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-557) (-1 |#2| |#2|)) 39 T ELT)) (-3439 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -3494 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3440 (((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-114))) (-419 |#2|) (-419 |#2|)) 76 T ELT))) -(((-1034 |#1| |#2|) (-10 -7 (-15 -3439 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -3494 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3440 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-114))) (-419 |#2|) (-419 |#2|))) (-15 -3441 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-114)))) (|:| -3682 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-557)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-557) (-1 |#2| |#2|)))) (-13 (-376) (-149) (-1057 (-557))) (-1262 |#1|)) (T -1034)) -((-3441 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1262 *6)) (-4 *6 (-13 (-376) (-149) (-1057 *4))) (-5 *4 (-557)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-114)))) (|:| -3682 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1034 *6 *3)))) (-3440 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1057 (-557)))) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-114)))) (-5 *1 (-1034 *4 *5)) (-5 *3 (-419 *5)))) (-3439 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-376) (-149) (-1057 (-557)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) (|:| -3494 *6))) (-5 *1 (-1034 *5 *6)) (-5 *3 (-419 *6))))) -((-3442 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -3494 |#2|)) #1="failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3443 (((-3 (-659 (-419 |#2|)) #1#) (-419 |#2|) (-419 |#2|) (-419 |#2|)) 34 T ELT))) -(((-1035 |#1| |#2|) (-10 -7 (-15 -3442 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -3494 |#2|)) #1="failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3443 ((-3 (-659 (-419 |#2|)) #1#) (-419 |#2|) (-419 |#2|) (-419 |#2|)))) (-13 (-376) (-149) (-1057 (-557))) (-1262 |#1|)) (T -1035)) -((-3443 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1057 (-557)))) (-4 *5 (-1262 *4)) (-5 *2 (-659 (-419 *5))) (-5 *1 (-1035 *4 *5)) (-5 *3 (-419 *5)))) (-3442 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-376) (-149) (-1057 (-557)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -3494 *6))) (-5 *1 (-1035 *5 *6)) (-5 *3 (-419 *6))))) -((-3444 (((-1 |#1|) (-659 (-2 (|:| -3820 |#1|) (|:| -1652 (-557))))) 34 T ELT)) (-3501 (((-1 |#1|) (-1116 |#1|)) 42 T ELT)) (-3445 (((-1 |#1|) (-1286 |#1|) (-1286 (-557)) (-557)) 31 T ELT))) -(((-1036 |#1|) (-10 -7 (-15 -3501 ((-1 |#1|) (-1116 |#1|))) (-15 -3444 ((-1 |#1|) (-659 (-2 (|:| -3820 |#1|) (|:| -1652 (-557)))))) (-15 -3445 ((-1 |#1|) (-1286 |#1|) (-1286 (-557)) (-557)))) (-1120)) (T -1036)) -((-3445 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1286 *6)) (-5 *4 (-1286 (-557))) (-5 *5 (-557)) (-4 *6 (-1120)) (-5 *2 (-1 *6)) (-5 *1 (-1036 *6)))) (-3444 (*1 *2 *3) (-12 (-5 *3 (-659 (-2 (|:| -3820 *4) (|:| -1652 (-557))))) (-4 *4 (-1120)) (-5 *2 (-1 *4)) (-5 *1 (-1036 *4)))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-1116 *4)) (-4 *4 (-1120)) (-5 *2 (-1 *4)) (-5 *1 (-1036 *4))))) -((-4200 (((-789) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) -(((-1037 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4200 ((-789) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-376) (-1262 |#1|) (-1262 (-419 |#2|)) (-355 |#1| |#2| |#3|) (-13 (-381) (-376))) (T -1037)) -((-4200 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-346 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-376)) (-4 *7 (-1262 *6)) (-4 *4 (-1262 (-419 *7))) (-4 *8 (-355 *6 *7 *4)) (-4 *9 (-13 (-381) (-376))) (-5 *2 (-789)) (-5 *1 (-1037 *6 *7 *4 *8 *9))))) -((-2965 (((-114) $ $) NIL T ELT)) (-4021 (((-1154) $) 9 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-3649 (((-1154) $) 11 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1038) (-13 (-1102) (-10 -8 (-15 -4021 ((-1154) $)) (-15 -3649 ((-1154) $))))) (T -1038)) -((-4021 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1038)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1038))))) -((-4400 (((-229) $) 6 T ELT) (((-391) $) 9 T ELT))) -(((-1039) (-142)) (T -1039)) -NIL -(-13 (-629 (-229)) (-629 (-391))) -(((-629 (-229)) . T) ((-629 (-391)) . T)) -((-3534 (((-3 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))) "failed") |#1| (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))) (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) 32 T ELT) (((-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))) |#1| (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))) (-419 (-557))) 29 T ELT)) (-3448 (((-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) |#1| (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))) (-419 (-557))) 34 T ELT) (((-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) |#1| (-419 (-557))) 30 T ELT) (((-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) |#1| (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) 33 T ELT) (((-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) |#1|) 28 T ELT)) (-3447 (((-659 (-419 (-557))) (-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))))) 20 T ELT)) (-3446 (((-419 (-557)) (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) 17 T ELT))) -(((-1040 |#1|) (-10 -7 (-15 -3448 ((-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) |#1|)) (-15 -3448 ((-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) |#1| (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))))) (-15 -3448 ((-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) |#1| (-419 (-557)))) (-15 -3448 ((-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) |#1| (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))) (-419 (-557)))) (-15 -3534 ((-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))) |#1| (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))) (-419 (-557)))) (-15 -3534 ((-3 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))) "failed") |#1| (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))) (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))))) (-15 -3446 ((-419 (-557)) (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))))) (-15 -3447 ((-659 (-419 (-557))) (-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))))))) (-1262 (-557))) (T -1040)) -((-3447 (*1 *2 *3) (-12 (-5 *3 (-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))))) (-5 *2 (-659 (-419 (-557)))) (-5 *1 (-1040 *4)) (-4 *4 (-1262 (-557))))) (-3446 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) (-5 *2 (-419 (-557))) (-5 *1 (-1040 *4)) (-4 *4 (-1262 (-557))))) (-3534 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) (-5 *1 (-1040 *3)) (-4 *3 (-1262 (-557))))) (-3534 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) (-5 *4 (-419 (-557))) (-5 *1 (-1040 *3)) (-4 *3 (-1262 (-557))))) (-3448 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-557))) (-5 *2 (-659 (-2 (|:| -3538 *5) (|:| -3537 *5)))) (-5 *1 (-1040 *3)) (-4 *3 (-1262 (-557))) (-5 *4 (-2 (|:| -3538 *5) (|:| -3537 *5))))) (-3448 (*1 *2 *3 *4) (-12 (-5 *2 (-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))))) (-5 *1 (-1040 *3)) (-4 *3 (-1262 (-557))) (-5 *4 (-419 (-557))))) (-3448 (*1 *2 *3 *4) (-12 (-5 *2 (-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))))) (-5 *1 (-1040 *3)) (-4 *3 (-1262 (-557))) (-5 *4 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))))) (-3448 (*1 *2 *3) (-12 (-5 *2 (-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))))) (-5 *1 (-1040 *3)) (-4 *3 (-1262 (-557)))))) -((-3534 (((-3 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))) "failed") |#1| (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))) (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) 35 T ELT) (((-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))) |#1| (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))) (-419 (-557))) 32 T ELT)) (-3448 (((-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) |#1| (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))) (-419 (-557))) 30 T ELT) (((-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) |#1| (-419 (-557))) 26 T ELT) (((-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) |#1| (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) 28 T ELT) (((-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) |#1|) 24 T ELT))) -(((-1041 |#1|) (-10 -7 (-15 -3448 ((-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) |#1|)) (-15 -3448 ((-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) |#1| (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))))) (-15 -3448 ((-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) |#1| (-419 (-557)))) (-15 -3448 ((-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) |#1| (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))) (-419 (-557)))) (-15 -3534 ((-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))) |#1| (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))) (-419 (-557)))) (-15 -3534 ((-3 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))) "failed") |#1| (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))) (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))))) (-1262 (-419 (-557)))) (T -1041)) -((-3534 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) (-5 *1 (-1041 *3)) (-4 *3 (-1262 (-419 (-557)))))) (-3534 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) (-5 *4 (-419 (-557))) (-5 *1 (-1041 *3)) (-4 *3 (-1262 *4)))) (-3448 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-557))) (-5 *2 (-659 (-2 (|:| -3538 *5) (|:| -3537 *5)))) (-5 *1 (-1041 *3)) (-4 *3 (-1262 *5)) (-5 *4 (-2 (|:| -3538 *5) (|:| -3537 *5))))) (-3448 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-557))) (-5 *2 (-659 (-2 (|:| -3538 *4) (|:| -3537 *4)))) (-5 *1 (-1041 *3)) (-4 *3 (-1262 *4)))) (-3448 (*1 *2 *3 *4) (-12 (-5 *2 (-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))))) (-5 *1 (-1041 *3)) (-4 *3 (-1262 (-419 (-557)))) (-5 *4 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))))) (-3448 (*1 *2 *3) (-12 (-5 *2 (-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))))) (-5 *1 (-1041 *3)) (-4 *3 (-1262 (-419 (-557))))))) -((-3999 (((-659 (-391)) (-963 (-557)) (-391)) 28 T ELT) (((-659 (-391)) (-963 (-419 (-557))) (-391)) 27 T ELT)) (-4397 (((-659 (-659 (-391))) (-659 (-963 (-557))) (-659 (-1196)) (-391)) 37 T ELT))) -(((-1042) (-10 -7 (-15 -3999 ((-659 (-391)) (-963 (-419 (-557))) (-391))) (-15 -3999 ((-659 (-391)) (-963 (-557)) (-391))) (-15 -4397 ((-659 (-659 (-391))) (-659 (-963 (-557))) (-659 (-1196)) (-391))))) (T -1042)) -((-4397 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-659 (-963 (-557)))) (-5 *4 (-659 (-1196))) (-5 *2 (-659 (-659 (-391)))) (-5 *1 (-1042)) (-5 *5 (-391)))) (-3999 (*1 *2 *3 *4) (-12 (-5 *3 (-963 (-557))) (-5 *2 (-659 (-391))) (-5 *1 (-1042)) (-5 *4 (-391)))) (-3999 (*1 *2 *3 *4) (-12 (-5 *3 (-963 (-419 (-557)))) (-5 *2 (-659 (-391))) (-5 *1 (-1042)) (-5 *4 (-391))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 75 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-3436 (($ $) NIL T ELT) (($ $ (-936)) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ (-557)) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4051 (((-557) $) 70 T ELT)) (-4152 (($) NIL T CONST)) (-3599 (((-3 $ #1#) (-1190 $) (-936) (-875)) NIL T ELT) (((-3 $ #1#) (-1190 $) (-936)) 55 T ELT)) (-3573 (((-3 (-419 (-557)) #1#) $) NIL (|has| (-419 (-557)) (-1057 (-419 (-557)))) ELT) (((-3 (-419 (-557)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 116 T ELT) (((-3 (-557) #1#) $) NIL (-3955 (|has| (-419 (-557)) (-1057 (-557))) (|has| |#1| (-1057 (-557)))) ELT)) (-3572 (((-419 (-557)) $) 17 (|has| (-419 (-557)) (-1057 (-419 (-557)))) ELT) (((-419 (-557)) $) 17 T ELT) ((|#1| $) 117 T ELT) (((-557) $) NIL (-3955 (|has| (-419 (-557)) (-1057 (-557))) (|has| |#1| (-1057 (-557)))) ELT)) (-3432 (($ $ (-875)) 47 T ELT)) (-3431 (($ $ (-875)) 48 T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3598 (((-419 (-557)) $ $) 21 T ELT)) (-3885 (((-3 $ #1#) $) 88 T ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-3602 (((-114) $) 66 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3410 (($ $ (-557)) NIL T ELT)) (-3603 (((-114) $) 69 T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-3433 (((-3 (-1190 $) #1#) $) 83 T ELT)) (-3435 (((-3 (-875) #1#) $) 82 T ELT)) (-3434 (((-3 (-1190 $) #1#) $) 80 T ELT)) (-3449 (((-3 (-1080 $ (-1190 $)) #1#) $) 78 T ELT)) (-2100 (($ (-659 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) 89 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ (-659 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-4374 (((-875) $) 87 T ELT) (($ (-557)) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ $) 63 T ELT) (($ (-419 (-557))) NIL T ELT) (($ (-557)) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ |#1|) 119 T ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-4198 (((-419 (-557)) $ $) 27 T ELT)) (-3600 (((-659 $) (-1190 $)) 61 T ELT) (((-659 $) (-1190 (-419 (-557)))) NIL T ELT) (((-659 $) (-1190 (-557))) NIL T ELT) (((-659 $) (-963 $)) NIL T ELT) (((-659 $) (-963 (-419 (-557)))) NIL T ELT) (((-659 $) (-963 (-557))) NIL T ELT)) (-3450 (($ (-1080 $ (-1190 $)) (-875)) 46 T ELT)) (-3801 (($ $) 22 T ELT)) (-3057 (($) 32 T CONST)) (-3063 (($) 39 T CONST)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 76 T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 24 T ELT)) (-4377 (($ $ $) 37 T ELT)) (-4265 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-4267 (($ $ $) 112 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 98 T ELT) (($ $ $) 104 T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ (-557) $) 98 T ELT) (($ $ (-557)) NIL T ELT) (($ (-419 (-557)) $) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT) (($ |#1| $) 102 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1043 |#1|) (-13 (-1031) (-424 |#1|) (-38 |#1|) (-10 -8 (-15 -3450 ($ (-1080 $ (-1190 $)) (-875))) (-15 -3449 ((-3 (-1080 $ (-1190 $)) "failed") $)) (-15 -3598 ((-419 (-557)) $ $)))) (-13 (-858) (-376) (-1039))) (T -1043)) -((-3450 (*1 *1 *2 *3) (-12 (-5 *2 (-1080 (-1043 *4) (-1190 (-1043 *4)))) (-5 *3 (-875)) (-5 *1 (-1043 *4)) (-4 *4 (-13 (-858) (-376) (-1039))))) (-3449 (*1 *2 *1) (|partial| -12 (-5 *2 (-1080 (-1043 *3) (-1190 (-1043 *3)))) (-5 *1 (-1043 *3)) (-4 *3 (-13 (-858) (-376) (-1039))))) (-3598 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-1043 *3)) (-4 *3 (-13 (-858) (-376) (-1039)))))) -((-3451 (((-2 (|:| -3682 |#2|) (|:| -2907 (-659 |#1|))) |#2| (-659 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) -(((-1044 |#1| |#2|) (-10 -7 (-15 -3451 (|#2| |#2| |#1|)) (-15 -3451 ((-2 (|:| -3682 |#2|) (|:| -2907 (-659 |#1|))) |#2| (-659 |#1|)))) (-376) (-676 |#1|)) (T -1044)) -((-3451 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| -3682 *3) (|:| -2907 (-659 *5)))) (-5 *1 (-1044 *5 *3)) (-5 *4 (-659 *5)) (-4 *3 (-676 *5)))) (-3451 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-1044 *3 *2)) (-4 *2 (-676 *3))))) -((-2965 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-3453 ((|#1| $ |#1|) 14 T ELT)) (-4216 ((|#1| $ |#1|) 12 T ELT)) (-3455 (($ |#1|) 10 T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-4228 ((|#1| $) 11 T ELT)) (-3454 ((|#1| $) 13 T ELT)) (-4374 (((-875) $) 19 (|has| |#1| (-1120)) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-3452 (((-114) $ $) 9 T ELT))) -(((-1045 |#1|) (-13 (-1236) (-10 -8 (-15 -3455 ($ |#1|)) (-15 -4228 (|#1| $)) (-15 -4216 (|#1| $ |#1|)) (-15 -3454 (|#1| $)) (-15 -3453 (|#1| $ |#1|)) (-15 -3452 ((-114) $ $)) (IF (|has| |#1| (-1120)) (-6 (-1120)) |%noBranch|))) (-1236)) (T -1045)) -((-3455 (*1 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1236)))) (-4228 (*1 *2 *1) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1236)))) (-4216 (*1 *2 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1236)))) (-3454 (*1 *2 *1) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1236)))) (-3453 (*1 *2 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1236)))) (-3452 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1045 *3)) (-4 *3 (-1236))))) -((-2965 (((-114) $ $) NIL T ELT)) (-4109 (((-659 (-2 (|:| -4289 $) (|:| -1903 (-659 |#4|)))) (-659 |#4|)) NIL T ELT)) (-4110 (((-659 $) (-659 |#4|)) 117 T ELT) (((-659 $) (-659 |#4|) (-114)) 118 T ELT) (((-659 $) (-659 |#4|) (-114) (-114)) 116 T ELT) (((-659 $) (-659 |#4|) (-114) (-114) (-114) (-114)) 119 T ELT)) (-3482 (((-659 |#3|) $) NIL T ELT)) (-3307 (((-114) $) NIL T ELT)) (-3298 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-4121 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4116 ((|#4| |#4| $) NIL T ELT)) (-4203 (((-659 (-2 (|:| |val| |#4|) (|:| -1741 $))) |#4| $) 111 T ELT)) (-3308 (((-2 (|:| |under| $) (|:| -3530 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4138 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT) (((-3 |#4| #1="failed") $ |#3|) 66 T ELT)) (-4152 (($) NIL T CONST)) (-3303 (((-114) $) 29 (|has| |#1| (-568)) ELT)) (-3305 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3304 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3306 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-4117 (((-659 |#4|) (-659 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3299 (((-659 |#4|) (-659 |#4|) $) NIL (|has| |#1| (-568)) ELT)) (-3300 (((-659 |#4|) (-659 |#4|) $) NIL (|has| |#1| (-568)) ELT)) (-3573 (((-3 $ #1#) (-659 |#4|)) NIL T ELT)) (-3572 (($ (-659 |#4|)) NIL T ELT)) (-4227 (((-3 $ #1#) $) 45 T ELT)) (-4113 ((|#4| |#4| $) 69 T ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT)) (-3824 (($ |#4| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3301 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 84 (|has| |#1| (-568)) ELT)) (-4122 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4111 ((|#4| |#4| $) NIL T ELT)) (-4270 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4423)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4423)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4124 (((-2 (|:| -4289 (-659 |#4|)) (|:| -1903 (-659 |#4|))) $) NIL T ELT)) (-3613 (((-114) |#4| $) NIL T ELT)) (-3611 (((-114) |#4| $) NIL T ELT)) (-3614 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3856 (((-2 (|:| |val| (-659 |#4|)) (|:| |towers| (-659 $))) (-659 |#4|) (-114) (-114)) 132 T ELT)) (-3288 (((-659 |#4|) $) 18 (|has| $ (-6 -4423)) ELT)) (-4123 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3596 ((|#3| $) 38 T ELT)) (-3005 (((-659 |#4|) $) 19 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#4| $) 27 (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT)) (-2158 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3313 (((-659 |#3|) $) NIL T ELT)) (-3312 (((-114) |#3| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3607 (((-3 |#4| (-659 $)) |#4| |#4| $) NIL T ELT)) (-3606 (((-659 (-2 (|:| |val| |#4|) (|:| -1741 $))) |#4| |#4| $) 109 T ELT)) (-4226 (((-3 |#4| #1#) $) 42 T ELT)) (-3608 (((-659 $) |#4| $) 92 T ELT)) (-3610 (((-3 (-114) (-659 $)) |#4| $) NIL T ELT)) (-3609 (((-659 (-2 (|:| |val| (-114)) (|:| -1741 $))) |#4| $) 102 T ELT) (((-114) |#4| $) 64 T ELT)) (-3654 (((-659 $) |#4| $) 114 T ELT) (((-659 $) (-659 |#4|) $) NIL T ELT) (((-659 $) (-659 |#4|) (-659 $)) 115 T ELT) (((-659 $) |#4| (-659 $)) NIL T ELT)) (-3857 (((-659 $) (-659 |#4|) (-114) (-114) (-114)) 127 T ELT)) (-3858 (($ |#4| $) 81 T ELT) (($ (-659 |#4|) $) 82 T ELT) (((-659 $) |#4| $ (-114) (-114) (-114) (-114) (-114)) 78 T ELT)) (-4125 (((-659 |#4|) $) NIL T ELT)) (-4119 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4114 ((|#4| |#4| $) NIL T ELT)) (-4127 (((-114) $ $) NIL T ELT)) (-3302 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)) ELT)) (-4120 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4115 ((|#4| |#4| $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4229 (((-3 |#4| #1#) $) 40 T ELT)) (-1466 (((-3 |#4| #1#) (-1 (-114) |#4|) $) NIL T ELT)) (-4107 (((-3 $ #1#) $ |#4|) 59 T ELT)) (-4197 (($ $ |#4|) NIL T ELT) (((-659 $) |#4| $) 94 T ELT) (((-659 $) |#4| (-659 $)) NIL T ELT) (((-659 $) (-659 |#4|) $) NIL T ELT) (((-659 $) (-659 |#4|) (-659 $)) 88 T ELT)) (-2156 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 |#4|) (-659 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-659 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) 17 T ELT)) (-3991 (($) 14 T ELT)) (-4376 (((-789) $) NIL T ELT)) (-2155 (((-789) |#4| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT) (((-789) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) 13 T ELT)) (-4400 (((-546) $) NIL (|has| |#4| (-629 (-546))) ELT)) (-3948 (($ (-659 |#4|)) 22 T ELT)) (-3309 (($ $ |#3|) 52 T ELT)) (-3311 (($ $ |#3|) 54 T ELT)) (-4112 (($ $) NIL T ELT)) (-3310 (($ $ |#3|) NIL T ELT)) (-4374 (((-875) $) 35 T ELT) (((-659 |#4|) $) 46 T ELT)) (-4106 (((-789) $) NIL (|has| |#3| (-381)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-4126 (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |#4|))) #1#) (-659 |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |#4|))) #1#) (-659 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4118 (((-114) $ (-1 (-114) |#4| (-659 |#4|))) NIL T ELT)) (-3605 (((-659 $) |#4| $) 91 T ELT) (((-659 $) |#4| (-659 $)) NIL T ELT) (((-659 $) (-659 |#4|) $) NIL T ELT) (((-659 $) (-659 |#4|) (-659 $)) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4108 (((-659 |#3|) $) NIL T ELT)) (-3612 (((-114) |#4| $) NIL T ELT)) (-4361 (((-114) |#3| $) 65 T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-1046 |#1| |#2| |#3| |#4|) (-13 (-1090 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3858 ((-659 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -4110 ((-659 $) (-659 |#4|) (-114) (-114))) (-15 -4110 ((-659 $) (-659 |#4|) (-114) (-114) (-114) (-114))) (-15 -3857 ((-659 $) (-659 |#4|) (-114) (-114) (-114))) (-15 -3856 ((-2 (|:| |val| (-659 |#4|)) (|:| |towers| (-659 $))) (-659 |#4|) (-114) (-114))))) (-464) (-813) (-859) (-1084 |#1| |#2| |#3|)) (T -1046)) -((-3858 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-659 (-1046 *5 *6 *7 *3))) (-5 *1 (-1046 *5 *6 *7 *3)) (-4 *3 (-1084 *5 *6 *7)))) (-4110 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-659 *8)) (-5 *4 (-114)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-659 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) (-4110 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-659 *8)) (-5 *4 (-114)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-659 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) (-3857 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-659 *8)) (-5 *4 (-114)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-659 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) (-3856 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-659 *8)) (|:| |towers| (-659 (-1046 *5 *6 *7 *8))))) (-5 *1 (-1046 *5 *6 *7 *8)) (-5 *3 (-659 *8))))) -((-3456 (((-659 (-2 (|:| |radval| (-326 (-557))) (|:| |radmult| (-557)) (|:| |radvect| (-659 (-707 (-326 (-557))))))) (-707 (-419 (-963 (-557))))) 67 T ELT)) (-3457 (((-659 (-707 (-326 (-557)))) (-326 (-557)) (-707 (-419 (-963 (-557))))) 52 T ELT)) (-3458 (((-659 (-326 (-557))) (-707 (-419 (-963 (-557))))) 45 T ELT)) (-3462 (((-659 (-707 (-326 (-557)))) (-707 (-419 (-963 (-557))))) 85 T ELT)) (-3460 (((-707 (-326 (-557))) (-707 (-326 (-557)))) 38 T ELT)) (-3461 (((-659 (-707 (-326 (-557)))) (-659 (-707 (-326 (-557))))) 74 T ELT)) (-3459 (((-3 (-707 (-326 (-557))) "failed") (-707 (-419 (-963 (-557))))) 82 T ELT))) -(((-1047) (-10 -7 (-15 -3456 ((-659 (-2 (|:| |radval| (-326 (-557))) (|:| |radmult| (-557)) (|:| |radvect| (-659 (-707 (-326 (-557))))))) (-707 (-419 (-963 (-557)))))) (-15 -3457 ((-659 (-707 (-326 (-557)))) (-326 (-557)) (-707 (-419 (-963 (-557)))))) (-15 -3458 ((-659 (-326 (-557))) (-707 (-419 (-963 (-557)))))) (-15 -3459 ((-3 (-707 (-326 (-557))) "failed") (-707 (-419 (-963 (-557)))))) (-15 -3460 ((-707 (-326 (-557))) (-707 (-326 (-557))))) (-15 -3461 ((-659 (-707 (-326 (-557)))) (-659 (-707 (-326 (-557)))))) (-15 -3462 ((-659 (-707 (-326 (-557)))) (-707 (-419 (-963 (-557)))))))) (T -1047)) -((-3462 (*1 *2 *3) (-12 (-5 *3 (-707 (-419 (-963 (-557))))) (-5 *2 (-659 (-707 (-326 (-557))))) (-5 *1 (-1047)))) (-3461 (*1 *2 *2) (-12 (-5 *2 (-659 (-707 (-326 (-557))))) (-5 *1 (-1047)))) (-3460 (*1 *2 *2) (-12 (-5 *2 (-707 (-326 (-557)))) (-5 *1 (-1047)))) (-3459 (*1 *2 *3) (|partial| -12 (-5 *3 (-707 (-419 (-963 (-557))))) (-5 *2 (-707 (-326 (-557)))) (-5 *1 (-1047)))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-707 (-419 (-963 (-557))))) (-5 *2 (-659 (-326 (-557)))) (-5 *1 (-1047)))) (-3457 (*1 *2 *3 *4) (-12 (-5 *4 (-707 (-419 (-963 (-557))))) (-5 *2 (-659 (-707 (-326 (-557))))) (-5 *1 (-1047)) (-5 *3 (-326 (-557))))) (-3456 (*1 *2 *3) (-12 (-5 *3 (-707 (-419 (-963 (-557))))) (-5 *2 (-659 (-2 (|:| |radval| (-326 (-557))) (|:| |radmult| (-557)) (|:| |radvect| (-659 (-707 (-326 (-557)))))))) (-5 *1 (-1047))))) -((-3466 (((-659 (-707 |#1|)) (-659 (-707 |#1|))) 70 T ELT) (((-707 |#1|) (-707 |#1|)) 69 T ELT) (((-659 (-707 |#1|)) (-659 (-707 |#1|)) (-659 (-707 |#1|))) 68 T ELT) (((-707 |#1|) (-707 |#1|) (-707 |#1|)) 65 T ELT)) (-3465 (((-659 (-707 |#1|)) (-659 (-707 |#1|)) (-936)) 63 T ELT) (((-707 |#1|) (-707 |#1|) (-936)) 62 T ELT)) (-3467 (((-659 (-707 (-557))) (-659 (-659 (-557)))) 81 T ELT) (((-659 (-707 (-557))) (-659 (-919 (-557))) (-557)) 80 T ELT) (((-707 (-557)) (-659 (-557))) 77 T ELT) (((-707 (-557)) (-919 (-557)) (-557)) 75 T ELT)) (-3464 (((-707 (-963 |#1|)) (-789)) 95 T ELT)) (-3463 (((-659 (-707 |#1|)) (-659 (-707 |#1|)) (-936)) 49 (|has| |#1| (-6 (-4425 #1="*"))) ELT) (((-707 |#1|) (-707 |#1|) (-936)) 47 (|has| |#1| (-6 (-4425 #1#))) ELT))) -(((-1048 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4425 #1="*"))) (-15 -3463 ((-707 |#1|) (-707 |#1|) (-936))) |%noBranch|) (IF (|has| |#1| (-6 (-4425 #1#))) (-15 -3463 ((-659 (-707 |#1|)) (-659 (-707 |#1|)) (-936))) |%noBranch|) (-15 -3464 ((-707 (-963 |#1|)) (-789))) (-15 -3465 ((-707 |#1|) (-707 |#1|) (-936))) (-15 -3465 ((-659 (-707 |#1|)) (-659 (-707 |#1|)) (-936))) (-15 -3466 ((-707 |#1|) (-707 |#1|) (-707 |#1|))) (-15 -3466 ((-659 (-707 |#1|)) (-659 (-707 |#1|)) (-659 (-707 |#1|)))) (-15 -3466 ((-707 |#1|) (-707 |#1|))) (-15 -3466 ((-659 (-707 |#1|)) (-659 (-707 |#1|)))) (-15 -3467 ((-707 (-557)) (-919 (-557)) (-557))) (-15 -3467 ((-707 (-557)) (-659 (-557)))) (-15 -3467 ((-659 (-707 (-557))) (-659 (-919 (-557))) (-557))) (-15 -3467 ((-659 (-707 (-557))) (-659 (-659 (-557)))))) (-1068)) (T -1048)) -((-3467 (*1 *2 *3) (-12 (-5 *3 (-659 (-659 (-557)))) (-5 *2 (-659 (-707 (-557)))) (-5 *1 (-1048 *4)) (-4 *4 (-1068)))) (-3467 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-919 (-557)))) (-5 *4 (-557)) (-5 *2 (-659 (-707 *4))) (-5 *1 (-1048 *5)) (-4 *5 (-1068)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-707 (-557))) (-5 *1 (-1048 *4)) (-4 *4 (-1068)))) (-3467 (*1 *2 *3 *4) (-12 (-5 *3 (-919 (-557))) (-5 *4 (-557)) (-5 *2 (-707 *4)) (-5 *1 (-1048 *5)) (-4 *5 (-1068)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-659 (-707 *3))) (-4 *3 (-1068)) (-5 *1 (-1048 *3)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-707 *3)) (-4 *3 (-1068)) (-5 *1 (-1048 *3)))) (-3466 (*1 *2 *2 *2) (-12 (-5 *2 (-659 (-707 *3))) (-4 *3 (-1068)) (-5 *1 (-1048 *3)))) (-3466 (*1 *2 *2 *2) (-12 (-5 *2 (-707 *3)) (-4 *3 (-1068)) (-5 *1 (-1048 *3)))) (-3465 (*1 *2 *2 *3) (-12 (-5 *2 (-659 (-707 *4))) (-5 *3 (-936)) (-4 *4 (-1068)) (-5 *1 (-1048 *4)))) (-3465 (*1 *2 *2 *3) (-12 (-5 *2 (-707 *4)) (-5 *3 (-936)) (-4 *4 (-1068)) (-5 *1 (-1048 *4)))) (-3464 (*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-707 (-963 *4))) (-5 *1 (-1048 *4)) (-4 *4 (-1068)))) (-3463 (*1 *2 *2 *3) (-12 (-5 *2 (-659 (-707 *4))) (-5 *3 (-936)) (|has| *4 (-6 (-4425 "*"))) (-4 *4 (-1068)) (-5 *1 (-1048 *4)))) (-3463 (*1 *2 *2 *3) (-12 (-5 *2 (-707 *4)) (-5 *3 (-936)) (|has| *4 (-6 (-4425 "*"))) (-4 *4 (-1068)) (-5 *1 (-1048 *4))))) -((-3471 (((-707 |#1|) (-659 (-707 |#1|)) (-1286 |#1|)) 69 (|has| |#1| (-319)) ELT)) (-3836 (((-659 (-659 (-707 |#1|))) (-659 (-707 |#1|)) (-1286 (-1286 |#1|))) 109 (|has| |#1| (-376)) ELT) (((-659 (-659 (-707 |#1|))) (-659 (-707 |#1|)) (-1286 |#1|)) 116 (|has| |#1| (-376)) ELT)) (-3475 (((-1286 |#1|) (-659 (-1286 |#1|)) (-557)) 135 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT)) (-3474 (((-659 (-659 (-707 |#1|))) (-659 (-707 |#1|)) (-936)) 123 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-659 (-659 (-707 |#1|))) (-659 (-707 |#1|)) (-114)) 122 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-659 (-659 (-707 |#1|))) (-659 (-707 |#1|))) 121 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-659 (-659 (-707 |#1|))) (-659 (-707 |#1|)) (-114) (-557) (-557)) 120 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT)) (-3473 (((-114) (-659 (-707 |#1|))) 102 (|has| |#1| (-376)) ELT) (((-114) (-659 (-707 |#1|)) (-557)) 105 (|has| |#1| (-376)) ELT)) (-3470 (((-1286 (-1286 |#1|)) (-659 (-707 |#1|)) (-1286 |#1|)) 66 (|has| |#1| (-319)) ELT)) (-3469 (((-707 |#1|) (-659 (-707 |#1|)) (-707 |#1|)) 46 T ELT)) (-3468 (((-707 |#1|) (-1286 (-1286 |#1|))) 39 T ELT)) (-3472 (((-707 |#1|) (-659 (-707 |#1|)) (-659 (-707 |#1|)) (-557)) 93 (|has| |#1| (-376)) ELT) (((-707 |#1|) (-659 (-707 |#1|)) (-659 (-707 |#1|))) 92 (|has| |#1| (-376)) ELT) (((-707 |#1|) (-659 (-707 |#1|)) (-659 (-707 |#1|)) (-114) (-557)) 100 (|has| |#1| (-376)) ELT))) -(((-1049 |#1|) (-10 -7 (-15 -3468 ((-707 |#1|) (-1286 (-1286 |#1|)))) (-15 -3469 ((-707 |#1|) (-659 (-707 |#1|)) (-707 |#1|))) (IF (|has| |#1| (-319)) (PROGN (-15 -3470 ((-1286 (-1286 |#1|)) (-659 (-707 |#1|)) (-1286 |#1|))) (-15 -3471 ((-707 |#1|) (-659 (-707 |#1|)) (-1286 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3472 ((-707 |#1|) (-659 (-707 |#1|)) (-659 (-707 |#1|)) (-114) (-557))) (-15 -3472 ((-707 |#1|) (-659 (-707 |#1|)) (-659 (-707 |#1|)))) (-15 -3472 ((-707 |#1|) (-659 (-707 |#1|)) (-659 (-707 |#1|)) (-557))) (-15 -3473 ((-114) (-659 (-707 |#1|)) (-557))) (-15 -3473 ((-114) (-659 (-707 |#1|)))) (-15 -3836 ((-659 (-659 (-707 |#1|))) (-659 (-707 |#1|)) (-1286 |#1|))) (-15 -3836 ((-659 (-659 (-707 |#1|))) (-659 (-707 |#1|)) (-1286 (-1286 |#1|))))) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#1| (-376)) (PROGN (-15 -3474 ((-659 (-659 (-707 |#1|))) (-659 (-707 |#1|)) (-114) (-557) (-557))) (-15 -3474 ((-659 (-659 (-707 |#1|))) (-659 (-707 |#1|)))) (-15 -3474 ((-659 (-659 (-707 |#1|))) (-659 (-707 |#1|)) (-114))) (-15 -3474 ((-659 (-659 (-707 |#1|))) (-659 (-707 |#1|)) (-936))) (-15 -3475 ((-1286 |#1|) (-659 (-1286 |#1|)) (-557)))) |%noBranch|) |%noBranch|)) (-1068)) (T -1049)) -((-3475 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-1286 *5))) (-5 *4 (-557)) (-5 *2 (-1286 *5)) (-5 *1 (-1049 *5)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1068)))) (-3474 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1068)) (-5 *2 (-659 (-659 (-707 *5)))) (-5 *1 (-1049 *5)) (-5 *3 (-659 (-707 *5))))) (-3474 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1068)) (-5 *2 (-659 (-659 (-707 *5)))) (-5 *1 (-1049 *5)) (-5 *3 (-659 (-707 *5))))) (-3474 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *4 (-381)) (-4 *4 (-1068)) (-5 *2 (-659 (-659 (-707 *4)))) (-5 *1 (-1049 *4)) (-5 *3 (-659 (-707 *4))))) (-3474 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-557)) (-4 *6 (-376)) (-4 *6 (-381)) (-4 *6 (-1068)) (-5 *2 (-659 (-659 (-707 *6)))) (-5 *1 (-1049 *6)) (-5 *3 (-659 (-707 *6))))) (-3836 (*1 *2 *3 *4) (-12 (-5 *4 (-1286 (-1286 *5))) (-4 *5 (-376)) (-4 *5 (-1068)) (-5 *2 (-659 (-659 (-707 *5)))) (-5 *1 (-1049 *5)) (-5 *3 (-659 (-707 *5))))) (-3836 (*1 *2 *3 *4) (-12 (-5 *4 (-1286 *5)) (-4 *5 (-376)) (-4 *5 (-1068)) (-5 *2 (-659 (-659 (-707 *5)))) (-5 *1 (-1049 *5)) (-5 *3 (-659 (-707 *5))))) (-3473 (*1 *2 *3) (-12 (-5 *3 (-659 (-707 *4))) (-4 *4 (-376)) (-4 *4 (-1068)) (-5 *2 (-114)) (-5 *1 (-1049 *4)))) (-3473 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-707 *5))) (-5 *4 (-557)) (-4 *5 (-376)) (-4 *5 (-1068)) (-5 *2 (-114)) (-5 *1 (-1049 *5)))) (-3472 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-659 (-707 *5))) (-5 *4 (-557)) (-5 *2 (-707 *5)) (-5 *1 (-1049 *5)) (-4 *5 (-376)) (-4 *5 (-1068)))) (-3472 (*1 *2 *3 *3) (-12 (-5 *3 (-659 (-707 *4))) (-5 *2 (-707 *4)) (-5 *1 (-1049 *4)) (-4 *4 (-376)) (-4 *4 (-1068)))) (-3472 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-659 (-707 *6))) (-5 *4 (-114)) (-5 *5 (-557)) (-5 *2 (-707 *6)) (-5 *1 (-1049 *6)) (-4 *6 (-376)) (-4 *6 (-1068)))) (-3471 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-707 *5))) (-5 *4 (-1286 *5)) (-4 *5 (-319)) (-4 *5 (-1068)) (-5 *2 (-707 *5)) (-5 *1 (-1049 *5)))) (-3470 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-707 *5))) (-4 *5 (-319)) (-4 *5 (-1068)) (-5 *2 (-1286 (-1286 *5))) (-5 *1 (-1049 *5)) (-5 *4 (-1286 *5)))) (-3469 (*1 *2 *3 *2) (-12 (-5 *3 (-659 (-707 *4))) (-5 *2 (-707 *4)) (-4 *4 (-1068)) (-5 *1 (-1049 *4)))) (-3468 (*1 *2 *3) (-12 (-5 *3 (-1286 (-1286 *4))) (-4 *4 (-1068)) (-5 *2 (-707 *4)) (-5 *1 (-1049 *4))))) -((-3476 ((|#1| (-936) |#1|) 18 T ELT))) -(((-1050 |#1|) (-10 -7 (-15 -3476 (|#1| (-936) |#1|))) (-13 (-1120) (-10 -8 (-15 -4267 ($ $ $))))) (T -1050)) -((-3476 (*1 *2 *3 *2) (-12 (-5 *3 (-936)) (-5 *1 (-1050 *2)) (-4 *2 (-13 (-1120) (-10 -8 (-15 -4267 ($ $ $)))))))) -((-3477 ((|#1| |#1| (-936)) 18 T ELT))) -(((-1051 |#1|) (-10 -7 (-15 -3477 (|#1| |#1| (-936)))) (-13 (-1120) (-10 -8 (-15 * ($ $ $))))) (T -1051)) -((-3477 (*1 *2 *2 *3) (-12 (-5 *3 (-936)) (-5 *1 (-1051 *2)) (-4 *2 (-13 (-1120) (-10 -8 (-15 * ($ $ $)))))))) -((-4374 ((|#1| (-323)) 11 T ELT) (((-1292) |#1|) 9 T ELT))) -(((-1052 |#1|) (-10 -7 (-15 -4374 ((-1292) |#1|)) (-15 -4374 (|#1| (-323)))) (-1236)) (T -1052)) -((-4374 (*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1052 *2)) (-4 *2 (-1236)))) (-4374 (*1 *2 *3) (-12 (-5 *2 (-1292)) (-5 *1 (-1052 *3)) (-4 *3 (-1236))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-4270 (($ |#4|) 25 T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3478 ((|#4| $) 27 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 46 T ELT) (($ (-557)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 26 T ELT)) (-3526 (((-789)) 43 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 21 T CONST)) (-3063 (($) 23 T CONST)) (-3452 (((-114) $ $) 40 T ELT)) (-4265 (($ $) 31 T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 29 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 36 T ELT) (($ $ $) 33 T ELT) (($ |#1| $) 38 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1053 |#1| |#2| |#3| |#4| |#5|) (-13 (-175) (-38 |#1|) (-10 -8 (-15 -4270 ($ |#4|)) (-15 -4374 ($ |#4|)) (-15 -3478 (|#4| $)))) (-376) (-813) (-859) (-967 |#1| |#2| |#3|) (-659 |#4|)) (T -1053)) -((-4270 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-1053 *3 *4 *5 *2 *6)) (-4 *2 (-967 *3 *4 *5)) (-14 *6 (-659 *2)))) (-4374 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-1053 *3 *4 *5 *2 *6)) (-4 *2 (-967 *3 *4 *5)) (-14 *6 (-659 *2)))) (-3478 (*1 *2 *1) (-12 (-4 *2 (-967 *3 *4 *5)) (-5 *1 (-1053 *3 *4 *5 *2 *6)) (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-14 *6 (-659 *2))))) -((-2965 (((-114) $ $) NIL (-3955 (|has| (-51) (-102)) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-102))) ELT)) (-4025 (($) NIL T ELT) (($ (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))))) NIL T ELT)) (-2411 (((-1292) $ (-1196) (-1196)) NIL (|has| $ (-6 -4424)) ELT)) (-3480 (((-114) (-114)) 43 T ELT)) (-3479 (((-114) (-114)) 42 T ELT)) (-4216 (((-51) $ (-1196) (-51)) NIL T ELT)) (-1711 (($ (-1 (-114) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT)) (-2444 (((-3 (-51) #1="failed") (-1196) $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT)) (-3823 (($ (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) $) NIL (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT) (((-3 (-51) #1#) (-1196) $) NIL T ELT)) (-3824 (($ (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT) (($ (-1 (-114) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 (((-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $ (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT) (((-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $ (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) NIL (|has| $ (-6 -4423)) ELT) (((-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT)) (-1717 (((-51) $ (-1196) (-51)) NIL (|has| $ (-6 -4424)) ELT)) (-3513 (((-51) $ (-1196)) NIL T ELT)) (-3288 (((-659 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 (-51)) $) NIL (|has| $ (-6 -4423)) ELT)) (-2413 (((-1196) $) NIL (|has| (-1196) (-859)) ELT)) (-3005 (((-659 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 (-51)) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT) (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-51) (-1120))) ELT)) (-2414 (((-1196) $) NIL (|has| (-1196) (-859)) ELT)) (-2158 (($ (-1 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL (-3955 (|has| (-51) (-1120)) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT)) (-2882 (((-659 (-1196)) $) 37 T ELT)) (-2445 (((-114) (-1196) $) NIL T ELT)) (-1387 (((-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) $) NIL T ELT)) (-4035 (($ (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) $) NIL T ELT)) (-2416 (((-659 (-1196)) $) NIL T ELT)) (-2417 (((-114) (-1196) $) NIL T ELT)) (-3659 (((-1139) $) NIL (-3955 (|has| (-51) (-1120)) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT)) (-4229 (((-51) $) NIL (|has| (-1196) (-859)) ELT)) (-1466 (((-3 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) #1#) (-1 (-114) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL T ELT)) (-2412 (($ $ (-51)) NIL (|has| $ (-6 -4424)) ELT)) (-1388 (((-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) $) NIL T ELT)) (-2156 (((-114) (-1 (-114) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))))) NIL (-12 (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-321 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))))) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT) (($ $ (-305 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))))) NIL (-12 (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-321 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))))) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT) (($ $ (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) NIL (-12 (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-321 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))))) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT) (($ $ (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))))) NIL (-12 (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-321 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))))) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT) (($ $ (-659 (-51)) (-659 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1120))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1120))) ELT) (($ $ (-305 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1120))) ELT) (($ $ (-659 (-305 (-51)))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-51) (-1120))) ELT)) (-2418 (((-659 (-51)) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 (((-51) $ (-1196)) 39 T ELT) (((-51) $ (-1196) (-51)) NIL T ELT)) (-1596 (($) NIL T ELT) (($ (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))))) NIL T ELT)) (-2155 (((-789) (-1 (-114) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT) (((-789) (-51) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-51) (-1120))) ELT) (((-789) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) NIL (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-629 (-546))) ELT)) (-3948 (($ (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))))) NIL T ELT)) (-4374 (((-875) $) 41 (-3955 (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-628 (-875))) (|has| (-51) (-628 (-875)))) ELT)) (-1376 (((-114) $ $) NIL (-3955 (|has| (-51) (-102)) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-102))) ELT)) (-1389 (($ (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))))) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) NIL (-3955 (|has| (-51) (-102)) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-102))) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-1054) (-13 (-1213 (-1196) (-51)) (-10 -7 (-15 -3480 ((-114) (-114))) (-15 -3479 ((-114) (-114))) (-6 -4423)))) (T -1054)) -((-3480 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1054)))) (-3479 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1054))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3622 (((-1154) $) 9 T ELT)) (-4374 (((-875) $) 15 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1055) (-13 (-1102) (-10 -8 (-15 -3622 ((-1154) $))))) (T -1055)) -((-3622 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1055))))) -((-3572 ((|#2| $) 10 T ELT))) -(((-1056 |#1| |#2|) (-10 -7 (-15 -3572 (|#2| |#1|))) (-1057 |#2|) (-1236)) (T -1056)) -NIL -((-3573 (((-3 |#1| "failed") $) 9 T ELT)) (-3572 ((|#1| $) 8 T ELT)) (-4374 (($ |#1|) 6 T ELT))) -(((-1057 |#1|) (-142) (-1236)) (T -1057)) -((-3573 (*1 *2 *1) (|partial| -12 (-4 *1 (-1057 *2)) (-4 *2 (-1236)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1236))))) -(-13 (-631 |t#1|) (-10 -8 (-15 -3573 ((-3 |t#1| "failed") $)) (-15 -3572 (|t#1| $)))) -(((-631 |#1|) . T)) -((-3481 (((-659 (-659 (-305 (-419 (-963 |#2|))))) (-659 (-963 |#2|)) (-659 (-1196))) 38 T ELT))) -(((-1058 |#1| |#2|) (-10 -7 (-15 -3481 ((-659 (-659 (-305 (-419 (-963 |#2|))))) (-659 (-963 |#2|)) (-659 (-1196))))) (-568) (-13 (-568) (-1057 |#1|))) (T -1058)) -((-3481 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-963 *6))) (-5 *4 (-659 (-1196))) (-4 *6 (-13 (-568) (-1057 *5))) (-4 *5 (-568)) (-5 *2 (-659 (-659 (-305 (-419 (-963 *6)))))) (-5 *1 (-1058 *5 *6))))) -((-3482 (((-659 (-1196)) (-419 (-963 |#1|))) 17 T ELT)) (-3484 (((-419 (-1190 (-419 (-963 |#1|)))) (-419 (-963 |#1|)) (-1196)) 24 T ELT)) (-3485 (((-419 (-963 |#1|)) (-419 (-1190 (-419 (-963 |#1|)))) (-1196)) 26 T ELT)) (-3483 (((-3 (-1196) "failed") (-419 (-963 |#1|))) 20 T ELT)) (-4196 (((-419 (-963 |#1|)) (-419 (-963 |#1|)) (-659 (-305 (-419 (-963 |#1|))))) 32 T ELT) (((-419 (-963 |#1|)) (-419 (-963 |#1|)) (-305 (-419 (-963 |#1|)))) 33 T ELT) (((-419 (-963 |#1|)) (-419 (-963 |#1|)) (-659 (-1196)) (-659 (-419 (-963 |#1|)))) 28 T ELT) (((-419 (-963 |#1|)) (-419 (-963 |#1|)) (-1196) (-419 (-963 |#1|))) 29 T ELT)) (-4374 (((-419 (-963 |#1|)) |#1|) 11 T ELT))) -(((-1059 |#1|) (-10 -7 (-15 -3482 ((-659 (-1196)) (-419 (-963 |#1|)))) (-15 -3483 ((-3 (-1196) "failed") (-419 (-963 |#1|)))) (-15 -3484 ((-419 (-1190 (-419 (-963 |#1|)))) (-419 (-963 |#1|)) (-1196))) (-15 -3485 ((-419 (-963 |#1|)) (-419 (-1190 (-419 (-963 |#1|)))) (-1196))) (-15 -4196 ((-419 (-963 |#1|)) (-419 (-963 |#1|)) (-1196) (-419 (-963 |#1|)))) (-15 -4196 ((-419 (-963 |#1|)) (-419 (-963 |#1|)) (-659 (-1196)) (-659 (-419 (-963 |#1|))))) (-15 -4196 ((-419 (-963 |#1|)) (-419 (-963 |#1|)) (-305 (-419 (-963 |#1|))))) (-15 -4196 ((-419 (-963 |#1|)) (-419 (-963 |#1|)) (-659 (-305 (-419 (-963 |#1|)))))) (-15 -4374 ((-419 (-963 |#1|)) |#1|))) (-568)) (T -1059)) -((-4374 (*1 *2 *3) (-12 (-5 *2 (-419 (-963 *3))) (-5 *1 (-1059 *3)) (-4 *3 (-568)))) (-4196 (*1 *2 *2 *3) (-12 (-5 *3 (-659 (-305 (-419 (-963 *4))))) (-5 *2 (-419 (-963 *4))) (-4 *4 (-568)) (-5 *1 (-1059 *4)))) (-4196 (*1 *2 *2 *3) (-12 (-5 *3 (-305 (-419 (-963 *4)))) (-5 *2 (-419 (-963 *4))) (-4 *4 (-568)) (-5 *1 (-1059 *4)))) (-4196 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-659 (-1196))) (-5 *4 (-659 (-419 (-963 *5)))) (-5 *2 (-419 (-963 *5))) (-4 *5 (-568)) (-5 *1 (-1059 *5)))) (-4196 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-419 (-963 *4))) (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-1059 *4)))) (-3485 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1190 (-419 (-963 *5))))) (-5 *4 (-1196)) (-5 *2 (-419 (-963 *5))) (-5 *1 (-1059 *5)) (-4 *5 (-568)))) (-3484 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-568)) (-5 *2 (-419 (-1190 (-419 (-963 *5))))) (-5 *1 (-1059 *5)) (-5 *3 (-419 (-963 *5))))) (-3483 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-963 *4))) (-4 *4 (-568)) (-5 *2 (-1196)) (-5 *1 (-1059 *4)))) (-3482 (*1 *2 *3) (-12 (-5 *3 (-419 (-963 *4))) (-4 *4 (-568)) (-5 *2 (-659 (-1196))) (-5 *1 (-1059 *4))))) -((-3486 (((-391)) 17 T ELT)) (-3501 (((-1 (-391)) (-391) (-391)) 22 T ELT)) (-3494 (((-1 (-391)) (-789)) 48 T ELT)) (-3487 (((-391)) 37 T ELT)) (-3490 (((-1 (-391)) (-391) (-391)) 38 T ELT)) (-3488 (((-391)) 29 T ELT)) (-3491 (((-1 (-391)) (-391)) 30 T ELT)) (-3489 (((-391) (-789)) 43 T ELT)) (-3492 (((-1 (-391)) (-789)) 44 T ELT)) (-3493 (((-1 (-391)) (-789) (-789)) 47 T ELT)) (-3802 (((-1 (-391)) (-789) (-789)) 45 T ELT))) -(((-1060) (-10 -7 (-15 -3486 ((-391))) (-15 -3487 ((-391))) (-15 -3488 ((-391))) (-15 -3489 ((-391) (-789))) (-15 -3501 ((-1 (-391)) (-391) (-391))) (-15 -3490 ((-1 (-391)) (-391) (-391))) (-15 -3491 ((-1 (-391)) (-391))) (-15 -3492 ((-1 (-391)) (-789))) (-15 -3802 ((-1 (-391)) (-789) (-789))) (-15 -3493 ((-1 (-391)) (-789) (-789))) (-15 -3494 ((-1 (-391)) (-789))))) (T -1060)) -((-3494 (*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1 (-391))) (-5 *1 (-1060)))) (-3493 (*1 *2 *3 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1 (-391))) (-5 *1 (-1060)))) (-3802 (*1 *2 *3 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1 (-391))) (-5 *1 (-1060)))) (-3492 (*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1 (-391))) (-5 *1 (-1060)))) (-3491 (*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1060)) (-5 *3 (-391)))) (-3490 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1060)) (-5 *3 (-391)))) (-3501 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1060)) (-5 *3 (-391)))) (-3489 (*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-391)) (-5 *1 (-1060)))) (-3488 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1060)))) (-3487 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1060)))) (-3486 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1060))))) -((-4160 (((-417 |#1|) |#1|) 33 T ELT))) -(((-1061 |#1|) (-10 -7 (-15 -4160 ((-417 |#1|) |#1|))) (-1262 (-419 (-963 (-557))))) (T -1061)) -((-4160 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1061 *3)) (-4 *3 (-1262 (-419 (-963 (-557)))))))) -((-3495 (((-419 (-417 (-963 |#1|))) (-419 (-963 |#1|))) 14 T ELT))) -(((-1062 |#1|) (-10 -7 (-15 -3495 ((-419 (-417 (-963 |#1|))) (-419 (-963 |#1|))))) (-319)) (T -1062)) -((-3495 (*1 *2 *3) (-12 (-5 *3 (-419 (-963 *4))) (-4 *4 (-319)) (-5 *2 (-419 (-417 (-963 *4)))) (-5 *1 (-1062 *4))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-4152 (($) 22 T CONST)) (-3499 ((|#1| $) 28 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3498 ((|#1| $) 27 T ELT)) (-3496 ((|#1|) 25 T CONST)) (-4374 (((-875) $) 13 T ELT)) (-3497 ((|#1| $) 26 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT))) -(((-1063 |#1|) (-142) (-23)) (T -1063)) -((-3499 (*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23)))) (-3498 (*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23)))) (-3497 (*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23)))) (-3496 (*1 *2) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -3499 (|t#1| $)) (-15 -3498 (|t#1| $)) (-15 -3497 (|t#1| $)) (-15 -3496 (|t#1|) -4380))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-628 (-875)) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-3500 (($) 30 T CONST)) (-4152 (($) 22 T CONST)) (-3499 ((|#1| $) 28 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3498 ((|#1| $) 27 T ELT)) (-3496 ((|#1|) 25 T CONST)) (-4374 (((-875) $) 13 T ELT)) (-3497 ((|#1| $) 26 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT))) -(((-1064 |#1|) (-142) (-23)) (T -1064)) -((-3500 (*1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23))))) -(-13 (-1063 |t#1|) (-10 -8 (-15 -3500 ($) -4380))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-628 (-875)) . T) ((-1063 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-4109 (((-659 (-2 (|:| -4289 $) (|:| -1903 (-659 (-798 |#1| (-876 |#2|)))))) (-659 (-798 |#1| (-876 |#2|)))) NIL T ELT)) (-4110 (((-659 $) (-659 (-798 |#1| (-876 |#2|)))) NIL T ELT) (((-659 $) (-659 (-798 |#1| (-876 |#2|))) (-114)) NIL T ELT) (((-659 $) (-659 (-798 |#1| (-876 |#2|))) (-114) (-114)) NIL T ELT)) (-3482 (((-659 (-876 |#2|)) $) NIL T ELT)) (-3307 (((-114) $) NIL T ELT)) (-3298 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-4121 (((-114) (-798 |#1| (-876 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-4116 (((-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|)) $) NIL T ELT)) (-4203 (((-659 (-2 (|:| |val| (-798 |#1| (-876 |#2|))) (|:| -1741 $))) (-798 |#1| (-876 |#2|)) $) NIL T ELT)) (-3308 (((-2 (|:| |under| $) (|:| -3530 $) (|:| |upper| $)) $ (-876 |#2|)) NIL T ELT)) (-4138 (($ (-1 (-114) (-798 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-3 (-798 |#1| (-876 |#2|)) #1="failed") $ (-876 |#2|)) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3303 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-3305 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3304 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3306 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-4117 (((-659 (-798 |#1| (-876 |#2|))) (-659 (-798 |#1| (-876 |#2|))) $ (-1 (-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|))) (-1 (-114) (-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|)))) NIL T ELT)) (-3299 (((-659 (-798 |#1| (-876 |#2|))) (-659 (-798 |#1| (-876 |#2|))) $) NIL (|has| |#1| (-568)) ELT)) (-3300 (((-659 (-798 |#1| (-876 |#2|))) (-659 (-798 |#1| (-876 |#2|))) $) NIL (|has| |#1| (-568)) ELT)) (-3573 (((-3 $ #1#) (-659 (-798 |#1| (-876 |#2|)))) NIL T ELT)) (-3572 (($ (-659 (-798 |#1| (-876 |#2|)))) NIL T ELT)) (-4227 (((-3 $ #1#) $) NIL T ELT)) (-4113 (((-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|)) $) NIL T ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-798 |#1| (-876 |#2|)) (-1120))) ELT)) (-3824 (($ (-798 |#1| (-876 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-798 |#1| (-876 |#2|)) (-1120))) ELT) (($ (-1 (-114) (-798 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-3301 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-798 |#1| (-876 |#2|))) (|:| |den| |#1|)) (-798 |#1| (-876 |#2|)) $) NIL (|has| |#1| (-568)) ELT)) (-4122 (((-114) (-798 |#1| (-876 |#2|)) $ (-1 (-114) (-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|)))) NIL T ELT)) (-4111 (((-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|)) $) NIL T ELT)) (-4270 (((-798 |#1| (-876 |#2|)) (-1 (-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|))) $ (-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|))) NIL (-12 (|has| $ (-6 -4423)) (|has| (-798 |#1| (-876 |#2|)) (-1120))) ELT) (((-798 |#1| (-876 |#2|)) (-1 (-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|))) $ (-798 |#1| (-876 |#2|))) NIL (|has| $ (-6 -4423)) ELT) (((-798 |#1| (-876 |#2|)) (-1 (-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|)) $ (-1 (-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|))) (-1 (-114) (-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|)))) NIL T ELT)) (-4124 (((-2 (|:| -4289 (-659 (-798 |#1| (-876 |#2|)))) (|:| -1903 (-659 (-798 |#1| (-876 |#2|))))) $) NIL T ELT)) (-3613 (((-114) (-798 |#1| (-876 |#2|)) $) NIL T ELT)) (-3611 (((-114) (-798 |#1| (-876 |#2|)) $) NIL T ELT)) (-3614 (((-114) (-798 |#1| (-876 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-3288 (((-659 (-798 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4123 (((-114) (-798 |#1| (-876 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-3596 (((-876 |#2|) $) NIL T ELT)) (-3005 (((-659 (-798 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-798 |#1| (-876 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-798 |#1| (-876 |#2|)) (-1120))) ELT)) (-2158 (($ (-1 (-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|))) $) NIL T ELT)) (-3313 (((-659 (-876 |#2|)) $) NIL T ELT)) (-3312 (((-114) (-876 |#2|) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3607 (((-3 (-798 |#1| (-876 |#2|)) (-659 $)) (-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|)) $) NIL T ELT)) (-3606 (((-659 (-2 (|:| |val| (-798 |#1| (-876 |#2|))) (|:| -1741 $))) (-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|)) $) NIL T ELT)) (-4226 (((-3 (-798 |#1| (-876 |#2|)) #1#) $) NIL T ELT)) (-3608 (((-659 $) (-798 |#1| (-876 |#2|)) $) NIL T ELT)) (-3610 (((-3 (-114) (-659 $)) (-798 |#1| (-876 |#2|)) $) NIL T ELT)) (-3609 (((-659 (-2 (|:| |val| (-114)) (|:| -1741 $))) (-798 |#1| (-876 |#2|)) $) NIL T ELT) (((-114) (-798 |#1| (-876 |#2|)) $) NIL T ELT)) (-3654 (((-659 $) (-798 |#1| (-876 |#2|)) $) NIL T ELT) (((-659 $) (-659 (-798 |#1| (-876 |#2|))) $) NIL T ELT) (((-659 $) (-659 (-798 |#1| (-876 |#2|))) (-659 $)) NIL T ELT) (((-659 $) (-798 |#1| (-876 |#2|)) (-659 $)) NIL T ELT)) (-3858 (($ (-798 |#1| (-876 |#2|)) $) NIL T ELT) (($ (-659 (-798 |#1| (-876 |#2|))) $) NIL T ELT)) (-4125 (((-659 (-798 |#1| (-876 |#2|))) $) NIL T ELT)) (-4119 (((-114) (-798 |#1| (-876 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-4114 (((-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|)) $) NIL T ELT)) (-4127 (((-114) $ $) NIL T ELT)) (-3302 (((-2 (|:| |num| (-798 |#1| (-876 |#2|))) (|:| |den| |#1|)) (-798 |#1| (-876 |#2|)) $) NIL (|has| |#1| (-568)) ELT)) (-4120 (((-114) (-798 |#1| (-876 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-4115 (((-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|)) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4229 (((-3 (-798 |#1| (-876 |#2|)) #1#) $) NIL T ELT)) (-1466 (((-3 (-798 |#1| (-876 |#2|)) #1#) (-1 (-114) (-798 |#1| (-876 |#2|))) $) NIL T ELT)) (-4107 (((-3 $ #1#) $ (-798 |#1| (-876 |#2|))) NIL T ELT)) (-4197 (($ $ (-798 |#1| (-876 |#2|))) NIL T ELT) (((-659 $) (-798 |#1| (-876 |#2|)) $) NIL T ELT) (((-659 $) (-798 |#1| (-876 |#2|)) (-659 $)) NIL T ELT) (((-659 $) (-659 (-798 |#1| (-876 |#2|))) $) NIL T ELT) (((-659 $) (-659 (-798 |#1| (-876 |#2|))) (-659 $)) NIL T ELT)) (-2156 (((-114) (-1 (-114) (-798 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-798 |#1| (-876 |#2|))) (-659 (-798 |#1| (-876 |#2|)))) NIL (-12 (|has| (-798 |#1| (-876 |#2|)) (-321 (-798 |#1| (-876 |#2|)))) (|has| (-798 |#1| (-876 |#2|)) (-1120))) ELT) (($ $ (-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|))) NIL (-12 (|has| (-798 |#1| (-876 |#2|)) (-321 (-798 |#1| (-876 |#2|)))) (|has| (-798 |#1| (-876 |#2|)) (-1120))) ELT) (($ $ (-305 (-798 |#1| (-876 |#2|)))) NIL (-12 (|has| (-798 |#1| (-876 |#2|)) (-321 (-798 |#1| (-876 |#2|)))) (|has| (-798 |#1| (-876 |#2|)) (-1120))) ELT) (($ $ (-659 (-305 (-798 |#1| (-876 |#2|))))) NIL (-12 (|has| (-798 |#1| (-876 |#2|)) (-321 (-798 |#1| (-876 |#2|)))) (|has| (-798 |#1| (-876 |#2|)) (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4376 (((-789) $) NIL T ELT)) (-2155 (((-789) (-798 |#1| (-876 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-798 |#1| (-876 |#2|)) (-1120))) ELT) (((-789) (-1 (-114) (-798 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) NIL (|has| (-798 |#1| (-876 |#2|)) (-629 (-546))) ELT)) (-3948 (($ (-659 (-798 |#1| (-876 |#2|)))) NIL T ELT)) (-3309 (($ $ (-876 |#2|)) NIL T ELT)) (-3311 (($ $ (-876 |#2|)) NIL T ELT)) (-4112 (($ $) NIL T ELT)) (-3310 (($ $ (-876 |#2|)) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (((-659 (-798 |#1| (-876 |#2|))) $) NIL T ELT)) (-4106 (((-789) $) NIL (|has| (-876 |#2|) (-381)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-4126 (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 (-798 |#1| (-876 |#2|))))) #1#) (-659 (-798 |#1| (-876 |#2|))) (-1 (-114) (-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 (-798 |#1| (-876 |#2|))))) #1#) (-659 (-798 |#1| (-876 |#2|))) (-1 (-114) (-798 |#1| (-876 |#2|))) (-1 (-114) (-798 |#1| (-876 |#2|)) (-798 |#1| (-876 |#2|)))) NIL T ELT)) (-4118 (((-114) $ (-1 (-114) (-798 |#1| (-876 |#2|)) (-659 (-798 |#1| (-876 |#2|))))) NIL T ELT)) (-3605 (((-659 $) (-798 |#1| (-876 |#2|)) $) NIL T ELT) (((-659 $) (-798 |#1| (-876 |#2|)) (-659 $)) NIL T ELT) (((-659 $) (-659 (-798 |#1| (-876 |#2|))) $) NIL T ELT) (((-659 $) (-659 (-798 |#1| (-876 |#2|))) (-659 $)) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-798 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4108 (((-659 (-876 |#2|)) $) NIL T ELT)) (-3612 (((-114) (-798 |#1| (-876 |#2|)) $) NIL T ELT)) (-4361 (((-114) (-876 |#2|) $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-1065 |#1| |#2|) (-13 (-1090 |#1| (-542 (-876 |#2|)) (-876 |#2|) (-798 |#1| (-876 |#2|))) (-10 -8 (-15 -4110 ((-659 $) (-659 (-798 |#1| (-876 |#2|))) (-114) (-114))))) (-464) (-659 (-1196))) (T -1065)) -((-4110 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-659 (-798 *5 (-876 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) (-14 *6 (-659 (-1196))) (-5 *2 (-659 (-1065 *5 *6))) (-5 *1 (-1065 *5 *6))))) -((-3501 (((-1 (-557)) (-1108 (-557))) 32 T ELT)) (-3505 (((-557) (-557) (-557) (-557) (-557)) 29 T ELT)) (-3503 (((-1 (-557)) |RationalNumber|) NIL T ELT)) (-3504 (((-1 (-557)) |RationalNumber|) NIL T ELT)) (-3502 (((-1 (-557)) (-557) |RationalNumber|) NIL T ELT))) -(((-1066) (-10 -7 (-15 -3501 ((-1 (-557)) (-1108 (-557)))) (-15 -3502 ((-1 (-557)) (-557) |RationalNumber|)) (-15 -3503 ((-1 (-557)) |RationalNumber|)) (-15 -3504 ((-1 (-557)) |RationalNumber|)) (-15 -3505 ((-557) (-557) (-557) (-557) (-557))))) (T -1066)) -((-3505 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-1066)))) (-3504 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-557))) (-5 *1 (-1066)))) (-3503 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-557))) (-5 *1 (-1066)))) (-3502 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-557))) (-5 *1 (-1066)) (-5 *3 (-557)))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-1108 (-557))) (-5 *2 (-1 (-557))) (-5 *1 (-1066))))) -((-4374 (((-875) $) NIL T ELT) (($ (-557)) 10 T ELT))) -(((-1067 |#1|) (-10 -7 (-15 -4374 (|#1| (-557))) (-15 -4374 ((-875) |#1|))) (-1068)) (T -1067)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-1068) (-142)) (T -1068)) -((-3526 (*1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-789))))) -(-13 (-1076) (-744) (-666 $) (-631 (-557)) (-10 -7 (-15 -3526 ((-789)) -4380) (-6 -4420))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-631 (-557)) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 $) . T) ((-744) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-3506 (((-419 (-963 |#2|)) (-659 |#2|) (-659 |#2|) (-789) (-789)) 55 T ELT))) -(((-1069 |#1| |#2|) (-10 -7 (-15 -3506 ((-419 (-963 |#2|)) (-659 |#2|) (-659 |#2|) (-789) (-789)))) (-1196) (-376)) (T -1069)) -((-3506 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-659 *6)) (-5 *4 (-789)) (-4 *6 (-376)) (-5 *2 (-419 (-963 *6))) (-5 *1 (-1069 *5 *6)) (-14 *5 (-1196))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) -(((-1070 |#1|) (-142) (-1131)) (T -1070)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1131))))) -(-13 (-1120) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-102) . T) ((-628 (-875)) . T) ((-1120) . T) ((-1236) . T)) -((-3521 (((-114) $) 38 T ELT)) (-3523 (((-114) $) 17 T ELT)) (-3515 (((-789) $) 13 T ELT)) (-3514 (((-789) $) 14 T ELT)) (-3522 (((-114) $) 30 T ELT)) (-3520 (((-114) $) 40 T ELT))) -(((-1071 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3514 ((-789) |#1|)) (-15 -3515 ((-789) |#1|)) (-15 -3520 ((-114) |#1|)) (-15 -3521 ((-114) |#1|)) (-15 -3522 ((-114) |#1|)) (-15 -3523 ((-114) |#1|))) (-1072 |#2| |#3| |#4| |#5| |#6|) (-789) (-789) (-1068) (-245 |#3| |#4|) (-245 |#2| |#4|)) (T -1071)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-3521 (((-114) $) 61 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-3523 (((-114) $) 63 T ELT)) (-4152 (($) 22 T CONST)) (-3510 (($ $) 44 (|has| |#3| (-319)) ELT)) (-3512 ((|#4| $ (-557)) 49 T ELT)) (-3509 (((-789) $) 43 (|has| |#3| (-568)) ELT)) (-3513 ((|#3| $ (-557) (-557)) 51 T ELT)) (-3288 (((-659 |#3|) $) 75 (|has| $ (-6 -4423)) ELT)) (-3508 (((-789) $) 42 (|has| |#3| (-568)) ELT)) (-3507 (((-659 |#5|) $) 41 (|has| |#3| (-568)) ELT)) (-3515 (((-789) $) 55 T ELT)) (-3514 (((-789) $) 54 T ELT)) (-3519 (((-557) $) 59 T ELT)) (-3517 (((-557) $) 57 T ELT)) (-3005 (((-659 |#3|) $) 76 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#3| $) 78 (-12 (|has| |#3| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3518 (((-557) $) 58 T ELT)) (-3516 (((-557) $) 56 T ELT)) (-3524 (($ (-659 (-659 |#3|))) 64 T ELT)) (-2158 (($ (-1 |#3| |#3|) $) 71 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 47 T ELT)) (-4020 (((-659 (-659 |#3|)) $) 53 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3884 (((-3 $ "failed") $ |#3|) 46 (|has| |#3| (-568)) ELT)) (-2156 (((-114) (-1 (-114) |#3|) $) 73 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 |#3|) (-659 |#3|)) 82 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120))) ELT) (($ $ |#3| |#3|) 81 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120))) ELT) (($ $ (-305 |#3|)) 80 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120))) ELT) (($ $ (-659 (-305 |#3|))) 79 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120))) ELT)) (-1327 (((-114) $ $) 65 T ELT)) (-3821 (((-114) $) 68 T ELT)) (-3991 (($) 67 T ELT)) (-4228 ((|#3| $ (-557) (-557)) 52 T ELT) ((|#3| $ (-557) (-557) |#3|) 50 T ELT)) (-3522 (((-114) $) 62 T ELT)) (-2155 (((-789) |#3| $) 77 (-12 (|has| |#3| (-1120)) (|has| $ (-6 -4423))) ELT) (((-789) (-1 (-114) |#3|) $) 74 (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) 66 T ELT)) (-3511 ((|#5| $ (-557)) 48 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2157 (((-114) (-1 (-114) |#3|) $) 72 (|has| $ (-6 -4423)) ELT)) (-3520 (((-114) $) 60 T ELT)) (-3057 (($) 23 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ |#3|) 45 (|has| |#3| (-376)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ |#3| $) 32 T ELT) (($ $ |#3|) 36 T ELT)) (-4385 (((-789) $) 69 (|has| $ (-6 -4423)) ELT))) -(((-1072 |#1| |#2| |#3| |#4| |#5|) (-142) (-789) (-789) (-1068) (-245 |t#2| |t#3|) (-245 |t#1| |t#3|)) (T -1072)) -((-4386 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-659 (-659 *5))) (-4 *5 (-1068)) (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-557)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-557)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-557)))) (-3516 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-557)))) (-3515 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-789)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-789)))) (-4020 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-659 (-659 *5))))) (-4228 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-557)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1068)))) (-3513 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-557)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1068)))) (-4228 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-557)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) (-4 *2 (-1068)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)))) (-3512 (*1 *2 *1 *3) (-12 (-5 *3 (-557)) (-4 *1 (-1072 *4 *5 *6 *2 *7)) (-4 *6 (-1068)) (-4 *7 (-245 *4 *6)) (-4 *2 (-245 *5 *6)))) (-3511 (*1 *2 *1 *3) (-12 (-5 *3 (-557)) (-4 *1 (-1072 *4 *5 *6 *7 *2)) (-4 *6 (-1068)) (-4 *7 (-245 *5 *6)) (-4 *2 (-245 *4 *6)))) (-4386 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-3884 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1072 *3 *4 *2 *5 *6)) (-4 *2 (-1068)) (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-568)))) (-4377 (*1 *1 *1 *2) (-12 (-4 *1 (-1072 *3 *4 *2 *5 *6)) (-4 *2 (-1068)) (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-376)))) (-3510 (*1 *1 *1) (-12 (-4 *1 (-1072 *2 *3 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *2 *4)) (-4 *4 (-319)))) (-3509 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-568)) (-5 *2 (-789)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-568)) (-5 *2 (-789)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-568)) (-5 *2 (-659 *7))))) -(-13 (-111 |t#3| |t#3|) (-501 |t#3|) (-10 -8 (-6 -4423) (IF (|has| |t#3| (-175)) (-6 (-735 |t#3|)) |%noBranch|) (-15 -3524 ($ (-659 (-659 |t#3|)))) (-15 -3523 ((-114) $)) (-15 -3522 ((-114) $)) (-15 -3521 ((-114) $)) (-15 -3520 ((-114) $)) (-15 -3519 ((-557) $)) (-15 -3518 ((-557) $)) (-15 -3517 ((-557) $)) (-15 -3516 ((-557) $)) (-15 -3515 ((-789) $)) (-15 -3514 ((-789) $)) (-15 -4020 ((-659 (-659 |t#3|)) $)) (-15 -4228 (|t#3| $ (-557) (-557))) (-15 -3513 (|t#3| $ (-557) (-557))) (-15 -4228 (|t#3| $ (-557) (-557) |t#3|)) (-15 -3512 (|t#4| $ (-557))) (-15 -3511 (|t#5| $ (-557))) (-15 -4386 ($ (-1 |t#3| |t#3|) $)) (-15 -4386 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-568)) (-15 -3884 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-376)) (-15 -4377 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-319)) (-15 -3510 ($ $)) |%noBranch|) (IF (|has| |t#3| (-568)) (PROGN (-15 -3509 ((-789) $)) (-15 -3508 ((-789) $)) (-15 -3507 ((-659 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-133) . T) ((-628 (-875)) . T) ((-321 |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120))) ((-501 |#3|) . T) ((-526 |#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120))) ((-664 (-557)) . T) ((-664 |#3|) . T) ((-666 |#3|) . T) ((-658 |#3|) |has| |#3| (-175)) ((-735 |#3|) |has| |#3| (-175)) ((-1070 |#3|) . T) ((-1075 |#3|) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3521 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3523 (((-114) $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3510 (($ $) 47 (|has| |#3| (-319)) ELT)) (-3512 (((-246 |#2| |#3|) $ (-557)) 36 T ELT)) (-3525 (($ (-707 |#3|)) 45 T ELT)) (-3509 (((-789) $) 49 (|has| |#3| (-568)) ELT)) (-3513 ((|#3| $ (-557) (-557)) NIL T ELT)) (-3288 (((-659 |#3|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3508 (((-789) $) 51 (|has| |#3| (-568)) ELT)) (-3507 (((-659 (-246 |#1| |#3|)) $) 55 (|has| |#3| (-568)) ELT)) (-3515 (((-789) $) NIL T ELT)) (-3514 (((-789) $) NIL T ELT)) (-3519 (((-557) $) NIL T ELT)) (-3517 (((-557) $) NIL T ELT)) (-3005 (((-659 |#3|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#3| (-1120))) ELT)) (-3518 (((-557) $) NIL T ELT)) (-3516 (((-557) $) NIL T ELT)) (-3524 (($ (-659 (-659 |#3|))) 31 T ELT)) (-2158 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-4020 (((-659 (-659 |#3|)) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3884 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-568)) ELT)) (-2156 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 |#3|) (-659 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120))) ELT) (($ $ (-659 (-305 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#3| $ (-557) (-557)) NIL T ELT) ((|#3| $ (-557) (-557) |#3|) NIL T ELT)) (-4339 (((-136)) 59 (|has| |#3| (-376)) ELT)) (-3522 (((-114) $) NIL T ELT)) (-2155 (((-789) |#3| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#3| (-1120))) ELT) (((-789) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) 66 (|has| |#3| (-629 (-546))) ELT)) (-3511 (((-246 |#1| |#3|) $ (-557)) 40 T ELT)) (-4374 (((-875) $) 19 T ELT) (((-707 |#3|) $) 42 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3520 (((-114) $) NIL T ELT)) (-3057 (($) 16 T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-1073 |#1| |#2| |#3|) (-13 (-1072 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-628 (-707 |#3|)) (-10 -8 (IF (|has| |#3| (-376)) (-6 (-1294 |#3|)) |%noBranch|) (IF (|has| |#3| (-629 (-546))) (-6 (-629 (-546))) |%noBranch|) (-15 -3525 ($ (-707 |#3|))))) (-789) (-789) (-1068)) (T -1073)) -((-3525 (*1 *1 *2) (-12 (-5 *2 (-707 *5)) (-4 *5 (-1068)) (-5 *1 (-1073 *3 *4 *5)) (-14 *3 (-789)) (-14 *4 (-789))))) -((-4270 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-4386 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) -(((-1074 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4386 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4270 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-789) (-789) (-1068) (-245 |#2| |#3|) (-245 |#1| |#3|) (-1072 |#1| |#2| |#3| |#4| |#5|) (-1068) (-245 |#2| |#7|) (-245 |#1| |#7|) (-1072 |#1| |#2| |#7| |#8| |#9|)) (T -1074)) -((-4270 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1068)) (-4 *2 (-1068)) (-14 *5 (-789)) (-14 *6 (-789)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) (-4 *10 (-245 *6 *2)) (-4 *11 (-245 *5 *2)) (-5 *1 (-1074 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1072 *5 *6 *7 *8 *9)) (-4 *12 (-1072 *5 *6 *2 *10 *11)))) (-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1068)) (-4 *10 (-1068)) (-14 *5 (-789)) (-14 *6 (-789)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) (-4 *2 (-1072 *5 *6 *10 *11 *12)) (-5 *1 (-1074 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1072 *5 *6 *7 *8 *9)) (-4 *11 (-245 *6 *10)) (-4 *12 (-245 *5 *10))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ |#1|) 32 T ELT))) -(((-1075 |#1|) (-142) (-1076)) (T -1075)) -NIL -(-13 (-21) (-1070 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-1070 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-1076) (-142)) (T -1076)) -NIL -(-13 (-21) (-1131)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-4259 (((-1196) $) 11 T ELT)) (-4164 ((|#1| $) 12 T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-3642 (($ (-1196) |#1|) 10 T ELT)) (-4374 (((-875) $) 22 (|has| |#1| (-1120)) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-3452 (((-114) $ $) 17 (|has| |#1| (-1120)) ELT))) -(((-1077 |#1| |#2|) (-13 (-1236) (-10 -8 (-15 -3642 ($ (-1196) |#1|)) (-15 -4259 ((-1196) $)) (-15 -4164 (|#1| $)) (IF (|has| |#1| (-1120)) (-6 (-1120)) |%noBranch|))) (-1113 |#2|) (-1236)) (T -1077)) -((-3642 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-4 *4 (-1236)) (-5 *1 (-1077 *3 *4)) (-4 *3 (-1113 *4)))) (-4259 (*1 *2 *1) (-12 (-4 *4 (-1236)) (-5 *2 (-1196)) (-5 *1 (-1077 *3 *4)) (-4 *3 (-1113 *4)))) (-4164 (*1 *2 *1) (-12 (-4 *2 (-1113 *3)) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1236))))) -((-4199 (($ $) 17 T ELT)) (-3527 (($ $) 25 T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) 54 T ELT)) (-3532 (($ $) 27 T ELT)) (-3528 (($ $) 12 T ELT)) (-3530 (($ $) 40 T ELT)) (-4400 (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (((-903 (-391)) $) 36 T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) 31 T ELT) (($ (-557)) NIL T ELT) (($ (-419 (-557))) 31 T ELT)) (-3526 (((-789)) 9 T ELT)) (-3531 (($ $) 44 T ELT))) -(((-1078 |#1|) (-10 -7 (-15 -3527 (|#1| |#1|)) (-15 -4199 (|#1| |#1|)) (-15 -3528 (|#1| |#1|)) (-15 -3530 (|#1| |#1|)) (-15 -3531 (|#1| |#1|)) (-15 -3532 (|#1| |#1|)) (-15 -3195 ((-901 (-391) |#1|) |#1| (-903 (-391)) (-901 (-391) |#1|))) (-15 -4400 ((-903 (-391)) |#1|)) (-15 -4374 (|#1| (-419 (-557)))) (-15 -4374 (|#1| (-557))) (-15 -4400 ((-229) |#1|)) (-15 -4400 ((-391) |#1|)) (-15 -4374 (|#1| (-419 (-557)))) (-15 -4374 (|#1| |#1|)) (-15 -3526 ((-789))) (-15 -4374 (|#1| (-557))) (-15 -4374 ((-875) |#1|))) (-1079)) (T -1078)) -((-3526 (*1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-1078 *3)) (-4 *3 (-1079))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-3529 (((-557) $) 105 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 52 T ELT)) (-2271 (($ $) 51 T ELT)) (-2269 (((-114) $) 49 T ELT)) (-4199 (($ $) 103 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4203 (($ $) 88 T ELT)) (-4399 (((-417 $) $) 87 T ELT)) (-3436 (($ $) 113 T ELT)) (-1786 (((-114) $ $) 72 T ELT)) (-4051 (((-557) $) 130 T ELT)) (-4152 (($) 22 T CONST)) (-3527 (($ $) 102 T ELT)) (-3573 (((-3 (-557) #1="failed") $) 118 T ELT) (((-3 (-419 (-557)) #1#) $) 115 T ELT)) (-3572 (((-557) $) 119 T ELT) (((-419 (-557)) $) 116 T ELT)) (-2961 (($ $ $) 68 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2960 (($ $ $) 69 T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 63 T ELT)) (-4151 (((-114) $) 86 T ELT)) (-3602 (((-114) $) 128 T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) 109 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3410 (($ $ (-557)) 112 T ELT)) (-3532 (($ $) 108 T ELT)) (-3603 (((-114) $) 129 T ELT)) (-1783 (((-3 (-659 $) #2="failed") (-659 $) $) 65 T ELT)) (-2928 (($ $ $) 122 T ELT)) (-3256 (($ $ $) 123 T ELT)) (-2100 (($ $ $) 57 T ELT) (($ (-659 $)) 56 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2872 (($ $) 85 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 55 T ELT)) (-3560 (($ $ $) 59 T ELT) (($ (-659 $)) 58 T ELT)) (-3528 (($ $) 104 T ELT)) (-3530 (($ $) 106 T ELT)) (-4160 (((-417 $) $) 89 T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3884 (((-3 $ "failed") $ $) 53 T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 62 T ELT)) (-1785 (((-789) $) 71 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 70 T ELT)) (-4400 (((-391) $) 121 T ELT) (((-229) $) 120 T ELT) (((-903 (-391)) $) 110 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-557))) 81 T ELT) (($ (-557)) 117 T ELT) (($ (-419 (-557))) 114 T ELT)) (-3526 (((-789)) 37 T CONST)) (-3531 (($ $) 107 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 50 T ELT)) (-3801 (($ $) 131 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-2963 (((-114) $ $) 124 T ELT)) (-2964 (((-114) $ $) 126 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 125 T ELT)) (-3084 (((-114) $ $) 127 T ELT)) (-4377 (($ $ $) 80 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ (-557)) 84 T ELT) (($ $ (-419 (-557))) 111 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-557))) 83 T ELT) (($ (-419 (-557)) $) 82 T ELT))) -(((-1079) (-142)) (T -1079)) -((-3532 (*1 *1 *1) (-4 *1 (-1079))) (-3531 (*1 *1 *1) (-4 *1 (-1079))) (-3530 (*1 *1 *1) (-4 *1 (-1079))) (-3529 (*1 *2 *1) (-12 (-4 *1 (-1079)) (-5 *2 (-557)))) (-3528 (*1 *1 *1) (-4 *1 (-1079))) (-4199 (*1 *1 *1) (-4 *1 (-1079))) (-3527 (*1 *1 *1) (-4 *1 (-1079)))) -(-13 (-376) (-858) (-1039) (-1057 (-557)) (-1057 (-419 (-557))) (-1021) (-629 (-903 (-391))) (-899 (-391)) (-149) (-10 -8 (-15 -3532 ($ $)) (-15 -3531 ($ $)) (-15 -3530 ($ $)) (-15 -3529 ((-557) $)) (-15 -3528 ($ $)) (-15 -4199 ($ $)) (-15 -3527 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-557))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-631 (-419 (-557))) . T) ((-631 (-557)) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-175) . T) ((-629 (-229)) . T) ((-629 (-391)) . T) ((-629 (-903 (-391))) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-464) . T) ((-568) . T) ((-664 (-419 (-557))) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 (-419 (-557))) . T) ((-666 $) . T) ((-658 (-419 (-557))) . T) ((-658 $) . T) ((-735 (-419 (-557))) . T) ((-735 $) . T) ((-744) . T) ((-810) . T) ((-812) . T) ((-814) . T) ((-817) . T) ((-858) . T) ((-859) . T) ((-862) . T) ((-899 (-391)) . T) ((-938) . T) ((-1021) . T) ((-1039) . T) ((-1057 (-419 (-557))) . T) ((-1057 (-557)) . T) ((-1070 (-419 (-557))) . T) ((-1070 $) . T) ((-1075 (-419 (-557))) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T) ((-1241) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) |#2| $) 26 T ELT)) (-3536 ((|#1| $) 10 T ELT)) (-4051 (((-557) |#2| $) 119 T ELT)) (-3599 (((-3 $ #1="failed") |#2| (-936)) 76 T ELT)) (-3537 ((|#1| $) 31 T ELT)) (-3598 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3534 (($ $) 28 T ELT)) (-3885 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3602 (((-114) |#2| $) NIL T ELT)) (-3603 (((-114) |#2| $) NIL T ELT)) (-3533 (((-114) |#2| $) 27 T ELT)) (-3535 ((|#1| $) 120 T ELT)) (-3538 ((|#1| $) 30 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3601 ((|#2| $) 104 T ELT)) (-4374 (((-875) $) 95 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-4198 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3600 (((-659 $) |#2|) 78 T ELT)) (-3452 (((-114) $ $) 99 T ELT))) -(((-1080 |#1| |#2|) (-13 (-1087 |#1| |#2|) (-10 -8 (-15 -3538 (|#1| $)) (-15 -3537 (|#1| $)) (-15 -3536 (|#1| $)) (-15 -3535 (|#1| $)) (-15 -3534 ($ $)) (-15 -3533 ((-114) |#2| $)) (-15 -3598 (|#1| |#2| $ |#1|)))) (-13 (-858) (-376)) (-1262 |#1|)) (T -1080)) -((-3598 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-858) (-376))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1262 *2)))) (-3538 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-376))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1262 *2)))) (-3537 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-376))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1262 *2)))) (-3536 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-376))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1262 *2)))) (-3535 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-376))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1262 *2)))) (-3534 (*1 *1 *1) (-12 (-4 *2 (-13 (-858) (-376))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1262 *2)))) (-3533 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-858) (-376))) (-5 *2 (-114)) (-5 *1 (-1080 *4 *3)) (-4 *3 (-1262 *4))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-2255 (($ $ $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2250 (($ $ $ $) NIL T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-4051 (((-557) $) NIL T ELT)) (-2828 (($ $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3539 (($ (-1196)) 10 T ELT) (($ (-557)) 7 T ELT)) (-3573 (((-3 (-557) #1#) $) NIL T ELT)) (-3572 (((-557) $) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-2491 (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL T ELT) (((-707 (-557)) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3423 (((-3 (-419 (-557)) #1#) $) NIL T ELT)) (-3422 (((-114) $) NIL T ELT)) (-3421 (((-419 (-557)) $) NIL T ELT)) (-3393 (($) NIL T ELT) (($ $) NIL T ELT)) (-2960 (($ $ $) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-2248 (($ $ $ $) NIL T ELT)) (-2256 (($ $ $) NIL T ELT)) (-3602 (((-114) $) NIL T ELT)) (-1481 (($ $ $) NIL T ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3072 (((-114) $) NIL T ELT)) (-3863 (((-709 $) $) NIL T ELT)) (-3603 (((-114) $) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2249 (($ $ $ $) NIL T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-2252 (($ $) NIL T ELT)) (-4261 (($ $) NIL T ELT)) (-2492 (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL T ELT) (((-707 (-557)) (-1286 $)) NIL T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2247 (($ $ $) NIL T ELT)) (-3864 (($) NIL T CONST)) (-2254 (($ $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-1479 (($ $) NIL T ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-3073 (((-114) $) NIL T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-4186 (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-2253 (($ $) NIL T ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-557) $) 16 T ELT) (((-546) $) NIL T ELT) (((-903 (-557)) $) NIL T ELT) (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (($ (-1196)) 9 T ELT)) (-4374 (((-875) $) 23 T ELT) (($ (-557)) 6 T ELT) (($ $) NIL T ELT) (($ (-557)) 6 T ELT)) (-3526 (((-789)) NIL T CONST)) (-2257 (((-114) $ $) NIL T ELT)) (-3502 (($ $ $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3093 (($) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-2251 (($ $ $ $) NIL T ELT)) (-3801 (($ $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-4265 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-557) $) NIL T ELT))) -(((-1081) (-13 (-556) (-633 (-1196)) (-10 -8 (-6 -4410) (-6 -4415) (-6 -4411) (-15 -3539 ($ (-1196))) (-15 -3539 ($ (-557)))))) (T -1081)) -((-3539 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1081)))) (-3539 (*1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-1081))))) -((-2965 (((-114) $ $) NIL (-3955 (|has| (-51) (-102)) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-102))) ELT)) (-4025 (($) NIL T ELT) (($ (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))))) NIL T ELT)) (-2411 (((-1292) $ (-1196) (-1196)) NIL (|has| $ (-6 -4424)) ELT)) (-3541 (($) 9 T ELT)) (-4216 (((-51) $ (-1196) (-51)) NIL T ELT)) (-3549 (($ $) 32 T ELT)) (-3552 (($ $) 30 T ELT)) (-3553 (($ $) 29 T ELT)) (-3551 (($ $) 31 T ELT)) (-3548 (($ $) 35 T ELT)) (-3547 (($ $) 36 T ELT)) (-3554 (($ $) 28 T ELT)) (-3550 (($ $) 33 T ELT)) (-1711 (($ (-1 (-114) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) 27 (|has| $ (-6 -4423)) ELT)) (-2444 (((-3 (-51) #1="failed") (-1196) $) 43 T ELT)) (-4152 (($) NIL T CONST)) (-3555 (($) 7 T ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT)) (-3823 (($ (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) $) 53 (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT) (((-3 (-51) #1#) (-1196) $) NIL T ELT)) (-3824 (($ (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT) (($ (-1 (-114) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 (((-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $ (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT) (((-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $ (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) NIL (|has| $ (-6 -4423)) ELT) (((-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT)) (-3540 (((-3 (-1178) #1#) $ (-1178) (-557)) 72 T ELT)) (-1717 (((-51) $ (-1196) (-51)) NIL (|has| $ (-6 -4424)) ELT)) (-3513 (((-51) $ (-1196)) NIL T ELT)) (-3288 (((-659 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 (-51)) $) NIL (|has| $ (-6 -4423)) ELT)) (-2413 (((-1196) $) NIL (|has| (-1196) (-859)) ELT)) (-3005 (((-659 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) 38 (|has| $ (-6 -4423)) ELT) (((-659 (-51)) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT) (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-51) (-1120))) ELT)) (-2414 (((-1196) $) NIL (|has| (-1196) (-859)) ELT)) (-2158 (($ (-1 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL (-3955 (|has| (-51) (-1120)) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT)) (-2882 (((-659 (-1196)) $) NIL T ELT)) (-2445 (((-114) (-1196) $) NIL T ELT)) (-1387 (((-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) $) NIL T ELT)) (-4035 (($ (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) $) 46 T ELT)) (-2416 (((-659 (-1196)) $) NIL T ELT)) (-2417 (((-114) (-1196) $) NIL T ELT)) (-3659 (((-1139) $) NIL (-3955 (|has| (-51) (-1120)) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT)) (-3544 (((-391) $ (-1196)) 52 T ELT)) (-3543 (((-659 (-1178)) $ (-1178)) 74 T ELT)) (-4229 (((-51) $) NIL (|has| (-1196) (-859)) ELT)) (-1466 (((-3 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) #1#) (-1 (-114) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL T ELT)) (-2412 (($ $ (-51)) NIL (|has| $ (-6 -4424)) ELT)) (-1388 (((-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) $) NIL T ELT)) (-2156 (((-114) (-1 (-114) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))))) NIL (-12 (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-321 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))))) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT) (($ $ (-305 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))))) NIL (-12 (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-321 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))))) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT) (($ $ (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) NIL (-12 (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-321 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))))) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT) (($ $ (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))))) NIL (-12 (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-321 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))))) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT) (($ $ (-659 (-51)) (-659 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1120))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1120))) ELT) (($ $ (-305 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1120))) ELT) (($ $ (-659 (-305 (-51)))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-51) (-1120))) ELT)) (-2418 (((-659 (-51)) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 (((-51) $ (-1196)) NIL T ELT) (((-51) $ (-1196) (-51)) NIL T ELT)) (-1596 (($) NIL T ELT) (($ (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))))) NIL T ELT)) (-3542 (($ $ (-1196)) 54 T ELT)) (-2155 (((-789) (-1 (-114) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-1120))) ELT) (((-789) (-51) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-51) (-1120))) ELT) (((-789) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) NIL (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-629 (-546))) ELT)) (-3948 (($ (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))))) 40 T ELT)) (-4230 (($ $ $) 41 T ELT)) (-4374 (((-875) $) NIL (-3955 (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-628 (-875))) (|has| (-51) (-628 (-875)))) ELT)) (-3546 (($ $ (-1196) (-391)) 50 T ELT)) (-3545 (($ $ (-1196) (-391)) 51 T ELT)) (-1376 (((-114) $ $) NIL (-3955 (|has| (-51) (-102)) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-102))) ELT)) (-1389 (($ (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))))) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4288 (-1196)) (|:| -2284 (-51)))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) NIL (-3955 (|has| (-51) (-102)) (|has| (-2 (|:| -4288 (-1196)) (|:| -2284 (-51))) (-102))) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-1082) (-13 (-1213 (-1196) (-51)) (-10 -8 (-15 -4230 ($ $ $)) (-15 -3555 ($)) (-15 -3554 ($ $)) (-15 -3553 ($ $)) (-15 -3552 ($ $)) (-15 -3551 ($ $)) (-15 -3550 ($ $)) (-15 -3549 ($ $)) (-15 -3548 ($ $)) (-15 -3547 ($ $)) (-15 -3546 ($ $ (-1196) (-391))) (-15 -3545 ($ $ (-1196) (-391))) (-15 -3544 ((-391) $ (-1196))) (-15 -3543 ((-659 (-1178)) $ (-1178))) (-15 -3542 ($ $ (-1196))) (-15 -3541 ($)) (-15 -3540 ((-3 (-1178) "failed") $ (-1178) (-557))) (-6 -4423)))) (T -1082)) -((-4230 (*1 *1 *1 *1) (-5 *1 (-1082))) (-3555 (*1 *1) (-5 *1 (-1082))) (-3554 (*1 *1 *1) (-5 *1 (-1082))) (-3553 (*1 *1 *1) (-5 *1 (-1082))) (-3552 (*1 *1 *1) (-5 *1 (-1082))) (-3551 (*1 *1 *1) (-5 *1 (-1082))) (-3550 (*1 *1 *1) (-5 *1 (-1082))) (-3549 (*1 *1 *1) (-5 *1 (-1082))) (-3548 (*1 *1 *1) (-5 *1 (-1082))) (-3547 (*1 *1 *1) (-5 *1 (-1082))) (-3546 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-391)) (-5 *1 (-1082)))) (-3545 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-391)) (-5 *1 (-1082)))) (-3544 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-391)) (-5 *1 (-1082)))) (-3543 (*1 *2 *1 *3) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-1082)) (-5 *3 (-1178)))) (-3542 (*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1082)))) (-3541 (*1 *1) (-5 *1 (-1082))) (-3540 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1178)) (-5 *3 (-557)) (-5 *1 (-1082))))) -((-4225 (($ $) 46 T ELT)) (-3582 (((-114) $ $) 82 T ELT)) (-3573 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL T ELT) (((-3 (-557) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-963 (-419 (-557)))) 247 T ELT) (((-3 $ #1#) (-963 (-557))) 246 T ELT) (((-3 $ #1#) (-963 |#2|)) 249 T ELT)) (-3572 ((|#2| $) NIL T ELT) (((-419 (-557)) $) NIL T ELT) (((-557) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-963 (-419 (-557)))) 235 T ELT) (($ (-963 (-557))) 231 T ELT) (($ (-963 |#2|)) 255 T ELT)) (-4387 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-4122 (((-114) $ $) 131 T ELT) (((-114) $ (-659 $)) 135 T ELT)) (-3588 (((-114) $) 60 T ELT)) (-4180 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 125 T ELT)) (-3559 (($ $) 160 T ELT)) (-3570 (($ $) 156 T ELT)) (-3571 (($ $) 155 T ELT)) (-3581 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3580 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-4123 (((-114) $ $) 143 T ELT) (((-114) $ (-659 $)) 144 T ELT)) (-3596 ((|#4| $) 32 T ELT)) (-3575 (($ $ $) 128 T ELT)) (-3589 (((-114) $) 59 T ELT)) (-3595 (((-789) $) 35 T ELT)) (-3556 (($ $) 174 T ELT)) (-3557 (($ $) 171 T ELT)) (-3584 (((-659 $) $) 72 T ELT)) (-3587 (($ $) 62 T ELT)) (-3558 (($ $) 167 T ELT)) (-3585 (((-659 $) $) 69 T ELT)) (-3586 (($ $) 64 T ELT)) (-3590 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3574 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3899 (-789))) $ $) 130 T ELT)) (-3576 (((-2 (|:| -4382 $) (|:| |gap| (-789)) (|:| -2182 $) (|:| -3301 $)) $ $) 126 T ELT) (((-2 (|:| -4382 $) (|:| |gap| (-789)) (|:| -2182 $) (|:| -3301 $)) $ $ |#4|) 127 T ELT)) (-3577 (((-2 (|:| -4382 $) (|:| |gap| (-789)) (|:| -3301 $)) $ $) 121 T ELT) (((-2 (|:| -4382 $) (|:| |gap| (-789)) (|:| -3301 $)) $ $ |#4|) 123 T ELT)) (-3579 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3578 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3592 (((-659 $) $) 54 T ELT)) (-4119 (((-114) $ $) 140 T ELT) (((-114) $ (-659 $)) 141 T ELT)) (-4114 (($ $ $) 116 T ELT)) (-3864 (($ $) 37 T ELT)) (-4127 (((-114) $ $) 80 T ELT)) (-4120 (((-114) $ $) 136 T ELT) (((-114) $ (-659 $)) 138 T ELT)) (-4115 (($ $ $) 112 T ELT)) (-3594 (($ $) 41 T ELT)) (-3560 ((|#2| |#2| $) 164 T ELT) (($ (-659 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3568 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3569 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3593 (($ $) 49 T ELT)) (-3591 (($ $) 55 T ELT)) (-4400 (((-903 (-391)) $) NIL T ELT) (((-903 (-557)) $) NIL T ELT) (((-546) $) NIL T ELT) (($ (-963 (-419 (-557)))) 237 T ELT) (($ (-963 (-557))) 233 T ELT) (($ (-963 |#2|)) 248 T ELT) (((-1178) $) 278 T ELT) (((-963 |#2|) $) 184 T ELT)) (-4374 (((-875) $) 29 T ELT) (($ (-557)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-963 |#2|) $) 185 T ELT) (($ (-419 (-557))) NIL T ELT) (($ $) NIL T ELT)) (-3583 (((-3 (-114) #1#) $ $) 79 T ELT))) -(((-1083 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4374 (|#1| |#1|)) (-15 -3560 (|#1| |#1| |#1|)) (-15 -3560 (|#1| (-659 |#1|))) (-15 -4374 (|#1| (-419 (-557)))) (-15 -4374 ((-963 |#2|) |#1|)) (-15 -4400 ((-963 |#2|) |#1|)) (-15 -4400 ((-1178) |#1|)) (-15 -3556 (|#1| |#1|)) (-15 -3557 (|#1| |#1|)) (-15 -3558 (|#1| |#1|)) (-15 -3559 (|#1| |#1|)) (-15 -3560 (|#2| |#2| |#1|)) (-15 -3568 (|#1| |#1| |#1|)) (-15 -3569 (|#1| |#1| |#1|)) (-15 -3568 (|#1| |#1| |#2|)) (-15 -3569 (|#1| |#1| |#2|)) (-15 -3570 (|#1| |#1|)) (-15 -3571 (|#1| |#1|)) (-15 -4400 (|#1| (-963 |#2|))) (-15 -3572 (|#1| (-963 |#2|))) (-15 -3573 ((-3 |#1| #1="failed") (-963 |#2|))) (-15 -4400 (|#1| (-963 (-557)))) (-15 -3572 (|#1| (-963 (-557)))) (-15 -3573 ((-3 |#1| #1#) (-963 (-557)))) (-15 -4400 (|#1| (-963 (-419 (-557))))) (-15 -3572 (|#1| (-963 (-419 (-557))))) (-15 -3573 ((-3 |#1| #1#) (-963 (-419 (-557))))) (-15 -4114 (|#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| |#1|)) (-15 -3574 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3899 (-789))) |#1| |#1|)) (-15 -3575 (|#1| |#1| |#1|)) (-15 -4180 ((-2 (|:| -2182 |#1|) (|:| -3301 |#1|)) |#1| |#1|)) (-15 -3576 ((-2 (|:| -4382 |#1|) (|:| |gap| (-789)) (|:| -2182 |#1|) (|:| -3301 |#1|)) |#1| |#1| |#4|)) (-15 -3576 ((-2 (|:| -4382 |#1|) (|:| |gap| (-789)) (|:| -2182 |#1|) (|:| -3301 |#1|)) |#1| |#1|)) (-15 -3577 ((-2 (|:| -4382 |#1|) (|:| |gap| (-789)) (|:| -3301 |#1|)) |#1| |#1| |#4|)) (-15 -3577 ((-2 (|:| -4382 |#1|) (|:| |gap| (-789)) (|:| -3301 |#1|)) |#1| |#1|)) (-15 -3578 (|#1| |#1| |#1| |#4|)) (-15 -3579 (|#1| |#1| |#1| |#4|)) (-15 -3578 (|#1| |#1| |#1|)) (-15 -3579 (|#1| |#1| |#1|)) (-15 -3580 (|#1| |#1| |#1| |#4|)) (-15 -3581 (|#1| |#1| |#1| |#4|)) (-15 -3580 (|#1| |#1| |#1|)) (-15 -3581 (|#1| |#1| |#1|)) (-15 -4123 ((-114) |#1| (-659 |#1|))) (-15 -4123 ((-114) |#1| |#1|)) (-15 -4119 ((-114) |#1| (-659 |#1|))) (-15 -4119 ((-114) |#1| |#1|)) (-15 -4120 ((-114) |#1| (-659 |#1|))) (-15 -4120 ((-114) |#1| |#1|)) (-15 -4122 ((-114) |#1| (-659 |#1|))) (-15 -4122 ((-114) |#1| |#1|)) (-15 -3582 ((-114) |#1| |#1|)) (-15 -4127 ((-114) |#1| |#1|)) (-15 -3583 ((-3 (-114) #1#) |#1| |#1|)) (-15 -3584 ((-659 |#1|) |#1|)) (-15 -3585 ((-659 |#1|) |#1|)) (-15 -3586 (|#1| |#1|)) (-15 -3587 (|#1| |#1|)) (-15 -3588 ((-114) |#1|)) (-15 -3589 ((-114) |#1|)) (-15 -4387 (|#1| |#1| |#4|)) (-15 -3590 (|#1| |#1| |#4|)) (-15 -3591 (|#1| |#1|)) (-15 -3592 ((-659 |#1|) |#1|)) (-15 -3593 (|#1| |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -3594 (|#1| |#1|)) (-15 -3864 (|#1| |#1|)) (-15 -3595 ((-789) |#1|)) (-15 -3596 (|#4| |#1|)) (-15 -4400 ((-546) |#1|)) (-15 -4400 ((-903 (-557)) |#1|)) (-15 -4400 ((-903 (-391)) |#1|)) (-15 -4374 (|#1| |#4|)) (-15 -3573 ((-3 |#4| #1#) |#1|)) (-15 -3572 (|#4| |#1|)) (-15 -3590 (|#2| |#1|)) (-15 -4387 (|#1| |#1|)) (-15 -3573 ((-3 (-557) #1#) |#1|)) (-15 -3572 ((-557) |#1|)) (-15 -3573 ((-3 (-419 (-557)) #1#) |#1|)) (-15 -3572 ((-419 (-557)) |#1|)) (-15 -3572 (|#2| |#1|)) (-15 -3573 ((-3 |#2| #1#) |#1|)) (-15 -4374 (|#1| |#2|)) (-15 -4374 (|#1| (-557))) (-15 -4374 ((-875) |#1|))) (-1084 |#2| |#3| |#4|) (-1068) (-813) (-859)) (T -1083)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-3482 (((-659 |#3|) $) 120 T ELT)) (-3484 (((-1190 $) $ |#3|) 135 T ELT) (((-1190 |#1|) $) 134 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 97 (|has| |#1| (-568)) ELT)) (-2271 (($ $) 98 (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) 100 (|has| |#1| (-568)) ELT)) (-3218 (((-789) $) 122 T ELT) (((-789) $ (-659 |#3|)) 121 T ELT)) (-4225 (($ $) 290 T ELT)) (-3582 (((-114) $ $) 276 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4183 (($ $ $) 235 (|has| |#1| (-568)) ELT)) (-3564 (((-659 $) $ $) 230 (|has| |#1| (-568)) ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) 110 (|has| |#1| (-927)) ELT)) (-4203 (($ $) 108 (|has| |#1| (-464)) ELT)) (-4399 (((-417 $) $) 107 (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1="failed") (-659 (-1190 $)) (-1190 $)) 113 (|has| |#1| (-927)) ELT)) (-4152 (($) 22 T CONST)) (-3573 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-419 (-557)) #2#) $) 175 (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 (-557) #2#) $) 173 (|has| |#1| (-1057 (-557))) ELT) (((-3 |#3| #2#) $) 150 T ELT) (((-3 $ "failed") (-963 (-419 (-557)))) 250 (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#3| (-629 (-1196)))) ELT) (((-3 $ "failed") (-963 (-557))) 247 (-3955 (-12 (-2957 (|has| |#1| (-38 (-419 (-557))))) (|has| |#1| (-38 (-557))) (|has| |#3| (-629 (-1196)))) (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#3| (-629 (-1196))))) ELT) (((-3 $ "failed") (-963 |#1|)) 244 (-3955 (-12 (-2957 (|has| |#1| (-38 (-419 (-557))))) (-2957 (|has| |#1| (-38 (-557)))) (|has| |#3| (-629 (-1196)))) (-12 (-2957 (|has| |#1| (-556))) (-2957 (|has| |#1| (-38 (-419 (-557))))) (|has| |#1| (-38 (-557))) (|has| |#3| (-629 (-1196)))) (-12 (-2957 (|has| |#1| (-1010 (-557)))) (|has| |#1| (-38 (-419 (-557)))) (|has| |#3| (-629 (-1196))))) ELT)) (-3572 ((|#1| $) 177 T ELT) (((-419 (-557)) $) 176 (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-557) $) 174 (|has| |#1| (-1057 (-557))) ELT) ((|#3| $) 151 T ELT) (($ (-963 (-419 (-557)))) 249 (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#3| (-629 (-1196)))) ELT) (($ (-963 (-557))) 246 (-3955 (-12 (-2957 (|has| |#1| (-38 (-419 (-557))))) (|has| |#1| (-38 (-557))) (|has| |#3| (-629 (-1196)))) (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#3| (-629 (-1196))))) ELT) (($ (-963 |#1|)) 243 (-3955 (-12 (-2957 (|has| |#1| (-38 (-419 (-557))))) (-2957 (|has| |#1| (-38 (-557)))) (|has| |#3| (-629 (-1196)))) (-12 (-2957 (|has| |#1| (-556))) (-2957 (|has| |#1| (-38 (-419 (-557))))) (|has| |#1| (-38 (-557))) (|has| |#3| (-629 (-1196)))) (-12 (-2957 (|has| |#1| (-1010 (-557)))) (|has| |#1| (-38 (-419 (-557)))) (|has| |#3| (-629 (-1196))))) ELT)) (-4184 (($ $ $ |#3|) 118 (|has| |#1| (-175)) ELT) (($ $ $) 231 (|has| |#1| (-568)) ELT)) (-4387 (($ $) 168 T ELT) (($ $ |#3|) 285 T ELT)) (-2491 (((-707 (-557)) (-707 $)) 146 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) 145 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) 144 T ELT) (((-707 |#1|) (-707 $)) 143 T ELT)) (-4122 (((-114) $ $) 275 T ELT) (((-114) $ (-659 $)) 274 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-3588 (((-114) $) 283 T ELT)) (-4180 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 255 T ELT)) (-3559 (($ $) 224 (|has| |#1| (-464)) ELT)) (-3921 (($ $) 190 (|has| |#1| (-464)) ELT) (($ $ |#3|) 115 (|has| |#1| (-464)) ELT)) (-3217 (((-659 $) $) 119 T ELT)) (-4151 (((-114) $) 106 (|has| |#1| (-927)) ELT)) (-3570 (($ $) 240 (|has| |#1| (-568)) ELT)) (-3571 (($ $) 241 (|has| |#1| (-568)) ELT)) (-3581 (($ $ $) 267 T ELT) (($ $ $ |#3|) 265 T ELT)) (-3580 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-1802 (($ $ |#1| |#2| $) 186 T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) 94 (-12 (|has| |#3| (-899 (-391))) (|has| |#1| (-899 (-391)))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) 93 (-12 (|has| |#3| (-899 (-557))) (|has| |#1| (-899 (-557)))) ELT)) (-2639 (((-114) $) 40 T ELT)) (-2647 (((-789) $) 183 T ELT)) (-4123 (((-114) $ $) 269 T ELT) (((-114) $ (-659 $)) 268 T ELT)) (-3561 (($ $ $ $ $) 226 (|has| |#1| (-568)) ELT)) (-3596 ((|#3| $) 294 T ELT)) (-3485 (($ (-1190 |#1|) |#3|) 127 T ELT) (($ (-1190 $) |#3|) 126 T ELT)) (-3220 (((-659 $) $) 136 T ELT)) (-4365 (((-114) $) 166 T ELT)) (-3292 (($ |#1| |#2|) 167 T ELT) (($ $ |#3| (-789)) 129 T ELT) (($ $ (-659 |#3|) (-659 (-789))) 128 T ELT)) (-3575 (($ $ $) 254 T ELT)) (-4191 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $ |#3|) 130 T ELT)) (-3589 (((-114) $) 284 T ELT)) (-3219 ((|#2| $) 184 T ELT) (((-789) $ |#3|) 132 T ELT) (((-659 (-789)) $ (-659 |#3|)) 131 T ELT)) (-3595 (((-789) $) 293 T ELT)) (-1803 (($ (-1 |#2| |#2|) $) 185 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3483 (((-3 |#3| #3="failed") $) 133 T ELT)) (-3556 (($ $) 221 (|has| |#1| (-464)) ELT)) (-3557 (($ $) 222 (|has| |#1| (-464)) ELT)) (-3584 (((-659 $) $) 279 T ELT)) (-3587 (($ $) 282 T ELT)) (-3558 (($ $) 223 (|has| |#1| (-464)) ELT)) (-3585 (((-659 $) $) 280 T ELT)) (-2492 (((-707 (-557)) (-1286 $)) 148 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) 147 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 142 T ELT) (((-707 |#1|) (-1286 $)) 141 T ELT)) (-3586 (($ $) 281 T ELT)) (-3293 (($ $) 163 T ELT)) (-3590 ((|#1| $) 162 T ELT) (($ $ |#3|) 286 T ELT)) (-2100 (($ (-659 $)) 104 (|has| |#1| (-464)) ELT) (($ $ $) 103 (|has| |#1| (-464)) ELT)) (-3574 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3899 (-789))) $ $) 253 T ELT)) (-3576 (((-2 (|:| -4382 $) (|:| |gap| (-789)) (|:| -2182 $) (|:| -3301 $)) $ $) 257 T ELT) (((-2 (|:| -4382 $) (|:| |gap| (-789)) (|:| -2182 $) (|:| -3301 $)) $ $ |#3|) 256 T ELT)) (-3577 (((-2 (|:| -4382 $) (|:| |gap| (-789)) (|:| -3301 $)) $ $) 259 T ELT) (((-2 (|:| -4382 $) (|:| |gap| (-789)) (|:| -3301 $)) $ $ |#3|) 258 T ELT)) (-3579 (($ $ $) 263 T ELT) (($ $ $ |#3|) 261 T ELT)) (-3578 (($ $ $) 262 T ELT) (($ $ $ |#3|) 260 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3606 (($ $ $) 229 (|has| |#1| (-568)) ELT)) (-3592 (((-659 $) $) 288 T ELT)) (-3222 (((-3 (-659 $) #3#) $) 124 T ELT)) (-3221 (((-3 (-659 $) #3#) $) 125 T ELT)) (-3223 (((-3 (-2 (|:| |var| |#3|) (|:| -2630 (-789))) #3#) $) 123 T ELT)) (-4119 (((-114) $ $) 271 T ELT) (((-114) $ (-659 $)) 270 T ELT)) (-4114 (($ $ $) 251 T ELT)) (-3864 (($ $) 292 T ELT)) (-4127 (((-114) $ $) 277 T ELT)) (-4120 (((-114) $ $) 273 T ELT) (((-114) $ (-659 $)) 272 T ELT)) (-4115 (($ $ $) 252 T ELT)) (-3594 (($ $) 291 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3565 (((-2 (|:| -3560 $) (|:| |coef2| $)) $ $) 232 (|has| |#1| (-568)) ELT)) (-3566 (((-2 (|:| -3560 $) (|:| |coef1| $)) $ $) 233 (|has| |#1| (-568)) ELT)) (-2003 (((-114) $) 180 T ELT)) (-2002 ((|#1| $) 181 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 105 (|has| |#1| (-464)) ELT)) (-3560 ((|#1| |#1| $) 225 (|has| |#1| (-464)) ELT) (($ (-659 $)) 102 (|has| |#1| (-464)) ELT) (($ $ $) 101 (|has| |#1| (-464)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) 112 (|has| |#1| (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) 111 (|has| |#1| (-927)) ELT)) (-4160 (((-417 $) $) 109 (|has| |#1| (-927)) ELT)) (-3567 (((-2 (|:| -3560 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 234 (|has| |#1| (-568)) ELT)) (-3884 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-568)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-568)) ELT)) (-3568 (($ $ |#1|) 238 (|has| |#1| (-568)) ELT) (($ $ $) 236 (|has| |#1| (-568)) ELT)) (-3569 (($ $ |#1|) 239 (|has| |#1| (-568)) ELT) (($ $ $) 237 (|has| |#1| (-568)) ELT)) (-4196 (($ $ (-659 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-659 $) (-659 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-659 |#3|) (-659 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-659 |#3|) (-659 $)) 152 T ELT)) (-4185 (($ $ |#3|) 117 (|has| |#1| (-175)) ELT)) (-4186 (($ $ (-659 |#3|) (-659 (-789))) 49 T ELT) (($ $ |#3| (-789)) 48 T ELT) (($ $ (-659 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT)) (-4376 ((|#2| $) 164 T ELT) (((-789) $ |#3|) 140 T ELT) (((-659 (-789)) $ (-659 |#3|)) 139 T ELT)) (-3593 (($ $) 289 T ELT)) (-3591 (($ $) 287 T ELT)) (-4400 (((-903 (-391)) $) 92 (-12 (|has| |#3| (-629 (-903 (-391)))) (|has| |#1| (-629 (-903 (-391))))) ELT) (((-903 (-557)) $) 91 (-12 (|has| |#3| (-629 (-903 (-557)))) (|has| |#1| (-629 (-903 (-557))))) ELT) (((-546) $) 90 (-12 (|has| |#3| (-629 (-546))) (|has| |#1| (-629 (-546)))) ELT) (($ (-963 (-419 (-557)))) 248 (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#3| (-629 (-1196)))) ELT) (($ (-963 (-557))) 245 (-3955 (-12 (-2957 (|has| |#1| (-38 (-419 (-557))))) (|has| |#1| (-38 (-557))) (|has| |#3| (-629 (-1196)))) (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#3| (-629 (-1196))))) ELT) (($ (-963 |#1|)) 242 (|has| |#3| (-629 (-1196))) ELT) (((-1178) $) 220 (-12 (|has| |#1| (-1057 (-557))) (|has| |#3| (-629 (-1196)))) ELT) (((-963 |#1|) $) 219 (|has| |#3| (-629 (-1196))) ELT)) (-3216 ((|#1| $) 189 (|has| |#1| (-464)) ELT) (($ $ |#3|) 116 (|has| |#1| (-464)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) 114 (-2959 (|has| $ (-147)) (|has| |#1| (-927))) ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (((-963 |#1|) $) 218 (|has| |#3| (-629 (-1196))) ELT) (($ (-419 (-557))) 88 (-3955 (|has| |#1| (-1057 (-419 (-557)))) (|has| |#1| (-38 (-419 (-557))))) ELT) (($ $) 95 (|has| |#1| (-568)) ELT)) (-4245 (((-659 |#1|) $) 182 T ELT)) (-4105 ((|#1| $ |#2|) 169 T ELT) (($ $ |#3| (-789)) 138 T ELT) (($ $ (-659 |#3|) (-659 (-789))) 137 T ELT)) (-3101 (((-709 $) $) 89 (-3955 (-2959 (|has| $ (-147)) (|has| |#1| (-927))) (|has| |#1| (-147))) ELT)) (-3526 (((-789)) 37 T CONST)) (-1801 (($ $ $ (-789)) 187 (|has| |#1| (-175)) ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 99 (|has| |#1| (-568)) ELT)) (-3057 (($) 23 T CONST)) (-3583 (((-3 (-114) "failed") $ $) 278 T ELT)) (-3063 (($) 39 T CONST)) (-3562 (($ $ $ $ (-789)) 227 (|has| |#1| (-568)) ELT)) (-3563 (($ $ $ (-789)) 228 (|has| |#1| (-568)) ELT)) (-3068 (($ $ (-659 |#3|) (-659 (-789))) 52 T ELT) (($ $ |#3| (-789)) 51 T ELT) (($ $ (-659 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ |#1|) 170 (|has| |#1| (-376)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-557))) 172 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ (-419 (-557)) $) 171 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) -(((-1084 |#1| |#2| |#3|) (-142) (-1068) (-813) (-859)) (T -1084)) -((-3596 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-789)))) (-3864 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)))) (-3594 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)))) (-4225 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)))) (-3593 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)))) (-3592 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-659 *1)) (-4 *1 (-1084 *3 *4 *5)))) (-3591 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)))) (-3590 (*1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)))) (-4387 (*1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-114)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-114)))) (-3587 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)))) (-3586 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)))) (-3585 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-659 *1)) (-4 *1 (-1084 *3 *4 *5)))) (-3584 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-659 *1)) (-4 *1 (-1084 *3 *4 *5)))) (-3583 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-114)))) (-4127 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-114)))) (-3582 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-114)))) (-4122 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-114)))) (-4122 (*1 *2 *1 *3) (-12 (-5 *3 (-659 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)))) (-4120 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-114)))) (-4120 (*1 *2 *1 *3) (-12 (-5 *3 (-659 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)))) (-4119 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-114)))) (-4119 (*1 *2 *1 *3) (-12 (-5 *3 (-659 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)))) (-4123 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-114)))) (-4123 (*1 *2 *1 *3) (-12 (-5 *3 (-659 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)))) (-3581 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)))) (-3580 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)))) (-3581 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)))) (-3580 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)))) (-3579 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)))) (-3578 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)))) (-3579 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)))) (-3578 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)))) (-3577 (*1 *2 *1 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-2 (|:| -4382 *1) (|:| |gap| (-789)) (|:| -3301 *1))) (-4 *1 (-1084 *3 *4 *5)))) (-3577 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *3 (-859)) (-5 *2 (-2 (|:| -4382 *1) (|:| |gap| (-789)) (|:| -3301 *1))) (-4 *1 (-1084 *4 *5 *3)))) (-3576 (*1 *2 *1 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-2 (|:| -4382 *1) (|:| |gap| (-789)) (|:| -2182 *1) (|:| -3301 *1))) (-4 *1 (-1084 *3 *4 *5)))) (-3576 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *3 (-859)) (-5 *2 (-2 (|:| -4382 *1) (|:| |gap| (-789)) (|:| -2182 *1) (|:| -3301 *1))) (-4 *1 (-1084 *4 *5 *3)))) (-4180 (*1 *2 *1 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-2 (|:| -2182 *1) (|:| -3301 *1))) (-4 *1 (-1084 *3 *4 *5)))) (-3575 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)))) (-3574 (*1 *2 *1 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3899 (-789)))) (-4 *1 (-1084 *3 *4 *5)))) (-4115 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)))) (-4114 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-963 (-419 (-557)))) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-38 (-419 (-557)))) (-4 *5 (-629 (-1196))) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-963 (-419 (-557)))) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-38 (-419 (-557)))) (-4 *5 (-629 (-1196))) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-963 (-419 (-557)))) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-38 (-419 (-557)))) (-4 *5 (-629 (-1196))) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)))) (-3573 (*1 *1 *2) (|partial| -3955 (-12 (-5 *2 (-963 (-557))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-2957 (-4 *3 (-38 (-419 (-557))))) (-4 *3 (-38 (-557))) (-4 *5 (-629 (-1196)))) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859))) (-12 (-5 *2 (-963 (-557))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *5 (-629 (-1196)))) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859))))) (-3572 (*1 *1 *2) (-3955 (-12 (-5 *2 (-963 (-557))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-2957 (-4 *3 (-38 (-419 (-557))))) (-4 *3 (-38 (-557))) (-4 *5 (-629 (-1196)))) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859))) (-12 (-5 *2 (-963 (-557))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *5 (-629 (-1196)))) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859))))) (-4400 (*1 *1 *2) (-3955 (-12 (-5 *2 (-963 (-557))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-2957 (-4 *3 (-38 (-419 (-557))))) (-4 *3 (-38 (-557))) (-4 *5 (-629 (-1196)))) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859))) (-12 (-5 *2 (-963 (-557))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *5 (-629 (-1196)))) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859))))) (-3573 (*1 *1 *2) (|partial| -3955 (-12 (-5 *2 (-963 *3)) (-12 (-2957 (-4 *3 (-38 (-419 (-557))))) (-2957 (-4 *3 (-38 (-557)))) (-4 *5 (-629 (-1196)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-813)) (-4 *5 (-859))) (-12 (-5 *2 (-963 *3)) (-12 (-2957 (-4 *3 (-556))) (-2957 (-4 *3 (-38 (-419 (-557))))) (-4 *3 (-38 (-557))) (-4 *5 (-629 (-1196)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-813)) (-4 *5 (-859))) (-12 (-5 *2 (-963 *3)) (-12 (-2957 (-4 *3 (-1010 (-557)))) (-4 *3 (-38 (-419 (-557)))) (-4 *5 (-629 (-1196)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-813)) (-4 *5 (-859))))) (-3572 (*1 *1 *2) (-3955 (-12 (-5 *2 (-963 *3)) (-12 (-2957 (-4 *3 (-38 (-419 (-557))))) (-2957 (-4 *3 (-38 (-557)))) (-4 *5 (-629 (-1196)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-813)) (-4 *5 (-859))) (-12 (-5 *2 (-963 *3)) (-12 (-2957 (-4 *3 (-556))) (-2957 (-4 *3 (-38 (-419 (-557))))) (-4 *3 (-38 (-557))) (-4 *5 (-629 (-1196)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-813)) (-4 *5 (-859))) (-12 (-5 *2 (-963 *3)) (-12 (-2957 (-4 *3 (-1010 (-557)))) (-4 *3 (-38 (-419 (-557)))) (-4 *5 (-629 (-1196)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-813)) (-4 *5 (-859))))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *5 (-629 (-1196))) (-4 *4 (-813)) (-4 *5 (-859)))) (-3571 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *2 (-568)))) (-3570 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *2 (-568)))) (-3569 (*1 *1 *1 *2) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *2 (-568)))) (-3568 (*1 *1 *1 *2) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *2 (-568)))) (-3569 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *2 (-568)))) (-3568 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *2 (-568)))) (-4183 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *2 (-568)))) (-3567 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-2 (|:| -3560 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1084 *3 *4 *5)))) (-3566 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-2 (|:| -3560 *1) (|:| |coef1| *1))) (-4 *1 (-1084 *3 *4 *5)))) (-3565 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-2 (|:| -3560 *1) (|:| |coef2| *1))) (-4 *1 (-1084 *3 *4 *5)))) (-4184 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *2 (-568)))) (-3564 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-659 *1)) (-4 *1 (-1084 *3 *4 *5)))) (-3606 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *2 (-568)))) (-3563 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *3 (-568)))) (-3562 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *3 (-568)))) (-3561 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *2 (-568)))) (-3560 (*1 *2 *2 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *2 (-464)))) (-3559 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *2 (-464)))) (-3558 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *2 (-464)))) (-3557 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *2 (-464)))) (-3556 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *2 (-464))))) -(-13 (-967 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3596 (|t#3| $)) (-15 -3595 ((-789) $)) (-15 -3864 ($ $)) (-15 -3594 ($ $)) (-15 -4225 ($ $)) (-15 -3593 ($ $)) (-15 -3592 ((-659 $) $)) (-15 -3591 ($ $)) (-15 -3590 ($ $ |t#3|)) (-15 -4387 ($ $ |t#3|)) (-15 -3589 ((-114) $)) (-15 -3588 ((-114) $)) (-15 -3587 ($ $)) (-15 -3586 ($ $)) (-15 -3585 ((-659 $) $)) (-15 -3584 ((-659 $) $)) (-15 -3583 ((-3 (-114) "failed") $ $)) (-15 -4127 ((-114) $ $)) (-15 -3582 ((-114) $ $)) (-15 -4122 ((-114) $ $)) (-15 -4122 ((-114) $ (-659 $))) (-15 -4120 ((-114) $ $)) (-15 -4120 ((-114) $ (-659 $))) (-15 -4119 ((-114) $ $)) (-15 -4119 ((-114) $ (-659 $))) (-15 -4123 ((-114) $ $)) (-15 -4123 ((-114) $ (-659 $))) (-15 -3581 ($ $ $)) (-15 -3580 ($ $ $)) (-15 -3581 ($ $ $ |t#3|)) (-15 -3580 ($ $ $ |t#3|)) (-15 -3579 ($ $ $)) (-15 -3578 ($ $ $)) (-15 -3579 ($ $ $ |t#3|)) (-15 -3578 ($ $ $ |t#3|)) (-15 -3577 ((-2 (|:| -4382 $) (|:| |gap| (-789)) (|:| -3301 $)) $ $)) (-15 -3577 ((-2 (|:| -4382 $) (|:| |gap| (-789)) (|:| -3301 $)) $ $ |t#3|)) (-15 -3576 ((-2 (|:| -4382 $) (|:| |gap| (-789)) (|:| -2182 $) (|:| -3301 $)) $ $)) (-15 -3576 ((-2 (|:| -4382 $) (|:| |gap| (-789)) (|:| -2182 $) (|:| -3301 $)) $ $ |t#3|)) (-15 -4180 ((-2 (|:| -2182 $) (|:| -3301 $)) $ $)) (-15 -3575 ($ $ $)) (-15 -3574 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3899 (-789))) $ $)) (-15 -4115 ($ $ $)) (-15 -4114 ($ $ $)) (IF (|has| |t#3| (-629 (-1196))) (PROGN (-6 (-628 (-963 |t#1|))) (-6 (-629 (-963 |t#1|))) (IF (|has| |t#1| (-38 (-419 (-557)))) (PROGN (-15 -3573 ((-3 $ "failed") (-963 (-419 (-557))))) (-15 -3572 ($ (-963 (-419 (-557))))) (-15 -4400 ($ (-963 (-419 (-557))))) (-15 -3573 ((-3 $ "failed") (-963 (-557)))) (-15 -3572 ($ (-963 (-557)))) (-15 -4400 ($ (-963 (-557)))) (IF (|has| |t#1| (-1010 (-557))) |%noBranch| (PROGN (-15 -3573 ((-3 $ "failed") (-963 |t#1|))) (-15 -3572 ($ (-963 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-557))) (IF (|has| |t#1| (-38 (-419 (-557)))) |%noBranch| (PROGN (-15 -3573 ((-3 $ "failed") (-963 (-557)))) (-15 -3572 ($ (-963 (-557)))) (-15 -4400 ($ (-963 (-557)))) (IF (|has| |t#1| (-556)) |%noBranch| (PROGN (-15 -3573 ((-3 $ "failed") (-963 |t#1|))) (-15 -3572 ($ (-963 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-557))) |%noBranch| (IF (|has| |t#1| (-38 (-419 (-557)))) |%noBranch| (PROGN (-15 -3573 ((-3 $ "failed") (-963 |t#1|))) (-15 -3572 ($ (-963 |t#1|)))))) (-15 -4400 ($ (-963 |t#1|))) (IF (|has| |t#1| (-1057 (-557))) (-6 (-629 (-1178))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -3571 ($ $)) (-15 -3570 ($ $)) (-15 -3569 ($ $ |t#1|)) (-15 -3568 ($ $ |t#1|)) (-15 -3569 ($ $ $)) (-15 -3568 ($ $ $)) (-15 -4183 ($ $ $)) (-15 -3567 ((-2 (|:| -3560 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3566 ((-2 (|:| -3560 $) (|:| |coef1| $)) $ $)) (-15 -3565 ((-2 (|:| -3560 $) (|:| |coef2| $)) $ $)) (-15 -4184 ($ $ $)) (-15 -3564 ((-659 $) $ $)) (-15 -3606 ($ $ $)) (-15 -3563 ($ $ $ (-789))) (-15 -3562 ($ $ $ $ (-789))) (-15 -3561 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3560 (|t#1| |t#1| $)) (-15 -3559 ($ $)) (-15 -3558 ($ $)) (-15 -3557 ($ $)) (-15 -3556 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) -3955 (|has| |#1| (-1057 (-419 (-557)))) (|has| |#1| (-38 (-419 (-557))))) ((-631 (-557)) . T) ((-631 |#1|) . T) ((-631 |#3|) . T) ((-631 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-628 (-875)) . T) ((-628 (-963 |#1|)) |has| |#3| (-629 (-1196))) ((-175) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-629 (-546)) -12 (|has| |#1| (-629 (-546))) (|has| |#3| (-629 (-546)))) ((-629 (-903 (-391))) -12 (|has| |#1| (-629 (-903 (-391)))) (|has| |#3| (-629 (-903 (-391))))) ((-629 (-903 (-557))) -12 (|has| |#1| (-629 (-903 (-557)))) (|has| |#3| (-629 (-903 (-557))))) ((-629 (-963 |#1|)) |has| |#3| (-629 (-1196))) ((-629 (-1178)) -12 (|has| |#1| (-1057 (-557))) (|has| |#3| (-629 (-1196)))) ((-302) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-321 $) . T) ((-338 |#1| |#2|) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-464) -3955 (|has| |#1| (-927)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-664 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-666 (-557)) |has| |#1| (-656 (-557))) ((-666 |#1|) . T) ((-666 $) . T) ((-658 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-658 |#1|) |has| |#1| (-175)) ((-658 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-656 (-557)) |has| |#1| (-656 (-557))) ((-656 |#1|) . T) ((-735 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-735 |#1|) |has| |#1| (-175)) ((-735 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-744) . T) ((-909 $ |#3|) . T) ((-915 |#3|) . T) ((-917 |#3|) . T) ((-899 (-391)) -12 (|has| |#1| (-899 (-391))) (|has| |#3| (-899 (-391)))) ((-899 (-557)) -12 (|has| |#1| (-899 (-557))) (|has| |#3| (-899 (-557)))) ((-967 |#1| |#2| |#3|) . T) ((-927) |has| |#1| (-927)) ((-1057 (-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((-1057 (-557)) |has| |#1| (-1057 (-557))) ((-1057 |#1|) . T) ((-1057 |#3|) . T) ((-1070 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-1070 |#1|) . T) ((-1070 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1075 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-1075 |#1|) . T) ((-1075 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T) ((-1241) |has| |#1| (-927))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3597 (((-659 (-1154)) $) 18 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 27 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-3649 (((-1154) $) 20 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1085) (-13 (-1102) (-10 -8 (-15 -3597 ((-659 (-1154)) $)) (-15 -3649 ((-1154) $))))) (T -1085)) -((-3597 (*1 *2 *1) (-12 (-5 *2 (-659 (-1154))) (-5 *1 (-1085)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1085))))) -((-3604 (((-114) |#3| $) 15 T ELT)) (-3599 (((-3 $ #1="failed") |#3| (-936)) 29 T ELT)) (-3885 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3602 (((-114) |#3| $) 19 T ELT)) (-3603 (((-114) |#3| $) 17 T ELT))) -(((-1086 |#1| |#2| |#3|) (-10 -7 (-15 -3599 ((-3 |#1| #1="failed") |#3| (-936))) (-15 -3885 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3602 ((-114) |#3| |#1|)) (-15 -3603 ((-114) |#3| |#1|)) (-15 -3604 ((-114) |#3| |#1|))) (-1087 |#2| |#3|) (-13 (-858) (-376)) (-1262 |#2|)) (T -1086)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) |#2| $) 25 T ELT)) (-4051 (((-557) |#2| $) 26 T ELT)) (-3599 (((-3 $ "failed") |#2| (-936)) 19 T ELT)) (-3598 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3885 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3602 (((-114) |#2| $) 23 T ELT)) (-3603 (((-114) |#2| $) 24 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3601 ((|#2| $) 21 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-4198 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3600 (((-659 $) |#2|) 20 T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-1087 |#1| |#2|) (-142) (-13 (-858) (-376)) (-1262 |t#1|)) (T -1087)) -((-4051 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-858) (-376))) (-4 *3 (-1262 *4)) (-5 *2 (-557)))) (-3604 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-858) (-376))) (-4 *3 (-1262 *4)) (-5 *2 (-114)))) (-3603 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-858) (-376))) (-4 *3 (-1262 *4)) (-5 *2 (-114)))) (-3602 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-858) (-376))) (-4 *3 (-1262 *4)) (-5 *2 (-114)))) (-3885 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-13 (-858) (-376))) (-4 *2 (-1262 *3)))) (-3601 (*1 *2 *1) (-12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-13 (-858) (-376))) (-4 *2 (-1262 *3)))) (-3600 (*1 *2 *3) (-12 (-4 *4 (-13 (-858) (-376))) (-4 *3 (-1262 *4)) (-5 *2 (-659 *1)) (-4 *1 (-1087 *4 *3)))) (-3599 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-936)) (-4 *4 (-13 (-858) (-376))) (-4 *1 (-1087 *4 *2)) (-4 *2 (-1262 *4)))) (-4198 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1087 *2 *3)) (-4 *2 (-13 (-858) (-376))) (-4 *3 (-1262 *2)))) (-3598 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1087 *2 *3)) (-4 *2 (-13 (-858) (-376))) (-4 *3 (-1262 *2))))) -(-13 (-1120) (-10 -8 (-15 -4051 ((-557) |t#2| $)) (-15 -3604 ((-114) |t#2| $)) (-15 -3603 ((-114) |t#2| $)) (-15 -3602 ((-114) |t#2| $)) (-15 -3885 ((-3 |t#2| "failed") |t#2| $)) (-15 -3601 (|t#2| $)) (-15 -3600 ((-659 $) |t#2|)) (-15 -3599 ((-3 $ "failed") |t#2| (-936))) (-15 -4198 (|t#1| |t#2| $ |t#1|)) (-15 -3598 (|t#1| |t#2| $ |t#1|)))) -(((-102) . T) ((-628 (-875)) . T) ((-1120) . T) ((-1236) . T)) -((-3854 (((-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) (-659 |#4|) (-659 |#5|) (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) (-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) (-789)) 114 T ELT)) (-3851 (((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5| (-789)) 63 T ELT)) (-3855 (((-1292) (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) (-789)) 99 T ELT)) (-3849 (((-789) (-659 |#4|) (-659 |#5|)) 30 T ELT)) (-3852 (((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5| (-789)) 65 T ELT) (((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5| (-789) (-114)) 67 T ELT)) (-3853 (((-659 |#5|) (-659 |#4|) (-659 |#5|) (-114) (-114) (-114) (-114) (-114)) 86 T ELT) (((-659 |#5|) (-659 |#4|) (-659 |#5|) (-114) (-114)) 87 T ELT)) (-4400 (((-1178) (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) 92 T ELT)) (-3850 (((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5| (-114)) 62 T ELT)) (-3848 (((-789) (-659 |#4|) (-659 |#5|)) 21 T ELT))) -(((-1088 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3848 ((-789) (-659 |#4|) (-659 |#5|))) (-15 -3849 ((-789) (-659 |#4|) (-659 |#5|))) (-15 -3850 ((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5| (-114))) (-15 -3851 ((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5| (-789))) (-15 -3851 ((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5|)) (-15 -3852 ((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5| (-789) (-114))) (-15 -3852 ((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5| (-789))) (-15 -3852 ((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5|)) (-15 -3853 ((-659 |#5|) (-659 |#4|) (-659 |#5|) (-114) (-114))) (-15 -3853 ((-659 |#5|) (-659 |#4|) (-659 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -3854 ((-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) (-659 |#4|) (-659 |#5|) (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) (-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) (-789))) (-15 -4400 ((-1178) (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|)))) (-15 -3855 ((-1292) (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) (-789)))) (-464) (-813) (-859) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -1088)) -((-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-2 (|:| |val| (-659 *8)) (|:| -1741 *9)))) (-5 *4 (-789)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-1292)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-659 *7)) (|:| -1741 *8))) (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-1178)) (-5 *1 (-1088 *4 *5 *6 *7 *8)))) (-3854 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-659 *11)) (|:| |todo| (-659 (-2 (|:| |val| *3) (|:| -1741 *11)))))) (-5 *6 (-789)) (-5 *2 (-659 (-2 (|:| |val| (-659 *10)) (|:| -1741 *11)))) (-5 *3 (-659 *10)) (-5 *4 (-659 *11)) (-4 *10 (-1084 *7 *8 *9)) (-4 *11 (-1090 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-813)) (-4 *9 (-859)) (-5 *1 (-1088 *7 *8 *9 *10 *11)))) (-3853 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-659 *9)) (-5 *3 (-659 *8)) (-5 *4 (-114)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) (-3853 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-659 *9)) (-5 *3 (-659 *8)) (-5 *4 (-114)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) (-3852 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-659 *4)) (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3852 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-789)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-659 *4)) (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) (-3852 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-789)) (-5 *6 (-114)) (-4 *7 (-464)) (-4 *8 (-813)) (-4 *9 (-859)) (-4 *3 (-1084 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-659 *4)) (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) (-5 *1 (-1088 *7 *8 *9 *3 *4)) (-4 *4 (-1090 *7 *8 *9 *3)))) (-3851 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-659 *4)) (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3851 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-789)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-659 *4)) (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) (-3850 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-659 *4)) (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) (-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *8)) (-5 *4 (-659 *9)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-789)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) (-3848 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *8)) (-5 *4 (-659 *9)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-789)) (-5 *1 (-1088 *5 *6 *7 *8 *9))))) -((-3613 (((-114) |#5| $) 26 T ELT)) (-3611 (((-114) |#5| $) 29 T ELT)) (-3614 (((-114) |#5| $) 18 T ELT) (((-114) $) 52 T ELT)) (-3654 (((-659 $) |#5| $) NIL T ELT) (((-659 $) (-659 |#5|) $) 94 T ELT) (((-659 $) (-659 |#5|) (-659 $)) 92 T ELT) (((-659 $) |#5| (-659 $)) 95 T ELT)) (-4197 (($ $ |#5|) NIL T ELT) (((-659 $) |#5| $) NIL T ELT) (((-659 $) |#5| (-659 $)) 73 T ELT) (((-659 $) (-659 |#5|) $) 75 T ELT) (((-659 $) (-659 |#5|) (-659 $)) 77 T ELT)) (-3605 (((-659 $) |#5| $) NIL T ELT) (((-659 $) |#5| (-659 $)) 64 T ELT) (((-659 $) (-659 |#5|) $) 69 T ELT) (((-659 $) (-659 |#5|) (-659 $)) 71 T ELT)) (-3612 (((-114) |#5| $) 32 T ELT))) -(((-1089 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4197 ((-659 |#1|) (-659 |#5|) (-659 |#1|))) (-15 -4197 ((-659 |#1|) (-659 |#5|) |#1|)) (-15 -4197 ((-659 |#1|) |#5| (-659 |#1|))) (-15 -4197 ((-659 |#1|) |#5| |#1|)) (-15 -3605 ((-659 |#1|) (-659 |#5|) (-659 |#1|))) (-15 -3605 ((-659 |#1|) (-659 |#5|) |#1|)) (-15 -3605 ((-659 |#1|) |#5| (-659 |#1|))) (-15 -3605 ((-659 |#1|) |#5| |#1|)) (-15 -3654 ((-659 |#1|) |#5| (-659 |#1|))) (-15 -3654 ((-659 |#1|) (-659 |#5|) (-659 |#1|))) (-15 -3654 ((-659 |#1|) (-659 |#5|) |#1|)) (-15 -3654 ((-659 |#1|) |#5| |#1|)) (-15 -3611 ((-114) |#5| |#1|)) (-15 -3614 ((-114) |#1|)) (-15 -3612 ((-114) |#5| |#1|)) (-15 -3613 ((-114) |#5| |#1|)) (-15 -3614 ((-114) |#5| |#1|)) (-15 -4197 (|#1| |#1| |#5|))) (-1090 |#2| |#3| |#4| |#5|) (-464) (-813) (-859) (-1084 |#2| |#3| |#4|)) (T -1089)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-4109 (((-659 (-2 (|:| -4289 $) (|:| -1903 (-659 |#4|)))) (-659 |#4|)) 90 T ELT)) (-4110 (((-659 $) (-659 |#4|)) 91 T ELT) (((-659 $) (-659 |#4|) (-114)) 118 T ELT)) (-3482 (((-659 |#3|) $) 37 T ELT)) (-3307 (((-114) $) 30 T ELT)) (-3298 (((-114) $) 21 (|has| |#1| (-568)) ELT)) (-4121 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4116 ((|#4| |#4| $) 97 T ELT)) (-4203 (((-659 (-2 (|:| |val| |#4|) (|:| -1741 $))) |#4| $) 133 T ELT)) (-3308 (((-2 (|:| |under| $) (|:| -3530 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4138 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4423)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-4152 (($) 46 T CONST)) (-3303 (((-114) $) 26 (|has| |#1| (-568)) ELT)) (-3305 (((-114) $ $) 28 (|has| |#1| (-568)) ELT)) (-3304 (((-114) $ $) 27 (|has| |#1| (-568)) ELT)) (-3306 (((-114) $) 29 (|has| |#1| (-568)) ELT)) (-4117 (((-659 |#4|) (-659 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3299 (((-659 |#4|) (-659 |#4|) $) 22 (|has| |#1| (-568)) ELT)) (-3300 (((-659 |#4|) (-659 |#4|) $) 23 (|has| |#1| (-568)) ELT)) (-3573 (((-3 $ "failed") (-659 |#4|)) 40 T ELT)) (-3572 (($ (-659 |#4|)) 39 T ELT)) (-4227 (((-3 $ #1#) $) 87 T ELT)) (-4113 ((|#4| |#4| $) 94 T ELT)) (-1465 (($ $) 69 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3824 (($ |#4| $) 68 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4423)) ELT)) (-3301 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-568)) ELT)) (-4122 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4111 ((|#4| |#4| $) 92 T ELT)) (-4270 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4423)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4423)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4124 (((-2 (|:| -4289 (-659 |#4|)) (|:| -1903 (-659 |#4|))) $) 110 T ELT)) (-3613 (((-114) |#4| $) 143 T ELT)) (-3611 (((-114) |#4| $) 140 T ELT)) (-3614 (((-114) |#4| $) 144 T ELT) (((-114) $) 141 T ELT)) (-3288 (((-659 |#4|) $) 53 (|has| $ (-6 -4423)) ELT)) (-4123 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3596 ((|#3| $) 38 T ELT)) (-3005 (((-659 |#4|) $) 54 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3313 (((-659 |#3|) $) 36 T ELT)) (-3312 (((-114) |#3| $) 35 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3607 (((-3 |#4| (-659 $)) |#4| |#4| $) 135 T ELT)) (-3606 (((-659 (-2 (|:| |val| |#4|) (|:| -1741 $))) |#4| |#4| $) 134 T ELT)) (-4226 (((-3 |#4| #1#) $) 88 T ELT)) (-3608 (((-659 $) |#4| $) 136 T ELT)) (-3610 (((-3 (-114) (-659 $)) |#4| $) 139 T ELT)) (-3609 (((-659 (-2 (|:| |val| (-114)) (|:| -1741 $))) |#4| $) 138 T ELT) (((-114) |#4| $) 137 T ELT)) (-3654 (((-659 $) |#4| $) 132 T ELT) (((-659 $) (-659 |#4|) $) 131 T ELT) (((-659 $) (-659 |#4|) (-659 $)) 130 T ELT) (((-659 $) |#4| (-659 $)) 129 T ELT)) (-3858 (($ |#4| $) 124 T ELT) (($ (-659 |#4|) $) 123 T ELT)) (-4125 (((-659 |#4|) $) 112 T ELT)) (-4119 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4114 ((|#4| |#4| $) 95 T ELT)) (-4127 (((-114) $ $) 115 T ELT)) (-3302 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-568)) ELT)) (-4120 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4115 ((|#4| |#4| $) 96 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4229 (((-3 |#4| #1#) $) 89 T ELT)) (-1466 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4107 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-4197 (($ $ |#4|) 82 T ELT) (((-659 $) |#4| $) 122 T ELT) (((-659 $) |#4| (-659 $)) 121 T ELT) (((-659 $) (-659 |#4|) $) 120 T ELT) (((-659 $) (-659 |#4|) (-659 $)) 119 T ELT)) (-2156 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 |#4|) (-659 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-659 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT)) (-1327 (((-114) $ $) 42 T ELT)) (-3821 (((-114) $) 45 T ELT)) (-3991 (($) 44 T ELT)) (-4376 (((-789) $) 111 T ELT)) (-2155 (((-789) |#4| $) 55 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT) (((-789) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) 43 T ELT)) (-4400 (((-546) $) 70 (|has| |#4| (-629 (-546))) ELT)) (-3948 (($ (-659 |#4|)) 61 T ELT)) (-3309 (($ $ |#3|) 32 T ELT)) (-3311 (($ $ |#3|) 34 T ELT)) (-4112 (($ $) 93 T ELT)) (-3310 (($ $ |#3|) 33 T ELT)) (-4374 (((-875) $) 13 T ELT) (((-659 |#4|) $) 41 T ELT)) (-4106 (((-789) $) 81 (|has| |#3| (-381)) ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-4126 (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |#4|))) #1#) (-659 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |#4|))) #1#) (-659 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4118 (((-114) $ (-1 (-114) |#4| (-659 |#4|))) 103 T ELT)) (-3605 (((-659 $) |#4| $) 128 T ELT) (((-659 $) |#4| (-659 $)) 127 T ELT) (((-659 $) (-659 |#4|) $) 126 T ELT) (((-659 $) (-659 |#4|) (-659 $)) 125 T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4423)) ELT)) (-4108 (((-659 |#3|) $) 86 T ELT)) (-3612 (((-114) |#4| $) 142 T ELT)) (-4361 (((-114) |#3| $) 85 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4385 (((-789) $) 47 (|has| $ (-6 -4423)) ELT))) -(((-1090 |#1| |#2| |#3| |#4|) (-142) (-464) (-813) (-859) (-1084 |t#1| |t#2| |t#3|)) (T -1090)) -((-3614 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-114)))) (-3613 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-114)))) (-3612 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-114)))) (-3614 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-114)))) (-3611 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-114)))) (-3610 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-3 (-114) (-659 *1))) (-4 *1 (-1090 *4 *5 *6 *3)))) (-3609 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-659 (-2 (|:| |val| (-114)) (|:| -1741 *1)))) (-4 *1 (-1090 *4 *5 *6 *3)))) (-3609 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-114)))) (-3608 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-659 *1)) (-4 *1 (-1090 *4 *5 *6 *3)))) (-3607 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-3 *3 (-659 *1))) (-4 *1 (-1090 *4 *5 *6 *3)))) (-3606 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *1)))) (-4 *1 (-1090 *4 *5 *6 *3)))) (-4203 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *1)))) (-4 *1 (-1090 *4 *5 *6 *3)))) (-3654 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-659 *1)) (-4 *1 (-1090 *4 *5 *6 *3)))) (-3654 (*1 *2 *3 *1) (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-659 *1)) (-4 *1 (-1090 *4 *5 *6 *7)))) (-3654 (*1 *2 *3 *2) (-12 (-5 *2 (-659 *1)) (-5 *3 (-659 *7)) (-4 *1 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)))) (-3654 (*1 *2 *3 *2) (-12 (-5 *2 (-659 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)))) (-3605 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-659 *1)) (-4 *1 (-1090 *4 *5 *6 *3)))) (-3605 (*1 *2 *3 *2) (-12 (-5 *2 (-659 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)))) (-3605 (*1 *2 *3 *1) (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-659 *1)) (-4 *1 (-1090 *4 *5 *6 *7)))) (-3605 (*1 *2 *3 *2) (-12 (-5 *2 (-659 *1)) (-5 *3 (-659 *7)) (-4 *1 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)))) (-3858 (*1 *1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *2 (-1084 *3 *4 *5)))) (-3858 (*1 *1 *2 *1) (-12 (-5 *2 (-659 *6)) (-4 *1 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)))) (-4197 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-659 *1)) (-4 *1 (-1090 *4 *5 *6 *3)))) (-4197 (*1 *2 *3 *2) (-12 (-5 *2 (-659 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)))) (-4197 (*1 *2 *3 *1) (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-659 *1)) (-4 *1 (-1090 *4 *5 *6 *7)))) (-4197 (*1 *2 *3 *2) (-12 (-5 *2 (-659 *1)) (-5 *3 (-659 *7)) (-4 *1 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)))) (-4110 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *8)) (-5 *4 (-114)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-659 *1)) (-4 *1 (-1090 *5 *6 *7 *8))))) -(-13 (-1231 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3614 ((-114) |t#4| $)) (-15 -3613 ((-114) |t#4| $)) (-15 -3612 ((-114) |t#4| $)) (-15 -3614 ((-114) $)) (-15 -3611 ((-114) |t#4| $)) (-15 -3610 ((-3 (-114) (-659 $)) |t#4| $)) (-15 -3609 ((-659 (-2 (|:| |val| (-114)) (|:| -1741 $))) |t#4| $)) (-15 -3609 ((-114) |t#4| $)) (-15 -3608 ((-659 $) |t#4| $)) (-15 -3607 ((-3 |t#4| (-659 $)) |t#4| |t#4| $)) (-15 -3606 ((-659 (-2 (|:| |val| |t#4|) (|:| -1741 $))) |t#4| |t#4| $)) (-15 -4203 ((-659 (-2 (|:| |val| |t#4|) (|:| -1741 $))) |t#4| $)) (-15 -3654 ((-659 $) |t#4| $)) (-15 -3654 ((-659 $) (-659 |t#4|) $)) (-15 -3654 ((-659 $) (-659 |t#4|) (-659 $))) (-15 -3654 ((-659 $) |t#4| (-659 $))) (-15 -3605 ((-659 $) |t#4| $)) (-15 -3605 ((-659 $) |t#4| (-659 $))) (-15 -3605 ((-659 $) (-659 |t#4|) $)) (-15 -3605 ((-659 $) (-659 |t#4|) (-659 $))) (-15 -3858 ($ |t#4| $)) (-15 -3858 ($ (-659 |t#4|) $)) (-15 -4197 ((-659 $) |t#4| $)) (-15 -4197 ((-659 $) |t#4| (-659 $))) (-15 -4197 ((-659 $) (-659 |t#4|) $)) (-15 -4197 ((-659 $) (-659 |t#4|) (-659 $))) (-15 -4110 ((-659 $) (-659 |t#4|) (-114))))) -(((-34) . T) ((-102) . T) ((-628 (-659 |#4|)) . T) ((-628 (-875)) . T) ((-153 |#4|) . T) ((-629 (-546)) |has| |#4| (-629 (-546))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1120) . T) ((-1231 |#1| |#2| |#3| |#4|) . T) ((-1236) . T)) -((-3621 (((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) |#4| |#5|) 86 T ELT)) (-3618 (((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3620 (((-659 |#5|) |#4| |#5|) 74 T ELT)) (-3619 (((-659 (-2 (|:| |val| (-114)) (|:| -1741 |#5|))) |#4| |#5|) 47 T ELT) (((-114) |#4| |#5|) 55 T ELT)) (-3703 (((-1292)) 36 T ELT)) (-3701 (((-1292)) 25 T ELT)) (-3702 (((-1292) (-1178) (-1178) (-1178)) 32 T ELT)) (-3700 (((-1292) (-1178) (-1178) (-1178)) 21 T ELT)) (-3615 (((-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3616 (((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) |#3| (-114)) 117 T ELT) (((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) |#4| |#4| |#5| (-114) (-114)) 52 T ELT)) (-3617 (((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) |#4| |#4| |#5|) 112 T ELT))) -(((-1091 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3700 ((-1292) (-1178) (-1178) (-1178))) (-15 -3701 ((-1292))) (-15 -3702 ((-1292) (-1178) (-1178) (-1178))) (-15 -3703 ((-1292))) (-15 -3615 ((-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) |#4| |#4| |#5|)) (-15 -3616 ((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -3616 ((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) |#3| (-114))) (-15 -3617 ((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) |#4| |#4| |#5|)) (-15 -3618 ((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) |#4| |#4| |#5|)) (-15 -3619 ((-114) |#4| |#5|)) (-15 -3619 ((-659 (-2 (|:| |val| (-114)) (|:| -1741 |#5|))) |#4| |#5|)) (-15 -3620 ((-659 |#5|) |#4| |#5|)) (-15 -3621 ((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) |#4| |#5|))) (-464) (-813) (-859) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -1091)) -((-3621 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *4)))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3620 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-659 *4)) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3619 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-659 (-2 (|:| |val| (-114)) (|:| -1741 *4)))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3619 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3618 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *4)))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3617 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *4)))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3616 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-659 (-2 (|:| |val| (-659 *8)) (|:| -1741 *9)))) (-5 *5 (-114)) (-4 *8 (-1084 *6 *7 *4)) (-4 *9 (-1090 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *4 (-859)) (-5 *2 (-659 (-2 (|:| |val| *8) (|:| -1741 *9)))) (-5 *1 (-1091 *6 *7 *4 *8 *9)))) (-3616 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *4)))) (-5 *1 (-1091 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) (-3615 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3703 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1091 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-3702 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1091 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3701 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1091 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-3700 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1091 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3734 (((-1237) $) 13 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3622 (((-1154) $) 10 T ELT)) (-4374 (((-875) $) 20 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1092) (-13 (-1102) (-10 -8 (-15 -3622 ((-1154) $)) (-15 -3734 ((-1237) $))))) (T -1092)) -((-3622 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1092)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1092))))) -((-3682 (((-114) $ $) 7 T ELT))) -(((-1093) (-13 (-1236) (-10 -8 (-15 -3682 ((-114) $ $))))) (T -1093)) -((-3682 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1093))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3625 (($ $ (-659 (-1196)) (-1 (-114) (-659 |#3|))) 34 T ELT)) (-3626 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-659 (-1196))) 21 T ELT)) (-3946 ((|#3| $) 13 T ELT)) (-3573 (((-3 (-305 |#3|) "failed") $) 60 T ELT)) (-3572 (((-305 |#3|) $) NIL T ELT)) (-3623 (((-659 (-1196)) $) 16 T ELT)) (-3624 (((-903 |#1|) $) 11 T ELT)) (-3947 ((|#3| $) 12 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4228 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-936)) 41 T ELT)) (-4374 (((-875) $) 89 T ELT) (($ (-305 |#3|)) 22 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 38 T ELT))) -(((-1094 |#1| |#2| |#3|) (-13 (-1120) (-298 |#3| |#3|) (-1057 (-305 |#3|)) (-10 -8 (-15 -3626 ($ |#3| |#3|)) (-15 -3626 ($ |#3| |#3| (-659 (-1196)))) (-15 -3625 ($ $ (-659 (-1196)) (-1 (-114) (-659 |#3|)))) (-15 -3624 ((-903 |#1|) $)) (-15 -3947 (|#3| $)) (-15 -3946 (|#3| $)) (-15 -4228 (|#3| $ |#3| (-936))) (-15 -3623 ((-659 (-1196)) $)))) (-1120) (-13 (-1068) (-899 |#1|) (-629 (-903 |#1|))) (-13 (-433 |#2|) (-899 |#1|) (-629 (-903 |#1|)))) (T -1094)) -((-3626 (*1 *1 *2 *2) (-12 (-4 *3 (-1120)) (-4 *4 (-13 (-1068) (-899 *3) (-629 (-903 *3)))) (-5 *1 (-1094 *3 *4 *2)) (-4 *2 (-13 (-433 *4) (-899 *3) (-629 (-903 *3)))))) (-3626 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-659 (-1196))) (-4 *4 (-1120)) (-4 *5 (-13 (-1068) (-899 *4) (-629 (-903 *4)))) (-5 *1 (-1094 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-899 *4) (-629 (-903 *4)))))) (-3625 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 (-1196))) (-5 *3 (-1 (-114) (-659 *6))) (-4 *6 (-13 (-433 *5) (-899 *4) (-629 (-903 *4)))) (-4 *4 (-1120)) (-4 *5 (-13 (-1068) (-899 *4) (-629 (-903 *4)))) (-5 *1 (-1094 *4 *5 *6)))) (-3624 (*1 *2 *1) (-12 (-4 *3 (-1120)) (-4 *4 (-13 (-1068) (-899 *3) (-629 *2))) (-5 *2 (-903 *3)) (-5 *1 (-1094 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-899 *3) (-629 *2))))) (-3947 (*1 *2 *1) (-12 (-4 *3 (-1120)) (-4 *2 (-13 (-433 *4) (-899 *3) (-629 (-903 *3)))) (-5 *1 (-1094 *3 *4 *2)) (-4 *4 (-13 (-1068) (-899 *3) (-629 (-903 *3)))))) (-3946 (*1 *2 *1) (-12 (-4 *3 (-1120)) (-4 *2 (-13 (-433 *4) (-899 *3) (-629 (-903 *3)))) (-5 *1 (-1094 *3 *4 *2)) (-4 *4 (-13 (-1068) (-899 *3) (-629 (-903 *3)))))) (-4228 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-936)) (-4 *4 (-1120)) (-4 *5 (-13 (-1068) (-899 *4) (-629 (-903 *4)))) (-5 *1 (-1094 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-899 *4) (-629 (-903 *4)))))) (-3623 (*1 *2 *1) (-12 (-4 *3 (-1120)) (-4 *4 (-13 (-1068) (-899 *3) (-629 (-903 *3)))) (-5 *2 (-659 (-1196))) (-5 *1 (-1094 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-899 *3) (-629 (-903 *3))))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3968 (((-1196) $) 8 T ELT)) (-3658 (((-1178) $) 17 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 11 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 14 T ELT))) -(((-1095 |#1|) (-13 (-1120) (-10 -8 (-15 -3968 ((-1196) $)))) (-1196)) (T -1095)) -((-3968 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1095 *3)) (-14 *3 *2)))) -((-2965 (((-114) $ $) NIL T ELT)) (-3628 (($ (-659 (-1094 |#1| |#2| |#3|))) 14 T ELT)) (-3627 (((-659 (-1094 |#1| |#2| |#3|)) $) 21 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4228 ((|#3| $ |#3|) 24 T ELT) ((|#3| $ |#3| (-936)) 27 T ELT)) (-4374 (((-875) $) 17 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 20 T ELT))) -(((-1096 |#1| |#2| |#3|) (-13 (-1120) (-298 |#3| |#3|) (-10 -8 (-15 -3628 ($ (-659 (-1094 |#1| |#2| |#3|)))) (-15 -3627 ((-659 (-1094 |#1| |#2| |#3|)) $)) (-15 -4228 (|#3| $ |#3| (-936))))) (-1120) (-13 (-1068) (-899 |#1|) (-629 (-903 |#1|))) (-13 (-433 |#2|) (-899 |#1|) (-629 (-903 |#1|)))) (T -1096)) -((-3628 (*1 *1 *2) (-12 (-5 *2 (-659 (-1094 *3 *4 *5))) (-4 *3 (-1120)) (-4 *4 (-13 (-1068) (-899 *3) (-629 (-903 *3)))) (-4 *5 (-13 (-433 *4) (-899 *3) (-629 (-903 *3)))) (-5 *1 (-1096 *3 *4 *5)))) (-3627 (*1 *2 *1) (-12 (-4 *3 (-1120)) (-4 *4 (-13 (-1068) (-899 *3) (-629 (-903 *3)))) (-5 *2 (-659 (-1094 *3 *4 *5))) (-5 *1 (-1096 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-899 *3) (-629 (-903 *3)))))) (-4228 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-936)) (-4 *4 (-1120)) (-4 *5 (-13 (-1068) (-899 *4) (-629 (-903 *4)))) (-5 *1 (-1096 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-899 *4) (-629 (-903 *4))))))) -((-3629 (((-659 (-2 (|:| -1948 (-1190 |#1|)) (|:| -3640 (-659 (-963 |#1|))))) (-659 (-963 |#1|)) (-114) (-114)) 88 T ELT) (((-659 (-2 (|:| -1948 (-1190 |#1|)) (|:| -3640 (-659 (-963 |#1|))))) (-659 (-963 |#1|))) 92 T ELT) (((-659 (-2 (|:| -1948 (-1190 |#1|)) (|:| -3640 (-659 (-963 |#1|))))) (-659 (-963 |#1|)) (-114)) 90 T ELT))) -(((-1097 |#1| |#2|) (-10 -7 (-15 -3629 ((-659 (-2 (|:| -1948 (-1190 |#1|)) (|:| -3640 (-659 (-963 |#1|))))) (-659 (-963 |#1|)) (-114))) (-15 -3629 ((-659 (-2 (|:| -1948 (-1190 |#1|)) (|:| -3640 (-659 (-963 |#1|))))) (-659 (-963 |#1|)))) (-15 -3629 ((-659 (-2 (|:| -1948 (-1190 |#1|)) (|:| -3640 (-659 (-963 |#1|))))) (-659 (-963 |#1|)) (-114) (-114)))) (-13 (-319) (-149)) (-659 (-1196))) (T -1097)) -((-3629 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-659 (-2 (|:| -1948 (-1190 *5)) (|:| -3640 (-659 (-963 *5)))))) (-5 *1 (-1097 *5 *6)) (-5 *3 (-659 (-963 *5))) (-14 *6 (-659 (-1196))))) (-3629 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-5 *2 (-659 (-2 (|:| -1948 (-1190 *4)) (|:| -3640 (-659 (-963 *4)))))) (-5 *1 (-1097 *4 *5)) (-5 *3 (-659 (-963 *4))) (-14 *5 (-659 (-1196))))) (-3629 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-659 (-2 (|:| -1948 (-1190 *5)) (|:| -3640 (-659 (-963 *5)))))) (-5 *1 (-1097 *5 *6)) (-5 *3 (-659 (-963 *5))) (-14 *6 (-659 (-1196)))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 136 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-376)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-1988 (((-707 |#1|) (-1286 $)) NIL T ELT) (((-707 |#1|)) 121 T ELT)) (-3748 ((|#1| $) 125 T ELT)) (-1876 (((-1208 (-936) (-789)) (-557)) NIL (|has| |#1| (-363)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1786 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3536 (((-789)) 43 (|has| |#1| (-381)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3572 (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) ((|#1| $) NIL T ELT)) (-1998 (($ (-1286 |#1|) (-1286 $)) NIL T ELT) (($ (-1286 |#1|)) 46 T ELT)) (-1874 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)) ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1987 (((-707 |#1|) $ (-1286 $)) NIL T ELT) (((-707 |#1|) $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) 113 T ELT) (((-707 |#1|) (-707 $)) 108 T ELT)) (-4270 (($ |#2|) 65 T ELT) (((-3 $ #1#) (-419 |#2|)) NIL (|has| |#1| (-376)) ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3509 (((-936)) 84 T ELT)) (-3393 (($) 47 (|has| |#1| (-381)) ELT)) (-2960 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL (|has| |#1| (-376)) ELT)) (-3232 (($) NIL (|has| |#1| (-363)) ELT)) (-1881 (((-114) $) NIL (|has| |#1| (-363)) ELT)) (-1972 (($ $ (-789)) NIL (|has| |#1| (-363)) ELT) (($ $) NIL (|has| |#1| (-363)) ELT)) (-4151 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-4200 (((-936) $) NIL (|has| |#1| (-363)) ELT) (((-843 (-936)) $) NIL (|has| |#1| (-363)) ELT)) (-2639 (((-114) $) NIL T ELT)) (-3532 ((|#1| $) NIL T ELT)) (-3863 (((-709 $) $) NIL (|has| |#1| (-363)) ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-2222 ((|#2| $) 91 (|has| |#1| (-376)) ELT)) (-2218 (((-936) $) 145 (|has| |#1| (-381)) ELT)) (-3478 ((|#2| $) 62 T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL T ELT) (((-707 |#1|) (-1286 $)) NIL T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3864 (($) NIL (|has| |#1| (-363)) CONST)) (-2629 (($ (-936)) 135 (|has| |#1| (-381)) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2638 (($) 127 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-376)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1877 (((-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557))))) NIL (|has| |#1| (-363)) ELT)) (-4160 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3884 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-1785 (((-789) $) NIL (|has| |#1| (-376)) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4185 ((|#1| (-1286 $)) NIL T ELT) ((|#1|) 117 T ELT)) (-1973 (((-789) $) NIL (|has| |#1| (-363)) ELT) (((-3 (-789) #1#) $ $) NIL (|has| |#1| (-363)) ELT)) (-4186 (($ $ (-789)) NIL (-3955 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) NIL (-3955 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-1196)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL (|has| |#1| (-376)) ELT)) (-2637 (((-707 |#1|) (-1286 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT)) (-3601 ((|#2|) 81 T ELT)) (-1875 (($) NIL (|has| |#1| (-363)) ELT)) (-3640 (((-1286 |#1|) $ (-1286 $)) 96 T ELT) (((-707 |#1|) (-1286 $) (-1286 $)) NIL T ELT) (((-1286 |#1|) $) 75 T ELT) (((-707 |#1|) (-1286 $)) 92 T ELT)) (-4400 (((-1286 |#1|) $) NIL T ELT) (($ (-1286 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (|has| |#1| (-363)) ELT)) (-4374 (((-875) $) 61 T ELT) (($ (-557)) 56 T ELT) (($ |#1|) 58 T ELT) (($ $) NIL (|has| |#1| (-376)) ELT) (($ (-419 (-557))) NIL (-3955 (|has| |#1| (-376)) (|has| |#1| (-1057 (-419 (-557))))) ELT)) (-3101 (($ $) NIL (|has| |#1| (-363)) ELT) (((-709 $) $) NIL (|has| |#1| (-147)) ELT)) (-2836 ((|#2| $) 89 T ELT)) (-3526 (((-789)) 83 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2220 (((-1286 $)) 88 T ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3057 (($) 32 T CONST)) (-3063 (($) 19 T CONST)) (-3068 (($ $ (-789)) NIL (-3955 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) NIL (-3955 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-1196)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1196)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL (|has| |#1| (-376)) ELT)) (-3452 (((-114) $ $) 67 T ELT)) (-4377 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $) 71 T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 69 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 54 T ELT) (($ $ $) 73 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 51 T ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-376)) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-376)) ELT))) -(((-1098 |#1| |#2| |#3|) (-742 |#1| |#2|) (-175) (-1262 |#1|) |#2|) (T -1098)) -NIL -((-4160 (((-417 |#3|) |#3|) 18 T ELT))) -(((-1099 |#1| |#2| |#3|) (-10 -7 (-15 -4160 ((-417 |#3|) |#3|))) (-1262 (-419 (-557))) (-13 (-376) (-149) (-742 (-419 (-557)) |#1|)) (-1262 |#2|)) (T -1099)) -((-4160 (*1 *2 *3) (-12 (-4 *4 (-1262 (-419 (-557)))) (-4 *5 (-13 (-376) (-149) (-742 (-419 (-557)) *4))) (-5 *2 (-417 *3)) (-5 *1 (-1099 *4 *5 *3)) (-4 *3 (-1262 *5))))) -((-4160 (((-417 |#3|) |#3|) 19 T ELT))) -(((-1100 |#1| |#2| |#3|) (-10 -7 (-15 -4160 ((-417 |#3|) |#3|))) (-1262 (-419 (-963 (-557)))) (-13 (-376) (-149) (-742 (-419 (-963 (-557))) |#1|)) (-1262 |#2|)) (T -1100)) -((-4160 (*1 *2 *3) (-12 (-4 *4 (-1262 (-419 (-963 (-557))))) (-4 *5 (-13 (-376) (-149) (-742 (-419 (-963 (-557))) *4))) (-5 *2 (-417 *3)) (-5 *1 (-1100 *4 *5 *3)) (-4 *3 (-1262 *5))))) -((-2965 (((-114) $ $) NIL T ELT)) (-2928 (($ $ $) 16 T ELT)) (-3256 (($ $ $) 17 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3630 (($) 6 T ELT)) (-4400 (((-1196) $) 20 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 15 T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 9 T ELT))) -(((-1101) (-13 (-859) (-629 (-1196)) (-10 -8 (-15 -3630 ($))))) (T -1101)) -((-3630 (*1 *1) (-5 *1 (-1101)))) -((-2965 (((-114) $ $) 7 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-1201)) 20 T ELT) (((-1201) $) 19 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-1102) (-142)) (T -1102)) -NIL -(-13 (-93)) -(((-93) . T) ((-102) . T) ((-631 (-1201)) . T) ((-628 (-875)) . T) ((-628 (-1201)) . T) ((-502 (-1201)) . T) ((-1120) . T) ((-1236) . T)) -((-3633 ((|#1| |#1| (-1 (-557) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-114) |#1|)) 33 T ELT)) (-3631 (((-1292)) 21 T ELT)) (-3632 (((-659 |#1|)) 13 T ELT))) -(((-1103 |#1|) (-10 -7 (-15 -3631 ((-1292))) (-15 -3632 ((-659 |#1|))) (-15 -3633 (|#1| |#1| (-1 (-114) |#1|))) (-15 -3633 (|#1| |#1| (-1 (-557) |#1| |#1|)))) (-134)) (T -1103)) -((-3633 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-557) *2 *2)) (-4 *2 (-134)) (-5 *1 (-1103 *2)))) (-3633 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *2)) (-4 *2 (-134)) (-5 *1 (-1103 *2)))) (-3632 (*1 *2) (-12 (-5 *2 (-659 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-134)))) (-3631 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1103 *3)) (-4 *3 (-134))))) -((-3636 (($ (-109) $) 20 T ELT)) (-3637 (((-709 (-109)) (-518) $) 19 T ELT)) (-3991 (($) 7 T ELT)) (-3635 (($) 21 T ELT)) (-3634 (($) 22 T ELT)) (-3638 (((-659 (-178)) $) 10 T ELT)) (-4374 (((-875) $) 25 T ELT))) -(((-1104) (-13 (-628 (-875)) (-10 -8 (-15 -3991 ($)) (-15 -3638 ((-659 (-178)) $)) (-15 -3637 ((-709 (-109)) (-518) $)) (-15 -3636 ($ (-109) $)) (-15 -3635 ($)) (-15 -3634 ($))))) (T -1104)) -((-3991 (*1 *1) (-5 *1 (-1104))) (-3638 (*1 *2 *1) (-12 (-5 *2 (-659 (-178))) (-5 *1 (-1104)))) (-3637 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-709 (-109))) (-5 *1 (-1104)))) (-3636 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1104)))) (-3635 (*1 *1) (-5 *1 (-1104))) (-3634 (*1 *1) (-5 *1 (-1104)))) -((-3639 (((-1286 (-707 |#1|)) (-659 (-707 |#1|))) 45 T ELT) (((-1286 (-707 (-963 |#1|))) (-659 (-1196)) (-707 (-963 |#1|))) 75 T ELT) (((-1286 (-707 (-419 (-963 |#1|)))) (-659 (-1196)) (-707 (-419 (-963 |#1|)))) 92 T ELT)) (-3640 (((-1286 |#1|) (-707 |#1|) (-659 (-707 |#1|))) 39 T ELT))) -(((-1105 |#1|) (-10 -7 (-15 -3639 ((-1286 (-707 (-419 (-963 |#1|)))) (-659 (-1196)) (-707 (-419 (-963 |#1|))))) (-15 -3639 ((-1286 (-707 (-963 |#1|))) (-659 (-1196)) (-707 (-963 |#1|)))) (-15 -3639 ((-1286 (-707 |#1|)) (-659 (-707 |#1|)))) (-15 -3640 ((-1286 |#1|) (-707 |#1|) (-659 (-707 |#1|))))) (-376)) (T -1105)) -((-3640 (*1 *2 *3 *4) (-12 (-5 *4 (-659 (-707 *5))) (-5 *3 (-707 *5)) (-4 *5 (-376)) (-5 *2 (-1286 *5)) (-5 *1 (-1105 *5)))) (-3639 (*1 *2 *3) (-12 (-5 *3 (-659 (-707 *4))) (-4 *4 (-376)) (-5 *2 (-1286 (-707 *4))) (-5 *1 (-1105 *4)))) (-3639 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-1196))) (-4 *5 (-376)) (-5 *2 (-1286 (-707 (-963 *5)))) (-5 *1 (-1105 *5)) (-5 *4 (-707 (-963 *5))))) (-3639 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-1196))) (-4 *5 (-376)) (-5 *2 (-1286 (-707 (-419 (-963 *5))))) (-5 *1 (-1105 *5)) (-5 *4 (-707 (-419 (-963 *5))))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1618 (((-659 (-789)) $) NIL T ELT) (((-659 (-789)) $ (-1196)) NIL T ELT)) (-1652 (((-789) $) NIL T ELT) (((-789) $ (-1196)) NIL T ELT)) (-3482 (((-659 (-1107 (-1196))) $) NIL T ELT)) (-3484 (((-1190 $) $ (-1107 (-1196))) NIL T ELT) (((-1190 |#1|) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-3218 (((-789) $) NIL T ELT) (((-789) $ (-659 (-1107 (-1196)))) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-4203 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-1614 (($ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 (-1107 (-1196)) #1#) $) NIL T ELT) (((-3 (-1196) #1#) $) NIL T ELT) (((-3 (-1144 |#1| (-1196)) #1#) $) NIL T ELT)) (-3572 ((|#1| $) NIL T ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-1107 (-1196)) $) NIL T ELT) (((-1196) $) NIL T ELT) (((-1144 |#1| (-1196)) $) NIL T ELT)) (-4184 (($ $ $ (-1107 (-1196))) NIL (|has| |#1| (-175)) ELT)) (-4387 (($ $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) NIL T ELT) (((-707 |#1|) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3921 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1107 (-1196))) NIL (|has| |#1| (-464)) ELT)) (-3217 (((-659 $) $) NIL T ELT)) (-4151 (((-114) $) NIL (|has| |#1| (-927)) ELT)) (-1802 (($ $ |#1| (-542 (-1107 (-1196))) $) NIL T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (-12 (|has| (-1107 (-1196)) (-899 (-391))) (|has| |#1| (-899 (-391)))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (-12 (|has| (-1107 (-1196)) (-899 (-557))) (|has| |#1| (-899 (-557)))) ELT)) (-4200 (((-789) $ (-1196)) NIL T ELT) (((-789) $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-2647 (((-789) $) NIL T ELT)) (-3485 (($ (-1190 |#1|) (-1107 (-1196))) NIL T ELT) (($ (-1190 $) (-1107 (-1196))) NIL T ELT)) (-3220 (((-659 $) $) NIL T ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-542 (-1107 (-1196)))) NIL T ELT) (($ $ (-1107 (-1196)) (-789)) NIL T ELT) (($ $ (-659 (-1107 (-1196))) (-659 (-789))) NIL T ELT)) (-4191 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $ (-1107 (-1196))) NIL T ELT)) (-3219 (((-542 (-1107 (-1196))) $) NIL T ELT) (((-789) $ (-1107 (-1196))) NIL T ELT) (((-659 (-789)) $ (-659 (-1107 (-1196)))) NIL T ELT)) (-1803 (($ (-1 (-542 (-1107 (-1196))) (-542 (-1107 (-1196)))) $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1653 (((-1 $ (-789)) (-1196)) NIL T ELT) (((-1 $ (-789)) $) NIL (|has| |#1| (-240)) ELT)) (-3483 (((-3 (-1107 (-1196)) #1#) $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL T ELT) (((-707 |#1|) (-1286 $)) NIL T ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-1616 (((-1107 (-1196)) $) NIL T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1617 (((-114) $) NIL T ELT)) (-3222 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3221 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-2 (|:| |var| (-1107 (-1196))) (|:| -2630 (-789))) #1#) $) NIL T ELT)) (-1615 (($ $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2003 (((-114) $) NIL T ELT)) (-2002 ((|#1| $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-464)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-4160 (((-417 $) $) NIL (|has| |#1| (-927)) ELT)) (-3884 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-568)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-568)) ELT)) (-4196 (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ (-1107 (-1196)) |#1|) NIL T ELT) (($ $ (-659 (-1107 (-1196))) (-659 |#1|)) NIL T ELT) (($ $ (-1107 (-1196)) $) NIL T ELT) (($ $ (-659 (-1107 (-1196))) (-659 $)) NIL T ELT) (($ $ (-1196) $) NIL (|has| |#1| (-240)) ELT) (($ $ (-659 (-1196)) (-659 $)) NIL (|has| |#1| (-240)) ELT) (($ $ (-1196) |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-659 (-1196)) (-659 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-4185 (($ $ (-1107 (-1196))) NIL (|has| |#1| (-175)) ELT)) (-4186 (($ $ (-659 (-1107 (-1196))) (-659 (-789))) NIL T ELT) (($ $ (-1107 (-1196)) (-789)) NIL T ELT) (($ $ (-659 (-1107 (-1196)))) NIL T ELT) (($ $ (-1107 (-1196))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-789)) NIL (|has| |#1| (-239)) ELT)) (-1619 (((-659 (-1196)) $) NIL T ELT)) (-4376 (((-542 (-1107 (-1196))) $) NIL T ELT) (((-789) $ (-1107 (-1196))) NIL T ELT) (((-659 (-789)) $ (-659 (-1107 (-1196)))) NIL T ELT) (((-789) $ (-1196)) NIL T ELT)) (-4400 (((-903 (-391)) $) NIL (-12 (|has| (-1107 (-1196)) (-629 (-903 (-391)))) (|has| |#1| (-629 (-903 (-391))))) ELT) (((-903 (-557)) $) NIL (-12 (|has| (-1107 (-1196)) (-629 (-903 (-557)))) (|has| |#1| (-629 (-903 (-557))))) ELT) (((-546) $) NIL (-12 (|has| (-1107 (-1196)) (-629 (-546))) (|has| |#1| (-629 (-546)))) ELT)) (-3216 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1107 (-1196))) NIL (|has| |#1| (-464)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-927))) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1107 (-1196))) NIL T ELT) (($ (-1196)) NIL T ELT) (($ (-1144 |#1| (-1196))) NIL T ELT) (($ (-419 (-557))) NIL (-3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) ELT) (($ $) NIL (|has| |#1| (-568)) ELT)) (-4245 (((-659 |#1|) $) NIL T ELT)) (-4105 ((|#1| $ (-542 (-1107 (-1196)))) NIL T ELT) (($ $ (-1107 (-1196)) (-789)) NIL T ELT) (($ $ (-659 (-1107 (-1196))) (-659 (-789))) NIL T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| |#1| (-927))) (|has| |#1| (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-1801 (($ $ $ (-789)) NIL (|has| |#1| (-175)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $ (-659 (-1107 (-1196))) (-659 (-789))) NIL T ELT) (($ $ (-1107 (-1196)) (-789)) NIL T ELT) (($ $ (-659 (-1107 (-1196)))) NIL T ELT) (($ $ (-1107 (-1196))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-789)) NIL (|has| |#1| (-239)) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-1106 |#1|) (-13 (-262 |#1| (-1196) (-1107 (-1196)) (-542 (-1107 (-1196)))) (-1057 (-1144 |#1| (-1196)))) (-1068)) (T -1106)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-1652 (((-789) $) NIL T ELT)) (-4259 ((|#1| $) 10 T ELT)) (-3573 (((-3 |#1| "failed") $) NIL T ELT)) (-3572 ((|#1| $) NIL T ELT)) (-4200 (((-789) $) 11 T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-1653 (($ |#1| (-789)) 9 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4186 (($ $ (-789)) NIL T ELT) (($ $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3068 (($ $ (-789)) NIL T ELT) (($ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 16 T ELT))) -(((-1107 |#1|) (-277 |#1|) (-859)) (T -1107)) -NIL -((-2965 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-4164 (($ |#1| |#1|) 16 T ELT)) (-4386 (((-659 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-858)) ELT)) (-3645 ((|#1| $) 12 T ELT)) (-3647 ((|#1| $) 11 T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-3643 (((-557) $) 15 T ELT)) (-3644 ((|#1| $) 14 T ELT)) (-3646 ((|#1| $) 13 T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-4391 (((-659 |#1|) $) 42 (|has| |#1| (-858)) ELT) (((-659 |#1|) (-659 $)) 41 (|has| |#1| (-858)) ELT)) (-4400 (($ |#1|) 29 T ELT)) (-4374 (((-875) $) 28 (|has| |#1| (-1120)) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-4165 (($ |#1| |#1|) 10 T ELT)) (-3648 (($ $ (-557)) 17 T ELT)) (-3452 (((-114) $ $) 22 (|has| |#1| (-1120)) ELT))) -(((-1108 |#1|) (-13 (-1113 |#1|) (-10 -7 (IF (|has| |#1| (-1120)) (-6 (-1120)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1114 |#1| (-659 |#1|))) |%noBranch|))) (-1236)) (T -1108)) -NIL -((-4386 (((-659 |#2|) (-1 |#2| |#1|) (-1108 |#1|)) 27 (|has| |#1| (-858)) ELT) (((-1108 |#2|) (-1 |#2| |#1|) (-1108 |#1|)) 14 T ELT))) -(((-1109 |#1| |#2|) (-10 -7 (-15 -4386 ((-1108 |#2|) (-1 |#2| |#1|) (-1108 |#1|))) (IF (|has| |#1| (-858)) (-15 -4386 ((-659 |#2|) (-1 |#2| |#1|) (-1108 |#1|))) |%noBranch|)) (-1236) (-1236)) (T -1109)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1108 *5)) (-4 *5 (-858)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-659 *6)) (-5 *1 (-1109 *5 *6)))) (-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1108 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1108 *6)) (-5 *1 (-1109 *5 *6))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 16 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-3641 (((-659 (-1154)) $) 10 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1110) (-13 (-1102) (-10 -8 (-15 -3641 ((-659 (-1154)) $))))) (T -1110)) -((-3641 (*1 *2 *1) (-12 (-5 *2 (-659 (-1154))) (-5 *1 (-1110))))) -((-2965 (((-114) $ $) NIL (|has| (-1108 |#1|) (-1120)) ELT)) (-4259 (((-1196) $) NIL T ELT)) (-4164 (((-1108 |#1|) $) NIL T ELT)) (-3658 (((-1178) $) NIL (|has| (-1108 |#1|) (-1120)) ELT)) (-3659 (((-1139) $) NIL (|has| (-1108 |#1|) (-1120)) ELT)) (-3642 (($ (-1196) (-1108 |#1|)) NIL T ELT)) (-4374 (((-875) $) NIL (|has| (-1108 |#1|) (-1120)) ELT)) (-1376 (((-114) $ $) NIL (|has| (-1108 |#1|) (-1120)) ELT)) (-3452 (((-114) $ $) NIL (|has| (-1108 |#1|) (-1120)) ELT))) -(((-1111 |#1|) (-13 (-1236) (-10 -8 (-15 -3642 ($ (-1196) (-1108 |#1|))) (-15 -4259 ((-1196) $)) (-15 -4164 ((-1108 |#1|) $)) (IF (|has| (-1108 |#1|) (-1120)) (-6 (-1120)) |%noBranch|))) (-1236)) (T -1111)) -((-3642 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1108 *4)) (-4 *4 (-1236)) (-5 *1 (-1111 *4)))) (-4259 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1111 *3)) (-4 *3 (-1236)))) (-4164 (*1 *2 *1) (-12 (-5 *2 (-1108 *3)) (-5 *1 (-1111 *3)) (-4 *3 (-1236))))) -((-4386 (((-1111 |#2|) (-1 |#2| |#1|) (-1111 |#1|)) 19 T ELT))) -(((-1112 |#1| |#2|) (-10 -7 (-15 -4386 ((-1111 |#2|) (-1 |#2| |#1|) (-1111 |#1|)))) (-1236) (-1236)) (T -1112)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1111 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1111 *6)) (-5 *1 (-1112 *5 *6))))) -((-4164 (($ |#1| |#1|) 8 T ELT)) (-3645 ((|#1| $) 11 T ELT)) (-3647 ((|#1| $) 13 T ELT)) (-3643 (((-557) $) 9 T ELT)) (-3644 ((|#1| $) 10 T ELT)) (-3646 ((|#1| $) 12 T ELT)) (-4400 (($ |#1|) 6 T ELT)) (-4165 (($ |#1| |#1|) 15 T ELT)) (-3648 (($ $ (-557)) 14 T ELT))) -(((-1113 |#1|) (-142) (-1236)) (T -1113)) -((-4165 (*1 *1 *2 *2) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1236)))) (-3648 (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-4 *1 (-1113 *3)) (-4 *3 (-1236)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1236)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1236)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1236)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1236)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1236)) (-5 *2 (-557)))) (-4164 (*1 *1 *2 *2) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1236))))) -(-13 (-633 |t#1|) (-10 -8 (-15 -4165 ($ |t#1| |t#1|)) (-15 -3648 ($ $ (-557))) (-15 -3647 (|t#1| $)) (-15 -3646 (|t#1| $)) (-15 -3645 (|t#1| $)) (-15 -3644 (|t#1| $)) (-15 -3643 ((-557) $)) (-15 -4164 ($ |t#1| |t#1|)))) -(((-633 |#1|) . T)) -((-4164 (($ |#1| |#1|) 8 T ELT)) (-4386 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3645 ((|#1| $) 11 T ELT)) (-3647 ((|#1| $) 13 T ELT)) (-3643 (((-557) $) 9 T ELT)) (-3644 ((|#1| $) 10 T ELT)) (-3646 ((|#1| $) 12 T ELT)) (-4391 ((|#2| (-659 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-4400 (($ |#1|) 6 T ELT)) (-4165 (($ |#1| |#1|) 15 T ELT)) (-3648 (($ $ (-557)) 14 T ELT))) -(((-1114 |#1| |#2|) (-142) (-858) (-1169 |t#1|)) (T -1114)) -((-4391 (*1 *2 *3) (-12 (-5 *3 (-659 *1)) (-4 *1 (-1114 *4 *2)) (-4 *4 (-858)) (-4 *2 (-1169 *4)))) (-4391 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1169 *3)))) (-4386 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1114 *4 *2)) (-4 *4 (-858)) (-4 *2 (-1169 *4))))) -(-13 (-1113 |t#1|) (-10 -8 (-15 -4391 (|t#2| (-659 $))) (-15 -4391 (|t#2| $)) (-15 -4386 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-633 |#1|) . T) ((-1113 |#1|) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-4226 (((-1154) $) 12 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 18 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-3649 (((-659 (-1154)) $) 10 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1115) (-13 (-1102) (-10 -8 (-15 -3649 ((-659 (-1154)) $)) (-15 -4226 ((-1154) $))))) (T -1115)) -((-3649 (*1 *2 *1) (-12 (-5 *2 (-659 (-1154))) (-5 *1 (-1115)))) (-4226 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1115))))) -((-2965 (((-114) $ $) NIL T ELT)) (-2008 (($) NIL (|has| |#1| (-381)) ELT)) (-3650 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 83 T ELT)) (-3652 (($ $ $) 80 T ELT)) (-3651 (((-114) $ $) 82 T ELT)) (-3536 (((-789)) NIL (|has| |#1| (-381)) ELT)) (-3655 (($ (-659 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1711 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4152 (($) NIL T CONST)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3823 (($ |#1| $) 74 (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4423)) ELT)) (-3393 (($) NIL (|has| |#1| (-381)) ELT)) (-3288 (((-659 |#1|) $) 19 (|has| $ (-6 -4423)) ELT)) (-3657 (((-114) $ $) NIL T ELT)) (-2928 ((|#1| $) 55 (|has| |#1| (-859)) ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 73 (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3256 ((|#1| $) 53 (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2218 (((-936) $) NIL (|has| |#1| (-381)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3654 (($ $ $) 78 T ELT)) (-1387 ((|#1| $) 25 T ELT)) (-4035 (($ |#1| $) 69 T ELT)) (-2629 (($ (-936)) NIL (|has| |#1| (-381)) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 31 T ELT)) (-1388 ((|#1| $) 27 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) 21 T ELT)) (-3991 (($) 11 T ELT)) (-3653 (($ $ |#1|) NIL T ELT) (($ $ $) 79 T ELT)) (-1596 (($) NIL T ELT) (($ (-659 |#1|)) NIL T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) 16 T ELT)) (-4400 (((-546) $) 50 (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 62 T ELT)) (-2009 (($ $) NIL (|has| |#1| (-381)) ELT)) (-4374 (((-875) $) NIL T ELT)) (-2010 (((-789) $) NIL T ELT)) (-3656 (($ (-659 |#1|)) NIL T ELT) (($) 12 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-1389 (($ (-659 |#1|)) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 52 T ELT)) (-4385 (((-789) $) 10 (|has| $ (-6 -4423)) ELT))) -(((-1116 |#1|) (-438 |#1|) (-1120)) (T -1116)) -NIL -((-3650 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3652 (($ $ $) 10 T ELT)) (-3653 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) -(((-1117 |#1| |#2|) (-10 -7 (-15 -3650 (|#1| |#2| |#1|)) (-15 -3650 (|#1| |#1| |#2|)) (-15 -3650 (|#1| |#1| |#1|)) (-15 -3652 (|#1| |#1| |#1|)) (-15 -3653 (|#1| |#1| |#2|)) (-15 -3653 (|#1| |#1| |#1|))) (-1118 |#2|) (-1120)) (T -1117)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3650 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3652 (($ $ $) 24 T ELT)) (-3651 (((-114) $ $) 23 T ELT)) (-3655 (($) 29 T ELT) (($ (-659 |#1|)) 28 T ELT)) (-4138 (($ (-1 (-114) |#1|) $) 57 (|has| $ (-6 -4423)) ELT)) (-4152 (($) 37 T CONST)) (-1465 (($ $) 60 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3824 (($ |#1| $) 59 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) |#1|) $) 56 (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4423)) ELT)) (-3288 (((-659 |#1|) $) 44 (|has| $ (-6 -4423)) ELT)) (-3657 (((-114) $ $) 32 T ELT)) (-3005 (((-659 |#1|) $) 45 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 47 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3654 (($ $ $) 27 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 53 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 42 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 |#1|) (-659 |#1|)) 51 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 49 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 (-305 |#1|))) 48 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 33 T ELT)) (-3821 (((-114) $) 36 T ELT)) (-3991 (($) 35 T ELT)) (-3653 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-2155 (((-789) |#1| $) 46 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) (((-789) (-1 (-114) |#1|) $) 43 (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) 34 T ELT)) (-4400 (((-546) $) 61 (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 52 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-3656 (($) 31 T ELT) (($ (-659 |#1|)) 30 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 41 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4385 (((-789) $) 38 (|has| $ (-6 -4423)) ELT))) -(((-1118 |#1|) (-142) (-1120)) (T -1118)) -((-3657 (*1 *2 *1 *1) (-12 (-4 *1 (-1118 *3)) (-4 *3 (-1120)) (-5 *2 (-114)))) (-3656 (*1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-4 *1 (-1118 *3)))) (-3655 (*1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) (-3655 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-4 *1 (-1118 *3)))) (-3654 (*1 *1 *1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) (-3653 (*1 *1 *1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) (-3653 (*1 *1 *1 *2) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) (-3652 (*1 *1 *1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) (-3651 (*1 *2 *1 *1) (-12 (-4 *1 (-1118 *3)) (-4 *3 (-1120)) (-5 *2 (-114)))) (-3650 (*1 *1 *1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) (-3650 (*1 *1 *1 *2) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) (-3650 (*1 *1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120))))) -(-13 (-1120) (-153 |t#1|) (-10 -8 (-6 -4413) (-15 -3657 ((-114) $ $)) (-15 -3656 ($)) (-15 -3656 ($ (-659 |t#1|))) (-15 -3655 ($)) (-15 -3655 ($ (-659 |t#1|))) (-15 -3654 ($ $ $)) (-15 -3653 ($ $ $)) (-15 -3653 ($ $ |t#1|)) (-15 -3652 ($ $ $)) (-15 -3651 ((-114) $ $)) (-15 -3650 ($ $ $)) (-15 -3650 ($ $ |t#1|)) (-15 -3650 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-628 (-875)) . T) ((-153 |#1|) . T) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-1120) . T) ((-1236) . T)) -((-3658 (((-1178) $) 10 T ELT)) (-3659 (((-1139) $) 8 T ELT))) -(((-1119 |#1|) (-10 -7 (-15 -3658 ((-1178) |#1|)) (-15 -3659 ((-1139) |#1|))) (-1120)) (T -1119)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-1120) (-142)) (T -1120)) -((-3659 (*1 *2 *1) (-12 (-4 *1 (-1120)) (-5 *2 (-1139)))) (-3658 (*1 *2 *1) (-12 (-4 *1 (-1120)) (-5 *2 (-1178))))) -(-13 (-102) (-628 (-875)) (-10 -8 (-15 -3659 ((-1139) $)) (-15 -3658 ((-1178) $)))) -(((-102) . T) ((-628 (-875)) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) 36 T ELT)) (-3663 (($ (-659 (-936))) 70 T ELT)) (-3665 (((-3 $ #1="failed") $ (-936) (-936)) 81 T ELT)) (-3393 (($) 40 T ELT)) (-3661 (((-114) (-936) $) 42 T ELT)) (-2218 (((-936) $) 64 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2629 (($ (-936)) 39 T ELT)) (-3666 (((-3 $ #1#) $ (-936)) 77 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3662 (((-1286 $)) 47 T ELT)) (-3664 (((-659 (-936)) $) 27 T ELT)) (-3660 (((-789) $ (-936) (-936)) 78 T ELT)) (-4374 (((-875) $) 32 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 24 T ELT))) -(((-1121 |#1| |#2|) (-13 (-381) (-10 -8 (-15 -3666 ((-3 $ #1="failed") $ (-936))) (-15 -3665 ((-3 $ #1#) $ (-936) (-936))) (-15 -3664 ((-659 (-936)) $)) (-15 -3663 ($ (-659 (-936)))) (-15 -3662 ((-1286 $))) (-15 -3661 ((-114) (-936) $)) (-15 -3660 ((-789) $ (-936) (-936))))) (-936) (-936)) (T -1121)) -((-3666 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-936)) (-5 *1 (-1121 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3665 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-936)) (-5 *1 (-1121 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-659 (-936))) (-5 *1 (-1121 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-659 (-936))) (-5 *1 (-1121 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936)))) (-3662 (*1 *2) (-12 (-5 *2 (-1286 (-1121 *3 *4))) (-5 *1 (-1121 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936)))) (-3661 (*1 *2 *3 *1) (-12 (-5 *3 (-936)) (-5 *2 (-114)) (-5 *1 (-1121 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3660 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-936)) (-5 *2 (-789)) (-5 *1 (-1121 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -((-2965 (((-114) $ $) NIL T ELT)) (-3676 (((-114) $) NIL T ELT)) (-3672 (((-1196) $) NIL T ELT)) (-3677 (((-114) $) NIL T ELT)) (-3961 (((-1178) $) NIL T ELT)) (-3679 (((-114) $) NIL T ELT)) (-3681 (((-114) $) NIL T ELT)) (-3678 (((-114) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3675 (((-114) $) NIL T ELT)) (-3671 (((-557) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3674 (((-114) $) NIL T ELT)) (-3670 (((-229) $) NIL T ELT)) (-3669 (((-875) $) NIL T ELT)) (-3682 (((-114) $ $) NIL T ELT)) (-4228 (($ $ (-557)) NIL T ELT) (($ $ (-659 (-557))) NIL T ELT)) (-3673 (((-659 $) $) NIL T ELT)) (-4400 (($ (-1178)) NIL T ELT) (($ (-1196)) NIL T ELT) (($ (-557)) NIL T ELT) (($ (-229)) NIL T ELT) (($ (-875)) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-3667 (($ $) NIL T ELT)) (-3668 (($ $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3680 (((-114) $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4385 (((-557) $) NIL T ELT))) -(((-1122) (-1123 (-1178) (-1196) (-557) (-229) (-875))) (T -1122)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3676 (((-114) $) 36 T ELT)) (-3672 ((|#2| $) 31 T ELT)) (-3677 (((-114) $) 37 T ELT)) (-3961 ((|#1| $) 32 T ELT)) (-3679 (((-114) $) 39 T ELT)) (-3681 (((-114) $) 41 T ELT)) (-3678 (((-114) $) 38 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3675 (((-114) $) 35 T ELT)) (-3671 ((|#3| $) 30 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3674 (((-114) $) 34 T ELT)) (-3670 ((|#4| $) 29 T ELT)) (-3669 ((|#5| $) 28 T ELT)) (-3682 (((-114) $ $) 42 T ELT)) (-4228 (($ $ (-557)) 44 T ELT) (($ $ (-659 (-557))) 43 T ELT)) (-3673 (((-659 $) $) 33 T ELT)) (-4400 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-659 $)) 45 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-3667 (($ $) 26 T ELT)) (-3668 (($ $) 27 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3680 (((-114) $) 40 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4385 (((-557) $) 25 T ELT))) -(((-1123 |#1| |#2| |#3| |#4| |#5|) (-142) (-1120) (-1120) (-1120) (-1120) (-1120)) (T -1123)) -((-3682 (*1 *2 *1 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-114)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-114)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-114)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-114)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-114)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-114)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-114)))) (-3675 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-114)))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-114)))) (-3673 (*1 *2 *1) (-12 (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-659 *1)) (-4 *1 (-1123 *3 *4 *5 *6 *7)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1123 *2 *3 *4 *5 *6)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *2 *4 *5 *6)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120)))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *2 *5 *6)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120)))) (-3670 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2 *6)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *2)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120)))) (-3668 (*1 *1 *1) (-12 (-4 *1 (-1123 *2 *3 *4 *5 *6)) (-4 *2 (-1120)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)))) (-3667 (*1 *1 *1) (-12 (-4 *1 (-1123 *2 *3 *4 *5 *6)) (-4 *2 (-1120)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)))) (-4385 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-557))))) -(-13 (-1120) (-633 |t#1|) (-633 |t#2|) (-633 |t#3|) (-633 |t#4|) (-633 |t#4|) (-633 |t#5|) (-633 (-659 $)) (-298 (-557) $) (-298 (-659 (-557)) $) (-10 -8 (-15 -3682 ((-114) $ $)) (-15 -3681 ((-114) $)) (-15 -3680 ((-114) $)) (-15 -3679 ((-114) $)) (-15 -3678 ((-114) $)) (-15 -3677 ((-114) $)) (-15 -3676 ((-114) $)) (-15 -3675 ((-114) $)) (-15 -3674 ((-114) $)) (-15 -3673 ((-659 $) $)) (-15 -3961 (|t#1| $)) (-15 -3672 (|t#2| $)) (-15 -3671 (|t#3| $)) (-15 -3670 (|t#4| $)) (-15 -3669 (|t#5| $)) (-15 -3668 ($ $)) (-15 -3667 ($ $)) (-15 -4385 ((-557) $)))) -(((-102) . T) ((-628 (-875)) . T) ((-633 (-659 $)) . T) ((-633 |#1|) . T) ((-633 |#2|) . T) ((-633 |#3|) . T) ((-633 |#4|) . T) ((-633 |#5|) . T) ((-298 (-557) $) . T) ((-298 (-659 (-557)) $) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3676 (((-114) $) 45 T ELT)) (-3672 ((|#2| $) 48 T ELT)) (-3677 (((-114) $) 20 T ELT)) (-3961 ((|#1| $) 21 T ELT)) (-3679 (((-114) $) 42 T ELT)) (-3681 (((-114) $) 14 T ELT)) (-3678 (((-114) $) 44 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3675 (((-114) $) 46 T ELT)) (-3671 ((|#3| $) 50 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3674 (((-114) $) 47 T ELT)) (-3670 ((|#4| $) 49 T ELT)) (-3669 ((|#5| $) 51 T ELT)) (-3682 (((-114) $ $) 41 T ELT)) (-4228 (($ $ (-557)) 62 T ELT) (($ $ (-659 (-557))) 64 T ELT)) (-3673 (((-659 $) $) 27 T ELT)) (-4400 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-659 $)) 52 T ELT)) (-4374 (((-875) $) 28 T ELT)) (-3667 (($ $) 26 T ELT)) (-3668 (($ $) 58 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3680 (((-114) $) 23 T ELT)) (-3452 (((-114) $ $) 40 T ELT)) (-4385 (((-557) $) 60 T ELT))) -(((-1124 |#1| |#2| |#3| |#4| |#5|) (-1123 |#1| |#2| |#3| |#4| |#5|) (-1120) (-1120) (-1120) (-1120) (-1120)) (T -1124)) -NIL -((-3798 (((-1292) $) 22 T ELT)) (-3683 (($ (-1196) (-446) |#2|) 11 T ELT)) (-4374 (((-875) $) 16 T ELT))) -(((-1125 |#1| |#2|) (-13 (-408) (-10 -8 (-15 -3683 ($ (-1196) (-446) |#2|)))) (-1120) (-433 |#1|)) (T -1125)) -((-3683 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-446)) (-4 *5 (-1120)) (-5 *1 (-1125 *5 *4)) (-4 *4 (-433 *5))))) -((-3686 (((-114) |#5| |#5|) 44 T ELT)) (-3689 (((-114) |#5| |#5|) 59 T ELT)) (-3694 (((-114) |#5| (-659 |#5|)) 82 T ELT) (((-114) |#5| |#5|) 68 T ELT)) (-3690 (((-114) (-659 |#4|) (-659 |#4|)) 65 T ELT)) (-3696 (((-114) (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|)) (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) 70 T ELT)) (-3685 (((-1292)) 32 T ELT)) (-3684 (((-1292) (-1178) (-1178) (-1178)) 28 T ELT)) (-3695 (((-659 |#5|) (-659 |#5|)) 101 T ELT)) (-3697 (((-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|)))) 93 T ELT)) (-3698 (((-659 (-2 (|:| -3682 (-659 |#4|)) (|:| -1741 |#5|) (|:| |ineq| (-659 |#4|)))) (-659 |#4|) (-659 |#5|) (-114) (-114)) 123 T ELT)) (-3688 (((-114) |#5| |#5|) 53 T ELT)) (-3693 (((-3 (-114) #1="failed") |#5| |#5|) 78 T ELT)) (-3691 (((-114) (-659 |#4|) (-659 |#4|)) 64 T ELT)) (-3692 (((-114) (-659 |#4|) (-659 |#4|)) 66 T ELT)) (-4127 (((-114) (-659 |#4|) (-659 |#4|)) 67 T ELT)) (-3699 (((-3 (-2 (|:| -3682 (-659 |#4|)) (|:| -1741 |#5|) (|:| |ineq| (-659 |#4|))) #1#) (-659 |#4|) |#5| (-659 |#4|) (-114) (-114) (-114) (-114) (-114)) 118 T ELT)) (-3687 (((-659 |#5|) (-659 |#5|)) 49 T ELT))) -(((-1126 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3684 ((-1292) (-1178) (-1178) (-1178))) (-15 -3685 ((-1292))) (-15 -3686 ((-114) |#5| |#5|)) (-15 -3687 ((-659 |#5|) (-659 |#5|))) (-15 -3688 ((-114) |#5| |#5|)) (-15 -3689 ((-114) |#5| |#5|)) (-15 -3690 ((-114) (-659 |#4|) (-659 |#4|))) (-15 -3691 ((-114) (-659 |#4|) (-659 |#4|))) (-15 -3692 ((-114) (-659 |#4|) (-659 |#4|))) (-15 -4127 ((-114) (-659 |#4|) (-659 |#4|))) (-15 -3693 ((-3 (-114) #1="failed") |#5| |#5|)) (-15 -3694 ((-114) |#5| |#5|)) (-15 -3694 ((-114) |#5| (-659 |#5|))) (-15 -3695 ((-659 |#5|) (-659 |#5|))) (-15 -3696 ((-114) (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|)) (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|)))) (-15 -3697 ((-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) (-15 -3698 ((-659 (-2 (|:| -3682 (-659 |#4|)) (|:| -1741 |#5|) (|:| |ineq| (-659 |#4|)))) (-659 |#4|) (-659 |#5|) (-114) (-114))) (-15 -3699 ((-3 (-2 (|:| -3682 (-659 |#4|)) (|:| -1741 |#5|) (|:| |ineq| (-659 |#4|))) #1#) (-659 |#4|) |#5| (-659 |#4|) (-114) (-114) (-114) (-114) (-114)))) (-464) (-813) (-859) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -1126)) -((-3699 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) (-4 *9 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| -3682 (-659 *9)) (|:| -1741 *4) (|:| |ineq| (-659 *9)))) (-5 *1 (-1126 *6 *7 *8 *9 *4)) (-5 *3 (-659 *9)) (-4 *4 (-1090 *6 *7 *8 *9)))) (-3698 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-659 *10)) (-5 *5 (-114)) (-4 *10 (-1090 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) (-4 *9 (-1084 *6 *7 *8)) (-5 *2 (-659 (-2 (|:| -3682 (-659 *9)) (|:| -1741 *10) (|:| |ineq| (-659 *9))))) (-5 *1 (-1126 *6 *7 *8 *9 *10)) (-5 *3 (-659 *9)))) (-3697 (*1 *2 *2) (-12 (-5 *2 (-659 (-2 (|:| |val| (-659 *6)) (|:| -1741 *7)))) (-4 *6 (-1084 *3 *4 *5)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-1126 *3 *4 *5 *6 *7)))) (-3696 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-659 *7)) (|:| -1741 *8))) (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-1126 *4 *5 *6 *7 *8)))) (-3695 (*1 *2 *2) (-12 (-5 *2 (-659 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-1126 *3 *4 *5 *6 *7)))) (-3694 (*1 *2 *3 *4) (-12 (-5 *4 (-659 *3)) (-4 *3 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1126 *5 *6 *7 *8 *3)))) (-3694 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3693 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-4127 (*1 *2 *3 *3) (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3692 (*1 *2 *3 *3) (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3691 (*1 *2 *3 *3) (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3690 (*1 *2 *3 *3) (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3689 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3688 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3687 (*1 *2 *2) (-12 (-5 *2 (-659 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-1126 *3 *4 *5 *6 *7)))) (-3686 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3685 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1126 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-3684 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) -((-3714 (((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) |#4| |#5|) 106 T ELT)) (-3704 (((-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3707 (((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3709 (((-659 |#5|) |#4| |#5|) 122 T ELT)) (-3711 (((-659 |#5|) |#4| |#5|) 129 T ELT)) (-3713 (((-659 |#5|) |#4| |#5|) 130 T ELT)) (-3708 (((-659 (-2 (|:| |val| (-114)) (|:| -1741 |#5|))) |#4| |#5|) 107 T ELT)) (-3710 (((-659 (-2 (|:| |val| (-114)) (|:| -1741 |#5|))) |#4| |#5|) 128 T ELT)) (-3712 (((-659 (-2 (|:| |val| (-114)) (|:| -1741 |#5|))) |#4| |#5|) 47 T ELT) (((-114) |#4| |#5|) 55 T ELT)) (-3705 (((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) |#3| (-114)) 91 T ELT) (((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) |#4| |#4| |#5| (-114) (-114)) 52 T ELT)) (-3706 (((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3703 (((-1292)) 36 T ELT)) (-3701 (((-1292)) 25 T ELT)) (-3702 (((-1292) (-1178) (-1178) (-1178)) 32 T ELT)) (-3700 (((-1292) (-1178) (-1178) (-1178)) 21 T ELT))) -(((-1127 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3700 ((-1292) (-1178) (-1178) (-1178))) (-15 -3701 ((-1292))) (-15 -3702 ((-1292) (-1178) (-1178) (-1178))) (-15 -3703 ((-1292))) (-15 -3704 ((-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) |#4| |#4| |#5|)) (-15 -3705 ((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -3705 ((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) |#3| (-114))) (-15 -3706 ((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) |#4| |#4| |#5|)) (-15 -3707 ((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) |#4| |#4| |#5|)) (-15 -3712 ((-114) |#4| |#5|)) (-15 -3708 ((-659 (-2 (|:| |val| (-114)) (|:| -1741 |#5|))) |#4| |#5|)) (-15 -3709 ((-659 |#5|) |#4| |#5|)) (-15 -3710 ((-659 (-2 (|:| |val| (-114)) (|:| -1741 |#5|))) |#4| |#5|)) (-15 -3711 ((-659 |#5|) |#4| |#5|)) (-15 -3712 ((-659 (-2 (|:| |val| (-114)) (|:| -1741 |#5|))) |#4| |#5|)) (-15 -3713 ((-659 |#5|) |#4| |#5|)) (-15 -3714 ((-659 (-2 (|:| |val| |#4|) (|:| -1741 |#5|))) |#4| |#5|))) (-464) (-813) (-859) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -1127)) -((-3714 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3713 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-659 *4)) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3712 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-659 (-2 (|:| |val| (-114)) (|:| -1741 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3711 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-659 *4)) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3710 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-659 (-2 (|:| |val| (-114)) (|:| -1741 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3709 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-659 *4)) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3708 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-659 (-2 (|:| |val| (-114)) (|:| -1741 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3712 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3707 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3706 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3705 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-659 (-2 (|:| |val| (-659 *8)) (|:| -1741 *9)))) (-5 *5 (-114)) (-4 *8 (-1084 *6 *7 *4)) (-4 *9 (-1090 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *4 (-859)) (-5 *2 (-659 (-2 (|:| |val| *8) (|:| -1741 *9)))) (-5 *1 (-1127 *6 *7 *4 *8 *9)))) (-3705 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *4)))) (-5 *1 (-1127 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) (-3704 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3703 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1127 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-3702 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3701 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1127 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-3700 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) -((-2965 (((-114) $ $) 7 T ELT)) (-4109 (((-659 (-2 (|:| -4289 $) (|:| -1903 (-659 |#4|)))) (-659 |#4|)) 90 T ELT)) (-4110 (((-659 $) (-659 |#4|)) 91 T ELT) (((-659 $) (-659 |#4|) (-114)) 118 T ELT)) (-3482 (((-659 |#3|) $) 37 T ELT)) (-3307 (((-114) $) 30 T ELT)) (-3298 (((-114) $) 21 (|has| |#1| (-568)) ELT)) (-4121 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4116 ((|#4| |#4| $) 97 T ELT)) (-4203 (((-659 (-2 (|:| |val| |#4|) (|:| -1741 $))) |#4| $) 133 T ELT)) (-3308 (((-2 (|:| |under| $) (|:| -3530 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4138 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4423)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-4152 (($) 46 T CONST)) (-3303 (((-114) $) 26 (|has| |#1| (-568)) ELT)) (-3305 (((-114) $ $) 28 (|has| |#1| (-568)) ELT)) (-3304 (((-114) $ $) 27 (|has| |#1| (-568)) ELT)) (-3306 (((-114) $) 29 (|has| |#1| (-568)) ELT)) (-4117 (((-659 |#4|) (-659 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3299 (((-659 |#4|) (-659 |#4|) $) 22 (|has| |#1| (-568)) ELT)) (-3300 (((-659 |#4|) (-659 |#4|) $) 23 (|has| |#1| (-568)) ELT)) (-3573 (((-3 $ "failed") (-659 |#4|)) 40 T ELT)) (-3572 (($ (-659 |#4|)) 39 T ELT)) (-4227 (((-3 $ #1#) $) 87 T ELT)) (-4113 ((|#4| |#4| $) 94 T ELT)) (-1465 (($ $) 69 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3824 (($ |#4| $) 68 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4423)) ELT)) (-3301 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-568)) ELT)) (-4122 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4111 ((|#4| |#4| $) 92 T ELT)) (-4270 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4423)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4423)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4124 (((-2 (|:| -4289 (-659 |#4|)) (|:| -1903 (-659 |#4|))) $) 110 T ELT)) (-3613 (((-114) |#4| $) 143 T ELT)) (-3611 (((-114) |#4| $) 140 T ELT)) (-3614 (((-114) |#4| $) 144 T ELT) (((-114) $) 141 T ELT)) (-3288 (((-659 |#4|) $) 53 (|has| $ (-6 -4423)) ELT)) (-4123 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3596 ((|#3| $) 38 T ELT)) (-3005 (((-659 |#4|) $) 54 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3313 (((-659 |#3|) $) 36 T ELT)) (-3312 (((-114) |#3| $) 35 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3607 (((-3 |#4| (-659 $)) |#4| |#4| $) 135 T ELT)) (-3606 (((-659 (-2 (|:| |val| |#4|) (|:| -1741 $))) |#4| |#4| $) 134 T ELT)) (-4226 (((-3 |#4| #1#) $) 88 T ELT)) (-3608 (((-659 $) |#4| $) 136 T ELT)) (-3610 (((-3 (-114) (-659 $)) |#4| $) 139 T ELT)) (-3609 (((-659 (-2 (|:| |val| (-114)) (|:| -1741 $))) |#4| $) 138 T ELT) (((-114) |#4| $) 137 T ELT)) (-3654 (((-659 $) |#4| $) 132 T ELT) (((-659 $) (-659 |#4|) $) 131 T ELT) (((-659 $) (-659 |#4|) (-659 $)) 130 T ELT) (((-659 $) |#4| (-659 $)) 129 T ELT)) (-3858 (($ |#4| $) 124 T ELT) (($ (-659 |#4|) $) 123 T ELT)) (-4125 (((-659 |#4|) $) 112 T ELT)) (-4119 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4114 ((|#4| |#4| $) 95 T ELT)) (-4127 (((-114) $ $) 115 T ELT)) (-3302 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-568)) ELT)) (-4120 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4115 ((|#4| |#4| $) 96 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4229 (((-3 |#4| #1#) $) 89 T ELT)) (-1466 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4107 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-4197 (($ $ |#4|) 82 T ELT) (((-659 $) |#4| $) 122 T ELT) (((-659 $) |#4| (-659 $)) 121 T ELT) (((-659 $) (-659 |#4|) $) 120 T ELT) (((-659 $) (-659 |#4|) (-659 $)) 119 T ELT)) (-2156 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 |#4|) (-659 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-659 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT)) (-1327 (((-114) $ $) 42 T ELT)) (-3821 (((-114) $) 45 T ELT)) (-3991 (($) 44 T ELT)) (-4376 (((-789) $) 111 T ELT)) (-2155 (((-789) |#4| $) 55 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT) (((-789) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) 43 T ELT)) (-4400 (((-546) $) 70 (|has| |#4| (-629 (-546))) ELT)) (-3948 (($ (-659 |#4|)) 61 T ELT)) (-3309 (($ $ |#3|) 32 T ELT)) (-3311 (($ $ |#3|) 34 T ELT)) (-4112 (($ $) 93 T ELT)) (-3310 (($ $ |#3|) 33 T ELT)) (-4374 (((-875) $) 13 T ELT) (((-659 |#4|) $) 41 T ELT)) (-4106 (((-789) $) 81 (|has| |#3| (-381)) ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-4126 (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |#4|))) #1#) (-659 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |#4|))) #1#) (-659 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4118 (((-114) $ (-1 (-114) |#4| (-659 |#4|))) 103 T ELT)) (-3605 (((-659 $) |#4| $) 128 T ELT) (((-659 $) |#4| (-659 $)) 127 T ELT) (((-659 $) (-659 |#4|) $) 126 T ELT) (((-659 $) (-659 |#4|) (-659 $)) 125 T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4423)) ELT)) (-4108 (((-659 |#3|) $) 86 T ELT)) (-3612 (((-114) |#4| $) 142 T ELT)) (-4361 (((-114) |#3| $) 85 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4385 (((-789) $) 47 (|has| $ (-6 -4423)) ELT))) -(((-1128 |#1| |#2| |#3| |#4|) (-142) (-464) (-813) (-859) (-1084 |t#1| |t#2| |t#3|)) (T -1128)) -NIL -(-13 (-1090 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-628 (-659 |#4|)) . T) ((-628 (-875)) . T) ((-153 |#4|) . T) ((-629 (-546)) |has| |#4| (-629 (-546))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1090 |#1| |#2| |#3| |#4|) . T) ((-1120) . T) ((-1231 |#1| |#2| |#3| |#4|) . T) ((-1236) . T)) -((-3725 (((-659 (-557)) (-557) (-557) (-557)) 40 T ELT)) (-3724 (((-659 (-557)) (-557) (-557) (-557)) 30 T ELT)) (-3723 (((-659 (-557)) (-557) (-557) (-557)) 35 T ELT)) (-3722 (((-557) (-557) (-557)) 22 T ELT)) (-3721 (((-1286 (-557)) (-659 (-557)) (-1286 (-557)) (-557)) 79 T ELT) (((-1286 (-557)) (-1286 (-557)) (-1286 (-557)) (-557)) 74 T ELT)) (-3720 (((-659 (-557)) (-659 (-936)) (-659 (-557)) (-114)) 56 T ELT)) (-3719 (((-707 (-557)) (-659 (-557)) (-659 (-557)) (-707 (-557))) 78 T ELT)) (-3718 (((-707 (-557)) (-659 (-936)) (-659 (-557))) 61 T ELT)) (-3717 (((-659 (-707 (-557))) (-659 (-936))) 67 T ELT)) (-3716 (((-659 (-557)) (-659 (-557)) (-659 (-557)) (-707 (-557))) 82 T ELT)) (-3715 (((-707 (-557)) (-659 (-557)) (-659 (-557)) (-659 (-557))) 92 T ELT))) -(((-1129) (-10 -7 (-15 -3715 ((-707 (-557)) (-659 (-557)) (-659 (-557)) (-659 (-557)))) (-15 -3716 ((-659 (-557)) (-659 (-557)) (-659 (-557)) (-707 (-557)))) (-15 -3717 ((-659 (-707 (-557))) (-659 (-936)))) (-15 -3718 ((-707 (-557)) (-659 (-936)) (-659 (-557)))) (-15 -3719 ((-707 (-557)) (-659 (-557)) (-659 (-557)) (-707 (-557)))) (-15 -3720 ((-659 (-557)) (-659 (-936)) (-659 (-557)) (-114))) (-15 -3721 ((-1286 (-557)) (-1286 (-557)) (-1286 (-557)) (-557))) (-15 -3721 ((-1286 (-557)) (-659 (-557)) (-1286 (-557)) (-557))) (-15 -3722 ((-557) (-557) (-557))) (-15 -3723 ((-659 (-557)) (-557) (-557) (-557))) (-15 -3724 ((-659 (-557)) (-557) (-557) (-557))) (-15 -3725 ((-659 (-557)) (-557) (-557) (-557))))) (T -1129)) -((-3725 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-1129)) (-5 *3 (-557)))) (-3724 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-1129)) (-5 *3 (-557)))) (-3723 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-1129)) (-5 *3 (-557)))) (-3722 (*1 *2 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-1129)))) (-3721 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1286 (-557))) (-5 *3 (-659 (-557))) (-5 *4 (-557)) (-5 *1 (-1129)))) (-3721 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1286 (-557))) (-5 *3 (-557)) (-5 *1 (-1129)))) (-3720 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-659 (-557))) (-5 *3 (-659 (-936))) (-5 *4 (-114)) (-5 *1 (-1129)))) (-3719 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-707 (-557))) (-5 *3 (-659 (-557))) (-5 *1 (-1129)))) (-3718 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-936))) (-5 *4 (-659 (-557))) (-5 *2 (-707 (-557))) (-5 *1 (-1129)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-659 (-936))) (-5 *2 (-659 (-707 (-557)))) (-5 *1 (-1129)))) (-3716 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-659 (-557))) (-5 *3 (-707 (-557))) (-5 *1 (-1129)))) (-3715 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-707 (-557))) (-5 *1 (-1129))))) -((** (($ $ (-936)) 10 T ELT))) -(((-1130 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-936)))) (-1131)) (T -1130)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (** (($ $ (-936)) 17 T ELT)) (* (($ $ $) 18 T ELT))) -(((-1131) (-142)) (T -1131)) -((* (*1 *1 *1 *1) (-4 *1 (-1131))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-936))))) -(-13 (-1120) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-936))))) -(((-102) . T) ((-628 (-875)) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL (|has| |#3| (-102)) ELT)) (-3604 (((-114) $) NIL (|has| |#3| (-23)) ELT)) (-4135 (($ (-936)) NIL (|has| |#3| (-1068)) ELT)) (-2411 (((-1292) $ (-557) (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-2871 (($ $ $) NIL (|has| |#3| (-813)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-133)) ELT)) (-3536 (((-789)) NIL (|has| |#3| (-381)) ELT)) (-4216 ((|#3| $ (-557) |#3|) NIL (|has| $ (-6 -4424)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) NIL (-12 (|has| |#3| (-1057 (-557))) (|has| |#3| (-1120))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (-12 (|has| |#3| (-1057 (-419 (-557)))) (|has| |#3| (-1120))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1120)) ELT)) (-3572 (((-557) $) NIL (-12 (|has| |#3| (-1057 (-557))) (|has| |#3| (-1120))) ELT) (((-419 (-557)) $) NIL (-12 (|has| |#3| (-1057 (-419 (-557)))) (|has| |#3| (-1120))) ELT) ((|#3| $) NIL (|has| |#3| (-1120)) ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (-12 (|has| |#3| (-656 (-557))) (|has| |#3| (-1068))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (-12 (|has| |#3| (-656 (-557))) (|has| |#3| (-1068))) ELT) (((-2 (|:| -1781 (-707 |#3|)) (|:| |vec| (-1286 |#3|))) (-707 $) (-1286 $)) NIL (|has| |#3| (-1068)) ELT) (((-707 |#3|) (-707 $)) NIL (|has| |#3| (-1068)) ELT)) (-3885 (((-3 $ #1#) $) NIL (|has| |#3| (-1068)) ELT)) (-3393 (($) NIL (|has| |#3| (-381)) ELT)) (-1717 ((|#3| $ (-557) |#3|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#3| $ (-557)) 12 T ELT)) (-3602 (((-114) $) NIL (|has| |#3| (-813)) ELT)) (-3288 (((-659 |#3|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2639 (((-114) $) NIL (|has| |#3| (-1068)) ELT)) (-2413 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) NIL (|has| |#3| (-859)) ELT)) (-3005 (((-659 |#3|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#3| (-1120))) ELT)) (-2414 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#3| (-859)) ELT)) (-2158 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2218 (((-936) $) NIL (|has| |#3| (-381)) ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (-12 (|has| |#3| (-656 (-557))) (|has| |#3| (-1068))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (-12 (|has| |#3| (-656 (-557))) (|has| |#3| (-1068))) ELT) (((-2 (|:| -1781 (-707 |#3|)) (|:| |vec| (-1286 |#3|))) (-1286 $) $) NIL (|has| |#3| (-1068)) ELT) (((-707 |#3|) (-1286 $)) NIL (|has| |#3| (-1068)) ELT)) (-3658 (((-1178) $) NIL (|has| |#3| (-1120)) ELT)) (-2416 (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) (-557) $) NIL T ELT)) (-2629 (($ (-936)) NIL (|has| |#3| (-381)) ELT)) (-3659 (((-1139) $) NIL (|has| |#3| (-1120)) ELT)) (-4229 ((|#3| $) NIL (|has| (-557) (-859)) ELT)) (-2412 (($ $ |#3|) NIL (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120))) ELT) (($ $ (-659 |#3|) (-659 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#3| (-1120))) ELT)) (-2418 (((-659 |#3|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#3| $ (-557) |#3|) NIL T ELT) ((|#3| $ (-557)) NIL T ELT)) (-4264 ((|#3| $ $) NIL (|has| |#3| (-1068)) ELT)) (-1598 (($ (-1286 |#3|)) NIL T ELT)) (-4339 (((-136)) NIL (|has| |#3| (-376)) ELT)) (-4186 (($ $ (-789)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1068))) ELT) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1068))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))) ELT) (($ $ (-1196)) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1068)) ELT) (($ $ (-1 |#3| |#3|) (-789)) NIL (|has| |#3| (-1068)) ELT)) (-2155 (((-789) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#3| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#3| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-4374 (((-1286 |#3|) $) NIL T ELT) (($ (-557)) NIL (-3955 (-12 (|has| |#3| (-1057 (-557))) (|has| |#3| (-1120))) (|has| |#3| (-1068))) ELT) (($ (-419 (-557))) NIL (-12 (|has| |#3| (-1057 (-419 (-557)))) (|has| |#3| (-1120))) ELT) (($ |#3|) NIL (|has| |#3| (-1120)) ELT) (((-875) $) NIL (|has| |#3| (-628 (-875))) ELT)) (-3526 (((-789)) NIL (|has| |#3| (-1068)) CONST)) (-1376 (((-114) $ $) NIL (|has| |#3| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3057 (($) NIL (|has| |#3| (-23)) CONST)) (-3063 (($) NIL (|has| |#3| (-1068)) CONST)) (-3068 (($ $ (-789)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1068))) ELT) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1068))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))) ELT) (($ $ (-1196)) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1068)) ELT) (($ $ (-1 |#3| |#3|) (-789)) NIL (|has| |#3| (-1068)) ELT)) (-2963 (((-114) $ $) NIL (|has| |#3| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#3| (-859)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#3| (-102)) ELT)) (-3083 (((-114) $ $) NIL (|has| |#3| (-859)) ELT)) (-3084 (((-114) $ $) 24 (|has| |#3| (-859)) ELT)) (-4377 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-4265 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-4267 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-789)) NIL (|has| |#3| (-1068)) ELT) (($ $ (-936)) NIL (|has| |#3| (-1068)) ELT)) (* (($ $ $) NIL (|has| |#3| (-1068)) ELT) (($ $ |#3|) NIL (|has| |#3| (-744)) ELT) (($ |#3| $) NIL (|has| |#3| (-744)) ELT) (($ (-557) $) NIL (|has| |#3| (-21)) ELT) (($ (-789) $) NIL (|has| |#3| (-23)) ELT) (($ (-936) $) NIL (|has| |#3| (-25)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-1132 |#1| |#2| |#3|) (-245 |#1| |#3|) (-789) (-789) (-813)) (T -1132)) -NIL -((-3726 (((-659 (-1255 |#2| |#1|)) (-1255 |#2| |#1|) (-1255 |#2| |#1|)) 50 T ELT)) (-3732 (((-557) (-1255 |#2| |#1|)) 96 (|has| |#1| (-464)) ELT)) (-3730 (((-557) (-1255 |#2| |#1|)) 79 T ELT)) (-3727 (((-659 (-1255 |#2| |#1|)) (-1255 |#2| |#1|) (-1255 |#2| |#1|)) 58 T ELT)) (-3731 (((-557) (-1255 |#2| |#1|) (-1255 |#2| |#1|)) 95 (|has| |#1| (-464)) ELT)) (-3728 (((-659 |#1|) (-1255 |#2| |#1|) (-1255 |#2| |#1|)) 61 T ELT)) (-3729 (((-557) (-1255 |#2| |#1|) (-1255 |#2| |#1|)) 78 T ELT))) -(((-1133 |#1| |#2|) (-10 -7 (-15 -3726 ((-659 (-1255 |#2| |#1|)) (-1255 |#2| |#1|) (-1255 |#2| |#1|))) (-15 -3727 ((-659 (-1255 |#2| |#1|)) (-1255 |#2| |#1|) (-1255 |#2| |#1|))) (-15 -3728 ((-659 |#1|) (-1255 |#2| |#1|) (-1255 |#2| |#1|))) (-15 -3729 ((-557) (-1255 |#2| |#1|) (-1255 |#2| |#1|))) (-15 -3730 ((-557) (-1255 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3731 ((-557) (-1255 |#2| |#1|) (-1255 |#2| |#1|))) (-15 -3732 ((-557) (-1255 |#2| |#1|)))) |%noBranch|)) (-840) (-1196)) (T -1133)) -((-3732 (*1 *2 *3) (-12 (-5 *3 (-1255 *5 *4)) (-4 *4 (-464)) (-4 *4 (-840)) (-14 *5 (-1196)) (-5 *2 (-557)) (-5 *1 (-1133 *4 *5)))) (-3731 (*1 *2 *3 *3) (-12 (-5 *3 (-1255 *5 *4)) (-4 *4 (-464)) (-4 *4 (-840)) (-14 *5 (-1196)) (-5 *2 (-557)) (-5 *1 (-1133 *4 *5)))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-1255 *5 *4)) (-4 *4 (-840)) (-14 *5 (-1196)) (-5 *2 (-557)) (-5 *1 (-1133 *4 *5)))) (-3729 (*1 *2 *3 *3) (-12 (-5 *3 (-1255 *5 *4)) (-4 *4 (-840)) (-14 *5 (-1196)) (-5 *2 (-557)) (-5 *1 (-1133 *4 *5)))) (-3728 (*1 *2 *3 *3) (-12 (-5 *3 (-1255 *5 *4)) (-4 *4 (-840)) (-14 *5 (-1196)) (-5 *2 (-659 *4)) (-5 *1 (-1133 *4 *5)))) (-3727 (*1 *2 *3 *3) (-12 (-4 *4 (-840)) (-14 *5 (-1196)) (-5 *2 (-659 (-1255 *5 *4))) (-5 *1 (-1133 *4 *5)) (-5 *3 (-1255 *5 *4)))) (-3726 (*1 *2 *3 *3) (-12 (-4 *4 (-840)) (-14 *5 (-1196)) (-5 *2 (-659 (-1255 *5 *4))) (-5 *1 (-1133 *4 *5)) (-5 *3 (-1255 *5 *4))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3734 (((-1201) $) 12 T ELT)) (-3733 (((-659 (-1201)) $) 14 T ELT)) (-3735 (($ (-659 (-1201)) (-1201)) 10 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 29 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 17 T ELT))) -(((-1134) (-13 (-1120) (-10 -8 (-15 -3735 ($ (-659 (-1201)) (-1201))) (-15 -3734 ((-1201) $)) (-15 -3733 ((-659 (-1201)) $))))) (T -1134)) -((-3735 (*1 *1 *2 *3) (-12 (-5 *2 (-659 (-1201))) (-5 *3 (-1201)) (-5 *1 (-1134)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1134)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-659 (-1201))) (-5 *1 (-1134))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3736 (($ (-518) (-1134)) 13 T ELT)) (-3735 (((-1134) $) 19 T ELT)) (-3968 (((-518) $) 16 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 26 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1135) (-13 (-1102) (-10 -8 (-15 -3736 ($ (-518) (-1134))) (-15 -3968 ((-518) $)) (-15 -3735 ((-1134) $))))) (T -1135)) -((-3736 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1134)) (-5 *1 (-1135)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1135)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1135))))) -((-4051 (((-3 (-557) #1="failed") |#2| (-1196) |#2| (-1178)) 19 T ELT) (((-3 (-557) #1#) |#2| (-1196) (-853 |#2|)) 17 T ELT) (((-3 (-557) #1#) |#2|) 60 T ELT))) -(((-1136 |#1| |#2|) (-10 -7 (-15 -4051 ((-3 (-557) #1="failed") |#2|)) (-15 -4051 ((-3 (-557) #1#) |#2| (-1196) (-853 |#2|))) (-15 -4051 ((-3 (-557) #1#) |#2| (-1196) |#2| (-1178)))) (-13 (-568) (-1057 (-557)) (-656 (-557)) (-464)) (-13 (-27) (-1222) (-433 |#1|))) (T -1136)) -((-4051 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-1178)) (-4 *6 (-13 (-568) (-1057 *2) (-656 *2) (-464))) (-5 *2 (-557)) (-5 *1 (-1136 *6 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *6))))) (-4051 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-853 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *6))) (-4 *6 (-13 (-568) (-1057 *2) (-656 *2) (-464))) (-5 *2 (-557)) (-5 *1 (-1136 *6 *3)))) (-4051 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1057 *2) (-656 *2) (-464))) (-5 *2 (-557)) (-5 *1 (-1136 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *4)))))) -((-4051 (((-3 (-557) #1="failed") (-419 (-963 |#1|)) (-1196) (-419 (-963 |#1|)) (-1178)) 38 T ELT) (((-3 (-557) #1#) (-419 (-963 |#1|)) (-1196) (-853 (-419 (-963 |#1|)))) 33 T ELT) (((-3 (-557) #1#) (-419 (-963 |#1|))) 14 T ELT))) -(((-1137 |#1|) (-10 -7 (-15 -4051 ((-3 (-557) #1="failed") (-419 (-963 |#1|)))) (-15 -4051 ((-3 (-557) #1#) (-419 (-963 |#1|)) (-1196) (-853 (-419 (-963 |#1|))))) (-15 -4051 ((-3 (-557) #1#) (-419 (-963 |#1|)) (-1196) (-419 (-963 |#1|)) (-1178)))) (-464)) (T -1137)) -((-4051 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-419 (-963 *6))) (-5 *4 (-1196)) (-5 *5 (-1178)) (-4 *6 (-464)) (-5 *2 (-557)) (-5 *1 (-1137 *6)))) (-4051 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-853 (-419 (-963 *6)))) (-5 *3 (-419 (-963 *6))) (-4 *6 (-464)) (-5 *2 (-557)) (-5 *1 (-1137 *6)))) (-4051 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-963 *4))) (-4 *4 (-464)) (-5 *2 (-557)) (-5 *1 (-1137 *4))))) -((-4077 (((-326 (-557)) (-48)) 12 T ELT))) -(((-1138) (-10 -7 (-15 -4077 ((-326 (-557)) (-48))))) (T -1138)) -((-4077 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-557))) (-5 *1 (-1138))))) -((-2965 (((-114) $ $) NIL T ELT)) (-2524 (($ $) 22 T ELT)) (-3604 (((-114) $) 52 T ELT)) (-3740 (($ $ $) 31 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 79 T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-2255 (($ $ $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2250 (($ $ $ $) 62 T ELT)) (-4203 (($ $) NIL T ELT)) (-4399 (((-417 $) $) NIL T ELT)) (-1786 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) 64 T ELT)) (-4051 (((-557) $) NIL T ELT)) (-2828 (($ $ $) 59 T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) NIL T ELT)) (-3572 (((-557) $) NIL T ELT)) (-2961 (($ $ $) 45 T ELT)) (-2491 (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) 73 T ELT) (((-707 (-557)) (-707 $)) 8 T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3423 (((-3 (-419 (-557)) #1#) $) NIL T ELT)) (-3422 (((-114) $) NIL T ELT)) (-3421 (((-419 (-557)) $) NIL T ELT)) (-3393 (($) 77 T ELT) (($ $) 76 T ELT)) (-2960 (($ $ $) 44 T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL T ELT)) (-4151 (((-114) $) NIL T ELT)) (-2248 (($ $ $ $) NIL T ELT)) (-2256 (($ $ $) 74 T ELT)) (-3602 (((-114) $) 80 T ELT)) (-1481 (($ $ $) NIL T ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL T ELT)) (-2958 (($ $ $) 30 T ELT)) (-2639 (((-114) $) 53 T ELT)) (-3072 (((-114) $) 50 T ELT)) (-2957 (($ $) 23 T ELT)) (-3863 (((-709 $) $) NIL T ELT)) (-3603 (((-114) $) 63 T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL T ELT)) (-2249 (($ $ $ $) 60 T ELT)) (-2928 (($ $ $) 55 T ELT) (($) 19 T CONST)) (-3256 (($ $ $) 54 T ELT) (($) 18 T CONST)) (-2252 (($ $) NIL T ELT)) (-2218 (((-936) $) 69 T ELT)) (-4261 (($ $) 58 T ELT)) (-2492 (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL T ELT) (((-707 (-557)) (-1286 $)) NIL T ELT)) (-2100 (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2247 (($ $ $) NIL T ELT)) (-3864 (($) NIL T CONST)) (-2629 (($ (-936)) 68 T ELT)) (-2254 (($ $) 36 T ELT)) (-3659 (((-1139) $) 57 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL T ELT)) (-3560 (($ $ $) 48 T ELT) (($ (-659 $)) NIL T ELT)) (-1479 (($ $) NIL T ELT)) (-4160 (((-417 $) $) NIL T ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL T ELT)) (-3073 (((-114) $) 51 T ELT)) (-1785 (((-789) $) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 47 T ELT)) (-4186 (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-2253 (($ $) 37 T ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-557) $) 12 T ELT) (((-546) $) NIL T ELT) (((-903 (-557)) $) NIL T ELT) (((-391) $) NIL T ELT) (((-229) $) NIL T ELT)) (-4374 (((-875) $) 11 T ELT) (($ (-557)) 75 T ELT) (($ $) NIL T ELT) (($ (-557)) 75 T ELT)) (-3526 (((-789)) NIL T CONST)) (-2257 (((-114) $ $) NIL T ELT)) (-3502 (($ $ $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3093 (($) 17 T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-2959 (($ $ $) 28 T ELT)) (-2251 (($ $ $ $) 61 T ELT)) (-3801 (($ $) 49 T ELT)) (-2522 (($ $ $) 25 T ELT)) (-3057 (($) 15 T CONST)) (-3737 (($ $ $) 29 T ELT)) (-3063 (($) 16 T CONST)) (-3739 (($ $) 26 T ELT)) (-3068 (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-3738 (($ $ $) 27 T ELT)) (-2963 (((-114) $ $) 35 T ELT)) (-2964 (((-114) $ $) 33 T ELT)) (-3452 (((-114) $ $) 21 T ELT)) (-3083 (((-114) $ $) 34 T ELT)) (-3084 (((-114) $ $) 32 T ELT)) (-2523 (($ $ $) 24 T ELT)) (-4265 (($ $) 38 T ELT) (($ $ $) 40 T ELT)) (-4267 (($ $ $) 39 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) 43 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 14 T ELT) (($ $ $) 41 T ELT) (($ (-557) $) 14 T ELT))) -(((-1139) (-13 (-556) (-855) (-113) (-10 -8 (-6 -4410) (-6 -4415) (-6 -4411) (-15 -3740 ($ $ $)) (-15 -3739 ($ $)) (-15 -3738 ($ $ $)) (-15 -3737 ($ $ $))))) (T -1139)) -((-3740 (*1 *1 *1 *1) (-5 *1 (-1139))) (-3739 (*1 *1 *1) (-5 *1 (-1139))) (-3738 (*1 *1 *1 *1) (-5 *1 (-1139))) (-3737 (*1 *1 *1 *1) (-5 *1 (-1139)))) -((-557) (|%ismall?| |#1|)) -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3742 ((|#1| $) 48 T ELT)) (-4152 (($) 7 T CONST)) (-3744 ((|#1| |#1| $) 50 T ELT)) (-3743 ((|#1| $) 49 T ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-1387 ((|#1| $) 43 T ELT)) (-4035 (($ |#1| $) 44 T ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-1388 ((|#1| $) 45 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-3741 (((-789) $) 47 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1389 (($ (-659 |#1|)) 46 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-1140 |#1|) (-142) (-1236)) (T -1140)) -((-3744 (*1 *2 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1236)))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1236)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1236)))) (-3741 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1236)) (-5 *2 (-789))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4423) (-15 -3744 (|t#1| |t#1| $)) (-15 -3743 (|t#1| $)) (-15 -3742 (|t#1| $)) (-15 -3741 ((-789) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-628 (-875)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-1120) |has| |#1| (-1120)) ((-1236) . T)) -((-3748 ((|#3| $) 87 T ELT)) (-3573 (((-3 (-557) #1="failed") $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3572 (((-557) $) NIL T ELT) (((-419 (-557)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL T ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL T ELT) (((-2 (|:| -1781 (-707 |#3|)) (|:| |vec| (-1286 |#3|))) (-707 $) (-1286 $)) 84 T ELT) (((-707 |#3|) (-707 $)) 76 T ELT)) (-4186 (($ $ (-1 |#3| |#3|) (-789)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-1196)) NIL T ELT) (($ $ (-659 (-1196))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT)) (-3747 ((|#3| $) 89 T ELT)) (-3749 ((|#4| $) 43 T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) 24 T ELT) (($ $ (-557)) 95 T ELT))) -(((-1141 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4186 (|#1| |#1| (-659 (-1196)) (-659 (-789)))) (-15 -4186 (|#1| |#1| (-1196) (-789))) (-15 -4186 (|#1| |#1| (-659 (-1196)))) (-15 -4186 (|#1| |#1| (-1196))) (-15 -4186 (|#1| |#1| (-789))) (-15 -4186 (|#1| |#1|)) (-15 ** (|#1| |#1| (-557))) (-15 -3747 (|#3| |#1|)) (-15 -3748 (|#3| |#1|)) (-15 -3749 (|#4| |#1|)) (-15 -2491 ((-707 |#3|) (-707 |#1|))) (-15 -2491 ((-2 (|:| -1781 (-707 |#3|)) (|:| |vec| (-1286 |#3|))) (-707 |#1|) (-1286 |#1|))) (-15 -2491 ((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 |#1|) (-1286 |#1|))) (-15 -2491 ((-707 (-557)) (-707 |#1|))) (-15 -4374 (|#1| |#3|)) (-15 -3573 ((-3 |#3| #1="failed") |#1|)) (-15 -3572 (|#3| |#1|)) (-15 -3572 ((-419 (-557)) |#1|)) (-15 -3573 ((-3 (-419 (-557)) #1#) |#1|)) (-15 -4374 (|#1| (-419 (-557)))) (-15 -3572 ((-557) |#1|)) (-15 -3573 ((-3 (-557) #1#) |#1|)) (-15 -4186 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4186 (|#1| |#1| (-1 |#3| |#3|) (-789))) (-15 -4374 (|#1| (-557))) (-15 ** (|#1| |#1| (-789))) (-15 ** (|#1| |#1| (-936))) (-15 -4374 ((-875) |#1|))) (-1142 |#2| |#3| |#4| |#5|) (-789) (-1068) (-245 |#2| |#3|) (-245 |#2| |#3|)) (T -1141)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-3748 ((|#2| $) 87 T ELT)) (-3521 (((-114) $) 128 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-3523 (((-114) $) 126 T ELT)) (-3751 (($ |#2|) 90 T ELT)) (-4152 (($) 22 T CONST)) (-3510 (($ $) 145 (|has| |#2| (-319)) ELT)) (-3512 ((|#3| $ (-557)) 140 T ELT)) (-3573 (((-3 (-557) #1="failed") $) 106 (|has| |#2| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) 103 (|has| |#2| (-1057 (-419 (-557)))) ELT) (((-3 |#2| #1#) $) 100 T ELT)) (-3572 (((-557) $) 105 (|has| |#2| (-1057 (-557))) ELT) (((-419 (-557)) $) 102 (|has| |#2| (-1057 (-419 (-557)))) ELT) ((|#2| $) 101 T ELT)) (-2491 (((-707 (-557)) (-707 $)) 96 (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) 95 (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 $) (-1286 $)) 94 T ELT) (((-707 |#2|) (-707 $)) 93 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-3509 (((-789) $) 146 (|has| |#2| (-568)) ELT)) (-3513 ((|#2| $ (-557) (-557)) 138 T ELT)) (-3288 (((-659 |#2|) $) 114 (|has| $ (-6 -4423)) ELT)) (-2639 (((-114) $) 40 T ELT)) (-3508 (((-789) $) 147 (|has| |#2| (-568)) ELT)) (-3507 (((-659 |#4|) $) 148 (|has| |#2| (-568)) ELT)) (-3515 (((-789) $) 134 T ELT)) (-3514 (((-789) $) 135 T ELT)) (-3745 ((|#2| $) 82 (|has| |#2| (-6 (-4425 #2="*"))) ELT)) (-3519 (((-557) $) 130 T ELT)) (-3517 (((-557) $) 132 T ELT)) (-3005 (((-659 |#2|) $) 113 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#2| $) 111 (-12 (|has| |#2| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3518 (((-557) $) 131 T ELT)) (-3516 (((-557) $) 133 T ELT)) (-3524 (($ (-659 (-659 |#2|))) 125 T ELT)) (-2158 (($ (-1 |#2| |#2|) $) 118 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#2| |#2| |#2|) $ $) 142 T ELT) (($ (-1 |#2| |#2|) $) 119 T ELT)) (-4020 (((-659 (-659 |#2|)) $) 136 T ELT)) (-2492 (((-707 (-557)) (-1286 $)) 98 (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) 97 (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) 92 T ELT) (((-707 |#2|) (-1286 $)) 91 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-4016 (((-3 $ "failed") $) 81 (|has| |#2| (-376)) ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3884 (((-3 $ "failed") $ |#2|) 143 (|has| |#2| (-568)) ELT)) (-2156 (((-114) (-1 (-114) |#2|) $) 116 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#2|))) 110 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-305 |#2|)) 109 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ |#2| |#2|) 108 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-659 |#2|) (-659 |#2|)) 107 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT)) (-1327 (((-114) $ $) 124 T ELT)) (-3821 (((-114) $) 121 T ELT)) (-3991 (($) 122 T ELT)) (-4228 ((|#2| $ (-557) (-557) |#2|) 139 T ELT) ((|#2| $ (-557) (-557)) 137 T ELT)) (-4186 (($ $ (-1 |#2| |#2|) (-789)) 62 T ELT) (($ $ (-1 |#2| |#2|)) 61 T ELT) (($ $) 52 (|has| |#2| (-239)) ELT) (($ $ (-789)) 50 (|has| |#2| (-239)) ELT) (($ $ (-1196)) 60 (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) 58 (|has| |#2| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) 57 (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 56 (|has| |#2| (-917 (-1196))) ELT)) (-3747 ((|#2| $) 86 T ELT)) (-3750 (($ (-659 |#2|)) 89 T ELT)) (-3522 (((-114) $) 127 T ELT)) (-3749 ((|#3| $) 88 T ELT)) (-3746 ((|#2| $) 83 (|has| |#2| (-6 (-4425 #2#))) ELT)) (-2155 (((-789) (-1 (-114) |#2|) $) 115 (|has| $ (-6 -4423)) ELT) (((-789) |#2| $) 112 (-12 (|has| |#2| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 123 T ELT)) (-3511 ((|#4| $ (-557)) 141 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ (-419 (-557))) 104 (|has| |#2| (-1057 (-419 (-557)))) ELT) (($ |#2|) 99 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) 117 (|has| $ (-6 -4423)) ELT)) (-3520 (((-114) $) 129 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $ (-1 |#2| |#2|) (-789)) 64 T ELT) (($ $ (-1 |#2| |#2|)) 63 T ELT) (($ $) 51 (|has| |#2| (-239)) ELT) (($ $ (-789)) 49 (|has| |#2| (-239)) ELT) (($ $ (-1196)) 59 (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) 55 (|has| |#2| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) 54 (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 53 (|has| |#2| (-917 (-1196))) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ |#2|) 144 (|has| |#2| (-376)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ (-557)) 80 (|has| |#2| (-376)) ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#2|) 150 T ELT) (($ |#2| $) 149 T ELT) ((|#4| $ |#4|) 85 T ELT) ((|#3| |#3| $) 84 T ELT)) (-4385 (((-789) $) 120 (|has| $ (-6 -4423)) ELT))) -(((-1142 |#1| |#2| |#3| |#4|) (-142) (-789) (-1068) (-245 |t#1| |t#2|) (-245 |t#1| |t#2|)) (T -1142)) -((-3751 (*1 *1 *2) (-12 (-4 *2 (-1068)) (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)))) (-3750 (*1 *1 *2) (-12 (-5 *2 (-659 *4)) (-4 *4 (-1068)) (-4 *1 (-1142 *3 *4 *5 *6)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *4 *2 *5)) (-4 *4 (-1068)) (-4 *5 (-245 *3 *4)) (-4 *2 (-245 *3 *4)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (-4 *2 (-1068)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (-4 *2 (-1068)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1142 *3 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-245 *3 *4)) (-4 *2 (-245 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1142 *3 *4 *2 *5)) (-4 *4 (-1068)) (-4 *2 (-245 *3 *4)) (-4 *5 (-245 *3 *4)))) (-3746 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (|has| *2 (-6 (-4425 #1="*"))) (-4 *2 (-1068)))) (-3745 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (|has| *2 (-6 (-4425 #1#))) (-4 *2 (-1068)))) (-4016 (*1 *1 *1) (|partial| -12 (-4 *1 (-1142 *2 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-245 *2 *3)) (-4 *5 (-245 *2 *3)) (-4 *3 (-376)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-4 *1 (-1142 *3 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)) (-4 *4 (-376))))) -(-13 (-234 |t#2|) (-111 |t#2| |t#2|) (-1072 |t#1| |t#1| |t#2| |t#3| |t#4|) (-424 |t#2|) (-390 |t#2|) (-10 -8 (IF (|has| |t#2| (-175)) (-6 (-735 |t#2|)) |%noBranch|) (-15 -3751 ($ |t#2|)) (-15 -3750 ($ (-659 |t#2|))) (-15 -3749 (|t#3| $)) (-15 -3748 (|t#2| $)) (-15 -3747 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4425 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3746 (|t#2| $)) (-15 -3745 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-376)) (PROGN (-15 -4016 ((-3 $ "failed") $)) (-15 ** ($ $ (-557)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4425 #1="*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-631 (-419 (-557))) |has| |#2| (-1057 (-419 (-557)))) ((-631 (-557)) . T) ((-631 |#2|) . T) ((-628 (-875)) . T) ((-236 $) -3955 (|has| |#2| (-239)) (|has| |#2| (-240))) ((-234 |#2|) . T) ((-240) |has| |#2| (-240)) ((-239) -3955 (|has| |#2| (-239)) (|has| |#2| (-240))) ((-274 |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ((-390 |#2|) . T) ((-424 |#2|) . T) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ((-664 (-557)) . T) ((-664 |#2|) . T) ((-664 $) . T) ((-666 (-557)) |has| |#2| (-656 (-557))) ((-666 |#2|) . T) ((-666 $) . T) ((-658 |#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-6 (-4425 #1#)))) ((-656 (-557)) |has| |#2| (-656 (-557))) ((-656 |#2|) . T) ((-735 |#2|) -3955 (|has| |#2| (-175)) (|has| |#2| (-6 (-4425 #1#)))) ((-744) . T) ((-909 $ (-1196)) -3955 (|has| |#2| (-917 (-1196))) (|has| |#2| (-915 (-1196)))) ((-915 (-1196)) |has| |#2| (-915 (-1196))) ((-917 (-1196)) -3955 (|has| |#2| (-917 (-1196))) (|has| |#2| (-915 (-1196)))) ((-1072 |#1| |#1| |#2| |#3| |#4|) . T) ((-1057 (-419 (-557))) |has| |#2| (-1057 (-419 (-557)))) ((-1057 (-557)) |has| |#2| (-1057 (-557))) ((-1057 |#2|) . T) ((-1070 |#2|) . T) ((-1075 |#2|) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-3754 ((|#4| |#4|) 81 T ELT)) (-3752 ((|#4| |#4|) 76 T ELT)) (-3756 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2220 (-659 |#3|))) |#4| |#3|) 91 T ELT)) (-3755 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3753 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) -(((-1143 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3752 (|#4| |#4|)) (-15 -3753 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3754 (|#4| |#4|)) (-15 -3755 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3756 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2220 (-659 |#3|))) |#4| |#3|))) (-319) (-385 |#1|) (-385 |#1|) (-704 |#1| |#2| |#3|)) (T -1143)) -((-3756 (*1 *2 *3 *4) (-12 (-4 *5 (-319)) (-4 *6 (-385 *5)) (-4 *4 (-385 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2220 (-659 *4)))) (-5 *1 (-1143 *5 *6 *4 *3)) (-4 *3 (-704 *5 *6 *4)))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1143 *4 *5 *6 *3)) (-4 *3 (-704 *4 *5 *6)))) (-3754 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1143 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5)))) (-3753 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1143 *4 *5 *6 *3)) (-4 *3 (-704 *4 *5 *6)))) (-3752 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1143 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 18 T ELT)) (-3482 (((-659 |#2|) $) 174 T ELT)) (-3484 (((-1190 $) $ |#2|) 60 T ELT) (((-1190 |#1|) $) 49 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 116 (|has| |#1| (-568)) ELT)) (-2271 (($ $) 118 (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) 120 (|has| |#1| (-568)) ELT)) (-3218 (((-789) $) NIL T ELT) (((-789) $ (-659 |#2|)) 214 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-4203 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3572 ((|#1| $) 165 T ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) ((|#2| $) NIL T ELT)) (-4184 (($ $ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-4387 (($ $) 218 T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) NIL T ELT) (((-707 |#1|) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) 90 T ELT)) (-3921 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ |#2|) NIL (|has| |#1| (-464)) ELT)) (-3217 (((-659 $) $) NIL T ELT)) (-4151 (((-114) $) NIL (|has| |#1| (-927)) ELT)) (-1802 (($ $ |#1| (-542 |#2|) $) NIL T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (-12 (|has| |#1| (-899 (-391))) (|has| |#2| (-899 (-391)))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (-12 (|has| |#1| (-899 (-557))) (|has| |#2| (-899 (-557)))) ELT)) (-2639 (((-114) $) 20 T ELT)) (-2647 (((-789) $) 30 T ELT)) (-3485 (($ (-1190 |#1|) |#2|) 54 T ELT) (($ (-1190 $) |#2|) 71 T ELT)) (-3220 (((-659 $) $) NIL T ELT)) (-4365 (((-114) $) 38 T ELT)) (-3292 (($ |#1| (-542 |#2|)) 78 T ELT) (($ $ |#2| (-789)) 58 T ELT) (($ $ (-659 |#2|) (-659 (-789))) NIL T ELT)) (-4191 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $ |#2|) NIL T ELT)) (-3219 (((-542 |#2|) $) 205 T ELT) (((-789) $ |#2|) 206 T ELT) (((-659 (-789)) $ (-659 |#2|)) 207 T ELT)) (-1803 (($ (-1 (-542 |#2|) (-542 |#2|)) $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3483 (((-3 |#2| #1#) $) 177 T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL T ELT) (((-707 |#1|) (-1286 $)) NIL T ELT)) (-3293 (($ $) 217 T ELT)) (-3590 ((|#1| $) 43 T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3222 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3221 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-2 (|:| |var| |#2|) (|:| -2630 (-789))) #1#) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2003 (((-114) $) 39 T ELT)) (-2002 ((|#1| $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 148 (|has| |#1| (-464)) ELT)) (-3560 (($ (-659 $)) 153 (|has| |#1| (-464)) ELT) (($ $ $) 138 (|has| |#1| (-464)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-927)) ELT)) (-4160 (((-417 $) $) NIL (|has| |#1| (-927)) ELT)) (-3884 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-568)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-568)) ELT)) (-4196 (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-659 |#2|) (-659 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-659 |#2|) (-659 $)) 194 T ELT)) (-4185 (($ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-4186 (($ $ (-659 |#2|) (-659 (-789))) NIL T ELT) (($ $ |#2| (-789)) NIL T ELT) (($ $ (-659 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-4376 (((-542 |#2|) $) 201 T ELT) (((-789) $ |#2|) 196 T ELT) (((-659 (-789)) $ (-659 |#2|)) 199 T ELT)) (-4400 (((-903 (-391)) $) NIL (-12 (|has| |#1| (-629 (-903 (-391)))) (|has| |#2| (-629 (-903 (-391))))) ELT) (((-903 (-557)) $) NIL (-12 (|has| |#1| (-629 (-903 (-557)))) (|has| |#2| (-629 (-903 (-557))))) ELT) (((-546) $) NIL (-12 (|has| |#1| (-629 (-546))) (|has| |#2| (-629 (-546)))) ELT)) (-3216 ((|#1| $) 134 (|has| |#1| (-464)) ELT) (($ $ |#2|) 137 (|has| |#1| (-464)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-927))) ELT)) (-4374 (((-875) $) 159 T ELT) (($ (-557)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-568)) ELT) (($ (-419 (-557))) NIL (-3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) ELT)) (-4245 (((-659 |#1|) $) 162 T ELT)) (-4105 ((|#1| $ (-542 |#2|)) 80 T ELT) (($ $ |#2| (-789)) NIL T ELT) (($ $ (-659 |#2|) (-659 (-789))) NIL T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| |#1| (-927))) (|has| |#1| (-147))) ELT)) (-3526 (((-789)) 87 T CONST)) (-1801 (($ $ $ (-789)) NIL (|has| |#1| (-175)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) 123 (|has| |#1| (-568)) ELT)) (-3057 (($) 12 T CONST)) (-3063 (($) 14 T CONST)) (-3068 (($ $ (-659 |#2|) (-659 (-789))) NIL T ELT) (($ $ |#2| (-789)) NIL T ELT) (($ $ (-659 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3452 (((-114) $ $) 106 T ELT)) (-4377 (($ $ |#1|) 132 (|has| |#1| (-376)) ELT)) (-4265 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-4267 (($ $ $) 55 T ELT)) (** (($ $ (-936)) 110 T ELT) (($ $ (-789)) 109 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1144 |#1| |#2|) (-967 |#1| (-542 |#2|) |#2|) (-1068) (-859)) (T -1144)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3482 (((-659 |#2|) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-3910 (($ $) 152 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4067 (($ $) 128 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3436 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3908 (($ $) 148 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4066 (($ $) 124 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3912 (($ $) 156 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4065 (($ $) 132 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4152 (($) NIL T CONST)) (-4387 (($ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-4242 (((-963 |#1|) $ (-789)) NIL T ELT) (((-963 |#1|) $ (-789) (-789)) NIL T ELT)) (-3291 (((-114) $) NIL T ELT)) (-4055 (($) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4200 (((-789) $ |#2|) NIL T ELT) (((-789) $ |#2| (-789)) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3410 (($ $ (-557)) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ $ (-659 |#2|) (-659 (-542 |#2|))) NIL T ELT) (($ $ |#2| (-542 |#2|)) NIL T ELT) (($ |#1| (-542 |#2|)) NIL T ELT) (($ $ |#2| (-789)) 63 T ELT) (($ $ (-659 |#2|) (-659 (-789))) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4370 (($ $) 122 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-4240 (($ $ |#2|) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4104 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4197 (($ $ (-789)) 16 T ELT)) (-3884 (((-3 $ #1#) $ $) NIL (|has| |#1| (-568)) ELT)) (-4371 (($ $) 120 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4196 (($ $ |#2| $) 106 T ELT) (($ $ (-659 |#2|) (-659 $)) 99 T ELT) (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT)) (-4186 (($ $ (-659 |#2|) (-659 (-789))) NIL T ELT) (($ $ |#2| (-789)) NIL T ELT) (($ $ (-659 |#2|)) NIL T ELT) (($ $ |#2|) 109 T ELT)) (-4376 (((-542 |#2|) $) NIL T ELT)) (-3757 (((-1 (-1174 |#3|) |#3|) (-659 |#2|) (-659 (-1174 |#3|))) 87 T ELT)) (-3913 (($ $) 158 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4064 (($ $) 134 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3911 (($ $) 154 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4063 (($ $) 130 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3909 (($ $) 150 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4062 (($ $) 126 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3290 (($ $) 18 T ELT)) (-4374 (((-875) $) 198 T ELT) (($ (-557)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-175)) ELT) (($ $) NIL (|has| |#1| (-568)) ELT) (($ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-4105 ((|#1| $ (-542 |#2|)) NIL T ELT) (($ $ |#2| (-789)) NIL T ELT) (($ $ (-659 |#2|) (-659 (-789))) NIL T ELT) ((|#3| $ (-789)) 43 T ELT)) (-3101 (((-709 $) $) NIL (|has| |#1| (-147)) ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3916 (($ $) 164 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3904 (($ $) 140 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3914 (($ $) 160 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3902 (($ $) 136 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3918 (($ $) 168 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3906 (($ $) 144 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3919 (($ $) 170 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3907 (($ $) 146 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3917 (($ $) 166 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3905 (($ $) 142 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3915 (($ $) 162 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3903 (($ $) 138 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3057 (($) 52 T CONST)) (-3063 (($) 62 T CONST)) (-3068 (($ $ (-659 |#2|) (-659 (-789))) NIL T ELT) (($ $ |#2| (-789)) NIL T ELT) (($ $ (-659 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#1|) 200 (|has| |#1| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 66 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) 112 (|has| |#1| (-38 (-419 (-557)))) ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-419 (-557))) 117 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ (-419 (-557)) $) 115 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) -(((-1145 |#1| |#2| |#3|) (-13 (-758 |#1| |#2|) (-10 -8 (-15 -4105 (|#3| $ (-789))) (-15 -4374 ($ |#2|)) (-15 -4374 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3757 ((-1 (-1174 |#3|) |#3|) (-659 |#2|) (-659 (-1174 |#3|)))) (IF (|has| |#1| (-38 (-419 (-557)))) (PROGN (-15 -4240 ($ $ |#2| |#1|)) (-15 -4104 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1068) (-859) (-967 |#1| (-542 |#2|) |#2|)) (T -1145)) -((-4105 (*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-4 *2 (-967 *4 (-542 *5) *5)) (-5 *1 (-1145 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-859)))) (-4374 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-4 *2 (-859)) (-5 *1 (-1145 *3 *2 *4)) (-4 *4 (-967 *3 (-542 *2) *2)))) (-4374 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-4 *4 (-859)) (-5 *1 (-1145 *3 *4 *2)) (-4 *2 (-967 *3 (-542 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-859)) (-5 *1 (-1145 *3 *4 *2)) (-4 *2 (-967 *3 (-542 *4) *4)))) (-3757 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6)) (-5 *4 (-659 (-1174 *7))) (-4 *6 (-859)) (-4 *7 (-967 *5 (-542 *6) *6)) (-4 *5 (-1068)) (-5 *2 (-1 (-1174 *7) *7)) (-5 *1 (-1145 *5 *6 *7)))) (-4240 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068)) (-4 *2 (-859)) (-5 *1 (-1145 *3 *2 *4)) (-4 *4 (-967 *3 (-542 *2) *2)))) (-4104 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1145 *4 *3 *5))) (-4 *4 (-38 (-419 (-557)))) (-4 *4 (-1068)) (-4 *3 (-859)) (-5 *1 (-1145 *4 *3 *5)) (-4 *5 (-967 *4 (-542 *3) *3))))) -((-2965 (((-114) $ $) 7 T ELT)) (-4109 (((-659 (-2 (|:| -4289 $) (|:| -1903 (-659 |#4|)))) (-659 |#4|)) 90 T ELT)) (-4110 (((-659 $) (-659 |#4|)) 91 T ELT) (((-659 $) (-659 |#4|) (-114)) 118 T ELT)) (-3482 (((-659 |#3|) $) 37 T ELT)) (-3307 (((-114) $) 30 T ELT)) (-3298 (((-114) $) 21 (|has| |#1| (-568)) ELT)) (-4121 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4116 ((|#4| |#4| $) 97 T ELT)) (-4203 (((-659 (-2 (|:| |val| |#4|) (|:| -1741 $))) |#4| $) 133 T ELT)) (-3308 (((-2 (|:| |under| $) (|:| -3530 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4138 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4423)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-4152 (($) 46 T CONST)) (-3303 (((-114) $) 26 (|has| |#1| (-568)) ELT)) (-3305 (((-114) $ $) 28 (|has| |#1| (-568)) ELT)) (-3304 (((-114) $ $) 27 (|has| |#1| (-568)) ELT)) (-3306 (((-114) $) 29 (|has| |#1| (-568)) ELT)) (-4117 (((-659 |#4|) (-659 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3299 (((-659 |#4|) (-659 |#4|) $) 22 (|has| |#1| (-568)) ELT)) (-3300 (((-659 |#4|) (-659 |#4|) $) 23 (|has| |#1| (-568)) ELT)) (-3573 (((-3 $ "failed") (-659 |#4|)) 40 T ELT)) (-3572 (($ (-659 |#4|)) 39 T ELT)) (-4227 (((-3 $ #1#) $) 87 T ELT)) (-4113 ((|#4| |#4| $) 94 T ELT)) (-1465 (($ $) 69 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3824 (($ |#4| $) 68 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4423)) ELT)) (-3301 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-568)) ELT)) (-4122 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4111 ((|#4| |#4| $) 92 T ELT)) (-4270 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4423)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4423)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4124 (((-2 (|:| -4289 (-659 |#4|)) (|:| -1903 (-659 |#4|))) $) 110 T ELT)) (-3613 (((-114) |#4| $) 143 T ELT)) (-3611 (((-114) |#4| $) 140 T ELT)) (-3614 (((-114) |#4| $) 144 T ELT) (((-114) $) 141 T ELT)) (-3288 (((-659 |#4|) $) 53 (|has| $ (-6 -4423)) ELT)) (-4123 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3596 ((|#3| $) 38 T ELT)) (-3005 (((-659 |#4|) $) 54 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3313 (((-659 |#3|) $) 36 T ELT)) (-3312 (((-114) |#3| $) 35 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3607 (((-3 |#4| (-659 $)) |#4| |#4| $) 135 T ELT)) (-3606 (((-659 (-2 (|:| |val| |#4|) (|:| -1741 $))) |#4| |#4| $) 134 T ELT)) (-4226 (((-3 |#4| #1#) $) 88 T ELT)) (-3608 (((-659 $) |#4| $) 136 T ELT)) (-3610 (((-3 (-114) (-659 $)) |#4| $) 139 T ELT)) (-3609 (((-659 (-2 (|:| |val| (-114)) (|:| -1741 $))) |#4| $) 138 T ELT) (((-114) |#4| $) 137 T ELT)) (-3654 (((-659 $) |#4| $) 132 T ELT) (((-659 $) (-659 |#4|) $) 131 T ELT) (((-659 $) (-659 |#4|) (-659 $)) 130 T ELT) (((-659 $) |#4| (-659 $)) 129 T ELT)) (-3858 (($ |#4| $) 124 T ELT) (($ (-659 |#4|) $) 123 T ELT)) (-4125 (((-659 |#4|) $) 112 T ELT)) (-4119 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4114 ((|#4| |#4| $) 95 T ELT)) (-4127 (((-114) $ $) 115 T ELT)) (-3302 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-568)) ELT)) (-4120 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4115 ((|#4| |#4| $) 96 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4229 (((-3 |#4| #1#) $) 89 T ELT)) (-1466 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4107 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-4197 (($ $ |#4|) 82 T ELT) (((-659 $) |#4| $) 122 T ELT) (((-659 $) |#4| (-659 $)) 121 T ELT) (((-659 $) (-659 |#4|) $) 120 T ELT) (((-659 $) (-659 |#4|) (-659 $)) 119 T ELT)) (-2156 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 |#4|) (-659 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-659 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT)) (-1327 (((-114) $ $) 42 T ELT)) (-3821 (((-114) $) 45 T ELT)) (-3991 (($) 44 T ELT)) (-4376 (((-789) $) 111 T ELT)) (-2155 (((-789) |#4| $) 55 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT) (((-789) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) 43 T ELT)) (-4400 (((-546) $) 70 (|has| |#4| (-629 (-546))) ELT)) (-3948 (($ (-659 |#4|)) 61 T ELT)) (-3309 (($ $ |#3|) 32 T ELT)) (-3311 (($ $ |#3|) 34 T ELT)) (-4112 (($ $) 93 T ELT)) (-3310 (($ $ |#3|) 33 T ELT)) (-4374 (((-875) $) 13 T ELT) (((-659 |#4|) $) 41 T ELT)) (-4106 (((-789) $) 81 (|has| |#3| (-381)) ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-4126 (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |#4|))) #1#) (-659 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |#4|))) #1#) (-659 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4118 (((-114) $ (-1 (-114) |#4| (-659 |#4|))) 103 T ELT)) (-3605 (((-659 $) |#4| $) 128 T ELT) (((-659 $) |#4| (-659 $)) 127 T ELT) (((-659 $) (-659 |#4|) $) 126 T ELT) (((-659 $) (-659 |#4|) (-659 $)) 125 T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4423)) ELT)) (-4108 (((-659 |#3|) $) 86 T ELT)) (-3612 (((-114) |#4| $) 142 T ELT)) (-4361 (((-114) |#3| $) 85 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4385 (((-789) $) 47 (|has| $ (-6 -4423)) ELT))) -(((-1146 |#1| |#2| |#3| |#4|) (-142) (-464) (-813) (-859) (-1084 |t#1| |t#2| |t#3|)) (T -1146)) -NIL -(-13 (-1128 |t#1| |t#2| |t#3| |t#4|) (-802 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-628 (-659 |#4|)) . T) ((-628 (-875)) . T) ((-153 |#4|) . T) ((-629 (-546)) |has| |#4| (-629 (-546))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ((-802 |#1| |#2| |#3| |#4|) . T) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1090 |#1| |#2| |#3| |#4|) . T) ((-1120) . T) ((-1128 |#1| |#2| |#3| |#4|) . T) ((-1231 |#1| |#2| |#3| |#4|) . T) ((-1236) . T)) -((-3999 (((-659 |#2|) |#1|) 15 T ELT)) (-3763 (((-659 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-659 |#2|) |#1|) 61 T ELT)) (-3761 (((-659 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-659 |#2|) |#1|) 59 T ELT)) (-3758 ((|#2| |#1|) 54 T ELT)) (-3759 (((-2 (|:| |solns| (-659 |#2|)) (|:| |maps| (-659 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3760 (((-659 |#2|) |#2| |#2|) 42 T ELT) (((-659 |#2|) |#1|) 58 T ELT)) (-3762 (((-659 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-659 |#2|) |#1|) 60 T ELT)) (-3767 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3765 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3764 ((|#2| |#2| |#2|) 50 T ELT)) (-3766 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) -(((-1147 |#1| |#2|) (-10 -7 (-15 -3999 ((-659 |#2|) |#1|)) (-15 -3758 (|#2| |#1|)) (-15 -3759 ((-2 (|:| |solns| (-659 |#2|)) (|:| |maps| (-659 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3760 ((-659 |#2|) |#1|)) (-15 -3761 ((-659 |#2|) |#1|)) (-15 -3762 ((-659 |#2|) |#1|)) (-15 -3763 ((-659 |#2|) |#1|)) (-15 -3760 ((-659 |#2|) |#2| |#2|)) (-15 -3761 ((-659 |#2|) |#2| |#2| |#2|)) (-15 -3762 ((-659 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3763 ((-659 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3764 (|#2| |#2| |#2|)) (-15 -3765 (|#2| |#2| |#2| |#2|)) (-15 -3766 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3767 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1262 |#2|) (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) (T -1147)) -((-3767 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1262 *2)))) (-3766 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1262 *2)))) (-3765 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1262 *2)))) (-3764 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1262 *2)))) (-3763 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) (-5 *2 (-659 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1262 *3)))) (-3762 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) (-5 *2 (-659 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1262 *3)))) (-3761 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) (-5 *2 (-659 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1262 *3)))) (-3760 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) (-5 *2 (-659 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1262 *3)))) (-3763 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) (-5 *2 (-659 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1262 *4)))) (-3762 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) (-5 *2 (-659 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1262 *4)))) (-3761 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) (-5 *2 (-659 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1262 *4)))) (-3760 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) (-5 *2 (-659 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1262 *4)))) (-3759 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) (-5 *2 (-2 (|:| |solns| (-659 *5)) (|:| |maps| (-659 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1147 *3 *5)) (-4 *3 (-1262 *5)))) (-3758 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1262 *2)))) (-3999 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) (-5 *2 (-659 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1262 *4))))) -((-3768 (((-659 (-659 (-305 (-326 |#1|)))) (-659 (-305 (-419 (-963 |#1|))))) 118 T ELT) (((-659 (-659 (-305 (-326 |#1|)))) (-659 (-305 (-419 (-963 |#1|)))) (-659 (-1196))) 117 T ELT) (((-659 (-659 (-305 (-326 |#1|)))) (-659 (-419 (-963 |#1|)))) 115 T ELT) (((-659 (-659 (-305 (-326 |#1|)))) (-659 (-419 (-963 |#1|))) (-659 (-1196))) 113 T ELT) (((-659 (-305 (-326 |#1|))) (-305 (-419 (-963 |#1|)))) 97 T ELT) (((-659 (-305 (-326 |#1|))) (-305 (-419 (-963 |#1|))) (-1196)) 98 T ELT) (((-659 (-305 (-326 |#1|))) (-419 (-963 |#1|))) 92 T ELT) (((-659 (-305 (-326 |#1|))) (-419 (-963 |#1|)) (-1196)) 82 T ELT)) (-3769 (((-659 (-659 (-326 |#1|))) (-659 (-419 (-963 |#1|))) (-659 (-1196))) 111 T ELT) (((-659 (-326 |#1|)) (-419 (-963 |#1|)) (-1196)) 54 T ELT)) (-3770 (((-1185 (-659 (-326 |#1|)) (-659 (-305 (-326 |#1|)))) (-419 (-963 |#1|)) (-1196)) 122 T ELT) (((-1185 (-659 (-326 |#1|)) (-659 (-305 (-326 |#1|)))) (-305 (-419 (-963 |#1|))) (-1196)) 121 T ELT))) -(((-1148 |#1|) (-10 -7 (-15 -3768 ((-659 (-305 (-326 |#1|))) (-419 (-963 |#1|)) (-1196))) (-15 -3768 ((-659 (-305 (-326 |#1|))) (-419 (-963 |#1|)))) (-15 -3768 ((-659 (-305 (-326 |#1|))) (-305 (-419 (-963 |#1|))) (-1196))) (-15 -3768 ((-659 (-305 (-326 |#1|))) (-305 (-419 (-963 |#1|))))) (-15 -3768 ((-659 (-659 (-305 (-326 |#1|)))) (-659 (-419 (-963 |#1|))) (-659 (-1196)))) (-15 -3768 ((-659 (-659 (-305 (-326 |#1|)))) (-659 (-419 (-963 |#1|))))) (-15 -3768 ((-659 (-659 (-305 (-326 |#1|)))) (-659 (-305 (-419 (-963 |#1|)))) (-659 (-1196)))) (-15 -3768 ((-659 (-659 (-305 (-326 |#1|)))) (-659 (-305 (-419 (-963 |#1|)))))) (-15 -3769 ((-659 (-326 |#1|)) (-419 (-963 |#1|)) (-1196))) (-15 -3769 ((-659 (-659 (-326 |#1|))) (-659 (-419 (-963 |#1|))) (-659 (-1196)))) (-15 -3770 ((-1185 (-659 (-326 |#1|)) (-659 (-305 (-326 |#1|)))) (-305 (-419 (-963 |#1|))) (-1196))) (-15 -3770 ((-1185 (-659 (-326 |#1|)) (-659 (-305 (-326 |#1|)))) (-419 (-963 |#1|)) (-1196)))) (-13 (-319) (-149))) (T -1148)) -((-3770 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-1196)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-1185 (-659 (-326 *5)) (-659 (-305 (-326 *5))))) (-5 *1 (-1148 *5)))) (-3770 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-419 (-963 *5)))) (-5 *4 (-1196)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-1185 (-659 (-326 *5)) (-659 (-305 (-326 *5))))) (-5 *1 (-1148 *5)))) (-3769 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-419 (-963 *5)))) (-5 *4 (-659 (-1196))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-659 (-659 (-326 *5)))) (-5 *1 (-1148 *5)))) (-3769 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-1196)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-659 (-326 *5))) (-5 *1 (-1148 *5)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-659 (-305 (-419 (-963 *4))))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-659 (-659 (-305 (-326 *4))))) (-5 *1 (-1148 *4)))) (-3768 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-305 (-419 (-963 *5))))) (-5 *4 (-659 (-1196))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-659 (-659 (-305 (-326 *5))))) (-5 *1 (-1148 *5)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-659 (-419 (-963 *4)))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-659 (-659 (-305 (-326 *4))))) (-5 *1 (-1148 *4)))) (-3768 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-419 (-963 *5)))) (-5 *4 (-659 (-1196))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-659 (-659 (-305 (-326 *5))))) (-5 *1 (-1148 *5)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-305 (-419 (-963 *4)))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-659 (-305 (-326 *4)))) (-5 *1 (-1148 *4)))) (-3768 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-419 (-963 *5)))) (-5 *4 (-1196)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-659 (-305 (-326 *5)))) (-5 *1 (-1148 *5)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-419 (-963 *4))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-659 (-305 (-326 *4)))) (-5 *1 (-1148 *4)))) (-3768 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-1196)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-659 (-305 (-326 *5)))) (-5 *1 (-1148 *5))))) -((-3772 (((-419 (-1190 (-326 |#1|))) (-1286 (-326 |#1|)) (-419 (-1190 (-326 |#1|))) (-557)) 36 T ELT)) (-3771 (((-419 (-1190 (-326 |#1|))) (-419 (-1190 (-326 |#1|))) (-419 (-1190 (-326 |#1|))) (-419 (-1190 (-326 |#1|)))) 48 T ELT))) -(((-1149 |#1|) (-10 -7 (-15 -3771 ((-419 (-1190 (-326 |#1|))) (-419 (-1190 (-326 |#1|))) (-419 (-1190 (-326 |#1|))) (-419 (-1190 (-326 |#1|))))) (-15 -3772 ((-419 (-1190 (-326 |#1|))) (-1286 (-326 |#1|)) (-419 (-1190 (-326 |#1|))) (-557)))) (-568)) (T -1149)) -((-3772 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-419 (-1190 (-326 *5)))) (-5 *3 (-1286 (-326 *5))) (-5 *4 (-557)) (-4 *5 (-568)) (-5 *1 (-1149 *5)))) (-3771 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-419 (-1190 (-326 *3)))) (-4 *3 (-568)) (-5 *1 (-1149 *3))))) -((-3999 (((-659 (-659 (-305 (-326 |#1|)))) (-659 (-305 (-326 |#1|))) (-659 (-1196))) 244 T ELT) (((-659 (-305 (-326 |#1|))) (-326 |#1|) (-1196)) 23 T ELT) (((-659 (-305 (-326 |#1|))) (-305 (-326 |#1|)) (-1196)) 29 T ELT) (((-659 (-305 (-326 |#1|))) (-305 (-326 |#1|))) 28 T ELT) (((-659 (-305 (-326 |#1|))) (-326 |#1|)) 24 T ELT))) -(((-1150 |#1|) (-10 -7 (-15 -3999 ((-659 (-305 (-326 |#1|))) (-326 |#1|))) (-15 -3999 ((-659 (-305 (-326 |#1|))) (-305 (-326 |#1|)))) (-15 -3999 ((-659 (-305 (-326 |#1|))) (-305 (-326 |#1|)) (-1196))) (-15 -3999 ((-659 (-305 (-326 |#1|))) (-326 |#1|) (-1196))) (-15 -3999 ((-659 (-659 (-305 (-326 |#1|)))) (-659 (-305 (-326 |#1|))) (-659 (-1196))))) (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) (T -1150)) -((-3999 (*1 *2 *3 *4) (-12 (-5 *4 (-659 (-1196))) (-4 *5 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) (-5 *2 (-659 (-659 (-305 (-326 *5))))) (-5 *1 (-1150 *5)) (-5 *3 (-659 (-305 (-326 *5)))))) (-3999 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) (-5 *2 (-659 (-305 (-326 *5)))) (-5 *1 (-1150 *5)) (-5 *3 (-326 *5)))) (-3999 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) (-5 *2 (-659 (-305 (-326 *5)))) (-5 *1 (-1150 *5)) (-5 *3 (-305 (-326 *5))))) (-3999 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) (-5 *2 (-659 (-305 (-326 *4)))) (-5 *1 (-1150 *4)) (-5 *3 (-305 (-326 *4))))) (-3999 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) (-5 *2 (-659 (-305 (-326 *4)))) (-5 *1 (-1150 *4)) (-5 *3 (-326 *4))))) -((-3774 ((|#2| |#2|) 28 (|has| |#1| (-859)) ELT) ((|#2| |#2| (-1 (-114) |#1| |#1|)) 25 T ELT)) (-3773 ((|#2| |#2|) 27 (|has| |#1| (-859)) ELT) ((|#2| |#2| (-1 (-114) |#1| |#1|)) 22 T ELT))) -(((-1151 |#1| |#2|) (-10 -7 (-15 -3773 (|#2| |#2| (-1 (-114) |#1| |#1|))) (-15 -3774 (|#2| |#2| (-1 (-114) |#1| |#1|))) (IF (|has| |#1| (-859)) (PROGN (-15 -3773 (|#2| |#2|)) (-15 -3774 (|#2| |#2|))) |%noBranch|)) (-1236) (-13 (-614 (-557) |#1|) (-10 -7 (-6 -4423) (-6 -4424)))) (T -1151)) -((-3774 (*1 *2 *2) (-12 (-4 *3 (-859)) (-4 *3 (-1236)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-614 (-557) *3) (-10 -7 (-6 -4423) (-6 -4424)))))) (-3773 (*1 *2 *2) (-12 (-4 *3 (-859)) (-4 *3 (-1236)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-614 (-557) *3) (-10 -7 (-6 -4423) (-6 -4424)))))) (-3774 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-1151 *4 *2)) (-4 *2 (-13 (-614 (-557) *4) (-10 -7 (-6 -4423) (-6 -4424)))))) (-3773 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-1151 *4 *2)) (-4 *2 (-13 (-614 (-557) *4) (-10 -7 (-6 -4423) (-6 -4424))))))) -((-2965 (((-114) $ $) NIL T ELT)) (-4316 (((-1184 3 |#1|) $) 141 T ELT)) (-3784 (((-114) $) 101 T ELT)) (-3785 (($ $ (-659 (-960 |#1|))) 44 T ELT) (($ $ (-659 (-659 |#1|))) 104 T ELT) (($ (-659 (-960 |#1|))) 103 T ELT) (((-659 (-960 |#1|)) $) 102 T ELT)) (-3790 (((-114) $) 72 T ELT)) (-4134 (($ $ (-960 |#1|)) 76 T ELT) (($ $ (-659 |#1|)) 81 T ELT) (($ $ (-789)) 83 T ELT) (($ (-960 |#1|)) 77 T ELT) (((-960 |#1|) $) 75 T ELT)) (-3776 (((-2 (|:| -4278 (-789)) (|:| |curves| (-789)) (|:| |polygons| (-789)) (|:| |constructs| (-789))) $) 139 T ELT)) (-3794 (((-789) $) 53 T ELT)) (-3795 (((-789) $) 52 T ELT)) (-4315 (($ $ (-789) (-960 |#1|)) 67 T ELT)) (-3782 (((-114) $) 111 T ELT)) (-3783 (($ $ (-659 (-659 (-960 |#1|))) (-659 (-174)) (-174)) 118 T ELT) (($ $ (-659 (-659 (-659 |#1|))) (-659 (-174)) (-174)) 120 T ELT) (($ $ (-659 (-659 (-960 |#1|))) (-114) (-114)) 115 T ELT) (($ $ (-659 (-659 (-659 |#1|))) (-114) (-114)) 127 T ELT) (($ (-659 (-659 (-960 |#1|)))) 116 T ELT) (($ (-659 (-659 (-960 |#1|))) (-114) (-114)) 117 T ELT) (((-659 (-659 (-960 |#1|))) $) 114 T ELT)) (-3936 (($ (-659 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3777 (((-659 (-174)) $) 133 T ELT)) (-3781 (((-659 (-960 |#1|)) $) 130 T ELT)) (-3778 (((-659 (-659 (-174))) $) 132 T ELT)) (-3779 (((-659 (-659 (-659 (-960 |#1|)))) $) NIL T ELT)) (-3780 (((-659 (-659 (-659 (-789)))) $) 131 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3791 (((-789) $ (-659 (-960 |#1|))) 65 T ELT)) (-3788 (((-114) $) 84 T ELT)) (-3789 (($ $ (-659 (-960 |#1|))) 86 T ELT) (($ $ (-659 (-659 |#1|))) 92 T ELT) (($ (-659 (-960 |#1|))) 87 T ELT) (((-659 (-960 |#1|)) $) 85 T ELT)) (-3796 (($) 48 T ELT) (($ (-1184 3 |#1|)) 49 T ELT)) (-3818 (($ $) 63 T ELT)) (-3792 (((-659 $) $) 62 T ELT)) (-4182 (($ (-659 $)) 59 T ELT)) (-3793 (((-659 $) $) 61 T ELT)) (-4374 (((-875) $) 146 T ELT)) (-3786 (((-114) $) 94 T ELT)) (-3787 (($ $ (-659 (-960 |#1|))) 96 T ELT) (($ $ (-659 (-659 |#1|))) 99 T ELT) (($ (-659 (-960 |#1|))) 97 T ELT) (((-659 (-960 |#1|)) $) 95 T ELT)) (-3775 (($ $) 140 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1152 |#1|) (-1153 |#1|) (-1068)) (T -1152)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-4316 (((-1184 3 |#1|) $) 17 T ELT)) (-3784 (((-114) $) 33 T ELT)) (-3785 (($ $ (-659 (-960 |#1|))) 37 T ELT) (($ $ (-659 (-659 |#1|))) 36 T ELT) (($ (-659 (-960 |#1|))) 35 T ELT) (((-659 (-960 |#1|)) $) 34 T ELT)) (-3790 (((-114) $) 48 T ELT)) (-4134 (($ $ (-960 |#1|)) 53 T ELT) (($ $ (-659 |#1|)) 52 T ELT) (($ $ (-789)) 51 T ELT) (($ (-960 |#1|)) 50 T ELT) (((-960 |#1|) $) 49 T ELT)) (-3776 (((-2 (|:| -4278 (-789)) (|:| |curves| (-789)) (|:| |polygons| (-789)) (|:| |constructs| (-789))) $) 19 T ELT)) (-3794 (((-789) $) 62 T ELT)) (-3795 (((-789) $) 63 T ELT)) (-4315 (($ $ (-789) (-960 |#1|)) 54 T ELT)) (-3782 (((-114) $) 25 T ELT)) (-3783 (($ $ (-659 (-659 (-960 |#1|))) (-659 (-174)) (-174)) 32 T ELT) (($ $ (-659 (-659 (-659 |#1|))) (-659 (-174)) (-174)) 31 T ELT) (($ $ (-659 (-659 (-960 |#1|))) (-114) (-114)) 30 T ELT) (($ $ (-659 (-659 (-659 |#1|))) (-114) (-114)) 29 T ELT) (($ (-659 (-659 (-960 |#1|)))) 28 T ELT) (($ (-659 (-659 (-960 |#1|))) (-114) (-114)) 27 T ELT) (((-659 (-659 (-960 |#1|))) $) 26 T ELT)) (-3936 (($ (-659 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3777 (((-659 (-174)) $) 20 T ELT)) (-3781 (((-659 (-960 |#1|)) $) 24 T ELT)) (-3778 (((-659 (-659 (-174))) $) 21 T ELT)) (-3779 (((-659 (-659 (-659 (-960 |#1|)))) $) 22 T ELT)) (-3780 (((-659 (-659 (-659 (-789)))) $) 23 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3791 (((-789) $ (-659 (-960 |#1|))) 55 T ELT)) (-3788 (((-114) $) 43 T ELT)) (-3789 (($ $ (-659 (-960 |#1|))) 47 T ELT) (($ $ (-659 (-659 |#1|))) 46 T ELT) (($ (-659 (-960 |#1|))) 45 T ELT) (((-659 (-960 |#1|)) $) 44 T ELT)) (-3796 (($) 65 T ELT) (($ (-1184 3 |#1|)) 64 T ELT)) (-3818 (($ $) 56 T ELT)) (-3792 (((-659 $) $) 57 T ELT)) (-4182 (($ (-659 $)) 59 T ELT)) (-3793 (((-659 $) $) 58 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-3786 (((-114) $) 38 T ELT)) (-3787 (($ $ (-659 (-960 |#1|))) 42 T ELT) (($ $ (-659 (-659 |#1|))) 41 T ELT) (($ (-659 (-960 |#1|))) 40 T ELT) (((-659 (-960 |#1|)) $) 39 T ELT)) (-3775 (($ $) 18 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-1153 |#1|) (-142) (-1068)) (T -1153)) -((-4374 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-875)))) (-3796 (*1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-1184 3 *3)) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-789)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-789)))) (-3936 (*1 *1 *2) (-12 (-5 *2 (-659 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3936 (*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) (-4182 (*1 *1 *2) (-12 (-5 *2 (-659 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3793 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-659 *1)) (-4 *1 (-1153 *3)))) (-3792 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-659 *1)) (-4 *1 (-1153 *3)))) (-3818 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) (-3791 (*1 *2 *1 *3) (-12 (-5 *3 (-659 (-960 *4))) (-4 *1 (-1153 *4)) (-4 *4 (-1068)) (-5 *2 (-789)))) (-4315 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-789)) (-5 *3 (-960 *4)) (-4 *1 (-1153 *4)) (-4 *4 (-1068)))) (-4134 (*1 *1 *1 *2) (-12 (-5 *2 (-960 *3)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-4134 (*1 *1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-4134 (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-4134 (*1 *1 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-4134 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-960 *3)))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-114)))) (-3789 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3789 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-659 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3789 (*1 *1 *2) (-12 (-5 *2 (-659 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-3789 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-659 (-960 *3))))) (-3788 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-114)))) (-3787 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3787 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-659 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3787 (*1 *1 *2) (-12 (-5 *2 (-659 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-3787 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-659 (-960 *3))))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-114)))) (-3785 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3785 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-659 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3785 (*1 *1 *2) (-12 (-5 *2 (-659 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-3785 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-659 (-960 *3))))) (-3784 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-114)))) (-3783 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-659 (-659 (-960 *5)))) (-5 *3 (-659 (-174))) (-5 *4 (-174)) (-4 *1 (-1153 *5)) (-4 *5 (-1068)))) (-3783 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-659 (-659 (-659 *5)))) (-5 *3 (-659 (-174))) (-5 *4 (-174)) (-4 *1 (-1153 *5)) (-4 *5 (-1068)))) (-3783 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-659 (-659 (-960 *4)))) (-5 *3 (-114)) (-4 *1 (-1153 *4)) (-4 *4 (-1068)))) (-3783 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-659 (-659 (-659 *4)))) (-5 *3 (-114)) (-4 *1 (-1153 *4)) (-4 *4 (-1068)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-659 (-659 (-960 *3)))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-3783 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-659 (-659 (-960 *4)))) (-5 *3 (-114)) (-4 *4 (-1068)) (-4 *1 (-1153 *4)))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-659 (-659 (-960 *3)))))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-114)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-659 (-960 *3))))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-659 (-659 (-659 (-789))))))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-659 (-659 (-659 (-960 *3))))))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-659 (-659 (-174)))))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-659 (-174))))) (-3776 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -4278 (-789)) (|:| |curves| (-789)) (|:| |polygons| (-789)) (|:| |constructs| (-789)))))) (-3775 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) (-4316 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-1184 3 *3))))) -(-13 (-1120) (-10 -8 (-15 -3796 ($)) (-15 -3796 ($ (-1184 3 |t#1|))) (-15 -3795 ((-789) $)) (-15 -3794 ((-789) $)) (-15 -3936 ($ (-659 $))) (-15 -3936 ($ $ $)) (-15 -4182 ($ (-659 $))) (-15 -3793 ((-659 $) $)) (-15 -3792 ((-659 $) $)) (-15 -3818 ($ $)) (-15 -3791 ((-789) $ (-659 (-960 |t#1|)))) (-15 -4315 ($ $ (-789) (-960 |t#1|))) (-15 -4134 ($ $ (-960 |t#1|))) (-15 -4134 ($ $ (-659 |t#1|))) (-15 -4134 ($ $ (-789))) (-15 -4134 ($ (-960 |t#1|))) (-15 -4134 ((-960 |t#1|) $)) (-15 -3790 ((-114) $)) (-15 -3789 ($ $ (-659 (-960 |t#1|)))) (-15 -3789 ($ $ (-659 (-659 |t#1|)))) (-15 -3789 ($ (-659 (-960 |t#1|)))) (-15 -3789 ((-659 (-960 |t#1|)) $)) (-15 -3788 ((-114) $)) (-15 -3787 ($ $ (-659 (-960 |t#1|)))) (-15 -3787 ($ $ (-659 (-659 |t#1|)))) (-15 -3787 ($ (-659 (-960 |t#1|)))) (-15 -3787 ((-659 (-960 |t#1|)) $)) (-15 -3786 ((-114) $)) (-15 -3785 ($ $ (-659 (-960 |t#1|)))) (-15 -3785 ($ $ (-659 (-659 |t#1|)))) (-15 -3785 ($ (-659 (-960 |t#1|)))) (-15 -3785 ((-659 (-960 |t#1|)) $)) (-15 -3784 ((-114) $)) (-15 -3783 ($ $ (-659 (-659 (-960 |t#1|))) (-659 (-174)) (-174))) (-15 -3783 ($ $ (-659 (-659 (-659 |t#1|))) (-659 (-174)) (-174))) (-15 -3783 ($ $ (-659 (-659 (-960 |t#1|))) (-114) (-114))) (-15 -3783 ($ $ (-659 (-659 (-659 |t#1|))) (-114) (-114))) (-15 -3783 ($ (-659 (-659 (-960 |t#1|))))) (-15 -3783 ($ (-659 (-659 (-960 |t#1|))) (-114) (-114))) (-15 -3783 ((-659 (-659 (-960 |t#1|))) $)) (-15 -3782 ((-114) $)) (-15 -3781 ((-659 (-960 |t#1|)) $)) (-15 -3780 ((-659 (-659 (-659 (-789)))) $)) (-15 -3779 ((-659 (-659 (-659 (-960 |t#1|)))) $)) (-15 -3778 ((-659 (-659 (-174))) $)) (-15 -3777 ((-659 (-174)) $)) (-15 -3776 ((-2 (|:| -4278 (-789)) (|:| |curves| (-789)) (|:| |polygons| (-789)) (|:| |constructs| (-789))) $)) (-15 -3775 ($ $)) (-15 -4316 ((-1184 3 |t#1|) $)) (-15 -4374 ((-875) $)))) -(((-102) . T) ((-628 (-875)) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 184 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) 7 T ELT)) (-3992 (((-114) $ (|[\|\|]| (-535))) 19 T ELT) (((-114) $ (|[\|\|]| (-222))) 23 T ELT) (((-114) $ (|[\|\|]| (-694))) 27 T ELT) (((-114) $ (|[\|\|]| (-1297))) 31 T ELT) (((-114) $ (|[\|\|]| (-140))) 35 T ELT) (((-114) $ (|[\|\|]| (-615))) 39 T ELT) (((-114) $ (|[\|\|]| (-135))) 43 T ELT) (((-114) $ (|[\|\|]| (-1135))) 47 T ELT) (((-114) $ (|[\|\|]| (-96))) 51 T ELT) (((-114) $ (|[\|\|]| (-699))) 55 T ELT) (((-114) $ (|[\|\|]| (-529))) 59 T ELT) (((-114) $ (|[\|\|]| (-1085))) 63 T ELT) (((-114) $ (|[\|\|]| (-1298))) 67 T ELT) (((-114) $ (|[\|\|]| (-536))) 71 T ELT) (((-114) $ (|[\|\|]| (-1172))) 75 T ELT) (((-114) $ (|[\|\|]| (-156))) 79 T ELT) (((-114) $ (|[\|\|]| (-689))) 83 T ELT) (((-114) $ (|[\|\|]| (-324))) 87 T ELT) (((-114) $ (|[\|\|]| (-1055))) 91 T ELT) (((-114) $ (|[\|\|]| (-183))) 95 T ELT) (((-114) $ (|[\|\|]| (-989))) 99 T ELT) (((-114) $ (|[\|\|]| (-1092))) 103 T ELT) (((-114) $ (|[\|\|]| (-1110))) 107 T ELT) (((-114) $ (|[\|\|]| (-1115))) 111 T ELT) (((-114) $ (|[\|\|]| (-641))) 115 T ELT) (((-114) $ (|[\|\|]| (-1186))) 119 T ELT) (((-114) $ (|[\|\|]| (-158))) 123 T ELT) (((-114) $ (|[\|\|]| (-139))) 127 T ELT) (((-114) $ (|[\|\|]| (-490))) 131 T ELT) (((-114) $ (|[\|\|]| (-603))) 135 T ELT) (((-114) $ (|[\|\|]| (-518))) 139 T ELT) (((-114) $ (|[\|\|]| (-1178))) 143 T ELT) (((-114) $ (|[\|\|]| (-557))) 147 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3998 (((-535) $) 20 T ELT) (((-222) $) 24 T ELT) (((-694) $) 28 T ELT) (((-1297) $) 32 T ELT) (((-140) $) 36 T ELT) (((-615) $) 40 T ELT) (((-135) $) 44 T ELT) (((-1135) $) 48 T ELT) (((-96) $) 52 T ELT) (((-699) $) 56 T ELT) (((-529) $) 60 T ELT) (((-1085) $) 64 T ELT) (((-1298) $) 68 T ELT) (((-536) $) 72 T ELT) (((-1172) $) 76 T ELT) (((-156) $) 80 T ELT) (((-689) $) 84 T ELT) (((-324) $) 88 T ELT) (((-1055) $) 92 T ELT) (((-183) $) 96 T ELT) (((-989) $) 100 T ELT) (((-1092) $) 104 T ELT) (((-1110) $) 108 T ELT) (((-1115) $) 112 T ELT) (((-641) $) 116 T ELT) (((-1186) $) 120 T ELT) (((-158) $) 124 T ELT) (((-139) $) 128 T ELT) (((-490) $) 132 T ELT) (((-603) $) 136 T ELT) (((-518) $) 140 T ELT) (((-1178) $) 144 T ELT) (((-557) $) 148 T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1154) (-1156)) (T -1154)) -NIL -((-3797 (((-659 (-1201)) (-1178)) 9 T ELT))) -(((-1155) (-10 -7 (-15 -3797 ((-659 (-1201)) (-1178))))) (T -1155)) -((-3797 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-659 (-1201))) (-5 *1 (-1155))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-1201)) 20 T ELT) (((-1201) $) 19 T ELT)) (-3992 (((-114) $ (|[\|\|]| (-535))) 88 T ELT) (((-114) $ (|[\|\|]| (-222))) 86 T ELT) (((-114) $ (|[\|\|]| (-694))) 84 T ELT) (((-114) $ (|[\|\|]| (-1297))) 82 T ELT) (((-114) $ (|[\|\|]| (-140))) 80 T ELT) (((-114) $ (|[\|\|]| (-615))) 78 T ELT) (((-114) $ (|[\|\|]| (-135))) 76 T ELT) (((-114) $ (|[\|\|]| (-1135))) 74 T ELT) (((-114) $ (|[\|\|]| (-96))) 72 T ELT) (((-114) $ (|[\|\|]| (-699))) 70 T ELT) (((-114) $ (|[\|\|]| (-529))) 68 T ELT) (((-114) $ (|[\|\|]| (-1085))) 66 T ELT) (((-114) $ (|[\|\|]| (-1298))) 64 T ELT) (((-114) $ (|[\|\|]| (-536))) 62 T ELT) (((-114) $ (|[\|\|]| (-1172))) 60 T ELT) (((-114) $ (|[\|\|]| (-156))) 58 T ELT) (((-114) $ (|[\|\|]| (-689))) 56 T ELT) (((-114) $ (|[\|\|]| (-324))) 54 T ELT) (((-114) $ (|[\|\|]| (-1055))) 52 T ELT) (((-114) $ (|[\|\|]| (-183))) 50 T ELT) (((-114) $ (|[\|\|]| (-989))) 48 T ELT) (((-114) $ (|[\|\|]| (-1092))) 46 T ELT) (((-114) $ (|[\|\|]| (-1110))) 44 T ELT) (((-114) $ (|[\|\|]| (-1115))) 42 T ELT) (((-114) $ (|[\|\|]| (-641))) 40 T ELT) (((-114) $ (|[\|\|]| (-1186))) 38 T ELT) (((-114) $ (|[\|\|]| (-158))) 36 T ELT) (((-114) $ (|[\|\|]| (-139))) 34 T ELT) (((-114) $ (|[\|\|]| (-490))) 32 T ELT) (((-114) $ (|[\|\|]| (-603))) 30 T ELT) (((-114) $ (|[\|\|]| (-518))) 28 T ELT) (((-114) $ (|[\|\|]| (-1178))) 26 T ELT) (((-114) $ (|[\|\|]| (-557))) 24 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3998 (((-535) $) 87 T ELT) (((-222) $) 85 T ELT) (((-694) $) 83 T ELT) (((-1297) $) 81 T ELT) (((-140) $) 79 T ELT) (((-615) $) 77 T ELT) (((-135) $) 75 T ELT) (((-1135) $) 73 T ELT) (((-96) $) 71 T ELT) (((-699) $) 69 T ELT) (((-529) $) 67 T ELT) (((-1085) $) 65 T ELT) (((-1298) $) 63 T ELT) (((-536) $) 61 T ELT) (((-1172) $) 59 T ELT) (((-156) $) 57 T ELT) (((-689) $) 55 T ELT) (((-324) $) 53 T ELT) (((-1055) $) 51 T ELT) (((-183) $) 49 T ELT) (((-989) $) 47 T ELT) (((-1092) $) 45 T ELT) (((-1110) $) 43 T ELT) (((-1115) $) 41 T ELT) (((-641) $) 39 T ELT) (((-1186) $) 37 T ELT) (((-158) $) 35 T ELT) (((-139) $) 33 T ELT) (((-490) $) 31 T ELT) (((-603) $) 29 T ELT) (((-518) $) 27 T ELT) (((-1178) $) 25 T ELT) (((-557) $) 23 T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-1156) (-142)) (T -1156)) -((-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-535)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-222))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-222)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-694))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-694)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1297))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1297)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-140))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-140)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-615))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-615)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-135)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1135))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1135)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-96)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-699))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-699)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-529)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1085)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1298))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1298)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-536)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1172))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1172)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-156)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-689))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-689)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-324))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-324)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1055))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1055)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-183))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-183)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-989))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-989)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1092))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1092)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1110))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1110)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1115))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1115)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-641))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-641)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1186))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1186)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-158))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-158)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-139)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-490)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-603))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-603)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-518)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1178)))) (-3992 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-557))) (-5 *2 (-114)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-557))))) -(-13 (-1102) (-1282) (-10 -8 (-15 -3992 ((-114) $ (|[\|\|]| (-535)))) (-15 -3998 ((-535) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-222)))) (-15 -3998 ((-222) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-694)))) (-15 -3998 ((-694) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-1297)))) (-15 -3998 ((-1297) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-140)))) (-15 -3998 ((-140) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-615)))) (-15 -3998 ((-615) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-135)))) (-15 -3998 ((-135) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-1135)))) (-15 -3998 ((-1135) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-96)))) (-15 -3998 ((-96) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-699)))) (-15 -3998 ((-699) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-529)))) (-15 -3998 ((-529) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-1085)))) (-15 -3998 ((-1085) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-1298)))) (-15 -3998 ((-1298) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-536)))) (-15 -3998 ((-536) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-1172)))) (-15 -3998 ((-1172) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-156)))) (-15 -3998 ((-156) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-689)))) (-15 -3998 ((-689) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-324)))) (-15 -3998 ((-324) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-1055)))) (-15 -3998 ((-1055) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-183)))) (-15 -3998 ((-183) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-989)))) (-15 -3998 ((-989) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-1092)))) (-15 -3998 ((-1092) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-1110)))) (-15 -3998 ((-1110) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-1115)))) (-15 -3998 ((-1115) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-641)))) (-15 -3998 ((-641) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-1186)))) (-15 -3998 ((-1186) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-158)))) (-15 -3998 ((-158) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-139)))) (-15 -3998 ((-139) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-490)))) (-15 -3998 ((-490) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-603)))) (-15 -3998 ((-603) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-518)))) (-15 -3998 ((-518) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-1178)))) (-15 -3998 ((-1178) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-557)))) (-15 -3998 ((-557) $)))) -(((-93) . T) ((-102) . T) ((-631 (-1201)) . T) ((-628 (-875)) . T) ((-628 (-1201)) . T) ((-502 (-1201)) . T) ((-1120) . T) ((-1102) . T) ((-1236) . T) ((-1282) . T)) -((-3800 (((-1292) (-659 (-875))) 22 T ELT) (((-1292) (-875)) 21 T ELT)) (-3799 (((-1292) (-659 (-875))) 20 T ELT) (((-1292) (-875)) 19 T ELT)) (-3798 (((-1292) (-659 (-875))) 18 T ELT) (((-1292) (-875)) 10 T ELT) (((-1292) (-1178) (-875)) 16 T ELT))) -(((-1157) (-10 -7 (-15 -3798 ((-1292) (-1178) (-875))) (-15 -3798 ((-1292) (-875))) (-15 -3799 ((-1292) (-875))) (-15 -3800 ((-1292) (-875))) (-15 -3798 ((-1292) (-659 (-875)))) (-15 -3799 ((-1292) (-659 (-875)))) (-15 -3800 ((-1292) (-659 (-875)))))) (T -1157)) -((-3800 (*1 *2 *3) (-12 (-5 *3 (-659 (-875))) (-5 *2 (-1292)) (-5 *1 (-1157)))) (-3799 (*1 *2 *3) (-12 (-5 *3 (-659 (-875))) (-5 *2 (-1292)) (-5 *1 (-1157)))) (-3798 (*1 *2 *3) (-12 (-5 *3 (-659 (-875))) (-5 *2 (-1292)) (-5 *1 (-1157)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1292)) (-5 *1 (-1157)))) (-3799 (*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1292)) (-5 *1 (-1157)))) (-3798 (*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1292)) (-5 *1 (-1157)))) (-3798 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-875)) (-5 *2 (-1292)) (-5 *1 (-1157))))) -((-3804 (($ $ $) 10 T ELT)) (-3803 (($ $) 9 T ELT)) (-3807 (($ $ $) 13 T ELT)) (-3809 (($ $ $) 15 T ELT)) (-3806 (($ $ $) 12 T ELT)) (-3808 (($ $ $) 14 T ELT)) (-3811 (($ $) 17 T ELT)) (-3810 (($ $) 16 T ELT)) (-3801 (($ $) 6 T ELT)) (-3805 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3802 (($ $ $) 8 T ELT))) -(((-1158) (-142)) (T -1158)) -((-3811 (*1 *1 *1) (-4 *1 (-1158))) (-3810 (*1 *1 *1) (-4 *1 (-1158))) (-3809 (*1 *1 *1 *1) (-4 *1 (-1158))) (-3808 (*1 *1 *1 *1) (-4 *1 (-1158))) (-3807 (*1 *1 *1 *1) (-4 *1 (-1158))) (-3806 (*1 *1 *1 *1) (-4 *1 (-1158))) (-3805 (*1 *1 *1 *1) (-4 *1 (-1158))) (-3804 (*1 *1 *1 *1) (-4 *1 (-1158))) (-3803 (*1 *1 *1) (-4 *1 (-1158))) (-3802 (*1 *1 *1 *1) (-4 *1 (-1158))) (-3805 (*1 *1 *1) (-4 *1 (-1158))) (-3801 (*1 *1 *1) (-4 *1 (-1158)))) -(-13 (-10 -8 (-15 -3801 ($ $)) (-15 -3805 ($ $)) (-15 -3802 ($ $ $)) (-15 -3803 ($ $)) (-15 -3804 ($ $ $)) (-15 -3805 ($ $ $)) (-15 -3806 ($ $ $)) (-15 -3807 ($ $ $)) (-15 -3808 ($ $ $)) (-15 -3809 ($ $ $)) (-15 -3810 ($ $)) (-15 -3811 ($ $)))) -((-2965 (((-114) $ $) 44 T ELT)) (-3820 ((|#1| $) 17 T ELT)) (-3812 (((-114) $ $ (-1 (-114) |#2| |#2|)) 39 T ELT)) (-3819 (((-114) $) 19 T ELT)) (-3817 (($ $ |#1|) 30 T ELT)) (-3815 (($ $ (-114)) 32 T ELT)) (-3814 (($ $) 33 T ELT)) (-3816 (($ $ |#2|) 31 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3813 (((-114) $ $ (-1 (-114) |#1| |#1|) (-1 (-114) |#2| |#2|)) 38 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3821 (((-114) $) 16 T ELT)) (-3991 (($) 13 T ELT)) (-3818 (($ $) 29 T ELT)) (-3948 (($ |#1| |#2| (-114)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1741 |#2|))) 23 T ELT) (((-659 $) (-659 (-2 (|:| |val| |#1|) (|:| -1741 |#2|)))) 26 T ELT) (((-659 $) |#1| (-659 |#2|)) 28 T ELT)) (-4350 ((|#2| $) 18 T ELT)) (-4374 (((-875) $) 53 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 42 T ELT))) -(((-1159 |#1| |#2|) (-13 (-1120) (-10 -8 (-15 -3991 ($)) (-15 -3821 ((-114) $)) (-15 -3820 (|#1| $)) (-15 -4350 (|#2| $)) (-15 -3819 ((-114) $)) (-15 -3948 ($ |#1| |#2| (-114))) (-15 -3948 ($ |#1| |#2|)) (-15 -3948 ($ (-2 (|:| |val| |#1|) (|:| -1741 |#2|)))) (-15 -3948 ((-659 $) (-659 (-2 (|:| |val| |#1|) (|:| -1741 |#2|))))) (-15 -3948 ((-659 $) |#1| (-659 |#2|))) (-15 -3818 ($ $)) (-15 -3817 ($ $ |#1|)) (-15 -3816 ($ $ |#2|)) (-15 -3815 ($ $ (-114))) (-15 -3814 ($ $)) (-15 -3813 ((-114) $ $ (-1 (-114) |#1| |#1|) (-1 (-114) |#2| |#2|))) (-15 -3812 ((-114) $ $ (-1 (-114) |#2| |#2|))))) (-13 (-1120) (-34)) (-13 (-1120) (-34))) (T -1159)) -((-3991 (*1 *1) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))))) (-3821 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34))))) (-3820 (*1 *2 *1) (-12 (-4 *2 (-13 (-1120) (-34))) (-5 *1 (-1159 *2 *3)) (-4 *3 (-13 (-1120) (-34))))) (-4350 (*1 *2 *1) (-12 (-4 *2 (-13 (-1120) (-34))) (-5 *1 (-1159 *3 *2)) (-4 *3 (-13 (-1120) (-34))))) (-3819 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34))))) (-3948 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))))) (-3948 (*1 *1 *2 *3) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1741 *4))) (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34))) (-5 *1 (-1159 *3 *4)))) (-3948 (*1 *2 *3) (-12 (-5 *3 (-659 (-2 (|:| |val| *4) (|:| -1741 *5)))) (-4 *4 (-13 (-1120) (-34))) (-4 *5 (-13 (-1120) (-34))) (-5 *2 (-659 (-1159 *4 *5))) (-5 *1 (-1159 *4 *5)))) (-3948 (*1 *2 *3 *4) (-12 (-5 *4 (-659 *5)) (-4 *5 (-13 (-1120) (-34))) (-5 *2 (-659 (-1159 *3 *5))) (-5 *1 (-1159 *3 *5)) (-4 *3 (-13 (-1120) (-34))))) (-3818 (*1 *1 *1) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))))) (-3817 (*1 *1 *1 *2) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))))) (-3816 (*1 *1 *1 *2) (-12 (-5 *1 (-1159 *3 *2)) (-4 *3 (-13 (-1120) (-34))) (-4 *2 (-13 (-1120) (-34))))) (-3815 (*1 *1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34))))) (-3814 (*1 *1 *1) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))))) (-3813 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-114) *5 *5)) (-5 *4 (-1 (-114) *6 *6)) (-4 *5 (-13 (-1120) (-34))) (-4 *6 (-13 (-1120) (-34))) (-5 *2 (-114)) (-5 *1 (-1159 *5 *6)))) (-3812 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-114) *5 *5)) (-4 *5 (-13 (-1120) (-34))) (-5 *2 (-114)) (-5 *1 (-1159 *4 *5)) (-4 *4 (-13 (-1120) (-34)))))) -((-2965 (((-114) $ $) NIL (|has| (-1159 |#1| |#2|) (-102)) ELT)) (-3820 (((-1159 |#1| |#2|) $) 27 T ELT)) (-3829 (($ $) 91 T ELT)) (-3825 (((-114) (-1159 |#1| |#2|) $ (-1 (-114) |#2| |#2|)) 100 T ELT)) (-3822 (($ $ $ (-659 (-1159 |#1| |#2|))) 108 T ELT) (($ $ $ (-659 (-1159 |#1| |#2|)) (-1 (-114) |#2| |#2|)) 109 T ELT)) (-3424 (((-1159 |#1| |#2|) $ (-1159 |#1| |#2|)) 46 (|has| $ (-6 -4424)) ELT)) (-4216 (((-1159 |#1| |#2|) $ #1="value" (-1159 |#1| |#2|)) NIL (|has| $ (-6 -4424)) ELT)) (-3425 (($ $ (-659 $)) 44 (|has| $ (-6 -4424)) ELT)) (-4152 (($) NIL T CONST)) (-3827 (((-659 (-2 (|:| |val| |#1|) (|:| -1741 |#2|))) $) 95 T ELT)) (-3823 (($ (-1159 |#1| |#2|) $) 42 T ELT)) (-3824 (($ (-1159 |#1| |#2|) $) 34 T ELT)) (-3288 (((-659 (-1159 |#1| |#2|)) $) NIL (|has| $ (-6 -4423)) ELT)) (-3430 (((-659 $) $) 54 T ELT)) (-3826 (((-114) (-1159 |#1| |#2|) $) 97 T ELT)) (-3426 (((-114) $ $) NIL (|has| (-1159 |#1| |#2|) (-1120)) ELT)) (-3005 (((-659 (-1159 |#1| |#2|)) $) 58 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-1159 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-1159 |#1| |#2|) (-1120))) ELT)) (-2158 (($ (-1 (-1159 |#1| |#2|) (-1159 |#1| |#2|)) $) 50 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-1159 |#1| |#2|) (-1159 |#1| |#2|)) $) 49 T ELT)) (-3429 (((-659 (-1159 |#1| |#2|)) $) 56 T ELT)) (-3945 (((-114) $) 45 T ELT)) (-3658 (((-1178) $) NIL (|has| (-1159 |#1| |#2|) (-1120)) ELT)) (-3659 (((-1139) $) NIL (|has| (-1159 |#1| |#2|) (-1120)) ELT)) (-3830 (((-3 $ "failed") $) 89 T ELT)) (-2156 (((-114) (-1 (-114) (-1159 |#1| |#2|)) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 (-1159 |#1| |#2|)))) NIL (-12 (|has| (-1159 |#1| |#2|) (-321 (-1159 |#1| |#2|))) (|has| (-1159 |#1| |#2|) (-1120))) ELT) (($ $ (-305 (-1159 |#1| |#2|))) NIL (-12 (|has| (-1159 |#1| |#2|) (-321 (-1159 |#1| |#2|))) (|has| (-1159 |#1| |#2|) (-1120))) ELT) (($ $ (-1159 |#1| |#2|) (-1159 |#1| |#2|)) NIL (-12 (|has| (-1159 |#1| |#2|) (-321 (-1159 |#1| |#2|))) (|has| (-1159 |#1| |#2|) (-1120))) ELT) (($ $ (-659 (-1159 |#1| |#2|)) (-659 (-1159 |#1| |#2|))) NIL (-12 (|has| (-1159 |#1| |#2|) (-321 (-1159 |#1| |#2|))) (|has| (-1159 |#1| |#2|) (-1120))) ELT)) (-1327 (((-114) $ $) 53 T ELT)) (-3821 (((-114) $) 24 T ELT)) (-3991 (($) 26 T ELT)) (-4228 (((-1159 |#1| |#2|) $ #1#) NIL T ELT)) (-3428 (((-557) $ $) NIL T ELT)) (-4061 (((-114) $) 47 T ELT)) (-2155 (((-789) (-1 (-114) (-1159 |#1| |#2|)) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) (-1159 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-1159 |#1| |#2|) (-1120))) ELT)) (-3818 (($ $) 52 T ELT)) (-3948 (($ (-1159 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-659 $)) 13 T ELT) (($ |#1| |#2| (-659 (-1159 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-659 |#2|)) 18 T ELT)) (-3828 (((-659 |#2|) $) 96 T ELT)) (-4374 (((-875) $) 87 (|has| (-1159 |#1| |#2|) (-628 (-875))) ELT)) (-3940 (((-659 $) $) 31 T ELT)) (-3427 (((-114) $ $) NIL (|has| (-1159 |#1| |#2|) (-1120)) ELT)) (-1376 (((-114) $ $) NIL (|has| (-1159 |#1| |#2|) (-102)) ELT)) (-2157 (((-114) (-1 (-114) (-1159 |#1| |#2|)) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 70 (|has| (-1159 |#1| |#2|) (-102)) ELT)) (-4385 (((-789) $) 64 (|has| $ (-6 -4423)) ELT))) -(((-1160 |#1| |#2|) (-13 (-1029 (-1159 |#1| |#2|)) (-10 -8 (-6 -4424) (-6 -4423) (-15 -3830 ((-3 $ "failed") $)) (-15 -3829 ($ $)) (-15 -3948 ($ (-1159 |#1| |#2|))) (-15 -3948 ($ |#1| |#2| (-659 $))) (-15 -3948 ($ |#1| |#2| (-659 (-1159 |#1| |#2|)))) (-15 -3948 ($ |#1| |#2| |#1| (-659 |#2|))) (-15 -3828 ((-659 |#2|) $)) (-15 -3827 ((-659 (-2 (|:| |val| |#1|) (|:| -1741 |#2|))) $)) (-15 -3826 ((-114) (-1159 |#1| |#2|) $)) (-15 -3825 ((-114) (-1159 |#1| |#2|) $ (-1 (-114) |#2| |#2|))) (-15 -3824 ($ (-1159 |#1| |#2|) $)) (-15 -3823 ($ (-1159 |#1| |#2|) $)) (-15 -3822 ($ $ $ (-659 (-1159 |#1| |#2|)))) (-15 -3822 ($ $ $ (-659 (-1159 |#1| |#2|)) (-1 (-114) |#2| |#2|))))) (-13 (-1120) (-34)) (-13 (-1120) (-34))) (T -1160)) -((-3830 (*1 *1 *1) (|partial| -12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))))) (-3829 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34))) (-5 *1 (-1160 *3 *4)))) (-3948 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-659 (-1160 *2 *3))) (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))))) (-3948 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-659 (-1159 *2 *3))) (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))) (-5 *1 (-1160 *2 *3)))) (-3948 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-659 *3)) (-4 *3 (-13 (-1120) (-34))) (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1120) (-34))))) (-3828 (*1 *2 *1) (-12 (-5 *2 (-659 *4)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34))))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *4)))) (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34))))) (-3826 (*1 *2 *3 *1) (-12 (-5 *3 (-1159 *4 *5)) (-4 *4 (-13 (-1120) (-34))) (-4 *5 (-13 (-1120) (-34))) (-5 *2 (-114)) (-5 *1 (-1160 *4 *5)))) (-3825 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1159 *5 *6)) (-5 *4 (-1 (-114) *6 *6)) (-4 *5 (-13 (-1120) (-34))) (-4 *6 (-13 (-1120) (-34))) (-5 *2 (-114)) (-5 *1 (-1160 *5 *6)))) (-3824 (*1 *1 *2 *1) (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34))) (-5 *1 (-1160 *3 *4)))) (-3823 (*1 *1 *2 *1) (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34))) (-5 *1 (-1160 *3 *4)))) (-3822 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-659 (-1159 *3 *4))) (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34))) (-5 *1 (-1160 *3 *4)))) (-3822 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-659 (-1159 *4 *5))) (-5 *3 (-1 (-114) *5 *5)) (-4 *4 (-13 (-1120) (-34))) (-4 *5 (-13 (-1120) (-34))) (-5 *1 (-1160 *4 *5))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3832 (($ $) NIL T ELT)) (-3748 ((|#2| $) NIL T ELT)) (-3521 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3831 (($ (-707 |#2|)) 56 T ELT)) (-3523 (((-114) $) NIL T ELT)) (-3751 (($ |#2|) 14 T ELT)) (-4152 (($) NIL T CONST)) (-3510 (($ $) 69 (|has| |#2| (-319)) ELT)) (-3512 (((-246 |#1| |#2|) $ (-557)) 42 T ELT)) (-3573 (((-3 (-557) #1#) $) NIL (|has| |#2| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#2| (-1057 (-419 (-557)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3572 (((-557) $) NIL (|has| |#2| (-1057 (-557))) ELT) (((-419 (-557)) $) NIL (|has| |#2| (-1057 (-419 (-557)))) ELT) ((|#2| $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 $) (-1286 $)) NIL T ELT) (((-707 |#2|) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) 83 T ELT)) (-3509 (((-789) $) 71 (|has| |#2| (-568)) ELT)) (-3513 ((|#2| $ (-557) (-557)) NIL T ELT)) (-3288 (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2639 (((-114) $) NIL T ELT)) (-3508 (((-789) $) 73 (|has| |#2| (-568)) ELT)) (-3507 (((-659 (-246 |#1| |#2|)) $) 77 (|has| |#2| (-568)) ELT)) (-3515 (((-789) $) NIL T ELT)) (-4042 (($ |#2|) 25 T ELT)) (-3514 (((-789) $) NIL T ELT)) (-3745 ((|#2| $) 67 (|has| |#2| (-6 (-4425 #2="*"))) ELT)) (-3519 (((-557) $) NIL T ELT)) (-3517 (((-557) $) NIL T ELT)) (-3005 (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-3518 (((-557) $) NIL T ELT)) (-3516 (((-557) $) NIL T ELT)) (-3524 (($ (-659 (-659 |#2|))) 37 T ELT)) (-2158 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4020 (((-659 (-659 |#2|)) $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL T ELT) (((-707 |#2|) (-1286 $)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-4016 (((-3 $ #1#) $) 80 (|has| |#2| (-376)) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3884 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-568)) ELT)) (-2156 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-659 |#2|) (-659 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#2| $ (-557) (-557) |#2|) NIL T ELT) ((|#2| $ (-557) (-557)) NIL T ELT)) (-4186 (($ $ (-1 |#2| |#2|) (-789)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-789)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#2| (-917 (-1196))) ELT)) (-3747 ((|#2| $) NIL T ELT)) (-3750 (($ (-659 |#2|)) 50 T ELT)) (-3522 (((-114) $) NIL T ELT)) (-3749 (((-246 |#1| |#2|) $) NIL T ELT)) (-3746 ((|#2| $) 65 (|has| |#2| (-6 (-4425 #2#))) ELT)) (-2155 (((-789) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) 90 (|has| |#2| (-629 (-546))) ELT)) (-3511 (((-246 |#1| |#2|) $ (-557)) 44 T ELT)) (-4374 (((-875) $) 47 T ELT) (($ (-557)) NIL T ELT) (($ (-419 (-557))) NIL (|has| |#2| (-1057 (-419 (-557)))) ELT) (($ |#2|) NIL T ELT) (((-707 |#2|) $) 52 T ELT)) (-3526 (((-789)) 23 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3520 (((-114) $) NIL T ELT)) (-3057 (($) 16 T CONST)) (-3063 (($) 21 T CONST)) (-3068 (($ $ (-1 |#2| |#2|) (-789)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-789)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#2| (-917 (-1196))) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) 63 T ELT) (($ $ (-557)) 82 (|has| |#2| (-376)) ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) 59 T ELT) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) 61 T ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-1161 |#1| |#2|) (-13 (-1142 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-628 (-707 |#2|)) (-10 -8 (-15 -4042 ($ |#2|)) (-15 -3832 ($ $)) (-15 -3831 ($ (-707 |#2|))) (IF (|has| |#2| (-6 (-4425 #1="*"))) (-6 -4412) |%noBranch|) (IF (|has| |#2| (-6 (-4425 #1#))) (IF (|has| |#2| (-6 -4420)) (-6 -4420) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-629 (-546))) (-6 (-629 (-546))) |%noBranch|))) (-789) (-1068)) (T -1161)) -((-4042 (*1 *1 *2) (-12 (-5 *1 (-1161 *3 *2)) (-14 *3 (-789)) (-4 *2 (-1068)))) (-3832 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-789)) (-4 *3 (-1068)))) (-3831 (*1 *1 *2) (-12 (-5 *2 (-707 *4)) (-4 *4 (-1068)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-789))))) -((-3845 (($ $) 19 T ELT)) (-3835 (($ $ (-146)) 10 T ELT) (($ $ (-143)) 14 T ELT)) (-3843 (((-114) $ $) 24 T ELT)) (-3847 (($ $) 17 T ELT)) (-4228 (((-146) $ (-557) (-146)) NIL T ELT) (((-146) $ (-557)) NIL T ELT) (($ $ (-1253 (-557))) NIL T ELT) (($ $ $) 31 T ELT)) (-4374 (($ (-146)) 29 T ELT) (((-875) $) NIL T ELT))) -(((-1162 |#1|) (-10 -7 (-15 -4374 ((-875) |#1|)) (-15 -4228 (|#1| |#1| |#1|)) (-15 -3835 (|#1| |#1| (-143))) (-15 -3835 (|#1| |#1| (-146))) (-15 -4374 (|#1| (-146))) (-15 -3843 ((-114) |#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -4228 (|#1| |#1| (-1253 (-557)))) (-15 -4228 ((-146) |#1| (-557))) (-15 -4228 ((-146) |#1| (-557) (-146)))) (-1163)) (T -1162)) -NIL -((-2965 (((-114) $ $) 19 (|has| (-146) (-102)) ELT)) (-3844 (($ $) 129 T ELT)) (-3845 (($ $) 130 T ELT)) (-3835 (($ $ (-146)) 117 T ELT) (($ $ (-143)) 116 T ELT)) (-2411 (((-1292) $ (-557) (-557)) 44 (|has| $ (-6 -4424)) ELT)) (-3842 (((-114) $ $) 127 T ELT)) (-3841 (((-114) $ $ (-557)) 126 T ELT)) (-3836 (((-659 $) $ (-146)) 119 T ELT) (((-659 $) $ (-143)) 118 T ELT)) (-1933 (((-114) (-1 (-114) (-146) (-146)) $) 107 T ELT) (((-114) $) 101 (|has| (-146) (-859)) ELT)) (-1931 (($ (-1 (-114) (-146) (-146)) $) 98 (|has| $ (-6 -4424)) ELT) (($ $) 97 (-12 (|has| (-146) (-859)) (|has| $ (-6 -4424))) ELT)) (-3308 (($ (-1 (-114) (-146) (-146)) $) 108 T ELT) (($ $) 102 (|has| (-146) (-859)) ELT)) (-4216 (((-146) $ (-557) (-146)) 56 (|has| $ (-6 -4424)) ELT) (((-146) $ (-1253 (-557)) (-146)) 64 (|has| $ (-6 -4424)) ELT)) (-4138 (($ (-1 (-114) (-146)) $) 81 (|has| $ (-6 -4423)) ELT)) (-4152 (($) 7 T CONST)) (-3833 (($ $ (-146)) 113 T ELT) (($ $ (-143)) 112 T ELT)) (-2508 (($ $) 99 (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) 109 T ELT)) (-3838 (($ $ (-1253 (-557)) $) 123 T ELT)) (-1465 (($ $) 84 (-12 (|has| (-146) (-1120)) (|has| $ (-6 -4423))) ELT)) (-3824 (($ (-146) $) 83 (-12 (|has| (-146) (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) (-146)) $) 80 (|has| $ (-6 -4423)) ELT)) (-4270 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) 82 (-12 (|has| (-146) (-1120)) (|has| $ (-6 -4423))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) 79 (|has| $ (-6 -4423)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) 78 (|has| $ (-6 -4423)) ELT)) (-1717 (((-146) $ (-557) (-146)) 57 (|has| $ (-6 -4424)) ELT)) (-3513 (((-146) $ (-557)) 55 T ELT)) (-3843 (((-114) $ $) 128 T ELT)) (-3837 (((-557) (-1 (-114) (-146)) $) 106 T ELT) (((-557) (-146) $) 105 (|has| (-146) (-1120)) ELT) (((-557) (-146) $ (-557)) 104 (|has| (-146) (-1120)) ELT) (((-557) $ $ (-557)) 122 T ELT) (((-557) (-143) $ (-557)) 121 T ELT)) (-3288 (((-659 (-146)) $) 30 (|has| $ (-6 -4423)) ELT)) (-4042 (($ (-789) (-146)) 74 T ELT)) (-2413 (((-557) $) 47 (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) 91 (|has| (-146) (-859)) ELT)) (-3936 (($ (-1 (-114) (-146) (-146)) $ $) 110 T ELT) (($ $ $) 103 (|has| (-146) (-859)) ELT)) (-3005 (((-659 (-146)) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-146) $) 27 (-12 (|has| (-146) (-1120)) (|has| $ (-6 -4423))) ELT)) (-2414 (((-557) $) 48 (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) 92 (|has| (-146) (-859)) ELT)) (-3839 (((-114) $ $ (-146)) 124 T ELT)) (-3840 (((-789) $ $ (-146)) 125 T ELT)) (-2158 (($ (-1 (-146) (-146)) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-146) (-146)) $) 35 T ELT) (($ (-1 (-146) (-146) (-146)) $ $) 69 T ELT)) (-3846 (($ $) 131 T ELT)) (-3847 (($ $) 132 T ELT)) (-3834 (($ $ (-146)) 115 T ELT) (($ $ (-143)) 114 T ELT)) (-3658 (((-1178) $) 22 (|has| (-146) (-1120)) ELT)) (-2515 (($ (-146) $ (-557)) 66 T ELT) (($ $ $ (-557)) 65 T ELT)) (-2416 (((-659 (-557)) $) 50 T ELT)) (-2417 (((-114) (-557) $) 51 T ELT)) (-3659 (((-1139) $) 21 (|has| (-146) (-1120)) ELT)) (-4229 (((-146) $) 46 (|has| (-557) (-859)) ELT)) (-1466 (((-3 (-146) "failed") (-1 (-114) (-146)) $) 77 T ELT)) (-2412 (($ $ (-146)) 45 (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) (-146)) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 (-146)))) 26 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1120))) ELT) (($ $ (-305 (-146))) 25 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1120))) ELT) (($ $ (-146) (-146)) 24 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1120))) ELT) (($ $ (-659 (-146)) (-659 (-146))) 23 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-2415 (((-114) (-146) $) 49 (-12 (|has| $ (-6 -4423)) (|has| (-146) (-1120))) ELT)) (-2418 (((-659 (-146)) $) 52 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-4228 (((-146) $ (-557) (-146)) 54 T ELT) (((-146) $ (-557)) 53 T ELT) (($ $ (-1253 (-557))) 75 T ELT) (($ $ $) 111 T ELT)) (-2516 (($ $ (-557)) 68 T ELT) (($ $ (-1253 (-557))) 67 T ELT)) (-2155 (((-789) (-1 (-114) (-146)) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) (-146) $) 28 (-12 (|has| (-146) (-1120)) (|has| $ (-6 -4423))) ELT)) (-1932 (($ $ $ (-557)) 100 (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) 10 T ELT)) (-4400 (((-546) $) 85 (|has| (-146) (-629 (-546))) ELT)) (-3948 (($ (-659 (-146))) 76 T ELT)) (-4230 (($ $ (-146)) 73 T ELT) (($ (-146) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-659 $)) 70 T ELT)) (-4374 (($ (-146)) 120 T ELT) (((-875) $) 17 (|has| (-146) (-628 (-875))) ELT)) (-1376 (((-114) $ $) 20 (|has| (-146) (-102)) ELT)) (-2157 (((-114) (-1 (-114) (-146)) $) 33 (|has| $ (-6 -4423)) ELT)) (-2963 (((-114) $ $) 93 (|has| (-146) (-859)) ELT)) (-2964 (((-114) $ $) 95 (|has| (-146) (-859)) ELT)) (-3452 (((-114) $ $) 18 (|has| (-146) (-102)) ELT)) (-3083 (((-114) $ $) 94 (|has| (-146) (-859)) ELT)) (-3084 (((-114) $ $) 96 (|has| (-146) (-859)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-1163) (-142)) (T -1163)) -((-3847 (*1 *1 *1) (-4 *1 (-1163))) (-3846 (*1 *1 *1) (-4 *1 (-1163))) (-3845 (*1 *1 *1) (-4 *1 (-1163))) (-3844 (*1 *1 *1) (-4 *1 (-1163))) (-3843 (*1 *2 *1 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-114)))) (-3842 (*1 *2 *1 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-114)))) (-3841 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-557)) (-5 *2 (-114)))) (-3840 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-146)) (-5 *2 (-789)))) (-3839 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-146)) (-5 *2 (-114)))) (-3838 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-1253 (-557))))) (-3837 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-557)))) (-3837 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-557)) (-5 *3 (-143)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-146)) (-4 *1 (-1163)))) (-3836 (*1 *2 *1 *3) (-12 (-5 *3 (-146)) (-5 *2 (-659 *1)) (-4 *1 (-1163)))) (-3836 (*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-659 *1)) (-4 *1 (-1163)))) (-3835 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-146)))) (-3835 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-143)))) (-3834 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-146)))) (-3834 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-143)))) (-3833 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-146)))) (-3833 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-143)))) (-4228 (*1 *1 *1 *1) (-4 *1 (-1163)))) -(-13 (-19 (-146)) (-10 -8 (-15 -3847 ($ $)) (-15 -3846 ($ $)) (-15 -3845 ($ $)) (-15 -3844 ($ $)) (-15 -3843 ((-114) $ $)) (-15 -3842 ((-114) $ $)) (-15 -3841 ((-114) $ $ (-557))) (-15 -3840 ((-789) $ $ (-146))) (-15 -3839 ((-114) $ $ (-146))) (-15 -3838 ($ $ (-1253 (-557)) $)) (-15 -3837 ((-557) $ $ (-557))) (-15 -3837 ((-557) (-143) $ (-557))) (-15 -4374 ($ (-146))) (-15 -3836 ((-659 $) $ (-146))) (-15 -3836 ((-659 $) $ (-143))) (-15 -3835 ($ $ (-146))) (-15 -3835 ($ $ (-143))) (-15 -3834 ($ $ (-146))) (-15 -3834 ($ $ (-143))) (-15 -3833 ($ $ (-146))) (-15 -3833 ($ $ (-143))) (-15 -4228 ($ $ $)))) -(((-34) . T) ((-102) -3955 (|has| (-146) (-1120)) (|has| (-146) (-859)) (|has| (-146) (-102))) ((-628 (-875)) -3955 (|has| (-146) (-1120)) (|has| (-146) (-859)) (|has| (-146) (-628 (-875)))) ((-153 (-146)) . T) ((-629 (-546)) |has| (-146) (-629 (-546))) ((-298 (-557) (-146)) . T) ((-298 (-1253 (-557)) $) . T) ((-300 (-557) (-146)) . T) ((-321 (-146)) -12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1120))) ((-385 (-146)) . T) ((-501 (-146)) . T) ((-614 (-557) (-146)) . T) ((-526 (-146) (-146)) -12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1120))) ((-669 (-146)) . T) ((-19 (-146)) . T) ((-859) |has| (-146) (-859)) ((-862) |has| (-146) (-859)) ((-1120) -3955 (|has| (-146) (-1120)) (|has| (-146) (-859))) ((-1236) . T)) -((-3854 (((-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) (-659 |#4|) (-659 |#5|) (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) (-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) (-789)) 112 T ELT)) (-3851 (((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5| (-789)) 61 T ELT)) (-3855 (((-1292) (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) (-789)) 97 T ELT)) (-3849 (((-789) (-659 |#4|) (-659 |#5|)) 30 T ELT)) (-3852 (((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5| (-789)) 63 T ELT) (((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5| (-789) (-114)) 65 T ELT)) (-3853 (((-659 |#5|) (-659 |#4|) (-659 |#5|) (-114) (-114) (-114) (-114) (-114)) 84 T ELT) (((-659 |#5|) (-659 |#4|) (-659 |#5|) (-114) (-114)) 85 T ELT)) (-4400 (((-1178) (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) 90 T ELT)) (-3850 (((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5|) 60 T ELT)) (-3848 (((-789) (-659 |#4|) (-659 |#5|)) 21 T ELT))) -(((-1164 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3848 ((-789) (-659 |#4|) (-659 |#5|))) (-15 -3849 ((-789) (-659 |#4|) (-659 |#5|))) (-15 -3850 ((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5|)) (-15 -3851 ((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5| (-789))) (-15 -3851 ((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5|)) (-15 -3852 ((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5| (-789) (-114))) (-15 -3852 ((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5| (-789))) (-15 -3852 ((-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) |#4| |#5|)) (-15 -3853 ((-659 |#5|) (-659 |#4|) (-659 |#5|) (-114) (-114))) (-15 -3853 ((-659 |#5|) (-659 |#4|) (-659 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -3854 ((-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) (-659 |#4|) (-659 |#5|) (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) (-2 (|:| |done| (-659 |#5|)) (|:| |todo| (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))))) (-789))) (-15 -4400 ((-1178) (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|)))) (-15 -3855 ((-1292) (-659 (-2 (|:| |val| (-659 |#4|)) (|:| -1741 |#5|))) (-789)))) (-464) (-813) (-859) (-1084 |#1| |#2| |#3|) (-1128 |#1| |#2| |#3| |#4|)) (T -1164)) -((-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-2 (|:| |val| (-659 *8)) (|:| -1741 *9)))) (-5 *4 (-789)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-1292)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-659 *7)) (|:| -1741 *8))) (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1128 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-1178)) (-5 *1 (-1164 *4 *5 *6 *7 *8)))) (-3854 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-659 *11)) (|:| |todo| (-659 (-2 (|:| |val| *3) (|:| -1741 *11)))))) (-5 *6 (-789)) (-5 *2 (-659 (-2 (|:| |val| (-659 *10)) (|:| -1741 *11)))) (-5 *3 (-659 *10)) (-5 *4 (-659 *11)) (-4 *10 (-1084 *7 *8 *9)) (-4 *11 (-1128 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-813)) (-4 *9 (-859)) (-5 *1 (-1164 *7 *8 *9 *10 *11)))) (-3853 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-659 *9)) (-5 *3 (-659 *8)) (-5 *4 (-114)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))) (-3853 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-659 *9)) (-5 *3 (-659 *8)) (-5 *4 (-114)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))) (-3852 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-659 *4)) (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3)))) (-3852 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-789)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-659 *4)) (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) (-5 *1 (-1164 *6 *7 *8 *3 *4)) (-4 *4 (-1128 *6 *7 *8 *3)))) (-3852 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-789)) (-5 *6 (-114)) (-4 *7 (-464)) (-4 *8 (-813)) (-4 *9 (-859)) (-4 *3 (-1084 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-659 *4)) (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) (-5 *1 (-1164 *7 *8 *9 *3 *4)) (-4 *4 (-1128 *7 *8 *9 *3)))) (-3851 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-659 *4)) (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3)))) (-3851 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-789)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-659 *4)) (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) (-5 *1 (-1164 *6 *7 *8 *3 *4)) (-4 *4 (-1128 *6 *7 *8 *3)))) (-3850 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-659 *4)) (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3)))) (-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *8)) (-5 *4 (-659 *9)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-789)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))) (-3848 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *8)) (-5 *4 (-659 *9)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-789)) (-5 *1 (-1164 *5 *6 *7 *8 *9))))) -((-2965 (((-114) $ $) NIL T ELT)) (-4109 (((-659 (-2 (|:| -4289 $) (|:| -1903 (-659 |#4|)))) (-659 |#4|)) NIL T ELT)) (-4110 (((-659 $) (-659 |#4|)) 121 T ELT) (((-659 $) (-659 |#4|) (-114)) 122 T ELT) (((-659 $) (-659 |#4|) (-114) (-114)) 120 T ELT) (((-659 $) (-659 |#4|) (-114) (-114) (-114) (-114)) 123 T ELT)) (-3482 (((-659 |#3|) $) NIL T ELT)) (-3307 (((-114) $) NIL T ELT)) (-3298 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-4121 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4116 ((|#4| |#4| $) NIL T ELT)) (-4203 (((-659 (-2 (|:| |val| |#4|) (|:| -1741 $))) |#4| $) 94 T ELT)) (-3308 (((-2 (|:| |under| $) (|:| -3530 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4138 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT) (((-3 |#4| #1="failed") $ |#3|) 73 T ELT)) (-4152 (($) NIL T CONST)) (-3303 (((-114) $) 29 (|has| |#1| (-568)) ELT)) (-3305 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3304 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3306 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-4117 (((-659 |#4|) (-659 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3299 (((-659 |#4|) (-659 |#4|) $) NIL (|has| |#1| (-568)) ELT)) (-3300 (((-659 |#4|) (-659 |#4|) $) NIL (|has| |#1| (-568)) ELT)) (-3573 (((-3 $ #1#) (-659 |#4|)) NIL T ELT)) (-3572 (($ (-659 |#4|)) NIL T ELT)) (-4227 (((-3 $ #1#) $) 45 T ELT)) (-4113 ((|#4| |#4| $) 76 T ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT)) (-3824 (($ |#4| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3301 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 88 (|has| |#1| (-568)) ELT)) (-4122 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4111 ((|#4| |#4| $) NIL T ELT)) (-4270 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4423)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4423)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4124 (((-2 (|:| -4289 (-659 |#4|)) (|:| -1903 (-659 |#4|))) $) NIL T ELT)) (-3613 (((-114) |#4| $) NIL T ELT)) (-3611 (((-114) |#4| $) NIL T ELT)) (-3614 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3856 (((-2 (|:| |val| (-659 |#4|)) (|:| |towers| (-659 $))) (-659 |#4|) (-114) (-114)) 136 T ELT)) (-3288 (((-659 |#4|) $) 18 (|has| $ (-6 -4423)) ELT)) (-4123 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3596 ((|#3| $) 38 T ELT)) (-3005 (((-659 |#4|) $) 19 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#4| $) 27 (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT)) (-2158 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3313 (((-659 |#3|) $) NIL T ELT)) (-3312 (((-114) |#3| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3607 (((-3 |#4| (-659 $)) |#4| |#4| $) NIL T ELT)) (-3606 (((-659 (-2 (|:| |val| |#4|) (|:| -1741 $))) |#4| |#4| $) 114 T ELT)) (-4226 (((-3 |#4| #1#) $) 42 T ELT)) (-3608 (((-659 $) |#4| $) 99 T ELT)) (-3610 (((-3 (-114) (-659 $)) |#4| $) NIL T ELT)) (-3609 (((-659 (-2 (|:| |val| (-114)) (|:| -1741 $))) |#4| $) 109 T ELT) (((-114) |#4| $) 65 T ELT)) (-3654 (((-659 $) |#4| $) 118 T ELT) (((-659 $) (-659 |#4|) $) NIL T ELT) (((-659 $) (-659 |#4|) (-659 $)) 119 T ELT) (((-659 $) |#4| (-659 $)) NIL T ELT)) (-3857 (((-659 $) (-659 |#4|) (-114) (-114) (-114)) 131 T ELT)) (-3858 (($ |#4| $) 85 T ELT) (($ (-659 |#4|) $) 86 T ELT) (((-659 $) |#4| $ (-114) (-114) (-114) (-114) (-114)) 84 T ELT)) (-4125 (((-659 |#4|) $) NIL T ELT)) (-4119 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4114 ((|#4| |#4| $) NIL T ELT)) (-4127 (((-114) $ $) NIL T ELT)) (-3302 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)) ELT)) (-4120 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4115 ((|#4| |#4| $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4229 (((-3 |#4| #1#) $) 40 T ELT)) (-1466 (((-3 |#4| #1#) (-1 (-114) |#4|) $) NIL T ELT)) (-4107 (((-3 $ #1#) $ |#4|) 59 T ELT)) (-4197 (($ $ |#4|) NIL T ELT) (((-659 $) |#4| $) 101 T ELT) (((-659 $) |#4| (-659 $)) NIL T ELT) (((-659 $) (-659 |#4|) $) NIL T ELT) (((-659 $) (-659 |#4|) (-659 $)) 96 T ELT)) (-2156 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 |#4|) (-659 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-659 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) 17 T ELT)) (-3991 (($) 14 T ELT)) (-4376 (((-789) $) NIL T ELT)) (-2155 (((-789) |#4| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT) (((-789) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) 13 T ELT)) (-4400 (((-546) $) NIL (|has| |#4| (-629 (-546))) ELT)) (-3948 (($ (-659 |#4|)) 22 T ELT)) (-3309 (($ $ |#3|) 52 T ELT)) (-3311 (($ $ |#3|) 54 T ELT)) (-4112 (($ $) NIL T ELT)) (-3310 (($ $ |#3|) NIL T ELT)) (-4374 (((-875) $) 35 T ELT) (((-659 |#4|) $) 46 T ELT)) (-4106 (((-789) $) NIL (|has| |#3| (-381)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-4126 (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |#4|))) #1#) (-659 |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |#4|))) #1#) (-659 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4118 (((-114) $ (-1 (-114) |#4| (-659 |#4|))) NIL T ELT)) (-3605 (((-659 $) |#4| $) 66 T ELT) (((-659 $) |#4| (-659 $)) NIL T ELT) (((-659 $) (-659 |#4|) $) NIL T ELT) (((-659 $) (-659 |#4|) (-659 $)) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4108 (((-659 |#3|) $) NIL T ELT)) (-3612 (((-114) |#4| $) NIL T ELT)) (-4361 (((-114) |#3| $) 72 T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-1165 |#1| |#2| |#3| |#4|) (-13 (-1128 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3858 ((-659 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -4110 ((-659 $) (-659 |#4|) (-114) (-114))) (-15 -4110 ((-659 $) (-659 |#4|) (-114) (-114) (-114) (-114))) (-15 -3857 ((-659 $) (-659 |#4|) (-114) (-114) (-114))) (-15 -3856 ((-2 (|:| |val| (-659 |#4|)) (|:| |towers| (-659 $))) (-659 |#4|) (-114) (-114))))) (-464) (-813) (-859) (-1084 |#1| |#2| |#3|)) (T -1165)) -((-3858 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-659 (-1165 *5 *6 *7 *3))) (-5 *1 (-1165 *5 *6 *7 *3)) (-4 *3 (-1084 *5 *6 *7)))) (-4110 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-659 *8)) (-5 *4 (-114)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-659 (-1165 *5 *6 *7 *8))) (-5 *1 (-1165 *5 *6 *7 *8)))) (-4110 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-659 *8)) (-5 *4 (-114)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-659 (-1165 *5 *6 *7 *8))) (-5 *1 (-1165 *5 *6 *7 *8)))) (-3857 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-659 *8)) (-5 *4 (-114)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-659 (-1165 *5 *6 *7 *8))) (-5 *1 (-1165 *5 *6 *7 *8)))) (-3856 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-659 *8)) (|:| |towers| (-659 (-1165 *5 *6 *7 *8))))) (-5 *1 (-1165 *5 *6 *7 *8)) (-5 *3 (-659 *8))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-4152 (($) 22 T CONST)) (-3885 (((-3 $ "failed") $) 31 T ELT)) (-2639 (((-114) $) 29 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 28 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-789)) 30 T ELT) (($ $ (-936)) 27 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ $ $) 26 T ELT))) -(((-1166) (-142)) (T -1166)) -NIL -(-13 (-23) (-744)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-628 (-875)) . T) ((-744) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3742 ((|#1| $) 37 T ELT)) (-3859 (($ (-659 |#1|)) 45 T ELT)) (-4152 (($) NIL T CONST)) (-3744 ((|#1| |#1| $) 40 T ELT)) (-3743 ((|#1| $) 35 T ELT)) (-3288 (((-659 |#1|) $) 18 (|has| $ (-6 -4423)) ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-1387 ((|#1| $) 38 T ELT)) (-4035 (($ |#1| $) 41 T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-1388 ((|#1| $) 36 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) 32 T ELT)) (-3991 (($) 43 T ELT)) (-3741 (((-789) $) 30 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) 27 T ELT)) (-4374 (((-875) $) 14 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1389 (($ (-659 |#1|)) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 17 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 31 (|has| $ (-6 -4423)) ELT))) -(((-1167 |#1|) (-13 (-1140 |#1|) (-10 -8 (-15 -3859 ($ (-659 |#1|))))) (-1236)) (T -1167)) -((-3859 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1236)) (-5 *1 (-1167 *3))))) -((-4216 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1253 (-557)) |#2|) 53 T ELT) ((|#2| $ (-557) |#2|) 50 T ELT)) (-3861 (((-114) $) 12 T ELT)) (-2158 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-4229 ((|#2| $) NIL T ELT) (($ $ (-789)) 17 T ELT)) (-2412 (($ $ |#2|) 49 T ELT)) (-3862 (((-114) $) 11 T ELT)) (-4228 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1253 (-557))) 36 T ELT) ((|#2| $ (-557)) 25 T ELT) ((|#2| $ (-557) |#2|) NIL T ELT)) (-4219 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-4230 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-659 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) -(((-1168 |#1| |#2|) (-10 -7 (-15 -3861 ((-114) |#1|)) (-15 -3862 ((-114) |#1|)) (-15 -4216 (|#2| |#1| (-557) |#2|)) (-15 -4228 (|#2| |#1| (-557) |#2|)) (-15 -4228 (|#2| |#1| (-557))) (-15 -2412 (|#1| |#1| |#2|)) (-15 -4228 (|#1| |#1| (-1253 (-557)))) (-15 -4230 (|#1| |#1| |#2|)) (-15 -4230 (|#1| (-659 |#1|))) (-15 -4216 (|#2| |#1| (-1253 (-557)) |#2|)) (-15 -4216 (|#2| |#1| #1="last" |#2|)) (-15 -4216 (|#1| |#1| #2="rest" |#1|)) (-15 -4216 (|#2| |#1| #3="first" |#2|)) (-15 -4219 (|#1| |#1| |#2|)) (-15 -4219 (|#1| |#1| |#1|)) (-15 -4228 (|#2| |#1| #1#)) (-15 -4228 (|#1| |#1| #2#)) (-15 -4229 (|#1| |#1| (-789))) (-15 -4228 (|#2| |#1| #3#)) (-15 -4229 (|#2| |#1|)) (-15 -4230 (|#1| |#2| |#1|)) (-15 -4230 (|#1| |#1| |#1|)) (-15 -4216 (|#2| |#1| #4="value" |#2|)) (-15 -4228 (|#2| |#1| #4#)) (-15 -2158 (|#1| (-1 |#2| |#2|) |#1|))) (-1169 |#2|) (-1236)) (T -1168)) -NIL -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3820 ((|#1| $) 52 T ELT)) (-4223 ((|#1| $) 71 T ELT)) (-4225 (($ $) 73 T ELT)) (-2411 (((-1292) $ (-557) (-557)) 107 (|has| $ (-6 -4424)) ELT)) (-4213 (($ $ (-557)) 58 (|has| $ (-6 -4424)) ELT)) (-3860 (((-114) $ (-789)) 90 T ELT)) (-3424 ((|#1| $ |#1|) 43 (|has| $ (-6 -4424)) ELT)) (-4215 (($ $ $) 62 (|has| $ (-6 -4424)) ELT)) (-4214 ((|#1| $ |#1|) 60 (|has| $ (-6 -4424)) ELT)) (-4217 ((|#1| $ |#1|) 64 (|has| $ (-6 -4424)) ELT)) (-4216 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4424)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -4424)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -4424)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -4424)) ELT) ((|#1| $ (-1253 (-557)) |#1|) 127 (|has| $ (-6 -4424)) ELT) ((|#1| $ (-557) |#1|) 96 (|has| $ (-6 -4424)) ELT)) (-3425 (($ $ (-659 $)) 45 (|has| $ (-6 -4424)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) 112 (|has| $ (-6 -4423)) ELT)) (-4224 ((|#1| $) 72 T ELT)) (-4152 (($) 7 T CONST)) (-4227 (($ $) 79 T ELT) (($ $ (-789)) 77 T ELT)) (-1465 (($ $) 109 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3824 (($ (-1 (-114) |#1|) $) 113 (|has| $ (-6 -4423)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-1717 ((|#1| $ (-557) |#1|) 95 (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-557)) 97 T ELT)) (-3861 (((-114) $) 93 T ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-3430 (((-659 $) $) 54 T ELT)) (-3426 (((-114) $ $) 46 (|has| |#1| (-1120)) ELT)) (-4042 (($ (-789) |#1|) 119 T ELT)) (-4147 (((-114) $ (-789)) 91 T ELT)) (-2413 (((-557) $) 105 (|has| (-557) (-859)) ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2414 (((-557) $) 104 (|has| (-557) (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-4144 (((-114) $ (-789)) 92 T ELT)) (-3429 (((-659 |#1|) $) 49 T ELT)) (-3945 (((-114) $) 53 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-4226 ((|#1| $) 76 T ELT) (($ $ (-789)) 74 T ELT)) (-2515 (($ $ $ (-557)) 126 T ELT) (($ |#1| $ (-557)) 125 T ELT)) (-2416 (((-659 (-557)) $) 102 T ELT)) (-2417 (((-114) (-557) $) 101 T ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-4229 ((|#1| $) 82 T ELT) (($ $ (-789)) 80 T ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 116 T ELT)) (-2412 (($ $ |#1|) 106 (|has| $ (-6 -4424)) ELT)) (-3862 (((-114) $) 94 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-2415 (((-114) |#1| $) 103 (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) 100 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-4228 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1253 (-557))) 118 T ELT) ((|#1| $ (-557)) 99 T ELT) ((|#1| $ (-557) |#1|) 98 T ELT)) (-3428 (((-557) $ $) 48 T ELT)) (-2516 (($ $ (-1253 (-557))) 124 T ELT) (($ $ (-557)) 123 T ELT)) (-4061 (((-114) $) 50 T ELT)) (-4220 (($ $) 68 T ELT)) (-4218 (($ $) 65 (|has| $ (-6 -4424)) ELT)) (-4221 (((-789) $) 69 T ELT)) (-4222 (($ $) 70 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4400 (((-546) $) 108 (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 117 T ELT)) (-4219 (($ $ $) 67 (|has| $ (-6 -4424)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -4424)) ELT)) (-4230 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-659 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-3940 (((-659 $) $) 55 T ELT)) (-3427 (((-114) $ $) 47 (|has| |#1| (-1120)) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-1169 |#1|) (-142) (-1236)) (T -1169)) -((-3862 (*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1236)) (-5 *2 (-114)))) (-3861 (*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1236)) (-5 *2 (-114)))) (-4144 (*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-4 *1 (-1169 *4)) (-4 *4 (-1236)) (-5 *2 (-114)))) (-4147 (*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-4 *1 (-1169 *4)) (-4 *4 (-1236)) (-5 *2 (-114)))) (-3860 (*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-4 *1 (-1169 *4)) (-4 *4 (-1236)) (-5 *2 (-114))))) -(-13 (-1275 |t#1|) (-669 |t#1|) (-10 -8 (-15 -3862 ((-114) $)) (-15 -3861 ((-114) $)) (-15 -4144 ((-114) $ (-789))) (-15 -4147 ((-114) $ (-789))) (-15 -3860 ((-114) $ (-789))))) -(((-34) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-628 (-875)))) ((-153 |#1|) . T) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-298 (-557) |#1|) . T) ((-298 (-1253 (-557)) $) . T) ((-300 (-557) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-614 (-557) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-669 |#1|) . T) ((-1029 |#1|) . T) ((-1120) |has| |#1| (-1120)) ((-1236) . T) ((-1275 |#1|) . T)) -((-2965 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4025 (($) NIL T ELT) (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-2411 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-4216 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1711 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-2444 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT)) (-3823 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3824 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (|has| $ (-6 -4423)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-1717 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#2| $ |#1|) NIL T ELT)) (-3288 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2413 ((|#1| $) NIL (|has| |#1| (-859)) ELT)) (-3005 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-2414 ((|#1| $) NIL (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| |#2| (-1120))) ELT)) (-2882 (((-659 |#1|) $) NIL T ELT)) (-2445 (((-114) |#1| $) NIL T ELT)) (-1387 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-4035 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-2416 (((-659 |#1|) $) NIL T ELT)) (-2417 (((-114) |#1| $) NIL T ELT)) (-3659 (((-1139) $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| |#2| (-1120))) ELT)) (-4229 ((|#2| $) NIL (|has| |#1| (-859)) ELT)) (-1466 (((-3 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) #1#) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT)) (-2412 (($ $ |#2|) NIL (|has| $ (-6 -4424)) ELT)) (-1388 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-2156 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-659 |#2|) (-659 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-659 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-2418 (((-659 |#2|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1596 (($) NIL T ELT) (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-2155 (((-789) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-789) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT) (((-789) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-629 (-546))) ELT)) (-3948 (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-4374 (((-875) $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-628 (-875))) (|has| |#2| (-628 (-875)))) ELT)) (-1376 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1389 (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-1170 |#1| |#2| |#3|) (-1213 |#1| |#2|) (-1120) (-1120) |#2|) (T -1170)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3863 (((-709 $) $) 17 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3864 (($) 18 T CONST)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3452 (((-114) $ $) 8 T ELT))) -(((-1171) (-142)) (T -1171)) -((-3864 (*1 *1) (-4 *1 (-1171))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-709 *1)) (-4 *1 (-1171))))) -(-13 (-1120) (-10 -8 (-15 -3864 ($) -4380) (-15 -3863 ((-709 $) $)))) -(((-102) . T) ((-628 (-875)) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3866 (((-709 (-1154)) $) 27 T ELT)) (-3865 (((-1154) $) 15 T ELT)) (-3867 (((-1154) $) 17 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3868 (((-518) $) 13 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 37 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1172) (-13 (-1102) (-10 -8 (-15 -3868 ((-518) $)) (-15 -3867 ((-1154) $)) (-15 -3866 ((-709 (-1154)) $)) (-15 -3865 ((-1154) $))))) (T -1172)) -((-3868 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1172)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1172)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-709 (-1154))) (-5 *1 (-1172)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1172))))) -((-3871 (((-1174 |#1|) (-1174 |#1|)) 17 T ELT)) (-3869 (((-1174 |#1|) (-1174 |#1|)) 13 T ELT)) (-3872 (((-1174 |#1|) (-1174 |#1|) (-557) (-557)) 20 T ELT)) (-3870 (((-1174 |#1|) (-1174 |#1|)) 15 T ELT))) -(((-1173 |#1|) (-10 -7 (-15 -3869 ((-1174 |#1|) (-1174 |#1|))) (-15 -3870 ((-1174 |#1|) (-1174 |#1|))) (-15 -3871 ((-1174 |#1|) (-1174 |#1|))) (-15 -3872 ((-1174 |#1|) (-1174 |#1|) (-557) (-557)))) (-13 (-568) (-149))) (T -1173)) -((-3872 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-557)) (-4 *4 (-13 (-568) (-149))) (-5 *1 (-1173 *4)))) (-3871 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-568) (-149))) (-5 *1 (-1173 *3)))) (-3870 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-568) (-149))) (-5 *1 (-1173 *3)))) (-3869 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-568) (-149))) (-5 *1 (-1173 *3))))) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3820 ((|#1| $) NIL T ELT)) (-4223 ((|#1| $) NIL T ELT)) (-4225 (($ $) 62 T ELT)) (-2411 (((-1292) $ (-557) (-557)) 95 (|has| $ (-6 -4424)) ELT)) (-4213 (($ $ (-557)) 124 (|has| $ (-6 -4424)) ELT)) (-3860 (((-114) $ (-789)) NIL T ELT)) (-3877 (((-875) $) 51 (|has| |#1| (-1120)) ELT)) (-3876 (((-114)) 50 (|has| |#1| (-1120)) ELT)) (-3424 ((|#1| $ |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-4215 (($ $ $) 111 (|has| $ (-6 -4424)) ELT) (($ $ (-557) $) 138 T ELT)) (-4214 ((|#1| $ |#1|) 121 (|has| $ (-6 -4424)) ELT)) (-4217 ((|#1| $ |#1|) 116 (|has| $ (-6 -4424)) ELT)) (-4216 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| $ #2="first" |#1|) 118 (|has| $ (-6 -4424)) ELT) (($ $ #3="rest" $) 120 (|has| $ (-6 -4424)) ELT) ((|#1| $ #4="last" |#1|) 123 (|has| $ (-6 -4424)) ELT) ((|#1| $ (-1253 (-557)) |#1|) 108 (|has| $ (-6 -4424)) ELT) ((|#1| $ (-557) |#1|) 74 (|has| $ (-6 -4424)) ELT)) (-3425 (($ $ (-659 $)) NIL (|has| $ (-6 -4424)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) 77 T ELT)) (-4224 ((|#1| $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-2534 (($ $) 11 T ELT)) (-4227 (($ $) 35 T ELT) (($ $ (-789)) 107 T ELT)) (-3882 (((-114) (-659 |#1|) $) 130 (|has| |#1| (-1120)) ELT)) (-3883 (($ (-659 |#1|)) 126 T ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) (($ (-1 (-114) |#1|) $) 76 T ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-1717 ((|#1| $ (-557) |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-557)) NIL T ELT)) (-3861 (((-114) $) NIL T ELT)) (-3288 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3878 (((-1292) (-557) $) 136 (|has| |#1| (-1120)) ELT)) (-2533 (((-789) $) 133 T ELT)) (-3430 (((-659 $) $) NIL T ELT)) (-3426 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-4042 (($ (-789) |#1|) NIL T ELT)) (-4147 (((-114) $ (-789)) NIL T ELT)) (-2413 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2414 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 82 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 86 T ELT)) (-4144 (((-114) $ (-789)) NIL T ELT)) (-3429 (((-659 |#1|) $) NIL T ELT)) (-3945 (((-114) $) NIL T ELT)) (-2536 (($ $) 109 T ELT)) (-2537 (((-114) $) 10 T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-4226 ((|#1| $) NIL T ELT) (($ $ (-789)) NIL T ELT)) (-2515 (($ $ $ (-557)) NIL T ELT) (($ |#1| $ (-557)) NIL T ELT)) (-2416 (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) (-557) $) 92 T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-3875 (($ (-1 |#1|)) 140 T ELT) (($ (-1 |#1| |#1|) |#1|) 141 T ELT)) (-2535 ((|#1| $) 7 T ELT)) (-4229 ((|#1| $) 34 T ELT) (($ $ (-789)) 60 T ELT)) (-3881 (((-2 (|:| |cycle?| (-114)) (|:| -2992 (-789)) (|:| |period| (-789))) (-789) $) 29 T ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-3874 (($ (-1 (-114) |#1|) $) 142 T ELT)) (-3873 (($ (-1 (-114) |#1|) $) 143 T ELT)) (-2412 (($ $ |#1|) 87 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-557)) 40 T ELT)) (-3862 (((-114) $) 90 T ELT)) (-2538 (((-114) $) 9 T ELT)) (-2539 (((-114) $) 132 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 25 T ELT)) (-2415 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) NIL T ELT)) (-3821 (((-114) $) 14 T ELT)) (-3991 (($) 55 T ELT)) (-4228 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1253 (-557))) NIL T ELT) ((|#1| $ (-557)) 72 T ELT) ((|#1| $ (-557) |#1|) NIL T ELT)) (-3428 (((-557) $ $) 59 T ELT)) (-2516 (($ $ (-1253 (-557))) NIL T ELT) (($ $ (-557)) NIL T ELT)) (-3880 (($ (-1 $)) 58 T ELT)) (-4061 (((-114) $) 88 T ELT)) (-4220 (($ $) 89 T ELT)) (-4218 (($ $) 112 (|has| $ (-6 -4424)) ELT)) (-4221 (((-789) $) NIL T ELT)) (-4222 (($ $) NIL T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) 54 T ELT)) (-4400 (((-546) $) NIL (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 70 T ELT)) (-3879 (($ |#1| $) 110 T ELT)) (-4219 (($ $ $) 114 (|has| $ (-6 -4424)) ELT) (($ $ |#1|) 115 (|has| $ (-6 -4424)) ELT)) (-4230 (($ $ $) 97 T ELT) (($ |#1| $) 56 T ELT) (($ (-659 $)) 102 T ELT) (($ $ |#1|) 96 T ELT)) (-3290 (($ $) 61 T ELT)) (-4374 (($ (-659 |#1|)) 125 T ELT) (((-875) $) 52 (|has| |#1| (-628 (-875))) ELT)) (-3940 (((-659 $) $) NIL T ELT)) (-3427 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 128 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-1174 |#1|) (-13 (-692 |#1|) (-631 (-659 |#1|)) (-10 -8 (-6 -4424) (-15 -3883 ($ (-659 |#1|))) (IF (|has| |#1| (-1120)) (-15 -3882 ((-114) (-659 |#1|) $)) |%noBranch|) (-15 -3881 ((-2 (|:| |cycle?| (-114)) (|:| -2992 (-789)) (|:| |period| (-789))) (-789) $)) (-15 -3880 ($ (-1 $))) (-15 -3879 ($ |#1| $)) (IF (|has| |#1| (-1120)) (PROGN (-15 -3878 ((-1292) (-557) $)) (-15 -3877 ((-875) $)) (-15 -3876 ((-114)))) |%noBranch|) (-15 -4215 ($ $ (-557) $)) (-15 -3875 ($ (-1 |#1|))) (-15 -3875 ($ (-1 |#1| |#1|) |#1|)) (-15 -3874 ($ (-1 (-114) |#1|) $)) (-15 -3873 ($ (-1 (-114) |#1|) $)))) (-1236)) (T -1174)) -((-3883 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1236)) (-5 *1 (-1174 *3)))) (-3882 (*1 *2 *3 *1) (-12 (-5 *3 (-659 *4)) (-4 *4 (-1120)) (-4 *4 (-1236)) (-5 *2 (-114)) (-5 *1 (-1174 *4)))) (-3881 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-114)) (|:| -2992 (-789)) (|:| |period| (-789)))) (-5 *1 (-1174 *4)) (-4 *4 (-1236)) (-5 *3 (-789)))) (-3880 (*1 *1 *2) (-12 (-5 *2 (-1 (-1174 *3))) (-5 *1 (-1174 *3)) (-4 *3 (-1236)))) (-3879 (*1 *1 *2 *1) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-1236)))) (-3878 (*1 *2 *3 *1) (-12 (-5 *3 (-557)) (-5 *2 (-1292)) (-5 *1 (-1174 *4)) (-4 *4 (-1120)) (-4 *4 (-1236)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-875)) (-5 *1 (-1174 *3)) (-4 *3 (-1120)) (-4 *3 (-1236)))) (-3876 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1174 *3)) (-4 *3 (-1120)) (-4 *3 (-1236)))) (-4215 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-1174 *3)) (-4 *3 (-1236)))) (-3875 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1236)) (-5 *1 (-1174 *3)))) (-3875 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-1174 *3)))) (-3874 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1236)) (-5 *1 (-1174 *3)))) (-3873 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1236)) (-5 *1 (-1174 *3))))) -((-4230 (((-1174 |#1|) (-1174 (-1174 |#1|))) 15 T ELT))) -(((-1175 |#1|) (-10 -7 (-15 -4230 ((-1174 |#1|) (-1174 (-1174 |#1|))))) (-1236)) (T -1175)) -((-4230 (*1 *2 *3) (-12 (-5 *3 (-1174 (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1175 *4)) (-4 *4 (-1236))))) -((-4269 (((-1174 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1174 |#1|)) 25 T ELT)) (-4270 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1174 |#1|)) 26 T ELT)) (-4386 (((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|)) 16 T ELT))) -(((-1176 |#1| |#2|) (-10 -7 (-15 -4386 ((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|))) (-15 -4269 ((-1174 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1174 |#1|))) (-15 -4270 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1174 |#1|)))) (-1236) (-1236)) (T -1176)) -((-4270 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1174 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-1176 *5 *2)))) (-4269 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1174 *6)) (-4 *6 (-1236)) (-4 *3 (-1236)) (-5 *2 (-1174 *3)) (-5 *1 (-1176 *6 *3)))) (-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1174 *6)) (-5 *1 (-1176 *5 *6))))) -((-4386 (((-1174 |#3|) (-1 |#3| |#1| |#2|) (-1174 |#1|) (-1174 |#2|)) 21 T ELT))) -(((-1177 |#1| |#2| |#3|) (-10 -7 (-15 -4386 ((-1174 |#3|) (-1 |#3| |#1| |#2|) (-1174 |#1|) (-1174 |#2|)))) (-1236) (-1236) (-1236)) (T -1177)) -((-4386 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1174 *6)) (-5 *5 (-1174 *7)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1174 *8)) (-5 *1 (-1177 *6 *7 *8))))) -((-2965 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-3844 (($ $) 42 T ELT)) (-3845 (($ $) NIL T ELT)) (-3835 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-2411 (((-1292) $ (-557) (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-3842 (((-114) $ $) 68 T ELT)) (-3841 (((-114) $ $ (-557)) 63 T ELT)) (-3961 (($ (-557)) 7 T ELT) (($ (-229)) 9 T ELT) (($ (-518)) 11 T ELT)) (-3836 (((-659 $) $ (-146)) 77 T ELT) (((-659 $) $ (-143)) 78 T ELT)) (-1933 (((-114) (-1 (-114) (-146) (-146)) $) NIL T ELT) (((-114) $) NIL (|has| (-146) (-859)) ELT)) (-1931 (($ (-1 (-114) (-146) (-146)) $) NIL (|has| $ (-6 -4424)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-146) (-859))) ELT)) (-3308 (($ (-1 (-114) (-146) (-146)) $) NIL T ELT) (($ $) NIL (|has| (-146) (-859)) ELT)) (-4216 (((-146) $ (-557) (-146)) 60 (|has| $ (-6 -4424)) ELT) (((-146) $ (-1253 (-557)) (-146)) NIL (|has| $ (-6 -4424)) ELT)) (-4138 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4423)) ELT)) (-4152 (($) NIL T CONST)) (-3833 (($ $ (-146)) 81 T ELT) (($ $ (-143)) 82 T ELT)) (-2508 (($ $) NIL (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) NIL T ELT)) (-3838 (($ $ (-1253 (-557)) $) 58 T ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-146) (-1120))) ELT)) (-3824 (($ (-146) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-146) (-1120))) ELT) (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4423)) (|has| (-146) (-1120))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4423)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4423)) ELT)) (-1717 (((-146) $ (-557) (-146)) NIL (|has| $ (-6 -4424)) ELT)) (-3513 (((-146) $ (-557)) NIL T ELT)) (-3843 (((-114) $ $) 92 T ELT)) (-3837 (((-557) (-1 (-114) (-146)) $) NIL T ELT) (((-557) (-146) $) NIL (|has| (-146) (-1120)) ELT) (((-557) (-146) $ (-557)) 65 (|has| (-146) (-1120)) ELT) (((-557) $ $ (-557)) 64 T ELT) (((-557) (-143) $ (-557)) 67 T ELT)) (-3288 (((-659 (-146)) $) NIL (|has| $ (-6 -4423)) ELT)) (-4042 (($ (-789) (-146)) 14 T ELT)) (-2413 (((-557) $) 36 (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) NIL (|has| (-146) (-859)) ELT)) (-3936 (($ (-1 (-114) (-146) (-146)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-146) (-859)) ELT)) (-3005 (((-659 (-146)) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-146) (-1120))) ELT)) (-2414 (((-557) $) 51 (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| (-146) (-859)) ELT)) (-3839 (((-114) $ $ (-146)) 93 T ELT)) (-3840 (((-789) $ $ (-146)) 89 T ELT)) (-2158 (($ (-1 (-146) (-146)) $) 41 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-146) (-146)) $) NIL T ELT) (($ (-1 (-146) (-146) (-146)) $ $) NIL T ELT)) (-3846 (($ $) 45 T ELT)) (-3847 (($ $) NIL T ELT)) (-3834 (($ $ (-146)) 79 T ELT) (($ $ (-143)) 80 T ELT)) (-3658 (((-1178) $) 47 (|has| (-146) (-1120)) ELT)) (-2515 (($ (-146) $ (-557)) NIL T ELT) (($ $ $ (-557)) 31 T ELT)) (-2416 (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) (-557) $) NIL T ELT)) (-3659 (((-1139) $) 88 (|has| (-146) (-1120)) ELT)) (-4229 (((-146) $) NIL (|has| (-557) (-859)) ELT)) (-1466 (((-3 (-146) "failed") (-1 (-114) (-146)) $) NIL T ELT)) (-2412 (($ $ (-146)) NIL (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1120))) ELT) (($ $ (-305 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1120))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1120))) ELT) (($ $ (-659 (-146)) (-659 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-146) (-1120))) ELT)) (-2418 (((-659 (-146)) $) NIL T ELT)) (-3821 (((-114) $) 19 T ELT)) (-3991 (($) 16 T ELT)) (-4228 (((-146) $ (-557) (-146)) NIL T ELT) (((-146) $ (-557)) 70 T ELT) (($ $ (-1253 (-557))) 29 T ELT) (($ $ $) NIL T ELT)) (-2516 (($ $ (-557)) NIL T ELT) (($ $ (-1253 (-557))) NIL T ELT)) (-2155 (((-789) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) (-146) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-146) (-1120))) ELT)) (-1932 (($ $ $ (-557)) 84 (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) 24 T ELT)) (-4400 (((-546) $) NIL (|has| (-146) (-629 (-546))) ELT)) (-3948 (($ (-659 (-146))) NIL T ELT)) (-4230 (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-659 $)) 85 T ELT)) (-4374 (($ (-146)) NIL T ELT) (((-875) $) 35 (|has| (-146) (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-2157 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4423)) ELT)) (-2963 (((-114) $ $) NIL (|has| (-146) (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| (-146) (-859)) ELT)) (-3452 (((-114) $ $) 21 (|has| (-146) (-102)) ELT)) (-3083 (((-114) $ $) NIL (|has| (-146) (-859)) ELT)) (-3084 (((-114) $ $) 22 (|has| (-146) (-859)) ELT)) (-4385 (((-789) $) 20 (|has| $ (-6 -4423)) ELT))) -(((-1178) (-13 (-1163) (-10 -8 (-15 -3961 ($ (-557))) (-15 -3961 ($ (-229))) (-15 -3961 ($ (-518)))))) (T -1178)) -((-3961 (*1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-1178)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1178)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-1178))))) -((-2965 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-4025 (($) NIL T ELT) (($ (-659 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)))) NIL T ELT)) (-2411 (((-1292) $ (-1178) (-1178)) NIL (|has| $ (-6 -4424)) ELT)) (-4216 ((|#1| $ (-1178) |#1|) NIL T ELT)) (-1711 (($ (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-2444 (((-3 |#1| #1="failed") (-1178) $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1120))) ELT)) (-3823 (($ (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) $) NIL (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-3 |#1| #1#) (-1178) $) NIL T ELT)) (-3824 (($ (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1120))) ELT) (($ (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 (((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $ (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1120))) ELT) (((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $ (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) NIL (|has| $ (-6 -4423)) ELT) (((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-1717 ((|#1| $ (-1178) |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-1178)) NIL T ELT)) (-3288 (((-659 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2413 (((-1178) $) NIL (|has| (-1178) (-859)) ELT)) (-3005 (((-659 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1120))) ELT) (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2414 (((-1178) $) NIL (|has| (-1178) (-859)) ELT)) (-2158 (($ (-1 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL (-3955 (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1120)) (|has| |#1| (-1120))) ELT)) (-2882 (((-659 (-1178)) $) NIL T ELT)) (-2445 (((-114) (-1178) $) NIL T ELT)) (-1387 (((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) $) NIL T ELT)) (-4035 (($ (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) $) NIL T ELT)) (-2416 (((-659 (-1178)) $) NIL T ELT)) (-2417 (((-114) (-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL (-3955 (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1120)) (|has| |#1| (-1120))) ELT)) (-4229 ((|#1| $) NIL (|has| (-1178) (-859)) ELT)) (-1466 (((-3 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) #1#) (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL T ELT)) (-2412 (($ $ |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-1388 (((-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) $) NIL T ELT)) (-2156 (((-114) (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))))) NIL (-12 (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-321 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)))) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1120))) ELT) (($ $ (-305 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)))) NIL (-12 (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-321 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)))) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1120))) ELT) (($ $ (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) NIL (-12 (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-321 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)))) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1120))) ELT) (($ $ (-659 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) (-659 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)))) NIL (-12 (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-321 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)))) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#1| $ (-1178)) NIL T ELT) ((|#1| $ (-1178) |#1|) NIL T ELT)) (-1596 (($) NIL T ELT) (($ (-659 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)))) NIL T ELT)) (-2155 (((-789) (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-1120))) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) NIL (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-629 (-546))) ELT)) (-3948 (($ (-659 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)))) NIL T ELT)) (-4374 (((-875) $) NIL (-3955 (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-628 (-875))) (|has| |#1| (-628 (-875)))) ELT)) (-1376 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-1389 (($ (-659 (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)))) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 (-1178)) (|:| -2284 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-1179 |#1|) (-13 (-1213 (-1178) |#1|) (-10 -7 (-6 -4423))) (-1120)) (T -1179)) -NIL -((-4233 (((-1174 |#1|) (-1174 |#1|)) 83 T ELT)) (-3885 (((-3 (-1174 |#1|) #1="failed") (-1174 |#1|)) 39 T ELT)) (-3896 (((-1174 |#1|) (-419 (-557)) (-1174 |#1|)) 132 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3899 (((-1174 |#1|) |#1| (-1174 |#1|)) 137 (|has| |#1| (-376)) ELT)) (-4236 (((-1174 |#1|) (-1174 |#1|)) 97 T ELT)) (-3887 (((-1174 (-557)) (-557)) 63 T ELT)) (-3895 (((-1174 |#1|) (-1174 (-1174 |#1|))) 117 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4232 (((-1174 |#1|) (-557) (-557) (-1174 |#1|)) 103 T ELT)) (-4366 (((-1174 |#1|) |#1| (-557)) 51 T ELT)) (-3889 (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 66 T ELT)) (-3897 (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 135 (|has| |#1| (-376)) ELT)) (-3894 (((-1174 |#1|) |#1| (-1 (-1174 |#1|))) 116 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3898 (((-1174 |#1|) (-1 |#1| (-557)) |#1| (-1 (-1174 |#1|))) 136 (|has| |#1| (-376)) ELT)) (-4237 (((-1174 |#1|) (-1174 |#1|)) 96 T ELT)) (-4238 (((-1174 |#1|) (-1174 |#1|)) 82 T ELT)) (-4231 (((-1174 |#1|) (-557) (-557) (-1174 |#1|)) 104 T ELT)) (-4240 (((-1174 |#1|) |#1| (-1174 |#1|)) 113 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3886 (((-1174 (-557)) (-557)) 62 T ELT)) (-3888 (((-1174 |#1|) |#1|) 65 T ELT)) (-4234 (((-1174 |#1|) (-1174 |#1|) (-557) (-557)) 100 T ELT)) (-3891 (((-1174 |#1|) (-1 |#1| (-557)) (-1174 |#1|)) 72 T ELT)) (-3884 (((-3 (-1174 |#1|) #1#) (-1174 |#1|) (-1174 |#1|)) 37 T ELT)) (-4235 (((-1174 |#1|) (-1174 |#1|)) 98 T ELT)) (-4196 (((-1174 |#1|) (-1174 |#1|) |#1|) 77 T ELT)) (-3890 (((-1174 |#1|) (-1174 |#1|)) 68 T ELT)) (-3892 (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 78 T ELT)) (-4374 (((-1174 |#1|) |#1|) 73 T ELT)) (-3893 (((-1174 |#1|) (-1174 (-1174 |#1|))) 88 T ELT)) (-4377 (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 38 T ELT)) (-4265 (((-1174 |#1|) (-1174 |#1|)) 21 T ELT) (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 23 T ELT)) (-4267 (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 17 T ELT)) (* (((-1174 |#1|) (-1174 |#1|) |#1|) 29 T ELT) (((-1174 |#1|) |#1| (-1174 |#1|)) 26 T ELT) (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 27 T ELT))) -(((-1180 |#1|) (-10 -7 (-15 -4267 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4265 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4265 ((-1174 |#1|) (-1174 |#1|))) (-15 * ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 * ((-1174 |#1|) |#1| (-1174 |#1|))) (-15 * ((-1174 |#1|) (-1174 |#1|) |#1|)) (-15 -3884 ((-3 (-1174 |#1|) #1="failed") (-1174 |#1|) (-1174 |#1|))) (-15 -4377 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -3885 ((-3 (-1174 |#1|) #1#) (-1174 |#1|))) (-15 -4366 ((-1174 |#1|) |#1| (-557))) (-15 -3886 ((-1174 (-557)) (-557))) (-15 -3887 ((-1174 (-557)) (-557))) (-15 -3888 ((-1174 |#1|) |#1|)) (-15 -3889 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -3890 ((-1174 |#1|) (-1174 |#1|))) (-15 -3891 ((-1174 |#1|) (-1 |#1| (-557)) (-1174 |#1|))) (-15 -4374 ((-1174 |#1|) |#1|)) (-15 -4196 ((-1174 |#1|) (-1174 |#1|) |#1|)) (-15 -3892 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4238 ((-1174 |#1|) (-1174 |#1|))) (-15 -4233 ((-1174 |#1|) (-1174 |#1|))) (-15 -3893 ((-1174 |#1|) (-1174 (-1174 |#1|)))) (-15 -4237 ((-1174 |#1|) (-1174 |#1|))) (-15 -4236 ((-1174 |#1|) (-1174 |#1|))) (-15 -4235 ((-1174 |#1|) (-1174 |#1|))) (-15 -4234 ((-1174 |#1|) (-1174 |#1|) (-557) (-557))) (-15 -4232 ((-1174 |#1|) (-557) (-557) (-1174 |#1|))) (-15 -4231 ((-1174 |#1|) (-557) (-557) (-1174 |#1|))) (IF (|has| |#1| (-38 (-419 (-557)))) (PROGN (-15 -4240 ((-1174 |#1|) |#1| (-1174 |#1|))) (-15 -3894 ((-1174 |#1|) |#1| (-1 (-1174 |#1|)))) (-15 -3895 ((-1174 |#1|) (-1174 (-1174 |#1|)))) (-15 -3896 ((-1174 |#1|) (-419 (-557)) (-1174 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3897 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -3898 ((-1174 |#1|) (-1 |#1| (-557)) |#1| (-1 (-1174 |#1|)))) (-15 -3899 ((-1174 |#1|) |#1| (-1174 |#1|)))) |%noBranch|)) (-1068)) (T -1180)) -((-3899 (*1 *2 *3 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-376)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-3898 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-557))) (-5 *5 (-1 (-1174 *4))) (-4 *4 (-376)) (-4 *4 (-1068)) (-5 *2 (-1174 *4)) (-5 *1 (-1180 *4)))) (-3897 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-376)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-3896 (*1 *2 *3 *2) (-12 (-5 *2 (-1174 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1068)) (-5 *3 (-419 (-557))) (-5 *1 (-1180 *4)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-1174 (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1180 *4)) (-4 *4 (-38 (-419 (-557)))) (-4 *4 (-1068)))) (-3894 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1174 *3))) (-5 *2 (-1174 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068)))) (-4240 (*1 *2 *3 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-4231 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-557)) (-4 *4 (-1068)) (-5 *1 (-1180 *4)))) (-4232 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-557)) (-4 *4 (-1068)) (-5 *1 (-1180 *4)))) (-4234 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-557)) (-4 *4 (-1068)) (-5 *1 (-1180 *4)))) (-4235 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-4236 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-4237 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-1174 (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1180 *4)) (-4 *4 (-1068)))) (-4233 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-4238 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-3892 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-4196 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-4374 (*1 *2 *3) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1068)))) (-3891 (*1 *2 *3 *2) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-1 *4 (-557))) (-4 *4 (-1068)) (-5 *1 (-1180 *4)))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-3889 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-3888 (*1 *2 *3) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1068)))) (-3887 (*1 *2 *3) (-12 (-5 *2 (-1174 (-557))) (-5 *1 (-1180 *4)) (-4 *4 (-1068)) (-5 *3 (-557)))) (-3886 (*1 *2 *3) (-12 (-5 *2 (-1174 (-557))) (-5 *1 (-1180 *4)) (-4 *4 (-1068)) (-5 *3 (-557)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *4 (-557)) (-5 *2 (-1174 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1068)))) (-3885 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-4377 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-3884 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-4265 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-4265 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-4267 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))) -((-3910 (((-1174 |#1|) (-1174 |#1|)) 102 T ELT)) (-4067 (((-1174 |#1|) (-1174 |#1|)) 61 T ELT)) (-3901 (((-2 (|:| -3908 (-1174 |#1|)) (|:| -3909 (-1174 |#1|))) (-1174 |#1|)) 98 T ELT)) (-3908 (((-1174 |#1|) (-1174 |#1|)) 99 T ELT)) (-3900 (((-2 (|:| -4066 (-1174 |#1|)) (|:| -4062 (-1174 |#1|))) (-1174 |#1|)) 54 T ELT)) (-4066 (((-1174 |#1|) (-1174 |#1|)) 55 T ELT)) (-3912 (((-1174 |#1|) (-1174 |#1|)) 104 T ELT)) (-4065 (((-1174 |#1|) (-1174 |#1|)) 68 T ELT)) (-4370 (((-1174 |#1|) (-1174 |#1|)) 40 T ELT)) (-4371 (((-1174 |#1|) (-1174 |#1|)) 37 T ELT)) (-3913 (((-1174 |#1|) (-1174 |#1|)) 105 T ELT)) (-4064 (((-1174 |#1|) (-1174 |#1|)) 69 T ELT)) (-3911 (((-1174 |#1|) (-1174 |#1|)) 103 T ELT)) (-4063 (((-1174 |#1|) (-1174 |#1|)) 64 T ELT)) (-3909 (((-1174 |#1|) (-1174 |#1|)) 100 T ELT)) (-4062 (((-1174 |#1|) (-1174 |#1|)) 56 T ELT)) (-3916 (((-1174 |#1|) (-1174 |#1|)) 113 T ELT)) (-3904 (((-1174 |#1|) (-1174 |#1|)) 88 T ELT)) (-3914 (((-1174 |#1|) (-1174 |#1|)) 107 T ELT)) (-3902 (((-1174 |#1|) (-1174 |#1|)) 84 T ELT)) (-3918 (((-1174 |#1|) (-1174 |#1|)) 117 T ELT)) (-3906 (((-1174 |#1|) (-1174 |#1|)) 92 T ELT)) (-3919 (((-1174 |#1|) (-1174 |#1|)) 119 T ELT)) (-3907 (((-1174 |#1|) (-1174 |#1|)) 94 T ELT)) (-3917 (((-1174 |#1|) (-1174 |#1|)) 115 T ELT)) (-3905 (((-1174 |#1|) (-1174 |#1|)) 90 T ELT)) (-3915 (((-1174 |#1|) (-1174 |#1|)) 109 T ELT)) (-3903 (((-1174 |#1|) (-1174 |#1|)) 86 T ELT)) (** (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 41 T ELT))) -(((-1181 |#1|) (-10 -7 (-15 -4371 ((-1174 |#1|) (-1174 |#1|))) (-15 -4370 ((-1174 |#1|) (-1174 |#1|))) (-15 ** ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -3900 ((-2 (|:| -4066 (-1174 |#1|)) (|:| -4062 (-1174 |#1|))) (-1174 |#1|))) (-15 -4066 ((-1174 |#1|) (-1174 |#1|))) (-15 -4062 ((-1174 |#1|) (-1174 |#1|))) (-15 -4067 ((-1174 |#1|) (-1174 |#1|))) (-15 -4063 ((-1174 |#1|) (-1174 |#1|))) (-15 -4065 ((-1174 |#1|) (-1174 |#1|))) (-15 -4064 ((-1174 |#1|) (-1174 |#1|))) (-15 -3902 ((-1174 |#1|) (-1174 |#1|))) (-15 -3903 ((-1174 |#1|) (-1174 |#1|))) (-15 -3904 ((-1174 |#1|) (-1174 |#1|))) (-15 -3905 ((-1174 |#1|) (-1174 |#1|))) (-15 -3906 ((-1174 |#1|) (-1174 |#1|))) (-15 -3907 ((-1174 |#1|) (-1174 |#1|))) (-15 -3901 ((-2 (|:| -3908 (-1174 |#1|)) (|:| -3909 (-1174 |#1|))) (-1174 |#1|))) (-15 -3908 ((-1174 |#1|) (-1174 |#1|))) (-15 -3909 ((-1174 |#1|) (-1174 |#1|))) (-15 -3910 ((-1174 |#1|) (-1174 |#1|))) (-15 -3911 ((-1174 |#1|) (-1174 |#1|))) (-15 -3912 ((-1174 |#1|) (-1174 |#1|))) (-15 -3913 ((-1174 |#1|) (-1174 |#1|))) (-15 -3914 ((-1174 |#1|) (-1174 |#1|))) (-15 -3915 ((-1174 |#1|) (-1174 |#1|))) (-15 -3916 ((-1174 |#1|) (-1174 |#1|))) (-15 -3917 ((-1174 |#1|) (-1174 |#1|))) (-15 -3918 ((-1174 |#1|) (-1174 |#1|))) (-15 -3919 ((-1174 |#1|) (-1174 |#1|)))) (-38 (-419 (-557)))) (T -1181)) -((-3919 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-3918 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-3916 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-3914 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-3912 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-3908 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-3901 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-557)))) (-5 *2 (-2 (|:| -3908 (-1174 *4)) (|:| -3909 (-1174 *4)))) (-5 *1 (-1181 *4)) (-5 *3 (-1174 *4)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-4064 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-4065 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-4063 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-4067 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-4062 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-4066 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-3900 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-557)))) (-5 *2 (-2 (|:| -4066 (-1174 *4)) (|:| -4062 (-1174 *4)))) (-5 *1 (-1181 *4)) (-5 *3 (-1174 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-4370 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) (-4371 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3))))) -((-3910 (((-1174 |#1|) (-1174 |#1|)) 60 T ELT)) (-4067 (((-1174 |#1|) (-1174 |#1|)) 42 T ELT)) (-3908 (((-1174 |#1|) (-1174 |#1|)) 56 T ELT)) (-4066 (((-1174 |#1|) (-1174 |#1|)) 38 T ELT)) (-3912 (((-1174 |#1|) (-1174 |#1|)) 63 T ELT)) (-4065 (((-1174 |#1|) (-1174 |#1|)) 45 T ELT)) (-4370 (((-1174 |#1|) (-1174 |#1|)) 34 T ELT)) (-4371 (((-1174 |#1|) (-1174 |#1|)) 29 T ELT)) (-3913 (((-1174 |#1|) (-1174 |#1|)) 64 T ELT)) (-4064 (((-1174 |#1|) (-1174 |#1|)) 46 T ELT)) (-3911 (((-1174 |#1|) (-1174 |#1|)) 61 T ELT)) (-4063 (((-1174 |#1|) (-1174 |#1|)) 43 T ELT)) (-3909 (((-1174 |#1|) (-1174 |#1|)) 58 T ELT)) (-4062 (((-1174 |#1|) (-1174 |#1|)) 40 T ELT)) (-3916 (((-1174 |#1|) (-1174 |#1|)) 68 T ELT)) (-3904 (((-1174 |#1|) (-1174 |#1|)) 50 T ELT)) (-3914 (((-1174 |#1|) (-1174 |#1|)) 66 T ELT)) (-3902 (((-1174 |#1|) (-1174 |#1|)) 48 T ELT)) (-3918 (((-1174 |#1|) (-1174 |#1|)) 71 T ELT)) (-3906 (((-1174 |#1|) (-1174 |#1|)) 53 T ELT)) (-3919 (((-1174 |#1|) (-1174 |#1|)) 72 T ELT)) (-3907 (((-1174 |#1|) (-1174 |#1|)) 54 T ELT)) (-3917 (((-1174 |#1|) (-1174 |#1|)) 70 T ELT)) (-3905 (((-1174 |#1|) (-1174 |#1|)) 52 T ELT)) (-3915 (((-1174 |#1|) (-1174 |#1|)) 69 T ELT)) (-3903 (((-1174 |#1|) (-1174 |#1|)) 51 T ELT)) (** (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 36 T ELT))) -(((-1182 |#1|) (-10 -7 (-15 -4371 ((-1174 |#1|) (-1174 |#1|))) (-15 -4370 ((-1174 |#1|) (-1174 |#1|))) (-15 ** ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4066 ((-1174 |#1|) (-1174 |#1|))) (-15 -4062 ((-1174 |#1|) (-1174 |#1|))) (-15 -4067 ((-1174 |#1|) (-1174 |#1|))) (-15 -4063 ((-1174 |#1|) (-1174 |#1|))) (-15 -4065 ((-1174 |#1|) (-1174 |#1|))) (-15 -4064 ((-1174 |#1|) (-1174 |#1|))) (-15 -3902 ((-1174 |#1|) (-1174 |#1|))) (-15 -3903 ((-1174 |#1|) (-1174 |#1|))) (-15 -3904 ((-1174 |#1|) (-1174 |#1|))) (-15 -3905 ((-1174 |#1|) (-1174 |#1|))) (-15 -3906 ((-1174 |#1|) (-1174 |#1|))) (-15 -3907 ((-1174 |#1|) (-1174 |#1|))) (-15 -3908 ((-1174 |#1|) (-1174 |#1|))) (-15 -3909 ((-1174 |#1|) (-1174 |#1|))) (-15 -3910 ((-1174 |#1|) (-1174 |#1|))) (-15 -3911 ((-1174 |#1|) (-1174 |#1|))) (-15 -3912 ((-1174 |#1|) (-1174 |#1|))) (-15 -3913 ((-1174 |#1|) (-1174 |#1|))) (-15 -3914 ((-1174 |#1|) (-1174 |#1|))) (-15 -3915 ((-1174 |#1|) (-1174 |#1|))) (-15 -3916 ((-1174 |#1|) (-1174 |#1|))) (-15 -3917 ((-1174 |#1|) (-1174 |#1|))) (-15 -3918 ((-1174 |#1|) (-1174 |#1|))) (-15 -3919 ((-1174 |#1|) (-1174 |#1|)))) (-38 (-419 (-557)))) (T -1182)) -((-3919 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-3918 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-3916 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-3914 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-3912 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-3908 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-4064 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-4065 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-4063 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-4067 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-4062 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-4066 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-4370 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) (-4371 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3))))) -((-3920 (((-975 |#2|) |#2| |#2|) 51 T ELT)) (-3921 ((|#2| |#2| |#1|) 19 (|has| |#1| (-319)) ELT))) -(((-1183 |#1| |#2|) (-10 -7 (-15 -3920 ((-975 |#2|) |#2| |#2|)) (IF (|has| |#1| (-319)) (-15 -3921 (|#2| |#2| |#1|)) |%noBranch|)) (-568) (-1262 |#1|)) (T -1183)) -((-3921 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-4 *3 (-568)) (-5 *1 (-1183 *3 *2)) (-4 *2 (-1262 *3)))) (-3920 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-975 *3)) (-5 *1 (-1183 *4 *3)) (-4 *3 (-1262 *4))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3929 (($ $ (-659 (-789))) 79 T ELT)) (-4316 (($) 33 T ELT)) (-3938 (($ $) 51 T ELT)) (-4179 (((-659 $) $) 60 T ELT)) (-3944 (((-114) $) 19 T ELT)) (-3922 (((-659 (-960 |#2|)) $) 86 T ELT)) (-3923 (($ $) 80 T ELT)) (-3939 (((-789) $) 47 T ELT)) (-4042 (($) 32 T ELT)) (-3932 (($ $ (-659 (-789)) (-960 |#2|)) 72 T ELT) (($ $ (-659 (-789)) (-789)) 73 T ELT) (($ $ (-789) (-960 |#2|)) 75 T ELT)) (-3936 (($ $ $) 57 T ELT) (($ (-659 $)) 59 T ELT)) (-3924 (((-789) $) 87 T ELT)) (-3945 (((-114) $) 15 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3943 (((-114) $) 22 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3925 (((-174) $) 85 T ELT)) (-3928 (((-960 |#2|) $) 81 T ELT)) (-3927 (((-789) $) 82 T ELT)) (-3926 (((-114) $) 84 T ELT)) (-3930 (($ $ (-659 (-789)) (-174)) 78 T ELT)) (-3937 (($ $) 52 T ELT)) (-4374 (((-875) $) 99 T ELT)) (-3931 (($ $ (-659 (-789)) (-114)) 77 T ELT)) (-3940 (((-659 $) $) 11 T ELT)) (-3941 (($ $ (-789)) 46 T ELT)) (-3942 (($ $) 43 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3933 (($ $ $ (-960 |#2|) (-789)) 68 T ELT)) (-3934 (($ $ (-960 |#2|)) 67 T ELT)) (-3935 (($ $ (-659 (-789)) (-960 |#2|)) 66 T ELT) (($ $ (-659 (-789)) (-789)) 70 T ELT) (((-789) $ (-960 |#2|)) 71 T ELT)) (-3452 (((-114) $ $) 92 T ELT))) -(((-1184 |#1| |#2|) (-13 (-1120) (-10 -8 (-15 -3945 ((-114) $)) (-15 -3944 ((-114) $)) (-15 -3943 ((-114) $)) (-15 -4042 ($)) (-15 -4316 ($)) (-15 -3942 ($ $)) (-15 -3941 ($ $ (-789))) (-15 -3940 ((-659 $) $)) (-15 -3939 ((-789) $)) (-15 -3938 ($ $)) (-15 -3937 ($ $)) (-15 -3936 ($ $ $)) (-15 -3936 ($ (-659 $))) (-15 -4179 ((-659 $) $)) (-15 -3935 ($ $ (-659 (-789)) (-960 |#2|))) (-15 -3934 ($ $ (-960 |#2|))) (-15 -3933 ($ $ $ (-960 |#2|) (-789))) (-15 -3932 ($ $ (-659 (-789)) (-960 |#2|))) (-15 -3935 ($ $ (-659 (-789)) (-789))) (-15 -3932 ($ $ (-659 (-789)) (-789))) (-15 -3935 ((-789) $ (-960 |#2|))) (-15 -3932 ($ $ (-789) (-960 |#2|))) (-15 -3931 ($ $ (-659 (-789)) (-114))) (-15 -3930 ($ $ (-659 (-789)) (-174))) (-15 -3929 ($ $ (-659 (-789)))) (-15 -3928 ((-960 |#2|) $)) (-15 -3927 ((-789) $)) (-15 -3926 ((-114) $)) (-15 -3925 ((-174) $)) (-15 -3924 ((-789) $)) (-15 -3923 ($ $)) (-15 -3922 ((-659 (-960 |#2|)) $)))) (-936) (-1068)) (T -1184)) -((-3945 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068)))) (-4042 (*1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1068)))) (-4316 (*1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1068)))) (-3942 (*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1068)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-659 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068)))) (-3938 (*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1068)))) (-3937 (*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1068)))) (-3936 (*1 *1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1068)))) (-3936 (*1 *1 *2) (-12 (-5 *2 (-659 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068)))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-659 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068)))) (-3935 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 (-789))) (-5 *3 (-960 *5)) (-4 *5 (-1068)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-936)))) (-3934 (*1 *1 *1 *2) (-12 (-5 *2 (-960 *4)) (-4 *4 (-1068)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)))) (-3933 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-960 *5)) (-5 *3 (-789)) (-4 *5 (-1068)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-936)))) (-3932 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 (-789))) (-5 *3 (-960 *5)) (-4 *5 (-1068)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-936)))) (-3935 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 (-789))) (-5 *3 (-789)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-936)) (-4 *5 (-1068)))) (-3932 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 (-789))) (-5 *3 (-789)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-936)) (-4 *5 (-1068)))) (-3935 (*1 *2 *1 *3) (-12 (-5 *3 (-960 *5)) (-4 *5 (-1068)) (-5 *2 (-789)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-936)))) (-3932 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-789)) (-5 *3 (-960 *5)) (-4 *5 (-1068)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-936)))) (-3931 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 (-789))) (-5 *3 (-114)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-936)) (-4 *5 (-1068)))) (-3930 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 (-789))) (-5 *3 (-174)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-936)) (-4 *5 (-1068)))) (-3929 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-789))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-960 *4)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068)))) (-3925 (*1 *2 *1) (-12 (-5 *2 (-174)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068)))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068)))) (-3923 (*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1068)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-659 (-960 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3946 ((|#2| $) 11 T ELT)) (-3947 ((|#1| $) 10 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3948 (($ |#1| |#2|) 9 T ELT)) (-4374 (((-875) $) 16 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1185 |#1| |#2|) (-13 (-1120) (-10 -8 (-15 -3948 ($ |#1| |#2|)) (-15 -3947 (|#1| $)) (-15 -3946 (|#2| $)))) (-1120) (-1120)) (T -1185)) -((-3948 (*1 *1 *2 *3) (-12 (-5 *1 (-1185 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-3947 (*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-1185 *2 *3)) (-4 *3 (-1120)))) (-3946 (*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-1185 *3 *2)) (-4 *3 (-1120))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3949 (((-1154) $) 9 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 15 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1186) (-13 (-1102) (-10 -8 (-15 -3949 ((-1154) $))))) (T -1186)) -((-3949 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1186))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3529 (((-1194 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3482 (((-659 (-1101)) $) NIL T ELT)) (-4259 (((-1196) $) 11 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (|has| |#1| (-568))) ELT)) (-2271 (($ $) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (|has| |#1| (-568))) ELT)) (-2269 (((-114) $) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (|has| |#1| (-568))) ELT)) (-4199 (($ $ (-557)) NIL T ELT) (($ $ (-557) (-557)) 75 T ELT)) (-4202 (((-1174 (-2 (|:| |k| (-557)) (|:| |c| |#1|))) $) NIL T ELT)) (-4159 (((-1194 |#1| |#2| |#3|) $) 42 T ELT)) (-4156 (((-3 (-1194 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-4157 (((-1194 |#1| |#2| |#3|) $) 33 T ELT)) (-3910 (($ $) 116 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4067 (($ $) 92 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1424 (((-3 $ #1#) $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) ELT)) (-4203 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3436 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) ELT)) (-1786 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3908 (($ $) 112 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4066 (($ $) 88 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4051 (((-557) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) ELT)) (-4246 (($ (-1174 (-2 (|:| |k| (-557)) (|:| |c| |#1|)))) NIL T ELT)) (-3912 (($ $) 120 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4065 (($ $) 96 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-1194 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1196) #1#) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-1196))) (|has| |#1| (-376))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-557))) (|has| |#1| (-376))) ELT) (((-3 (-557) #1#) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-557))) (|has| |#1| (-376))) ELT)) (-3572 (((-1194 |#1| |#2| |#3|) $) 140 T ELT) (((-1196) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-1196))) (|has| |#1| (-376))) ELT) (((-419 (-557)) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-557))) (|has| |#1| (-376))) ELT) (((-557) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-557))) (|has| |#1| (-376))) ELT)) (-4158 (($ $) 37 T ELT) (($ (-557) $) 38 T ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4387 (($ $) NIL T ELT)) (-2491 (((-707 (-1194 |#1| |#2| |#3|)) (-707 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1781 (-707 (-1194 |#1| |#2| |#3|))) (|:| |vec| (-1286 (-1194 |#1| |#2| |#3|)))) (-707 $) (-1286 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-656 (-557))) (|has| |#1| (-376))) ELT) (((-707 (-557)) (-707 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-656 (-557))) (|has| |#1| (-376))) ELT)) (-3885 (((-3 $ #1#) $) 54 T ELT)) (-4155 (((-419 (-963 |#1|)) $ (-557)) 74 (|has| |#1| (-568)) ELT) (((-419 (-963 |#1|)) $ (-557) (-557)) 76 (|has| |#1| (-568)) ELT)) (-3393 (($) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-556)) (|has| |#1| (-376))) ELT)) (-2960 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL (|has| |#1| (-376)) ELT)) (-4151 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3602 (((-114) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) ELT)) (-3291 (((-114) $) 28 T ELT)) (-4055 (($) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-899 (-391))) (|has| |#1| (-376))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-899 (-557))) (|has| |#1| (-376))) ELT)) (-4200 (((-557) $) NIL T ELT) (((-557) $ (-557)) 26 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3395 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3397 (((-1194 |#1| |#2| |#3|) $) 44 (|has| |#1| (-376)) ELT)) (-3410 (($ $ (-557)) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3863 (((-709 $) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1171)) (|has| |#1| (-376))) ELT)) (-3603 (((-114) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) ELT)) (-4205 (($ $ (-936)) NIL T ELT)) (-4243 (($ (-1 |#1| (-557)) $) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-557)) 19 T ELT) (($ $ (-1101) (-557)) NIL T ELT) (($ $ (-659 (-1101)) (-659 (-557))) NIL T ELT)) (-2928 (($ $ $) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-859)) (|has| |#1| (-376)))) ELT)) (-3256 (($ $ $) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-859)) (|has| |#1| (-376)))) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-376)) ELT)) (-4370 (($ $) 81 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2492 (((-707 (-1194 |#1| |#2| |#3|)) (-1286 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1781 (-707 (-1194 |#1| |#2| |#3|))) (|:| |vec| (-1286 (-1194 |#1| |#2| |#3|)))) (-1286 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-656 (-557))) (|has| |#1| (-376))) ELT) (((-707 (-557)) (-1286 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-656 (-557))) (|has| |#1| (-376))) ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4207 (($ (-557) (-1194 |#1| |#2| |#3|)) 36 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4240 (($ $) 79 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-29 (-557))) (|has| |#1| (-977)) (|has| |#1| (-1222))) (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-15 -4240 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -3482 ((-659 (-1196)) |#1|))))) ELT) (($ $ (-1283 |#2|)) 80 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3864 (($) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1171)) (|has| |#1| (-376))) CONST)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-376)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3528 (($ $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3530 (((-1194 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-556)) (|has| |#1| (-376))) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) ELT)) (-4160 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4197 (($ $ (-557)) 158 T ELT)) (-3884 (((-3 $ #1#) $ $) 55 (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (|has| |#1| (-568))) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-4371 (($ $) 82 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4196 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-557)))) ELT) (($ $ (-1196) (-1194 |#1| |#2| |#3|)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-526 (-1196) (-1194 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-659 (-1196)) (-659 (-1194 |#1| |#2| |#3|))) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-526 (-1196) (-1194 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-659 (-305 (-1194 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-321 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-305 (-1194 |#1| |#2| |#3|))) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-321 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-321 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-659 (-1194 |#1| |#2| |#3|)) (-659 (-1194 |#1| |#2| |#3|))) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-321 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-1785 (((-789) $) NIL (|has| |#1| (-376)) ELT)) (-4228 ((|#1| $ (-557)) NIL T ELT) (($ $ $) 61 (|has| (-557) (-1131)) ELT) (($ $ (-1194 |#1| |#2| |#3|)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-298 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4186 (($ $ (-1 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) (-789)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1283 |#2|)) 57 T ELT) (($ $) 56 (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-789)) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT) (($ $ (-659 (-1196))) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT) (($ $ (-1196) (-789)) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT)) (-3394 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3396 (((-1194 |#1| |#2| |#3|) $) 46 (|has| |#1| (-376)) ELT)) (-4376 (((-557) $) 43 T ELT)) (-3913 (($ $) 122 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4064 (($ $) 98 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3911 (($ $) 118 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4063 (($ $) 94 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3909 (($ $) 114 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4062 (($ $) 90 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4400 (((-546) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-629 (-546))) (|has| |#1| (-376))) ELT) (((-391) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1039)) (|has| |#1| (-376))) ELT) (((-229) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1039)) (|has| |#1| (-376))) ELT) (((-903 (-391)) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-629 (-903 (-391)))) (|has| |#1| (-376))) ELT) (((-903 (-557)) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-629 (-903 (-557)))) (|has| |#1| (-376))) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) ELT)) (-3290 (($ $) NIL T ELT)) (-4374 (((-875) $) 162 T ELT) (($ (-557)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1194 |#1| |#2| |#3|)) 30 T ELT) (($ (-1283 |#2|)) 25 T ELT) (($ (-1196)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-1196))) (|has| |#1| (-376))) ELT) (($ $) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (|has| |#1| (-568))) ELT) (($ (-419 (-557))) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-557))) (|has| |#1| (-376))) (|has| |#1| (-38 (-419 (-557))))) ELT)) (-4105 ((|#1| $ (-557)) 77 T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-4201 ((|#1| $) 12 T ELT)) (-3531 (((-1194 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-556)) (|has| |#1| (-376))) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3916 (($ $) 128 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3904 (($ $) 104 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2270 (((-114) $ $) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (|has| |#1| (-568))) ELT)) (-3914 (($ $) 124 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3902 (($ $) 100 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3918 (($ $) 132 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3906 (($ $) 108 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4198 ((|#1| $ (-557)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-557)))) (|has| |#1| (-15 -4374 (|#1| (-1196))))) ELT)) (-3919 (($ $) 134 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3907 (($ $) 110 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3917 (($ $) 130 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3905 (($ $) 106 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3915 (($ $) 126 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3903 (($ $) 102 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3801 (($ $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) ELT)) (-3057 (($) 21 T CONST)) (-3063 (($) 16 T CONST)) (-3068 (($ $ (-1 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) (-789)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1283 |#2|)) NIL T ELT) (($ $) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-789)) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT) (($ $ (-659 (-1196))) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT) (($ $ (-1196) (-789)) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT)) (-2963 (((-114) $ $) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-859)) (|has| |#1| (-376)))) ELT)) (-2964 (((-114) $ $) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-859)) (|has| |#1| (-376)))) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-859)) (|has| |#1| (-376)))) ELT)) (-3084 (((-114) $ $) NIL (-3955 (-12 (|has| (-1194 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-859)) (|has| |#1| (-376)))) ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 49 (|has| |#1| (-376)) ELT) (($ (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) 50 (|has| |#1| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 23 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) 60 T ELT) (($ $ (-557)) NIL (|has| |#1| (-376)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) 137 (|has| |#1| (-38 (-419 (-557)))) ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1194 |#1| |#2| |#3|)) 48 (|has| |#1| (-376)) ELT) (($ (-1194 |#1| |#2| |#3|) $) 47 (|has| |#1| (-376)) ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-1187 |#1| |#2| |#3|) (-13 (-1250 |#1| (-1194 |#1| |#2| |#3|)) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -4374 ($ (-1283 |#2|))) (IF (|has| |#1| (-38 (-419 (-557)))) (-15 -4240 ($ $ (-1283 |#2|))) |%noBranch|))) (-1068) (-1196) |#1|) (T -1187)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1187 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) (-4240 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1187 *3 *4 *5)) (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068)) (-14 *5 *3)))) -((-3950 ((|#2| |#2| (-1111 |#2|)) 26 T ELT) ((|#2| |#2| (-1196)) 28 T ELT))) -(((-1188 |#1| |#2|) (-10 -7 (-15 -3950 (|#2| |#2| (-1196))) (-15 -3950 (|#2| |#2| (-1111 |#2|)))) (-13 (-568) (-1057 (-557)) (-656 (-557))) (-13 (-433 |#1|) (-162) (-27) (-1222))) (T -1188)) -((-3950 (*1 *2 *2 *3) (-12 (-5 *3 (-1111 *2)) (-4 *2 (-13 (-433 *4) (-162) (-27) (-1222))) (-4 *4 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-1188 *4 *2)))) (-3950 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-1188 *4 *2)) (-4 *2 (-13 (-433 *4) (-162) (-27) (-1222)))))) -((-3950 (((-3 (-419 (-963 |#1|)) (-326 |#1|)) (-419 (-963 |#1|)) (-1111 (-419 (-963 |#1|)))) 31 T ELT) (((-419 (-963 |#1|)) (-963 |#1|) (-1111 (-963 |#1|))) 44 T ELT) (((-3 (-419 (-963 |#1|)) (-326 |#1|)) (-419 (-963 |#1|)) (-1196)) 33 T ELT) (((-419 (-963 |#1|)) (-963 |#1|) (-1196)) 36 T ELT))) -(((-1189 |#1|) (-10 -7 (-15 -3950 ((-419 (-963 |#1|)) (-963 |#1|) (-1196))) (-15 -3950 ((-3 (-419 (-963 |#1|)) (-326 |#1|)) (-419 (-963 |#1|)) (-1196))) (-15 -3950 ((-419 (-963 |#1|)) (-963 |#1|) (-1111 (-963 |#1|)))) (-15 -3950 ((-3 (-419 (-963 |#1|)) (-326 |#1|)) (-419 (-963 |#1|)) (-1111 (-419 (-963 |#1|)))))) (-13 (-568) (-1057 (-557)))) (T -1189)) -((-3950 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-419 (-963 *5)))) (-5 *3 (-419 (-963 *5))) (-4 *5 (-13 (-568) (-1057 (-557)))) (-5 *2 (-3 *3 (-326 *5))) (-5 *1 (-1189 *5)))) (-3950 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-963 *5))) (-5 *3 (-963 *5)) (-4 *5 (-13 (-568) (-1057 (-557)))) (-5 *2 (-419 *3)) (-5 *1 (-1189 *5)))) (-3950 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-557)))) (-5 *2 (-3 (-419 (-963 *5)) (-326 *5))) (-5 *1 (-1189 *5)) (-5 *3 (-419 (-963 *5))))) (-3950 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-557)))) (-5 *2 (-419 (-963 *5))) (-5 *1 (-1189 *5)) (-5 *3 (-963 *5))))) -((-2965 (((-114) $ $) 172 T ELT)) (-3604 (((-114) $) 43 T ELT)) (-4195 (((-1286 |#1|) $ (-789)) NIL T ELT)) (-3482 (((-659 (-1101)) $) NIL T ELT)) (-4193 (($ (-1190 |#1|)) NIL T ELT)) (-3484 (((-1190 $) $ (-1101)) 82 T ELT) (((-1190 |#1|) $) 71 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) 165 (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-3218 (((-789) $) NIL T ELT) (((-789) $ (-659 (-1101))) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4183 (($ $ $) 159 (|has| |#1| (-568)) ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) 96 (|has| |#1| (-927)) ELT)) (-4203 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) 116 (|has| |#1| (-927)) ELT)) (-1786 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4189 (($ $ (-789)) 61 T ELT)) (-4188 (($ $ (-789)) 63 T ELT)) (-4179 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 (-1101) #1#) $) NIL T ELT)) (-3572 ((|#1| $) NIL T ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-1101) $) NIL T ELT)) (-4184 (($ $ $ (-1101)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) 161 (|has| |#1| (-175)) ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4387 (($ $) 80 T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) NIL T ELT) (((-707 |#1|) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-2960 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4187 (($ $ $) 132 T ELT)) (-4181 (($ $ $) NIL (|has| |#1| (-568)) ELT)) (-4180 (((-2 (|:| -4382 |#1|) (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-568)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL (|has| |#1| (-376)) ELT)) (-3921 (($ $) 166 (|has| |#1| (-464)) ELT) (($ $ (-1101)) NIL (|has| |#1| (-464)) ELT)) (-3217 (((-659 $) $) NIL T ELT)) (-4151 (((-114) $) NIL (|has| |#1| (-927)) ELT)) (-1802 (($ $ |#1| (-789) $) 69 T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (-12 (|has| (-1101) (-899 (-391))) (|has| |#1| (-899 (-391)))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (-12 (|has| (-1101) (-899 (-557))) (|has| |#1| (-899 (-557)))) ELT)) (-3951 (((-875) $ (-875)) 149 T ELT)) (-4200 (((-789) $ $) NIL (|has| |#1| (-568)) ELT)) (-2639 (((-114) $) 48 T ELT)) (-2647 (((-789) $) NIL T ELT)) (-3863 (((-709 $) $) NIL (|has| |#1| (-1171)) ELT)) (-3485 (($ (-1190 |#1|) (-1101)) 73 T ELT) (($ (-1190 $) (-1101)) 90 T ELT)) (-4205 (($ $ (-789)) 51 T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-3220 (((-659 $) $) NIL T ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-789)) 88 T ELT) (($ $ (-1101) (-789)) NIL T ELT) (($ $ (-659 (-1101)) (-659 (-789))) NIL T ELT)) (-4191 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $ (-1101)) NIL T ELT) (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 154 T ELT)) (-3219 (((-789) $) NIL T ELT) (((-789) $ (-1101)) NIL T ELT) (((-659 (-789)) $ (-659 (-1101))) NIL T ELT)) (-1803 (($ (-1 (-789) (-789)) $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4194 (((-1190 |#1|) $) NIL T ELT)) (-3483 (((-3 (-1101) #1#) $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL T ELT) (((-707 |#1|) (-1286 $)) NIL T ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) 76 T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-4190 (((-2 (|:| -2182 $) (|:| -3301 $)) $ (-789)) 60 T ELT)) (-3222 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3221 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-2 (|:| |var| (-1101)) (|:| -2630 (-789))) #1#) $) NIL T ELT)) (-4240 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3864 (($) NIL (|has| |#1| (-1171)) CONST)) (-3659 (((-1139) $) NIL T ELT)) (-2003 (((-114) $) 50 T ELT)) (-2002 ((|#1| $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 104 (|has| |#1| (-464)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) 168 (|has| |#1| (-464)) ELT)) (-4166 (($ $ (-789) |#1| $) 124 T ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) 102 (|has| |#1| (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) 101 (|has| |#1| (-927)) ELT)) (-4160 (((-417 $) $) 109 (|has| |#1| (-927)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3884 (((-3 $ #1#) $ |#1|) 164 (|has| |#1| (-568)) ELT) (((-3 $ #1#) $ $) 125 (|has| |#1| (-568)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-4196 (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ (-1101) |#1|) NIL T ELT) (($ $ (-659 (-1101)) (-659 |#1|)) NIL T ELT) (($ $ (-1101) $) NIL T ELT) (($ $ (-659 (-1101)) (-659 $)) NIL T ELT)) (-1785 (((-789) $) NIL (|has| |#1| (-376)) ELT)) (-4228 ((|#1| $ |#1|) 151 T ELT) (($ $ $) 152 T ELT) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568)) ELT) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)) ELT)) (-4192 (((-3 $ #1#) $ (-789)) 54 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 173 (|has| |#1| (-376)) ELT)) (-4185 (($ $ (-1101)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) 157 (|has| |#1| (-175)) ELT)) (-4186 (($ $ (-659 (-1101)) (-659 (-789))) NIL T ELT) (($ $ (-1101) (-789)) NIL T ELT) (($ $ (-659 (-1101))) NIL T ELT) (($ $ (-1101)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-917 (-1196))) ELT)) (-4376 (((-789) $) 78 T ELT) (((-789) $ (-1101)) NIL T ELT) (((-659 (-789)) $ (-659 (-1101))) NIL T ELT)) (-4400 (((-903 (-391)) $) NIL (-12 (|has| (-1101) (-629 (-903 (-391)))) (|has| |#1| (-629 (-903 (-391))))) ELT) (((-903 (-557)) $) NIL (-12 (|has| (-1101) (-629 (-903 (-557)))) (|has| |#1| (-629 (-903 (-557))))) ELT) (((-546) $) NIL (-12 (|has| (-1101) (-629 (-546))) (|has| |#1| (-629 (-546)))) ELT)) (-3216 ((|#1| $) 163 (|has| |#1| (-464)) ELT) (($ $ (-1101)) NIL (|has| |#1| (-464)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-927))) ELT)) (-4182 (((-3 $ #1#) $ $) NIL (|has| |#1| (-568)) ELT) (((-3 (-419 $) #1#) (-419 $) $) NIL (|has| |#1| (-568)) ELT)) (-4374 (((-875) $) 150 T ELT) (($ (-557)) NIL T ELT) (($ |#1|) 77 T ELT) (($ (-1101)) NIL T ELT) (($ (-419 (-557))) NIL (-3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) ELT) (($ $) NIL (|has| |#1| (-568)) ELT)) (-4245 (((-659 |#1|) $) NIL T ELT)) (-4105 ((|#1| $ (-789)) NIL T ELT) (($ $ (-1101) (-789)) NIL T ELT) (($ $ (-659 (-1101)) (-659 (-789))) NIL T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| |#1| (-927))) (|has| |#1| (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-1801 (($ $ $ (-789)) 41 (|has| |#1| (-175)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3057 (($) 17 T CONST)) (-3063 (($) 19 T CONST)) (-3068 (($ $ (-659 (-1101)) (-659 (-789))) NIL T ELT) (($ $ (-1101) (-789)) NIL T ELT) (($ $ (-659 (-1101))) NIL T ELT) (($ $ (-1101)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#1| (-917 (-1196))) ELT)) (-3452 (((-114) $ $) 121 T ELT)) (-4377 (($ $ |#1|) 174 (|has| |#1| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 91 T ELT)) (** (($ $ (-936)) 14 T ELT) (($ $ (-789)) 12 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ |#1| $) 130 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1190 |#1|) (-13 (-1262 |#1|) (-10 -8 (-15 -3951 ((-875) $ (-875))) (-15 -4166 ($ $ (-789) |#1| $)))) (-1068)) (T -1190)) -((-3951 (*1 *2 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1190 *3)) (-4 *3 (-1068)))) (-4166 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-789)) (-5 *1 (-1190 *3)) (-4 *3 (-1068))))) -((-4386 (((-1190 |#2|) (-1 |#2| |#1|) (-1190 |#1|)) 13 T ELT))) -(((-1191 |#1| |#2|) (-10 -7 (-15 -4386 ((-1190 |#2|) (-1 |#2| |#1|) (-1190 |#1|)))) (-1068) (-1068)) (T -1191)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1190 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-1190 *6)) (-5 *1 (-1191 *5 *6))))) -((-4399 (((-417 (-1190 (-419 |#4|))) (-1190 (-419 |#4|))) 51 T ELT)) (-4160 (((-417 (-1190 (-419 |#4|))) (-1190 (-419 |#4|))) 52 T ELT))) -(((-1192 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4160 ((-417 (-1190 (-419 |#4|))) (-1190 (-419 |#4|)))) (-15 -4399 ((-417 (-1190 (-419 |#4|))) (-1190 (-419 |#4|))))) (-813) (-859) (-464) (-967 |#3| |#1| |#2|)) (T -1192)) -((-4399 (*1 *2 *3) (-12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-464)) (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-417 (-1190 (-419 *7)))) (-5 *1 (-1192 *4 *5 *6 *7)) (-5 *3 (-1190 (-419 *7))))) (-4160 (*1 *2 *3) (-12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-464)) (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-417 (-1190 (-419 *7)))) (-5 *1 (-1192 *4 *5 *6 *7)) (-5 *3 (-1190 (-419 *7)))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3482 (((-659 (-1101)) $) NIL T ELT)) (-4259 (((-1196) $) 11 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-4199 (($ $ (-419 (-557))) NIL T ELT) (($ $ (-419 (-557)) (-419 (-557))) NIL T ELT)) (-4202 (((-1174 (-2 (|:| |k| (-419 (-557))) (|:| |c| |#1|))) $) NIL T ELT)) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3436 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1786 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3908 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4066 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4246 (($ (-789) (-1174 (-2 (|:| |k| (-419 (-557))) (|:| |c| |#1|)))) NIL T ELT)) (-3912 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4065 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-1187 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1194 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3572 (((-1187 |#1| |#2| |#3|) $) NIL T ELT) (((-1194 |#1| |#2| |#3|) $) NIL T ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4387 (($ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-4209 (((-419 (-557)) $) 59 T ELT)) (-2960 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4210 (($ (-419 (-557)) (-1187 |#1| |#2| |#3|)) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL (|has| |#1| (-376)) ELT)) (-4151 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3291 (((-114) $) NIL T ELT)) (-4055 (($) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4200 (((-419 (-557)) $) NIL T ELT) (((-419 (-557)) $ (-419 (-557))) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3410 (($ $ (-557)) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4205 (($ $ (-936)) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-419 (-557))) 20 T ELT) (($ $ (-1101) (-419 (-557))) NIL T ELT) (($ $ (-659 (-1101)) (-659 (-419 (-557)))) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4370 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4208 (((-1187 |#1| |#2| |#3|) $) 41 T ELT)) (-4206 (((-3 (-1187 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-4207 (((-1187 |#1| |#2| |#3|) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4240 (($ $) 39 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-29 (-557))) (|has| |#1| (-977)) (|has| |#1| (-1222))) (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-15 -4240 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -3482 ((-659 (-1196)) |#1|))))) ELT) (($ $ (-1283 |#2|)) 40 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-376)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4160 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4197 (($ $ (-419 (-557))) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL (|has| |#1| (-568)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-4371 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4196 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-557))))) ELT)) (-1785 (((-789) $) NIL (|has| |#1| (-376)) ELT)) (-4228 ((|#1| $ (-419 (-557))) NIL T ELT) (($ $ $) NIL (|has| (-419 (-557)) (-1131)) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4186 (($ $ (-1196)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT) (($ $ (-789)) NIL (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT) (($ $ (-1283 |#2|)) 38 T ELT)) (-4376 (((-419 (-557)) $) NIL T ELT)) (-3913 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4064 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4063 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4062 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3290 (($ $) NIL T ELT)) (-4374 (((-875) $) 62 T ELT) (($ (-557)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1187 |#1| |#2| |#3|)) 30 T ELT) (($ (-1194 |#1| |#2| |#3|)) 31 T ELT) (($ (-1283 |#2|)) 26 T ELT) (($ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $) NIL (|has| |#1| (-568)) ELT)) (-4105 ((|#1| $ (-419 (-557))) NIL T ELT)) (-3101 (((-709 $) $) NIL (|has| |#1| (-147)) ELT)) (-3526 (((-789)) NIL T CONST)) (-4201 ((|#1| $) 12 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3904 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3914 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3902 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3906 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4198 ((|#1| $ (-419 (-557))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-557))))) (|has| |#1| (-15 -4374 (|#1| (-1196))))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3917 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3915 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3903 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3057 (($) 22 T CONST)) (-3063 (($) 16 T CONST)) (-3068 (($ $ (-1196)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT) (($ $ (-789)) NIL (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT) (($ $ (-1283 |#2|)) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 24 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-1193 |#1| |#2| |#3|) (-13 (-1271 |#1| (-1187 |#1| |#2| |#3|)) (-909 $ (-1283 |#2|)) (-1057 (-1194 |#1| |#2| |#3|)) (-631 (-1283 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-557)))) (-15 -4240 ($ $ (-1283 |#2|))) |%noBranch|))) (-1068) (-1196) |#1|) (T -1193)) -((-4240 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1193 *3 *4 *5)) (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068)) (-14 *5 *3)))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 129 T ELT)) (-3482 (((-659 (-1101)) $) NIL T ELT)) (-4259 (((-1196) $) 119 T ELT)) (-4239 (((-1255 |#2| |#1|) $ (-789)) 69 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-4199 (($ $ (-789)) 85 T ELT) (($ $ (-789) (-789)) 82 T ELT)) (-4202 (((-1174 (-2 (|:| |k| (-789)) (|:| |c| |#1|))) $) 105 T ELT)) (-3910 (($ $) 173 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4067 (($ $) 149 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3436 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3908 (($ $) 169 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4066 (($ $) 145 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4246 (($ (-1174 (-2 (|:| |k| (-789)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1174 |#1|)) 113 T ELT)) (-3912 (($ $) 177 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4065 (($ $) 153 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4152 (($) NIL T CONST)) (-4387 (($ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) 25 T ELT)) (-4244 (($ $) 28 T ELT)) (-4242 (((-963 |#1|) $ (-789)) 81 T ELT) (((-963 |#1|) $ (-789) (-789)) 83 T ELT)) (-3291 (((-114) $) 124 T ELT)) (-4055 (($) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4200 (((-789) $) 126 T ELT) (((-789) $ (-789)) 128 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3410 (($ $ (-557)) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4205 (($ $ (-936)) NIL T ELT)) (-4243 (($ (-1 |#1| (-557)) $) NIL T ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-789)) 13 T ELT) (($ $ (-1101) (-789)) NIL T ELT) (($ $ (-659 (-1101)) (-659 (-789))) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4370 (($ $) 135 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-4240 (($ $) 133 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-29 (-557))) (|has| |#1| (-977)) (|has| |#1| (-1222))) (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-15 -4240 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -3482 ((-659 (-1196)) |#1|))))) ELT) (($ $ (-1283 |#2|)) 134 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4197 (($ $ (-789)) 15 T ELT)) (-3884 (((-3 $ #1#) $ $) 26 (|has| |#1| (-568)) ELT)) (-4371 (($ $) 137 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4196 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-789)))) ELT)) (-4228 ((|#1| $ (-789)) 122 T ELT) (($ $ $) 132 (|has| (-789) (-1131)) ELT)) (-4186 (($ $ (-1196)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-789) |#1|))) ELT) (($ $ (-789)) NIL (|has| |#1| (-15 * (|#1| (-789) |#1|))) ELT) (($ $ (-1283 |#2|)) 31 T ELT)) (-4376 (((-789) $) NIL T ELT)) (-3913 (($ $) 179 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4064 (($ $) 155 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3911 (($ $) 175 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4063 (($ $) 151 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3909 (($ $) 171 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4062 (($ $) 147 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3290 (($ $) NIL T ELT)) (-4374 (((-875) $) 206 T ELT) (($ (-557)) NIL T ELT) (($ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $) NIL (|has| |#1| (-568)) ELT) (($ |#1|) 130 (|has| |#1| (-175)) ELT) (($ (-1255 |#2| |#1|)) 55 T ELT) (($ (-1283 |#2|)) 36 T ELT)) (-4245 (((-1174 |#1|) $) 101 T ELT)) (-4105 ((|#1| $ (-789)) 121 T ELT)) (-3101 (((-709 $) $) NIL (|has| |#1| (-147)) ELT)) (-3526 (((-789)) NIL T CONST)) (-4201 ((|#1| $) 58 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3916 (($ $) 185 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3904 (($ $) 161 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3914 (($ $) 181 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3902 (($ $) 157 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3918 (($ $) 189 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3906 (($ $) 165 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4198 ((|#1| $ (-789)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-789)))) (|has| |#1| (-15 -4374 (|#1| (-1196))))) ELT)) (-3919 (($ $) 191 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3907 (($ $) 167 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3917 (($ $) 187 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3905 (($ $) 163 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3915 (($ $) 183 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3903 (($ $) 159 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3057 (($) 17 T CONST)) (-3063 (($) 20 T CONST)) (-3068 (($ $ (-1196)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-789) |#1|))) ELT) (($ $ (-789)) NIL (|has| |#1| (-15 * (|#1| (-789) |#1|))) ELT) (($ $ (-1283 |#2|)) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-4267 (($ $ $) 35 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-376)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) 141 (|has| |#1| (-38 (-419 (-557)))) ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-1194 |#1| |#2| |#3|) (-13 (-1279 |#1|) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -4374 ($ (-1255 |#2| |#1|))) (-15 -4239 ((-1255 |#2| |#1|) $ (-789))) (-15 -4374 ($ (-1283 |#2|))) (IF (|has| |#1| (-38 (-419 (-557)))) (-15 -4240 ($ $ (-1283 |#2|))) |%noBranch|))) (-1068) (-1196) |#1|) (T -1194)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1255 *4 *3)) (-4 *3 (-1068)) (-14 *4 (-1196)) (-14 *5 *3) (-5 *1 (-1194 *3 *4 *5)))) (-4239 (*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1255 *5 *4)) (-5 *1 (-1194 *4 *5 *6)) (-4 *4 (-1068)) (-14 *5 (-1196)) (-14 *6 *4))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1194 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) (-4240 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1194 *3 *4 *5)) (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068)) (-14 *5 *3)))) -((-4374 (((-875) $) 33 T ELT) (($ (-1196)) 35 T ELT)) (-3955 (($ (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 46 T ELT)) (-3952 (($ (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 39 T ELT) (($ $) 40 T ELT)) (-3959 (($ (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 41 T ELT)) (-3957 (($ (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 43 T ELT)) (-3958 (($ (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 42 T ELT)) (-3956 (($ (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 44 T ELT)) (-3954 (($ (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 47 T ELT)) (-12 (($ (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 45 T ELT))) -(((-1195) (-13 (-628 (-875)) (-10 -8 (-15 -4374 ($ (-1196))) (-15 -3959 ($ (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -3958 ($ (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -3957 ($ (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -3956 ($ (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -3955 ($ (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -3954 ($ (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -3952 ($ (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -3952 ($ $))))) (T -1195)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1195)))) (-3959 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3958 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3957 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3956 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3955 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3954 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3952 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3952 (*1 *1 *1) (-5 *1 (-1195)))) -((-2965 (((-114) $ $) NIL T ELT)) (-3963 (($ $ (-659 (-875))) 48 T ELT)) (-3964 (($ $ (-659 (-875))) 46 T ELT)) (-3961 (((-1178) $) 88 T ELT)) (-3966 (((-2 (|:| -2981 (-659 (-875))) (|:| -2871 (-659 (-875))) (|:| |presup| (-659 (-875))) (|:| -2979 (-659 (-875))) (|:| |args| (-659 (-875)))) $) 95 T ELT)) (-3967 (((-114) $) 86 T ELT)) (-3965 (($ $ (-659 (-659 (-875)))) 45 T ELT) (($ $ (-2 (|:| -2981 (-659 (-875))) (|:| -2871 (-659 (-875))) (|:| |presup| (-659 (-875))) (|:| -2979 (-659 (-875))) (|:| |args| (-659 (-875))))) 85 T ELT)) (-4152 (($) 151 T CONST)) (-3573 (((-3 (-518) "failed") $) 155 T ELT)) (-3572 (((-518) $) NIL T ELT)) (-3969 (((-1292)) 123 T ELT)) (-3195 (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) 55 T ELT) (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) 62 T ELT)) (-4042 (($) 109 T ELT) (($ $) 118 T ELT)) (-3968 (($ $) 87 T ELT)) (-2928 (($ $ $) NIL T ELT)) (-3256 (($ $ $) NIL T ELT)) (-3960 (((-659 $) $) 124 T ELT)) (-3658 (((-1178) $) 101 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4228 (($ $ (-659 (-875))) 47 T ELT)) (-4400 (((-546) $) 33 T ELT) (((-1196) $) 34 T ELT) (((-903 (-557)) $) 66 T ELT) (((-903 (-391)) $) 64 T ELT)) (-4374 (((-875) $) 41 T ELT) (($ (-1178)) 35 T ELT) (($ (-518)) 153 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3962 (($ $ (-659 (-875))) 49 T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 37 T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) 38 T ELT))) -(((-1196) (-13 (-859) (-629 (-546)) (-629 (-1196)) (-631 (-1178)) (-1057 (-518)) (-629 (-903 (-557))) (-629 (-903 (-391))) (-899 (-557)) (-899 (-391)) (-10 -8 (-15 -4042 ($)) (-15 -4042 ($ $)) (-15 -3969 ((-1292))) (-15 -3968 ($ $)) (-15 -3967 ((-114) $)) (-15 -3966 ((-2 (|:| -2981 (-659 (-875))) (|:| -2871 (-659 (-875))) (|:| |presup| (-659 (-875))) (|:| -2979 (-659 (-875))) (|:| |args| (-659 (-875)))) $)) (-15 -3965 ($ $ (-659 (-659 (-875))))) (-15 -3965 ($ $ (-2 (|:| -2981 (-659 (-875))) (|:| -2871 (-659 (-875))) (|:| |presup| (-659 (-875))) (|:| -2979 (-659 (-875))) (|:| |args| (-659 (-875)))))) (-15 -3964 ($ $ (-659 (-875)))) (-15 -3963 ($ $ (-659 (-875)))) (-15 -3962 ($ $ (-659 (-875)))) (-15 -4228 ($ $ (-659 (-875)))) (-15 -3961 ((-1178) $)) (-15 -3960 ((-659 $) $)) (-15 -4152 ($) -4380)))) (T -1196)) -((-4042 (*1 *1) (-5 *1 (-1196))) (-4042 (*1 *1 *1) (-5 *1 (-1196))) (-3969 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1196)))) (-3968 (*1 *1 *1) (-5 *1 (-1196))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1196)))) (-3966 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2981 (-659 (-875))) (|:| -2871 (-659 (-875))) (|:| |presup| (-659 (-875))) (|:| -2979 (-659 (-875))) (|:| |args| (-659 (-875))))) (-5 *1 (-1196)))) (-3965 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-659 (-875)))) (-5 *1 (-1196)))) (-3965 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2981 (-659 (-875))) (|:| -2871 (-659 (-875))) (|:| |presup| (-659 (-875))) (|:| -2979 (-659 (-875))) (|:| |args| (-659 (-875))))) (-5 *1 (-1196)))) (-3964 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-1196)))) (-3963 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-1196)))) (-3962 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-1196)))) (-4228 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-1196)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1196)))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-659 (-1196))) (-5 *1 (-1196)))) (-4152 (*1 *1) (-5 *1 (-1196)))) -((-3970 (((-1286 |#1|) |#1| (-936)) 18 T ELT) (((-1286 |#1|) (-659 |#1|)) 25 T ELT))) -(((-1197 |#1|) (-10 -7 (-15 -3970 ((-1286 |#1|) (-659 |#1|))) (-15 -3970 ((-1286 |#1|) |#1| (-936)))) (-1068)) (T -1197)) -((-3970 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-5 *2 (-1286 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-1068)))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-659 *4)) (-4 *4 (-1068)) (-5 *2 (-1286 *4)) (-5 *1 (-1197 *4))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3572 (((-557) $) NIL (|has| |#1| (-1057 (-557))) ELT) (((-419 (-557)) $) NIL (|has| |#1| (-1057 (-419 (-557)))) ELT) ((|#1| $) NIL T ELT)) (-4387 (($ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-3921 (($ $) NIL (|has| |#1| (-464)) ELT)) (-1802 (($ $ |#1| (-990) $) NIL T ELT)) (-2639 (((-114) $) 17 T ELT)) (-2647 (((-789) $) NIL T ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-990)) NIL T ELT)) (-3219 (((-990) $) NIL T ELT)) (-1803 (($ (-1 (-990) (-990)) $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2003 (((-114) $) NIL T ELT)) (-2002 ((|#1| $) NIL T ELT)) (-4166 (($ $ (-990) |#1| $) NIL (-12 (|has| (-990) (-133)) (|has| |#1| (-568))) ELT)) (-3884 (((-3 $ #1#) $ $) NIL (|has| |#1| (-568)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-568)) ELT)) (-4376 (((-990) $) NIL T ELT)) (-3216 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ $) NIL (|has| |#1| (-568)) ELT) (($ |#1|) NIL T ELT) (($ (-419 (-557))) NIL (-3955 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-1057 (-419 (-557))))) ELT)) (-4245 (((-659 |#1|) $) NIL T ELT)) (-4105 ((|#1| $ (-990)) NIL T ELT)) (-3101 (((-709 $) $) NIL (|has| |#1| (-147)) ELT)) (-3526 (((-789)) NIL T CONST)) (-1801 (($ $ $ (-789)) NIL (|has| |#1| (-175)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3057 (($) 10 T CONST)) (-3063 (($) NIL T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 21 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 22 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 16 T ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-1198 |#1|) (-13 (-338 |#1| (-990)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-990) (-133)) (-15 -4166 ($ $ (-990) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4421)) (-6 -4421) |%noBranch|))) (-1068)) (T -1198)) -((-4166 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-990)) (-4 *2 (-133)) (-5 *1 (-1198 *3)) (-4 *3 (-568)) (-4 *3 (-1068))))) -((-3971 (((-1200) (-1196) $) 25 T ELT)) (-3981 (($) 29 T ELT)) (-3973 (((-3 (|:| |fst| (-446)) (|:| -4338 #1="void")) (-1196) $) 22 T ELT)) (-3975 (((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -4338 #1#)) $) 41 T ELT) (((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) 42 T ELT) (((-1292) (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) 43 T ELT)) (-3983 (((-1292) (-1196)) 58 T ELT)) (-3974 (((-1292) (-1196) $) 55 T ELT) (((-1292) (-1196)) 56 T ELT) (((-1292)) 57 T ELT)) (-3979 (((-1292) (-1196)) 37 T ELT)) (-3977 (((-1196)) 36 T ELT)) (-3991 (($) 34 T ELT)) (-3990 (((-448) (-1196) (-448) (-1196) $) 45 T ELT) (((-448) (-659 (-1196)) (-448) (-1196) $) 49 T ELT) (((-448) (-1196) (-448)) 46 T ELT) (((-448) (-1196) (-448) (-1196)) 50 T ELT)) (-3978 (((-1196)) 35 T ELT)) (-4374 (((-875) $) 28 T ELT)) (-3980 (((-1292)) 30 T ELT) (((-1292) (-1196)) 33 T ELT)) (-3972 (((-659 (-1196)) (-1196) $) 24 T ELT)) (-3976 (((-1292) (-1196) (-659 (-1196)) $) 38 T ELT) (((-1292) (-1196) (-659 (-1196))) 39 T ELT) (((-1292) (-659 (-1196))) 40 T ELT))) -(((-1199) (-13 (-628 (-875)) (-10 -8 (-15 -3981 ($)) (-15 -3980 ((-1292))) (-15 -3980 ((-1292) (-1196))) (-15 -3990 ((-448) (-1196) (-448) (-1196) $)) (-15 -3990 ((-448) (-659 (-1196)) (-448) (-1196) $)) (-15 -3990 ((-448) (-1196) (-448))) (-15 -3990 ((-448) (-1196) (-448) (-1196))) (-15 -3979 ((-1292) (-1196))) (-15 -3978 ((-1196))) (-15 -3977 ((-1196))) (-15 -3976 ((-1292) (-1196) (-659 (-1196)) $)) (-15 -3976 ((-1292) (-1196) (-659 (-1196)))) (-15 -3976 ((-1292) (-659 (-1196)))) (-15 -3975 ((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -4338 #1="void")) $)) (-15 -3975 ((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -4338 #1#)))) (-15 -3975 ((-1292) (-3 (|:| |fst| (-446)) (|:| -4338 #1#)))) (-15 -3974 ((-1292) (-1196) $)) (-15 -3974 ((-1292) (-1196))) (-15 -3974 ((-1292))) (-15 -3983 ((-1292) (-1196))) (-15 -3991 ($)) (-15 -3973 ((-3 (|:| |fst| (-446)) (|:| -4338 #1#)) (-1196) $)) (-15 -3972 ((-659 (-1196)) (-1196) $)) (-15 -3971 ((-1200) (-1196) $))))) (T -1199)) -((-3981 (*1 *1) (-5 *1 (-1199))) (-3980 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3980 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3990 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1196)) (-5 *1 (-1199)))) (-3990 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-448)) (-5 *3 (-659 (-1196))) (-5 *4 (-1196)) (-5 *1 (-1199)))) (-3990 (*1 *2 *3 *2) (-12 (-5 *2 (-448)) (-5 *3 (-1196)) (-5 *1 (-1199)))) (-3990 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1196)) (-5 *1 (-1199)))) (-3979 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3978 (*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1199)))) (-3977 (*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1199)))) (-3976 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-659 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3976 (*1 *2 *3 *4) (-12 (-5 *4 (-659 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3976 (*1 *2 *3) (-12 (-5 *3 (-659 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3975 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1196)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1="void"))) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3975 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3974 (*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3974 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3983 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3991 (*1 *1) (-5 *1 (-1199))) (-3973 (*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-5 *1 (-1199)))) (-3972 (*1 *2 *3 *1) (-12 (-5 *2 (-659 (-1196))) (-5 *1 (-1199)) (-5 *3 (-1196)))) (-3971 (*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-1200)) (-5 *1 (-1199))))) -((-3985 (((-659 (-659 (-3 (|:| -3968 (-1196)) (|:| -3641 (-659 (-3 (|:| S (-1196)) (|:| P (-963 (-557))))))))) $) 66 T ELT)) (-3987 (((-659 (-3 (|:| -3968 (-1196)) (|:| -3641 (-659 (-3 (|:| S (-1196)) (|:| P (-963 (-557)))))))) (-446) $) 47 T ELT)) (-3982 (($ (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 (-448))))) 17 T ELT)) (-3983 (((-1292) $) 73 T ELT)) (-3988 (((-659 (-1196)) $) 22 T ELT)) (-3984 (((-1122) $) 60 T ELT)) (-3989 (((-448) (-1196) $) 27 T ELT)) (-3986 (((-659 (-1196)) $) 30 T ELT)) (-3991 (($) 19 T ELT)) (-3990 (((-448) (-659 (-1196)) (-448) $) 25 T ELT) (((-448) (-1196) (-448) $) 24 T ELT)) (-4374 (((-875) $) 9 T ELT) (((-1208 (-1196) (-448)) $) 13 T ELT))) -(((-1200) (-13 (-628 (-875)) (-10 -8 (-15 -4374 ((-1208 (-1196) (-448)) $)) (-15 -3991 ($)) (-15 -3990 ((-448) (-659 (-1196)) (-448) $)) (-15 -3990 ((-448) (-1196) (-448) $)) (-15 -3989 ((-448) (-1196) $)) (-15 -3988 ((-659 (-1196)) $)) (-15 -3987 ((-659 (-3 (|:| -3968 (-1196)) (|:| -3641 (-659 (-3 (|:| S (-1196)) (|:| P (-963 (-557)))))))) (-446) $)) (-15 -3986 ((-659 (-1196)) $)) (-15 -3985 ((-659 (-659 (-3 (|:| -3968 (-1196)) (|:| -3641 (-659 (-3 (|:| S (-1196)) (|:| P (-963 (-557))))))))) $)) (-15 -3984 ((-1122) $)) (-15 -3983 ((-1292) $)) (-15 -3982 ($ (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 (-448))))))))) (T -1200)) -((-4374 (*1 *2 *1) (-12 (-5 *2 (-1208 (-1196) (-448))) (-5 *1 (-1200)))) (-3991 (*1 *1) (-5 *1 (-1200))) (-3990 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-448)) (-5 *3 (-659 (-1196))) (-5 *1 (-1200)))) (-3990 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1196)) (-5 *1 (-1200)))) (-3989 (*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-448)) (-5 *1 (-1200)))) (-3988 (*1 *2 *1) (-12 (-5 *2 (-659 (-1196))) (-5 *1 (-1200)))) (-3987 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-659 (-3 (|:| -3968 (-1196)) (|:| -3641 (-659 (-3 (|:| S (-1196)) (|:| P (-963 (-557))))))))) (-5 *1 (-1200)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-659 (-1196))) (-5 *1 (-1200)))) (-3985 (*1 *2 *1) (-12 (-5 *2 (-659 (-659 (-3 (|:| -3968 (-1196)) (|:| -3641 (-659 (-3 (|:| S (-1196)) (|:| P (-963 (-557)))))))))) (-5 *1 (-1200)))) (-3984 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1200)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1200)))) (-3982 (*1 *1 *2) (-12 (-5 *2 (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 (-448))))) (-5 *1 (-1200))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3573 (((-3 (-557) #1="failed") $) 29 T ELT) (((-3 (-229) #1#) $) 35 T ELT) (((-3 (-518) #1#) $) 43 T ELT) (((-3 (-1178) #1#) $) 47 T ELT)) (-3572 (((-557) $) 30 T ELT) (((-229) $) 36 T ELT) (((-518) $) 40 T ELT) (((-1178) $) 48 T ELT)) (-3996 (((-114) $) 53 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3995 (((-3 (-557) (-229) (-518) (-1178) $) $) 56 T ELT)) (-3994 (((-659 $) $) 58 T ELT)) (-4400 (((-1122) $) 24 T ELT) (($ (-1122)) 25 T ELT)) (-3993 (((-114) $) 57 T ELT)) (-4374 (((-875) $) 23 T ELT) (($ (-557)) 26 T ELT) (($ (-229)) 32 T ELT) (($ (-518)) 38 T ELT) (($ (-1178)) 44 T ELT) (((-546) $) 60 T ELT) (((-557) $) 31 T ELT) (((-229) $) 37 T ELT) (((-518) $) 41 T ELT) (((-1178) $) 49 T ELT)) (-3992 (((-114) $ (|[\|\|]| (-557))) 10 T ELT) (((-114) $ (|[\|\|]| (-229))) 13 T ELT) (((-114) $ (|[\|\|]| (-518))) 19 T ELT) (((-114) $ (|[\|\|]| (-1178))) 16 T ELT)) (-3997 (($ (-518) (-659 $)) 51 T ELT) (($ $ (-659 $)) 52 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3998 (((-557) $) 27 T ELT) (((-229) $) 33 T ELT) (((-518) $) 39 T ELT) (((-1178) $) 45 T ELT)) (-3452 (((-114) $ $) 7 T ELT))) -(((-1201) (-13 (-1282) (-1120) (-1057 (-557)) (-1057 (-229)) (-1057 (-518)) (-1057 (-1178)) (-628 (-546)) (-10 -8 (-15 -4400 ((-1122) $)) (-15 -4400 ($ (-1122))) (-15 -4374 ((-557) $)) (-15 -3998 ((-557) $)) (-15 -4374 ((-229) $)) (-15 -3998 ((-229) $)) (-15 -4374 ((-518) $)) (-15 -3998 ((-518) $)) (-15 -4374 ((-1178) $)) (-15 -3998 ((-1178) $)) (-15 -3997 ($ (-518) (-659 $))) (-15 -3997 ($ $ (-659 $))) (-15 -3996 ((-114) $)) (-15 -3995 ((-3 (-557) (-229) (-518) (-1178) $) $)) (-15 -3994 ((-659 $) $)) (-15 -3993 ((-114) $)) (-15 -3992 ((-114) $ (|[\|\|]| (-557)))) (-15 -3992 ((-114) $ (|[\|\|]| (-229)))) (-15 -3992 ((-114) $ (|[\|\|]| (-518)))) (-15 -3992 ((-114) $ (|[\|\|]| (-1178))))))) (T -1201)) -((-4400 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1201)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-1201)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-1201)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-1201)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1201)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1201)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1201)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1201)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1201)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1201)))) (-3997 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-659 (-1201))) (-5 *1 (-1201)))) (-3997 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-1201))) (-5 *1 (-1201)))) (-3996 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1201)))) (-3995 (*1 *2 *1) (-12 (-5 *2 (-3 (-557) (-229) (-518) (-1178) (-1201))) (-5 *1 (-1201)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-659 (-1201))) (-5 *1 (-1201)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1201)))) (-3992 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-557))) (-5 *2 (-114)) (-5 *1 (-1201)))) (-3992 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-229))) (-5 *2 (-114)) (-5 *1 (-1201)))) (-3992 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)) (-5 *1 (-1201)))) (-3992 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-114)) (-5 *1 (-1201))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3536 (((-789)) 21 T ELT)) (-4152 (($) 10 T CONST)) (-3393 (($) 25 T ELT)) (-2928 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-3256 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2218 (((-936) $) 23 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2629 (($ (-936)) 22 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT))) -(((-1202 |#1|) (-13 (-855) (-10 -8 (-15 -4152 ($) -4380))) (-936)) (T -1202)) -((-4152 (*1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-936))))) -((-557) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-2965 (((-114) $ $) NIL T ELT)) (-2524 (($ $) 24 T ELT)) (-3536 (((-789)) NIL T ELT)) (-4152 (($) 18 T CONST)) (-3393 (($) NIL T ELT)) (-2928 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-3256 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2218 (((-936) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2629 (($ (-936)) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-4153 (($ $ $) 20 T ELT)) (-4154 (($ $ $) 19 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2522 (($ $ $) 22 T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-2523 (($ $ $) 21 T ELT))) -(((-1203 |#1|) (-13 (-855) (-680) (-10 -8 (-15 -4154 ($ $ $)) (-15 -4153 ($ $ $)) (-15 -4152 ($) -4380))) (-936)) (T -1203)) -((-4154 (*1 *1 *1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-936)))) (-4153 (*1 *1 *1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-936)))) (-4152 (*1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-936))))) -((-789) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 9 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 7 T ELT))) -(((-1204) (-1120)) (T -1204)) -NIL -((-4000 (((-659 (-659 (-963 |#1|))) (-659 (-419 (-963 |#1|))) (-659 (-1196))) 69 T ELT)) (-3999 (((-659 (-305 (-419 (-963 |#1|)))) (-305 (-419 (-963 |#1|)))) 81 T ELT) (((-659 (-305 (-419 (-963 |#1|)))) (-419 (-963 |#1|))) 77 T ELT) (((-659 (-305 (-419 (-963 |#1|)))) (-305 (-419 (-963 |#1|))) (-1196)) 82 T ELT) (((-659 (-305 (-419 (-963 |#1|)))) (-419 (-963 |#1|)) (-1196)) 76 T ELT) (((-659 (-659 (-305 (-419 (-963 |#1|))))) (-659 (-305 (-419 (-963 |#1|))))) 107 T ELT) (((-659 (-659 (-305 (-419 (-963 |#1|))))) (-659 (-419 (-963 |#1|)))) 106 T ELT) (((-659 (-659 (-305 (-419 (-963 |#1|))))) (-659 (-305 (-419 (-963 |#1|)))) (-659 (-1196))) 108 T ELT) (((-659 (-659 (-305 (-419 (-963 |#1|))))) (-659 (-419 (-963 |#1|))) (-659 (-1196))) 105 T ELT))) -(((-1205 |#1|) (-10 -7 (-15 -3999 ((-659 (-659 (-305 (-419 (-963 |#1|))))) (-659 (-419 (-963 |#1|))) (-659 (-1196)))) (-15 -3999 ((-659 (-659 (-305 (-419 (-963 |#1|))))) (-659 (-305 (-419 (-963 |#1|)))) (-659 (-1196)))) (-15 -3999 ((-659 (-659 (-305 (-419 (-963 |#1|))))) (-659 (-419 (-963 |#1|))))) (-15 -3999 ((-659 (-659 (-305 (-419 (-963 |#1|))))) (-659 (-305 (-419 (-963 |#1|)))))) (-15 -3999 ((-659 (-305 (-419 (-963 |#1|)))) (-419 (-963 |#1|)) (-1196))) (-15 -3999 ((-659 (-305 (-419 (-963 |#1|)))) (-305 (-419 (-963 |#1|))) (-1196))) (-15 -3999 ((-659 (-305 (-419 (-963 |#1|)))) (-419 (-963 |#1|)))) (-15 -3999 ((-659 (-305 (-419 (-963 |#1|)))) (-305 (-419 (-963 |#1|))))) (-15 -4000 ((-659 (-659 (-963 |#1|))) (-659 (-419 (-963 |#1|))) (-659 (-1196))))) (-568)) (T -1205)) -((-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-419 (-963 *5)))) (-5 *4 (-659 (-1196))) (-4 *5 (-568)) (-5 *2 (-659 (-659 (-963 *5)))) (-5 *1 (-1205 *5)))) (-3999 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-659 (-305 (-419 (-963 *4))))) (-5 *1 (-1205 *4)) (-5 *3 (-305 (-419 (-963 *4)))))) (-3999 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-659 (-305 (-419 (-963 *4))))) (-5 *1 (-1205 *4)) (-5 *3 (-419 (-963 *4))))) (-3999 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-568)) (-5 *2 (-659 (-305 (-419 (-963 *5))))) (-5 *1 (-1205 *5)) (-5 *3 (-305 (-419 (-963 *5)))))) (-3999 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-568)) (-5 *2 (-659 (-305 (-419 (-963 *5))))) (-5 *1 (-1205 *5)) (-5 *3 (-419 (-963 *5))))) (-3999 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-659 (-659 (-305 (-419 (-963 *4)))))) (-5 *1 (-1205 *4)) (-5 *3 (-659 (-305 (-419 (-963 *4))))))) (-3999 (*1 *2 *3) (-12 (-5 *3 (-659 (-419 (-963 *4)))) (-4 *4 (-568)) (-5 *2 (-659 (-659 (-305 (-419 (-963 *4)))))) (-5 *1 (-1205 *4)))) (-3999 (*1 *2 *3 *4) (-12 (-5 *4 (-659 (-1196))) (-4 *5 (-568)) (-5 *2 (-659 (-659 (-305 (-419 (-963 *5)))))) (-5 *1 (-1205 *5)) (-5 *3 (-659 (-305 (-419 (-963 *5))))))) (-3999 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-419 (-963 *5)))) (-5 *4 (-659 (-1196))) (-4 *5 (-568)) (-5 *2 (-659 (-659 (-305 (-419 (-963 *5)))))) (-5 *1 (-1205 *5))))) -((-4005 (((-1178)) 7 T ELT)) (-4002 (((-1178)) 11 T CONST)) (-4001 (((-1292) (-1178)) 13 T ELT)) (-4004 (((-1178)) 8 T CONST)) (-4003 (((-132)) 10 T CONST))) -(((-1206) (-13 (-1236) (-10 -7 (-15 -4005 ((-1178))) (-15 -4004 ((-1178)) -4380) (-15 -4003 ((-132)) -4380) (-15 -4002 ((-1178)) -4380) (-15 -4001 ((-1292) (-1178)))))) (T -1206)) -((-4005 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206)))) (-4004 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206)))) (-4003 (*1 *2) (-12 (-5 *2 (-132)) (-5 *1 (-1206)))) (-4002 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206)))) (-4001 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1206))))) -((-4009 (((-659 (-659 |#1|)) (-659 (-659 |#1|)) (-659 (-659 (-659 |#1|)))) 56 T ELT)) (-4012 (((-659 (-659 (-659 |#1|))) (-659 (-659 |#1|))) 38 T ELT)) (-4013 (((-1209 (-659 |#1|)) (-659 |#1|)) 49 T ELT)) (-4015 (((-659 (-659 |#1|)) (-659 |#1|)) 45 T ELT)) (-4018 (((-2 (|:| |f1| (-659 |#1|)) (|:| |f2| (-659 (-659 (-659 |#1|)))) (|:| |f3| (-659 (-659 |#1|))) (|:| |f4| (-659 (-659 (-659 |#1|))))) (-659 (-659 (-659 |#1|)))) 53 T ELT)) (-4017 (((-2 (|:| |f1| (-659 |#1|)) (|:| |f2| (-659 (-659 (-659 |#1|)))) (|:| |f3| (-659 (-659 |#1|))) (|:| |f4| (-659 (-659 (-659 |#1|))))) (-659 |#1|) (-659 (-659 (-659 |#1|))) (-659 (-659 |#1|)) (-659 (-659 (-659 |#1|))) (-659 (-659 (-659 |#1|))) (-659 (-659 (-659 |#1|)))) 52 T ELT)) (-4014 (((-659 (-659 |#1|)) (-659 (-659 |#1|))) 43 T ELT)) (-4016 (((-659 |#1|) (-659 |#1|)) 46 T ELT)) (-4008 (((-659 (-659 (-659 |#1|))) (-659 |#1|) (-659 (-659 (-659 |#1|)))) 32 T ELT)) (-4007 (((-659 (-659 (-659 |#1|))) (-1 (-114) |#1| |#1|) (-659 |#1|) (-659 (-659 (-659 |#1|)))) 29 T ELT)) (-4006 (((-2 (|:| |fs| (-114)) (|:| |sd| (-659 |#1|)) (|:| |td| (-659 (-659 |#1|)))) (-1 (-114) |#1| |#1|) (-659 |#1|) (-659 (-659 |#1|))) 24 T ELT)) (-4010 (((-659 (-659 |#1|)) (-659 (-659 (-659 |#1|)))) 58 T ELT)) (-4011 (((-659 (-659 |#1|)) (-1209 (-659 |#1|))) 60 T ELT))) -(((-1207 |#1|) (-10 -7 (-15 -4006 ((-2 (|:| |fs| (-114)) (|:| |sd| (-659 |#1|)) (|:| |td| (-659 (-659 |#1|)))) (-1 (-114) |#1| |#1|) (-659 |#1|) (-659 (-659 |#1|)))) (-15 -4007 ((-659 (-659 (-659 |#1|))) (-1 (-114) |#1| |#1|) (-659 |#1|) (-659 (-659 (-659 |#1|))))) (-15 -4008 ((-659 (-659 (-659 |#1|))) (-659 |#1|) (-659 (-659 (-659 |#1|))))) (-15 -4009 ((-659 (-659 |#1|)) (-659 (-659 |#1|)) (-659 (-659 (-659 |#1|))))) (-15 -4010 ((-659 (-659 |#1|)) (-659 (-659 (-659 |#1|))))) (-15 -4011 ((-659 (-659 |#1|)) (-1209 (-659 |#1|)))) (-15 -4012 ((-659 (-659 (-659 |#1|))) (-659 (-659 |#1|)))) (-15 -4013 ((-1209 (-659 |#1|)) (-659 |#1|))) (-15 -4014 ((-659 (-659 |#1|)) (-659 (-659 |#1|)))) (-15 -4015 ((-659 (-659 |#1|)) (-659 |#1|))) (-15 -4016 ((-659 |#1|) (-659 |#1|))) (-15 -4017 ((-2 (|:| |f1| (-659 |#1|)) (|:| |f2| (-659 (-659 (-659 |#1|)))) (|:| |f3| (-659 (-659 |#1|))) (|:| |f4| (-659 (-659 (-659 |#1|))))) (-659 |#1|) (-659 (-659 (-659 |#1|))) (-659 (-659 |#1|)) (-659 (-659 (-659 |#1|))) (-659 (-659 (-659 |#1|))) (-659 (-659 (-659 |#1|))))) (-15 -4018 ((-2 (|:| |f1| (-659 |#1|)) (|:| |f2| (-659 (-659 (-659 |#1|)))) (|:| |f3| (-659 (-659 |#1|))) (|:| |f4| (-659 (-659 (-659 |#1|))))) (-659 (-659 (-659 |#1|)))))) (-859)) (T -1207)) -((-4018 (*1 *2 *3) (-12 (-4 *4 (-859)) (-5 *2 (-2 (|:| |f1| (-659 *4)) (|:| |f2| (-659 (-659 (-659 *4)))) (|:| |f3| (-659 (-659 *4))) (|:| |f4| (-659 (-659 (-659 *4)))))) (-5 *1 (-1207 *4)) (-5 *3 (-659 (-659 (-659 *4)))))) (-4017 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-859)) (-5 *3 (-659 *6)) (-5 *5 (-659 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-659 *5)) (|:| |f3| *5) (|:| |f4| (-659 *5)))) (-5 *1 (-1207 *6)) (-5 *4 (-659 *5)))) (-4016 (*1 *2 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-859)) (-5 *1 (-1207 *3)))) (-4015 (*1 *2 *3) (-12 (-4 *4 (-859)) (-5 *2 (-659 (-659 *4))) (-5 *1 (-1207 *4)) (-5 *3 (-659 *4)))) (-4014 (*1 *2 *2) (-12 (-5 *2 (-659 (-659 *3))) (-4 *3 (-859)) (-5 *1 (-1207 *3)))) (-4013 (*1 *2 *3) (-12 (-4 *4 (-859)) (-5 *2 (-1209 (-659 *4))) (-5 *1 (-1207 *4)) (-5 *3 (-659 *4)))) (-4012 (*1 *2 *3) (-12 (-4 *4 (-859)) (-5 *2 (-659 (-659 (-659 *4)))) (-5 *1 (-1207 *4)) (-5 *3 (-659 (-659 *4))))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-1209 (-659 *4))) (-4 *4 (-859)) (-5 *2 (-659 (-659 *4))) (-5 *1 (-1207 *4)))) (-4010 (*1 *2 *3) (-12 (-5 *3 (-659 (-659 (-659 *4)))) (-5 *2 (-659 (-659 *4))) (-5 *1 (-1207 *4)) (-4 *4 (-859)))) (-4009 (*1 *2 *2 *3) (-12 (-5 *3 (-659 (-659 (-659 *4)))) (-5 *2 (-659 (-659 *4))) (-4 *4 (-859)) (-5 *1 (-1207 *4)))) (-4008 (*1 *2 *3 *2) (-12 (-5 *2 (-659 (-659 (-659 *4)))) (-5 *3 (-659 *4)) (-4 *4 (-859)) (-5 *1 (-1207 *4)))) (-4007 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-659 (-659 (-659 *5)))) (-5 *3 (-1 (-114) *5 *5)) (-5 *4 (-659 *5)) (-4 *5 (-859)) (-5 *1 (-1207 *5)))) (-4006 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-114) *6 *6)) (-4 *6 (-859)) (-5 *4 (-659 *6)) (-5 *2 (-2 (|:| |fs| (-114)) (|:| |sd| *4) (|:| |td| (-659 *4)))) (-5 *1 (-1207 *6)) (-5 *5 (-659 *4))))) -((-2965 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4025 (($) NIL T ELT) (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-2411 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-4216 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1711 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-2444 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT)) (-3823 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3824 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (|has| $ (-6 -4423)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT)) (-1717 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#2| $ |#1|) NIL T ELT)) (-3288 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2413 ((|#1| $) NIL (|has| |#1| (-859)) ELT)) (-3005 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-659 |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-2414 ((|#1| $) NIL (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| |#2| (-1120))) ELT)) (-2882 (((-659 |#1|) $) NIL T ELT)) (-2445 (((-114) |#1| $) NIL T ELT)) (-1387 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-4035 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-2416 (((-659 |#1|) $) NIL T ELT)) (-2417 (((-114) |#1| $) NIL T ELT)) (-3659 (((-1139) $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| |#2| (-1120))) ELT)) (-4229 ((|#2| $) NIL (|has| |#1| (-859)) ELT)) (-1466 (((-3 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) #1#) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL T ELT)) (-2412 (($ $ |#2|) NIL (|has| $ (-6 -4424)) ELT)) (-1388 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL T ELT)) (-2156 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-659 |#2|) (-659 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-659 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-2418 (((-659 |#2|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1596 (($) NIL T ELT) (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-2155 (((-789) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (((-789) |#2| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT) (((-789) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) NIL (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-629 (-546))) ELT)) (-3948 (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-4374 (((-875) $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-628 (-875))) (|has| |#2| (-628 (-875)))) ELT)) (-1376 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1389 (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) NIL (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) NIL (-3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-1208 |#1| |#2|) (-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4423))) (-1120) (-1120)) (T -1208)) -NIL -((-4019 (($ (-659 (-659 |#1|))) 10 T ELT)) (-4020 (((-659 (-659 |#1|)) $) 11 T ELT)) (-4374 (((-875) $) 33 T ELT))) -(((-1209 |#1|) (-10 -8 (-15 -4019 ($ (-659 (-659 |#1|)))) (-15 -4020 ((-659 (-659 |#1|)) $)) (-15 -4374 ((-875) $))) (-1120)) (T -1209)) -((-4374 (*1 *2 *1) (-12 (-5 *2 (-875)) (-5 *1 (-1209 *3)) (-4 *3 (-1120)))) (-4020 (*1 *2 *1) (-12 (-5 *2 (-659 (-659 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1120)))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-659 (-659 *3))) (-4 *3 (-1120)) (-5 *1 (-1209 *3))))) -((-2965 (((-114) $ $) NIL T ELT)) (-4021 (($ |#1| (-55)) 10 T ELT)) (-3968 ((|#1| $) 12 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3030 (((-114) $ |#1|) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2915 (((-55) $) 14 T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1210 |#1|) (-13 (-847 |#1|) (-10 -8 (-15 -4021 ($ |#1| (-55))))) (-1120)) (T -1210)) -((-4021 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1210 *2)) (-4 *2 (-1120))))) -((-4022 ((|#1| (-659 |#1|)) 46 T ELT)) (-4024 ((|#1| |#1| (-557)) 24 T ELT)) (-4023 (((-1190 |#1|) |#1| (-936)) 20 T ELT))) -(((-1211 |#1|) (-10 -7 (-15 -4022 (|#1| (-659 |#1|))) (-15 -4023 ((-1190 |#1|) |#1| (-936))) (-15 -4024 (|#1| |#1| (-557)))) (-376)) (T -1211)) -((-4024 (*1 *2 *2 *3) (-12 (-5 *3 (-557)) (-5 *1 (-1211 *2)) (-4 *2 (-376)))) (-4023 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-5 *2 (-1190 *3)) (-5 *1 (-1211 *3)) (-4 *3 (-376)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-659 *2)) (-5 *1 (-1211 *2)) (-4 *2 (-376))))) -((-4025 (($) 10 T ELT) (($ (-659 (-2 (|:| -4288 |#2|) (|:| -2284 |#3|)))) 14 T ELT)) (-3823 (($ (-2 (|:| -4288 |#2|) (|:| -2284 |#3|)) $) 67 T ELT) (($ (-1 (-114) (-2 (|:| -4288 |#2|) (|:| -2284 |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-3288 (((-659 (-2 (|:| -4288 |#2|) (|:| -2284 |#3|))) $) 39 T ELT) (((-659 |#3|) $) 41 T ELT)) (-2158 (($ (-1 (-2 (|:| -4288 |#2|) (|:| -2284 |#3|)) (-2 (|:| -4288 |#2|) (|:| -2284 |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-4386 (($ (-1 (-2 (|:| -4288 |#2|) (|:| -2284 |#3|)) (-2 (|:| -4288 |#2|) (|:| -2284 |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-1387 (((-2 (|:| -4288 |#2|) (|:| -2284 |#3|)) $) 60 T ELT)) (-4035 (($ (-2 (|:| -4288 |#2|) (|:| -2284 |#3|)) $) 16 T ELT)) (-2416 (((-659 |#2|) $) 19 T ELT)) (-2417 (((-114) |#2| $) 65 T ELT)) (-1466 (((-3 (-2 (|:| -4288 |#2|) (|:| -2284 |#3|)) #1#) (-1 (-114) (-2 (|:| -4288 |#2|) (|:| -2284 |#3|))) $) 64 T ELT)) (-1388 (((-2 (|:| -4288 |#2|) (|:| -2284 |#3|)) $) 69 T ELT)) (-2156 (((-114) (-1 (-114) (-2 (|:| -4288 |#2|) (|:| -2284 |#3|))) $) NIL T ELT) (((-114) (-1 (-114) |#3|) $) 73 T ELT)) (-2418 (((-659 |#3|) $) 43 T ELT)) (-4228 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-2155 (((-789) (-1 (-114) (-2 (|:| -4288 |#2|) (|:| -2284 |#3|))) $) NIL T ELT) (((-789) (-2 (|:| -4288 |#2|) (|:| -2284 |#3|)) $) NIL T ELT) (((-789) |#3| $) NIL T ELT) (((-789) (-1 (-114) |#3|) $) 79 T ELT)) (-4374 (((-875) $) 27 T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4288 |#2|) (|:| -2284 |#3|))) $) NIL T ELT) (((-114) (-1 (-114) |#3|) $) 71 T ELT)) (-3452 (((-114) $ $) 51 T ELT))) -(((-1212 |#1| |#2| |#3|) (-10 -7 (-15 -3452 ((-114) |#1| |#1|)) (-15 -4374 ((-875) |#1|)) (-15 -4386 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4025 (|#1| (-659 (-2 (|:| -4288 |#2|) (|:| -2284 |#3|))))) (-15 -4025 (|#1|)) (-15 -4386 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2158 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2157 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -2156 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -2155 ((-789) (-1 (-114) |#3|) |#1|)) (-15 -3288 ((-659 |#3|) |#1|)) (-15 -2155 ((-789) |#3| |#1|)) (-15 -4228 (|#3| |#1| |#2| |#3|)) (-15 -4228 (|#3| |#1| |#2|)) (-15 -2418 ((-659 |#3|) |#1|)) (-15 -2417 ((-114) |#2| |#1|)) (-15 -2416 ((-659 |#2|) |#1|)) (-15 -3823 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3823 (|#1| (-1 (-114) (-2 (|:| -4288 |#2|) (|:| -2284 |#3|))) |#1|)) (-15 -3823 (|#1| (-2 (|:| -4288 |#2|) (|:| -2284 |#3|)) |#1|)) (-15 -1466 ((-3 (-2 (|:| -4288 |#2|) (|:| -2284 |#3|)) #1#) (-1 (-114) (-2 (|:| -4288 |#2|) (|:| -2284 |#3|))) |#1|)) (-15 -1387 ((-2 (|:| -4288 |#2|) (|:| -2284 |#3|)) |#1|)) (-15 -4035 (|#1| (-2 (|:| -4288 |#2|) (|:| -2284 |#3|)) |#1|)) (-15 -1388 ((-2 (|:| -4288 |#2|) (|:| -2284 |#3|)) |#1|)) (-15 -2155 ((-789) (-2 (|:| -4288 |#2|) (|:| -2284 |#3|)) |#1|)) (-15 -3288 ((-659 (-2 (|:| -4288 |#2|) (|:| -2284 |#3|))) |#1|)) (-15 -2155 ((-789) (-1 (-114) (-2 (|:| -4288 |#2|) (|:| -2284 |#3|))) |#1|)) (-15 -2156 ((-114) (-1 (-114) (-2 (|:| -4288 |#2|) (|:| -2284 |#3|))) |#1|)) (-15 -2157 ((-114) (-1 (-114) (-2 (|:| -4288 |#2|) (|:| -2284 |#3|))) |#1|)) (-15 -2158 (|#1| (-1 (-2 (|:| -4288 |#2|) (|:| -2284 |#3|)) (-2 (|:| -4288 |#2|) (|:| -2284 |#3|))) |#1|)) (-15 -4386 (|#1| (-1 (-2 (|:| -4288 |#2|) (|:| -2284 |#3|)) (-2 (|:| -4288 |#2|) (|:| -2284 |#3|))) |#1|))) (-1213 |#2| |#3|) (-1120) (-1120)) (T -1212)) -NIL -((-2965 (((-114) $ $) 19 (-3955 (|has| |#2| (-102)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102))) ELT)) (-4025 (($) 77 T ELT) (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) 76 T ELT)) (-2411 (((-1292) $ |#1| |#1|) 104 (|has| $ (-6 -4424)) ELT)) (-4216 ((|#2| $ |#1| |#2|) 78 T ELT)) (-1711 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 49 (|has| $ (-6 -4423)) ELT)) (-4138 (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 59 (|has| $ (-6 -4423)) ELT)) (-2444 (((-3 |#2| #1="failed") |#1| $) 65 T ELT)) (-4152 (($) 7 T CONST)) (-1465 (($ $) 62 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| $ (-6 -4423))) ELT)) (-3823 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 51 (|has| $ (-6 -4423)) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 50 (|has| $ (-6 -4423)) ELT) (((-3 |#2| #1#) |#1| $) 66 T ELT)) (-3824 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 61 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 58 (|has| $ (-6 -4423)) ELT)) (-4270 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 60 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| $ (-6 -4423))) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 57 (|has| $ (-6 -4423)) ELT) (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 56 (|has| $ (-6 -4423)) ELT)) (-1717 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -4424)) ELT)) (-3513 ((|#2| $ |#1|) 93 T ELT)) (-3288 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 30 (|has| $ (-6 -4423)) ELT) (((-659 |#2|) $) 84 (|has| $ (-6 -4423)) ELT)) (-2413 ((|#1| $) 101 (|has| |#1| (-859)) ELT)) (-3005 (((-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 29 (|has| $ (-6 -4423)) ELT) (((-659 |#2|) $) 85 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| $ (-6 -4423))) ELT) (((-114) |#2| $) 87 (-12 (|has| |#2| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2414 ((|#1| $) 100 (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 34 (|has| $ (-6 -4424)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT)) (-3658 (((-1178) $) 22 (-3955 (|has| |#2| (-1120)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT)) (-2882 (((-659 |#1|) $) 67 T ELT)) (-2445 (((-114) |#1| $) 68 T ELT)) (-1387 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 43 T ELT)) (-4035 (($ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 44 T ELT)) (-2416 (((-659 |#1|) $) 98 T ELT)) (-2417 (((-114) |#1| $) 97 T ELT)) (-3659 (((-1139) $) 21 (-3955 (|has| |#2| (-1120)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT)) (-4229 ((|#2| $) 102 (|has| |#1| (-859)) ELT)) (-1466 (((-3 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) "failed") (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 55 T ELT)) (-2412 (($ $ |#2|) 103 (|has| $ (-6 -4424)) ELT)) (-1388 (((-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 45 T ELT)) (-2156 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 32 (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) |#2|) $) 82 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))))) 26 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-305 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) 25 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) 24 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) 23 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ELT) (($ $ (-659 |#2|) (-659 |#2|)) 91 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-305 |#2|)) 89 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT) (($ $ (-659 (-305 |#2|))) 88 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-2415 (((-114) |#2| $) 99 (-12 (|has| $ (-6 -4423)) (|has| |#2| (-1120))) ELT)) (-2418 (((-659 |#2|) $) 96 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-4228 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT)) (-1596 (($) 53 T ELT) (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) 52 T ELT)) (-2155 (((-789) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| $ (-6 -4423))) ELT) (((-789) |#2| $) 86 (-12 (|has| |#2| (-1120)) (|has| $ (-6 -4423))) ELT) (((-789) (-1 (-114) |#2|) $) 83 (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) 10 T ELT)) (-4400 (((-546) $) 63 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-629 (-546))) ELT)) (-3948 (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) 54 T ELT)) (-4374 (((-875) $) 17 (-3955 (|has| |#2| (-628 (-875))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-628 (-875)))) ELT)) (-1376 (((-114) $ $) 20 (-3955 (|has| |#2| (-102)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102))) ELT)) (-1389 (($ (-659 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) 46 T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) $) 33 (|has| $ (-6 -4423)) ELT) (((-114) (-1 (-114) |#2|) $) 81 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (-3955 (|has| |#2| (-102)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102))) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-1213 |#1| |#2|) (-142) (-1120) (-1120)) (T -1213)) -((-4216 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120)))) (-4025 (*1 *1) (-12 (-4 *1 (-1213 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-659 (-2 (|:| -4288 *3) (|:| -2284 *4)))) (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *1 (-1213 *3 *4)))) (-4386 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1213 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120))))) -(-13 (-625 |t#1| |t#2|) (-614 |t#1| |t#2|) (-10 -8 (-15 -4216 (|t#2| $ |t#1| |t#2|)) (-15 -4025 ($)) (-15 -4025 ($ (-659 (-2 (|:| -4288 |t#1|) (|:| -2284 |t#2|))))) (-15 -4386 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-102) -3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-102)) (|has| |#2| (-1120)) (|has| |#2| (-102))) ((-628 (-875)) -3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-628 (-875))) (|has| |#2| (-1120)) (|has| |#2| (-628 (-875)))) ((-153 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-629 (-546)) |has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-629 (-546))) ((-233 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-242 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-298 |#1| |#2|) . T) ((-300 |#1| |#2|) . T) ((-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) -12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ((-501 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) . T) ((-501 |#2|) . T) ((-614 |#1| |#2|) . T) ((-526 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-2 (|:| -4288 |#1|) (|:| -2284 |#2|))) -12 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-321 (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)))) (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120))) ((-526 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1120))) ((-625 |#1| |#2|) . T) ((-1120) -3955 (|has| (-2 (|:| -4288 |#1|) (|:| -2284 |#2|)) (-1120)) (|has| |#2| (-1120))) ((-1236) . T)) -((-4031 (((-114)) 29 T ELT)) (-4028 (((-1292) (-1178)) 31 T ELT)) (-4032 (((-114)) 41 T ELT)) (-4029 (((-1292)) 39 T ELT)) (-4027 (((-1292) (-1178) (-1178)) 30 T ELT)) (-4033 (((-114)) 42 T ELT)) (-4035 (((-1292) |#1| |#2|) 53 T ELT)) (-4026 (((-1292)) 26 T ELT)) (-4034 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-4030 (((-1292)) 40 T ELT))) -(((-1214 |#1| |#2|) (-10 -7 (-15 -4026 ((-1292))) (-15 -4027 ((-1292) (-1178) (-1178))) (-15 -4028 ((-1292) (-1178))) (-15 -4029 ((-1292))) (-15 -4030 ((-1292))) (-15 -4031 ((-114))) (-15 -4032 ((-114))) (-15 -4033 ((-114))) (-15 -4034 ((-3 |#2| "failed") |#1|)) (-15 -4035 ((-1292) |#1| |#2|))) (-1120) (-1120)) (T -1214)) -((-4035 (*1 *2 *3 *4) (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))) (-4034 (*1 *2 *3) (|partial| -12 (-4 *2 (-1120)) (-5 *1 (-1214 *3 *2)) (-4 *3 (-1120)))) (-4033 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))) (-4032 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))) (-4031 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))) (-4030 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))) (-4029 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1214 *4 *5)) (-4 *4 (-1120)) (-4 *5 (-1120)))) (-4027 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1214 *4 *5)) (-4 *4 (-1120)) (-4 *5 (-1120)))) (-4026 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120))))) -((-4037 (((-1178) (-1178)) 22 T ELT)) (-4036 (((-51) (-1178)) 25 T ELT))) -(((-1215) (-10 -7 (-15 -4036 ((-51) (-1178))) (-15 -4037 ((-1178) (-1178))))) (T -1215)) -((-4037 (*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1215)))) (-4036 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-51)) (-5 *1 (-1215))))) -((-2965 (((-114) $ $) NIL T ELT)) (-4043 (((-659 (-1178)) $) 39 T ELT)) (-4039 (((-659 (-1178)) $ (-659 (-1178))) 42 T ELT)) (-4038 (((-659 (-1178)) $ (-659 (-1178))) 41 T ELT)) (-4040 (((-659 (-1178)) $ (-659 (-1178))) 43 T ELT)) (-4041 (((-659 (-1178)) $) 38 T ELT)) (-4042 (($) 28 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4044 (((-659 (-1178)) $) 40 T ELT)) (-4045 (((-1292) $ (-557)) 35 T ELT) (((-1292) $) 36 T ELT)) (-4400 (($ (-875) (-557)) 33 T ELT) (($ (-875) (-557) (-875)) NIL T ELT)) (-4374 (((-875) $) 49 T ELT) (($ (-875)) 32 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1216) (-13 (-1120) (-631 (-875)) (-10 -8 (-15 -4400 ($ (-875) (-557))) (-15 -4400 ($ (-875) (-557) (-875))) (-15 -4045 ((-1292) $ (-557))) (-15 -4045 ((-1292) $)) (-15 -4044 ((-659 (-1178)) $)) (-15 -4043 ((-659 (-1178)) $)) (-15 -4042 ($)) (-15 -4041 ((-659 (-1178)) $)) (-15 -4040 ((-659 (-1178)) $ (-659 (-1178)))) (-15 -4039 ((-659 (-1178)) $ (-659 (-1178)))) (-15 -4038 ((-659 (-1178)) $ (-659 (-1178))))))) (T -1216)) -((-4400 (*1 *1 *2 *3) (-12 (-5 *2 (-875)) (-5 *3 (-557)) (-5 *1 (-1216)))) (-4400 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-875)) (-5 *3 (-557)) (-5 *1 (-1216)))) (-4045 (*1 *2 *1 *3) (-12 (-5 *3 (-557)) (-5 *2 (-1292)) (-5 *1 (-1216)))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1216)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-1216)))) (-4043 (*1 *2 *1) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-1216)))) (-4042 (*1 *1) (-5 *1 (-1216))) (-4041 (*1 *2 *1) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-1216)))) (-4040 (*1 *2 *1 *2) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-1216)))) (-4039 (*1 *2 *1 *2) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-1216)))) (-4038 (*1 *2 *1 *2) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-1216))))) -((-4374 (((-1216) |#1|) 11 T ELT))) -(((-1217 |#1|) (-10 -7 (-15 -4374 ((-1216) |#1|))) (-1120)) (T -1217)) -((-4374 (*1 *2 *3) (-12 (-5 *2 (-1216)) (-5 *1 (-1217 *3)) (-4 *3 (-1120))))) -((-2965 (((-114) $ $) NIL T ELT)) (-4050 (((-1178) $ (-1178)) 21 T ELT) (((-1178) $) 20 T ELT)) (-1898 (((-1178) $ (-1178)) 19 T ELT)) (-1902 (($ $ (-1178)) NIL T ELT)) (-4048 (((-3 (-1178) #1="failed") $) 11 T ELT)) (-4049 (((-1178) $) 8 T ELT)) (-4047 (((-3 (-1178) #1#) $) 12 T ELT)) (-1899 (((-1178) $) 9 T ELT)) (-1903 (($ (-402)) NIL T ELT) (($ (-402) (-1178)) NIL T ELT)) (-3968 (((-402) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-1900 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4046 (((-114) $) 25 T ELT)) (-4374 (((-875) $) NIL T ELT)) (-1901 (($ $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1218) (-13 (-378 (-402) (-1178)) (-10 -8 (-15 -4050 ((-1178) $ (-1178))) (-15 -4050 ((-1178) $)) (-15 -4049 ((-1178) $)) (-15 -4048 ((-3 (-1178) #1="failed") $)) (-15 -4047 ((-3 (-1178) #1#) $)) (-15 -4046 ((-114) $))))) (T -1218)) -((-4050 (*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1218)))) (-4050 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1218)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1218)))) (-4048 (*1 *2 *1) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-1218)))) (-4047 (*1 *2 *1) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-1218)))) (-4046 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1218))))) -((-4051 (((-3 (-557) #1="failed") |#1|) 19 T ELT)) (-4052 (((-3 (-557) #1#) |#1|) 14 T ELT)) (-4053 (((-557) (-1178)) 33 T ELT))) -(((-1219 |#1|) (-10 -7 (-15 -4051 ((-3 (-557) #1="failed") |#1|)) (-15 -4052 ((-3 (-557) #1#) |#1|)) (-15 -4053 ((-557) (-1178)))) (-1068)) (T -1219)) -((-4053 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-557)) (-5 *1 (-1219 *4)) (-4 *4 (-1068)))) (-4052 (*1 *2 *3) (|partial| -12 (-5 *2 (-557)) (-5 *1 (-1219 *3)) (-4 *3 (-1068)))) (-4051 (*1 *2 *3) (|partial| -12 (-5 *2 (-557)) (-5 *1 (-1219 *3)) (-4 *3 (-1068))))) -((-4054 (((-1152 (-229))) 9 T ELT))) -(((-1220) (-10 -7 (-15 -4054 ((-1152 (-229)))))) (T -1220)) -((-4054 (*1 *2) (-12 (-5 *2 (-1152 (-229))) (-5 *1 (-1220))))) -((-4055 (($) 12 T ELT)) (-3916 (($ $) 36 T ELT)) (-3914 (($ $) 34 T ELT)) (-3902 (($ $) 26 T ELT)) (-3918 (($ $) 18 T ELT)) (-3919 (($ $) 16 T ELT)) (-3917 (($ $) 20 T ELT)) (-3905 (($ $) 31 T ELT)) (-3915 (($ $) 35 T ELT)) (-3903 (($ $) 30 T ELT))) -(((-1221 |#1|) (-10 -7 (-15 -4055 (|#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3903 (|#1| |#1|))) (-1222)) (T -1221)) -NIL -((-3910 (($ $) 26 T ELT)) (-4067 (($ $) 11 T ELT)) (-3908 (($ $) 27 T ELT)) (-4066 (($ $) 10 T ELT)) (-3912 (($ $) 28 T ELT)) (-4065 (($ $) 9 T ELT)) (-4055 (($) 16 T ELT)) (-4370 (($ $) 19 T ELT)) (-4371 (($ $) 18 T ELT)) (-3913 (($ $) 29 T ELT)) (-4064 (($ $) 8 T ELT)) (-3911 (($ $) 30 T ELT)) (-4063 (($ $) 7 T ELT)) (-3909 (($ $) 31 T ELT)) (-4062 (($ $) 6 T ELT)) (-3916 (($ $) 20 T ELT)) (-3904 (($ $) 32 T ELT)) (-3914 (($ $) 21 T ELT)) (-3902 (($ $) 33 T ELT)) (-3918 (($ $) 22 T ELT)) (-3906 (($ $) 34 T ELT)) (-3919 (($ $) 23 T ELT)) (-3907 (($ $) 35 T ELT)) (-3917 (($ $) 24 T ELT)) (-3905 (($ $) 36 T ELT)) (-3915 (($ $) 25 T ELT)) (-3903 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) -(((-1222) (-142)) (T -1222)) -((-4055 (*1 *1) (-4 *1 (-1222)))) -(-13 (-1225) (-95) (-505) (-35) (-296) (-10 -8 (-15 -4055 ($)))) -(((-35) . T) ((-95) . T) ((-296) . T) ((-505) . T) ((-1225) . T)) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3820 ((|#1| $) 19 T ELT)) (-4060 (($ |#1| (-659 $)) 28 T ELT) (($ (-659 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3424 ((|#1| $ |#1|) 14 (|has| $ (-6 -4424)) ELT)) (-4216 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-3425 (($ $ (-659 $)) 13 (|has| $ (-6 -4424)) ELT)) (-4152 (($) NIL T CONST)) (-3288 (((-659 |#1|) $) 70 (|has| $ (-6 -4423)) ELT)) (-3430 (((-659 $) $) 59 T ELT)) (-3426 (((-114) $ $) 50 (|has| |#1| (-1120)) ELT)) (-3005 (((-659 |#1|) $) 71 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 69 (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3429 (((-659 |#1|) $) 55 T ELT)) (-3945 (((-114) $) 53 T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 67 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 102 T ELT)) (-3821 (((-114) $) 9 T ELT)) (-3991 (($) 10 T ELT)) (-4228 ((|#1| $ #1#) NIL T ELT)) (-3428 (((-557) $ $) 48 T ELT)) (-4056 (((-659 $) $) 84 T ELT)) (-4057 (((-114) $ $) 105 T ELT)) (-4058 (((-659 $) $) 100 T ELT)) (-4059 (($ $) 101 T ELT)) (-4061 (((-114) $) 77 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 25 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 17 (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3818 (($ $) 83 T ELT)) (-4374 (((-875) $) 86 (|has| |#1| (-628 (-875))) ELT)) (-3940 (((-659 $) $) 12 T ELT)) (-3427 (((-114) $ $) 39 (|has| |#1| (-1120)) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 66 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 37 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 81 (|has| $ (-6 -4423)) ELT))) -(((-1223 |#1|) (-13 (-1029 |#1|) (-10 -8 (-6 -4423) (-6 -4424) (-15 -4060 ($ |#1| (-659 $))) (-15 -4060 ($ (-659 |#1|))) (-15 -4060 ($ |#1|)) (-15 -4061 ((-114) $)) (-15 -4059 ($ $)) (-15 -4058 ((-659 $) $)) (-15 -4057 ((-114) $ $)) (-15 -4056 ((-659 $) $)))) (-1120)) (T -1223)) -((-4061 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1223 *3)) (-4 *3 (-1120)))) (-4060 (*1 *1 *2 *3) (-12 (-5 *3 (-659 (-1223 *2))) (-5 *1 (-1223 *2)) (-4 *2 (-1120)))) (-4060 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-5 *1 (-1223 *3)))) (-4060 (*1 *1 *2) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1120)))) (-4059 (*1 *1 *1) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1120)))) (-4058 (*1 *2 *1) (-12 (-5 *2 (-659 (-1223 *3))) (-5 *1 (-1223 *3)) (-4 *3 (-1120)))) (-4057 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1223 *3)) (-4 *3 (-1120)))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-659 (-1223 *3))) (-5 *1 (-1223 *3)) (-4 *3 (-1120))))) -((-4067 (($ $) 15 T ELT)) (-4065 (($ $) 12 T ELT)) (-4064 (($ $) 10 T ELT)) (-4063 (($ $) 17 T ELT))) -(((-1224 |#1|) (-10 -7 (-15 -4063 (|#1| |#1|)) (-15 -4064 (|#1| |#1|)) (-15 -4065 (|#1| |#1|)) (-15 -4067 (|#1| |#1|))) (-1225)) (T -1224)) -NIL -((-4067 (($ $) 11 T ELT)) (-4066 (($ $) 10 T ELT)) (-4065 (($ $) 9 T ELT)) (-4064 (($ $) 8 T ELT)) (-4063 (($ $) 7 T ELT)) (-4062 (($ $) 6 T ELT))) -(((-1225) (-142)) (T -1225)) -((-4067 (*1 *1 *1) (-4 *1 (-1225))) (-4066 (*1 *1 *1) (-4 *1 (-1225))) (-4065 (*1 *1 *1) (-4 *1 (-1225))) (-4064 (*1 *1 *1) (-4 *1 (-1225))) (-4063 (*1 *1 *1) (-4 *1 (-1225))) (-4062 (*1 *1 *1) (-4 *1 (-1225)))) -(-13 (-10 -8 (-15 -4062 ($ $)) (-15 -4063 ($ $)) (-15 -4064 ($ $)) (-15 -4065 ($ $)) (-15 -4066 ($ $)) (-15 -4067 ($ $)))) -((-4070 ((|#2| |#2|) 95 T ELT)) (-4073 (((-114) |#2|) 29 T ELT)) (-4071 ((|#2| |#2|) 33 T ELT)) (-4072 ((|#2| |#2|) 35 T ELT)) (-4068 ((|#2| |#2| (-1196)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-4074 (((-171 |#2|) |#2|) 31 T ELT)) (-4069 ((|#2| |#2| (-1196)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) -(((-1226 |#1| |#2|) (-10 -7 (-15 -4068 (|#2| |#2|)) (-15 -4068 (|#2| |#2| (-1196))) (-15 -4069 (|#2| |#2|)) (-15 -4069 (|#2| |#2| (-1196))) (-15 -4070 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4072 (|#2| |#2|)) (-15 -4073 ((-114) |#2|)) (-15 -4074 ((-171 |#2|) |#2|))) (-13 (-464) (-1057 (-557)) (-656 (-557))) (-13 (-27) (-1222) (-433 |#1|))) (T -1226)) -((-4074 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-171 *3)) (-5 *1 (-1226 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *4))))) (-4073 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-114)) (-5 *1 (-1226 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *4))))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-433 *3))))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-433 *3))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-433 *3))))) (-4069 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-1226 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-433 *4))))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-433 *3))))) (-4068 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-1226 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-433 *4))))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-433 *3)))))) -((-4075 ((|#4| |#4| |#1|) 31 T ELT)) (-4076 ((|#4| |#4| |#1|) 32 T ELT))) -(((-1227 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4075 (|#4| |#4| |#1|)) (-15 -4076 (|#4| |#4| |#1|))) (-568) (-385 |#1|) (-385 |#1|) (-704 |#1| |#2| |#3|)) (T -1227)) -((-4076 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1227 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5)))) (-4075 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1227 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5))))) -((-4094 ((|#2| |#2|) 148 T ELT)) (-4096 ((|#2| |#2|) 145 T ELT)) (-4093 ((|#2| |#2|) 136 T ELT)) (-4095 ((|#2| |#2|) 133 T ELT)) (-4092 ((|#2| |#2|) 141 T ELT)) (-4091 ((|#2| |#2|) 129 T ELT)) (-4080 ((|#2| |#2|) 44 T ELT)) (-4079 ((|#2| |#2|) 105 T ELT)) (-4077 ((|#2| |#2|) 88 T ELT)) (-4090 ((|#2| |#2|) 143 T ELT)) (-4089 ((|#2| |#2|) 131 T ELT)) (-4102 ((|#2| |#2|) 153 T ELT)) (-4100 ((|#2| |#2|) 151 T ELT)) (-4101 ((|#2| |#2|) 152 T ELT)) (-4099 ((|#2| |#2|) 150 T ELT)) (-4078 ((|#2| |#2|) 163 T ELT)) (-4103 ((|#2| |#2|) 30 (-12 (|has| |#2| (-629 (-903 |#1|))) (|has| |#2| (-899 |#1|)) (|has| |#1| (-629 (-903 |#1|))) (|has| |#1| (-899 |#1|))) ELT)) (-4081 ((|#2| |#2|) 89 T ELT)) (-4082 ((|#2| |#2|) 154 T ELT)) (-4391 ((|#2| |#2|) 155 T ELT)) (-4088 ((|#2| |#2|) 142 T ELT)) (-4087 ((|#2| |#2|) 130 T ELT)) (-4086 ((|#2| |#2|) 149 T ELT)) (-4098 ((|#2| |#2|) 147 T ELT)) (-4085 ((|#2| |#2|) 137 T ELT)) (-4097 ((|#2| |#2|) 135 T ELT)) (-4084 ((|#2| |#2|) 139 T ELT)) (-4083 ((|#2| |#2|) 127 T ELT))) -(((-1228 |#1| |#2|) (-10 -7 (-15 -4391 (|#2| |#2|)) (-15 -4077 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (-15 -4079 (|#2| |#2|)) (-15 -4080 (|#2| |#2|)) (-15 -4081 (|#2| |#2|)) (-15 -4082 (|#2| |#2|)) (-15 -4083 (|#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4085 (|#2| |#2|)) (-15 -4086 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -4088 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (-15 -4090 (|#2| |#2|)) (-15 -4091 (|#2| |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -4093 (|#2| |#2|)) (-15 -4094 (|#2| |#2|)) (-15 -4095 (|#2| |#2|)) (-15 -4096 (|#2| |#2|)) (-15 -4097 (|#2| |#2|)) (-15 -4098 (|#2| |#2|)) (-15 -4099 (|#2| |#2|)) (-15 -4100 (|#2| |#2|)) (-15 -4101 (|#2| |#2|)) (-15 -4102 (|#2| |#2|)) (IF (|has| |#1| (-899 |#1|)) (IF (|has| |#1| (-629 (-903 |#1|))) (IF (|has| |#2| (-629 (-903 |#1|))) (IF (|has| |#2| (-899 |#1|)) (-15 -4103 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-464) (-13 (-433 |#1|) (-1222))) (T -1228)) -((-4103 (*1 *2 *2) (-12 (-4 *3 (-629 (-903 *3))) (-4 *3 (-899 *3)) (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-629 (-903 *3))) (-4 *2 (-899 *3)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4102 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4101 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4100 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4099 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4098 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4097 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4096 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4095 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4094 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4093 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4092 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4091 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4090 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4089 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4088 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4086 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4084 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4083 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4082 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4081 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4080 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4079 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4078 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4077 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) (-4391 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3482 (((-659 (-1196)) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3436 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3908 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4066 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3912 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4065 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4152 (($) NIL T CONST)) (-4387 (($ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-4242 (((-963 |#1|) $ (-789)) 17 T ELT) (((-963 |#1|) $ (-789) (-789)) NIL T ELT)) (-3291 (((-114) $) NIL T ELT)) (-4055 (($) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4200 (((-789) $ (-1196)) NIL T ELT) (((-789) $ (-1196) (-789)) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3410 (($ $ (-557)) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ $ (-659 (-1196)) (-659 (-542 (-1196)))) NIL T ELT) (($ $ (-1196) (-542 (-1196))) NIL T ELT) (($ |#1| (-542 (-1196))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4370 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-4240 (($ $ (-1196)) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-1196) |#1|) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4104 (($ (-1 $) (-1196) |#1|) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4197 (($ $ (-789)) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL (|has| |#1| (-568)) ELT)) (-4371 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4196 (($ $ (-1196) $) NIL T ELT) (($ $ (-659 (-1196)) (-659 $)) NIL T ELT) (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT)) (-4186 (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196))) NIL T ELT) (($ $ (-1196)) NIL T ELT)) (-4376 (((-542 (-1196)) $) NIL T ELT)) (-3913 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4064 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4063 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4062 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3290 (($ $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ $) NIL (|has| |#1| (-568)) ELT) (($ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ (-1196)) NIL T ELT) (($ (-963 |#1|)) NIL T ELT)) (-4105 ((|#1| $ (-542 (-1196))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT) (((-963 |#1|) $ (-789)) NIL T ELT)) (-3101 (((-709 $) $) NIL (|has| |#1| (-147)) ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3904 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3914 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3902 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3906 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3917 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3915 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3903 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3068 (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196))) NIL T ELT) (($ $ (-1196)) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-1229 |#1|) (-13 (-758 |#1| (-1196)) (-10 -8 (-15 -4105 ((-963 |#1|) $ (-789))) (-15 -4374 ($ (-1196))) (-15 -4374 ($ (-963 |#1|))) (IF (|has| |#1| (-38 (-419 (-557)))) (PROGN (-15 -4240 ($ $ (-1196) |#1|)) (-15 -4104 ($ (-1 $) (-1196) |#1|))) |%noBranch|))) (-1068)) (T -1229)) -((-4105 (*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-5 *2 (-963 *4)) (-5 *1 (-1229 *4)) (-4 *4 (-1068)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1229 *3)) (-4 *3 (-1068)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-1068)) (-5 *1 (-1229 *3)))) (-4240 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *1 (-1229 *3)) (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068)))) (-4104 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1229 *4))) (-5 *3 (-1196)) (-5 *1 (-1229 *4)) (-4 *4 (-38 (-419 (-557)))) (-4 *4 (-1068))))) -((-4121 (((-114) |#5| $) 68 T ELT) (((-114) $) 109 T ELT)) (-4116 ((|#5| |#5| $) 83 T ELT)) (-4138 (($ (-1 (-114) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-4117 (((-659 |#5|) (-659 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|)) 81 T ELT)) (-3573 (((-3 $ #1#) (-659 |#5|)) 134 T ELT)) (-4227 (((-3 $ #1#) $) 119 T ELT)) (-4113 ((|#5| |#5| $) 101 T ELT)) (-4122 (((-114) |#5| $ (-1 (-114) |#5| |#5|)) 36 T ELT)) (-4111 ((|#5| |#5| $) 105 T ELT)) (-4270 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|)) 77 T ELT)) (-4124 (((-2 (|:| -4289 (-659 |#5|)) (|:| -1903 (-659 |#5|))) $) 63 T ELT)) (-4123 (((-114) |#5| $) 66 T ELT) (((-114) $) 110 T ELT)) (-3596 ((|#4| $) 115 T ELT)) (-4226 (((-3 |#5| #1#) $) 117 T ELT)) (-4125 (((-659 |#5|) $) 55 T ELT)) (-4119 (((-114) |#5| $) 75 T ELT) (((-114) $) 114 T ELT)) (-4114 ((|#5| |#5| $) 89 T ELT)) (-4127 (((-114) $ $) 29 T ELT)) (-4120 (((-114) |#5| $) 71 T ELT) (((-114) $) 112 T ELT)) (-4115 ((|#5| |#5| $) 86 T ELT)) (-4229 (((-3 |#5| #1#) $) 116 T ELT)) (-4197 (($ $ |#5|) 135 T ELT)) (-4376 (((-789) $) 60 T ELT)) (-3948 (($ (-659 |#5|)) 132 T ELT)) (-3309 (($ $ |#4|) 130 T ELT)) (-3311 (($ $ |#4|) 128 T ELT)) (-4112 (($ $) 127 T ELT)) (-4374 (((-875) $) NIL T ELT) (((-659 |#5|) $) 120 T ELT)) (-4106 (((-789) $) 139 T ELT)) (-4126 (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |#5|))) #1#) (-659 |#5|) (-1 (-114) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |#5|))) #1#) (-659 |#5|) (-1 (-114) |#5|) (-1 (-114) |#5| |#5|)) 51 T ELT)) (-4118 (((-114) $ (-1 (-114) |#5| (-659 |#5|))) 107 T ELT)) (-4108 (((-659 |#4|) $) 122 T ELT)) (-4361 (((-114) |#4| $) 125 T ELT)) (-3452 (((-114) $ $) 20 T ELT))) -(((-1230 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4106 ((-789) |#1|)) (-15 -4197 (|#1| |#1| |#5|)) (-15 -4138 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -4361 ((-114) |#4| |#1|)) (-15 -4108 ((-659 |#4|) |#1|)) (-15 -4227 ((-3 |#1| #1#) |#1|)) (-15 -4226 ((-3 |#5| #1#) |#1|)) (-15 -4229 ((-3 |#5| #1#) |#1|)) (-15 -4111 (|#5| |#5| |#1|)) (-15 -4112 (|#1| |#1|)) (-15 -4113 (|#5| |#5| |#1|)) (-15 -4114 (|#5| |#5| |#1|)) (-15 -4115 (|#5| |#5| |#1|)) (-15 -4116 (|#5| |#5| |#1|)) (-15 -4117 ((-659 |#5|) (-659 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -4270 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -4119 ((-114) |#1|)) (-15 -4120 ((-114) |#1|)) (-15 -4121 ((-114) |#1|)) (-15 -4118 ((-114) |#1| (-1 (-114) |#5| (-659 |#5|)))) (-15 -4119 ((-114) |#5| |#1|)) (-15 -4120 ((-114) |#5| |#1|)) (-15 -4121 ((-114) |#5| |#1|)) (-15 -4122 ((-114) |#5| |#1| (-1 (-114) |#5| |#5|))) (-15 -4123 ((-114) |#1|)) (-15 -4123 ((-114) |#5| |#1|)) (-15 -4124 ((-2 (|:| -4289 (-659 |#5|)) (|:| -1903 (-659 |#5|))) |#1|)) (-15 -4376 ((-789) |#1|)) (-15 -4125 ((-659 |#5|) |#1|)) (-15 -4126 ((-3 (-2 (|:| |bas| |#1|) (|:| -3742 (-659 |#5|))) #1#) (-659 |#5|) (-1 (-114) |#5|) (-1 (-114) |#5| |#5|))) (-15 -4126 ((-3 (-2 (|:| |bas| |#1|) (|:| -3742 (-659 |#5|))) #1#) (-659 |#5|) (-1 (-114) |#5| |#5|))) (-15 -4127 ((-114) |#1| |#1|)) (-15 -3309 (|#1| |#1| |#4|)) (-15 -3311 (|#1| |#1| |#4|)) (-15 -3596 (|#4| |#1|)) (-15 -3573 ((-3 |#1| #1#) (-659 |#5|))) (-15 -4374 ((-659 |#5|) |#1|)) (-15 -3948 (|#1| (-659 |#5|))) (-15 -4270 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4270 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4138 (|#1| (-1 (-114) |#5|) |#1|)) (-15 -4270 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4374 ((-875) |#1|)) (-15 -3452 ((-114) |#1| |#1|))) (-1231 |#2| |#3| |#4| |#5|) (-568) (-813) (-859) (-1084 |#2| |#3| |#4|)) (T -1230)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-4109 (((-659 (-2 (|:| -4289 $) (|:| -1903 (-659 |#4|)))) (-659 |#4|)) 90 T ELT)) (-4110 (((-659 $) (-659 |#4|)) 91 T ELT)) (-3482 (((-659 |#3|) $) 37 T ELT)) (-3307 (((-114) $) 30 T ELT)) (-3298 (((-114) $) 21 (|has| |#1| (-568)) ELT)) (-4121 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4116 ((|#4| |#4| $) 97 T ELT)) (-3308 (((-2 (|:| |under| $) (|:| -3530 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4138 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4423)) ELT) (((-3 |#4| "failed") $ |#3|) 84 T ELT)) (-4152 (($) 46 T CONST)) (-3303 (((-114) $) 26 (|has| |#1| (-568)) ELT)) (-3305 (((-114) $ $) 28 (|has| |#1| (-568)) ELT)) (-3304 (((-114) $ $) 27 (|has| |#1| (-568)) ELT)) (-3306 (((-114) $) 29 (|has| |#1| (-568)) ELT)) (-4117 (((-659 |#4|) (-659 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3299 (((-659 |#4|) (-659 |#4|) $) 22 (|has| |#1| (-568)) ELT)) (-3300 (((-659 |#4|) (-659 |#4|) $) 23 (|has| |#1| (-568)) ELT)) (-3573 (((-3 $ "failed") (-659 |#4|)) 40 T ELT)) (-3572 (($ (-659 |#4|)) 39 T ELT)) (-4227 (((-3 $ "failed") $) 87 T ELT)) (-4113 ((|#4| |#4| $) 94 T ELT)) (-1465 (($ $) 69 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3824 (($ |#4| $) 68 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4423)) ELT)) (-3301 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-568)) ELT)) (-4122 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4111 ((|#4| |#4| $) 92 T ELT)) (-4270 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4423)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4423)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4124 (((-2 (|:| -4289 (-659 |#4|)) (|:| -1903 (-659 |#4|))) $) 110 T ELT)) (-3288 (((-659 |#4|) $) 53 (|has| $ (-6 -4423)) ELT)) (-4123 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3596 ((|#3| $) 38 T ELT)) (-3005 (((-659 |#4|) $) 54 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3313 (((-659 |#3|) $) 36 T ELT)) (-3312 (((-114) |#3| $) 35 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-4226 (((-3 |#4| "failed") $) 88 T ELT)) (-4125 (((-659 |#4|) $) 112 T ELT)) (-4119 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4114 ((|#4| |#4| $) 95 T ELT)) (-4127 (((-114) $ $) 115 T ELT)) (-3302 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-568)) ELT)) (-4120 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4115 ((|#4| |#4| $) 96 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4229 (((-3 |#4| "failed") $) 89 T ELT)) (-1466 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4107 (((-3 $ "failed") $ |#4|) 83 T ELT)) (-4197 (($ $ |#4|) 82 T ELT)) (-2156 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 |#4|) (-659 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-659 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT)) (-1327 (((-114) $ $) 42 T ELT)) (-3821 (((-114) $) 45 T ELT)) (-3991 (($) 44 T ELT)) (-4376 (((-789) $) 111 T ELT)) (-2155 (((-789) |#4| $) 55 (-12 (|has| |#4| (-1120)) (|has| $ (-6 -4423))) ELT) (((-789) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) 43 T ELT)) (-4400 (((-546) $) 70 (|has| |#4| (-629 (-546))) ELT)) (-3948 (($ (-659 |#4|)) 61 T ELT)) (-3309 (($ $ |#3|) 32 T ELT)) (-3311 (($ $ |#3|) 34 T ELT)) (-4112 (($ $) 93 T ELT)) (-3310 (($ $ |#3|) 33 T ELT)) (-4374 (((-875) $) 13 T ELT) (((-659 |#4|) $) 41 T ELT)) (-4106 (((-789) $) 81 (|has| |#3| (-381)) ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-4126 (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |#4|))) "failed") (-659 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |#4|))) "failed") (-659 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4118 (((-114) $ (-1 (-114) |#4| (-659 |#4|))) 103 T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4423)) ELT)) (-4108 (((-659 |#3|) $) 86 T ELT)) (-4361 (((-114) |#3| $) 85 T ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4385 (((-789) $) 47 (|has| $ (-6 -4423)) ELT))) -(((-1231 |#1| |#2| |#3| |#4|) (-142) (-568) (-813) (-859) (-1084 |t#1| |t#2| |t#3|)) (T -1231)) -((-4127 (*1 *2 *1 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-114)))) (-4126 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-114) *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3742 (-659 *8)))) (-5 *3 (-659 *8)) (-4 *1 (-1231 *5 *6 *7 *8)))) (-4126 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-114) *9)) (-5 *5 (-1 (-114) *9 *9)) (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-813)) (-4 *8 (-859)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3742 (-659 *9)))) (-5 *3 (-659 *9)) (-4 *1 (-1231 *6 *7 *8 *9)))) (-4125 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-659 *6)))) (-4376 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-789)))) (-4124 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-2 (|:| -4289 (-659 *6)) (|:| -1903 (-659 *6)))))) (-4123 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-114)))) (-4123 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-114)))) (-4122 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *1 (-1231 *5 *6 *7 *3)) (-4 *5 (-568)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-114)))) (-4121 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-114)))) (-4120 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-114)))) (-4119 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-114)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-114) *7 (-659 *7))) (-4 *1 (-1231 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-114)))) (-4121 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-114)))) (-4120 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-114)))) (-4119 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-114)))) (-4270 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-114) *2 *2)) (-4 *1 (-1231 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *2 (-1084 *5 *6 *7)))) (-4117 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-659 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-114) *8 *8)) (-4 *1 (-1231 *5 *6 *7 *8)) (-4 *5 (-568)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *8 (-1084 *5 *6 *7)))) (-4116 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *2 (-1084 *3 *4 *5)))) (-4115 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *2 (-1084 *3 *4 *5)))) (-4114 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *2 (-1084 *3 *4 *5)))) (-4113 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *2 (-1084 *3 *4 *5)))) (-4112 (*1 *1 *1) (-12 (-4 *1 (-1231 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *5 (-1084 *2 *3 *4)))) (-4111 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *2 (-1084 *3 *4 *5)))) (-4110 (*1 *2 *3) (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-659 *1)) (-4 *1 (-1231 *4 *5 *6 *7)))) (-4109 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-659 (-2 (|:| -4289 *1) (|:| -1903 (-659 *7))))) (-5 *3 (-659 *7)) (-4 *1 (-1231 *4 *5 *6 *7)))) (-4229 (*1 *2 *1) (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *2 (-1084 *3 *4 *5)))) (-4226 (*1 *2 *1) (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *2 (-1084 *3 *4 *5)))) (-4227 (*1 *1 *1) (|partial| -12 (-4 *1 (-1231 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-813)) (-4 *4 (-859)) (-4 *5 (-1084 *2 *3 *4)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-659 *5)))) (-4361 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *3 (-859)) (-4 *6 (-1084 *4 *5 *3)) (-5 *2 (-114)))) (-4138 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1231 *4 *5 *3 *2)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *3 (-859)) (-4 *2 (-1084 *4 *5 *3)))) (-4107 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *2 (-1084 *3 *4 *5)))) (-4197 (*1 *1 *1 *2) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *2 (-1084 *3 *4 *5)))) (-4106 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-4 *5 (-381)) (-5 *2 (-789))))) -(-13 (-995 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4423) (-6 -4424) (-15 -4127 ((-114) $ $)) (-15 -4126 ((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |t#4|))) "failed") (-659 |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -4126 ((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |t#4|))) "failed") (-659 |t#4|) (-1 (-114) |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -4125 ((-659 |t#4|) $)) (-15 -4376 ((-789) $)) (-15 -4124 ((-2 (|:| -4289 (-659 |t#4|)) (|:| -1903 (-659 |t#4|))) $)) (-15 -4123 ((-114) |t#4| $)) (-15 -4123 ((-114) $)) (-15 -4122 ((-114) |t#4| $ (-1 (-114) |t#4| |t#4|))) (-15 -4121 ((-114) |t#4| $)) (-15 -4120 ((-114) |t#4| $)) (-15 -4119 ((-114) |t#4| $)) (-15 -4118 ((-114) $ (-1 (-114) |t#4| (-659 |t#4|)))) (-15 -4121 ((-114) $)) (-15 -4120 ((-114) $)) (-15 -4119 ((-114) $)) (-15 -4270 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -4117 ((-659 |t#4|) (-659 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -4116 (|t#4| |t#4| $)) (-15 -4115 (|t#4| |t#4| $)) (-15 -4114 (|t#4| |t#4| $)) (-15 -4113 (|t#4| |t#4| $)) (-15 -4112 ($ $)) (-15 -4111 (|t#4| |t#4| $)) (-15 -4110 ((-659 $) (-659 |t#4|))) (-15 -4109 ((-659 (-2 (|:| -4289 $) (|:| -1903 (-659 |t#4|)))) (-659 |t#4|))) (-15 -4229 ((-3 |t#4| "failed") $)) (-15 -4226 ((-3 |t#4| "failed") $)) (-15 -4227 ((-3 $ "failed") $)) (-15 -4108 ((-659 |t#3|) $)) (-15 -4361 ((-114) |t#3| $)) (-15 -4138 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4107 ((-3 $ "failed") $ |t#4|)) (-15 -4197 ($ $ |t#4|)) (IF (|has| |t#3| (-381)) (-15 -4106 ((-789) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-628 (-659 |#4|)) . T) ((-628 (-875)) . T) ((-153 |#4|) . T) ((-629 (-546)) |has| |#4| (-629 (-546))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1120) . T) ((-1236) . T)) -((-4133 (($ |#1| (-659 (-659 (-960 (-229)))) (-114)) 19 T ELT)) (-4132 (((-114) $ (-114)) 18 T ELT)) (-4131 (((-114) $) 17 T ELT)) (-4129 (((-659 (-659 (-960 (-229)))) $) 13 T ELT)) (-4128 ((|#1| $) 8 T ELT)) (-4130 (((-114) $) 15 T ELT))) -(((-1232 |#1|) (-10 -8 (-15 -4128 (|#1| $)) (-15 -4129 ((-659 (-659 (-960 (-229)))) $)) (-15 -4130 ((-114) $)) (-15 -4131 ((-114) $)) (-15 -4132 ((-114) $ (-114))) (-15 -4133 ($ |#1| (-659 (-659 (-960 (-229)))) (-114)))) (-993)) (T -1232)) -((-4133 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-659 (-659 (-960 (-229))))) (-5 *4 (-114)) (-5 *1 (-1232 *2)) (-4 *2 (-993)))) (-4132 (*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1232 *3)) (-4 *3 (-993)))) (-4131 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1232 *3)) (-4 *3 (-993)))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1232 *3)) (-4 *3 (-993)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-659 (-659 (-960 (-229))))) (-5 *1 (-1232 *3)) (-4 *3 (-993)))) (-4128 (*1 *2 *1) (-12 (-5 *1 (-1232 *2)) (-4 *2 (-993))))) -((-4135 (((-960 (-229)) (-960 (-229))) 31 T ELT)) (-4134 (((-960 (-229)) (-229) (-229) (-229) (-229)) 10 T ELT)) (-4137 (((-659 (-960 (-229))) (-960 (-229)) (-960 (-229)) (-960 (-229)) (-229) (-659 (-659 (-229)))) 57 T ELT)) (-4264 (((-229) (-960 (-229)) (-960 (-229))) 27 T ELT)) (-4262 (((-960 (-229)) (-960 (-229)) (-960 (-229))) 28 T ELT)) (-4136 (((-659 (-659 (-229))) (-557)) 45 T ELT)) (-4265 (((-960 (-229)) (-960 (-229)) (-960 (-229))) 26 T ELT)) (-4267 (((-960 (-229)) (-960 (-229)) (-960 (-229))) 24 T ELT)) (* (((-960 (-229)) (-229) (-960 (-229))) 22 T ELT))) -(((-1233) (-10 -7 (-15 -4134 ((-960 (-229)) (-229) (-229) (-229) (-229))) (-15 * ((-960 (-229)) (-229) (-960 (-229)))) (-15 -4267 ((-960 (-229)) (-960 (-229)) (-960 (-229)))) (-15 -4265 ((-960 (-229)) (-960 (-229)) (-960 (-229)))) (-15 -4264 ((-229) (-960 (-229)) (-960 (-229)))) (-15 -4262 ((-960 (-229)) (-960 (-229)) (-960 (-229)))) (-15 -4135 ((-960 (-229)) (-960 (-229)))) (-15 -4136 ((-659 (-659 (-229))) (-557))) (-15 -4137 ((-659 (-960 (-229))) (-960 (-229)) (-960 (-229)) (-960 (-229)) (-229) (-659 (-659 (-229))))))) (T -1233)) -((-4137 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-659 (-659 (-229)))) (-5 *4 (-229)) (-5 *2 (-659 (-960 *4))) (-5 *1 (-1233)) (-5 *3 (-960 *4)))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-557)) (-5 *2 (-659 (-659 (-229)))) (-5 *1 (-1233)))) (-4135 (*1 *2 *2) (-12 (-5 *2 (-960 (-229))) (-5 *1 (-1233)))) (-4262 (*1 *2 *2 *2) (-12 (-5 *2 (-960 (-229))) (-5 *1 (-1233)))) (-4264 (*1 *2 *3 *3) (-12 (-5 *3 (-960 (-229))) (-5 *2 (-229)) (-5 *1 (-1233)))) (-4265 (*1 *2 *2 *2) (-12 (-5 *2 (-960 (-229))) (-5 *1 (-1233)))) (-4267 (*1 *2 *2 *2) (-12 (-5 *2 (-960 (-229))) (-5 *1 (-1233)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-960 (-229))) (-5 *3 (-229)) (-5 *1 (-1233)))) (-4134 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-960 (-229))) (-5 *1 (-1233)) (-5 *3 (-229))))) -((-2965 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-4138 ((|#1| $ (-789)) 18 T ELT)) (-4261 (((-789) $) 13 T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-4374 (((-975 |#1|) $) 12 T ELT) (($ (-975 |#1|)) 11 T ELT) (((-875) $) 29 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-3452 (((-114) $ $) 22 (|has| |#1| (-1120)) ELT))) -(((-1234 |#1|) (-13 (-502 (-975 |#1|)) (-10 -8 (-15 -4138 (|#1| $ (-789))) (-15 -4261 ((-789) $)) (IF (|has| |#1| (-628 (-875))) (-6 (-628 (-875))) |%noBranch|) (IF (|has| |#1| (-1120)) (-6 (-1120)) |%noBranch|))) (-1236)) (T -1234)) -((-4138 (*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-5 *1 (-1234 *2)) (-4 *2 (-1236)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-1234 *3)) (-4 *3 (-1236))))) -((-4141 (((-417 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|)) (-557)) 92 T ELT)) (-4139 (((-417 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|))) 84 T ELT)) (-4140 (((-417 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|))) 68 T ELT))) -(((-1235 |#1|) (-10 -7 (-15 -4139 ((-417 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|)))) (-15 -4140 ((-417 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|)))) (-15 -4141 ((-417 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|)) (-557)))) (-363)) (T -1235)) -((-4141 (*1 *2 *3 *4) (-12 (-5 *4 (-557)) (-4 *5 (-363)) (-5 *2 (-417 (-1190 (-1190 *5)))) (-5 *1 (-1235 *5)) (-5 *3 (-1190 (-1190 *5))))) (-4140 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-417 (-1190 (-1190 *4)))) (-5 *1 (-1235 *4)) (-5 *3 (-1190 (-1190 *4))))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-417 (-1190 (-1190 *4)))) (-5 *1 (-1235 *4)) (-5 *3 (-1190 (-1190 *4)))))) -NIL -(((-1236) (-142)) (T -1236)) -NIL -(-13 (-10 -7 (-6 -2499))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 9 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1237) (-1102)) (T -1237)) -NIL -((-4145 (((-114)) 18 T ELT)) (-4142 (((-1292) (-659 |#1|) (-659 |#1|)) 22 T ELT) (((-1292) (-659 |#1|)) 23 T ELT)) (-4147 (((-114) |#1| |#1|) 37 (|has| |#1| (-859)) ELT)) (-4144 (((-114) |#1| |#1| (-1 (-114) |#1| |#1|)) 29 T ELT) (((-3 (-114) "failed") |#1| |#1|) 27 T ELT)) (-4146 ((|#1| (-659 |#1|)) 38 (|has| |#1| (-859)) ELT) ((|#1| (-659 |#1|) (-1 (-114) |#1| |#1|)) 32 T ELT)) (-4143 (((-2 (|:| -3645 (-659 |#1|)) (|:| -3644 (-659 |#1|)))) 20 T ELT))) -(((-1238 |#1|) (-10 -7 (-15 -4142 ((-1292) (-659 |#1|))) (-15 -4142 ((-1292) (-659 |#1|) (-659 |#1|))) (-15 -4143 ((-2 (|:| -3645 (-659 |#1|)) (|:| -3644 (-659 |#1|))))) (-15 -4144 ((-3 (-114) "failed") |#1| |#1|)) (-15 -4144 ((-114) |#1| |#1| (-1 (-114) |#1| |#1|))) (-15 -4146 (|#1| (-659 |#1|) (-1 (-114) |#1| |#1|))) (-15 -4145 ((-114))) (IF (|has| |#1| (-859)) (PROGN (-15 -4146 (|#1| (-659 |#1|))) (-15 -4147 ((-114) |#1| |#1|))) |%noBranch|)) (-1120)) (T -1238)) -((-4147 (*1 *2 *3 *3) (-12 (-5 *2 (-114)) (-5 *1 (-1238 *3)) (-4 *3 (-859)) (-4 *3 (-1120)))) (-4146 (*1 *2 *3) (-12 (-5 *3 (-659 *2)) (-4 *2 (-1120)) (-4 *2 (-859)) (-5 *1 (-1238 *2)))) (-4145 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1238 *3)) (-4 *3 (-1120)))) (-4146 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *2)) (-5 *4 (-1 (-114) *2 *2)) (-5 *1 (-1238 *2)) (-4 *2 (-1120)))) (-4144 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *3 (-1120)) (-5 *2 (-114)) (-5 *1 (-1238 *3)))) (-4144 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-114)) (-5 *1 (-1238 *3)) (-4 *3 (-1120)))) (-4143 (*1 *2) (-12 (-5 *2 (-2 (|:| -3645 (-659 *3)) (|:| -3644 (-659 *3)))) (-5 *1 (-1238 *3)) (-4 *3 (-1120)))) (-4142 (*1 *2 *3 *3) (-12 (-5 *3 (-659 *4)) (-4 *4 (-1120)) (-5 *2 (-1292)) (-5 *1 (-1238 *4)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-659 *4)) (-4 *4 (-1120)) (-5 *2 (-1292)) (-5 *1 (-1238 *4))))) -((-4148 (((-1292) (-659 (-1196)) (-659 (-1196))) 14 T ELT) (((-1292) (-659 (-1196))) 12 T ELT)) (-4150 (((-1292)) 16 T ELT)) (-4149 (((-2 (|:| -3644 (-659 (-1196))) (|:| -3645 (-659 (-1196))))) 20 T ELT))) -(((-1239) (-10 -7 (-15 -4148 ((-1292) (-659 (-1196)))) (-15 -4148 ((-1292) (-659 (-1196)) (-659 (-1196)))) (-15 -4149 ((-2 (|:| -3644 (-659 (-1196))) (|:| -3645 (-659 (-1196)))))) (-15 -4150 ((-1292))))) (T -1239)) -((-4150 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1239)))) (-4149 (*1 *2) (-12 (-5 *2 (-2 (|:| -3644 (-659 (-1196))) (|:| -3645 (-659 (-1196))))) (-5 *1 (-1239)))) (-4148 (*1 *2 *3 *3) (-12 (-5 *3 (-659 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1239)))) (-4148 (*1 *2 *3) (-12 (-5 *3 (-659 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1239))))) -((-4203 (($ $) 17 T ELT)) (-4151 (((-114) $) 27 T ELT))) -(((-1240 |#1|) (-10 -7 (-15 -4203 (|#1| |#1|)) (-15 -4151 ((-114) |#1|))) (-1241)) (T -1240)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 52 T ELT)) (-2271 (($ $) 51 T ELT)) (-2269 (((-114) $) 49 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4203 (($ $) 63 T ELT)) (-4399 (((-417 $) $) 64 T ELT)) (-4152 (($) 22 T CONST)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-4151 (((-114) $) 65 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-2100 (($ $ $) 57 T ELT) (($ (-659 $)) 56 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 55 T ELT)) (-3560 (($ $ $) 59 T ELT) (($ (-659 $)) 58 T ELT)) (-4160 (((-417 $) $) 62 T ELT)) (-3884 (((-3 $ "failed") $ $) 53 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 54 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 50 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-1241) (-142)) (T -1241)) -((-4151 (*1 *2 *1) (-12 (-4 *1 (-1241)) (-5 *2 (-114)))) (-4399 (*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1241)))) (-4203 (*1 *1 *1) (-4 *1 (-1241))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1241))))) -(-13 (-464) (-10 -8 (-15 -4151 ((-114) $)) (-15 -4399 ((-417 $) $)) (-15 -4203 ($ $)) (-15 -4160 ((-417 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-631 (-557)) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-175) . T) ((-302) . T) ((-464) . T) ((-568) . T) ((-664 (-557)) . T) ((-664 $) . T) ((-666 $) . T) ((-658 $) . T) ((-735 $) . T) ((-744) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-2524 (($ $) NIL T ELT)) (-3536 (((-789)) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3393 (($) NIL T ELT)) (-2928 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3256 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2218 (((-936) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2629 (($ (-936)) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-4153 (($ $ $) NIL T ELT)) (-4154 (($ $ $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2522 (($ $ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-2523 (($ $ $) NIL T ELT))) -(((-1242) (-13 (-855) (-680) (-10 -8 (-15 -4154 ($ $ $)) (-15 -4153 ($ $ $)) (-15 -4152 ($) -4380)))) (T -1242)) -((-4154 (*1 *1 *1 *1) (-5 *1 (-1242))) (-4153 (*1 *1 *1 *1) (-5 *1 (-1242))) (-4152 (*1 *1) (-5 *1 (-1242)))) -((-789) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-2965 (((-114) $ $) NIL T ELT)) (-2524 (($ $) NIL T ELT)) (-3536 (((-789)) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3393 (($) NIL T ELT)) (-2928 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3256 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2218 (((-936) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2629 (($ (-936)) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-4153 (($ $ $) NIL T ELT)) (-4154 (($ $ $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2522 (($ $ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-2523 (($ $ $) NIL T ELT))) -(((-1243) (-13 (-855) (-680) (-10 -8 (-15 -4154 ($ $ $)) (-15 -4153 ($ $ $)) (-15 -4152 ($) -4380)))) (T -1243)) -((-4154 (*1 *1 *1 *1) (-5 *1 (-1243))) (-4153 (*1 *1 *1 *1) (-5 *1 (-1243))) (-4152 (*1 *1) (-5 *1 (-1243)))) -((-789) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-2965 (((-114) $ $) NIL T ELT)) (-2524 (($ $) NIL T ELT)) (-3536 (((-789)) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3393 (($) NIL T ELT)) (-2928 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3256 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2218 (((-936) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2629 (($ (-936)) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-4153 (($ $ $) NIL T ELT)) (-4154 (($ $ $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2522 (($ $ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-2523 (($ $ $) NIL T ELT))) -(((-1244) (-13 (-855) (-680) (-10 -8 (-15 -4154 ($ $ $)) (-15 -4153 ($ $ $)) (-15 -4152 ($) -4380)))) (T -1244)) -((-4154 (*1 *1 *1 *1) (-5 *1 (-1244))) (-4153 (*1 *1 *1 *1) (-5 *1 (-1244))) (-4152 (*1 *1) (-5 *1 (-1244)))) -((-789) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-2965 (((-114) $ $) NIL T ELT)) (-2524 (($ $) NIL T ELT)) (-3536 (((-789)) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3393 (($) NIL T ELT)) (-2928 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3256 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2218 (((-936) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2629 (($ (-936)) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT)) (-4153 (($ $ $) NIL T ELT)) (-4154 (($ $ $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2522 (($ $ $) NIL T ELT)) (-2963 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-2523 (($ $ $) NIL T ELT))) -(((-1245) (-13 (-855) (-680) (-10 -8 (-15 -4154 ($ $ $)) (-15 -4153 ($ $ $)) (-15 -4152 ($) -4380)))) (T -1245)) -((-4154 (*1 *1 *1 *1) (-5 *1 (-1245))) (-4153 (*1 *1 *1 *1) (-5 *1 (-1245))) (-4152 (*1 *1) (-5 *1 (-1245)))) -((-789) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3529 (((-1276 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3482 (((-659 (-1101)) $) NIL T ELT)) (-4259 (((-1196) $) 10 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) (|has| |#1| (-568))) ELT)) (-2271 (($ $) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) (|has| |#1| (-568))) ELT)) (-2269 (((-114) $) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) (|has| |#1| (-568))) ELT)) (-4199 (($ $ (-557)) NIL T ELT) (($ $ (-557) (-557)) NIL T ELT)) (-4202 (((-1174 (-2 (|:| |k| (-557)) (|:| |c| |#1|))) $) NIL T ELT)) (-4159 (((-1276 |#1| |#2| |#3|) $) NIL T ELT)) (-4156 (((-3 (-1276 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-4157 (((-1276 |#1| |#2| |#3|) $) NIL T ELT)) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1424 (((-3 $ #1#) $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) ELT)) (-4203 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3436 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) ELT)) (-1786 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3908 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4066 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4051 (((-557) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) ELT)) (-4246 (($ (-1174 (-2 (|:| |k| (-557)) (|:| |c| |#1|)))) NIL T ELT)) (-3912 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4065 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-1276 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1196) #1#) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1057 (-1196))) (|has| |#1| (-376))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1057 (-557))) (|has| |#1| (-376))) ELT) (((-3 (-557) #1#) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1057 (-557))) (|has| |#1| (-376))) ELT)) (-3572 (((-1276 |#1| |#2| |#3|) $) NIL T ELT) (((-1196) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1057 (-1196))) (|has| |#1| (-376))) ELT) (((-419 (-557)) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1057 (-557))) (|has| |#1| (-376))) ELT) (((-557) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1057 (-557))) (|has| |#1| (-376))) ELT)) (-4158 (($ $) NIL T ELT) (($ (-557) $) NIL T ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4387 (($ $) NIL T ELT)) (-2491 (((-707 (-1276 |#1| |#2| |#3|)) (-707 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1781 (-707 (-1276 |#1| |#2| |#3|))) (|:| |vec| (-1286 (-1276 |#1| |#2| |#3|)))) (-707 $) (-1286 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-656 (-557))) (|has| |#1| (-376))) ELT) (((-707 (-557)) (-707 $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-656 (-557))) (|has| |#1| (-376))) ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-4155 (((-419 (-963 |#1|)) $ (-557)) NIL (|has| |#1| (-568)) ELT) (((-419 (-963 |#1|)) $ (-557) (-557)) NIL (|has| |#1| (-568)) ELT)) (-3393 (($) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-556)) (|has| |#1| (-376))) ELT)) (-2960 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL (|has| |#1| (-376)) ELT)) (-4151 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3602 (((-114) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) ELT)) (-3291 (((-114) $) NIL T ELT)) (-4055 (($) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-899 (-391))) (|has| |#1| (-376))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-899 (-557))) (|has| |#1| (-376))) ELT)) (-4200 (((-557) $) NIL T ELT) (((-557) $ (-557)) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3395 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3397 (((-1276 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT)) (-3410 (($ $ (-557)) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3863 (((-709 $) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1171)) (|has| |#1| (-376))) ELT)) (-3603 (((-114) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) ELT)) (-4205 (($ $ (-936)) NIL T ELT)) (-4243 (($ (-1 |#1| (-557)) $) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-557)) 18 T ELT) (($ $ (-1101) (-557)) NIL T ELT) (($ $ (-659 (-1101)) (-659 (-557))) NIL T ELT)) (-2928 (($ $ $) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-859)) (|has| |#1| (-376)))) ELT)) (-3256 (($ $ $) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-859)) (|has| |#1| (-376)))) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-376)) ELT)) (-4370 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2492 (((-707 (-1276 |#1| |#2| |#3|)) (-1286 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1781 (-707 (-1276 |#1| |#2| |#3|))) (|:| |vec| (-1286 (-1276 |#1| |#2| |#3|)))) (-1286 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-656 (-557))) (|has| |#1| (-376))) ELT) (((-707 (-557)) (-1286 $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-656 (-557))) (|has| |#1| (-376))) ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4207 (($ (-557) (-1276 |#1| |#2| |#3|)) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4240 (($ $) 27 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-29 (-557))) (|has| |#1| (-977)) (|has| |#1| (-1222))) (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-15 -4240 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -3482 ((-659 (-1196)) |#1|))))) ELT) (($ $ (-1283 |#2|)) 28 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3864 (($) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1171)) (|has| |#1| (-376))) CONST)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-376)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3528 (($ $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3530 (((-1276 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-556)) (|has| |#1| (-376))) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) ELT)) (-4160 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4197 (($ $ (-557)) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) (|has| |#1| (-568))) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-4371 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4196 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-557)))) ELT) (($ $ (-1196) (-1276 |#1| |#2| |#3|)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-526 (-1196) (-1276 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-659 (-1196)) (-659 (-1276 |#1| |#2| |#3|))) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-526 (-1196) (-1276 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-659 (-305 (-1276 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-321 (-1276 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-305 (-1276 |#1| |#2| |#3|))) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-321 (-1276 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-321 (-1276 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-659 (-1276 |#1| |#2| |#3|)) (-659 (-1276 |#1| |#2| |#3|))) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-321 (-1276 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-1785 (((-789) $) NIL (|has| |#1| (-376)) ELT)) (-4228 ((|#1| $ (-557)) NIL T ELT) (($ $ $) NIL (|has| (-557) (-1131)) ELT) (($ $ (-1276 |#1| |#2| |#3|)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-298 (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4186 (($ $ (-1 (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|)) (-789)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1283 |#2|)) 26 T ELT) (($ $) 25 (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-789)) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT) (($ $ (-659 (-1196))) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT) (($ $ (-1196) (-789)) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT)) (-3394 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3396 (((-1276 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT)) (-4376 (((-557) $) NIL T ELT)) (-3913 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4064 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4063 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4062 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4400 (((-546) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-629 (-546))) (|has| |#1| (-376))) ELT) (((-391) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1039)) (|has| |#1| (-376))) ELT) (((-229) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1039)) (|has| |#1| (-376))) ELT) (((-903 (-391)) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-629 (-903 (-391)))) (|has| |#1| (-376))) ELT) (((-903 (-557)) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-629 (-903 (-557)))) (|has| |#1| (-376))) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| (-1276 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) ELT)) (-3290 (($ $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1276 |#1| |#2| |#3|)) NIL T ELT) (($ (-1283 |#2|)) 24 T ELT) (($ (-1196)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1057 (-1196))) (|has| |#1| (-376))) ELT) (($ $) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) (|has| |#1| (-568))) ELT) (($ (-419 (-557))) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-1057 (-557))) (|has| |#1| (-376))) (|has| |#1| (-38 (-419 (-557))))) ELT)) (-4105 ((|#1| $ (-557)) NIL T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| (-1276 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-4201 ((|#1| $) 11 T ELT)) (-3531 (((-1276 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-556)) (|has| |#1| (-376))) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3904 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2270 (((-114) $ $) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-927)) (|has| |#1| (-376))) (|has| |#1| (-568))) ELT)) (-3914 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3902 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3906 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4198 ((|#1| $ (-557)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-557)))) (|has| |#1| (-15 -4374 (|#1| (-1196))))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3917 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3915 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3903 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3801 (($ $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) ELT)) (-3057 (($) 20 T CONST)) (-3063 (($) 15 T CONST)) (-3068 (($ $ (-1 (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|)) (-789)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1283 |#2|)) NIL T ELT) (($ $) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-789)) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT) (($ $ (-659 (-1196))) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT) (($ $ (-1196) (-789)) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT)) (-2963 (((-114) $ $) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-859)) (|has| |#1| (-376)))) ELT)) (-2964 (((-114) $ $) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-859)) (|has| |#1| (-376)))) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-3083 (((-114) $ $) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-859)) (|has| |#1| (-376)))) ELT)) (-3084 (((-114) $ $) NIL (-3955 (-12 (|has| (-1276 |#1| |#2| |#3|) (-840)) (|has| |#1| (-376))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-859)) (|has| |#1| (-376)))) ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT) (($ (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|)) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 22 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1276 |#1| |#2| |#3|)) NIL (|has| |#1| (-376)) ELT) (($ (-1276 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-1246 |#1| |#2| |#3|) (-13 (-1250 |#1| (-1276 |#1| |#2| |#3|)) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -4374 ($ (-1283 |#2|))) (IF (|has| |#1| (-38 (-419 (-557)))) (-15 -4240 ($ $ (-1283 |#2|))) |%noBranch|))) (-1068) (-1196) |#1|) (T -1246)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1246 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) (-4240 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1246 *3 *4 *5)) (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068)) (-14 *5 *3)))) -((-4386 (((-1246 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1246 |#1| |#3| |#5|)) 23 T ELT))) -(((-1247 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4386 ((-1246 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1246 |#1| |#3| |#5|)))) (-1068) (-1068) (-1196) (-1196) |#1| |#2|) (T -1247)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1246 *5 *7 *9)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-14 *7 (-1196)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1246 *6 *8 *10)) (-5 *1 (-1247 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1196))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-3482 (((-659 (-1101)) $) 92 T ELT)) (-4259 (((-1196) $) 126 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 68 (|has| |#1| (-568)) ELT)) (-2271 (($ $) 69 (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) 71 (|has| |#1| (-568)) ELT)) (-4199 (($ $ (-557)) 121 T ELT) (($ $ (-557) (-557)) 120 T ELT)) (-4202 (((-1174 (-2 (|:| |k| (-557)) (|:| |c| |#1|))) $) 127 T ELT)) (-3910 (($ $) 160 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4067 (($ $) 143 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4203 (($ $) 187 (|has| |#1| (-376)) ELT)) (-4399 (((-417 $) $) 188 (|has| |#1| (-376)) ELT)) (-3436 (($ $) 142 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1786 (((-114) $ $) 178 (|has| |#1| (-376)) ELT)) (-3908 (($ $) 159 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4066 (($ $) 144 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4246 (($ (-1174 (-2 (|:| |k| (-557)) (|:| |c| |#1|)))) 198 T ELT)) (-3912 (($ $) 158 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4065 (($ $) 145 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4152 (($) 22 T CONST)) (-2961 (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-4387 (($ $) 77 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-4155 (((-419 (-963 |#1|)) $ (-557)) 196 (|has| |#1| (-568)) ELT) (((-419 (-963 |#1|)) $ (-557) (-557)) 195 (|has| |#1| (-568)) ELT)) (-2960 (($ $ $) 181 (|has| |#1| (-376)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 176 (|has| |#1| (-376)) ELT)) (-4151 (((-114) $) 189 (|has| |#1| (-376)) ELT)) (-3291 (((-114) $) 91 T ELT)) (-4055 (($) 170 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4200 (((-557) $) 123 T ELT) (((-557) $ (-557)) 122 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3410 (($ $ (-557)) 141 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4205 (($ $ (-936)) 124 T ELT)) (-4243 (($ (-1 |#1| (-557)) $) 197 T ELT)) (-1783 (((-3 (-659 $) #1="failed") (-659 $) $) 185 (|has| |#1| (-376)) ELT)) (-4365 (((-114) $) 79 T ELT)) (-3292 (($ |#1| (-557)) 78 T ELT) (($ $ (-1101) (-557)) 94 T ELT) (($ $ (-659 (-1101)) (-659 (-557))) 93 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4370 (($ $) 167 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3293 (($ $) 82 T ELT)) (-3590 ((|#1| $) 83 T ELT)) (-2100 (($ (-659 $)) 174 (|has| |#1| (-376)) ELT) (($ $ $) 173 (|has| |#1| (-376)) ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2872 (($ $) 190 (|has| |#1| (-376)) ELT)) (-4240 (($ $) 194 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-1196)) 193 (-3955 (-12 (|has| |#1| (-29 (-557))) (|has| |#1| (-977)) (|has| |#1| (-1222)) (|has| |#1| (-38 (-419 (-557))))) (-12 (|has| |#1| (-15 -3482 ((-659 (-1196)) |#1|))) (|has| |#1| (-15 -4240 (|#1| |#1| (-1196)))) (|has| |#1| (-38 (-419 (-557)))))) ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 175 (|has| |#1| (-376)) ELT)) (-3560 (($ (-659 $)) 172 (|has| |#1| (-376)) ELT) (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-4160 (((-417 $) $) 186 (|has| |#1| (-376)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 183 (|has| |#1| (-376)) ELT)) (-4197 (($ $ (-557)) 118 T ELT)) (-3884 (((-3 $ "failed") $ $) 67 (|has| |#1| (-568)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 177 (|has| |#1| (-376)) ELT)) (-4371 (($ $) 168 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4196 (((-1174 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-557)))) ELT)) (-1785 (((-789) $) 179 (|has| |#1| (-376)) ELT)) (-4228 ((|#1| $ (-557)) 128 T ELT) (($ $ $) 104 (|has| (-557) (-1131)) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 180 (|has| |#1| (-376)) ELT)) (-4186 (($ $ (-1196)) 116 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-659 (-1196))) 114 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-1196) (-789)) 113 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 112 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-557) |#1|))) ELT) (($ $ (-789)) 106 (|has| |#1| (-15 * (|#1| (-557) |#1|))) ELT)) (-4376 (((-557) $) 81 T ELT)) (-3913 (($ $) 157 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4064 (($ $) 146 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3911 (($ $) 156 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4063 (($ $) 147 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3909 (($ $) 155 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4062 (($ $) 148 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3290 (($ $) 90 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT) (($ (-419 (-557))) 74 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $) 66 (|has| |#1| (-568)) ELT)) (-4105 ((|#1| $ (-557)) 76 T ELT)) (-3101 (((-709 $) $) 65 (|has| |#1| (-147)) ELT)) (-3526 (((-789)) 37 T CONST)) (-4201 ((|#1| $) 125 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3916 (($ $) 166 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3904 (($ $) 154 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2270 (((-114) $ $) 70 (|has| |#1| (-568)) ELT)) (-3914 (($ $) 165 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3902 (($ $) 153 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3918 (($ $) 164 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3906 (($ $) 152 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4198 ((|#1| $ (-557)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-557)))) (|has| |#1| (-15 -4374 (|#1| (-1196))))) ELT)) (-3919 (($ $) 163 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3907 (($ $) 151 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3917 (($ $) 162 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3905 (($ $) 150 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3915 (($ $) 161 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3903 (($ $) 149 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $ (-1196)) 115 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-659 (-1196))) 111 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-1196) (-789)) 110 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 109 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-557) |#1|))) ELT) (($ $ (-789)) 105 (|has| |#1| (-15 * (|#1| (-557) |#1|))) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT) (($ $ $) 192 (|has| |#1| (-376)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ (-557)) 191 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) 140 (|has| |#1| (-38 (-419 (-557)))) ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-557)) $) 73 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) 72 (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-1248 |#1|) (-142) (-1068)) (T -1248)) -((-4246 (*1 *1 *2) (-12 (-5 *2 (-1174 (-2 (|:| |k| (-557)) (|:| |c| *3)))) (-4 *3 (-1068)) (-4 *1 (-1248 *3)))) (-4243 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-557))) (-4 *1 (-1248 *3)) (-4 *3 (-1068)))) (-4155 (*1 *2 *1 *3) (-12 (-5 *3 (-557)) (-4 *1 (-1248 *4)) (-4 *4 (-1068)) (-4 *4 (-568)) (-5 *2 (-419 (-963 *4))))) (-4155 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-557)) (-4 *1 (-1248 *4)) (-4 *4 (-1068)) (-4 *4 (-568)) (-5 *2 (-419 (-963 *4))))) (-4240 (*1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-557)))))) (-4240 (*1 *1 *1 *2) (-3955 (-12 (-5 *2 (-1196)) (-4 *1 (-1248 *3)) (-4 *3 (-1068)) (-12 (-4 *3 (-29 (-557))) (-4 *3 (-977)) (-4 *3 (-1222)) (-4 *3 (-38 (-419 (-557)))))) (-12 (-5 *2 (-1196)) (-4 *1 (-1248 *3)) (-4 *3 (-1068)) (-12 (|has| *3 (-15 -3482 ((-659 *2) *3))) (|has| *3 (-15 -4240 (*3 *3 *2))) (-4 *3 (-38 (-419 (-557))))))))) -(-13 (-1265 |t#1| (-557)) (-10 -8 (-15 -4246 ($ (-1174 (-2 (|:| |k| (-557)) (|:| |c| |t#1|))))) (-15 -4243 ($ (-1 |t#1| (-557)) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -4155 ((-419 (-963 |t#1|)) $ (-557))) (-15 -4155 ((-419 (-963 |t#1|)) $ (-557) (-557)))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-557)))) (PROGN (-15 -4240 ($ $)) (IF (|has| |t#1| (-15 -4240 (|t#1| |t#1| (-1196)))) (IF (|has| |t#1| (-15 -3482 ((-659 (-1196)) |t#1|))) (-15 -4240 ($ $ (-1196))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1222)) (IF (|has| |t#1| (-977)) (IF (|has| |t#1| (-29 (-557))) (-15 -4240 ($ $ (-1196))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1021)) (-6 (-1222))) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-557)) . T) ((-25) . T) ((-38 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-419 (-557)))) ((-95) |has| |#1| (-38 (-419 (-557)))) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-631 (-557)) . T) ((-631 |#1|) |has| |#1| (-175)) ((-631 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-628 (-875)) . T) ((-175) -3955 (|has| |#1| (-568)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-557) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-557) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-557) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-419 (-557)))) ((-298 (-557) |#1|) . T) ((-298 $ $) |has| (-557) (-1131)) ((-302) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-464) |has| |#1| (-376)) ((-505) |has| |#1| (-38 (-419 (-557)))) ((-568) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-664 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-666 |#1|) . T) ((-666 $) . T) ((-658 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-658 |#1|) |has| |#1| (-175)) ((-658 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-735 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-735 |#1|) |has| |#1| (-175)) ((-735 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-744) . T) ((-909 $ (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ((-915 (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ((-917 (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ((-992 |#1| (-557) (-1101)) . T) ((-938) |has| |#1| (-376)) ((-1021) |has| |#1| (-38 (-419 (-557)))) ((-1070 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-1070 |#1|) . T) ((-1070 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1075 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-1075 |#1|) . T) ((-1075 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1222) |has| |#1| (-38 (-419 (-557)))) ((-1225) |has| |#1| (-38 (-419 (-557)))) ((-1236) . T) ((-1241) |has| |#1| (-376)) ((-1265 |#1| (-557)) . T)) -((-3604 (((-114) $) 12 T ELT)) (-3573 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1196) #1#) $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL T ELT) (((-3 (-557) #1#) $) NIL T ELT)) (-3572 ((|#3| $) 14 T ELT) (((-1196) $) NIL T ELT) (((-419 (-557)) $) NIL T ELT) (((-557) $) NIL T ELT))) -(((-1249 |#1| |#2| |#3|) (-10 -7 (-15 -3573 ((-3 (-557) #1="failed") |#1|)) (-15 -3572 ((-557) |#1|)) (-15 -3573 ((-3 (-419 (-557)) #1#) |#1|)) (-15 -3572 ((-419 (-557)) |#1|)) (-15 -3573 ((-3 (-1196) #1#) |#1|)) (-15 -3572 ((-1196) |#1|)) (-15 -3573 ((-3 |#3| #1#) |#1|)) (-15 -3572 (|#3| |#1|)) (-15 -3604 ((-114) |#1|))) (-1250 |#2| |#3|) (-1068) (-1279 |#2|)) (T -1249)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-3529 ((|#2| $) 263 (-2959 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-3482 (((-659 (-1101)) $) 92 T ELT)) (-4259 (((-1196) $) 126 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 68 (|has| |#1| (-568)) ELT)) (-2271 (($ $) 69 (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) 71 (|has| |#1| (-568)) ELT)) (-4199 (($ $ (-557)) 121 T ELT) (($ $ (-557) (-557)) 120 T ELT)) (-4202 (((-1174 (-2 (|:| |k| (-557)) (|:| |c| |#1|))) $) 127 T ELT)) (-4159 ((|#2| $) 299 T ELT)) (-4156 (((-3 |#2| "failed") $) 295 T ELT)) (-4157 ((|#2| $) 296 T ELT)) (-3910 (($ $) 160 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4067 (($ $) 143 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) 272 (-2959 (|has| |#2| (-927)) (|has| |#1| (-376))) ELT)) (-4203 (($ $) 187 (|has| |#1| (-376)) ELT)) (-4399 (((-417 $) $) 188 (|has| |#1| (-376)) ELT)) (-3436 (($ $) 142 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1="failed") (-659 (-1190 $)) (-1190 $)) 269 (-2959 (|has| |#2| (-927)) (|has| |#1| (-376))) ELT)) (-1786 (((-114) $ $) 178 (|has| |#1| (-376)) ELT)) (-3908 (($ $) 159 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4066 (($ $) 144 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4051 (((-557) $) 281 (-2959 (|has| |#2| (-840)) (|has| |#1| (-376))) ELT)) (-4246 (($ (-1174 (-2 (|:| |k| (-557)) (|:| |c| |#1|)))) 198 T ELT)) (-3912 (($ $) 158 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4065 (($ $) 145 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4152 (($) 22 T CONST)) (-3573 (((-3 |#2| #2="failed") $) 302 T ELT) (((-3 (-557) #2#) $) 292 (-2959 (|has| |#2| (-1057 (-557))) (|has| |#1| (-376))) ELT) (((-3 (-419 (-557)) #2#) $) 290 (-2959 (|has| |#2| (-1057 (-557))) (|has| |#1| (-376))) ELT) (((-3 (-1196) #2#) $) 274 (-2959 (|has| |#2| (-1057 (-1196))) (|has| |#1| (-376))) ELT)) (-3572 ((|#2| $) 303 T ELT) (((-557) $) 291 (-2959 (|has| |#2| (-1057 (-557))) (|has| |#1| (-376))) ELT) (((-419 (-557)) $) 289 (-2959 (|has| |#2| (-1057 (-557))) (|has| |#1| (-376))) ELT) (((-1196) $) 273 (-2959 (|has| |#2| (-1057 (-1196))) (|has| |#1| (-376))) ELT)) (-4158 (($ $) 298 T ELT) (($ (-557) $) 297 T ELT)) (-2961 (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-4387 (($ $) 77 T ELT)) (-2491 (((-707 |#2|) (-707 $)) 251 (|has| |#1| (-376)) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 $) (-1286 $)) 250 (|has| |#1| (-376)) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) 249 (-2959 (|has| |#2| (-656 (-557))) (|has| |#1| (-376))) ELT) (((-707 (-557)) (-707 $)) 248 (-2959 (|has| |#2| (-656 (-557))) (|has| |#1| (-376))) ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-4155 (((-419 (-963 |#1|)) $ (-557)) 196 (|has| |#1| (-568)) ELT) (((-419 (-963 |#1|)) $ (-557) (-557)) 195 (|has| |#1| (-568)) ELT)) (-3393 (($) 265 (-2959 (|has| |#2| (-556)) (|has| |#1| (-376))) ELT)) (-2960 (($ $ $) 181 (|has| |#1| (-376)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 176 (|has| |#1| (-376)) ELT)) (-4151 (((-114) $) 189 (|has| |#1| (-376)) ELT)) (-3602 (((-114) $) 279 (-2959 (|has| |#2| (-840)) (|has| |#1| (-376))) ELT)) (-3291 (((-114) $) 91 T ELT)) (-4055 (($) 170 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) 257 (-2959 (|has| |#2| (-899 (-391))) (|has| |#1| (-376))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) 256 (-2959 (|has| |#2| (-899 (-557))) (|has| |#1| (-376))) ELT)) (-4200 (((-557) $) 123 T ELT) (((-557) $ (-557)) 122 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3395 (($ $) 261 (|has| |#1| (-376)) ELT)) (-3397 ((|#2| $) 259 (|has| |#1| (-376)) ELT)) (-3410 (($ $ (-557)) 141 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3863 (((-709 $) $) 293 (-2959 (|has| |#2| (-1171)) (|has| |#1| (-376))) ELT)) (-3603 (((-114) $) 280 (-2959 (|has| |#2| (-840)) (|has| |#1| (-376))) ELT)) (-4205 (($ $ (-936)) 124 T ELT)) (-4243 (($ (-1 |#1| (-557)) $) 197 T ELT)) (-1783 (((-3 (-659 $) #3="failed") (-659 $) $) 185 (|has| |#1| (-376)) ELT)) (-4365 (((-114) $) 79 T ELT)) (-3292 (($ |#1| (-557)) 78 T ELT) (($ $ (-1101) (-557)) 94 T ELT) (($ $ (-659 (-1101)) (-659 (-557))) 93 T ELT)) (-2928 (($ $ $) 288 (-2959 (|has| |#2| (-859)) (|has| |#1| (-376))) ELT)) (-3256 (($ $ $) 287 (-2959 (|has| |#2| (-859)) (|has| |#1| (-376))) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#2| |#2|) $) 241 (|has| |#1| (-376)) ELT)) (-4370 (($ $) 167 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2492 (((-707 |#2|) (-1286 $)) 253 (|has| |#1| (-376)) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) 252 (|has| |#1| (-376)) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) 247 (-2959 (|has| |#2| (-656 (-557))) (|has| |#1| (-376))) ELT) (((-707 (-557)) (-1286 $)) 246 (-2959 (|has| |#2| (-656 (-557))) (|has| |#1| (-376))) ELT)) (-3293 (($ $) 82 T ELT)) (-3590 ((|#1| $) 83 T ELT)) (-2100 (($ (-659 $)) 174 (|has| |#1| (-376)) ELT) (($ $ $) 173 (|has| |#1| (-376)) ELT)) (-4207 (($ (-557) |#2|) 300 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2872 (($ $) 190 (|has| |#1| (-376)) ELT)) (-4240 (($ $) 194 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-1196)) 193 (-3955 (-12 (|has| |#1| (-29 (-557))) (|has| |#1| (-977)) (|has| |#1| (-1222)) (|has| |#1| (-38 (-419 (-557))))) (-12 (|has| |#1| (-15 -3482 ((-659 (-1196)) |#1|))) (|has| |#1| (-15 -4240 (|#1| |#1| (-1196)))) (|has| |#1| (-38 (-419 (-557)))))) ELT)) (-3864 (($) 294 (-2959 (|has| |#2| (-1171)) (|has| |#1| (-376))) CONST)) (-3659 (((-1139) $) 12 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 175 (|has| |#1| (-376)) ELT)) (-3560 (($ (-659 $)) 172 (|has| |#1| (-376)) ELT) (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-3528 (($ $) 264 (-2959 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-3530 ((|#2| $) 267 (-2959 (|has| |#2| (-556)) (|has| |#1| (-376))) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) 270 (-2959 (|has| |#2| (-927)) (|has| |#1| (-376))) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) 271 (-2959 (|has| |#2| (-927)) (|has| |#1| (-376))) ELT)) (-4160 (((-417 $) $) 186 (|has| |#1| (-376)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 184 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 183 (|has| |#1| (-376)) ELT)) (-4197 (($ $ (-557)) 118 T ELT)) (-3884 (((-3 $ "failed") $ $) 67 (|has| |#1| (-568)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 177 (|has| |#1| (-376)) ELT)) (-4371 (($ $) 168 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4196 (((-1174 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-557)))) ELT) (($ $ (-1196) |#2|) 240 (-2959 (|has| |#2| (-526 (-1196) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-659 (-1196)) (-659 |#2|)) 239 (-2959 (|has| |#2| (-526 (-1196) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-659 (-305 |#2|))) 238 (-2959 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-305 |#2|)) 237 (-2959 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ |#2| |#2|) 236 (-2959 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-659 |#2|) (-659 |#2|)) 235 (-2959 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT)) (-1785 (((-789) $) 179 (|has| |#1| (-376)) ELT)) (-4228 ((|#1| $ (-557)) 128 T ELT) (($ $ $) 104 (|has| (-557) (-1131)) ELT) (($ $ |#2|) 234 (-2959 (|has| |#2| (-298 |#2| |#2|)) (|has| |#1| (-376))) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 180 (|has| |#1| (-376)) ELT)) (-4186 (($ $ (-1 |#2| |#2|) (-789)) 243 (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) 242 (|has| |#1| (-376)) ELT) (($ $) 108 (-3955 (-2959 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-789)) 106 (-3955 (-2959 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-1196)) 116 (-3955 (-2959 (|has| |#2| (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT) (($ $ (-659 (-1196))) 114 (-3955 (-2959 (|has| |#2| (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT) (($ $ (-1196) (-789)) 113 (-3955 (-2959 (|has| |#2| (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 112 (-3955 (-2959 (|has| |#2| (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT)) (-3394 (($ $) 262 (|has| |#1| (-376)) ELT)) (-3396 ((|#2| $) 260 (|has| |#1| (-376)) ELT)) (-4376 (((-557) $) 81 T ELT)) (-3913 (($ $) 157 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4064 (($ $) 146 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3911 (($ $) 156 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4063 (($ $) 147 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3909 (($ $) 155 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4062 (($ $) 148 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4400 (((-229) $) 278 (-2959 (|has| |#2| (-1039)) (|has| |#1| (-376))) ELT) (((-391) $) 277 (-2959 (|has| |#2| (-1039)) (|has| |#1| (-376))) ELT) (((-546) $) 276 (-2959 (|has| |#2| (-629 (-546))) (|has| |#1| (-376))) ELT) (((-903 (-391)) $) 255 (-2959 (|has| |#2| (-629 (-903 (-391)))) (|has| |#1| (-376))) ELT) (((-903 (-557)) $) 254 (-2959 (|has| |#2| (-629 (-903 (-557)))) (|has| |#1| (-376))) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) 268 (-2959 (-2959 (|has| $ (-147)) (|has| |#2| (-927))) (|has| |#1| (-376))) ELT)) (-3290 (($ $) 90 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT) (($ |#2|) 301 T ELT) (($ (-1196)) 275 (-2959 (|has| |#2| (-1057 (-1196))) (|has| |#1| (-376))) ELT) (($ (-419 (-557))) 74 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $) 66 (|has| |#1| (-568)) ELT)) (-4105 ((|#1| $ (-557)) 76 T ELT)) (-3101 (((-709 $) $) 65 (-3955 (-2959 (-3955 (|has| |#2| (-147)) (-2959 (|has| $ (-147)) (|has| |#2| (-927)))) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-3526 (((-789)) 37 T CONST)) (-4201 ((|#1| $) 125 T ELT)) (-3531 ((|#2| $) 266 (-2959 (|has| |#2| (-556)) (|has| |#1| (-376))) ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3916 (($ $) 166 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3904 (($ $) 154 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2270 (((-114) $ $) 70 (|has| |#1| (-568)) ELT)) (-3914 (($ $) 165 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3902 (($ $) 153 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3918 (($ $) 164 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3906 (($ $) 152 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4198 ((|#1| $ (-557)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-557)))) (|has| |#1| (-15 -4374 (|#1| (-1196))))) ELT)) (-3919 (($ $) 163 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3907 (($ $) 151 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3917 (($ $) 162 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3905 (($ $) 150 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3915 (($ $) 161 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3903 (($ $) 149 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3801 (($ $) 282 (-2959 (|has| |#2| (-840)) (|has| |#1| (-376))) ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $ (-1 |#2| |#2|) (-789)) 245 (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) 244 (|has| |#1| (-376)) ELT) (($ $) 107 (-3955 (-2959 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-789)) 105 (-3955 (-2959 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-1196)) 115 (-3955 (-2959 (|has| |#2| (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT) (($ $ (-659 (-1196))) 111 (-3955 (-2959 (|has| |#2| (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT) (($ $ (-1196) (-789)) 110 (-3955 (-2959 (|has| |#2| (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 109 (-3955 (-2959 (|has| |#2| (-917 (-1196))) (|has| |#1| (-376))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|))))) ELT)) (-2963 (((-114) $ $) 286 (-2959 (|has| |#2| (-859)) (|has| |#1| (-376))) ELT)) (-2964 (((-114) $ $) 284 (-2959 (|has| |#2| (-859)) (|has| |#1| (-376))) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-3083 (((-114) $ $) 285 (-2959 (|has| |#2| (-859)) (|has| |#1| (-376))) ELT)) (-3084 (((-114) $ $) 283 (-2959 (|has| |#2| (-859)) (|has| |#1| (-376))) ELT)) (-4377 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT) (($ $ $) 192 (|has| |#1| (-376)) ELT) (($ |#2| |#2|) 258 (|has| |#1| (-376)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ (-557)) 191 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) 140 (|has| |#1| (-38 (-419 (-557)))) ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ $ |#2|) 233 (|has| |#1| (-376)) ELT) (($ |#2| $) 232 (|has| |#1| (-376)) ELT) (($ (-419 (-557)) $) 73 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) 72 (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-1250 |#1| |#2|) (-142) (-1068) (-1279 |t#1|)) (T -1250)) -((-4376 (*1 *2 *1) (-12 (-4 *1 (-1250 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1279 *3)) (-5 *2 (-557)))) (-4207 (*1 *1 *2 *3) (-12 (-5 *2 (-557)) (-4 *4 (-1068)) (-4 *1 (-1250 *4 *3)) (-4 *3 (-1279 *4)))) (-4159 (*1 *2 *1) (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1279 *3)))) (-4158 (*1 *1 *1) (-12 (-4 *1 (-1250 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1279 *2)))) (-4158 (*1 *1 *2 *1) (-12 (-5 *2 (-557)) (-4 *1 (-1250 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1279 *3)))) (-4157 (*1 *2 *1) (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1279 *3)))) (-4156 (*1 *2 *1) (|partial| -12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1279 *3))))) -(-13 (-1248 |t#1|) (-1057 |t#2|) (-631 |t#2|) (-10 -8 (-15 -4207 ($ (-557) |t#2|)) (-15 -4376 ((-557) $)) (-15 -4159 (|t#2| $)) (-15 -4158 ($ $)) (-15 -4158 ($ (-557) $)) (-15 -4157 (|t#2| $)) (-15 -4156 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-376)) (-6 (-1010 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-557)) . T) ((-25) . T) ((-38 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 |#2|) |has| |#1| (-376)) ((-38 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-419 (-557)))) ((-95) |has| |#1| (-38 (-419 (-557)))) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-376)) ((-111 $ $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) -3955 (-12 (|has| |#1| (-376)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-149) -3955 (-12 (|has| |#1| (-376)) (|has| |#2| (-149))) (|has| |#1| (-149))) ((-631 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-631 (-557)) . T) ((-631 (-1196)) -12 (|has| |#1| (-376)) (|has| |#2| (-1057 (-1196)))) ((-631 |#1|) |has| |#1| (-175)) ((-631 |#2|) . T) ((-631 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-628 (-875)) . T) ((-175) -3955 (|has| |#1| (-568)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-629 (-229)) -12 (|has| |#1| (-376)) (|has| |#2| (-1039))) ((-629 (-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-1039))) ((-629 (-546)) -12 (|has| |#1| (-376)) (|has| |#2| (-629 (-546)))) ((-629 (-903 (-391))) -12 (|has| |#1| (-376)) (|has| |#2| (-629 (-903 (-391))))) ((-629 (-903 (-557))) -12 (|has| |#1| (-376)) (|has| |#2| (-629 (-903 (-557))))) ((-236 $) -3955 (|has| |#1| (-15 * (|#1| (-557) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240)))) ((-234 |#2|) |has| |#1| (-376)) ((-240) -3955 (|has| |#1| (-15 * (|#1| (-557) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240)))) ((-239) -3955 (|has| |#1| (-15 * (|#1| (-557) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240)))) ((-274 |#2|) |has| |#1| (-376)) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-419 (-557)))) ((-298 (-557) |#1|) . T) ((-298 |#2| $) -12 (|has| |#1| (-376)) (|has| |#2| (-298 |#2| |#2|))) ((-298 $ $) |has| (-557) (-1131)) ((-302) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-321 |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ((-376) |has| |#1| (-376)) ((-351 |#2|) |has| |#1| (-376)) ((-390 |#2|) |has| |#1| (-376)) ((-412 |#2|) |has| |#1| (-376)) ((-464) |has| |#1| (-376)) ((-505) |has| |#1| (-38 (-419 (-557)))) ((-526 (-1196) |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-526 (-1196) |#2|))) ((-526 |#2| |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ((-568) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-664 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 |#2|) |has| |#1| (-376)) ((-664 $) . T) ((-666 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-666 (-557)) -12 (|has| |#1| (-376)) (|has| |#2| (-656 (-557)))) ((-666 |#1|) . T) ((-666 |#2|) |has| |#1| (-376)) ((-666 $) . T) ((-658 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-658 |#1|) |has| |#1| (-175)) ((-658 |#2|) |has| |#1| (-376)) ((-658 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-656 (-557)) -12 (|has| |#1| (-376)) (|has| |#2| (-656 (-557)))) ((-656 |#2|) |has| |#1| (-376)) ((-735 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-735 |#1|) |has| |#1| (-175)) ((-735 |#2|) |has| |#1| (-376)) ((-735 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-744) . T) ((-810) -12 (|has| |#1| (-376)) (|has| |#2| (-840))) ((-812) -12 (|has| |#1| (-376)) (|has| |#2| (-840))) ((-814) -12 (|has| |#1| (-376)) (|has| |#2| (-840))) ((-817) -12 (|has| |#1| (-376)) (|has| |#2| (-840))) ((-840) -12 (|has| |#1| (-376)) (|has| |#2| (-840))) ((-858) -12 (|has| |#1| (-376)) (|has| |#2| (-840))) ((-859) -3955 (-12 (|has| |#1| (-376)) (|has| |#2| (-859))) (-12 (|has| |#1| (-376)) (|has| |#2| (-840)))) ((-862) -3955 (-12 (|has| |#1| (-376)) (|has| |#2| (-859))) (-12 (|has| |#1| (-376)) (|has| |#2| (-840)))) ((-909 $ (-1196)) -3955 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-917 (-1196)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-915 (-1196))))) ((-915 (-1196)) -3955 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-915 (-1196))))) ((-917 (-1196)) -3955 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-917 (-1196)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-915 (-1196))))) ((-899 (-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-899 (-391)))) ((-899 (-557)) -12 (|has| |#1| (-376)) (|has| |#2| (-899 (-557)))) ((-897 |#2|) |has| |#1| (-376)) ((-927) -12 (|has| |#1| (-376)) (|has| |#2| (-927))) ((-992 |#1| (-557) (-1101)) . T) ((-938) |has| |#1| (-376)) ((-1010 |#2|) |has| |#1| (-376)) ((-1021) |has| |#1| (-38 (-419 (-557)))) ((-1039) -12 (|has| |#1| (-376)) (|has| |#2| (-1039))) ((-1057 (-419 (-557))) -12 (|has| |#1| (-376)) (|has| |#2| (-1057 (-557)))) ((-1057 (-557)) -12 (|has| |#1| (-376)) (|has| |#2| (-1057 (-557)))) ((-1057 (-1196)) -12 (|has| |#1| (-376)) (|has| |#2| (-1057 (-1196)))) ((-1057 |#2|) . T) ((-1070 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-1070 |#1|) . T) ((-1070 |#2|) |has| |#1| (-376)) ((-1070 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1075 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-1075 |#1|) . T) ((-1075 |#2|) |has| |#1| (-376)) ((-1075 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1171) -12 (|has| |#1| (-376)) (|has| |#2| (-1171))) ((-1222) |has| |#1| (-38 (-419 (-557)))) ((-1225) |has| |#1| (-38 (-419 (-557)))) ((-1236) . T) ((-1241) |has| |#1| (-376)) ((-1248 |#1|) . T) ((-1265 |#1| (-557)) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 83 T ELT)) (-3529 ((|#2| $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-319))) ELT)) (-3482 (((-659 (-1101)) $) NIL T ELT)) (-4259 (((-1196) $) 102 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-4199 (($ $ (-557)) 111 T ELT) (($ $ (-557) (-557)) 114 T ELT)) (-4202 (((-1174 (-2 (|:| |k| (-557)) (|:| |c| |#1|))) $) 51 T ELT)) (-4159 ((|#2| $) 11 T ELT)) (-4156 (((-3 |#2| #1="failed") $) 35 T ELT)) (-4157 ((|#2| $) 36 T ELT)) (-3910 (($ $) 208 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4067 (($ $) 184 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1424 (((-3 $ #1#) $ $) NIL T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-927))) ELT)) (-4203 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3436 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-927))) ELT)) (-1786 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3908 (($ $) 204 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4066 (($ $) 180 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4051 (((-557) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-840))) ELT)) (-4246 (($ (-1174 (-2 (|:| |k| (-557)) (|:| |c| |#1|)))) 59 T ELT)) (-3912 (($ $) 212 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4065 (($ $) 188 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-557) #1#) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1057 (-557)))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1057 (-557)))) ELT) (((-3 (-1196) #1#) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1057 (-1196)))) ELT)) (-3572 ((|#2| $) 158 T ELT) (((-557) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1057 (-557)))) ELT) (((-419 (-557)) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1057 (-557)))) ELT) (((-1196) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1057 (-1196)))) ELT)) (-4158 (($ $) 65 T ELT) (($ (-557) $) 28 T ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4387 (($ $) NIL T ELT)) (-2491 (((-707 |#2|) (-707 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 $) (-1286 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-656 (-557)))) ELT) (((-707 (-557)) (-707 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-656 (-557)))) ELT)) (-3885 (((-3 $ #1#) $) 90 T ELT)) (-4155 (((-419 (-963 |#1|)) $ (-557)) 126 (|has| |#1| (-568)) ELT) (((-419 (-963 |#1|)) $ (-557) (-557)) 128 (|has| |#1| (-568)) ELT)) (-3393 (($) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-556))) ELT)) (-2960 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL (|has| |#1| (-376)) ELT)) (-4151 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3602 (((-114) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-840))) ELT)) (-3291 (((-114) $) 76 T ELT)) (-4055 (($) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-899 (-391)))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-899 (-557)))) ELT)) (-4200 (((-557) $) 107 T ELT) (((-557) $ (-557)) 109 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3395 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3397 ((|#2| $) 167 (|has| |#1| (-376)) ELT)) (-3410 (($ $ (-557)) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3863 (((-709 $) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1171))) ELT)) (-3603 (((-114) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-840))) ELT)) (-4205 (($ $ (-936)) 150 T ELT)) (-4243 (($ (-1 |#1| (-557)) $) 146 T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-557)) 20 T ELT) (($ $ (-1101) (-557)) NIL T ELT) (($ $ (-659 (-1101)) (-659 (-557))) NIL T ELT)) (-2928 (($ $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-859))) ELT)) (-3256 (($ $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-859))) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-376)) ELT)) (-4370 (($ $) 178 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2492 (((-707 |#2|) (-1286 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-656 (-557)))) ELT) (((-707 (-557)) (-1286 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-656 (-557)))) ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4207 (($ (-557) |#2|) 10 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) 161 (|has| |#1| (-376)) ELT)) (-4240 (($ $) 230 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-1196)) 235 (-3955 (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-29 (-557))) (|has| |#1| (-977)) (|has| |#1| (-1222))) (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-15 -4240 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -3482 ((-659 (-1196)) |#1|))))) ELT)) (-3864 (($) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1171))) CONST)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-376)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3528 (($ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-319))) ELT)) (-3530 ((|#2| $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-556))) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-927))) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-927))) ELT)) (-4160 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4197 (($ $ (-557)) 140 T ELT)) (-3884 (((-3 $ #1#) $ $) 130 (|has| |#1| (-568)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-4371 (($ $) 176 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4196 (((-1174 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-557)))) ELT) (($ $ (-1196) |#2|) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-526 (-1196) |#2|))) ELT) (($ $ (-659 (-1196)) (-659 |#2|)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-526 (-1196) |#2|))) ELT) (($ $ (-659 (-305 |#2|))) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ELT) (($ $ (-659 |#2|) (-659 |#2|)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ELT)) (-1785 (((-789) $) NIL (|has| |#1| (-376)) ELT)) (-4228 ((|#1| $ (-557)) 105 T ELT) (($ $ $) 92 (|has| (-557) (-1131)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-298 |#2| |#2|))) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4186 (($ $ (-1 |#2| |#2|) (-789)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-376)) ELT) (($ $) 151 (-3955 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-789)) NIL (-3955 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-1196)) 155 (-3955 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-917 (-1196))))) ELT) (($ $ (-659 (-1196))) NIL (-3955 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-917 (-1196))))) ELT) (($ $ (-1196) (-789)) NIL (-3955 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-917 (-1196))))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-3955 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-917 (-1196))))) ELT)) (-3394 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3396 ((|#2| $) 168 (|has| |#1| (-376)) ELT)) (-4376 (((-557) $) 12 T ELT)) (-3913 (($ $) 214 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4064 (($ $) 190 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3911 (($ $) 210 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4063 (($ $) 186 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3909 (($ $) 206 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4062 (($ $) 182 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4400 (((-229) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1039))) ELT) (((-391) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1039))) ELT) (((-546) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-629 (-546)))) ELT) (((-903 (-391)) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-629 (-903 (-391))))) ELT) (((-903 (-557)) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-629 (-903 (-557))))) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-376)) (|has| |#2| (-927))) ELT)) (-3290 (($ $) 138 T ELT)) (-4374 (((-875) $) 268 T ELT) (($ (-557)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-175)) ELT) (($ |#2|) 21 T ELT) (($ (-1196)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1057 (-1196)))) ELT) (($ (-419 (-557))) 171 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $) NIL (|has| |#1| (-568)) ELT)) (-4105 ((|#1| $ (-557)) 87 T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| |#1| (-376)) (|has| |#2| (-927))) (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| |#2| (-147)))) ELT)) (-3526 (((-789)) 157 T CONST)) (-4201 ((|#1| $) 104 T ELT)) (-3531 ((|#2| $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-556))) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3916 (($ $) 220 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3904 (($ $) 196 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3914 (($ $) 216 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3902 (($ $) 192 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3918 (($ $) 224 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3906 (($ $) 200 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4198 ((|#1| $ (-557)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-557)))) (|has| |#1| (-15 -4374 (|#1| (-1196))))) ELT)) (-3919 (($ $) 226 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3907 (($ $) 202 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3917 (($ $) 222 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3905 (($ $) 198 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3915 (($ $) 218 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3903 (($ $) 194 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3801 (($ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-840))) ELT)) (-3057 (($) 13 T CONST)) (-3063 (($) 18 T CONST)) (-3068 (($ $ (-1 |#2| |#2|) (-789)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-376)) ELT) (($ $) NIL (-3955 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-789)) NIL (-3955 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-917 (-1196))))) ELT) (($ $ (-659 (-1196))) NIL (-3955 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-917 (-1196))))) ELT) (($ $ (-1196) (-789)) NIL (-3955 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-917 (-1196))))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-3955 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-557) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-917 (-1196))))) ELT)) (-2963 (((-114) $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-859))) ELT)) (-2964 (((-114) $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-859))) ELT)) (-3452 (((-114) $ $) 74 T ELT)) (-3083 (((-114) $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-859))) ELT)) (-3084 (((-114) $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-859))) ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 165 (|has| |#1| (-376)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-376)) ELT)) (-4265 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-4267 (($ $ $) 78 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) 86 T ELT) (($ $ (-557)) 162 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) 174 (|has| |#1| (-38 (-419 (-557)))) ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-376)) ELT) (($ |#2| $) 163 (|has| |#1| (-376)) ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-1251 |#1| |#2|) (-1250 |#1| |#2|) (-1068) (-1279 |#1|)) (T -1251)) -NIL -((-4162 (((-2 (|:| |contp| (-557)) (|:| -1985 (-659 (-2 (|:| |irr| |#1|) (|:| -2624 (-557)))))) |#1| (-114)) 13 T ELT)) (-4161 (((-417 |#1|) |#1|) 26 T ELT)) (-4160 (((-417 |#1|) |#1|) 24 T ELT))) -(((-1252 |#1|) (-10 -7 (-15 -4160 ((-417 |#1|) |#1|)) (-15 -4161 ((-417 |#1|) |#1|)) (-15 -4162 ((-2 (|:| |contp| (-557)) (|:| -1985 (-659 (-2 (|:| |irr| |#1|) (|:| -2624 (-557)))))) |#1| (-114)))) (-1262 (-557))) (T -1252)) -((-4162 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *2 (-2 (|:| |contp| (-557)) (|:| -1985 (-659 (-2 (|:| |irr| *3) (|:| -2624 (-557))))))) (-5 *1 (-1252 *3)) (-4 *3 (-1262 (-557))))) (-4161 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1252 *3)) (-4 *3 (-1262 (-557))))) (-4160 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1252 *3)) (-4 *3 (-1262 (-557)))))) -((-2965 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-4164 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-4386 (((-1174 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-858)) ELT)) (-3645 ((|#1| $) 15 T ELT)) (-3647 ((|#1| $) 12 T ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-3643 (((-557) $) 19 T ELT)) (-3644 ((|#1| $) 18 T ELT)) (-3646 ((|#1| $) 13 T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-4163 (((-114) $) 17 T ELT)) (-4391 (((-1174 |#1|) $) 41 (|has| |#1| (-858)) ELT) (((-1174 |#1|) (-659 $)) 40 (|has| |#1| (-858)) ELT)) (-4400 (($ |#1|) 26 T ELT)) (-4374 (($ (-1108 |#1|)) 25 T ELT) (((-875) $) 37 (|has| |#1| (-1120)) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-1120)) ELT)) (-4165 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3648 (($ $ (-557)) 14 T ELT)) (-3452 (((-114) $ $) 30 (|has| |#1| (-1120)) ELT))) -(((-1253 |#1|) (-13 (-1113 |#1|) (-10 -8 (-15 -4165 ($ |#1|)) (-15 -4164 ($ |#1|)) (-15 -4374 ($ (-1108 |#1|))) (-15 -4163 ((-114) $)) (IF (|has| |#1| (-1120)) (-6 (-1120)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1114 |#1| (-1174 |#1|))) |%noBranch|))) (-1236)) (T -1253)) -((-4165 (*1 *1 *2) (-12 (-5 *1 (-1253 *2)) (-4 *2 (-1236)))) (-4164 (*1 *1 *2) (-12 (-5 *1 (-1253 *2)) (-4 *2 (-1236)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-1108 *3)) (-4 *3 (-1236)) (-5 *1 (-1253 *3)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1253 *3)) (-4 *3 (-1236))))) -((-4386 (((-1174 |#2|) (-1 |#2| |#1|) (-1253 |#1|)) 23 (|has| |#1| (-858)) ELT) (((-1253 |#2|) (-1 |#2| |#1|) (-1253 |#1|)) 17 T ELT))) -(((-1254 |#1| |#2|) (-10 -7 (-15 -4386 ((-1253 |#2|) (-1 |#2| |#1|) (-1253 |#1|))) (IF (|has| |#1| (-858)) (-15 -4386 ((-1174 |#2|) (-1 |#2| |#1|) (-1253 |#1|))) |%noBranch|)) (-1236) (-1236)) (T -1254)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-858)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1174 *6)) (-5 *1 (-1254 *5 *6)))) (-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1253 *6)) (-5 *1 (-1254 *5 *6))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-4195 (((-1286 |#2|) $ (-789)) NIL T ELT)) (-3482 (((-659 (-1101)) $) NIL T ELT)) (-4193 (($ (-1190 |#2|)) NIL T ELT)) (-3484 (((-1190 $) $ (-1101)) NIL T ELT) (((-1190 |#2|) $) NIL T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#2| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#2| (-568)) ELT)) (-3218 (((-789) $) NIL T ELT) (((-789) $ (-659 (-1101))) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4183 (($ $ $) NIL (|has| |#2| (-568)) ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-4203 (($ $) NIL (|has| |#2| (-464)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#2| (-464)) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1#) (-659 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-1786 (((-114) $ $) NIL (|has| |#2| (-376)) ELT)) (-4189 (($ $ (-789)) NIL T ELT)) (-4188 (($ $ (-789)) NIL T ELT)) (-4179 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-464)) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| |#2| (-1057 (-419 (-557)))) ELT) (((-3 (-557) #1#) $) NIL (|has| |#2| (-1057 (-557))) ELT) (((-3 (-1101) #1#) $) NIL T ELT)) (-3572 ((|#2| $) NIL T ELT) (((-419 (-557)) $) NIL (|has| |#2| (-1057 (-419 (-557)))) ELT) (((-557) $) NIL (|has| |#2| (-1057 (-557))) ELT) (((-1101) $) NIL T ELT)) (-4184 (($ $ $ (-1101)) NIL (|has| |#2| (-175)) ELT) ((|#2| $ $) NIL (|has| |#2| (-175)) ELT)) (-2961 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-4387 (($ $) NIL T ELT)) (-2491 (((-707 (-557)) (-707 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-707 $) (-1286 $)) NIL T ELT) (((-707 |#2|) (-707 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-2960 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-4187 (($ $ $) NIL T ELT)) (-4181 (($ $ $) NIL (|has| |#2| (-568)) ELT)) (-4180 (((-2 (|:| -4382 |#2|) (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#2| (-568)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL (|has| |#2| (-376)) ELT)) (-3921 (($ $) NIL (|has| |#2| (-464)) ELT) (($ $ (-1101)) NIL (|has| |#2| (-464)) ELT)) (-3217 (((-659 $) $) NIL T ELT)) (-4151 (((-114) $) NIL (|has| |#2| (-927)) ELT)) (-1802 (($ $ |#2| (-789) $) NIL T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) NIL (-12 (|has| (-1101) (-899 (-391))) (|has| |#2| (-899 (-391)))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) NIL (-12 (|has| (-1101) (-899 (-557))) (|has| |#2| (-899 (-557)))) ELT)) (-4200 (((-789) $ $) NIL (|has| |#2| (-568)) ELT)) (-2639 (((-114) $) NIL T ELT)) (-2647 (((-789) $) NIL T ELT)) (-3863 (((-709 $) $) NIL (|has| |#2| (-1171)) ELT)) (-3485 (($ (-1190 |#2|) (-1101)) NIL T ELT) (($ (-1190 $) (-1101)) NIL T ELT)) (-4205 (($ $ (-789)) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL (|has| |#2| (-376)) ELT)) (-3220 (((-659 $) $) NIL T ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#2| (-789)) 18 T ELT) (($ $ (-1101) (-789)) NIL T ELT) (($ $ (-659 (-1101)) (-659 (-789))) NIL T ELT)) (-4191 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $ (-1101)) NIL T ELT) (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL T ELT)) (-3219 (((-789) $) NIL T ELT) (((-789) $ (-1101)) NIL T ELT) (((-659 (-789)) $ (-659 (-1101))) NIL T ELT)) (-1803 (($ (-1 (-789) (-789)) $) NIL T ELT)) (-4386 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4194 (((-1190 |#2|) $) NIL T ELT)) (-3483 (((-3 (-1101) #1#) $) NIL T ELT)) (-2492 (((-707 (-557)) (-1286 $)) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) NIL (|has| |#2| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL T ELT) (((-707 |#2|) (-1286 $)) NIL T ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#2| $) NIL T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3658 (((-1178) $) NIL T ELT)) (-4190 (((-2 (|:| -2182 $) (|:| -3301 $)) $ (-789)) NIL T ELT)) (-3222 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3221 (((-3 (-659 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-2 (|:| |var| (-1101)) (|:| -2630 (-789))) #1#) $) NIL T ELT)) (-4240 (($ $) NIL (|has| |#2| (-38 (-419 (-557)))) ELT)) (-3864 (($) NIL (|has| |#2| (-1171)) CONST)) (-3659 (((-1139) $) NIL T ELT)) (-2003 (((-114) $) NIL T ELT)) (-2002 ((|#2| $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#2| (-464)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-4166 (($ $ (-789) |#2| $) NIL T ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-927)) ELT)) (-4160 (((-417 $) $) NIL (|has| |#2| (-927)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3884 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-568)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-568)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL (|has| |#2| (-376)) ELT)) (-4196 (($ $ (-659 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ (-1101) |#2|) NIL T ELT) (($ $ (-659 (-1101)) (-659 |#2|)) NIL T ELT) (($ $ (-1101) $) NIL T ELT) (($ $ (-659 (-1101)) (-659 $)) NIL T ELT)) (-1785 (((-789) $) NIL (|has| |#2| (-376)) ELT)) (-4228 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#2| (-568)) ELT) ((|#2| (-419 $) |#2|) NIL (|has| |#2| (-376)) ELT) (((-419 $) $ (-419 $)) NIL (|has| |#2| (-568)) ELT)) (-4192 (((-3 $ #1#) $ (-789)) NIL T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-4185 (($ $ (-1101)) NIL (|has| |#2| (-175)) ELT) ((|#2| $) NIL (|has| |#2| (-175)) ELT)) (-4186 (($ $ (-659 (-1101)) (-659 (-789))) NIL T ELT) (($ $ (-1101) (-789)) NIL T ELT) (($ $ (-659 (-1101))) NIL T ELT) (($ $ (-1101)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-789)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#2| (-917 (-1196))) ELT)) (-4376 (((-789) $) NIL T ELT) (((-789) $ (-1101)) NIL T ELT) (((-659 (-789)) $ (-659 (-1101))) NIL T ELT)) (-4400 (((-903 (-391)) $) NIL (-12 (|has| (-1101) (-629 (-903 (-391)))) (|has| |#2| (-629 (-903 (-391))))) ELT) (((-903 (-557)) $) NIL (-12 (|has| (-1101) (-629 (-903 (-557)))) (|has| |#2| (-629 (-903 (-557))))) ELT) (((-546) $) NIL (-12 (|has| (-1101) (-629 (-546))) (|has| |#2| (-629 (-546)))) ELT)) (-3216 ((|#2| $) NIL (|has| |#2| (-464)) ELT) (($ $ (-1101)) NIL (|has| |#2| (-464)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-927))) ELT)) (-4182 (((-3 $ #1#) $ $) NIL (|has| |#2| (-568)) ELT) (((-3 (-419 $) #1#) (-419 $) $) NIL (|has| |#2| (-568)) ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1101)) NIL T ELT) (($ (-1283 |#1|)) 20 T ELT) (($ (-419 (-557))) NIL (-3955 (|has| |#2| (-38 (-419 (-557)))) (|has| |#2| (-1057 (-419 (-557))))) ELT) (($ $) NIL (|has| |#2| (-568)) ELT)) (-4245 (((-659 |#2|) $) NIL T ELT)) (-4105 ((|#2| $ (-789)) NIL T ELT) (($ $ (-1101) (-789)) NIL T ELT) (($ $ (-659 (-1101)) (-659 (-789))) NIL T ELT)) (-3101 (((-709 $) $) NIL (-3955 (-12 (|has| $ (-147)) (|has| |#2| (-927))) (|has| |#2| (-147))) ELT)) (-3526 (((-789)) NIL T CONST)) (-1801 (($ $ $ (-789)) NIL (|has| |#2| (-175)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL (|has| |#2| (-568)) ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) 14 T CONST)) (-3068 (($ $ (-659 (-1101)) (-659 (-789))) NIL T ELT) (($ $ (-1101) (-789)) NIL T ELT) (($ $ (-659 (-1101))) NIL T ELT) (($ $ (-1101)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-789)) NIL T ELT) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) NIL (|has| |#2| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (|has| |#2| (-917 (-1196))) ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-557))) NIL (|has| |#2| (-38 (-419 (-557)))) ELT) (($ (-419 (-557)) $) NIL (|has| |#2| (-38 (-419 (-557)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-1255 |#1| |#2|) (-13 (-1262 |#2|) (-631 (-1283 |#1|)) (-10 -8 (-15 -4166 ($ $ (-789) |#2| $)))) (-1196) (-1068)) (T -1255)) -((-4166 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-789)) (-5 *1 (-1255 *4 *3)) (-14 *4 (-1196)) (-4 *3 (-1068))))) -((-4386 (((-1255 |#3| |#4|) (-1 |#4| |#2|) (-1255 |#1| |#2|)) 15 T ELT))) -(((-1256 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4386 ((-1255 |#3| |#4|) (-1 |#4| |#2|) (-1255 |#1| |#2|)))) (-1196) (-1068) (-1196) (-1068)) (T -1256)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1255 *5 *6)) (-14 *5 (-1196)) (-4 *6 (-1068)) (-4 *8 (-1068)) (-5 *2 (-1255 *7 *8)) (-5 *1 (-1256 *5 *6 *7 *8)) (-14 *7 (-1196))))) -((-4169 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-4167 ((|#1| |#3|) 13 T ELT)) (-4168 ((|#3| |#3|) 19 T ELT))) -(((-1257 |#1| |#2| |#3|) (-10 -7 (-15 -4167 (|#1| |#3|)) (-15 -4168 (|#3| |#3|)) (-15 -4169 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1010 |#1|) (-1262 |#2|)) (T -1257)) -((-4169 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1257 *4 *5 *3)) (-4 *3 (-1262 *5)))) (-4168 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1010 *3)) (-5 *1 (-1257 *3 *4 *2)) (-4 *2 (-1262 *4)))) (-4167 (*1 *2 *3) (-12 (-4 *4 (-1010 *2)) (-4 *2 (-568)) (-5 *1 (-1257 *2 *4 *3)) (-4 *3 (-1262 *4))))) -((-4171 (((-3 |#2| #1="failed") |#2| (-789) |#1|) 35 T ELT)) (-4170 (((-3 |#2| #1#) |#2| (-789)) 36 T ELT)) (-4173 (((-3 (-2 (|:| -3538 |#2|) (|:| -3537 |#2|)) #1#) |#2|) 50 T ELT)) (-4174 (((-659 |#2|) |#2|) 52 T ELT)) (-4172 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT))) -(((-1258 |#1| |#2|) (-10 -7 (-15 -4170 ((-3 |#2| #1="failed") |#2| (-789))) (-15 -4171 ((-3 |#2| #1#) |#2| (-789) |#1|)) (-15 -4172 ((-3 |#2| #1#) |#2| |#2|)) (-15 -4173 ((-3 (-2 (|:| -3538 |#2|) (|:| -3537 |#2|)) #1#) |#2|)) (-15 -4174 ((-659 |#2|) |#2|))) (-13 (-568) (-149)) (-1262 |#1|)) (T -1258)) -((-4174 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-149))) (-5 *2 (-659 *3)) (-5 *1 (-1258 *4 *3)) (-4 *3 (-1262 *4)))) (-4173 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-149))) (-5 *2 (-2 (|:| -3538 *3) (|:| -3537 *3))) (-5 *1 (-1258 *4 *3)) (-4 *3 (-1262 *4)))) (-4172 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-568) (-149))) (-5 *1 (-1258 *3 *2)) (-4 *2 (-1262 *3)))) (-4171 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-789)) (-4 *4 (-13 (-568) (-149))) (-5 *1 (-1258 *4 *2)) (-4 *2 (-1262 *4)))) (-4170 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-789)) (-4 *4 (-13 (-568) (-149))) (-5 *1 (-1258 *4 *2)) (-4 *2 (-1262 *4))))) -((-4175 (((-3 (-2 (|:| -2182 |#2|) (|:| -3301 |#2|)) "failed") |#2| |#2|) 30 T ELT))) -(((-1259 |#1| |#2|) (-10 -7 (-15 -4175 ((-3 (-2 (|:| -2182 |#2|) (|:| -3301 |#2|)) "failed") |#2| |#2|))) (-568) (-1262 |#1|)) (T -1259)) -((-4175 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2182 *3) (|:| -3301 *3))) (-5 *1 (-1259 *4 *3)) (-4 *3 (-1262 *4))))) -((-4176 ((|#2| |#2| |#2|) 22 T ELT)) (-4177 ((|#2| |#2| |#2|) 36 T ELT)) (-4178 ((|#2| |#2| |#2| (-789) (-789)) 44 T ELT))) -(((-1260 |#1| |#2|) (-10 -7 (-15 -4176 (|#2| |#2| |#2|)) (-15 -4177 (|#2| |#2| |#2|)) (-15 -4178 (|#2| |#2| |#2| (-789) (-789)))) (-1068) (-1262 |#1|)) (T -1260)) -((-4178 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-789)) (-4 *4 (-1068)) (-5 *1 (-1260 *4 *2)) (-4 *2 (-1262 *4)))) (-4177 (*1 *2 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1262 *3)))) (-4176 (*1 *2 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1262 *3))))) -((-4195 (((-1286 |#2|) $ (-789)) 129 T ELT)) (-3482 (((-659 (-1101)) $) 16 T ELT)) (-4193 (($ (-1190 |#2|)) 80 T ELT)) (-3218 (((-789) $) NIL T ELT) (((-789) $ (-659 (-1101))) 21 T ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) 216 T ELT)) (-4203 (($ $) 206 T ELT)) (-4399 (((-417 $) $) 204 T ELT)) (-3103 (((-3 (-659 (-1190 $)) #1="failed") (-659 (-1190 $)) (-1190 $)) 95 T ELT)) (-4189 (($ $ (-789)) 84 T ELT)) (-4188 (($ $ (-789)) 86 T ELT)) (-4179 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3573 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-419 (-557)) #1#) $) NIL T ELT) (((-3 (-557) #1#) $) NIL T ELT) (((-3 (-1101) #1#) $) NIL T ELT)) (-3572 ((|#2| $) 130 T ELT) (((-419 (-557)) $) NIL T ELT) (((-557) $) NIL T ELT) (((-1101) $) NIL T ELT)) (-4181 (($ $ $) 182 T ELT)) (-4180 (((-2 (|:| -4382 |#2|) (|:| -2182 $) (|:| -3301 $)) $ $) 184 T ELT)) (-4200 (((-789) $ $) 201 T ELT)) (-3863 (((-709 $) $) 149 T ELT)) (-3292 (($ |#2| (-789)) NIL T ELT) (($ $ (-1101) (-789)) 59 T ELT) (($ $ (-659 (-1101)) (-659 (-789))) NIL T ELT)) (-3219 (((-789) $) NIL T ELT) (((-789) $ (-1101)) 54 T ELT) (((-659 (-789)) $ (-659 (-1101))) 55 T ELT)) (-4194 (((-1190 |#2|) $) 72 T ELT)) (-3483 (((-3 (-1101) #1#) $) 52 T ELT)) (-4190 (((-2 (|:| -2182 $) (|:| -3301 $)) $ (-789)) 83 T ELT)) (-4240 (($ $) 231 T ELT)) (-3864 (($) 134 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 213 T ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) 101 T ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) 99 T ELT)) (-4160 (((-417 $) $) 120 T ELT)) (-4196 (($ $ (-659 (-305 $))) 51 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-659 $) (-659 $)) NIL T ELT) (($ $ (-1101) |#2|) 39 T ELT) (($ $ (-659 (-1101)) (-659 |#2|)) 36 T ELT) (($ $ (-1101) $) 32 T ELT) (($ $ (-659 (-1101)) (-659 $)) 30 T ELT)) (-1785 (((-789) $) 219 T ELT)) (-4228 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-419 $) (-419 $) (-419 $)) 176 T ELT) ((|#2| (-419 $) |#2|) 218 T ELT) (((-419 $) $ (-419 $)) 200 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 224 T ELT)) (-4186 (($ $ (-659 (-1101)) (-659 (-789))) NIL T ELT) (($ $ (-1101) (-789)) NIL T ELT) (($ $ (-659 (-1101))) NIL T ELT) (($ $ (-1101)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-789)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1196)) NIL T ELT) (($ $ (-659 (-1196))) NIL T ELT) (($ $ (-1196) (-789)) NIL T ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL T ELT)) (-4376 (((-789) $) NIL T ELT) (((-789) $ (-1101)) 17 T ELT) (((-659 (-789)) $ (-659 (-1101))) 23 T ELT)) (-3216 ((|#2| $) NIL T ELT) (($ $ (-1101)) 151 T ELT)) (-4182 (((-3 $ #1#) $ $) 192 T ELT) (((-3 (-419 $) #1#) (-419 $) $) 188 T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1101)) 64 T ELT) (($ (-419 (-557))) NIL T ELT) (($ $) NIL T ELT))) -(((-1261 |#1| |#2|) (-10 -7 (-15 -4374 (|#1| |#1|)) (-15 -3107 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|))) (-15 -4186 (|#1| |#1| (-659 (-1196)) (-659 (-789)))) (-15 -4186 (|#1| |#1| (-1196) (-789))) (-15 -4186 (|#1| |#1| (-659 (-1196)))) (-15 -4186 (|#1| |#1| (-1196))) (-15 -4399 ((-417 |#1|) |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -4374 (|#1| (-419 (-557)))) (-15 -3864 (|#1|)) (-15 -3863 ((-709 |#1|) |#1|)) (-15 -4228 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -1785 ((-789) |#1|)) (-15 -3278 ((-2 (|:| -2182 |#1|) (|:| -3301 |#1|)) |#1| |#1|)) (-15 -4240 (|#1| |#1|)) (-15 -4228 (|#2| (-419 |#1|) |#2|)) (-15 -4179 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4180 ((-2 (|:| -4382 |#2|) (|:| -2182 |#1|) (|:| -3301 |#1|)) |#1| |#1|)) (-15 -4181 (|#1| |#1| |#1|)) (-15 -4182 ((-3 (-419 |#1|) #1="failed") (-419 |#1|) |#1|)) (-15 -4182 ((-3 |#1| #1#) |#1| |#1|)) (-15 -4200 ((-789) |#1| |#1|)) (-15 -4228 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -4186 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4188 (|#1| |#1| (-789))) (-15 -4189 (|#1| |#1| (-789))) (-15 -4190 ((-2 (|:| -2182 |#1|) (|:| -3301 |#1|)) |#1| (-789))) (-15 -4193 (|#1| (-1190 |#2|))) (-15 -4194 ((-1190 |#2|) |#1|)) (-15 -4195 ((-1286 |#2|) |#1| (-789))) (-15 -4186 (|#1| |#1| (-1 |#2| |#2|) (-789))) (-15 -4186 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4186 (|#1| |#1| (-789))) (-15 -4186 (|#1| |#1|)) (-15 -4228 (|#1| |#1| |#1|)) (-15 -4228 (|#2| |#1| |#2|)) (-15 -4160 ((-417 |#1|) |#1|)) (-15 -3106 ((-417 (-1190 |#1|)) (-1190 |#1|))) (-15 -3105 ((-417 (-1190 |#1|)) (-1190 |#1|))) (-15 -3104 ((-417 (-1190 |#1|)) (-1190 |#1|))) (-15 -3103 ((-3 (-659 (-1190 |#1|)) #1#) (-659 (-1190 |#1|)) (-1190 |#1|))) (-15 -3216 (|#1| |#1| (-1101))) (-15 -3482 ((-659 (-1101)) |#1|)) (-15 -3218 ((-789) |#1| (-659 (-1101)))) (-15 -3218 ((-789) |#1|)) (-15 -3292 (|#1| |#1| (-659 (-1101)) (-659 (-789)))) (-15 -3292 (|#1| |#1| (-1101) (-789))) (-15 -3219 ((-659 (-789)) |#1| (-659 (-1101)))) (-15 -3219 ((-789) |#1| (-1101))) (-15 -3483 ((-3 (-1101) #1#) |#1|)) (-15 -4376 ((-659 (-789)) |#1| (-659 (-1101)))) (-15 -4376 ((-789) |#1| (-1101))) (-15 -4374 (|#1| (-1101))) (-15 -3573 ((-3 (-1101) #1#) |#1|)) (-15 -3572 ((-1101) |#1|)) (-15 -4196 (|#1| |#1| (-659 (-1101)) (-659 |#1|))) (-15 -4196 (|#1| |#1| (-1101) |#1|)) (-15 -4196 (|#1| |#1| (-659 (-1101)) (-659 |#2|))) (-15 -4196 (|#1| |#1| (-1101) |#2|)) (-15 -4196 (|#1| |#1| (-659 |#1|) (-659 |#1|))) (-15 -4196 (|#1| |#1| |#1| |#1|)) (-15 -4196 (|#1| |#1| (-305 |#1|))) (-15 -4196 (|#1| |#1| (-659 (-305 |#1|)))) (-15 -4376 ((-789) |#1|)) (-15 -3292 (|#1| |#2| (-789))) (-15 -3573 ((-3 (-557) #1#) |#1|)) (-15 -3572 ((-557) |#1|)) (-15 -3573 ((-3 (-419 (-557)) #1#) |#1|)) (-15 -3572 ((-419 (-557)) |#1|)) (-15 -3572 (|#2| |#1|)) (-15 -3573 ((-3 |#2| #1#) |#1|)) (-15 -4374 (|#1| |#2|)) (-15 -3219 ((-789) |#1|)) (-15 -3216 (|#2| |#1|)) (-15 -4186 (|#1| |#1| (-1101))) (-15 -4186 (|#1| |#1| (-659 (-1101)))) (-15 -4186 (|#1| |#1| (-1101) (-789))) (-15 -4186 (|#1| |#1| (-659 (-1101)) (-659 (-789)))) (-15 -4374 (|#1| (-557))) (-15 -4374 ((-875) |#1|))) (-1262 |#2|) (-1068)) (T -1261)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-4195 (((-1286 |#1|) $ (-789)) 268 T ELT)) (-3482 (((-659 (-1101)) $) 120 T ELT)) (-4193 (($ (-1190 |#1|)) 266 T ELT)) (-3484 (((-1190 $) $ (-1101)) 135 T ELT) (((-1190 |#1|) $) 134 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 97 (|has| |#1| (-568)) ELT)) (-2271 (($ $) 98 (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) 100 (|has| |#1| (-568)) ELT)) (-3218 (((-789) $) 122 T ELT) (((-789) $ (-659 (-1101))) 121 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4183 (($ $ $) 253 (|has| |#1| (-568)) ELT)) (-3106 (((-417 (-1190 $)) (-1190 $)) 110 (|has| |#1| (-927)) ELT)) (-4203 (($ $) 108 (|has| |#1| (-464)) ELT)) (-4399 (((-417 $) $) 107 (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-659 (-1190 $)) #1="failed") (-659 (-1190 $)) (-1190 $)) 113 (|has| |#1| (-927)) ELT)) (-1786 (((-114) $ $) 238 (|has| |#1| (-376)) ELT)) (-4189 (($ $ (-789)) 261 T ELT)) (-4188 (($ $ (-789)) 260 T ELT)) (-4179 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 248 (|has| |#1| (-464)) ELT)) (-4152 (($) 22 T CONST)) (-3573 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-419 (-557)) #2#) $) 175 (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-3 (-557) #2#) $) 173 (|has| |#1| (-1057 (-557))) ELT) (((-3 (-1101) #2#) $) 150 T ELT)) (-3572 ((|#1| $) 177 T ELT) (((-419 (-557)) $) 176 (|has| |#1| (-1057 (-419 (-557)))) ELT) (((-557) $) 174 (|has| |#1| (-1057 (-557))) ELT) (((-1101) $) 151 T ELT)) (-4184 (($ $ $ (-1101)) 118 (|has| |#1| (-175)) ELT) ((|#1| $ $) 256 (|has| |#1| (-175)) ELT)) (-2961 (($ $ $) 242 (|has| |#1| (-376)) ELT)) (-4387 (($ $) 168 T ELT)) (-2491 (((-707 (-557)) (-707 $)) 146 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-707 $) (-1286 $)) 145 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-707 $) (-1286 $)) 144 T ELT) (((-707 |#1|) (-707 $)) 143 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2960 (($ $ $) 241 (|has| |#1| (-376)) ELT)) (-4187 (($ $ $) 259 T ELT)) (-4181 (($ $ $) 250 (|has| |#1| (-568)) ELT)) (-4180 (((-2 (|:| -4382 |#1|) (|:| -2182 $) (|:| -3301 $)) $ $) 249 (|has| |#1| (-568)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 236 (|has| |#1| (-376)) ELT)) (-3921 (($ $) 190 (|has| |#1| (-464)) ELT) (($ $ (-1101)) 115 (|has| |#1| (-464)) ELT)) (-3217 (((-659 $) $) 119 T ELT)) (-4151 (((-114) $) 106 (|has| |#1| (-927)) ELT)) (-1802 (($ $ |#1| (-789) $) 186 T ELT)) (-3195 (((-901 (-391) $) $ (-903 (-391)) (-901 (-391) $)) 94 (-12 (|has| (-1101) (-899 (-391))) (|has| |#1| (-899 (-391)))) ELT) (((-901 (-557) $) $ (-903 (-557)) (-901 (-557) $)) 93 (-12 (|has| (-1101) (-899 (-557))) (|has| |#1| (-899 (-557)))) ELT)) (-4200 (((-789) $ $) 254 (|has| |#1| (-568)) ELT)) (-2639 (((-114) $) 40 T ELT)) (-2647 (((-789) $) 183 T ELT)) (-3863 (((-709 $) $) 234 (|has| |#1| (-1171)) ELT)) (-3485 (($ (-1190 |#1|) (-1101)) 127 T ELT) (($ (-1190 $) (-1101)) 126 T ELT)) (-4205 (($ $ (-789)) 265 T ELT)) (-1783 (((-3 (-659 $) #3="failed") (-659 $) $) 245 (|has| |#1| (-376)) ELT)) (-3220 (((-659 $) $) 136 T ELT)) (-4365 (((-114) $) 166 T ELT)) (-3292 (($ |#1| (-789)) 167 T ELT) (($ $ (-1101) (-789)) 129 T ELT) (($ $ (-659 (-1101)) (-659 (-789))) 128 T ELT)) (-4191 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $ (-1101)) 130 T ELT) (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 263 T ELT)) (-3219 (((-789) $) 184 T ELT) (((-789) $ (-1101)) 132 T ELT) (((-659 (-789)) $ (-659 (-1101))) 131 T ELT)) (-1803 (($ (-1 (-789) (-789)) $) 185 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-4194 (((-1190 |#1|) $) 267 T ELT)) (-3483 (((-3 (-1101) #4="failed") $) 133 T ELT)) (-2492 (((-707 (-557)) (-1286 $)) 148 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 (-557))) (|:| |vec| (-1286 (-557)))) (-1286 $) $) 147 (|has| |#1| (-656 (-557))) ELT) (((-2 (|:| -1781 (-707 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 142 T ELT) (((-707 |#1|) (-1286 $)) 141 T ELT)) (-3293 (($ $) 163 T ELT)) (-3590 ((|#1| $) 162 T ELT)) (-2100 (($ (-659 $)) 104 (|has| |#1| (-464)) ELT) (($ $ $) 103 (|has| |#1| (-464)) ELT)) (-3658 (((-1178) $) 11 T ELT)) (-4190 (((-2 (|:| -2182 $) (|:| -3301 $)) $ (-789)) 262 T ELT)) (-3222 (((-3 (-659 $) #4#) $) 124 T ELT)) (-3221 (((-3 (-659 $) #4#) $) 125 T ELT)) (-3223 (((-3 (-2 (|:| |var| (-1101)) (|:| -2630 (-789))) #4#) $) 123 T ELT)) (-4240 (($ $) 246 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3864 (($) 233 (|has| |#1| (-1171)) CONST)) (-3659 (((-1139) $) 12 T ELT)) (-2003 (((-114) $) 180 T ELT)) (-2002 ((|#1| $) 181 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 105 (|has| |#1| (-464)) ELT)) (-3560 (($ (-659 $)) 102 (|has| |#1| (-464)) ELT) (($ $ $) 101 (|has| |#1| (-464)) ELT)) (-3104 (((-417 (-1190 $)) (-1190 $)) 112 (|has| |#1| (-927)) ELT)) (-3105 (((-417 (-1190 $)) (-1190 $)) 111 (|has| |#1| (-927)) ELT)) (-4160 (((-417 $) $) 109 (|has| |#1| (-927)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 244 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 243 (|has| |#1| (-376)) ELT)) (-3884 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-568)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-568)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 237 (|has| |#1| (-376)) ELT)) (-4196 (($ $ (-659 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-659 $) (-659 $)) 156 T ELT) (($ $ (-1101) |#1|) 155 T ELT) (($ $ (-659 (-1101)) (-659 |#1|)) 154 T ELT) (($ $ (-1101) $) 153 T ELT) (($ $ (-659 (-1101)) (-659 $)) 152 T ELT)) (-1785 (((-789) $) 239 (|has| |#1| (-376)) ELT)) (-4228 ((|#1| $ |#1|) 278 T ELT) (($ $ $) 277 T ELT) (((-419 $) (-419 $) (-419 $)) 255 (|has| |#1| (-568)) ELT) ((|#1| (-419 $) |#1|) 247 (|has| |#1| (-376)) ELT) (((-419 $) $ (-419 $)) 235 (|has| |#1| (-568)) ELT)) (-4192 (((-3 $ "failed") $ (-789)) 264 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 240 (|has| |#1| (-376)) ELT)) (-4185 (($ $ (-1101)) 117 (|has| |#1| (-175)) ELT) ((|#1| $) 257 (|has| |#1| (-175)) ELT)) (-4186 (($ $ (-659 (-1101)) (-659 (-789))) 49 T ELT) (($ $ (-1101) (-789)) 48 T ELT) (($ $ (-659 (-1101))) 47 T ELT) (($ $ (-1101)) 45 T ELT) (($ $) 276 T ELT) (($ $ (-789)) 274 T ELT) (($ $ (-1 |#1| |#1|)) 272 T ELT) (($ $ (-1 |#1| |#1|) (-789)) 271 T ELT) (($ $ (-1 |#1| |#1|) $) 258 T ELT) (($ $ (-1196)) 232 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) 230 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) 229 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 228 (|has| |#1| (-917 (-1196))) ELT)) (-4376 (((-789) $) 164 T ELT) (((-789) $ (-1101)) 140 T ELT) (((-659 (-789)) $ (-659 (-1101))) 139 T ELT)) (-4400 (((-903 (-391)) $) 92 (-12 (|has| (-1101) (-629 (-903 (-391)))) (|has| |#1| (-629 (-903 (-391))))) ELT) (((-903 (-557)) $) 91 (-12 (|has| (-1101) (-629 (-903 (-557)))) (|has| |#1| (-629 (-903 (-557))))) ELT) (((-546) $) 90 (-12 (|has| (-1101) (-629 (-546))) (|has| |#1| (-629 (-546)))) ELT)) (-3216 ((|#1| $) 189 (|has| |#1| (-464)) ELT) (($ $ (-1101)) 116 (|has| |#1| (-464)) ELT)) (-3102 (((-3 (-1286 $) #1#) (-707 $)) 114 (-2959 (|has| $ (-147)) (|has| |#1| (-927))) ELT)) (-4182 (((-3 $ "failed") $ $) 252 (|has| |#1| (-568)) ELT) (((-3 (-419 $) "failed") (-419 $) $) 251 (|has| |#1| (-568)) ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ |#1|) 179 T ELT) (($ (-1101)) 149 T ELT) (($ (-419 (-557))) 88 (-3955 (|has| |#1| (-1057 (-419 (-557)))) (|has| |#1| (-38 (-419 (-557))))) ELT) (($ $) 95 (|has| |#1| (-568)) ELT)) (-4245 (((-659 |#1|) $) 182 T ELT)) (-4105 ((|#1| $ (-789)) 169 T ELT) (($ $ (-1101) (-789)) 138 T ELT) (($ $ (-659 (-1101)) (-659 (-789))) 137 T ELT)) (-3101 (((-709 $) $) 89 (-3955 (-2959 (|has| $ (-147)) (|has| |#1| (-927))) (|has| |#1| (-147))) ELT)) (-3526 (((-789)) 37 T CONST)) (-1801 (($ $ $ (-789)) 187 (|has| |#1| (-175)) ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 99 (|has| |#1| (-568)) ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $ (-659 (-1101)) (-659 (-789))) 52 T ELT) (($ $ (-1101) (-789)) 51 T ELT) (($ $ (-659 (-1101))) 50 T ELT) (($ $ (-1101)) 46 T ELT) (($ $) 275 T ELT) (($ $ (-789)) 273 T ELT) (($ $ (-1 |#1| |#1|)) 270 T ELT) (($ $ (-1 |#1| |#1|) (-789)) 269 T ELT) (($ $ (-1196)) 231 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196))) 227 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-1196) (-789)) 226 (|has| |#1| (-917 (-1196))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 225 (|has| |#1| (-917 (-1196))) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ |#1|) 170 (|has| |#1| (-376)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-557))) 172 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ (-419 (-557)) $) 171 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) -(((-1262 |#1|) (-142) (-1068)) (T -1262)) -((-4195 (*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-4 *1 (-1262 *4)) (-4 *4 (-1068)) (-5 *2 (-1286 *4)))) (-4194 (*1 *2 *1) (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1068)) (-5 *2 (-1190 *3)))) (-4193 (*1 *1 *2) (-12 (-5 *2 (-1190 *3)) (-4 *3 (-1068)) (-4 *1 (-1262 *3)))) (-4205 (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-1262 *3)) (-4 *3 (-1068)))) (-4192 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-789)) (-4 *1 (-1262 *3)) (-4 *3 (-1068)))) (-4191 (*1 *2 *1 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-2 (|:| -2182 *1) (|:| -3301 *1))) (-4 *1 (-1262 *3)))) (-4190 (*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-4 *4 (-1068)) (-5 *2 (-2 (|:| -2182 *1) (|:| -3301 *1))) (-4 *1 (-1262 *4)))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-1262 *3)) (-4 *3 (-1068)))) (-4188 (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-1262 *3)) (-4 *3 (-1068)))) (-4187 (*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)))) (-4186 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1262 *3)) (-4 *3 (-1068)))) (-4185 (*1 *2 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-175)))) (-4184 (*1 *2 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-175)))) (-4228 (*1 *2 *2 *2) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1262 *3)) (-4 *3 (-1068)) (-4 *3 (-568)))) (-4200 (*1 *2 *1 *1) (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1068)) (-4 *3 (-568)) (-5 *2 (-789)))) (-4183 (*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))) (-4182 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))) (-4182 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1262 *3)) (-4 *3 (-1068)) (-4 *3 (-568)))) (-4181 (*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))) (-4180 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -4382 *3) (|:| -2182 *1) (|:| -3301 *1))) (-4 *1 (-1262 *3)))) (-4179 (*1 *2 *1 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1262 *3)))) (-4228 (*1 *2 *3 *2) (-12 (-5 *3 (-419 *1)) (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-376)))) (-4240 (*1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-557))))))) -(-13 (-967 |t#1| (-789) (-1101)) (-298 |t#1| |t#1|) (-298 $ $) (-240) (-234 |t#1|) (-10 -8 (-15 -4195 ((-1286 |t#1|) $ (-789))) (-15 -4194 ((-1190 |t#1|) $)) (-15 -4193 ($ (-1190 |t#1|))) (-15 -4205 ($ $ (-789))) (-15 -4192 ((-3 $ "failed") $ (-789))) (-15 -4191 ((-2 (|:| -2182 $) (|:| -3301 $)) $ $)) (-15 -4190 ((-2 (|:| -2182 $) (|:| -3301 $)) $ (-789))) (-15 -4189 ($ $ (-789))) (-15 -4188 ($ $ (-789))) (-15 -4187 ($ $ $)) (-15 -4186 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1171)) (-6 (-1171)) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-15 -4185 (|t#1| $)) (-15 -4184 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-298 (-419 $) (-419 $))) (-15 -4228 ((-419 $) (-419 $) (-419 $))) (-15 -4200 ((-789) $ $)) (-15 -4183 ($ $ $)) (-15 -4182 ((-3 $ "failed") $ $)) (-15 -4182 ((-3 (-419 $) "failed") (-419 $) $)) (-15 -4181 ($ $ $)) (-15 -4180 ((-2 (|:| -4382 |t#1|) (|:| -2182 $) (|:| -3301 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (-15 -4179 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-6 (-319)) (-6 -4419) (-15 -4228 (|t#1| (-419 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-557)))) (-15 -4240 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-789)) . T) ((-25) . T) ((-38 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) -3955 (|has| |#1| (-1057 (-419 (-557)))) (|has| |#1| (-38 (-419 (-557))))) ((-631 (-557)) . T) ((-631 (-1101)) . T) ((-631 |#1|) . T) ((-631 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-628 (-875)) . T) ((-175) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-629 (-546)) -12 (|has| |#1| (-629 (-546))) (|has| (-1101) (-629 (-546)))) ((-629 (-903 (-391))) -12 (|has| |#1| (-629 (-903 (-391)))) (|has| (-1101) (-629 (-903 (-391))))) ((-629 (-903 (-557))) -12 (|has| |#1| (-629 (-903 (-557)))) (|has| (-1101) (-629 (-903 (-557))))) ((-236 $) . T) ((-234 |#1|) . T) ((-240) . T) ((-239) . T) ((-274 |#1|) . T) ((-298 (-419 $) (-419 $)) |has| |#1| (-568)) ((-298 |#1| |#1|) . T) ((-298 $ $) . T) ((-302) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-321 $) . T) ((-338 |#1| (-789)) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-464) -3955 (|has| |#1| (-927)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-526 (-1101) |#1|) . T) ((-526 (-1101) $) . T) ((-526 $ $) . T) ((-568) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-664 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-666 (-557)) |has| |#1| (-656 (-557))) ((-666 |#1|) . T) ((-666 $) . T) ((-658 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-658 |#1|) |has| |#1| (-175)) ((-658 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-656 (-557)) |has| |#1| (-656 (-557))) ((-656 |#1|) . T) ((-735 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-735 |#1|) |has| |#1| (-175)) ((-735 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-744) . T) ((-909 $ (-1101)) . T) ((-909 $ (-1196)) -3955 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-915 (-1101)) . T) ((-915 (-1196)) |has| |#1| (-915 (-1196))) ((-917 (-1101)) . T) ((-917 (-1196)) -3955 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-899 (-391)) -12 (|has| |#1| (-899 (-391))) (|has| (-1101) (-899 (-391)))) ((-899 (-557)) -12 (|has| |#1| (-899 (-557))) (|has| (-1101) (-899 (-557)))) ((-967 |#1| (-789) (-1101)) . T) ((-927) |has| |#1| (-927)) ((-938) |has| |#1| (-376)) ((-1057 (-419 (-557))) |has| |#1| (-1057 (-419 (-557)))) ((-1057 (-557)) |has| |#1| (-1057 (-557))) ((-1057 (-1101)) . T) ((-1057 |#1|) . T) ((-1070 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-1070 |#1|) . T) ((-1070 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1075 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-1075 |#1|) . T) ((-1075 $) -3955 (|has| |#1| (-927)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1171) |has| |#1| (-1171)) ((-1236) . T) ((-1241) |has| |#1| (-927))) -((-4386 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) -(((-1263 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4386 (|#4| (-1 |#3| |#1|) |#2|))) (-1068) (-1262 |#1|) (-1068) (-1262 |#3|)) (T -1263)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1262 *6)) (-5 *1 (-1263 *5 *4 *6 *2)) (-4 *4 (-1262 *5))))) -((-3482 (((-659 (-1101)) $) 34 T ELT)) (-4387 (($ $) 31 T ELT)) (-3292 (($ |#2| |#3|) NIL T ELT) (($ $ (-1101) |#3|) 28 T ELT) (($ $ (-659 (-1101)) (-659 |#3|)) 27 T ELT)) (-3293 (($ $) 14 T ELT)) (-3590 ((|#2| $) 12 T ELT)) (-4376 ((|#3| $) 10 T ELT))) -(((-1264 |#1| |#2| |#3|) (-10 -7 (-15 -3482 ((-659 (-1101)) |#1|)) (-15 -3292 (|#1| |#1| (-659 (-1101)) (-659 |#3|))) (-15 -3292 (|#1| |#1| (-1101) |#3|)) (-15 -4387 (|#1| |#1|)) (-15 -3292 (|#1| |#2| |#3|)) (-15 -4376 (|#3| |#1|)) (-15 -3293 (|#1| |#1|)) (-15 -3590 (|#2| |#1|))) (-1265 |#2| |#3|) (-1068) (-812)) (T -1264)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-3482 (((-659 (-1101)) $) 92 T ELT)) (-4259 (((-1196) $) 126 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 68 (|has| |#1| (-568)) ELT)) (-2271 (($ $) 69 (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) 71 (|has| |#1| (-568)) ELT)) (-4199 (($ $ |#2|) 121 T ELT) (($ $ |#2| |#2|) 120 T ELT)) (-4202 (((-1174 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 127 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-4387 (($ $) 77 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-3291 (((-114) $) 91 T ELT)) (-4200 ((|#2| $) 123 T ELT) ((|#2| $ |#2|) 122 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-4205 (($ $ (-936)) 124 T ELT)) (-4365 (((-114) $) 79 T ELT)) (-3292 (($ |#1| |#2|) 78 T ELT) (($ $ (-1101) |#2|) 94 T ELT) (($ $ (-659 (-1101)) (-659 |#2|)) 93 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3293 (($ $) 82 T ELT)) (-3590 ((|#1| $) 83 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4197 (($ $ |#2|) 118 T ELT)) (-3884 (((-3 $ "failed") $ $) 67 (|has| |#1| (-568)) ELT)) (-4196 (((-1174 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-4228 ((|#1| $ |#2|) 128 T ELT) (($ $ $) 104 (|has| |#2| (-1131)) ELT)) (-4186 (($ $ (-1196)) 116 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-659 (-1196))) 114 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1196) (-789)) 113 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 112 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-789)) 106 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-4376 ((|#2| $) 81 T ELT)) (-3290 (($ $) 90 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ (-419 (-557))) 74 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $) 66 (|has| |#1| (-568)) ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT)) (-4105 ((|#1| $ |#2|) 76 T ELT)) (-3101 (((-709 $) $) 65 (|has| |#1| (-147)) ELT)) (-3526 (((-789)) 37 T CONST)) (-4201 ((|#1| $) 125 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 70 (|has| |#1| (-568)) ELT)) (-4198 ((|#1| $ |#2|) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4374 (|#1| (-1196))))) ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $ (-1196)) 115 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-659 (-1196))) 111 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1196) (-789)) 110 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 109 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-789)) 105 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-557)) $) 73 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) 72 (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-1265 |#1| |#2|) (-142) (-1068) (-812)) (T -1265)) -((-4202 (*1 *2 *1) (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812)) (-5 *2 (-1174 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4259 (*1 *2 *1) (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812)) (-5 *2 (-1196)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-1265 *2 *3)) (-4 *3 (-812)) (-4 *2 (-1068)))) (-4205 (*1 *1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812)))) (-4200 (*1 *2 *1) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-812)))) (-4200 (*1 *2 *1 *2) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-812)))) (-4199 (*1 *1 *1 *2) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-812)))) (-4199 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-812)))) (-4198 (*1 *2 *1 *3) (-12 (-4 *1 (-1265 *2 *3)) (-4 *3 (-812)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4374 (*2 (-1196)))) (-4 *2 (-1068)))) (-4197 (*1 *1 *1 *2) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-812)))) (-4196 (*1 *2 *1 *3) (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1174 *3))))) -(-13 (-992 |t#1| |t#2| (-1101)) (-298 |t#2| |t#1|) (-10 -8 (-15 -4202 ((-1174 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4259 ((-1196) $)) (-15 -4201 (|t#1| $)) (-15 -4205 ($ $ (-936))) (-15 -4200 (|t#2| $)) (-15 -4200 (|t#2| $ |t#2|)) (-15 -4199 ($ $ |t#2|)) (-15 -4199 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4374 (|t#1| (-1196)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4198 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4197 ($ $ |t#2|)) (IF (|has| |t#2| (-1131)) (-6 (-298 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-240)) (IF (|has| |t#1| (-915 (-1196))) (-6 (-915 (-1196))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4196 ((-1174 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-631 (-557)) . T) ((-631 |#1|) |has| |#1| (-175)) ((-631 $) |has| |#1| (-568)) ((-628 (-875)) . T) ((-175) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-240) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-239) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-298 |#2| |#1|) . T) ((-298 $ $) |has| |#2| (-1131)) ((-302) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-664 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-666 |#1|) . T) ((-666 $) . T) ((-658 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-658 |#1|) |has| |#1| (-175)) ((-658 $) |has| |#1| (-568)) ((-735 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-735 |#1|) |has| |#1| (-175)) ((-735 $) |has| |#1| (-568)) ((-744) . T) ((-909 $ (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-915 (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-917 (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-992 |#1| |#2| (-1101)) . T) ((-1070 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-1070 |#1|) . T) ((-1070 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-1075 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-1075 |#1|) . T) ((-1075 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-4203 ((|#2| |#2|) 12 T ELT)) (-4399 (((-417 |#2|) |#2|) 14 T ELT)) (-4204 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-557))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-557)))) 30 T ELT))) -(((-1266 |#1| |#2|) (-10 -7 (-15 -4399 ((-417 |#2|) |#2|)) (-15 -4203 (|#2| |#2|)) (-15 -4204 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-557))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-557)))))) (-568) (-13 (-1262 |#1|) (-568) (-10 -8 (-15 -3560 ($ $ $))))) (T -1266)) -((-4204 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-557)))) (-4 *4 (-13 (-1262 *3) (-568) (-10 -8 (-15 -3560 ($ $ $))))) (-4 *3 (-568)) (-5 *1 (-1266 *3 *4)))) (-4203 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-1266 *3 *2)) (-4 *2 (-13 (-1262 *3) (-568) (-10 -8 (-15 -3560 ($ $ $))))))) (-4399 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-417 *3)) (-5 *1 (-1266 *4 *3)) (-4 *3 (-13 (-1262 *4) (-568) (-10 -8 (-15 -3560 ($ $ $)))))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3482 (((-659 (-1101)) $) NIL T ELT)) (-4259 (((-1196) $) 11 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-4199 (($ $ (-419 (-557))) NIL T ELT) (($ $ (-419 (-557)) (-419 (-557))) NIL T ELT)) (-4202 (((-1174 (-2 (|:| |k| (-419 (-557))) (|:| |c| |#1|))) $) NIL T ELT)) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3436 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1786 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3908 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4066 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4246 (($ (-789) (-1174 (-2 (|:| |k| (-419 (-557))) (|:| |c| |#1|)))) NIL T ELT)) (-3912 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4065 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-1246 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1276 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3572 (((-1246 |#1| |#2| |#3|) $) NIL T ELT) (((-1276 |#1| |#2| |#3|) $) NIL T ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4387 (($ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-4209 (((-419 (-557)) $) 68 T ELT)) (-2960 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4210 (($ (-419 (-557)) (-1246 |#1| |#2| |#3|)) NIL T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL (|has| |#1| (-376)) ELT)) (-4151 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3291 (((-114) $) NIL T ELT)) (-4055 (($) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4200 (((-419 (-557)) $) NIL T ELT) (((-419 (-557)) $ (-419 (-557))) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3410 (($ $ (-557)) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4205 (($ $ (-936)) NIL T ELT) (($ $ (-419 (-557))) NIL T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-419 (-557))) 30 T ELT) (($ $ (-1101) (-419 (-557))) NIL T ELT) (($ $ (-659 (-1101)) (-659 (-419 (-557)))) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4370 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4208 (((-1246 |#1| |#2| |#3|) $) 71 T ELT)) (-4206 (((-3 (-1246 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-4207 (((-1246 |#1| |#2| |#3|) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4240 (($ $) 39 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-1196)) NIL (-3955 (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-29 (-557))) (|has| |#1| (-977)) (|has| |#1| (-1222))) (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-15 -4240 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -3482 ((-659 (-1196)) |#1|))))) ELT) (($ $ (-1283 |#2|)) 40 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-376)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4160 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4197 (($ $ (-419 (-557))) NIL T ELT)) (-3884 (((-3 $ #1#) $ $) NIL (|has| |#1| (-568)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-4371 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4196 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-557))))) ELT)) (-1785 (((-789) $) NIL (|has| |#1| (-376)) ELT)) (-4228 ((|#1| $ (-419 (-557))) NIL T ELT) (($ $ $) NIL (|has| (-419 (-557)) (-1131)) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4186 (($ $ (-1196)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT) (($ $ (-789)) NIL (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT) (($ $ (-1283 |#2|)) 38 T ELT)) (-4376 (((-419 (-557)) $) NIL T ELT)) (-3913 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4064 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4063 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4062 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3290 (($ $) NIL T ELT)) (-4374 (((-875) $) 107 T ELT) (($ (-557)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1246 |#1| |#2| |#3|)) 16 T ELT) (($ (-1276 |#1| |#2| |#3|)) 17 T ELT) (($ (-1283 |#2|)) 36 T ELT) (($ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $) NIL (|has| |#1| (-568)) ELT)) (-4105 ((|#1| $ (-419 (-557))) NIL T ELT)) (-3101 (((-709 $) $) NIL (|has| |#1| (-147)) ELT)) (-3526 (((-789)) NIL T CONST)) (-4201 ((|#1| $) 12 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3904 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3914 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3902 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3906 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4198 ((|#1| $ (-419 (-557))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-557))))) (|has| |#1| (-15 -4374 (|#1| (-1196))))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3917 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3915 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3903 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3057 (($) 32 T CONST)) (-3063 (($) 26 T CONST)) (-3068 (($ $ (-1196)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT) (($ $ (-789)) NIL (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT) (($ $ (-1283 |#2|)) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 34 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ (-557)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-1267 |#1| |#2| |#3|) (-13 (-1271 |#1| (-1246 |#1| |#2| |#3|)) (-909 $ (-1283 |#2|)) (-1057 (-1276 |#1| |#2| |#3|)) (-631 (-1283 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-557)))) (-15 -4240 ($ $ (-1283 |#2|))) |%noBranch|))) (-1068) (-1196) |#1|) (T -1267)) -((-4240 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1267 *3 *4 *5)) (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068)) (-14 *5 *3)))) -((-4386 (((-1267 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1267 |#1| |#3| |#5|)) 24 T ELT))) -(((-1268 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4386 ((-1267 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1267 |#1| |#3| |#5|)))) (-1068) (-1068) (-1196) (-1196) |#1| |#2|) (T -1268)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1267 *5 *7 *9)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-14 *7 (-1196)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1267 *6 *8 *10)) (-5 *1 (-1268 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1196))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-3482 (((-659 (-1101)) $) 92 T ELT)) (-4259 (((-1196) $) 126 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 68 (|has| |#1| (-568)) ELT)) (-2271 (($ $) 69 (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) 71 (|has| |#1| (-568)) ELT)) (-4199 (($ $ (-419 (-557))) 121 T ELT) (($ $ (-419 (-557)) (-419 (-557))) 120 T ELT)) (-4202 (((-1174 (-2 (|:| |k| (-419 (-557))) (|:| |c| |#1|))) $) 127 T ELT)) (-3910 (($ $) 160 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4067 (($ $) 143 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4203 (($ $) 187 (|has| |#1| (-376)) ELT)) (-4399 (((-417 $) $) 188 (|has| |#1| (-376)) ELT)) (-3436 (($ $) 142 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1786 (((-114) $ $) 178 (|has| |#1| (-376)) ELT)) (-3908 (($ $) 159 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4066 (($ $) 144 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4246 (($ (-789) (-1174 (-2 (|:| |k| (-419 (-557))) (|:| |c| |#1|)))) 196 T ELT)) (-3912 (($ $) 158 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4065 (($ $) 145 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4152 (($) 22 T CONST)) (-2961 (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-4387 (($ $) 77 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2960 (($ $ $) 181 (|has| |#1| (-376)) ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 176 (|has| |#1| (-376)) ELT)) (-4151 (((-114) $) 189 (|has| |#1| (-376)) ELT)) (-3291 (((-114) $) 91 T ELT)) (-4055 (($) 170 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4200 (((-419 (-557)) $) 123 T ELT) (((-419 (-557)) $ (-419 (-557))) 122 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3410 (($ $ (-557)) 141 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4205 (($ $ (-936)) 124 T ELT) (($ $ (-419 (-557))) 195 T ELT)) (-1783 (((-3 (-659 $) #1="failed") (-659 $) $) 185 (|has| |#1| (-376)) ELT)) (-4365 (((-114) $) 79 T ELT)) (-3292 (($ |#1| (-419 (-557))) 78 T ELT) (($ $ (-1101) (-419 (-557))) 94 T ELT) (($ $ (-659 (-1101)) (-659 (-419 (-557)))) 93 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4370 (($ $) 167 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3293 (($ $) 82 T ELT)) (-3590 ((|#1| $) 83 T ELT)) (-2100 (($ (-659 $)) 174 (|has| |#1| (-376)) ELT) (($ $ $) 173 (|has| |#1| (-376)) ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2872 (($ $) 190 (|has| |#1| (-376)) ELT)) (-4240 (($ $) 194 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-1196)) 193 (-3955 (-12 (|has| |#1| (-29 (-557))) (|has| |#1| (-977)) (|has| |#1| (-1222)) (|has| |#1| (-38 (-419 (-557))))) (-12 (|has| |#1| (-15 -3482 ((-659 (-1196)) |#1|))) (|has| |#1| (-15 -4240 (|#1| |#1| (-1196)))) (|has| |#1| (-38 (-419 (-557)))))) ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 175 (|has| |#1| (-376)) ELT)) (-3560 (($ (-659 $)) 172 (|has| |#1| (-376)) ELT) (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-4160 (((-417 $) $) 186 (|has| |#1| (-376)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 183 (|has| |#1| (-376)) ELT)) (-4197 (($ $ (-419 (-557))) 118 T ELT)) (-3884 (((-3 $ "failed") $ $) 67 (|has| |#1| (-568)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 177 (|has| |#1| (-376)) ELT)) (-4371 (($ $) 168 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4196 (((-1174 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-557))))) ELT)) (-1785 (((-789) $) 179 (|has| |#1| (-376)) ELT)) (-4228 ((|#1| $ (-419 (-557))) 128 T ELT) (($ $ $) 104 (|has| (-419 (-557)) (-1131)) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 180 (|has| |#1| (-376)) ELT)) (-4186 (($ $ (-1196)) 116 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196))) 114 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-1196) (-789)) 113 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 112 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT) (($ $ (-789)) 106 (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT)) (-4376 (((-419 (-557)) $) 81 T ELT)) (-3913 (($ $) 157 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4064 (($ $) 146 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3911 (($ $) 156 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4063 (($ $) 147 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3909 (($ $) 155 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4062 (($ $) 148 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3290 (($ $) 90 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT) (($ (-419 (-557))) 74 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $) 66 (|has| |#1| (-568)) ELT)) (-4105 ((|#1| $ (-419 (-557))) 76 T ELT)) (-3101 (((-709 $) $) 65 (|has| |#1| (-147)) ELT)) (-3526 (((-789)) 37 T CONST)) (-4201 ((|#1| $) 125 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3916 (($ $) 166 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3904 (($ $) 154 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2270 (((-114) $ $) 70 (|has| |#1| (-568)) ELT)) (-3914 (($ $) 165 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3902 (($ $) 153 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3918 (($ $) 164 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3906 (($ $) 152 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4198 ((|#1| $ (-419 (-557))) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-557))))) (|has| |#1| (-15 -4374 (|#1| (-1196))))) ELT)) (-3919 (($ $) 163 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3907 (($ $) 151 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3917 (($ $) 162 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3905 (($ $) 150 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3915 (($ $) 161 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3903 (($ $) 149 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $ (-1196)) 115 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196))) 111 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-1196) (-789)) 110 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 109 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT) (($ $ (-789)) 105 (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT) (($ $ $) 192 (|has| |#1| (-376)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ (-557)) 191 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) 140 (|has| |#1| (-38 (-419 (-557)))) ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-557)) $) 73 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) 72 (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-1269 |#1|) (-142) (-1068)) (T -1269)) -((-4246 (*1 *1 *2 *3) (-12 (-5 *2 (-789)) (-5 *3 (-1174 (-2 (|:| |k| (-419 (-557))) (|:| |c| *4)))) (-4 *4 (-1068)) (-4 *1 (-1269 *4)))) (-4205 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-557))) (-4 *1 (-1269 *3)) (-4 *3 (-1068)))) (-4240 (*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-557)))))) (-4240 (*1 *1 *1 *2) (-3955 (-12 (-5 *2 (-1196)) (-4 *1 (-1269 *3)) (-4 *3 (-1068)) (-12 (-4 *3 (-29 (-557))) (-4 *3 (-977)) (-4 *3 (-1222)) (-4 *3 (-38 (-419 (-557)))))) (-12 (-5 *2 (-1196)) (-4 *1 (-1269 *3)) (-4 *3 (-1068)) (-12 (|has| *3 (-15 -3482 ((-659 *2) *3))) (|has| *3 (-15 -4240 (*3 *3 *2))) (-4 *3 (-38 (-419 (-557))))))))) -(-13 (-1265 |t#1| (-419 (-557))) (-10 -8 (-15 -4246 ($ (-789) (-1174 (-2 (|:| |k| (-419 (-557))) (|:| |c| |t#1|))))) (-15 -4205 ($ $ (-419 (-557)))) (IF (|has| |t#1| (-38 (-419 (-557)))) (PROGN (-15 -4240 ($ $)) (IF (|has| |t#1| (-15 -4240 (|t#1| |t#1| (-1196)))) (IF (|has| |t#1| (-15 -3482 ((-659 (-1196)) |t#1|))) (-15 -4240 ($ $ (-1196))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1222)) (IF (|has| |t#1| (-977)) (IF (|has| |t#1| (-29 (-557))) (-15 -4240 ($ $ (-1196))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1021)) (-6 (-1222))) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-419 (-557))) . T) ((-25) . T) ((-38 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-419 (-557)))) ((-95) |has| |#1| (-38 (-419 (-557)))) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-631 (-557)) . T) ((-631 |#1|) |has| |#1| (-175)) ((-631 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-628 (-875)) . T) ((-175) -3955 (|has| |#1| (-568)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-419 (-557)))) ((-298 (-419 (-557)) |#1|) . T) ((-298 $ $) |has| (-419 (-557)) (-1131)) ((-302) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-464) |has| |#1| (-376)) ((-505) |has| |#1| (-38 (-419 (-557)))) ((-568) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-664 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-666 |#1|) . T) ((-666 $) . T) ((-658 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-658 |#1|) |has| |#1| (-175)) ((-658 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-735 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-735 |#1|) |has| |#1| (-175)) ((-735 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-744) . T) ((-909 $ (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ((-915 (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ((-917 (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ((-992 |#1| (-419 (-557)) (-1101)) . T) ((-938) |has| |#1| (-376)) ((-1021) |has| |#1| (-38 (-419 (-557)))) ((-1070 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-1070 |#1|) . T) ((-1070 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1075 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-1075 |#1|) . T) ((-1075 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1222) |has| |#1| (-38 (-419 (-557)))) ((-1225) |has| |#1| (-38 (-419 (-557)))) ((-1236) . T) ((-1241) |has| |#1| (-376)) ((-1265 |#1| (-419 (-557))) . T)) -((-3604 (((-114) $) 12 T ELT)) (-3573 (((-3 |#3| "failed") $) 17 T ELT)) (-3572 ((|#3| $) 14 T ELT))) -(((-1270 |#1| |#2| |#3|) (-10 -7 (-15 -3573 ((-3 |#3| "failed") |#1|)) (-15 -3572 (|#3| |#1|)) (-15 -3604 ((-114) |#1|))) (-1271 |#2| |#3|) (-1068) (-1248 |#2|)) (T -1270)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-3482 (((-659 (-1101)) $) 92 T ELT)) (-4259 (((-1196) $) 126 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 68 (|has| |#1| (-568)) ELT)) (-2271 (($ $) 69 (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) 71 (|has| |#1| (-568)) ELT)) (-4199 (($ $ (-419 (-557))) 121 T ELT) (($ $ (-419 (-557)) (-419 (-557))) 120 T ELT)) (-4202 (((-1174 (-2 (|:| |k| (-419 (-557))) (|:| |c| |#1|))) $) 127 T ELT)) (-3910 (($ $) 160 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4067 (($ $) 143 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4203 (($ $) 187 (|has| |#1| (-376)) ELT)) (-4399 (((-417 $) $) 188 (|has| |#1| (-376)) ELT)) (-3436 (($ $) 142 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1786 (((-114) $ $) 178 (|has| |#1| (-376)) ELT)) (-3908 (($ $) 159 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4066 (($ $) 144 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4246 (($ (-789) (-1174 (-2 (|:| |k| (-419 (-557))) (|:| |c| |#1|)))) 196 T ELT)) (-3912 (($ $) 158 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4065 (($ $) 145 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4152 (($) 22 T CONST)) (-3573 (((-3 |#2| "failed") $) 209 T ELT)) (-3572 ((|#2| $) 210 T ELT)) (-2961 (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-4387 (($ $) 77 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-4209 (((-419 (-557)) $) 206 T ELT)) (-2960 (($ $ $) 181 (|has| |#1| (-376)) ELT)) (-4210 (($ (-419 (-557)) |#2|) 207 T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 176 (|has| |#1| (-376)) ELT)) (-4151 (((-114) $) 189 (|has| |#1| (-376)) ELT)) (-3291 (((-114) $) 91 T ELT)) (-4055 (($) 170 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4200 (((-419 (-557)) $) 123 T ELT) (((-419 (-557)) $ (-419 (-557))) 122 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3410 (($ $ (-557)) 141 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4205 (($ $ (-936)) 124 T ELT) (($ $ (-419 (-557))) 195 T ELT)) (-1783 (((-3 (-659 $) #1="failed") (-659 $) $) 185 (|has| |#1| (-376)) ELT)) (-4365 (((-114) $) 79 T ELT)) (-3292 (($ |#1| (-419 (-557))) 78 T ELT) (($ $ (-1101) (-419 (-557))) 94 T ELT) (($ $ (-659 (-1101)) (-659 (-419 (-557)))) 93 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4370 (($ $) 167 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3293 (($ $) 82 T ELT)) (-3590 ((|#1| $) 83 T ELT)) (-2100 (($ (-659 $)) 174 (|has| |#1| (-376)) ELT) (($ $ $) 173 (|has| |#1| (-376)) ELT)) (-4208 ((|#2| $) 205 T ELT)) (-4206 (((-3 |#2| "failed") $) 203 T ELT)) (-4207 ((|#2| $) 204 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2872 (($ $) 190 (|has| |#1| (-376)) ELT)) (-4240 (($ $) 194 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-1196)) 193 (-3955 (-12 (|has| |#1| (-29 (-557))) (|has| |#1| (-977)) (|has| |#1| (-1222)) (|has| |#1| (-38 (-419 (-557))))) (-12 (|has| |#1| (-15 -3482 ((-659 (-1196)) |#1|))) (|has| |#1| (-15 -4240 (|#1| |#1| (-1196)))) (|has| |#1| (-38 (-419 (-557)))))) ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 175 (|has| |#1| (-376)) ELT)) (-3560 (($ (-659 $)) 172 (|has| |#1| (-376)) ELT) (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-4160 (((-417 $) $) 186 (|has| |#1| (-376)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 183 (|has| |#1| (-376)) ELT)) (-4197 (($ $ (-419 (-557))) 118 T ELT)) (-3884 (((-3 $ "failed") $ $) 67 (|has| |#1| (-568)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 177 (|has| |#1| (-376)) ELT)) (-4371 (($ $) 168 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4196 (((-1174 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-557))))) ELT)) (-1785 (((-789) $) 179 (|has| |#1| (-376)) ELT)) (-4228 ((|#1| $ (-419 (-557))) 128 T ELT) (($ $ $) 104 (|has| (-419 (-557)) (-1131)) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 180 (|has| |#1| (-376)) ELT)) (-4186 (($ $ (-1196)) 116 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196))) 114 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-1196) (-789)) 113 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 112 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT) (($ $ (-789)) 106 (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT)) (-4376 (((-419 (-557)) $) 81 T ELT)) (-3913 (($ $) 157 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4064 (($ $) 146 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3911 (($ $) 156 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4063 (($ $) 147 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3909 (($ $) 155 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4062 (($ $) 148 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3290 (($ $) 90 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT) (($ |#2|) 208 T ELT) (($ (-419 (-557))) 74 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $) 66 (|has| |#1| (-568)) ELT)) (-4105 ((|#1| $ (-419 (-557))) 76 T ELT)) (-3101 (((-709 $) $) 65 (|has| |#1| (-147)) ELT)) (-3526 (((-789)) 37 T CONST)) (-4201 ((|#1| $) 125 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3916 (($ $) 166 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3904 (($ $) 154 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2270 (((-114) $ $) 70 (|has| |#1| (-568)) ELT)) (-3914 (($ $) 165 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3902 (($ $) 153 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3918 (($ $) 164 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3906 (($ $) 152 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4198 ((|#1| $ (-419 (-557))) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-557))))) (|has| |#1| (-15 -4374 (|#1| (-1196))))) ELT)) (-3919 (($ $) 163 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3907 (($ $) 151 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3917 (($ $) 162 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3905 (($ $) 150 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3915 (($ $) 161 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3903 (($ $) 149 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $ (-1196)) 115 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196))) 111 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-1196) (-789)) 110 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 109 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT) (($ $ (-789)) 105 (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT) (($ $ $) 192 (|has| |#1| (-376)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ (-557)) 191 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) 140 (|has| |#1| (-38 (-419 (-557)))) ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-557)) $) 73 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) 72 (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-1271 |#1| |#2|) (-142) (-1068) (-1248 |t#1|)) (T -1271)) -((-4376 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1248 *3)) (-5 *2 (-419 (-557))))) (-4210 (*1 *1 *2 *3) (-12 (-5 *2 (-419 (-557))) (-4 *4 (-1068)) (-4 *1 (-1271 *4 *3)) (-4 *3 (-1248 *4)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1248 *3)) (-5 *2 (-419 (-557))))) (-4208 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1248 *3)))) (-4207 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1248 *3)))) (-4206 (*1 *2 *1) (|partial| -12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1248 *3))))) -(-13 (-1269 |t#1|) (-1057 |t#2|) (-631 |t#2|) (-10 -8 (-15 -4210 ($ (-419 (-557)) |t#2|)) (-15 -4209 ((-419 (-557)) $)) (-15 -4208 (|t#2| $)) (-15 -4376 ((-419 (-557)) $)) (-15 -4207 (|t#2| $)) (-15 -4206 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-419 (-557))) . T) ((-25) . T) ((-38 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-419 (-557)))) ((-95) |has| |#1| (-38 (-419 (-557)))) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-631 (-557)) . T) ((-631 |#1|) |has| |#1| (-175)) ((-631 |#2|) . T) ((-631 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-628 (-875)) . T) ((-175) -3955 (|has| |#1| (-568)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-419 (-557)))) ((-298 (-419 (-557)) |#1|) . T) ((-298 $ $) |has| (-419 (-557)) (-1131)) ((-302) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-464) |has| |#1| (-376)) ((-505) |has| |#1| (-38 (-419 (-557)))) ((-568) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-664 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-666 |#1|) . T) ((-666 $) . T) ((-658 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-658 |#1|) |has| |#1| (-175)) ((-658 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-735 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-735 |#1|) |has| |#1| (-175)) ((-735 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376))) ((-744) . T) ((-909 $ (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ((-915 (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ((-917 (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ((-992 |#1| (-419 (-557)) (-1101)) . T) ((-938) |has| |#1| (-376)) ((-1021) |has| |#1| (-38 (-419 (-557)))) ((-1057 |#2|) . T) ((-1070 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-1070 |#1|) . T) ((-1070 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1075 (-419 (-557))) -3955 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-557))))) ((-1075 |#1|) . T) ((-1075 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1222) |has| |#1| (-38 (-419 (-557)))) ((-1225) |has| |#1| (-38 (-419 (-557)))) ((-1236) . T) ((-1241) |has| |#1| (-376)) ((-1265 |#1| (-419 (-557))) . T) ((-1269 |#1|) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3482 (((-659 (-1101)) $) NIL T ELT)) (-4259 (((-1196) $) 104 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-4199 (($ $ (-419 (-557))) 116 T ELT) (($ $ (-419 (-557)) (-419 (-557))) 118 T ELT)) (-4202 (((-1174 (-2 (|:| |k| (-419 (-557))) (|:| |c| |#1|))) $) 54 T ELT)) (-3910 (($ $) 192 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4067 (($ $) 168 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4203 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4399 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3436 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1786 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3908 (($ $) 188 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4066 (($ $) 164 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4246 (($ (-789) (-1174 (-2 (|:| |k| (-419 (-557))) (|:| |c| |#1|)))) 65 T ELT)) (-3912 (($ $) 196 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4065 (($ $) 172 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#2| #1#) $) NIL T ELT)) (-3572 ((|#2| $) NIL T ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4387 (($ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) 85 T ELT)) (-4209 (((-419 (-557)) $) 13 T ELT)) (-2960 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4210 (($ (-419 (-557)) |#2|) 11 T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) NIL (|has| |#1| (-376)) ELT)) (-4151 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3291 (((-114) $) 74 T ELT)) (-4055 (($) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4200 (((-419 (-557)) $) 113 T ELT) (((-419 (-557)) $ (-419 (-557))) 114 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3410 (($ $ (-557)) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4205 (($ $ (-936)) 130 T ELT) (($ $ (-419 (-557))) 128 T ELT)) (-1783 (((-3 (-659 $) #1#) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-419 (-557))) 33 T ELT) (($ $ (-1101) (-419 (-557))) NIL T ELT) (($ $ (-659 (-1101)) (-659 (-419 (-557)))) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-4370 (($ $) 162 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-2100 (($ (-659 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4208 ((|#2| $) 12 T ELT)) (-4206 (((-3 |#2| #1#) $) 44 T ELT)) (-4207 ((|#2| $) 45 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-2872 (($ $) 101 (|has| |#1| (-376)) ELT)) (-4240 (($ $) 146 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-1196)) 151 (-3955 (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-29 (-557))) (|has| |#1| (-977)) (|has| |#1| (-1222))) (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-15 -4240 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -3482 ((-659 (-1196)) |#1|))))) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-376)) ELT)) (-3560 (($ (-659 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4160 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1784 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4197 (($ $ (-419 (-557))) 122 T ELT)) (-3884 (((-3 $ #1#) $ $) NIL (|has| |#1| (-568)) ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) NIL (|has| |#1| (-376)) ELT)) (-4371 (($ $) 160 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4196 (((-1174 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-557))))) ELT)) (-1785 (((-789) $) NIL (|has| |#1| (-376)) ELT)) (-4228 ((|#1| $ (-419 (-557))) 108 T ELT) (($ $ $) 94 (|has| (-419 (-557)) (-1131)) ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4186 (($ $ (-1196)) 138 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT) (($ $ (-789)) NIL (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT)) (-4376 (((-419 (-557)) $) 16 T ELT)) (-3913 (($ $) 198 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4064 (($ $) 174 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3911 (($ $) 194 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4063 (($ $) 170 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3909 (($ $) 190 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4062 (($ $) 166 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3290 (($ $) 120 T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-175)) ELT) (($ |#2|) 34 T ELT) (($ (-419 (-557))) 139 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $) NIL (|has| |#1| (-568)) ELT)) (-4105 ((|#1| $ (-419 (-557))) 107 T ELT)) (-3101 (((-709 $) $) NIL (|has| |#1| (-147)) ELT)) (-3526 (((-789)) 127 T CONST)) (-4201 ((|#1| $) 106 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3916 (($ $) 204 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3904 (($ $) 180 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3914 (($ $) 200 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3902 (($ $) 176 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3918 (($ $) 208 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3906 (($ $) 184 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4198 ((|#1| $ (-419 (-557))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-557))))) (|has| |#1| (-15 -4374 (|#1| (-1196))))) ELT)) (-3919 (($ $) 210 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3907 (($ $) 186 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3917 (($ $) 206 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3905 (($ $) 182 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3915 (($ $) 202 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3903 (($ $) 178 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3057 (($) 21 T CONST)) (-3063 (($) 17 T CONST)) (-3068 (($ $ (-1196)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT) (($ $ (-789)) NIL (|has| |#1| (-15 * (|#1| (-419 (-557)) |#1|))) ELT)) (-3452 (((-114) $ $) 72 T ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 100 (|has| |#1| (-376)) ELT)) (-4265 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-4267 (($ $ $) 76 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) 82 T ELT) (($ $ (-557)) 157 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) 158 (|has| |#1| (-38 (-419 (-557)))) ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-1272 |#1| |#2|) (-1271 |#1| |#2|) (-1068) (-1248 |#1|)) (T -1272)) -NIL -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 37 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2269 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 (-557) #1#) $) NIL (|has| (-1267 |#2| |#3| |#4|) (-1057 (-557))) ELT) (((-3 (-419 (-557)) #1#) $) NIL (|has| (-1267 |#2| |#3| |#4|) (-1057 (-419 (-557)))) ELT) (((-3 (-1267 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3572 (((-557) $) NIL (|has| (-1267 |#2| |#3| |#4|) (-1057 (-557))) ELT) (((-419 (-557)) $) NIL (|has| (-1267 |#2| |#3| |#4|) (-1057 (-419 (-557)))) ELT) (((-1267 |#2| |#3| |#4|) $) NIL T ELT)) (-4387 (($ $) 41 T ELT)) (-3885 (((-3 $ #1#) $) 27 T ELT)) (-3921 (($ $) NIL (|has| (-1267 |#2| |#3| |#4|) (-464)) ELT)) (-1802 (($ $ (-1267 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|) $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-2647 (((-789) $) 11 T ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ (-1267 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) 25 T ELT)) (-3219 (((-331 |#2| |#3| |#4|) $) NIL T ELT)) (-1803 (($ (-1 (-331 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) $) NIL T ELT)) (-4386 (($ (-1 (-1267 |#2| |#3| |#4|) (-1267 |#2| |#3| |#4|)) $) NIL T ELT)) (-4212 (((-3 (-853 |#2|) #1#) $) 91 T ELT)) (-3293 (($ $) NIL T ELT)) (-3590 (((-1267 |#2| |#3| |#4|) $) 20 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-2003 (((-114) $) NIL T ELT)) (-2002 (((-1267 |#2| |#3| |#4|) $) NIL T ELT)) (-3884 (((-3 $ #1#) $ (-1267 |#2| |#3| |#4|)) NIL (|has| (-1267 |#2| |#3| |#4|) (-568)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-4211 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1267 |#2| |#3| |#4|)) (|:| |%expon| (-331 |#2| |#3| |#4|)) (|:| |%expTerms| (-659 (-2 (|:| |k| (-419 (-557))) (|:| |c| |#2|)))))) (|:| |%type| (-1178))) #1#) $) 74 T ELT)) (-4376 (((-331 |#2| |#3| |#4|) $) 17 T ELT)) (-3216 (((-1267 |#2| |#3| |#4|) $) NIL (|has| (-1267 |#2| |#3| |#4|) (-464)) ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ (-1267 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-557))) NIL (-3955 (|has| (-1267 |#2| |#3| |#4|) (-1057 (-419 (-557)))) (|has| (-1267 |#2| |#3| |#4|) (-38 (-419 (-557))))) ELT)) (-4245 (((-659 (-1267 |#2| |#3| |#4|)) $) NIL T ELT)) (-4105 (((-1267 |#2| |#3| |#4|) $ (-331 |#2| |#3| |#4|)) NIL T ELT)) (-3101 (((-709 $) $) NIL (|has| (-1267 |#2| |#3| |#4|) (-147)) ELT)) (-3526 (((-789)) NIL T CONST)) (-1801 (($ $ $ (-789)) NIL (|has| (-1267 |#2| |#3| |#4|) (-175)) ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-2270 (((-114) $ $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-3063 (($) NIL T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ (-1267 |#2| |#3| |#4|)) NIL (|has| (-1267 |#2| |#3| |#4|) (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1267 |#2| |#3| |#4|)) NIL T ELT) (($ (-1267 |#2| |#3| |#4|) $) NIL T ELT) (($ (-419 (-557)) $) NIL (|has| (-1267 |#2| |#3| |#4|) (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) NIL (|has| (-1267 |#2| |#3| |#4|) (-38 (-419 (-557)))) ELT))) -(((-1273 |#1| |#2| |#3| |#4|) (-13 (-338 (-1267 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -4212 ((-3 (-853 |#2|) #1="failed") $)) (-15 -4211 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1267 |#2| |#3| |#4|)) (|:| |%expon| (-331 |#2| |#3| |#4|)) (|:| |%expTerms| (-659 (-2 (|:| |k| (-419 (-557))) (|:| |c| |#2|)))))) (|:| |%type| (-1178))) #1#) $)))) (-13 (-1057 (-557)) (-656 (-557)) (-464)) (-13 (-27) (-1222) (-433 |#1|)) (-1196) |#2|) (T -1273)) -((-4212 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1057 (-557)) (-656 (-557)) (-464))) (-5 *2 (-853 *4)) (-5 *1 (-1273 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-433 *3))) (-14 *5 (-1196)) (-14 *6 *4))) (-4211 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1057 (-557)) (-656 (-557)) (-464))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1267 *4 *5 *6)) (|:| |%expon| (-331 *4 *5 *6)) (|:| |%expTerms| (-659 (-2 (|:| |k| (-419 (-557))) (|:| |c| *4)))))) (|:| |%type| (-1178)))) (-5 *1 (-1273 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-433 *3))) (-14 *5 (-1196)) (-14 *6 *4)))) -((-3820 ((|#2| $) 34 T ELT)) (-4223 ((|#2| $) 18 T ELT)) (-4225 (($ $) 44 T ELT)) (-4213 (($ $ (-557)) 79 T ELT)) (-3424 ((|#2| $ |#2|) 76 T ELT)) (-4214 ((|#2| $ |#2|) 72 T ELT)) (-4216 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 65 T ELT) (($ $ #3="rest" $) 69 T ELT) ((|#2| $ #4="last" |#2|) 67 T ELT)) (-3425 (($ $ (-659 $)) 75 T ELT)) (-4224 ((|#2| $) 17 T ELT)) (-4227 (($ $) NIL T ELT) (($ $ (-789)) 52 T ELT)) (-3430 (((-659 $) $) 31 T ELT)) (-3426 (((-114) $ $) 63 T ELT)) (-3945 (((-114) $) 33 T ELT)) (-4226 ((|#2| $) 25 T ELT) (($ $ (-789)) 58 T ELT)) (-4228 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-4061 (((-114) $) 23 T ELT)) (-4220 (($ $) 47 T ELT)) (-4218 (($ $) 80 T ELT)) (-4221 (((-789) $) 51 T ELT)) (-4222 (($ $) 50 T ELT)) (-4230 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-3940 (((-659 $) $) 32 T ELT)) (-3452 (((-114) $ $) 61 T ELT)) (-4385 (((-789) $) 43 T ELT))) -(((-1274 |#1| |#2|) (-10 -7 (-15 -3452 ((-114) |#1| |#1|)) (-15 -4213 (|#1| |#1| (-557))) (-15 -4216 (|#2| |#1| #1="last" |#2|)) (-15 -4214 (|#2| |#1| |#2|)) (-15 -4216 (|#1| |#1| #2="rest" |#1|)) (-15 -4216 (|#2| |#1| #3="first" |#2|)) (-15 -4218 (|#1| |#1|)) (-15 -4220 (|#1| |#1|)) (-15 -4221 ((-789) |#1|)) (-15 -4222 (|#1| |#1|)) (-15 -4223 (|#2| |#1|)) (-15 -4224 (|#2| |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -4226 (|#1| |#1| (-789))) (-15 -4228 (|#2| |#1| #1#)) (-15 -4226 (|#2| |#1|)) (-15 -4227 (|#1| |#1| (-789))) (-15 -4228 (|#1| |#1| #2#)) (-15 -4227 (|#1| |#1|)) (-15 -4228 (|#2| |#1| #3#)) (-15 -4230 (|#1| |#2| |#1|)) (-15 -4230 (|#1| |#1| |#1|)) (-15 -3424 (|#2| |#1| |#2|)) (-15 -4216 (|#2| |#1| #4="value" |#2|)) (-15 -3425 (|#1| |#1| (-659 |#1|))) (-15 -3426 ((-114) |#1| |#1|)) (-15 -4061 ((-114) |#1|)) (-15 -4228 (|#2| |#1| #4#)) (-15 -3820 (|#2| |#1|)) (-15 -3945 ((-114) |#1|)) (-15 -3430 ((-659 |#1|) |#1|)) (-15 -3940 ((-659 |#1|) |#1|)) (-15 -4385 ((-789) |#1|))) (-1275 |#2|) (-1236)) (T -1274)) -NIL -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3820 ((|#1| $) 52 T ELT)) (-4223 ((|#1| $) 71 T ELT)) (-4225 (($ $) 73 T ELT)) (-4213 (($ $ (-557)) 58 (|has| $ (-6 -4424)) ELT)) (-3424 ((|#1| $ |#1|) 43 (|has| $ (-6 -4424)) ELT)) (-4215 (($ $ $) 62 (|has| $ (-6 -4424)) ELT)) (-4214 ((|#1| $ |#1|) 60 (|has| $ (-6 -4424)) ELT)) (-4217 ((|#1| $ |#1|) 64 (|has| $ (-6 -4424)) ELT)) (-4216 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4424)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -4424)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -4424)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -4424)) ELT)) (-3425 (($ $ (-659 $)) 45 (|has| $ (-6 -4424)) ELT)) (-4224 ((|#1| $) 72 T ELT)) (-4152 (($) 7 T CONST)) (-4227 (($ $) 79 T ELT) (($ $ (-789)) 77 T ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-3430 (((-659 $) $) 54 T ELT)) (-3426 (((-114) $ $) 46 (|has| |#1| (-1120)) ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3429 (((-659 |#1|) $) 49 T ELT)) (-3945 (((-114) $) 53 T ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-4226 ((|#1| $) 76 T ELT) (($ $ (-789)) 74 T ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-4229 ((|#1| $) 82 T ELT) (($ $ (-789)) 80 T ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-4228 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3428 (((-557) $ $) 48 T ELT)) (-4061 (((-114) $) 50 T ELT)) (-4220 (($ $) 68 T ELT)) (-4218 (($ $) 65 (|has| $ (-6 -4424)) ELT)) (-4221 (((-789) $) 69 T ELT)) (-4222 (($ $) 70 T ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3818 (($ $) 10 T ELT)) (-4219 (($ $ $) 67 (|has| $ (-6 -4424)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -4424)) ELT)) (-4230 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-3940 (((-659 $) $) 55 T ELT)) (-3427 (((-114) $ $) 47 (|has| |#1| (-1120)) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-1275 |#1|) (-142) (-1236)) (T -1275)) -((-4230 (*1 *1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) (-4230 (*1 *1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) (-4229 (*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) (-4228 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) (-4229 (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-1275 *3)) (-4 *3 (-1236)))) (-4227 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) (-4228 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1275 *3)) (-4 *3 (-1236)))) (-4227 (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-1275 *3)) (-4 *3 (-1236)))) (-4226 (*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) (-4228 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) (-4226 (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-1275 *3)) (-4 *3 (-1236)))) (-4225 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) (-4224 (*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) (-4222 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) (-4221 (*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-1236)) (-5 *2 (-789)))) (-4220 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) (-4219 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) (-4219 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) (-4218 (*1 *1 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) (-4217 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) (-4216 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4424)) (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) (-4215 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) (-4216 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4424)) (-4 *1 (-1275 *3)) (-4 *3 (-1236)))) (-4214 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) (-4216 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4424)) (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) (-4213 (*1 *1 *1 *2) (-12 (-5 *2 (-557)) (|has| *1 (-6 -4424)) (-4 *1 (-1275 *3)) (-4 *3 (-1236))))) -(-13 (-1029 |t#1|) (-10 -8 (-15 -4230 ($ $ $)) (-15 -4230 ($ |t#1| $)) (-15 -4229 (|t#1| $)) (-15 -4228 (|t#1| $ "first")) (-15 -4229 ($ $ (-789))) (-15 -4227 ($ $)) (-15 -4228 ($ $ "rest")) (-15 -4227 ($ $ (-789))) (-15 -4226 (|t#1| $)) (-15 -4228 (|t#1| $ "last")) (-15 -4226 ($ $ (-789))) (-15 -4225 ($ $)) (-15 -4224 (|t#1| $)) (-15 -4223 (|t#1| $)) (-15 -4222 ($ $)) (-15 -4221 ((-789) $)) (-15 -4220 ($ $)) (IF (|has| $ (-6 -4424)) (PROGN (-15 -4219 ($ $ $)) (-15 -4219 ($ $ |t#1|)) (-15 -4218 ($ $)) (-15 -4217 (|t#1| $ |t#1|)) (-15 -4216 (|t#1| $ "first" |t#1|)) (-15 -4215 ($ $ $)) (-15 -4216 ($ $ "rest" $)) (-15 -4214 (|t#1| $ |t#1|)) (-15 -4216 (|t#1| $ "last" |t#1|)) (-15 -4213 ($ $ (-557)))) |%noBranch|))) -(((-34) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-628 (-875)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-1029 |#1|) . T) ((-1120) |has| |#1| (-1120)) ((-1236) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3482 (((-659 (-1101)) $) NIL T ELT)) (-4259 (((-1196) $) 90 T ELT)) (-4239 (((-1255 |#2| |#1|) $ (-789)) 73 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)) ELT)) (-2271 (($ $) NIL (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) 143 (|has| |#1| (-568)) ELT)) (-4199 (($ $ (-789)) 128 T ELT) (($ $ (-789) (-789)) 131 T ELT)) (-4202 (((-1174 (-2 (|:| |k| (-789)) (|:| |c| |#1|))) $) 43 T ELT)) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3436 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3908 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4066 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4246 (($ (-1174 (-2 (|:| |k| (-789)) (|:| |c| |#1|)))) 52 T ELT) (($ (-1174 |#1|)) NIL T ELT)) (-3912 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4065 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4152 (($) NIL T CONST)) (-4233 (($ $) 135 T ELT)) (-4387 (($ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-4244 (($ $) 141 T ELT)) (-4242 (((-963 |#1|) $ (-789)) 63 T ELT) (((-963 |#1|) $ (-789) (-789)) 65 T ELT)) (-3291 (((-114) $) NIL T ELT)) (-4055 (($) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4200 (((-789) $) NIL T ELT) (((-789) $ (-789)) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-4236 (($ $) 118 T ELT)) (-3410 (($ $ (-557)) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4232 (($ (-557) (-557) $) 137 T ELT)) (-4205 (($ $ (-936)) 140 T ELT)) (-4243 (($ (-1 |#1| (-557)) $) 112 T ELT)) (-4365 (((-114) $) NIL T ELT)) (-3292 (($ |#1| (-789)) 16 T ELT) (($ $ (-1101) (-789)) NIL T ELT) (($ $ (-659 (-1101)) (-659 (-789))) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 99 T ELT)) (-4370 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3293 (($ $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-4237 (($ $) 116 T ELT)) (-4238 (($ $) 114 T ELT)) (-4231 (($ (-557) (-557) $) 139 T ELT)) (-4240 (($ $) 151 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-1196)) 157 (-3955 (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-29 (-557))) (|has| |#1| (-977)) (|has| |#1| (-1222))) (-12 (|has| |#1| (-38 (-419 (-557)))) (|has| |#1| (-15 -4240 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -3482 ((-659 (-1196)) |#1|))))) ELT) (($ $ (-1283 |#2|)) 152 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4234 (($ $ (-557) (-557)) 122 T ELT)) (-4197 (($ $ (-789)) 124 T ELT)) (-3884 (((-3 $ #1#) $ $) NIL (|has| |#1| (-568)) ELT)) (-4371 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4235 (($ $) 120 T ELT)) (-4196 (((-1174 |#1|) $ |#1|) 101 (|has| |#1| (-15 ** (|#1| |#1| (-789)))) ELT)) (-4228 ((|#1| $ (-789)) 96 T ELT) (($ $ $) 133 (|has| (-789) (-1131)) ELT)) (-4186 (($ $ (-1196)) 109 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $) 103 (|has| |#1| (-15 * (|#1| (-789) |#1|))) ELT) (($ $ (-789)) NIL (|has| |#1| (-15 * (|#1| (-789) |#1|))) ELT) (($ $ (-1283 |#2|)) 104 T ELT)) (-4376 (((-789) $) NIL T ELT)) (-3913 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4064 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4063 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4062 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3290 (($ $) 126 T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) 26 T ELT) (($ (-419 (-557))) 149 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $) NIL (|has| |#1| (-568)) ELT) (($ |#1|) 25 (|has| |#1| (-175)) ELT) (($ (-1255 |#2| |#1|)) 81 T ELT) (($ (-1283 |#2|)) 22 T ELT)) (-4245 (((-1174 |#1|) $) NIL T ELT)) (-4105 ((|#1| $ (-789)) 95 T ELT)) (-3101 (((-709 $) $) NIL (|has| |#1| (-147)) ELT)) (-3526 (((-789)) NIL T CONST)) (-4201 ((|#1| $) 91 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3904 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2270 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3914 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3902 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3906 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4198 ((|#1| $ (-789)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-789)))) (|has| |#1| (-15 -4374 (|#1| (-1196))))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3917 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3915 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3903 (($ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3057 (($) 18 T CONST)) (-3063 (($) 13 T CONST)) (-3068 (($ $ (-1196)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $ (-659 (-1196))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $ (-1196) (-789)) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) NIL (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-789) |#1|))) ELT) (($ $ (-789)) NIL (|has| |#1| (-15 * (|#1| (-789) |#1|))) ELT) (($ $ (-1283 |#2|)) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4377 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) 108 T ELT)) (-4267 (($ $ $) 20 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ |#1|) 146 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 107 T ELT) (($ (-419 (-557)) $) NIL (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) NIL (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-1276 |#1| |#2| |#3|) (-13 (-1279 |#1|) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -4374 ($ (-1255 |#2| |#1|))) (-15 -4239 ((-1255 |#2| |#1|) $ (-789))) (-15 -4374 ($ (-1283 |#2|))) (-15 -4238 ($ $)) (-15 -4237 ($ $)) (-15 -4236 ($ $)) (-15 -4235 ($ $)) (-15 -4234 ($ $ (-557) (-557))) (-15 -4233 ($ $)) (-15 -4232 ($ (-557) (-557) $)) (-15 -4231 ($ (-557) (-557) $)) (IF (|has| |#1| (-38 (-419 (-557)))) (-15 -4240 ($ $ (-1283 |#2|))) |%noBranch|))) (-1068) (-1196) |#1|) (T -1276)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-1255 *4 *3)) (-4 *3 (-1068)) (-14 *4 (-1196)) (-14 *5 *3) (-5 *1 (-1276 *3 *4 *5)))) (-4239 (*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1255 *5 *4)) (-5 *1 (-1276 *4 *5 *6)) (-4 *4 (-1068)) (-14 *5 (-1196)) (-14 *6 *4))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) (-4238 (*1 *1 *1) (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) (-14 *4 *2))) (-4237 (*1 *1 *1) (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) (-14 *4 *2))) (-4236 (*1 *1 *1) (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) (-14 *4 *2))) (-4235 (*1 *1 *1) (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) (-14 *4 *2))) (-4234 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1196)) (-14 *5 *3))) (-4233 (*1 *1 *1) (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) (-14 *4 *2))) (-4232 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1196)) (-14 *5 *3))) (-4231 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1196)) (-14 *5 *3))) (-4240 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068)) (-14 *5 *3)))) -((-4386 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) -(((-1277 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4386 (|#4| (-1 |#2| |#1|) |#3|))) (-1068) (-1068) (-1279 |#1|) (-1279 |#2|)) (T -1277)) -((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1279 *6)) (-5 *1 (-1277 *5 *6 *4 *2)) (-4 *4 (-1279 *5))))) -((-3604 (((-114) $) 17 T ELT)) (-3910 (($ $) 105 T ELT)) (-4067 (($ $) 81 T ELT)) (-3908 (($ $) 101 T ELT)) (-4066 (($ $) 77 T ELT)) (-3912 (($ $) 109 T ELT)) (-4065 (($ $) 85 T ELT)) (-4370 (($ $) 75 T ELT)) (-4371 (($ $) 73 T ELT)) (-3913 (($ $) 111 T ELT)) (-4064 (($ $) 87 T ELT)) (-3911 (($ $) 107 T ELT)) (-4063 (($ $) 83 T ELT)) (-3909 (($ $) 103 T ELT)) (-4062 (($ $) 79 T ELT)) (-4374 (((-875) $) 61 T ELT) (($ (-557)) NIL T ELT) (($ (-419 (-557))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3916 (($ $) 117 T ELT)) (-3904 (($ $) 93 T ELT)) (-3914 (($ $) 113 T ELT)) (-3902 (($ $) 89 T ELT)) (-3918 (($ $) 121 T ELT)) (-3906 (($ $) 97 T ELT)) (-3919 (($ $) 123 T ELT)) (-3907 (($ $) 99 T ELT)) (-3917 (($ $) 119 T ELT)) (-3905 (($ $) 95 T ELT)) (-3915 (($ $) 115 T ELT)) (-3903 (($ $) 91 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-419 (-557))) 71 T ELT))) -(((-1278 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-419 (-557)))) (-15 -4067 (|#1| |#1|)) (-15 -4066 (|#1| |#1|)) (-15 -4065 (|#1| |#1|)) (-15 -4064 (|#1| |#1|)) (-15 -4063 (|#1| |#1|)) (-15 -4062 (|#1| |#1|)) (-15 -3903 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3906 (|#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3912 (|#1| |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -4370 (|#1| |#1|)) (-15 -4371 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4374 (|#1| |#2|)) (-15 -4374 (|#1| |#1|)) (-15 -4374 (|#1| (-419 (-557)))) (-15 -4374 (|#1| (-557))) (-15 ** (|#1| |#1| (-789))) (-15 ** (|#1| |#1| (-936))) (-15 -3604 ((-114) |#1|)) (-15 -4374 ((-875) |#1|))) (-1279 |#2|) (-1068)) (T -1278)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-3482 (((-659 (-1101)) $) 92 T ELT)) (-4259 (((-1196) $) 126 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 68 (|has| |#1| (-568)) ELT)) (-2271 (($ $) 69 (|has| |#1| (-568)) ELT)) (-2269 (((-114) $) 71 (|has| |#1| (-568)) ELT)) (-4199 (($ $ (-789)) 121 T ELT) (($ $ (-789) (-789)) 120 T ELT)) (-4202 (((-1174 (-2 (|:| |k| (-789)) (|:| |c| |#1|))) $) 127 T ELT)) (-3910 (($ $) 160 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4067 (($ $) 143 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-3436 (($ $) 142 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3908 (($ $) 159 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4066 (($ $) 144 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4246 (($ (-1174 (-2 (|:| |k| (-789)) (|:| |c| |#1|)))) 180 T ELT) (($ (-1174 |#1|)) 178 T ELT)) (-3912 (($ $) 158 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4065 (($ $) 145 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4152 (($) 22 T CONST)) (-4387 (($ $) 77 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-4244 (($ $) 177 T ELT)) (-4242 (((-963 |#1|) $ (-789)) 175 T ELT) (((-963 |#1|) $ (-789) (-789)) 174 T ELT)) (-3291 (((-114) $) 91 T ELT)) (-4055 (($) 170 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4200 (((-789) $) 123 T ELT) (((-789) $ (-789)) 122 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3410 (($ $ (-557)) 141 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4205 (($ $ (-936)) 124 T ELT)) (-4243 (($ (-1 |#1| (-557)) $) 176 T ELT)) (-4365 (((-114) $) 79 T ELT)) (-3292 (($ |#1| (-789)) 78 T ELT) (($ $ (-1101) (-789)) 94 T ELT) (($ $ (-659 (-1101)) (-659 (-789))) 93 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4370 (($ $) 167 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3293 (($ $) 82 T ELT)) (-3590 ((|#1| $) 83 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-4240 (($ $) 172 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-1196)) 171 (-3955 (-12 (|has| |#1| (-29 (-557))) (|has| |#1| (-977)) (|has| |#1| (-1222)) (|has| |#1| (-38 (-419 (-557))))) (-12 (|has| |#1| (-15 -3482 ((-659 (-1196)) |#1|))) (|has| |#1| (-15 -4240 (|#1| |#1| (-1196)))) (|has| |#1| (-38 (-419 (-557)))))) ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4197 (($ $ (-789)) 118 T ELT)) (-3884 (((-3 $ "failed") $ $) 67 (|has| |#1| (-568)) ELT)) (-4371 (($ $) 168 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4196 (((-1174 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-789)))) ELT)) (-4228 ((|#1| $ (-789)) 128 T ELT) (($ $ $) 104 (|has| (-789) (-1131)) ELT)) (-4186 (($ $ (-1196)) 116 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $ (-659 (-1196))) 114 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $ (-1196) (-789)) 113 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 112 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-789) |#1|))) ELT) (($ $ (-789)) 106 (|has| |#1| (-15 * (|#1| (-789) |#1|))) ELT)) (-4376 (((-789) $) 81 T ELT)) (-3913 (($ $) 157 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4064 (($ $) 146 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3911 (($ $) 156 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4063 (($ $) 147 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3909 (($ $) 155 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4062 (($ $) 148 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3290 (($ $) 90 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ (-419 (-557))) 74 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $) 66 (|has| |#1| (-568)) ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT)) (-4245 (((-1174 |#1|) $) 179 T ELT)) (-4105 ((|#1| $ (-789)) 76 T ELT)) (-3101 (((-709 $) $) 65 (|has| |#1| (-147)) ELT)) (-3526 (((-789)) 37 T CONST)) (-4201 ((|#1| $) 125 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3916 (($ $) 166 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3904 (($ $) 154 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-2270 (((-114) $ $) 70 (|has| |#1| (-568)) ELT)) (-3914 (($ $) 165 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3902 (($ $) 153 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3918 (($ $) 164 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3906 (($ $) 152 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-4198 ((|#1| $ (-789)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-789)))) (|has| |#1| (-15 -4374 (|#1| (-1196))))) ELT)) (-3919 (($ $) 163 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3907 (($ $) 151 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3917 (($ $) 162 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3905 (($ $) 150 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3915 (($ $) 161 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3903 (($ $) 149 (|has| |#1| (-38 (-419 (-557)))) ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3068 (($ $ (-1196)) 115 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $ (-659 (-1196))) 111 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $ (-1196) (-789)) 110 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $ (-659 (-1196)) (-659 (-789))) 109 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-789) |#1|))) ELT) (($ $ (-789)) 105 (|has| |#1| (-15 * (|#1| (-789) |#1|))) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ |#1|) 173 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) 140 (|has| |#1| (-38 (-419 (-557)))) ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-557)) $) 73 (|has| |#1| (-38 (-419 (-557)))) ELT) (($ $ (-419 (-557))) 72 (|has| |#1| (-38 (-419 (-557)))) ELT))) -(((-1279 |#1|) (-142) (-1068)) (T -1279)) -((-4246 (*1 *1 *2) (-12 (-5 *2 (-1174 (-2 (|:| |k| (-789)) (|:| |c| *3)))) (-4 *3 (-1068)) (-4 *1 (-1279 *3)))) (-4245 (*1 *2 *1) (-12 (-4 *1 (-1279 *3)) (-4 *3 (-1068)) (-5 *2 (-1174 *3)))) (-4246 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-4 *1 (-1279 *3)))) (-4244 (*1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1068)))) (-4243 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-557))) (-4 *1 (-1279 *3)) (-4 *3 (-1068)))) (-4242 (*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-4 *1 (-1279 *4)) (-4 *4 (-1068)) (-5 *2 (-963 *4)))) (-4242 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-789)) (-4 *1 (-1279 *4)) (-4 *4 (-1068)) (-5 *2 (-963 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1068)) (-4 *2 (-376)))) (-4240 (*1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-557)))))) (-4240 (*1 *1 *1 *2) (-3955 (-12 (-5 *2 (-1196)) (-4 *1 (-1279 *3)) (-4 *3 (-1068)) (-12 (-4 *3 (-29 (-557))) (-4 *3 (-977)) (-4 *3 (-1222)) (-4 *3 (-38 (-419 (-557)))))) (-12 (-5 *2 (-1196)) (-4 *1 (-1279 *3)) (-4 *3 (-1068)) (-12 (|has| *3 (-15 -3482 ((-659 *2) *3))) (|has| *3 (-15 -4240 (*3 *3 *2))) (-4 *3 (-38 (-419 (-557))))))))) -(-13 (-1265 |t#1| (-789)) (-10 -8 (-15 -4246 ($ (-1174 (-2 (|:| |k| (-789)) (|:| |c| |t#1|))))) (-15 -4245 ((-1174 |t#1|) $)) (-15 -4246 ($ (-1174 |t#1|))) (-15 -4244 ($ $)) (-15 -4243 ($ (-1 |t#1| (-557)) $)) (-15 -4242 ((-963 |t#1|) $ (-789))) (-15 -4242 ((-963 |t#1|) $ (-789) (-789))) (IF (|has| |t#1| (-376)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-557)))) (PROGN (-15 -4240 ($ $)) (IF (|has| |t#1| (-15 -4240 (|t#1| |t#1| (-1196)))) (IF (|has| |t#1| (-15 -3482 ((-659 (-1196)) |t#1|))) (-15 -4240 ($ $ (-1196))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1222)) (IF (|has| |t#1| (-977)) (IF (|has| |t#1| (-29 (-557))) (-15 -4240 ($ $ (-1196))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1021)) (-6 (-1222))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-789)) . T) ((-25) . T) ((-38 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-557)))) ((-95) |has| |#1| (-38 (-419 (-557)))) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-631 (-557)) . T) ((-631 |#1|) |has| |#1| (-175)) ((-631 $) |has| |#1| (-568)) ((-628 (-875)) . T) ((-175) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-789) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-789) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-789) |#1|))) ((-296) |has| |#1| (-38 (-419 (-557)))) ((-298 (-789) |#1|) . T) ((-298 $ $) |has| (-789) (-1131)) ((-302) |has| |#1| (-568)) ((-505) |has| |#1| (-38 (-419 (-557)))) ((-568) |has| |#1| (-568)) ((-664 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-666 |#1|) . T) ((-666 $) . T) ((-658 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-658 |#1|) |has| |#1| (-175)) ((-658 $) |has| |#1| (-568)) ((-735 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-735 |#1|) |has| |#1| (-175)) ((-735 $) |has| |#1| (-568)) ((-744) . T) ((-909 $ (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ((-915 (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ((-917 (-1196)) -12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-789) |#1|)))) ((-992 |#1| (-789) (-1101)) . T) ((-1021) |has| |#1| (-38 (-419 (-557)))) ((-1070 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-1070 |#1|) . T) ((-1070 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-1075 (-419 (-557))) |has| |#1| (-38 (-419 (-557)))) ((-1075 |#1|) . T) ((-1075 $) -3955 (|has| |#1| (-568)) (|has| |#1| (-175))) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1222) |has| |#1| (-38 (-419 (-557)))) ((-1225) |has| |#1| (-38 (-419 (-557)))) ((-1236) . T) ((-1265 |#1| (-789)) . T)) -((-4249 (((-1 (-1174 |#1|) (-659 (-1174 |#1|))) (-1 |#2| (-659 |#2|))) 24 T ELT)) (-4248 (((-1 (-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-4247 (((-1 (-1174 |#1|) (-1174 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-4252 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-4251 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-4253 ((|#2| (-1 |#2| (-659 |#2|)) (-659 |#1|)) 60 T ELT)) (-4254 (((-659 |#2|) (-659 |#1|) (-659 (-1 |#2| (-659 |#2|)))) 66 T ELT)) (-4250 ((|#2| |#2| |#2|) 43 T ELT))) -(((-1280 |#1| |#2|) (-10 -7 (-15 -4247 ((-1 (-1174 |#1|) (-1174 |#1|)) (-1 |#2| |#2|))) (-15 -4248 ((-1 (-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4249 ((-1 (-1174 |#1|) (-659 (-1174 |#1|))) (-1 |#2| (-659 |#2|)))) (-15 -4250 (|#2| |#2| |#2|)) (-15 -4251 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4252 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4253 (|#2| (-1 |#2| (-659 |#2|)) (-659 |#1|))) (-15 -4254 ((-659 |#2|) (-659 |#1|) (-659 (-1 |#2| (-659 |#2|)))))) (-38 (-419 (-557))) (-1279 |#1|)) (T -1280)) -((-4254 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *5)) (-5 *4 (-659 (-1 *6 (-659 *6)))) (-4 *5 (-38 (-419 (-557)))) (-4 *6 (-1279 *5)) (-5 *2 (-659 *6)) (-5 *1 (-1280 *5 *6)))) (-4253 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-659 *2))) (-5 *4 (-659 *5)) (-4 *5 (-38 (-419 (-557)))) (-4 *2 (-1279 *5)) (-5 *1 (-1280 *5 *2)))) (-4252 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1279 *4)) (-5 *1 (-1280 *4 *2)) (-4 *4 (-38 (-419 (-557)))))) (-4251 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1279 *4)) (-5 *1 (-1280 *4 *2)) (-4 *4 (-38 (-419 (-557)))))) (-4250 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1280 *3 *2)) (-4 *2 (-1279 *3)))) (-4249 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-659 *5))) (-4 *5 (-1279 *4)) (-4 *4 (-38 (-419 (-557)))) (-5 *2 (-1 (-1174 *4) (-659 (-1174 *4)))) (-5 *1 (-1280 *4 *5)))) (-4248 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1279 *4)) (-4 *4 (-38 (-419 (-557)))) (-5 *2 (-1 (-1174 *4) (-1174 *4) (-1174 *4))) (-5 *1 (-1280 *4 *5)))) (-4247 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1279 *4)) (-4 *4 (-38 (-419 (-557)))) (-5 *2 (-1 (-1174 *4) (-1174 *4))) (-5 *1 (-1280 *4 *5))))) -((-4256 ((|#2| |#4| (-789)) 31 T ELT)) (-4255 ((|#4| |#2|) 26 T ELT)) (-4258 ((|#4| (-419 |#2|)) 49 (|has| |#1| (-568)) ELT)) (-4257 (((-1 |#4| (-659 |#4|)) |#3|) 43 T ELT))) -(((-1281 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4255 (|#4| |#2|)) (-15 -4256 (|#2| |#4| (-789))) (-15 -4257 ((-1 |#4| (-659 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -4258 (|#4| (-419 |#2|))) |%noBranch|)) (-1068) (-1262 |#1|) (-676 |#2|) (-1279 |#1|)) (T -1281)) -((-4258 (*1 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-568)) (-4 *4 (-1068)) (-4 *2 (-1279 *4)) (-5 *1 (-1281 *4 *5 *6 *2)) (-4 *6 (-676 *5)))) (-4257 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-1262 *4)) (-5 *2 (-1 *6 (-659 *6))) (-5 *1 (-1281 *4 *5 *3 *6)) (-4 *3 (-676 *5)) (-4 *6 (-1279 *4)))) (-4256 (*1 *2 *3 *4) (-12 (-5 *4 (-789)) (-4 *5 (-1068)) (-4 *2 (-1262 *5)) (-5 *1 (-1281 *5 *2 *6 *3)) (-4 *6 (-676 *2)) (-4 *3 (-1279 *5)))) (-4255 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *3 (-1262 *4)) (-4 *2 (-1279 *4)) (-5 *1 (-1281 *4 *3 *5 *2)) (-4 *5 (-676 *3))))) -NIL -(((-1282) (-142)) (T -1282)) -NIL -(-13 (-10 -7 (-6 -2499))) -((-2965 (((-114) $ $) NIL T ELT)) (-4259 (((-1196)) 12 T ELT)) (-3658 (((-1178) $) 18 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 11 T ELT) (((-1196) $) 8 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 15 T ELT))) -(((-1283 |#1|) (-13 (-1120) (-628 (-1196)) (-10 -8 (-15 -4374 ((-1196) $)) (-15 -4259 ((-1196))))) (-1196)) (T -1283)) -((-4374 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1283 *3)) (-14 *3 *2))) (-4259 (*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1283 *3)) (-14 *3 *2)))) -((-4266 (($ (-789)) 19 T ELT)) (-4263 (((-707 |#2|) $ $) 41 T ELT)) (-4260 ((|#2| $) 51 T ELT)) (-4261 ((|#2| $) 50 T ELT)) (-4264 ((|#2| $ $) 36 T ELT)) (-4262 (($ $ $) 47 T ELT)) (-4265 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-4267 (($ $ $) 15 T ELT)) (* (($ (-557) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) -(((-1284 |#1| |#2|) (-10 -7 (-15 -4260 (|#2| |#1|)) (-15 -4261 (|#2| |#1|)) (-15 -4262 (|#1| |#1| |#1|)) (-15 -4263 ((-707 |#2|) |#1| |#1|)) (-15 -4264 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-557) |#1|)) (-15 -4265 (|#1| |#1| |#1|)) (-15 -4265 (|#1| |#1|)) (-15 -4266 (|#1| (-789))) (-15 -4267 (|#1| |#1| |#1|))) (-1285 |#2|) (-1236)) (T -1284)) -NIL -((-2965 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4266 (($ (-789)) 121 (|has| |#1| (-23)) ELT)) (-2411 (((-1292) $ (-557) (-557)) 44 (|has| $ (-6 -4424)) ELT)) (-1933 (((-114) (-1 (-114) |#1| |#1|) $) 107 T ELT) (((-114) $) 101 (|has| |#1| (-859)) ELT)) (-1931 (($ (-1 (-114) |#1| |#1|) $) 98 (|has| $ (-6 -4424)) ELT) (($ $) 97 (-12 (|has| |#1| (-859)) (|has| $ (-6 -4424))) ELT)) (-3308 (($ (-1 (-114) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-859)) ELT)) (-4216 ((|#1| $ (-557) |#1|) 56 (|has| $ (-6 -4424)) ELT) ((|#1| $ (-1253 (-557)) |#1|) 64 (|has| $ (-6 -4424)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4423)) ELT)) (-4152 (($) 7 T CONST)) (-2508 (($ $) 99 (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) 109 T ELT)) (-1465 (($ $) 84 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-3824 (($ |#1| $) 83 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4423)) ELT)) (-1717 ((|#1| $ (-557) |#1|) 57 (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-557)) 55 T ELT)) (-3837 (((-557) (-1 (-114) |#1|) $) 106 T ELT) (((-557) |#1| $) 105 (|has| |#1| (-1120)) ELT) (((-557) |#1| $ (-557)) 104 (|has| |#1| (-1120)) ELT)) (-3288 (((-659 |#1|) $) 30 (|has| $ (-6 -4423)) ELT)) (-4263 (((-707 |#1|) $ $) 114 (|has| |#1| (-1068)) ELT)) (-4042 (($ (-789) |#1|) 74 T ELT)) (-2413 (((-557) $) 47 (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) 91 (|has| |#1| (-859)) ELT)) (-3936 (($ (-1 (-114) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-859)) ELT)) (-3005 (((-659 |#1|) $) 29 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-2414 (((-557) $) 48 (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) 92 (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-4260 ((|#1| $) 111 (-12 (|has| |#1| (-1068)) (|has| |#1| (-1021))) ELT)) (-4261 ((|#1| $) 112 (-12 (|has| |#1| (-1068)) (|has| |#1| (-1021))) ELT)) (-3658 (((-1178) $) 22 (|has| |#1| (-1120)) ELT)) (-2515 (($ |#1| $ (-557)) 66 T ELT) (($ $ $ (-557)) 65 T ELT)) (-2416 (((-659 (-557)) $) 50 T ELT)) (-2417 (((-114) (-557) $) 51 T ELT)) (-3659 (((-1139) $) 21 (|has| |#1| (-1120)) ELT)) (-4229 ((|#1| $) 46 (|has| (-557) (-859)) ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2412 (($ $ |#1|) 45 (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) 11 T ELT)) (-2415 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) 52 T ELT)) (-3821 (((-114) $) 8 T ELT)) (-3991 (($) 9 T ELT)) (-4228 ((|#1| $ (-557) |#1|) 54 T ELT) ((|#1| $ (-557)) 53 T ELT) (($ $ (-1253 (-557))) 75 T ELT)) (-4264 ((|#1| $ $) 115 (|has| |#1| (-1068)) ELT)) (-2516 (($ $ (-557)) 68 T ELT) (($ $ (-1253 (-557))) 67 T ELT)) (-4262 (($ $ $) 113 (|has| |#1| (-1068)) ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) 28 (-12 (|has| |#1| (-1120)) (|has| $ (-6 -4423))) ELT)) (-1932 (($ $ $ (-557)) 100 (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) 10 T ELT)) (-4400 (((-546) $) 85 (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 76 T ELT)) (-4230 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-659 $)) 70 T ELT)) (-4374 (((-875) $) 17 (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4423)) ELT)) (-2963 (((-114) $ $) 93 (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) 95 (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3083 (((-114) $ $) 94 (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) 96 (|has| |#1| (-859)) ELT)) (-4265 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-4267 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-557) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-744)) ELT) (($ $ |#1|) 116 (|has| |#1| (-744)) ELT)) (-4385 (((-789) $) 6 (|has| $ (-6 -4423)) ELT))) -(((-1285 |#1|) (-142) (-1236)) (T -1285)) -((-4267 (*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1236)) (-4 *2 (-25)))) (-4266 (*1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-1285 *3)) (-4 *3 (-23)) (-4 *3 (-1236)))) (-4265 (*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1236)) (-4 *2 (-21)))) (-4265 (*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1236)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-557)) (-4 *1 (-1285 *3)) (-4 *3 (-1236)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1236)) (-4 *2 (-744)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1236)) (-4 *2 (-744)))) (-4264 (*1 *2 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1236)) (-4 *2 (-1068)))) (-4263 (*1 *2 *1 *1) (-12 (-4 *1 (-1285 *3)) (-4 *3 (-1236)) (-4 *3 (-1068)) (-5 *2 (-707 *3)))) (-4262 (*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1236)) (-4 *2 (-1068)))) (-4261 (*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1236)) (-4 *2 (-1021)) (-4 *2 (-1068)))) (-4260 (*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1236)) (-4 *2 (-1021)) (-4 *2 (-1068))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4267 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4266 ($ (-789))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4265 ($ $)) (-15 -4265 ($ $ $)) (-15 * ($ (-557) $))) |%noBranch|) (IF (|has| |t#1| (-744)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1068)) (PROGN (-15 -4264 (|t#1| $ $)) (-15 -4263 ((-707 |t#1|) $ $)) (-15 -4262 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1021)) (IF (|has| |t#1| (-1068)) (PROGN (-15 -4261 (|t#1| $)) (-15 -4260 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -3955 (|has| |#1| (-1120)) (|has| |#1| (-859)) (|has| |#1| (-102))) ((-628 (-875)) -3955 (|has| |#1| (-1120)) (|has| |#1| (-859)) (|has| |#1| (-628 (-875)))) ((-153 |#1|) . T) ((-629 (-546)) |has| |#1| (-629 (-546))) ((-298 (-557) |#1|) . T) ((-298 (-1253 (-557)) $) . T) ((-300 (-557) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-385 |#1|) . T) ((-501 |#1|) . T) ((-614 (-557) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ((-669 |#1|) . T) ((-19 |#1|) . T) ((-859) |has| |#1| (-859)) ((-862) |has| |#1| (-859)) ((-1120) -3955 (|has| |#1| (-1120)) (|has| |#1| (-859))) ((-1236) . T)) -((-2965 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4266 (($ (-789)) NIL (|has| |#1| (-23)) ELT)) (-4268 (($ (-659 |#1|)) 11 T ELT)) (-2411 (((-1292) $ (-557) (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-1933 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-859)) ELT)) (-1931 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-859))) ELT)) (-3308 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-859)) ELT)) (-4216 ((|#1| $ (-557) |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| $ (-1253 (-557)) |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-4138 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4152 (($) NIL T CONST)) (-2508 (($ $) NIL (|has| $ (-6 -4424)) ELT)) (-2509 (($ $) NIL T ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-3824 (($ |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4270 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4423)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-1717 ((|#1| $ (-557) |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-3513 ((|#1| $ (-557)) NIL T ELT)) (-3837 (((-557) (-1 (-114) |#1|) $) NIL T ELT) (((-557) |#1| $) NIL (|has| |#1| (-1120)) ELT) (((-557) |#1| $ (-557)) NIL (|has| |#1| (-1120)) ELT)) (-3288 (((-659 |#1|) $) 16 (|has| $ (-6 -4423)) ELT)) (-4263 (((-707 |#1|) $ $) NIL (|has| |#1| (-1068)) ELT)) (-4042 (($ (-789) |#1|) NIL T ELT)) (-2413 (((-557) $) NIL (|has| (-557) (-859)) ELT)) (-2928 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3936 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3005 (((-659 |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2414 (((-557) $) 12 (|has| (-557) (-859)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-2158 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4260 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))) ELT)) (-4261 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))) ELT)) (-3658 (((-1178) $) NIL (|has| |#1| (-1120)) ELT)) (-2515 (($ |#1| $ (-557)) NIL T ELT) (($ $ $ (-557)) NIL T ELT)) (-2416 (((-659 (-557)) $) NIL T ELT)) (-2417 (((-114) (-557) $) NIL T ELT)) (-3659 (((-1139) $) NIL (|has| |#1| (-1120)) ELT)) (-4229 ((|#1| $) NIL (|has| (-557) (-859)) ELT)) (-1466 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2412 (($ $ |#1|) NIL (|has| $ (-6 -4424)) ELT)) (-2156 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT) (($ $ (-659 |#1|) (-659 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-2415 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-2418 (((-659 |#1|) $) NIL T ELT)) (-3821 (((-114) $) NIL T ELT)) (-3991 (($) NIL T ELT)) (-4228 ((|#1| $ (-557) |#1|) NIL T ELT) ((|#1| $ (-557)) NIL T ELT) (($ $ (-1253 (-557))) NIL T ELT)) (-4264 ((|#1| $ $) NIL (|has| |#1| (-1068)) ELT)) (-2516 (($ $ (-557)) NIL T ELT) (($ $ (-1253 (-557))) NIL T ELT)) (-4262 (($ $ $) NIL (|has| |#1| (-1068)) ELT)) (-2155 (((-789) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT) (((-789) |#1| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-1120))) ELT)) (-1932 (($ $ $ (-557)) NIL (|has| $ (-6 -4424)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) 20 (|has| |#1| (-629 (-546))) ELT)) (-3948 (($ (-659 |#1|)) 10 T ELT)) (-4230 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-659 $)) NIL T ELT)) (-4374 (((-875) $) NIL (|has| |#1| (-628 (-875))) ELT)) (-1376 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4423)) ELT)) (-2963 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3452 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3083 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-4265 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-4267 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-557) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-744)) ELT) (($ $ |#1|) NIL (|has| |#1| (-744)) ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-1286 |#1|) (-13 (-1285 |#1|) (-10 -8 (-15 -4268 ($ (-659 |#1|))))) (-1236)) (T -1286)) -((-4268 (*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1236)) (-5 *1 (-1286 *3))))) -((-4269 (((-1286 |#2|) (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|) 13 T ELT)) (-4270 ((|#2| (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|) 15 T ELT)) (-4386 (((-3 (-1286 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1286 |#1|)) 30 T ELT) (((-1286 |#2|) (-1 |#2| |#1|) (-1286 |#1|)) 18 T ELT))) -(((-1287 |#1| |#2|) (-10 -7 (-15 -4269 ((-1286 |#2|) (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|)) (-15 -4270 (|#2| (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|)) (-15 -4386 ((-1286 |#2|) (-1 |#2| |#1|) (-1286 |#1|))) (-15 -4386 ((-3 (-1286 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1286 |#1|)))) (-1236) (-1236)) (T -1287)) -((-4386 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1286 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1286 *6)) (-5 *1 (-1287 *5 *6)))) (-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1286 *6)) (-5 *1 (-1287 *5 *6)))) (-4270 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1286 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-1287 *5 *2)))) (-4269 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1286 *6)) (-4 *6 (-1236)) (-4 *5 (-1236)) (-5 *2 (-1286 *5)) (-5 *1 (-1287 *6 *5))))) -((-4271 (((-480) (-659 (-659 (-960 (-229)))) (-659 (-270))) 22 T ELT) (((-480) (-659 (-659 (-960 (-229))))) 21 T ELT) (((-480) (-659 (-659 (-960 (-229)))) (-886) (-886) (-936) (-659 (-270))) 20 T ELT)) (-4272 (((-1289) (-659 (-659 (-960 (-229)))) (-659 (-270))) 30 T ELT) (((-1289) (-659 (-659 (-960 (-229)))) (-886) (-886) (-936) (-659 (-270))) 29 T ELT)) (-4374 (((-1289) (-480)) 46 T ELT))) -(((-1288) (-10 -7 (-15 -4271 ((-480) (-659 (-659 (-960 (-229)))) (-886) (-886) (-936) (-659 (-270)))) (-15 -4271 ((-480) (-659 (-659 (-960 (-229)))))) (-15 -4271 ((-480) (-659 (-659 (-960 (-229)))) (-659 (-270)))) (-15 -4272 ((-1289) (-659 (-659 (-960 (-229)))) (-886) (-886) (-936) (-659 (-270)))) (-15 -4272 ((-1289) (-659 (-659 (-960 (-229)))) (-659 (-270)))) (-15 -4374 ((-1289) (-480))))) (T -1288)) -((-4374 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1289)) (-5 *1 (-1288)))) (-4272 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-659 (-960 (-229))))) (-5 *4 (-659 (-270))) (-5 *2 (-1289)) (-5 *1 (-1288)))) (-4272 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-659 (-659 (-960 (-229))))) (-5 *4 (-886)) (-5 *5 (-936)) (-5 *6 (-659 (-270))) (-5 *2 (-1289)) (-5 *1 (-1288)))) (-4271 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-659 (-960 (-229))))) (-5 *4 (-659 (-270))) (-5 *2 (-480)) (-5 *1 (-1288)))) (-4271 (*1 *2 *3) (-12 (-5 *3 (-659 (-659 (-960 (-229))))) (-5 *2 (-480)) (-5 *1 (-1288)))) (-4271 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-659 (-659 (-960 (-229))))) (-5 *4 (-886)) (-5 *5 (-936)) (-5 *6 (-659 (-270))) (-5 *2 (-480)) (-5 *1 (-1288))))) -((-2965 (((-114) $ $) NIL T ELT)) (-4290 (((-1178) $ (-1178)) 107 T ELT) (((-1178) $ (-1178) (-1178)) 105 T ELT) (((-1178) $ (-1178) (-659 (-1178))) 104 T ELT)) (-4286 (($) 69 T ELT)) (-4273 (((-1292) $ (-480) (-936)) 54 T ELT)) (-4279 (((-1292) $ (-936) (-1178)) 89 T ELT) (((-1292) $ (-936) (-886)) 90 T ELT)) (-4301 (((-1292) $ (-936) (-391) (-391)) 57 T ELT)) (-4311 (((-1292) $ (-1178)) 84 T ELT)) (-4274 (((-1292) $ (-936) (-1178)) 94 T ELT)) (-4275 (((-1292) $ (-936) (-391) (-391)) 58 T ELT)) (-4312 (((-1292) $ (-936) (-936)) 55 T ELT)) (-4292 (((-1292) $) 85 T ELT)) (-4277 (((-1292) $ (-936) (-1178)) 93 T ELT)) (-4281 (((-1292) $ (-480) (-936)) 41 T ELT)) (-4278 (((-1292) $ (-936) (-1178)) 92 T ELT)) (-4314 (((-659 (-270)) $) 29 T ELT) (($ $ (-659 (-270))) 30 T ELT)) (-4313 (((-1292) $ (-789) (-789)) 52 T ELT)) (-4285 (($ $) 70 T ELT) (($ (-480) (-659 (-270))) 71 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-4288 (((-557) $) 48 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4282 (((-1286 (-3 (-480) "undefined")) $) 47 T ELT)) (-4283 (((-1286 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -4278 (-557)) (|:| -4276 (-557)) (|:| |spline| (-557)) (|:| -4307 (-557)) (|:| |axesColor| (-886)) (|:| -4279 (-557)) (|:| |unitsColor| (-886)) (|:| |showing| (-557)))) $) 46 T ELT)) (-4284 (((-1292) $ (-936) (-229) (-229) (-229) (-229) (-557) (-557) (-557) (-557) (-886) (-557) (-886) (-557)) 83 T ELT)) (-4287 (((-659 (-960 (-229))) $) NIL T ELT)) (-4280 (((-480) $ (-936)) 43 T ELT)) (-4310 (((-1292) $ (-789) (-789) (-936) (-936)) 50 T ELT)) (-4308 (((-1292) $ (-1178)) 95 T ELT)) (-4276 (((-1292) $ (-936) (-1178)) 91 T ELT)) (-4374 (((-875) $) 102 T ELT)) (-4289 (((-1292) $) 96 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-4307 (((-1292) $ (-936) (-1178)) 87 T ELT) (((-1292) $ (-936) (-886)) 88 T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1289) (-13 (-1120) (-10 -8 (-15 -4287 ((-659 (-960 (-229))) $)) (-15 -4286 ($)) (-15 -4285 ($ $)) (-15 -4314 ((-659 (-270)) $)) (-15 -4314 ($ $ (-659 (-270)))) (-15 -4285 ($ (-480) (-659 (-270)))) (-15 -4284 ((-1292) $ (-936) (-229) (-229) (-229) (-229) (-557) (-557) (-557) (-557) (-886) (-557) (-886) (-557))) (-15 -4283 ((-1286 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -4278 (-557)) (|:| -4276 (-557)) (|:| |spline| (-557)) (|:| -4307 (-557)) (|:| |axesColor| (-886)) (|:| -4279 (-557)) (|:| |unitsColor| (-886)) (|:| |showing| (-557)))) $)) (-15 -4282 ((-1286 (-3 (-480) "undefined")) $)) (-15 -4311 ((-1292) $ (-1178))) (-15 -4281 ((-1292) $ (-480) (-936))) (-15 -4280 ((-480) $ (-936))) (-15 -4307 ((-1292) $ (-936) (-1178))) (-15 -4307 ((-1292) $ (-936) (-886))) (-15 -4279 ((-1292) $ (-936) (-1178))) (-15 -4279 ((-1292) $ (-936) (-886))) (-15 -4278 ((-1292) $ (-936) (-1178))) (-15 -4277 ((-1292) $ (-936) (-1178))) (-15 -4276 ((-1292) $ (-936) (-1178))) (-15 -4308 ((-1292) $ (-1178))) (-15 -4289 ((-1292) $)) (-15 -4310 ((-1292) $ (-789) (-789) (-936) (-936))) (-15 -4275 ((-1292) $ (-936) (-391) (-391))) (-15 -4301 ((-1292) $ (-936) (-391) (-391))) (-15 -4274 ((-1292) $ (-936) (-1178))) (-15 -4313 ((-1292) $ (-789) (-789))) (-15 -4273 ((-1292) $ (-480) (-936))) (-15 -4312 ((-1292) $ (-936) (-936))) (-15 -4290 ((-1178) $ (-1178))) (-15 -4290 ((-1178) $ (-1178) (-1178))) (-15 -4290 ((-1178) $ (-1178) (-659 (-1178)))) (-15 -4292 ((-1292) $)) (-15 -4288 ((-557) $)) (-15 -4374 ((-875) $))))) (T -1289)) -((-4374 (*1 *2 *1) (-12 (-5 *2 (-875)) (-5 *1 (-1289)))) (-4287 (*1 *2 *1) (-12 (-5 *2 (-659 (-960 (-229)))) (-5 *1 (-1289)))) (-4286 (*1 *1) (-5 *1 (-1289))) (-4285 (*1 *1 *1) (-5 *1 (-1289))) (-4314 (*1 *2 *1) (-12 (-5 *2 (-659 (-270))) (-5 *1 (-1289)))) (-4314 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-270))) (-5 *1 (-1289)))) (-4285 (*1 *1 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-659 (-270))) (-5 *1 (-1289)))) (-4284 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-936)) (-5 *4 (-229)) (-5 *5 (-557)) (-5 *6 (-886)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4283 (*1 *2 *1) (-12 (-5 *2 (-1286 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -4278 (-557)) (|:| -4276 (-557)) (|:| |spline| (-557)) (|:| -4307 (-557)) (|:| |axesColor| (-886)) (|:| -4279 (-557)) (|:| |unitsColor| (-886)) (|:| |showing| (-557))))) (-5 *1 (-1289)))) (-4282 (*1 *2 *1) (-12 (-5 *2 (-1286 (-3 (-480) "undefined"))) (-5 *1 (-1289)))) (-4311 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4281 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-936)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4280 (*1 *2 *1 *3) (-12 (-5 *3 (-936)) (-5 *2 (-480)) (-5 *1 (-1289)))) (-4307 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4307 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-886)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4279 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4279 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-886)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4278 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4277 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4276 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4308 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4310 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-789)) (-5 *4 (-936)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4275 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-936)) (-5 *4 (-391)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4301 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-936)) (-5 *4 (-391)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4274 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4313 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4273 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-936)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4312 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4290 (*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1289)))) (-4290 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1289)))) (-4290 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-659 (-1178))) (-5 *2 (-1178)) (-5 *1 (-1289)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4288 (*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-1289))))) -((-2965 (((-114) $ $) NIL T ELT)) (-4302 (((-1292) $ (-391)) 169 T ELT) (((-1292) $ (-391) (-391) (-391)) 170 T ELT)) (-4290 (((-1178) $ (-1178)) 178 T ELT) (((-1178) $ (-1178) (-1178)) 176 T ELT) (((-1178) $ (-1178) (-659 (-1178))) 175 T ELT)) (-4318 (($) 67 T ELT)) (-4309 (((-1292) $ (-391) (-391) (-391) (-391) (-391)) 141 T ELT) (((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4275 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) $) 139 T ELT) (((-1292) $ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4275 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 140 T ELT) (((-1292) $ (-557) (-557) (-391) (-391) (-391)) 144 T ELT) (((-1292) $ (-391) (-391)) 145 T ELT) (((-1292) $ (-391) (-391) (-391)) 152 T ELT)) (-4321 (((-391)) 122 T ELT) (((-391) (-391)) 123 T ELT)) (-4323 (((-391)) 117 T ELT) (((-391) (-391)) 119 T ELT)) (-4322 (((-391)) 120 T ELT) (((-391) (-391)) 121 T ELT)) (-4319 (((-391)) 126 T ELT) (((-391) (-391)) 127 T ELT)) (-4320 (((-391)) 124 T ELT) (((-391) (-391)) 125 T ELT)) (-4301 (((-1292) $ (-391) (-391)) 171 T ELT)) (-4311 (((-1292) $ (-1178)) 153 T ELT)) (-4316 (((-1152 (-229)) $) 68 T ELT) (($ $ (-1152 (-229))) 69 T ELT)) (-4297 (((-1292) $ (-1178)) 187 T ELT)) (-4296 (((-1292) $ (-1178)) 188 T ELT)) (-4303 (((-1292) $ (-391) (-391)) 151 T ELT) (((-1292) $ (-557) (-557)) 168 T ELT)) (-4312 (((-1292) $ (-936) (-936)) 160 T ELT)) (-4292 (((-1292) $) 137 T ELT)) (-4300 (((-1292) $ (-1178)) 186 T ELT)) (-4305 (((-1292) $ (-1178)) 134 T ELT)) (-4314 (((-659 (-270)) $) 70 T ELT) (($ $ (-659 (-270))) 71 T ELT)) (-4313 (((-1292) $ (-789) (-789)) 159 T ELT)) (-4315 (((-1292) $ (-789) (-960 (-229))) 193 T ELT)) (-4317 (($ $) 73 T ELT) (($ (-1152 (-229)) (-1178)) 74 T ELT) (($ (-1152 (-229)) (-659 (-270))) 75 T ELT)) (-4294 (((-1292) $ (-391) (-391) (-391)) 131 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-4288 (((-557) $) 128 T ELT)) (-4293 (((-1292) $ (-391)) 173 T ELT)) (-4298 (((-1292) $ (-391)) 191 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4299 (((-1292) $ (-391)) 190 T ELT)) (-4304 (((-1292) $ (-1178)) 136 T ELT)) (-4310 (((-1292) $ (-789) (-789) (-936) (-936)) 158 T ELT)) (-4306 (((-1292) $ (-1178)) 133 T ELT)) (-4308 (((-1292) $ (-1178)) 135 T ELT)) (-4291 (((-1292) $ (-159) (-159)) 157 T ELT)) (-4374 (((-875) $) 166 T ELT)) (-4289 (((-1292) $) 138 T ELT)) (-4295 (((-1292) $ (-1178)) 189 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-4307 (((-1292) $ (-1178)) 132 T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1290) (-13 (-1120) (-10 -8 (-15 -4323 ((-391))) (-15 -4323 ((-391) (-391))) (-15 -4322 ((-391))) (-15 -4322 ((-391) (-391))) (-15 -4321 ((-391))) (-15 -4321 ((-391) (-391))) (-15 -4320 ((-391))) (-15 -4320 ((-391) (-391))) (-15 -4319 ((-391))) (-15 -4319 ((-391) (-391))) (-15 -4318 ($)) (-15 -4317 ($ $)) (-15 -4317 ($ (-1152 (-229)) (-1178))) (-15 -4317 ($ (-1152 (-229)) (-659 (-270)))) (-15 -4316 ((-1152 (-229)) $)) (-15 -4316 ($ $ (-1152 (-229)))) (-15 -4315 ((-1292) $ (-789) (-960 (-229)))) (-15 -4314 ((-659 (-270)) $)) (-15 -4314 ($ $ (-659 (-270)))) (-15 -4313 ((-1292) $ (-789) (-789))) (-15 -4312 ((-1292) $ (-936) (-936))) (-15 -4311 ((-1292) $ (-1178))) (-15 -4310 ((-1292) $ (-789) (-789) (-936) (-936))) (-15 -4309 ((-1292) $ (-391) (-391) (-391) (-391) (-391))) (-15 -4309 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4275 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) $)) (-15 -4309 ((-1292) $ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4275 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4309 ((-1292) $ (-557) (-557) (-391) (-391) (-391))) (-15 -4309 ((-1292) $ (-391) (-391))) (-15 -4309 ((-1292) $ (-391) (-391) (-391))) (-15 -4308 ((-1292) $ (-1178))) (-15 -4307 ((-1292) $ (-1178))) (-15 -4306 ((-1292) $ (-1178))) (-15 -4305 ((-1292) $ (-1178))) (-15 -4304 ((-1292) $ (-1178))) (-15 -4303 ((-1292) $ (-391) (-391))) (-15 -4303 ((-1292) $ (-557) (-557))) (-15 -4302 ((-1292) $ (-391))) (-15 -4302 ((-1292) $ (-391) (-391) (-391))) (-15 -4301 ((-1292) $ (-391) (-391))) (-15 -4300 ((-1292) $ (-1178))) (-15 -4299 ((-1292) $ (-391))) (-15 -4298 ((-1292) $ (-391))) (-15 -4297 ((-1292) $ (-1178))) (-15 -4296 ((-1292) $ (-1178))) (-15 -4295 ((-1292) $ (-1178))) (-15 -4294 ((-1292) $ (-391) (-391) (-391))) (-15 -4293 ((-1292) $ (-391))) (-15 -4292 ((-1292) $)) (-15 -4291 ((-1292) $ (-159) (-159))) (-15 -4290 ((-1178) $ (-1178))) (-15 -4290 ((-1178) $ (-1178) (-1178))) (-15 -4290 ((-1178) $ (-1178) (-659 (-1178)))) (-15 -4289 ((-1292) $)) (-15 -4288 ((-557) $))))) (T -1290)) -((-4323 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1290)))) (-4323 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1290)))) (-4322 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1290)))) (-4322 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1290)))) (-4321 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1290)))) (-4321 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1290)))) (-4320 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1290)))) (-4320 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1290)))) (-4319 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1290)))) (-4319 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1290)))) (-4318 (*1 *1) (-5 *1 (-1290))) (-4317 (*1 *1 *1) (-5 *1 (-1290))) (-4317 (*1 *1 *2 *3) (-12 (-5 *2 (-1152 (-229))) (-5 *3 (-1178)) (-5 *1 (-1290)))) (-4317 (*1 *1 *2 *3) (-12 (-5 *2 (-1152 (-229))) (-5 *3 (-659 (-270))) (-5 *1 (-1290)))) (-4316 (*1 *2 *1) (-12 (-5 *2 (-1152 (-229))) (-5 *1 (-1290)))) (-4316 (*1 *1 *1 *2) (-12 (-5 *2 (-1152 (-229))) (-5 *1 (-1290)))) (-4315 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-789)) (-5 *4 (-960 (-229))) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4314 (*1 *2 *1) (-12 (-5 *2 (-659 (-270))) (-5 *1 (-1290)))) (-4314 (*1 *1 *1 *2) (-12 (-5 *2 (-659 (-270))) (-5 *1 (-1290)))) (-4313 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4312 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4311 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4310 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-789)) (-5 *4 (-936)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4309 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4309 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4275 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *1 (-1290)))) (-4309 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4275 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4309 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-557)) (-5 *4 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4309 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4309 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4308 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4307 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4306 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4304 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4303 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4303 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-557)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4302 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4302 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4301 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4300 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4299 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4298 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4297 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4296 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4295 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4294 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4293 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4291 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-159)) (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4290 (*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1290)))) (-4290 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1290)))) (-4290 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-659 (-1178))) (-5 *2 (-1178)) (-5 *1 (-1290)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1290)))) (-4288 (*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-1290))))) -((-4332 (((-659 (-1178)) (-659 (-1178))) 103 T ELT) (((-659 (-1178))) 96 T ELT)) (-4333 (((-659 (-1178))) 94 T ELT)) (-4330 (((-659 (-936)) (-659 (-936))) 69 T ELT) (((-659 (-936))) 64 T ELT)) (-4329 (((-659 (-789)) (-659 (-789))) 61 T ELT) (((-659 (-789))) 55 T ELT)) (-4331 (((-1292)) 71 T ELT)) (-4335 (((-936) (-936)) 87 T ELT) (((-936)) 86 T ELT)) (-4334 (((-936) (-936)) 85 T ELT) (((-936)) 84 T ELT)) (-4327 (((-886) (-886)) 81 T ELT) (((-886)) 80 T ELT)) (-4337 (((-229)) 91 T ELT) (((-229) (-391)) 93 T ELT)) (-4336 (((-936)) 88 T ELT) (((-936) (-936)) 89 T ELT)) (-4328 (((-936) (-936)) 83 T ELT) (((-936)) 82 T ELT)) (-4324 (((-886) (-886)) 75 T ELT) (((-886)) 73 T ELT)) (-4325 (((-886) (-886)) 77 T ELT) (((-886)) 76 T ELT)) (-4326 (((-886) (-886)) 79 T ELT) (((-886)) 78 T ELT))) -(((-1291) (-10 -7 (-15 -4324 ((-886))) (-15 -4324 ((-886) (-886))) (-15 -4325 ((-886))) (-15 -4325 ((-886) (-886))) (-15 -4326 ((-886))) (-15 -4326 ((-886) (-886))) (-15 -4327 ((-886))) (-15 -4327 ((-886) (-886))) (-15 -4328 ((-936))) (-15 -4328 ((-936) (-936))) (-15 -4329 ((-659 (-789)))) (-15 -4329 ((-659 (-789)) (-659 (-789)))) (-15 -4330 ((-659 (-936)))) (-15 -4330 ((-659 (-936)) (-659 (-936)))) (-15 -4331 ((-1292))) (-15 -4332 ((-659 (-1178)))) (-15 -4332 ((-659 (-1178)) (-659 (-1178)))) (-15 -4333 ((-659 (-1178)))) (-15 -4334 ((-936))) (-15 -4335 ((-936))) (-15 -4334 ((-936) (-936))) (-15 -4335 ((-936) (-936))) (-15 -4336 ((-936) (-936))) (-15 -4336 ((-936))) (-15 -4337 ((-229) (-391))) (-15 -4337 ((-229))))) (T -1291)) -((-4337 (*1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1291)))) (-4337 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-1291)))) (-4336 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1291)))) (-4336 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1291)))) (-4335 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1291)))) (-4334 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1291)))) (-4335 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1291)))) (-4334 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1291)))) (-4333 (*1 *2) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-1291)))) (-4332 (*1 *2 *2) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-1291)))) (-4332 (*1 *2) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-1291)))) (-4331 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1291)))) (-4330 (*1 *2 *2) (-12 (-5 *2 (-659 (-936))) (-5 *1 (-1291)))) (-4330 (*1 *2) (-12 (-5 *2 (-659 (-936))) (-5 *1 (-1291)))) (-4329 (*1 *2 *2) (-12 (-5 *2 (-659 (-789))) (-5 *1 (-1291)))) (-4329 (*1 *2) (-12 (-5 *2 (-659 (-789))) (-5 *1 (-1291)))) (-4328 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1291)))) (-4328 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1291)))) (-4327 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1291)))) (-4327 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1291)))) (-4326 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1291)))) (-4326 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1291)))) (-4325 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1291)))) (-4325 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1291)))) (-4324 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1291)))) (-4324 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1291))))) -((-4338 (($) 6 T ELT)) (-4374 (((-875) $) 9 T ELT))) -(((-1292) (-13 (-628 (-875)) (-10 -8 (-15 -4338 ($))))) (T -1292)) -((-4338 (*1 *1) (-5 *1 (-1292)))) -((-4377 (($ $ |#2|) 10 T ELT))) -(((-1293 |#1| |#2|) (-10 -7 (-15 -4377 (|#1| |#1| |#2|))) (-1294 |#2|) (-376)) (T -1293)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4339 (((-136)) 38 T ELT)) (-4374 (((-875) $) 13 T ELT)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ |#1|) 39 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-1294 |#1|) (-142) (-376)) (T -1294)) -((-4377 (*1 *1 *1 *2) (-12 (-4 *1 (-1294 *2)) (-4 *2 (-376)))) (-4339 (*1 *2) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-376)) (-5 *2 (-136))))) -(-13 (-735 |t#1|) (-10 -8 (-15 -4377 ($ $ |t#1|)) (-15 -4339 ((-136))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-666 |#1|) . T) ((-658 |#1|) . T) ((-735 |#1|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1120) . T) ((-1236) . T)) -((-4344 (((-659 (-1229 |#1|)) (-1196) (-1229 |#1|)) 83 T ELT)) (-4342 (((-1174 (-1174 (-963 |#1|))) (-1196) (-1174 (-963 |#1|))) 63 T ELT)) (-4345 (((-1 (-1174 (-1229 |#1|)) (-1174 (-1229 |#1|))) (-789) (-1229 |#1|) (-1174 (-1229 |#1|))) 74 T ELT)) (-4340 (((-1 (-1174 (-963 |#1|)) (-1174 (-963 |#1|))) (-789)) 65 T ELT)) (-4343 (((-1 (-1190 (-963 |#1|)) (-963 |#1|)) (-1196)) 32 T ELT)) (-4341 (((-1 (-1174 (-963 |#1|)) (-1174 (-963 |#1|))) (-789)) 64 T ELT))) -(((-1295 |#1|) (-10 -7 (-15 -4340 ((-1 (-1174 (-963 |#1|)) (-1174 (-963 |#1|))) (-789))) (-15 -4341 ((-1 (-1174 (-963 |#1|)) (-1174 (-963 |#1|))) (-789))) (-15 -4342 ((-1174 (-1174 (-963 |#1|))) (-1196) (-1174 (-963 |#1|)))) (-15 -4343 ((-1 (-1190 (-963 |#1|)) (-963 |#1|)) (-1196))) (-15 -4344 ((-659 (-1229 |#1|)) (-1196) (-1229 |#1|))) (-15 -4345 ((-1 (-1174 (-1229 |#1|)) (-1174 (-1229 |#1|))) (-789) (-1229 |#1|) (-1174 (-1229 |#1|))))) (-376)) (T -1295)) -((-4345 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789)) (-4 *6 (-376)) (-5 *4 (-1229 *6)) (-5 *2 (-1 (-1174 *4) (-1174 *4))) (-5 *1 (-1295 *6)) (-5 *5 (-1174 *4)))) (-4344 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-4 *5 (-376)) (-5 *2 (-659 (-1229 *5))) (-5 *1 (-1295 *5)) (-5 *4 (-1229 *5)))) (-4343 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1 (-1190 (-963 *4)) (-963 *4))) (-5 *1 (-1295 *4)) (-4 *4 (-376)))) (-4342 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-4 *5 (-376)) (-5 *2 (-1174 (-1174 (-963 *5)))) (-5 *1 (-1295 *5)) (-5 *4 (-1174 (-963 *5))))) (-4341 (*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1 (-1174 (-963 *4)) (-1174 (-963 *4)))) (-5 *1 (-1295 *4)) (-4 *4 (-376)))) (-4340 (*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1 (-1174 (-963 *4)) (-1174 (-963 *4)))) (-5 *1 (-1295 *4)) (-4 *4 (-376))))) -((-4347 (((-2 (|:| -2220 (-707 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-707 |#2|))) |#2|) 80 T ELT)) (-4346 (((-2 (|:| -2220 (-707 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-707 |#2|)))) 79 T ELT))) -(((-1296 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4346 ((-2 (|:| -2220 (-707 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-707 |#2|))))) (-15 -4347 ((-2 (|:| -2220 (-707 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-707 |#2|))) |#2|))) (-363) (-1262 |#1|) (-1262 |#2|) (-422 |#2| |#3|)) (T -1296)) -((-4347 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 *3)) (-5 *2 (-2 (|:| -2220 (-707 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-707 *3)))) (-5 *1 (-1296 *4 *3 *5 *6)) (-4 *6 (-422 *3 *5)))) (-4346 (*1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| -2220 (-707 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-707 *4)))) (-5 *1 (-1296 *3 *4 *5 *6)) (-4 *6 (-422 *4 *5))))) -((-2965 (((-114) $ $) NIL T ELT)) (-4348 (((-1154) $) 11 T ELT)) (-4349 (((-1154) $) 9 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 17 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1297) (-13 (-1102) (-10 -8 (-15 -4349 ((-1154) $)) (-15 -4348 ((-1154) $))))) (T -1297)) -((-4349 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1297)))) (-4348 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1297))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4350 (((-1154) $) 9 T ELT)) (-4374 (((-875) $) 15 T ELT) (($ (-1201)) NIL T ELT) (((-1201) $) NIL T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT))) -(((-1298) (-13 (-1102) (-10 -8 (-15 -4350 ((-1154) $))))) (T -1298)) -((-4350 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1298))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 58 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 81 T ELT) (($ (-557)) NIL T ELT) (($ |#4|) 65 T ELT) ((|#4| $) 70 T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT)) (-3526 (((-789)) NIL T CONST)) (-4351 (((-1292) (-789)) 16 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 36 T CONST)) (-3063 (($) 84 T CONST)) (-3452 (((-114) $ $) 87 T ELT)) (-4377 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-4265 (($ $) 89 T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 63 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 91 T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) -(((-1299 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1068) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4377 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4351 ((-1292) (-789))))) (-1068) (-859) (-813) (-967 |#1| |#3| |#2|) (-659 |#2|) (-659 (-789)) (-789)) (T -1299)) -((-4377 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-376)) (-4 *2 (-1068)) (-4 *3 (-859)) (-4 *4 (-813)) (-14 *6 (-659 *3)) (-5 *1 (-1299 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-967 *2 *4 *3)) (-14 *7 (-659 (-789))) (-14 *8 (-789)))) (-4351 (*1 *2 *3) (-12 (-5 *3 (-789)) (-4 *4 (-1068)) (-4 *5 (-859)) (-4 *6 (-813)) (-14 *8 (-659 *5)) (-5 *2 (-1292)) (-5 *1 (-1299 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-967 *4 *6 *5)) (-14 *9 (-659 *3)) (-14 *10 *3)))) -((-2965 (((-114) $ $) NIL T ELT)) (-4109 (((-659 (-2 (|:| -4289 $) (|:| -1903 (-659 |#4|)))) (-659 |#4|)) NIL T ELT)) (-4110 (((-659 $) (-659 |#4|)) 96 T ELT)) (-3482 (((-659 |#3|) $) NIL T ELT)) (-3307 (((-114) $) NIL T ELT)) (-3298 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-4121 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4116 ((|#4| |#4| $) NIL T ELT)) (-3308 (((-2 (|:| |under| $) (|:| -3530 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4138 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3303 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-3305 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3304 (((-114) $ $) NIL (|has| |#1| (-568)) ELT)) (-3306 (((-114) $) NIL (|has| |#1| (-568)) ELT)) (-4117 (((-659 |#4|) (-659 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 31 T ELT)) (-3299 (((-659 |#4|) (-659 |#4|) $) 28 (|has| |#1| (-568)) ELT)) (-3300 (((-659 |#4|) (-659 |#4|) $) NIL (|has| |#1| (-568)) ELT)) (-3573 (((-3 $ #1#) (-659 |#4|)) NIL T ELT)) (-3572 (($ (-659 |#4|)) NIL T ELT)) (-4227 (((-3 $ #1#) $) 78 T ELT)) (-4113 ((|#4| |#4| $) 83 T ELT)) (-1465 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT)) (-3824 (($ |#4| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3301 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)) ELT)) (-4122 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4111 ((|#4| |#4| $) NIL T ELT)) (-4270 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4423)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4423)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4124 (((-2 (|:| -4289 (-659 |#4|)) (|:| -1903 (-659 |#4|))) $) NIL T ELT)) (-3288 (((-659 |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4123 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3596 ((|#3| $) 84 T ELT)) (-3005 (((-659 |#4|) $) 32 (|has| $ (-6 -4423)) ELT)) (-3661 (((-114) |#4| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT)) (-4354 (((-3 $ #1#) (-659 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-659 |#4|)) 38 T ELT)) (-2158 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4386 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-3313 (((-659 |#3|) $) NIL T ELT)) (-3312 (((-114) |#3| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-4226 (((-3 |#4| #1#) $) NIL T ELT)) (-4125 (((-659 |#4|) $) 54 T ELT)) (-4119 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4114 ((|#4| |#4| $) 82 T ELT)) (-4127 (((-114) $ $) 93 T ELT)) (-3302 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)) ELT)) (-4120 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4115 ((|#4| |#4| $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4229 (((-3 |#4| #1#) $) 77 T ELT)) (-1466 (((-3 |#4| #1#) (-1 (-114) |#4|) $) NIL T ELT)) (-4107 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-4197 (($ $ |#4|) NIL T ELT)) (-2156 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4196 (($ $ (-659 |#4|) (-659 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT) (($ $ (-659 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1120))) ELT)) (-1327 (((-114) $ $) NIL T ELT)) (-3821 (((-114) $) 75 T ELT)) (-3991 (($) 46 T ELT)) (-4376 (((-789) $) NIL T ELT)) (-2155 (((-789) |#4| $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#4| (-1120))) ELT) (((-789) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-3818 (($ $) NIL T ELT)) (-4400 (((-546) $) NIL (|has| |#4| (-629 (-546))) ELT)) (-3948 (($ (-659 |#4|)) NIL T ELT)) (-3309 (($ $ |#3|) NIL T ELT)) (-3311 (($ $ |#3|) NIL T ELT)) (-4112 (($ $) NIL T ELT)) (-3310 (($ $ |#3|) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (((-659 |#4|) $) 63 T ELT)) (-4106 (((-789) $) NIL (|has| |#3| (-381)) ELT)) (-4353 (((-3 $ #1#) (-659 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44 T ELT) (((-3 $ #1#) (-659 |#4|)) 45 T ELT)) (-4352 (((-659 $) (-659 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73 T ELT) (((-659 $) (-659 |#4|)) 74 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-4126 (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |#4|))) #1#) (-659 |#4|) (-1 (-114) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3742 (-659 |#4|))) #1#) (-659 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4118 (((-114) $ (-1 (-114) |#4| (-659 |#4|))) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4423)) ELT)) (-4108 (((-659 |#3|) $) NIL T ELT)) (-4361 (((-114) |#3| $) NIL T ELT)) (-3452 (((-114) $ $) NIL T ELT)) (-4385 (((-789) $) NIL (|has| $ (-6 -4423)) ELT))) -(((-1300 |#1| |#2| |#3| |#4|) (-13 (-1231 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4354 ((-3 $ #1="failed") (-659 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4354 ((-3 $ #1#) (-659 |#4|))) (-15 -4353 ((-3 $ #1#) (-659 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4353 ((-3 $ #1#) (-659 |#4|))) (-15 -4352 ((-659 $) (-659 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4352 ((-659 $) (-659 |#4|))))) (-568) (-813) (-859) (-1084 |#1| |#2| |#3|)) (T -1300)) -((-4354 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-659 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *1 (-1300 *5 *6 *7 *8)))) (-4354 (*1 *1 *2) (|partial| -12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-1300 *3 *4 *5 *6)))) (-4353 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-659 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *1 (-1300 *5 *6 *7 *8)))) (-4353 (*1 *1 *2) (|partial| -12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-1300 *3 *4 *5 *6)))) (-4352 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-659 *9)) (-5 *4 (-1 (-114) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-813)) (-4 *8 (-859)) (-5 *2 (-659 (-1300 *6 *7 *8 *9))) (-5 *1 (-1300 *6 *7 *8 *9)))) (-4352 (*1 *2 *3) (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-659 (-1300 *4 *5 *6 *7))) (-5 *1 (-1300 *4 *5 *6 *7))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4152 (($) 22 T CONST)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ |#1|) 50 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) -(((-1301 |#1|) (-142) (-1068)) (T -1301)) -NIL -(-13 (-1068) (-111 |t#1| |t#1|) (-631 |t#1|) (-10 -7 (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-631 (-557)) . T) ((-631 |#1|) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-658 |#1|) |has| |#1| (-175)) ((-735 |#1|) |has| |#1| (-175)) ((-744) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T)) -((-2965 (((-114) $ $) 67 T ELT)) (-3604 (((-114) $) NIL T ELT)) (-4362 (((-659 |#1|) $) 52 T ELT)) (-4375 (($ $ (-789)) 46 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4363 (($ $ (-789)) 24 (|has| |#2| (-175)) ELT) (($ $ $) 25 (|has| |#2| (-175)) ELT)) (-4152 (($) NIL T CONST)) (-4367 (($ $ $) 70 T ELT) (($ $ (-839 |#1|)) 56 T ELT) (($ $ |#1|) 60 T ELT)) (-3573 (((-3 (-839 |#1|) #1#) $) NIL T ELT)) (-3572 (((-839 |#1|) $) NIL T ELT)) (-4387 (($ $) 39 T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-4379 (((-114) $) NIL T ELT)) (-4378 (($ $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-2647 (((-789) $) NIL T ELT)) (-3220 (((-659 $) $) NIL T ELT)) (-4365 (((-114) $) NIL T ELT)) (-4366 (($ (-839 |#1|) |#2|) 38 T ELT)) (-4364 (($ $) 40 T ELT)) (-4369 (((-2 (|:| |k| (-839 |#1|)) (|:| |c| |#2|)) $) 12 T ELT)) (-4383 (((-839 |#1|) $) NIL T ELT)) (-4384 (((-839 |#1|) $) 41 T ELT)) (-4386 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4368 (($ $ $) 69 T ELT) (($ $ (-839 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-1950 (((-2 (|:| |k| (-839 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3293 (((-839 |#1|) $) 35 T ELT)) (-3590 ((|#2| $) 37 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4376 (((-789) $) 43 T ELT)) (-4381 (((-114) $) 47 T ELT)) (-4380 ((|#2| $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-839 |#1|)) 30 T ELT) (($ |#1|) 31 T ELT) (($ |#2|) NIL T ELT) (($ (-557)) NIL T ELT)) (-4245 (((-659 |#2|) $) NIL T ELT)) (-4105 ((|#2| $ (-839 |#1|)) NIL T ELT)) (-4382 ((|#2| $ $) 76 T ELT) ((|#2| $ (-839 |#1|)) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 13 T CONST)) (-3063 (($) 19 T CONST)) (-3062 (((-659 (-2 (|:| |k| (-839 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3452 (((-114) $ $) 44 T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 28 T ELT)) (** (($ $ (-789)) NIL T ELT) (($ $ (-936)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ |#2| $) 27 T ELT) (($ $ |#2|) 68 T ELT) (($ |#2| (-839 |#1|)) NIL T ELT) (($ |#1| $) 33 T ELT) (($ $ $) NIL T ELT))) -(((-1302 |#1| |#2|) (-13 (-397 |#2| (-839 |#1|)) (-1309 |#1| |#2|)) (-859) (-1068)) (T -1302)) -NIL -((-4370 ((|#3| |#3| (-789)) 28 T ELT)) (-4371 ((|#3| |#3| (-789)) 34 T ELT)) (-4355 ((|#3| |#3| |#3| (-789)) 35 T ELT))) -(((-1303 |#1| |#2| |#3|) (-10 -7 (-15 -4371 (|#3| |#3| (-789))) (-15 -4370 (|#3| |#3| (-789))) (-15 -4355 (|#3| |#3| |#3| (-789)))) (-13 (-1068) (-735 (-419 (-557)))) (-859) (-1309 |#2| |#1|)) (T -1303)) -((-4355 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-789)) (-4 *4 (-13 (-1068) (-735 (-419 (-557))))) (-4 *5 (-859)) (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1309 *5 *4)))) (-4370 (*1 *2 *2 *3) (-12 (-5 *3 (-789)) (-4 *4 (-13 (-1068) (-735 (-419 (-557))))) (-4 *5 (-859)) (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1309 *5 *4)))) (-4371 (*1 *2 *2 *3) (-12 (-5 *3 (-789)) (-4 *4 (-13 (-1068) (-735 (-419 (-557))))) (-4 *5 (-859)) (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1309 *5 *4))))) -((-4360 (((-114) $) 15 T ELT)) (-4361 (((-114) $) 14 T ELT)) (-4356 (($ $) 19 T ELT) (($ $ (-789)) 21 T ELT))) -(((-1304 |#1| |#2|) (-10 -7 (-15 -4356 (|#1| |#1| (-789))) (-15 -4356 (|#1| |#1|)) (-15 -4360 ((-114) |#1|)) (-15 -4361 ((-114) |#1|))) (-1305 |#2|) (-376)) (T -1304)) -NIL -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-2272 (((-2 (|:| -1978 $) (|:| -4410 $) (|:| |associate| $)) $) 52 T ELT)) (-2271 (($ $) 51 T ELT)) (-2269 (((-114) $) 49 T ELT)) (-4360 (((-114) $) 111 T ELT)) (-4357 (((-789)) 107 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4203 (($ $) 88 T ELT)) (-4399 (((-417 $) $) 87 T ELT)) (-1786 (((-114) $ $) 72 T ELT)) (-4152 (($) 22 T CONST)) (-3573 (((-3 |#1| "failed") $) 118 T ELT)) (-3572 ((|#1| $) 119 T ELT)) (-2961 (($ $ $) 68 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-2960 (($ $ $) 69 T ELT)) (-3140 (((-2 (|:| -4382 (-659 $)) (|:| -2638 $)) (-659 $)) 63 T ELT)) (-1972 (($ $ (-789)) 104 (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) 103 (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4151 (((-114) $) 86 T ELT)) (-4200 (((-843 (-936)) $) 101 (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2639 (((-114) $) 40 T ELT)) (-1783 (((-3 (-659 $) #1="failed") (-659 $) $) 65 T ELT)) (-2100 (($ $ $) 57 T ELT) (($ (-659 $)) 56 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-2872 (($ $) 85 T ELT)) (-4359 (((-114) $) 110 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-3107 (((-1190 $) (-1190 $) (-1190 $)) 55 T ELT)) (-3560 (($ $ $) 59 T ELT) (($ (-659 $)) 58 T ELT)) (-4160 (((-417 $) $) 89 T ELT)) (-4358 (((-843 (-936))) 108 T ELT)) (-1784 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2638 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3884 (((-3 $ "failed") $ $) 53 T ELT)) (-3139 (((-709 (-659 $)) (-659 $) $) 62 T ELT)) (-1785 (((-789) $) 71 T ELT)) (-3278 (((-2 (|:| -2182 $) (|:| -3301 $)) $ $) 70 T ELT)) (-1973 (((-3 (-789) "failed") $ $) 102 (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4339 (((-136)) 116 T ELT)) (-4376 (((-843 (-936)) $) 109 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-557))) 81 T ELT) (($ |#1|) 117 T ELT)) (-3101 (((-709 $) $) 100 (-3955 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-2270 (((-114) $ $) 50 T ELT)) (-4361 (((-114) $) 112 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-4356 (($ $) 106 (|has| |#1| (-381)) ELT) (($ $ (-789)) 105 (|has| |#1| (-381)) ELT)) (-3452 (((-114) $ $) 8 T ELT)) (-4377 (($ $ $) 80 T ELT) (($ $ |#1|) 115 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT) (($ $ (-557)) 84 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-557))) 83 T ELT) (($ (-419 (-557)) $) 82 T ELT) (($ $ |#1|) 114 T ELT) (($ |#1| $) 113 T ELT))) -(((-1305 |#1|) (-142) (-376)) (T -1305)) -((-4361 (*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-5 *2 (-114)))) (-4360 (*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-5 *2 (-114)))) (-4359 (*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-5 *2 (-114)))) (-4376 (*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-5 *2 (-843 (-936))))) (-4358 (*1 *2) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-5 *2 (-843 (-936))))) (-4357 (*1 *2) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-5 *2 (-789)))) (-4356 (*1 *1 *1) (-12 (-4 *1 (-1305 *2)) (-4 *2 (-376)) (-4 *2 (-381)))) (-4356 (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-4 *3 (-381))))) -(-13 (-376) (-1057 |t#1|) (-1294 |t#1|) (-10 -8 (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-414)) |%noBranch|) (-15 -4361 ((-114) $)) (-15 -4360 ((-114) $)) (-15 -4359 ((-114) $)) (-15 -4376 ((-843 (-936)) $)) (-15 -4358 ((-843 (-936)))) (-15 -4357 ((-789))) (IF (|has| |t#1| (-381)) (PROGN (-6 (-414)) (-15 -4356 ($ $)) (-15 -4356 ($ $ (-789)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-557))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-557)) (-419 (-557))) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -3955 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-631 (-419 (-557))) . T) ((-631 (-557)) . T) ((-631 |#1|) . T) ((-631 $) . T) ((-628 (-875)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-414) -3955 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-464) . T) ((-568) . T) ((-664 (-419 (-557))) . T) ((-664 (-557)) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-666 (-419 (-557))) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-658 (-419 (-557))) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-735 (-419 (-557))) . T) ((-735 |#1|) . T) ((-735 $) . T) ((-744) . T) ((-938) . T) ((-1057 |#1|) . T) ((-1070 (-419 (-557))) . T) ((-1070 |#1|) . T) ((-1070 $) . T) ((-1075 (-419 (-557))) . T) ((-1075 |#1|) . T) ((-1075 $) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T) ((-1241) . T) ((-1294 |#1|) . T)) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-4362 (((-659 |#1|) $) 52 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4363 (($ $ $) 55 (|has| |#2| (-175)) ELT) (($ $ (-789)) 54 (|has| |#2| (-175)) ELT)) (-4152 (($) 22 T CONST)) (-4367 (($ $ |#1|) 66 T ELT) (($ $ (-839 |#1|)) 65 T ELT) (($ $ $) 64 T ELT)) (-3573 (((-3 (-839 |#1|) "failed") $) 76 T ELT)) (-3572 (((-839 |#1|) $) 77 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-4379 (((-114) $) 57 T ELT)) (-4378 (($ $) 56 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-4365 (((-114) $) 62 T ELT)) (-4366 (($ (-839 |#1|) |#2|) 63 T ELT)) (-4364 (($ $) 61 T ELT)) (-4369 (((-2 (|:| |k| (-839 |#1|)) (|:| |c| |#2|)) $) 72 T ELT)) (-4383 (((-839 |#1|) $) 73 T ELT)) (-4386 (($ (-1 |#2| |#2|) $) 53 T ELT)) (-4368 (($ $ |#1|) 69 T ELT) (($ $ (-839 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4381 (((-114) $) 59 T ELT)) (-4380 ((|#2| $) 58 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ |#2|) 80 T ELT) (($ (-839 |#1|)) 75 T ELT) (($ |#1|) 60 T ELT)) (-4382 ((|#2| $ (-839 |#1|)) 71 T ELT) ((|#2| $ $) 70 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 79 T ELT) (($ $ |#2|) 78 T ELT) (($ |#1| $) 74 T ELT))) -(((-1306 |#1| |#2|) (-142) (-859) (-1068)) (T -1306)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1306 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1068)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1068)))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)) (-5 *2 (-839 *3)))) (-4369 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)) (-5 *2 (-2 (|:| |k| (-839 *3)) (|:| |c| *4))))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-839 *4)) (-4 *1 (-1306 *4 *2)) (-4 *4 (-859)) (-4 *2 (-1068)))) (-4382 (*1 *2 *1 *1) (-12 (-4 *1 (-1306 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1068)))) (-4368 (*1 *1 *1 *2) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1068)))) (-4368 (*1 *1 *1 *2) (-12 (-5 *2 (-839 *3)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)))) (-4368 (*1 *1 *1 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1068)))) (-4367 (*1 *1 *1 *2) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1068)))) (-4367 (*1 *1 *1 *2) (-12 (-5 *2 (-839 *3)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)))) (-4367 (*1 *1 *1 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1068)))) (-4366 (*1 *1 *2 *3) (-12 (-5 *2 (-839 *4)) (-4 *4 (-859)) (-4 *1 (-1306 *4 *3)) (-4 *3 (-1068)))) (-4365 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)) (-5 *2 (-114)))) (-4364 (*1 *1 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1068)))) (-4374 (*1 *1 *2) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1068)))) (-4381 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)) (-5 *2 (-114)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1068)))) (-4379 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)) (-5 *2 (-114)))) (-4378 (*1 *1 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1068)))) (-4363 (*1 *1 *1 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1068)) (-4 *3 (-175)))) (-4363 (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)) (-4 *4 (-175)))) (-4386 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)))) (-4362 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)) (-5 *2 (-659 *3))))) -(-13 (-1068) (-1301 |t#2|) (-1057 (-839 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4383 ((-839 |t#1|) $)) (-15 -4369 ((-2 (|:| |k| (-839 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4382 (|t#2| $ (-839 |t#1|))) (-15 -4382 (|t#2| $ $)) (-15 -4368 ($ $ |t#1|)) (-15 -4368 ($ $ (-839 |t#1|))) (-15 -4368 ($ $ $)) (-15 -4367 ($ $ |t#1|)) (-15 -4367 ($ $ (-839 |t#1|))) (-15 -4367 ($ $ $)) (-15 -4366 ($ (-839 |t#1|) |t#2|)) (-15 -4365 ((-114) $)) (-15 -4364 ($ $)) (-15 -4374 ($ |t#1|)) (-15 -4381 ((-114) $)) (-15 -4380 (|t#2| $)) (-15 -4379 ((-114) $)) (-15 -4378 ($ $)) (IF (|has| |t#2| (-175)) (PROGN (-15 -4363 ($ $ $)) (-15 -4363 ($ $ (-789)))) |%noBranch|) (-15 -4386 ($ (-1 |t#2| |t#2|) $)) (-15 -4362 ((-659 |t#1|) $)) (IF (|has| |t#2| (-6 -4416)) (-6 -4416) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-175)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-631 (-557)) . T) ((-631 (-839 |#1|)) . T) ((-631 |#2|) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 |#2|) . T) ((-664 $) . T) ((-666 |#2|) . T) ((-666 $) . T) ((-658 |#2|) |has| |#2| (-175)) ((-735 |#2|) |has| |#2| (-175)) ((-744) . T) ((-1057 (-839 |#1|)) . T) ((-1070 |#2|) . T) ((-1075 |#2|) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T) ((-1301 |#2|) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-4362 (((-659 |#1|) $) 97 T ELT)) (-4375 (($ $ (-789)) 101 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4363 (($ $ $) NIL (|has| |#2| (-175)) ELT) (($ $ (-789)) NIL (|has| |#2| (-175)) ELT)) (-4152 (($) NIL T CONST)) (-4367 (($ $ |#1|) NIL T ELT) (($ $ (-839 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3573 (((-3 (-839 |#1|) #1#) $) NIL T ELT) (((-3 (-906 |#1|) #1#) $) NIL T ELT)) (-3572 (((-839 |#1|) $) NIL T ELT) (((-906 |#1|) $) NIL T ELT)) (-4387 (($ $) 100 T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-4379 (((-114) $) 89 T ELT)) (-4378 (($ $) 92 T ELT)) (-4372 (($ $ $ (-789)) 102 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-2647 (((-789) $) NIL T ELT)) (-3220 (((-659 $) $) NIL T ELT)) (-4365 (((-114) $) NIL T ELT)) (-4366 (($ (-839 |#1|) |#2|) NIL T ELT) (($ (-906 |#1|) |#2|) 28 T ELT)) (-4364 (($ $) 118 T ELT)) (-4369 (((-2 (|:| |k| (-839 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-4383 (((-839 |#1|) $) NIL T ELT)) (-4384 (((-839 |#1|) $) NIL T ELT)) (-4386 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4368 (($ $ |#1|) NIL T ELT) (($ $ (-839 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-4370 (($ $ (-789)) 111 (|has| |#2| (-735 (-419 (-557)))) ELT)) (-1950 (((-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3293 (((-906 |#1|) $) 82 T ELT)) (-3590 ((|#2| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4371 (($ $ (-789)) 108 (|has| |#2| (-735 (-419 (-557)))) ELT)) (-4376 (((-789) $) 98 T ELT)) (-4381 (((-114) $) 83 T ELT)) (-4380 ((|#2| $) 87 T ELT)) (-4374 (((-875) $) 68 T ELT) (($ (-557)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-839 |#1|)) NIL T ELT) (($ |#1|) 70 T ELT) (($ (-906 |#1|)) NIL T ELT) (($ (-682 |#1| |#2|)) 47 T ELT) (((-1302 |#1| |#2|) $) 75 T ELT) (((-1311 |#1| |#2|) $) 80 T ELT)) (-4245 (((-659 |#2|) $) NIL T ELT)) (-4105 ((|#2| $ (-906 |#1|)) NIL T ELT)) (-4382 ((|#2| $ (-839 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 21 T CONST)) (-3063 (($) 27 T CONST)) (-3062 (((-659 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-4373 (((-3 (-682 |#1| |#2|) #1#) $) 117 T ELT)) (-3452 (((-114) $ $) 76 T ELT)) (-4265 (($ $) 110 T ELT) (($ $ $) 109 T ELT)) (-4267 (($ $ $) 20 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-906 |#1|)) NIL T ELT))) -(((-1307 |#1| |#2|) (-13 (-1309 |#1| |#2|) (-397 |#2| (-906 |#1|)) (-10 -8 (-15 -4374 ($ (-682 |#1| |#2|))) (-15 -4374 ((-1302 |#1| |#2|) $)) (-15 -4374 ((-1311 |#1| |#2|) $)) (-15 -4373 ((-3 (-682 |#1| |#2|) "failed") $)) (-15 -4372 ($ $ $ (-789))) (IF (|has| |#2| (-735 (-419 (-557)))) (PROGN (-15 -4371 ($ $ (-789))) (-15 -4370 ($ $ (-789)))) |%noBranch|))) (-859) (-175)) (T -1307)) -((-4374 (*1 *1 *2) (-12 (-5 *2 (-682 *3 *4)) (-4 *3 (-859)) (-4 *4 (-175)) (-5 *1 (-1307 *3 *4)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-859)) (-4 *4 (-175)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-1311 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-859)) (-4 *4 (-175)))) (-4373 (*1 *2 *1) (|partial| -12 (-5 *2 (-682 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-859)) (-4 *4 (-175)))) (-4372 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-859)) (-4 *4 (-175)))) (-4371 (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-1307 *3 *4)) (-4 *4 (-735 (-419 (-557)))) (-4 *3 (-859)) (-4 *4 (-175)))) (-4370 (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-1307 *3 *4)) (-4 *4 (-735 (-419 (-557)))) (-4 *3 (-859)) (-4 *4 (-175))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-4362 (((-659 (-1196)) $) NIL T ELT)) (-4390 (($ (-1302 (-1196) |#1|)) NIL T ELT)) (-4375 (($ $ (-789)) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4363 (($ $ $) NIL (|has| |#1| (-175)) ELT) (($ $ (-789)) NIL (|has| |#1| (-175)) ELT)) (-4152 (($) NIL T CONST)) (-4367 (($ $ (-1196)) NIL T ELT) (($ $ (-839 (-1196))) NIL T ELT) (($ $ $) NIL T ELT)) (-3573 (((-3 (-839 (-1196)) #1#) $) NIL T ELT)) (-3572 (((-839 (-1196)) $) NIL T ELT)) (-3885 (((-3 $ #1#) $) NIL T ELT)) (-4379 (((-114) $) NIL T ELT)) (-4378 (($ $) NIL T ELT)) (-2639 (((-114) $) NIL T ELT)) (-4365 (((-114) $) NIL T ELT)) (-4366 (($ (-839 (-1196)) |#1|) NIL T ELT)) (-4364 (($ $) NIL T ELT)) (-4369 (((-2 (|:| |k| (-839 (-1196))) (|:| |c| |#1|)) $) NIL T ELT)) (-4383 (((-839 (-1196)) $) NIL T ELT)) (-4384 (((-839 (-1196)) $) NIL T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4368 (($ $ (-1196)) NIL T ELT) (($ $ (-839 (-1196))) NIL T ELT) (($ $ $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4391 (((-1302 (-1196) |#1|) $) NIL T ELT)) (-4376 (((-789) $) NIL T ELT)) (-4381 (((-114) $) NIL T ELT)) (-4380 ((|#1| $) NIL T ELT)) (-4374 (((-875) $) NIL T ELT) (($ (-557)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-839 (-1196))) NIL T ELT) (($ (-1196)) NIL T ELT)) (-4382 ((|#1| $ (-839 (-1196))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3526 (((-789)) NIL T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) NIL T CONST)) (-4389 (((-659 (-2 (|:| |k| (-1196)) (|:| |c| $))) $) NIL T ELT)) (-3063 (($) NIL T CONST)) (-3452 (((-114) $ $) NIL T ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) NIL T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1196) $) NIL T ELT))) -(((-1308 |#1|) (-13 (-1309 (-1196) |#1|) (-10 -8 (-15 -4391 ((-1302 (-1196) |#1|) $)) (-15 -4390 ($ (-1302 (-1196) |#1|))) (-15 -4389 ((-659 (-2 (|:| |k| (-1196)) (|:| |c| $))) $)))) (-1068)) (T -1308)) -((-4391 (*1 *2 *1) (-12 (-5 *2 (-1302 (-1196) *3)) (-5 *1 (-1308 *3)) (-4 *3 (-1068)))) (-4390 (*1 *1 *2) (-12 (-5 *2 (-1302 (-1196) *3)) (-4 *3 (-1068)) (-5 *1 (-1308 *3)))) (-4389 (*1 *2 *1) (-12 (-5 *2 (-659 (-2 (|:| |k| (-1196)) (|:| |c| (-1308 *3))))) (-5 *1 (-1308 *3)) (-4 *3 (-1068))))) -((-2965 (((-114) $ $) 7 T ELT)) (-3604 (((-114) $) 21 T ELT)) (-4362 (((-659 |#1|) $) 52 T ELT)) (-4375 (($ $ (-789)) 86 T ELT)) (-1424 (((-3 $ "failed") $ $) 25 T ELT)) (-4363 (($ $ $) 55 (|has| |#2| (-175)) ELT) (($ $ (-789)) 54 (|has| |#2| (-175)) ELT)) (-4152 (($) 22 T CONST)) (-4367 (($ $ |#1|) 66 T ELT) (($ $ (-839 |#1|)) 65 T ELT) (($ $ $) 64 T ELT)) (-3573 (((-3 (-839 |#1|) "failed") $) 76 T ELT)) (-3572 (((-839 |#1|) $) 77 T ELT)) (-3885 (((-3 $ "failed") $) 42 T ELT)) (-4379 (((-114) $) 57 T ELT)) (-4378 (($ $) 56 T ELT)) (-2639 (((-114) $) 40 T ELT)) (-4365 (((-114) $) 62 T ELT)) (-4366 (($ (-839 |#1|) |#2|) 63 T ELT)) (-4364 (($ $) 61 T ELT)) (-4369 (((-2 (|:| |k| (-839 |#1|)) (|:| |c| |#2|)) $) 72 T ELT)) (-4383 (((-839 |#1|) $) 73 T ELT)) (-4384 (((-839 |#1|) $) 88 T ELT)) (-4386 (($ (-1 |#2| |#2|) $) 53 T ELT)) (-4368 (($ $ |#1|) 69 T ELT) (($ $ (-839 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3658 (((-1178) $) 11 T ELT)) (-3659 (((-1139) $) 12 T ELT)) (-4376 (((-789) $) 87 T ELT)) (-4381 (((-114) $) 59 T ELT)) (-4380 ((|#2| $) 58 T ELT)) (-4374 (((-875) $) 13 T ELT) (($ (-557)) 38 T ELT) (($ |#2|) 80 T ELT) (($ (-839 |#1|)) 75 T ELT) (($ |#1|) 60 T ELT)) (-4382 ((|#2| $ (-839 |#1|)) 71 T ELT) ((|#2| $ $) 70 T ELT)) (-3526 (((-789)) 37 T CONST)) (-1376 (((-114) $ $) 6 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 39 T CONST)) (-3452 (((-114) $ $) 8 T ELT)) (-4265 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4267 (($ $ $) 18 T ELT)) (** (($ $ (-936)) 33 T ELT) (($ $ (-789)) 41 T ELT)) (* (($ (-936) $) 17 T ELT) (($ (-789) $) 20 T ELT) (($ (-557) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 79 T ELT) (($ $ |#2|) 78 T ELT) (($ |#1| $) 74 T ELT))) -(((-1309 |#1| |#2|) (-142) (-859) (-1068)) (T -1309)) -((-4384 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)) (-5 *2 (-839 *3)))) (-4376 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)) (-5 *2 (-789)))) (-4375 (*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068))))) -(-13 (-1306 |t#1| |t#2|) (-10 -8 (-15 -4384 ((-839 |t#1|) $)) (-15 -4376 ((-789) $)) (-15 -4375 ($ $ (-789))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-175)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-631 (-557)) . T) ((-631 (-839 |#1|)) . T) ((-631 |#2|) . T) ((-628 (-875)) . T) ((-664 (-557)) . T) ((-664 |#2|) . T) ((-664 $) . T) ((-666 |#2|) . T) ((-666 $) . T) ((-658 |#2|) |has| |#2| (-175)) ((-735 |#2|) |has| |#2| (-175)) ((-744) . T) ((-1057 (-839 |#1|)) . T) ((-1070 |#2|) . T) ((-1075 |#2|) . T) ((-1068) . T) ((-1076) . T) ((-1131) . T) ((-1120) . T) ((-1236) . T) ((-1301 |#2|) . T) ((-1306 |#1| |#2|) . T)) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4152 (($) NIL T CONST)) (-3573 (((-3 |#2| #1#) $) NIL T ELT)) (-3572 ((|#2| $) NIL T ELT)) (-4387 (($ $) NIL T ELT)) (-3885 (((-3 $ #1#) $) 42 T ELT)) (-4379 (((-114) $) 36 T ELT)) (-4378 (($ $) 37 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-2647 (((-789) $) NIL T ELT)) (-3220 (((-659 $) $) NIL T ELT)) (-4365 (((-114) $) NIL T ELT)) (-4366 (($ |#2| |#1|) NIL T ELT)) (-4383 ((|#2| $) 24 T ELT)) (-4384 ((|#2| $) 22 T ELT)) (-4386 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1950 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-3293 ((|#2| $) NIL T ELT)) (-3590 ((|#1| $) NIL T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4381 (((-114) $) 32 T ELT)) (-4380 ((|#1| $) 33 T ELT)) (-4374 (((-875) $) 65 T ELT) (($ (-557)) 46 T ELT) (($ |#1|) 41 T ELT) (($ |#2|) NIL T ELT)) (-4245 (((-659 |#1|) $) NIL T ELT)) (-4105 ((|#1| $ |#2|) NIL T ELT)) (-4382 ((|#1| $ |#2|) 28 T ELT)) (-3526 (((-789)) 14 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 29 T CONST)) (-3063 (($) 11 T CONST)) (-3062 (((-659 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3452 (((-114) $ $) 30 T ELT)) (-4377 (($ $ |#1|) 67 (|has| |#1| (-376)) ELT)) (-4265 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4267 (($ $ $) 50 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) 52 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) NIL T ELT) (($ $ $) 51 T ELT) (($ |#1| $) 47 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-4385 (((-789) $) 16 T ELT))) -(((-1310 |#1| |#2|) (-13 (-1068) (-1301 |#1|) (-397 |#1| |#2|) (-631 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4385 ((-789) $)) (-15 -4384 (|#2| $)) (-15 -4383 (|#2| $)) (-15 -4387 ($ $)) (-15 -4382 (|#1| $ |#2|)) (-15 -4381 ((-114) $)) (-15 -4380 (|#1| $)) (-15 -4379 ((-114) $)) (-15 -4378 ($ $)) (-15 -4386 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-376)) (-15 -4377 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4416)) (-6 -4416) |%noBranch|) (IF (|has| |#1| (-6 -4420)) (-6 -4420) |%noBranch|) (IF (|has| |#1| (-6 -4421)) (-6 -4421) |%noBranch|))) (-1068) (-857)) (T -1310)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-857)))) (-4387 (*1 *1 *1) (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-857)))) (-4386 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-1310 *3 *4)) (-4 *4 (-857)))) (-4385 (*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-857)))) (-4384 (*1 *2 *1) (-12 (-4 *2 (-857)) (-5 *1 (-1310 *3 *2)) (-4 *3 (-1068)))) (-4383 (*1 *2 *1) (-12 (-4 *2 (-857)) (-5 *1 (-1310 *3 *2)) (-4 *3 (-1068)))) (-4382 (*1 *2 *1 *3) (-12 (-4 *2 (-1068)) (-5 *1 (-1310 *2 *3)) (-4 *3 (-857)))) (-4381 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-857)))) (-4380 (*1 *2 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-1310 *2 *3)) (-4 *3 (-857)))) (-4379 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-857)))) (-4378 (*1 *1 *1) (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-857)))) (-4377 (*1 *1 *1 *2) (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-376)) (-4 *2 (-1068)) (-4 *3 (-857))))) -((-2965 (((-114) $ $) 27 T ELT)) (-3604 (((-114) $) NIL T ELT)) (-4362 (((-659 |#1|) $) 132 T ELT)) (-4390 (($ (-1302 |#1| |#2|)) 50 T ELT)) (-4375 (($ $ (-789)) 38 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4363 (($ $ $) 54 (|has| |#2| (-175)) ELT) (($ $ (-789)) 52 (|has| |#2| (-175)) ELT)) (-4152 (($) NIL T CONST)) (-4367 (($ $ |#1|) 114 T ELT) (($ $ (-839 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3573 (((-3 (-839 |#1|) #1#) $) NIL T ELT)) (-3572 (((-839 |#1|) $) NIL T ELT)) (-3885 (((-3 $ #1#) $) 122 T ELT)) (-4379 (((-114) $) 117 T ELT)) (-4378 (($ $) 118 T ELT)) (-2639 (((-114) $) NIL T ELT)) (-4365 (((-114) $) NIL T ELT)) (-4366 (($ (-839 |#1|) |#2|) 20 T ELT)) (-4364 (($ $) NIL T ELT)) (-4369 (((-2 (|:| |k| (-839 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-4383 (((-839 |#1|) $) 123 T ELT)) (-4384 (((-839 |#1|) $) 126 T ELT)) (-4386 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-4368 (($ $ |#1|) 112 T ELT) (($ $ (-839 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4391 (((-1302 |#1| |#2|) $) 94 T ELT)) (-4376 (((-789) $) 129 T ELT)) (-4381 (((-114) $) 81 T ELT)) (-4380 ((|#2| $) 32 T ELT)) (-4374 (((-875) $) 73 T ELT) (($ (-557)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-839 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-4382 ((|#2| $ (-839 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3526 (((-789)) 120 T CONST)) (-1376 (((-114) $ $) NIL T ELT)) (-3057 (($) 15 T CONST)) (-4389 (((-659 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-3063 (($) 33 T CONST)) (-3452 (((-114) $ $) 14 T ELT)) (-4265 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-4267 (($ $ $) 61 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) 55 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) 53 T ELT) (($ (-557) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) -(((-1311 |#1| |#2|) (-13 (-1309 |#1| |#2|) (-10 -8 (-15 -4391 ((-1302 |#1| |#2|) $)) (-15 -4390 ($ (-1302 |#1| |#2|))) (-15 -4389 ((-659 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-859) (-1068)) (T -1311)) -((-4391 (*1 *2 *1) (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)))) (-4390 (*1 *1 *2) (-12 (-5 *2 (-1302 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)) (-5 *1 (-1311 *3 *4)))) (-4389 (*1 *2 *1) (-12 (-5 *2 (-659 (-2 (|:| |k| *3) (|:| |c| (-1311 *3 *4))))) (-5 *1 (-1311 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068))))) -((-2965 (((-114) $ $) NIL T ELT)) (-4393 (($ (-659 (-936))) 10 T ELT)) (-4392 (((-990) $) 12 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4374 (((-875) $) 25 T ELT) (($ (-990)) 14 T ELT) (((-990) $) 13 T ELT)) (-1376 (((-114) $ $) NIL T ELT)) (-3452 (((-114) $ $) 17 T ELT))) -(((-1312) (-13 (-1120) (-502 (-990)) (-10 -8 (-15 -4393 ($ (-659 (-936)))) (-15 -4392 ((-990) $))))) (T -1312)) -((-4393 (*1 *1 *2) (-12 (-5 *2 (-659 (-936))) (-5 *1 (-1312)))) (-4392 (*1 *2 *1) (-12 (-5 *2 (-990)) (-5 *1 (-1312))))) -((-4394 (((-659 (-1174 |#1|)) (-1 (-659 (-1174 |#1|)) (-659 (-1174 |#1|))) (-557)) 16 T ELT) (((-1174 |#1|) (-1 (-1174 |#1|) (-1174 |#1|))) 13 T ELT))) -(((-1313 |#1|) (-10 -7 (-15 -4394 ((-1174 |#1|) (-1 (-1174 |#1|) (-1174 |#1|)))) (-15 -4394 ((-659 (-1174 |#1|)) (-1 (-659 (-1174 |#1|)) (-659 (-1174 |#1|))) (-557)))) (-1236)) (T -1313)) -((-4394 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-659 (-1174 *5)) (-659 (-1174 *5)))) (-5 *4 (-557)) (-5 *2 (-659 (-1174 *5))) (-5 *1 (-1313 *5)) (-4 *5 (-1236)))) (-4394 (*1 *2 *3) (-12 (-5 *3 (-1 (-1174 *4) (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1313 *4)) (-4 *4 (-1236))))) -((-4396 (((-659 (-2 (|:| -1948 (-1190 |#1|)) (|:| -3640 (-659 (-963 |#1|))))) (-659 (-963 |#1|))) 174 T ELT) (((-659 (-2 (|:| -1948 (-1190 |#1|)) (|:| -3640 (-659 (-963 |#1|))))) (-659 (-963 |#1|)) (-114)) 173 T ELT) (((-659 (-2 (|:| -1948 (-1190 |#1|)) (|:| -3640 (-659 (-963 |#1|))))) (-659 (-963 |#1|)) (-114) (-114)) 172 T ELT) (((-659 (-2 (|:| -1948 (-1190 |#1|)) (|:| -3640 (-659 (-963 |#1|))))) (-659 (-963 |#1|)) (-114) (-114) (-114)) 171 T ELT) (((-659 (-2 (|:| -1948 (-1190 |#1|)) (|:| -3640 (-659 (-963 |#1|))))) (-1065 |#1| |#2|)) 156 T ELT)) (-4395 (((-659 (-1065 |#1| |#2|)) (-659 (-963 |#1|))) 85 T ELT) (((-659 (-1065 |#1| |#2|)) (-659 (-963 |#1|)) (-114)) 84 T ELT) (((-659 (-1065 |#1| |#2|)) (-659 (-963 |#1|)) (-114) (-114)) 83 T ELT)) (-4399 (((-659 (-1165 |#1| (-542 (-876 |#3|)) (-876 |#3|) (-798 |#1| (-876 |#3|)))) (-1065 |#1| |#2|)) 73 T ELT)) (-4397 (((-659 (-659 (-1043 (-419 |#1|)))) (-659 (-963 |#1|))) 140 T ELT) (((-659 (-659 (-1043 (-419 |#1|)))) (-659 (-963 |#1|)) (-114)) 139 T ELT) (((-659 (-659 (-1043 (-419 |#1|)))) (-659 (-963 |#1|)) (-114) (-114)) 138 T ELT) (((-659 (-659 (-1043 (-419 |#1|)))) (-659 (-963 |#1|)) (-114) (-114) (-114)) 137 T ELT) (((-659 (-659 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|)) 132 T ELT)) (-4398 (((-659 (-659 (-1043 (-419 |#1|)))) (-659 (-963 |#1|))) 145 T ELT) (((-659 (-659 (-1043 (-419 |#1|)))) (-659 (-963 |#1|)) (-114)) 144 T ELT) (((-659 (-659 (-1043 (-419 |#1|)))) (-659 (-963 |#1|)) (-114) (-114)) 143 T ELT) (((-659 (-659 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|)) 142 T ELT)) (-4400 (((-659 (-798 |#1| (-876 |#3|))) (-1165 |#1| (-542 (-876 |#3|)) (-876 |#3|) (-798 |#1| (-876 |#3|)))) 111 T ELT) (((-1190 (-1043 (-419 |#1|))) (-1190 |#1|)) 102 T ELT) (((-963 (-1043 (-419 |#1|))) (-798 |#1| (-876 |#3|))) 109 T ELT) (((-963 (-1043 (-419 |#1|))) (-963 |#1|)) 107 T ELT) (((-798 |#1| (-876 |#3|)) (-798 |#1| (-876 |#2|))) 33 T ELT))) -(((-1314 |#1| |#2| |#3|) (-10 -7 (-15 -4395 ((-659 (-1065 |#1| |#2|)) (-659 (-963 |#1|)) (-114) (-114))) (-15 -4395 ((-659 (-1065 |#1| |#2|)) (-659 (-963 |#1|)) (-114))) (-15 -4395 ((-659 (-1065 |#1| |#2|)) (-659 (-963 |#1|)))) (-15 -4396 ((-659 (-2 (|:| -1948 (-1190 |#1|)) (|:| -3640 (-659 (-963 |#1|))))) (-1065 |#1| |#2|))) (-15 -4396 ((-659 (-2 (|:| -1948 (-1190 |#1|)) (|:| -3640 (-659 (-963 |#1|))))) (-659 (-963 |#1|)) (-114) (-114) (-114))) (-15 -4396 ((-659 (-2 (|:| -1948 (-1190 |#1|)) (|:| -3640 (-659 (-963 |#1|))))) (-659 (-963 |#1|)) (-114) (-114))) (-15 -4396 ((-659 (-2 (|:| -1948 (-1190 |#1|)) (|:| -3640 (-659 (-963 |#1|))))) (-659 (-963 |#1|)) (-114))) (-15 -4396 ((-659 (-2 (|:| -1948 (-1190 |#1|)) (|:| -3640 (-659 (-963 |#1|))))) (-659 (-963 |#1|)))) (-15 -4397 ((-659 (-659 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|))) (-15 -4397 ((-659 (-659 (-1043 (-419 |#1|)))) (-659 (-963 |#1|)) (-114) (-114) (-114))) (-15 -4397 ((-659 (-659 (-1043 (-419 |#1|)))) (-659 (-963 |#1|)) (-114) (-114))) (-15 -4397 ((-659 (-659 (-1043 (-419 |#1|)))) (-659 (-963 |#1|)) (-114))) (-15 -4397 ((-659 (-659 (-1043 (-419 |#1|)))) (-659 (-963 |#1|)))) (-15 -4398 ((-659 (-659 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|))) (-15 -4398 ((-659 (-659 (-1043 (-419 |#1|)))) (-659 (-963 |#1|)) (-114) (-114))) (-15 -4398 ((-659 (-659 (-1043 (-419 |#1|)))) (-659 (-963 |#1|)) (-114))) (-15 -4398 ((-659 (-659 (-1043 (-419 |#1|)))) (-659 (-963 |#1|)))) (-15 -4399 ((-659 (-1165 |#1| (-542 (-876 |#3|)) (-876 |#3|) (-798 |#1| (-876 |#3|)))) (-1065 |#1| |#2|))) (-15 -4400 ((-798 |#1| (-876 |#3|)) (-798 |#1| (-876 |#2|)))) (-15 -4400 ((-963 (-1043 (-419 |#1|))) (-963 |#1|))) (-15 -4400 ((-963 (-1043 (-419 |#1|))) (-798 |#1| (-876 |#3|)))) (-15 -4400 ((-1190 (-1043 (-419 |#1|))) (-1190 |#1|))) (-15 -4400 ((-659 (-798 |#1| (-876 |#3|))) (-1165 |#1| (-542 (-876 |#3|)) (-876 |#3|) (-798 |#1| (-876 |#3|)))))) (-13 (-858) (-319) (-149) (-1039)) (-659 (-1196)) (-659 (-1196))) (T -1314)) -((-4400 (*1 *2 *3) (-12 (-5 *3 (-1165 *4 (-542 (-876 *6)) (-876 *6) (-798 *4 (-876 *6)))) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) (-14 *6 (-659 (-1196))) (-5 *2 (-659 (-798 *4 (-876 *6)))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-659 (-1196))))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-1190 *4)) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) (-5 *2 (-1190 (-1043 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-659 (-1196))) (-14 *6 (-659 (-1196))))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-798 *4 (-876 *6))) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) (-14 *6 (-659 (-1196))) (-5 *2 (-963 (-1043 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-659 (-1196))))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-963 *4)) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) (-5 *2 (-963 (-1043 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-659 (-1196))) (-14 *6 (-659 (-1196))))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-798 *4 (-876 *5))) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) (-14 *5 (-659 (-1196))) (-5 *2 (-798 *4 (-876 *6))) (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-659 (-1196))))) (-4399 (*1 *2 *3) (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) (-14 *5 (-659 (-1196))) (-5 *2 (-659 (-1165 *4 (-542 (-876 *6)) (-876 *6) (-798 *4 (-876 *6))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-659 (-1196))))) (-4398 (*1 *2 *3) (-12 (-5 *3 (-659 (-963 *4))) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) (-5 *2 (-659 (-659 (-1043 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-659 (-1196))) (-14 *6 (-659 (-1196))))) (-4398 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-963 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-858) (-319) (-149) (-1039))) (-5 *2 (-659 (-659 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-659 (-1196))) (-14 *7 (-659 (-1196))))) (-4398 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-659 (-963 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-858) (-319) (-149) (-1039))) (-5 *2 (-659 (-659 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-659 (-1196))) (-14 *7 (-659 (-1196))))) (-4398 (*1 *2 *3) (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) (-14 *5 (-659 (-1196))) (-5 *2 (-659 (-659 (-1043 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-659 (-1196))))) (-4397 (*1 *2 *3) (-12 (-5 *3 (-659 (-963 *4))) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) (-5 *2 (-659 (-659 (-1043 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-659 (-1196))) (-14 *6 (-659 (-1196))))) (-4397 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-963 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-858) (-319) (-149) (-1039))) (-5 *2 (-659 (-659 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-659 (-1196))) (-14 *7 (-659 (-1196))))) (-4397 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-659 (-963 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-858) (-319) (-149) (-1039))) (-5 *2 (-659 (-659 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-659 (-1196))) (-14 *7 (-659 (-1196))))) (-4397 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-659 (-963 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-858) (-319) (-149) (-1039))) (-5 *2 (-659 (-659 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-659 (-1196))) (-14 *7 (-659 (-1196))))) (-4397 (*1 *2 *3) (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) (-14 *5 (-659 (-1196))) (-5 *2 (-659 (-659 (-1043 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-659 (-1196))))) (-4396 (*1 *2 *3) (-12 (-4 *4 (-13 (-858) (-319) (-149) (-1039))) (-5 *2 (-659 (-2 (|:| -1948 (-1190 *4)) (|:| -3640 (-659 (-963 *4)))))) (-5 *1 (-1314 *4 *5 *6)) (-5 *3 (-659 (-963 *4))) (-14 *5 (-659 (-1196))) (-14 *6 (-659 (-1196))))) (-4396 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-858) (-319) (-149) (-1039))) (-5 *2 (-659 (-2 (|:| -1948 (-1190 *5)) (|:| -3640 (-659 (-963 *5)))))) (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-659 (-963 *5))) (-14 *6 (-659 (-1196))) (-14 *7 (-659 (-1196))))) (-4396 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-858) (-319) (-149) (-1039))) (-5 *2 (-659 (-2 (|:| -1948 (-1190 *5)) (|:| -3640 (-659 (-963 *5)))))) (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-659 (-963 *5))) (-14 *6 (-659 (-1196))) (-14 *7 (-659 (-1196))))) (-4396 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-858) (-319) (-149) (-1039))) (-5 *2 (-659 (-2 (|:| -1948 (-1190 *5)) (|:| -3640 (-659 (-963 *5)))))) (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-659 (-963 *5))) (-14 *6 (-659 (-1196))) (-14 *7 (-659 (-1196))))) (-4396 (*1 *2 *3) (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) (-14 *5 (-659 (-1196))) (-5 *2 (-659 (-2 (|:| -1948 (-1190 *4)) (|:| -3640 (-659 (-963 *4)))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-659 (-1196))))) (-4395 (*1 *2 *3) (-12 (-5 *3 (-659 (-963 *4))) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) (-5 *2 (-659 (-1065 *4 *5))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-659 (-1196))) (-14 *6 (-659 (-1196))))) (-4395 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-963 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-858) (-319) (-149) (-1039))) (-5 *2 (-659 (-1065 *5 *6))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-659 (-1196))) (-14 *7 (-659 (-1196))))) (-4395 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-659 (-963 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-858) (-319) (-149) (-1039))) (-5 *2 (-659 (-1065 *5 *6))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-659 (-1196))) (-14 *7 (-659 (-1196)))))) -((-4403 (((-3 (-1286 (-419 (-557))) #1="failed") (-1286 |#1|) |#1|) 21 T ELT)) (-4401 (((-114) (-1286 |#1|)) 12 T ELT)) (-4402 (((-3 (-1286 (-557)) #1#) (-1286 |#1|)) 16 T ELT))) -(((-1315 |#1|) (-10 -7 (-15 -4401 ((-114) (-1286 |#1|))) (-15 -4402 ((-3 (-1286 (-557)) #1="failed") (-1286 |#1|))) (-15 -4403 ((-3 (-1286 (-419 (-557))) #1#) (-1286 |#1|) |#1|))) (-13 (-1068) (-656 (-557)))) (T -1315)) -((-4403 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1068) (-656 (-557)))) (-5 *2 (-1286 (-419 (-557)))) (-5 *1 (-1315 *4)))) (-4402 (*1 *2 *3) (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1068) (-656 (-557)))) (-5 *2 (-1286 (-557))) (-5 *1 (-1315 *4)))) (-4401 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1068) (-656 (-557)))) (-5 *2 (-114)) (-5 *1 (-1315 *4))))) -((-2965 (((-114) $ $) NIL T ELT)) (-3604 (((-114) $) 12 T ELT)) (-1424 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3536 (((-789)) 9 T ELT)) (-4152 (($) NIL T CONST)) (-3885 (((-3 $ #1#) $) 57 T ELT)) (-3393 (($) 46 T ELT)) (-2639 (((-114) $) 38 T ELT)) (-3863 (((-709 $) $) 36 T ELT)) (-2218 (((-936) $) 14 T ELT)) (-3658 (((-1178) $) NIL T ELT)) (-3864 (($) 26 T CONST)) (-2629 (($ (-936)) 47 T ELT)) (-3659 (((-1139) $) NIL T ELT)) (-4400 (((-557) $) 16 T ELT)) (-4374 (((-875) $) 21 T ELT) (($ (-557)) 18 T ELT)) (-3526 (((-789)) 10 T CONST)) (-1376 (((-114) $ $) 59 T ELT)) (-3057 (($) 23 T CONST)) (-3063 (($) 25 T CONST)) (-3452 (((-114) $ $) 31 T ELT)) (-4265 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-4267 (($ $ $) 29 T ELT)) (** (($ $ (-936)) NIL T ELT) (($ $ (-789)) 52 T ELT)) (* (($ (-936) $) NIL T ELT) (($ (-789) $) NIL T ELT) (($ (-557) $) 41 T ELT) (($ $ $) 40 T ELT))) -(((-1316 |#1|) (-13 (-175) (-381) (-629 (-557)) (-1171)) (-936)) (T -1316)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3084966 3084971 3084976 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3084951 3084956 3084961 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3084936 3084941 3084946 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3084921 3084926 3084931 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1316 3083959 3084839 3084916 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1315 3083167 3083347 3083568 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1314 3074199 3076105 3078077 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1313 3073587 3073740 3073929 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1312 3073046 3073352 3073465 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1311 3070658 3072504 3072708 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1310 3067460 3069057 3069632 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1309 3064786 3066462 3066517 "XPOLYC" 3066805 XPOLYC (NIL T T) -9 NIL 3066918 NIL) (-1308 3062357 3064286 3064490 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1307 3058662 3061216 3061604 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1306 3053549 3055128 3055183 "XFALG" 3057355 XFALG (NIL T T) -9 NIL 3058144 NIL) (-1305 3048740 3051438 3051480 "XF" 3052101 XF (NIL T) -9 NIL 3052501 NIL) (-1304 3048454 3048566 3048735 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1303 3047677 3047799 3048004 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1302 3045474 3047576 3047672 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1301 3044129 3044867 3044910 "XALG" 3044915 XALG (NIL T) -9 NIL 3045026 NIL) (-1300 3037630 3042526 3043008 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1299 3035928 3036871 3037194 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1298 3035524 3035798 3035868 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1297 3035008 3035313 3035407 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1296 3034085 3034295 3034590 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1295 3032381 3032844 3033306 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1294 3031305 3031863 3031905 "VSPACE" 3032041 VSPACE (NIL T) -9 NIL 3032115 NIL) (-1293 3031176 3031209 3031300 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1292 3031019 3031073 3031141 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1291 3028002 3028797 3029534 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1290 3019097 3021701 3023874 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1289 3012671 3014565 3016144 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1288 3011155 3011550 3011956 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1287 3009982 3010263 3010579 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1286 3005059 3009809 3009901 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1285 2998115 3002760 3002803 "VECTCAT" 3003798 VECTCAT (NIL T) -9 NIL 3004385 NIL) (-1284 2997394 2997720 2998110 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1283 2996885 2997130 2997250 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1282 2996818 2996823 2996853 "UTYPE" 2996858 UTYPE (NIL) -9 NIL NIL NIL) (-1281 2995800 2995976 2996238 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1280 2993651 2994159 2994683 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1279 2983564 2989487 2989530 "UTSCAT" 2990642 UTSCAT (NIL T) -9 NIL 2991400 NIL) (-1278 2981626 2982570 2983559 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1277 2981296 2981345 2981478 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1276 2973042 2979479 2979959 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1275 2967021 2969852 2969895 "URAGG" 2971965 URAGG (NIL T) -9 NIL 2972688 NIL) (-1274 2965028 2965994 2967016 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1273 2960779 2964001 2964464 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1272 2953254 2960702 2960774 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1271 2941896 2949338 2949400 "UPXSCCA" 2949974 UPXSCCA (NIL T T) -9 NIL 2950207 NIL) (-1270 2941614 2941717 2941891 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1269 2930156 2937323 2937366 "UPXSCAT" 2938014 UPXSCAT (NIL T) -9 NIL 2938623 NIL) (-1268 2929665 2929750 2929929 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1267 2921395 2929253 2929517 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1266 2920290 2920560 2920910 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1265 2913031 2916466 2916521 "UPSCAT" 2917601 UPSCAT (NIL T T) -9 NIL 2918366 NIL) (-1264 2912444 2912699 2913026 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1263 2912114 2912163 2912296 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1262 2896174 2905125 2905168 "UPOLYC" 2907269 UPOLYC (NIL T) -9 NIL 2908490 NIL) (-1261 2890194 2893061 2896169 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1260 2889626 2889751 2889915 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1259 2889260 2889347 2889486 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1258 2888073 2888340 2888644 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1257 2887402 2887532 2887718 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1256 2886990 2887065 2887214 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1255 2877754 2886754 2886883 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1254 2877116 2877253 2877458 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1253 2875711 2876562 2876839 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1252 2874937 2875135 2875361 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1251 2861739 2874860 2874932 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1250 2841478 2854725 2854787 "ULSCCAT" 2855425 ULSCCAT (NIL T T) -9 NIL 2855714 NIL) (-1249 2840810 2841097 2841473 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1248 2829170 2836259 2836302 "ULSCAT" 2837165 ULSCAT (NIL T) -9 NIL 2837896 NIL) (-1247 2828679 2828764 2828943 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1246 2810746 2828175 2828417 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1245 2809773 2810473 2810587 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2810698) (-1244 2808799 2809499 2809613 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2809724) (-1243 2807825 2808525 2808639 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2808750) (-1242 2806851 2807551 2807665 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2807776) (-1241 2804930 2806097 2806127 "UFD" 2806339 UFD (NIL) -9 NIL 2806453 NIL) (-1240 2804772 2804830 2804925 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1239 2804024 2804231 2804447 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1238 2802226 2802685 2803156 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1237 2801947 2802190 2802221 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1236 2801880 2801885 2801915 "TYPE" 2801920 TYPE (NIL) -9 NIL NIL NIL) (-1235 2801039 2801259 2801499 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1234 2800214 2800648 2800883 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1233 2798368 2798941 2799480 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1232 2797388 2797629 2797870 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1231 2785639 2790147 2790244 "TSETCAT" 2795513 TSETCAT (NIL T T T T) -9 NIL 2797044 NIL) (-1230 2781933 2783770 2785634 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1229 2776374 2781153 2781436 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1228 2771711 2772724 2773653 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1227 2771208 2771283 2771446 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1226 2769271 2769562 2769919 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1225 2768755 2768904 2768934 "TRIGCAT" 2769147 TRIGCAT (NIL) -9 NIL NIL NIL) (-1224 2768506 2768609 2768750 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1223 2765478 2767610 2767891 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1222 2764584 2765280 2765310 "TRANFUN" 2765345 TRANFUN (NIL) -9 NIL 2765411 NIL) (-1221 2764048 2764299 2764579 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1220 2763885 2763923 2763984 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1219 2763338 2763469 2763621 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1218 2762073 2762734 2762971 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1217 2761885 2761922 2761994 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1216 2760096 2760745 2761174 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1215 2759800 2759875 2759965 "TEMUTL" NIL TEMUTL (NIL) -7 NIL NIL NIL) (-1214 2758171 2758511 2758836 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1213 2749365 2756015 2756071 "TBAGG" 2756471 TBAGG (NIL T T) -9 NIL 2756682 NIL) (-1212 2745936 2747608 2749360 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1211 2745413 2745538 2745683 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1210 2744919 2745243 2745333 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1209 2744416 2744533 2744671 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1208 2737596 2744318 2744411 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1207 2733340 2734638 2735886 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1206 2732709 2732868 2733049 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1205 2729863 2730616 2731399 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1204 2729634 2729827 2729858 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1203 2728581 2729273 2729399 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2729585) (-1202 2727838 2728393 2728472 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2728532) (-1201 2724636 2725804 2726514 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1200 2722326 2723006 2723638 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1199 2718404 2719450 2720427 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1198 2715548 2718057 2718287 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1197 2715141 2715228 2715351 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1196 2711754 2713236 2714057 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1195 2706925 2708680 2710400 "SWITCH" NIL SWITCH (NIL) -8 NIL NIL NIL) (-1194 2699929 2706117 2706411 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1193 2691659 2699517 2699781 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1192 2690938 2691077 2691294 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1191 2690618 2690683 2690796 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1190 2681340 2690327 2690453 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1189 2680065 2680363 2680719 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1188 2679467 2679545 2679737 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1187 2661569 2678963 2679205 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1186 2661165 2661439 2661509 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1185 2660498 2660782 2660922 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1184 2655049 2656316 2657275 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1183 2654581 2654681 2654845 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1182 2649692 2650974 2652121 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1181 2644150 2645621 2646932 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1180 2637029 2639093 2640885 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1179 2629952 2636941 2637024 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1178 2624612 2629666 2629781 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1177 2624199 2624282 2624426 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1176 2623350 2623551 2623786 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1175 2623090 2623148 2623241 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1174 2615782 2621285 2621896 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1173 2614958 2615163 2615394 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1172 2614199 2614573 2614721 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1171 2613695 2613940 2613970 "STEP" 2614064 STEP (NIL) -9 NIL 2614135 NIL) (-1170 2606891 2613613 2613690 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1169 2601071 2605682 2605725 "STAGG" 2606157 STAGG (NIL T) -9 NIL 2606336 NIL) (-1168 2599446 2600196 2601066 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1167 2597589 2599273 2599365 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1166 2596906 2597419 2597449 "SRING" 2597454 SRING (NIL) -9 NIL 2597474 NIL) (-1165 2589435 2595417 2595873 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1164 2583176 2584623 2586136 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1163 2575560 2580505 2580535 "SRAGG" 2581838 SRAGG (NIL) -9 NIL 2582446 NIL) (-1162 2574855 2575176 2575555 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1161 2568948 2574173 2574597 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1160 2563130 2566321 2567048 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1159 2559529 2560360 2561006 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1158 2558504 2558809 2558839 "SPFCAT" 2559283 SPFCAT (NIL) -9 NIL NIL NIL) (-1157 2557441 2557693 2557957 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1156 2548088 2550404 2550434 "SPADXPT" 2555110 SPADXPT (NIL) -9 NIL 2557274 NIL) (-1155 2547890 2547936 2548005 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1154 2545504 2547854 2547885 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1153 2537105 2539208 2539251 "SPACEC" 2543624 SPACEC (NIL T) -9 NIL 2545440 NIL) (-1152 2534919 2537051 2537100 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1151 2533846 2534037 2534328 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1150 2532244 2532577 2532989 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1149 2531509 2531743 2532004 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1148 2527689 2528649 2529644 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1147 2524047 2524746 2525475 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1146 2517793 2523396 2523493 "SNTSCAT" 2523498 SNTSCAT (NIL T T T T) -9 NIL 2523568 NIL) (-1145 2511661 2516426 2516817 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1144 2505475 2511579 2511656 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1143 2503907 2504238 2504636 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1142 2495536 2500472 2500575 "SMATCAT" 2501929 SMATCAT (NIL NIL T T T) -9 NIL 2502479 NIL) (-1141 2493376 2494360 2495531 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1140 2490956 2492584 2492627 "SKAGG" 2492888 SKAGG (NIL T) -9 NIL 2493023 NIL) (-1139 2486798 2490606 2490776 "SINT" NIL SINT (NIL) -8 NIL NIL 2490928) (-1138 2486608 2486652 2486718 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1137 2485683 2485915 2486183 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1136 2484683 2484845 2485122 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1135 2484025 2484368 2484492 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1134 2483368 2483678 2483818 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1133 2481479 2481971 2482477 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1132 2474952 2481398 2481474 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1131 2474463 2474703 2474733 "SGROUP" 2474826 SGROUP (NIL) -9 NIL 2474888 NIL) (-1130 2474353 2474385 2474458 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1129 2471773 2472543 2473266 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1128 2465617 2471220 2471317 "SFRTCAT" 2471322 SFRTCAT (NIL T T T T) -9 NIL 2471361 NIL) (-1127 2459953 2461073 2462209 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1126 2454042 2455221 2456405 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1125 2453703 2453810 2453921 "SFORT" NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1124 2452663 2453577 2453698 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1123 2448252 2449159 2449254 "SEXCAT" 2451876 SEXCAT (NIL T T T T T) -9 NIL 2452436 NIL) (-1122 2447213 2448179 2448247 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1121 2445598 2446187 2446490 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1120 2445128 2445316 2445346 "SETCAT" 2445463 SETCAT (NIL) -9 NIL 2445548 NIL) (-1119 2444960 2445024 2445123 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1118 2441174 2443421 2443464 "SETAGG" 2444334 SETAGG (NIL T) -9 NIL 2444674 NIL) (-1117 2440780 2440932 2441169 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1116 2437716 2440727 2440775 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1115 2437178 2437491 2437592 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1114 2436305 2436671 2436732 "SEGXCAT" 2437018 SEGXCAT (NIL T T) -9 NIL 2437138 NIL) (-1113 2435230 2435498 2435541 "SEGCAT" 2436063 SEGCAT (NIL T) -9 NIL 2436284 NIL) (-1112 2434910 2434975 2435088 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1111 2433973 2434446 2434654 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1110 2433547 2433829 2433906 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1109 2432912 2433048 2433252 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1108 2431975 2432725 2432907 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1107 2431221 2431923 2431970 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1106 2422746 2431086 2431216 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1105 2421600 2421890 2422209 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1104 2420892 2421106 2421298 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-1103 2420233 2420391 2420570 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1102 2419812 2420046 2420076 "SASTCAT" 2420081 SASTCAT (NIL) -9 NIL 2420094 NIL) (-1101 2419269 2419701 2419777 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-1100 2418869 2418910 2419083 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1099 2418497 2418538 2418697 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1098 2411610 2418412 2418492 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1097 2410247 2410579 2410980 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1096 2408990 2409356 2409661 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1095 2408608 2408832 2408915 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1094 2406042 2406680 2407138 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1093 2405875 2405909 2405980 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-1092 2405358 2405664 2405758 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-1091 2400929 2401802 2402722 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1090 2389635 2395238 2395335 "RSETCAT" 2399454 RSETCAT (NIL T T T T) -9 NIL 2400551 NIL) (-1089 2388159 2388806 2389630 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1088 2381868 2383322 2384842 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1087 2379737 2380300 2380374 "RRCC" 2381460 RRCC (NIL T T) -9 NIL 2381804 NIL) (-1086 2379253 2379455 2379732 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-1085 2378715 2379028 2379129 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-1084 2351040 2361740 2361807 "RPOLCAT" 2372473 RPOLCAT (NIL T T T) -9 NIL 2375633 NIL) (-1083 2345109 2347945 2351035 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-1082 2336148 2343780 2344262 "ROUTINE" NIL ROUTINE (NIL) -8 NIL NIL NIL) (-1081 2332356 2335892 2336032 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-1080 2330665 2331411 2331671 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1079 2326355 2329120 2329150 "RNS" 2329419 RNS (NIL) -9 NIL 2329675 NIL) (-1078 2325261 2325746 2326280 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-1077 2324371 2324775 2324977 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1076 2323664 2324168 2324198 "RNG" 2324203 RNG (NIL) -9 NIL 2324224 NIL) (-1075 2322959 2323437 2323480 "RMODULE" 2323485 RMODULE (NIL T) -9 NIL 2323512 NIL) (-1074 2321882 2321988 2322324 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1073 2318738 2321466 2321763 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1072 2311348 2313825 2313940 "RMATCAT" 2317299 RMATCAT (NIL NIL NIL T T T) -9 NIL 2318281 NIL) (-1071 2310853 2311036 2311343 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-1070 2310426 2310640 2310683 "RLINSET" 2310745 RLINSET (NIL T) -9 NIL 2310789 NIL) (-1069 2310068 2310149 2310277 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1068 2308992 2309666 2309696 "RING" 2309752 RING (NIL) -9 NIL 2309844 NIL) (-1067 2308834 2308890 2308987 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-1066 2307881 2308148 2308406 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-1065 2298809 2307501 2307707 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1064 2298067 2298551 2298592 "RGBCSPC" 2298650 RGBCSPC (NIL T) -9 NIL 2298702 NIL) (-1063 2297133 2297592 2297633 "RGBCMDL" 2297865 RGBCMDL (NIL T) -9 NIL 2297979 NIL) (-1062 2296842 2296911 2297014 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1061 2296602 2296643 2296740 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1060 2295013 2295443 2295825 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-1059 2292589 2293257 2293927 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-1058 2292134 2292232 2292395 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1057 2291752 2291850 2291893 "RETRACT" 2292026 RETRACT (NIL T) -9 NIL 2292113 NIL) (-1056 2291629 2291660 2291747 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-1055 2291225 2291499 2291569 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-1054 2283801 2290983 2291110 "RESULT" NIL RESULT (NIL) -8 NIL NIL NIL) (-1053 2282335 2283167 2283366 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1052 2282022 2282083 2282181 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1051 2281762 2281803 2281910 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1050 2281494 2281535 2281646 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-1049 2276514 2277971 2279194 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-1048 2273584 2274342 2275153 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-1047 2271544 2272166 2272768 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-1046 2264073 2270055 2270511 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1045 2262997 2263436 2263686 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-1044 2262478 2262593 2262760 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1043 2258088 2261863 2262090 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1042 2257315 2257514 2257729 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-1041 2254597 2255435 2256319 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1040 2251169 2252205 2253266 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1039 2251003 2251056 2251086 "REAL" 2251091 REAL (NIL) -9 NIL 2251126 NIL) (-1038 2250486 2250792 2250886 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-1037 2249963 2250041 2250248 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1036 2249191 2249383 2249596 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-1035 2248072 2248369 2248739 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1034 2246324 2246796 2247334 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1033 2245241 2245518 2245908 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1032 2244060 2244370 2244793 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1031 2237443 2240909 2240939 "RCFIELD" 2242234 RCFIELD (NIL) -9 NIL 2242965 NIL) (-1030 2236064 2236674 2237368 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-1029 2232227 2234137 2234180 "RCAGG" 2235264 RCAGG (NIL T) -9 NIL 2235729 NIL) (-1028 2231949 2232060 2232222 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-1027 2231382 2231512 2231677 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-1026 2230995 2231074 2231195 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1025 2230403 2230553 2230705 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-1024 2230182 2230232 2230305 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-1023 2222651 2229290 2229601 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1022 2212346 2222516 2222646 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1021 2211975 2212068 2212098 "RADCAT" 2212258 RADCAT (NIL) -9 NIL NIL NIL) (-1020 2211810 2211870 2211970 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-1019 2209892 2211637 2211729 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1018 2209566 2209615 2209746 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1017 2201863 2205901 2205943 "QUATCAT" 2206734 QUATCAT (NIL T) -9 NIL 2207500 NIL) (-1016 2199106 2200389 2201767 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-1015 2194988 2199053 2199101 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-1014 2192355 2194036 2194079 "QUAGG" 2194460 QUAGG (NIL T) -9 NIL 2194635 NIL) (-1013 2191951 2192225 2192295 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-1012 2190981 2191583 2191748 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1011 2190655 2190704 2190835 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1010 2180279 2186413 2186455 "QFCAT" 2187123 QFCAT (NIL T) -9 NIL 2188124 NIL) (-1009 2177172 2178608 2180183 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-1008 2176713 2176847 2176979 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-1007 2170802 2171981 2173165 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1006 2170213 2170395 2170631 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1005 2168012 2168546 2168974 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1004 2166906 2167148 2167467 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1003 2165254 2165452 2165808 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1002 2160981 2162197 2162240 "PTRANFN" 2164151 PTRANFN (NIL T) -9 NIL NIL NIL) (-1001 2159607 2159952 2160276 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1000 2159293 2159356 2159467 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-999 2153326 2158085 2158126 "PTCAT" 2158422 PTCAT (NIL T) -9 NIL 2158575 NIL) (-998 2153019 2153060 2153184 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-997 2151898 2152214 2152548 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-996 2140697 2143272 2145596 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-995 2133538 2136455 2136551 "PSETCAT" 2139572 PSETCAT (NIL T T T T) -9 NIL 2140386 NIL) (-994 2131970 2132712 2133533 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-993 2131289 2131484 2131512 "PSCURVE" 2131780 PSCURVE (NIL) -9 NIL 2131947 NIL) (-992 2126935 2128702 2128767 "PSCAT" 2129611 PSCAT (NIL T T T) -9 NIL 2129851 NIL) (-991 2126248 2126530 2126930 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-990 2124669 2125560 2125823 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-989 2124156 2124462 2124554 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-988 2115176 2117598 2119786 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-987 2112907 2114498 2114538 "PRQAGG" 2114721 PRQAGG (NIL T) -9 NIL 2114823 NIL) (-986 2112086 2112535 2112563 "PROPLOG" 2112702 PROPLOG (NIL) -9 NIL 2112817 NIL) (-985 2111761 2111824 2111947 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-984 2111197 2111336 2111508 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-983 2109442 2110208 2110505 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-982 2108995 2109126 2109254 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-981 2103584 2107935 2108755 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-980 2103413 2103451 2103510 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-979 2102849 2102990 2103142 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-978 2101317 2101736 2102202 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-977 2101034 2101095 2101123 "PRIMCAT" 2101247 PRIMCAT (NIL) -9 NIL NIL NIL) (-976 2100205 2100401 2100629 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-975 2096053 2100155 2100200 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-974 2095752 2095814 2095925 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-973 2092933 2095399 2095633 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-972 2092384 2092541 2092569 "PPCURVE" 2092774 PPCURVE (NIL) -9 NIL 2092910 NIL) (-971 2091994 2092242 2092325 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-970 2089750 2090171 2090763 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-969 2089191 2089255 2089489 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-968 2085901 2086387 2086999 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-967 2071476 2077561 2077626 "POLYCAT" 2081140 POLYCAT (NIL T T T) -9 NIL 2083018 NIL) (-966 2066983 2069131 2071471 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-965 2066638 2066712 2066832 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-964 2066327 2066390 2066499 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-963 2059731 2066058 2066218 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-962 2058618 2058881 2059157 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-961 2057215 2057528 2057859 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-960 2052340 2057164 2057210 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-959 2050828 2051239 2051614 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-958 2049576 2049885 2050284 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-957 2049247 2049331 2049448 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-956 2048824 2048899 2049074 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-955 2048304 2048402 2048564 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-954 2047770 2047892 2048048 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-953 2046662 2046880 2047258 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-952 2046273 2046358 2046510 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-951 2045822 2045904 2046086 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-950 2045514 2045595 2045708 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-949 2045025 2045100 2045309 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-948 2044364 2044494 2044699 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-947 2043726 2043860 2044023 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-946 2043030 2043212 2043393 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-945 2042753 2042827 2042921 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-944 2039308 2040502 2041423 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-943 2038392 2038593 2038828 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-942 2033941 2035331 2036479 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-941 2013850 2018741 2023592 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-940 2013590 2013643 2013746 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-939 2013031 2013165 2013345 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-938 2011115 2012281 2012309 "PID" 2012506 PID (NIL) -9 NIL 2012633 NIL) (-937 2010903 2010946 2011021 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-936 2010082 2010750 2010837 "PI" NIL PI (NIL) -8 NIL NIL 2010877) (-935 2009534 2009685 2009861 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-934 2005862 2006820 2007725 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-933 2004226 2004515 2004881 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-932 2003668 2003783 2003944 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-931 2000264 2002537 2002890 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-930 1998870 1999150 1999475 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-929 1997632 1997887 1998236 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-928 1996335 1996563 1996917 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-927 1993419 1994925 1994953 "PFECAT" 1995546 PFECAT (NIL) -9 NIL 1995923 NIL) (-926 1993042 1993207 1993414 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-925 1991866 1992148 1992449 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-924 1990048 1990435 1990865 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-923 1986068 1989974 1990043 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-922 1981959 1983112 1983982 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-921 1979871 1980983 1981024 "PERMCAT" 1981424 PERMCAT (NIL T) -9 NIL 1981722 NIL) (-920 1979565 1979612 1979736 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-919 1975985 1977691 1978338 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-918 1973431 1975739 1975861 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-917 1972312 1972575 1972616 "PDSPC" 1973149 PDSPC (NIL T) -9 NIL 1973394 NIL) (-916 1971679 1971945 1972307 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-915 1970393 1971329 1971370 "PDRING" 1971375 PDRING (NIL T) -9 NIL 1971403 NIL) (-914 1969136 1969898 1969952 "PDMOD" 1969957 PDMOD (NIL T T) -9 NIL 1970061 NIL) (-913 1966951 1967777 1968445 "PDEPROB" NIL PDEPROB (NIL) -8 NIL NIL NIL) (-912 1964995 1965535 1966090 "PDEPACK" NIL PDEPACK (NIL) -7 NIL NIL NIL) (-911 1964088 1964300 1964549 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-910 1961605 1962496 1962524 "PDECAT" 1963311 PDECAT (NIL) -9 NIL 1964024 NIL) (-909 1961222 1961289 1961343 "PDDOM" 1961508 PDDOM (NIL T T) -9 NIL 1961588 NIL) (-908 1961074 1961110 1961217 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-907 1960858 1960897 1960987 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-906 1959169 1959930 1960227 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-905 1958858 1958921 1959030 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-904 1956978 1957414 1957871 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-903 1950558 1952405 1953706 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-902 1950189 1950262 1950394 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-901 1947894 1948575 1949054 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-900 1946080 1946515 1946922 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-899 1945534 1945785 1945826 "PATMAB" 1945933 PATMAB (NIL T) -9 NIL 1946016 NIL) (-898 1944175 1944583 1944841 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-897 1943713 1943844 1943885 "PATAB" 1943890 PATAB (NIL T) -9 NIL 1944062 NIL) (-896 1942256 1942693 1943116 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-895 1941934 1942009 1942111 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-894 1941623 1941686 1941795 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-893 1941428 1941474 1941541 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-892 1941106 1941181 1941283 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-891 1940795 1940858 1940967 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-890 1940486 1940556 1940653 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-889 1940175 1940238 1940347 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-888 1939326 1939710 1939892 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-887 1938933 1939031 1939150 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-886 1937898 1938326 1938545 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-885 1936557 1937217 1937577 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-884 1929683 1935960 1936155 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-883 1922140 1929180 1929365 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-882 1918939 1920800 1920840 "PADICCT" 1921421 PADICCT (NIL NIL) -9 NIL 1921703 NIL) (-881 1916985 1918889 1918934 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-880 1916147 1916357 1916623 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-879 1915489 1915632 1915836 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-878 1913925 1914893 1915173 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-877 1913447 1913708 1913805 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-876 1912499 1913184 1913356 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-875 1902915 1905788 1907988 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-874 1902304 1902619 1902746 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-873 1901581 1901776 1901804 "OUTBCON" 1902122 OUTBCON (NIL) -9 NIL 1902288 NIL) (-872 1901289 1901419 1901576 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-871 1900670 1900815 1900976 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-870 1900035 1900468 1900557 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-869 1899454 1899876 1899904 "OSGROUP" 1899909 OSGROUP (NIL) -9 NIL 1899931 NIL) (-868 1898418 1898679 1898964 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-867 1895740 1898292 1898413 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-866 1892933 1895489 1895616 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-865 1890944 1891472 1892033 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-864 1884322 1886810 1886851 "OREPCAT" 1889199 OREPCAT (NIL T) -9 NIL 1890303 NIL) (-863 1882347 1883281 1884317 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-862 1881539 1881817 1881845 "ORDTYPE" 1882154 ORDTYPE (NIL) -9 NIL 1882317 NIL) (-861 1881063 1881279 1881534 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-860 1880517 1880900 1881058 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-859 1880015 1880385 1880413 "ORDSET" 1880418 ORDSET (NIL) -9 NIL 1880440 NIL) (-858 1878666 1879637 1879665 "ORDRING" 1879670 ORDRING (NIL) -9 NIL 1879699 NIL) (-857 1877917 1878482 1878510 "ORDMON" 1878515 ORDMON (NIL) -9 NIL 1878536 NIL) (-856 1877212 1877377 1877572 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-855 1876427 1876942 1876970 "ORDFIN" 1877035 ORDFIN (NIL) -9 NIL 1877109 NIL) (-854 1875821 1875960 1876146 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-853 1872566 1874783 1875192 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-852 1869881 1870851 1871665 "OPTPROB" NIL OPTPROB (NIL) -8 NIL NIL NIL) (-851 1867307 1868006 1868710 "OPTPACK" NIL OPTPACK (NIL) -7 NIL NIL NIL) (-850 1864920 1865746 1865774 "OPTCAT" 1866593 OPTCAT (NIL) -9 NIL 1867243 NIL) (-849 1864323 1864682 1864787 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-848 1864131 1864176 1864242 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-847 1863437 1863717 1863758 "OPERCAT" 1863970 OPERCAT (NIL T) -9 NIL 1864067 NIL) (-846 1863247 1863315 1863432 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-845 1860646 1862029 1862533 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-844 1860067 1860194 1860368 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-843 1857038 1859200 1859569 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-842 1853663 1856478 1856518 "OMSAGG" 1856579 OMSAGG (NIL T) -9 NIL 1856643 NIL) (-841 1852131 1853331 1853500 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-840 1850409 1851601 1851629 "OINTDOM" 1851634 OINTDOM (NIL) -9 NIL 1851655 NIL) (-839 1847828 1849409 1849739 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-838 1847075 1847778 1847823 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-837 1844331 1846915 1847070 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-836 1835908 1844200 1844326 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-835 1829351 1835798 1835903 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-834 1828323 1828560 1828833 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-833 1825957 1826627 1827331 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-832 1821712 1822672 1823697 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-831 1821220 1821308 1821502 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-830 1818655 1819237 1819912 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-829 1816042 1816550 1817147 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-828 1814403 1815047 1815533 "ODEPROB" NIL ODEPROB (NIL) -8 NIL NIL NIL) (-827 1811390 1811929 1812576 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-826 1810741 1810849 1811109 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-825 1807687 1808538 1809402 "ODEPACK" NIL ODEPACK (NIL) -7 NIL NIL NIL) (-824 1806841 1806966 1807188 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-823 1802333 1803794 1805241 "ODEIFTBL" NIL ODEIFTBL (NIL) -8 NIL NIL NIL) (-822 1798590 1799392 1800312 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-821 1798028 1798123 1798346 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-820 1796091 1796800 1796828 "ODECAT" 1797433 ODECAT (NIL) -9 NIL 1797964 NIL) (-819 1795772 1795821 1795948 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-818 1792389 1795567 1795689 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-817 1791582 1792182 1792210 "OCAMON" 1792215 OCAMON (NIL) -9 NIL 1792236 NIL) (-816 1785853 1788618 1788658 "OC" 1789755 OC (NIL T) -9 NIL 1790613 NIL) (-815 1783853 1784781 1785759 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-814 1783273 1783698 1783726 "OASGP" 1783731 OASGP (NIL) -9 NIL 1783751 NIL) (-813 1782369 1782996 1783024 "OAMONS" 1783064 OAMONS (NIL) -9 NIL 1783107 NIL) (-812 1781545 1782104 1782132 "OAMON" 1782190 OAMON (NIL) -9 NIL 1782242 NIL) (-811 1781439 1781472 1781540 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-810 1780220 1780973 1781001 "OAGROUP" 1781148 OAGROUP (NIL) -9 NIL 1781241 NIL) (-809 1780009 1780097 1780215 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-808 1779749 1779805 1779893 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-807 1774784 1776356 1777892 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-806 1771479 1772513 1773548 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-805 1768760 1769700 1769728 "NUMINT" 1770651 NUMINT (NIL) -9 NIL 1771415 NIL) (-804 1767870 1768103 1768321 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-803 1756710 1759749 1762199 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-802 1750556 1756159 1756254 "NTSCAT" 1756259 NTSCAT (NIL T T T T) -9 NIL 1756298 NIL) (-801 1749897 1750076 1750269 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-800 1749586 1749649 1749758 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-799 1737239 1747190 1748002 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-798 1726257 1737101 1737234 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-797 1724977 1725302 1725659 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-796 1723813 1724077 1724435 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-795 1722980 1723113 1723329 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-794 1721283 1721603 1722012 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-793 1720996 1721030 1721154 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-792 1720815 1720850 1720919 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-791 1720588 1720781 1720810 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-790 1720147 1720215 1720394 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-789 1718455 1719510 1719765 "NNI" NIL NNI (NIL) -8 NIL NIL 1720112) (-788 1717183 1717520 1717884 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-787 1714243 1715298 1716197 "NIPROB" NIL NIPROB (NIL) -8 NIL NIL NIL) (-786 1713220 1713472 1713774 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-785 1712304 1712870 1712911 "NETCLT" 1713083 NETCLT (NIL T) -9 NIL 1713165 NIL) (-784 1711208 1711475 1711756 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-783 1711007 1711050 1711125 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-782 1709538 1709926 1710346 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-781 1708208 1709148 1709176 "NASRING" 1709286 NASRING (NIL) -9 NIL 1709366 NIL) (-780 1708053 1708109 1708203 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-779 1707020 1707671 1707699 "NARNG" 1707816 NARNG (NIL) -9 NIL 1707907 NIL) (-778 1706796 1706881 1707015 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-777 1705848 1706097 1706332 "NAGSP" NIL NAGSP (NIL) -7 NIL NIL NIL) (-776 1698545 1700457 1702130 "NAGS" NIL NAGS (NIL) -7 NIL NIL NIL) (-775 1697380 1697712 1698043 "NAGF07" NIL NAGF07 (NIL) -7 NIL NIL NIL) (-774 1693139 1694496 1695803 "NAGF04" NIL NAGF04 (NIL) -7 NIL NIL NIL) (-773 1687624 1689334 1690967 "NAGF02" NIL NAGF02 (NIL) -7 NIL NIL NIL) (-772 1683885 1685045 1686162 "NAGF01" NIL NAGF01 (NIL) -7 NIL NIL NIL) (-771 1679030 1680644 1682229 "NAGE04" NIL NAGE04 (NIL) -7 NIL NIL NIL) (-770 1672201 1674430 1676560 "NAGE02" NIL NAGE02 (NIL) -7 NIL NIL NIL) (-769 1669038 1670045 1671009 "NAGE01" NIL NAGE01 (NIL) -7 NIL NIL NIL) (-768 1667353 1667905 1668463 "NAGD03" NIL NAGD03 (NIL) -7 NIL NIL NIL) (-767 1660983 1662965 1664919 "NAGD02" NIL NAGD02 (NIL) -7 NIL NIL NIL) (-766 1656142 1657639 1659079 "NAGD01" NIL NAGD01 (NIL) -7 NIL NIL NIL) (-765 1653096 1653990 1654827 "NAGC06" NIL NAGC06 (NIL) -7 NIL NIL NIL) (-764 1651879 1652229 1652585 "NAGC05" NIL NAGC05 (NIL) -7 NIL NIL NIL) (-763 1651367 1651498 1651642 "NAGC02" NIL NAGC02 (NIL) -7 NIL NIL NIL) (-762 1650168 1650895 1650935 "NAALG" 1651014 NAALG (NIL T) -9 NIL 1651075 NIL) (-761 1650038 1650073 1650163 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-760 1645014 1646200 1647387 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-759 1644409 1644496 1644680 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-758 1636464 1640902 1640955 "MTSCAT" 1642025 MTSCAT (NIL T T) -9 NIL 1642540 NIL) (-757 1636230 1636290 1636382 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-756 1636056 1636095 1636155 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-755 1632912 1635617 1635658 "MSETAGG" 1635663 MSETAGG (NIL T) -9 NIL 1635697 NIL) (-754 1629027 1631954 1632274 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-753 1625341 1627106 1627851 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-752 1624974 1625047 1625178 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-751 1624627 1624668 1624812 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-750 1622492 1622829 1623260 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-749 1615932 1622390 1622487 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-748 1615457 1615498 1615706 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-747 1615014 1615063 1615247 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-746 1614282 1614375 1614596 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-745 1612899 1613260 1613650 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-744 1612044 1612427 1612455 "MONOID" 1612674 MONOID (NIL) -9 NIL 1612821 NIL) (-743 1611709 1611858 1612039 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-742 1600603 1607441 1607500 "MONOGEN" 1608174 MONOGEN (NIL T T) -9 NIL 1608630 NIL) (-741 1598615 1599501 1600484 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-740 1597332 1597880 1597908 "MONADWU" 1598300 MONADWU (NIL) -9 NIL 1598538 NIL) (-739 1596878 1597079 1597327 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-738 1596163 1596467 1596495 "MONAD" 1596702 MONAD (NIL) -9 NIL 1596814 NIL) (-737 1595930 1596026 1596158 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-736 1594316 1595090 1595369 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-735 1593484 1593984 1594024 "MODULE" 1594029 MODULE (NIL T) -9 NIL 1594068 NIL) (-734 1593163 1593289 1593479 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-733 1590932 1591759 1592074 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-732 1588144 1589508 1590029 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-731 1586767 1587348 1587625 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-730 1575977 1585421 1585835 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-729 1572988 1574977 1575246 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-728 1572069 1572439 1572629 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-727 1571638 1571687 1571866 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-726 1569531 1570470 1570511 "MLO" 1570934 MLO (NIL T) -9 NIL 1571176 NIL) (-725 1567412 1567939 1568534 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-724 1566880 1566976 1567130 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-723 1566550 1566626 1566749 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-722 1565762 1565948 1566176 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-721 1565255 1565371 1565527 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-720 1564627 1564741 1564926 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-719 1560767 1564297 1564433 "MINT" NIL MINT (NIL) -8 NIL NIL NIL) (-718 1559794 1560067 1560344 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-717 1554962 1558714 1559119 "MFLOAT" NIL MFLOAT (NIL) -8 NIL NIL NIL) (-716 1554395 1554483 1554654 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-715 1551553 1552432 1553311 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-714 1550220 1550568 1550921 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-713 1546867 1549351 1549392 "MDAGG" 1549647 MDAGG (NIL T) -9 NIL 1549790 NIL) (-712 1534839 1546347 1546554 "MCMPLX" NIL MCMPLX (NIL) -8 NIL NIL NIL) (-711 1534109 1534273 1534474 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-710 1532227 1532539 1532919 "MCALCFN" NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-709 1531298 1531586 1531819 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-708 1529385 1529962 1530524 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-707 1525134 1528972 1529220 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-706 1521481 1522252 1522986 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-705 1520226 1520395 1520726 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-704 1509673 1513280 1513357 "MATCAT" 1518392 MATCAT (NIL T T T) -9 NIL 1519864 NIL) (-703 1506945 1508255 1509668 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-702 1505346 1505706 1506090 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-701 1504479 1504676 1504898 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-700 1503230 1503556 1503883 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-699 1502388 1502793 1502970 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-698 1502057 1502121 1502244 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-697 1501705 1501778 1501892 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-696 1501240 1501355 1501497 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-695 1499435 1500212 1500516 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-694 1498925 1499230 1499321 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-693 1495710 1497592 1498053 "M3D" NIL M3D (NIL T) -8 NIL NIL NIL) (-692 1489181 1494018 1494059 "LZSTAGG" 1494841 LZSTAGG (NIL T) -9 NIL 1495136 NIL) (-691 1486270 1487719 1489176 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-690 1483640 1484616 1485103 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-689 1483217 1483499 1483574 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-688 1475408 1483078 1483212 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-687 1474771 1474916 1475144 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-686 1472252 1472951 1473664 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-685 1470361 1470685 1471134 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-684 1463488 1469448 1469489 "LSAGG" 1469551 LSAGG (NIL T) -9 NIL 1469629 NIL) (-683 1461160 1462270 1463483 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-682 1458667 1460509 1460758 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-681 1458334 1458425 1458548 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-680 1458017 1458096 1458124 "LOGIC" 1458235 LOGIC (NIL) -9 NIL 1458317 NIL) (-679 1457912 1457941 1458012 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-678 1457231 1457389 1457582 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-677 1456008 1456257 1456610 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-676 1451891 1454636 1454677 "LODOCAT" 1455115 LODOCAT (NIL T) -9 NIL 1455326 NIL) (-675 1451683 1451759 1451886 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-674 1448737 1451560 1451678 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-673 1445889 1448687 1448732 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-672 1443029 1445818 1445884 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-671 1442079 1442254 1442557 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-670 1440233 1441341 1441594 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-669 1435313 1438396 1438437 "LNAGG" 1439299 LNAGG (NIL T) -9 NIL 1439734 NIL) (-668 1434698 1434966 1435308 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-667 1431263 1432208 1432847 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-666 1430562 1431040 1431081 "LMODULE" 1431086 LMODULE (NIL T) -9 NIL 1431112 NIL) (-665 1427721 1430297 1430420 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-664 1427297 1427511 1427552 "LLINSET" 1427613 LLINSET (NIL T) -9 NIL 1427657 NIL) (-663 1426969 1427232 1427292 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-662 1426568 1426648 1426787 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-661 1425019 1425367 1425766 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-660 1424190 1424386 1424614 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-659 1417192 1423444 1423699 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-658 1416775 1417011 1417052 "LINSET" 1417057 LINSET (NIL T) -9 NIL 1417091 NIL) (-657 1415704 1416398 1416565 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-656 1414003 1414731 1414772 "LINEXP" 1415262 LINEXP (NIL T) -9 NIL 1415535 NIL) (-655 1412708 1413612 1413793 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-654 1411527 1411800 1412104 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-653 1410733 1411329 1411439 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-652 1408283 1409005 1409755 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-651 1406909 1407206 1407598 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-650 1405737 1406312 1406352 "LIECAT" 1406492 LIECAT (NIL T) -9 NIL 1406643 NIL) (-649 1405611 1405644 1405732 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-648 1399847 1405301 1405529 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-647 1392289 1399523 1399679 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-646 1388741 1389690 1390625 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-645 1387365 1388273 1388301 "LFCAT" 1388508 LFCAT (NIL) -9 NIL 1388647 NIL) (-644 1385582 1385916 1386266 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-643 1383078 1383750 1384438 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-642 1380086 1381068 1381571 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-641 1379574 1379879 1379971 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-640 1378278 1378603 1379004 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-639 1377535 1377621 1377850 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-638 1372585 1376100 1376638 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-637 1372208 1372258 1372419 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-636 1371056 1371772 1371813 "LALG" 1371875 LALG (NIL T) -9 NIL 1371934 NIL) (-635 1370838 1370915 1371051 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-634 1368744 1370106 1370357 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-633 1368573 1368603 1368644 "KVTFROM" 1368706 KVTFROM (NIL T) -9 NIL NIL NIL) (-632 1367495 1368105 1368290 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-631 1367324 1367354 1367395 "KRCFROM" 1367457 KRCFROM (NIL T) -9 NIL NIL NIL) (-630 1366420 1366617 1366914 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-629 1366249 1366279 1366320 "KONVERT" 1366382 KONVERT (NIL T) -9 NIL NIL NIL) (-628 1366078 1366108 1366149 "KOERCE" 1366211 KOERCE (NIL T) -9 NIL NIL NIL) (-627 1365648 1365741 1365873 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-626 1363679 1364585 1364962 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-625 1357019 1361914 1361968 "KDAGG" 1362345 KDAGG (NIL T T) -9 NIL 1362551 NIL) (-624 1356667 1356809 1357014 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-623 1349610 1356450 1356605 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-622 1349257 1349542 1349605 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-621 1348222 1348726 1348975 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-620 1347343 1347797 1348002 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-619 1346204 1346699 1346999 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-618 1345481 1345885 1346046 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-617 1345188 1345427 1345476 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-616 1339423 1344878 1345106 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-615 1338837 1339173 1339294 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-614 1334983 1337014 1337068 "IXAGG" 1337997 IXAGG (NIL T T) -9 NIL 1338456 NIL) (-613 1334187 1334559 1334978 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-612 1329404 1334123 1334182 "IVECTOR" NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-611 1328362 1328640 1328906 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-610 1327012 1327219 1327514 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-609 1325963 1326185 1326468 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-608 1325638 1325701 1325824 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-607 1324897 1325272 1325446 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-606 1322918 1324162 1324440 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-605 1312464 1318185 1319348 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-604 1311709 1311861 1312097 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-603 1311197 1311502 1311594 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-602 1310481 1310574 1310790 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-601 1309613 1309838 1310078 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-600 1308020 1308401 1308830 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-599 1307805 1307849 1307925 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-598 1306649 1306948 1307245 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-597 1305919 1306273 1306424 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-596 1305118 1305249 1305463 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-595 1303273 1303770 1304314 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-594 1300375 1301617 1302309 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-593 1300200 1300240 1300300 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-592 1296248 1300126 1300195 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-591 1294306 1296186 1296243 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-590 1293674 1293976 1294106 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-589 1293124 1293415 1293547 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-588 1292202 1292828 1292955 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-587 1291612 1292106 1292134 "IOBCON" 1292139 IOBCON (NIL) -9 NIL 1292160 NIL) (-586 1291181 1291245 1291428 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-585 1283213 1285588 1287917 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-584 1280321 1281105 1281970 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-583 1279998 1280095 1280212 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-582 1277490 1279934 1279993 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-581 1275597 1276126 1276694 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-580 1275092 1275207 1275349 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-579 1273471 1273877 1274340 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-578 1271245 1271839 1272451 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-577 1268612 1269222 1269943 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-576 1264748 1265786 1266835 "INTPACK" NIL INTPACK (NIL) -7 NIL NIL NIL) (-575 1264152 1264310 1264518 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-574 1263671 1263757 1263945 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-573 1261876 1262397 1262854 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-572 1254944 1256597 1258327 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-571 1244534 1247947 1251332 "INTFTBL" NIL INTFTBL (NIL) -8 NIL NIL NIL) (-570 1243900 1244062 1244235 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-569 1241767 1242231 1242776 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-568 1239964 1240859 1240887 "INTDOM" 1241188 INTDOM (NIL) -9 NIL 1241395 NIL) (-567 1239513 1239717 1239959 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-566 1235381 1237802 1237856 "INTCAT" 1238655 INTCAT (NIL T) -9 NIL 1238976 NIL) (-565 1234943 1235064 1235192 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-564 1233779 1233951 1234258 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-563 1233352 1233448 1233605 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-562 1226485 1233207 1233347 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-561 1225776 1226338 1226403 "INT8" NIL INT8 (NIL) -8 NIL NIL 1226437) (-560 1225066 1225628 1225693 "INT64" NIL INT64 (NIL) -8 NIL NIL 1225727) (-559 1224356 1224918 1224983 "INT32" NIL INT32 (NIL) -8 NIL NIL 1225017) (-558 1223646 1224208 1224273 "INT16" NIL INT16 (NIL) -8 NIL NIL 1224307) (-557 1220152 1223565 1223641 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-556 1214263 1217700 1217728 "INS" 1218662 INS (NIL) -9 NIL 1219327 NIL) (-555 1212333 1213251 1214190 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-554 1211388 1211611 1211887 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-553 1210602 1210743 1210940 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-552 1209592 1209733 1209970 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-551 1208744 1208908 1209168 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-550 1208024 1208139 1208327 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-549 1206763 1207032 1207356 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-548 1206043 1206184 1206367 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-547 1205706 1205778 1205876 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-546 1202780 1204278 1204793 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-545 1202379 1202486 1202600 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-544 1201534 1202180 1202281 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-543 1200384 1200652 1200973 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-542 1199447 1200314 1200379 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-541 1199072 1199152 1199269 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-540 1197980 1198527 1198733 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-539 1194072 1195128 1196072 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-538 1192926 1193249 1193277 "INBCON" 1193790 INBCON (NIL) -9 NIL 1194056 NIL) (-537 1192380 1192645 1192921 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-536 1191870 1192175 1192266 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-535 1191323 1191635 1191741 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-534 1187404 1191214 1191318 "IMATRIX" NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-533 1186240 1186379 1186695 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-532 1184664 1184931 1185268 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-531 1182466 1184546 1184659 "IIARRAY2" NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-530 1177344 1182397 1182461 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-529 1176721 1177057 1177173 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-528 1171490 1176156 1176344 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-527 1170548 1171412 1171485 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-526 1170120 1170197 1170251 "IEVALAB" 1170458 IEVALAB (NIL T T) -9 NIL NIL NIL) (-525 1169875 1169955 1170115 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-524 1168939 1169795 1169870 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-523 1168072 1168859 1168934 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-522 1167471 1168005 1168067 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-521 1165951 1166478 1166530 "IDPC" 1167042 IDPC (NIL T T) -9 NIL 1167323 NIL) (-520 1165313 1165873 1165946 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-519 1164558 1165235 1165308 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-518 1164248 1164464 1164524 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-517 1161310 1162194 1163089 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-516 1154909 1156197 1157244 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-515 1154167 1154297 1154497 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-514 1153334 1153839 1153977 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-513 1151711 1152042 1152435 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-512 1147021 1151412 1151525 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-511 1144279 1144903 1145598 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-510 1142505 1142985 1143518 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-509 1140255 1142397 1142500 "IARRAY2" NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-508 1136094 1140193 1140250 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-507 1129695 1135053 1135525 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-506 1129263 1129326 1129499 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-505 1128755 1128904 1128932 "HYPCAT" 1129139 HYPCAT (NIL) -9 NIL NIL NIL) (-504 1128411 1128564 1128750 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-503 1128021 1128269 1128352 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-502 1127854 1127903 1127944 "HOMOTOP" 1127949 HOMOTOP (NIL T) -9 NIL 1127982 NIL) (-501 1124398 1125786 1125827 "HOAGG" 1126808 HOAGG (NIL T) -9 NIL 1127537 NIL) (-500 1123390 1123867 1124393 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-499 1116624 1123113 1123263 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-498 1115559 1115817 1116080 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-497 1114521 1115424 1115554 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-496 1112701 1114354 1114442 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-495 1112012 1112367 1112501 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-494 1105499 1111945 1112007 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-493 1098679 1105233 1105385 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-492 1098129 1098287 1098451 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-491 1091305 1098020 1098124 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-490 1090793 1091098 1091190 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-489 1088395 1090577 1090759 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-488 1083747 1088277 1088390 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-487 1076926 1083644 1083742 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-486 1068906 1076291 1076547 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-485 1067937 1068450 1068478 "GROUP" 1068681 GROUP (NIL) -9 NIL 1068815 NIL) (-484 1067480 1067681 1067932 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-483 1066152 1066491 1066878 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-482 1064980 1065340 1065391 "GRMOD" 1065920 GRMOD (NIL T T) -9 NIL 1066088 NIL) (-481 1064799 1064847 1064975 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-480 1060919 1062133 1063133 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-479 1059617 1059950 1060274 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-478 1059170 1059298 1059439 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-477 1058247 1058749 1058800 "GRALG" 1058953 GRALG (NIL T T) -9 NIL 1059046 NIL) (-476 1057982 1058079 1058242 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-475 1054674 1057660 1057838 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-474 1054085 1054148 1054406 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-473 1049956 1050824 1051350 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-472 1049131 1049333 1049571 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-471 1044119 1045046 1046066 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-470 1043867 1043924 1044013 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-469 1043349 1043438 1043603 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-468 1042858 1042899 1043112 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-467 1041656 1041940 1042245 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-466 1034973 1041344 1041506 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-465 1024767 1029763 1030867 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-464 1022894 1023942 1023970 "GCDDOM" 1024225 GCDDOM (NIL) -9 NIL 1024382 NIL) (-463 1022517 1022674 1022889 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-462 1013298 1015772 1018164 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-461 1011424 1011752 1012173 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-460 1010365 1010554 1010821 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-459 1009236 1009443 1009747 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-458 1008696 1008839 1008988 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-457 1007298 1007646 1007960 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-456 1005831 1006153 1006477 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-455 1003433 1003789 1004196 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-454 996649 998323 999914 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-453 993935 994695 994723 "FVFUN" 995879 FVFUN (NIL) -9 NIL 996599 NIL) (-452 993165 993383 993411 "FVC" 993702 FVC (NIL) -9 NIL 993885 NIL) (-451 992814 993038 993106 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-450 992435 992659 992740 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-449 991295 991919 992122 "FTEM" NIL FTEM (NIL) -8 NIL NIL NIL) (-448 989380 990069 990532 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-447 987962 988271 988666 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-446 986593 986960 987292 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-445 985892 986016 986204 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-444 984866 985132 985479 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-443 982513 983047 983533 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-442 982094 982154 982324 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-441 980453 981308 981611 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-440 979597 979731 979955 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-439 978768 978929 979156 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-438 974743 977712 977753 "FSAGG" 978123 FSAGG (NIL T) -9 NIL 978382 NIL) (-437 973089 973852 974648 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-436 971031 971329 971877 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-435 970072 970255 970557 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-434 969749 969798 969927 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-433 949904 959411 959452 "FS" 963336 FS (NIL T) -9 NIL 965625 NIL) (-432 942106 945614 949604 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-431 941640 941767 941919 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-430 936183 939329 939369 "FRNAALG" 940689 FRNAALG (NIL T) -9 NIL 941287 NIL) (-429 932924 934175 935433 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-428 932605 932654 932781 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-427 931080 931642 931938 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-426 930358 930451 930742 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-425 928172 928942 929260 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-424 927263 927712 927753 "FRETRCT" 927758 FRETRCT (NIL T) -9 NIL 927934 NIL) (-423 926636 926914 927258 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-422 923457 924920 924979 "FRAMALG" 925861 FRAMALG (NIL T T) -9 NIL 926153 NIL) (-421 922053 922604 923234 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-420 921746 921809 921916 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-419 915423 921550 921741 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-418 915116 915179 915286 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-417 907467 911991 913322 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-416 901303 904759 904787 "FPS" 905906 FPS (NIL) -9 NIL 906463 NIL) (-415 900860 900993 901157 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-414 897741 899730 899758 "FPC" 899983 FPC (NIL) -9 NIL 900125 NIL) (-413 897587 897639 897736 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-412 896345 897075 897116 "FPATMAB" 897121 FPATMAB (NIL T) -9 NIL 897273 NIL) (-411 894772 895371 895718 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-410 890671 891271 891953 "FORTRAN" NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-409 888245 888909 888937 "FORTFN" 889997 FORTFN (NIL) -9 NIL 890621 NIL) (-408 887997 888059 888087 "FORTCAT" 888146 FORTCAT (NIL) -9 NIL 888208 NIL) (-407 886202 886732 887271 "FORT" NIL FORT (NIL) -7 NIL NIL NIL) (-406 885777 885835 886008 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-405 885010 885210 885403 "FOP" NIL FOP (NIL) -7 NIL NIL NIL) (-404 883541 884408 884582 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-403 882155 882666 882694 "FNCAT" 883154 FNCAT (NIL) -9 NIL 883414 NIL) (-402 881606 882122 882150 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-401 879932 881105 881133 "FMTC" 881138 FMTC (NIL) -9 NIL 881174 NIL) (-400 878511 879881 879927 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-399 875100 876466 876507 "FMONCAT" 877724 FMONCAT (NIL T) -9 NIL 878329 NIL) (-398 872422 873170 873198 "FMFUN" 874342 FMFUN (NIL) -9 NIL 875050 NIL) (-397 869295 870347 870401 "FMCAT" 871596 FMCAT (NIL T T) -9 NIL 872091 NIL) (-396 868528 868745 868773 "FMC" 869063 FMC (NIL) -9 NIL 869245 NIL) (-395 867253 868349 868449 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-394 866375 867099 867248 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-393 864562 865014 865508 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-392 862497 863033 863611 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-391 855932 860834 861448 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-390 854450 855524 855565 "FLINEXP" 855570 FLINEXP (NIL T) -9 NIL 855663 NIL) (-389 853858 854117 854445 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-388 853064 853226 853450 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-387 849982 851034 851086 "FLALG" 852313 FLALG (NIL T T) -9 NIL 852780 NIL) (-386 849153 849314 849541 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-385 842519 846559 846600 "FLAGG" 847862 FLAGG (NIL T) -9 NIL 848514 NIL) (-384 841613 842024 842514 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-383 838251 839458 839517 "FINRALG" 840645 FINRALG (NIL T T) -9 NIL 841153 NIL) (-382 837642 837907 838246 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-381 836948 837247 837275 "FINITE" 837471 FINITE (NIL) -9 NIL 837578 NIL) (-380 828899 831478 831518 "FINAALG" 835185 FINAALG (NIL T) -9 NIL 836638 NIL) (-379 825124 826383 827520 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-378 823684 824106 824160 "FILECAT" 824844 FILECAT (NIL T T) -9 NIL 825060 NIL) (-377 823032 823509 823612 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-376 820350 822175 822203 "FIELD" 822243 FIELD (NIL) -9 NIL 822323 NIL) (-375 819371 819834 820345 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-374 817370 818320 818667 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-373 816610 816792 817012 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-372 811915 816548 816605 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-371 811577 811644 811779 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-370 811117 811159 811368 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-369 807791 808670 809449 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-368 803110 807723 807786 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-367 797824 802599 802789 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-366 792340 797105 797363 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-365 786582 791791 792002 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-364 785605 785815 786130 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-363 781113 783765 783793 "FFIELDC" 784413 FFIELDC (NIL) -9 NIL 784789 NIL) (-362 780188 780627 781108 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-361 779803 779861 779985 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-360 777947 778470 778987 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-359 773076 777746 777847 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-358 768209 772865 772972 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-357 762910 768000 768108 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-356 762364 762413 762648 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-355 740826 751867 751953 "FFCAT" 757118 FFCAT (NIL T T T) -9 NIL 758569 NIL) (-354 737052 738284 739596 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-353 731930 736983 737047 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-352 721820 726082 727270 "FEXPR" NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-351 720748 721217 721258 "FEVALAB" 721342 FEVALAB (NIL T) -9 NIL 721603 NIL) (-350 720153 720405 720743 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-349 717015 717900 718015 "FDIVCAT" 719583 FDIVCAT (NIL T T T T) -9 NIL 720020 NIL) (-348 716807 716840 717010 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-347 716114 716207 716484 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-346 714627 715598 715801 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-345 713717 714104 714306 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-344 712642 712931 713220 "FCPAK1" NIL FCPAK1 (NIL) -7 NIL NIL NIL) (-343 711754 712251 712392 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-342 698586 702422 705960 "FC" NIL FC (NIL) -8 NIL NIL NIL) (-341 690210 694820 694860 "FAXF" 696662 FAXF (NIL T) -9 NIL 697354 NIL) (-340 688120 688927 689745 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-339 682946 687639 687815 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-338 677431 679806 679859 "FAMR" 680882 FAMR (NIL T T) -9 NIL 681342 NIL) (-337 676627 676993 677426 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-336 675676 676569 676622 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-335 673306 674158 674211 "FAMONC" 675152 FAMONC (NIL T T) -9 NIL 675538 NIL) (-334 671886 673164 673301 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-333 669958 670319 670722 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-332 669235 669432 669654 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-331 661137 668682 668881 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-330 659156 659726 660312 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-329 656028 656680 657410 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-328 651164 651871 652677 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-327 650853 650916 651025 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-326 635654 649898 650327 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-325 626213 634969 635260 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-324 625704 626008 626099 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-323 625477 625670 625699 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-322 625166 625234 625347 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-321 624683 624825 624866 "EVALAB" 625036 EVALAB (NIL T) -9 NIL 625140 NIL) (-320 624311 624457 624678 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-319 621426 622967 622995 "EUCDOM" 623550 EUCDOM (NIL) -9 NIL 623900 NIL) (-318 620351 620845 621421 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-317 620040 620103 620212 "ESTOOLS2" NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-316 619833 619881 619961 "ESTOOLS1" NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-315 609880 612861 615611 "ESTOOLS" NIL ESTOOLS (NIL) -7 NIL NIL NIL) (-314 609657 609695 609777 "ESCONT1" NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-313 606725 607552 608332 "ESCONT" NIL ESCONT (NIL) -7 NIL NIL NIL) (-312 606450 606506 606606 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-311 606138 606202 606311 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-310 599837 601767 601795 "ES" 604563 ES (NIL) -9 NIL 605973 NIL) (-309 596303 597858 599673 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-308 595651 595804 595980 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-307 588833 595555 595646 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-306 588522 588585 588694 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-305 582221 585264 586701 "EQ" NIL -3954 (NIL T) -8 NIL NIL NIL) (-304 578524 579620 580713 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-303 577350 577701 578007 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-302 576310 576984 577012 "ENTIRER" 577017 ENTIRER (NIL) -9 NIL 577063 NIL) (-301 572999 574740 575089 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-300 572103 572314 572368 "ELTAGG" 572748 ELTAGG (NIL T T) -9 NIL 572959 NIL) (-299 571883 571957 572098 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-298 571641 571676 571730 "ELTAB" 571814 ELTAB (NIL T T) -9 NIL 571866 NIL) (-297 570892 571062 571261 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-296 570616 570690 570718 "ELEMFUN" 570823 ELEMFUN (NIL) -9 NIL NIL NIL) (-295 570516 570543 570611 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-294 565038 568555 568596 "ELAGG" 569536 ELAGG (NIL T) -9 NIL 569999 NIL) (-293 563828 564370 565033 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-292 563246 563413 563569 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-291 562150 562472 562754 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-290 555514 557512 558341 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-289 549492 551488 552299 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-288 547297 547703 548175 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-287 538220 540139 541687 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-286 537327 537834 537983 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-285 536457 537294 537322 "E04UCFA" NIL E04UCFA (NIL) -8 NIL NIL NIL) (-284 535587 536424 536452 "E04NAFA" NIL E04NAFA (NIL) -8 NIL NIL NIL) (-283 534717 535554 535582 "E04MBFA" NIL E04MBFA (NIL) -8 NIL NIL NIL) (-282 533847 534684 534712 "E04JAFA" NIL E04JAFA (NIL) -8 NIL NIL NIL) (-281 532979 533814 533842 "E04GCFA" NIL E04GCFA (NIL) -8 NIL NIL NIL) (-280 532111 532946 532974 "E04FDFA" NIL E04FDFA (NIL) -8 NIL NIL NIL) (-279 531241 532078 532106 "E04DGFA" NIL E04DGFA (NIL) -8 NIL NIL NIL) (-278 526662 528110 529474 "E04AGNT" NIL E04AGNT (NIL) -7 NIL NIL NIL) (-277 525362 526043 526083 "DVARCAT" 526366 DVARCAT (NIL T) -9 NIL 526507 NIL) (-276 524777 525043 525357 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-275 516884 524643 524772 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-274 515234 516025 516066 "DSEXT" 516429 DSEXT (NIL T) -9 NIL 516723 NIL) (-273 514039 514563 515229 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-272 513763 513828 513926 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-271 509899 511121 512258 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-270 505530 506892 507960 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-269 504205 504566 504952 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-268 503891 503950 504068 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-267 502863 503162 503453 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-266 502446 502521 502672 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-265 494859 496971 499086 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-264 490376 491395 492474 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-263 486958 489041 489082 "DQAGG" 489711 DQAGG (NIL T) -9 NIL 489985 NIL) (-262 473484 481081 481164 "DPOLCAT" 483016 DPOLCAT (NIL T T T T) -9 NIL 483561 NIL) (-261 469889 471538 473479 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-260 462864 469786 469884 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-259 455748 462692 462859 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-258 455339 455601 455690 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-257 454748 455201 455281 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-256 454031 454359 454510 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-255 447211 453765 453917 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-254 444987 446277 446318 "DMEXT" 446323 DMEXT (NIL T) -9 NIL 446499 NIL) (-253 444643 444705 444849 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-252 437926 444128 444318 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-251 434576 436751 436792 "DLAGG" 437342 DLAGG (NIL T) -9 NIL 437572 NIL) (-250 433001 433815 433843 "DIVRING" 433935 DIVRING (NIL) -9 NIL 434018 NIL) (-249 432452 432696 432996 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-248 430880 431297 431703 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-247 429917 430138 430403 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-246 423424 429849 429912 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-245 411697 418124 418177 "DIRPCAT" 418435 DIRPCAT (NIL NIL T) -9 NIL 419310 NIL) (-244 409711 410479 411360 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-243 409158 409324 409510 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-242 405683 408042 408083 "DIOPS" 408517 DIOPS (NIL T) -9 NIL 408746 NIL) (-241 405343 405487 405678 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-240 404250 405022 405050 "DIFRING" 405055 DIFRING (NIL) -9 NIL 405077 NIL) (-239 403898 403996 404024 "DIFFSPC" 404143 DIFFSPC (NIL) -9 NIL 404218 NIL) (-238 403639 403741 403893 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-237 402575 403173 403214 "DIFFMOD" 403219 DIFFMOD (NIL T) -9 NIL 403317 NIL) (-236 402271 402328 402369 "DIFFDOM" 402490 DIFFDOM (NIL T) -9 NIL 402558 NIL) (-235 402152 402182 402266 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-234 399891 401355 401396 "DIFEXT" 401401 DIFEXT (NIL T) -9 NIL 401554 NIL) (-233 397036 399395 399436 "DIAGG" 399441 DIAGG (NIL T) -9 NIL 399461 NIL) (-232 396586 396779 397031 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-231 391780 395776 396053 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-230 388238 389291 390301 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-229 382833 387390 387718 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-228 381378 381676 382058 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-227 378538 379733 380133 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-226 376244 378369 378458 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-225 375624 375769 375952 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-224 372937 373661 374462 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-223 371039 371498 372062 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-222 370418 370754 370869 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-221 363652 370141 370291 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-220 361566 362078 362584 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-219 361205 361254 361405 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-218 360457 361026 361117 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-217 358475 358921 359282 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-216 357764 358056 358202 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-215 356830 357731 357759 "D03FAFA" NIL D03FAFA (NIL) -8 NIL NIL NIL) (-214 355897 356797 356825 "D03EEFA" NIL D03EEFA (NIL) -8 NIL NIL NIL) (-213 354292 354782 355271 "D03AGNT" NIL D03AGNT (NIL) -7 NIL NIL NIL) (-212 353541 354259 354287 "D02EJFA" NIL D02EJFA (NIL) -8 NIL NIL NIL) (-211 352790 353508 353536 "D02CJFA" NIL D02CJFA (NIL) -8 NIL NIL NIL) (-210 352039 352757 352785 "D02BHFA" NIL D02BHFA (NIL) -8 NIL NIL NIL) (-209 351288 352006 352034 "D02BBFA" NIL D02BBFA (NIL) -8 NIL NIL NIL) (-208 346005 347660 349266 "D02AGNT" NIL D02AGNT (NIL) -7 NIL NIL NIL) (-207 344285 344824 345368 "D01WGTS" NIL D01WGTS (NIL) -7 NIL NIL NIL) (-206 343300 344252 344280 "D01TRNS" NIL D01TRNS (NIL) -8 NIL NIL NIL) (-205 342316 343267 343295 "D01GBFA" NIL D01GBFA (NIL) -8 NIL NIL NIL) (-204 341332 342283 342311 "D01FCFA" NIL D01FCFA (NIL) -8 NIL NIL NIL) (-203 340348 341299 341327 "D01ASFA" NIL D01ASFA (NIL) -8 NIL NIL NIL) (-202 339364 340315 340343 "D01AQFA" NIL D01AQFA (NIL) -8 NIL NIL NIL) (-201 338380 339331 339359 "D01APFA" NIL D01APFA (NIL) -8 NIL NIL NIL) (-200 337396 338347 338375 "D01ANFA" NIL D01ANFA (NIL) -8 NIL NIL NIL) (-199 336412 337363 337391 "D01AMFA" NIL D01AMFA (NIL) -8 NIL NIL NIL) (-198 335428 336379 336407 "D01ALFA" NIL D01ALFA (NIL) -8 NIL NIL NIL) (-197 334444 335395 335423 "D01AKFA" NIL D01AKFA (NIL) -8 NIL NIL NIL) (-196 333460 334411 334439 "D01AJFA" NIL D01AJFA (NIL) -8 NIL NIL NIL) (-195 328224 329849 331410 "D01AGNT" NIL D01AGNT (NIL) -7 NIL NIL NIL) (-194 327675 327821 327973 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-193 325037 325830 326557 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-192 324476 324622 324793 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-191 322535 322847 323216 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-190 322089 322347 322448 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-189 321294 321682 321710 "CTORCAT" 321892 CTORCAT (NIL) -9 NIL 322005 NIL) (-188 320995 321130 321289 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-187 320485 320745 320853 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-186 319896 320332 320405 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-185 319355 319472 319625 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-184 315740 316499 317257 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-183 315227 315533 315625 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-182 314446 314655 314883 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-181 313950 314055 314259 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-180 313703 313737 313843 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-179 310626 311388 312107 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-178 310136 310281 310423 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-177 306084 308599 309091 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-176 305958 305985 306013 "CONDUIT" 306050 CONDUIT (NIL) -9 NIL NIL NIL) (-175 304912 305586 305614 "COMRING" 305619 COMRING (NIL) -9 NIL 305671 NIL) (-174 304058 304434 304618 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-173 303754 303795 303923 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-172 303447 303510 303617 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-171 292255 303397 303442 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 291716 291855 292015 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-169 291469 291510 291608 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-168 272760 285061 285101 "COMPCAT" 286105 COMPCAT (NIL T) -9 NIL 287453 NIL) (-167 265300 268814 272404 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-166 265057 265091 265194 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-165 264884 264924 264983 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-164 264461 264743 264818 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-163 264035 264279 264366 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-162 263230 263478 263506 "COMBOPC" 263844 COMBOPC (NIL) -9 NIL 264019 NIL) (-161 262294 262546 262788 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-160 259215 259903 260530 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-159 258092 258546 258781 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-158 257580 257885 257977 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-157 257267 257320 257445 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-156 256734 257046 257145 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-155 253254 254324 255404 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-154 251602 252528 252768 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-153 247695 249720 249761 "CLAGG" 250690 CLAGG (NIL T) -9 NIL 251226 NIL) (-152 246572 247107 247690 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-151 246201 246292 246432 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-150 244138 244645 245193 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-149 243178 243852 243880 "CHARZ" 243885 CHARZ (NIL) -9 NIL 243900 NIL) (-148 242972 243018 243096 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-147 241890 242596 242624 "CHARNZ" 242685 CHARNZ (NIL) -9 NIL 242734 NIL) (-146 239343 240453 240982 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-145 239051 239130 239158 "CFCAT" 239269 CFCAT (NIL) -9 NIL NIL NIL) (-144 238390 238519 238702 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-143 234361 237803 238083 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-142 233739 233926 234103 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-141 233262 233686 233734 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-140 232731 233043 233141 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-139 232219 232524 232616 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-138 231468 231628 231849 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-137 227565 228825 229533 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 225939 226952 227209 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-135 225516 225798 225873 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-134 224958 225214 225242 "CACHSET" 225374 CACHSET (NIL) -9 NIL 225452 NIL) (-133 224348 224736 224764 "CABMON" 224814 CABMON (NIL) -9 NIL 224870 NIL) (-132 223875 224142 224252 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-131 219068 223532 223704 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-130 218030 218742 218877 "BYTE" NIL BYTE (NIL) -8 NIL NIL 219040) (-129 215482 217796 217903 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-128 212890 215220 215342 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-127 210110 212332 212373 "BTCAT" 212441 BTCAT (NIL T) -9 NIL 212518 NIL) (-126 209858 209956 210105 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-125 204831 209074 209102 "BTAGG" 209216 BTAGG (NIL) -9 NIL 209326 NIL) (-124 204459 204620 204826 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-123 201494 203920 204135 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-122 200746 200902 201086 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-121 197253 199444 199485 "BRAGG" 200134 BRAGG (NIL T) -9 NIL 200392 NIL) (-120 196195 196695 197248 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-119 188652 195692 195877 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-118 186698 188602 188647 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-117 186426 186462 186576 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-116 184619 185065 185528 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-115 180527 181957 182855 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-114 179391 180289 180413 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-113 178984 179141 179169 "BOOLE" 179280 BOOLE (NIL) -9 NIL 179361 NIL) (-112 178886 178913 178979 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-111 178055 178555 178609 "BMODULE" 178614 BMODULE (NIL T T) -9 NIL 178679 NIL) (-110 173543 177906 177979 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-109 173060 173203 173343 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-108 166296 172784 172933 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-107 164014 165523 165564 "BGAGG" 165824 BGAGG (NIL T) -9 NIL 165961 NIL) (-106 163880 163918 164009 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-105 163088 163449 163654 "BFUNCT" NIL BFUNCT (NIL) -8 NIL NIL NIL) (-104 161928 162129 162417 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 158539 161077 161407 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 158122 158218 158246 "BASTYPE" 158423 BASTYPE (NIL) -9 NIL 158522 NIL) (-101 157883 157982 158117 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-100 157394 157482 157634 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 156285 156964 157150 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 156011 156016 156042 "ATTREG" 156047 ATTREG (NIL) -9 NIL NIL NIL) (-97 154507 155042 155394 "ATTRBUT" NIL ATTRBUT (NIL) -8 NIL NIL NIL) (-96 154109 154383 154449 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-95 153609 153758 153784 "ATRIG" 153985 ATRIG (NIL) -9 NIL NIL NIL) (-94 153464 153517 153604 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-93 153042 153276 153302 "ASTCAT" 153307 ASTCAT (NIL) -9 NIL 153337 NIL) (-92 152841 152918 153037 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-91 150986 152674 152762 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 149793 150106 150471 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 148832 149545 149669 "ASP9" NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 147725 148548 148690 "ASP80" NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-87 147461 147681 147720 "ASP8" NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-86 146416 147225 147343 "ASP78" NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-85 145385 146182 146299 "ASP77" NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-84 144311 145123 145254 "ASP74" NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-83 143226 144047 144179 "ASP73" NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-82 142139 142962 143094 "ASP7" NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-81 141226 142034 142134 "ASP6" NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 140174 140990 141108 "ASP55" NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 139125 139936 140055 "ASP50" NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 138206 138905 139015 "ASP49" NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-77 137015 137856 138024 "ASP42" NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-76 135819 136661 136831 "ASP41" NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 134900 135599 135709 "ASP4" NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-74 133851 134664 134782 "ASP35" NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 133588 133807 133846 "ASP34" NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 133352 133437 133513 "ASP33" NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 132261 133088 133220 "ASP31" NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 131998 132217 132256 "ASP30" NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 131760 131847 131923 "ASP29" NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 131497 131716 131755 "ASP28" NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 131234 131453 131492 "ASP27" NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 130312 131012 131123 "ASP24" NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 129384 130195 130307 "ASP20" NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 128329 129146 129265 "ASP19" NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-63 128093 128178 128254 "ASP12" NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-62 126972 127805 127949 "ASP10" NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-61 126053 126752 126862 "ASP1" NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-60 123839 125957 126048 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 123030 123221 123442 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 118587 122761 122875 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 112743 114789 114864 "ARR2CAT" 117494 ARR2CAT (NIL T T T) -9 NIL 118252 NIL) (-56 111106 111883 112738 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 110464 110840 110965 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 109386 109556 109855 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 109085 109139 109258 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 108465 108612 108769 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 107867 108160 108280 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 105476 106580 106907 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 104998 105261 105357 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 98718 104057 104502 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 94294 95903 95954 "AMR" 96702 AMR (NIL T T) -9 NIL 97302 NIL) (-46 93645 93926 94289 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 77150 93579 93640 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73566 76826 76995 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70576 71236 71843 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 69955 70068 70252 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 66354 66985 67579 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55838 66047 66197 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55152 55307 55486 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53941 54679 54717 "ALGEBRA" 54722 ALGEBRA (NIL T) -9 NIL 54763 NIL) (-37 53727 53804 53936 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 34130 51007 51059 "ALAGG" 51195 ALAGG (NIL T T) -9 NIL 51356 NIL) (-35 33630 33779 33805 "AHYP" 34006 AHYP (NIL) -9 NIL NIL NIL) (-34 32932 33115 33141 "AGG" 33424 AGG (NIL) -9 NIL 33613 NIL) (-33 32725 32812 32927 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30843 31312 31717 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30335 30640 30730 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29705 30000 30156 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17213 26525 26563 "ACFS" 27170 ACFS (NIL T) -9 NIL 27409 NIL) (-28 15836 16446 17208 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11459 13782 13808 "ACF" 14687 ACF (NIL) -9 NIL 15100 NIL) (-26 10555 10961 11454 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10065 10308 10334 "ABELSG" 10426 ABELSG (NIL) -9 NIL 10491 NIL) (-24 9963 9994 10060 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9232 9579 9605 "ABELMON" 9775 ABELMON (NIL) -9 NIL 9887 NIL) (-22 8981 9089 9227 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8231 8687 8713 "ABELGRP" 8785 ABELGRP (NIL) -9 NIL 8860 NIL) (-20 7845 8010 8226 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3064 7104 7143 "A1AGG" 7148 A1AGG (NIL T) -9 NIL 7188 NIL) (-18 30 1497 3059 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file +(((-237 |#1|) (-10 -7 (-15 ** (|#1| |#1| |#1|))) (-238)) (T -237)) +NIL +((-4092 (($ $) 6 T ELT)) (-4093 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) +(((-238) (-113)) (T -238)) +((** (*1 *1 *1 *1) (-4 *1 (-238))) (-4093 (*1 *1 *1) (-4 *1 (-238))) (-4092 (*1 *1 *1) (-4 *1 (-238)))) +(-13 (-10 -8 (-15 -4092 ($ $)) (-15 -4093 ($ $)) (-15 ** ($ $ $)))) +((-1608 (((-599 (-1095 |#1|)) (-1095 |#1|) |#1|) 35 T ELT)) (-1605 ((|#2| |#2| |#1|) 39 T ELT)) (-1607 ((|#2| |#2| |#1|) 41 T ELT)) (-1606 ((|#2| |#2| |#1|) 40 T ELT))) +(((-239 |#1| |#2|) (-10 -7 (-15 -1605 (|#2| |#2| |#1|)) (-15 -1606 (|#2| |#2| |#1|)) (-15 -1607 (|#2| |#2| |#1|)) (-15 -1608 ((-599 (-1095 |#1|)) (-1095 |#1|) |#1|))) (-318) (-1200 |#1|)) (T -239)) +((-1608 (*1 *2 *3 *4) (-12 (-4 *4 (-318)) (-5 *2 (-599 (-1095 *4))) (-5 *1 (-239 *4 *5)) (-5 *3 (-1095 *4)) (-4 *5 (-1200 *4)))) (-1607 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-239 *3 *2)) (-4 *2 (-1200 *3)))) (-1606 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-239 *3 *2)) (-4 *2 (-1200 *3)))) (-1605 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-239 *3 *2)) (-4 *2 (-1200 *3))))) +((-3950 ((|#2| $ |#1|) 6 T ELT))) +(((-240 |#1| |#2|) (-113) (-1157) (-1157)) (T -240)) +((-3950 (*1 *2 *1 *3) (-12 (-4 *1 (-240 *3 *2)) (-4 *3 (-1157)) (-4 *2 (-1157))))) +(-13 (-1157) (-10 -8 (-15 -3950 (|t#2| $ |t#1|)))) +(((-1157) . T)) +((-1609 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3235 ((|#3| $ |#2|) 10 T ELT))) +(((-241 |#1| |#2| |#3|) (-10 -7 (-15 -1609 (|#3| |#1| |#2| |#3|)) (-15 -3235 (|#3| |#1| |#2|))) (-242 |#2| |#3|) (-1041) (-1157)) (T -241)) +NIL +((-3938 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4146)) ELT)) (-1609 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) 11 T ELT)) (-3950 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) +(((-242 |#1| |#2|) (-113) (-1041) (-1157)) (T -242)) +((-3950 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-242 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1157)))) (-3235 (*1 *2 *1 *3) (-12 (-4 *1 (-242 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1157)))) (-3938 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-242 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1157)))) (-1609 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-242 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1157))))) +(-13 (-240 |t#1| |t#2|) (-10 -8 (-15 -3950 (|t#2| $ |t#1| |t#2|)) (-15 -3235 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4146)) (PROGN (-15 -3938 (|t#2| $ |t#1| |t#2|)) (-15 -1609 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-240 |#1| |#2|) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 37 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 44 T ELT)) (-2164 (($ $) 41 T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2683 (($ $ $) 35 T ELT)) (-3992 (($ |#2| |#3|) 18 T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2733 ((|#3| $) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 19 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2520 (((-3 $ #1#) $ $) NIL T ELT)) (-1677 (((-714) $) 36 T ELT)) (-3950 ((|#2| $ |#2|) 46 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 23 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2779 (($) 31 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 40 T ELT))) +(((-243 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-261) (-240 |#2| |#2|) (-10 -8 (-15 -2733 (|#3| $)) (-15 -4096 (|#2| $)) (-15 -3992 ($ |#2| |#3|)) (-15 -2520 ((-3 $ #1="failed") $ $)) (-15 -3607 ((-3 $ #1#) $)) (-15 -2601 ($ $)))) (-146) (-1183 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -243)) +((-3607 (*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-243 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1183 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2733 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-243 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1183 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4096 (*1 *2 *1) (-12 (-4 *2 (-1183 *3)) (-5 *1 (-243 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-3992 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-243 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1183 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2520 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-243 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1183 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2601 (*1 *1 *1) (-12 (-4 *2 (-146)) (-5 *1 (-243 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1183 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-244) (-113)) (T -244)) +NIL +(-13 (-989) (-82 $ $) (-10 -7 (-6 -4138))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-684) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-1617 (((-599 (-1025)) $) 10 T ELT)) (-1615 (($ (-460) (-460) (-1043) $) 19 T ELT)) (-1613 (($ (-460) (-599 (-903)) $) 23 T ELT)) (-1611 (($) 25 T ELT)) (-1616 (((-649 (-1043)) (-460) (-460) $) 18 T ELT)) (-1614 (((-599 (-903)) (-460) $) 22 T ELT)) (-3713 (($) 7 T ELT)) (-1612 (($) 24 T ELT)) (-4096 (((-797) $) 29 T ELT)) (-1610 (($) 26 T ELT))) +(((-245) (-13 (-568 (-797)) (-10 -8 (-15 -3713 ($)) (-15 -1617 ((-599 (-1025)) $)) (-15 -1616 ((-649 (-1043)) (-460) (-460) $)) (-15 -1615 ($ (-460) (-460) (-1043) $)) (-15 -1614 ((-599 (-903)) (-460) $)) (-15 -1613 ($ (-460) (-599 (-903)) $)) (-15 -1612 ($)) (-15 -1611 ($)) (-15 -1610 ($))))) (T -245)) +((-3713 (*1 *1) (-5 *1 (-245))) (-1617 (*1 *2 *1) (-12 (-5 *2 (-599 (-1025))) (-5 *1 (-245)))) (-1616 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-460)) (-5 *2 (-649 (-1043))) (-5 *1 (-245)))) (-1615 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-460)) (-5 *3 (-1043)) (-5 *1 (-245)))) (-1614 (*1 *2 *3 *1) (-12 (-5 *3 (-460)) (-5 *2 (-599 (-903))) (-5 *1 (-245)))) (-1613 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-460)) (-5 *3 (-599 (-903))) (-5 *1 (-245)))) (-1612 (*1 *1) (-5 *1 (-245))) (-1611 (*1 *1) (-5 *1 (-245))) (-1610 (*1 *1) (-5 *1 (-245)))) +((-1621 (((-599 (-2 (|:| |eigval| (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|)))) (|:| |geneigvec| (-599 (-647 (-361 (-884 |#1|))))))) (-647 (-361 (-884 |#1|)))) 103 T ELT)) (-1620 (((-599 (-647 (-361 (-884 |#1|)))) (-2 (|:| |eigval| (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|)))) (|:| |eigmult| (-714)) (|:| |eigvec| (-599 (-647 (-361 (-884 |#1|)))))) (-647 (-361 (-884 |#1|)))) 98 T ELT) (((-599 (-647 (-361 (-884 |#1|)))) (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|))) (-647 (-361 (-884 |#1|))) (-714) (-714)) 42 T ELT)) (-1622 (((-599 (-2 (|:| |eigval| (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|)))) (|:| |eigmult| (-714)) (|:| |eigvec| (-599 (-647 (-361 (-884 |#1|))))))) (-647 (-361 (-884 |#1|)))) 100 T ELT)) (-1619 (((-599 (-647 (-361 (-884 |#1|)))) (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|))) (-647 (-361 (-884 |#1|)))) 76 T ELT)) (-1618 (((-599 (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|)))) (-647 (-361 (-884 |#1|)))) 75 T ELT)) (-2565 (((-884 |#1|) (-647 (-361 (-884 |#1|)))) 56 T ELT) (((-884 |#1|) (-647 (-361 (-884 |#1|))) (-1117)) 57 T ELT))) +(((-246 |#1|) (-10 -7 (-15 -2565 ((-884 |#1|) (-647 (-361 (-884 |#1|))) (-1117))) (-15 -2565 ((-884 |#1|) (-647 (-361 (-884 |#1|))))) (-15 -1618 ((-599 (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|)))) (-647 (-361 (-884 |#1|))))) (-15 -1619 ((-599 (-647 (-361 (-884 |#1|)))) (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|))) (-647 (-361 (-884 |#1|))))) (-15 -1620 ((-599 (-647 (-361 (-884 |#1|)))) (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|))) (-647 (-361 (-884 |#1|))) (-714) (-714))) (-15 -1620 ((-599 (-647 (-361 (-884 |#1|)))) (-2 (|:| |eigval| (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|)))) (|:| |eigmult| (-714)) (|:| |eigvec| (-599 (-647 (-361 (-884 |#1|)))))) (-647 (-361 (-884 |#1|))))) (-15 -1621 ((-599 (-2 (|:| |eigval| (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|)))) (|:| |geneigvec| (-599 (-647 (-361 (-884 |#1|))))))) (-647 (-361 (-884 |#1|))))) (-15 -1622 ((-599 (-2 (|:| |eigval| (-3 (-361 (-884 |#1|)) (-1106 (-1117) (-884 |#1|)))) (|:| |eigmult| (-714)) (|:| |eigvec| (-599 (-647 (-361 (-884 |#1|))))))) (-647 (-361 (-884 |#1|)))))) (-406)) (T -246)) +((-1622 (*1 *2 *3) (-12 (-4 *4 (-406)) (-5 *2 (-599 (-2 (|:| |eigval| (-3 (-361 (-884 *4)) (-1106 (-1117) (-884 *4)))) (|:| |eigmult| (-714)) (|:| |eigvec| (-599 (-647 (-361 (-884 *4)))))))) (-5 *1 (-246 *4)) (-5 *3 (-647 (-361 (-884 *4)))))) (-1621 (*1 *2 *3) (-12 (-4 *4 (-406)) (-5 *2 (-599 (-2 (|:| |eigval| (-3 (-361 (-884 *4)) (-1106 (-1117) (-884 *4)))) (|:| |geneigvec| (-599 (-647 (-361 (-884 *4)))))))) (-5 *1 (-246 *4)) (-5 *3 (-647 (-361 (-884 *4)))))) (-1620 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-361 (-884 *5)) (-1106 (-1117) (-884 *5)))) (|:| |eigmult| (-714)) (|:| |eigvec| (-599 *4)))) (-4 *5 (-406)) (-5 *2 (-599 (-647 (-361 (-884 *5))))) (-5 *1 (-246 *5)) (-5 *4 (-647 (-361 (-884 *5)))))) (-1620 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-361 (-884 *6)) (-1106 (-1117) (-884 *6)))) (-5 *5 (-714)) (-4 *6 (-406)) (-5 *2 (-599 (-647 (-361 (-884 *6))))) (-5 *1 (-246 *6)) (-5 *4 (-647 (-361 (-884 *6)))))) (-1619 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-361 (-884 *5)) (-1106 (-1117) (-884 *5)))) (-4 *5 (-406)) (-5 *2 (-599 (-647 (-361 (-884 *5))))) (-5 *1 (-246 *5)) (-5 *4 (-647 (-361 (-884 *5)))))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-647 (-361 (-884 *4)))) (-4 *4 (-406)) (-5 *2 (-599 (-3 (-361 (-884 *4)) (-1106 (-1117) (-884 *4))))) (-5 *1 (-246 *4)))) (-2565 (*1 *2 *3) (-12 (-5 *3 (-647 (-361 (-884 *4)))) (-5 *2 (-884 *4)) (-5 *1 (-246 *4)) (-4 *4 (-406)))) (-2565 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-361 (-884 *5)))) (-5 *4 (-1117)) (-5 *2 (-884 *5)) (-5 *1 (-246 *5)) (-4 *5 (-406))))) +((-2687 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3326 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1628 (($ $) 12 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1637 (($ $ $) 95 (|has| |#1| (-252)) ELT)) (-3874 (($) NIL (-3677 (|has| |#1| (-21)) (|has| |#1| (-684))) CONST)) (-1626 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1624 (((-3 $ #1#) $) 62 (|has| |#1| (-684)) ELT)) (-3668 ((|#1| $) 11 T ELT)) (-3607 (((-3 $ #1#) $) 60 (|has| |#1| (-684)) ELT)) (-2528 (((-85) $) NIL (|has| |#1| (-684)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3669 ((|#1| $) 10 T ELT)) (-1627 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1625 (((-3 $ #1#) $) 61 (|has| |#1| (-684)) ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-2601 (($ $) 64 (-3677 (|has| |#1| (-318)) (|has| |#1| (-427))) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-1623 (((-599 $) $) 85 (|has| |#1| (-510)) ELT)) (-3918 (($ $ $) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 $)) 28 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-1117) |#1|) 17 (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) 21 (|has| |#1| (-468 (-1117) |#1|)) ELT)) (-3364 (($ |#1| |#1|) 9 T ELT)) (-4061 (((-107)) 90 (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1117)) 87 (|has| |#1| (-836 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-836 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-836 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-836 (-1117))) ELT)) (-3130 (($ $ $) NIL (|has| |#1| (-427)) ELT)) (-2551 (($ $ $) NIL (|has| |#1| (-427)) ELT)) (-4096 (($ (-499)) NIL (|has| |#1| (-989)) ELT) (((-85) $) 37 (|has| |#1| (-1041)) ELT) (((-797) $) 36 (|has| |#1| (-1041)) ELT)) (-3248 (((-714)) 67 (|has| |#1| (-989)) CONST)) (-1297 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-2779 (($) 47 (|has| |#1| (-21)) CONST)) (-2785 (($) 57 (|has| |#1| (-684)) CONST)) (-2790 (($ $ (-1117)) NIL (|has| |#1| (-836 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-836 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-836 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-836 (-1117))) ELT)) (-3174 (($ |#1| |#1|) 8 T ELT) (((-85) $ $) 32 (|has| |#1| (-1041)) ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT) (($ $ $) 92 (-3677 (|has| |#1| (-318)) (|has| |#1| (-427))) ELT)) (-3987 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3989 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-499)) NIL (|has| |#1| (-427)) ELT) (($ $ (-714)) NIL (|has| |#1| (-684)) ELT) (($ $ (-857)) NIL (|has| |#1| (-1052)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1052)) ELT) (($ |#1| $) 54 (|has| |#1| (-1052)) ELT) (($ $ $) 53 (|has| |#1| (-1052)) ELT) (($ (-499) $) 70 (|has| |#1| (-21)) ELT) (($ (-714) $) NIL (|has| |#1| (-21)) ELT) (($ (-857) $) NIL (|has| |#1| (-25)) ELT))) +(((-247 |#1|) (-13 (-1157) (-10 -8 (-15 -3174 ($ |#1| |#1|)) (-15 -3364 ($ |#1| |#1|)) (-15 -1628 ($ $)) (-15 -3669 (|#1| $)) (-15 -3668 (|#1| $)) (-15 -4108 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-468 (-1117) |#1|)) (-6 (-468 (-1117) |#1|)) |%noBranch|) (IF (|has| |#1| (-1041)) (PROGN (-6 (-1041)) (-6 (-568 (-85))) (IF (|has| |#1| (-263 |#1|)) (PROGN (-15 -3918 ($ $ $)) (-15 -3918 ($ $ (-599 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3989 ($ |#1| $)) (-15 -3989 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1627 ($ $)) (-15 -1626 ($ $)) (-15 -3987 ($ |#1| $)) (-15 -3987 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1052)) (PROGN (-6 (-1052)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-684)) (PROGN (-6 (-684)) (-15 -1625 ((-3 $ #1="failed") $)) (-15 -1624 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-427)) (PROGN (-6 (-427)) (-15 -1625 ((-3 $ #1#) $)) (-15 -1624 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-989)) (PROGN (-6 (-989)) (-6 (-82 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-675 |#1|)) |%noBranch|) (IF (|has| |#1| (-510)) (-15 -1623 ((-599 $) $)) |%noBranch|) (IF (|has| |#1| (-836 (-1117))) (-6 (-836 (-1117))) |%noBranch|) (IF (|has| |#1| (-318)) (PROGN (-6 (-1215 |#1|)) (-15 -4099 ($ $ $)) (-15 -2601 ($ $))) |%noBranch|) (IF (|has| |#1| (-252)) (-15 -1637 ($ $ $)) |%noBranch|))) (-1157)) (T -247)) +((-3174 (*1 *1 *2 *2) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1157)))) (-3364 (*1 *1 *2 *2) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1157)))) (-1628 (*1 *1 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1157)))) (-3669 (*1 *2 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1157)))) (-3668 (*1 *2 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1157)))) (-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1157)) (-5 *1 (-247 *3)))) (-3918 (*1 *1 *1 *1) (-12 (-4 *2 (-263 *2)) (-4 *2 (-1041)) (-4 *2 (-1157)) (-5 *1 (-247 *2)))) (-3918 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-247 *3))) (-4 *3 (-263 *3)) (-4 *3 (-1041)) (-4 *3 (-1157)) (-5 *1 (-247 *3)))) (-3989 (*1 *1 *2 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-25)) (-4 *2 (-1157)))) (-3989 (*1 *1 *1 *2) (-12 (-5 *1 (-247 *2)) (-4 *2 (-25)) (-4 *2 (-1157)))) (-1627 (*1 *1 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-21)) (-4 *2 (-1157)))) (-1626 (*1 *1 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-21)) (-4 *2 (-1157)))) (-3987 (*1 *1 *2 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-21)) (-4 *2 (-1157)))) (-3987 (*1 *1 *1 *2) (-12 (-5 *1 (-247 *2)) (-4 *2 (-21)) (-4 *2 (-1157)))) (-1625 (*1 *1 *1) (|partial| -12 (-5 *1 (-247 *2)) (-4 *2 (-684)) (-4 *2 (-1157)))) (-1624 (*1 *1 *1) (|partial| -12 (-5 *1 (-247 *2)) (-4 *2 (-684)) (-4 *2 (-1157)))) (-1623 (*1 *2 *1) (-12 (-5 *2 (-599 (-247 *3))) (-5 *1 (-247 *3)) (-4 *3 (-510)) (-4 *3 (-1157)))) (-1637 (*1 *1 *1 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-252)) (-4 *2 (-1157)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1052)) (-4 *2 (-1157)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1052)) (-4 *2 (-1157)))) (-4099 (*1 *1 *1 *1) (-3677 (-12 (-5 *1 (-247 *2)) (-4 *2 (-318)) (-4 *2 (-1157))) (-12 (-5 *1 (-247 *2)) (-4 *2 (-427)) (-4 *2 (-1157))))) (-2601 (*1 *1 *1) (-3677 (-12 (-5 *1 (-247 *2)) (-4 *2 (-318)) (-4 *2 (-1157))) (-12 (-5 *1 (-247 *2)) (-4 *2 (-427)) (-4 *2 (-1157)))))) +((-4108 (((-247 |#2|) (-1 |#2| |#1|) (-247 |#1|)) 14 T ELT))) +(((-248 |#1| |#2|) (-10 -7 (-15 -4108 ((-247 |#2|) (-1 |#2| |#1|) (-247 |#1|)))) (-1157) (-1157)) (T -248)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-247 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-247 *6)) (-5 *1 (-248 *5 *6))))) +((-2687 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2299 (((-1213) $ |#1| |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3938 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3546 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2301 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2302 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-2333 (((-599 |#1|) $) NIL T ELT)) (-2334 (((-85) |#1| $) NIL T ELT)) (-1308 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2304 (((-599 |#1|) $) NIL T ELT)) (-2305 (((-85) |#1| $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-3951 ((|#2| $) NIL (|has| |#1| (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2300 (($ $ |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1499 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT) (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-4096 (((-797) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) (|has| |#2| (-568 (-797)))) ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-249 |#1| |#2|) (-13 (-1134 |#1| |#2|) (-10 -7 (-6 -4145))) (-1041) (-1041)) (T -249)) +NIL +((-1629 (((-265) (-1099) (-599 (-1099))) 17 T ELT) (((-265) (-1099) (-1099)) 16 T ELT) (((-265) (-599 (-1099))) 15 T ELT) (((-265) (-1099)) 14 T ELT))) +(((-250) (-10 -7 (-15 -1629 ((-265) (-1099))) (-15 -1629 ((-265) (-599 (-1099)))) (-15 -1629 ((-265) (-1099) (-1099))) (-15 -1629 ((-265) (-1099) (-599 (-1099)))))) (T -250)) +((-1629 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-1099))) (-5 *3 (-1099)) (-5 *2 (-265)) (-5 *1 (-250)))) (-1629 (*1 *2 *3 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-265)) (-5 *1 (-250)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-599 (-1099))) (-5 *2 (-265)) (-5 *1 (-250)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-265)) (-5 *1 (-250))))) +((-1633 (((-599 (-566 $)) $) 27 T ELT)) (-1637 (($ $ (-247 $)) 78 T ELT) (($ $ (-599 (-247 $))) 139 T ELT) (($ $ (-599 (-566 $)) (-599 $)) NIL T ELT)) (-3295 (((-3 (-566 $) #1="failed") $) 127 T ELT)) (-3294 (((-566 $) $) 126 T ELT)) (-2692 (($ $) 17 T ELT) (($ (-599 $)) 54 T ELT)) (-1632 (((-599 (-86)) $) 35 T ELT)) (-3743 (((-86) (-86)) 88 T ELT)) (-2794 (((-85) $) 150 T ELT)) (-4108 (($ (-1 $ $) (-566 $)) 86 T ELT)) (-1635 (((-3 (-566 $) #1#) $) 94 T ELT)) (-2336 (($ (-86) $) 59 T ELT) (($ (-86) (-599 $)) 110 T ELT)) (-2752 (((-85) $ (-86)) 132 T ELT) (((-85) $ (-1117)) 131 T ELT)) (-2722 (((-714) $) 44 T ELT)) (-1631 (((-85) $ $) 57 T ELT) (((-85) $ (-1117)) 49 T ELT)) (-2795 (((-85) $) 148 T ELT)) (-3918 (($ $ (-566 $) $) NIL T ELT) (($ $ (-599 (-566 $)) (-599 $)) NIL T ELT) (($ $ (-599 (-247 $))) 137 T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ $))) 81 T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ (-599 $)))) NIL T ELT) (($ $ (-1117) (-1 $ (-599 $))) 67 T ELT) (($ $ (-1117) (-1 $ $)) 72 T ELT) (($ $ (-599 (-86)) (-599 (-1 $ $))) 80 T ELT) (($ $ (-599 (-86)) (-599 (-1 $ (-599 $)))) 82 T ELT) (($ $ (-86) (-1 $ (-599 $))) 68 T ELT) (($ $ (-86) (-1 $ $)) 74 T ELT)) (-3950 (($ (-86) $) 60 T ELT) (($ (-86) $ $) 61 T ELT) (($ (-86) $ $ $) 62 T ELT) (($ (-86) $ $ $ $) 63 T ELT) (($ (-86) (-599 $)) 123 T ELT)) (-1636 (($ $) 51 T ELT) (($ $ $) 135 T ELT)) (-2709 (($ $) 15 T ELT) (($ (-599 $)) 53 T ELT)) (-2355 (((-85) (-86)) 21 T ELT))) +(((-251 |#1|) (-10 -7 (-15 -2794 ((-85) |#1|)) (-15 -2795 ((-85) |#1|)) (-15 -3918 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3918 (|#1| |#1| (-86) (-1 |#1| (-599 |#1|)))) (-15 -3918 (|#1| |#1| (-599 (-86)) (-599 (-1 |#1| (-599 |#1|))))) (-15 -3918 (|#1| |#1| (-599 (-86)) (-599 (-1 |#1| |#1|)))) (-15 -3918 (|#1| |#1| (-1117) (-1 |#1| |#1|))) (-15 -3918 (|#1| |#1| (-1117) (-1 |#1| (-599 |#1|)))) (-15 -3918 (|#1| |#1| (-599 (-1117)) (-599 (-1 |#1| (-599 |#1|))))) (-15 -3918 (|#1| |#1| (-599 (-1117)) (-599 (-1 |#1| |#1|)))) (-15 -1631 ((-85) |#1| (-1117))) (-15 -1631 ((-85) |#1| |#1|)) (-15 -4108 (|#1| (-1 |#1| |#1|) (-566 |#1|))) (-15 -2336 (|#1| (-86) (-599 |#1|))) (-15 -2336 (|#1| (-86) |#1|)) (-15 -2752 ((-85) |#1| (-1117))) (-15 -2752 ((-85) |#1| (-86))) (-15 -2355 ((-85) (-86))) (-15 -3743 ((-86) (-86))) (-15 -1632 ((-599 (-86)) |#1|)) (-15 -1633 ((-599 (-566 |#1|)) |#1|)) (-15 -1635 ((-3 (-566 |#1|) #1="failed") |#1|)) (-15 -2722 ((-714) |#1|)) (-15 -1636 (|#1| |#1| |#1|)) (-15 -1636 (|#1| |#1|)) (-15 -2692 (|#1| (-599 |#1|))) (-15 -2692 (|#1| |#1|)) (-15 -2709 (|#1| (-599 |#1|))) (-15 -2709 (|#1| |#1|)) (-15 -1637 (|#1| |#1| (-599 (-566 |#1|)) (-599 |#1|))) (-15 -1637 (|#1| |#1| (-599 (-247 |#1|)))) (-15 -1637 (|#1| |#1| (-247 |#1|))) (-15 -3950 (|#1| (-86) (-599 |#1|))) (-15 -3950 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3950 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3950 (|#1| (-86) |#1| |#1|)) (-15 -3950 (|#1| (-86) |#1|)) (-15 -3918 (|#1| |#1| (-599 |#1|) (-599 |#1|))) (-15 -3918 (|#1| |#1| |#1| |#1|)) (-15 -3918 (|#1| |#1| (-247 |#1|))) (-15 -3918 (|#1| |#1| (-599 (-247 |#1|)))) (-15 -3918 (|#1| |#1| (-599 (-566 |#1|)) (-599 |#1|))) (-15 -3918 (|#1| |#1| (-566 |#1|) |#1|)) (-15 -3295 ((-3 (-566 |#1|) #1#) |#1|)) (-15 -3294 ((-566 |#1|) |#1|))) (-252)) (T -251)) +((-3743 (*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-251 *3)) (-4 *3 (-252)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-251 *4)) (-4 *4 (-252))))) +((-2687 (((-85) $ $) 7 T ELT)) (-1633 (((-599 (-566 $)) $) 42 T ELT)) (-1637 (($ $ (-247 $)) 54 T ELT) (($ $ (-599 (-247 $))) 53 T ELT) (($ $ (-599 (-566 $)) (-599 $)) 52 T ELT)) (-3295 (((-3 (-566 $) "failed") $) 67 T ELT)) (-3294 (((-566 $) $) 68 T ELT)) (-2692 (($ $) 49 T ELT) (($ (-599 $)) 48 T ELT)) (-1632 (((-599 (-86)) $) 41 T ELT)) (-3743 (((-86) (-86)) 40 T ELT)) (-2794 (((-85) $) 20 (|has| $ (-978 (-499))) ELT)) (-1630 (((-1111 $) (-566 $)) 23 (|has| $ (-989)) ELT)) (-4108 (($ (-1 $ $) (-566 $)) 34 T ELT)) (-1635 (((-3 (-566 $) "failed") $) 44 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1634 (((-599 (-566 $)) $) 43 T ELT)) (-2336 (($ (-86) $) 36 T ELT) (($ (-86) (-599 $)) 35 T ELT)) (-2752 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1117)) 37 T ELT)) (-2722 (((-714) $) 45 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1631 (((-85) $ $) 33 T ELT) (((-85) $ (-1117)) 32 T ELT)) (-2795 (((-85) $) 21 (|has| $ (-978 (-499))) ELT)) (-3918 (($ $ (-566 $) $) 65 T ELT) (($ $ (-599 (-566 $)) (-599 $)) 64 T ELT) (($ $ (-599 (-247 $))) 63 T ELT) (($ $ (-247 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-599 $) (-599 $)) 60 T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ $))) 31 T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ (-599 $)))) 30 T ELT) (($ $ (-1117) (-1 $ (-599 $))) 29 T ELT) (($ $ (-1117) (-1 $ $)) 28 T ELT) (($ $ (-599 (-86)) (-599 (-1 $ $))) 27 T ELT) (($ $ (-599 (-86)) (-599 (-1 $ (-599 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-599 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT)) (-3950 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-599 $)) 55 T ELT)) (-1636 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3323 (($ $) 22 (|has| $ (-989)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-566 $)) 66 T ELT)) (-2709 (($ $) 51 T ELT) (($ (-599 $)) 50 T ELT)) (-2355 (((-85) (-86)) 39 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-252) (-113)) (T -252)) +((-3950 (*1 *1 *2 *1) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) (-3950 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) (-3950 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) (-3950 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) (-3950 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-599 *1)) (-4 *1 (-252)))) (-1637 (*1 *1 *1 *2) (-12 (-5 *2 (-247 *1)) (-4 *1 (-252)))) (-1637 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-247 *1))) (-4 *1 (-252)))) (-1637 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-566 *1))) (-5 *3 (-599 *1)) (-4 *1 (-252)))) (-2709 (*1 *1 *1) (-4 *1 (-252))) (-2709 (*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-252)))) (-2692 (*1 *1 *1) (-4 *1 (-252))) (-2692 (*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-252)))) (-1636 (*1 *1 *1) (-4 *1 (-252))) (-1636 (*1 *1 *1 *1) (-4 *1 (-252))) (-2722 (*1 *2 *1) (-12 (-4 *1 (-252)) (-5 *2 (-714)))) (-1635 (*1 *2 *1) (|partial| -12 (-5 *2 (-566 *1)) (-4 *1 (-252)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-599 (-566 *1))) (-4 *1 (-252)))) (-1633 (*1 *2 *1) (-12 (-5 *2 (-599 (-566 *1))) (-4 *1 (-252)))) (-1632 (*1 *2 *1) (-12 (-4 *1 (-252)) (-5 *2 (-599 (-86))))) (-3743 (*1 *2 *2) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) (-2355 (*1 *2 *3) (-12 (-4 *1 (-252)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2752 (*1 *2 *1 *3) (-12 (-4 *1 (-252)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2752 (*1 *2 *1 *3) (-12 (-4 *1 (-252)) (-5 *3 (-1117)) (-5 *2 (-85)))) (-2336 (*1 *1 *2 *1) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) (-2336 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-599 *1)) (-4 *1 (-252)))) (-4108 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-566 *1)) (-4 *1 (-252)))) (-1631 (*1 *2 *1 *1) (-12 (-4 *1 (-252)) (-5 *2 (-85)))) (-1631 (*1 *2 *1 *3) (-12 (-4 *1 (-252)) (-5 *3 (-1117)) (-5 *2 (-85)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-599 (-1 *1 *1))) (-4 *1 (-252)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-599 (-1 *1 (-599 *1)))) (-4 *1 (-252)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1 *1 (-599 *1))) (-4 *1 (-252)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1 *1 *1)) (-4 *1 (-252)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-86))) (-5 *3 (-599 (-1 *1 *1))) (-4 *1 (-252)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-86))) (-5 *3 (-599 (-1 *1 (-599 *1)))) (-4 *1 (-252)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-599 *1))) (-4 *1 (-252)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-252)))) (-1630 (*1 *2 *3) (-12 (-5 *3 (-566 *1)) (-4 *1 (-989)) (-4 *1 (-252)) (-5 *2 (-1111 *1)))) (-3323 (*1 *1 *1) (-12 (-4 *1 (-989)) (-4 *1 (-252)))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-978 (-499))) (-4 *1 (-252)) (-5 *2 (-85)))) (-2794 (*1 *2 *1) (-12 (-4 *1 (-978 (-499))) (-4 *1 (-252)) (-5 *2 (-85))))) +(-13 (-1041) (-978 (-566 $)) (-468 (-566 $) $) (-263 $) (-10 -8 (-15 -3950 ($ (-86) $)) (-15 -3950 ($ (-86) $ $)) (-15 -3950 ($ (-86) $ $ $)) (-15 -3950 ($ (-86) $ $ $ $)) (-15 -3950 ($ (-86) (-599 $))) (-15 -1637 ($ $ (-247 $))) (-15 -1637 ($ $ (-599 (-247 $)))) (-15 -1637 ($ $ (-599 (-566 $)) (-599 $))) (-15 -2709 ($ $)) (-15 -2709 ($ (-599 $))) (-15 -2692 ($ $)) (-15 -2692 ($ (-599 $))) (-15 -1636 ($ $)) (-15 -1636 ($ $ $)) (-15 -2722 ((-714) $)) (-15 -1635 ((-3 (-566 $) "failed") $)) (-15 -1634 ((-599 (-566 $)) $)) (-15 -1633 ((-599 (-566 $)) $)) (-15 -1632 ((-599 (-86)) $)) (-15 -3743 ((-86) (-86))) (-15 -2355 ((-85) (-86))) (-15 -2752 ((-85) $ (-86))) (-15 -2752 ((-85) $ (-1117))) (-15 -2336 ($ (-86) $)) (-15 -2336 ($ (-86) (-599 $))) (-15 -4108 ($ (-1 $ $) (-566 $))) (-15 -1631 ((-85) $ $)) (-15 -1631 ((-85) $ (-1117))) (-15 -3918 ($ $ (-599 (-1117)) (-599 (-1 $ $)))) (-15 -3918 ($ $ (-599 (-1117)) (-599 (-1 $ (-599 $))))) (-15 -3918 ($ $ (-1117) (-1 $ (-599 $)))) (-15 -3918 ($ $ (-1117) (-1 $ $))) (-15 -3918 ($ $ (-599 (-86)) (-599 (-1 $ $)))) (-15 -3918 ($ $ (-599 (-86)) (-599 (-1 $ (-599 $))))) (-15 -3918 ($ $ (-86) (-1 $ (-599 $)))) (-15 -3918 ($ $ (-86) (-1 $ $))) (IF (|has| $ (-989)) (PROGN (-15 -1630 ((-1111 $) (-566 $))) (-15 -3323 ($ $))) |%noBranch|) (IF (|has| $ (-978 (-499))) (PROGN (-15 -2795 ((-85) $)) (-15 -2794 ((-85) $))) |%noBranch|))) +(((-73) . T) ((-571 (-566 $)) . T) ((-568 (-797)) . T) ((-263 $) . T) ((-468 (-566 $) $) . T) ((-468 $ $) . T) ((-978 (-566 $)) . T) ((-1041) . T) ((-1157) . T)) +((-4108 ((|#2| (-1 |#2| |#1|) (-1099) (-566 |#1|)) 18 T ELT))) +(((-253 |#1| |#2|) (-10 -7 (-15 -4108 (|#2| (-1 |#2| |#1|) (-1099) (-566 |#1|)))) (-252) (-1157)) (T -253)) +((-4108 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1099)) (-5 *5 (-566 *6)) (-4 *6 (-252)) (-4 *2 (-1157)) (-5 *1 (-253 *6 *2))))) +((-4108 ((|#2| (-1 |#2| |#1|) (-566 |#1|)) 17 T ELT))) +(((-254 |#1| |#2|) (-10 -7 (-15 -4108 (|#2| (-1 |#2| |#1|) (-566 |#1|)))) (-252) (-252)) (T -254)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-566 *5)) (-4 *5 (-252)) (-4 *2 (-252)) (-5 *1 (-254 *5 *2))))) +((-1640 (((-1095 (-179)) (-268 (-179)) (-599 (-1117)) (-1029 (-775 (-179)))) 117 T ELT)) (-1641 (((-1095 (-179)) (-1207 (-268 (-179))) (-599 (-1117)) (-1029 (-775 (-179)))) 134 T ELT) (((-1095 (-179)) (-268 (-179)) (-599 (-1117)) (-1029 (-775 (-179)))) 71 T ELT)) (-1662 (((-599 (-1099)) (-1095 (-179))) NIL T ELT)) (-1639 (((-599 (-179)) (-268 (-179)) (-1117) (-1029 (-775 (-179)))) 68 T ELT)) (-1642 (((-599 (-179)) (-884 (-361 (-499))) (-1117) (-1029 (-775 (-179)))) 58 T ELT)) (-1661 (((-599 (-1099)) (-599 (-179))) NIL T ELT)) (-1663 (((-179) (-1029 (-775 (-179)))) 29 T ELT)) (-1664 (((-179) (-1029 (-775 (-179)))) 30 T ELT)) (-1638 (((-85) (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) 63 T ELT)) (-1659 (((-1099) (-179)) NIL T ELT))) +(((-255) (-10 -7 (-15 -1663 ((-179) (-1029 (-775 (-179))))) (-15 -1664 ((-179) (-1029 (-775 (-179))))) (-15 -1638 ((-85) (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))) (-15 -1639 ((-599 (-179)) (-268 (-179)) (-1117) (-1029 (-775 (-179))))) (-15 -1640 ((-1095 (-179)) (-268 (-179)) (-599 (-1117)) (-1029 (-775 (-179))))) (-15 -1641 ((-1095 (-179)) (-268 (-179)) (-599 (-1117)) (-1029 (-775 (-179))))) (-15 -1641 ((-1095 (-179)) (-1207 (-268 (-179))) (-599 (-1117)) (-1029 (-775 (-179))))) (-15 -1642 ((-599 (-179)) (-884 (-361 (-499))) (-1117) (-1029 (-775 (-179))))) (-15 -1659 ((-1099) (-179))) (-15 -1661 ((-599 (-1099)) (-599 (-179)))) (-15 -1662 ((-599 (-1099)) (-1095 (-179)))))) (T -255)) +((-1662 (*1 *2 *3) (-12 (-5 *3 (-1095 (-179))) (-5 *2 (-599 (-1099))) (-5 *1 (-255)))) (-1661 (*1 *2 *3) (-12 (-5 *3 (-599 (-179))) (-5 *2 (-599 (-1099))) (-5 *1 (-255)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-1099)) (-5 *1 (-255)))) (-1642 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-884 (-361 (-499)))) (-5 *4 (-1117)) (-5 *5 (-1029 (-775 (-179)))) (-5 *2 (-599 (-179))) (-5 *1 (-255)))) (-1641 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1207 (-268 (-179)))) (-5 *4 (-599 (-1117))) (-5 *5 (-1029 (-775 (-179)))) (-5 *2 (-1095 (-179))) (-5 *1 (-255)))) (-1641 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-268 (-179))) (-5 *4 (-599 (-1117))) (-5 *5 (-1029 (-775 (-179)))) (-5 *2 (-1095 (-179))) (-5 *1 (-255)))) (-1640 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-268 (-179))) (-5 *4 (-599 (-1117))) (-5 *5 (-1029 (-775 (-179)))) (-5 *2 (-1095 (-179))) (-5 *1 (-255)))) (-1639 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-268 (-179))) (-5 *4 (-1117)) (-5 *5 (-1029 (-775 (-179)))) (-5 *2 (-599 (-179))) (-5 *1 (-255)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (-5 *2 (-85)) (-5 *1 (-255)))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-1029 (-775 (-179)))) (-5 *2 (-179)) (-5 *1 (-255)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-1029 (-775 (-179)))) (-5 *2 (-179)) (-5 *1 (-255))))) +((-2078 (((-85) (-179)) 12 T ELT))) +(((-256 |#1| |#2|) (-10 -7 (-15 -2078 ((-85) (-179)))) (-179) (-179)) (T -256)) +((-2078 (*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-85)) (-5 *1 (-256 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +((-1658 (((-1207 (-268 (-333))) (-1207 (-268 (-179)))) 110 T ELT)) (-1646 (((-1029 (-775 (-179))) (-1029 (-775 (-333)))) 43 T ELT)) (-1662 (((-599 (-1099)) (-1095 (-179))) 92 T ELT)) (-1669 (((-268 (-333)) (-884 (-179))) 53 T ELT)) (-1670 (((-179) (-884 (-179))) 49 T ELT)) (-1665 (((-1099) (-333)) 193 T ELT)) (-1645 (((-775 (-179)) (-775 (-333))) 37 T ELT)) (-1651 (((-2 (|:| |additions| (-499)) (|:| |multiplications| (-499)) (|:| |exponentiations| (-499)) (|:| |functionCalls| (-499))) (-1207 (-268 (-179)))) 164 T ELT)) (-1666 (((-975) (-2 (|:| -2787 (-333)) (|:| -3690 (-1099)) (|:| |explanations| (-599 (-1099))) (|:| |extra| (-975)))) 205 T ELT) (((-975) (-2 (|:| -2787 (-333)) (|:| -3690 (-1099)) (|:| |explanations| (-599 (-1099))))) 203 T ELT)) (-1673 (((-647 (-179)) (-599 (-179)) (-714)) 19 T ELT)) (-1656 (((-1207 (-657)) (-599 (-179))) 99 T ELT)) (-1661 (((-599 (-1099)) (-599 (-179))) 79 T ELT)) (-2777 (((-3 (-268 (-179)) "failed") (-268 (-179))) 128 T ELT)) (-2078 (((-85) (-179) (-1029 (-775 (-179)))) 117 T ELT)) (-1668 (((-975) (-2 (|:| |stiffness| (-333)) (|:| |stability| (-333)) (|:| |expense| (-333)) (|:| |accuracy| (-333)) (|:| |intermediateResults| (-333)))) 222 T ELT)) (-1663 (((-179) (-1029 (-775 (-179)))) 112 T ELT)) (-1664 (((-179) (-1029 (-775 (-179)))) 113 T ELT)) (-1672 (((-179) (-361 (-499))) 31 T ELT)) (-1660 (((-1099) (-333)) 77 T ELT)) (-1643 (((-179) (-333)) 22 T ELT)) (-1650 (((-333) (-1207 (-268 (-179)))) 175 T ELT)) (-1644 (((-268 (-179)) (-268 (-333))) 28 T ELT)) (-1648 (((-361 (-499)) (-268 (-179))) 56 T ELT)) (-1652 (((-268 (-361 (-499))) (-268 (-179))) 73 T ELT)) (-1657 (((-268 (-333)) (-268 (-179))) 103 T ELT)) (-1649 (((-179) (-268 (-179))) 57 T ELT)) (-1654 (((-599 (-179)) (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) 68 T ELT)) (-1653 (((-1029 (-775 (-179))) (-1029 (-775 (-179)))) 65 T ELT)) (-1659 (((-1099) (-179)) 76 T ELT)) (-1655 (((-657) (-179)) 95 T ELT)) (-1647 (((-361 (-499)) (-179)) 58 T ELT)) (-1671 (((-268 (-333)) (-179)) 52 T ELT)) (-4122 (((-599 (-1029 (-775 (-179)))) (-599 (-1029 (-775 (-333))))) 46 T ELT)) (-3952 (((-975) (-599 (-975))) 189 T ELT) (((-975) (-975) (-975)) 183 T ELT)) (-1667 (((-975) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1095 (-179))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1539 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 219 T ELT))) +(((-257) (-10 -7 (-15 -1643 ((-179) (-333))) (-15 -1644 ((-268 (-179)) (-268 (-333)))) (-15 -1645 ((-775 (-179)) (-775 (-333)))) (-15 -1646 ((-1029 (-775 (-179))) (-1029 (-775 (-333))))) (-15 -4122 ((-599 (-1029 (-775 (-179)))) (-599 (-1029 (-775 (-333)))))) (-15 -1647 ((-361 (-499)) (-179))) (-15 -1648 ((-361 (-499)) (-268 (-179)))) (-15 -1649 ((-179) (-268 (-179)))) (-15 -2777 ((-3 (-268 (-179)) "failed") (-268 (-179)))) (-15 -1650 ((-333) (-1207 (-268 (-179))))) (-15 -1651 ((-2 (|:| |additions| (-499)) (|:| |multiplications| (-499)) (|:| |exponentiations| (-499)) (|:| |functionCalls| (-499))) (-1207 (-268 (-179))))) (-15 -1652 ((-268 (-361 (-499))) (-268 (-179)))) (-15 -1653 ((-1029 (-775 (-179))) (-1029 (-775 (-179))))) (-15 -1654 ((-599 (-179)) (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))))) (-15 -1655 ((-657) (-179))) (-15 -1656 ((-1207 (-657)) (-599 (-179)))) (-15 -1657 ((-268 (-333)) (-268 (-179)))) (-15 -1658 ((-1207 (-268 (-333))) (-1207 (-268 (-179))))) (-15 -2078 ((-85) (-179) (-1029 (-775 (-179))))) (-15 -1659 ((-1099) (-179))) (-15 -1660 ((-1099) (-333))) (-15 -1661 ((-599 (-1099)) (-599 (-179)))) (-15 -1662 ((-599 (-1099)) (-1095 (-179)))) (-15 -1663 ((-179) (-1029 (-775 (-179))))) (-15 -1664 ((-179) (-1029 (-775 (-179))))) (-15 -3952 ((-975) (-975) (-975))) (-15 -3952 ((-975) (-599 (-975)))) (-15 -1665 ((-1099) (-333))) (-15 -1666 ((-975) (-2 (|:| -2787 (-333)) (|:| -3690 (-1099)) (|:| |explanations| (-599 (-1099)))))) (-15 -1666 ((-975) (-2 (|:| -2787 (-333)) (|:| -3690 (-1099)) (|:| |explanations| (-599 (-1099))) (|:| |extra| (-975))))) (-15 -1667 ((-975) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1095 (-179))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1539 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1668 ((-975) (-2 (|:| |stiffness| (-333)) (|:| |stability| (-333)) (|:| |expense| (-333)) (|:| |accuracy| (-333)) (|:| |intermediateResults| (-333))))) (-15 -1669 ((-268 (-333)) (-884 (-179)))) (-15 -1670 ((-179) (-884 (-179)))) (-15 -1671 ((-268 (-333)) (-179))) (-15 -1672 ((-179) (-361 (-499)))) (-15 -1673 ((-647 (-179)) (-599 (-179)) (-714))))) (T -257)) +((-1673 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-179))) (-5 *4 (-714)) (-5 *2 (-647 (-179))) (-5 *1 (-257)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-361 (-499))) (-5 *2 (-179)) (-5 *1 (-257)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-268 (-333))) (-5 *1 (-257)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-884 (-179))) (-5 *2 (-179)) (-5 *1 (-257)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-884 (-179))) (-5 *2 (-268 (-333))) (-5 *1 (-257)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-333)) (|:| |stability| (-333)) (|:| |expense| (-333)) (|:| |accuracy| (-333)) (|:| |intermediateResults| (-333)))) (-5 *2 (-975)) (-5 *1 (-257)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1095 (-179))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1539 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-975)) (-5 *1 (-257)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2787 (-333)) (|:| -3690 (-1099)) (|:| |explanations| (-599 (-1099))) (|:| |extra| (-975)))) (-5 *2 (-975)) (-5 *1 (-257)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2787 (-333)) (|:| -3690 (-1099)) (|:| |explanations| (-599 (-1099))))) (-5 *2 (-975)) (-5 *1 (-257)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1099)) (-5 *1 (-257)))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-599 (-975))) (-5 *2 (-975)) (-5 *1 (-257)))) (-3952 (*1 *2 *2 *2) (-12 (-5 *2 (-975)) (-5 *1 (-257)))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-1029 (-775 (-179)))) (-5 *2 (-179)) (-5 *1 (-257)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-1029 (-775 (-179)))) (-5 *2 (-179)) (-5 *1 (-257)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-1095 (-179))) (-5 *2 (-599 (-1099))) (-5 *1 (-257)))) (-1661 (*1 *2 *3) (-12 (-5 *3 (-599 (-179))) (-5 *2 (-599 (-1099))) (-5 *1 (-257)))) (-1660 (*1 *2 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1099)) (-5 *1 (-257)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-1099)) (-5 *1 (-257)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *4 (-1029 (-775 (-179)))) (-5 *3 (-179)) (-5 *2 (-85)) (-5 *1 (-257)))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-1207 (-268 (-179)))) (-5 *2 (-1207 (-268 (-333)))) (-5 *1 (-257)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-268 (-179))) (-5 *2 (-268 (-333))) (-5 *1 (-257)))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-599 (-179))) (-5 *2 (-1207 (-657))) (-5 *1 (-257)))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-657)) (-5 *1 (-257)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-5 *2 (-599 (-179))) (-5 *1 (-257)))) (-1653 (*1 *2 *2) (-12 (-5 *2 (-1029 (-775 (-179)))) (-5 *1 (-257)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-268 (-179))) (-5 *2 (-268 (-361 (-499)))) (-5 *1 (-257)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-1207 (-268 (-179)))) (-5 *2 (-2 (|:| |additions| (-499)) (|:| |multiplications| (-499)) (|:| |exponentiations| (-499)) (|:| |functionCalls| (-499)))) (-5 *1 (-257)))) (-1650 (*1 *2 *3) (-12 (-5 *3 (-1207 (-268 (-179)))) (-5 *2 (-333)) (-5 *1 (-257)))) (-2777 (*1 *2 *2) (|partial| -12 (-5 *2 (-268 (-179))) (-5 *1 (-257)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-268 (-179))) (-5 *2 (-179)) (-5 *1 (-257)))) (-1648 (*1 *2 *3) (-12 (-5 *3 (-268 (-179))) (-5 *2 (-361 (-499))) (-5 *1 (-257)))) (-1647 (*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-361 (-499))) (-5 *1 (-257)))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-599 (-1029 (-775 (-333))))) (-5 *2 (-599 (-1029 (-775 (-179))))) (-5 *1 (-257)))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-1029 (-775 (-333)))) (-5 *2 (-1029 (-775 (-179)))) (-5 *1 (-257)))) (-1645 (*1 *2 *3) (-12 (-5 *3 (-775 (-333))) (-5 *2 (-775 (-179))) (-5 *1 (-257)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-268 (-333))) (-5 *2 (-268 (-179))) (-5 *1 (-257)))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-333)) (-5 *2 (-179)) (-5 *1 (-257))))) +((-1674 (((-599 |#1|) (-599 |#1|)) 10 T ELT))) +(((-258 |#1|) (-10 -7 (-15 -1674 ((-599 |#1|) (-599 |#1|)))) (-780)) (T -258)) +((-1674 (*1 *2 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-780)) (-5 *1 (-258 *3))))) +((-4108 (((-647 |#2|) (-1 |#2| |#1|) (-647 |#1|)) 17 T ELT))) +(((-259 |#1| |#2|) (-10 -7 (-15 -4108 ((-647 |#2|) (-1 |#2| |#1|) (-647 |#1|)))) (-989) (-989)) (T -259)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-647 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-5 *2 (-647 *6)) (-5 *1 (-259 *5 *6))))) +((-1678 (((-85) $ $) 14 T ELT)) (-2683 (($ $ $) 18 T ELT)) (-2682 (($ $ $) 17 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 50 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 67 T ELT)) (-3282 (($ $ $) 25 T ELT) (($ (-599 $)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3606 (((-3 $ #1#) $ $) 21 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 55 T ELT))) +(((-260 |#1|) (-10 -7 (-15 -1675 ((-3 (-599 |#1|) #1="failed") (-599 |#1|) |#1|)) (-15 -1676 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1676 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2527 |#1|)) |#1| |#1|)) (-15 -2683 (|#1| |#1| |#1|)) (-15 -2682 (|#1| |#1| |#1|)) (-15 -1678 ((-85) |#1| |#1|)) (-15 -2861 ((-649 (-599 |#1|)) (-599 |#1|) |#1|)) (-15 -2862 ((-2 (|:| -4104 (-599 |#1|)) (|:| -2527 |#1|)) (-599 |#1|))) (-15 -3282 (|#1| (-599 |#1|))) (-15 -3282 (|#1| |#1| |#1|)) (-15 -3606 ((-3 |#1| #1#) |#1| |#1|))) (-261)) (T -260)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3874 (($) 22 T CONST)) (-2683 (($ $ $) 68 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-1675 (((-3 (-599 $) "failed") (-599 $) $) 65 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-261) (-113)) (T -261)) +((-1678 (*1 *2 *1 *1) (-12 (-4 *1 (-261)) (-5 *2 (-85)))) (-1677 (*1 *2 *1) (-12 (-4 *1 (-261)) (-5 *2 (-714)))) (-3000 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-261)))) (-2682 (*1 *1 *1 *1) (-4 *1 (-261))) (-2683 (*1 *1 *1 *1) (-4 *1 (-261))) (-1676 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2527 *1))) (-4 *1 (-261)))) (-1676 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-261)))) (-1675 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-599 *1)) (-4 *1 (-261))))) +(-13 (-859) (-10 -8 (-15 -1678 ((-85) $ $)) (-15 -1677 ((-714) $)) (-15 -3000 ((-2 (|:| -2075 $) (|:| -3023 $)) $ $)) (-15 -2682 ($ $ $)) (-15 -2683 ($ $ $)) (-15 -1676 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $)) (-15 -1676 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1675 ((-3 (-599 $) "failed") (-599 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-244) . T) ((-406) . T) ((-510) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-598 $) . T) ((-675 $) . T) ((-684) . T) ((-859) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-3918 (($ $ (-599 |#2|) (-599 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-247 |#2|)) 11 T ELT) (($ $ (-599 (-247 |#2|))) NIL T ELT))) +(((-262 |#1| |#2|) (-10 -7 (-15 -3918 (|#1| |#1| (-599 (-247 |#2|)))) (-15 -3918 (|#1| |#1| (-247 |#2|))) (-15 -3918 (|#1| |#1| |#2| |#2|)) (-15 -3918 (|#1| |#1| (-599 |#2|) (-599 |#2|)))) (-263 |#2|) (-1041)) (T -262)) +NIL +((-3918 (($ $ (-599 |#1|) (-599 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-247 |#1|)) 13 T ELT) (($ $ (-599 (-247 |#1|))) 12 T ELT))) +(((-263 |#1|) (-113) (-1041)) (T -263)) +((-3918 (*1 *1 *1 *2) (-12 (-5 *2 (-247 *3)) (-4 *1 (-263 *3)) (-4 *3 (-1041)))) (-3918 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-247 *3))) (-4 *1 (-263 *3)) (-4 *3 (-1041))))) +(-13 (-468 |t#1| |t#1|) (-10 -8 (-15 -3918 ($ $ (-247 |t#1|))) (-15 -3918 ($ $ (-599 (-247 |t#1|)))))) +(((-468 |#1| |#1|) . T)) +((-3918 ((|#1| (-1 |#1| (-499)) (-1119 (-361 (-499)))) 26 T ELT))) +(((-264 |#1|) (-10 -7 (-15 -3918 (|#1| (-1 |#1| (-499)) (-1119 (-361 (-499)))))) (-38 (-361 (-499)))) (T -264)) +((-3918 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-499))) (-5 *4 (-1119 (-361 (-499)))) (-5 *1 (-264 *2)) (-4 *2 (-38 (-361 (-499))))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 7 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 9 T ELT))) +(((-265) (-1041)) (T -265)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-3646 (((-499) $) 12 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3344 (((-1075) $) 9 T ELT)) (-4096 (((-797) $) 19 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-266) (-13 (-1023) (-10 -8 (-15 -3344 ((-1075) $)) (-15 -3646 ((-499) $))))) (T -266)) +((-3344 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-266)))) (-3646 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-266))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 60 T ELT)) (-3251 (((-1194 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-261)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-848)) ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-848)) ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-763)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-1194 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1117) #1#) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-978 (-1117))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-978 (-499))) ELT) (((-3 (-499) #1#) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-978 (-499))) ELT) (((-3 (-1188 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3294 (((-1194 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1117) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-978 (-1117))) ELT) (((-361 (-499)) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-978 (-499))) ELT) (((-499) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-978 (-499))) ELT) (((-1188 |#2| |#3| |#4|) $) NIL T ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-1194 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1207 (-1194 |#1| |#2| |#3| |#4|)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-1194 |#1| |#2| |#3| |#4|)) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-498)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3324 (((-85) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-763)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-821 (-333))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL T ELT)) (-3119 (((-1194 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3585 (((-649 $) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-1092)) ELT)) (-3325 (((-85) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-763)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-781)) ELT)) (-4108 (($ (-1 (-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3934 (((-3 (-775 |#2|) #1#) $) 80 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-1194 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1207 (-1194 |#1| |#2| |#3| |#4|)))) (-1207 $) $) NIL T ELT) (((-647 (-1194 |#1| |#2| |#3| |#4|)) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-261)) ELT)) (-3252 (((-1194 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-498)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-848)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-3918 (($ $ (-599 (-1194 |#1| |#2| |#3| |#4|)) (-599 (-1194 |#1| |#2| |#3| |#4|))) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-263 (-1194 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-263 (-1194 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-247 (-1194 |#1| |#2| |#3| |#4|))) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-263 (-1194 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-599 (-247 (-1194 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-263 (-1194 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-599 (-1117)) (-599 (-1194 |#1| |#2| |#3| |#4|))) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-468 (-1117) (-1194 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1117) (-1194 |#1| |#2| |#3| |#4|)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-468 (-1117) (-1194 |#1| |#2| |#3| |#4|))) ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ $ (-1194 |#1| |#2| |#3| |#4|)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-240 (-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $ (-1 (-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-838 (-1117))) ELT) (($ $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-714)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-3116 (($ $) NIL T ELT)) (-3118 (((-1194 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-4122 (((-825 (-499)) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-569 (-825 (-333)))) ELT) (((-488) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-569 (-488))) ELT) (((-333) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-960)) ELT) (((-179) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-960)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| (-1194 |#1| |#2| |#3| |#4|) (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-1194 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1117)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-978 (-1117))) ELT) (($ (-1188 |#2| |#3| |#4|)) 37 T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| (-1194 |#1| |#2| |#3| |#4|) (-848))) (|has| (-1194 |#1| |#2| |#3| |#4|) (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-3253 (((-1194 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-498)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3523 (($ $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-763)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1 (-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-838 (-1117))) ELT) (($ $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-714)) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| (-1194 |#1| |#2| |#3| |#4|) (-781)) ELT)) (-4099 (($ $ $) 35 T ELT) (($ (-1194 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ (-1194 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1194 |#1| |#2| |#3| |#4|)) NIL T ELT))) +(((-267 |#1| |#2| |#3| |#4|) (-13 (-931 (-1194 |#1| |#2| |#3| |#4|)) (-978 (-1188 |#2| |#3| |#4|)) (-10 -8 (-15 -3934 ((-3 (-775 |#2|) "failed") $)) (-15 -4096 ($ (-1188 |#2| |#3| |#4|))))) (-13 (-978 (-499)) (-596 (-499)) (-406)) (-13 (-27) (-1143) (-375 |#1|)) (-1117) |#2|) (T -267)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-1188 *4 *5 *6)) (-4 *4 (-13 (-27) (-1143) (-375 *3))) (-14 *5 (-1117)) (-14 *6 *4) (-4 *3 (-13 (-978 (-499)) (-596 (-499)) (-406))) (-5 *1 (-267 *3 *4 *5 *6)))) (-3934 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-978 (-499)) (-596 (-499)) (-406))) (-5 *2 (-775 *4)) (-5 *1 (-267 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1143) (-375 *3))) (-14 *5 (-1117)) (-14 *6 *4)))) +((-2687 (((-85) $ $) NIL T ELT)) (-1640 (((-599 $) $ (-1117)) NIL (|has| |#1| (-510)) ELT) (((-599 $) $) NIL (|has| |#1| (-510)) ELT) (((-599 $) (-1111 $) (-1117)) NIL (|has| |#1| (-510)) ELT) (((-599 $) (-1111 $)) NIL (|has| |#1| (-510)) ELT) (((-599 $) (-884 $)) NIL (|has| |#1| (-510)) ELT)) (-1242 (($ $ (-1117)) NIL (|has| |#1| (-510)) ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ (-1111 $) (-1117)) NIL (|has| |#1| (-510)) ELT) (($ (-1111 $)) NIL (|has| |#1| (-510)) ELT) (($ (-884 $)) NIL (|has| |#1| (-510)) ELT)) (-3326 (((-85) $) 27 (-3677 (|has| |#1| (-25)) (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT)) (-3204 (((-599 (-1117)) $) 368 T ELT)) (-3206 (((-361 (-1111 $)) $ (-566 $)) NIL (|has| |#1| (-510)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-1633 (((-599 (-566 $)) $) NIL T ELT)) (-3632 (($ $) 171 (|has| |#1| (-510)) ELT)) (-3789 (($ $) 147 (|has| |#1| (-510)) ELT)) (-1405 (($ $ (-1032 $)) 232 (|has| |#1| (-510)) ELT) (($ $ (-1117)) 228 (|has| |#1| (-510)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL (-3677 (|has| |#1| (-21)) (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT)) (-1637 (($ $ (-247 $)) NIL T ELT) (($ $ (-599 (-247 $))) 386 T ELT) (($ $ (-599 (-566 $)) (-599 $)) 430 T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 308 (-12 (|has| |#1| (-406)) (|has| |#1| (-510))) ELT)) (-3925 (($ $) NIL (|has| |#1| (-510)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-510)) ELT)) (-3158 (($ $) NIL (|has| |#1| (-510)) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3630 (($ $) 167 (|has| |#1| (-510)) ELT)) (-3788 (($ $) 143 (|has| |#1| (-510)) ELT)) (-1679 (($ $ (-499)) 73 (|has| |#1| (-510)) ELT)) (-3634 (($ $) 175 (|has| |#1| (-510)) ELT)) (-3787 (($ $) 151 (|has| |#1| (-510)) ELT)) (-3874 (($) NIL (-3677 (|has| |#1| (-25)) (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) (|has| |#1| (-1052))) CONST)) (-1243 (((-599 $) $ (-1117)) NIL (|has| |#1| (-510)) ELT) (((-599 $) $) NIL (|has| |#1| (-510)) ELT) (((-599 $) (-1111 $) (-1117)) NIL (|has| |#1| (-510)) ELT) (((-599 $) (-1111 $)) NIL (|has| |#1| (-510)) ELT) (((-599 $) (-884 $)) NIL (|has| |#1| (-510)) ELT)) (-3321 (($ $ (-1117)) NIL (|has| |#1| (-510)) ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ (-1111 $) (-1117)) 134 (|has| |#1| (-510)) ELT) (($ (-1111 $)) NIL (|has| |#1| (-510)) ELT) (($ (-884 $)) NIL (|has| |#1| (-510)) ELT)) (-3295 (((-3 (-566 $) #1#) $) 18 T ELT) (((-3 (-1117) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 441 T ELT) (((-3 (-48) #1#) $) 336 (-12 (|has| |#1| (-510)) (|has| |#1| (-978 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-884 |#1|)) #1#) $) NIL (|has| |#1| (-510)) ELT) (((-3 (-884 |#1|) #1#) $) NIL (|has| |#1| (-989)) ELT) (((-3 (-361 (-499)) #1#) $) 46 (-3677 (-12 (|has| |#1| (-510)) (|has| |#1| (-978 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-3294 (((-566 $) $) 12 T ELT) (((-1117) $) NIL T ELT) ((|#1| $) 421 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-510)) (|has| |#1| (-978 (-499)))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-884 |#1|)) $) NIL (|has| |#1| (-510)) ELT) (((-884 |#1|) $) NIL (|has| |#1| (-989)) ELT) (((-361 (-499)) $) 319 (-3677 (-12 (|has| |#1| (-510)) (|has| |#1| (-978 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-510)) ELT)) (-2380 (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 125 (|has| |#1| (-989)) ELT) (((-647 |#1|) (-647 $)) 115 (|has| |#1| (-989)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ELT) (((-647 (-499)) (-647 $)) NIL (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ELT)) (-3992 (($ $) 96 (|has| |#1| (-510)) ELT)) (-3607 (((-3 $ #1#) $) NIL (|has| |#1| (-1052)) ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-510)) ELT)) (-4094 (($ $ (-1032 $)) 236 (|has| |#1| (-510)) ELT) (($ $ (-1117)) 234 (|has| |#1| (-510)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-510)) ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3526 (($ $ $) 202 (|has| |#1| (-510)) ELT)) (-3777 (($) 137 (|has| |#1| (-510)) ELT)) (-1402 (($ $ $) 222 (|has| |#1| (-510)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 392 (|has| |#1| (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 399 (|has| |#1| (-821 (-333))) ELT)) (-2692 (($ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1632 (((-599 (-86)) $) NIL T ELT)) (-3743 (((-86) (-86)) 276 T ELT)) (-2528 (((-85) $) 25 (|has| |#1| (-1052)) ELT)) (-2794 (((-85) $) NIL (|has| $ (-978 (-499))) ELT)) (-3117 (($ $) 72 (|has| |#1| (-989)) ELT)) (-3119 (((-1065 |#1| (-566 $)) $) 91 (|has| |#1| (-989)) ELT)) (-1680 (((-85) $) 62 (|has| |#1| (-510)) ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-510)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-510)) ELT)) (-1630 (((-1111 $) (-566 $)) 277 (|has| $ (-989)) ELT)) (-4108 (($ (-1 $ $) (-566 $)) 426 T ELT)) (-1635 (((-3 (-566 $) #1#) $) NIL T ELT)) (-4092 (($ $) 141 (|has| |#1| (-510)) ELT)) (-2358 (($ $) 247 (|has| |#1| (-510)) ELT)) (-2381 (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL (|has| |#1| (-989)) ELT) (((-647 |#1|) (-1207 $)) NIL (|has| |#1| (-989)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ELT) (((-647 (-499)) (-1207 $)) NIL (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-510)) ELT) (($ $ $) NIL (|has| |#1| (-510)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1634 (((-599 (-566 $)) $) 49 T ELT)) (-2336 (($ (-86) $) NIL T ELT) (($ (-86) (-599 $)) 431 T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL (|has| |#1| (-1052)) ELT)) (-2946 (((-3 (-2 (|:| |val| $) (|:| -2519 (-499))) #1#) $) NIL (|has| |#1| (-989)) ELT)) (-2943 (((-3 (-599 $) #1#) $) 436 (|has| |#1| (-25)) ELT)) (-1892 (((-3 (-2 (|:| -4104 (-499)) (|:| |var| (-566 $))) #1#) $) 440 (|has| |#1| (-25)) ELT)) (-2945 (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) #1#) $) NIL (|has| |#1| (-1052)) ELT) (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) #1#) $ (-86)) NIL (|has| |#1| (-989)) ELT) (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) #1#) $ (-1117)) NIL (|has| |#1| (-989)) ELT)) (-2752 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1117)) 51 T ELT)) (-2601 (($ $) NIL (-3677 (|has| |#1| (-427)) (|has| |#1| (-510))) ELT)) (-2953 (($ $ (-1117)) 251 (|has| |#1| (-510)) ELT) (($ $ (-1032 $)) 253 (|has| |#1| (-510)) ELT)) (-2722 (((-714) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) 43 T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 301 (|has| |#1| (-510)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-510)) ELT) (($ $ $) NIL (|has| |#1| (-510)) ELT)) (-1631 (((-85) $ $) NIL T ELT) (((-85) $ (-1117)) NIL T ELT)) (-1406 (($ $ (-1117)) 226 (|has| |#1| (-510)) ELT) (($ $) 224 (|has| |#1| (-510)) ELT)) (-1400 (($ $) 218 (|has| |#1| (-510)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 306 (-12 (|has| |#1| (-406)) (|has| |#1| (-510))) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-510)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-510)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-510)) ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-510)) ELT)) (-4093 (($ $) 139 (|has| |#1| (-510)) ELT)) (-2795 (((-85) $) NIL (|has| $ (-978 (-499))) ELT)) (-3918 (($ $ (-566 $) $) NIL T ELT) (($ $ (-599 (-566 $)) (-599 $)) 425 T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ $))) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ (-599 $)))) NIL T ELT) (($ $ (-1117) (-1 $ (-599 $))) NIL T ELT) (($ $ (-1117) (-1 $ $)) NIL T ELT) (($ $ (-599 (-86)) (-599 (-1 $ $))) 379 T ELT) (($ $ (-599 (-86)) (-599 (-1 $ (-599 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-599 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-569 (-488))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-569 (-488))) ELT) (($ $) NIL (|has| |#1| (-569 (-488))) ELT) (($ $ (-86) $ (-1117)) 366 (|has| |#1| (-569 (-488))) ELT) (($ $ (-599 (-86)) (-599 $) (-1117)) 365 (|has| |#1| (-569 (-488))) ELT) (($ $ (-599 (-1117)) (-599 (-714)) (-599 (-1 $ $))) NIL (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714)) (-599 (-1 $ (-599 $)))) NIL (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714) (-1 $ (-599 $))) NIL (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714) (-1 $ $)) NIL (|has| |#1| (-989)) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-510)) ELT)) (-2356 (($ $) 239 (|has| |#1| (-510)) ELT)) (-3950 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-599 $)) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-510)) ELT)) (-1636 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2357 (($ $) 249 (|has| |#1| (-510)) ELT)) (-3525 (($ $) 200 (|has| |#1| (-510)) ELT)) (-3908 (($ $ (-1117)) NIL (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-989)) ELT)) (-3116 (($ $) 74 (|has| |#1| (-510)) ELT)) (-3118 (((-1065 |#1| (-566 $)) $) 93 (|has| |#1| (-510)) ELT)) (-3323 (($ $) 317 (|has| $ (-989)) ELT)) (-3635 (($ $) 177 (|has| |#1| (-510)) ELT)) (-3786 (($ $) 153 (|has| |#1| (-510)) ELT)) (-3633 (($ $) 173 (|has| |#1| (-510)) ELT)) (-3785 (($ $) 149 (|has| |#1| (-510)) ELT)) (-3631 (($ $) 169 (|has| |#1| (-510)) ELT)) (-3784 (($ $) 145 (|has| |#1| (-510)) ELT)) (-4122 (((-825 (-499)) $) NIL (|has| |#1| (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| |#1| (-569 (-825 (-333)))) ELT) (($ (-359 $)) NIL (|has| |#1| (-510)) ELT) (((-488) $) 363 (|has| |#1| (-569 (-488))) ELT)) (-3130 (($ $ $) NIL (|has| |#1| (-427)) ELT)) (-2551 (($ $ $) NIL (|has| |#1| (-427)) ELT)) (-4096 (((-797) $) 424 T ELT) (($ (-566 $)) 415 T ELT) (($ (-1117)) 381 T ELT) (($ |#1|) 337 T ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ (-48)) 312 (-12 (|has| |#1| (-510)) (|has| |#1| (-978 (-499)))) ELT) (($ (-1065 |#1| (-566 $))) 95 (|has| |#1| (-989)) ELT) (($ (-361 |#1|)) NIL (|has| |#1| (-510)) ELT) (($ (-884 (-361 |#1|))) NIL (|has| |#1| (-510)) ELT) (($ (-361 (-884 (-361 |#1|)))) NIL (|has| |#1| (-510)) ELT) (($ (-361 (-884 |#1|))) NIL (|has| |#1| (-510)) ELT) (($ (-884 |#1|)) NIL (|has| |#1| (-989)) ELT) (($ (-499)) 34 (-3677 (|has| |#1| (-978 (-499))) (|has| |#1| (-989))) ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-510)) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL (|has| |#1| (-989)) CONST)) (-2709 (($ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3224 (($ $ $) 220 (|has| |#1| (-510)) ELT)) (-3529 (($ $ $) 206 (|has| |#1| (-510)) ELT)) (-3531 (($ $ $) 210 (|has| |#1| (-510)) ELT)) (-3528 (($ $ $) 204 (|has| |#1| (-510)) ELT)) (-3530 (($ $ $) 208 (|has| |#1| (-510)) ELT)) (-2355 (((-85) (-86)) 10 T ELT)) (-1297 (((-85) $ $) 86 T ELT)) (-3638 (($ $) 183 (|has| |#1| (-510)) ELT)) (-3626 (($ $) 159 (|has| |#1| (-510)) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) 179 (|has| |#1| (-510)) ELT)) (-3624 (($ $) 155 (|has| |#1| (-510)) ELT)) (-3640 (($ $) 187 (|has| |#1| (-510)) ELT)) (-3628 (($ $) 163 (|has| |#1| (-510)) ELT)) (-1893 (($ (-1117) $) NIL T ELT) (($ (-1117) $ $) NIL T ELT) (($ (-1117) $ $ $) NIL T ELT) (($ (-1117) $ $ $ $) NIL T ELT) (($ (-1117) (-599 $)) NIL T ELT)) (-3533 (($ $) 214 (|has| |#1| (-510)) ELT)) (-3532 (($ $) 212 (|has| |#1| (-510)) ELT)) (-3641 (($ $) 189 (|has| |#1| (-510)) ELT)) (-3629 (($ $) 165 (|has| |#1| (-510)) ELT)) (-3639 (($ $) 185 (|has| |#1| (-510)) ELT)) (-3627 (($ $) 161 (|has| |#1| (-510)) ELT)) (-3637 (($ $) 181 (|has| |#1| (-510)) ELT)) (-3625 (($ $) 157 (|has| |#1| (-510)) ELT)) (-3523 (($ $) 192 (|has| |#1| (-510)) ELT)) (-2779 (($) 21 (-3677 (|has| |#1| (-25)) (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) CONST)) (-2360 (($ $) 243 (|has| |#1| (-510)) ELT)) (-2785 (($) 23 (|has| |#1| (-1052)) CONST)) (-3527 (($ $) 194 (|has| |#1| (-510)) ELT) (($ $ $) 196 (|has| |#1| (-510)) ELT)) (-2361 (($ $) 241 (|has| |#1| (-510)) ELT)) (-2790 (($ $ (-1117)) NIL (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-989)) ELT)) (-2359 (($ $) 245 (|has| |#1| (-510)) ELT)) (-3524 (($ $ $) 198 (|has| |#1| (-510)) ELT)) (-3174 (((-85) $ $) 88 T ELT)) (-4099 (($ (-1065 |#1| (-566 $)) (-1065 |#1| (-566 $))) 106 (|has| |#1| (-510)) ELT) (($ $ $) 42 (-3677 (|has| |#1| (-427)) (|has| |#1| (-510))) ELT)) (-3987 (($ $ $) 40 (-3677 (|has| |#1| (-21)) (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT) (($ $) 29 (-3677 (|has| |#1| (-21)) (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT)) (-3989 (($ $ $) 38 (-3677 (|has| |#1| (-25)) (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT)) (** (($ $ $) 64 (|has| |#1| (-510)) ELT) (($ $ (-361 (-499))) 314 (|has| |#1| (-510)) ELT) (($ $ (-499)) 80 (-3677 (|has| |#1| (-427)) (|has| |#1| (-510))) ELT) (($ $ (-714)) 75 (|has| |#1| (-1052)) ELT) (($ $ (-857)) 84 (|has| |#1| (-1052)) ELT)) (* (($ (-361 (-499)) $) NIL (|has| |#1| (-510)) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-510)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT) (($ |#1| $) NIL (|has| |#1| (-989)) ELT) (($ $ $) 36 (|has| |#1| (-1052)) ELT) (($ (-499) $) 32 (-3677 (|has| |#1| (-21)) (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT) (($ (-714) $) NIL (-3677 (|has| |#1| (-25)) (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT) (($ (-857) $) NIL (-3677 (|has| |#1| (-25)) (-12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989)))) ELT))) +(((-268 |#1|) (-13 (-375 |#1|) (-10 -8 (IF (|has| |#1| (-510)) (PROGN (-6 (-29 |#1|)) (-6 (-1143)) (-6 (-133)) (-6 (-585)) (-6 (-1079)) (-15 -3992 ($ $)) (-15 -1680 ((-85) $)) (-15 -1679 ($ $ (-499))) (IF (|has| |#1| (-406)) (PROGN (-15 -2827 ((-359 (-1111 $)) (-1111 $))) (-15 -2828 ((-359 (-1111 $)) (-1111 $)))) |%noBranch|) (IF (|has| |#1| (-978 (-499))) (-6 (-978 (-48))) |%noBranch|)) |%noBranch|))) (-1041)) (T -268)) +((-3992 (*1 *1 *1) (-12 (-5 *1 (-268 *2)) (-4 *2 (-510)) (-4 *2 (-1041)))) (-1680 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-268 *3)) (-4 *3 (-510)) (-4 *3 (-1041)))) (-1679 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-268 *3)) (-4 *3 (-510)) (-4 *3 (-1041)))) (-2827 (*1 *2 *3) (-12 (-5 *2 (-359 (-1111 *1))) (-5 *1 (-268 *4)) (-5 *3 (-1111 *1)) (-4 *4 (-406)) (-4 *4 (-510)) (-4 *4 (-1041)))) (-2828 (*1 *2 *3) (-12 (-5 *2 (-359 (-1111 *1))) (-5 *1 (-268 *4)) (-5 *3 (-1111 *1)) (-4 *4 (-406)) (-4 *4 (-510)) (-4 *4 (-1041))))) +((-4108 (((-268 |#2|) (-1 |#2| |#1|) (-268 |#1|)) 13 T ELT))) +(((-269 |#1| |#2|) (-10 -7 (-15 -4108 ((-268 |#2|) (-1 |#2| |#1|) (-268 |#1|)))) (-1041) (-1041)) (T -269)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-268 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *2 (-268 *6)) (-5 *1 (-269 *5 *6))))) +((-3879 (((-51) |#2| (-247 |#2|) (-714)) 40 T ELT) (((-51) |#2| (-247 |#2|)) 32 T ELT) (((-51) |#2| (-714)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1117)) 26 T ELT)) (-3968 (((-51) |#2| (-247 |#2|) (-361 (-499))) 59 T ELT) (((-51) |#2| (-247 |#2|)) 56 T ELT) (((-51) |#2| (-361 (-499))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1117)) 55 T ELT)) (-3932 (((-51) |#2| (-247 |#2|) (-361 (-499))) 54 T ELT) (((-51) |#2| (-247 |#2|)) 51 T ELT) (((-51) |#2| (-361 (-499))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1117)) 50 T ELT)) (-3929 (((-51) |#2| (-247 |#2|) (-499)) 47 T ELT) (((-51) |#2| (-247 |#2|)) 44 T ELT) (((-51) |#2| (-499)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1117)) 43 T ELT))) +(((-270 |#1| |#2|) (-10 -7 (-15 -3879 ((-51) (-1117))) (-15 -3879 ((-51) |#2|)) (-15 -3879 ((-51) |#2| (-714))) (-15 -3879 ((-51) |#2| (-247 |#2|))) (-15 -3879 ((-51) |#2| (-247 |#2|) (-714))) (-15 -3929 ((-51) (-1117))) (-15 -3929 ((-51) |#2|)) (-15 -3929 ((-51) |#2| (-499))) (-15 -3929 ((-51) |#2| (-247 |#2|))) (-15 -3929 ((-51) |#2| (-247 |#2|) (-499))) (-15 -3932 ((-51) (-1117))) (-15 -3932 ((-51) |#2|)) (-15 -3932 ((-51) |#2| (-361 (-499)))) (-15 -3932 ((-51) |#2| (-247 |#2|))) (-15 -3932 ((-51) |#2| (-247 |#2|) (-361 (-499)))) (-15 -3968 ((-51) (-1117))) (-15 -3968 ((-51) |#2|)) (-15 -3968 ((-51) |#2| (-361 (-499)))) (-15 -3968 ((-51) |#2| (-247 |#2|))) (-15 -3968 ((-51) |#2| (-247 |#2|) (-361 (-499))))) (-13 (-406) (-978 (-499)) (-596 (-499))) (-13 (-27) (-1143) (-375 |#1|))) (T -270)) +((-3968 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-247 *3)) (-5 *5 (-361 (-499))) (-4 *3 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *6 *3)))) (-3968 (*1 *2 *3 *4) (-12 (-5 *4 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *5 *3)))) (-3968 (*1 *2 *3 *4) (-12 (-5 *4 (-361 (-499))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) (-3968 (*1 *2 *3) (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-27) (-1143) (-375 *4))))) (-3932 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-247 *3)) (-5 *5 (-361 (-499))) (-4 *3 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *6 *3)))) (-3932 (*1 *2 *3 *4) (-12 (-5 *4 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *5 *3)))) (-3932 (*1 *2 *3 *4) (-12 (-5 *4 (-361 (-499))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) (-3932 (*1 *2 *3) (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) (-3932 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-27) (-1143) (-375 *4))))) (-3929 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-406) (-978 *5) (-596 *5))) (-5 *5 (-499)) (-5 *2 (-51)) (-5 *1 (-270 *6 *3)))) (-3929 (*1 *2 *3 *4) (-12 (-5 *4 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *5 *3)))) (-3929 (*1 *2 *3 *4) (-12 (-5 *4 (-499)) (-4 *5 (-13 (-406) (-978 *4) (-596 *4))) (-5 *2 (-51)) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) (-3929 (*1 *2 *3) (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) (-3929 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-27) (-1143) (-375 *4))))) (-3879 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-247 *3)) (-5 *5 (-714)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *6 *3)))) (-3879 (*1 *2 *3 *4) (-12 (-5 *4 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *5 *3)))) (-3879 (*1 *2 *3 *4) (-12 (-5 *4 (-714)) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) (-3879 (*1 *2 *3) (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-27) (-1143) (-375 *4)))))) +((-1681 (((-51) |#2| (-86) (-247 |#2|) (-599 |#2|)) 89 T ELT) (((-51) |#2| (-86) (-247 |#2|) (-247 |#2|)) 85 T ELT) (((-51) |#2| (-86) (-247 |#2|) |#2|) 87 T ELT) (((-51) (-247 |#2|) (-86) (-247 |#2|) |#2|) 88 T ELT) (((-51) (-599 |#2|) (-599 (-86)) (-247 |#2|) (-599 (-247 |#2|))) 81 T ELT) (((-51) (-599 |#2|) (-599 (-86)) (-247 |#2|) (-599 |#2|)) 83 T ELT) (((-51) (-599 (-247 |#2|)) (-599 (-86)) (-247 |#2|) (-599 |#2|)) 84 T ELT) (((-51) (-599 (-247 |#2|)) (-599 (-86)) (-247 |#2|) (-599 (-247 |#2|))) 82 T ELT) (((-51) (-247 |#2|) (-86) (-247 |#2|) (-599 |#2|)) 90 T ELT) (((-51) (-247 |#2|) (-86) (-247 |#2|) (-247 |#2|)) 86 T ELT))) +(((-271 |#1| |#2|) (-10 -7 (-15 -1681 ((-51) (-247 |#2|) (-86) (-247 |#2|) (-247 |#2|))) (-15 -1681 ((-51) (-247 |#2|) (-86) (-247 |#2|) (-599 |#2|))) (-15 -1681 ((-51) (-599 (-247 |#2|)) (-599 (-86)) (-247 |#2|) (-599 (-247 |#2|)))) (-15 -1681 ((-51) (-599 (-247 |#2|)) (-599 (-86)) (-247 |#2|) (-599 |#2|))) (-15 -1681 ((-51) (-599 |#2|) (-599 (-86)) (-247 |#2|) (-599 |#2|))) (-15 -1681 ((-51) (-599 |#2|) (-599 (-86)) (-247 |#2|) (-599 (-247 |#2|)))) (-15 -1681 ((-51) (-247 |#2|) (-86) (-247 |#2|) |#2|)) (-15 -1681 ((-51) |#2| (-86) (-247 |#2|) |#2|)) (-15 -1681 ((-51) |#2| (-86) (-247 |#2|) (-247 |#2|))) (-15 -1681 ((-51) |#2| (-86) (-247 |#2|) (-599 |#2|)))) (-13 (-510) (-569 (-488))) (-375 |#1|)) (T -271)) +((-1681 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-86)) (-5 *5 (-247 *3)) (-5 *6 (-599 *3)) (-4 *3 (-375 *7)) (-4 *7 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *7 *3)))) (-1681 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-86)) (-5 *5 (-247 *3)) (-4 *3 (-375 *6)) (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *6 *3)))) (-1681 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-86)) (-5 *5 (-247 *3)) (-4 *3 (-375 *6)) (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *6 *3)))) (-1681 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-247 *5)) (-5 *4 (-86)) (-4 *5 (-375 *6)) (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *6 *5)))) (-1681 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 (-86))) (-5 *6 (-599 (-247 *8))) (-4 *8 (-375 *7)) (-5 *5 (-247 *8)) (-4 *7 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *7 *8)))) (-1681 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-599 *7)) (-5 *4 (-599 (-86))) (-5 *5 (-247 *7)) (-4 *7 (-375 *6)) (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *6 *7)))) (-1681 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-599 (-247 *8))) (-5 *4 (-599 (-86))) (-5 *5 (-247 *8)) (-5 *6 (-599 *8)) (-4 *8 (-375 *7)) (-4 *7 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *7 *8)))) (-1681 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-599 (-247 *7))) (-5 *4 (-599 (-86))) (-5 *5 (-247 *7)) (-4 *7 (-375 *6)) (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *6 *7)))) (-1681 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-247 *7)) (-5 *4 (-86)) (-5 *5 (-599 *7)) (-4 *7 (-375 *6)) (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *6 *7)))) (-1681 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-247 *6)) (-5 *4 (-86)) (-4 *6 (-375 *5)) (-4 *5 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *5 *6))))) +((-1683 (((-1153 (-865)) (-268 (-499)) (-268 (-499)) (-268 (-499)) (-1 (-179) (-179)) (-1029 (-179)) (-179) (-499) (-1099)) 67 T ELT) (((-1153 (-865)) (-268 (-499)) (-268 (-499)) (-268 (-499)) (-1 (-179) (-179)) (-1029 (-179)) (-179) (-499)) 68 T ELT) (((-1153 (-865)) (-268 (-499)) (-268 (-499)) (-268 (-499)) (-1 (-179) (-179)) (-1029 (-179)) (-1 (-179) (-179)) (-499) (-1099)) 64 T ELT) (((-1153 (-865)) (-268 (-499)) (-268 (-499)) (-268 (-499)) (-1 (-179) (-179)) (-1029 (-179)) (-1 (-179) (-179)) (-499)) 65 T ELT)) (-1682 (((-1 (-179) (-179)) (-179)) 66 T ELT))) +(((-272) (-10 -7 (-15 -1682 ((-1 (-179) (-179)) (-179))) (-15 -1683 ((-1153 (-865)) (-268 (-499)) (-268 (-499)) (-268 (-499)) (-1 (-179) (-179)) (-1029 (-179)) (-1 (-179) (-179)) (-499))) (-15 -1683 ((-1153 (-865)) (-268 (-499)) (-268 (-499)) (-268 (-499)) (-1 (-179) (-179)) (-1029 (-179)) (-1 (-179) (-179)) (-499) (-1099))) (-15 -1683 ((-1153 (-865)) (-268 (-499)) (-268 (-499)) (-268 (-499)) (-1 (-179) (-179)) (-1029 (-179)) (-179) (-499))) (-15 -1683 ((-1153 (-865)) (-268 (-499)) (-268 (-499)) (-268 (-499)) (-1 (-179) (-179)) (-1029 (-179)) (-179) (-499) (-1099))))) (T -272)) +((-1683 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-268 (-499))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1029 (-179))) (-5 *6 (-179)) (-5 *7 (-499)) (-5 *8 (-1099)) (-5 *2 (-1153 (-865))) (-5 *1 (-272)))) (-1683 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-268 (-499))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1029 (-179))) (-5 *6 (-179)) (-5 *7 (-499)) (-5 *2 (-1153 (-865))) (-5 *1 (-272)))) (-1683 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-268 (-499))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1029 (-179))) (-5 *6 (-499)) (-5 *7 (-1099)) (-5 *2 (-1153 (-865))) (-5 *1 (-272)))) (-1683 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-268 (-499))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1029 (-179))) (-5 *6 (-499)) (-5 *2 (-1153 (-865))) (-5 *1 (-272)))) (-1682 (*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-272)) (-5 *3 (-179))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 26 T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-361 (-499))) NIL T ELT) (($ $ (-361 (-499)) (-361 (-499))) NIL T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|))) $) 20 T ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-714) (-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|)))) NIL T ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) 36 T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3324 (((-85) $) NIL T ELT)) (-3013 (((-85) $) NIL T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-361 (-499)) $) NIL T ELT) (((-361 (-499)) $ (-361 (-499))) 16 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3927 (($ $ (-857)) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-361 (-499))) NIL T ELT) (($ $ (-1022) (-361 (-499))) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-361 (-499)))) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4092 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3962 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-361 (-499))) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-1684 (((-361 (-499)) $) 17 T ELT)) (-3213 (($ (-1188 |#1| |#2| |#3|)) 11 T ELT)) (-2519 (((-1188 |#1| |#2| |#3|) $) 12 T ELT)) (-4093 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-361 (-499))) NIL T ELT) (($ $ $) NIL (|has| (-361 (-499)) (-1052)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT)) (-4098 (((-361 (-499)) $) NIL T ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) 10 T ELT)) (-4096 (((-797) $) 42 T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3827 ((|#1| $ (-361 (-499))) 34 T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-3923 ((|#1| $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-361 (-499))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 28 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 37 T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-273 |#1| |#2| |#3|) (-13 (-1190 |#1|) (-737) (-10 -8 (-15 -3213 ($ (-1188 |#1| |#2| |#3|))) (-15 -2519 ((-1188 |#1| |#2| |#3|) $)) (-15 -1684 ((-361 (-499)) $)))) (-318) (-1117) |#1|) (T -273)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1188 *3 *4 *5)) (-4 *3 (-318)) (-14 *4 (-1117)) (-14 *5 *3) (-5 *1 (-273 *3 *4 *5)))) (-2519 (*1 *2 *1) (-12 (-5 *2 (-1188 *3 *4 *5)) (-5 *1 (-273 *3 *4 *5)) (-4 *3 (-318)) (-14 *4 (-1117)) (-14 *5 *3))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-273 *3 *4 *5)) (-4 *3 (-318)) (-14 *4 (-1117)) (-14 *5 *3)))) +((-3132 (((-2 (|:| -2519 (-714)) (|:| -4104 |#1|) (|:| |radicand| (-599 |#1|))) (-359 |#1|) (-714)) 35 T ELT)) (-4092 (((-599 (-2 (|:| -4104 (-714)) (|:| |logand| |#1|))) (-359 |#1|)) 40 T ELT))) +(((-274 |#1|) (-10 -7 (-15 -3132 ((-2 (|:| -2519 (-714)) (|:| -4104 |#1|) (|:| |radicand| (-599 |#1|))) (-359 |#1|) (-714))) (-15 -4092 ((-599 (-2 (|:| -4104 (-714)) (|:| |logand| |#1|))) (-359 |#1|)))) (-510)) (T -274)) +((-4092 (*1 *2 *3) (-12 (-5 *3 (-359 *4)) (-4 *4 (-510)) (-5 *2 (-599 (-2 (|:| -4104 (-714)) (|:| |logand| *4)))) (-5 *1 (-274 *4)))) (-3132 (*1 *2 *3 *4) (-12 (-5 *3 (-359 *5)) (-4 *5 (-510)) (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *5) (|:| |radicand| (-599 *5)))) (-5 *1 (-274 *5)) (-5 *4 (-714))))) +((-3204 (((-599 |#2|) (-1111 |#4|)) 44 T ELT)) (-1689 ((|#3| (-499)) 47 T ELT)) (-1687 (((-1111 |#4|) (-1111 |#3|)) 30 T ELT)) (-1688 (((-1111 |#4|) (-1111 |#4|) (-499)) 66 T ELT)) (-1686 (((-1111 |#3|) (-1111 |#4|)) 21 T ELT)) (-4098 (((-599 (-714)) (-1111 |#4|) (-599 |#2|)) 41 T ELT)) (-1685 (((-1111 |#3|) (-1111 |#4|) (-599 |#2|) (-599 |#3|)) 35 T ELT))) +(((-275 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1685 ((-1111 |#3|) (-1111 |#4|) (-599 |#2|) (-599 |#3|))) (-15 -4098 ((-599 (-714)) (-1111 |#4|) (-599 |#2|))) (-15 -3204 ((-599 |#2|) (-1111 |#4|))) (-15 -1686 ((-1111 |#3|) (-1111 |#4|))) (-15 -1687 ((-1111 |#4|) (-1111 |#3|))) (-15 -1688 ((-1111 |#4|) (-1111 |#4|) (-499))) (-15 -1689 (|#3| (-499)))) (-738) (-781) (-989) (-888 |#3| |#1| |#2|)) (T -275)) +((-1689 (*1 *2 *3) (-12 (-5 *3 (-499)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-989)) (-5 *1 (-275 *4 *5 *2 *6)) (-4 *6 (-888 *2 *4 *5)))) (-1688 (*1 *2 *2 *3) (-12 (-5 *2 (-1111 *7)) (-5 *3 (-499)) (-4 *7 (-888 *6 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) (-5 *1 (-275 *4 *5 *6 *7)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-1111 *6)) (-4 *6 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-1111 *7)) (-5 *1 (-275 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-1111 *7)) (-4 *7 (-888 *6 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) (-5 *2 (-1111 *6)) (-5 *1 (-275 *4 *5 *6 *7)))) (-3204 (*1 *2 *3) (-12 (-5 *3 (-1111 *7)) (-4 *7 (-888 *6 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) (-5 *2 (-599 *5)) (-5 *1 (-275 *4 *5 *6 *7)))) (-4098 (*1 *2 *3 *4) (-12 (-5 *3 (-1111 *8)) (-5 *4 (-599 *6)) (-4 *6 (-781)) (-4 *8 (-888 *7 *5 *6)) (-4 *5 (-738)) (-4 *7 (-989)) (-5 *2 (-599 (-714))) (-5 *1 (-275 *5 *6 *7 *8)))) (-1685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1111 *9)) (-5 *4 (-599 *7)) (-5 *5 (-599 *8)) (-4 *7 (-781)) (-4 *8 (-989)) (-4 *9 (-888 *8 *6 *7)) (-4 *6 (-738)) (-5 *2 (-1111 *8)) (-5 *1 (-275 *6 *7 *8 *9))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 19 T ELT)) (-3924 (((-599 (-2 (|:| |gen| |#1|) (|:| -4093 (-499)))) $) 21 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3258 (((-714) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-2399 ((|#1| $ (-499)) NIL T ELT)) (-1692 (((-499) $ (-499)) NIL T ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2391 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1691 (($ (-1 (-499) (-499)) $) 11 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1690 (($ $ $) NIL (|has| (-499) (-737)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3827 (((-499) |#1| $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 30 (|has| |#1| (-781)) ELT)) (-3987 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3989 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ (-499)) NIL T ELT) (($ (-499) |#1|) 28 T ELT))) +(((-276 |#1|) (-13 (-21) (-675 (-499)) (-277 |#1| (-499)) (-10 -7 (IF (|has| |#1| (-781)) (-6 (-781)) |%noBranch|))) (-1041)) (T -276)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3924 (((-599 (-2 (|:| |gen| |#1|) (|:| -4093 |#2|))) $) 33 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3258 (((-714) $) 34 T ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#1| "failed") $) 38 T ELT)) (-3294 ((|#1| $) 39 T ELT)) (-2399 ((|#1| $ (-499)) 31 T ELT)) (-1692 ((|#2| $ (-499)) 32 T ELT)) (-2391 (($ (-1 |#1| |#1|) $) 28 T ELT)) (-1691 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1690 (($ $ $) 27 (|has| |#2| (-737)) ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ |#1|) 37 T ELT)) (-3827 ((|#2| |#1| $) 30 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3989 (($ $ $) 18 T ELT) (($ |#1| $) 36 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ |#2| |#1|) 35 T ELT))) +(((-277 |#1| |#2|) (-113) (-1041) (-104)) (T -277)) +((-3989 (*1 *1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-104)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-104)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-104)) (-5 *2 (-714)))) (-3924 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-104)) (-5 *2 (-599 (-2 (|:| |gen| *3) (|:| -4093 *4)))))) (-1692 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-277 *4 *2)) (-4 *4 (-1041)) (-4 *2 (-104)))) (-2399 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-277 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1041)))) (-3827 (*1 *2 *3 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-104)))) (-1691 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-104)))) (-2391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-277 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-104)))) (-1690 (*1 *1 *1 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-104)) (-4 *3 (-737))))) +(-13 (-104) (-978 |t#1|) (-10 -8 (-15 -3989 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3258 ((-714) $)) (-15 -3924 ((-599 (-2 (|:| |gen| |t#1|) (|:| -4093 |t#2|))) $)) (-15 -1692 (|t#2| $ (-499))) (-15 -2399 (|t#1| $ (-499))) (-15 -3827 (|t#2| |t#1| $)) (-15 -1691 ($ (-1 |t#2| |t#2|) $)) (-15 -2391 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-737)) (-15 -1690 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-978 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3924 (((-599 (-2 (|:| |gen| |#1|) (|:| -4093 (-714)))) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3258 (((-714) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-2399 ((|#1| $ (-499)) NIL T ELT)) (-1692 (((-714) $ (-499)) NIL T ELT)) (-2391 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1691 (($ (-1 (-714) (-714)) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1690 (($ $ $) NIL (|has| (-714) (-737)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3827 (((-714) |#1| $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-714) |#1|) NIL T ELT))) +(((-278 |#1|) (-277 |#1| (-714)) (-1041)) (T -278)) +NIL +((-3643 (($ $) 72 T ELT)) (-1694 (($ $ |#2| |#3| $) 14 T ELT)) (-1695 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1895 (((-85) $) 42 T ELT)) (-1894 ((|#2| $) 44 T ELT)) (-3606 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2938 ((|#2| $) 68 T ELT)) (-3967 (((-599 |#2|) $) 56 T ELT)) (-1693 (($ $ $ (-714)) 37 T ELT)) (-4099 (($ $ |#2|) 60 T ELT))) +(((-279 |#1| |#2| |#3|) (-10 -7 (-15 -3643 (|#1| |#1|)) (-15 -2938 (|#2| |#1|)) (-15 -3606 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1693 (|#1| |#1| |#1| (-714))) (-15 -1694 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1695 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3967 ((-599 |#2|) |#1|)) (-15 -1894 (|#2| |#1|)) (-15 -1895 ((-85) |#1|)) (-15 -3606 ((-3 |#1| #1#) |#1| |#1|)) (-15 -4099 (|#1| |#1| |#2|))) (-280 |#2| |#3|) (-989) (-737)) (T -279)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 68 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 69 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 71 (|has| |#1| (-510)) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 (-499) #1="failed") $) 106 (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) 104 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 101 T ELT)) (-3294 (((-499) $) 105 (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) 103 (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) 102 T ELT)) (-4109 (($ $) 77 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3643 (($ $) 90 (|has| |#1| (-406)) ELT)) (-1694 (($ $ |#1| |#2| $) 94 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-2536 (((-714) $) 97 T ELT)) (-4087 (((-85) $) 79 T ELT)) (-3014 (($ |#1| |#2|) 78 T ELT)) (-2941 ((|#2| $) 96 T ELT)) (-1695 (($ (-1 |#2| |#2|) $) 95 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3015 (($ $) 82 T ELT)) (-3312 ((|#1| $) 83 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1895 (((-85) $) 100 T ELT)) (-1894 ((|#1| $) 99 T ELT)) (-3606 (((-3 $ "failed") $ $) 67 (|has| |#1| (-510)) ELT) (((-3 $ "failed") $ |#1|) 92 (|has| |#1| (-510)) ELT)) (-4098 ((|#2| $) 81 T ELT)) (-2938 ((|#1| $) 91 (|has| |#1| (-406)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 66 (|has| |#1| (-510)) ELT) (($ |#1|) 64 T ELT) (($ (-361 (-499))) 74 (-3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-38 (-361 (-499))))) ELT)) (-3967 (((-599 |#1|) $) 98 T ELT)) (-3827 ((|#1| $ |#2|) 76 T ELT)) (-2823 (((-649 $) $) 65 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-1693 (($ $ $ (-714)) 93 (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 70 (|has| |#1| (-510)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 75 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-361 (-499)) $) 73 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 72 (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-280 |#1| |#2|) (-113) (-989) (-737)) (T -280)) +((-1895 (*1 *2 *1) (-12 (-4 *1 (-280 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-85)))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-280 *2 *3)) (-4 *3 (-737)) (-4 *2 (-989)))) (-3967 (*1 *2 *1) (-12 (-4 *1 (-280 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-599 *3)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-280 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-714)))) (-2941 (*1 *2 *1) (-12 (-4 *1 (-280 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) (-1695 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-280 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)))) (-1694 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-280 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)))) (-1693 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-280 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-4 *3 (-146)))) (-3606 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-280 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)) (-4 *2 (-510)))) (-2938 (*1 *2 *1) (-12 (-4 *1 (-280 *2 *3)) (-4 *3 (-737)) (-4 *2 (-989)) (-4 *2 (-406)))) (-3643 (*1 *1 *1) (-12 (-4 *1 (-280 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)) (-4 *2 (-406))))) +(-13 (-47 |t#1| |t#2|) (-366 |t#1|) (-10 -8 (-15 -1895 ((-85) $)) (-15 -1894 (|t#1| $)) (-15 -3967 ((-599 |t#1|) $)) (-15 -2536 ((-714) $)) (-15 -2941 (|t#2| $)) (-15 -1695 ($ (-1 |t#2| |t#2|) $)) (-15 -1694 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-146)) (-15 -1693 ($ $ $ (-714))) |%noBranch|) (IF (|has| |t#1| (-510)) (-15 -3606 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-406)) (PROGN (-15 -2938 (|t#1| $)) (-15 -3643 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-510)) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-38 (-361 (-499))))) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-571 $) |has| |#1| (-510)) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-244) |has| |#1| (-510)) ((-366 |#1|) . T) ((-510) |has| |#1| (-510)) ((-604 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) |has| |#1| (-510)) ((-675 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) |has| |#1| (-510)) ((-684) . T) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T) ((-991 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-996 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| |#1| (-781))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-781)) ELT)) (-2087 (((-85) (-85)) NIL T ELT)) (-3938 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-1603 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-2481 (($ $) NIL (|has| |#1| (-1041)) ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3545 (($ |#1| $) NIL (|has| |#1| (-1041)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) NIL T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) NIL T ELT) (((-499) |#1| $) NIL (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) NIL (|has| |#1| (-1041)) ELT)) (-2088 (($ $ (-499)) NIL T ELT)) (-2089 (((-714) $) NIL T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) |#1|) NIL T ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2977 (($ $ $) NIL (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3757 (($ $ $ (-499)) NIL T ELT) (($ |#1| $ (-499)) NIL T ELT)) (-2404 (($ |#1| $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2090 (($ (-599 |#1|)) NIL T ELT)) (-3951 ((|#1| $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2300 (($ $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-499) |#1|) NIL T ELT) ((|#1| $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-1604 (($ $ (-1174 (-499))) NIL T ELT) (($ $ (-499)) NIL T ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) NIL T ELT)) (-3941 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3952 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-281 |#1|) (-13 (-19 |#1|) (-236 |#1|) (-10 -8 (-15 -2090 ($ (-599 |#1|))) (-15 -2089 ((-714) $)) (-15 -2088 ($ $ (-499))) (-15 -2087 ((-85) (-85))))) (-1157)) (T -281)) +((-2090 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-281 *3)))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-281 *3)) (-4 *3 (-1157)))) (-2088 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-281 *3)) (-4 *3 (-1157)))) (-2087 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-1157))))) +((-4082 (((-85) $) 47 T ELT)) (-4079 (((-714)) 23 T ELT)) (-3470 ((|#2| $) 51 T ELT) (($ $ (-857)) 123 T ELT)) (-3258 (((-714)) 124 T ELT)) (-1890 (($ (-1207 |#2|)) 20 T ELT)) (-2112 (((-85) $) 136 T ELT)) (-3254 ((|#2| $) 53 T ELT) (($ $ (-857)) 120 T ELT)) (-2115 (((-1111 |#2|) $) NIL T ELT) (((-1111 $) $ (-857)) 111 T ELT)) (-1697 (((-1111 |#2|) $) 95 T ELT)) (-1696 (((-1111 |#2|) $) 91 T ELT) (((-3 (-1111 |#2|) "failed") $ $) 88 T ELT)) (-1698 (($ $ (-1111 |#2|)) 58 T ELT)) (-4080 (((-766 (-857))) 30 T ELT) (((-857)) 48 T ELT)) (-4061 (((-107)) 27 T ELT)) (-4098 (((-766 (-857)) $) 32 T ELT) (((-857) $) 139 T ELT)) (-1699 (($) 130 T ELT)) (-3362 (((-1207 |#2|) $) NIL T ELT) (((-647 |#2|) (-1207 $)) 42 T ELT)) (-2823 (($ $) NIL T ELT) (((-649 $) $) 100 T ELT)) (-4083 (((-85) $) 45 T ELT))) +(((-282 |#1| |#2|) (-10 -7 (-15 -2823 ((-649 |#1|) |#1|)) (-15 -3258 ((-714))) (-15 -2823 (|#1| |#1|)) (-15 -1696 ((-3 (-1111 |#2|) "failed") |#1| |#1|)) (-15 -1696 ((-1111 |#2|) |#1|)) (-15 -1697 ((-1111 |#2|) |#1|)) (-15 -1698 (|#1| |#1| (-1111 |#2|))) (-15 -2112 ((-85) |#1|)) (-15 -1699 (|#1|)) (-15 -3470 (|#1| |#1| (-857))) (-15 -3254 (|#1| |#1| (-857))) (-15 -2115 ((-1111 |#1|) |#1| (-857))) (-15 -3470 (|#2| |#1|)) (-15 -3254 (|#2| |#1|)) (-15 -4098 ((-857) |#1|)) (-15 -4080 ((-857))) (-15 -2115 ((-1111 |#2|) |#1|)) (-15 -1890 (|#1| (-1207 |#2|))) (-15 -3362 ((-647 |#2|) (-1207 |#1|))) (-15 -3362 ((-1207 |#2|) |#1|)) (-15 -4079 ((-714))) (-15 -4080 ((-766 (-857)))) (-15 -4098 ((-766 (-857)) |#1|)) (-15 -4082 ((-85) |#1|)) (-15 -4083 ((-85) |#1|)) (-15 -4061 ((-107)))) (-283 |#2|) (-318)) (T -282)) +((-4061 (*1 *2) (-12 (-4 *4 (-318)) (-5 *2 (-107)) (-5 *1 (-282 *3 *4)) (-4 *3 (-283 *4)))) (-4080 (*1 *2) (-12 (-4 *4 (-318)) (-5 *2 (-766 (-857))) (-5 *1 (-282 *3 *4)) (-4 *3 (-283 *4)))) (-4079 (*1 *2) (-12 (-4 *4 (-318)) (-5 *2 (-714)) (-5 *1 (-282 *3 *4)) (-4 *3 (-283 *4)))) (-4080 (*1 *2) (-12 (-4 *4 (-318)) (-5 *2 (-857)) (-5 *1 (-282 *3 *4)) (-4 *3 (-283 *4)))) (-3258 (*1 *2) (-12 (-4 *4 (-318)) (-5 *2 (-714)) (-5 *1 (-282 *3 *4)) (-4 *3 (-283 *4))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-4082 (((-85) $) 111 T ELT)) (-4079 (((-714)) 107 T ELT)) (-3470 ((|#1| $) 159 T ELT) (($ $ (-857)) 156 (|has| |#1| (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) 141 (|has| |#1| (-323)) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 88 T ELT)) (-4121 (((-359 $) $) 87 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3258 (((-714)) 131 (|has| |#1| (-323)) ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#1| "failed") $) 118 T ELT)) (-3294 ((|#1| $) 119 T ELT)) (-1890 (($ (-1207 |#1|)) 165 T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) 147 (|has| |#1| (-323)) ELT)) (-2683 (($ $ $) 68 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3115 (($) 128 (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-2954 (($) 143 (|has| |#1| (-323)) ELT)) (-1773 (((-85) $) 144 (|has| |#1| (-323)) ELT)) (-1864 (($ $ (-714)) 104 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT) (($ $) 103 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3873 (((-85) $) 86 T ELT)) (-3922 (((-857) $) 146 (|has| |#1| (-323)) ELT) (((-766 (-857)) $) 101 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-2528 (((-85) $) 40 T ELT)) (-2114 (($) 154 (|has| |#1| (-323)) ELT)) (-2112 (((-85) $) 153 (|has| |#1| (-323)) ELT)) (-3254 ((|#1| $) 160 T ELT) (($ $ (-857)) 157 (|has| |#1| (-323)) ELT)) (-3585 (((-649 $) $) 132 (|has| |#1| (-323)) ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 65 T ELT)) (-2115 (((-1111 |#1|) $) 164 T ELT) (((-1111 $) $ (-857)) 158 (|has| |#1| (-323)) ELT)) (-2111 (((-857) $) 129 (|has| |#1| (-323)) ELT)) (-1697 (((-1111 |#1|) $) 150 (|has| |#1| (-323)) ELT)) (-1696 (((-1111 |#1|) $) 149 (|has| |#1| (-323)) ELT) (((-3 (-1111 |#1|) "failed") $ $) 148 (|has| |#1| (-323)) ELT)) (-1698 (($ $ (-1111 |#1|)) 151 (|has| |#1| (-323)) ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 85 T ELT)) (-3586 (($) 133 (|has| |#1| (-323)) CONST)) (-2518 (($ (-857)) 130 (|has| |#1| (-323)) ELT)) (-4081 (((-85) $) 110 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2527 (($) 152 (|has| |#1| (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) 140 (|has| |#1| (-323)) ELT)) (-3882 (((-359 $) $) 89 T ELT)) (-4080 (((-766 (-857))) 108 T ELT) (((-857)) 162 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-1865 (((-714) $) 145 (|has| |#1| (-323)) ELT) (((-3 (-714) "failed") $ $) 102 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-4061 (((-107)) 116 T ELT)) (-3908 (($ $ (-714)) 136 (|has| |#1| (-323)) ELT) (($ $) 134 (|has| |#1| (-323)) ELT)) (-4098 (((-766 (-857)) $) 109 T ELT) (((-857) $) 161 T ELT)) (-3323 (((-1111 |#1|)) 163 T ELT)) (-1767 (($) 142 (|has| |#1| (-323)) ELT)) (-1699 (($) 155 (|has| |#1| (-323)) ELT)) (-3362 (((-1207 |#1|) $) 167 T ELT) (((-647 |#1|) (-1207 $)) 166 T ELT)) (-2824 (((-3 (-1207 $) "failed") (-647 $)) 139 (|has| |#1| (-323)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-361 (-499))) 81 T ELT) (($ |#1|) 117 T ELT)) (-2823 (($ $) 138 (|has| |#1| (-323)) ELT) (((-649 $) $) 100 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2113 (((-1207 $)) 169 T ELT) (((-1207 $) (-857)) 168 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-4083 (((-85) $) 112 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-4078 (($ $) 106 (|has| |#1| (-323)) ELT) (($ $ (-714)) 105 (|has| |#1| (-323)) ELT)) (-2790 (($ $ (-714)) 137 (|has| |#1| (-323)) ELT) (($ $) 135 (|has| |#1| (-323)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 80 T ELT) (($ $ |#1|) 115 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 84 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 83 T ELT) (($ (-361 (-499)) $) 82 T ELT) (($ $ |#1|) 114 T ELT) (($ |#1| $) 113 T ELT))) +(((-283 |#1|) (-113) (-318)) (T -283)) +((-2113 (*1 *2) (-12 (-4 *3 (-318)) (-5 *2 (-1207 *1)) (-4 *1 (-283 *3)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-857)) (-4 *4 (-318)) (-5 *2 (-1207 *1)) (-4 *1 (-283 *4)))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-5 *2 (-1207 *3)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-283 *4)) (-4 *4 (-318)) (-5 *2 (-647 *4)))) (-1890 (*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-318)) (-4 *1 (-283 *3)))) (-2115 (*1 *2 *1) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-5 *2 (-1111 *3)))) (-3323 (*1 *2) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-5 *2 (-1111 *3)))) (-4080 (*1 *2) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-5 *2 (-857)))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-5 *2 (-857)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-318)))) (-3470 (*1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-318)))) (-2115 (*1 *2 *1 *3) (-12 (-5 *3 (-857)) (-4 *4 (-323)) (-4 *4 (-318)) (-5 *2 (-1111 *1)) (-4 *1 (-283 *4)))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-857)) (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)))) (-3470 (*1 *1 *1 *2) (-12 (-5 *2 (-857)) (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)))) (-1699 (*1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-323)) (-4 *2 (-318)))) (-2114 (*1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-323)) (-4 *2 (-318)))) (-2112 (*1 *2 *1) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)) (-5 *2 (-85)))) (-2527 (*1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-323)) (-4 *2 (-318)))) (-1698 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 *3)) (-4 *3 (-323)) (-4 *1 (-283 *3)) (-4 *3 (-318)))) (-1697 (*1 *2 *1) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)) (-5 *2 (-1111 *3)))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)) (-5 *2 (-1111 *3)))) (-1696 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)) (-5 *2 (-1111 *3))))) +(-13 (-1226 |t#1|) (-978 |t#1|) (-10 -8 (-15 -2113 ((-1207 $))) (-15 -2113 ((-1207 $) (-857))) (-15 -3362 ((-1207 |t#1|) $)) (-15 -3362 ((-647 |t#1|) (-1207 $))) (-15 -1890 ($ (-1207 |t#1|))) (-15 -2115 ((-1111 |t#1|) $)) (-15 -3323 ((-1111 |t#1|))) (-15 -4080 ((-857))) (-15 -4098 ((-857) $)) (-15 -3254 (|t#1| $)) (-15 -3470 (|t#1| $)) (IF (|has| |t#1| (-323)) (PROGN (-6 (-305)) (-15 -2115 ((-1111 $) $ (-857))) (-15 -3254 ($ $ (-857))) (-15 -3470 ($ $ (-857))) (-15 -1699 ($)) (-15 -2114 ($)) (-15 -2112 ((-85) $)) (-15 -2527 ($)) (-15 -1698 ($ $ (-1111 |t#1|))) (-15 -1697 ((-1111 |t#1|) $)) (-15 -1696 ((-1111 |t#1|) $)) (-15 -1696 ((-3 (-1111 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 $) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) -3677 (|has| |#1| (-323)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-186 $) |has| |#1| (-323)) ((-190) |has| |#1| (-323)) ((-189) |has| |#1| (-323)) ((-200) . T) ((-244) . T) ((-261) . T) ((-1226 |#1|) . T) ((-318) . T) ((-356) -3677 (|has| |#1| (-323)) (|has| |#1| (-118))) ((-323) |has| |#1| (-323)) ((-305) |has| |#1| (-323)) ((-406) . T) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 |#1|) . T) ((-598 $) . T) ((-675 (-361 (-499))) . T) ((-675 |#1|) . T) ((-675 $) . T) ((-684) . T) ((-859) . T) ((-978 |#1|) . T) ((-991 (-361 (-499))) . T) ((-991 |#1|) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 |#1|) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1092) |has| |#1| (-323)) ((-1157) . T) ((-1162) . T) ((-1215 |#1|) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-1717 (($ (-1116) $) 101 T ELT)) (-1708 (($) 90 T ELT)) (-1700 (((-1060) (-1060)) 9 T ELT)) (-1707 (($) 91 T ELT)) (-1711 (($) 105 T ELT) (($ (-268 (-657))) 113 T ELT) (($ (-268 (-659))) 109 T ELT) (($ (-268 (-652))) 117 T ELT) (($ (-268 (-333))) 124 T ELT) (($ (-268 (-499))) 120 T ELT) (($ (-268 (-142 (-333)))) 128 T ELT)) (-1716 (($ (-1116) $) 102 T ELT)) (-1706 (($ (-599 (-797))) 92 T ELT)) (-1702 (((-1213) $) 88 T ELT)) (-1704 (((-3 (|:| |Null| #1="null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 32 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1715 (($ (-1060)) 59 T ELT)) (-1701 (((-1043) $) 29 T ELT)) (-1718 (($ (-1032 (-884 (-499))) $) 98 T ELT) (($ (-1032 (-884 (-499))) (-884 (-499)) $) 99 T ELT)) (-1714 (($ (-1060)) 100 T ELT)) (-1710 (($ (-1116) $) 130 T ELT) (($ (-1116) $ $) 131 T ELT)) (-1705 (($ (-1117) (-599 (-1117))) 89 T ELT)) (-1713 (($ (-1099)) 95 T ELT) (($ (-599 (-1099))) 93 T ELT)) (-4096 (((-797) $) 133 T ELT)) (-1703 (((-3 (|:| |nullBranch| #1#) (|:| |assignmentBranch| (-2 (|:| |var| (-1117)) (|:| |arrayIndex| (-599 (-884 (-499)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-85)) (|:| -3391 (-797)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1117)) (|:| |rand| (-797)) (|:| |ints2Floats?| (-85)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1116)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3543 (-85)) (|:| -3542 (-2 (|:| |ints2Floats?| (-85)) (|:| -3391 (-797)))))) (|:| |blockBranch| (-599 $)) (|:| |commentBranch| (-599 (-1099))) (|:| |callBranch| (-1099)) (|:| |forBranch| (-2 (|:| -1539 (-1032 (-884 (-499)))) (|:| |span| (-884 (-499))) (|:| -3371 $))) (|:| |labelBranch| (-1060)) (|:| |loopBranch| (-2 (|:| |switch| (-1116)) (|:| -3371 $))) (|:| |commonBranch| (-2 (|:| -3690 (-1117)) (|:| |contents| (-599 (-1117))))) (|:| |printBranch| (-599 (-797)))) $) 50 T ELT)) (-1712 (($ (-1099)) 203 T ELT)) (-1709 (($ (-599 $)) 129 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2705 (($ (-1117) (-1099)) 136 T ELT) (($ (-1117) (-268 (-659))) 176 T ELT) (($ (-1117) (-268 (-657))) 177 T ELT) (($ (-1117) (-268 (-652))) 178 T ELT) (($ (-1117) (-647 (-659))) 139 T ELT) (($ (-1117) (-647 (-657))) 142 T ELT) (($ (-1117) (-647 (-652))) 145 T ELT) (($ (-1117) (-1207 (-659))) 148 T ELT) (($ (-1117) (-1207 (-657))) 151 T ELT) (($ (-1117) (-1207 (-652))) 154 T ELT) (($ (-1117) (-647 (-268 (-659)))) 157 T ELT) (($ (-1117) (-647 (-268 (-657)))) 160 T ELT) (($ (-1117) (-647 (-268 (-652)))) 163 T ELT) (($ (-1117) (-1207 (-268 (-659)))) 166 T ELT) (($ (-1117) (-1207 (-268 (-657)))) 169 T ELT) (($ (-1117) (-1207 (-268 (-652)))) 172 T ELT) (($ (-1117) (-599 (-884 (-499))) (-268 (-659))) 173 T ELT) (($ (-1117) (-599 (-884 (-499))) (-268 (-657))) 174 T ELT) (($ (-1117) (-599 (-884 (-499))) (-268 (-652))) 175 T ELT) (($ (-1117) (-268 (-499))) 200 T ELT) (($ (-1117) (-268 (-333))) 201 T ELT) (($ (-1117) (-268 (-142 (-333)))) 202 T ELT) (($ (-1117) (-647 (-268 (-499)))) 181 T ELT) (($ (-1117) (-647 (-268 (-333)))) 184 T ELT) (($ (-1117) (-647 (-268 (-142 (-333))))) 187 T ELT) (($ (-1117) (-1207 (-268 (-499)))) 190 T ELT) (($ (-1117) (-1207 (-268 (-333)))) 193 T ELT) (($ (-1117) (-1207 (-268 (-142 (-333))))) 196 T ELT) (($ (-1117) (-599 (-884 (-499))) (-268 (-499))) 197 T ELT) (($ (-1117) (-599 (-884 (-499))) (-268 (-333))) 198 T ELT) (($ (-1117) (-599 (-884 (-499))) (-268 (-142 (-333)))) 199 T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-284) (-13 (-1041) (-10 -8 (-15 -1718 ($ (-1032 (-884 (-499))) $)) (-15 -1718 ($ (-1032 (-884 (-499))) (-884 (-499)) $)) (-15 -1717 ($ (-1116) $)) (-15 -1716 ($ (-1116) $)) (-15 -1715 ($ (-1060))) (-15 -1714 ($ (-1060))) (-15 -1713 ($ (-1099))) (-15 -1713 ($ (-599 (-1099)))) (-15 -1712 ($ (-1099))) (-15 -1711 ($)) (-15 -1711 ($ (-268 (-657)))) (-15 -1711 ($ (-268 (-659)))) (-15 -1711 ($ (-268 (-652)))) (-15 -1711 ($ (-268 (-333)))) (-15 -1711 ($ (-268 (-499)))) (-15 -1711 ($ (-268 (-142 (-333))))) (-15 -1710 ($ (-1116) $)) (-15 -1710 ($ (-1116) $ $)) (-15 -2705 ($ (-1117) (-1099))) (-15 -2705 ($ (-1117) (-268 (-659)))) (-15 -2705 ($ (-1117) (-268 (-657)))) (-15 -2705 ($ (-1117) (-268 (-652)))) (-15 -2705 ($ (-1117) (-647 (-659)))) (-15 -2705 ($ (-1117) (-647 (-657)))) (-15 -2705 ($ (-1117) (-647 (-652)))) (-15 -2705 ($ (-1117) (-1207 (-659)))) (-15 -2705 ($ (-1117) (-1207 (-657)))) (-15 -2705 ($ (-1117) (-1207 (-652)))) (-15 -2705 ($ (-1117) (-647 (-268 (-659))))) (-15 -2705 ($ (-1117) (-647 (-268 (-657))))) (-15 -2705 ($ (-1117) (-647 (-268 (-652))))) (-15 -2705 ($ (-1117) (-1207 (-268 (-659))))) (-15 -2705 ($ (-1117) (-1207 (-268 (-657))))) (-15 -2705 ($ (-1117) (-1207 (-268 (-652))))) (-15 -2705 ($ (-1117) (-599 (-884 (-499))) (-268 (-659)))) (-15 -2705 ($ (-1117) (-599 (-884 (-499))) (-268 (-657)))) (-15 -2705 ($ (-1117) (-599 (-884 (-499))) (-268 (-652)))) (-15 -2705 ($ (-1117) (-268 (-499)))) (-15 -2705 ($ (-1117) (-268 (-333)))) (-15 -2705 ($ (-1117) (-268 (-142 (-333))))) (-15 -2705 ($ (-1117) (-647 (-268 (-499))))) (-15 -2705 ($ (-1117) (-647 (-268 (-333))))) (-15 -2705 ($ (-1117) (-647 (-268 (-142 (-333)))))) (-15 -2705 ($ (-1117) (-1207 (-268 (-499))))) (-15 -2705 ($ (-1117) (-1207 (-268 (-333))))) (-15 -2705 ($ (-1117) (-1207 (-268 (-142 (-333)))))) (-15 -2705 ($ (-1117) (-599 (-884 (-499))) (-268 (-499)))) (-15 -2705 ($ (-1117) (-599 (-884 (-499))) (-268 (-333)))) (-15 -2705 ($ (-1117) (-599 (-884 (-499))) (-268 (-142 (-333))))) (-15 -1709 ($ (-599 $))) (-15 -1708 ($)) (-15 -1707 ($)) (-15 -1706 ($ (-599 (-797)))) (-15 -1705 ($ (-1117) (-599 (-1117)))) (-15 -1704 ((-3 (|:| |Null| #1="null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1703 ((-3 (|:| |nullBranch| #1#) (|:| |assignmentBranch| (-2 (|:| |var| (-1117)) (|:| |arrayIndex| (-599 (-884 (-499)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-85)) (|:| -3391 (-797)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1117)) (|:| |rand| (-797)) (|:| |ints2Floats?| (-85)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1116)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3543 (-85)) (|:| -3542 (-2 (|:| |ints2Floats?| (-85)) (|:| -3391 (-797)))))) (|:| |blockBranch| (-599 $)) (|:| |commentBranch| (-599 (-1099))) (|:| |callBranch| (-1099)) (|:| |forBranch| (-2 (|:| -1539 (-1032 (-884 (-499)))) (|:| |span| (-884 (-499))) (|:| -3371 $))) (|:| |labelBranch| (-1060)) (|:| |loopBranch| (-2 (|:| |switch| (-1116)) (|:| -3371 $))) (|:| |commonBranch| (-2 (|:| -3690 (-1117)) (|:| |contents| (-599 (-1117))))) (|:| |printBranch| (-599 (-797)))) $)) (-15 -1702 ((-1213) $)) (-15 -1701 ((-1043) $)) (-15 -1700 ((-1060) (-1060)))))) (T -284)) +((-1718 (*1 *1 *2 *1) (-12 (-5 *2 (-1032 (-884 (-499)))) (-5 *1 (-284)))) (-1718 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1032 (-884 (-499)))) (-5 *3 (-884 (-499))) (-5 *1 (-284)))) (-1717 (*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-284)))) (-1716 (*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-284)))) (-1715 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-284)))) (-1714 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-284)))) (-1713 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-284)))) (-1713 (*1 *1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-284)))) (-1712 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-284)))) (-1711 (*1 *1) (-5 *1 (-284))) (-1711 (*1 *1 *2) (-12 (-5 *2 (-268 (-657))) (-5 *1 (-284)))) (-1711 (*1 *1 *2) (-12 (-5 *2 (-268 (-659))) (-5 *1 (-284)))) (-1711 (*1 *1 *2) (-12 (-5 *2 (-268 (-652))) (-5 *1 (-284)))) (-1711 (*1 *1 *2) (-12 (-5 *2 (-268 (-333))) (-5 *1 (-284)))) (-1711 (*1 *1 *2) (-12 (-5 *2 (-268 (-499))) (-5 *1 (-284)))) (-1711 (*1 *1 *2) (-12 (-5 *2 (-268 (-142 (-333)))) (-5 *1 (-284)))) (-1710 (*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-284)))) (-1710 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1099)) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-659))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-657))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-652))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-659))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-657))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-652))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-659))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-657))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-652))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-659)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-657)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-652)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-659)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-657)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-652)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-659))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-657))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-652))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-499))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-333))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-142 (-333)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-499)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-333)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-142 (-333))))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-499)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-333)))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-142 (-333))))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-499))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-333))) (-5 *1 (-284)))) (-2705 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-142 (-333)))) (-5 *1 (-284)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-5 *1 (-284)))) (-1708 (*1 *1) (-5 *1 (-284))) (-1707 (*1 *1) (-5 *1 (-284))) (-1706 (*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-284)))) (-1705 (*1 *1 *2 *3) (-12 (-5 *3 (-599 (-1117))) (-5 *2 (-1117)) (-5 *1 (-284)))) (-1704 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-284)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1117)) (|:| |arrayIndex| (-599 (-884 (-499)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-85)) (|:| -3391 (-797)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1117)) (|:| |rand| (-797)) (|:| |ints2Floats?| (-85)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1116)) (|:| |thenClause| (-284)) (|:| |elseClause| (-284)))) (|:| |returnBranch| (-2 (|:| -3543 (-85)) (|:| -3542 (-2 (|:| |ints2Floats?| (-85)) (|:| -3391 (-797)))))) (|:| |blockBranch| (-599 (-284))) (|:| |commentBranch| (-599 (-1099))) (|:| |callBranch| (-1099)) (|:| |forBranch| (-2 (|:| -1539 (-1032 (-884 (-499)))) (|:| |span| (-884 (-499))) (|:| -3371 (-284)))) (|:| |labelBranch| (-1060)) (|:| |loopBranch| (-2 (|:| |switch| (-1116)) (|:| -3371 (-284)))) (|:| |commonBranch| (-2 (|:| -3690 (-1117)) (|:| |contents| (-599 (-1117))))) (|:| |printBranch| (-599 (-797))))) (-5 *1 (-284)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-284)))) (-1701 (*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-284)))) (-1700 (*1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-284))))) +((-2687 (((-85) $ $) NIL T ELT)) (-1719 (((-85) $) 13 T ELT)) (-3788 (($ |#1|) 10 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3784 (($ |#1|) 12 T ELT)) (-4096 (((-797) $) 19 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2337 ((|#1| $) 14 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 21 T ELT))) +(((-285 |#1|) (-13 (-781) (-10 -8 (-15 -3788 ($ |#1|)) (-15 -3784 ($ |#1|)) (-15 -1719 ((-85) $)) (-15 -2337 (|#1| $)))) (-781)) (T -285)) +((-3788 (*1 *1 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-781)))) (-3784 (*1 *1 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-781)))) (-1719 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-285 *3)) (-4 *3 (-781)))) (-2337 (*1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-781))))) +((-1720 (((-284) (-1117) (-884 (-499))) 23 T ELT)) (-1721 (((-284) (-1117) (-884 (-499))) 27 T ELT)) (-2434 (((-284) (-1117) (-1032 (-884 (-499))) (-1032 (-884 (-499)))) 26 T ELT) (((-284) (-1117) (-884 (-499)) (-884 (-499))) 24 T ELT)) (-1722 (((-284) (-1117) (-884 (-499))) 31 T ELT))) +(((-286) (-10 -7 (-15 -1720 ((-284) (-1117) (-884 (-499)))) (-15 -2434 ((-284) (-1117) (-884 (-499)) (-884 (-499)))) (-15 -2434 ((-284) (-1117) (-1032 (-884 (-499))) (-1032 (-884 (-499))))) (-15 -1721 ((-284) (-1117) (-884 (-499)))) (-15 -1722 ((-284) (-1117) (-884 (-499)))))) (T -286)) +((-1722 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-884 (-499))) (-5 *2 (-284)) (-5 *1 (-286)))) (-1721 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-884 (-499))) (-5 *2 (-284)) (-5 *1 (-286)))) (-2434 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-1032 (-884 (-499)))) (-5 *2 (-284)) (-5 *1 (-286)))) (-2434 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-884 (-499))) (-5 *2 (-284)) (-5 *1 (-286)))) (-1720 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-884 (-499))) (-5 *2 (-284)) (-5 *1 (-286))))) +((-2687 (((-85) $ $) NIL T ELT)) (-1723 (((-460) $) 20 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1724 (((-896 (-714)) $) 18 T ELT)) (-1726 (((-208) $) 7 T ELT)) (-4096 (((-797) $) 26 T ELT)) (-2307 (((-896 (-158 (-112))) $) 16 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-1725 (((-599 (-807 (-1122) (-714))) $) 12 T ELT)) (-3174 (((-85) $ $) 22 T ELT))) +(((-287) (-13 (-1041) (-10 -8 (-15 -1726 ((-208) $)) (-15 -1725 ((-599 (-807 (-1122) (-714))) $)) (-15 -1724 ((-896 (-714)) $)) (-15 -2307 ((-896 (-158 (-112))) $)) (-15 -1723 ((-460) $))))) (T -287)) +((-1726 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-287)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-599 (-807 (-1122) (-714)))) (-5 *1 (-287)))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-896 (-714))) (-5 *1 (-287)))) (-2307 (*1 *2 *1) (-12 (-5 *2 (-896 (-158 (-112)))) (-5 *1 (-287)))) (-1723 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-287))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3992 (($ $) 33 T ELT)) (-1729 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1727 (((-1207 |#4|) $) 132 T ELT)) (-2071 (((-367 |#2| (-361 |#2|) |#3| |#4|) $) 31 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (((-3 |#4| #1#) $) 36 T ELT)) (-1728 (((-1207 |#4|) $) 124 T ELT)) (-1730 (($ (-367 |#2| (-361 |#2|) |#3| |#4|)) 41 T ELT) (($ |#4|) 43 T ELT) (($ |#1| |#1|) 45 T ELT) (($ |#1| |#1| (-499)) 47 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 49 T ELT)) (-3575 (((-2 (|:| -2442 (-367 |#2| (-361 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39 T ELT)) (-4096 (((-797) $) 17 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 14 T CONST)) (-3174 (((-85) $ $) 20 T ELT)) (-3987 (($ $) 27 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 25 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 23 T ELT))) +(((-288 |#1| |#2| |#3| |#4|) (-13 (-291 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1728 ((-1207 |#4|) $)) (-15 -1727 ((-1207 |#4|) $)))) (-318) (-1183 |#1|) (-1183 (-361 |#2|)) (-297 |#1| |#2| |#3|)) (T -288)) +((-1728 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-1207 *6)) (-5 *1 (-288 *3 *4 *5 *6)) (-4 *6 (-297 *3 *4 *5)))) (-1727 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-1207 *6)) (-5 *1 (-288 *3 *4 *5 *6)) (-4 *6 (-297 *3 *4 *5))))) +((-4108 (((-288 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-288 |#1| |#2| |#3| |#4|)) 33 T ELT))) +(((-289 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4108 ((-288 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-288 |#1| |#2| |#3| |#4|)))) (-318) (-1183 |#1|) (-1183 (-361 |#2|)) (-297 |#1| |#2| |#3|) (-318) (-1183 |#5|) (-1183 (-361 |#6|)) (-297 |#5| |#6| |#7|)) (T -289)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-288 *5 *6 *7 *8)) (-4 *5 (-318)) (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) (-4 *8 (-297 *5 *6 *7)) (-4 *9 (-318)) (-4 *10 (-1183 *9)) (-4 *11 (-1183 (-361 *10))) (-5 *2 (-288 *9 *10 *11 *12)) (-5 *1 (-289 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-297 *9 *10 *11))))) +((-1729 (((-85) $) 14 T ELT))) +(((-290 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1729 ((-85) |#1|))) (-291 |#2| |#3| |#4| |#5|) (-318) (-1183 |#2|) (-1183 (-361 |#3|)) (-297 |#2| |#3| |#4|)) (T -290)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3992 (($ $) 34 T ELT)) (-1729 (((-85) $) 33 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2071 (((-367 |#2| (-361 |#2|) |#3| |#4|) $) 40 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2527 (((-3 |#4| "failed") $) 32 T ELT)) (-1730 (($ (-367 |#2| (-361 |#2|) |#3| |#4|)) 39 T ELT) (($ |#4|) 38 T ELT) (($ |#1| |#1|) 37 T ELT) (($ |#1| |#1| (-499)) 36 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 31 T ELT)) (-3575 (((-2 (|:| -2442 (-367 |#2| (-361 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 35 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT))) +(((-291 |#1| |#2| |#3| |#4|) (-113) (-318) (-1183 |t#1|) (-1183 (-361 |t#2|)) (-297 |t#1| |t#2| |t#3|)) (T -291)) +((-2071 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5 *6)) (-4 *3 (-318)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 *3 *4 *5)) (-5 *2 (-367 *4 (-361 *4) *5 *6)))) (-1730 (*1 *1 *2) (-12 (-5 *2 (-367 *4 (-361 *4) *5 *6)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 *3 *4 *5)) (-4 *3 (-318)) (-4 *1 (-291 *3 *4 *5 *6)))) (-1730 (*1 *1 *2) (-12 (-4 *3 (-318)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-4 *1 (-291 *3 *4 *5 *2)) (-4 *2 (-297 *3 *4 *5)))) (-1730 (*1 *1 *2 *2) (-12 (-4 *2 (-318)) (-4 *3 (-1183 *2)) (-4 *4 (-1183 (-361 *3))) (-4 *1 (-291 *2 *3 *4 *5)) (-4 *5 (-297 *2 *3 *4)))) (-1730 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-499)) (-4 *2 (-318)) (-4 *4 (-1183 *2)) (-4 *5 (-1183 (-361 *4))) (-4 *1 (-291 *2 *4 *5 *6)) (-4 *6 (-297 *2 *4 *5)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5 *6)) (-4 *3 (-318)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 *3 *4 *5)) (-5 *2 (-2 (|:| -2442 (-367 *4 (-361 *4) *5 *6)) (|:| |principalPart| *6))))) (-3992 (*1 *1 *1) (-12 (-4 *1 (-291 *2 *3 *4 *5)) (-4 *2 (-318)) (-4 *3 (-1183 *2)) (-4 *4 (-1183 (-361 *3))) (-4 *5 (-297 *2 *3 *4)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5 *6)) (-4 *3 (-318)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 *3 *4 *5)) (-5 *2 (-85)))) (-2527 (*1 *2 *1) (|partial| -12 (-4 *1 (-291 *3 *4 *5 *2)) (-4 *3 (-318)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-4 *2 (-297 *3 *4 *5)))) (-1730 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-318)) (-4 *3 (-1183 *4)) (-4 *5 (-1183 (-361 *3))) (-4 *1 (-291 *4 *3 *5 *2)) (-4 *2 (-297 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -2071 ((-367 |t#2| (-361 |t#2|) |t#3| |t#4|) $)) (-15 -1730 ($ (-367 |t#2| (-361 |t#2|) |t#3| |t#4|))) (-15 -1730 ($ |t#4|)) (-15 -1730 ($ |t#1| |t#1|)) (-15 -1730 ($ |t#1| |t#1| (-499))) (-15 -3575 ((-2 (|:| -2442 (-367 |t#2| (-361 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3992 ($ $)) (-15 -1729 ((-85) $)) (-15 -2527 ((-3 |t#4| "failed") $)) (-15 -1730 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-1041) . T) ((-1157) . T)) +((-3918 (($ $ (-1117) |#2|) NIL T ELT) (($ $ (-599 (-1117)) (-599 |#2|)) 20 T ELT) (($ $ (-599 (-247 |#2|))) 15 T ELT) (($ $ (-247 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL T ELT)) (-3950 (($ $ |#2|) 11 T ELT))) +(((-292 |#1| |#2|) (-10 -7 (-15 -3950 (|#1| |#1| |#2|)) (-15 -3918 (|#1| |#1| (-599 |#2|) (-599 |#2|))) (-15 -3918 (|#1| |#1| |#2| |#2|)) (-15 -3918 (|#1| |#1| (-247 |#2|))) (-15 -3918 (|#1| |#1| (-599 (-247 |#2|)))) (-15 -3918 (|#1| |#1| (-599 (-1117)) (-599 |#2|))) (-15 -3918 (|#1| |#1| (-1117) |#2|))) (-293 |#2|) (-1041)) (T -292)) +NIL +((-4108 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3918 (($ $ (-1117) |#1|) 17 (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) 16 (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-599 (-247 |#1|))) 15 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-247 |#1|)) 14 (|has| |#1| (-263 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 12 (|has| |#1| (-263 |#1|)) ELT)) (-3950 (($ $ |#1|) 11 (|has| |#1| (-240 |#1| |#1|)) ELT))) +(((-293 |#1|) (-113) (-1041)) (T -293)) +((-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3)) (-4 *3 (-1041))))) +(-13 (-10 -8 (-15 -4108 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-240 |t#1| |t#1|)) (-6 (-240 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-263 |t#1|)) (-6 (-263 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-468 (-1117) |t#1|)) (-6 (-468 (-1117) |t#1|)) |%noBranch|))) +(((-240 |#1| $) |has| |#1| (-240 |#1| |#1|)) ((-263 |#1|) |has| |#1| (-263 |#1|)) ((-468 (-1117) |#1|) |has| |#1| (-468 (-1117) |#1|)) ((-468 |#1| |#1|) |has| |#1| (-263 |#1|)) ((-1157) |has| |#1| (-240 |#1| |#1|))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-1117)) $) NIL T ELT)) (-1731 (((-85)) 96 T ELT) (((-85) (-85)) 97 T ELT)) (-1633 (((-599 (-566 $)) $) NIL T ELT)) (-3632 (($ $) NIL T ELT)) (-3789 (($ $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1637 (($ $ (-247 $)) NIL T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-599 (-566 $)) (-599 $)) NIL T ELT)) (-3158 (($ $) NIL T ELT)) (-3630 (($ $) NIL T ELT)) (-3788 (($ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-566 $) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 $ #1#) (-268 |#3|)) 76 T ELT) (((-3 $ #1#) (-1117)) 103 T ELT) (((-3 $ #1#) (-268 (-499))) 64 (|has| |#3| (-978 (-499))) ELT) (((-3 $ #1#) (-361 (-884 (-499)))) 70 (|has| |#3| (-978 (-499))) ELT) (((-3 $ #1#) (-884 (-499))) 65 (|has| |#3| (-978 (-499))) ELT) (((-3 $ #1#) (-268 (-333))) 94 (|has| |#3| (-978 (-333))) ELT) (((-3 $ #1#) (-361 (-884 (-333)))) 88 (|has| |#3| (-978 (-333))) ELT) (((-3 $ #1#) (-884 (-333))) 83 (|has| |#3| (-978 (-333))) ELT)) (-3294 (((-566 $) $) NIL T ELT) ((|#3| $) NIL T ELT) (($ (-268 |#3|)) 77 T ELT) (($ (-1117)) 104 T ELT) (($ (-268 (-499))) 66 (|has| |#3| (-978 (-499))) ELT) (($ (-361 (-884 (-499)))) 71 (|has| |#3| (-978 (-499))) ELT) (($ (-884 (-499))) 67 (|has| |#3| (-978 (-499))) ELT) (($ (-268 (-333))) 95 (|has| |#3| (-978 (-333))) ELT) (($ (-361 (-884 (-333)))) 89 (|has| |#3| (-978 (-333))) ELT) (($ (-884 (-333))) 85 (|has| |#3| (-978 (-333))) ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3777 (($) 101 T ELT)) (-2692 (($ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1632 (((-599 (-86)) $) NIL T ELT)) (-3743 (((-86) (-86)) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2794 (((-85) $) NIL (|has| $ (-978 (-499))) ELT)) (-1630 (((-1111 $) (-566 $)) NIL (|has| $ (-989)) ELT)) (-4108 (($ (-1 $ $) (-566 $)) NIL T ELT)) (-1635 (((-3 (-566 $) #1#) $) NIL T ELT)) (-1835 (($ $) 99 T ELT)) (-4092 (($ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1634 (((-599 (-566 $)) $) NIL T ELT)) (-2336 (($ (-86) $) 98 T ELT) (($ (-86) (-599 $)) NIL T ELT)) (-2752 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1117)) NIL T ELT)) (-2722 (((-714) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1631 (((-85) $ $) NIL T ELT) (((-85) $ (-1117)) NIL T ELT)) (-4093 (($ $) NIL T ELT)) (-2795 (((-85) $) NIL (|has| $ (-978 (-499))) ELT)) (-3918 (($ $ (-566 $) $) NIL T ELT) (($ $ (-599 (-566 $)) (-599 $)) NIL T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ $))) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ (-599 $)))) NIL T ELT) (($ $ (-1117) (-1 $ (-599 $))) NIL T ELT) (($ $ (-1117) (-1 $ $)) NIL T ELT) (($ $ (-599 (-86)) (-599 (-1 $ $))) NIL T ELT) (($ $ (-599 (-86)) (-599 (-1 $ (-599 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-599 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-3950 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-599 $)) NIL T ELT)) (-1636 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3908 (($ $ (-1117)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT)) (-3323 (($ $) NIL (|has| $ (-989)) ELT)) (-3631 (($ $) NIL T ELT)) (-3784 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-566 $)) NIL T ELT) (($ |#3|) NIL T ELT) (($ (-499)) NIL T ELT) (((-268 |#3|) $) 102 T ELT)) (-3248 (((-714)) NIL T CONST)) (-2709 (($ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-2355 (((-85) (-86)) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3626 (($ $) NIL T ELT)) (-3624 (($ $) NIL T ELT)) (-3625 (($ $) NIL T ELT)) (-3523 (($ $) NIL T ELT)) (-2779 (($) 100 T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1117)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-714)) NIL T ELT) (($ $ (-857)) NIL T ELT)) (* (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-857) $) NIL T ELT))) +(((-294 |#1| |#2| |#3|) (-13 (-252) (-38 |#3|) (-978 |#3|) (-836 (-1117)) (-10 -8 (-15 -3294 ($ (-268 |#3|))) (-15 -3295 ((-3 $ #1="failed") (-268 |#3|))) (-15 -3294 ($ (-1117))) (-15 -3295 ((-3 $ #1#) (-1117))) (-15 -4096 ((-268 |#3|) $)) (IF (|has| |#3| (-978 (-499))) (PROGN (-15 -3294 ($ (-268 (-499)))) (-15 -3295 ((-3 $ #1#) (-268 (-499)))) (-15 -3294 ($ (-361 (-884 (-499))))) (-15 -3295 ((-3 $ #1#) (-361 (-884 (-499))))) (-15 -3294 ($ (-884 (-499)))) (-15 -3295 ((-3 $ #1#) (-884 (-499))))) |%noBranch|) (IF (|has| |#3| (-978 (-333))) (PROGN (-15 -3294 ($ (-268 (-333)))) (-15 -3295 ((-3 $ #1#) (-268 (-333)))) (-15 -3294 ($ (-361 (-884 (-333))))) (-15 -3295 ((-3 $ #1#) (-361 (-884 (-333))))) (-15 -3294 ($ (-884 (-333)))) (-15 -3295 ((-3 $ #1#) (-884 (-333))))) |%noBranch|) (-15 -3523 ($ $)) (-15 -3158 ($ $)) (-15 -4093 ($ $)) (-15 -4092 ($ $)) (-15 -1835 ($ $)) (-15 -3788 ($ $)) (-15 -3784 ($ $)) (-15 -3789 ($ $)) (-15 -3624 ($ $)) (-15 -3625 ($ $)) (-15 -3626 ($ $)) (-15 -3630 ($ $)) (-15 -3631 ($ $)) (-15 -3632 ($ $)) (-15 -3777 ($)) (-15 -3204 ((-599 (-1117)) $)) (-15 -1731 ((-85))) (-15 -1731 ((-85) (-85))))) (-599 (-1117)) (-599 (-1117)) (-343)) (T -294)) +((-3294 (*1 *1 *2) (-12 (-5 *2 (-268 *5)) (-4 *5 (-343)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-268 *5)) (-4 *5 (-343)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 *2)) (-14 *4 (-599 *2)) (-4 *5 (-343)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 *2)) (-14 *4 (-599 *2)) (-4 *5 (-343)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-268 *5)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-268 (-499))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-499))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-268 (-499))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-499))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-361 (-884 (-499)))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-499))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-361 (-884 (-499)))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-499))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-884 (-499))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-499))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-884 (-499))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-499))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-268 (-333))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-333))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-268 (-333))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-333))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-361 (-884 (-333)))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-333))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-361 (-884 (-333)))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-333))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-884 (-333))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-333))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-884 (-333))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-333))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-3523 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3158 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-4093 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-4092 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-1835 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3788 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3784 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3789 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3624 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3625 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3626 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3630 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3631 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3632 (*1 *1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3777 (*1 *1) (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) (-4 *4 (-343)))) (-3204 (*1 *2 *1) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-294 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-343)))) (-1731 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) (-1731 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 (((-844 |#1|) $) NIL T ELT) (($ $ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-844 |#1|) #1#) $) NIL T ELT)) (-3294 (((-844 |#1|) $) NIL T ELT)) (-1890 (($ (-1207 (-844 |#1|))) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1773 (((-85) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1864 (($ $ (-714)) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT) (($ $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-857) $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-766 (-857)) $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2112 (((-85) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3254 (((-844 |#1|) $) NIL T ELT) (($ $ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3585 (((-649 $) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 (-844 |#1|)) $) NIL T ELT) (((-1111 $) $ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2111 (((-857) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1697 (((-1111 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1696 (((-1111 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-3 (-1111 (-844 |#1|)) #1#) $ $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1698 (($ $ (-1111 (-844 |#1|))) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-844 |#1|) (-323)) CONST)) (-2518 (($ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-4081 (((-85) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-766 (-857))) NIL T ELT) (((-857)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-714) $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-3 (-714) #1#) $ $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $ (-714)) NIL (|has| (-844 |#1|) (-323)) ELT) (($ $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-4098 (((-766 (-857)) $) NIL T ELT) (((-857) $) NIL T ELT)) (-3323 (((-1111 (-844 |#1|))) NIL T ELT)) (-1767 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1699 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3362 (((-1207 (-844 |#1|)) $) NIL T ELT) (((-647 (-844 |#1|)) (-1207 $)) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-844 |#1|)) NIL T ELT)) (-2823 (($ $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-649 $) $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT) (((-1207 $) (-857)) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-4078 (($ $) NIL (|has| (-844 |#1|) (-323)) ELT) (($ $ (-714)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2790 (($ $ (-714)) NIL (|has| (-844 |#1|) (-323)) ELT) (($ $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT) (($ $ (-844 |#1|)) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ (-844 |#1|)) NIL T ELT) (($ (-844 |#1|) $) NIL T ELT))) +(((-295 |#1| |#2|) (-283 (-844 |#1|)) (-857) (-857)) (T -295)) +NIL +((-1740 (((-2 (|:| |num| (-1207 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1890 (($ (-1207 (-361 |#3|)) (-1207 $)) NIL T ELT) (($ (-1207 (-361 |#3|))) NIL T ELT) (($ (-1207 |#3|) |#3|) 172 T ELT)) (-1745 (((-1207 $) (-1207 $)) 156 T ELT)) (-1732 (((-599 (-599 |#2|))) 126 T ELT)) (-1757 (((-85) |#2| |#2|) 76 T ELT)) (-3643 (($ $) 148 T ELT)) (-3517 (((-714)) 171 T ELT)) (-1746 (((-1207 $) (-1207 $)) 219 T ELT)) (-1733 (((-599 (-884 |#2|)) (-1117)) 115 T ELT)) (-1749 (((-85) $) 168 T ELT)) (-1748 (((-85) $) 27 T ELT) (((-85) $ |#2|) 31 T ELT) (((-85) $ |#3|) 223 T ELT)) (-1735 (((-3 |#3| #1="failed")) 52 T ELT)) (-1759 (((-714)) 183 T ELT)) (-3950 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1736 (((-3 |#3| #1#)) 71 T ELT)) (-3908 (($ $ (-1 (-361 |#3|) (-361 |#3|))) NIL T ELT) (($ $ (-1 (-361 |#3|) (-361 |#3|)) (-714)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT)) (-1747 (((-1207 $) (-1207 $)) 162 T ELT)) (-1734 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1758 (((-85)) 34 T ELT))) +(((-296 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3908 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1| (-1117))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -1732 ((-599 (-599 |#2|)))) (-15 -1733 ((-599 (-884 |#2|)) (-1117))) (-15 -1734 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1735 ((-3 |#3| #1="failed"))) (-15 -1736 ((-3 |#3| #1#))) (-15 -3950 (|#2| |#1| |#2| |#2|)) (-15 -3643 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1748 ((-85) |#1| |#3|)) (-15 -1748 ((-85) |#1| |#2|)) (-15 -1890 (|#1| (-1207 |#3|) |#3|)) (-15 -1740 ((-2 (|:| |num| (-1207 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1745 ((-1207 |#1|) (-1207 |#1|))) (-15 -1746 ((-1207 |#1|) (-1207 |#1|))) (-15 -1747 ((-1207 |#1|) (-1207 |#1|))) (-15 -1748 ((-85) |#1|)) (-15 -1749 ((-85) |#1|)) (-15 -1757 ((-85) |#2| |#2|)) (-15 -1758 ((-85))) (-15 -1759 ((-714))) (-15 -3517 ((-714))) (-15 -3908 (|#1| |#1| (-1 (-361 |#3|) (-361 |#3|)) (-714))) (-15 -3908 (|#1| |#1| (-1 (-361 |#3|) (-361 |#3|)))) (-15 -1890 (|#1| (-1207 (-361 |#3|)))) (-15 -1890 (|#1| (-1207 (-361 |#3|)) (-1207 |#1|)))) (-297 |#2| |#3| |#4|) (-1162) (-1183 |#2|) (-1183 (-361 |#3|))) (T -296)) +((-3517 (*1 *2) (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) (-5 *2 (-714)) (-5 *1 (-296 *3 *4 *5 *6)) (-4 *3 (-297 *4 *5 *6)))) (-1759 (*1 *2) (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) (-5 *2 (-714)) (-5 *1 (-296 *3 *4 *5 *6)) (-4 *3 (-297 *4 *5 *6)))) (-1758 (*1 *2) (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) (-5 *2 (-85)) (-5 *1 (-296 *3 *4 *5 *6)) (-4 *3 (-297 *4 *5 *6)))) (-1757 (*1 *2 *3 *3) (-12 (-4 *3 (-1162)) (-4 *5 (-1183 *3)) (-4 *6 (-1183 (-361 *5))) (-5 *2 (-85)) (-5 *1 (-296 *4 *3 *5 *6)) (-4 *4 (-297 *3 *5 *6)))) (-1736 (*1 *2) (|partial| -12 (-4 *4 (-1162)) (-4 *5 (-1183 (-361 *2))) (-4 *2 (-1183 *4)) (-5 *1 (-296 *3 *4 *2 *5)) (-4 *3 (-297 *4 *2 *5)))) (-1735 (*1 *2) (|partial| -12 (-4 *4 (-1162)) (-4 *5 (-1183 (-361 *2))) (-4 *2 (-1183 *4)) (-5 *1 (-296 *3 *4 *2 *5)) (-4 *3 (-297 *4 *2 *5)))) (-1733 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *5 (-1162)) (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) (-5 *2 (-599 (-884 *5))) (-5 *1 (-296 *4 *5 *6 *7)) (-4 *4 (-297 *5 *6 *7)))) (-1732 (*1 *2) (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) (-5 *2 (-599 (-599 *4))) (-5 *1 (-296 *3 *4 *5 *6)) (-4 *3 (-297 *4 *5 *6))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1740 (((-2 (|:| |num| (-1207 |#2|)) (|:| |den| |#2|)) $) 222 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 111 (|has| (-361 |#2|) (-318)) ELT)) (-2164 (($ $) 112 (|has| (-361 |#2|) (-318)) ELT)) (-2162 (((-85) $) 114 (|has| (-361 |#2|) (-318)) ELT)) (-1880 (((-647 (-361 |#2|)) (-1207 $)) 58 T ELT) (((-647 (-361 |#2|))) 74 T ELT)) (-3470 (((-361 |#2|) $) 64 T ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) 164 (|has| (-361 |#2|) (-305)) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 131 (|has| (-361 |#2|) (-318)) ELT)) (-4121 (((-359 $) $) 132 (|has| (-361 |#2|) (-318)) ELT)) (-1678 (((-85) $ $) 122 (|has| (-361 |#2|) (-318)) ELT)) (-3258 (((-714)) 105 (|has| (-361 |#2|) (-323)) ELT)) (-1754 (((-85)) 239 T ELT)) (-1753 (((-85) |#1|) 238 T ELT) (((-85) |#2|) 237 T ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 (-499) #1="failed") $) 191 (|has| (-361 |#2|) (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) 189 (|has| (-361 |#2|) (-978 (-361 (-499)))) ELT) (((-3 (-361 |#2|) #1#) $) 186 T ELT)) (-3294 (((-499) $) 190 (|has| (-361 |#2|) (-978 (-499))) ELT) (((-361 (-499)) $) 188 (|has| (-361 |#2|) (-978 (-361 (-499)))) ELT) (((-361 |#2|) $) 187 T ELT)) (-1890 (($ (-1207 (-361 |#2|)) (-1207 $)) 60 T ELT) (($ (-1207 (-361 |#2|))) 77 T ELT) (($ (-1207 |#2|) |#2|) 221 T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| (-361 |#2|) (-305)) ELT)) (-2683 (($ $ $) 126 (|has| (-361 |#2|) (-318)) ELT)) (-1879 (((-647 (-361 |#2|)) $ (-1207 $)) 65 T ELT) (((-647 (-361 |#2|)) $) 72 T ELT)) (-2380 (((-647 (-499)) (-647 $)) 183 (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 182 (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-361 |#2|))) (|:| |vec| (-1207 (-361 |#2|)))) (-647 $) (-1207 $)) 181 T ELT) (((-647 (-361 |#2|)) (-647 $)) 180 T ELT)) (-1745 (((-1207 $) (-1207 $)) 227 T ELT)) (-3992 (($ |#3|) 175 T ELT) (((-3 $ "failed") (-361 |#3|)) 172 (|has| (-361 |#2|) (-318)) ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-1732 (((-599 (-599 |#1|))) 208 (|has| |#1| (-323)) ELT)) (-1757 (((-85) |#1| |#1|) 243 T ELT)) (-3231 (((-857)) 66 T ELT)) (-3115 (($) 108 (|has| (-361 |#2|) (-323)) ELT)) (-1752 (((-85)) 236 T ELT)) (-1751 (((-85) |#1|) 235 T ELT) (((-85) |#2|) 234 T ELT)) (-2682 (($ $ $) 125 (|has| (-361 |#2|) (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 120 (|has| (-361 |#2|) (-318)) ELT)) (-3643 (($ $) 214 T ELT)) (-2954 (($) 166 (|has| (-361 |#2|) (-305)) ELT)) (-1773 (((-85) $) 167 (|has| (-361 |#2|) (-305)) ELT)) (-1864 (($ $ (-714)) 158 (|has| (-361 |#2|) (-305)) ELT) (($ $) 157 (|has| (-361 |#2|) (-305)) ELT)) (-3873 (((-85) $) 133 (|has| (-361 |#2|) (-318)) ELT)) (-3922 (((-857) $) 169 (|has| (-361 |#2|) (-305)) ELT) (((-766 (-857)) $) 155 (|has| (-361 |#2|) (-305)) ELT)) (-2528 (((-85) $) 40 T ELT)) (-3517 (((-714)) 246 T ELT)) (-1746 (((-1207 $) (-1207 $)) 228 T ELT)) (-3254 (((-361 |#2|) $) 63 T ELT)) (-1733 (((-599 (-884 |#1|)) (-1117)) 209 (|has| |#1| (-318)) ELT)) (-3585 (((-649 $) $) 159 (|has| (-361 |#2|) (-305)) ELT)) (-1675 (((-3 (-599 $) #2="failed") (-599 $) $) 129 (|has| (-361 |#2|) (-318)) ELT)) (-2115 ((|#3| $) 56 (|has| (-361 |#2|) (-318)) ELT)) (-2111 (((-857) $) 107 (|has| (-361 |#2|) (-323)) ELT)) (-3200 ((|#3| $) 173 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 185 (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 184 (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-361 |#2|))) (|:| |vec| (-1207 (-361 |#2|)))) (-1207 $) $) 179 T ELT) (((-647 (-361 |#2|)) (-1207 $)) 178 T ELT)) (-1993 (($ (-599 $)) 118 (|has| (-361 |#2|) (-318)) ELT) (($ $ $) 117 (|has| (-361 |#2|) (-318)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1741 (((-647 (-361 |#2|))) 223 T ELT)) (-1743 (((-647 (-361 |#2|))) 225 T ELT)) (-2601 (($ $) 134 (|has| (-361 |#2|) (-318)) ELT)) (-1738 (($ (-1207 |#2|) |#2|) 219 T ELT)) (-1742 (((-647 (-361 |#2|))) 224 T ELT)) (-1744 (((-647 (-361 |#2|))) 226 T ELT)) (-1737 (((-2 (|:| |num| (-647 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 218 T ELT)) (-1739 (((-2 (|:| |num| (-1207 |#2|)) (|:| |den| |#2|)) $) 220 T ELT)) (-1750 (((-1207 $)) 232 T ELT)) (-4068 (((-1207 $)) 233 T ELT)) (-1749 (((-85) $) 231 T ELT)) (-1748 (((-85) $) 230 T ELT) (((-85) $ |#1|) 217 T ELT) (((-85) $ |#2|) 216 T ELT)) (-3586 (($) 160 (|has| (-361 |#2|) (-305)) CONST)) (-2518 (($ (-857)) 106 (|has| (-361 |#2|) (-323)) ELT)) (-1735 (((-3 |#2| "failed")) 211 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1759 (((-714)) 245 T ELT)) (-2527 (($) 177 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 119 (|has| (-361 |#2|) (-318)) ELT)) (-3282 (($ (-599 $)) 116 (|has| (-361 |#2|) (-318)) ELT) (($ $ $) 115 (|has| (-361 |#2|) (-318)) ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) 163 (|has| (-361 |#2|) (-305)) ELT)) (-3882 (((-359 $) $) 130 (|has| (-361 |#2|) (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| (-361 |#2|) (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 127 (|has| (-361 |#2|) (-318)) ELT)) (-3606 (((-3 $ "failed") $ $) 110 (|has| (-361 |#2|) (-318)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 121 (|has| (-361 |#2|) (-318)) ELT)) (-1677 (((-714) $) 123 (|has| (-361 |#2|) (-318)) ELT)) (-3950 ((|#1| $ |#1| |#1|) 213 T ELT)) (-1736 (((-3 |#2| "failed")) 212 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 124 (|has| (-361 |#2|) (-318)) ELT)) (-3907 (((-361 |#2|) (-1207 $)) 59 T ELT) (((-361 |#2|)) 73 T ELT)) (-1865 (((-714) $) 168 (|has| (-361 |#2|) (-305)) ELT) (((-3 (-714) "failed") $ $) 156 (|has| (-361 |#2|) (-305)) ELT)) (-3908 (($ $ (-1 (-361 |#2|) (-361 |#2|))) 142 (|has| (-361 |#2|) (-318)) ELT) (($ $ (-1 (-361 |#2|) (-361 |#2|)) (-714)) 141 (|has| (-361 |#2|) (-318)) ELT) (($ $ (-1 |#2| |#2|)) 215 T ELT) (($ $ (-599 (-1117)) (-599 (-714))) 147 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117)))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-2681 (|has| (-361 |#2|) (-838 (-1117))) (|has| (-361 |#2|) (-318)))) ELT) (($ $ (-1117) (-714)) 146 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117)))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-2681 (|has| (-361 |#2|) (-838 (-1117))) (|has| (-361 |#2|) (-318)))) ELT) (($ $ (-599 (-1117))) 145 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117)))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-2681 (|has| (-361 |#2|) (-838 (-1117))) (|has| (-361 |#2|) (-318)))) ELT) (($ $ (-1117)) 143 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117)))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-2681 (|has| (-361 |#2|) (-838 (-1117))) (|has| (-361 |#2|) (-318)))) ELT) (($ $ (-714)) 153 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-189))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-190))) (-2681 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT) (($ $) 151 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-189))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-190))) (-2681 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT)) (-2526 (((-647 (-361 |#2|)) (-1207 $) (-1 (-361 |#2|) (-361 |#2|))) 171 (|has| (-361 |#2|) (-318)) ELT)) (-3323 ((|#3|) 176 T ELT)) (-1767 (($) 165 (|has| (-361 |#2|) (-305)) ELT)) (-3362 (((-1207 (-361 |#2|)) $ (-1207 $)) 62 T ELT) (((-647 (-361 |#2|)) (-1207 $) (-1207 $)) 61 T ELT) (((-1207 (-361 |#2|)) $) 79 T ELT) (((-647 (-361 |#2|)) (-1207 $)) 78 T ELT)) (-4122 (((-1207 (-361 |#2|)) $) 76 T ELT) (($ (-1207 (-361 |#2|))) 75 T ELT) ((|#3| $) 192 T ELT) (($ |#3|) 174 T ELT)) (-2824 (((-3 (-1207 $) "failed") (-647 $)) 162 (|has| (-361 |#2|) (-305)) ELT)) (-1747 (((-1207 $) (-1207 $)) 229 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ (-361 |#2|)) 49 T ELT) (($ (-361 (-499))) 104 (-3677 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-978 (-361 (-499))))) ELT) (($ $) 109 (|has| (-361 |#2|) (-318)) ELT)) (-2823 (($ $) 161 (|has| (-361 |#2|) (-305)) ELT) (((-649 $) $) 55 (|has| (-361 |#2|) (-118)) ELT)) (-2565 ((|#3| $) 57 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1756 (((-85)) 242 T ELT)) (-1755 (((-85) |#1|) 241 T ELT) (((-85) |#2|) 240 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2113 (((-1207 $)) 80 T ELT)) (-2163 (((-85) $ $) 113 (|has| (-361 |#2|) (-318)) ELT)) (-1734 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 210 T ELT)) (-1758 (((-85)) 244 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1 (-361 |#2|) (-361 |#2|))) 140 (|has| (-361 |#2|) (-318)) ELT) (($ $ (-1 (-361 |#2|) (-361 |#2|)) (-714)) 139 (|has| (-361 |#2|) (-318)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 150 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117)))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-2681 (|has| (-361 |#2|) (-838 (-1117))) (|has| (-361 |#2|) (-318)))) ELT) (($ $ (-1117) (-714)) 149 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117)))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-2681 (|has| (-361 |#2|) (-838 (-1117))) (|has| (-361 |#2|) (-318)))) ELT) (($ $ (-599 (-1117))) 148 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117)))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-2681 (|has| (-361 |#2|) (-838 (-1117))) (|has| (-361 |#2|) (-318)))) ELT) (($ $ (-1117)) 144 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117)))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-2681 (|has| (-361 |#2|) (-838 (-1117))) (|has| (-361 |#2|) (-318)))) ELT) (($ $ (-714)) 154 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-189))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-190))) (-2681 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT) (($ $) 152 (-3677 (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-189))) (-2681 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-190))) (-2681 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 138 (|has| (-361 |#2|) (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 135 (|has| (-361 |#2|) (-318)) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 |#2|)) 51 T ELT) (($ (-361 |#2|) $) 50 T ELT) (($ (-361 (-499)) $) 137 (|has| (-361 |#2|) (-318)) ELT) (($ $ (-361 (-499))) 136 (|has| (-361 |#2|) (-318)) ELT))) +(((-297 |#1| |#2| |#3|) (-113) (-1162) (-1183 |t#1|) (-1183 (-361 |t#2|))) (T -297)) +((-3517 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-714)))) (-1759 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-714)))) (-1758 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1757 (*1 *2 *3 *3) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1756 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1755 (*1 *2 *3) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1755 (*1 *2 *3) (-12 (-4 *1 (-297 *4 *3 *5)) (-4 *4 (-1162)) (-4 *3 (-1183 *4)) (-4 *5 (-1183 (-361 *3))) (-5 *2 (-85)))) (-1754 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1753 (*1 *2 *3) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1753 (*1 *2 *3) (-12 (-4 *1 (-297 *4 *3 *5)) (-4 *4 (-1162)) (-4 *3 (-1183 *4)) (-4 *5 (-1183 (-361 *3))) (-5 *2 (-85)))) (-1752 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1751 (*1 *2 *3) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1751 (*1 *2 *3) (-12 (-4 *1 (-297 *4 *3 *5)) (-4 *4 (-1162)) (-4 *3 (-1183 *4)) (-4 *5 (-1183 (-361 *3))) (-5 *2 (-85)))) (-4068 (*1 *2) (-12 (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-1207 *1)) (-4 *1 (-297 *3 *4 *5)))) (-1750 (*1 *2) (-12 (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-1207 *1)) (-4 *1 (-297 *3 *4 *5)))) (-1749 (*1 *2 *1) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1747 (*1 *2 *2) (-12 (-5 *2 (-1207 *1)) (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))))) (-1746 (*1 *2 *2) (-12 (-5 *2 (-1207 *1)) (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))))) (-1745 (*1 *2 *2) (-12 (-5 *2 (-1207 *1)) (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))))) (-1744 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-647 (-361 *4))))) (-1743 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-647 (-361 *4))))) (-1742 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-647 (-361 *4))))) (-1741 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-647 (-361 *4))))) (-1740 (*1 *2 *1) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-2 (|:| |num| (-1207 *4)) (|:| |den| *4))))) (-1890 (*1 *1 *2 *3) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-1183 *4)) (-4 *4 (-1162)) (-4 *1 (-297 *4 *3 *5)) (-4 *5 (-1183 (-361 *3))))) (-1739 (*1 *2 *1) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-2 (|:| |num| (-1207 *4)) (|:| |den| *4))))) (-1738 (*1 *1 *2 *3) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-1183 *4)) (-4 *4 (-1162)) (-4 *1 (-297 *4 *3 *5)) (-4 *5 (-1183 (-361 *3))))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-297 *4 *5 *6)) (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) (-5 *2 (-2 (|:| |num| (-647 *5)) (|:| |den| *5))))) (-1748 (*1 *2 *1 *3) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) (-1748 (*1 *2 *1 *3) (-12 (-4 *1 (-297 *4 *3 *5)) (-4 *4 (-1162)) (-4 *3 (-1183 *4)) (-4 *5 (-1183 (-361 *3))) (-5 *2 (-85)))) (-3908 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))))) (-3643 (*1 *1 *1) (-12 (-4 *1 (-297 *2 *3 *4)) (-4 *2 (-1162)) (-4 *3 (-1183 *2)) (-4 *4 (-1183 (-361 *3))))) (-3950 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-297 *2 *3 *4)) (-4 *2 (-1162)) (-4 *3 (-1183 *2)) (-4 *4 (-1183 (-361 *3))))) (-1736 (*1 *2) (|partial| -12 (-4 *1 (-297 *3 *2 *4)) (-4 *3 (-1162)) (-4 *4 (-1183 (-361 *2))) (-4 *2 (-1183 *3)))) (-1735 (*1 *2) (|partial| -12 (-4 *1 (-297 *3 *2 *4)) (-4 *3 (-1162)) (-4 *4 (-1183 (-361 *2))) (-4 *2 (-1183 *3)))) (-1734 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1183 *4)) (-4 *4 (-1162)) (-4 *6 (-1183 (-361 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-297 *4 *5 *6)))) (-1733 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *1 (-297 *4 *5 *6)) (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) (-4 *4 (-318)) (-5 *2 (-599 (-884 *4))))) (-1732 (*1 *2) (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) (-4 *3 (-323)) (-5 *2 (-599 (-599 *3)))))) +(-13 (-682 (-361 |t#2|) |t#3|) (-10 -8 (-15 -3517 ((-714))) (-15 -1759 ((-714))) (-15 -1758 ((-85))) (-15 -1757 ((-85) |t#1| |t#1|)) (-15 -1756 ((-85))) (-15 -1755 ((-85) |t#1|)) (-15 -1755 ((-85) |t#2|)) (-15 -1754 ((-85))) (-15 -1753 ((-85) |t#1|)) (-15 -1753 ((-85) |t#2|)) (-15 -1752 ((-85))) (-15 -1751 ((-85) |t#1|)) (-15 -1751 ((-85) |t#2|)) (-15 -4068 ((-1207 $))) (-15 -1750 ((-1207 $))) (-15 -1749 ((-85) $)) (-15 -1748 ((-85) $)) (-15 -1747 ((-1207 $) (-1207 $))) (-15 -1746 ((-1207 $) (-1207 $))) (-15 -1745 ((-1207 $) (-1207 $))) (-15 -1744 ((-647 (-361 |t#2|)))) (-15 -1743 ((-647 (-361 |t#2|)))) (-15 -1742 ((-647 (-361 |t#2|)))) (-15 -1741 ((-647 (-361 |t#2|)))) (-15 -1740 ((-2 (|:| |num| (-1207 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1890 ($ (-1207 |t#2|) |t#2|)) (-15 -1739 ((-2 (|:| |num| (-1207 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1738 ($ (-1207 |t#2|) |t#2|)) (-15 -1737 ((-2 (|:| |num| (-647 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1748 ((-85) $ |t#1|)) (-15 -1748 ((-85) $ |t#2|)) (-15 -3908 ($ $ (-1 |t#2| |t#2|))) (-15 -3643 ($ $)) (-15 -3950 (|t#1| $ |t#1| |t#1|)) (-15 -1736 ((-3 |t#2| "failed"))) (-15 -1735 ((-3 |t#2| "failed"))) (-15 -1734 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-318)) (-15 -1733 ((-599 (-884 |t#1|)) (-1117))) |%noBranch|) (IF (|has| |t#1| (-323)) (-15 -1732 ((-599 (-599 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-38 (-361 |#2|)) . T) ((-38 $) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-82 (-361 |#2|) (-361 |#2|)) . T) ((-82 $ $) . T) ((-104) . T) ((-118) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-118))) ((-120) |has| (-361 |#2|) (-120)) ((-571 (-361 (-499))) -3677 (|has| (-361 |#2|) (-978 (-361 (-499)))) (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-571 (-361 |#2|)) . T) ((-571 (-499)) . T) ((-571 $) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-568 (-797)) . T) ((-146) . T) ((-569 |#3|) . T) ((-186 $) -3677 (|has| (-361 |#2|) (-305)) (-12 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318)))) ((-184 (-361 |#2|)) |has| (-361 |#2|) (-318)) ((-190) -3677 (|has| (-361 |#2|) (-305)) (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318)))) ((-189) -3677 (|has| (-361 |#2|) (-305)) (-12 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318)))) ((-224 (-361 |#2|)) |has| (-361 |#2|) (-318)) ((-200) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-244) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-261) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-318) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-356) |has| (-361 |#2|) (-305)) ((-323) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-323))) ((-305) |has| (-361 |#2|) (-305)) ((-325 (-361 |#2|) |#3|) . T) ((-364 (-361 |#2|) |#3|) . T) ((-332 (-361 |#2|)) . T) ((-366 (-361 |#2|)) . T) ((-406) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-510) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-604 (-361 (-499))) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-604 (-361 |#2|)) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 (-361 (-499))) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-606 (-361 |#2|)) . T) ((-606 (-499)) |has| (-361 |#2|) (-596 (-499))) ((-606 $) . T) ((-598 (-361 (-499))) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-598 (-361 |#2|)) . T) ((-598 $) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-596 (-361 |#2|)) . T) ((-596 (-499)) |has| (-361 |#2|) (-596 (-499))) ((-675 (-361 (-499))) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-675 (-361 |#2|)) . T) ((-675 $) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-682 (-361 |#2|) |#3|) . T) ((-684) . T) ((-831 $ (-1117)) -3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117))))) ((-836 (-1117)) -12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) ((-838 (-1117)) -3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117))))) ((-859) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-978 (-361 (-499))) |has| (-361 |#2|) (-978 (-361 (-499)))) ((-978 (-361 |#2|)) . T) ((-978 (-499)) |has| (-361 |#2|) (-978 (-499))) ((-991 (-361 (-499))) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-991 (-361 |#2|)) . T) ((-991 $) . T) ((-996 (-361 (-499))) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318))) ((-996 (-361 |#2|)) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1092) |has| (-361 |#2|) (-305)) ((-1157) . T) ((-1162) -3677 (|has| (-361 |#2|) (-305)) (|has| (-361 |#2|) (-318)))) +((-4108 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) +(((-298 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4108 (|#8| (-1 |#5| |#1|) |#4|))) (-1162) (-1183 |#1|) (-1183 (-361 |#2|)) (-297 |#1| |#2| |#3|) (-1162) (-1183 |#5|) (-1183 (-361 |#6|)) (-297 |#5| |#6| |#7|)) (T -298)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1162)) (-4 *8 (-1162)) (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) (-4 *9 (-1183 *8)) (-4 *2 (-297 *8 *9 *10)) (-5 *1 (-298 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-297 *5 *6 *7)) (-4 *10 (-1183 (-361 *9)))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 (((-844 |#1|) $) NIL T ELT) (($ $ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-844 |#1|) #1#) $) NIL T ELT)) (-3294 (((-844 |#1|) $) NIL T ELT)) (-1890 (($ (-1207 (-844 |#1|))) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1773 (((-85) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1864 (($ $ (-714)) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT) (($ $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-857) $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-766 (-857)) $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2112 (((-85) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3254 (((-844 |#1|) $) NIL T ELT) (($ $ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3585 (((-649 $) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 (-844 |#1|)) $) NIL T ELT) (((-1111 $) $ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2111 (((-857) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1697 (((-1111 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1696 (((-1111 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-3 (-1111 (-844 |#1|)) #1#) $ $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1698 (($ $ (-1111 (-844 |#1|))) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-844 |#1|) (-323)) CONST)) (-2518 (($ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-4081 (((-85) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1760 (((-896 (-1060))) NIL T ELT)) (-2527 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-766 (-857))) NIL T ELT) (((-857)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-714) $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-3 (-714) #1#) $ $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $ (-714)) NIL (|has| (-844 |#1|) (-323)) ELT) (($ $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-4098 (((-766 (-857)) $) NIL T ELT) (((-857) $) NIL T ELT)) (-3323 (((-1111 (-844 |#1|))) NIL T ELT)) (-1767 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1699 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3362 (((-1207 (-844 |#1|)) $) NIL T ELT) (((-647 (-844 |#1|)) (-1207 $)) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-844 |#1|)) NIL T ELT)) (-2823 (($ $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-649 $) $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT) (((-1207 $) (-857)) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-4078 (($ $) NIL (|has| (-844 |#1|) (-323)) ELT) (($ $ (-714)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2790 (($ $ (-714)) NIL (|has| (-844 |#1|) (-323)) ELT) (($ $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT) (($ $ (-844 |#1|)) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ (-844 |#1|)) NIL T ELT) (($ (-844 |#1|) $) NIL T ELT))) +(((-299 |#1| |#2|) (-13 (-283 (-844 |#1|)) (-10 -7 (-15 -1760 ((-896 (-1060)))))) (-857) (-857)) (T -299)) +((-1760 (*1 *2) (-12 (-5 *2 (-896 (-1060))) (-5 *1 (-299 *3 *4)) (-14 *3 (-857)) (-14 *4 (-857))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 58 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 ((|#1| $) NIL T ELT) (($ $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) 56 (|has| |#1| (-323)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| |#1| (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) 141 T ELT)) (-3294 ((|#1| $) 113 T ELT)) (-1890 (($ (-1207 |#1|)) 130 T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-323)) ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) 124 (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) 159 (|has| |#1| (-323)) ELT)) (-1773 (((-85) $) 66 (|has| |#1| (-323)) ELT)) (-1864 (($ $ (-714)) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT) (($ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-857) $) 60 (|has| |#1| (-323)) ELT) (((-766 (-857)) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-2528 (((-85) $) 62 T ELT)) (-2114 (($) 161 (|has| |#1| (-323)) ELT)) (-2112 (((-85) $) NIL (|has| |#1| (-323)) ELT)) (-3254 ((|#1| $) NIL T ELT) (($ $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-323)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 |#1|) $) 117 T ELT) (((-1111 $) $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-2111 (((-857) $) 170 (|has| |#1| (-323)) ELT)) (-1697 (((-1111 |#1|) $) NIL (|has| |#1| (-323)) ELT)) (-1696 (((-1111 |#1|) $) NIL (|has| |#1| (-323)) ELT) (((-3 (-1111 |#1|) #1#) $ $) NIL (|has| |#1| (-323)) ELT)) (-1698 (($ $ (-1111 |#1|)) NIL (|has| |#1| (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 177 T ELT)) (-3586 (($) NIL (|has| |#1| (-323)) CONST)) (-2518 (($ (-857)) 96 (|has| |#1| (-323)) ELT)) (-4081 (((-85) $) 146 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1760 (((-896 (-1060))) 57 T ELT)) (-2527 (($) 157 (|has| |#1| (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) 119 (|has| |#1| (-323)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-766 (-857))) 90 T ELT) (((-857)) 91 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-714) $) 160 (|has| |#1| (-323)) ELT) (((-3 (-714) #1#) $ $) 153 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-4098 (((-766 (-857)) $) NIL T ELT) (((-857) $) NIL T ELT)) (-3323 (((-1111 |#1|)) 122 T ELT)) (-1767 (($) 158 (|has| |#1| (-323)) ELT)) (-1699 (($) 166 (|has| |#1| (-323)) ELT)) (-3362 (((-1207 |#1|) $) 77 T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| |#1| (-323)) ELT)) (-4096 (((-797) $) 173 T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#1|) 100 T ELT)) (-2823 (($ $) NIL (|has| |#1| (-323)) ELT) (((-649 $) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3248 (((-714)) 154 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) 143 T ELT) (((-1207 $) (-857)) 98 T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) 67 T CONST)) (-2785 (($) 103 T CONST)) (-4078 (($ $) 107 (|has| |#1| (-323)) ELT) (($ $ (-714)) NIL (|has| |#1| (-323)) ELT)) (-2790 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-3174 (((-85) $ $) 65 T ELT)) (-4099 (($ $ $) 175 T ELT) (($ $ |#1|) 176 T ELT)) (-3987 (($ $) 156 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 86 T ELT)) (** (($ $ (-857)) 179 T ELT) (($ $ (-714)) 180 T ELT) (($ $ (-499)) 178 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 102 T ELT) (($ $ $) 101 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 174 T ELT))) +(((-300 |#1| |#2|) (-13 (-283 |#1|) (-10 -7 (-15 -1760 ((-896 (-1060)))))) (-305) (-1111 |#1|)) (T -300)) +((-1760 (*1 *2) (-12 (-5 *2 (-896 (-1060))) (-5 *1 (-300 *3 *4)) (-4 *3 (-305)) (-14 *4 (-1111 *3))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 ((|#1| $) NIL T ELT) (($ $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| |#1| (-323)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| |#1| (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-1890 (($ (-1207 |#1|)) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-323)) ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) NIL (|has| |#1| (-323)) ELT)) (-1773 (((-85) $) NIL (|has| |#1| (-323)) ELT)) (-1864 (($ $ (-714)) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT) (($ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-857) $) NIL (|has| |#1| (-323)) ELT) (((-766 (-857)) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) NIL (|has| |#1| (-323)) ELT)) (-2112 (((-85) $) NIL (|has| |#1| (-323)) ELT)) (-3254 ((|#1| $) NIL T ELT) (($ $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-323)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 |#1|) $) NIL T ELT) (((-1111 $) $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-2111 (((-857) $) NIL (|has| |#1| (-323)) ELT)) (-1697 (((-1111 |#1|) $) NIL (|has| |#1| (-323)) ELT)) (-1696 (((-1111 |#1|) $) NIL (|has| |#1| (-323)) ELT) (((-3 (-1111 |#1|) #1#) $ $) NIL (|has| |#1| (-323)) ELT)) (-1698 (($ $ (-1111 |#1|)) NIL (|has| |#1| (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| |#1| (-323)) CONST)) (-2518 (($ (-857)) NIL (|has| |#1| (-323)) ELT)) (-4081 (((-85) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1760 (((-896 (-1060))) NIL T ELT)) (-2527 (($) NIL (|has| |#1| (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| |#1| (-323)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-766 (-857))) NIL T ELT) (((-857)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-714) $) NIL (|has| |#1| (-323)) ELT) (((-3 (-714) #1#) $ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-4098 (((-766 (-857)) $) NIL T ELT) (((-857) $) NIL T ELT)) (-3323 (((-1111 |#1|)) NIL T ELT)) (-1767 (($) NIL (|has| |#1| (-323)) ELT)) (-1699 (($) NIL (|has| |#1| (-323)) ELT)) (-3362 (((-1207 |#1|) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| |#1| (-323)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2823 (($ $) NIL (|has| |#1| (-323)) ELT) (((-649 $) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT) (((-1207 $) (-857)) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-4078 (($ $) NIL (|has| |#1| (-323)) ELT) (($ $ (-714)) NIL (|has| |#1| (-323)) ELT)) (-2790 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-301 |#1| |#2|) (-13 (-283 |#1|) (-10 -7 (-15 -1760 ((-896 (-1060)))))) (-305) (-857)) (T -301)) +((-1760 (*1 *2) (-12 (-5 *2 (-896 (-1060))) (-5 *1 (-301 *3 *4)) (-4 *3 (-305)) (-14 *4 (-857))))) +((-1770 (((-714) (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060)))))) 61 T ELT)) (-1761 (((-896 (-1060)) (-1111 |#1|)) 112 T ELT)) (-1762 (((-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))) (-1111 |#1|)) 103 T ELT)) (-1763 (((-647 |#1|) (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060)))))) 113 T ELT)) (-1764 (((-3 (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))) "failed") (-857)) 13 T ELT)) (-1765 (((-3 (-1111 |#1|) (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060)))))) (-857)) 18 T ELT))) +(((-302 |#1|) (-10 -7 (-15 -1761 ((-896 (-1060)) (-1111 |#1|))) (-15 -1762 ((-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))) (-1111 |#1|))) (-15 -1763 ((-647 |#1|) (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))))) (-15 -1770 ((-714) (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))))) (-15 -1764 ((-3 (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))) "failed") (-857))) (-15 -1765 ((-3 (-1111 |#1|) (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060)))))) (-857)))) (-305)) (T -302)) +((-1765 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-3 (-1111 *4) (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060))))))) (-5 *1 (-302 *4)) (-4 *4 (-305)))) (-1764 (*1 *2 *3) (|partial| -12 (-5 *3 (-857)) (-5 *2 (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060)))))) (-5 *1 (-302 *4)) (-4 *4 (-305)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060)))))) (-4 *4 (-305)) (-5 *2 (-714)) (-5 *1 (-302 *4)))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060)))))) (-4 *4 (-305)) (-5 *2 (-647 *4)) (-5 *1 (-302 *4)))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-1111 *4)) (-4 *4 (-305)) (-5 *2 (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060)))))) (-5 *1 (-302 *4)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-1111 *4)) (-4 *4 (-305)) (-5 *2 (-896 (-1060))) (-5 *1 (-302 *4))))) +((-4096 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) +(((-303 |#1| |#2| |#3|) (-10 -7 (-15 -4096 (|#3| |#1|)) (-15 -4096 (|#1| |#3|))) (-283 |#2|) (-305) (-283 |#2|)) (T -303)) +((-4096 (*1 *2 *3) (-12 (-4 *4 (-305)) (-4 *2 (-283 *4)) (-5 *1 (-303 *2 *4 *3)) (-4 *3 (-283 *4)))) (-4096 (*1 *2 *3) (-12 (-4 *4 (-305)) (-4 *2 (-283 *4)) (-5 *1 (-303 *3 *4 *2)) (-4 *3 (-283 *4))))) +((-1773 (((-85) $) 65 T ELT)) (-3922 (((-766 (-857)) $) 26 T ELT) (((-857) $) 69 T ELT)) (-3585 (((-649 $) $) 21 T ELT)) (-3586 (($) 9 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 120 T ELT)) (-1865 (((-3 (-714) #1="failed") $ $) 98 T ELT) (((-714) $) 84 T ELT)) (-3908 (($ $) 8 T ELT) (($ $ (-714)) NIL T ELT)) (-1767 (($) 58 T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) 41 T ELT)) (-2823 (((-649 $) $) 50 T ELT) (($ $) 47 T ELT))) +(((-304 |#1|) (-10 -7 (-15 -3922 ((-857) |#1|)) (-15 -1865 ((-714) |#1|)) (-15 -1773 ((-85) |#1|)) (-15 -1767 (|#1|)) (-15 -2824 ((-3 (-1207 |#1|) #1="failed") (-647 |#1|))) (-15 -2823 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1|)) (-15 -3586 (|#1|)) (-15 -3585 ((-649 |#1|) |#1|)) (-15 -1865 ((-3 (-714) #1#) |#1| |#1|)) (-15 -3922 ((-766 (-857)) |#1|)) (-15 -2823 ((-649 |#1|) |#1|)) (-15 -2829 ((-1111 |#1|) (-1111 |#1|) (-1111 |#1|)))) (-305)) (T -304)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) 110 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 88 T ELT)) (-4121 (((-359 $) $) 87 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3258 (((-714)) 120 T ELT)) (-3874 (($) 22 T CONST)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) 104 T ELT)) (-2683 (($ $ $) 68 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3115 (($) 123 T ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-2954 (($) 108 T ELT)) (-1773 (((-85) $) 107 T ELT)) (-1864 (($ $) 94 T ELT) (($ $ (-714)) 93 T ELT)) (-3873 (((-85) $) 86 T ELT)) (-3922 (((-766 (-857)) $) 96 T ELT) (((-857) $) 105 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3585 (((-649 $) $) 119 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 65 T ELT)) (-2111 (((-857) $) 122 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 85 T ELT)) (-3586 (($) 118 T CONST)) (-2518 (($ (-857)) 121 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) 111 T ELT)) (-3882 (((-359 $) $) 89 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-1865 (((-3 (-714) "failed") $ $) 95 T ELT) (((-714) $) 106 T ELT)) (-3908 (($ $) 117 T ELT) (($ $ (-714)) 115 T ELT)) (-1767 (($) 109 T ELT)) (-2824 (((-3 (-1207 $) "failed") (-647 $)) 112 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-361 (-499))) 81 T ELT)) (-2823 (((-649 $) $) 97 T ELT) (($ $) 113 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $) 116 T ELT) (($ $ (-714)) 114 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 80 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 84 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 83 T ELT) (($ (-361 (-499)) $) 82 T ELT))) +(((-305) (-113)) (T -305)) +((-2823 (*1 *1 *1) (-4 *1 (-305))) (-2824 (*1 *2 *3) (|partial| -12 (-5 *3 (-647 *1)) (-4 *1 (-305)) (-5 *2 (-1207 *1)))) (-1769 (*1 *2) (-12 (-4 *1 (-305)) (-5 *2 (-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))))) (-1768 (*1 *2 *3) (-12 (-4 *1 (-305)) (-5 *3 (-499)) (-5 *2 (-1129 (-857) (-714))))) (-1767 (*1 *1) (-4 *1 (-305))) (-2954 (*1 *1) (-4 *1 (-305))) (-1773 (*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-85)))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-714)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-857)))) (-1766 (*1 *2) (-12 (-4 *1 (-305)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-356) (-323) (-1092) (-190) (-10 -8 (-15 -2823 ($ $)) (-15 -2824 ((-3 (-1207 $) "failed") (-647 $))) (-15 -1769 ((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499)))))) (-15 -1768 ((-1129 (-857) (-714)) (-499))) (-15 -1767 ($)) (-15 -2954 ($)) (-15 -1773 ((-85) $)) (-15 -1865 ((-714) $)) (-15 -3922 ((-857) $)) (-15 -1766 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 $) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-200) . T) ((-244) . T) ((-261) . T) ((-318) . T) ((-356) . T) ((-323) . T) ((-406) . T) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 $) . T) ((-675 (-361 (-499))) . T) ((-675 $) . T) ((-684) . T) ((-859) . T) ((-991 (-361 (-499))) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1092) . T) ((-1157) . T) ((-1162) . T)) +((-4069 (((-2 (|:| -2113 (-647 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-647 |#1|))) |#1|) 55 T ELT)) (-4068 (((-2 (|:| -2113 (-647 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-647 |#1|)))) 53 T ELT))) +(((-306 |#1| |#2| |#3|) (-10 -7 (-15 -4068 ((-2 (|:| -2113 (-647 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-647 |#1|))))) (-15 -4069 ((-2 (|:| -2113 (-647 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-647 |#1|))) |#1|))) (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $)))) (-1183 |#1|) (-364 |#1| |#2|)) (T -306)) +((-4069 (*1 *2 *3) (-12 (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *4 (-1183 *3)) (-5 *2 (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) (-5 *1 (-306 *3 *4 *5)) (-4 *5 (-364 *3 *4)))) (-4068 (*1 *2) (-12 (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *4 (-1183 *3)) (-5 *2 (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) (-5 *1 (-306 *3 *4 *5)) (-4 *5 (-364 *3 *4))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 (((-844 |#1|) $) NIL T ELT) (($ $ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1770 (((-714)) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-844 |#1|) #1#) $) NIL T ELT)) (-3294 (((-844 |#1|) $) NIL T ELT)) (-1890 (($ (-1207 (-844 |#1|))) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1773 (((-85) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1864 (($ $ (-714)) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT) (($ $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-857) $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-766 (-857)) $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2112 (((-85) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3254 (((-844 |#1|) $) NIL T ELT) (($ $ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3585 (((-649 $) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 (-844 |#1|)) $) NIL T ELT) (((-1111 $) $ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2111 (((-857) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1697 (((-1111 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1696 (((-1111 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-3 (-1111 (-844 |#1|)) #1#) $ $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1698 (($ $ (-1111 (-844 |#1|))) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-844 |#1|) (-323)) CONST)) (-2518 (($ (-857)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-4081 (((-85) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1772 (((-1207 (-599 (-2 (|:| -3542 (-844 |#1|)) (|:| -2518 (-1060)))))) NIL T ELT)) (-1771 (((-647 (-844 |#1|))) NIL T ELT)) (-2527 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-766 (-857))) NIL T ELT) (((-857)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-714) $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-3 (-714) #1#) $ $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $ (-714)) NIL (|has| (-844 |#1|) (-323)) ELT) (($ $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-4098 (((-766 (-857)) $) NIL T ELT) (((-857) $) NIL T ELT)) (-3323 (((-1111 (-844 |#1|))) NIL T ELT)) (-1767 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-1699 (($) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3362 (((-1207 (-844 |#1|)) $) NIL T ELT) (((-647 (-844 |#1|)) (-1207 $)) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-844 |#1|)) NIL T ELT)) (-2823 (($ $) NIL (|has| (-844 |#1|) (-323)) ELT) (((-649 $) $) NIL (-3677 (|has| (-844 |#1|) (-118)) (|has| (-844 |#1|) (-323))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT) (((-1207 $) (-857)) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-4078 (($ $) NIL (|has| (-844 |#1|) (-323)) ELT) (($ $ (-714)) NIL (|has| (-844 |#1|) (-323)) ELT)) (-2790 (($ $ (-714)) NIL (|has| (-844 |#1|) (-323)) ELT) (($ $) NIL (|has| (-844 |#1|) (-323)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT) (($ $ (-844 |#1|)) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ (-844 |#1|)) NIL T ELT) (($ (-844 |#1|) $) NIL T ELT))) +(((-307 |#1| |#2|) (-13 (-283 (-844 |#1|)) (-10 -7 (-15 -1772 ((-1207 (-599 (-2 (|:| -3542 (-844 |#1|)) (|:| -2518 (-1060))))))) (-15 -1771 ((-647 (-844 |#1|)))) (-15 -1770 ((-714))))) (-857) (-857)) (T -307)) +((-1772 (*1 *2) (-12 (-5 *2 (-1207 (-599 (-2 (|:| -3542 (-844 *3)) (|:| -2518 (-1060)))))) (-5 *1 (-307 *3 *4)) (-14 *3 (-857)) (-14 *4 (-857)))) (-1771 (*1 *2) (-12 (-5 *2 (-647 (-844 *3))) (-5 *1 (-307 *3 *4)) (-14 *3 (-857)) (-14 *4 (-857)))) (-1770 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-307 *3 *4)) (-14 *3 (-857)) (-14 *4 (-857))))) +((-2687 (((-85) $ $) 73 T ELT)) (-3326 (((-85) $) 88 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 ((|#1| $) 106 T ELT) (($ $ (-857)) 104 (|has| |#1| (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) 170 (|has| |#1| (-323)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1770 (((-714)) 103 T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) 187 (|has| |#1| (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) 127 T ELT)) (-3294 ((|#1| $) 105 T ELT)) (-1890 (($ (-1207 |#1|)) 71 T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-323)) ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) 182 (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) 171 (|has| |#1| (-323)) ELT)) (-1773 (((-85) $) NIL (|has| |#1| (-323)) ELT)) (-1864 (($ $ (-714)) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT) (($ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-857) $) NIL (|has| |#1| (-323)) ELT) (((-766 (-857)) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) 113 (|has| |#1| (-323)) ELT)) (-2112 (((-85) $) 200 (|has| |#1| (-323)) ELT)) (-3254 ((|#1| $) 108 T ELT) (($ $ (-857)) 107 (|has| |#1| (-323)) ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-323)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 |#1|) $) 214 T ELT) (((-1111 $) $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-2111 (((-857) $) 148 (|has| |#1| (-323)) ELT)) (-1697 (((-1111 |#1|) $) 87 (|has| |#1| (-323)) ELT)) (-1696 (((-1111 |#1|) $) 84 (|has| |#1| (-323)) ELT) (((-3 (-1111 |#1|) #1#) $ $) 96 (|has| |#1| (-323)) ELT)) (-1698 (($ $ (-1111 |#1|)) 83 (|has| |#1| (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 218 T ELT)) (-3586 (($) NIL (|has| |#1| (-323)) CONST)) (-2518 (($ (-857)) 150 (|has| |#1| (-323)) ELT)) (-4081 (((-85) $) 123 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1772 (((-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060)))))) 97 T ELT)) (-1771 (((-647 |#1|)) 101 T ELT)) (-2527 (($) 110 (|has| |#1| (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) 173 (|has| |#1| (-323)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-766 (-857))) NIL T ELT) (((-857)) 174 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-714) $) NIL (|has| |#1| (-323)) ELT) (((-3 (-714) #1#) $ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-4098 (((-766 (-857)) $) NIL T ELT) (((-857) $) 75 T ELT)) (-3323 (((-1111 |#1|)) 175 T ELT)) (-1767 (($) 147 (|has| |#1| (-323)) ELT)) (-1699 (($) NIL (|has| |#1| (-323)) ELT)) (-3362 (((-1207 |#1|) $) 121 T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| |#1| (-323)) ELT)) (-4096 (((-797) $) 140 T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#1|) 70 T ELT)) (-2823 (($ $) NIL (|has| |#1| (-323)) ELT) (((-649 $) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3248 (((-714)) 180 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) 197 T ELT) (((-1207 $) (-857)) 116 T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) 186 T CONST)) (-2785 (($) 161 T CONST)) (-4078 (($ $) 122 (|has| |#1| (-323)) ELT) (($ $ (-714)) 114 (|has| |#1| (-323)) ELT)) (-2790 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-3174 (((-85) $ $) 208 T ELT)) (-4099 (($ $ $) 119 T ELT) (($ $ |#1|) 120 T ELT)) (-3987 (($ $) 202 T ELT) (($ $ $) 206 T ELT)) (-3989 (($ $ $) 204 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) 153 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 211 T ELT) (($ $ $) 164 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 118 T ELT))) +(((-308 |#1| |#2|) (-13 (-283 |#1|) (-10 -7 (-15 -1772 ((-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))))) (-15 -1771 ((-647 |#1|))) (-15 -1770 ((-714))))) (-305) (-3 (-1111 |#1|) (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))))) (T -308)) +((-1772 (*1 *2) (-12 (-5 *2 (-1207 (-599 (-2 (|:| -3542 *3) (|:| -2518 (-1060)))))) (-5 *1 (-308 *3 *4)) (-4 *3 (-305)) (-14 *4 (-3 (-1111 *3) *2)))) (-1771 (*1 *2) (-12 (-5 *2 (-647 *3)) (-5 *1 (-308 *3 *4)) (-4 *3 (-305)) (-14 *4 (-3 (-1111 *3) (-1207 (-599 (-2 (|:| -3542 *3) (|:| -2518 (-1060))))))))) (-1770 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-308 *3 *4)) (-4 *3 (-305)) (-14 *4 (-3 (-1111 *3) (-1207 (-599 (-2 (|:| -3542 *3) (|:| -2518 (-1060)))))))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 ((|#1| $) NIL T ELT) (($ $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| |#1| (-323)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1770 (((-714)) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| |#1| (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-1890 (($ (-1207 |#1|)) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-323)) ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) NIL (|has| |#1| (-323)) ELT)) (-1773 (((-85) $) NIL (|has| |#1| (-323)) ELT)) (-1864 (($ $ (-714)) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT) (($ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-857) $) NIL (|has| |#1| (-323)) ELT) (((-766 (-857)) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) NIL (|has| |#1| (-323)) ELT)) (-2112 (((-85) $) NIL (|has| |#1| (-323)) ELT)) (-3254 ((|#1| $) NIL T ELT) (($ $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-323)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 |#1|) $) NIL T ELT) (((-1111 $) $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-2111 (((-857) $) NIL (|has| |#1| (-323)) ELT)) (-1697 (((-1111 |#1|) $) NIL (|has| |#1| (-323)) ELT)) (-1696 (((-1111 |#1|) $) NIL (|has| |#1| (-323)) ELT) (((-3 (-1111 |#1|) #1#) $ $) NIL (|has| |#1| (-323)) ELT)) (-1698 (($ $ (-1111 |#1|)) NIL (|has| |#1| (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| |#1| (-323)) CONST)) (-2518 (($ (-857)) NIL (|has| |#1| (-323)) ELT)) (-4081 (((-85) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1772 (((-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060)))))) NIL T ELT)) (-1771 (((-647 |#1|)) NIL T ELT)) (-2527 (($) NIL (|has| |#1| (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| |#1| (-323)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-766 (-857))) NIL T ELT) (((-857)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-714) $) NIL (|has| |#1| (-323)) ELT) (((-3 (-714) #1#) $ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-4098 (((-766 (-857)) $) NIL T ELT) (((-857) $) NIL T ELT)) (-3323 (((-1111 |#1|)) NIL T ELT)) (-1767 (($) NIL (|has| |#1| (-323)) ELT)) (-1699 (($) NIL (|has| |#1| (-323)) ELT)) (-3362 (((-1207 |#1|) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| |#1| (-323)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2823 (($ $) NIL (|has| |#1| (-323)) ELT) (((-649 $) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT) (((-1207 $) (-857)) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-4078 (($ $) NIL (|has| |#1| (-323)) ELT) (($ $ (-714)) NIL (|has| |#1| (-323)) ELT)) (-2790 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-309 |#1| |#2|) (-13 (-283 |#1|) (-10 -7 (-15 -1772 ((-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))))) (-15 -1771 ((-647 |#1|))) (-15 -1770 ((-714))))) (-305) (-857)) (T -309)) +((-1772 (*1 *2) (-12 (-5 *2 (-1207 (-599 (-2 (|:| -3542 *3) (|:| -2518 (-1060)))))) (-5 *1 (-309 *3 *4)) (-4 *3 (-305)) (-14 *4 (-857)))) (-1771 (*1 *2) (-12 (-5 *2 (-647 *3)) (-5 *1 (-309 *3 *4)) (-4 *3 (-305)) (-14 *4 (-857)))) (-1770 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-309 *3 *4)) (-4 *3 (-305)) (-14 *4 (-857))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 ((|#1| $) NIL T ELT) (($ $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) 129 (|has| |#1| (-323)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) 155 (|has| |#1| (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) 103 T ELT)) (-3294 ((|#1| $) 100 T ELT)) (-1890 (($ (-1207 |#1|)) 95 T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-323)) ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) 92 (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) 51 (|has| |#1| (-323)) ELT)) (-1773 (((-85) $) NIL (|has| |#1| (-323)) ELT)) (-1864 (($ $ (-714)) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT) (($ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-857) $) NIL (|has| |#1| (-323)) ELT) (((-766 (-857)) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) 130 (|has| |#1| (-323)) ELT)) (-2112 (((-85) $) 84 (|has| |#1| (-323)) ELT)) (-3254 ((|#1| $) 47 T ELT) (($ $ (-857)) 52 (|has| |#1| (-323)) ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-323)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 |#1|) $) 75 T ELT) (((-1111 $) $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-2111 (((-857) $) 107 (|has| |#1| (-323)) ELT)) (-1697 (((-1111 |#1|) $) NIL (|has| |#1| (-323)) ELT)) (-1696 (((-1111 |#1|) $) NIL (|has| |#1| (-323)) ELT) (((-3 (-1111 |#1|) #1#) $ $) NIL (|has| |#1| (-323)) ELT)) (-1698 (($ $ (-1111 |#1|)) NIL (|has| |#1| (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| |#1| (-323)) CONST)) (-2518 (($ (-857)) 105 (|has| |#1| (-323)) ELT)) (-4081 (((-85) $) 157 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($) 44 (|has| |#1| (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) 124 (|has| |#1| (-323)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-766 (-857))) NIL T ELT) (((-857)) 154 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-714) $) NIL (|has| |#1| (-323)) ELT) (((-3 (-714) #1#) $ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-4098 (((-766 (-857)) $) NIL T ELT) (((-857) $) 67 T ELT)) (-3323 (((-1111 |#1|)) 98 T ELT)) (-1767 (($) 135 (|has| |#1| (-323)) ELT)) (-1699 (($) NIL (|has| |#1| (-323)) ELT)) (-3362 (((-1207 |#1|) $) 63 T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| |#1| (-323)) ELT)) (-4096 (((-797) $) 153 T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#1|) 97 T ELT)) (-2823 (($ $) NIL (|has| |#1| (-323)) ELT) (((-649 $) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3248 (((-714)) 159 T CONST)) (-1297 (((-85) $ $) 161 T ELT)) (-2113 (((-1207 $)) 119 T ELT) (((-1207 $) (-857)) 58 T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) 121 T CONST)) (-2785 (($) 40 T CONST)) (-4078 (($ $) 78 (|has| |#1| (-323)) ELT) (($ $ (-714)) NIL (|has| |#1| (-323)) ELT)) (-2790 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-3174 (((-85) $ $) 117 T ELT)) (-4099 (($ $ $) 109 T ELT) (($ $ |#1|) 110 T ELT)) (-3987 (($ $) 90 T ELT) (($ $ $) 115 T ELT)) (-3989 (($ $ $) 113 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 53 T ELT) (($ $ (-499)) 138 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 88 T ELT) (($ $ $) 65 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 86 T ELT))) +(((-310 |#1| |#2|) (-283 |#1|) (-305) (-1111 |#1|)) (T -310)) +NIL +((-1788 (((-896 (-1111 |#1|)) (-1111 |#1|)) 49 T ELT)) (-3115 (((-1111 |#1|) (-857) (-857)) 159 T ELT) (((-1111 |#1|) (-857)) 155 T ELT)) (-1773 (((-85) (-1111 |#1|)) 110 T ELT)) (-1775 (((-857) (-857)) 85 T ELT)) (-1776 (((-857) (-857)) 94 T ELT)) (-1774 (((-857) (-857)) 83 T ELT)) (-2112 (((-85) (-1111 |#1|)) 114 T ELT)) (-1783 (((-3 (-1111 |#1|) #1="failed") (-1111 |#1|)) 139 T ELT)) (-1786 (((-3 (-1111 |#1|) #1#) (-1111 |#1|)) 144 T ELT)) (-1785 (((-3 (-1111 |#1|) #1#) (-1111 |#1|)) 143 T ELT)) (-1784 (((-3 (-1111 |#1|) #1#) (-1111 |#1|)) 142 T ELT)) (-1782 (((-3 (-1111 |#1|) #1#) (-1111 |#1|)) 134 T ELT)) (-1787 (((-1111 |#1|) (-1111 |#1|)) 71 T ELT)) (-1778 (((-1111 |#1|) (-857)) 149 T ELT)) (-1781 (((-1111 |#1|) (-857)) 152 T ELT)) (-1780 (((-1111 |#1|) (-857)) 151 T ELT)) (-1779 (((-1111 |#1|) (-857)) 150 T ELT)) (-1777 (((-1111 |#1|) (-857)) 147 T ELT))) +(((-311 |#1|) (-10 -7 (-15 -1773 ((-85) (-1111 |#1|))) (-15 -2112 ((-85) (-1111 |#1|))) (-15 -1774 ((-857) (-857))) (-15 -1775 ((-857) (-857))) (-15 -1776 ((-857) (-857))) (-15 -1777 ((-1111 |#1|) (-857))) (-15 -1778 ((-1111 |#1|) (-857))) (-15 -1779 ((-1111 |#1|) (-857))) (-15 -1780 ((-1111 |#1|) (-857))) (-15 -1781 ((-1111 |#1|) (-857))) (-15 -1782 ((-3 (-1111 |#1|) #1="failed") (-1111 |#1|))) (-15 -1783 ((-3 (-1111 |#1|) #1#) (-1111 |#1|))) (-15 -1784 ((-3 (-1111 |#1|) #1#) (-1111 |#1|))) (-15 -1785 ((-3 (-1111 |#1|) #1#) (-1111 |#1|))) (-15 -1786 ((-3 (-1111 |#1|) #1#) (-1111 |#1|))) (-15 -3115 ((-1111 |#1|) (-857))) (-15 -3115 ((-1111 |#1|) (-857) (-857))) (-15 -1787 ((-1111 |#1|) (-1111 |#1|))) (-15 -1788 ((-896 (-1111 |#1|)) (-1111 |#1|)))) (-305)) (T -311)) +((-1788 (*1 *2 *3) (-12 (-4 *4 (-305)) (-5 *2 (-896 (-1111 *4))) (-5 *1 (-311 *4)) (-5 *3 (-1111 *4)))) (-1787 (*1 *2 *2) (-12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3)))) (-3115 (*1 *2 *3 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305)))) (-1786 (*1 *2 *2) (|partial| -12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3)))) (-1785 (*1 *2 *2) (|partial| -12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3)))) (-1784 (*1 *2 *2) (|partial| -12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3)))) (-1783 (*1 *2 *2) (|partial| -12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3)))) (-1782 (*1 *2 *2) (|partial| -12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305)))) (-1778 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305)))) (-1776 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-311 *3)) (-4 *3 (-305)))) (-1775 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-311 *3)) (-4 *3 (-305)))) (-1774 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-311 *3)) (-4 *3 (-305)))) (-2112 (*1 *2 *3) (-12 (-5 *3 (-1111 *4)) (-4 *4 (-305)) (-5 *2 (-85)) (-5 *1 (-311 *4)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-1111 *4)) (-4 *4 (-305)) (-5 *2 (-85)) (-5 *1 (-311 *4))))) +((-1789 ((|#1| (-1111 |#2|)) 60 T ELT))) +(((-312 |#1| |#2|) (-10 -7 (-15 -1789 (|#1| (-1111 |#2|)))) (-13 (-356) (-10 -7 (-15 -4096 (|#1| |#2|)) (-15 -2111 ((-857) |#1|)) (-15 -2113 ((-1207 |#1|) (-857))) (-15 -4078 (|#1| |#1|)))) (-305)) (T -312)) +((-1789 (*1 *2 *3) (-12 (-5 *3 (-1111 *4)) (-4 *4 (-305)) (-4 *2 (-13 (-356) (-10 -7 (-15 -4096 (*2 *4)) (-15 -2111 ((-857) *2)) (-15 -2113 ((-1207 *2) (-857))) (-15 -4078 (*2 *2))))) (-5 *1 (-312 *2 *4))))) +((-2825 (((-3 (-599 |#3|) "failed") (-599 |#3|) |#3|) 40 T ELT))) +(((-313 |#1| |#2| |#3|) (-10 -7 (-15 -2825 ((-3 (-599 |#3|) "failed") (-599 |#3|) |#3|))) (-305) (-1183 |#1|) (-1183 |#2|)) (T -313)) +((-2825 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-599 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-1183 *4)) (-4 *4 (-305)) (-5 *1 (-313 *4 *5 *3))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 ((|#1| $) NIL T ELT) (($ $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| |#1| (-323)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| |#1| (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-1890 (($ (-1207 |#1|)) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-323)) ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) NIL (|has| |#1| (-323)) ELT)) (-1773 (((-85) $) NIL (|has| |#1| (-323)) ELT)) (-1864 (($ $ (-714)) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT) (($ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-857) $) NIL (|has| |#1| (-323)) ELT) (((-766 (-857)) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) NIL (|has| |#1| (-323)) ELT)) (-2112 (((-85) $) NIL (|has| |#1| (-323)) ELT)) (-3254 ((|#1| $) NIL T ELT) (($ $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-323)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 |#1|) $) NIL T ELT) (((-1111 $) $ (-857)) NIL (|has| |#1| (-323)) ELT)) (-2111 (((-857) $) NIL (|has| |#1| (-323)) ELT)) (-1697 (((-1111 |#1|) $) NIL (|has| |#1| (-323)) ELT)) (-1696 (((-1111 |#1|) $) NIL (|has| |#1| (-323)) ELT) (((-3 (-1111 |#1|) #1#) $ $) NIL (|has| |#1| (-323)) ELT)) (-1698 (($ $ (-1111 |#1|)) NIL (|has| |#1| (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| |#1| (-323)) CONST)) (-2518 (($ (-857)) NIL (|has| |#1| (-323)) ELT)) (-4081 (((-85) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($) NIL (|has| |#1| (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| |#1| (-323)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-766 (-857))) NIL T ELT) (((-857)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-714) $) NIL (|has| |#1| (-323)) ELT) (((-3 (-714) #1#) $ $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-4098 (((-766 (-857)) $) NIL T ELT) (((-857) $) NIL T ELT)) (-3323 (((-1111 |#1|)) NIL T ELT)) (-1767 (($) NIL (|has| |#1| (-323)) ELT)) (-1699 (($) NIL (|has| |#1| (-323)) ELT)) (-3362 (((-1207 |#1|) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| |#1| (-323)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2823 (($ $) NIL (|has| |#1| (-323)) ELT) (((-649 $) $) NIL (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT) (((-1207 $) (-857)) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-4078 (($ $) NIL (|has| |#1| (-323)) ELT) (($ $ (-714)) NIL (|has| |#1| (-323)) ELT)) (-2790 (($ $ (-714)) NIL (|has| |#1| (-323)) ELT) (($ $) NIL (|has| |#1| (-323)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-314 |#1| |#2|) (-283 |#1|) (-305) (-857)) (T -314)) +NIL +((-2350 (((-85) (-599 (-884 |#1|))) 41 T ELT)) (-2352 (((-599 (-884 |#1|)) (-599 (-884 |#1|))) 53 T ELT)) (-2351 (((-3 (-599 (-884 |#1|)) "failed") (-599 (-884 |#1|))) 48 T ELT))) +(((-315 |#1| |#2|) (-10 -7 (-15 -2350 ((-85) (-599 (-884 |#1|)))) (-15 -2351 ((-3 (-599 (-884 |#1|)) "failed") (-599 (-884 |#1|)))) (-15 -2352 ((-599 (-884 |#1|)) (-599 (-884 |#1|))))) (-406) (-599 (-1117))) (T -315)) +((-2352 (*1 *2 *2) (-12 (-5 *2 (-599 (-884 *3))) (-4 *3 (-406)) (-5 *1 (-315 *3 *4)) (-14 *4 (-599 (-1117))))) (-2351 (*1 *2 *2) (|partial| -12 (-5 *2 (-599 (-884 *3))) (-4 *3 (-406)) (-5 *1 (-315 *3 *4)) (-14 *4 (-599 (-1117))))) (-2350 (*1 *2 *3) (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-406)) (-5 *2 (-85)) (-5 *1 (-315 *4 *5)) (-14 *5 (-599 (-1117)))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2528 (((-85) $) 17 T ELT)) (-2399 ((|#1| $ (-499)) NIL T ELT)) (-2400 (((-499) $ (-499)) NIL T ELT)) (-2391 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2392 (($ (-1 (-499) (-499)) $) 26 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 28 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1877 (((-599 (-2 (|:| |gen| |#1|) (|:| -4093 (-499)))) $) 30 T ELT)) (-3130 (($ $ $) NIL T ELT)) (-2551 (($ $ $) NIL T ELT)) (-4096 (((-797) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2785 (($) 7 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT) (($ |#1| (-499)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) +(((-316 |#1|) (-13 (-427) (-978 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-499))) (-15 -3258 ((-714) $)) (-15 -2400 ((-499) $ (-499))) (-15 -2399 (|#1| $ (-499))) (-15 -2392 ($ (-1 (-499) (-499)) $)) (-15 -2391 ($ (-1 |#1| |#1|) $)) (-15 -1877 ((-599 (-2 (|:| |gen| |#1|) (|:| -4093 (-499)))) $)))) (-1041)) (T -316)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-1041)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-316 *2)) (-4 *2 (-1041)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-316 *2)) (-4 *2 (-1041)))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-316 *3)) (-4 *3 (-1041)))) (-2400 (*1 *2 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-316 *3)) (-4 *3 (-1041)))) (-2399 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *1 (-316 *2)) (-4 *2 (-1041)))) (-2392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-499) (-499))) (-5 *1 (-316 *3)) (-4 *3 (-1041)))) (-2391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1041)) (-5 *1 (-316 *3)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| |gen| *3) (|:| -4093 (-499))))) (-5 *1 (-316 *3)) (-4 *3 (-1041))))) +((-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 13 T ELT)) (-2164 (($ $) 14 T ELT)) (-4121 (((-359 $) $) 31 T ELT)) (-3873 (((-85) $) 27 T ELT)) (-2601 (($ $) 19 T ELT)) (-3282 (($ $ $) 22 T ELT) (($ (-599 $)) NIL T ELT)) (-3882 (((-359 $) $) 32 T ELT)) (-3606 (((-3 $ "failed") $ $) 21 T ELT)) (-1677 (((-714) $) 25 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 36 T ELT)) (-2163 (((-85) $ $) 16 T ELT)) (-4099 (($ $ $) 34 T ELT))) +(((-317 |#1|) (-10 -7 (-15 -4099 (|#1| |#1| |#1|)) (-15 -2601 (|#1| |#1|)) (-15 -3873 ((-85) |#1|)) (-15 -4121 ((-359 |#1|) |#1|)) (-15 -3882 ((-359 |#1|) |#1|)) (-15 -3000 ((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|)) (-15 -1677 ((-714) |#1|)) (-15 -3282 (|#1| (-599 |#1|))) (-15 -3282 (|#1| |#1| |#1|)) (-15 -2163 ((-85) |#1| |#1|)) (-15 -2164 (|#1| |#1|)) (-15 -2165 ((-2 (|:| -1870 |#1|) (|:| -4132 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3606 ((-3 |#1| "failed") |#1| |#1|))) (-318)) (T -317)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 88 T ELT)) (-4121 (((-359 $) $) 87 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3874 (($) 22 T CONST)) (-2683 (($ $ $) 68 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-3873 (((-85) $) 86 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 65 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 85 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3882 (((-359 $) $) 89 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-361 (-499))) 81 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 80 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 84 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 83 T ELT) (($ (-361 (-499)) $) 82 T ELT))) +(((-318) (-113)) (T -318)) +((-4099 (*1 *1 *1 *1) (-4 *1 (-318)))) +(-13 (-261) (-1162) (-200) (-10 -8 (-15 -4099 ($ $ $)) (-6 -4143) (-6 -4137))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 $) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-200) . T) ((-244) . T) ((-261) . T) ((-406) . T) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 $) . T) ((-675 (-361 (-499))) . T) ((-675 $) . T) ((-684) . T) ((-859) . T) ((-991 (-361 (-499))) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-1790 ((|#1| $ |#1|) 35 T ELT)) (-1794 (($ $ (-1099)) 23 T ELT)) (-3769 (((-3 |#1| "failed") $) 34 T ELT)) (-1791 ((|#1| $) 32 T ELT)) (-1795 (($ (-344)) 22 T ELT) (($ (-344) (-1099)) 21 T ELT)) (-3690 (((-344) $) 25 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1792 (((-1099) $) 26 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 20 T ELT)) (-1793 (($ $) 24 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 19 T ELT))) +(((-319 |#1|) (-13 (-320 (-344) |#1|) (-10 -8 (-15 -3769 ((-3 |#1| "failed") $)))) (-1041)) (T -319)) +((-3769 (*1 *2 *1) (|partial| -12 (-5 *1 (-319 *2)) (-4 *2 (-1041))))) +((-2687 (((-85) $ $) 7 T ELT)) (-1790 ((|#2| $ |#2|) 17 T ELT)) (-1794 (($ $ (-1099)) 22 T ELT)) (-1791 ((|#2| $) 18 T ELT)) (-1795 (($ |#1|) 24 T ELT) (($ |#1| (-1099)) 23 T ELT)) (-3690 ((|#1| $) 20 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1792 (((-1099) $) 19 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1793 (($ $) 21 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-320 |#1| |#2|) (-113) (-1041) (-1041)) (T -320)) +((-1795 (*1 *1 *2) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041)))) (-1795 (*1 *1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *1 (-320 *2 *4)) (-4 *2 (-1041)) (-4 *4 (-1041)))) (-1794 (*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)))) (-1793 (*1 *1 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-1041)) (-4 *2 (-1041)))) (-1792 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-5 *2 (-1099)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041)))) (-1790 (*1 *2 *1 *2) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041))))) +(-13 (-1041) (-10 -8 (-15 -1795 ($ |t#1|)) (-15 -1795 ($ |t#1| (-1099))) (-15 -1794 ($ $ (-1099))) (-15 -1793 ($ $)) (-15 -3690 (|t#1| $)) (-15 -1792 ((-1099) $)) (-15 -1791 (|t#2| $)) (-15 -1790 (|t#2| $ |t#2|)))) +(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) +((-3361 (((-1207 (-647 |#2|)) (-1207 $)) 67 T ELT)) (-1886 (((-647 |#2|) (-1207 $)) 139 T ELT)) (-1820 ((|#2| $) 36 T ELT)) (-1884 (((-647 |#2|) $ (-1207 $)) 142 T ELT)) (-2522 (((-3 $ #1="failed") $) 89 T ELT)) (-1818 ((|#2| $) 39 T ELT)) (-1798 (((-1111 |#2|) $) 98 T ELT)) (-1888 ((|#2| (-1207 $)) 122 T ELT)) (-1816 (((-1111 |#2|) $) 32 T ELT)) (-1810 (((-85)) 116 T ELT)) (-1890 (($ (-1207 |#2|) (-1207 $)) 132 T ELT)) (-3607 (((-3 $ #1#) $) 93 T ELT)) (-1803 (((-85)) 111 T ELT)) (-1801 (((-85)) 106 T ELT)) (-1805 (((-85)) 58 T ELT)) (-1887 (((-647 |#2|) (-1207 $)) 137 T ELT)) (-1821 ((|#2| $) 35 T ELT)) (-1885 (((-647 |#2|) $ (-1207 $)) 141 T ELT)) (-2523 (((-3 $ #1#) $) 87 T ELT)) (-1819 ((|#2| $) 38 T ELT)) (-1799 (((-1111 |#2|) $) 97 T ELT)) (-1889 ((|#2| (-1207 $)) 120 T ELT)) (-1817 (((-1111 |#2|) $) 30 T ELT)) (-1811 (((-85)) 115 T ELT)) (-1802 (((-85)) 108 T ELT)) (-1804 (((-85)) 56 T ELT)) (-1806 (((-85)) 103 T ELT)) (-1809 (((-85)) 117 T ELT)) (-3362 (((-1207 |#2|) $ (-1207 $)) NIL T ELT) (((-647 |#2|) (-1207 $) (-1207 $)) 128 T ELT)) (-1815 (((-85)) 113 T ELT)) (-1800 (((-599 (-1207 |#2|))) 102 T ELT)) (-1813 (((-85)) 114 T ELT)) (-1814 (((-85)) 112 T ELT)) (-1812 (((-85)) 51 T ELT)) (-1808 (((-85)) 118 T ELT))) +(((-321 |#1| |#2|) (-10 -7 (-15 -1798 ((-1111 |#2|) |#1|)) (-15 -1799 ((-1111 |#2|) |#1|)) (-15 -1800 ((-599 (-1207 |#2|)))) (-15 -2522 ((-3 |#1| #1="failed") |#1|)) (-15 -2523 ((-3 |#1| #1#) |#1|)) (-15 -3607 ((-3 |#1| #1#) |#1|)) (-15 -1801 ((-85))) (-15 -1802 ((-85))) (-15 -1803 ((-85))) (-15 -1804 ((-85))) (-15 -1805 ((-85))) (-15 -1806 ((-85))) (-15 -1808 ((-85))) (-15 -1809 ((-85))) (-15 -1810 ((-85))) (-15 -1811 ((-85))) (-15 -1812 ((-85))) (-15 -1813 ((-85))) (-15 -1814 ((-85))) (-15 -1815 ((-85))) (-15 -1816 ((-1111 |#2|) |#1|)) (-15 -1817 ((-1111 |#2|) |#1|)) (-15 -1886 ((-647 |#2|) (-1207 |#1|))) (-15 -1887 ((-647 |#2|) (-1207 |#1|))) (-15 -1888 (|#2| (-1207 |#1|))) (-15 -1889 (|#2| (-1207 |#1|))) (-15 -1890 (|#1| (-1207 |#2|) (-1207 |#1|))) (-15 -3362 ((-647 |#2|) (-1207 |#1|) (-1207 |#1|))) (-15 -3362 ((-1207 |#2|) |#1| (-1207 |#1|))) (-15 -1818 (|#2| |#1|)) (-15 -1819 (|#2| |#1|)) (-15 -1820 (|#2| |#1|)) (-15 -1821 (|#2| |#1|)) (-15 -1884 ((-647 |#2|) |#1| (-1207 |#1|))) (-15 -1885 ((-647 |#2|) |#1| (-1207 |#1|))) (-15 -3361 ((-1207 (-647 |#2|)) (-1207 |#1|)))) (-322 |#2|) (-146)) (T -321)) +((-1815 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1814 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1813 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1812 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1811 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1810 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1809 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1808 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1806 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1805 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1804 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1803 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1802 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1801 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1800 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-599 (-1207 *4))) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1870 (((-3 $ "failed")) 47 (|has| |#1| (-510)) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3361 (((-1207 (-647 |#1|)) (-1207 $)) 88 T ELT)) (-1822 (((-1207 $)) 91 T ELT)) (-3874 (($) 22 T CONST)) (-2008 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) "failed")) 50 (|has| |#1| (-510)) ELT)) (-1796 (((-3 $ "failed")) 48 (|has| |#1| (-510)) ELT)) (-1886 (((-647 |#1|) (-1207 $)) 75 T ELT)) (-1820 ((|#1| $) 84 T ELT)) (-1884 (((-647 |#1|) $ (-1207 $)) 86 T ELT)) (-2522 (((-3 $ "failed") $) 55 (|has| |#1| (-510)) ELT)) (-2525 (($ $ (-857)) 36 T ELT)) (-1818 ((|#1| $) 82 T ELT)) (-1798 (((-1111 |#1|) $) 52 (|has| |#1| (-510)) ELT)) (-1888 ((|#1| (-1207 $)) 77 T ELT)) (-1816 (((-1111 |#1|) $) 73 T ELT)) (-1810 (((-85)) 67 T ELT)) (-1890 (($ (-1207 |#1|) (-1207 $)) 79 T ELT)) (-3607 (((-3 $ "failed") $) 57 (|has| |#1| (-510)) ELT)) (-3231 (((-857)) 90 T ELT)) (-1807 (((-85)) 64 T ELT)) (-2549 (($ $ (-857)) 43 T ELT)) (-1803 (((-85)) 60 T ELT)) (-1801 (((-85)) 58 T ELT)) (-1805 (((-85)) 62 T ELT)) (-2009 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) "failed")) 51 (|has| |#1| (-510)) ELT)) (-1797 (((-3 $ "failed")) 49 (|has| |#1| (-510)) ELT)) (-1887 (((-647 |#1|) (-1207 $)) 76 T ELT)) (-1821 ((|#1| $) 85 T ELT)) (-1885 (((-647 |#1|) $ (-1207 $)) 87 T ELT)) (-2523 (((-3 $ "failed") $) 56 (|has| |#1| (-510)) ELT)) (-2524 (($ $ (-857)) 37 T ELT)) (-1819 ((|#1| $) 83 T ELT)) (-1799 (((-1111 |#1|) $) 53 (|has| |#1| (-510)) ELT)) (-1889 ((|#1| (-1207 $)) 78 T ELT)) (-1817 (((-1111 |#1|) $) 74 T ELT)) (-1811 (((-85)) 68 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1802 (((-85)) 59 T ELT)) (-1804 (((-85)) 61 T ELT)) (-1806 (((-85)) 63 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1809 (((-85)) 66 T ELT)) (-3362 (((-1207 |#1|) $ (-1207 $)) 81 T ELT) (((-647 |#1|) (-1207 $) (-1207 $)) 80 T ELT)) (-1994 (((-599 (-884 |#1|)) (-1207 $)) 89 T ELT)) (-2551 (($ $ $) 33 T ELT)) (-1815 (((-85)) 72 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-1800 (((-599 (-1207 |#1|))) 54 (|has| |#1| (-510)) ELT)) (-2552 (($ $ $ $) 34 T ELT)) (-1813 (((-85)) 70 T ELT)) (-2550 (($ $ $) 32 T ELT)) (-1814 (((-85)) 71 T ELT)) (-1812 (((-85)) 69 T ELT)) (-1808 (((-85)) 65 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 38 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) +(((-322 |#1|) (-113) (-146)) (T -322)) +((-1822 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1207 *1)) (-4 *1 (-322 *3)))) (-3231 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-857)))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-599 (-884 *4))))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-1207 (-647 *4))))) (-1885 (*1 *2 *1 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) (-1884 (*1 *2 *1 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) (-1821 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-146)))) (-1820 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-146)))) (-1819 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-146)))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-146)))) (-3362 (*1 *2 *1 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-1207 *4)))) (-3362 (*1 *2 *3 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) (-1890 (*1 *1 *2 *3) (-12 (-5 *2 (-1207 *4)) (-5 *3 (-1207 *1)) (-4 *4 (-146)) (-4 *1 (-322 *4)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *2)) (-4 *2 (-146)))) (-1888 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *2)) (-4 *2 (-146)))) (-1887 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-1111 *3)))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-1111 *3)))) (-1815 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1814 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1813 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1812 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1811 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1810 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1809 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1808 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1807 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1806 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1805 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1804 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1803 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1802 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1801 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-3607 (*1 *1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-146)) (-4 *2 (-510)))) (-2523 (*1 *1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-146)) (-4 *2 (-510)))) (-2522 (*1 *1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-146)) (-4 *2 (-510)))) (-1800 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-4 *3 (-510)) (-5 *2 (-599 (-1207 *3))))) (-1799 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-4 *3 (-510)) (-5 *2 (-1111 *3)))) (-1798 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-4 *3 (-510)) (-5 *2 (-1111 *3)))) (-2009 (*1 *2) (|partial| -12 (-4 *3 (-510)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2113 (-599 *1)))) (-4 *1 (-322 *3)))) (-2008 (*1 *2) (|partial| -12 (-4 *3 (-510)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2113 (-599 *1)))) (-4 *1 (-322 *3)))) (-1797 (*1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-510)) (-4 *2 (-146)))) (-1796 (*1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-510)) (-4 *2 (-146)))) (-1870 (*1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-510)) (-4 *2 (-146))))) +(-13 (-702 |t#1|) (-10 -8 (-15 -1822 ((-1207 $))) (-15 -3231 ((-857))) (-15 -1994 ((-599 (-884 |t#1|)) (-1207 $))) (-15 -3361 ((-1207 (-647 |t#1|)) (-1207 $))) (-15 -1885 ((-647 |t#1|) $ (-1207 $))) (-15 -1884 ((-647 |t#1|) $ (-1207 $))) (-15 -1821 (|t#1| $)) (-15 -1820 (|t#1| $)) (-15 -1819 (|t#1| $)) (-15 -1818 (|t#1| $)) (-15 -3362 ((-1207 |t#1|) $ (-1207 $))) (-15 -3362 ((-647 |t#1|) (-1207 $) (-1207 $))) (-15 -1890 ($ (-1207 |t#1|) (-1207 $))) (-15 -1889 (|t#1| (-1207 $))) (-15 -1888 (|t#1| (-1207 $))) (-15 -1887 ((-647 |t#1|) (-1207 $))) (-15 -1886 ((-647 |t#1|) (-1207 $))) (-15 -1817 ((-1111 |t#1|) $)) (-15 -1816 ((-1111 |t#1|) $)) (-15 -1815 ((-85))) (-15 -1814 ((-85))) (-15 -1813 ((-85))) (-15 -1812 ((-85))) (-15 -1811 ((-85))) (-15 -1810 ((-85))) (-15 -1809 ((-85))) (-15 -1808 ((-85))) (-15 -1807 ((-85))) (-15 -1806 ((-85))) (-15 -1805 ((-85))) (-15 -1804 ((-85))) (-15 -1803 ((-85))) (-15 -1802 ((-85))) (-15 -1801 ((-85))) (IF (|has| |t#1| (-510)) (PROGN (-15 -3607 ((-3 $ "failed") $)) (-15 -2523 ((-3 $ "failed") $)) (-15 -2522 ((-3 $ "failed") $)) (-15 -1800 ((-599 (-1207 |t#1|)))) (-15 -1799 ((-1111 |t#1|) $)) (-15 -1798 ((-1111 |t#1|) $)) (-15 -2009 ((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) "failed"))) (-15 -2008 ((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) "failed"))) (-15 -1797 ((-3 $ "failed"))) (-15 -1796 ((-3 $ "failed"))) (-15 -1870 ((-3 $ "failed"))) (-6 -4142)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-598 |#1|) . T) ((-675 |#1|) . T) ((-678) . T) ((-702 |#1|) . T) ((-704) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) 7 T ELT)) (-3258 (((-714)) 20 T ELT)) (-3115 (($) 17 T ELT)) (-2111 (((-857) $) 18 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2518 (($ (-857)) 19 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-323) (-113)) (T -323)) +((-3258 (*1 *2) (-12 (-4 *1 (-323)) (-5 *2 (-714)))) (-2518 (*1 *1 *2) (-12 (-5 *2 (-857)) (-4 *1 (-323)))) (-2111 (*1 *2 *1) (-12 (-4 *1 (-323)) (-5 *2 (-857)))) (-3115 (*1 *1) (-4 *1 (-323)))) +(-13 (-1041) (-10 -8 (-15 -3258 ((-714))) (-15 -2518 ($ (-857))) (-15 -2111 ((-857) $)) (-15 -3115 ($)))) +(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) +((-1880 (((-647 |#2|) (-1207 $)) 45 T ELT)) (-1890 (($ (-1207 |#2|) (-1207 $)) 39 T ELT)) (-1879 (((-647 |#2|) $ (-1207 $)) 47 T ELT)) (-3907 ((|#2| (-1207 $)) 13 T ELT)) (-3362 (((-1207 |#2|) $ (-1207 $)) NIL T ELT) (((-647 |#2|) (-1207 $) (-1207 $)) 27 T ELT))) +(((-324 |#1| |#2| |#3|) (-10 -7 (-15 -1880 ((-647 |#2|) (-1207 |#1|))) (-15 -3907 (|#2| (-1207 |#1|))) (-15 -1890 (|#1| (-1207 |#2|) (-1207 |#1|))) (-15 -3362 ((-647 |#2|) (-1207 |#1|) (-1207 |#1|))) (-15 -3362 ((-1207 |#2|) |#1| (-1207 |#1|))) (-15 -1879 ((-647 |#2|) |#1| (-1207 |#1|)))) (-325 |#2| |#3|) (-146) (-1183 |#2|)) (T -324)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1880 (((-647 |#1|) (-1207 $)) 58 T ELT)) (-3470 ((|#1| $) 64 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-1890 (($ (-1207 |#1|) (-1207 $)) 60 T ELT)) (-1879 (((-647 |#1|) $ (-1207 $)) 65 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3231 (((-857)) 66 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3254 ((|#1| $) 63 T ELT)) (-2115 ((|#2| $) 56 (|has| |#1| (-318)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3907 ((|#1| (-1207 $)) 59 T ELT)) (-3362 (((-1207 |#1|) $ (-1207 $)) 62 T ELT) (((-647 |#1|) (-1207 $) (-1207 $)) 61 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 49 T ELT)) (-2823 (((-649 $) $) 55 (|has| |#1| (-118)) ELT)) (-2565 ((|#2| $) 57 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) +(((-325 |#1| |#2|) (-113) (-146) (-1183 |t#1|)) (T -325)) +((-3231 (*1 *2) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1183 *3)) (-5 *2 (-857)))) (-1879 (*1 *2 *1 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1183 *4)) (-5 *2 (-647 *4)))) (-3470 (*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-1183 *2)) (-4 *2 (-146)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-1183 *2)) (-4 *2 (-146)))) (-3362 (*1 *2 *1 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1183 *4)) (-5 *2 (-1207 *4)))) (-3362 (*1 *2 *3 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1183 *4)) (-5 *2 (-647 *4)))) (-1890 (*1 *1 *2 *3) (-12 (-5 *2 (-1207 *4)) (-5 *3 (-1207 *1)) (-4 *4 (-146)) (-4 *1 (-325 *4 *5)) (-4 *5 (-1183 *4)))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-325 *2 *4)) (-4 *4 (-1183 *2)) (-4 *2 (-146)))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1183 *4)) (-5 *2 (-647 *4)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1183 *3)))) (-2115 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-146)) (-4 *3 (-318)) (-4 *2 (-1183 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3231 ((-857))) (-15 -1879 ((-647 |t#1|) $ (-1207 $))) (-15 -3470 (|t#1| $)) (-15 -3254 (|t#1| $)) (-15 -3362 ((-1207 |t#1|) $ (-1207 $))) (-15 -3362 ((-647 |t#1|) (-1207 $) (-1207 $))) (-15 -1890 ($ (-1207 |t#1|) (-1207 $))) (-15 -3907 (|t#1| (-1207 $))) (-15 -1880 ((-647 |t#1|) (-1207 $))) (-15 -2565 (|t#2| $)) (IF (|has| |t#1| (-318)) (-15 -2115 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-598 |#1|) . T) ((-675 |#1|) . T) ((-684) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-1825 (((-85) (-1 (-85) |#2| |#2|) $) NIL T ELT) (((-85) $) 18 T ELT)) (-1823 (($ (-1 (-85) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-3030 (($ (-1 (-85) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2398 (($ $) 25 T ELT)) (-3559 (((-499) (-1 (-85) |#2|) $) NIL T ELT) (((-499) |#2| $) 11 T ELT) (((-499) |#2| $ (-499)) NIL T ELT)) (-3658 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) +(((-326 |#1| |#2|) (-10 -7 (-15 -1823 (|#1| |#1|)) (-15 -1823 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1825 ((-85) |#1|)) (-15 -3030 (|#1| |#1|)) (-15 -3658 (|#1| |#1| |#1|)) (-15 -3559 ((-499) |#2| |#1| (-499))) (-15 -3559 ((-499) |#2| |#1|)) (-15 -3559 ((-499) (-1 (-85) |#2|) |#1|)) (-15 -1825 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3030 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2398 (|#1| |#1|)) (-15 -3658 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|))) (-327 |#2|) (-1157)) (T -326)) +NIL +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-2299 (((-1213) $ (-499) (-499)) 44 (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -4146)) ELT) (($ $) 97 (-12 (|has| |#1| (-781)) (|has| $ (-6 -4146))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-781)) ELT)) (-3938 ((|#1| $ (-499) |#1|) 56 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) 64 (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-2397 (($ $) 99 (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) 109 T ELT)) (-1386 (($ $) 84 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#1| $) 83 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) 57 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 55 T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) 106 T ELT) (((-499) |#1| $) 105 (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) 104 (|has| |#1| (-1041)) ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) |#1|) 74 T ELT)) (-2301 (((-499) $) 47 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) 91 (|has| |#1| (-781)) ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 48 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) 92 (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) 66 T ELT) (($ $ $ (-499)) 65 T ELT)) (-2304 (((-599 (-499)) $) 50 T ELT)) (-2305 (((-85) (-499) $) 51 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) 46 (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2300 (($ $ |#1|) 45 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) 52 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ (-499) |#1|) 54 T ELT) ((|#1| $ (-499)) 53 T ELT) (($ $ (-1174 (-499))) 75 T ELT)) (-2405 (($ $ (-499)) 68 T ELT) (($ $ (-1174 (-499))) 67 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-1824 (($ $ $ (-499)) 100 (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 85 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 76 T ELT)) (-3952 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-599 $)) 70 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) 93 (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) 95 (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) 94 (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 96 (|has| |#1| (-781)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-327 |#1|) (-113) (-1157)) (T -327)) +((-3658 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-327 *3)) (-4 *3 (-1157)))) (-2398 (*1 *1 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-1157)))) (-3030 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-327 *3)) (-4 *3 (-1157)))) (-1825 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-327 *4)) (-4 *4 (-1157)) (-5 *2 (-85)))) (-3559 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-327 *4)) (-4 *4 (-1157)) (-5 *2 (-499)))) (-3559 (*1 *2 *3 *1) (-12 (-4 *1 (-327 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)) (-5 *2 (-499)))) (-3559 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-327 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)))) (-3658 (*1 *1 *1 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-1157)) (-4 *2 (-781)))) (-3030 (*1 *1 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-1157)) (-4 *2 (-781)))) (-1825 (*1 *2 *1) (-12 (-4 *1 (-327 *3)) (-4 *3 (-1157)) (-4 *3 (-781)) (-5 *2 (-85)))) (-1824 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-499)) (|has| *1 (-6 -4146)) (-4 *1 (-327 *3)) (-4 *3 (-1157)))) (-2397 (*1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-327 *2)) (-4 *2 (-1157)))) (-1823 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -4146)) (-4 *1 (-327 *3)) (-4 *3 (-1157)))) (-1823 (*1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-327 *2)) (-4 *2 (-1157)) (-4 *2 (-781))))) +(-13 (-609 |t#1|) (-10 -8 (-6 -4145) (-15 -3658 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -2398 ($ $)) (-15 -3030 ($ (-1 (-85) |t#1| |t#1|) $)) (-15 -1825 ((-85) (-1 (-85) |t#1| |t#1|) $)) (-15 -3559 ((-499) (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1041)) (PROGN (-15 -3559 ((-499) |t#1| $)) (-15 -3559 ((-499) |t#1| $ (-499)))) |%noBranch|) (IF (|has| |t#1| (-781)) (PROGN (-6 (-781)) (-15 -3658 ($ $ $)) (-15 -3030 ($ $)) (-15 -1825 ((-85) $))) |%noBranch|) (IF (|has| $ (-6 -4146)) (PROGN (-15 -1824 ($ $ $ (-499))) (-15 -2397 ($ $)) (-15 -1823 ($ (-1 (-85) |t#1| |t#1|) $)) (IF (|has| |t#1| (-781)) (-15 -1823 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-240 (-499) |#1|) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-554 (-499) |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-609 |#1|) . T) ((-781) |has| |#1| (-781)) ((-784) |has| |#1| (-781)) ((-1041) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781))) ((-1157) . T)) +((-3991 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3992 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-4108 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) +(((-328 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4108 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3992 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3991 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1157) (-327 |#1|) (-1157) (-327 |#3|)) (T -328)) +((-3991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1157)) (-4 *5 (-1157)) (-4 *2 (-327 *5)) (-5 *1 (-328 *6 *4 *5 *2)) (-4 *4 (-327 *6)))) (-3992 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1157)) (-4 *2 (-1157)) (-5 *1 (-328 *5 *4 *2 *6)) (-4 *4 (-327 *5)) (-4 *6 (-327 *2)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-4 *2 (-327 *6)) (-5 *1 (-328 *5 *4 *6 *2)) (-4 *4 (-327 *5))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-4084 (((-599 |#1|) $) 42 T ELT)) (-4097 (($ $ (-714)) 43 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-4089 (((-1232 |#1| |#2|) (-1232 |#1| |#2|) $) 46 T ELT)) (-4086 (($ $) 44 T ELT)) (-4090 (((-1232 |#1| |#2|) (-1232 |#1| |#2|) $) 47 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3918 (($ $ |#1| $) 41 T ELT) (($ $ (-599 |#1|) (-599 $)) 40 T ELT)) (-4098 (((-714) $) 48 T ELT)) (-3670 (($ $ $) 39 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ |#1|) 51 T ELT) (((-1223 |#1| |#2|) $) 50 T ELT) (((-1232 |#1| |#2|) $) 49 T ELT)) (-4104 ((|#2| (-1232 |#1| |#2|) $) 52 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-1826 (($ (-630 |#1|)) 45 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#2|) 38 (|has| |#2| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) +(((-329 |#1| |#2|) (-113) (-781) (-146)) (T -329)) +((-4104 (*1 *2 *3 *1) (-12 (-5 *3 (-1232 *4 *2)) (-4 *1 (-329 *4 *2)) (-4 *4 (-781)) (-4 *2 (-146)))) (-4096 (*1 *1 *2) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-781)) (-4 *3 (-146)))) (-4096 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) (-5 *2 (-1223 *3 *4)))) (-4096 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) (-5 *2 (-1232 *3 *4)))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) (-5 *2 (-714)))) (-4090 (*1 *2 *2 *1) (-12 (-5 *2 (-1232 *3 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)))) (-4089 (*1 *2 *2 *1) (-12 (-5 *2 (-1232 *3 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)))) (-1826 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-781)) (-4 *1 (-329 *3 *4)) (-4 *4 (-146)))) (-4086 (*1 *1 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-781)) (-4 *3 (-146)))) (-4097 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) (-5 *2 (-599 *3)))) (-3918 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-781)) (-4 *3 (-146)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 *4)) (-5 *3 (-599 *1)) (-4 *1 (-329 *4 *5)) (-4 *4 (-781)) (-4 *5 (-146))))) +(-13 (-590 |t#2|) (-10 -8 (-15 -4104 (|t#2| (-1232 |t#1| |t#2|) $)) (-15 -4096 ($ |t#1|)) (-15 -4096 ((-1223 |t#1| |t#2|) $)) (-15 -4096 ((-1232 |t#1| |t#2|) $)) (-15 -4098 ((-714) $)) (-15 -4090 ((-1232 |t#1| |t#2|) (-1232 |t#1| |t#2|) $)) (-15 -4089 ((-1232 |t#1| |t#2|) (-1232 |t#1| |t#2|) $)) (-15 -1826 ($ (-630 |t#1|))) (-15 -4086 ($ $)) (-15 -4097 ($ $ (-714))) (-15 -4084 ((-599 |t#1|) $)) (-15 -3918 ($ $ |t#1| $)) (-15 -3918 ($ $ (-599 |t#1|) (-599 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#2|) . T) ((-606 |#2|) . T) ((-590 |#2|) . T) ((-598 |#2|) . T) ((-675 |#2|) . T) ((-991 |#2|) . T) ((-996 |#2|) . T) ((-1041) . T) ((-1157) . T)) +((-1829 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 40 T ELT)) (-1827 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 13 T ELT)) (-1828 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 33 T ELT))) +(((-330 |#1| |#2|) (-10 -7 (-15 -1827 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1828 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1829 (|#2| (-1 (-85) |#1| |#1|) |#2|))) (-1157) (-13 (-327 |#1|) (-10 -7 (-6 -4146)))) (T -330)) +((-1829 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1157)) (-5 *1 (-330 *4 *2)) (-4 *2 (-13 (-327 *4) (-10 -7 (-6 -4146)))))) (-1828 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1157)) (-5 *1 (-330 *4 *2)) (-4 *2 (-13 (-327 *4) (-10 -7 (-6 -4146)))))) (-1827 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1157)) (-5 *1 (-330 *4 *2)) (-4 *2 (-13 (-327 *4) (-10 -7 (-6 -4146))))))) +((-2380 (((-647 |#2|) (-647 $)) NIL T ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 22 T ELT) (((-647 (-499)) (-647 $)) 14 T ELT))) +(((-331 |#1| |#2|) (-10 -7 (-15 -2380 ((-647 (-499)) (-647 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 |#1|) (-1207 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 |#1|) (-1207 |#1|))) (-15 -2380 ((-647 |#2|) (-647 |#1|)))) (-332 |#2|) (-989)) (T -331)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-2380 (((-647 |#1|) (-647 $)) 35 T ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 34 T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 46 (|has| |#1| (-596 (-499))) ELT) (((-647 (-499)) (-647 $)) 45 (|has| |#1| (-596 (-499))) ELT)) (-2381 (((-647 |#1|) (-1207 $)) 37 T ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 36 T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 44 (|has| |#1| (-596 (-499))) ELT) (((-647 (-499)) (-1207 $)) 43 (|has| |#1| (-596 (-499))) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT))) +(((-332 |#1|) (-113) (-989)) (T -332)) +NIL +(-13 (-596 |t#1|) (-10 -7 (IF (|has| |t#1| (-596 (-499))) (-6 (-596 (-499))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 (-499)) |has| |#1| (-596 (-499))) ((-606 |#1|) . T) ((-596 (-499)) |has| |#1| (-596 (-499))) ((-596 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 16 T ELT)) (-3251 (((-499) $) 44 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-3921 (($ $) 120 T ELT)) (-3632 (($ $) 81 T ELT)) (-3789 (($ $) 72 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-3158 (($ $) 28 T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3630 (($ $) 79 T ELT)) (-3788 (($ $) 67 T ELT)) (-3773 (((-499) $) 60 T ELT)) (-2557 (($ $ (-499)) 55 T ELT)) (-3634 (($ $) NIL T ELT)) (-3787 (($ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3249 (($ $) 122 T ELT)) (-3295 (((-3 (-499) #1#) $) 217 T ELT) (((-3 (-361 (-499)) #1#) $) 213 T ELT)) (-3294 (((-499) $) 215 T ELT) (((-361 (-499)) $) 211 T ELT)) (-2683 (($ $ $) NIL T ELT)) (-1838 (((-499) $ $) 110 T ELT)) (-3607 (((-3 $ #1#) $) 125 T ELT)) (-1837 (((-361 (-499)) $ (-714)) 218 T ELT) (((-361 (-499)) $ (-714) (-714)) 210 T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2492 (((-857)) 106 T ELT) (((-857) (-857)) 107 (|has| $ (-6 -4136)) ELT)) (-3324 (((-85) $) 38 T ELT)) (-3777 (($) 22 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL T ELT)) (-1830 (((-1213) (-714)) 177 T ELT)) (-1831 (((-1213)) 182 T ELT) (((-1213) (-714)) 183 T ELT)) (-1833 (((-1213)) 184 T ELT) (((-1213) (-714)) 185 T ELT)) (-1832 (((-1213)) 180 T ELT) (((-1213) (-714)) 181 T ELT)) (-3922 (((-499) $) 50 T ELT)) (-2528 (((-85) $) 21 T ELT)) (-3132 (($ $ (-499)) NIL T ELT)) (-2559 (($ $) 32 T ELT)) (-3254 (($ $) NIL T ELT)) (-3325 (((-85) $) 18 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL (-12 (-2679 (|has| $ (-6 -4128))) (-2679 (|has| $ (-6 -4136)))) ELT)) (-2978 (($ $ $) NIL T ELT) (($) NIL (-12 (-2679 (|has| $ (-6 -4128))) (-2679 (|has| $ (-6 -4136)))) ELT)) (-2493 (((-499) $) 112 T ELT)) (-1836 (($) 90 T ELT) (($ $) 97 T ELT)) (-1835 (($) 96 T ELT) (($ $) 98 T ELT)) (-4092 (($ $) 84 T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 127 T ELT)) (-1867 (((-857) (-499)) 27 (|has| $ (-6 -4136)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) 41 T ELT)) (-3252 (($ $) 119 T ELT)) (-3392 (($ (-499) (-499)) 115 T ELT) (($ (-499) (-499) (-857)) 116 T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2519 (((-499) $) 113 T ELT)) (-1834 (($) 99 T ELT)) (-4093 (($ $) 78 T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-2734 (((-857)) 108 T ELT) (((-857) (-857)) 109 (|has| $ (-6 -4136)) ELT)) (-3908 (($ $) 126 T ELT) (($ $ (-714)) NIL T ELT)) (-1866 (((-857) (-499)) 31 (|has| $ (-6 -4136)) ELT)) (-3635 (($ $) NIL T ELT)) (-3786 (($ $) NIL T ELT)) (-3633 (($ $) NIL T ELT)) (-3785 (($ $) NIL T ELT)) (-3631 (($ $) 80 T ELT)) (-3784 (($ $) 71 T ELT)) (-4122 (((-333) $) 202 T ELT) (((-179) $) 204 T ELT) (((-825 (-333)) $) NIL T ELT) (((-1099) $) 188 T ELT) (((-488) $) 200 T ELT) (($ (-179)) 209 T ELT)) (-4096 (((-797) $) 192 T ELT) (($ (-499)) 214 T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-499)) 214 T ELT) (($ (-361 (-499))) NIL T ELT) (((-179) $) 205 T ELT)) (-3248 (((-714)) NIL T CONST)) (-3253 (($ $) 121 T ELT)) (-1868 (((-857)) 42 T ELT) (((-857) (-857)) 62 (|has| $ (-6 -4136)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2815 (((-857)) 111 T ELT)) (-3638 (($ $) 87 T ELT)) (-3626 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3636 (($ $) 85 T ELT)) (-3624 (($ $) 20 T ELT)) (-3640 (($ $) NIL T ELT)) (-3628 (($ $) NIL T ELT)) (-3641 (($ $) NIL T ELT)) (-3629 (($ $) NIL T ELT)) (-3639 (($ $) NIL T ELT)) (-3627 (($ $) NIL T ELT)) (-3637 (($ $) 86 T ELT)) (-3625 (($ $) 33 T ELT)) (-3523 (($ $) 39 T ELT)) (-2779 (($) 17 T CONST)) (-2785 (($) 24 T CONST)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-2685 (((-85) $ $) 189 T ELT)) (-2686 (((-85) $ $) 26 T ELT)) (-3174 (((-85) $ $) 37 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 43 T ELT)) (-4099 (($ $ $) 29 T ELT) (($ $ (-499)) 23 T ELT)) (-3987 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3989 (($ $ $) 54 T ELT)) (** (($ $ (-857)) 65 T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) 91 T ELT) (($ $ (-361 (-499))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-857) $) 61 T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT))) +(((-333) (-13 (-358) (-190) (-569 (-1099)) (-568 (-179)) (-1143) (-569 (-488)) (-573 (-179)) (-10 -8 (-15 -4099 ($ $ (-499))) (-15 ** ($ $ $)) (-15 -2559 ($ $)) (-15 -1838 ((-499) $ $)) (-15 -2557 ($ $ (-499))) (-15 -1837 ((-361 (-499)) $ (-714))) (-15 -1837 ((-361 (-499)) $ (-714) (-714))) (-15 -1836 ($)) (-15 -1835 ($)) (-15 -1834 ($)) (-15 -3626 ($ $ $)) (-15 -1836 ($ $)) (-15 -1835 ($ $)) (-15 -1833 ((-1213))) (-15 -1833 ((-1213) (-714))) (-15 -1832 ((-1213))) (-15 -1832 ((-1213) (-714))) (-15 -1831 ((-1213))) (-15 -1831 ((-1213) (-714))) (-15 -1830 ((-1213) (-714))) (-6 -4136) (-6 -4128)))) (T -333)) +((** (*1 *1 *1 *1) (-5 *1 (-333))) (-4099 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-333)))) (-2559 (*1 *1 *1) (-5 *1 (-333))) (-1838 (*1 *2 *1 *1) (-12 (-5 *2 (-499)) (-5 *1 (-333)))) (-2557 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-333)))) (-1837 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *2 (-361 (-499))) (-5 *1 (-333)))) (-1837 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-361 (-499))) (-5 *1 (-333)))) (-1836 (*1 *1) (-5 *1 (-333))) (-1835 (*1 *1) (-5 *1 (-333))) (-1834 (*1 *1) (-5 *1 (-333))) (-3626 (*1 *1 *1 *1) (-5 *1 (-333))) (-1836 (*1 *1 *1) (-5 *1 (-333))) (-1835 (*1 *1 *1) (-5 *1 (-333))) (-1833 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-333)))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-333)))) (-1832 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-333)))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-333)))) (-1831 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-333)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-333)))) (-1830 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-333))))) +((-1839 (((-599 (-247 (-884 (-142 |#1|)))) (-247 (-361 (-884 (-142 (-499))))) |#1|) 51 T ELT) (((-599 (-247 (-884 (-142 |#1|)))) (-361 (-884 (-142 (-499)))) |#1|) 50 T ELT) (((-599 (-599 (-247 (-884 (-142 |#1|))))) (-599 (-247 (-361 (-884 (-142 (-499)))))) |#1|) 47 T ELT) (((-599 (-599 (-247 (-884 (-142 |#1|))))) (-599 (-361 (-884 (-142 (-499))))) |#1|) 41 T ELT)) (-1840 (((-599 (-599 (-142 |#1|))) (-599 (-361 (-884 (-142 (-499))))) (-599 (-1117)) |#1|) 30 T ELT) (((-599 (-142 |#1|)) (-361 (-884 (-142 (-499)))) |#1|) 18 T ELT))) +(((-334 |#1|) (-10 -7 (-15 -1839 ((-599 (-599 (-247 (-884 (-142 |#1|))))) (-599 (-361 (-884 (-142 (-499))))) |#1|)) (-15 -1839 ((-599 (-599 (-247 (-884 (-142 |#1|))))) (-599 (-247 (-361 (-884 (-142 (-499)))))) |#1|)) (-15 -1839 ((-599 (-247 (-884 (-142 |#1|)))) (-361 (-884 (-142 (-499)))) |#1|)) (-15 -1839 ((-599 (-247 (-884 (-142 |#1|)))) (-247 (-361 (-884 (-142 (-499))))) |#1|)) (-15 -1840 ((-599 (-142 |#1|)) (-361 (-884 (-142 (-499)))) |#1|)) (-15 -1840 ((-599 (-599 (-142 |#1|))) (-599 (-361 (-884 (-142 (-499))))) (-599 (-1117)) |#1|))) (-13 (-318) (-780))) (T -334)) +((-1840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 (-361 (-884 (-142 (-499)))))) (-5 *4 (-599 (-1117))) (-5 *2 (-599 (-599 (-142 *5)))) (-5 *1 (-334 *5)) (-4 *5 (-13 (-318) (-780))))) (-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 (-142 (-499))))) (-5 *2 (-599 (-142 *4))) (-5 *1 (-334 *4)) (-4 *4 (-13 (-318) (-780))))) (-1839 (*1 *2 *3 *4) (-12 (-5 *3 (-247 (-361 (-884 (-142 (-499)))))) (-5 *2 (-599 (-247 (-884 (-142 *4))))) (-5 *1 (-334 *4)) (-4 *4 (-13 (-318) (-780))))) (-1839 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 (-142 (-499))))) (-5 *2 (-599 (-247 (-884 (-142 *4))))) (-5 *1 (-334 *4)) (-4 *4 (-13 (-318) (-780))))) (-1839 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-247 (-361 (-884 (-142 (-499))))))) (-5 *2 (-599 (-599 (-247 (-884 (-142 *4)))))) (-5 *1 (-334 *4)) (-4 *4 (-13 (-318) (-780))))) (-1839 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-361 (-884 (-142 (-499)))))) (-5 *2 (-599 (-599 (-247 (-884 (-142 *4)))))) (-5 *1 (-334 *4)) (-4 *4 (-13 (-318) (-780)))))) +((-3721 (((-599 (-247 (-884 |#1|))) (-247 (-361 (-884 (-499)))) |#1|) 46 T ELT) (((-599 (-247 (-884 |#1|))) (-361 (-884 (-499))) |#1|) 45 T ELT) (((-599 (-599 (-247 (-884 |#1|)))) (-599 (-247 (-361 (-884 (-499))))) |#1|) 42 T ELT) (((-599 (-599 (-247 (-884 |#1|)))) (-599 (-361 (-884 (-499)))) |#1|) 36 T ELT)) (-1841 (((-599 |#1|) (-361 (-884 (-499))) |#1|) 20 T ELT) (((-599 (-599 |#1|)) (-599 (-361 (-884 (-499)))) (-599 (-1117)) |#1|) 30 T ELT))) +(((-335 |#1|) (-10 -7 (-15 -3721 ((-599 (-599 (-247 (-884 |#1|)))) (-599 (-361 (-884 (-499)))) |#1|)) (-15 -3721 ((-599 (-599 (-247 (-884 |#1|)))) (-599 (-247 (-361 (-884 (-499))))) |#1|)) (-15 -3721 ((-599 (-247 (-884 |#1|))) (-361 (-884 (-499))) |#1|)) (-15 -3721 ((-599 (-247 (-884 |#1|))) (-247 (-361 (-884 (-499)))) |#1|)) (-15 -1841 ((-599 (-599 |#1|)) (-599 (-361 (-884 (-499)))) (-599 (-1117)) |#1|)) (-15 -1841 ((-599 |#1|) (-361 (-884 (-499))) |#1|))) (-13 (-780) (-318))) (T -335)) +((-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 (-499)))) (-5 *2 (-599 *4)) (-5 *1 (-335 *4)) (-4 *4 (-13 (-780) (-318))))) (-1841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 (-361 (-884 (-499))))) (-5 *4 (-599 (-1117))) (-5 *2 (-599 (-599 *5))) (-5 *1 (-335 *5)) (-4 *5 (-13 (-780) (-318))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-247 (-361 (-884 (-499))))) (-5 *2 (-599 (-247 (-884 *4)))) (-5 *1 (-335 *4)) (-4 *4 (-13 (-780) (-318))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 (-499)))) (-5 *2 (-599 (-247 (-884 *4)))) (-5 *1 (-335 *4)) (-4 *4 (-13 (-780) (-318))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-247 (-361 (-884 (-499)))))) (-5 *2 (-599 (-599 (-247 (-884 *4))))) (-5 *1 (-335 *4)) (-4 *4 (-13 (-780) (-318))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-361 (-884 (-499))))) (-5 *2 (-599 (-599 (-247 (-884 *4))))) (-5 *1 (-335 *4)) (-4 *4 (-13 (-780) (-318)))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3924 (((-599 (-807 |#2| |#1|)) $) NIL T ELT)) (-1345 (((-3 $ "failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3014 (($ |#1| |#2|) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2086 ((|#2| $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 33 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 12 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) +(((-336 |#1| |#2|) (-13 (-82 |#1| |#1|) (-463 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-146)) (-6 (-675 |#1|)) |%noBranch|))) (-989) (-784)) (T -336)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) 29 T ELT)) (-3294 ((|#2| $) 31 T ELT)) (-4109 (($ $) NIL T ELT)) (-2536 (((-714) $) 11 T ELT)) (-2942 (((-599 $) $) 23 T ELT)) (-4087 (((-85) $) NIL T ELT)) (-4088 (($ |#2| |#1|) 21 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1842 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-3015 ((|#2| $) 18 T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3967 (((-599 |#1|) $) 20 T ELT)) (-3827 ((|#1| $ |#2|) 54 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 32 T CONST)) (-2784 (((-599 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) +(((-337 |#1| |#2|) (-13 (-339 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-989) (-781)) (T -337)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-337 *3 *2)) (-4 *3 (-989)) (-4 *2 (-781))))) +((-3520 (((-1213) $) 7 T ELT)) (-4096 (((-797) $) 8 T ELT) (($ (-647 (-657))) 14 T ELT) (($ (-599 (-284))) 13 T ELT) (($ (-284)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) 11 T ELT))) +(((-338) (-113)) (T -338)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-647 (-657))) (-4 *1 (-338)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-4 *1 (-338)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-284)) (-4 *1 (-338)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) (-4 *1 (-338))))) +(-13 (-350) (-10 -8 (-15 -4096 ($ (-647 (-657)))) (-15 -4096 ($ (-599 (-284)))) (-15 -4096 ($ (-284))) (-15 -4096 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284)))))))) +(((-568 (-797)) . T) ((-350) . T) ((-1157) . T)) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#2| "failed") $) 54 T ELT)) (-3294 ((|#2| $) 55 T ELT)) (-4109 (($ $) 40 T ELT)) (-2536 (((-714) $) 44 T ELT)) (-2942 (((-599 $) $) 45 T ELT)) (-4087 (((-85) $) 48 T ELT)) (-4088 (($ |#2| |#1|) 49 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 50 T ELT)) (-1842 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 41 T ELT)) (-3015 ((|#2| $) 43 T ELT)) (-3312 ((|#1| $) 42 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ |#2|) 53 T ELT)) (-3967 (((-599 |#1|) $) 46 T ELT)) (-3827 ((|#1| $ |#2|) 51 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2784 (((-599 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 47 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 52 T ELT))) +(((-339 |#1| |#2|) (-113) (-989) (-1041)) (T -339)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-339 *2 *3)) (-4 *2 (-989)) (-4 *3 (-1041)))) (-3827 (*1 *2 *1 *3) (-12 (-4 *1 (-339 *2 *3)) (-4 *3 (-1041)) (-4 *2 (-989)))) (-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)))) (-4088 (*1 *1 *2 *3) (-12 (-4 *1 (-339 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1041)))) (-4087 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)) (-5 *2 (-85)))) (-2784 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)) (-5 *2 (-599 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3967 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)) (-5 *2 (-599 *3)))) (-2942 (*1 *2 *1) (-12 (-4 *3 (-989)) (-4 *4 (-1041)) (-5 *2 (-599 *1)) (-4 *1 (-339 *3 *4)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)) (-5 *2 (-714)))) (-3015 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1041)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-339 *2 *3)) (-4 *3 (-1041)) (-4 *2 (-989)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4109 (*1 *1 *1) (-12 (-4 *1 (-339 *2 *3)) (-4 *2 (-989)) (-4 *3 (-1041))))) +(-13 (-82 |t#1| |t#1|) (-978 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3827 (|t#1| $ |t#2|)) (-15 -4108 ($ (-1 |t#1| |t#1|) $)) (-15 -4088 ($ |t#2| |t#1|)) (-15 -4087 ((-85) $)) (-15 -2784 ((-599 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3967 ((-599 |t#1|) $)) (-15 -2942 ((-599 $) $)) (-15 -2536 ((-714) $)) (-15 -3015 (|t#2| $)) (-15 -3312 (|t#1| $)) (-15 -1842 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4109 ($ $)) (IF (|has| |t#1| (-146)) (-6 (-675 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-571 |#2|) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-598 |#1|) |has| |#1| (-146)) ((-675 |#1|) |has| |#1| (-146)) ((-978 |#2|) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-3295 (((-3 $ "failed") (-647 (-268 (-333)))) 21 T ELT) (((-3 $ "failed") (-647 (-268 (-499)))) 19 T ELT) (((-3 $ "failed") (-647 (-884 (-333)))) 17 T ELT) (((-3 $ "failed") (-647 (-884 (-499)))) 15 T ELT) (((-3 $ "failed") (-647 (-361 (-884 (-333))))) 13 T ELT) (((-3 $ "failed") (-647 (-361 (-884 (-499))))) 11 T ELT)) (-3294 (($ (-647 (-268 (-333)))) 22 T ELT) (($ (-647 (-268 (-499)))) 20 T ELT) (($ (-647 (-884 (-333)))) 18 T ELT) (($ (-647 (-884 (-499)))) 16 T ELT) (($ (-647 (-361 (-884 (-333))))) 14 T ELT) (($ (-647 (-361 (-884 (-499))))) 12 T ELT)) (-3520 (((-1213) $) 7 T ELT)) (-4096 (((-797) $) 8 T ELT) (($ (-599 (-284))) 25 T ELT) (($ (-284)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) 23 T ELT))) +(((-340) (-113)) (T -340)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-4 *1 (-340)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-284)) (-4 *1 (-340)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) (-4 *1 (-340)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-647 (-268 (-333)))) (-4 *1 (-340)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-647 (-268 (-333)))) (-4 *1 (-340)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-647 (-268 (-499)))) (-4 *1 (-340)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-647 (-268 (-499)))) (-4 *1 (-340)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-647 (-884 (-333)))) (-4 *1 (-340)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-647 (-884 (-333)))) (-4 *1 (-340)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-647 (-884 (-499)))) (-4 *1 (-340)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-647 (-884 (-499)))) (-4 *1 (-340)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-647 (-361 (-884 (-333))))) (-4 *1 (-340)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-647 (-361 (-884 (-333))))) (-4 *1 (-340)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-647 (-361 (-884 (-499))))) (-4 *1 (-340)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-647 (-361 (-884 (-499))))) (-4 *1 (-340))))) +(-13 (-350) (-10 -8 (-15 -4096 ($ (-599 (-284)))) (-15 -4096 ($ (-284))) (-15 -4096 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284)))))) (-15 -3294 ($ (-647 (-268 (-333))))) (-15 -3295 ((-3 $ "failed") (-647 (-268 (-333))))) (-15 -3294 ($ (-647 (-268 (-499))))) (-15 -3295 ((-3 $ "failed") (-647 (-268 (-499))))) (-15 -3294 ($ (-647 (-884 (-333))))) (-15 -3295 ((-3 $ "failed") (-647 (-884 (-333))))) (-15 -3294 ($ (-647 (-884 (-499))))) (-15 -3295 ((-3 $ "failed") (-647 (-884 (-499))))) (-15 -3294 ($ (-647 (-361 (-884 (-333)))))) (-15 -3295 ((-3 $ "failed") (-647 (-361 (-884 (-333)))))) (-15 -3294 ($ (-647 (-361 (-884 (-499)))))) (-15 -3295 ((-3 $ "failed") (-647 (-361 (-884 (-499)))))))) +(((-568 (-797)) . T) ((-350) . T) ((-1157) . T)) +((-2687 (((-85) $ $) 7 T ELT)) (-3258 (((-714) $) 40 T ELT)) (-3874 (($) 23 T CONST)) (-4089 (((-3 $ "failed") $ $) 43 T ELT)) (-3295 (((-3 |#1| "failed") $) 51 T ELT)) (-3294 ((|#1| $) 52 T ELT)) (-3607 (((-3 $ "failed") $) 20 T ELT)) (-1843 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2528 (((-85) $) 22 T ELT)) (-2399 ((|#1| $ (-499)) 37 T ELT)) (-2400 (((-714) $ (-499)) 38 T ELT)) (-2650 (($ $ $) 29 (|has| |#1| (-781)) ELT)) (-2978 (($ $ $) 30 (|has| |#1| (-781)) ELT)) (-2391 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2392 (($ (-1 (-714) (-714)) $) 36 T ELT)) (-4090 (((-3 $ "failed") $ $) 44 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1844 (($ $ $) 45 T ELT)) (-1845 (($ $ $) 46 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1877 (((-599 (-2 (|:| |gen| |#1|) (|:| -4093 (-714)))) $) 39 T ELT)) (-3000 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2785 (($) 24 T CONST)) (-2685 (((-85) $ $) 31 (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) 33 (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 32 (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 34 (|has| |#1| (-781)) ELT)) (** (($ $ (-857)) 17 T ELT) (($ $ (-714)) 21 T ELT) (($ |#1| (-714)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) +(((-341 |#1|) (-113) (-1041)) (T -341)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-1041)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-341 *2)) (-4 *2 (-1041)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-341 *2)) (-4 *2 (-1041)))) (-1845 (*1 *1 *1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-1041)))) (-1844 (*1 *1 *1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-1041)))) (-4090 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-1041)))) (-4089 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-1041)))) (-3000 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1041)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-341 *3)))) (-1843 (*1 *2 *1 *1) (-12 (-4 *3 (-1041)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-341 *3)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-1041)) (-5 *2 (-714)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-1041)) (-5 *2 (-599 (-2 (|:| |gen| *3) (|:| -4093 (-714))))))) (-2400 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-341 *4)) (-4 *4 (-1041)) (-5 *2 (-714)))) (-2399 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-341 *2)) (-4 *2 (-1041)))) (-2392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-714) (-714))) (-4 *1 (-341 *3)) (-4 *3 (-1041)))) (-2391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-341 *3)) (-4 *3 (-1041))))) +(-13 (-684) (-978 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-714))) (-15 -1845 ($ $ $)) (-15 -1844 ($ $ $)) (-15 -4090 ((-3 $ "failed") $ $)) (-15 -4089 ((-3 $ "failed") $ $)) (-15 -3000 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1843 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3258 ((-714) $)) (-15 -1877 ((-599 (-2 (|:| |gen| |t#1|) (|:| -4093 (-714)))) $)) (-15 -2400 ((-714) $ (-499))) (-15 -2399 (|t#1| $ (-499))) (-15 -2392 ($ (-1 (-714) (-714)) $)) (-15 -2391 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-781)) (-6 (-781)) |%noBranch|))) +(((-73) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-684) . T) ((-781) |has| |#1| (-781)) ((-784) |has| |#1| (-781)) ((-978 |#1|) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714) $) 74 T ELT)) (-3874 (($) NIL T CONST)) (-4089 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3295 (((-3 |#1| #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-1843 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2528 (((-85) $) 17 T ELT)) (-2399 ((|#1| $ (-499)) NIL T ELT)) (-2400 (((-714) $ (-499)) NIL T ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2391 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2392 (($ (-1 (-714) (-714)) $) 37 T ELT)) (-4090 (((-3 $ #1#) $ $) 60 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1844 (($ $ $) 28 T ELT)) (-1845 (($ $ $) 26 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1877 (((-599 (-2 (|:| |gen| |#1|) (|:| -4093 (-714)))) $) 34 T ELT)) (-3000 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-4096 (((-797) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2785 (($) 7 T CONST)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 83 (|has| |#1| (-781)) ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ |#1| (-714)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) +(((-342 |#1|) (-341 |#1|) (-1041)) (T -342)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 (-499) "failed") $) 59 T ELT)) (-3294 (((-499) $) 60 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-2650 (($ $ $) 61 T ELT)) (-2978 (($ $ $) 62 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-499)) 58 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2685 (((-85) $ $) 63 T ELT)) (-2686 (((-85) $ $) 65 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 64 T ELT)) (-2806 (((-85) $ $) 66 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-343) (-113)) (T -343)) +NIL +(-13 (-510) (-781) (-978 (-499))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-244) . T) ((-510) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-598 $) . T) ((-675 $) . T) ((-684) . T) ((-781) . T) ((-784) . T) ((-978 (-499)) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-1846 (((-85) $) 25 T ELT)) (-1847 (((-85) $) 22 T ELT)) (-3764 (($ (-1099) (-1099) (-1099)) 26 T ELT)) (-3690 (((-1099) $) 16 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1851 (($ (-1099) (-1099) (-1099)) 14 T ELT)) (-1849 (((-1099) $) 17 T ELT)) (-1848 (((-85) $) 18 T ELT)) (-1850 (((-1099) $) 15 T ELT)) (-4096 (((-797) $) 12 T ELT) (($ (-1099)) 13 T ELT) (((-1099) $) 9 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 7 T ELT))) +(((-344) (-345)) (T -344)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-1846 (((-85) $) 20 T ELT)) (-1847 (((-85) $) 21 T ELT)) (-3764 (($ (-1099) (-1099) (-1099)) 19 T ELT)) (-3690 (((-1099) $) 24 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1851 (($ (-1099) (-1099) (-1099)) 26 T ELT)) (-1849 (((-1099) $) 23 T ELT)) (-1848 (((-85) $) 22 T ELT)) (-1850 (((-1099) $) 25 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-1099)) 28 T ELT) (((-1099) $) 27 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-345) (-113)) (T -345)) +((-1851 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1099)) (-4 *1 (-345)))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-1099)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-1099)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-1099)))) (-1848 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-85)))) (-1847 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-85)))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-85)))) (-3764 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1099)) (-4 *1 (-345))))) +(-13 (-1041) (-444 (-1099)) (-10 -8 (-15 -1851 ($ (-1099) (-1099) (-1099))) (-15 -1850 ((-1099) $)) (-15 -3690 ((-1099) $)) (-15 -1849 ((-1099) $)) (-15 -1848 ((-85) $)) (-15 -1847 ((-85) $)) (-15 -1846 ((-85) $)) (-15 -3764 ($ (-1099) (-1099) (-1099))))) +(((-73) . T) ((-571 (-1099)) . T) ((-568 (-797)) . T) ((-568 (-1099)) . T) ((-444 (-1099)) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ "failed") $ $) NIL T ELT)) (-1852 (((-797) $) 64 T ELT)) (-3874 (($) NIL T CONST)) (-2525 (($ $ (-857)) NIL T ELT)) (-2549 (($ $ (-857)) NIL T ELT)) (-2524 (($ $ (-857)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($ (-714)) 38 T ELT)) (-4061 (((-714)) 18 T ELT)) (-1853 (((-797) $) 66 T ELT)) (-2551 (($ $ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2552 (($ $ $ $) NIL T ELT)) (-2550 (($ $ $) NIL T ELT)) (-2779 (($) 24 T CONST)) (-3174 (((-85) $ $) 41 T ELT)) (-3987 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3989 (($ $ $) 51 T ELT)) (** (($ $ (-857)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) +(((-346 |#1| |#2| |#3|) (-13 (-702 |#3|) (-10 -8 (-15 -4061 ((-714))) (-15 -1853 ((-797) $)) (-15 -1852 ((-797) $)) (-15 -2527 ($ (-714))))) (-714) (-714) (-146)) (T -346)) +((-4061 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-714)) (-14 *4 (-714)) (-4 *5 (-146)))) (-1852 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-714)) (-14 *4 (-714)) (-4 *5 (-146)))) (-2527 (*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146))))) +((-1858 (((-1099)) 12 T ELT)) (-1855 (((-1088 (-1099))) 30 T ELT)) (-1857 (((-1213) (-1099)) 27 T ELT) (((-1213) (-344)) 26 T ELT)) (-1856 (((-1213)) 28 T ELT)) (-1854 (((-1088 (-1099))) 29 T ELT))) +(((-347) (-10 -7 (-15 -1854 ((-1088 (-1099)))) (-15 -1855 ((-1088 (-1099)))) (-15 -1856 ((-1213))) (-15 -1857 ((-1213) (-344))) (-15 -1857 ((-1213) (-1099))) (-15 -1858 ((-1099))))) (T -347)) +((-1858 (*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-347)))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-347)))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-344)) (-5 *2 (-1213)) (-5 *1 (-347)))) (-1856 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-347)))) (-1855 (*1 *2) (-12 (-5 *2 (-1088 (-1099))) (-5 *1 (-347)))) (-1854 (*1 *2) (-12 (-5 *2 (-1088 (-1099))) (-5 *1 (-347))))) +((-3922 (((-714) (-288 |#1| |#2| |#3| |#4|)) 16 T ELT))) +(((-348 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3922 ((-714) (-288 |#1| |#2| |#3| |#4|)))) (-13 (-323) (-318)) (-1183 |#1|) (-1183 (-361 |#2|)) (-297 |#1| |#2| |#3|)) (T -348)) +((-3922 (*1 *2 *3) (-12 (-5 *3 (-288 *4 *5 *6 *7)) (-4 *4 (-13 (-323) (-318))) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) (-4 *7 (-297 *4 *5 *6)) (-5 *2 (-714)) (-5 *1 (-348 *4 *5 *6 *7))))) +((-1860 (((-599 (-1099)) (-599 (-1099))) 9 T ELT)) (-3520 (((-1213) (-344)) 26 T ELT)) (-1859 (((-1043) (-1117) (-599 (-1117)) (-1120) (-599 (-1117))) 59 T ELT) (((-1043) (-1117) (-599 (-3 (|:| |array| (-599 (-1117))) (|:| |scalar| (-1117)))) (-599 (-599 (-3 (|:| |array| (-599 (-1117))) (|:| |scalar| (-1117))))) (-599 (-1117)) (-1117)) 34 T ELT) (((-1043) (-1117) (-599 (-3 (|:| |array| (-599 (-1117))) (|:| |scalar| (-1117)))) (-599 (-599 (-3 (|:| |array| (-599 (-1117))) (|:| |scalar| (-1117))))) (-599 (-1117))) 33 T ELT))) +(((-349) (-10 -7 (-15 -1859 ((-1043) (-1117) (-599 (-3 (|:| |array| (-599 (-1117))) (|:| |scalar| (-1117)))) (-599 (-599 (-3 (|:| |array| (-599 (-1117))) (|:| |scalar| (-1117))))) (-599 (-1117)))) (-15 -1859 ((-1043) (-1117) (-599 (-3 (|:| |array| (-599 (-1117))) (|:| |scalar| (-1117)))) (-599 (-599 (-3 (|:| |array| (-599 (-1117))) (|:| |scalar| (-1117))))) (-599 (-1117)) (-1117))) (-15 -1859 ((-1043) (-1117) (-599 (-1117)) (-1120) (-599 (-1117)))) (-15 -3520 ((-1213) (-344))) (-15 -1860 ((-599 (-1099)) (-599 (-1099)))))) (T -349)) +((-1860 (*1 *2 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-349)))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-344)) (-5 *2 (-1213)) (-5 *1 (-349)))) (-1859 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-599 (-1117))) (-5 *5 (-1120)) (-5 *3 (-1117)) (-5 *2 (-1043)) (-5 *1 (-349)))) (-1859 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-599 (-599 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-599 (-3 (|:| |array| (-599 *3)) (|:| |scalar| (-1117))))) (-5 *6 (-599 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1043)) (-5 *1 (-349)))) (-1859 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-599 (-599 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-599 (-3 (|:| |array| (-599 *3)) (|:| |scalar| (-1117))))) (-5 *6 (-599 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1043)) (-5 *1 (-349))))) +((-3520 (((-1213) $) 7 T ELT)) (-4096 (((-797) $) 8 T ELT))) +(((-350) (-113)) (T -350)) +((-3520 (*1 *2 *1) (-12 (-4 *1 (-350)) (-5 *2 (-1213))))) +(-13 (-1157) (-568 (-797)) (-10 -8 (-15 -3520 ((-1213) $)))) +(((-568 (-797)) . T) ((-1157) . T)) +((-3295 (((-3 $ "failed") (-268 (-333))) 21 T ELT) (((-3 $ "failed") (-268 (-499))) 19 T ELT) (((-3 $ "failed") (-884 (-333))) 17 T ELT) (((-3 $ "failed") (-884 (-499))) 15 T ELT) (((-3 $ "failed") (-361 (-884 (-333)))) 13 T ELT) (((-3 $ "failed") (-361 (-884 (-499)))) 11 T ELT)) (-3294 (($ (-268 (-333))) 22 T ELT) (($ (-268 (-499))) 20 T ELT) (($ (-884 (-333))) 18 T ELT) (($ (-884 (-499))) 16 T ELT) (($ (-361 (-884 (-333)))) 14 T ELT) (($ (-361 (-884 (-499)))) 12 T ELT)) (-3520 (((-1213) $) 7 T ELT)) (-4096 (((-797) $) 8 T ELT) (($ (-599 (-284))) 25 T ELT) (($ (-284)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) 23 T ELT))) +(((-351) (-113)) (T -351)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-4 *1 (-351)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-284)) (-4 *1 (-351)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) (-4 *1 (-351)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-268 (-333))) (-4 *1 (-351)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-268 (-333))) (-4 *1 (-351)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-268 (-499))) (-4 *1 (-351)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-268 (-499))) (-4 *1 (-351)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-884 (-333))) (-4 *1 (-351)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-884 (-333))) (-4 *1 (-351)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-884 (-499))) (-4 *1 (-351)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-884 (-499))) (-4 *1 (-351)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-361 (-884 (-333)))) (-4 *1 (-351)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-361 (-884 (-333)))) (-4 *1 (-351)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-361 (-884 (-499)))) (-4 *1 (-351)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-361 (-884 (-499)))) (-4 *1 (-351))))) +(-13 (-350) (-10 -8 (-15 -4096 ($ (-599 (-284)))) (-15 -4096 ($ (-284))) (-15 -4096 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284)))))) (-15 -3294 ($ (-268 (-333)))) (-15 -3295 ((-3 $ "failed") (-268 (-333)))) (-15 -3294 ($ (-268 (-499)))) (-15 -3295 ((-3 $ "failed") (-268 (-499)))) (-15 -3294 ($ (-884 (-333)))) (-15 -3295 ((-3 $ "failed") (-884 (-333)))) (-15 -3294 ($ (-884 (-499)))) (-15 -3295 ((-3 $ "failed") (-884 (-499)))) (-15 -3294 ($ (-361 (-884 (-333))))) (-15 -3295 ((-3 $ "failed") (-361 (-884 (-333))))) (-15 -3294 ($ (-361 (-884 (-499))))) (-15 -3295 ((-3 $ "failed") (-361 (-884 (-499))))))) +(((-568 (-797)) . T) ((-350) . T) ((-1157) . T)) +((-3520 (((-1213) $) 35 T ELT)) (-4096 (((-797) $) 97 T ELT) (($ (-284)) 99 T ELT) (($ (-599 (-284))) 98 T ELT) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) 96 T ELT) (($ (-268 (-659))) 52 T ELT) (($ (-268 (-657))) 72 T ELT) (($ (-268 (-652))) 85 T ELT) (($ (-247 (-268 (-659)))) 67 T ELT) (($ (-247 (-268 (-657)))) 80 T ELT) (($ (-247 (-268 (-652)))) 93 T ELT) (($ (-268 (-499))) 104 T ELT) (($ (-268 (-333))) 117 T ELT) (($ (-268 (-142 (-333)))) 130 T ELT) (($ (-247 (-268 (-499)))) 112 T ELT) (($ (-247 (-268 (-333)))) 125 T ELT) (($ (-247 (-268 (-142 (-333))))) 138 T ELT))) +(((-352 |#1| |#2| |#3| |#4|) (-13 (-350) (-10 -8 (-15 -4096 ($ (-284))) (-15 -4096 ($ (-599 (-284)))) (-15 -4096 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284)))))) (-15 -4096 ($ (-268 (-659)))) (-15 -4096 ($ (-268 (-657)))) (-15 -4096 ($ (-268 (-652)))) (-15 -4096 ($ (-247 (-268 (-659))))) (-15 -4096 ($ (-247 (-268 (-657))))) (-15 -4096 ($ (-247 (-268 (-652))))) (-15 -4096 ($ (-268 (-499)))) (-15 -4096 ($ (-268 (-333)))) (-15 -4096 ($ (-268 (-142 (-333))))) (-15 -4096 ($ (-247 (-268 (-499))))) (-15 -4096 ($ (-247 (-268 (-333))))) (-15 -4096 ($ (-247 (-268 (-142 (-333)))))))) (-1117) (-3 (|:| |fst| (-388)) (|:| -4060 "void")) (-599 (-1117)) (-1121)) (T -352)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-284)) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1="void"))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-268 (-659))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-268 (-657))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-268 (-652))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-247 (-268 (-659)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-247 (-268 (-657)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-247 (-268 (-652)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-268 (-499))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-268 (-333))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-268 (-142 (-333)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-247 (-268 (-499)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-247 (-268 (-333)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-247 (-268 (-142 (-333))))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) (-14 *6 (-1121))))) +((-2687 (((-85) $ $) NIL T ELT)) (-1862 ((|#2| $) 38 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1863 (($ (-361 |#2|)) 93 T ELT)) (-1861 (((-599 (-2 (|:| -2519 (-714)) (|:| -3923 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3908 (($ $ (-714)) 36 T ELT) (($ $) 34 T ELT)) (-4122 (((-361 |#2|) $) 49 T ELT)) (-3670 (($ (-599 (-2 (|:| -2519 (-714)) (|:| -3923 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-4096 (((-797) $) 131 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2790 (($ $ (-714)) 37 T ELT) (($ $) 35 T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-3989 (($ |#2| $) 41 T ELT))) +(((-353 |#1| |#2|) (-13 (-1041) (-189) (-569 (-361 |#2|)) (-10 -8 (-15 -3989 ($ |#2| $)) (-15 -1863 ($ (-361 |#2|))) (-15 -1862 (|#2| $)) (-15 -1861 ((-599 (-2 (|:| -2519 (-714)) (|:| -3923 |#2|) (|:| |num| |#2|))) $)) (-15 -3670 ($ (-599 (-2 (|:| -2519 (-714)) (|:| -3923 |#2|) (|:| |num| |#2|))))))) (-13 (-318) (-120)) (-1183 |#1|)) (T -353)) +((-3989 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-318) (-120))) (-5 *1 (-353 *3 *2)) (-4 *2 (-1183 *3)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-361 *4)) (-4 *4 (-1183 *3)) (-4 *3 (-13 (-318) (-120))) (-5 *1 (-353 *3 *4)))) (-1862 (*1 *2 *1) (-12 (-4 *2 (-1183 *3)) (-5 *1 (-353 *3 *2)) (-4 *3 (-13 (-318) (-120))))) (-1861 (*1 *2 *1) (-12 (-4 *3 (-13 (-318) (-120))) (-5 *2 (-599 (-2 (|:| -2519 (-714)) (|:| -3923 *4) (|:| |num| *4)))) (-5 *1 (-353 *3 *4)) (-4 *4 (-1183 *3)))) (-3670 (*1 *1 *2) (-12 (-5 *2 (-599 (-2 (|:| -2519 (-714)) (|:| -3923 *4) (|:| |num| *4)))) (-4 *4 (-1183 *3)) (-4 *3 (-13 (-318) (-120))) (-5 *1 (-353 *3 *4))))) +((-2687 (((-85) $ $) 10 (-3677 (|has| |#1| (-821 (-499))) (|has| |#1| (-821 (-333)))) ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 16 (|has| |#1| (-821 (-333))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 15 (|has| |#1| (-821 (-499))) ELT)) (-3380 (((-1099) $) 14 (-3677 (|has| |#1| (-821 (-499))) (|has| |#1| (-821 (-333)))) ELT)) (-3381 (((-1060) $) 13 (-3677 (|has| |#1| (-821 (-499))) (|has| |#1| (-821 (-333)))) ELT)) (-4096 (((-797) $) 12 (-3677 (|has| |#1| (-821 (-499))) (|has| |#1| (-821 (-333)))) ELT)) (-1297 (((-85) $ $) 11 (-3677 (|has| |#1| (-821 (-499))) (|has| |#1| (-821 (-333)))) ELT)) (-3174 (((-85) $ $) 9 (-3677 (|has| |#1| (-821 (-499))) (|has| |#1| (-821 (-333)))) ELT))) +(((-354 |#1|) (-113) (-1157)) (T -354)) +NIL +(-13 (-1157) (-10 -7 (IF (|has| |t#1| (-821 (-499))) (-6 (-821 (-499))) |%noBranch|) (IF (|has| |t#1| (-821 (-333))) (-6 (-821 (-333))) |%noBranch|))) +(((-73) -3677 (|has| |#1| (-821 (-499))) (|has| |#1| (-821 (-333)))) ((-568 (-797)) -3677 (|has| |#1| (-821 (-499))) (|has| |#1| (-821 (-333)))) ((-821 (-333)) |has| |#1| (-821 (-333))) ((-821 (-499)) |has| |#1| (-821 (-499))) ((-1041) -3677 (|has| |#1| (-821 (-499))) (|has| |#1| (-821 (-333)))) ((-1157) . T)) +((-1864 (($ $) 10 T ELT) (($ $ (-714)) 12 T ELT))) +(((-355 |#1|) (-10 -7 (-15 -1864 (|#1| |#1| (-714))) (-15 -1864 (|#1| |#1|))) (-356)) (T -355)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 88 T ELT)) (-4121 (((-359 $) $) 87 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3874 (($) 22 T CONST)) (-2683 (($ $ $) 68 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-1864 (($ $) 94 T ELT) (($ $ (-714)) 93 T ELT)) (-3873 (((-85) $) 86 T ELT)) (-3922 (((-766 (-857)) $) 96 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 65 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 85 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3882 (((-359 $) $) 89 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-1865 (((-3 (-714) "failed") $ $) 95 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-361 (-499))) 81 T ELT)) (-2823 (((-649 $) $) 97 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 80 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 84 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 83 T ELT) (($ (-361 (-499)) $) 82 T ELT))) +(((-356) (-113)) (T -356)) +((-3922 (*1 *2 *1) (-12 (-4 *1 (-356)) (-5 *2 (-766 (-857))))) (-1865 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-356)) (-5 *2 (-714)))) (-1864 (*1 *1 *1) (-4 *1 (-356))) (-1864 (*1 *1 *1 *2) (-12 (-4 *1 (-356)) (-5 *2 (-714))))) +(-13 (-318) (-118) (-10 -8 (-15 -3922 ((-766 (-857)) $)) (-15 -1865 ((-3 (-714) "failed") $ $)) (-15 -1864 ($ $)) (-15 -1864 ($ $ (-714))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 $) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-200) . T) ((-244) . T) ((-261) . T) ((-318) . T) ((-406) . T) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 $) . T) ((-675 (-361 (-499))) . T) ((-675 $) . T) ((-684) . T) ((-859) . T) ((-991 (-361 (-499))) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) . T)) +((-3392 (($ (-499) (-499)) 11 T ELT) (($ (-499) (-499) (-857)) NIL T ELT)) (-2734 (((-857)) 19 T ELT) (((-857) (-857)) NIL T ELT))) +(((-357 |#1|) (-10 -7 (-15 -2734 ((-857) (-857))) (-15 -2734 ((-857))) (-15 -3392 (|#1| (-499) (-499) (-857))) (-15 -3392 (|#1| (-499) (-499)))) (-358)) (T -357)) +((-2734 (*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-357 *3)) (-4 *3 (-358)))) (-2734 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-357 *3)) (-4 *3 (-358))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3251 (((-499) $) 105 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-3921 (($ $) 103 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 88 T ELT)) (-4121 (((-359 $) $) 87 T ELT)) (-3158 (($ $) 113 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3773 (((-499) $) 130 T ELT)) (-3874 (($) 22 T CONST)) (-3249 (($ $) 102 T ELT)) (-3295 (((-3 (-499) #1="failed") $) 118 T ELT) (((-3 (-361 (-499)) #1#) $) 115 T ELT)) (-3294 (((-499) $) 119 T ELT) (((-361 (-499)) $) 116 T ELT)) (-2683 (($ $ $) 68 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-3873 (((-85) $) 86 T ELT)) (-2492 (((-857)) 146 T ELT) (((-857) (-857)) 143 (|has| $ (-6 -4136)) ELT)) (-3324 (((-85) $) 128 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 109 T ELT)) (-3922 (((-499) $) 152 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 112 T ELT)) (-3254 (($ $) 108 T ELT)) (-3325 (((-85) $) 129 T ELT)) (-1675 (((-3 (-599 $) #2="failed") (-599 $) $) 65 T ELT)) (-2650 (($ $ $) 122 T ELT) (($) 140 (-12 (-2679 (|has| $ (-6 -4136))) (-2679 (|has| $ (-6 -4128)))) ELT)) (-2978 (($ $ $) 123 T ELT) (($) 139 (-12 (-2679 (|has| $ (-6 -4136))) (-2679 (|has| $ (-6 -4128)))) ELT)) (-2493 (((-499) $) 149 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 85 T ELT)) (-1867 (((-857) (-499)) 142 (|has| $ (-6 -4136)) ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3250 (($ $) 104 T ELT)) (-3252 (($ $) 106 T ELT)) (-3392 (($ (-499) (-499)) 154 T ELT) (($ (-499) (-499) (-857)) 153 T ELT)) (-3882 (((-359 $) $) 89 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-2519 (((-499) $) 150 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-2734 (((-857)) 147 T ELT) (((-857) (-857)) 144 (|has| $ (-6 -4136)) ELT)) (-1866 (((-857) (-499)) 141 (|has| $ (-6 -4136)) ELT)) (-4122 (((-333) $) 121 T ELT) (((-179) $) 120 T ELT) (((-825 (-333)) $) 110 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-361 (-499))) 81 T ELT) (($ (-499)) 117 T ELT) (($ (-361 (-499))) 114 T ELT)) (-3248 (((-714)) 37 T CONST)) (-3253 (($ $) 107 T ELT)) (-1868 (((-857)) 148 T ELT) (((-857) (-857)) 145 (|has| $ (-6 -4136)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2815 (((-857)) 151 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-3523 (($ $) 131 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2685 (((-85) $ $) 124 T ELT)) (-2686 (((-85) $ $) 126 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 125 T ELT)) (-2806 (((-85) $ $) 127 T ELT)) (-4099 (($ $ $) 80 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 84 T ELT) (($ $ (-361 (-499))) 111 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 83 T ELT) (($ (-361 (-499)) $) 82 T ELT))) +(((-358) (-113)) (T -358)) +((-3392 (*1 *1 *2 *2) (-12 (-5 *2 (-499)) (-4 *1 (-358)))) (-3392 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-857)) (-4 *1 (-358)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-499)))) (-2815 (*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-857)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-499)))) (-2493 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-499)))) (-1868 (*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-857)))) (-2734 (*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-857)))) (-2492 (*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-857)))) (-1868 (*1 *2 *2) (-12 (-5 *2 (-857)) (|has| *1 (-6 -4136)) (-4 *1 (-358)))) (-2734 (*1 *2 *2) (-12 (-5 *2 (-857)) (|has| *1 (-6 -4136)) (-4 *1 (-358)))) (-2492 (*1 *2 *2) (-12 (-5 *2 (-857)) (|has| *1 (-6 -4136)) (-4 *1 (-358)))) (-1867 (*1 *2 *3) (-12 (-5 *3 (-499)) (|has| *1 (-6 -4136)) (-4 *1 (-358)) (-5 *2 (-857)))) (-1866 (*1 *2 *3) (-12 (-5 *3 (-499)) (|has| *1 (-6 -4136)) (-4 *1 (-358)) (-5 *2 (-857)))) (-2650 (*1 *1) (-12 (-4 *1 (-358)) (-2679 (|has| *1 (-6 -4136))) (-2679 (|has| *1 (-6 -4128))))) (-2978 (*1 *1) (-12 (-4 *1 (-358)) (-2679 (|has| *1 (-6 -4136))) (-2679 (|has| *1 (-6 -4128)))))) +(-13 (-1000) (-10 -8 (-6 -3920) (-15 -3392 ($ (-499) (-499))) (-15 -3392 ($ (-499) (-499) (-857))) (-15 -3922 ((-499) $)) (-15 -2815 ((-857))) (-15 -2519 ((-499) $)) (-15 -2493 ((-499) $)) (-15 -1868 ((-857))) (-15 -2734 ((-857))) (-15 -2492 ((-857))) (IF (|has| $ (-6 -4136)) (PROGN (-15 -1868 ((-857) (-857))) (-15 -2734 ((-857) (-857))) (-15 -2492 ((-857) (-857))) (-15 -1867 ((-857) (-499))) (-15 -1866 ((-857) (-499)))) |%noBranch|) (IF (|has| $ (-6 -4128)) |%noBranch| (IF (|has| $ (-6 -4136)) |%noBranch| (PROGN (-15 -2650 ($)) (-15 -2978 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 $) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-569 (-179)) . T) ((-569 (-333)) . T) ((-569 (-825 (-333))) . T) ((-200) . T) ((-244) . T) ((-261) . T) ((-318) . T) ((-406) . T) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 $) . T) ((-675 (-361 (-499))) . T) ((-675 $) . T) ((-684) . T) ((-735) . T) ((-737) . T) ((-739) . T) ((-742) . T) ((-780) . T) ((-781) . T) ((-784) . T) ((-821 (-333)) . T) ((-859) . T) ((-942) . T) ((-960) . T) ((-1000) . T) ((-978 (-361 (-499))) . T) ((-978 (-499)) . T) ((-991 (-361 (-499))) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 59 T ELT)) (-1869 (($ $) 77 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 190 T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) 48 T ELT)) (-1870 ((|#1| $) 16 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL (|has| |#1| (-1162)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-1162)) ELT)) (-1872 (($ |#1| (-499)) 42 T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 148 T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) 73 T ELT)) (-3607 (((-3 $ #1#) $) 164 T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) 84 (|has| |#1| (-498)) ELT)) (-3144 (((-85) $) 80 (|has| |#1| (-498)) ELT)) (-3143 (((-361 (-499)) $) 91 (|has| |#1| (-498)) ELT)) (-1873 (($ |#1| (-499)) 44 T ELT)) (-3873 (((-85) $) 210 (|has| |#1| (-1162)) ELT)) (-2528 (((-85) $) 61 T ELT)) (-1936 (((-714) $) 51 T ELT)) (-1874 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-499)) 175 T ELT)) (-2399 ((|#1| $ (-499)) 174 T ELT)) (-1875 (((-499) $ (-499)) 173 T ELT)) (-1878 (($ |#1| (-499)) 41 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 183 T ELT)) (-1933 (($ |#1| (-599 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-499))))) 78 T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1876 (($ |#1| (-499)) 43 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) 191 (|has| |#1| (-406)) ELT)) (-1871 (($ |#1| (-499) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1877 (((-599 (-2 (|:| -3882 |#1|) (|:| -2519 (-499)))) $) 72 T ELT)) (-2054 (((-599 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-499)))) $) 12 T ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-1162)) ELT)) (-3606 (((-3 $ #1#) $ $) 176 T ELT)) (-2519 (((-499) $) 167 T ELT)) (-4113 ((|#1| $) 74 T ELT)) (-3918 (($ $ (-599 |#1|) (-599 |#1|)) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-247 |#1|)) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-247 |#1|))) 100 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) 106 (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-1117) |#1|) NIL (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-1117) $) NIL (|has| |#1| (-468 (-1117) $)) ELT) (($ $ (-599 (-1117)) (-599 $)) 107 (|has| |#1| (-468 (-1117) $)) ELT) (($ $ (-599 (-247 $))) 103 (|has| |#1| (-263 $)) ELT) (($ $ (-247 $)) NIL (|has| |#1| (-263 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-263 $)) ELT) (($ $ (-599 $) (-599 $)) NIL (|has| |#1| (-263 $)) ELT)) (-3950 (($ $ |#1|) 92 (|has| |#1| (-240 |#1| |#1|)) ELT) (($ $ $) 93 (|has| |#1| (-240 $ $)) ELT)) (-3908 (($ $ (-1 |#1| |#1|)) 182 T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT)) (-4122 (((-488) $) 39 (|has| |#1| (-569 (-488))) ELT) (((-333) $) 113 (|has| |#1| (-960)) ELT) (((-179) $) 119 (|has| |#1| (-960)) ELT)) (-4096 (((-797) $) 146 T ELT) (($ (-499)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-978 (-361 (-499)))) ELT)) (-3248 (((-714)) 66 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2779 (($) 53 T CONST)) (-2785 (($) 52 T CONST)) (-2790 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT)) (-3174 (((-85) $ $) 159 T ELT)) (-3987 (($ $) 161 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 180 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 125 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) +(((-359 |#1|) (-13 (-510) (-184 |#1|) (-38 |#1|) (-293 |#1|) (-366 |#1|) (-10 -8 (-15 -4113 (|#1| $)) (-15 -2519 ((-499) $)) (-15 -1933 ($ |#1| (-599 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-499)))))) (-15 -2054 ((-599 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-499)))) $)) (-15 -1878 ($ |#1| (-499))) (-15 -1877 ((-599 (-2 (|:| -3882 |#1|) (|:| -2519 (-499)))) $)) (-15 -1876 ($ |#1| (-499))) (-15 -1875 ((-499) $ (-499))) (-15 -2399 (|#1| $ (-499))) (-15 -1874 ((-3 #1# #2# #3# #4#) $ (-499))) (-15 -1936 ((-714) $)) (-15 -1873 ($ |#1| (-499))) (-15 -1872 ($ |#1| (-499))) (-15 -1871 ($ |#1| (-499) (-3 #1# #2# #3# #4#))) (-15 -1870 (|#1| $)) (-15 -1869 ($ $)) (-15 -4108 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-406)) (-6 (-406)) |%noBranch|) (IF (|has| |#1| (-960)) (-6 (-960)) |%noBranch|) (IF (|has| |#1| (-1162)) (-6 (-1162)) |%noBranch|) (IF (|has| |#1| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|) (IF (|has| |#1| (-498)) (PROGN (-15 -3144 ((-85) $)) (-15 -3143 ((-361 (-499)) $)) (-15 -3145 ((-3 (-361 (-499)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-240 $ $)) (-6 (-240 $ $)) |%noBranch|) (IF (|has| |#1| (-263 $)) (-6 (-263 $)) |%noBranch|) (IF (|has| |#1| (-468 (-1117) $)) (-6 (-468 (-1117) $)) |%noBranch|))) (-510)) (T -359)) +((-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-510)) (-5 *1 (-359 *3)))) (-4113 (*1 *2 *1) (-12 (-5 *1 (-359 *2)) (-4 *2 (-510)))) (-2519 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-359 *3)) (-4 *3 (-510)))) (-1933 (*1 *1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-499))))) (-4 *2 (-510)) (-5 *1 (-359 *2)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-499))))) (-5 *1 (-359 *3)) (-4 *3 (-510)))) (-1878 (*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-359 *2)) (-4 *2 (-510)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| -3882 *3) (|:| -2519 (-499))))) (-5 *1 (-359 *3)) (-4 *3 (-510)))) (-1876 (*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-359 *2)) (-4 *2 (-510)))) (-1875 (*1 *2 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-359 *3)) (-4 *3 (-510)))) (-2399 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *1 (-359 *2)) (-4 *2 (-510)))) (-1874 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-359 *4)) (-4 *4 (-510)))) (-1936 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-359 *3)) (-4 *3 (-510)))) (-1873 (*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-359 *2)) (-4 *2 (-510)))) (-1872 (*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-359 *2)) (-4 *2 (-510)))) (-1871 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-499)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-359 *2)) (-4 *2 (-510)))) (-1870 (*1 *2 *1) (-12 (-5 *1 (-359 *2)) (-4 *2 (-510)))) (-1869 (*1 *1 *1) (-12 (-5 *1 (-359 *2)) (-4 *2 (-510)))) (-3144 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-359 *3)) (-4 *3 (-498)) (-4 *3 (-510)))) (-3143 (*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-359 *3)) (-4 *3 (-498)) (-4 *3 (-510)))) (-3145 (*1 *2 *1) (|partial| -12 (-5 *2 (-361 (-499))) (-5 *1 (-359 *3)) (-4 *3 (-498)) (-4 *3 (-510))))) +((-4108 (((-359 |#2|) (-1 |#2| |#1|) (-359 |#1|)) 20 T ELT))) +(((-360 |#1| |#2|) (-10 -7 (-15 -4108 ((-359 |#2|) (-1 |#2| |#1|) (-359 |#1|)))) (-510) (-510)) (T -360)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-359 *5)) (-4 *5 (-510)) (-4 *6 (-510)) (-5 *2 (-359 *6)) (-5 *1 (-360 *5 *6))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 13 T ELT)) (-3251 ((|#1| $) 21 (|has| |#1| (-261)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| |#1| (-763)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1117) #1#) $) NIL (|has| |#1| (-978 (-1117))) ELT) (((-3 (-361 (-499)) #1#) $) 54 (|has| |#1| (-978 (-499))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT)) (-3294 ((|#1| $) 15 T ELT) (((-1117) $) NIL (|has| |#1| (-978 (-1117))) ELT) (((-361 (-499)) $) 51 (|has| |#1| (-978 (-499))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) 32 T ELT)) (-3115 (($) NIL (|has| |#1| (-498)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3324 (((-85) $) NIL (|has| |#1| (-763)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| |#1| (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| |#1| (-821 (-333))) ELT)) (-2528 (((-85) $) 38 T ELT)) (-3117 (($ $) NIL T ELT)) (-3119 ((|#1| $) 55 T ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-1092)) ELT)) (-3325 (((-85) $) 22 (|has| |#1| (-763)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| |#1| (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 82 T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL (|has| |#1| (-261)) ELT)) (-3252 ((|#1| $) 26 (|has| |#1| (-498)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 135 (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 128 (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-3918 (($ $ (-599 |#1|) (-599 |#1|)) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-247 |#1|)) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-247 |#1|))) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) NIL (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-1117) |#1|) NIL (|has| |#1| (-468 (-1117) |#1|)) ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-240 |#1| |#1|)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT)) (-3116 (($ $) NIL T ELT)) (-3118 ((|#1| $) 57 T ELT)) (-4122 (((-825 (-499)) $) NIL (|has| |#1| (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| |#1| (-569 (-825 (-333)))) ELT) (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT) (((-333) $) NIL (|has| |#1| (-960)) ELT) (((-179) $) NIL (|has| |#1| (-960)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) 112 (-12 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1117)) NIL (|has| |#1| (-978 (-1117))) ELT)) (-2823 (((-649 $) $) 92 (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) 93 T CONST)) (-3253 ((|#1| $) 24 (|has| |#1| (-498)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3523 (($ $) NIL (|has| |#1| (-763)) ELT)) (-2779 (($) 28 T CONST)) (-2785 (($) 8 T CONST)) (-2790 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 48 T ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-4099 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3987 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3989 (($ $ $) 35 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) 122 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT))) +(((-361 |#1|) (-13 (-931 |#1|) (-10 -7 (IF (|has| |#1| (-6 -4132)) (IF (|has| |#1| (-406)) (IF (|has| |#1| (-6 -4143)) (-6 -4132) |%noBranch|) |%noBranch|) |%noBranch|))) (-510)) (T -361)) +NIL +((-4108 (((-361 |#2|) (-1 |#2| |#1|) (-361 |#1|)) 13 T ELT))) +(((-362 |#1| |#2|) (-10 -7 (-15 -4108 ((-361 |#2|) (-1 |#2| |#1|) (-361 |#1|)))) (-510) (-510)) (T -362)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-361 *5)) (-4 *5 (-510)) (-4 *6 (-510)) (-5 *2 (-361 *6)) (-5 *1 (-362 *5 *6))))) +((-1880 (((-647 |#2|) (-1207 $)) NIL T ELT) (((-647 |#2|)) 18 T ELT)) (-1890 (($ (-1207 |#2|) (-1207 $)) NIL T ELT) (($ (-1207 |#2|)) 24 T ELT)) (-1879 (((-647 |#2|) $ (-1207 $)) NIL T ELT) (((-647 |#2|) $) 40 T ELT)) (-2115 ((|#3| $) 69 T ELT)) (-3907 ((|#2| (-1207 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3362 (((-1207 |#2|) $ (-1207 $)) NIL T ELT) (((-647 |#2|) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 |#2|) $) 22 T ELT) (((-647 |#2|) (-1207 $)) 38 T ELT)) (-4122 (((-1207 |#2|) $) 11 T ELT) (($ (-1207 |#2|)) 13 T ELT)) (-2565 ((|#3| $) 55 T ELT))) +(((-363 |#1| |#2| |#3|) (-10 -7 (-15 -1879 ((-647 |#2|) |#1|)) (-15 -3907 (|#2|)) (-15 -1880 ((-647 |#2|))) (-15 -4122 (|#1| (-1207 |#2|))) (-15 -4122 ((-1207 |#2|) |#1|)) (-15 -1890 (|#1| (-1207 |#2|))) (-15 -3362 ((-647 |#2|) (-1207 |#1|))) (-15 -3362 ((-1207 |#2|) |#1|)) (-15 -2115 (|#3| |#1|)) (-15 -2565 (|#3| |#1|)) (-15 -1880 ((-647 |#2|) (-1207 |#1|))) (-15 -3907 (|#2| (-1207 |#1|))) (-15 -1890 (|#1| (-1207 |#2|) (-1207 |#1|))) (-15 -3362 ((-647 |#2|) (-1207 |#1|) (-1207 |#1|))) (-15 -3362 ((-1207 |#2|) |#1| (-1207 |#1|))) (-15 -1879 ((-647 |#2|) |#1| (-1207 |#1|)))) (-364 |#2| |#3|) (-146) (-1183 |#2|)) (T -363)) +((-1880 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1183 *4)) (-5 *2 (-647 *4)) (-5 *1 (-363 *3 *4 *5)) (-4 *3 (-364 *4 *5)))) (-3907 (*1 *2) (-12 (-4 *4 (-1183 *2)) (-4 *2 (-146)) (-5 *1 (-363 *3 *2 *4)) (-4 *3 (-364 *2 *4))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1880 (((-647 |#1|) (-1207 $)) 58 T ELT) (((-647 |#1|)) 74 T ELT)) (-3470 ((|#1| $) 64 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-1890 (($ (-1207 |#1|) (-1207 $)) 60 T ELT) (($ (-1207 |#1|)) 77 T ELT)) (-1879 (((-647 |#1|) $ (-1207 $)) 65 T ELT) (((-647 |#1|) $) 72 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3231 (((-857)) 66 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3254 ((|#1| $) 63 T ELT)) (-2115 ((|#2| $) 56 (|has| |#1| (-318)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3907 ((|#1| (-1207 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-3362 (((-1207 |#1|) $ (-1207 $)) 62 T ELT) (((-647 |#1|) (-1207 $) (-1207 $)) 61 T ELT) (((-1207 |#1|) $) 79 T ELT) (((-647 |#1|) (-1207 $)) 78 T ELT)) (-4122 (((-1207 |#1|) $) 76 T ELT) (($ (-1207 |#1|)) 75 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 49 T ELT)) (-2823 (((-649 $) $) 55 (|has| |#1| (-118)) ELT)) (-2565 ((|#2| $) 57 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2113 (((-1207 $)) 80 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) +(((-364 |#1| |#2|) (-113) (-146) (-1183 |t#1|)) (T -364)) +((-2113 (*1 *2) (-12 (-4 *3 (-146)) (-4 *4 (-1183 *3)) (-5 *2 (-1207 *1)) (-4 *1 (-364 *3 *4)))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1183 *3)) (-5 *2 (-1207 *3)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1183 *4)) (-5 *2 (-647 *4)))) (-1890 (*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-146)) (-4 *1 (-364 *3 *4)) (-4 *4 (-1183 *3)))) (-4122 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1183 *3)) (-5 *2 (-1207 *3)))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-146)) (-4 *1 (-364 *3 *4)) (-4 *4 (-1183 *3)))) (-1880 (*1 *2) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1183 *3)) (-5 *2 (-647 *3)))) (-3907 (*1 *2) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1183 *2)) (-4 *2 (-146)))) (-1879 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1183 *3)) (-5 *2 (-647 *3))))) +(-13 (-325 |t#1| |t#2|) (-10 -8 (-15 -2113 ((-1207 $))) (-15 -3362 ((-1207 |t#1|) $)) (-15 -3362 ((-647 |t#1|) (-1207 $))) (-15 -1890 ($ (-1207 |t#1|))) (-15 -4122 ((-1207 |t#1|) $)) (-15 -4122 ($ (-1207 |t#1|))) (-15 -1880 ((-647 |t#1|))) (-15 -3907 (|t#1|)) (-15 -1879 ((-647 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-325 |#1| |#2|) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-598 |#1|) . T) ((-675 |#1|) . T) ((-684) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-3295 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) 27 T ELT) (((-3 (-499) #1#) $) 19 T ELT)) (-3294 ((|#2| $) NIL T ELT) (((-361 (-499)) $) 24 T ELT) (((-499) $) 14 T ELT)) (-4096 (($ |#2|) NIL T ELT) (($ (-361 (-499))) 22 T ELT) (($ (-499)) 11 T ELT))) +(((-365 |#1| |#2|) (-10 -7 (-15 -4096 (|#1| (-499))) (-15 -3295 ((-3 (-499) #1="failed") |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -4096 (|#1| |#2|))) (-366 |#2|) (-1157)) (T -365)) +NIL +((-3295 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-361 (-499)) #1#) $) 16 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) 13 (|has| |#1| (-978 (-499))) ELT)) (-3294 ((|#1| $) 8 T ELT) (((-361 (-499)) $) 17 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) 14 (|has| |#1| (-978 (-499))) ELT)) (-4096 (($ |#1|) 6 T ELT) (($ (-361 (-499))) 15 (|has| |#1| (-978 (-361 (-499)))) ELT) (($ (-499)) 12 (|has| |#1| (-978 (-499))) ELT))) +(((-366 |#1|) (-113) (-1157)) (T -366)) +NIL +(-13 (-978 |t#1|) (-10 -7 (IF (|has| |t#1| (-978 (-499))) (-6 (-978 (-499))) |%noBranch|) (IF (|has| |t#1| (-978 (-361 (-499)))) (-6 (-978 (-361 (-499)))) |%noBranch|))) +(((-571 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-571 (-499)) |has| |#1| (-978 (-499))) ((-571 |#1|) . T) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ "failed") $) NIL T ELT)) (-1881 ((|#4| (-714) (-1207 |#4|)) 55 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3119 (((-1207 |#4|) $) 15 T ELT)) (-3254 ((|#2| $) 53 T ELT)) (-1882 (($ $) 156 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 103 T ELT)) (-2071 (($ (-1207 |#4|)) 102 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3118 ((|#1| $) 16 T ELT)) (-3130 (($ $ $) NIL T ELT)) (-2551 (($ $ $) NIL T ELT)) (-4096 (((-797) $) 147 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 |#4|) $) 140 T ELT)) (-2785 (($) 11 T CONST)) (-3174 (((-85) $ $) 39 T ELT)) (-4099 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) 133 T ELT)) (* (($ $ $) 130 T ELT))) +(((-367 |#1| |#2| |#3| |#4|) (-13 (-427) (-10 -8 (-15 -2071 ($ (-1207 |#4|))) (-15 -2113 ((-1207 |#4|) $)) (-15 -3254 (|#2| $)) (-15 -3119 ((-1207 |#4|) $)) (-15 -3118 (|#1| $)) (-15 -1882 ($ $)) (-15 -1881 (|#4| (-714) (-1207 |#4|))))) (-261) (-931 |#1|) (-1183 |#2|) (-13 (-364 |#2| |#3|) (-978 |#2|))) (T -367)) +((-2071 (*1 *1 *2) (-12 (-5 *2 (-1207 *6)) (-4 *6 (-13 (-364 *4 *5) (-978 *4))) (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-4 *3 (-261)) (-5 *1 (-367 *3 *4 *5 *6)))) (-2113 (*1 *2 *1) (-12 (-4 *3 (-261)) (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-5 *2 (-1207 *6)) (-5 *1 (-367 *3 *4 *5 *6)) (-4 *6 (-13 (-364 *4 *5) (-978 *4))))) (-3254 (*1 *2 *1) (-12 (-4 *4 (-1183 *2)) (-4 *2 (-931 *3)) (-5 *1 (-367 *3 *2 *4 *5)) (-4 *3 (-261)) (-4 *5 (-13 (-364 *2 *4) (-978 *2))))) (-3119 (*1 *2 *1) (-12 (-4 *3 (-261)) (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-5 *2 (-1207 *6)) (-5 *1 (-367 *3 *4 *5 *6)) (-4 *6 (-13 (-364 *4 *5) (-978 *4))))) (-3118 (*1 *2 *1) (-12 (-4 *3 (-931 *2)) (-4 *4 (-1183 *3)) (-4 *2 (-261)) (-5 *1 (-367 *2 *3 *4 *5)) (-4 *5 (-13 (-364 *3 *4) (-978 *3))))) (-1882 (*1 *1 *1) (-12 (-4 *2 (-261)) (-4 *3 (-931 *2)) (-4 *4 (-1183 *3)) (-5 *1 (-367 *2 *3 *4 *5)) (-4 *5 (-13 (-364 *3 *4) (-978 *3))))) (-1881 (*1 *2 *3 *4) (-12 (-5 *3 (-714)) (-5 *4 (-1207 *2)) (-4 *5 (-261)) (-4 *6 (-931 *5)) (-4 *2 (-13 (-364 *6 *7) (-978 *6))) (-5 *1 (-367 *5 *6 *7 *2)) (-4 *7 (-1183 *6))))) +((-4108 (((-367 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-367 |#1| |#2| |#3| |#4|)) 35 T ELT))) +(((-368 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4108 ((-367 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-367 |#1| |#2| |#3| |#4|)))) (-261) (-931 |#1|) (-1183 |#2|) (-13 (-364 |#2| |#3|) (-978 |#2|)) (-261) (-931 |#5|) (-1183 |#6|) (-13 (-364 |#6| |#7|) (-978 |#6|))) (T -368)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-367 *5 *6 *7 *8)) (-4 *5 (-261)) (-4 *6 (-931 *5)) (-4 *7 (-1183 *6)) (-4 *8 (-13 (-364 *6 *7) (-978 *6))) (-4 *9 (-261)) (-4 *10 (-931 *9)) (-4 *11 (-1183 *10)) (-5 *2 (-367 *9 *10 *11 *12)) (-5 *1 (-368 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-364 *10 *11) (-978 *10)))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ "failed") $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3254 ((|#2| $) 71 T ELT)) (-1883 (($ (-1207 |#4|)) 27 T ELT) (($ (-367 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-978 |#2|)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 37 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 |#4|) $) 28 T ELT)) (-2785 (($) 25 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ $ $) 82 T ELT))) +(((-369 |#1| |#2| |#3| |#4| |#5|) (-13 (-684) (-10 -8 (-15 -2113 ((-1207 |#4|) $)) (-15 -3254 (|#2| $)) (-15 -1883 ($ (-1207 |#4|))) (IF (|has| |#4| (-978 |#2|)) (-15 -1883 ($ (-367 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-261) (-931 |#1|) (-1183 |#2|) (-364 |#2| |#3|) (-1207 |#4|)) (T -369)) +((-2113 (*1 *2 *1) (-12 (-4 *3 (-261)) (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-5 *2 (-1207 *6)) (-5 *1 (-369 *3 *4 *5 *6 *7)) (-4 *6 (-364 *4 *5)) (-14 *7 *2))) (-3254 (*1 *2 *1) (-12 (-4 *4 (-1183 *2)) (-4 *2 (-931 *3)) (-5 *1 (-369 *3 *2 *4 *5 *6)) (-4 *3 (-261)) (-4 *5 (-364 *2 *4)) (-14 *6 (-1207 *5)))) (-1883 (*1 *1 *2) (-12 (-5 *2 (-1207 *6)) (-4 *6 (-364 *4 *5)) (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-4 *3 (-261)) (-5 *1 (-369 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1883 (*1 *1 *2) (-12 (-5 *2 (-367 *3 *4 *5 *6)) (-4 *6 (-978 *4)) (-4 *3 (-261)) (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-4 *6 (-364 *4 *5)) (-14 *7 (-1207 *6)) (-5 *1 (-369 *3 *4 *5 *6 *7))))) +((-4108 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) +(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4108 (|#3| (-1 |#4| |#2|) |#1|))) (-372 |#2|) (-146) (-372 |#4|) (-146)) (T -370)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-372 *6)) (-5 *1 (-370 *4 *5 *2 *6)) (-4 *4 (-372 *5))))) +((-1870 (((-3 $ #1="failed")) 99 T ELT)) (-3361 (((-1207 (-647 |#2|)) (-1207 $)) NIL T ELT) (((-1207 (-647 |#2|))) 104 T ELT)) (-2008 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) 97 T ELT)) (-1796 (((-3 $ #1#)) 96 T ELT)) (-1886 (((-647 |#2|) (-1207 $)) NIL T ELT) (((-647 |#2|)) 115 T ELT)) (-1884 (((-647 |#2|) $ (-1207 $)) NIL T ELT) (((-647 |#2|) $) 123 T ELT)) (-2002 (((-1111 (-884 |#2|))) 64 T ELT)) (-1888 ((|#2| (-1207 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1890 (($ (-1207 |#2|) (-1207 $)) NIL T ELT) (($ (-1207 |#2|)) 125 T ELT)) (-2009 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) 95 T ELT)) (-1797 (((-3 $ #1#)) 87 T ELT)) (-1887 (((-647 |#2|) (-1207 $)) NIL T ELT) (((-647 |#2|)) 113 T ELT)) (-1885 (((-647 |#2|) $ (-1207 $)) NIL T ELT) (((-647 |#2|) $) 121 T ELT)) (-2006 (((-1111 (-884 |#2|))) 63 T ELT)) (-1889 ((|#2| (-1207 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3362 (((-1207 |#2|) $ (-1207 $)) NIL T ELT) (((-647 |#2|) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 |#2|) $) 124 T ELT) (((-647 |#2|) (-1207 $)) 133 T ELT)) (-4122 (((-1207 |#2|) $) 109 T ELT) (($ (-1207 |#2|)) 111 T ELT)) (-1994 (((-599 (-884 |#2|)) (-1207 $)) NIL T ELT) (((-599 (-884 |#2|))) 107 T ELT)) (-2664 (($ (-647 |#2|) $) 103 T ELT))) +(((-371 |#1| |#2|) (-10 -7 (-15 -2664 (|#1| (-647 |#2|) |#1|)) (-15 -2002 ((-1111 (-884 |#2|)))) (-15 -2006 ((-1111 (-884 |#2|)))) (-15 -1884 ((-647 |#2|) |#1|)) (-15 -1885 ((-647 |#2|) |#1|)) (-15 -1886 ((-647 |#2|))) (-15 -1887 ((-647 |#2|))) (-15 -1888 (|#2|)) (-15 -1889 (|#2|)) (-15 -4122 (|#1| (-1207 |#2|))) (-15 -4122 ((-1207 |#2|) |#1|)) (-15 -1890 (|#1| (-1207 |#2|))) (-15 -1994 ((-599 (-884 |#2|)))) (-15 -3361 ((-1207 (-647 |#2|)))) (-15 -3362 ((-647 |#2|) (-1207 |#1|))) (-15 -3362 ((-1207 |#2|) |#1|)) (-15 -1870 ((-3 |#1| #1="failed"))) (-15 -1796 ((-3 |#1| #1#))) (-15 -1797 ((-3 |#1| #1#))) (-15 -2008 ((-3 (-2 (|:| |particular| |#1|) (|:| -2113 (-599 |#1|))) #1#))) (-15 -2009 ((-3 (-2 (|:| |particular| |#1|) (|:| -2113 (-599 |#1|))) #1#))) (-15 -1886 ((-647 |#2|) (-1207 |#1|))) (-15 -1887 ((-647 |#2|) (-1207 |#1|))) (-15 -1888 (|#2| (-1207 |#1|))) (-15 -1889 (|#2| (-1207 |#1|))) (-15 -1890 (|#1| (-1207 |#2|) (-1207 |#1|))) (-15 -3362 ((-647 |#2|) (-1207 |#1|) (-1207 |#1|))) (-15 -3362 ((-1207 |#2|) |#1| (-1207 |#1|))) (-15 -1884 ((-647 |#2|) |#1| (-1207 |#1|))) (-15 -1885 ((-647 |#2|) |#1| (-1207 |#1|))) (-15 -3361 ((-1207 (-647 |#2|)) (-1207 |#1|))) (-15 -1994 ((-599 (-884 |#2|)) (-1207 |#1|)))) (-372 |#2|) (-146)) (T -371)) +((-3361 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1207 (-647 *4))) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-1994 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-599 (-884 *4))) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-1889 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-371 *3 *2)) (-4 *3 (-372 *2)))) (-1888 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-371 *3 *2)) (-4 *3 (-372 *2)))) (-1887 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-647 *4)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-1886 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-647 *4)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-2006 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1111 (-884 *4))) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-2002 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1111 (-884 *4))) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1870 (((-3 $ #1="failed")) 47 (|has| |#1| (-510)) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3361 (((-1207 (-647 |#1|)) (-1207 $)) 88 T ELT) (((-1207 (-647 |#1|))) 114 T ELT)) (-1822 (((-1207 $)) 91 T ELT)) (-3874 (($) 22 T CONST)) (-2008 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) 50 (|has| |#1| (-510)) ELT)) (-1796 (((-3 $ #1#)) 48 (|has| |#1| (-510)) ELT)) (-1886 (((-647 |#1|) (-1207 $)) 75 T ELT) (((-647 |#1|)) 106 T ELT)) (-1820 ((|#1| $) 84 T ELT)) (-1884 (((-647 |#1|) $ (-1207 $)) 86 T ELT) (((-647 |#1|) $) 104 T ELT)) (-2522 (((-3 $ #1#) $) 55 (|has| |#1| (-510)) ELT)) (-2002 (((-1111 (-884 |#1|))) 102 (|has| |#1| (-318)) ELT)) (-2525 (($ $ (-857)) 36 T ELT)) (-1818 ((|#1| $) 82 T ELT)) (-1798 (((-1111 |#1|) $) 52 (|has| |#1| (-510)) ELT)) (-1888 ((|#1| (-1207 $)) 77 T ELT) ((|#1|) 108 T ELT)) (-1816 (((-1111 |#1|) $) 73 T ELT)) (-1810 (((-85)) 67 T ELT)) (-1890 (($ (-1207 |#1|) (-1207 $)) 79 T ELT) (($ (-1207 |#1|)) 112 T ELT)) (-3607 (((-3 $ #1#) $) 57 (|has| |#1| (-510)) ELT)) (-3231 (((-857)) 90 T ELT)) (-1807 (((-85)) 64 T ELT)) (-2549 (($ $ (-857)) 43 T ELT)) (-1803 (((-85)) 60 T ELT)) (-1801 (((-85)) 58 T ELT)) (-1805 (((-85)) 62 T ELT)) (-2009 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) 51 (|has| |#1| (-510)) ELT)) (-1797 (((-3 $ #1#)) 49 (|has| |#1| (-510)) ELT)) (-1887 (((-647 |#1|) (-1207 $)) 76 T ELT) (((-647 |#1|)) 107 T ELT)) (-1821 ((|#1| $) 85 T ELT)) (-1885 (((-647 |#1|) $ (-1207 $)) 87 T ELT) (((-647 |#1|) $) 105 T ELT)) (-2523 (((-3 $ #1#) $) 56 (|has| |#1| (-510)) ELT)) (-2006 (((-1111 (-884 |#1|))) 103 (|has| |#1| (-318)) ELT)) (-2524 (($ $ (-857)) 37 T ELT)) (-1819 ((|#1| $) 83 T ELT)) (-1799 (((-1111 |#1|) $) 53 (|has| |#1| (-510)) ELT)) (-1889 ((|#1| (-1207 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1817 (((-1111 |#1|) $) 74 T ELT)) (-1811 (((-85)) 68 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1802 (((-85)) 59 T ELT)) (-1804 (((-85)) 61 T ELT)) (-1806 (((-85)) 63 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1809 (((-85)) 66 T ELT)) (-3950 ((|#1| $ (-499)) 118 T ELT)) (-3362 (((-1207 |#1|) $ (-1207 $)) 81 T ELT) (((-647 |#1|) (-1207 $) (-1207 $)) 80 T ELT) (((-1207 |#1|) $) 116 T ELT) (((-647 |#1|) (-1207 $)) 115 T ELT)) (-4122 (((-1207 |#1|) $) 111 T ELT) (($ (-1207 |#1|)) 110 T ELT)) (-1994 (((-599 (-884 |#1|)) (-1207 $)) 89 T ELT) (((-599 (-884 |#1|))) 113 T ELT)) (-2551 (($ $ $) 33 T ELT)) (-1815 (((-85)) 72 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2113 (((-1207 $)) 117 T ELT)) (-1800 (((-599 (-1207 |#1|))) 54 (|has| |#1| (-510)) ELT)) (-2552 (($ $ $ $) 34 T ELT)) (-1813 (((-85)) 70 T ELT)) (-2664 (($ (-647 |#1|) $) 101 T ELT)) (-2550 (($ $ $) 32 T ELT)) (-1814 (((-85)) 71 T ELT)) (-1812 (((-85)) 69 T ELT)) (-1808 (((-85)) 65 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 38 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) +(((-372 |#1|) (-113) (-146)) (T -372)) +((-2113 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1207 *1)) (-4 *1 (-372 *3)))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-1207 *3)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-372 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) (-3361 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-1207 (-647 *3))))) (-1994 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-599 (-884 *3))))) (-1890 (*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-146)) (-4 *1 (-372 *3)))) (-4122 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-1207 *3)))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-146)) (-4 *1 (-372 *3)))) (-1889 (*1 *2) (-12 (-4 *1 (-372 *2)) (-4 *2 (-146)))) (-1888 (*1 *2) (-12 (-4 *1 (-372 *2)) (-4 *2 (-146)))) (-1887 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-647 *3)))) (-1886 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-647 *3)))) (-1885 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-647 *3)))) (-1884 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-647 *3)))) (-2006 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-4 *3 (-318)) (-5 *2 (-1111 (-884 *3))))) (-2002 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-4 *3 (-318)) (-5 *2 (-1111 (-884 *3))))) (-2664 (*1 *1 *2 *1) (-12 (-5 *2 (-647 *3)) (-4 *1 (-372 *3)) (-4 *3 (-146))))) +(-13 (-322 |t#1|) (-240 (-499) |t#1|) (-10 -8 (-15 -2113 ((-1207 $))) (-15 -3362 ((-1207 |t#1|) $)) (-15 -3362 ((-647 |t#1|) (-1207 $))) (-15 -3361 ((-1207 (-647 |t#1|)))) (-15 -1994 ((-599 (-884 |t#1|)))) (-15 -1890 ($ (-1207 |t#1|))) (-15 -4122 ((-1207 |t#1|) $)) (-15 -4122 ($ (-1207 |t#1|))) (-15 -1889 (|t#1|)) (-15 -1888 (|t#1|)) (-15 -1887 ((-647 |t#1|))) (-15 -1886 ((-647 |t#1|))) (-15 -1885 ((-647 |t#1|) $)) (-15 -1884 ((-647 |t#1|) $)) (IF (|has| |t#1| (-318)) (PROGN (-15 -2006 ((-1111 (-884 |t#1|)))) (-15 -2002 ((-1111 (-884 |t#1|))))) |%noBranch|) (-15 -2664 ($ (-647 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-568 (-797)) . T) ((-240 (-499) |#1|) . T) ((-322 |#1|) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-598 |#1|) . T) ((-675 |#1|) . T) ((-678) . T) ((-702 |#1|) . T) ((-704) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-3256 (((-359 |#1|) (-359 |#1|) (-1 (-359 |#1|) |#1|)) 28 T ELT)) (-1891 (((-359 |#1|) (-359 |#1|) (-359 |#1|)) 17 T ELT))) +(((-373 |#1|) (-10 -7 (-15 -3256 ((-359 |#1|) (-359 |#1|) (-1 (-359 |#1|) |#1|))) (-15 -1891 ((-359 |#1|) (-359 |#1|) (-359 |#1|)))) (-510)) (T -373)) +((-1891 (*1 *2 *2 *2) (-12 (-5 *2 (-359 *3)) (-4 *3 (-510)) (-5 *1 (-373 *3)))) (-3256 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-359 *4) *4)) (-4 *4 (-510)) (-5 *2 (-359 *4)) (-5 *1 (-373 *4))))) +((-3204 (((-599 (-1117)) $) 81 T ELT)) (-3206 (((-361 (-1111 $)) $ (-566 $)) 313 T ELT)) (-1637 (($ $ (-247 $)) NIL T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-599 (-566 $)) (-599 $)) 277 T ELT)) (-3295 (((-3 (-566 $) #1="failed") $) NIL T ELT) (((-3 (-1117) #1#) $) 84 T ELT) (((-3 (-499) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-361 (-884 |#2|)) #1#) $) 363 T ELT) (((-3 (-884 |#2|) #1#) $) 275 T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT)) (-3294 (((-566 $) $) NIL T ELT) (((-1117) $) 28 T ELT) (((-499) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-361 (-884 |#2|)) $) 345 T ELT) (((-884 |#2|) $) 272 T ELT) (((-361 (-499)) $) NIL T ELT)) (-3743 (((-86) (-86)) 47 T ELT)) (-3117 (($ $) 99 T ELT)) (-1635 (((-3 (-566 $) #1#) $) 268 T ELT)) (-1634 (((-599 (-566 $)) $) 269 T ELT)) (-2944 (((-3 (-599 $) #1#) $) 287 T ELT)) (-2946 (((-3 (-2 (|:| |val| $) (|:| -2519 (-499))) #1#) $) 294 T ELT)) (-2943 (((-3 (-599 $) #1#) $) 285 T ELT)) (-1892 (((-3 (-2 (|:| -4104 (-499)) (|:| |var| (-566 $))) #1#) $) 304 T ELT)) (-2945 (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) #1#) $ (-86)) 255 T ELT) (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) #1#) $ (-1117)) 257 T ELT)) (-1895 (((-85) $) 17 T ELT)) (-1894 ((|#2| $) 19 T ELT)) (-3918 (($ $ (-566 $) $) NIL T ELT) (($ $ (-599 (-566 $)) (-599 $)) 276 T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ $))) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ (-599 $)))) 109 T ELT) (($ $ (-1117) (-1 $ (-599 $))) NIL T ELT) (($ $ (-1117) (-1 $ $)) NIL T ELT) (($ $ (-599 (-86)) (-599 (-1 $ $))) NIL T ELT) (($ $ (-599 (-86)) (-599 (-1 $ (-599 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-599 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1117)) 62 T ELT) (($ $ (-599 (-1117))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-86) $ (-1117)) 65 T ELT) (($ $ (-599 (-86)) (-599 $) (-1117)) 72 T ELT) (($ $ (-599 (-1117)) (-599 (-714)) (-599 (-1 $ $))) 120 T ELT) (($ $ (-599 (-1117)) (-599 (-714)) (-599 (-1 $ (-599 $)))) 282 T ELT) (($ $ (-1117) (-714) (-1 $ (-599 $))) 105 T ELT) (($ $ (-1117) (-714) (-1 $ $)) 104 T ELT)) (-3950 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-599 $)) 119 T ELT)) (-3908 (($ $ (-1117)) 278 T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT)) (-3116 (($ $) 324 T ELT)) (-4122 (((-825 (-499)) $) 297 T ELT) (((-825 (-333)) $) 301 T ELT) (($ (-359 $)) 359 T ELT) (((-488) $) NIL T ELT)) (-4096 (((-797) $) 279 T ELT) (($ (-566 $)) 93 T ELT) (($ (-1117)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1065 |#2| (-566 $))) NIL T ELT) (($ (-361 |#2|)) 329 T ELT) (($ (-884 (-361 |#2|))) 368 T ELT) (($ (-361 (-884 (-361 |#2|)))) 341 T ELT) (($ (-361 (-884 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-884 |#2|)) 216 T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) 373 T ELT)) (-3248 (((-714)) 88 T ELT)) (-2355 (((-85) (-86)) 42 T ELT)) (-1893 (($ (-1117) $) 31 T ELT) (($ (-1117) $ $) 32 T ELT) (($ (-1117) $ $ $) 33 T ELT) (($ (-1117) $ $ $ $) 34 T ELT) (($ (-1117) (-599 $)) 39 T ELT)) (* (($ (-361 (-499)) $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-857) $) NIL T ELT))) +(((-374 |#1| |#2|) (-10 -7 (-15 * (|#1| (-857) |#1|)) (-15 * (|#1| (-714) |#1|)) (-15 * (|#1| (-499) |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -3295 ((-3 (-361 (-499)) #1="failed") |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4096 (|#1| (-499))) (-15 -3248 ((-714))) (-15 * (|#1| |#2| |#1|)) (-15 -4122 ((-488) |#1|)) (-15 -4096 (|#1| (-884 |#2|))) (-15 -3295 ((-3 (-884 |#2|) #1#) |#1|)) (-15 -3294 ((-884 |#2|) |#1|)) (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117))) (-15 * (|#1| |#1| |#2|)) (-15 -4096 (|#1| |#1|)) (-15 * (|#1| |#1| (-361 (-499)))) (-15 * (|#1| (-361 (-499)) |#1|)) (-15 -4096 (|#1| (-361 (-884 |#2|)))) (-15 -3295 ((-3 (-361 (-884 |#2|)) #1#) |#1|)) (-15 -3294 ((-361 (-884 |#2|)) |#1|)) (-15 -3206 ((-361 (-1111 |#1|)) |#1| (-566 |#1|))) (-15 -4096 (|#1| (-361 (-884 (-361 |#2|))))) (-15 -4096 (|#1| (-884 (-361 |#2|)))) (-15 -4096 (|#1| (-361 |#2|))) (-15 -3116 (|#1| |#1|)) (-15 -4122 (|#1| (-359 |#1|))) (-15 -3918 (|#1| |#1| (-1117) (-714) (-1 |#1| |#1|))) (-15 -3918 (|#1| |#1| (-1117) (-714) (-1 |#1| (-599 |#1|)))) (-15 -3918 (|#1| |#1| (-599 (-1117)) (-599 (-714)) (-599 (-1 |#1| (-599 |#1|))))) (-15 -3918 (|#1| |#1| (-599 (-1117)) (-599 (-714)) (-599 (-1 |#1| |#1|)))) (-15 -2946 ((-3 (-2 (|:| |val| |#1|) (|:| -2519 (-499))) #1#) |#1|)) (-15 -2945 ((-3 (-2 (|:| |var| (-566 |#1|)) (|:| -2519 (-499))) #1#) |#1| (-1117))) (-15 -2945 ((-3 (-2 (|:| |var| (-566 |#1|)) (|:| -2519 (-499))) #1#) |#1| (-86))) (-15 -3117 (|#1| |#1|)) (-15 -4096 (|#1| (-1065 |#2| (-566 |#1|)))) (-15 -1892 ((-3 (-2 (|:| -4104 (-499)) (|:| |var| (-566 |#1|))) #1#) |#1|)) (-15 -2943 ((-3 (-599 |#1|) #1#) |#1|)) (-15 -2945 ((-3 (-2 (|:| |var| (-566 |#1|)) (|:| -2519 (-499))) #1#) |#1|)) (-15 -2944 ((-3 (-599 |#1|) #1#) |#1|)) (-15 -3918 (|#1| |#1| (-599 (-86)) (-599 |#1|) (-1117))) (-15 -3918 (|#1| |#1| (-86) |#1| (-1117))) (-15 -3918 (|#1| |#1|)) (-15 -3918 (|#1| |#1| (-599 (-1117)))) (-15 -3918 (|#1| |#1| (-1117))) (-15 -1893 (|#1| (-1117) (-599 |#1|))) (-15 -1893 (|#1| (-1117) |#1| |#1| |#1| |#1|)) (-15 -1893 (|#1| (-1117) |#1| |#1| |#1|)) (-15 -1893 (|#1| (-1117) |#1| |#1|)) (-15 -1893 (|#1| (-1117) |#1|)) (-15 -3204 ((-599 (-1117)) |#1|)) (-15 -1894 (|#2| |#1|)) (-15 -1895 ((-85) |#1|)) (-15 -4096 (|#1| |#2|)) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -4122 ((-825 (-333)) |#1|)) (-15 -4122 ((-825 (-499)) |#1|)) (-15 -4096 (|#1| (-1117))) (-15 -3295 ((-3 (-1117) #1#) |#1|)) (-15 -3294 ((-1117) |#1|)) (-15 -3918 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3918 (|#1| |#1| (-86) (-1 |#1| (-599 |#1|)))) (-15 -3918 (|#1| |#1| (-599 (-86)) (-599 (-1 |#1| (-599 |#1|))))) (-15 -3918 (|#1| |#1| (-599 (-86)) (-599 (-1 |#1| |#1|)))) (-15 -3918 (|#1| |#1| (-1117) (-1 |#1| |#1|))) (-15 -3918 (|#1| |#1| (-1117) (-1 |#1| (-599 |#1|)))) (-15 -3918 (|#1| |#1| (-599 (-1117)) (-599 (-1 |#1| (-599 |#1|))))) (-15 -3918 (|#1| |#1| (-599 (-1117)) (-599 (-1 |#1| |#1|)))) (-15 -2355 ((-85) (-86))) (-15 -3743 ((-86) (-86))) (-15 -1634 ((-599 (-566 |#1|)) |#1|)) (-15 -1635 ((-3 (-566 |#1|) #1#) |#1|)) (-15 -1637 (|#1| |#1| (-599 (-566 |#1|)) (-599 |#1|))) (-15 -1637 (|#1| |#1| (-599 (-247 |#1|)))) (-15 -1637 (|#1| |#1| (-247 |#1|))) (-15 -3950 (|#1| (-86) (-599 |#1|))) (-15 -3950 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3950 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3950 (|#1| (-86) |#1| |#1|)) (-15 -3950 (|#1| (-86) |#1|)) (-15 -3918 (|#1| |#1| (-599 |#1|) (-599 |#1|))) (-15 -3918 (|#1| |#1| |#1| |#1|)) (-15 -3918 (|#1| |#1| (-247 |#1|))) (-15 -3918 (|#1| |#1| (-599 (-247 |#1|)))) (-15 -3918 (|#1| |#1| (-599 (-566 |#1|)) (-599 |#1|))) (-15 -3918 (|#1| |#1| (-566 |#1|) |#1|)) (-15 -4096 (|#1| (-566 |#1|))) (-15 -3295 ((-3 (-566 |#1|) #1#) |#1|)) (-15 -3294 ((-566 |#1|) |#1|)) (-15 -4096 ((-797) |#1|))) (-375 |#2|) (-1041)) (T -374)) +((-3743 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *4 (-1041)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *5 (-1041)) (-5 *2 (-85)) (-5 *1 (-374 *4 *5)) (-4 *4 (-375 *5)))) (-3248 (*1 *2) (-12 (-4 *4 (-1041)) (-5 *2 (-714)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 129 (|has| |#1| (-25)) ELT)) (-3204 (((-599 (-1117)) $) 220 T ELT)) (-3206 (((-361 (-1111 $)) $ (-566 $)) 188 (|has| |#1| (-510)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 160 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 161 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 163 (|has| |#1| (-510)) ELT)) (-1633 (((-599 (-566 $)) $) 42 T ELT)) (-1345 (((-3 $ "failed") $ $) 131 (|has| |#1| (-21)) ELT)) (-1637 (($ $ (-247 $)) 54 T ELT) (($ $ (-599 (-247 $))) 53 T ELT) (($ $ (-599 (-566 $)) (-599 $)) 52 T ELT)) (-3925 (($ $) 180 (|has| |#1| (-510)) ELT)) (-4121 (((-359 $) $) 181 (|has| |#1| (-510)) ELT)) (-1678 (((-85) $ $) 171 (|has| |#1| (-510)) ELT)) (-3874 (($) 117 (-3677 (|has| |#1| (-1052)) (|has| |#1| (-25))) CONST)) (-3295 (((-3 (-566 $) #1="failed") $) 67 T ELT) (((-3 (-1117) #1#) $) 233 T ELT) (((-3 (-499) #1#) $) 227 (|has| |#1| (-978 (-499))) ELT) (((-3 |#1| #1#) $) 224 T ELT) (((-3 (-361 (-884 |#1|)) #1#) $) 186 (|has| |#1| (-510)) ELT) (((-3 (-884 |#1|) #1#) $) 136 (|has| |#1| (-989)) ELT) (((-3 (-361 (-499)) #1#) $) 111 (-3677 (-12 (|has| |#1| (-978 (-499))) (|has| |#1| (-510))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-3294 (((-566 $) $) 68 T ELT) (((-1117) $) 234 T ELT) (((-499) $) 226 (|has| |#1| (-978 (-499))) ELT) ((|#1| $) 225 T ELT) (((-361 (-884 |#1|)) $) 187 (|has| |#1| (-510)) ELT) (((-884 |#1|) $) 137 (|has| |#1| (-989)) ELT) (((-361 (-499)) $) 112 (-3677 (-12 (|has| |#1| (-978 (-499))) (|has| |#1| (-510))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-2683 (($ $ $) 175 (|has| |#1| (-510)) ELT)) (-2380 (((-647 (-499)) (-647 $)) 153 (-2681 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 152 (-2681 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 151 (|has| |#1| (-989)) ELT) (((-647 |#1|) (-647 $)) 150 (|has| |#1| (-989)) ELT)) (-3607 (((-3 $ "failed") $) 119 (|has| |#1| (-1052)) ELT)) (-2682 (($ $ $) 174 (|has| |#1| (-510)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 169 (|has| |#1| (-510)) ELT)) (-3873 (((-85) $) 182 (|has| |#1| (-510)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 229 (|has| |#1| (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 228 (|has| |#1| (-821 (-333))) ELT)) (-2692 (($ $) 49 T ELT) (($ (-599 $)) 48 T ELT)) (-1632 (((-599 (-86)) $) 41 T ELT)) (-3743 (((-86) (-86)) 40 T ELT)) (-2528 (((-85) $) 118 (|has| |#1| (-1052)) ELT)) (-2794 (((-85) $) 20 (|has| $ (-978 (-499))) ELT)) (-3117 (($ $) 203 (|has| |#1| (-989)) ELT)) (-3119 (((-1065 |#1| (-566 $)) $) 204 (|has| |#1| (-989)) ELT)) (-1675 (((-3 (-599 $) #2="failed") (-599 $) $) 178 (|has| |#1| (-510)) ELT)) (-1630 (((-1111 $) (-566 $)) 23 (|has| $ (-989)) ELT)) (-4108 (($ (-1 $ $) (-566 $)) 34 T ELT)) (-1635 (((-3 (-566 $) "failed") $) 44 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 155 (-2681 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 154 (-2681 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 149 (|has| |#1| (-989)) ELT) (((-647 |#1|) (-1207 $)) 148 (|has| |#1| (-989)) ELT)) (-1993 (($ (-599 $)) 167 (|has| |#1| (-510)) ELT) (($ $ $) 166 (|has| |#1| (-510)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-1634 (((-599 (-566 $)) $) 43 T ELT)) (-2336 (($ (-86) $) 36 T ELT) (($ (-86) (-599 $)) 35 T ELT)) (-2944 (((-3 (-599 $) "failed") $) 209 (|has| |#1| (-1052)) ELT)) (-2946 (((-3 (-2 (|:| |val| $) (|:| -2519 (-499))) "failed") $) 200 (|has| |#1| (-989)) ELT)) (-2943 (((-3 (-599 $) "failed") $) 207 (|has| |#1| (-25)) ELT)) (-1892 (((-3 (-2 (|:| -4104 (-499)) (|:| |var| (-566 $))) "failed") $) 206 (|has| |#1| (-25)) ELT)) (-2945 (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) "failed") $) 208 (|has| |#1| (-1052)) ELT) (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) "failed") $ (-86)) 202 (|has| |#1| (-989)) ELT) (((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) "failed") $ (-1117)) 201 (|has| |#1| (-989)) ELT)) (-2752 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1117)) 37 T ELT)) (-2601 (($ $) 121 (-3677 (|has| |#1| (-427)) (|has| |#1| (-510))) ELT)) (-2722 (((-714) $) 45 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1895 (((-85) $) 222 T ELT)) (-1894 ((|#1| $) 221 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 168 (|has| |#1| (-510)) ELT)) (-3282 (($ (-599 $)) 165 (|has| |#1| (-510)) ELT) (($ $ $) 164 (|has| |#1| (-510)) ELT)) (-1631 (((-85) $ $) 33 T ELT) (((-85) $ (-1117)) 32 T ELT)) (-3882 (((-359 $) $) 179 (|has| |#1| (-510)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 177 (|has| |#1| (-510)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 176 (|has| |#1| (-510)) ELT)) (-3606 (((-3 $ "failed") $ $) 159 (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 170 (|has| |#1| (-510)) ELT)) (-2795 (((-85) $) 21 (|has| $ (-978 (-499))) ELT)) (-3918 (($ $ (-566 $) $) 65 T ELT) (($ $ (-599 (-566 $)) (-599 $)) 64 T ELT) (($ $ (-599 (-247 $))) 63 T ELT) (($ $ (-247 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-599 $) (-599 $)) 60 T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ $))) 31 T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ (-599 $)))) 30 T ELT) (($ $ (-1117) (-1 $ (-599 $))) 29 T ELT) (($ $ (-1117) (-1 $ $)) 28 T ELT) (($ $ (-599 (-86)) (-599 (-1 $ $))) 27 T ELT) (($ $ (-599 (-86)) (-599 (-1 $ (-599 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-599 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT) (($ $ (-1117)) 214 (|has| |#1| (-569 (-488))) ELT) (($ $ (-599 (-1117))) 213 (|has| |#1| (-569 (-488))) ELT) (($ $) 212 (|has| |#1| (-569 (-488))) ELT) (($ $ (-86) $ (-1117)) 211 (|has| |#1| (-569 (-488))) ELT) (($ $ (-599 (-86)) (-599 $) (-1117)) 210 (|has| |#1| (-569 (-488))) ELT) (($ $ (-599 (-1117)) (-599 (-714)) (-599 (-1 $ $))) 199 (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714)) (-599 (-1 $ (-599 $)))) 198 (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714) (-1 $ (-599 $))) 197 (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714) (-1 $ $)) 196 (|has| |#1| (-989)) ELT)) (-1677 (((-714) $) 172 (|has| |#1| (-510)) ELT)) (-3950 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-599 $)) 55 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 173 (|has| |#1| (-510)) ELT)) (-1636 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3908 (($ $ (-1117)) 146 (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117))) 144 (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714)) 143 (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 142 (|has| |#1| (-989)) ELT)) (-3116 (($ $) 193 (|has| |#1| (-510)) ELT)) (-3118 (((-1065 |#1| (-566 $)) $) 194 (|has| |#1| (-510)) ELT)) (-3323 (($ $) 22 (|has| $ (-989)) ELT)) (-4122 (((-825 (-499)) $) 231 (|has| |#1| (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) 230 (|has| |#1| (-569 (-825 (-333)))) ELT) (($ (-359 $)) 195 (|has| |#1| (-510)) ELT) (((-488) $) 113 (|has| |#1| (-569 (-488))) ELT)) (-3130 (($ $ $) 124 (|has| |#1| (-427)) ELT)) (-2551 (($ $ $) 125 (|has| |#1| (-427)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-566 $)) 66 T ELT) (($ (-1117)) 232 T ELT) (($ |#1|) 223 T ELT) (($ (-1065 |#1| (-566 $))) 205 (|has| |#1| (-989)) ELT) (($ (-361 |#1|)) 191 (|has| |#1| (-510)) ELT) (($ (-884 (-361 |#1|))) 190 (|has| |#1| (-510)) ELT) (($ (-361 (-884 (-361 |#1|)))) 189 (|has| |#1| (-510)) ELT) (($ (-361 (-884 |#1|))) 185 (|has| |#1| (-510)) ELT) (($ $) 158 (|has| |#1| (-510)) ELT) (($ (-884 |#1|)) 135 (|has| |#1| (-989)) ELT) (($ (-361 (-499))) 110 (-3677 (|has| |#1| (-510)) (-12 (|has| |#1| (-978 (-499))) (|has| |#1| (-510))) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ (-499)) 109 (-3677 (|has| |#1| (-989)) (|has| |#1| (-978 (-499)))) ELT)) (-2823 (((-649 $) $) 156 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 138 (|has| |#1| (-989)) CONST)) (-2709 (($ $) 51 T ELT) (($ (-599 $)) 50 T ELT)) (-2355 (((-85) (-86)) 39 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 162 (|has| |#1| (-510)) ELT)) (-1893 (($ (-1117) $) 219 T ELT) (($ (-1117) $ $) 218 T ELT) (($ (-1117) $ $ $) 217 T ELT) (($ (-1117) $ $ $ $) 216 T ELT) (($ (-1117) (-599 $)) 215 T ELT)) (-2779 (($) 128 (|has| |#1| (-25)) CONST)) (-2785 (($) 116 (|has| |#1| (-1052)) CONST)) (-2790 (($ $ (-1117)) 145 (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117))) 141 (|has| |#1| (-989)) ELT) (($ $ (-1117) (-714)) 140 (|has| |#1| (-989)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 139 (|has| |#1| (-989)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ (-1065 |#1| (-566 $)) (-1065 |#1| (-566 $))) 192 (|has| |#1| (-510)) ELT) (($ $ $) 122 (-3677 (|has| |#1| (-427)) (|has| |#1| (-510))) ELT)) (-3987 (($ $ $) 134 (|has| |#1| (-21)) ELT) (($ $) 133 (|has| |#1| (-21)) ELT)) (-3989 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-499)) 123 (-3677 (|has| |#1| (-427)) (|has| |#1| (-510))) ELT) (($ $ (-714)) 120 (|has| |#1| (-1052)) ELT) (($ $ (-857)) 115 (|has| |#1| (-1052)) ELT)) (* (($ (-361 (-499)) $) 184 (|has| |#1| (-510)) ELT) (($ $ (-361 (-499))) 183 (|has| |#1| (-510)) ELT) (($ $ |#1|) 157 (|has| |#1| (-146)) ELT) (($ |#1| $) 147 (|has| |#1| (-989)) ELT) (($ (-499) $) 132 (|has| |#1| (-21)) ELT) (($ (-714) $) 130 (|has| |#1| (-25)) ELT) (($ (-857) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1052)) ELT))) +(((-375 |#1|) (-113) (-1041)) (T -375)) +((-1895 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1041)) (-5 *2 (-85)))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1041)))) (-3204 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1041)) (-5 *2 (-599 (-1117))))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-375 *3)) (-4 *3 (-1041)))) (-1893 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-375 *3)) (-4 *3 (-1041)))) (-1893 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-375 *3)) (-4 *3 (-1041)))) (-1893 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-375 *3)) (-4 *3 (-1041)))) (-1893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-599 *1)) (-4 *1 (-375 *4)) (-4 *4 (-1041)))) (-3918 (*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-4 *1 (-375 *3)) (-4 *3 (-1041)) (-4 *3 (-569 (-488))))) (-3918 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-1117))) (-4 *1 (-375 *3)) (-4 *3 (-1041)) (-4 *3 (-569 (-488))))) (-3918 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1041)) (-4 *2 (-569 (-488))))) (-3918 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1117)) (-4 *1 (-375 *4)) (-4 *4 (-1041)) (-4 *4 (-569 (-488))))) (-3918 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-599 (-86))) (-5 *3 (-599 *1)) (-5 *4 (-1117)) (-4 *1 (-375 *5)) (-4 *5 (-1041)) (-4 *5 (-569 (-488))))) (-2944 (*1 *2 *1) (|partial| -12 (-4 *3 (-1052)) (-4 *3 (-1041)) (-5 *2 (-599 *1)) (-4 *1 (-375 *3)))) (-2945 (*1 *2 *1) (|partial| -12 (-4 *3 (-1052)) (-4 *3 (-1041)) (-5 *2 (-2 (|:| |var| (-566 *1)) (|:| -2519 (-499)))) (-4 *1 (-375 *3)))) (-2943 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1041)) (-5 *2 (-599 *1)) (-4 *1 (-375 *3)))) (-1892 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1041)) (-5 *2 (-2 (|:| -4104 (-499)) (|:| |var| (-566 *1)))) (-4 *1 (-375 *3)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-1065 *3 (-566 *1))) (-4 *3 (-989)) (-4 *3 (-1041)) (-4 *1 (-375 *3)))) (-3119 (*1 *2 *1) (-12 (-4 *3 (-989)) (-4 *3 (-1041)) (-5 *2 (-1065 *3 (-566 *1))) (-4 *1 (-375 *3)))) (-3117 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1041)) (-4 *2 (-989)))) (-2945 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-4 *4 (-989)) (-4 *4 (-1041)) (-5 *2 (-2 (|:| |var| (-566 *1)) (|:| -2519 (-499)))) (-4 *1 (-375 *4)))) (-2945 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1117)) (-4 *4 (-989)) (-4 *4 (-1041)) (-5 *2 (-2 (|:| |var| (-566 *1)) (|:| -2519 (-499)))) (-4 *1 (-375 *4)))) (-2946 (*1 *2 *1) (|partial| -12 (-4 *3 (-989)) (-4 *3 (-1041)) (-5 *2 (-2 (|:| |val| *1) (|:| -2519 (-499)))) (-4 *1 (-375 *3)))) (-3918 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-599 (-714))) (-5 *4 (-599 (-1 *1 *1))) (-4 *1 (-375 *5)) (-4 *5 (-1041)) (-4 *5 (-989)))) (-3918 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-599 (-714))) (-5 *4 (-599 (-1 *1 (-599 *1)))) (-4 *1 (-375 *5)) (-4 *5 (-1041)) (-4 *5 (-989)))) (-3918 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-714)) (-5 *4 (-1 *1 (-599 *1))) (-4 *1 (-375 *5)) (-4 *5 (-1041)) (-4 *5 (-989)))) (-3918 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-714)) (-5 *4 (-1 *1 *1)) (-4 *1 (-375 *5)) (-4 *5 (-1041)) (-4 *5 (-989)))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-359 *1)) (-4 *1 (-375 *3)) (-4 *3 (-510)) (-4 *3 (-1041)))) (-3118 (*1 *2 *1) (-12 (-4 *3 (-510)) (-4 *3 (-1041)) (-5 *2 (-1065 *3 (-566 *1))) (-4 *1 (-375 *3)))) (-3116 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1041)) (-4 *2 (-510)))) (-4099 (*1 *1 *2 *2) (-12 (-5 *2 (-1065 *3 (-566 *1))) (-4 *3 (-510)) (-4 *3 (-1041)) (-4 *1 (-375 *3)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-361 *3)) (-4 *3 (-510)) (-4 *3 (-1041)) (-4 *1 (-375 *3)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-884 (-361 *3))) (-4 *3 (-510)) (-4 *3 (-1041)) (-4 *1 (-375 *3)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-361 (-884 (-361 *3)))) (-4 *3 (-510)) (-4 *3 (-1041)) (-4 *1 (-375 *3)))) (-3206 (*1 *2 *1 *3) (-12 (-5 *3 (-566 *1)) (-4 *1 (-375 *4)) (-4 *4 (-1041)) (-4 *4 (-510)) (-5 *2 (-361 (-1111 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-375 *3)) (-4 *3 (-1041)) (-4 *3 (-1052))))) +(-13 (-252) (-978 (-1117)) (-819 |t#1|) (-354 |t#1|) (-366 |t#1|) (-10 -8 (-15 -1895 ((-85) $)) (-15 -1894 (|t#1| $)) (-15 -3204 ((-599 (-1117)) $)) (-15 -1893 ($ (-1117) $)) (-15 -1893 ($ (-1117) $ $)) (-15 -1893 ($ (-1117) $ $ $)) (-15 -1893 ($ (-1117) $ $ $ $)) (-15 -1893 ($ (-1117) (-599 $))) (IF (|has| |t#1| (-569 (-488))) (PROGN (-6 (-569 (-488))) (-15 -3918 ($ $ (-1117))) (-15 -3918 ($ $ (-599 (-1117)))) (-15 -3918 ($ $)) (-15 -3918 ($ $ (-86) $ (-1117))) (-15 -3918 ($ $ (-599 (-86)) (-599 $) (-1117)))) |%noBranch|) (IF (|has| |t#1| (-1052)) (PROGN (-6 (-684)) (-15 ** ($ $ (-714))) (-15 -2944 ((-3 (-599 $) "failed") $)) (-15 -2945 ((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-427)) (-6 (-427)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2943 ((-3 (-599 $) "failed") $)) (-15 -1892 ((-3 (-2 (|:| -4104 (-499)) (|:| |var| (-566 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-989)) (PROGN (-6 (-989)) (-6 (-978 (-884 |t#1|))) (-6 (-836 (-1117))) (-6 (-332 |t#1|)) (-15 -4096 ($ (-1065 |t#1| (-566 $)))) (-15 -3119 ((-1065 |t#1| (-566 $)) $)) (-15 -3117 ($ $)) (-15 -2945 ((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) "failed") $ (-86))) (-15 -2945 ((-3 (-2 (|:| |var| (-566 $)) (|:| -2519 (-499))) "failed") $ (-1117))) (-15 -2946 ((-3 (-2 (|:| |val| $) (|:| -2519 (-499))) "failed") $)) (-15 -3918 ($ $ (-599 (-1117)) (-599 (-714)) (-599 (-1 $ $)))) (-15 -3918 ($ $ (-599 (-1117)) (-599 (-714)) (-599 (-1 $ (-599 $))))) (-15 -3918 ($ $ (-1117) (-714) (-1 $ (-599 $)))) (-15 -3918 ($ $ (-1117) (-714) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-6 (-318)) (-6 (-978 (-361 (-884 |t#1|)))) (-15 -4122 ($ (-359 $))) (-15 -3118 ((-1065 |t#1| (-566 $)) $)) (-15 -3116 ($ $)) (-15 -4099 ($ (-1065 |t#1| (-566 $)) (-1065 |t#1| (-566 $)))) (-15 -4096 ($ (-361 |t#1|))) (-15 -4096 ($ (-884 (-361 |t#1|)))) (-15 -4096 ($ (-361 (-884 (-361 |t#1|))))) (-15 -3206 ((-361 (-1111 $)) $ (-566 $))) (IF (|has| |t#1| (-978 (-499))) (-6 (-978 (-361 (-499)))) |%noBranch|)) |%noBranch|))) +(((-21) -3677 (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-23) -3677 (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3677 (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-361 (-499))) |has| |#1| (-510)) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-510)) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-510)) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) |has| |#1| (-510)) ((-104) -3677 (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-510))) ((-571 (-361 (-884 |#1|))) |has| |#1| (-510)) ((-571 (-499)) -3677 (|has| |#1| (-989)) (|has| |#1| (-978 (-499))) (|has| |#1| (-510)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-571 (-566 $)) . T) ((-571 (-884 |#1|)) |has| |#1| (-989)) ((-571 (-1117)) . T) ((-571 |#1|) . T) ((-571 $) |has| |#1| (-510)) ((-568 (-797)) . T) ((-146) |has| |#1| (-510)) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-569 (-825 (-333))) |has| |#1| (-569 (-825 (-333)))) ((-569 (-825 (-499))) |has| |#1| (-569 (-825 (-499)))) ((-200) |has| |#1| (-510)) ((-244) |has| |#1| (-510)) ((-261) |has| |#1| (-510)) ((-263 $) . T) ((-252) . T) ((-318) |has| |#1| (-510)) ((-332 |#1|) |has| |#1| (-989)) ((-354 |#1|) . T) ((-366 |#1|) . T) ((-406) |has| |#1| (-510)) ((-427) |has| |#1| (-427)) ((-468 (-566 $) $) . T) ((-468 $ $) . T) ((-510) |has| |#1| (-510)) ((-604 (-361 (-499))) |has| |#1| (-510)) ((-604 (-499)) -3677 (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-604 |#1|) -3677 (|has| |#1| (-989)) (|has| |#1| (-146))) ((-604 $) -3677 (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-606 (-361 (-499))) |has| |#1| (-510)) ((-606 (-499)) -12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ((-606 |#1|) -3677 (|has| |#1| (-989)) (|has| |#1| (-146))) ((-606 $) -3677 (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-598 (-361 (-499))) |has| |#1| (-510)) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) |has| |#1| (-510)) ((-596 (-499)) -12 (|has| |#1| (-596 (-499))) (|has| |#1| (-989))) ((-596 |#1|) |has| |#1| (-989)) ((-675 (-361 (-499))) |has| |#1| (-510)) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) |has| |#1| (-510)) ((-684) -3677 (|has| |#1| (-1052)) (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-427)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-831 $ (-1117)) |has| |#1| (-989)) ((-836 (-1117)) |has| |#1| (-989)) ((-838 (-1117)) |has| |#1| (-989)) ((-821 (-333)) |has| |#1| (-821 (-333))) ((-821 (-499)) |has| |#1| (-821 (-499))) ((-819 |#1|) . T) ((-859) |has| |#1| (-510)) ((-978 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (-12 (|has| |#1| (-510)) (|has| |#1| (-978 (-499))))) ((-978 (-361 (-884 |#1|))) |has| |#1| (-510)) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 (-566 $)) . T) ((-978 (-884 |#1|)) |has| |#1| (-989)) ((-978 (-1117)) . T) ((-978 |#1|) . T) ((-991 (-361 (-499))) |has| |#1| (-510)) ((-991 |#1|) |has| |#1| (-146)) ((-991 $) |has| |#1| (-510)) ((-996 (-361 (-499))) |has| |#1| (-510)) ((-996 |#1|) |has| |#1| (-146)) ((-996 $) |has| |#1| (-510)) ((-989) -3677 (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-997) -3677 (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1052) -3677 (|has| |#1| (-1052)) (|has| |#1| (-989)) (|has| |#1| (-510)) (|has| |#1| (-427)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1041) . T) ((-1157) . T) ((-1162) |has| |#1| (-510))) +((-4108 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) +(((-376 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4108 (|#4| (-1 |#3| |#1|) |#2|))) (-989) (-375 |#1|) (-989) (-375 |#3|)) (T -376)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-4 *2 (-375 *6)) (-5 *1 (-376 *5 *4 *6 *2)) (-4 *4 (-375 *5))))) +((-1899 ((|#2| |#2|) 182 T ELT)) (-1896 (((-3 (|:| |%expansion| (-267 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099))))) |#2| (-85)) 60 T ELT))) +(((-377 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1896 ((-3 (|:| |%expansion| (-267 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099))))) |#2| (-85))) (-15 -1899 (|#2| |#2|))) (-13 (-406) (-978 (-499)) (-596 (-499))) (-13 (-27) (-1143) (-375 |#1|)) (-1117) |#2|) (T -377)) +((-1899 (*1 *2 *2) (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-377 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1143) (-375 *3))) (-14 *4 (-1117)) (-14 *5 *2))) (-1896 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-3 (|:| |%expansion| (-267 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099)))))) (-5 *1 (-377 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1143) (-375 *5))) (-14 *6 (-1117)) (-14 *7 *3)))) +((-1899 ((|#2| |#2|) 105 T ELT)) (-1897 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099))))) |#2| (-85) (-1099)) 52 T ELT)) (-1898 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099))))) |#2| (-85) (-1099)) 169 T ELT))) +(((-378 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1897 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099))))) |#2| (-85) (-1099))) (-15 -1898 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099))))) |#2| (-85) (-1099))) (-15 -1899 (|#2| |#2|))) (-13 (-406) (-978 (-499)) (-596 (-499))) (-13 (-27) (-1143) (-375 |#1|) (-10 -8 (-15 -4096 ($ |#3|)))) (-780) (-13 (-1186 |#2| |#3|) (-318) (-1143) (-10 -8 (-15 -3908 ($ $)) (-15 -3962 ($ $)))) (-923 |#4|) (-1117)) (T -378)) +((-1899 (*1 *2 *2) (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-4 *2 (-13 (-27) (-1143) (-375 *3) (-10 -8 (-15 -4096 ($ *4))))) (-4 *4 (-780)) (-4 *5 (-13 (-1186 *2 *4) (-318) (-1143) (-10 -8 (-15 -3908 ($ $)) (-15 -3962 ($ $))))) (-5 *1 (-378 *3 *2 *4 *5 *6 *7)) (-4 *6 (-923 *5)) (-14 *7 (-1117)))) (-1898 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-4 *3 (-13 (-27) (-1143) (-375 *6) (-10 -8 (-15 -4096 ($ *7))))) (-4 *7 (-780)) (-4 *8 (-13 (-1186 *3 *7) (-318) (-1143) (-10 -8 (-15 -3908 ($ $)) (-15 -3962 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099)))))) (-5 *1 (-378 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1099)) (-4 *9 (-923 *8)) (-14 *10 (-1117)))) (-1897 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-4 *3 (-13 (-27) (-1143) (-375 *6) (-10 -8 (-15 -4096 ($ *7))))) (-4 *7 (-780)) (-4 *8 (-13 (-1186 *3 *7) (-318) (-1143) (-10 -8 (-15 -3908 ($ $)) (-15 -3962 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099)))))) (-5 *1 (-378 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1099)) (-4 *9 (-923 *8)) (-14 *10 (-1117))))) +((-1900 (($) 51 T ELT)) (-3372 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3374 (($ $ $) 46 T ELT)) (-3373 (((-85) $ $) 35 T ELT)) (-3258 (((-714)) 55 T ELT)) (-3377 (($ (-599 |#2|)) 23 T ELT) (($) NIL T ELT)) (-3115 (($) 66 T ELT)) (-3379 (((-85) $ $) 15 T ELT)) (-2650 ((|#2| $) 77 T ELT)) (-2978 ((|#2| $) 75 T ELT)) (-2111 (((-857) $) 70 T ELT)) (-3376 (($ $ $) 42 T ELT)) (-2518 (($ (-857)) 60 T ELT)) (-3375 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) NIL T ELT) (((-714) |#2| $) 31 T ELT)) (-3670 (($ (-599 |#2|)) 27 T ELT)) (-1901 (($ $) 53 T ELT)) (-4096 (((-797) $) 40 T ELT)) (-1902 (((-714) $) 24 T ELT)) (-3378 (($ (-599 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3174 (((-85) $ $) 19 T ELT))) +(((-379 |#1| |#2|) (-10 -7 (-15 -3258 ((-714))) (-15 -2518 (|#1| (-857))) (-15 -2111 ((-857) |#1|)) (-15 -3115 (|#1|)) (-15 -2650 (|#2| |#1|)) (-15 -2978 (|#2| |#1|)) (-15 -1900 (|#1|)) (-15 -1901 (|#1| |#1|)) (-15 -1902 ((-714) |#1|)) (-15 -3174 ((-85) |#1| |#1|)) (-15 -4096 ((-797) |#1|)) (-15 -3379 ((-85) |#1| |#1|)) (-15 -3378 (|#1|)) (-15 -3378 (|#1| (-599 |#2|))) (-15 -3377 (|#1|)) (-15 -3377 (|#1| (-599 |#2|))) (-15 -3376 (|#1| |#1| |#1|)) (-15 -3375 (|#1| |#1| |#1|)) (-15 -3375 (|#1| |#1| |#2|)) (-15 -3374 (|#1| |#1| |#1|)) (-15 -3373 ((-85) |#1| |#1|)) (-15 -3372 (|#1| |#1| |#1|)) (-15 -3372 (|#1| |#1| |#2|)) (-15 -3372 (|#1| |#2| |#1|)) (-15 -3670 (|#1| (-599 |#2|))) (-15 -2048 ((-714) |#2| |#1|)) (-15 -2048 ((-714) (-1 (-85) |#2|) |#1|))) (-380 |#2|) (-1041)) (T -379)) +((-3258 (*1 *2) (-12 (-4 *4 (-1041)) (-5 *2 (-714)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4))))) +((-2687 (((-85) $ $) 19 T ELT)) (-1900 (($) 71 (|has| |#1| (-323)) ELT)) (-3372 (($ |#1| $) 86 T ELT) (($ $ |#1|) 85 T ELT) (($ $ $) 84 T ELT)) (-3374 (($ $ $) 82 T ELT)) (-3373 (((-85) $ $) 83 T ELT)) (-3258 (((-714)) 65 (|has| |#1| (-323)) ELT)) (-3377 (($ (-599 |#1|)) 78 T ELT) (($) 77 T ELT)) (-1603 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-1386 (($ $) 62 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3545 (($ |#1| $) 51 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3546 (($ |#1| $) 61 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4145)) ELT)) (-3115 (($) 68 (|has| |#1| (-323)) ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3379 (((-85) $ $) 74 T ELT)) (-2650 ((|#1| $) 69 (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2978 ((|#1| $) 70 (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2111 (((-857) $) 67 (|has| |#1| (-323)) ELT)) (-3380 (((-1099) $) 22 T ELT)) (-3376 (($ $ $) 79 T ELT)) (-1308 ((|#1| $) 43 T ELT)) (-3757 (($ |#1| $) 44 T ELT)) (-2518 (($ (-857)) 66 (|has| |#1| (-323)) ELT)) (-3381 (((-1060) $) 21 T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3375 (($ $ |#1|) 81 T ELT) (($ $ $) 80 T ELT)) (-1499 (($) 53 T ELT) (($ (-599 |#1|)) 52 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 63 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 54 T ELT)) (-1901 (($ $) 72 (|has| |#1| (-323)) ELT)) (-4096 (((-797) $) 17 T ELT)) (-1902 (((-714) $) 73 T ELT)) (-3378 (($ (-599 |#1|)) 76 T ELT) (($) 75 T ELT)) (-1297 (((-85) $ $) 20 T ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 T ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-380 |#1|) (-113) (-1041)) (T -380)) +((-1902 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-1041)) (-5 *2 (-714)))) (-1901 (*1 *1 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1041)) (-4 *2 (-323)))) (-1900 (*1 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-323)) (-4 *2 (-1041)))) (-2978 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1041)) (-4 *2 (-781)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1041)) (-4 *2 (-781))))) +(-13 (-183 |t#1|) (-1039 |t#1|) (-10 -8 (-6 -4145) (-15 -1902 ((-714) $)) (IF (|has| |t#1| (-323)) (PROGN (-6 (-323)) (-15 -1901 ($ $)) (-15 -1900 ($))) |%noBranch|) (IF (|has| |t#1| (-781)) (PROGN (-15 -2978 (|t#1| $)) (-15 -2650 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-78 |#1|) . T) ((-73) . T) ((-568 (-797)) . T) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-183 |#1|) . T) ((-192 |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-323) |has| |#1| (-323)) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1039 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-3991 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3992 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-4108 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) +(((-381 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4108 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3992 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3991 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1041) (-380 |#1|) (-1041) (-380 |#3|)) (T -381)) +((-3991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1041)) (-4 *5 (-1041)) (-4 *2 (-380 *5)) (-5 *1 (-381 *6 *4 *5 *2)) (-4 *4 (-380 *6)))) (-3992 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1041)) (-4 *2 (-1041)) (-5 *1 (-381 *5 *4 *2 *6)) (-4 *4 (-380 *5)) (-4 *6 (-380 *2)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-380 *6)) (-5 *1 (-381 *5 *4 *6 *2)) (-4 *4 (-380 *5))))) +((-1903 (((-534 |#2|) |#2| (-1117)) 36 T ELT)) (-2201 (((-534 |#2|) |#2| (-1117)) 21 T ELT)) (-2250 ((|#2| |#2| (-1117)) 26 T ELT))) +(((-382 |#1| |#2|) (-10 -7 (-15 -2201 ((-534 |#2|) |#2| (-1117))) (-15 -1903 ((-534 |#2|) |#2| (-1117))) (-15 -2250 (|#2| |#2| (-1117)))) (-13 (-261) (-120) (-978 (-499)) (-596 (-499))) (-13 (-1143) (-29 |#1|))) (T -382)) +((-2250 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *1 (-382 *4 *2)) (-4 *2 (-13 (-1143) (-29 *4))))) (-1903 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-534 *3)) (-5 *1 (-382 *5 *3)) (-4 *3 (-13 (-1143) (-29 *5))))) (-2201 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-534 *3)) (-5 *1 (-382 *5 *3)) (-4 *3 (-13 (-1143) (-29 *5)))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-1905 (($ |#2| |#1|) 37 T ELT)) (-1904 (($ |#2| |#1|) 35 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-285 |#2|)) 25 T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 10 T CONST)) (-2785 (($) 16 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 36 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-383 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4132)) (IF (|has| |#1| (-6 -4132)) (-6 -4132) |%noBranch|) |%noBranch|) (-15 -4096 ($ |#1|)) (-15 -4096 ($ (-285 |#2|))) (-15 -1905 ($ |#2| |#1|)) (-15 -1904 ($ |#2| |#1|)))) (-13 (-146) (-38 (-361 (-499)))) (-13 (-781) (-21))) (T -383)) +((-4096 (*1 *1 *2) (-12 (-5 *1 (-383 *2 *3)) (-4 *2 (-13 (-146) (-38 (-361 (-499))))) (-4 *3 (-13 (-781) (-21))))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-285 *4)) (-4 *4 (-13 (-781) (-21))) (-5 *1 (-383 *3 *4)) (-4 *3 (-13 (-146) (-38 (-361 (-499))))))) (-1905 (*1 *1 *2 *3) (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-13 (-146) (-38 (-361 (-499))))) (-4 *2 (-13 (-781) (-21))))) (-1904 (*1 *1 *2 *3) (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-13 (-146) (-38 (-361 (-499))))) (-4 *2 (-13 (-781) (-21)))))) +((-3962 (((-3 |#2| (-599 |#2|)) |#2| (-1117)) 115 T ELT))) +(((-384 |#1| |#2|) (-10 -7 (-15 -3962 ((-3 |#2| (-599 |#2|)) |#2| (-1117)))) (-13 (-261) (-120) (-978 (-499)) (-596 (-499))) (-13 (-1143) (-898) (-29 |#1|))) (T -384)) +((-3962 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-3 *3 (-599 *3))) (-5 *1 (-384 *5 *3)) (-4 *3 (-13 (-1143) (-898) (-29 *5)))))) +((-3526 ((|#2| |#2| |#2|) 31 T ELT)) (-3743 (((-86) (-86)) 43 T ELT)) (-1907 ((|#2| |#2|) 63 T ELT)) (-1906 ((|#2| |#2|) 66 T ELT)) (-3525 ((|#2| |#2|) 30 T ELT)) (-3529 ((|#2| |#2| |#2|) 33 T ELT)) (-3531 ((|#2| |#2| |#2|) 35 T ELT)) (-3528 ((|#2| |#2| |#2|) 32 T ELT)) (-3530 ((|#2| |#2| |#2|) 34 T ELT)) (-2355 (((-85) (-86)) 41 T ELT)) (-3533 ((|#2| |#2|) 37 T ELT)) (-3532 ((|#2| |#2|) 36 T ELT)) (-3523 ((|#2| |#2|) 25 T ELT)) (-3527 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3524 ((|#2| |#2| |#2|) 29 T ELT))) +(((-385 |#1| |#2|) (-10 -7 (-15 -2355 ((-85) (-86))) (-15 -3743 ((-86) (-86))) (-15 -3523 (|#2| |#2|)) (-15 -3527 (|#2| |#2|)) (-15 -3527 (|#2| |#2| |#2|)) (-15 -3524 (|#2| |#2| |#2|)) (-15 -3525 (|#2| |#2|)) (-15 -3526 (|#2| |#2| |#2|)) (-15 -3528 (|#2| |#2| |#2|)) (-15 -3529 (|#2| |#2| |#2|)) (-15 -3530 (|#2| |#2| |#2|)) (-15 -3531 (|#2| |#2| |#2|)) (-15 -3532 (|#2| |#2|)) (-15 -3533 (|#2| |#2|)) (-15 -1906 (|#2| |#2|)) (-15 -1907 (|#2| |#2|))) (-510) (-375 |#1|)) (T -385)) +((-1907 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-1906 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3533 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3532 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3531 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3530 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3529 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3528 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3526 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3525 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3524 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3527 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3527 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3523 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) (-3743 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-510)) (-5 *1 (-385 *3 *4)) (-4 *4 (-375 *3)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-385 *4 *5)) (-4 *5 (-375 *4))))) +((-2954 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1111 |#2|)) (|:| |pol2| (-1111 |#2|)) (|:| |prim| (-1111 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-599 (-1111 |#2|))) (|:| |prim| (-1111 |#2|))) (-599 |#2|)) 65 T ELT))) +(((-386 |#1| |#2|) (-10 -7 (-15 -2954 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-599 (-1111 |#2|))) (|:| |prim| (-1111 |#2|))) (-599 |#2|))) (IF (|has| |#2| (-27)) (-15 -2954 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1111 |#2|)) (|:| |pol2| (-1111 |#2|)) (|:| |prim| (-1111 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-510) (-120)) (-375 |#1|)) (T -386)) +((-2954 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-510) (-120))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1111 *3)) (|:| |pol2| (-1111 *3)) (|:| |prim| (-1111 *3)))) (-5 *1 (-386 *4 *3)) (-4 *3 (-27)) (-4 *3 (-375 *4)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-599 *5)) (-4 *5 (-375 *4)) (-4 *4 (-13 (-510) (-120))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-599 (-1111 *5))) (|:| |prim| (-1111 *5)))) (-5 *1 (-386 *4 *5))))) +((-1909 (((-1213)) 18 T ELT)) (-1908 (((-1111 (-361 (-499))) |#2| (-566 |#2|)) 40 T ELT) (((-361 (-499)) |#2|) 24 T ELT))) +(((-387 |#1| |#2|) (-10 -7 (-15 -1908 ((-361 (-499)) |#2|)) (-15 -1908 ((-1111 (-361 (-499))) |#2| (-566 |#2|))) (-15 -1909 ((-1213)))) (-13 (-510) (-978 (-499))) (-375 |#1|)) (T -387)) +((-1909 (*1 *2) (-12 (-4 *3 (-13 (-510) (-978 (-499)))) (-5 *2 (-1213)) (-5 *1 (-387 *3 *4)) (-4 *4 (-375 *3)))) (-1908 (*1 *2 *3 *4) (-12 (-5 *4 (-566 *3)) (-4 *3 (-375 *5)) (-4 *5 (-13 (-510) (-978 (-499)))) (-5 *2 (-1111 (-361 (-499)))) (-5 *1 (-387 *5 *3)))) (-1908 (*1 *2 *3) (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-361 (-499))) (-5 *1 (-387 *4 *3)) (-4 *3 (-375 *4))))) +((-3795 (((-85) $) 33 T ELT)) (-1910 (((-85) $) 35 T ELT)) (-3397 (((-85) $) 36 T ELT)) (-1912 (((-85) $) 39 T ELT)) (-1914 (((-85) $) 34 T ELT)) (-1913 (((-85) $) 38 T ELT)) (-4096 (((-797) $) 20 T ELT) (($ (-1099)) 32 T ELT) (($ (-1117)) 30 T ELT) (((-1117) $) 24 T ELT) (((-1043) $) 23 T ELT)) (-1911 (((-85) $) 37 T ELT)) (-3174 (((-85) $ $) 17 T ELT))) +(((-388) (-13 (-568 (-797)) (-10 -8 (-15 -4096 ($ (-1099))) (-15 -4096 ($ (-1117))) (-15 -4096 ((-1117) $)) (-15 -4096 ((-1043) $)) (-15 -3795 ((-85) $)) (-15 -1914 ((-85) $)) (-15 -3397 ((-85) $)) (-15 -1913 ((-85) $)) (-15 -1912 ((-85) $)) (-15 -1911 ((-85) $)) (-15 -1910 ((-85) $)) (-15 -3174 ((-85) $ $))))) (T -388)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-388)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-388)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-388)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-388)))) (-3795 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388)))) (-1914 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388)))) (-3397 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388)))) (-1913 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388)))) (-1912 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388)))) (-1911 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388)))) (-1910 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388)))) (-3174 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388))))) +((-1916 (((-3 (-359 (-1111 (-361 (-499)))) #1="failed") |#3|) 72 T ELT)) (-1915 (((-359 |#3|) |#3|) 34 T ELT)) (-1918 (((-3 (-359 (-1111 (-48))) #1#) |#3|) 46 (|has| |#2| (-978 (-48))) ELT)) (-1917 (((-3 (|:| |overq| (-1111 (-361 (-499)))) (|:| |overan| (-1111 (-48))) (|:| -2758 (-85))) |#3|) 37 T ELT))) +(((-389 |#1| |#2| |#3|) (-10 -7 (-15 -1915 ((-359 |#3|) |#3|)) (-15 -1916 ((-3 (-359 (-1111 (-361 (-499)))) #1="failed") |#3|)) (-15 -1917 ((-3 (|:| |overq| (-1111 (-361 (-499)))) (|:| |overan| (-1111 (-48))) (|:| -2758 (-85))) |#3|)) (IF (|has| |#2| (-978 (-48))) (-15 -1918 ((-3 (-359 (-1111 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-510) (-978 (-499))) (-375 |#1|) (-1183 |#2|)) (T -389)) +((-1918 (*1 *2 *3) (|partial| -12 (-4 *5 (-978 (-48))) (-4 *4 (-13 (-510) (-978 (-499)))) (-4 *5 (-375 *4)) (-5 *2 (-359 (-1111 (-48)))) (-5 *1 (-389 *4 *5 *3)) (-4 *3 (-1183 *5)))) (-1917 (*1 *2 *3) (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-4 *5 (-375 *4)) (-5 *2 (-3 (|:| |overq| (-1111 (-361 (-499)))) (|:| |overan| (-1111 (-48))) (|:| -2758 (-85)))) (-5 *1 (-389 *4 *5 *3)) (-4 *3 (-1183 *5)))) (-1916 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-510) (-978 (-499)))) (-4 *5 (-375 *4)) (-5 *2 (-359 (-1111 (-361 (-499))))) (-5 *1 (-389 *4 *5 *3)) (-4 *3 (-1183 *5)))) (-1915 (*1 *2 *3) (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-4 *5 (-375 *4)) (-5 *2 (-359 *3)) (-5 *1 (-389 *4 *5 *3)) (-4 *3 (-1183 *5))))) +((-2687 (((-85) $ $) NIL T ELT)) (-1928 (((-3 (|:| |fst| (-388)) (|:| -4060 #1="void")) $) 11 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1925 (($) 35 T ELT)) (-1922 (($) 41 T ELT)) (-1923 (($) 37 T ELT)) (-1920 (($) 39 T ELT)) (-1924 (($) 36 T ELT)) (-1921 (($) 38 T ELT)) (-1919 (($) 40 T ELT)) (-1926 (((-85) $) 8 T ELT)) (-1927 (((-599 (-884 (-499))) $) 19 T ELT)) (-3670 (($ (-3 (|:| |fst| (-388)) (|:| -4060 #1#)) (-599 (-1117)) (-85)) 29 T ELT) (($ (-3 (|:| |fst| (-388)) (|:| -4060 #1#)) (-599 (-884 (-499))) (-85)) 30 T ELT)) (-4096 (((-797) $) 24 T ELT) (($ (-388)) 32 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-390) (-13 (-1041) (-10 -8 (-15 -4096 ($ (-388))) (-15 -1928 ((-3 (|:| |fst| (-388)) (|:| -4060 #1="void")) $)) (-15 -1927 ((-599 (-884 (-499))) $)) (-15 -1926 ((-85) $)) (-15 -3670 ($ (-3 (|:| |fst| (-388)) (|:| -4060 #1#)) (-599 (-1117)) (-85))) (-15 -3670 ($ (-3 (|:| |fst| (-388)) (|:| -4060 #1#)) (-599 (-884 (-499))) (-85))) (-15 -1925 ($)) (-15 -1924 ($)) (-15 -1923 ($)) (-15 -1922 ($)) (-15 -1921 ($)) (-15 -1920 ($)) (-15 -1919 ($))))) (T -390)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-390)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-388)) (|:| -4060 #1="void"))) (-5 *1 (-390)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-599 (-884 (-499)))) (-5 *1 (-390)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-390)))) (-3670 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-5 *3 (-599 (-1117))) (-5 *4 (-85)) (-5 *1 (-390)))) (-3670 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-85)) (-5 *1 (-390)))) (-1925 (*1 *1) (-5 *1 (-390))) (-1924 (*1 *1) (-5 *1 (-390))) (-1923 (*1 *1) (-5 *1 (-390))) (-1922 (*1 *1) (-5 *1 (-390))) (-1921 (*1 *1) (-5 *1 (-390))) (-1920 (*1 *1) (-5 *1 (-390))) (-1919 (*1 *1) (-5 *1 (-390)))) +((-2687 (((-85) $ $) NIL T ELT)) (-1790 (((-1099) $ (-1099)) NIL T ELT)) (-1794 (($ $ (-1099)) NIL T ELT)) (-1791 (((-1099) $) NIL T ELT)) (-1932 (((-344) (-344) (-344)) 17 T ELT) (((-344) (-344)) 15 T ELT)) (-1795 (($ (-344)) NIL T ELT) (($ (-344) (-1099)) NIL T ELT)) (-3690 (((-344) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1792 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1931 (((-1213) (-1099)) 9 T ELT)) (-1930 (((-1213) (-1099)) 10 T ELT)) (-1929 (((-1213)) 11 T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1793 (($ $) 39 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-391) (-13 (-320 (-344) (-1099)) (-10 -7 (-15 -1932 ((-344) (-344) (-344))) (-15 -1932 ((-344) (-344))) (-15 -1931 ((-1213) (-1099))) (-15 -1930 ((-1213) (-1099))) (-15 -1929 ((-1213)))))) (T -391)) +((-1932 (*1 *2 *2 *2) (-12 (-5 *2 (-344)) (-5 *1 (-391)))) (-1932 (*1 *2 *2) (-12 (-5 *2 (-344)) (-5 *1 (-391)))) (-1931 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-391)))) (-1930 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-391)))) (-1929 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-391))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3690 (((-1117) $) 8 T ELT)) (-3380 (((-1099) $) 17 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 11 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 14 T ELT))) +(((-392 |#1|) (-13 (-1041) (-10 -8 (-15 -3690 ((-1117) $)))) (-1117)) (T -392)) +((-3690 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-392 *3)) (-14 *3 *2)))) +((-2687 (((-85) $ $) NIL T ELT)) (-3457 (((-1055) $) 7 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 9 T ELT))) +(((-393) (-13 (-1041) (-10 -8 (-15 -3457 ((-1055) $))))) (T -393)) +((-3457 (*1 *2 *1) (-12 (-5 *2 (-1055)) (-5 *1 (-393))))) +((-3520 (((-1213) $) 7 T ELT)) (-4096 (((-797) $) 8 T ELT) (($ (-1207 (-657))) 14 T ELT) (($ (-599 (-284))) 13 T ELT) (($ (-284)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) 11 T ELT))) +(((-394) (-113)) (T -394)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-1207 (-657))) (-4 *1 (-394)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-4 *1 (-394)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-284)) (-4 *1 (-394)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) (-4 *1 (-394))))) +(-13 (-350) (-10 -8 (-15 -4096 ($ (-1207 (-657)))) (-15 -4096 ($ (-599 (-284)))) (-15 -4096 ($ (-284))) (-15 -4096 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284)))))))) +(((-568 (-797)) . T) ((-350) . T) ((-1157) . T)) +((-3295 (((-3 $ "failed") (-1207 (-268 (-333)))) 21 T ELT) (((-3 $ "failed") (-1207 (-268 (-499)))) 19 T ELT) (((-3 $ "failed") (-1207 (-884 (-333)))) 17 T ELT) (((-3 $ "failed") (-1207 (-884 (-499)))) 15 T ELT) (((-3 $ "failed") (-1207 (-361 (-884 (-333))))) 13 T ELT) (((-3 $ "failed") (-1207 (-361 (-884 (-499))))) 11 T ELT)) (-3294 (($ (-1207 (-268 (-333)))) 22 T ELT) (($ (-1207 (-268 (-499)))) 20 T ELT) (($ (-1207 (-884 (-333)))) 18 T ELT) (($ (-1207 (-884 (-499)))) 16 T ELT) (($ (-1207 (-361 (-884 (-333))))) 14 T ELT) (($ (-1207 (-361 (-884 (-499))))) 12 T ELT)) (-3520 (((-1213) $) 7 T ELT)) (-4096 (((-797) $) 8 T ELT) (($ (-599 (-284))) 25 T ELT) (($ (-284)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) 23 T ELT))) +(((-395) (-113)) (T -395)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-4 *1 (-395)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-284)) (-4 *1 (-395)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) (-4 *1 (-395)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-1207 (-268 (-333)))) (-4 *1 (-395)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-1207 (-268 (-333)))) (-4 *1 (-395)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-1207 (-268 (-499)))) (-4 *1 (-395)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-1207 (-268 (-499)))) (-4 *1 (-395)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-1207 (-884 (-333)))) (-4 *1 (-395)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-1207 (-884 (-333)))) (-4 *1 (-395)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-1207 (-884 (-499)))) (-4 *1 (-395)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-1207 (-884 (-499)))) (-4 *1 (-395)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-1207 (-361 (-884 (-333))))) (-4 *1 (-395)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-1207 (-361 (-884 (-333))))) (-4 *1 (-395)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-1207 (-361 (-884 (-499))))) (-4 *1 (-395)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-1207 (-361 (-884 (-499))))) (-4 *1 (-395))))) +(-13 (-350) (-10 -8 (-15 -4096 ($ (-599 (-284)))) (-15 -4096 ($ (-284))) (-15 -4096 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284)))))) (-15 -3294 ($ (-1207 (-268 (-333))))) (-15 -3295 ((-3 $ "failed") (-1207 (-268 (-333))))) (-15 -3294 ($ (-1207 (-268 (-499))))) (-15 -3295 ((-3 $ "failed") (-1207 (-268 (-499))))) (-15 -3294 ($ (-1207 (-884 (-333))))) (-15 -3295 ((-3 $ "failed") (-1207 (-884 (-333))))) (-15 -3294 ($ (-1207 (-884 (-499))))) (-15 -3295 ((-3 $ "failed") (-1207 (-884 (-499))))) (-15 -3294 ($ (-1207 (-361 (-884 (-333)))))) (-15 -3295 ((-3 $ "failed") (-1207 (-361 (-884 (-333)))))) (-15 -3294 ($ (-1207 (-361 (-884 (-499)))))) (-15 -3295 ((-3 $ "failed") (-1207 (-361 (-884 (-499)))))))) +(((-568 (-797)) . T) ((-350) . T) ((-1157) . T)) +((-1938 (((-85)) 18 T ELT)) (-1939 (((-85) (-85)) 19 T ELT)) (-1940 (((-85)) 14 T ELT)) (-1941 (((-85) (-85)) 15 T ELT)) (-1943 (((-85)) 16 T ELT)) (-1944 (((-85) (-85)) 17 T ELT)) (-1935 (((-857) (-857)) 22 T ELT) (((-857)) 21 T ELT)) (-1936 (((-714) (-599 (-2 (|:| -3882 |#1|) (|:| -4098 (-499))))) 52 T ELT)) (-1934 (((-857) (-857)) 24 T ELT) (((-857)) 23 T ELT)) (-1937 (((-2 (|:| -2697 (-499)) (|:| -1877 (-599 |#1|))) |#1|) 94 T ELT)) (-1933 (((-359 |#1|) (-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| |#1|) (|:| -2513 (-499))))))) 176 T ELT)) (-3884 (((-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| |#1|) (|:| -2513 (-499)))))) |#1| (-85)) 209 T ELT)) (-3883 (((-359 |#1|) |#1| (-714) (-714)) 224 T ELT) (((-359 |#1|) |#1| (-599 (-714)) (-714)) 221 T ELT) (((-359 |#1|) |#1| (-599 (-714))) 223 T ELT) (((-359 |#1|) |#1| (-714)) 222 T ELT) (((-359 |#1|) |#1|) 220 T ELT)) (-1955 (((-3 |#1| #1="failed") (-857) |#1| (-599 (-714)) (-714) (-85)) 226 T ELT) (((-3 |#1| #1#) (-857) |#1| (-599 (-714)) (-714)) 227 T ELT) (((-3 |#1| #1#) (-857) |#1| (-599 (-714))) 229 T ELT) (((-3 |#1| #1#) (-857) |#1| (-714)) 228 T ELT) (((-3 |#1| #1#) (-857) |#1|) 230 T ELT)) (-3882 (((-359 |#1|) |#1| (-714) (-714)) 219 T ELT) (((-359 |#1|) |#1| (-599 (-714)) (-714)) 215 T ELT) (((-359 |#1|) |#1| (-599 (-714))) 217 T ELT) (((-359 |#1|) |#1| (-714)) 216 T ELT) (((-359 |#1|) |#1|) 214 T ELT)) (-1942 (((-85) |#1|) 43 T ELT)) (-1954 (((-694 (-714)) (-599 (-2 (|:| -3882 |#1|) (|:| -4098 (-499))))) 99 T ELT)) (-1945 (((-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| |#1|) (|:| -2513 (-499)))))) |#1| (-85) (-1037 (-714)) (-714)) 213 T ELT))) +(((-396 |#1|) (-10 -7 (-15 -1933 ((-359 |#1|) (-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| |#1|) (|:| -2513 (-499)))))))) (-15 -1954 ((-694 (-714)) (-599 (-2 (|:| -3882 |#1|) (|:| -4098 (-499)))))) (-15 -1934 ((-857))) (-15 -1934 ((-857) (-857))) (-15 -1935 ((-857))) (-15 -1935 ((-857) (-857))) (-15 -1936 ((-714) (-599 (-2 (|:| -3882 |#1|) (|:| -4098 (-499)))))) (-15 -1937 ((-2 (|:| -2697 (-499)) (|:| -1877 (-599 |#1|))) |#1|)) (-15 -1938 ((-85))) (-15 -1939 ((-85) (-85))) (-15 -1940 ((-85))) (-15 -1941 ((-85) (-85))) (-15 -1942 ((-85) |#1|)) (-15 -1943 ((-85))) (-15 -1944 ((-85) (-85))) (-15 -3882 ((-359 |#1|) |#1|)) (-15 -3882 ((-359 |#1|) |#1| (-714))) (-15 -3882 ((-359 |#1|) |#1| (-599 (-714)))) (-15 -3882 ((-359 |#1|) |#1| (-599 (-714)) (-714))) (-15 -3882 ((-359 |#1|) |#1| (-714) (-714))) (-15 -3883 ((-359 |#1|) |#1|)) (-15 -3883 ((-359 |#1|) |#1| (-714))) (-15 -3883 ((-359 |#1|) |#1| (-599 (-714)))) (-15 -3883 ((-359 |#1|) |#1| (-599 (-714)) (-714))) (-15 -3883 ((-359 |#1|) |#1| (-714) (-714))) (-15 -1955 ((-3 |#1| #1="failed") (-857) |#1|)) (-15 -1955 ((-3 |#1| #1#) (-857) |#1| (-714))) (-15 -1955 ((-3 |#1| #1#) (-857) |#1| (-599 (-714)))) (-15 -1955 ((-3 |#1| #1#) (-857) |#1| (-599 (-714)) (-714))) (-15 -1955 ((-3 |#1| #1#) (-857) |#1| (-599 (-714)) (-714) (-85))) (-15 -3884 ((-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| |#1|) (|:| -2513 (-499)))))) |#1| (-85))) (-15 -1945 ((-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| |#1|) (|:| -2513 (-499)))))) |#1| (-85) (-1037 (-714)) (-714)))) (-1183 (-499))) (T -396)) +((-1945 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-85)) (-5 *5 (-1037 (-714))) (-5 *6 (-714)) (-5 *2 (-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| *3) (|:| -2513 (-499))))))) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-3884 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| *3) (|:| -2513 (-499))))))) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1955 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-857)) (-5 *4 (-599 (-714))) (-5 *5 (-714)) (-5 *6 (-85)) (-5 *1 (-396 *2)) (-4 *2 (-1183 (-499))))) (-1955 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-857)) (-5 *4 (-599 (-714))) (-5 *5 (-714)) (-5 *1 (-396 *2)) (-4 *2 (-1183 (-499))))) (-1955 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-857)) (-5 *4 (-599 (-714))) (-5 *1 (-396 *2)) (-4 *2 (-1183 (-499))))) (-1955 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-857)) (-5 *4 (-714)) (-5 *1 (-396 *2)) (-4 *2 (-1183 (-499))))) (-1955 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-857)) (-5 *1 (-396 *2)) (-4 *2 (-1183 (-499))))) (-3883 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-3883 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-599 (-714))) (-5 *5 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-3883 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-714))) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-3883 (*1 *2 *3 *4) (-12 (-5 *4 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-3883 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-3882 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-3882 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-599 (-714))) (-5 *5 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-714))) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-3882 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1944 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1943 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1942 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1941 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1940 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1939 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1938 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1937 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2697 (-499)) (|:| -1877 (-599 *3)))) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1936 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| -3882 *4) (|:| -4098 (-499))))) (-4 *4 (-1183 (-499))) (-5 *2 (-714)) (-5 *1 (-396 *4)))) (-1935 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1935 (*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1934 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1934 (*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) (-1954 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| -3882 *4) (|:| -4098 (-499))))) (-4 *4 (-1183 (-499))) (-5 *2 (-694 (-714))) (-5 *1 (-396 *4)))) (-1933 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| *4) (|:| -2513 (-499))))))) (-4 *4 (-1183 (-499))) (-5 *2 (-359 *4)) (-5 *1 (-396 *4))))) +((-1949 (((-499) |#2|) 52 T ELT) (((-499) |#2| (-714)) 51 T ELT)) (-1948 (((-499) |#2|) 64 T ELT)) (-1950 ((|#3| |#2|) 26 T ELT)) (-3254 ((|#3| |#2| (-857)) 15 T ELT)) (-3983 ((|#3| |#2|) 16 T ELT)) (-1951 ((|#3| |#2|) 9 T ELT)) (-2722 ((|#3| |#2|) 10 T ELT)) (-1947 ((|#3| |#2| (-857)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1946 (((-499) |#2|) 66 T ELT))) +(((-397 |#1| |#2| |#3|) (-10 -7 (-15 -1946 ((-499) |#2|)) (-15 -1947 (|#3| |#2|)) (-15 -1947 (|#3| |#2| (-857))) (-15 -1948 ((-499) |#2|)) (-15 -1949 ((-499) |#2| (-714))) (-15 -1949 ((-499) |#2|)) (-15 -3254 (|#3| |#2| (-857))) (-15 -1950 (|#3| |#2|)) (-15 -1951 (|#3| |#2|)) (-15 -2722 (|#3| |#2|)) (-15 -3983 (|#3| |#2|))) (-989) (-1183 |#1|) (-13 (-358) (-978 |#1|) (-318) (-1143) (-238))) (T -397)) +((-3983 (*1 *2 *3) (-12 (-4 *4 (-989)) (-4 *2 (-13 (-358) (-978 *4) (-318) (-1143) (-238))) (-5 *1 (-397 *4 *3 *2)) (-4 *3 (-1183 *4)))) (-2722 (*1 *2 *3) (-12 (-4 *4 (-989)) (-4 *2 (-13 (-358) (-978 *4) (-318) (-1143) (-238))) (-5 *1 (-397 *4 *3 *2)) (-4 *3 (-1183 *4)))) (-1951 (*1 *2 *3) (-12 (-4 *4 (-989)) (-4 *2 (-13 (-358) (-978 *4) (-318) (-1143) (-238))) (-5 *1 (-397 *4 *3 *2)) (-4 *3 (-1183 *4)))) (-1950 (*1 *2 *3) (-12 (-4 *4 (-989)) (-4 *2 (-13 (-358) (-978 *4) (-318) (-1143) (-238))) (-5 *1 (-397 *4 *3 *2)) (-4 *3 (-1183 *4)))) (-3254 (*1 *2 *3 *4) (-12 (-5 *4 (-857)) (-4 *5 (-989)) (-4 *2 (-13 (-358) (-978 *5) (-318) (-1143) (-238))) (-5 *1 (-397 *5 *3 *2)) (-4 *3 (-1183 *5)))) (-1949 (*1 *2 *3) (-12 (-4 *4 (-989)) (-5 *2 (-499)) (-5 *1 (-397 *4 *3 *5)) (-4 *3 (-1183 *4)) (-4 *5 (-13 (-358) (-978 *4) (-318) (-1143) (-238))))) (-1949 (*1 *2 *3 *4) (-12 (-5 *4 (-714)) (-4 *5 (-989)) (-5 *2 (-499)) (-5 *1 (-397 *5 *3 *6)) (-4 *3 (-1183 *5)) (-4 *6 (-13 (-358) (-978 *5) (-318) (-1143) (-238))))) (-1948 (*1 *2 *3) (-12 (-4 *4 (-989)) (-5 *2 (-499)) (-5 *1 (-397 *4 *3 *5)) (-4 *3 (-1183 *4)) (-4 *5 (-13 (-358) (-978 *4) (-318) (-1143) (-238))))) (-1947 (*1 *2 *3 *4) (-12 (-5 *4 (-857)) (-4 *5 (-989)) (-4 *2 (-13 (-358) (-978 *5) (-318) (-1143) (-238))) (-5 *1 (-397 *5 *3 *2)) (-4 *3 (-1183 *5)))) (-1947 (*1 *2 *3) (-12 (-4 *4 (-989)) (-4 *2 (-13 (-358) (-978 *4) (-318) (-1143) (-238))) (-5 *1 (-397 *4 *3 *2)) (-4 *3 (-1183 *4)))) (-1946 (*1 *2 *3) (-12 (-4 *4 (-989)) (-5 *2 (-499)) (-5 *1 (-397 *4 *3 *5)) (-4 *3 (-1183 *4)) (-4 *5 (-13 (-358) (-978 *4) (-318) (-1143) (-238)))))) +((-3494 ((|#2| (-1207 |#1|)) 42 T ELT)) (-1953 ((|#2| |#2| |#1|) 58 T ELT)) (-1952 ((|#2| |#2| |#1|) 49 T ELT)) (-2398 ((|#2| |#2|) 44 T ELT)) (-3311 (((-85) |#2|) 32 T ELT)) (-1956 (((-599 |#2|) (-857) (-359 |#2|)) 21 T ELT)) (-1955 ((|#2| (-857) (-359 |#2|)) 25 T ELT)) (-1954 (((-694 (-714)) (-359 |#2|)) 29 T ELT))) +(((-398 |#1| |#2|) (-10 -7 (-15 -3311 ((-85) |#2|)) (-15 -3494 (|#2| (-1207 |#1|))) (-15 -2398 (|#2| |#2|)) (-15 -1952 (|#2| |#2| |#1|)) (-15 -1953 (|#2| |#2| |#1|)) (-15 -1954 ((-694 (-714)) (-359 |#2|))) (-15 -1955 (|#2| (-857) (-359 |#2|))) (-15 -1956 ((-599 |#2|) (-857) (-359 |#2|)))) (-989) (-1183 |#1|)) (T -398)) +((-1956 (*1 *2 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-359 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-989)) (-5 *2 (-599 *6)) (-5 *1 (-398 *5 *6)))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-359 *2)) (-4 *2 (-1183 *5)) (-5 *1 (-398 *5 *2)) (-4 *5 (-989)))) (-1954 (*1 *2 *3) (-12 (-5 *3 (-359 *5)) (-4 *5 (-1183 *4)) (-4 *4 (-989)) (-5 *2 (-694 (-714))) (-5 *1 (-398 *4 *5)))) (-1953 (*1 *2 *2 *3) (-12 (-4 *3 (-989)) (-5 *1 (-398 *3 *2)) (-4 *2 (-1183 *3)))) (-1952 (*1 *2 *2 *3) (-12 (-4 *3 (-989)) (-5 *1 (-398 *3 *2)) (-4 *2 (-1183 *3)))) (-2398 (*1 *2 *2) (-12 (-4 *3 (-989)) (-5 *1 (-398 *3 *2)) (-4 *2 (-1183 *3)))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-1207 *4)) (-4 *4 (-989)) (-4 *2 (-1183 *4)) (-5 *1 (-398 *4 *2)))) (-3311 (*1 *2 *3) (-12 (-4 *4 (-989)) (-5 *2 (-85)) (-5 *1 (-398 *4 *3)) (-4 *3 (-1183 *4))))) +((-1959 (((-714)) 59 T ELT)) (-1963 (((-714)) 29 (|has| |#1| (-358)) ELT) (((-714) (-714)) 28 (|has| |#1| (-358)) ELT)) (-1962 (((-499) |#1|) 25 (|has| |#1| (-358)) ELT)) (-1961 (((-499) |#1|) 27 (|has| |#1| (-358)) ELT)) (-1958 (((-714)) 58 T ELT) (((-714) (-714)) 57 T ELT)) (-1957 ((|#1| (-714) (-499)) 37 T ELT)) (-1960 (((-1213)) 61 T ELT))) +(((-399 |#1|) (-10 -7 (-15 -1957 (|#1| (-714) (-499))) (-15 -1958 ((-714) (-714))) (-15 -1958 ((-714))) (-15 -1959 ((-714))) (-15 -1960 ((-1213))) (IF (|has| |#1| (-358)) (PROGN (-15 -1961 ((-499) |#1|)) (-15 -1962 ((-499) |#1|)) (-15 -1963 ((-714) (-714))) (-15 -1963 ((-714)))) |%noBranch|)) (-989)) (T -399)) +((-1963 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-399 *3)) (-4 *3 (-358)) (-4 *3 (-989)))) (-1963 (*1 *2 *2) (-12 (-5 *2 (-714)) (-5 *1 (-399 *3)) (-4 *3 (-358)) (-4 *3 (-989)))) (-1962 (*1 *2 *3) (-12 (-5 *2 (-499)) (-5 *1 (-399 *3)) (-4 *3 (-358)) (-4 *3 (-989)))) (-1961 (*1 *2 *3) (-12 (-5 *2 (-499)) (-5 *1 (-399 *3)) (-4 *3 (-358)) (-4 *3 (-989)))) (-1960 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-399 *3)) (-4 *3 (-989)))) (-1959 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-399 *3)) (-4 *3 (-989)))) (-1958 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-399 *3)) (-4 *3 (-989)))) (-1958 (*1 *2 *2) (-12 (-5 *2 (-714)) (-5 *1 (-399 *3)) (-4 *3 (-989)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-714)) (-5 *4 (-499)) (-5 *1 (-399 *2)) (-4 *2 (-989))))) +((-1964 (((-599 (-499)) (-499)) 76 T ELT)) (-3873 (((-85) (-142 (-499))) 84 T ELT)) (-3882 (((-359 (-142 (-499))) (-142 (-499))) 75 T ELT))) +(((-400) (-10 -7 (-15 -3882 ((-359 (-142 (-499))) (-142 (-499)))) (-15 -1964 ((-599 (-499)) (-499))) (-15 -3873 ((-85) (-142 (-499)))))) (T -400)) +((-3873 (*1 *2 *3) (-12 (-5 *3 (-142 (-499))) (-5 *2 (-85)) (-5 *1 (-400)))) (-1964 (*1 *2 *3) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-400)) (-5 *3 (-499)))) (-3882 (*1 *2 *3) (-12 (-5 *2 (-359 (-142 (-499)))) (-5 *1 (-400)) (-5 *3 (-142 (-499)))))) +((-3067 ((|#4| |#4| (-599 |#4|)) 20 (|has| |#1| (-318)) ELT)) (-2352 (((-599 |#4|) (-599 |#4|) (-1099) (-1099)) 46 T ELT) (((-599 |#4|) (-599 |#4|) (-1099)) 45 T ELT) (((-599 |#4|) (-599 |#4|)) 34 T ELT))) +(((-401 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2352 ((-599 |#4|) (-599 |#4|))) (-15 -2352 ((-599 |#4|) (-599 |#4|) (-1099))) (-15 -2352 ((-599 |#4|) (-599 |#4|) (-1099) (-1099))) (IF (|has| |#1| (-318)) (-15 -3067 (|#4| |#4| (-599 |#4|))) |%noBranch|)) (-406) (-738) (-781) (-888 |#1| |#2| |#3|)) (T -401)) +((-3067 (*1 *2 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-318)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-401 *4 *5 *6 *2)))) (-2352 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-599 *7)) (-5 *3 (-1099)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-401 *4 *5 *6 *7)))) (-2352 (*1 *2 *2 *3) (-12 (-5 *2 (-599 *7)) (-5 *3 (-1099)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-401 *4 *5 *6 *7)))) (-2352 (*1 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-401 *3 *4 *5 *6))))) +((-1965 ((|#4| |#4| (-599 |#4|)) 82 T ELT)) (-1966 (((-599 |#4|) (-599 |#4|) (-1099) (-1099)) 22 T ELT) (((-599 |#4|) (-599 |#4|) (-1099)) 21 T ELT) (((-599 |#4|) (-599 |#4|)) 13 T ELT))) +(((-402 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1965 (|#4| |#4| (-599 |#4|))) (-15 -1966 ((-599 |#4|) (-599 |#4|))) (-15 -1966 ((-599 |#4|) (-599 |#4|) (-1099))) (-15 -1966 ((-599 |#4|) (-599 |#4|) (-1099) (-1099)))) (-261) (-738) (-781) (-888 |#1| |#2| |#3|)) (T -402)) +((-1966 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-599 *7)) (-5 *3 (-1099)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-261)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-402 *4 *5 *6 *7)))) (-1966 (*1 *2 *2 *3) (-12 (-5 *2 (-599 *7)) (-5 *3 (-1099)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-261)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-402 *4 *5 *6 *7)))) (-1966 (*1 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-261)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-402 *3 *4 *5 *6)))) (-1965 (*1 *2 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-261)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-402 *4 *5 *6 *2))))) +((-1968 (((-599 (-599 |#4|)) (-599 |#4|) (-85)) 90 T ELT) (((-599 (-599 |#4|)) (-599 |#4|)) 89 T ELT) (((-599 (-599 |#4|)) (-599 |#4|) (-599 |#4|) (-85)) 83 T ELT) (((-599 (-599 |#4|)) (-599 |#4|) (-599 |#4|)) 84 T ELT)) (-1967 (((-599 (-599 |#4|)) (-599 |#4|) (-85)) 56 T ELT) (((-599 (-599 |#4|)) (-599 |#4|)) 78 T ELT))) +(((-403 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1967 ((-599 (-599 |#4|)) (-599 |#4|))) (-15 -1967 ((-599 (-599 |#4|)) (-599 |#4|) (-85))) (-15 -1968 ((-599 (-599 |#4|)) (-599 |#4|) (-599 |#4|))) (-15 -1968 ((-599 (-599 |#4|)) (-599 |#4|) (-599 |#4|) (-85))) (-15 -1968 ((-599 (-599 |#4|)) (-599 |#4|))) (-15 -1968 ((-599 (-599 |#4|)) (-599 |#4|) (-85)))) (-13 (-261) (-120)) (-738) (-781) (-888 |#1| |#2| |#3|)) (T -403)) +((-1968 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-599 (-599 *8))) (-5 *1 (-403 *5 *6 *7 *8)) (-5 *3 (-599 *8)))) (-1968 (*1 *2 *3) (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-599 (-599 *7))) (-5 *1 (-403 *4 *5 *6 *7)) (-5 *3 (-599 *7)))) (-1968 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-599 (-599 *8))) (-5 *1 (-403 *5 *6 *7 *8)) (-5 *3 (-599 *8)))) (-1968 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-599 (-599 *7))) (-5 *1 (-403 *4 *5 *6 *7)) (-5 *3 (-599 *7)))) (-1967 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-599 (-599 *8))) (-5 *1 (-403 *5 *6 *7 *8)) (-5 *3 (-599 *8)))) (-1967 (*1 *2 *3) (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-599 (-599 *7))) (-5 *1 (-403 *4 *5 *6 *7)) (-5 *3 (-599 *7))))) +((-1992 (((-714) |#4|) 12 T ELT)) (-1980 (((-599 (-2 (|:| |totdeg| (-714)) (|:| -2105 |#4|))) |#4| (-714) (-599 (-2 (|:| |totdeg| (-714)) (|:| -2105 |#4|)))) 39 T ELT)) (-1982 (((-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1981 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1970 ((|#4| |#4| (-599 |#4|)) 54 T ELT)) (-1978 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-599 |#4|)) 96 T ELT)) (-1985 (((-1213) |#4|) 59 T ELT)) (-1988 (((-1213) (-599 |#4|)) 69 T ELT)) (-1986 (((-499) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-499) (-499) (-499)) 66 T ELT)) (-1989 (((-1213) (-499)) 110 T ELT)) (-1983 (((-599 |#4|) (-599 |#4|)) 104 T ELT)) (-1991 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-714)) (|:| -2105 |#4|)) |#4| (-714)) 31 T ELT)) (-1984 (((-499) |#4|) 109 T ELT)) (-1979 ((|#4| |#4|) 37 T ELT)) (-1971 (((-599 |#4|) (-599 |#4|) (-499) (-499)) 74 T ELT)) (-1987 (((-499) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-499) (-499) (-499) (-499)) 123 T ELT)) (-1990 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1972 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1977 (((-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1976 (((-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1973 (((-85) |#2| |#2|) 75 T ELT)) (-1975 (((-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1974 (((-85) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1969 ((|#4| |#4| (-599 |#4|)) 97 T ELT))) +(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1969 (|#4| |#4| (-599 |#4|))) (-15 -1970 (|#4| |#4| (-599 |#4|))) (-15 -1971 ((-599 |#4|) (-599 |#4|) (-499) (-499))) (-15 -1972 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1973 ((-85) |#2| |#2|)) (-15 -1974 ((-85) |#2| |#2| |#2| |#2|)) (-15 -1975 ((-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1976 ((-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1977 ((-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1978 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-599 |#4|))) (-15 -1979 (|#4| |#4|)) (-15 -1980 ((-599 (-2 (|:| |totdeg| (-714)) (|:| -2105 |#4|))) |#4| (-714) (-599 (-2 (|:| |totdeg| (-714)) (|:| -2105 |#4|))))) (-15 -1981 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1982 ((-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-599 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1983 ((-599 |#4|) (-599 |#4|))) (-15 -1984 ((-499) |#4|)) (-15 -1985 ((-1213) |#4|)) (-15 -1986 ((-499) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-499) (-499) (-499))) (-15 -1987 ((-499) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-499) (-499) (-499) (-499))) (-15 -1988 ((-1213) (-599 |#4|))) (-15 -1989 ((-1213) (-499))) (-15 -1990 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1991 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-714)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-714)) (|:| -2105 |#4|)) |#4| (-714))) (-15 -1992 ((-714) |#4|))) (-406) (-738) (-781) (-888 |#1| |#2| |#3|)) (T -404)) +((-1992 (*1 *2 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-714)) (-5 *1 (-404 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6)))) (-1991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-714)) (|:| -2105 *4))) (-5 *5 (-714)) (-4 *4 (-888 *6 *7 *8)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-404 *6 *7 *8 *4)))) (-1990 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-714)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-738)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-404 *4 *5 *6 *7)))) (-1989 (*1 *2 *3) (-12 (-5 *3 (-499)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-1213)) (-5 *1 (-404 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6)))) (-1988 (*1 *2 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-1213)) (-5 *1 (-404 *4 *5 *6 *7)))) (-1987 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-714)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-738)) (-4 *4 (-888 *5 *6 *7)) (-4 *5 (-406)) (-4 *7 (-781)) (-5 *1 (-404 *5 *6 *7 *4)))) (-1986 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-714)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-738)) (-4 *4 (-888 *5 *6 *7)) (-4 *5 (-406)) (-4 *7 (-781)) (-5 *1 (-404 *5 *6 *7 *4)))) (-1985 (*1 *2 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-1213)) (-5 *1 (-404 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6)))) (-1984 (*1 *2 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-499)) (-5 *1 (-404 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6)))) (-1983 (*1 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-404 *3 *4 *5 *6)))) (-1982 (*1 *2 *2 *2) (-12 (-5 *2 (-599 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-714)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-738)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-406)) (-4 *5 (-781)) (-5 *1 (-404 *3 *4 *5 *6)))) (-1981 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-714)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-738)) (-4 *2 (-888 *4 *5 *6)) (-5 *1 (-404 *4 *5 *6 *2)) (-4 *4 (-406)) (-4 *6 (-781)))) (-1980 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-599 (-2 (|:| |totdeg| (-714)) (|:| -2105 *3)))) (-5 *4 (-714)) (-4 *3 (-888 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-404 *5 *6 *7 *3)))) (-1979 (*1 *2 *2) (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-404 *3 *4 *5 *2)) (-4 *2 (-888 *3 *4 *5)))) (-1978 (*1 *2 *3 *4) (-12 (-5 *4 (-599 *3)) (-4 *3 (-888 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-404 *5 *6 *7 *3)))) (-1977 (*1 *2 *3 *2) (-12 (-5 *2 (-599 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-714)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-738)) (-4 *6 (-888 *4 *3 *5)) (-4 *4 (-406)) (-4 *5 (-781)) (-5 *1 (-404 *4 *3 *5 *6)))) (-1976 (*1 *2 *2) (-12 (-5 *2 (-599 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-714)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-738)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-406)) (-4 *5 (-781)) (-5 *1 (-404 *3 *4 *5 *6)))) (-1975 (*1 *2 *3 *2) (-12 (-5 *2 (-599 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-714)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-738)) (-4 *3 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *6 (-781)) (-5 *1 (-404 *4 *5 *6 *3)))) (-1974 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-406)) (-4 *3 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) (-5 *1 (-404 *4 *3 *5 *6)) (-4 *6 (-888 *4 *3 *5)))) (-1973 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *3 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) (-5 *1 (-404 *4 *3 *5 *6)) (-4 *6 (-888 *4 *3 *5)))) (-1972 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-714)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-738)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-404 *4 *5 *6 *7)))) (-1971 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-599 *7)) (-5 *3 (-499)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-404 *4 *5 *6 *7)))) (-1970 (*1 *2 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-404 *4 *5 *6 *2)))) (-1969 (*1 *2 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-404 *4 *5 *6 *2))))) +((-1993 (($ $ $) 14 T ELT) (($ (-599 $)) 21 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 45 T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) 22 T ELT))) +(((-405 |#1|) (-10 -7 (-15 -2829 ((-1111 |#1|) (-1111 |#1|) (-1111 |#1|))) (-15 -1993 (|#1| (-599 |#1|))) (-15 -1993 (|#1| |#1| |#1|)) (-15 -3282 (|#1| (-599 |#1|))) (-15 -3282 (|#1| |#1| |#1|))) (-406)) (T -405)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-406) (-113)) (T -406)) +((-3282 (*1 *1 *1 *1) (-4 *1 (-406))) (-3282 (*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-406)))) (-1993 (*1 *1 *1 *1) (-4 *1 (-406))) (-1993 (*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-406)))) (-2829 (*1 *2 *2 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-406))))) +(-13 (-510) (-10 -8 (-15 -3282 ($ $ $)) (-15 -3282 ($ (-599 $))) (-15 -1993 ($ $ $)) (-15 -1993 ($ (-599 $))) (-15 -2829 ((-1111 $) (-1111 $) (-1111 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-244) . T) ((-510) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-598 $) . T) ((-675 $) . T) ((-684) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1870 (((-3 $ #1="failed")) NIL (|has| (-361 (-884 |#1|)) (-510)) ELT)) (-1345 (((-3 $ #1#) $ $) NIL T ELT)) (-3361 (((-1207 (-647 (-361 (-884 |#1|)))) (-1207 $)) NIL T ELT) (((-1207 (-647 (-361 (-884 |#1|))))) NIL T ELT)) (-1822 (((-1207 $)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2008 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) NIL T ELT)) (-1796 (((-3 $ #1#)) NIL (|has| (-361 (-884 |#1|)) (-510)) ELT)) (-1886 (((-647 (-361 (-884 |#1|))) (-1207 $)) NIL T ELT) (((-647 (-361 (-884 |#1|)))) NIL T ELT)) (-1820 (((-361 (-884 |#1|)) $) NIL T ELT)) (-1884 (((-647 (-361 (-884 |#1|))) $ (-1207 $)) NIL T ELT) (((-647 (-361 (-884 |#1|))) $) NIL T ELT)) (-2522 (((-3 $ #1#) $) NIL (|has| (-361 (-884 |#1|)) (-510)) ELT)) (-2002 (((-1111 (-884 (-361 (-884 |#1|))))) NIL (|has| (-361 (-884 |#1|)) (-318)) ELT) (((-1111 (-361 (-884 |#1|)))) 91 (|has| |#1| (-510)) ELT)) (-2525 (($ $ (-857)) NIL T ELT)) (-1818 (((-361 (-884 |#1|)) $) NIL T ELT)) (-1798 (((-1111 (-361 (-884 |#1|))) $) 89 (|has| (-361 (-884 |#1|)) (-510)) ELT)) (-1888 (((-361 (-884 |#1|)) (-1207 $)) NIL T ELT) (((-361 (-884 |#1|))) NIL T ELT)) (-1816 (((-1111 (-361 (-884 |#1|))) $) NIL T ELT)) (-1810 (((-85)) NIL T ELT)) (-1890 (($ (-1207 (-361 (-884 |#1|))) (-1207 $)) 115 T ELT) (($ (-1207 (-361 (-884 |#1|)))) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL (|has| (-361 (-884 |#1|)) (-510)) ELT)) (-3231 (((-857)) NIL T ELT)) (-1807 (((-85)) NIL T ELT)) (-2549 (($ $ (-857)) NIL T ELT)) (-1803 (((-85)) NIL T ELT)) (-1801 (((-85)) NIL T ELT)) (-1805 (((-85)) NIL T ELT)) (-2009 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) NIL T ELT)) (-1797 (((-3 $ #1#)) NIL (|has| (-361 (-884 |#1|)) (-510)) ELT)) (-1887 (((-647 (-361 (-884 |#1|))) (-1207 $)) NIL T ELT) (((-647 (-361 (-884 |#1|)))) NIL T ELT)) (-1821 (((-361 (-884 |#1|)) $) NIL T ELT)) (-1885 (((-647 (-361 (-884 |#1|))) $ (-1207 $)) NIL T ELT) (((-647 (-361 (-884 |#1|))) $) NIL T ELT)) (-2523 (((-3 $ #1#) $) NIL (|has| (-361 (-884 |#1|)) (-510)) ELT)) (-2006 (((-1111 (-884 (-361 (-884 |#1|))))) NIL (|has| (-361 (-884 |#1|)) (-318)) ELT) (((-1111 (-361 (-884 |#1|)))) 90 (|has| |#1| (-510)) ELT)) (-2524 (($ $ (-857)) NIL T ELT)) (-1819 (((-361 (-884 |#1|)) $) NIL T ELT)) (-1799 (((-1111 (-361 (-884 |#1|))) $) 86 (|has| (-361 (-884 |#1|)) (-510)) ELT)) (-1889 (((-361 (-884 |#1|)) (-1207 $)) NIL T ELT) (((-361 (-884 |#1|))) NIL T ELT)) (-1817 (((-1111 (-361 (-884 |#1|))) $) NIL T ELT)) (-1811 (((-85)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1802 (((-85)) NIL T ELT)) (-1804 (((-85)) NIL T ELT)) (-1806 (((-85)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1996 (((-361 (-884 |#1|)) $ $) 77 (|has| |#1| (-510)) ELT)) (-2000 (((-361 (-884 |#1|)) $) 101 (|has| |#1| (-510)) ELT)) (-1999 (((-361 (-884 |#1|)) $) 105 (|has| |#1| (-510)) ELT)) (-2001 (((-1111 (-361 (-884 |#1|))) $) 95 (|has| |#1| (-510)) ELT)) (-1995 (((-361 (-884 |#1|))) 78 (|has| |#1| (-510)) ELT)) (-1998 (((-361 (-884 |#1|)) $ $) 70 (|has| |#1| (-510)) ELT)) (-2004 (((-361 (-884 |#1|)) $) 100 (|has| |#1| (-510)) ELT)) (-2003 (((-361 (-884 |#1|)) $) 104 (|has| |#1| (-510)) ELT)) (-2005 (((-1111 (-361 (-884 |#1|))) $) 94 (|has| |#1| (-510)) ELT)) (-1997 (((-361 (-884 |#1|))) 74 (|has| |#1| (-510)) ELT)) (-2007 (($) 111 T ELT) (($ (-1117)) 119 T ELT) (($ (-1207 (-1117))) 118 T ELT) (($ (-1207 $)) 106 T ELT) (($ (-1117) (-1207 $)) 117 T ELT) (($ (-1207 (-1117)) (-1207 $)) 116 T ELT)) (-1809 (((-85)) NIL T ELT)) (-3950 (((-361 (-884 |#1|)) $ (-499)) NIL T ELT)) (-3362 (((-1207 (-361 (-884 |#1|))) $ (-1207 $)) 108 T ELT) (((-647 (-361 (-884 |#1|))) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 (-361 (-884 |#1|))) $) 44 T ELT) (((-647 (-361 (-884 |#1|))) (-1207 $)) NIL T ELT)) (-4122 (((-1207 (-361 (-884 |#1|))) $) NIL T ELT) (($ (-1207 (-361 (-884 |#1|)))) 41 T ELT)) (-1994 (((-599 (-884 (-361 (-884 |#1|)))) (-1207 $)) NIL T ELT) (((-599 (-884 (-361 (-884 |#1|))))) NIL T ELT) (((-599 (-884 |#1|)) (-1207 $)) 109 (|has| |#1| (-510)) ELT) (((-599 (-884 |#1|))) 110 (|has| |#1| (-510)) ELT)) (-2551 (($ $ $) NIL T ELT)) (-1815 (((-85)) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-1207 (-361 (-884 |#1|)))) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) 66 T ELT)) (-1800 (((-599 (-1207 (-361 (-884 |#1|))))) NIL (|has| (-361 (-884 |#1|)) (-510)) ELT)) (-2552 (($ $ $ $) NIL T ELT)) (-1813 (((-85)) NIL T ELT)) (-2664 (($ (-647 (-361 (-884 |#1|))) $) NIL T ELT)) (-2550 (($ $ $) NIL T ELT)) (-1814 (((-85)) NIL T ELT)) (-1812 (((-85)) NIL T ELT)) (-1808 (((-85)) NIL T ELT)) (-2779 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) 107 T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-361 (-884 |#1|))) NIL T ELT) (($ (-361 (-884 |#1|)) $) NIL T ELT) (($ (-1082 |#2| (-361 (-884 |#1|))) $) NIL T ELT))) +(((-407 |#1| |#2| |#3| |#4|) (-13 (-372 (-361 (-884 |#1|))) (-606 (-1082 |#2| (-361 (-884 |#1|)))) (-10 -8 (-15 -4096 ($ (-1207 (-361 (-884 |#1|))))) (-15 -2009 ((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1="failed"))) (-15 -2008 ((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#))) (-15 -2007 ($)) (-15 -2007 ($ (-1117))) (-15 -2007 ($ (-1207 (-1117)))) (-15 -2007 ($ (-1207 $))) (-15 -2007 ($ (-1117) (-1207 $))) (-15 -2007 ($ (-1207 (-1117)) (-1207 $))) (IF (|has| |#1| (-510)) (PROGN (-15 -2006 ((-1111 (-361 (-884 |#1|))))) (-15 -2005 ((-1111 (-361 (-884 |#1|))) $)) (-15 -2004 ((-361 (-884 |#1|)) $)) (-15 -2003 ((-361 (-884 |#1|)) $)) (-15 -2002 ((-1111 (-361 (-884 |#1|))))) (-15 -2001 ((-1111 (-361 (-884 |#1|))) $)) (-15 -2000 ((-361 (-884 |#1|)) $)) (-15 -1999 ((-361 (-884 |#1|)) $)) (-15 -1998 ((-361 (-884 |#1|)) $ $)) (-15 -1997 ((-361 (-884 |#1|)))) (-15 -1996 ((-361 (-884 |#1|)) $ $)) (-15 -1995 ((-361 (-884 |#1|)))) (-15 -1994 ((-599 (-884 |#1|)) (-1207 $))) (-15 -1994 ((-599 (-884 |#1|))))) |%noBranch|))) (-146) (-857) (-599 (-1117)) (-1207 (-647 |#1|))) (T -407)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-1207 (-361 (-884 *3)))) (-4 *3 (-146)) (-14 *6 (-1207 (-647 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))))) (-2009 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-407 *3 *4 *5 *6)) (|:| -2113 (-599 (-407 *3 *4 *5 *6))))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-2008 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-407 *3 *4 *5 *6)) (|:| -2113 (-599 (-407 *3 *4 *5 *6))))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-2007 (*1 *1) (-12 (-5 *1 (-407 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-857)) (-14 *4 (-599 (-1117))) (-14 *5 (-1207 (-647 *2))))) (-2007 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 *2)) (-14 *6 (-1207 (-647 *3))))) (-2007 (*1 *1 *2) (-12 (-5 *2 (-1207 (-1117))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-2007 (*1 *1 *2) (-12 (-5 *2 (-1207 (-407 *3 *4 *5 *6))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-2007 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-407 *4 *5 *6 *7))) (-5 *1 (-407 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-857)) (-14 *6 (-599 *2)) (-14 *7 (-1207 (-647 *4))))) (-2007 (*1 *1 *2 *3) (-12 (-5 *2 (-1207 (-1117))) (-5 *3 (-1207 (-407 *4 *5 *6 *7))) (-5 *1 (-407 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-857)) (-14 *6 (-599 (-1117))) (-14 *7 (-1207 (-647 *4))))) (-2006 (*1 *2) (-12 (-5 *2 (-1111 (-361 (-884 *3)))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-1111 (-361 (-884 *3)))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-2004 (*1 *2 *1) (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-2002 (*1 *2) (-12 (-5 *2 (-1111 (-361 (-884 *3)))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-1111 (-361 (-884 *3)))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-2000 (*1 *2 *1) (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-1999 (*1 *2 *1) (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-1998 (*1 *2 *1 *1) (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-1997 (*1 *2) (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-1996 (*1 *2 *1 *1) (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-1995 (*1 *2) (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-1207 (-407 *4 *5 *6 *7))) (-5 *2 (-599 (-884 *4))) (-5 *1 (-407 *4 *5 *6 *7)) (-4 *4 (-510)) (-4 *4 (-146)) (-14 *5 (-857)) (-14 *6 (-599 (-1117))) (-14 *7 (-1207 (-647 *4))))) (-1994 (*1 *2) (-12 (-5 *2 (-599 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3)))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 18 T ELT)) (-3204 (((-599 (-798 |#1|)) $) 87 T ELT)) (-3206 (((-1111 $) $ (-798 |#1|)) 52 T ELT) (((-1111 |#2|) $) 139 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#2| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#2| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#2| (-510)) ELT)) (-2940 (((-714) $) 27 T ELT) (((-714) $ (-599 (-798 |#1|))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#2| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#2| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) 50 T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-3 (-798 |#1|) #1#) $) NIL T ELT)) (-3294 ((|#2| $) 48 T ELT) (((-361 (-499)) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-798 |#1|) $) NIL T ELT)) (-3906 (($ $ $ (-798 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-2039 (($ $ (-599 (-499))) 94 T ELT)) (-4109 (($ $) 80 T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#2|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#2| (-406)) ELT) (($ $ (-798 |#1|)) NIL (|has| |#2| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#2| (-848)) ELT)) (-1694 (($ $ |#2| |#3| $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-798 |#1|) (-821 (-333))) (|has| |#2| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-798 |#1|) (-821 (-499))) (|has| |#2| (-821 (-499)))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) 65 T ELT)) (-3207 (($ (-1111 |#2|) (-798 |#1|)) 144 T ELT) (($ (-1111 $) (-798 |#1|)) 58 T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) 68 T ELT)) (-3014 (($ |#2| |#3|) 35 T ELT) (($ $ (-798 |#1|) (-714)) 37 T ELT) (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-798 |#1|)) NIL T ELT)) (-2941 ((|#3| $) NIL T ELT) (((-714) $ (-798 |#1|)) 56 T ELT) (((-599 (-714)) $ (-599 (-798 |#1|))) 63 T ELT)) (-1695 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3205 (((-3 (-798 |#1|) #1#) $) 45 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#2| $) 47 T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#2| (-406)) ELT) (($ $ $) NIL (|has| |#2| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-798 |#1|)) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) 46 T ELT)) (-1894 ((|#2| $) 137 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#2| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#2| (-406)) ELT) (($ $ $) 150 (|has| |#2| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#2| (-848)) ELT)) (-3606 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-510)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-798 |#1|) |#2|) 101 T ELT) (($ $ (-599 (-798 |#1|)) (-599 |#2|)) 107 T ELT) (($ $ (-798 |#1|) $) 99 T ELT) (($ $ (-599 (-798 |#1|)) (-599 $)) 125 T ELT)) (-3907 (($ $ (-798 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3908 (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|))) NIL T ELT) (($ $ (-798 |#1|)) 59 T ELT)) (-4098 ((|#3| $) 79 T ELT) (((-714) $ (-798 |#1|)) 42 T ELT) (((-599 (-714)) $ (-599 (-798 |#1|))) 62 T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-798 |#1|) (-569 (-825 (-333)))) (|has| |#2| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-798 |#1|) (-569 (-825 (-499)))) (|has| |#2| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-798 |#1|) (-569 (-488))) (|has| |#2| (-569 (-488)))) ELT)) (-2938 ((|#2| $) 146 (|has| |#2| (-406)) ELT) (($ $ (-798 |#1|)) NIL (|has| |#2| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-848))) ELT)) (-4096 (((-797) $) 174 T ELT) (($ (-499)) NIL T ELT) (($ |#2|) 100 T ELT) (($ (-798 |#1|)) 39 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#2| (-38 (-361 (-499)))) (|has| |#2| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#2| (-510)) ELT)) (-3967 (((-599 |#2|) $) NIL T ELT)) (-3827 ((|#2| $ |#3|) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#2| (-848))) (|has| |#2| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#2| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#2| (-510)) ELT)) (-2779 (($) 22 T CONST)) (-2785 (($) 31 T CONST)) (-2790 (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|))) NIL T ELT) (($ $ (-798 |#1|)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#2|) 76 (|has| |#2| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 132 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 130 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 36 T ELT) (($ $ (-361 (-499))) NIL (|has| |#2| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#2| (-38 (-361 (-499)))) ELT) (($ |#2| $) 75 T ELT) (($ $ |#2|) NIL T ELT))) +(((-408 |#1| |#2| |#3|) (-13 (-888 |#2| |#3| (-798 |#1|)) (-10 -8 (-15 -2039 ($ $ (-599 (-499)))))) (-599 (-1117)) (-989) (-195 (-4107 |#1|) (-714))) (T -408)) +((-2039 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-499))) (-14 *3 (-599 (-1117))) (-5 *1 (-408 *3 *4 *5)) (-4 *4 (-989)) (-4 *5 (-195 (-4107 *3) (-714)))))) +((-2013 (((-85) |#1| (-599 |#2|)) 90 T ELT)) (-2011 (((-3 (-1207 (-599 |#2|)) #1="failed") (-714) |#1| (-599 |#2|)) 99 T ELT)) (-2012 (((-3 (-599 |#2|) #1#) |#2| |#1| (-1207 (-599 |#2|))) 101 T ELT)) (-2138 ((|#2| |#2| |#1|) 35 T ELT)) (-2010 (((-714) |#2| (-599 |#2|)) 26 T ELT))) +(((-409 |#1| |#2|) (-10 -7 (-15 -2138 (|#2| |#2| |#1|)) (-15 -2010 ((-714) |#2| (-599 |#2|))) (-15 -2011 ((-3 (-1207 (-599 |#2|)) #1="failed") (-714) |#1| (-599 |#2|))) (-15 -2012 ((-3 (-599 |#2|) #1#) |#2| |#1| (-1207 (-599 |#2|)))) (-15 -2013 ((-85) |#1| (-599 |#2|)))) (-261) (-1183 |#1|)) (T -409)) +((-2013 (*1 *2 *3 *4) (-12 (-5 *4 (-599 *5)) (-4 *5 (-1183 *3)) (-4 *3 (-261)) (-5 *2 (-85)) (-5 *1 (-409 *3 *5)))) (-2012 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1207 (-599 *3))) (-4 *4 (-261)) (-5 *2 (-599 *3)) (-5 *1 (-409 *4 *3)) (-4 *3 (-1183 *4)))) (-2011 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-714)) (-4 *4 (-261)) (-4 *6 (-1183 *4)) (-5 *2 (-1207 (-599 *6))) (-5 *1 (-409 *4 *6)) (-5 *5 (-599 *6)))) (-2010 (*1 *2 *3 *4) (-12 (-5 *4 (-599 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-261)) (-5 *2 (-714)) (-5 *1 (-409 *5 *3)))) (-2138 (*1 *2 *2 *3) (-12 (-4 *3 (-261)) (-5 *1 (-409 *3 *2)) (-4 *2 (-1183 *3))))) +((-3882 (((-359 |#5|) |#5|) 24 T ELT))) +(((-410 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3882 ((-359 |#5|) |#5|))) (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ "failed") (-1117))))) (-738) (-510) (-510) (-888 |#4| |#2| |#1|)) (T -410)) +((-3882 (*1 *2 *3) (-12 (-4 *4 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ "failed") (-1117)))))) (-4 *5 (-738)) (-4 *7 (-510)) (-5 *2 (-359 *3)) (-5 *1 (-410 *4 *5 *6 *7 *3)) (-4 *6 (-510)) (-4 *3 (-888 *7 *5 *4))))) +((-2821 ((|#3|) 43 T ELT)) (-2829 (((-1111 |#4|) (-1111 |#4|) (-1111 |#4|)) 34 T ELT))) +(((-411 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2829 ((-1111 |#4|) (-1111 |#4|) (-1111 |#4|))) (-15 -2821 (|#3|))) (-738) (-781) (-848) (-888 |#3| |#1| |#2|)) (T -411)) +((-2821 (*1 *2) (-12 (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-848)) (-5 *1 (-411 *3 *4 *2 *5)) (-4 *5 (-888 *2 *3 *4)))) (-2829 (*1 *2 *2 *2) (-12 (-5 *2 (-1111 *6)) (-4 *6 (-888 *5 *3 *4)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *5 (-848)) (-5 *1 (-411 *3 *4 *5 *6))))) +((-3882 (((-359 (-1111 |#1|)) (-1111 |#1|)) 43 T ELT))) +(((-412 |#1|) (-10 -7 (-15 -3882 ((-359 (-1111 |#1|)) (-1111 |#1|)))) (-261)) (T -412)) +((-3882 (*1 *2 *3) (-12 (-4 *4 (-261)) (-5 *2 (-359 (-1111 *4))) (-5 *1 (-412 *4)) (-5 *3 (-1111 *4))))) +((-3879 (((-51) |#2| (-1117) (-247 |#2|) (-1174 (-714))) 44 T ELT) (((-51) (-1 |#2| (-499)) (-247 |#2|) (-1174 (-714))) 43 T ELT) (((-51) |#2| (-1117) (-247 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-499)) (-247 |#2|)) 29 T ELT)) (-3968 (((-51) |#2| (-1117) (-247 |#2|) (-1174 (-361 (-499))) (-361 (-499))) 88 T ELT) (((-51) (-1 |#2| (-361 (-499))) (-247 |#2|) (-1174 (-361 (-499))) (-361 (-499))) 87 T ELT) (((-51) |#2| (-1117) (-247 |#2|) (-1174 (-499))) 86 T ELT) (((-51) (-1 |#2| (-499)) (-247 |#2|) (-1174 (-499))) 85 T ELT) (((-51) |#2| (-1117) (-247 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-499)) (-247 |#2|)) 79 T ELT)) (-3932 (((-51) |#2| (-1117) (-247 |#2|) (-1174 (-361 (-499))) (-361 (-499))) 74 T ELT) (((-51) (-1 |#2| (-361 (-499))) (-247 |#2|) (-1174 (-361 (-499))) (-361 (-499))) 72 T ELT)) (-3929 (((-51) |#2| (-1117) (-247 |#2|) (-1174 (-499))) 51 T ELT) (((-51) (-1 |#2| (-499)) (-247 |#2|) (-1174 (-499))) 50 T ELT))) +(((-413 |#1| |#2|) (-10 -7 (-15 -3879 ((-51) (-1 |#2| (-499)) (-247 |#2|))) (-15 -3879 ((-51) |#2| (-1117) (-247 |#2|))) (-15 -3879 ((-51) (-1 |#2| (-499)) (-247 |#2|) (-1174 (-714)))) (-15 -3879 ((-51) |#2| (-1117) (-247 |#2|) (-1174 (-714)))) (-15 -3929 ((-51) (-1 |#2| (-499)) (-247 |#2|) (-1174 (-499)))) (-15 -3929 ((-51) |#2| (-1117) (-247 |#2|) (-1174 (-499)))) (-15 -3932 ((-51) (-1 |#2| (-361 (-499))) (-247 |#2|) (-1174 (-361 (-499))) (-361 (-499)))) (-15 -3932 ((-51) |#2| (-1117) (-247 |#2|) (-1174 (-361 (-499))) (-361 (-499)))) (-15 -3968 ((-51) (-1 |#2| (-499)) (-247 |#2|))) (-15 -3968 ((-51) |#2| (-1117) (-247 |#2|))) (-15 -3968 ((-51) (-1 |#2| (-499)) (-247 |#2|) (-1174 (-499)))) (-15 -3968 ((-51) |#2| (-1117) (-247 |#2|) (-1174 (-499)))) (-15 -3968 ((-51) (-1 |#2| (-361 (-499))) (-247 |#2|) (-1174 (-361 (-499))) (-361 (-499)))) (-15 -3968 ((-51) |#2| (-1117) (-247 |#2|) (-1174 (-361 (-499))) (-361 (-499))))) (-13 (-510) (-978 (-499)) (-596 (-499))) (-13 (-27) (-1143) (-375 |#1|))) (T -413)) +((-3968 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-5 *6 (-1174 (-361 (-499)))) (-5 *7 (-361 (-499))) (-4 *3 (-13 (-27) (-1143) (-375 *8))) (-4 *8 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *8 *3)))) (-3968 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-361 (-499)))) (-5 *4 (-247 *8)) (-5 *5 (-1174 (-361 (-499)))) (-5 *6 (-361 (-499))) (-4 *8 (-13 (-27) (-1143) (-375 *7))) (-4 *7 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *7 *8)))) (-3968 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-5 *6 (-1174 (-499))) (-4 *3 (-13 (-27) (-1143) (-375 *7))) (-4 *7 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *7 *3)))) (-3968 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-499))) (-5 *4 (-247 *7)) (-5 *5 (-1174 (-499))) (-4 *7 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *6 *7)))) (-3968 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *6 *3)))) (-3968 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-499))) (-5 *4 (-247 *6)) (-4 *6 (-13 (-27) (-1143) (-375 *5))) (-4 *5 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *5 *6)))) (-3932 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-5 *6 (-1174 (-361 (-499)))) (-5 *7 (-361 (-499))) (-4 *3 (-13 (-27) (-1143) (-375 *8))) (-4 *8 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *8 *3)))) (-3932 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-361 (-499)))) (-5 *4 (-247 *8)) (-5 *5 (-1174 (-361 (-499)))) (-5 *6 (-361 (-499))) (-4 *8 (-13 (-27) (-1143) (-375 *7))) (-4 *7 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *7 *8)))) (-3929 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-5 *6 (-1174 (-499))) (-4 *3 (-13 (-27) (-1143) (-375 *7))) (-4 *7 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *7 *3)))) (-3929 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-499))) (-5 *4 (-247 *7)) (-5 *5 (-1174 (-499))) (-4 *7 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *6 *7)))) (-3879 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-5 *6 (-1174 (-714))) (-4 *3 (-13 (-27) (-1143) (-375 *7))) (-4 *7 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *7 *3)))) (-3879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-499))) (-5 *4 (-247 *7)) (-5 *5 (-1174 (-714))) (-4 *7 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *6 *7)))) (-3879 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *6 *3)))) (-3879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-499))) (-5 *4 (-247 *6)) (-4 *6 (-13 (-27) (-1143) (-375 *5))) (-4 *5 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) (-5 *1 (-413 *5 *6))))) +((-2138 ((|#2| |#2| |#1|) 15 T ELT)) (-2015 (((-599 |#2|) |#2| (-599 |#2|) |#1| (-857)) 82 T ELT)) (-2014 (((-2 (|:| |plist| (-599 |#2|)) (|:| |modulo| |#1|)) |#2| (-599 |#2|) |#1| (-857)) 71 T ELT))) +(((-414 |#1| |#2|) (-10 -7 (-15 -2014 ((-2 (|:| |plist| (-599 |#2|)) (|:| |modulo| |#1|)) |#2| (-599 |#2|) |#1| (-857))) (-15 -2015 ((-599 |#2|) |#2| (-599 |#2|) |#1| (-857))) (-15 -2138 (|#2| |#2| |#1|))) (-261) (-1183 |#1|)) (T -414)) +((-2138 (*1 *2 *2 *3) (-12 (-4 *3 (-261)) (-5 *1 (-414 *3 *2)) (-4 *2 (-1183 *3)))) (-2015 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-599 *3)) (-5 *5 (-857)) (-4 *3 (-1183 *4)) (-4 *4 (-261)) (-5 *1 (-414 *4 *3)))) (-2014 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-857)) (-4 *5 (-261)) (-4 *3 (-1183 *5)) (-5 *2 (-2 (|:| |plist| (-599 *3)) (|:| |modulo| *5))) (-5 *1 (-414 *5 *3)) (-5 *4 (-599 *3))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 28 T ELT)) (-3857 (($ |#3|) 25 T ELT)) (-1345 (((-3 $ "failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) 32 T ELT)) (-2016 (($ |#2| |#4| $) 33 T ELT)) (-3014 (($ |#2| (-671 |#3| |#4| |#5|)) 24 T ELT)) (-3015 (((-671 |#3| |#4| |#5|) $) 15 T ELT)) (-2018 ((|#3| $) 19 T ELT)) (-2019 ((|#4| $) 17 T ELT)) (-3312 ((|#2| $) 29 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-2017 (($ |#2| |#3| |#4|) 26 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 36 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 34 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-415 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-675 |#6|) (-675 |#2|) (-10 -8 (-15 -3312 (|#2| $)) (-15 -3015 ((-671 |#3| |#4| |#5|) $)) (-15 -2019 (|#4| $)) (-15 -2018 (|#3| $)) (-15 -4109 ($ $)) (-15 -3014 ($ |#2| (-671 |#3| |#4| |#5|))) (-15 -3857 ($ |#3|)) (-15 -2017 ($ |#2| |#3| |#4|)) (-15 -2016 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-599 (-1117)) (-146) (-781) (-195 (-4107 |#1|) (-714)) (-1 (-85) (-2 (|:| -2518 |#3|) (|:| -2519 |#4|)) (-2 (|:| -2518 |#3|) (|:| -2519 |#4|))) (-888 |#2| |#4| (-798 |#1|))) (T -415)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-599 (-1117))) (-4 *4 (-146)) (-4 *6 (-195 (-4107 *3) (-714))) (-14 *7 (-1 (-85) (-2 (|:| -2518 *5) (|:| -2519 *6)) (-2 (|:| -2518 *5) (|:| -2519 *6)))) (-5 *1 (-415 *3 *4 *5 *6 *7 *2)) (-4 *5 (-781)) (-4 *2 (-888 *4 *6 (-798 *3))))) (-3312 (*1 *2 *1) (-12 (-14 *3 (-599 (-1117))) (-4 *5 (-195 (-4107 *3) (-714))) (-14 *6 (-1 (-85) (-2 (|:| -2518 *4) (|:| -2519 *5)) (-2 (|:| -2518 *4) (|:| -2519 *5)))) (-4 *2 (-146)) (-5 *1 (-415 *3 *2 *4 *5 *6 *7)) (-4 *4 (-781)) (-4 *7 (-888 *2 *5 (-798 *3))))) (-3015 (*1 *2 *1) (-12 (-14 *3 (-599 (-1117))) (-4 *4 (-146)) (-4 *6 (-195 (-4107 *3) (-714))) (-14 *7 (-1 (-85) (-2 (|:| -2518 *5) (|:| -2519 *6)) (-2 (|:| -2518 *5) (|:| -2519 *6)))) (-5 *2 (-671 *5 *6 *7)) (-5 *1 (-415 *3 *4 *5 *6 *7 *8)) (-4 *5 (-781)) (-4 *8 (-888 *4 *6 (-798 *3))))) (-2019 (*1 *2 *1) (-12 (-14 *3 (-599 (-1117))) (-4 *4 (-146)) (-14 *6 (-1 (-85) (-2 (|:| -2518 *5) (|:| -2519 *2)) (-2 (|:| -2518 *5) (|:| -2519 *2)))) (-4 *2 (-195 (-4107 *3) (-714))) (-5 *1 (-415 *3 *4 *5 *2 *6 *7)) (-4 *5 (-781)) (-4 *7 (-888 *4 *2 (-798 *3))))) (-2018 (*1 *2 *1) (-12 (-14 *3 (-599 (-1117))) (-4 *4 (-146)) (-4 *5 (-195 (-4107 *3) (-714))) (-14 *6 (-1 (-85) (-2 (|:| -2518 *2) (|:| -2519 *5)) (-2 (|:| -2518 *2) (|:| -2519 *5)))) (-4 *2 (-781)) (-5 *1 (-415 *3 *4 *2 *5 *6 *7)) (-4 *7 (-888 *4 *5 (-798 *3))))) (-4109 (*1 *1 *1) (-12 (-14 *2 (-599 (-1117))) (-4 *3 (-146)) (-4 *5 (-195 (-4107 *2) (-714))) (-14 *6 (-1 (-85) (-2 (|:| -2518 *4) (|:| -2519 *5)) (-2 (|:| -2518 *4) (|:| -2519 *5)))) (-5 *1 (-415 *2 *3 *4 *5 *6 *7)) (-4 *4 (-781)) (-4 *7 (-888 *3 *5 (-798 *2))))) (-3014 (*1 *1 *2 *3) (-12 (-5 *3 (-671 *5 *6 *7)) (-4 *5 (-781)) (-4 *6 (-195 (-4107 *4) (-714))) (-14 *7 (-1 (-85) (-2 (|:| -2518 *5) (|:| -2519 *6)) (-2 (|:| -2518 *5) (|:| -2519 *6)))) (-14 *4 (-599 (-1117))) (-4 *2 (-146)) (-5 *1 (-415 *4 *2 *5 *6 *7 *8)) (-4 *8 (-888 *2 *6 (-798 *4))))) (-3857 (*1 *1 *2) (-12 (-14 *3 (-599 (-1117))) (-4 *4 (-146)) (-4 *5 (-195 (-4107 *3) (-714))) (-14 *6 (-1 (-85) (-2 (|:| -2518 *2) (|:| -2519 *5)) (-2 (|:| -2518 *2) (|:| -2519 *5)))) (-5 *1 (-415 *3 *4 *2 *5 *6 *7)) (-4 *2 (-781)) (-4 *7 (-888 *4 *5 (-798 *3))))) (-2017 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-599 (-1117))) (-4 *2 (-146)) (-4 *4 (-195 (-4107 *5) (-714))) (-14 *6 (-1 (-85) (-2 (|:| -2518 *3) (|:| -2519 *4)) (-2 (|:| -2518 *3) (|:| -2519 *4)))) (-5 *1 (-415 *5 *2 *3 *4 *6 *7)) (-4 *3 (-781)) (-4 *7 (-888 *2 *4 (-798 *5))))) (-2016 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-599 (-1117))) (-4 *2 (-146)) (-4 *3 (-195 (-4107 *4) (-714))) (-14 *6 (-1 (-85) (-2 (|:| -2518 *5) (|:| -2519 *3)) (-2 (|:| -2518 *5) (|:| -2519 *3)))) (-5 *1 (-415 *4 *2 *5 *3 *6 *7)) (-4 *5 (-781)) (-4 *7 (-888 *2 *3 (-798 *4)))))) +((-2020 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) +(((-416 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2020 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-738) (-781) (-510) (-888 |#3| |#1| |#2|) (-13 (-978 (-361 (-499))) (-318) (-10 -8 (-15 -4096 ($ |#4|)) (-15 -3119 (|#4| $)) (-15 -3118 (|#4| $))))) (T -416)) +((-2020 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-781)) (-4 *5 (-738)) (-4 *6 (-510)) (-4 *7 (-888 *6 *5 *3)) (-5 *1 (-416 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-978 (-361 (-499))) (-318) (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $)))))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3204 (((-599 |#3|) $) 41 T ELT)) (-3029 (((-85) $) NIL T ELT)) (-3020 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3860 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-3025 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) NIL (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) NIL (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ #1="failed") (-599 |#4|)) 49 T ELT)) (-3294 (($ (-599 |#4|)) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-3546 (($ |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-510)) ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 |#4|) $) 18 (|has| $ (-6 -4145)) ELT)) (-3318 ((|#3| $) 47 T ELT)) (-2727 (((-599 |#4|) $) 14 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) 26 (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-2051 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-3035 (((-599 |#3|) $) NIL T ELT)) (-3034 (((-85) |#3| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-510)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1387 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 39 T ELT)) (-3713 (($) 17 T ELT)) (-2048 (((-714) |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) (((-714) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 16 T ELT)) (-4122 (((-488) $) NIL (|has| |#4| (-569 (-488))) ELT) (($ (-599 |#4|)) 51 T ELT)) (-3670 (($ (-599 |#4|)) 13 T ELT)) (-3031 (($ $ |#3|) NIL T ELT)) (-3033 (($ $ |#3|) NIL T ELT)) (-3032 (($ $ |#3|) NIL T ELT)) (-4096 (((-797) $) 38 T ELT) (((-599 |#4|) $) 50 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 30 T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-417 |#1| |#2| |#3| |#4|) (-13 (-916 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4122 ($ (-599 |#4|))) (-6 -4145) (-6 -4146))) (-989) (-738) (-781) (-1005 |#1| |#2| |#3|)) (T -417)) +((-4122 (*1 *1 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-417 *3 *4 *5 *6))))) +((-2779 (($) 11 T ELT)) (-2785 (($) 13 T ELT)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) +(((-418 |#1| |#2| |#3|) (-10 -7 (-15 -2785 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2779 (|#1|))) (-419 |#2| |#3|) (-146) (-23)) (T -418)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3295 (((-3 |#1| "failed") $) 30 T ELT)) (-3294 ((|#1| $) 31 T ELT)) (-4094 (($ $ $) 27 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4098 ((|#2| $) 23 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 22 T CONST)) (-2785 (($) 28 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +(((-419 |#1| |#2|) (-113) (-146) (-23)) (T -419)) +((-2785 (*1 *1) (-12 (-4 *1 (-419 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-4094 (*1 *1 *1 *1) (-12 (-4 *1 (-419 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) +(-13 (-424 |t#1| |t#2|) (-978 |t#1|) (-10 -8 (-15 (-2785) ($) -4102) (-15 -4094 ($ $ $)))) +(((-73) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-424 |#1| |#2|) . T) ((-978 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-2021 (((-1207 (-1207 (-499))) (-1207 (-1207 (-499))) (-857)) 26 T ELT)) (-2022 (((-1207 (-1207 (-499))) (-857)) 21 T ELT))) +(((-420) (-10 -7 (-15 -2021 ((-1207 (-1207 (-499))) (-1207 (-1207 (-499))) (-857))) (-15 -2022 ((-1207 (-1207 (-499))) (-857))))) (T -420)) +((-2022 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1207 (-1207 (-499)))) (-5 *1 (-420)))) (-2021 (*1 *2 *2 *3) (-12 (-5 *2 (-1207 (-1207 (-499)))) (-5 *3 (-857)) (-5 *1 (-420))))) +((-2891 (((-499) (-499)) 32 T ELT) (((-499)) 24 T ELT)) (-2895 (((-499) (-499)) 28 T ELT) (((-499)) 20 T ELT)) (-2893 (((-499) (-499)) 30 T ELT) (((-499)) 22 T ELT)) (-2024 (((-85) (-85)) 14 T ELT) (((-85)) 12 T ELT)) (-2023 (((-85) (-85)) 13 T ELT) (((-85)) 11 T ELT)) (-2025 (((-85) (-85)) 26 T ELT) (((-85)) 17 T ELT))) +(((-421) (-10 -7 (-15 -2023 ((-85))) (-15 -2024 ((-85))) (-15 -2023 ((-85) (-85))) (-15 -2024 ((-85) (-85))) (-15 -2025 ((-85))) (-15 -2893 ((-499))) (-15 -2895 ((-499))) (-15 -2891 ((-499))) (-15 -2025 ((-85) (-85))) (-15 -2893 ((-499) (-499))) (-15 -2895 ((-499) (-499))) (-15 -2891 ((-499) (-499))))) (T -421)) +((-2891 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) (-2895 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) (-2893 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) (-2025 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421)))) (-2891 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) (-2895 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) (-2893 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) (-2025 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421)))) (-2024 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421)))) (-2023 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421)))) (-2024 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421)))) (-2023 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421))))) +((-2687 (((-85) $ $) NIL T ELT)) (-4001 (((-599 (-333)) $) 34 T ELT) (((-599 (-333)) $ (-599 (-333))) 145 T ELT)) (-2030 (((-599 (-1029 (-333))) $) 16 T ELT) (((-599 (-1029 (-333))) $ (-599 (-1029 (-333)))) 142 T ELT)) (-2027 (((-599 (-599 (-881 (-179)))) (-599 (-599 (-881 (-179)))) (-599 (-808))) 58 T ELT)) (-2031 (((-599 (-599 (-881 (-179)))) $) 137 T ELT)) (-3856 (((-1213) $ (-881 (-179)) (-808)) 162 T ELT)) (-2032 (($ $) 136 T ELT) (($ (-599 (-599 (-881 (-179))))) 148 T ELT) (($ (-599 (-599 (-881 (-179)))) (-599 (-808)) (-599 (-808)) (-599 (-857))) 147 T ELT) (($ (-599 (-599 (-881 (-179)))) (-599 (-808)) (-599 (-808)) (-599 (-857)) (-599 (-220))) 149 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-4010 (((-499) $) 110 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2033 (($) 146 T ELT)) (-2026 (((-599 (-179)) (-599 (-599 (-881 (-179))))) 89 T ELT)) (-2029 (((-1213) $ (-599 (-881 (-179))) (-808) (-808) (-857)) 154 T ELT) (((-1213) $ (-881 (-179))) 156 T ELT) (((-1213) $ (-881 (-179)) (-808) (-808) (-857)) 155 T ELT)) (-4096 (((-797) $) 168 T ELT) (($ (-599 (-599 (-881 (-179))))) 163 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2028 (((-1213) $ (-881 (-179))) 161 T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-422) (-13 (-1041) (-10 -8 (-15 -2033 ($)) (-15 -2032 ($ $)) (-15 -2032 ($ (-599 (-599 (-881 (-179)))))) (-15 -2032 ($ (-599 (-599 (-881 (-179)))) (-599 (-808)) (-599 (-808)) (-599 (-857)))) (-15 -2032 ($ (-599 (-599 (-881 (-179)))) (-599 (-808)) (-599 (-808)) (-599 (-857)) (-599 (-220)))) (-15 -2031 ((-599 (-599 (-881 (-179)))) $)) (-15 -4010 ((-499) $)) (-15 -2030 ((-599 (-1029 (-333))) $)) (-15 -2030 ((-599 (-1029 (-333))) $ (-599 (-1029 (-333))))) (-15 -4001 ((-599 (-333)) $)) (-15 -4001 ((-599 (-333)) $ (-599 (-333)))) (-15 -2029 ((-1213) $ (-599 (-881 (-179))) (-808) (-808) (-857))) (-15 -2029 ((-1213) $ (-881 (-179)))) (-15 -2029 ((-1213) $ (-881 (-179)) (-808) (-808) (-857))) (-15 -2028 ((-1213) $ (-881 (-179)))) (-15 -3856 ((-1213) $ (-881 (-179)) (-808))) (-15 -4096 ($ (-599 (-599 (-881 (-179)))))) (-15 -4096 ((-797) $)) (-15 -2027 ((-599 (-599 (-881 (-179)))) (-599 (-599 (-881 (-179)))) (-599 (-808)))) (-15 -2026 ((-599 (-179)) (-599 (-599 (-881 (-179))))))))) (T -422)) +((-4096 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-422)))) (-2033 (*1 *1) (-5 *1 (-422))) (-2032 (*1 *1 *1) (-5 *1 (-422))) (-2032 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *1 (-422)))) (-2032 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *3 (-599 (-808))) (-5 *4 (-599 (-857))) (-5 *1 (-422)))) (-2032 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *3 (-599 (-808))) (-5 *4 (-599 (-857))) (-5 *5 (-599 (-220))) (-5 *1 (-422)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *1 (-422)))) (-4010 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-422)))) (-2030 (*1 *2 *1) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *1 (-422)))) (-2030 (*1 *2 *1 *2) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *1 (-422)))) (-4001 (*1 *2 *1) (-12 (-5 *2 (-599 (-333))) (-5 *1 (-422)))) (-4001 (*1 *2 *1 *2) (-12 (-5 *2 (-599 (-333))) (-5 *1 (-422)))) (-2029 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-599 (-881 (-179)))) (-5 *4 (-808)) (-5 *5 (-857)) (-5 *2 (-1213)) (-5 *1 (-422)))) (-2029 (*1 *2 *1 *3) (-12 (-5 *3 (-881 (-179))) (-5 *2 (-1213)) (-5 *1 (-422)))) (-2029 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-881 (-179))) (-5 *4 (-808)) (-5 *5 (-857)) (-5 *2 (-1213)) (-5 *1 (-422)))) (-2028 (*1 *2 *1 *3) (-12 (-5 *3 (-881 (-179))) (-5 *2 (-1213)) (-5 *1 (-422)))) (-3856 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-881 (-179))) (-5 *4 (-808)) (-5 *2 (-1213)) (-5 *1 (-422)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *1 (-422)))) (-2027 (*1 *2 *2 *3) (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *3 (-599 (-808))) (-5 *1 (-422)))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *2 (-599 (-179))) (-5 *1 (-422))))) +((-3987 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) +(((-423 |#1| |#2| |#3|) (-10 -7 (-15 -3987 (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1|))) (-424 |#2| |#3|) (-146) (-23)) (T -423)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4098 ((|#2| $) 23 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 22 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +(((-424 |#1| |#2|) (-113) (-146) (-23)) (T -424)) +((-4098 (*1 *2 *1) (-12 (-4 *1 (-424 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) (-2779 (*1 *1) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3987 (*1 *1 *1) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3989 (*1 *1 *1 *1) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3987 (*1 *1 *1 *1) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) +(-13 (-1041) (-10 -8 (-15 -4098 (|t#2| $)) (-15 (-2779) ($) -4102) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3987 ($ $)) (-15 -3989 ($ $ $)) (-15 -3987 ($ $ $)))) +(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) +((-2035 (((-3 (-599 (-435 |#1| |#2|)) "failed") (-599 (-435 |#1| |#2|)) (-599 (-798 |#1|))) 135 T ELT)) (-2034 (((-599 (-599 (-205 |#1| |#2|))) (-599 (-205 |#1| |#2|)) (-599 (-798 |#1|))) 132 T ELT)) (-2036 (((-2 (|:| |dpolys| (-599 (-205 |#1| |#2|))) (|:| |coords| (-599 (-499)))) (-599 (-205 |#1| |#2|)) (-599 (-798 |#1|))) 87 T ELT))) +(((-425 |#1| |#2| |#3|) (-10 -7 (-15 -2034 ((-599 (-599 (-205 |#1| |#2|))) (-599 (-205 |#1| |#2|)) (-599 (-798 |#1|)))) (-15 -2035 ((-3 (-599 (-435 |#1| |#2|)) "failed") (-599 (-435 |#1| |#2|)) (-599 (-798 |#1|)))) (-15 -2036 ((-2 (|:| |dpolys| (-599 (-205 |#1| |#2|))) (|:| |coords| (-599 (-499)))) (-599 (-205 |#1| |#2|)) (-599 (-798 |#1|))))) (-599 (-1117)) (-406) (-406)) (T -425)) +((-2036 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-798 *5))) (-14 *5 (-599 (-1117))) (-4 *6 (-406)) (-5 *2 (-2 (|:| |dpolys| (-599 (-205 *5 *6))) (|:| |coords| (-599 (-499))))) (-5 *1 (-425 *5 *6 *7)) (-5 *3 (-599 (-205 *5 *6))) (-4 *7 (-406)))) (-2035 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-599 (-435 *4 *5))) (-5 *3 (-599 (-798 *4))) (-14 *4 (-599 (-1117))) (-4 *5 (-406)) (-5 *1 (-425 *4 *5 *6)) (-4 *6 (-406)))) (-2034 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-798 *5))) (-14 *5 (-599 (-1117))) (-4 *6 (-406)) (-5 *2 (-599 (-599 (-205 *5 *6)))) (-5 *1 (-425 *5 *6 *7)) (-5 *3 (-599 (-205 *5 *6))) (-4 *7 (-406))))) +((-3607 (((-3 $ "failed") $) 11 T ELT)) (-3130 (($ $ $) 22 T ELT)) (-2551 (($ $ $) 23 T ELT)) (-4099 (($ $ $) 9 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) 21 T ELT))) +(((-426 |#1|) (-10 -7 (-15 -2551 (|#1| |#1| |#1|)) (-15 -3130 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-499))) (-15 -4099 (|#1| |#1| |#1|)) (-15 -3607 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-714))) (-15 ** (|#1| |#1| (-857)))) (-427)) (T -426)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3874 (($) 23 T CONST)) (-3607 (((-3 $ "failed") $) 20 T ELT)) (-2528 (((-85) $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 30 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3130 (($ $ $) 27 T ELT)) (-2551 (($ $ $) 26 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2785 (($) 24 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 29 T ELT)) (** (($ $ (-857)) 17 T ELT) (($ $ (-714)) 21 T ELT) (($ $ (-499)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +(((-427) (-113)) (T -427)) +((-2601 (*1 *1 *1) (-4 *1 (-427))) (-4099 (*1 *1 *1 *1) (-4 *1 (-427))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-427)) (-5 *2 (-499)))) (-3130 (*1 *1 *1 *1) (-4 *1 (-427))) (-2551 (*1 *1 *1 *1) (-4 *1 (-427)))) +(-13 (-684) (-10 -8 (-15 -2601 ($ $)) (-15 -4099 ($ $ $)) (-15 ** ($ $ (-499))) (-6 -4142) (-15 -3130 ($ $ $)) (-15 -2551 ($ $ $)))) +(((-73) . T) ((-568 (-797)) . T) ((-684) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) 18 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-361 (-499))) NIL T ELT) (($ $ (-361 (-499)) (-361 (-499))) NIL T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|))) $) NIL T ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-714) (-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|)))) NIL T ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3013 (((-85) $) NIL T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-361 (-499)) $) NIL T ELT) (((-361 (-499)) $ (-361 (-499))) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3927 (($ $ (-857)) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-361 (-499))) NIL T ELT) (($ $ (-1022) (-361 (-499))) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-361 (-499)))) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-4092 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3962 (($ $) 29 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) 35 (-3677 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))))) ELT) (($ $ (-1204 |#2|)) 30 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-361 (-499))) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4093 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-361 (-499))) NIL T ELT) (($ $ $) NIL (|has| (-361 (-499)) (-1052)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1117)) 28 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-1204 |#2|)) 16 T ELT)) (-4098 (((-361 (-499)) $) NIL T ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1204 |#2|)) NIL T ELT) (($ (-1188 |#1| |#2| |#3|)) 9 T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3827 ((|#1| $ (-361 (-499))) NIL T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-3923 ((|#1| $) 21 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-361 (-499))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-1204 |#2|)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-428 |#1| |#2| |#3|) (-13 (-1190 |#1|) (-831 $ (-1204 |#2|)) (-10 -8 (-15 -4096 ($ (-1204 |#2|))) (-15 -4096 ($ (-1188 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-361 (-499)))) (-15 -3962 ($ $ (-1204 |#2|))) |%noBranch|))) (-989) (-1117) |#1|) (T -428)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-428 *3 *4 *5)) (-4 *3 (-989)) (-14 *5 *3))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-1188 *3 *4 *5)) (-4 *3 (-989)) (-14 *4 (-1117)) (-14 *5 *3) (-5 *1 (-428 *3 *4 *5)))) (-3962 (*1 *1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-428 *3 *4 *5)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3)))) +((-2687 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2299 (((-1213) $ |#1| |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3938 ((|#2| $ |#1| |#2|) 18 T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3546 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2301 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2302 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-2333 (((-599 |#1|) $) NIL T ELT)) (-2334 (((-85) |#1| $) NIL T ELT)) (-1308 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2304 (((-599 |#1|) $) NIL T ELT)) (-2305 (((-85) |#1| $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-3951 ((|#2| $) NIL (|has| |#1| (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2300 (($ $ |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1499 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT) (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-4096 (((-797) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) (|has| |#2| (-568 (-797)))) ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-429 |#1| |#2| |#3| |#4|) (-1134 |#1| |#2|) (-1041) (-1041) (-1134 |#1| |#2|) |#2|) (T -429)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-3831 (((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 |#4|)))) (-599 |#4|)) NIL T ELT)) (-3832 (((-599 $) (-599 |#4|)) NIL T ELT)) (-3204 (((-599 |#3|) $) NIL T ELT)) (-3029 (((-85) $) NIL T ELT)) (-3020 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3843 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3838 ((|#4| |#4| $) NIL T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3860 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3025 (((-85) $) 29 (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3839 (((-599 |#4|) (-599 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) NIL (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) NIL (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ #1#) (-599 |#4|)) NIL T ELT)) (-3294 (($ (-599 |#4|)) NIL T ELT)) (-3949 (((-3 $ #1#) $) 45 T ELT)) (-3835 ((|#4| |#4| $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-3546 (($ |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-510)) ELT)) (-3844 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3833 ((|#4| |#4| $) NIL T ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4145)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3846 (((-2 (|:| -4011 (-599 |#4|)) (|:| -1795 (-599 |#4|))) $) NIL T ELT)) (-3010 (((-599 |#4|) $) 18 (|has| $ (-6 -4145)) ELT)) (-3845 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3318 ((|#3| $) 38 T ELT)) (-2727 (((-599 |#4|) $) 19 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-2051 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3035 (((-599 |#3|) $) NIL T ELT)) (-3034 (((-85) |#3| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3948 (((-3 |#4| #1#) $) 42 T ELT)) (-3847 (((-599 |#4|) $) NIL T ELT)) (-3841 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3836 ((|#4| |#4| $) NIL T ELT)) (-3849 (((-85) $ $) NIL T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-510)) ELT)) (-3842 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3837 ((|#4| |#4| $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 (((-3 |#4| #1#) $) 40 T ELT)) (-1387 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3829 (((-3 $ #1#) $ |#4|) 58 T ELT)) (-3919 (($ $ |#4|) NIL T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 17 T ELT)) (-3713 (($) 14 T ELT)) (-4098 (((-714) $) NIL T ELT)) (-2048 (((-714) |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) (((-714) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 13 T ELT)) (-4122 (((-488) $) NIL (|has| |#4| (-569 (-488))) ELT)) (-3670 (($ (-599 |#4|)) 22 T ELT)) (-3031 (($ $ |#3|) 52 T ELT)) (-3033 (($ $ |#3|) 54 T ELT)) (-3834 (($ $) NIL T ELT)) (-3032 (($ $ |#3|) NIL T ELT)) (-4096 (((-797) $) 35 T ELT) (((-599 |#4|) $) 46 T ELT)) (-3828 (((-714) $) NIL (|has| |#3| (-323)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3840 (((-85) $ (-1 (-85) |#4| (-599 |#4|))) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3830 (((-599 |#3|) $) NIL T ELT)) (-4083 (((-85) |#3| $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-430 |#1| |#2| |#3| |#4|) (-1152 |#1| |#2| |#3| |#4|) (-510) (-738) (-781) (-1005 |#1| |#2| |#3|)) (T -430)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL T ELT) (((-361 (-499)) $) NIL T ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3777 (($) 17 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-4122 (((-333) $) 21 T ELT) (((-179) $) 24 T ELT) (((-361 (-1111 (-499))) $) 18 T ELT) (((-488) $) 53 T ELT)) (-4096 (((-797) $) 51 T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (((-179) $) 23 T ELT) (((-333) $) 20 T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2779 (($) 37 T CONST)) (-2785 (($) 8 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT))) +(((-431) (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))) (-960) (-568 (-179)) (-568 (-333)) (-569 (-361 (-1111 (-499)))) (-569 (-488)) (-10 -8 (-15 -3777 ($))))) (T -431)) +((-3777 (*1 *1) (-5 *1 (-431)))) +((-2687 (((-85) $ $) NIL T ELT)) (-3668 (((-1075) $) 11 T ELT)) (-3669 (((-1075) $) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 17 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-432) (-13 (-1023) (-10 -8 (-15 -3669 ((-1075) $)) (-15 -3668 ((-1075) $))))) (T -432)) +((-3669 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-432)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-432))))) +((-2687 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2299 (((-1213) $ |#1| |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3938 ((|#2| $ |#1| |#2|) 16 T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3546 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2301 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2302 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-2333 (((-599 |#1|) $) 13 T ELT)) (-2334 (((-85) |#1| $) NIL T ELT)) (-1308 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2304 (((-599 |#1|) $) NIL T ELT)) (-2305 (((-85) |#1| $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-3951 ((|#2| $) NIL (|has| |#1| (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2300 (($ $ |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) 19 T ELT)) (-3950 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1499 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT) (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-4096 (((-797) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) (|has| |#2| (-568 (-797)))) ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 11 (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-4107 (((-714) $) 15 (|has| $ (-6 -4145)) ELT))) +(((-433 |#1| |#2| |#3|) (-13 (-1134 |#1| |#2|) (-10 -7 (-6 -4145))) (-1041) (-1041) (-1099)) (T -433)) +NIL +((-2037 (((-499) (-499) (-499)) 19 T ELT)) (-2038 (((-85) (-499) (-499) (-499) (-499)) 28 T ELT)) (-3597 (((-1207 (-599 (-499))) (-714) (-714)) 42 T ELT))) +(((-434) (-10 -7 (-15 -2037 ((-499) (-499) (-499))) (-15 -2038 ((-85) (-499) (-499) (-499) (-499))) (-15 -3597 ((-1207 (-599 (-499))) (-714) (-714))))) (T -434)) +((-3597 (*1 *2 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1207 (-599 (-499)))) (-5 *1 (-434)))) (-2038 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-499)) (-5 *2 (-85)) (-5 *1 (-434)))) (-2037 (*1 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-434))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-798 |#1|)) $) NIL T ELT)) (-3206 (((-1111 $) $ (-798 |#1|)) NIL T ELT) (((-1111 |#2|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#2| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#2| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#2| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-798 |#1|))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#2| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#2| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-3 (-798 |#1|) #1#) $) NIL T ELT)) (-3294 ((|#2| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-798 |#1|) $) NIL T ELT)) (-3906 (($ $ $ (-798 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-2039 (($ $ (-599 (-499))) NIL T ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#2|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#2| (-406)) ELT) (($ $ (-798 |#1|)) NIL (|has| |#2| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#2| (-848)) ELT)) (-1694 (($ $ |#2| (-436 (-4107 |#1|) (-714)) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-798 |#1|) (-821 (-333))) (|has| |#2| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-798 |#1|) (-821 (-499))) (|has| |#2| (-821 (-499)))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3207 (($ (-1111 |#2|) (-798 |#1|)) NIL T ELT) (($ (-1111 $) (-798 |#1|)) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#2| (-436 (-4107 |#1|) (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-798 |#1|)) NIL T ELT)) (-2941 (((-436 (-4107 |#1|) (-714)) $) NIL T ELT) (((-714) $ (-798 |#1|)) NIL T ELT) (((-599 (-714)) $ (-599 (-798 |#1|))) NIL T ELT)) (-1695 (($ (-1 (-436 (-4107 |#1|) (-714)) (-436 (-4107 |#1|) (-714))) $) NIL T ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3205 (((-3 (-798 |#1|) #1#) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#2| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#2| (-406)) ELT) (($ $ $) NIL (|has| |#2| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-798 |#1|)) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 ((|#2| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#2| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#2| (-406)) ELT) (($ $ $) NIL (|has| |#2| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#2| (-848)) ELT)) (-3606 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-510)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-798 |#1|) |#2|) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 |#2|)) NIL T ELT) (($ $ (-798 |#1|) $) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 $)) NIL T ELT)) (-3907 (($ $ (-798 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3908 (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|))) NIL T ELT) (($ $ (-798 |#1|)) NIL T ELT)) (-4098 (((-436 (-4107 |#1|) (-714)) $) NIL T ELT) (((-714) $ (-798 |#1|)) NIL T ELT) (((-599 (-714)) $ (-599 (-798 |#1|))) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-798 |#1|) (-569 (-825 (-333)))) (|has| |#2| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-798 |#1|) (-569 (-825 (-499)))) (|has| |#2| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-798 |#1|) (-569 (-488))) (|has| |#2| (-569 (-488)))) ELT)) (-2938 ((|#2| $) NIL (|has| |#2| (-406)) ELT) (($ $ (-798 |#1|)) NIL (|has| |#2| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-798 |#1|)) NIL T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#2| (-38 (-361 (-499)))) (|has| |#2| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#2| (-510)) ELT)) (-3967 (((-599 |#2|) $) NIL T ELT)) (-3827 ((|#2| $ (-436 (-4107 |#1|) (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#2| (-848))) (|has| |#2| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#2| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#2| (-510)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|))) NIL T ELT) (($ $ (-798 |#1|)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#2|) NIL (|has| |#2| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#2| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#2| (-38 (-361 (-499)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-435 |#1| |#2|) (-13 (-888 |#2| (-436 (-4107 |#1|) (-714)) (-798 |#1|)) (-10 -8 (-15 -2039 ($ $ (-599 (-499)))))) (-599 (-1117)) (-989)) (T -435)) +((-2039 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-435 *3 *4)) (-14 *3 (-599 (-1117))) (-4 *4 (-989))))) +((-2687 (((-85) $ $) NIL (|has| |#2| (-73)) ELT)) (-3326 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3857 (($ (-857)) NIL (|has| |#2| (-989)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-2600 (($ $ $) NIL (|has| |#2| (-738)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3258 (((-714)) NIL (|has| |#2| (-323)) ELT)) (-3938 ((|#2| $ (-499) |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (-12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1041)) ELT)) (-3294 (((-499) $) NIL (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) ELT) (((-361 (-499)) $) NIL (-12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) ((|#2| $) NIL (|has| |#2| (-1041)) ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL (|has| |#2| (-989)) ELT) (((-647 |#2|) (-647 $)) NIL (|has| |#2| (-989)) ELT)) (-3607 (((-3 $ #1#) $) NIL (|has| |#2| (-989)) ELT)) (-3115 (($) NIL (|has| |#2| (-323)) ELT)) (-1609 ((|#2| $ (-499) |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ (-499)) 11 T ELT)) (-3324 (((-85) $) NIL (|has| |#2| (-738)) ELT)) (-3010 (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2528 (((-85) $) NIL (|has| |#2| (-989)) ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#2| (-781)) ELT)) (-2727 (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#2| (-781)) ELT)) (-2051 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2111 (((-857) $) NIL (|has| |#2| (-323)) ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL (|has| |#2| (-989)) ELT) (((-647 |#2|) (-1207 $)) NIL (|has| |#2| (-989)) ELT)) (-3380 (((-1099) $) NIL (|has| |#2| (-1041)) ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-2518 (($ (-857)) NIL (|has| |#2| (-323)) ELT)) (-3381 (((-1060) $) NIL (|has| |#2| (-1041)) ELT)) (-3951 ((|#2| $) NIL (|has| (-499) (-781)) ELT)) (-2300 (($ $ |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#2| $ (-499) |#2|) NIL T ELT) ((|#2| $ (-499)) NIL T ELT)) (-3986 ((|#2| $ $) NIL (|has| |#2| (-989)) ELT)) (-1501 (($ (-1207 |#2|)) NIL T ELT)) (-4061 (((-107)) NIL (|has| |#2| (-318)) ELT)) (-3908 (($ $ (-714)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-989)) ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL (|has| |#2| (-989)) ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-1207 |#2|) $) NIL T ELT) (($ (-499)) NIL (-3677 (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) (|has| |#2| (-989))) ELT) (($ (-361 (-499))) NIL (-12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) (($ |#2|) NIL (|has| |#2| (-1041)) ELT) (((-797) $) NIL (|has| |#2| (-568 (-797))) ELT)) (-3248 (((-714)) NIL (|has| |#2| (-989)) CONST)) (-1297 (((-85) $ $) NIL (|has| |#2| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2779 (($) NIL (|has| |#2| (-23)) CONST)) (-2785 (($) NIL (|has| |#2| (-989)) CONST)) (-2790 (($ $ (-714)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-989)) ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL (|has| |#2| (-989)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#2| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-2806 (((-85) $ $) 17 (|has| |#2| (-781)) ELT)) (-4099 (($ $ |#2|) NIL (|has| |#2| (-318)) ELT)) (-3987 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3989 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-714)) NIL (|has| |#2| (-989)) ELT) (($ $ (-857)) NIL (|has| |#2| (-989)) ELT)) (* (($ $ $) NIL (|has| |#2| (-989)) ELT) (($ $ |#2|) NIL (|has| |#2| (-684)) ELT) (($ |#2| $) NIL (|has| |#2| (-684)) ELT) (($ (-499) $) NIL (|has| |#2| (-21)) ELT) (($ (-714) $) NIL (|has| |#2| (-23)) ELT) (($ (-857) $) NIL (|has| |#2| (-25)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-436 |#1| |#2|) (-195 |#1| |#2|) (-714) (-738)) (T -436)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-2040 (((-599 (-810)) $) 15 T ELT)) (-3690 (((-460) $) 13 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2041 (($ (-460) (-599 (-810))) 11 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 22 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-437) (-13 (-1023) (-10 -8 (-15 -2041 ($ (-460) (-599 (-810)))) (-15 -3690 ((-460) $)) (-15 -2040 ((-599 (-810)) $))))) (T -437)) +((-2041 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-599 (-810))) (-5 *1 (-437)))) (-3690 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-437)))) (-2040 (*1 *2 *1) (-12 (-5 *2 (-599 (-810))) (-5 *1 (-437))))) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3874 (($) NIL T CONST)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2977 (($ $ $) 48 T ELT)) (-3658 (($ $ $) 47 T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2978 ((|#1| $) 40 T ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 41 T ELT)) (-3757 (($ |#1| $) 18 T ELT)) (-2042 (($ (-599 |#1|)) 19 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-1309 ((|#1| $) 34 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) 11 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) 45 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 29 (|has| $ (-6 -4145)) ELT))) +(((-438 |#1|) (-13 (-908 |#1|) (-10 -8 (-15 -2042 ($ (-599 |#1|))))) (-781)) (T -438)) +((-2042 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-438 *3))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3992 (($ $) 71 T ELT)) (-1729 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2071 (((-367 |#2| (-361 |#2|) |#3| |#4|) $) 45 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (((-3 |#4| #1#) $) 117 T ELT)) (-1730 (($ (-367 |#2| (-361 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-499)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3575 (((-2 (|:| -2442 (-367 |#2| (-361 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-4096 (((-797) $) 110 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 32 T CONST)) (-3174 (((-85) $ $) 121 T ELT)) (-3987 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 72 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 77 T ELT))) +(((-439 |#1| |#2| |#3| |#4|) (-291 |#1| |#2| |#3| |#4|) (-318) (-1183 |#1|) (-1183 (-361 |#2|)) (-297 |#1| |#2| |#3|)) (T -439)) +NIL +((-2046 (((-499) (-599 (-499))) 53 T ELT)) (-2043 ((|#1| (-599 |#1|)) 94 T ELT)) (-2045 (((-599 |#1|) (-599 |#1|)) 95 T ELT)) (-2044 (((-599 |#1|) (-599 |#1|)) 97 T ELT)) (-3282 ((|#1| (-599 |#1|)) 96 T ELT)) (-2938 (((-599 (-499)) (-599 |#1|)) 56 T ELT))) +(((-440 |#1|) (-10 -7 (-15 -3282 (|#1| (-599 |#1|))) (-15 -2043 (|#1| (-599 |#1|))) (-15 -2044 ((-599 |#1|) (-599 |#1|))) (-15 -2045 ((-599 |#1|) (-599 |#1|))) (-15 -2938 ((-599 (-499)) (-599 |#1|))) (-15 -2046 ((-499) (-599 (-499))))) (-1183 (-499))) (T -440)) +((-2046 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-499)) (-5 *1 (-440 *4)) (-4 *4 (-1183 *2)))) (-2938 (*1 *2 *3) (-12 (-5 *3 (-599 *4)) (-4 *4 (-1183 (-499))) (-5 *2 (-599 (-499))) (-5 *1 (-440 *4)))) (-2045 (*1 *2 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1183 (-499))) (-5 *1 (-440 *3)))) (-2044 (*1 *2 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1183 (-499))) (-5 *1 (-440 *3)))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-5 *1 (-440 *2)) (-4 *2 (-1183 (-499))))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-5 *1 (-440 *2)) (-4 *2 (-1183 (-499)))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3251 (((-499) $) NIL (|has| (-499) (-261)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| (-499) (-763)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL T ELT) (((-3 (-1117) #1#) $) NIL (|has| (-499) (-978 (-1117))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| (-499) (-978 (-499))) ELT) (((-3 (-499) #1#) $) NIL (|has| (-499) (-978 (-499))) ELT)) (-3294 (((-499) $) NIL T ELT) (((-1117) $) NIL (|has| (-499) (-978 (-1117))) ELT) (((-361 (-499)) $) NIL (|has| (-499) (-978 (-499))) ELT) (((-499) $) NIL (|has| (-499) (-978 (-499))) ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-499)) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-499) (-498)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3324 (((-85) $) NIL (|has| (-499) (-763)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| (-499) (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| (-499) (-821 (-333))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL T ELT)) (-3119 (((-499) $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| (-499) (-1092)) ELT)) (-3325 (((-85) $) NIL (|has| (-499) (-763)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| (-499) (-781)) ELT)) (-4108 (($ (-1 (-499) (-499)) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL T ELT) (((-647 (-499)) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-499) (-1092)) CONST)) (-2047 (($ (-361 (-499))) 9 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL (|has| (-499) (-261)) ELT) (((-361 (-499)) $) NIL T ELT)) (-3252 (((-499) $) NIL (|has| (-499) (-498)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-3918 (($ $ (-599 (-499)) (-599 (-499))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-499) (-499)) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-247 (-499))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-599 (-247 (-499)))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-599 (-1117)) (-599 (-499))) NIL (|has| (-499) (-468 (-1117) (-499))) ELT) (($ $ (-1117) (-499)) NIL (|has| (-499) (-468 (-1117) (-499))) ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ $ (-499)) NIL (|has| (-499) (-240 (-499) (-499))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $ (-1 (-499) (-499))) NIL T ELT) (($ $ (-1 (-499) (-499)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $) NIL (|has| (-499) (-189)) ELT) (($ $ (-714)) NIL (|has| (-499) (-189)) ELT)) (-3116 (($ $) NIL T ELT)) (-3118 (((-499) $) NIL T ELT)) (-4122 (((-825 (-499)) $) NIL (|has| (-499) (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| (-499) (-569 (-825 (-333)))) ELT) (((-488) $) NIL (|has| (-499) (-569 (-488))) ELT) (((-333) $) NIL (|has| (-499) (-960)) ELT) (((-179) $) NIL (|has| (-499) (-960)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| (-499) (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) 8 T ELT) (($ (-499)) NIL T ELT) (($ (-1117)) NIL (|has| (-499) (-978 (-1117))) ELT) (((-361 (-499)) $) NIL T ELT) (((-944 16) $) 10 T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| (-499) (-848))) (|has| (-499) (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-3253 (((-499) $) NIL (|has| (-499) (-498)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3523 (($ $) NIL (|has| (-499) (-763)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1 (-499) (-499))) NIL T ELT) (($ $ (-1 (-499) (-499)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $) NIL (|has| (-499) (-189)) ELT) (($ $ (-714)) NIL (|has| (-499) (-189)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-4099 (($ $ $) NIL T ELT) (($ (-499) (-499)) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ (-499)) NIL T ELT))) +(((-441) (-13 (-931 (-499)) (-568 (-361 (-499))) (-568 (-944 16)) (-10 -8 (-15 -3250 ((-361 (-499)) $)) (-15 -2047 ($ (-361 (-499))))))) (T -441)) +((-3250 (*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-441)))) (-2047 (*1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-441))))) +((-2727 (((-599 |#2|) $) 31 T ELT)) (-3383 (((-85) |#2| $) 39 T ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) 26 T ELT)) (-3918 (($ $ (-599 (-247 |#2|))) 13 T ELT) (($ $ (-247 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) 30 T ELT) (((-714) |#2| $) 37 T ELT)) (-4096 (((-797) $) 45 T ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3174 (((-85) $ $) 35 T ELT)) (-4107 (((-714) $) 18 T ELT))) +(((-442 |#1| |#2|) (-10 -7 (-15 -3174 ((-85) |#1| |#1|)) (-15 -4096 ((-797) |#1|)) (-15 -3918 (|#1| |#1| (-599 |#2|) (-599 |#2|))) (-15 -3918 (|#1| |#1| |#2| |#2|)) (-15 -3918 (|#1| |#1| (-247 |#2|))) (-15 -3918 (|#1| |#1| (-599 (-247 |#2|)))) (-15 -3383 ((-85) |#2| |#1|)) (-15 -2048 ((-714) |#2| |#1|)) (-15 -2727 ((-599 |#2|) |#1|)) (-15 -2048 ((-714) (-1 (-85) |#2|) |#1|)) (-15 -2049 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -2050 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -4107 ((-714) |#1|))) (-443 |#2|) (-1157)) (T -442)) +NIL +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3874 (($) 7 T CONST)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-443 |#1|) (-113) (-1157)) (T -443)) +((-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-443 *3)) (-4 *3 (-1157)))) (-2051 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4146)) (-4 *1 (-443 *3)) (-4 *3 (-1157)))) (-2050 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -4145)) (-4 *1 (-443 *4)) (-4 *4 (-1157)) (-5 *2 (-85)))) (-2049 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -4145)) (-4 *1 (-443 *4)) (-4 *4 (-1157)) (-5 *2 (-85)))) (-2048 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -4145)) (-4 *1 (-443 *4)) (-4 *4 (-1157)) (-5 *2 (-714)))) (-3010 (*1 *2 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-443 *3)) (-4 *3 (-1157)) (-5 *2 (-599 *3)))) (-2727 (*1 *2 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-443 *3)) (-4 *3 (-1157)) (-5 *2 (-599 *3)))) (-2048 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-443 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)) (-5 *2 (-714)))) (-3383 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-443 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)) (-5 *2 (-85))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-568 (-797))) (-6 (-568 (-797))) |%noBranch|) (IF (|has| |t#1| (-73)) (-6 (-73)) |%noBranch|) (IF (|has| |t#1| (-1041)) (-6 (-1041)) |%noBranch|) (IF (|has| |t#1| (-1041)) (IF (|has| |t#1| (-263 |t#1|)) (-6 (-263 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4108 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4146)) (-15 -2051 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4145)) (PROGN (-15 -2050 ((-85) (-1 (-85) |t#1|) $)) (-15 -2049 ((-85) (-1 (-85) |t#1|) $)) (-15 -2048 ((-714) (-1 (-85) |t#1|) $)) (-15 -3010 ((-599 |t#1|) $)) (-15 -2727 ((-599 |t#1|) $)) (IF (|has| |t#1| (-1041)) (PROGN (-15 -2048 ((-714) |t#1| $)) (-15 -3383 ((-85) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) +((-4096 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) +(((-444 |#1|) (-113) (-1157)) (T -444)) +NIL +(-13 (-568 |t#1|) (-571 |t#1|)) +(((-571 |#1|) . T) ((-568 |#1|) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2052 (($ (-1099)) 8 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 15 T ELT) (((-1099) $) 12 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 11 T ELT))) +(((-445) (-13 (-1041) (-568 (-1099)) (-10 -8 (-15 -2052 ($ (-1099)))))) (T -445)) +((-2052 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-445))))) +((-3632 (($ $) 15 T ELT)) (-3630 (($ $) 24 T ELT)) (-3634 (($ $) 12 T ELT)) (-3635 (($ $) 10 T ELT)) (-3633 (($ $) 17 T ELT)) (-3631 (($ $) 22 T ELT))) +(((-446 |#1|) (-10 -7 (-15 -3631 (|#1| |#1|)) (-15 -3633 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -3632 (|#1| |#1|))) (-447)) (T -446)) +NIL +((-3632 (($ $) 11 T ELT)) (-3630 (($ $) 10 T ELT)) (-3634 (($ $) 9 T ELT)) (-3635 (($ $) 8 T ELT)) (-3633 (($ $) 7 T ELT)) (-3631 (($ $) 6 T ELT))) +(((-447) (-113)) (T -447)) +((-3632 (*1 *1 *1) (-4 *1 (-447))) (-3630 (*1 *1 *1) (-4 *1 (-447))) (-3634 (*1 *1 *1) (-4 *1 (-447))) (-3635 (*1 *1 *1) (-4 *1 (-447))) (-3633 (*1 *1 *1) (-4 *1 (-447))) (-3631 (*1 *1 *1) (-4 *1 (-447)))) +(-13 (-10 -8 (-15 -3631 ($ $)) (-15 -3633 ($ $)) (-15 -3635 ($ $)) (-15 -3634 ($ $)) (-15 -3630 ($ $)) (-15 -3632 ($ $)))) +((-3882 (((-359 |#4|) |#4| (-1 (-359 |#2|) |#2|)) 54 T ELT))) +(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3882 ((-359 |#4|) |#4| (-1 (-359 |#2|) |#2|)))) (-318) (-1183 |#1|) (-13 (-318) (-120) (-682 |#1| |#2|)) (-1183 |#3|)) (T -448)) +((-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-359 *6) *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) (-4 *7 (-13 (-318) (-120) (-682 *5 *6))) (-5 *2 (-359 *3)) (-5 *1 (-448 *5 *6 *7 *3)) (-4 *3 (-1183 *7))))) +((-2687 (((-85) $ $) NIL T ELT)) (-1640 (((-599 $) (-1111 $) (-1117)) NIL T ELT) (((-599 $) (-1111 $)) NIL T ELT) (((-599 $) (-884 $)) NIL T ELT)) (-1242 (($ (-1111 $) (-1117)) NIL T ELT) (($ (-1111 $)) NIL T ELT) (($ (-884 $)) NIL T ELT)) (-3326 (((-85) $) 39 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-2053 (((-85) $ $) 72 T ELT)) (-1633 (((-599 (-566 $)) $) 49 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1637 (($ $ (-247 $)) NIL T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-599 (-566 $)) (-599 $)) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-3158 (($ $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-1243 (((-599 $) (-1111 $) (-1117)) NIL T ELT) (((-599 $) (-1111 $)) NIL T ELT) (((-599 $) (-884 $)) NIL T ELT)) (-3321 (($ (-1111 $) (-1117)) NIL T ELT) (($ (-1111 $)) NIL T ELT) (($ (-884 $)) NIL T ELT)) (-3295 (((-3 (-566 $) #1#) $) NIL T ELT) (((-3 (-499) #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT)) (-3294 (((-566 $) $) NIL T ELT) (((-499) $) NIL T ELT) (((-361 (-499)) $) 54 T ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-499)) (-647 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-361 (-499)))) (|:| |vec| (-1207 (-361 (-499))))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-361 (-499))) (-647 $)) NIL T ELT)) (-3992 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2692 (($ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1632 (((-599 (-86)) $) NIL T ELT)) (-3743 (((-86) (-86)) NIL T ELT)) (-2528 (((-85) $) 42 T ELT)) (-2794 (((-85) $) NIL (|has| $ (-978 (-499))) ELT)) (-3119 (((-1065 (-499) (-566 $)) $) 37 T ELT)) (-3132 (($ $ (-499)) NIL T ELT)) (-3254 (((-1111 $) (-1111 $) (-566 $)) 86 T ELT) (((-1111 $) (-1111 $) (-599 (-566 $))) 61 T ELT) (($ $ (-566 $)) 75 T ELT) (($ $ (-599 (-566 $))) 76 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-1630 (((-1111 $) (-566 $)) 73 (|has| $ (-989)) ELT)) (-4108 (($ (-1 $ $) (-566 $)) NIL T ELT)) (-1635 (((-3 (-566 $) #1#) $) NIL T ELT)) (-2381 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL T ELT) (((-647 (-499)) (-1207 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-361 (-499)))) (|:| |vec| (-1207 (-361 (-499))))) (-1207 $) $) NIL T ELT) (((-647 (-361 (-499))) (-1207 $)) NIL T ELT)) (-1993 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1634 (((-599 (-566 $)) $) NIL T ELT)) (-2336 (($ (-86) $) NIL T ELT) (($ (-86) (-599 $)) NIL T ELT)) (-2752 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1117)) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-2722 (((-714) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1631 (((-85) $ $) NIL T ELT) (((-85) $ (-1117)) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2795 (((-85) $) NIL (|has| $ (-978 (-499))) ELT)) (-3918 (($ $ (-566 $) $) NIL T ELT) (($ $ (-599 (-566 $)) (-599 $)) NIL T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ $))) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-1 $ (-599 $)))) NIL T ELT) (($ $ (-1117) (-1 $ (-599 $))) NIL T ELT) (($ $ (-1117) (-1 $ $)) NIL T ELT) (($ $ (-599 (-86)) (-599 (-1 $ $))) NIL T ELT) (($ $ (-599 (-86)) (-599 (-1 $ (-599 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-599 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-599 $)) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1636 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3908 (($ $) 36 T ELT) (($ $ (-714)) NIL T ELT)) (-3118 (((-1065 (-499) (-566 $)) $) 20 T ELT)) (-3323 (($ $) NIL (|has| $ (-989)) ELT)) (-4122 (((-333) $) 100 T ELT) (((-179) $) 108 T ELT) (((-142 (-333)) $) 116 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-566 $)) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-1065 (-499) (-566 $))) 21 T ELT)) (-3248 (((-714)) NIL T CONST)) (-2709 (($ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-2355 (((-85) (-86)) 92 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2779 (($) 10 T CONST)) (-2785 (($) 22 T CONST)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3174 (((-85) $ $) 24 T ELT)) (-4099 (($ $ $) 44 T ELT)) (-3987 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-361 (-499))) NIL T ELT) (($ $ (-499)) 47 T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-857)) NIL T ELT)) (* (($ (-361 (-499)) $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-499) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-857) $) NIL T ELT))) +(((-449) (-13 (-252) (-27) (-978 (-499)) (-978 (-361 (-499))) (-596 (-499)) (-960) (-596 (-361 (-499))) (-120) (-569 (-142 (-333))) (-190) (-571 (-1065 (-499) (-566 $))) (-10 -8 (-15 -3119 ((-1065 (-499) (-566 $)) $)) (-15 -3118 ((-1065 (-499) (-566 $)) $)) (-15 -3992 ($ $)) (-15 -2053 ((-85) $ $)) (-15 -3254 ((-1111 $) (-1111 $) (-566 $))) (-15 -3254 ((-1111 $) (-1111 $) (-599 (-566 $)))) (-15 -3254 ($ $ (-566 $))) (-15 -3254 ($ $ (-599 (-566 $))))))) (T -449)) +((-3119 (*1 *2 *1) (-12 (-5 *2 (-1065 (-499) (-566 (-449)))) (-5 *1 (-449)))) (-3118 (*1 *2 *1) (-12 (-5 *2 (-1065 (-499) (-566 (-449)))) (-5 *1 (-449)))) (-3992 (*1 *1 *1) (-5 *1 (-449))) (-2053 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-449)))) (-3254 (*1 *2 *2 *3) (-12 (-5 *2 (-1111 (-449))) (-5 *3 (-566 (-449))) (-5 *1 (-449)))) (-3254 (*1 *2 *2 *3) (-12 (-5 *2 (-1111 (-449))) (-5 *3 (-599 (-566 (-449)))) (-5 *1 (-449)))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-566 (-449))) (-5 *1 (-449)))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-566 (-449)))) (-5 *1 (-449))))) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| |#1| (-781))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-781)) ELT)) (-3938 ((|#1| $ (-499) |#1|) 42 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) 38 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 37 T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) NIL T ELT) (((-499) |#1| $) NIL (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) NIL (|has| |#1| (-1041)) ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) |#1|) 21 T ELT)) (-2301 (((-499) $) 17 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) 39 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 28 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 31 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 34 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2300 (($ $ |#1|) 15 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) 19 T ELT)) (-3950 ((|#1| $ (-499) |#1|) NIL T ELT) ((|#1| $ (-499)) 41 T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 13 T ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 24 T ELT)) (-3952 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-4107 (((-714) $) 11 (|has| $ (-6 -4145)) ELT))) +(((-450 |#1| |#2|) (-19 |#1|) (-1157) (-499)) (T -450)) +NIL +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3938 ((|#1| $ (-499) (-499) |#1|) NIL T ELT)) (-1283 (($ $ (-499) (-450 |#1| |#3|)) NIL T ELT)) (-1282 (($ $ (-499) (-450 |#1| |#2|)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3234 (((-450 |#1| |#3|) $ (-499)) NIL T ELT)) (-1609 ((|#1| $ (-499) (-499) |#1|) NIL T ELT)) (-3235 ((|#1| $ (-499) (-499)) NIL T ELT)) (-3010 (((-599 |#1|) $) NIL T ELT)) (-3237 (((-714) $) NIL T ELT)) (-3764 (($ (-714) (-714) |#1|) NIL T ELT)) (-3236 (((-714) $) NIL T ELT)) (-3241 (((-499) $) NIL T ELT)) (-3239 (((-499) $) NIL T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3240 (((-499) $) NIL T ELT)) (-3238 (((-499) $) NIL T ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2300 (($ $ |#1|) NIL T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-499) (-499)) NIL T ELT) ((|#1| $ (-499) (-499) |#1|) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-3233 (((-450 |#1| |#2|) $ (-499)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-451 |#1| |#2| |#3|) (-57 |#1| (-450 |#1| |#3|) (-450 |#1| |#2|)) (-1157) (-499) (-499)) (T -451)) +NIL +((-2055 (((-599 (-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|)))) (-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|))) (-714) (-714)) 32 T ELT)) (-2054 (((-599 (-1111 |#1|)) |#1| (-714) (-714) (-714)) 43 T ELT)) (-2178 (((-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|))) (-599 |#3|) (-599 (-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|)))) (-714)) 107 T ELT))) +(((-452 |#1| |#2| |#3|) (-10 -7 (-15 -2054 ((-599 (-1111 |#1|)) |#1| (-714) (-714) (-714))) (-15 -2055 ((-599 (-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|)))) (-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|))) (-714) (-714))) (-15 -2178 ((-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|))) (-599 |#3|) (-599 (-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|)))) (-714)))) (-305) (-1183 |#1|) (-1183 |#2|)) (T -452)) +((-2178 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 (-2 (|:| -2113 (-647 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-647 *7))))) (-5 *5 (-714)) (-4 *8 (-1183 *7)) (-4 *7 (-1183 *6)) (-4 *6 (-305)) (-5 *2 (-2 (|:| -2113 (-647 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-647 *7)))) (-5 *1 (-452 *6 *7 *8)))) (-2055 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-714)) (-4 *5 (-305)) (-4 *6 (-1183 *5)) (-5 *2 (-599 (-2 (|:| -2113 (-647 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-647 *6))))) (-5 *1 (-452 *5 *6 *7)) (-5 *3 (-2 (|:| -2113 (-647 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-647 *6)))) (-4 *7 (-1183 *6)))) (-2054 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-714)) (-4 *3 (-305)) (-4 *5 (-1183 *3)) (-5 *2 (-599 (-1111 *3))) (-5 *1 (-452 *3 *5 *6)) (-4 *6 (-1183 *5))))) +((-2061 (((-2 (|:| -2113 (-647 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-647 |#1|))) (-2 (|:| -2113 (-647 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-647 |#1|))) (-2 (|:| -2113 (-647 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-647 |#1|)))) 70 T ELT)) (-2056 ((|#1| (-647 |#1|) |#1| (-714)) 24 T ELT)) (-2058 (((-714) (-714) (-714)) 34 T ELT)) (-2060 (((-647 |#1|) (-647 |#1|) (-647 |#1|)) 50 T ELT)) (-2059 (((-647 |#1|) (-647 |#1|) (-647 |#1|) |#1|) 58 T ELT) (((-647 |#1|) (-647 |#1|) (-647 |#1|)) 55 T ELT)) (-2057 ((|#1| (-647 |#1|) (-647 |#1|) |#1| (-499)) 28 T ELT)) (-3469 ((|#1| (-647 |#1|)) 18 T ELT))) +(((-453 |#1| |#2| |#3|) (-10 -7 (-15 -3469 (|#1| (-647 |#1|))) (-15 -2056 (|#1| (-647 |#1|) |#1| (-714))) (-15 -2057 (|#1| (-647 |#1|) (-647 |#1|) |#1| (-499))) (-15 -2058 ((-714) (-714) (-714))) (-15 -2059 ((-647 |#1|) (-647 |#1|) (-647 |#1|))) (-15 -2059 ((-647 |#1|) (-647 |#1|) (-647 |#1|) |#1|)) (-15 -2060 ((-647 |#1|) (-647 |#1|) (-647 |#1|))) (-15 -2061 ((-2 (|:| -2113 (-647 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-647 |#1|))) (-2 (|:| -2113 (-647 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-647 |#1|))) (-2 (|:| -2113 (-647 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-647 |#1|)))))) (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $)))) (-1183 |#1|) (-364 |#1| |#2|)) (T -453)) +((-2061 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *4 (-1183 *3)) (-5 *1 (-453 *3 *4 *5)) (-4 *5 (-364 *3 *4)))) (-2060 (*1 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *4 (-1183 *3)) (-5 *1 (-453 *3 *4 *5)) (-4 *5 (-364 *3 *4)))) (-2059 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-647 *3)) (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *4 (-1183 *3)) (-5 *1 (-453 *3 *4 *5)) (-4 *5 (-364 *3 *4)))) (-2059 (*1 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *4 (-1183 *3)) (-5 *1 (-453 *3 *4 *5)) (-4 *5 (-364 *3 *4)))) (-2058 (*1 *2 *2 *2) (-12 (-5 *2 (-714)) (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *4 (-1183 *3)) (-5 *1 (-453 *3 *4 *5)) (-4 *5 (-364 *3 *4)))) (-2057 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-647 *2)) (-5 *4 (-499)) (-4 *2 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *5 (-1183 *2)) (-5 *1 (-453 *2 *5 *6)) (-4 *6 (-364 *2 *5)))) (-2056 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-647 *2)) (-5 *4 (-714)) (-4 *2 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *5 (-1183 *2)) (-5 *1 (-453 *2 *5 *6)) (-4 *6 (-364 *2 *5)))) (-3469 (*1 *2 *3) (-12 (-5 *3 (-647 *2)) (-4 *4 (-1183 *2)) (-4 *2 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-5 *1 (-453 *2 *4 *5)) (-4 *5 (-364 *2 *4))))) +((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-3462 (($ $ $) 41 T ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) $) NIL (|has| (-85) (-781)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1823 (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| (-85) (-781))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -4146)) ELT)) (-3030 (($ $) NIL (|has| (-85) (-781)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3938 (((-85) $ (-1174 (-499)) (-85)) NIL (|has| $ (-6 -4146)) ELT) (((-85) $ (-499) (-85)) 43 (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-3546 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-3992 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-1609 (((-85) $ (-499) (-85)) NIL (|has| $ (-6 -4146)) ELT)) (-3235 (((-85) $ (-499)) NIL T ELT)) (-3559 (((-499) (-85) $ (-499)) NIL (|has| (-85) (-1041)) ELT) (((-499) (-85) $) NIL (|has| (-85) (-1041)) ELT) (((-499) (-1 (-85) (-85)) $) NIL T ELT)) (-3010 (((-599 (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-2680 (($ $ $) 39 T ELT)) (-2679 (($ $) NIL T ELT)) (-1333 (($ $ $) NIL T ELT)) (-3764 (($ (-714) (-85)) 27 T ELT)) (-1334 (($ $ $) NIL T ELT)) (-2301 (((-499) $) 8 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL T ELT)) (-3658 (($ $ $) NIL (|has| (-85) (-781)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2727 (((-599 (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL T ELT)) (-2051 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-85) (-85) (-85)) $ $) 36 T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2404 (($ $ $ (-499)) NIL T ELT) (($ (-85) $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 (((-85) $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2300 (($ $ (-85)) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-85)) (-599 (-85))) NIL (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT) (($ $ (-247 (-85))) NIL (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT) (($ $ (-599 (-247 (-85)))) NIL (-12 (|has| (-85) (-263 (-85))) (|has| (-85) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT)) (-2306 (((-599 (-85)) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) 29 T ELT)) (-3950 (($ $ (-1174 (-499))) NIL T ELT) (((-85) $ (-499)) 22 T ELT) (((-85) $ (-499) (-85)) NIL T ELT)) (-2405 (($ $ (-1174 (-499))) NIL T ELT) (($ $ (-499)) NIL T ELT)) (-2048 (((-714) (-85) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-85) (-1041))) ELT) (((-714) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 30 T ELT)) (-4122 (((-488) $) NIL (|has| (-85) (-569 (-488))) ELT)) (-3670 (($ (-599 (-85))) NIL T ELT)) (-3952 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-4096 (((-797) $) 26 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -4145)) ELT)) (-2681 (($ $ $) 37 T ELT)) (-2411 (($ $ $) NIL T ELT)) (-3459 (($ $ $) 46 T ELT)) (-3461 (($ $) 44 T ELT)) (-3460 (($ $ $) 45 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 31 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 32 T ELT)) (-2412 (($ $ $) NIL T ELT)) (-4107 (((-714) $) 13 (|has| $ (-6 -4145)) ELT))) +(((-454 |#1|) (-13 (-96) (-10 -8 (-15 -3461 ($ $)) (-15 -3459 ($ $ $)) (-15 -3460 ($ $ $)))) (-499)) (T -454)) +((-3461 (*1 *1 *1) (-12 (-5 *1 (-454 *2)) (-14 *2 (-499)))) (-3459 (*1 *1 *1 *1) (-12 (-5 *1 (-454 *2)) (-14 *2 (-499)))) (-3460 (*1 *1 *1 *1) (-12 (-5 *1 (-454 *2)) (-14 *2 (-499))))) +((-2063 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1111 |#4|)) 35 T ELT)) (-2062 (((-1111 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1111 |#4|)) 22 T ELT)) (-2064 (((-3 (-647 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-647 (-1111 |#4|))) 46 T ELT)) (-2065 (((-1111 (-1111 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) +(((-455 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2062 (|#2| (-1 |#1| |#4|) (-1111 |#4|))) (-15 -2062 ((-1111 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2063 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1111 |#4|))) (-15 -2064 ((-3 (-647 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-647 (-1111 |#4|)))) (-15 -2065 ((-1111 (-1111 |#4|)) (-1 |#4| |#1|) |#3|))) (-989) (-1183 |#1|) (-1183 |#2|) (-989)) (T -455)) +((-2065 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-989)) (-4 *7 (-989)) (-4 *6 (-1183 *5)) (-5 *2 (-1111 (-1111 *7))) (-5 *1 (-455 *5 *6 *4 *7)) (-4 *4 (-1183 *6)))) (-2064 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-647 (-1111 *8))) (-4 *5 (-989)) (-4 *8 (-989)) (-4 *6 (-1183 *5)) (-5 *2 (-647 *6)) (-5 *1 (-455 *5 *6 *7 *8)) (-4 *7 (-1183 *6)))) (-2063 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1111 *7)) (-4 *5 (-989)) (-4 *7 (-989)) (-4 *2 (-1183 *5)) (-5 *1 (-455 *5 *2 *6 *7)) (-4 *6 (-1183 *2)))) (-2062 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-989)) (-4 *7 (-989)) (-4 *4 (-1183 *5)) (-5 *2 (-1111 *7)) (-5 *1 (-455 *5 *4 *6 *7)) (-4 *6 (-1183 *4)))) (-2062 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1111 *7)) (-4 *5 (-989)) (-4 *7 (-989)) (-4 *2 (-1183 *5)) (-5 *1 (-455 *5 *2 *6 *7)) (-4 *6 (-1183 *2))))) +((-2687 (((-85) $ $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2066 (((-1213) $) 25 T ELT)) (-3950 (((-1099) $ (-1117)) 30 T ELT)) (-3767 (((-1213) $) 19 T ELT)) (-4096 (((-797) $) 27 T ELT) (($ (-1099)) 26 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 11 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 9 T ELT))) +(((-456) (-13 (-781) (-571 (-1099)) (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 ((-1213) $)) (-15 -2066 ((-1213) $))))) (T -456)) +((-3950 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1099)) (-5 *1 (-456)))) (-3767 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-456)))) (-2066 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-456))))) +((-3891 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3889 ((|#1| |#4|) 10 T ELT)) (-3890 ((|#3| |#4|) 17 T ELT))) +(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3889 (|#1| |#4|)) (-15 -3890 (|#3| |#4|)) (-15 -3891 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-510) (-931 |#1|) (-327 |#1|) (-327 |#2|)) (T -457)) +((-3891 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-931 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-457 *4 *5 *6 *3)) (-4 *6 (-327 *4)) (-4 *3 (-327 *5)))) (-3890 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-931 *4)) (-4 *2 (-327 *4)) (-5 *1 (-457 *4 *5 *2 *3)) (-4 *3 (-327 *5)))) (-3889 (*1 *2 *3) (-12 (-4 *4 (-931 *2)) (-4 *2 (-510)) (-5 *1 (-457 *2 *4 *5 *3)) (-4 *5 (-327 *2)) (-4 *3 (-327 *4))))) +((-2687 (((-85) $ $) NIL T ELT)) (-2076 (((-85) $ (-599 |#3|)) 126 T ELT) (((-85) $) 127 T ELT)) (-3326 (((-85) $) 177 T ELT)) (-2068 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-599 |#3|)) 121 T ELT)) (-2067 (((-1106 (-599 (-884 |#1|)) (-599 (-247 (-884 |#1|)))) (-599 |#4|)) 170 (|has| |#3| (-569 (-1117))) ELT)) (-2075 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2528 (((-85) $) 176 T ELT)) (-2072 (($ $) 131 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3376 (($ $ $) 99 T ELT) (($ (-599 $)) 101 T ELT)) (-2077 (((-85) |#4| $) 129 T ELT)) (-2078 (((-85) $ $) 82 T ELT)) (-2071 (($ (-599 |#4|)) 106 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2070 (($ (-599 |#4|)) 174 T ELT)) (-2069 (((-85) $) 175 T ELT)) (-2352 (($ $) 85 T ELT)) (-2816 (((-599 |#4|) $) 73 T ELT)) (-2074 (((-2 (|:| |mval| (-647 |#1|)) (|:| |invmval| (-647 |#1|)) (|:| |genIdeal| $)) $ (-599 |#3|)) NIL T ELT)) (-2079 (((-85) |#4| $) 89 T ELT)) (-4061 (((-499) $ (-599 |#3|)) 133 T ELT) (((-499) $) 134 T ELT)) (-4096 (((-797) $) 173 T ELT) (($ (-599 |#4|)) 102 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2073 (($ (-2 (|:| |mval| (-647 |#1|)) (|:| |invmval| (-647 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3174 (((-85) $ $) 84 T ELT)) (-3989 (($ $ $) 109 T ELT)) (** (($ $ (-714)) 115 T ELT)) (* (($ $ $) 113 T ELT))) +(((-458 |#1| |#2| |#3| |#4|) (-13 (-1041) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-714))) (-15 -3989 ($ $ $)) (-15 -2528 ((-85) $)) (-15 -3326 ((-85) $)) (-15 -2079 ((-85) |#4| $)) (-15 -2078 ((-85) $ $)) (-15 -2077 ((-85) |#4| $)) (-15 -2076 ((-85) $ (-599 |#3|))) (-15 -2076 ((-85) $)) (-15 -3376 ($ $ $)) (-15 -3376 ($ (-599 $))) (-15 -2075 ($ $ $)) (-15 -2075 ($ $ |#4|)) (-15 -2352 ($ $)) (-15 -2074 ((-2 (|:| |mval| (-647 |#1|)) (|:| |invmval| (-647 |#1|)) (|:| |genIdeal| $)) $ (-599 |#3|))) (-15 -2073 ($ (-2 (|:| |mval| (-647 |#1|)) (|:| |invmval| (-647 |#1|)) (|:| |genIdeal| $)))) (-15 -4061 ((-499) $ (-599 |#3|))) (-15 -4061 ((-499) $)) (-15 -2072 ($ $)) (-15 -2071 ($ (-599 |#4|))) (-15 -2070 ($ (-599 |#4|))) (-15 -2069 ((-85) $)) (-15 -2816 ((-599 |#4|) $)) (-15 -4096 ($ (-599 |#4|))) (-15 -2068 ($ $ |#4|)) (-15 -2068 ($ $ |#4| (-599 |#3|))) (IF (|has| |#3| (-569 (-1117))) (-15 -2067 ((-1106 (-599 (-884 |#1|)) (-599 (-247 (-884 |#1|)))) (-599 |#4|))) |%noBranch|))) (-318) (-738) (-781) (-888 |#1| |#2| |#3|)) (T -458)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-3989 (*1 *1 *1 *1) (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))) (-2528 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-3326 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-2079 (*1 *2 *3 *1) (-12 (-4 *4 (-318)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6)))) (-2078 (*1 *2 *1 *1) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-2077 (*1 *2 *3 *1) (-12 (-4 *4 (-318)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6)))) (-2076 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *6)) (-4 *6 (-781)) (-4 *4 (-318)) (-4 *5 (-738)) (-5 *2 (-85)) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6)))) (-2076 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-3376 (*1 *1 *1 *1) (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))) (-3376 (*1 *1 *2) (-12 (-5 *2 (-599 (-458 *3 *4 *5 *6))) (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-2075 (*1 *1 *1 *1) (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))) (-2075 (*1 *1 *1 *2) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *2)) (-4 *2 (-888 *3 *4 *5)))) (-2352 (*1 *1 *1) (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))) (-2074 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *6)) (-4 *6 (-781)) (-4 *4 (-318)) (-4 *5 (-738)) (-5 *2 (-2 (|:| |mval| (-647 *4)) (|:| |invmval| (-647 *4)) (|:| |genIdeal| (-458 *4 *5 *6 *7)))) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6)))) (-2073 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-647 *3)) (|:| |invmval| (-647 *3)) (|:| |genIdeal| (-458 *3 *4 *5 *6)))) (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-4061 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *6)) (-4 *6 (-781)) (-4 *4 (-318)) (-4 *5 (-738)) (-5 *2 (-499)) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6)))) (-4061 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-499)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-2072 (*1 *1 *1) (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))) (-2071 (*1 *1 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6)))) (-2070 (*1 *1 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6)))) (-2069 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-2816 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *6)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6)))) (-2068 (*1 *1 *1 *2) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *2)) (-4 *2 (-888 *3 *4 *5)))) (-2068 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-599 *6)) (-4 *6 (-781)) (-4 *4 (-318)) (-4 *5 (-738)) (-5 *1 (-458 *4 *5 *6 *2)) (-4 *2 (-888 *4 *5 *6)))) (-2067 (*1 *2 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-888 *4 *5 *6)) (-4 *6 (-569 (-1117))) (-4 *4 (-318)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-1106 (-599 (-884 *4)) (-599 (-247 (-884 *4))))) (-5 *1 (-458 *4 *5 *6 *7))))) +((-2080 (((-85) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499))))) 177 T ELT)) (-2081 (((-85) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499))))) 178 T ELT)) (-2082 (((-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499))))) 128 T ELT)) (-3873 (((-85) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499))))) NIL T ELT)) (-2083 (((-599 (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499))))) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499))))) 180 T ELT)) (-2084 (((-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))) (-599 (-798 |#1|))) 196 T ELT))) +(((-459 |#1| |#2|) (-10 -7 (-15 -2080 ((-85) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))))) (-15 -2081 ((-85) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))))) (-15 -3873 ((-85) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))))) (-15 -2082 ((-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))))) (-15 -2083 ((-599 (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499))))) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))))) (-15 -2084 ((-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))) (-458 (-361 (-499)) (-196 |#2| (-714)) (-798 |#1|) (-205 |#1| (-361 (-499)))) (-599 (-798 |#1|))))) (-599 (-1117)) (-714)) (T -459)) +((-2084 (*1 *2 *2 *3) (-12 (-5 *2 (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499))))) (-5 *3 (-599 (-798 *4))) (-14 *4 (-599 (-1117))) (-14 *5 (-714)) (-5 *1 (-459 *4 *5)))) (-2083 (*1 *2 *3) (-12 (-14 *4 (-599 (-1117))) (-14 *5 (-714)) (-5 *2 (-599 (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499)))))) (-5 *1 (-459 *4 *5)) (-5 *3 (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499))))))) (-2082 (*1 *2 *2) (-12 (-5 *2 (-458 (-361 (-499)) (-196 *4 (-714)) (-798 *3) (-205 *3 (-361 (-499))))) (-14 *3 (-599 (-1117))) (-14 *4 (-714)) (-5 *1 (-459 *3 *4)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499))))) (-14 *4 (-599 (-1117))) (-14 *5 (-714)) (-5 *2 (-85)) (-5 *1 (-459 *4 *5)))) (-2081 (*1 *2 *3) (-12 (-5 *3 (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499))))) (-14 *4 (-599 (-1117))) (-14 *5 (-714)) (-5 *2 (-85)) (-5 *1 (-459 *4 *5)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499))))) (-14 *4 (-599 (-1117))) (-14 *5 (-714)) (-5 *2 (-85)) (-5 *1 (-459 *4 *5))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2085 (($) 6 T ELT)) (-4096 (((-797) $) 10 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-460) (-13 (-1041) (-10 -8 (-15 -2085 ($))))) (T -460)) +((-2085 (*1 *1) (-5 *1 (-460)))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3924 (((-599 (-807 |#2| |#1|)) $) 12 T ELT)) (-1345 (((-3 $ "failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3014 (($ |#1| |#2|) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2086 ((|#2| $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 16 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) 15 T ELT) (($ $ $) 39 T ELT)) (-3989 (($ $ $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 26 T ELT))) +(((-461 |#1| |#2|) (-13 (-21) (-463 |#1| |#2|)) (-21) (-784)) (T -461)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 17 T ELT)) (-3924 (((-599 (-807 |#2| |#1|)) $) 14 T ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) 44 T ELT)) (-3014 (($ |#1| |#2|) 41 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 43 T ELT)) (-2086 ((|#2| $) NIL T ELT)) (-3312 ((|#1| $) 45 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 13 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3989 (($ $ $) 31 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) 40 T ELT))) +(((-462 |#1| |#2|) (-13 (-23) (-463 |#1| |#2|)) (-23) (-784)) (T -462)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3924 (((-599 (-807 |#2| |#1|)) $) 15 T ELT)) (-4109 (($ $) 16 T ELT)) (-3014 (($ |#1| |#2|) 19 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 20 T ELT)) (-2086 ((|#2| $) 17 T ELT)) (-3312 ((|#1| $) 18 T ELT)) (-3380 (((-1099) $) 14 (-12 (|has| |#2| (-1041)) (|has| |#1| (-1041))) ELT)) (-3381 (((-1060) $) 13 (-12 (|has| |#2| (-1041)) (|has| |#1| (-1041))) ELT)) (-4096 (((-797) $) 12 (-12 (|has| |#2| (-1041)) (|has| |#1| (-1041))) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-463 |#1| |#2|) (-113) (-73) (-784)) (T -463)) +((-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-463 *3 *4)) (-4 *3 (-73)) (-4 *4 (-784)))) (-3014 (*1 *1 *2 *3) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-73)) (-4 *3 (-784)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *3 (-784)) (-4 *2 (-73)))) (-2086 (*1 *2 *1) (-12 (-4 *1 (-463 *3 *2)) (-4 *3 (-73)) (-4 *2 (-784)))) (-4109 (*1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-73)) (-4 *3 (-784)))) (-3924 (*1 *2 *1) (-12 (-4 *1 (-463 *3 *4)) (-4 *3 (-73)) (-4 *4 (-784)) (-5 *2 (-599 (-807 *4 *3)))))) +(-13 (-73) (-10 -8 (IF (|has| |t#1| (-1041)) (IF (|has| |t#2| (-1041)) (-6 (-1041)) |%noBranch|) |%noBranch|) (-15 -4108 ($ (-1 |t#1| |t#1|) $)) (-15 -3014 ($ |t#1| |t#2|)) (-15 -3312 (|t#1| $)) (-15 -2086 (|t#2| $)) (-15 -4109 ($ $)) (-15 -3924 ((-599 (-807 |t#2| |t#1|)) $)))) +(((-73) . T) ((-568 (-797)) -12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) ((-1041) -12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3924 (((-599 (-807 |#2| |#1|)) $) 39 T ELT)) (-4109 (($ $) 34 T ELT)) (-3014 (($ |#1| |#2|) 30 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 32 T ELT)) (-2086 ((|#2| $) 38 T ELT)) (-3312 ((|#1| $) 37 T ELT)) (-3380 (((-1099) $) NIL (-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) ELT)) (-3381 (((-1060) $) NIL (-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) ELT)) (-4096 (((-797) $) 28 (-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 21 T ELT))) +(((-464 |#1| |#2|) (-463 |#1| |#2|) (-73) (-784)) (T -464)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3924 (((-599 (-807 |#2| |#1|)) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3324 (((-85) $) NIL T ELT)) (-3014 (($ |#1| |#2|) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2086 ((|#2| $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 22 T ELT)) (-3989 (($ $ $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT))) +(((-465 |#1| |#2|) (-13 (-737) (-463 |#1| |#2|)) (-737) (-784)) (T -465)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3924 (((-599 (-807 |#2| |#1|)) $) NIL T ELT)) (-2600 (($ $ $) 23 T ELT)) (-1345 (((-3 $ "failed") $ $) 19 T ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3324 (((-85) $) NIL T ELT)) (-3014 (($ |#1| |#2|) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2086 ((|#2| $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT))) +(((-466 |#1| |#2|) (-13 (-738) (-463 |#1| |#2|)) (-738) (-781)) (T -466)) +NIL +((-3918 (($ $ (-599 |#2|) (-599 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) +(((-467 |#1| |#2| |#3|) (-10 -7 (-15 -3918 (|#1| |#1| |#2| |#3|)) (-15 -3918 (|#1| |#1| (-599 |#2|) (-599 |#3|)))) (-468 |#2| |#3|) (-1041) (-1157)) (T -467)) +NIL +((-3918 (($ $ (-599 |#1|) (-599 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) +(((-468 |#1| |#2|) (-113) (-1041) (-1157)) (T -468)) +((-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 *4)) (-5 *3 (-599 *5)) (-4 *1 (-468 *4 *5)) (-4 *4 (-1041)) (-4 *5 (-1157)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1157))))) +(-13 (-10 -8 (-15 -3918 ($ $ |t#1| |t#2|)) (-15 -3918 ($ $ (-599 |t#1|) (-599 |t#2|))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 17 T ELT)) (-3924 (((-599 (-2 (|:| |gen| |#1|) (|:| -4093 |#2|))) $) 19 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3258 (((-714) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-2399 ((|#1| $ (-499)) 24 T ELT)) (-1692 ((|#2| $ (-499)) 22 T ELT)) (-2391 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1691 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1690 (($ $ $) 55 (|has| |#2| (-737)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3827 ((|#2| |#1| $) 51 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 11 T CONST)) (-3174 (((-85) $ $) 30 T ELT)) (-3989 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) +(((-469 |#1| |#2| |#3|) (-277 |#1| |#2|) (-1041) (-104) |#2|) (T -469)) +NIL +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| |#1| (-781))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-781)) ELT)) (-2087 (((-85) (-85)) 32 T ELT)) (-3938 ((|#1| $ (-499) |#1|) 42 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-1603 (($ (-1 (-85) |#1|) $) 79 T ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-2481 (($ $) 83 (|has| |#1| (-1041)) ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3545 (($ |#1| $) NIL (|has| |#1| (-1041)) ELT) (($ (-1 (-85) |#1|) $) 66 T ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) NIL T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) NIL T ELT) (((-499) |#1| $) NIL (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) NIL (|has| |#1| (-1041)) ELT)) (-2088 (($ $ (-499)) 19 T ELT)) (-2089 (((-714) $) 13 T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) |#1|) 31 T ELT)) (-2301 (((-499) $) 29 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2977 (($ $ $) NIL (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 57 T ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) 28 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3757 (($ $ $ (-499)) 75 T ELT) (($ |#1| $ (-499)) 59 T ELT)) (-2404 (($ |#1| $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2090 (($ (-599 |#1|)) 43 T ELT)) (-3951 ((|#1| $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2300 (($ $ |#1|) 24 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 62 T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) 21 T ELT)) (-3950 ((|#1| $ (-499) |#1|) NIL T ELT) ((|#1| $ (-499)) 55 T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-1604 (($ $ (-1174 (-499))) 73 T ELT) (($ $ (-499)) 67 T ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1824 (($ $ $ (-499)) 63 (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 53 T ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) NIL T ELT)) (-3941 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3952 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-4107 (((-714) $) 22 (|has| $ (-6 -4145)) ELT))) +(((-470 |#1| |#2|) (-13 (-19 |#1|) (-236 |#1|) (-10 -8 (-15 -2090 ($ (-599 |#1|))) (-15 -2089 ((-714) $)) (-15 -2088 ($ $ (-499))) (-15 -2087 ((-85) (-85))))) (-1157) (-499)) (T -470)) +((-2090 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-470 *3 *4)) (-14 *4 (-499)))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-470 *3 *4)) (-4 *3 (-1157)) (-14 *4 (-499)))) (-2088 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-470 *3 *4)) (-4 *3 (-1157)) (-14 *4 *2))) (-2087 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-470 *3 *4)) (-4 *3 (-1157)) (-14 *4 (-499))))) +((-2687 (((-85) $ $) NIL T ELT)) (-2092 (((-1075) $) 11 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2091 (((-1075) $) 13 T ELT)) (-4072 (((-1075) $) 9 T ELT)) (-4096 (((-797) $) 19 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-471) (-13 (-1023) (-10 -8 (-15 -4072 ((-1075) $)) (-15 -2092 ((-1075) $)) (-15 -2091 ((-1075) $))))) (T -471)) +((-4072 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-471)))) (-2092 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-471)))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-471))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 (((-532 |#1|) $) NIL T ELT) (($ $ (-857)) NIL (|has| (-532 |#1|) (-323)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| (-532 |#1|) (-323)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| (-532 |#1|) (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-532 |#1|) #1#) $) NIL T ELT)) (-3294 (((-532 |#1|) $) NIL T ELT)) (-1890 (($ (-1207 (-532 |#1|))) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-532 |#1|) (-323)) ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-532 |#1|) (-323)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) NIL (|has| (-532 |#1|) (-323)) ELT)) (-1773 (((-85) $) NIL (|has| (-532 |#1|) (-323)) ELT)) (-1864 (($ $ (-714)) NIL (-3677 (|has| (-532 |#1|) (-118)) (|has| (-532 |#1|) (-323))) ELT) (($ $) NIL (-3677 (|has| (-532 |#1|) (-118)) (|has| (-532 |#1|) (-323))) ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-857) $) NIL (|has| (-532 |#1|) (-323)) ELT) (((-766 (-857)) $) NIL (-3677 (|has| (-532 |#1|) (-118)) (|has| (-532 |#1|) (-323))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) NIL (|has| (-532 |#1|) (-323)) ELT)) (-2112 (((-85) $) NIL (|has| (-532 |#1|) (-323)) ELT)) (-3254 (((-532 |#1|) $) NIL T ELT) (($ $ (-857)) NIL (|has| (-532 |#1|) (-323)) ELT)) (-3585 (((-649 $) $) NIL (|has| (-532 |#1|) (-323)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 (-532 |#1|)) $) NIL T ELT) (((-1111 $) $ (-857)) NIL (|has| (-532 |#1|) (-323)) ELT)) (-2111 (((-857) $) NIL (|has| (-532 |#1|) (-323)) ELT)) (-1697 (((-1111 (-532 |#1|)) $) NIL (|has| (-532 |#1|) (-323)) ELT)) (-1696 (((-1111 (-532 |#1|)) $) NIL (|has| (-532 |#1|) (-323)) ELT) (((-3 (-1111 (-532 |#1|)) #1#) $ $) NIL (|has| (-532 |#1|) (-323)) ELT)) (-1698 (($ $ (-1111 (-532 |#1|))) NIL (|has| (-532 |#1|) (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-532 |#1|) (-323)) CONST)) (-2518 (($ (-857)) NIL (|has| (-532 |#1|) (-323)) ELT)) (-4081 (((-85) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($) NIL (|has| (-532 |#1|) (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| (-532 |#1|) (-323)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-766 (-857))) NIL T ELT) (((-857)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-714) $) NIL (|has| (-532 |#1|) (-323)) ELT) (((-3 (-714) #1#) $ $) NIL (-3677 (|has| (-532 |#1|) (-118)) (|has| (-532 |#1|) (-323))) ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $ (-714)) NIL (|has| (-532 |#1|) (-323)) ELT) (($ $) NIL (|has| (-532 |#1|) (-323)) ELT)) (-4098 (((-766 (-857)) $) NIL T ELT) (((-857) $) NIL T ELT)) (-3323 (((-1111 (-532 |#1|))) NIL T ELT)) (-1767 (($) NIL (|has| (-532 |#1|) (-323)) ELT)) (-1699 (($) NIL (|has| (-532 |#1|) (-323)) ELT)) (-3362 (((-1207 (-532 |#1|)) $) NIL T ELT) (((-647 (-532 |#1|)) (-1207 $)) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| (-532 |#1|) (-323)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-532 |#1|)) NIL T ELT)) (-2823 (($ $) NIL (|has| (-532 |#1|) (-323)) ELT) (((-649 $) $) NIL (-3677 (|has| (-532 |#1|) (-118)) (|has| (-532 |#1|) (-323))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT) (((-1207 $) (-857)) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-4078 (($ $) NIL (|has| (-532 |#1|) (-323)) ELT) (($ $ (-714)) NIL (|has| (-532 |#1|) (-323)) ELT)) (-2790 (($ $ (-714)) NIL (|has| (-532 |#1|) (-323)) ELT) (($ $) NIL (|has| (-532 |#1|) (-323)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT) (($ $ (-532 |#1|)) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ (-532 |#1|)) NIL T ELT) (($ (-532 |#1|) $) NIL T ELT))) +(((-472 |#1| |#2|) (-283 (-532 |#1|)) (-857) (-857)) (T -472)) +NIL +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3938 ((|#1| $ (-499) (-499) |#1|) 51 T ELT)) (-1283 (($ $ (-499) |#4|) NIL T ELT)) (-1282 (($ $ (-499) |#5|) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3234 ((|#4| $ (-499)) NIL T ELT)) (-1609 ((|#1| $ (-499) (-499) |#1|) 50 T ELT)) (-3235 ((|#1| $ (-499) (-499)) 45 T ELT)) (-3010 (((-599 |#1|) $) NIL T ELT)) (-3237 (((-714) $) 33 T ELT)) (-3764 (($ (-714) (-714) |#1|) 30 T ELT)) (-3236 (((-714) $) 38 T ELT)) (-3241 (((-499) $) 31 T ELT)) (-3239 (((-499) $) 32 T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3240 (((-499) $) 37 T ELT)) (-3238 (((-499) $) 39 T ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3380 (((-1099) $) 55 (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2300 (($ $ |#1|) NIL T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 14 T ELT)) (-3713 (($) 16 T ELT)) (-3950 ((|#1| $ (-499) (-499)) 48 T ELT) ((|#1| $ (-499) (-499) |#1|) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-3233 ((|#5| $ (-499)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-473 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1157) (-499) (-499) (-327 |#1|) (-327 |#1|)) (T -473)) +NIL +((-3232 ((|#4| |#4|) 38 T ELT)) (-3231 (((-714) |#4|) 45 T ELT)) (-3230 (((-714) |#4|) 46 T ELT)) (-3229 (((-599 |#3|) |#4|) 57 (|has| |#3| (-6 -4146)) ELT)) (-3738 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-2093 ((|#4| |#4|) 61 T ELT)) (-3468 ((|#1| |#4|) 60 T ELT))) +(((-474 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3232 (|#4| |#4|)) (-15 -3231 ((-714) |#4|)) (-15 -3230 ((-714) |#4|)) (IF (|has| |#3| (-6 -4146)) (-15 -3229 ((-599 |#3|) |#4|)) |%noBranch|) (-15 -3468 (|#1| |#4|)) (-15 -2093 (|#4| |#4|)) (-15 -3738 ((-3 |#4| "failed") |#4|))) (-318) (-327 |#1|) (-327 |#1|) (-644 |#1| |#2| |#3|)) (T -474)) +((-3738 (*1 *2 *2) (|partial| -12 (-4 *3 (-318)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) (-2093 (*1 *2 *2) (-12 (-4 *3 (-318)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) (-3468 (*1 *2 *3) (-12 (-4 *4 (-327 *2)) (-4 *5 (-327 *2)) (-4 *2 (-318)) (-5 *1 (-474 *2 *4 *5 *3)) (-4 *3 (-644 *2 *4 *5)))) (-3229 (*1 *2 *3) (-12 (|has| *6 (-6 -4146)) (-4 *4 (-318)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-599 *6)) (-5 *1 (-474 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) (-3230 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-714)) (-5 *1 (-474 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) (-3231 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-714)) (-5 *1 (-474 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) (-3232 (*1 *2 *2) (-12 (-4 *3 (-318)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5))))) +((-3232 ((|#8| |#4|) 20 T ELT)) (-3229 (((-599 |#3|) |#4|) 29 (|has| |#7| (-6 -4146)) ELT)) (-3738 (((-3 |#8| "failed") |#4|) 23 T ELT))) +(((-475 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3232 (|#8| |#4|)) (-15 -3738 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4146)) (-15 -3229 ((-599 |#3|) |#4|)) |%noBranch|)) (-510) (-327 |#1|) (-327 |#1|) (-644 |#1| |#2| |#3|) (-931 |#1|) (-327 |#5|) (-327 |#5|) (-644 |#5| |#6| |#7|)) (T -475)) +((-3229 (*1 *2 *3) (-12 (|has| *9 (-6 -4146)) (-4 *4 (-510)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-4 *7 (-931 *4)) (-4 *8 (-327 *7)) (-4 *9 (-327 *7)) (-5 *2 (-599 *6)) (-5 *1 (-475 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-644 *4 *5 *6)) (-4 *10 (-644 *7 *8 *9)))) (-3738 (*1 *2 *3) (|partial| -12 (-4 *4 (-510)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-4 *7 (-931 *4)) (-4 *2 (-644 *7 *8 *9)) (-5 *1 (-475 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-644 *4 *5 *6)) (-4 *8 (-327 *7)) (-4 *9 (-327 *7)))) (-3232 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-4 *7 (-931 *4)) (-4 *2 (-644 *7 *8 *9)) (-5 *1 (-475 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-644 *4 *5 *6)) (-4 *8 (-327 *7)) (-4 *9 (-327 *7))))) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3988 (($ (-714) (-714)) NIL T ELT)) (-2456 (($ $ $) NIL T ELT)) (-3554 (($ (-552 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-3243 (((-85) $) NIL T ELT)) (-2455 (($ $ (-499) (-499)) 21 T ELT)) (-2454 (($ $ (-499) (-499)) NIL T ELT)) (-2453 (($ $ (-499) (-499) (-499) (-499)) NIL T ELT)) (-2458 (($ $) NIL T ELT)) (-3245 (((-85) $) NIL T ELT)) (-2452 (($ $ (-499) (-499) $) NIL T ELT)) (-3938 ((|#1| $ (-499) (-499) |#1|) NIL T ELT) (($ $ (-599 (-499)) (-599 (-499)) $) NIL T ELT)) (-1283 (($ $ (-499) (-552 |#1| |#3|)) NIL T ELT)) (-1282 (($ $ (-499) (-552 |#1| |#2|)) NIL T ELT)) (-3473 (($ (-714) |#1|) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3232 (($ $) 30 (|has| |#1| (-261)) ELT)) (-3234 (((-552 |#1| |#3|) $ (-499)) NIL T ELT)) (-3231 (((-714) $) 33 (|has| |#1| (-510)) ELT)) (-1609 ((|#1| $ (-499) (-499) |#1|) NIL T ELT)) (-3235 ((|#1| $ (-499) (-499)) NIL T ELT)) (-3010 (((-599 |#1|) $) NIL T ELT)) (-3230 (((-714) $) 35 (|has| |#1| (-510)) ELT)) (-3229 (((-599 (-552 |#1| |#2|)) $) 38 (|has| |#1| (-510)) ELT)) (-3237 (((-714) $) NIL T ELT)) (-3764 (($ (-714) (-714) |#1|) NIL T ELT)) (-3236 (((-714) $) NIL T ELT)) (-3467 ((|#1| $) 28 (|has| |#1| (-6 (-4147 #1="*"))) ELT)) (-3241 (((-499) $) 10 T ELT)) (-3239 (((-499) $) NIL T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3240 (((-499) $) 13 T ELT)) (-3238 (((-499) $) NIL T ELT)) (-3246 (($ (-599 (-599 |#1|))) NIL T ELT) (($ (-714) (-714) (-1 |#1| (-499) (-499))) NIL T ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3742 (((-599 (-599 |#1|)) $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3738 (((-3 $ #2="failed") $) 42 (|has| |#1| (-318)) ELT)) (-2457 (($ $ $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2300 (($ $ |#1|) NIL T ELT)) (-3606 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-510)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-499) (-499)) NIL T ELT) ((|#1| $ (-499) (-499) |#1|) NIL T ELT) (($ $ (-599 (-499)) (-599 (-499))) NIL T ELT)) (-3472 (($ (-599 |#1|)) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3244 (((-85) $) NIL T ELT)) (-3468 ((|#1| $) 26 (|has| |#1| (-6 (-4147 #1#))) ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-3233 (((-552 |#1| |#2|) $ (-499)) NIL T ELT)) (-4096 (($ (-552 |#1| |#2|)) NIL T ELT) (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3242 (((-85) $) NIL T ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-499) $) NIL T ELT) (((-552 |#1| |#2|) $ (-552 |#1| |#2|)) NIL T ELT) (((-552 |#1| |#3|) (-552 |#1| |#3|) $) NIL T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-476 |#1| |#2| |#3|) (-644 |#1| (-552 |#1| |#3|) (-552 |#1| |#2|)) (-989) (-499) (-499)) (T -476)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2094 (((-599 (-1158)) $) 13 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 19 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT) (($ (-599 (-1158))) 11 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-477) (-13 (-1023) (-10 -8 (-15 -4096 ($ (-599 (-1158)))) (-15 -2094 ((-599 (-1158)) $))))) (T -477)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-1158))) (-5 *1 (-477)))) (-2094 (*1 *2 *1) (-12 (-5 *2 (-599 (-1158))) (-5 *1 (-477))))) +((-2687 (((-85) $ $) NIL T ELT)) (-2095 (((-1075) $) 14 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3590 (((-460) $) 11 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 21 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-478) (-13 (-1023) (-10 -8 (-15 -3590 ((-460) $)) (-15 -2095 ((-1075) $))))) (T -478)) +((-3590 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-478)))) (-2095 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-478))))) +((-2101 (((-649 (-1166)) $) 15 T ELT)) (-2097 (((-649 (-1164)) $) 38 T ELT)) (-2099 (((-649 (-1163)) $) 29 T ELT)) (-2102 (((-649 (-503)) $) 12 T ELT)) (-2098 (((-649 (-501)) $) 42 T ELT)) (-2100 (((-649 (-500)) $) 33 T ELT)) (-2096 (((-714) $ (-102)) 54 T ELT))) +(((-479 |#1|) (-10 -7 (-15 -2096 ((-714) |#1| (-102))) (-15 -2097 ((-649 (-1164)) |#1|)) (-15 -2098 ((-649 (-501)) |#1|)) (-15 -2099 ((-649 (-1163)) |#1|)) (-15 -2100 ((-649 (-500)) |#1|)) (-15 -2101 ((-649 (-1166)) |#1|)) (-15 -2102 ((-649 (-503)) |#1|))) (-480)) (T -479)) +NIL +((-2101 (((-649 (-1166)) $) 12 T ELT)) (-2097 (((-649 (-1164)) $) 8 T ELT)) (-2099 (((-649 (-1163)) $) 10 T ELT)) (-2102 (((-649 (-503)) $) 13 T ELT)) (-2098 (((-649 (-501)) $) 9 T ELT)) (-2100 (((-649 (-500)) $) 11 T ELT)) (-2096 (((-714) $ (-102)) 7 T ELT)) (-2103 (((-649 (-101)) $) 14 T ELT)) (-1793 (($ $) 6 T ELT))) +(((-480) (-113)) (T -480)) +((-2103 (*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-101))))) (-2102 (*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-503))))) (-2101 (*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-1166))))) (-2100 (*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-500))))) (-2099 (*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-1163))))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-501))))) (-2097 (*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-1164))))) (-2096 (*1 *2 *1 *3) (-12 (-4 *1 (-480)) (-5 *3 (-102)) (-5 *2 (-714))))) +(-13 (-147) (-10 -8 (-15 -2103 ((-649 (-101)) $)) (-15 -2102 ((-649 (-503)) $)) (-15 -2101 ((-649 (-1166)) $)) (-15 -2100 ((-649 (-500)) $)) (-15 -2099 ((-649 (-1163)) $)) (-15 -2098 ((-649 (-501)) $)) (-15 -2097 ((-649 (-1164)) $)) (-15 -2096 ((-714) $ (-102))))) +(((-147) . T)) +((-2106 (((-1111 |#1|) (-714)) 114 T ELT)) (-3470 (((-1207 |#1|) (-1207 |#1|) (-857)) 107 T ELT)) (-2104 (((-1213) (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))) |#1|) 122 T ELT)) (-2108 (((-1207 |#1|) (-1207 |#1|) (-714)) 53 T ELT)) (-3115 (((-1207 |#1|) (-857)) 109 T ELT)) (-2110 (((-1207 |#1|) (-1207 |#1|) (-499)) 30 T ELT)) (-2105 (((-1111 |#1|) (-1207 |#1|)) 115 T ELT)) (-2114 (((-1207 |#1|) (-857)) 136 T ELT)) (-2112 (((-85) (-1207 |#1|)) 119 T ELT)) (-3254 (((-1207 |#1|) (-1207 |#1|) (-857)) 99 T ELT)) (-2115 (((-1111 |#1|) (-1207 |#1|)) 130 T ELT)) (-2111 (((-857) (-1207 |#1|)) 95 T ELT)) (-2601 (((-1207 |#1|) (-1207 |#1|)) 38 T ELT)) (-2518 (((-1207 |#1|) (-857) (-857)) 139 T ELT)) (-2109 (((-1207 |#1|) (-1207 |#1|) (-1060) (-1060)) 29 T ELT)) (-2107 (((-1207 |#1|) (-1207 |#1|) (-714) (-1060)) 54 T ELT)) (-2113 (((-1207 (-1207 |#1|)) (-857)) 135 T ELT)) (-4099 (((-1207 |#1|) (-1207 |#1|) (-1207 |#1|)) 120 T ELT)) (** (((-1207 |#1|) (-1207 |#1|) (-499)) 67 T ELT)) (* (((-1207 |#1|) (-1207 |#1|) (-1207 |#1|)) 31 T ELT))) +(((-481 |#1|) (-10 -7 (-15 -2104 ((-1213) (-1207 (-599 (-2 (|:| -3542 |#1|) (|:| -2518 (-1060))))) |#1|)) (-15 -3115 ((-1207 |#1|) (-857))) (-15 -2518 ((-1207 |#1|) (-857) (-857))) (-15 -2105 ((-1111 |#1|) (-1207 |#1|))) (-15 -2106 ((-1111 |#1|) (-714))) (-15 -2107 ((-1207 |#1|) (-1207 |#1|) (-714) (-1060))) (-15 -2108 ((-1207 |#1|) (-1207 |#1|) (-714))) (-15 -2109 ((-1207 |#1|) (-1207 |#1|) (-1060) (-1060))) (-15 -2110 ((-1207 |#1|) (-1207 |#1|) (-499))) (-15 ** ((-1207 |#1|) (-1207 |#1|) (-499))) (-15 * ((-1207 |#1|) (-1207 |#1|) (-1207 |#1|))) (-15 -4099 ((-1207 |#1|) (-1207 |#1|) (-1207 |#1|))) (-15 -3254 ((-1207 |#1|) (-1207 |#1|) (-857))) (-15 -3470 ((-1207 |#1|) (-1207 |#1|) (-857))) (-15 -2601 ((-1207 |#1|) (-1207 |#1|))) (-15 -2111 ((-857) (-1207 |#1|))) (-15 -2112 ((-85) (-1207 |#1|))) (-15 -2113 ((-1207 (-1207 |#1|)) (-857))) (-15 -2114 ((-1207 |#1|) (-857))) (-15 -2115 ((-1111 |#1|) (-1207 |#1|)))) (-305)) (T -481)) +((-2115 (*1 *2 *3) (-12 (-5 *3 (-1207 *4)) (-4 *4 (-305)) (-5 *2 (-1111 *4)) (-5 *1 (-481 *4)))) (-2114 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1207 *4)) (-5 *1 (-481 *4)) (-4 *4 (-305)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1207 (-1207 *4))) (-5 *1 (-481 *4)) (-4 *4 (-305)))) (-2112 (*1 *2 *3) (-12 (-5 *3 (-1207 *4)) (-4 *4 (-305)) (-5 *2 (-85)) (-5 *1 (-481 *4)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-1207 *4)) (-4 *4 (-305)) (-5 *2 (-857)) (-5 *1 (-481 *4)))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-305)) (-5 *1 (-481 *3)))) (-3470 (*1 *2 *2 *3) (-12 (-5 *2 (-1207 *4)) (-5 *3 (-857)) (-4 *4 (-305)) (-5 *1 (-481 *4)))) (-3254 (*1 *2 *2 *3) (-12 (-5 *2 (-1207 *4)) (-5 *3 (-857)) (-4 *4 (-305)) (-5 *1 (-481 *4)))) (-4099 (*1 *2 *2 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-305)) (-5 *1 (-481 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-305)) (-5 *1 (-481 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1207 *4)) (-5 *3 (-499)) (-4 *4 (-305)) (-5 *1 (-481 *4)))) (-2110 (*1 *2 *2 *3) (-12 (-5 *2 (-1207 *4)) (-5 *3 (-499)) (-4 *4 (-305)) (-5 *1 (-481 *4)))) (-2109 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1207 *4)) (-5 *3 (-1060)) (-4 *4 (-305)) (-5 *1 (-481 *4)))) (-2108 (*1 *2 *2 *3) (-12 (-5 *2 (-1207 *4)) (-5 *3 (-714)) (-4 *4 (-305)) (-5 *1 (-481 *4)))) (-2107 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1207 *5)) (-5 *3 (-714)) (-5 *4 (-1060)) (-4 *5 (-305)) (-5 *1 (-481 *5)))) (-2106 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1111 *4)) (-5 *1 (-481 *4)) (-4 *4 (-305)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-1207 *4)) (-4 *4 (-305)) (-5 *2 (-1111 *4)) (-5 *1 (-481 *4)))) (-2518 (*1 *2 *3 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1207 *4)) (-5 *1 (-481 *4)) (-4 *4 (-305)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1207 *4)) (-5 *1 (-481 *4)) (-4 *4 (-305)))) (-2104 (*1 *2 *3 *4) (-12 (-5 *3 (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060)))))) (-4 *4 (-305)) (-5 *2 (-1213)) (-5 *1 (-481 *4))))) +((-2101 (((-649 (-1166)) $) NIL T ELT)) (-2097 (((-649 (-1164)) $) NIL T ELT)) (-2099 (((-649 (-1163)) $) NIL T ELT)) (-2102 (((-649 (-503)) $) NIL T ELT)) (-2098 (((-649 (-501)) $) NIL T ELT)) (-2100 (((-649 (-500)) $) NIL T ELT)) (-2096 (((-714) $ (-102)) NIL T ELT)) (-2103 (((-649 (-101)) $) 26 T ELT)) (-2116 (((-1060) $ (-1060)) 31 T ELT)) (-3559 (((-1060) $) 30 T ELT)) (-2677 (((-85) $) 20 T ELT)) (-2118 (($ (-344)) 14 T ELT) (($ (-1099)) 16 T ELT)) (-2117 (((-85) $) 27 T ELT)) (-4096 (((-797) $) 34 T ELT)) (-1793 (($ $) 28 T ELT))) +(((-482) (-13 (-480) (-568 (-797)) (-10 -8 (-15 -2118 ($ (-344))) (-15 -2118 ($ (-1099))) (-15 -2117 ((-85) $)) (-15 -2677 ((-85) $)) (-15 -3559 ((-1060) $)) (-15 -2116 ((-1060) $ (-1060)))))) (T -482)) +((-2118 (*1 *1 *2) (-12 (-5 *2 (-344)) (-5 *1 (-482)))) (-2118 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-482)))) (-2117 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-482)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-482)))) (-3559 (*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-482)))) (-2116 (*1 *2 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-482))))) +((-2120 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2119 (((-1 |#1| |#1|)) 10 T ELT))) +(((-483 |#1|) (-10 -7 (-15 -2119 ((-1 |#1| |#1|))) (-15 -2120 ((-1 |#1| |#1|) |#1|))) (-13 (-684) (-25))) (T -483)) +((-2120 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-483 *3)) (-4 *3 (-13 (-684) (-25))))) (-2119 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-483 *3)) (-4 *3 (-13 (-684) (-25)))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3924 (((-599 (-807 |#1| (-714))) $) NIL T ELT)) (-2600 (($ $ $) NIL T ELT)) (-1345 (((-3 $ "failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3324 (((-85) $) NIL T ELT)) (-3014 (($ (-714) |#1|) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-4108 (($ (-1 (-714) (-714)) $) NIL T ELT)) (-2086 ((|#1| $) NIL T ELT)) (-3312 (((-714) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 27 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT))) +(((-484 |#1|) (-13 (-738) (-463 (-714) |#1|)) (-781)) (T -484)) +NIL +((-2122 (((-599 |#2|) (-1111 |#1|) |#3|) 98 T ELT)) (-2123 (((-599 (-2 (|:| |outval| |#2|) (|:| |outmult| (-499)) (|:| |outvect| (-599 (-647 |#2|))))) (-647 |#1|) |#3| (-1 (-359 (-1111 |#1|)) (-1111 |#1|))) 114 T ELT)) (-2121 (((-1111 |#1|) (-647 |#1|)) 110 T ELT))) +(((-485 |#1| |#2| |#3|) (-10 -7 (-15 -2121 ((-1111 |#1|) (-647 |#1|))) (-15 -2122 ((-599 |#2|) (-1111 |#1|) |#3|)) (-15 -2123 ((-599 (-2 (|:| |outval| |#2|) (|:| |outmult| (-499)) (|:| |outvect| (-599 (-647 |#2|))))) (-647 |#1|) |#3| (-1 (-359 (-1111 |#1|)) (-1111 |#1|))))) (-318) (-318) (-13 (-318) (-780))) (T -485)) +((-2123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-647 *6)) (-5 *5 (-1 (-359 (-1111 *6)) (-1111 *6))) (-4 *6 (-318)) (-5 *2 (-599 (-2 (|:| |outval| *7) (|:| |outmult| (-499)) (|:| |outvect| (-599 (-647 *7)))))) (-5 *1 (-485 *6 *7 *4)) (-4 *7 (-318)) (-4 *4 (-13 (-318) (-780))))) (-2122 (*1 *2 *3 *4) (-12 (-5 *3 (-1111 *5)) (-4 *5 (-318)) (-5 *2 (-599 *6)) (-5 *1 (-485 *5 *6 *4)) (-4 *6 (-318)) (-4 *4 (-13 (-318) (-780))))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-647 *4)) (-4 *4 (-318)) (-5 *2 (-1111 *4)) (-5 *1 (-485 *4 *5 *6)) (-4 *5 (-318)) (-4 *6 (-13 (-318) (-780)))))) +((-2674 (((-649 (-1166)) $ (-1166)) NIL T ELT)) (-2675 (((-649 (-503)) $ (-503)) NIL T ELT)) (-2673 (((-714) $ (-102)) 39 T ELT)) (-2676 (((-649 (-101)) $ (-101)) 40 T ELT)) (-2101 (((-649 (-1166)) $) NIL T ELT)) (-2097 (((-649 (-1164)) $) NIL T ELT)) (-2099 (((-649 (-1163)) $) NIL T ELT)) (-2102 (((-649 (-503)) $) NIL T ELT)) (-2098 (((-649 (-501)) $) NIL T ELT)) (-2100 (((-649 (-500)) $) NIL T ELT)) (-2096 (((-714) $ (-102)) 35 T ELT)) (-2103 (((-649 (-101)) $) 37 T ELT)) (-2555 (((-85) $) 27 T ELT)) (-2556 (((-649 $) (-530) (-892)) 18 T ELT) (((-649 $) (-445) (-892)) 24 T ELT)) (-4096 (((-797) $) 48 T ELT)) (-1793 (($ $) 42 T ELT))) +(((-486) (-13 (-710 (-530)) (-568 (-797)) (-10 -8 (-15 -2556 ((-649 $) (-445) (-892)))))) (T -486)) +((-2556 (*1 *2 *3 *4) (-12 (-5 *3 (-445)) (-5 *4 (-892)) (-5 *2 (-649 (-486))) (-5 *1 (-486))))) +((-2646 (((-775 (-499))) 12 T ELT)) (-2645 (((-775 (-499))) 14 T ELT)) (-2632 (((-766 (-499))) 9 T ELT))) +(((-487) (-10 -7 (-15 -2632 ((-766 (-499)))) (-15 -2646 ((-775 (-499)))) (-15 -2645 ((-775 (-499)))))) (T -487)) +((-2645 (*1 *2) (-12 (-5 *2 (-775 (-499))) (-5 *1 (-487)))) (-2646 (*1 *2) (-12 (-5 *2 (-775 (-499))) (-5 *1 (-487)))) (-2632 (*1 *2) (-12 (-5 *2 (-766 (-499))) (-5 *1 (-487))))) +((-2687 (((-85) $ $) NIL T ELT)) (-2127 (((-1099) $) 55 T ELT)) (-3398 (((-85) $) 51 T ELT)) (-3394 (((-1117) $) 52 T ELT)) (-3399 (((-85) $) 49 T ELT)) (-3683 (((-1099) $) 50 T ELT)) (-2126 (($ (-1099)) 56 T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2129 (($ $ (-599 (-1117))) 21 T ELT)) (-2132 (((-51) $) 23 T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3393 (((-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2501 (($ $ (-599 (-1117)) (-1117)) 73 T ELT)) (-3396 (((-85) $) NIL T ELT)) (-3392 (((-179) $) NIL T ELT)) (-2128 (($ $) 44 T ELT)) (-3391 (((-797) $) NIL T ELT)) (-3404 (((-85) $ $) NIL T ELT)) (-3950 (($ $ (-499)) NIL T ELT) (($ $ (-599 (-499))) NIL T ELT)) (-3395 (((-599 $) $) 30 T ELT)) (-2125 (((-1117) (-599 $)) 57 T ELT)) (-4122 (($ (-1099)) NIL T ELT) (($ (-1117)) 19 T ELT) (($ (-499)) 8 T ELT) (($ (-179)) 28 T ELT) (($ (-797)) NIL T ELT) (($ (-599 $)) 65 T ELT) (((-1043) $) 12 T ELT) (($ (-1043)) 13 T ELT)) (-2124 (((-1117) (-1117) (-599 $)) 60 T ELT)) (-4096 (((-797) $) 54 T ELT)) (-3389 (($ $) 59 T ELT)) (-3390 (($ $) 58 T ELT)) (-2130 (($ $ (-599 $)) 66 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 29 T ELT)) (-2779 (($) 9 T CONST)) (-2785 (($) 11 T CONST)) (-3174 (((-85) $ $) 74 T ELT)) (-4099 (($ $ $) 82 T ELT)) (-3989 (($ $ $) 75 T ELT)) (** (($ $ (-714)) 81 T ELT) (($ $ (-499)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-4107 (((-499) $) NIL T ELT))) +(((-488) (-13 (-1044 (-1099) (-1117) (-499) (-179) (-797)) (-569 (-1043)) (-10 -8 (-15 -2132 ((-51) $)) (-15 -4122 ($ (-1043))) (-15 -2130 ($ $ (-599 $))) (-15 -2501 ($ $ (-599 (-1117)) (-1117))) (-15 -2129 ($ $ (-599 (-1117)))) (-15 -3989 ($ $ $)) (-15 * ($ $ $)) (-15 -4099 ($ $ $)) (-15 ** ($ $ (-714))) (-15 ** ($ $ (-499))) (-15 0 ($) -4102) (-15 1 ($) -4102) (-15 -2128 ($ $)) (-15 -2127 ((-1099) $)) (-15 -2126 ($ (-1099))) (-15 -2125 ((-1117) (-599 $))) (-15 -2124 ((-1117) (-1117) (-599 $)))))) (T -488)) +((-2132 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-488)))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-1043)) (-5 *1 (-488)))) (-2130 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-488))) (-5 *1 (-488)))) (-2501 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-1117)) (-5 *1 (-488)))) (-2129 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-488)))) (-3989 (*1 *1 *1 *1) (-5 *1 (-488))) (* (*1 *1 *1 *1) (-5 *1 (-488))) (-4099 (*1 *1 *1 *1) (-5 *1 (-488))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-488)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-488)))) (-2779 (*1 *1) (-5 *1 (-488))) (-2785 (*1 *1) (-5 *1 (-488))) (-2128 (*1 *1 *1) (-5 *1 (-488))) (-2127 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-488)))) (-2126 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-488)))) (-2125 (*1 *2 *3) (-12 (-5 *3 (-599 (-488))) (-5 *2 (-1117)) (-5 *1 (-488)))) (-2124 (*1 *2 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-488))) (-5 *1 (-488))))) +((-2131 (((-488) (-1117)) 15 T ELT)) (-2132 ((|#1| (-488)) 20 T ELT))) +(((-489 |#1|) (-10 -7 (-15 -2131 ((-488) (-1117))) (-15 -2132 (|#1| (-488)))) (-1157)) (T -489)) +((-2132 (*1 *2 *3) (-12 (-5 *3 (-488)) (-5 *1 (-489 *2)) (-4 *2 (-1157)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-488)) (-5 *1 (-489 *4)) (-4 *4 (-1157))))) +((-3593 ((|#2| |#2|) 17 T ELT)) (-3591 ((|#2| |#2|) 13 T ELT)) (-3594 ((|#2| |#2| (-499) (-499)) 20 T ELT)) (-3592 ((|#2| |#2|) 15 T ELT))) +(((-490 |#1| |#2|) (-10 -7 (-15 -3591 (|#2| |#2|)) (-15 -3592 (|#2| |#2|)) (-15 -3593 (|#2| |#2|)) (-15 -3594 (|#2| |#2| (-499) (-499)))) (-13 (-510) (-120)) (-1200 |#1|)) (T -490)) +((-3594 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-499)) (-4 *4 (-13 (-510) (-120))) (-5 *1 (-490 *4 *2)) (-4 *2 (-1200 *4)))) (-3593 (*1 *2 *2) (-12 (-4 *3 (-13 (-510) (-120))) (-5 *1 (-490 *3 *2)) (-4 *2 (-1200 *3)))) (-3592 (*1 *2 *2) (-12 (-4 *3 (-13 (-510) (-120))) (-5 *1 (-490 *3 *2)) (-4 *2 (-1200 *3)))) (-3591 (*1 *2 *2) (-12 (-4 *3 (-13 (-510) (-120))) (-5 *1 (-490 *3 *2)) (-4 *2 (-1200 *3))))) +((-2135 (((-599 (-247 (-884 |#2|))) (-599 |#2|) (-599 (-1117))) 32 T ELT)) (-2133 (((-599 |#2|) (-884 |#1|) |#3|) 54 T ELT) (((-599 |#2|) (-1111 |#1|) |#3|) 53 T ELT)) (-2134 (((-599 (-599 |#2|)) (-599 (-884 |#1|)) (-599 (-884 |#1|)) (-599 (-1117)) |#3|) 106 T ELT))) +(((-491 |#1| |#2| |#3|) (-10 -7 (-15 -2133 ((-599 |#2|) (-1111 |#1|) |#3|)) (-15 -2133 ((-599 |#2|) (-884 |#1|) |#3|)) (-15 -2134 ((-599 (-599 |#2|)) (-599 (-884 |#1|)) (-599 (-884 |#1|)) (-599 (-1117)) |#3|)) (-15 -2135 ((-599 (-247 (-884 |#2|))) (-599 |#2|) (-599 (-1117))))) (-406) (-318) (-13 (-318) (-780))) (T -491)) +((-2135 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6)) (-5 *4 (-599 (-1117))) (-4 *6 (-318)) (-5 *2 (-599 (-247 (-884 *6)))) (-5 *1 (-491 *5 *6 *7)) (-4 *5 (-406)) (-4 *7 (-13 (-318) (-780))))) (-2134 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-599 (-884 *6))) (-5 *4 (-599 (-1117))) (-4 *6 (-406)) (-5 *2 (-599 (-599 *7))) (-5 *1 (-491 *6 *7 *5)) (-4 *7 (-318)) (-4 *5 (-13 (-318) (-780))))) (-2133 (*1 *2 *3 *4) (-12 (-5 *3 (-884 *5)) (-4 *5 (-406)) (-5 *2 (-599 *6)) (-5 *1 (-491 *5 *6 *4)) (-4 *6 (-318)) (-4 *4 (-13 (-318) (-780))))) (-2133 (*1 *2 *3 *4) (-12 (-5 *3 (-1111 *5)) (-4 *5 (-406)) (-5 *2 (-599 *6)) (-5 *1 (-491 *5 *6 *4)) (-4 *6 (-318)) (-4 *4 (-13 (-318) (-780)))))) +((-2138 ((|#2| |#2| |#1|) 17 T ELT)) (-2136 ((|#2| (-599 |#2|)) 30 T ELT)) (-2137 ((|#2| (-599 |#2|)) 51 T ELT))) +(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2136 (|#2| (-599 |#2|))) (-15 -2137 (|#2| (-599 |#2|))) (-15 -2138 (|#2| |#2| |#1|))) (-261) (-1183 |#1|) |#1| (-1 |#1| |#1| (-714))) (T -492)) +((-2138 (*1 *2 *2 *3) (-12 (-4 *3 (-261)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-714))) (-5 *1 (-492 *3 *2 *4 *5)) (-4 *2 (-1183 *3)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-1183 *4)) (-5 *1 (-492 *4 *2 *5 *6)) (-4 *4 (-261)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-714))))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-1183 *4)) (-5 *1 (-492 *4 *2 *5 *6)) (-4 *4 (-261)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-714)))))) +((-3882 (((-359 (-1111 |#4|)) (-1111 |#4|) (-1 (-359 (-1111 |#3|)) (-1111 |#3|))) 89 T ELT) (((-359 |#4|) |#4| (-1 (-359 (-1111 |#3|)) (-1111 |#3|))) 212 T ELT))) +(((-493 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3882 ((-359 |#4|) |#4| (-1 (-359 (-1111 |#3|)) (-1111 |#3|)))) (-15 -3882 ((-359 (-1111 |#4|)) (-1111 |#4|) (-1 (-359 (-1111 |#3|)) (-1111 |#3|))))) (-781) (-738) (-13 (-261) (-120)) (-888 |#3| |#2| |#1|)) (T -493)) +((-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-359 (-1111 *7)) (-1111 *7))) (-4 *7 (-13 (-261) (-120))) (-4 *5 (-781)) (-4 *6 (-738)) (-4 *8 (-888 *7 *6 *5)) (-5 *2 (-359 (-1111 *8))) (-5 *1 (-493 *5 *6 *7 *8)) (-5 *3 (-1111 *8)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-359 (-1111 *7)) (-1111 *7))) (-4 *7 (-13 (-261) (-120))) (-4 *5 (-781)) (-4 *6 (-738)) (-5 *2 (-359 *3)) (-5 *1 (-493 *5 *6 *7 *3)) (-4 *3 (-888 *7 *6 *5))))) +((-3593 ((|#4| |#4|) 74 T ELT)) (-3591 ((|#4| |#4|) 70 T ELT)) (-3594 ((|#4| |#4| (-499) (-499)) 76 T ELT)) (-3592 ((|#4| |#4|) 72 T ELT))) +(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3591 (|#4| |#4|)) (-15 -3592 (|#4| |#4|)) (-15 -3593 (|#4| |#4|)) (-15 -3594 (|#4| |#4| (-499) (-499)))) (-13 (-318) (-323) (-569 (-499))) (-1183 |#1|) (-682 |#1| |#2|) (-1200 |#3|)) (T -494)) +((-3594 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-499)) (-4 *4 (-13 (-318) (-323) (-569 *3))) (-4 *5 (-1183 *4)) (-4 *6 (-682 *4 *5)) (-5 *1 (-494 *4 *5 *6 *2)) (-4 *2 (-1200 *6)))) (-3593 (*1 *2 *2) (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-4 *4 (-1183 *3)) (-4 *5 (-682 *3 *4)) (-5 *1 (-494 *3 *4 *5 *2)) (-4 *2 (-1200 *5)))) (-3592 (*1 *2 *2) (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-4 *4 (-1183 *3)) (-4 *5 (-682 *3 *4)) (-5 *1 (-494 *3 *4 *5 *2)) (-4 *2 (-1200 *5)))) (-3591 (*1 *2 *2) (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-4 *4 (-1183 *3)) (-4 *5 (-682 *3 *4)) (-5 *1 (-494 *3 *4 *5 *2)) (-4 *2 (-1200 *5))))) +((-3593 ((|#2| |#2|) 27 T ELT)) (-3591 ((|#2| |#2|) 23 T ELT)) (-3594 ((|#2| |#2| (-499) (-499)) 29 T ELT)) (-3592 ((|#2| |#2|) 25 T ELT))) +(((-495 |#1| |#2|) (-10 -7 (-15 -3591 (|#2| |#2|)) (-15 -3592 (|#2| |#2|)) (-15 -3593 (|#2| |#2|)) (-15 -3594 (|#2| |#2| (-499) (-499)))) (-13 (-318) (-323) (-569 (-499))) (-1200 |#1|)) (T -495)) +((-3594 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-499)) (-4 *4 (-13 (-318) (-323) (-569 *3))) (-5 *1 (-495 *4 *2)) (-4 *2 (-1200 *4)))) (-3593 (*1 *2 *2) (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-5 *1 (-495 *3 *2)) (-4 *2 (-1200 *3)))) (-3592 (*1 *2 *2) (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-5 *1 (-495 *3 *2)) (-4 *2 (-1200 *3)))) (-3591 (*1 *2 *2) (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-5 *1 (-495 *3 *2)) (-4 *2 (-1200 *3))))) +((-2139 (((-3 (-499) #1="failed") |#2| |#1| (-1 (-3 (-499) #1#) |#1|)) 18 T ELT) (((-3 (-499) #1#) |#2| |#1| (-499) (-1 (-3 (-499) #1#) |#1|)) 14 T ELT) (((-3 (-499) #1#) |#2| (-499) (-1 (-3 (-499) #1#) |#1|)) 30 T ELT))) +(((-496 |#1| |#2|) (-10 -7 (-15 -2139 ((-3 (-499) #1="failed") |#2| (-499) (-1 (-3 (-499) #1#) |#1|))) (-15 -2139 ((-3 (-499) #1#) |#2| |#1| (-499) (-1 (-3 (-499) #1#) |#1|))) (-15 -2139 ((-3 (-499) #1#) |#2| |#1| (-1 (-3 (-499) #1#) |#1|)))) (-989) (-1183 |#1|)) (T -496)) +((-2139 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-499) #1="failed") *4)) (-4 *4 (-989)) (-5 *2 (-499)) (-5 *1 (-496 *4 *3)) (-4 *3 (-1183 *4)))) (-2139 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-499) #1#) *4)) (-4 *4 (-989)) (-5 *2 (-499)) (-5 *1 (-496 *4 *3)) (-4 *3 (-1183 *4)))) (-2139 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-499) #1#) *5)) (-4 *5 (-989)) (-5 *2 (-499)) (-5 *1 (-496 *5 *3)) (-4 *3 (-1183 *5))))) +((-2148 (($ $ $) 87 T ELT)) (-4121 (((-359 $) $) 50 T ELT)) (-3295 (((-3 (-499) #1="failed") $) 62 T ELT)) (-3294 (((-499) $) 40 T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) 80 T ELT)) (-3144 (((-85) $) 24 T ELT)) (-3143 (((-361 (-499)) $) 78 T ELT)) (-3873 (((-85) $) 53 T ELT)) (-2141 (($ $ $ $) 94 T ELT)) (-1402 (($ $ $) 60 T ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 75 T ELT)) (-3585 (((-649 $) $) 70 T ELT)) (-2145 (($ $) 22 T ELT)) (-2140 (($ $ $) 92 T ELT)) (-3586 (($) 63 T ELT)) (-1400 (($ $) 56 T ELT)) (-3882 (((-359 $) $) 48 T ELT)) (-2795 (((-85) $) 15 T ELT)) (-1677 (((-714) $) 30 T ELT)) (-3908 (($ $) 11 T ELT) (($ $ (-714)) NIL T ELT)) (-3540 (($ $) 16 T ELT)) (-4122 (((-499) $) NIL T ELT) (((-488) $) 39 T ELT) (((-825 (-499)) $) 43 T ELT) (((-333) $) 33 T ELT) (((-179) $) 36 T ELT)) (-3248 (((-714)) 9 T ELT)) (-2150 (((-85) $ $) 19 T ELT)) (-3224 (($ $ $) 58 T ELT))) +(((-497 |#1|) (-10 -7 (-15 -2140 (|#1| |#1| |#1|)) (-15 -2141 (|#1| |#1| |#1| |#1|)) (-15 -2145 (|#1| |#1|)) (-15 -3540 (|#1| |#1|)) (-15 -3145 ((-3 (-361 (-499)) #1="failed") |#1|)) (-15 -3143 ((-361 (-499)) |#1|)) (-15 -3144 ((-85) |#1|)) (-15 -2148 (|#1| |#1| |#1|)) (-15 -2150 ((-85) |#1| |#1|)) (-15 -2795 ((-85) |#1|)) (-15 -3586 (|#1|)) (-15 -3585 ((-649 |#1|) |#1|)) (-15 -4122 ((-179) |#1|)) (-15 -4122 ((-333) |#1|)) (-15 -1402 (|#1| |#1| |#1|)) (-15 -1400 (|#1| |#1|)) (-15 -3224 (|#1| |#1| |#1|)) (-15 -2917 ((-823 (-499) |#1|) |#1| (-825 (-499)) (-823 (-499) |#1|))) (-15 -4122 ((-825 (-499)) |#1|)) (-15 -4122 ((-488) |#1|)) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -4122 ((-499) |#1|)) (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1|)) (-15 -1677 ((-714) |#1|)) (-15 -3882 ((-359 |#1|) |#1|)) (-15 -4121 ((-359 |#1|) |#1|)) (-15 -3873 ((-85) |#1|)) (-15 -3248 ((-714)))) (-498)) (T -497)) +((-3248 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-497 *3)) (-4 *3 (-498))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-2148 (($ $ $) 99 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-2143 (($ $ $ $) 88 T ELT)) (-3925 (($ $) 63 T ELT)) (-4121 (((-359 $) $) 64 T ELT)) (-1678 (((-85) $ $) 142 T ELT)) (-3773 (((-499) $) 131 T ELT)) (-2557 (($ $ $) 102 T ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 (-499) "failed") $) 123 T ELT)) (-3294 (((-499) $) 124 T ELT)) (-2683 (($ $ $) 146 T ELT)) (-2380 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 121 T ELT) (((-647 (-499)) (-647 $)) 120 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3145 (((-3 (-361 (-499)) "failed") $) 96 T ELT)) (-3144 (((-85) $) 98 T ELT)) (-3143 (((-361 (-499)) $) 97 T ELT)) (-3115 (($) 95 T ELT) (($ $) 94 T ELT)) (-2682 (($ $ $) 145 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 140 T ELT)) (-3873 (((-85) $) 65 T ELT)) (-2141 (($ $ $ $) 86 T ELT)) (-2149 (($ $ $) 100 T ELT)) (-3324 (((-85) $) 133 T ELT)) (-1402 (($ $ $) 111 T ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 114 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-2794 (((-85) $) 106 T ELT)) (-3585 (((-649 $) $) 108 T ELT)) (-3325 (((-85) $) 132 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 149 T ELT)) (-2142 (($ $ $ $) 87 T ELT)) (-2650 (($ $ $) 139 T ELT)) (-2978 (($ $ $) 138 T ELT)) (-2145 (($ $) 90 T ELT)) (-3983 (($ $) 103 T ELT)) (-2381 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 119 T ELT) (((-647 (-499)) (-1207 $)) 118 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2140 (($ $ $) 85 T ELT)) (-3586 (($) 107 T CONST)) (-2147 (($ $) 92 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-1400 (($ $) 112 T ELT)) (-3882 (((-359 $) $) 62 T ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 148 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 147 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 141 T ELT)) (-2795 (((-85) $) 105 T ELT)) (-1677 (((-714) $) 143 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 144 T ELT)) (-3908 (($ $) 129 T ELT) (($ $ (-714)) 127 T ELT)) (-2146 (($ $) 91 T ELT)) (-3540 (($ $) 93 T ELT)) (-4122 (((-499) $) 125 T ELT) (((-488) $) 116 T ELT) (((-825 (-499)) $) 115 T ELT) (((-333) $) 110 T ELT) (((-179) $) 109 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-499)) 122 T ELT)) (-3248 (((-714)) 37 T CONST)) (-2150 (((-85) $ $) 101 T ELT)) (-3224 (($ $ $) 113 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2815 (($) 104 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2144 (($ $ $ $) 89 T ELT)) (-3523 (($ $) 130 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $) 128 T ELT) (($ $ (-714)) 126 T ELT)) (-2685 (((-85) $ $) 137 T ELT)) (-2686 (((-85) $ $) 135 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 136 T ELT)) (-2806 (((-85) $ $) 134 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-499) $) 117 T ELT))) +(((-498) (-113)) (T -498)) +((-2794 (*1 *2 *1) (-12 (-4 *1 (-498)) (-5 *2 (-85)))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-498)) (-5 *2 (-85)))) (-2815 (*1 *1) (-4 *1 (-498))) (-3983 (*1 *1 *1) (-4 *1 (-498))) (-2557 (*1 *1 *1 *1) (-4 *1 (-498))) (-2150 (*1 *2 *1 *1) (-12 (-4 *1 (-498)) (-5 *2 (-85)))) (-2149 (*1 *1 *1 *1) (-4 *1 (-498))) (-2148 (*1 *1 *1 *1) (-4 *1 (-498))) (-3144 (*1 *2 *1) (-12 (-4 *1 (-498)) (-5 *2 (-85)))) (-3143 (*1 *2 *1) (-12 (-4 *1 (-498)) (-5 *2 (-361 (-499))))) (-3145 (*1 *2 *1) (|partial| -12 (-4 *1 (-498)) (-5 *2 (-361 (-499))))) (-3115 (*1 *1) (-4 *1 (-498))) (-3115 (*1 *1 *1) (-4 *1 (-498))) (-3540 (*1 *1 *1) (-4 *1 (-498))) (-2147 (*1 *1 *1) (-4 *1 (-498))) (-2146 (*1 *1 *1) (-4 *1 (-498))) (-2145 (*1 *1 *1) (-4 *1 (-498))) (-2144 (*1 *1 *1 *1 *1) (-4 *1 (-498))) (-2143 (*1 *1 *1 *1 *1) (-4 *1 (-498))) (-2142 (*1 *1 *1 *1 *1) (-4 *1 (-498))) (-2141 (*1 *1 *1 *1 *1) (-4 *1 (-498))) (-2140 (*1 *1 *1 *1) (-4 *1 (-498)))) +(-13 (-1162) (-261) (-763) (-190) (-569 (-499)) (-978 (-499)) (-596 (-499)) (-569 (-488)) (-569 (-825 (-499))) (-821 (-499)) (-116) (-960) (-120) (-1092) (-10 -8 (-15 -2794 ((-85) $)) (-15 -2795 ((-85) $)) (-6 -4144) (-15 -2815 ($)) (-15 -3983 ($ $)) (-15 -2557 ($ $ $)) (-15 -2150 ((-85) $ $)) (-15 -2149 ($ $ $)) (-15 -2148 ($ $ $)) (-15 -3144 ((-85) $)) (-15 -3143 ((-361 (-499)) $)) (-15 -3145 ((-3 (-361 (-499)) "failed") $)) (-15 -3115 ($)) (-15 -3115 ($ $)) (-15 -3540 ($ $)) (-15 -2147 ($ $)) (-15 -2146 ($ $)) (-15 -2145 ($ $)) (-15 -2144 ($ $ $ $)) (-15 -2143 ($ $ $ $)) (-15 -2142 ($ $ $ $)) (-15 -2141 ($ $ $ $)) (-15 -2140 ($ $ $)) (-6 -4143))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-116) . T) ((-146) . T) ((-569 (-179)) . T) ((-569 (-333)) . T) ((-569 (-488)) . T) ((-569 (-499)) . T) ((-569 (-825 (-499))) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-244) . T) ((-261) . T) ((-406) . T) ((-510) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 (-499)) . T) ((-606 $) . T) ((-598 $) . T) ((-596 (-499)) . T) ((-675 $) . T) ((-684) . T) ((-735) . T) ((-737) . T) ((-739) . T) ((-742) . T) ((-763) . T) ((-780) . T) ((-781) . T) ((-784) . T) ((-821 (-499)) . T) ((-859) . T) ((-960) . T) ((-978 (-499)) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1092) . T) ((-1157) . T) ((-1162) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 8 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 84 T ELT)) (-2164 (($ $) 85 T ELT)) (-2162 (((-85) $) NIL T ELT)) (-2148 (($ $ $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2143 (($ $ $ $) 32 T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL T ELT)) (-2557 (($ $ $) 76 T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL T ELT)) (-2683 (($ $ $) 48 T ELT)) (-2380 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 59 T ELT) (((-647 (-499)) (-647 $)) 55 T ELT)) (-3607 (((-3 $ #1#) $) 81 T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) NIL T ELT)) (-3144 (((-85) $) NIL T ELT)) (-3143 (((-361 (-499)) $) NIL T ELT)) (-3115 (($) 61 T ELT) (($ $) 62 T ELT)) (-2682 (($ $ $) 75 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2141 (($ $ $ $) NIL T ELT)) (-2149 (($ $ $) 52 T ELT)) (-3324 (((-85) $) 22 T ELT)) (-1402 (($ $ $) NIL T ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL T ELT)) (-2528 (((-85) $) 9 T ELT)) (-2794 (((-85) $) 69 T ELT)) (-3585 (((-649 $) $) NIL T ELT)) (-3325 (((-85) $) 21 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2142 (($ $ $ $) 34 T ELT)) (-2650 (($ $ $) 72 T ELT)) (-2978 (($ $ $) 71 T ELT)) (-2145 (($ $) NIL T ELT)) (-3983 (($ $) 29 T ELT)) (-2381 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL T ELT) (((-647 (-499)) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) 47 T ELT)) (-2140 (($ $ $) NIL T ELT)) (-3586 (($) NIL T CONST)) (-2147 (($ $) 15 T ELT)) (-3381 (((-1060) $) 19 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 117 T ELT)) (-3282 (($ $ $) 82 T ELT) (($ (-599 $)) NIL T ELT)) (-1400 (($ $) NIL T ELT)) (-3882 (((-359 $) $) 103 T ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2795 (((-85) $) 70 T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 74 T ELT)) (-3908 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-2146 (($ $) 17 T ELT)) (-3540 (($ $) 13 T ELT)) (-4122 (((-499) $) 28 T ELT) (((-488) $) 43 T ELT) (((-825 (-499)) $) NIL T ELT) (((-333) $) 37 T ELT) (((-179) $) 40 T ELT)) (-4096 (((-797) $) 26 T ELT) (($ (-499)) 27 T ELT) (($ $) NIL T ELT) (($ (-499)) 27 T ELT)) (-3248 (((-714)) NIL T CONST)) (-2150 (((-85) $ $) NIL T ELT)) (-3224 (($ $ $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2815 (($) 12 T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2144 (($ $ $ $) 31 T ELT)) (-3523 (($ $) 60 T ELT)) (-2779 (($) 10 T CONST)) (-2785 (($) 11 T CONST)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-2685 (((-85) $ $) 30 T ELT)) (-2686 (((-85) $ $) 63 T ELT)) (-3174 (((-85) $ $) 7 T ELT)) (-2805 (((-85) $ $) 64 T ELT)) (-2806 (((-85) $ $) 20 T ELT)) (-3987 (($ $) 44 T ELT) (($ $ $) 16 T ELT)) (-3989 (($ $ $) 14 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 68 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 66 T ELT) (($ $ $) 65 T ELT) (($ (-499) $) 66 T ELT))) +(((-499) (-13 (-498) (-10 -7 (-6 -4132) (-6 -4137) (-6 -4133)))) (T -499)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT))) +(((-500) (-13 (-777) (-10 -8 (-15 -3874 ($) -4102)))) (T -500)) +((-3874 (*1 *1) (-5 *1 (-500)))) +((-499) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) +((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT))) +(((-501) (-13 (-777) (-10 -8 (-15 -3874 ($) -4102)))) (T -501)) +((-3874 (*1 *1) (-5 *1 (-501)))) +((-499) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) +((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT))) +(((-502) (-13 (-777) (-10 -8 (-15 -3874 ($) -4102)))) (T -502)) +((-3874 (*1 *1) (-5 *1 (-502)))) +((-499) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) +((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT))) +(((-503) (-13 (-777) (-10 -8 (-15 -3874 ($) -4102)))) (T -503)) +((-3874 (*1 *1) (-5 *1 (-503)))) +((-499) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) +((-2687 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2299 (((-1213) $ |#1| |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3938 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3546 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2301 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2302 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-2333 (((-599 |#1|) $) NIL T ELT)) (-2334 (((-85) |#1| $) NIL T ELT)) (-1308 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2304 (((-599 |#1|) $) NIL T ELT)) (-2305 (((-85) |#1| $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-3951 ((|#2| $) NIL (|has| |#1| (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2300 (($ $ |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1499 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT) (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-4096 (((-797) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) (|has| |#2| (-568 (-797)))) ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-504 |#1| |#2| |#3|) (-13 (-1134 |#1| |#2|) (-10 -7 (-6 -4145))) (-1041) (-1041) (-13 (-1134 |#1| |#2|) (-10 -7 (-6 -4145)))) (T -504)) +NIL +((-2151 (((-534 |#2|) |#2| (-566 |#2|) (-566 |#2|) (-1 (-1111 |#2|) (-1111 |#2|))) 50 T ELT))) +(((-505 |#1| |#2|) (-10 -7 (-15 -2151 ((-534 |#2|) |#2| (-566 |#2|) (-566 |#2|) (-1 (-1111 |#2|) (-1111 |#2|))))) (-510) (-13 (-27) (-375 |#1|))) (T -505)) +((-2151 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-566 *3)) (-5 *5 (-1 (-1111 *3) (-1111 *3))) (-4 *3 (-13 (-27) (-375 *6))) (-4 *6 (-510)) (-5 *2 (-534 *3)) (-5 *1 (-505 *6 *3))))) +((-2153 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2154 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2152 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) +(((-506 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2152 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2153 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2154 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-510) (-978 (-499))) (-13 (-27) (-375 |#1|)) (-1183 |#2|) (-1183 (-361 |#3|)) (-297 |#2| |#3| |#4|)) (T -506)) +((-2154 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-13 (-27) (-375 *4))) (-4 *4 (-13 (-510) (-978 (-499)))) (-4 *7 (-1183 (-361 *6))) (-5 *1 (-506 *4 *5 *6 *7 *2)) (-4 *2 (-297 *5 *6 *7)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1183 *6)) (-4 *6 (-13 (-27) (-375 *5))) (-4 *5 (-13 (-510) (-978 (-499)))) (-4 *8 (-1183 (-361 *7))) (-5 *2 (-534 *3)) (-5 *1 (-506 *5 *6 *7 *8 *3)) (-4 *3 (-297 *6 *7 *8)))) (-2152 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1183 *6)) (-4 *6 (-13 (-27) (-375 *5))) (-4 *5 (-13 (-510) (-978 (-499)))) (-4 *8 (-1183 (-361 *7))) (-5 *2 (-534 *3)) (-5 *1 (-506 *5 *6 *7 *8 *3)) (-4 *3 (-297 *6 *7 *8))))) +((-2157 (((-85) (-499) (-499)) 12 T ELT)) (-2155 (((-499) (-499)) 7 T ELT)) (-2156 (((-499) (-499) (-499)) 10 T ELT))) +(((-507) (-10 -7 (-15 -2155 ((-499) (-499))) (-15 -2156 ((-499) (-499) (-499))) (-15 -2157 ((-85) (-499) (-499))))) (T -507)) +((-2157 (*1 *2 *3 *3) (-12 (-5 *3 (-499)) (-5 *2 (-85)) (-5 *1 (-507)))) (-2156 (*1 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-507)))) (-2155 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-507))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2723 ((|#1| $) 74 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-3632 (($ $) 104 T ELT)) (-3789 (($ $) 87 T ELT)) (-2600 ((|#1| $) 75 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3158 (($ $) 86 T ELT)) (-3630 (($ $) 103 T ELT)) (-3788 (($ $) 88 T ELT)) (-3634 (($ $) 102 T ELT)) (-3787 (($ $) 89 T ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 (-499) "failed") $) 82 T ELT)) (-3294 (((-499) $) 83 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2160 (($ |#1| |#1|) 79 T ELT)) (-3324 (((-85) $) 73 T ELT)) (-3777 (($) 114 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 85 T ELT)) (-3325 (((-85) $) 72 T ELT)) (-2650 (($ $ $) 115 T ELT)) (-2978 (($ $ $) 116 T ELT)) (-4092 (($ $) 111 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2161 (($ |#1| |#1|) 80 T ELT) (($ |#1|) 78 T ELT) (($ (-361 (-499))) 77 T ELT)) (-2159 ((|#1| $) 76 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-4093 (($ $) 112 T ELT)) (-3635 (($ $) 101 T ELT)) (-3786 (($ $) 90 T ELT)) (-3633 (($ $) 100 T ELT)) (-3785 (($ $) 91 T ELT)) (-3631 (($ $) 99 T ELT)) (-3784 (($ $) 92 T ELT)) (-2158 (((-85) $ |#1|) 71 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-499)) 81 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-3638 (($ $) 110 T ELT)) (-3626 (($ $) 98 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-3636 (($ $) 109 T ELT)) (-3624 (($ $) 97 T ELT)) (-3640 (($ $) 108 T ELT)) (-3628 (($ $) 96 T ELT)) (-3641 (($ $) 107 T ELT)) (-3629 (($ $) 95 T ELT)) (-3639 (($ $) 106 T ELT)) (-3627 (($ $) 94 T ELT)) (-3637 (($ $) 105 T ELT)) (-3625 (($ $) 93 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2685 (((-85) $ $) 117 T ELT)) (-2686 (((-85) $ $) 119 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 118 T ELT)) (-2806 (((-85) $ $) 120 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ $) 113 T ELT) (($ $ (-361 (-499))) 84 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-508 |#1|) (-113) (-13 (-358) (-1143))) (T -508)) +((-2161 (*1 *1 *2 *2) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143))))) (-2160 (*1 *1 *2 *2) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143))))) (-2161 (*1 *1 *2) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143))))) (-2161 (*1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-4 *1 (-508 *3)) (-4 *3 (-13 (-358) (-1143))))) (-2159 (*1 *2 *1) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143))))) (-2600 (*1 *2 *1) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143))))) (-2723 (*1 *2 *1) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143))))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-508 *3)) (-4 *3 (-13 (-358) (-1143))) (-5 *2 (-85)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-508 *3)) (-4 *3 (-13 (-358) (-1143))) (-5 *2 (-85)))) (-2158 (*1 *2 *1 *3) (-12 (-4 *1 (-508 *3)) (-4 *3 (-13 (-358) (-1143))) (-5 *2 (-85))))) +(-13 (-406) (-781) (-1143) (-942) (-978 (-499)) (-10 -8 (-6 -3920) (-15 -2161 ($ |t#1| |t#1|)) (-15 -2160 ($ |t#1| |t#1|)) (-15 -2161 ($ |t#1|)) (-15 -2161 ($ (-361 (-499)))) (-15 -2159 (|t#1| $)) (-15 -2600 (|t#1| $)) (-15 -2723 (|t#1| $)) (-15 -3324 ((-85) $)) (-15 -3325 ((-85) $)) (-15 -2158 ((-85) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-238) . T) ((-244) . T) ((-406) . T) ((-447) . T) ((-510) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-598 $) . T) ((-675 $) . T) ((-684) . T) ((-781) . T) ((-784) . T) ((-942) . T) ((-978 (-499)) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1143) . T) ((-1146) . T) ((-1157) . T)) +((-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 9 T ELT)) (-2164 (($ $) 11 T ELT)) (-2162 (((-85) $) 20 T ELT)) (-3607 (((-3 $ "failed") $) 16 T ELT)) (-2163 (((-85) $ $) 22 T ELT))) +(((-509 |#1|) (-10 -7 (-15 -2162 ((-85) |#1|)) (-15 -2163 ((-85) |#1| |#1|)) (-15 -2164 (|#1| |#1|)) (-15 -2165 ((-2 (|:| -1870 |#1|) (|:| -4132 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3607 ((-3 |#1| "failed") |#1|))) (-510)) (T -509)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-510) (-113)) (T -510)) +((-3606 (*1 *1 *1 *1) (|partial| -4 *1 (-510))) (-2165 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1870 *1) (|:| -4132 *1) (|:| |associate| *1))) (-4 *1 (-510)))) (-2164 (*1 *1 *1) (-4 *1 (-510))) (-2163 (*1 *2 *1 *1) (-12 (-4 *1 (-510)) (-5 *2 (-85)))) (-2162 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-85))))) +(-13 (-146) (-38 $) (-244) (-10 -8 (-15 -3606 ((-3 $ "failed") $ $)) (-15 -2165 ((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $)) (-15 -2164 ($ $)) (-15 -2163 ((-85) $ $)) (-15 -2162 ((-85) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-244) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-598 $) . T) ((-675 $) . T) ((-684) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2167 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1117) (-599 |#2|)) 38 T ELT)) (-2169 (((-534 |#2|) |#2| (-1117)) 63 T ELT)) (-2168 (((-3 |#2| #1#) |#2| (-1117)) 156 T ELT)) (-2170 (((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1117) (-566 |#2|) (-599 (-566 |#2|))) 159 T ELT)) (-2166 (((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1117) |#2|) 41 T ELT))) +(((-511 |#1| |#2|) (-10 -7 (-15 -2166 ((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1117) |#2|)) (-15 -2167 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1117) (-599 |#2|))) (-15 -2168 ((-3 |#2| #1#) |#2| (-1117))) (-15 -2169 ((-534 |#2|) |#2| (-1117))) (-15 -2170 ((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1117) (-566 |#2|) (-599 (-566 |#2|))))) (-13 (-406) (-120) (-978 (-499)) (-596 (-499))) (-13 (-27) (-1143) (-375 |#1|))) (T -511)) +((-2170 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1117)) (-5 *6 (-599 (-566 *3))) (-5 *5 (-566 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *7))) (-4 *7 (-13 (-406) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-2 (|:| -2237 *3) (|:| |coeff| *3))) (-5 *1 (-511 *7 *3)))) (-2169 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-406) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-534 *3)) (-5 *1 (-511 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) (-2168 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-120) (-978 (-499)) (-596 (-499)))) (-5 *1 (-511 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4))))) (-2167 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-599 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-406) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-511 *6 *3)))) (-2166 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-13 (-406) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-2 (|:| -2237 *3) (|:| |coeff| *3))) (-5 *1 (-511 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5)))))) +((-4121 (((-359 |#1|) |#1|) 17 T ELT)) (-3882 (((-359 |#1|) |#1|) 32 T ELT)) (-2172 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2171 (((-359 |#1|) |#1|) 59 T ELT))) +(((-512 |#1|) (-10 -7 (-15 -3882 ((-359 |#1|) |#1|)) (-15 -4121 ((-359 |#1|) |#1|)) (-15 -2171 ((-359 |#1|) |#1|)) (-15 -2172 ((-3 |#1| "failed") |#1|))) (-498)) (T -512)) +((-2172 (*1 *2 *2) (|partial| -12 (-5 *1 (-512 *2)) (-4 *2 (-498)))) (-2171 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-512 *3)) (-4 *3 (-498)))) (-4121 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-512 *3)) (-4 *3 (-498)))) (-3882 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-512 *3)) (-4 *3 (-498))))) +((-3206 (((-1111 (-361 (-1111 |#2|))) |#2| (-566 |#2|) (-566 |#2|) (-1111 |#2|)) 35 T ELT)) (-2175 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-566 |#2|) (-566 |#2|) (-599 |#2|) (-566 |#2|) |#2| (-361 (-1111 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-566 |#2|) (-566 |#2|) (-599 |#2|) |#2| (-1111 |#2|)) 115 T ELT)) (-2173 (((-534 |#2|) |#2| (-566 |#2|) (-566 |#2|) (-566 |#2|) |#2| (-361 (-1111 |#2|))) 85 T ELT) (((-534 |#2|) |#2| (-566 |#2|) (-566 |#2|) |#2| (-1111 |#2|)) 55 T ELT)) (-2174 (((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-566 |#2|) (-566 |#2|) |#2| (-566 |#2|) |#2| (-361 (-1111 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-566 |#2|) (-566 |#2|) |#2| |#2| (-1111 |#2|)) 114 T ELT)) (-2176 (((-3 |#2| #1#) |#2| |#2| (-566 |#2|) (-566 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1117)) (-566 |#2|) |#2| (-361 (-1111 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-566 |#2|) (-566 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1117)) |#2| (-1111 |#2|)) 116 T ELT)) (-2177 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2113 (-599 |#2|))) |#3| |#2| (-566 |#2|) (-566 |#2|) (-566 |#2|) |#2| (-361 (-1111 |#2|))) 133 (|has| |#3| (-616 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2113 (-599 |#2|))) |#3| |#2| (-566 |#2|) (-566 |#2|) |#2| (-1111 |#2|)) 132 (|has| |#3| (-616 |#2|)) ELT)) (-3207 ((|#2| (-1111 (-361 (-1111 |#2|))) (-566 |#2|) |#2|) 53 T ELT)) (-3200 (((-1111 (-361 (-1111 |#2|))) (-1111 |#2|) (-566 |#2|)) 34 T ELT))) +(((-513 |#1| |#2| |#3|) (-10 -7 (-15 -2173 ((-534 |#2|) |#2| (-566 |#2|) (-566 |#2|) |#2| (-1111 |#2|))) (-15 -2173 ((-534 |#2|) |#2| (-566 |#2|) (-566 |#2|) (-566 |#2|) |#2| (-361 (-1111 |#2|)))) (-15 -2174 ((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-566 |#2|) (-566 |#2|) |#2| |#2| (-1111 |#2|))) (-15 -2174 ((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-566 |#2|) (-566 |#2|) |#2| (-566 |#2|) |#2| (-361 (-1111 |#2|)))) (-15 -2175 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-566 |#2|) (-566 |#2|) (-599 |#2|) |#2| (-1111 |#2|))) (-15 -2175 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-566 |#2|) (-566 |#2|) (-599 |#2|) (-566 |#2|) |#2| (-361 (-1111 |#2|)))) (-15 -2176 ((-3 |#2| #1#) |#2| |#2| (-566 |#2|) (-566 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1117)) |#2| (-1111 |#2|))) (-15 -2176 ((-3 |#2| #1#) |#2| |#2| (-566 |#2|) (-566 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1117)) (-566 |#2|) |#2| (-361 (-1111 |#2|)))) (-15 -3206 ((-1111 (-361 (-1111 |#2|))) |#2| (-566 |#2|) (-566 |#2|) (-1111 |#2|))) (-15 -3207 (|#2| (-1111 (-361 (-1111 |#2|))) (-566 |#2|) |#2|)) (-15 -3200 ((-1111 (-361 (-1111 |#2|))) (-1111 |#2|) (-566 |#2|))) (IF (|has| |#3| (-616 |#2|)) (PROGN (-15 -2177 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2113 (-599 |#2|))) |#3| |#2| (-566 |#2|) (-566 |#2|) |#2| (-1111 |#2|))) (-15 -2177 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2113 (-599 |#2|))) |#3| |#2| (-566 |#2|) (-566 |#2|) (-566 |#2|) |#2| (-361 (-1111 |#2|))))) |%noBranch|)) (-13 (-406) (-978 (-499)) (-120) (-596 (-499))) (-13 (-375 |#1|) (-27) (-1143)) (-1041)) (T -513)) +((-2177 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-566 *4)) (-5 *6 (-361 (-1111 *4))) (-4 *4 (-13 (-375 *7) (-27) (-1143))) (-4 *7 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2113 (-599 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-616 *4)) (-4 *3 (-1041)))) (-2177 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-566 *4)) (-5 *6 (-1111 *4)) (-4 *4 (-13 (-375 *7) (-27) (-1143))) (-4 *7 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2113 (-599 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-616 *4)) (-4 *3 (-1041)))) (-3200 (*1 *2 *3 *4) (-12 (-5 *4 (-566 *6)) (-4 *6 (-13 (-375 *5) (-27) (-1143))) (-4 *5 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-1111 (-361 (-1111 *6)))) (-5 *1 (-513 *5 *6 *7)) (-5 *3 (-1111 *6)) (-4 *7 (-1041)))) (-3207 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1111 (-361 (-1111 *2)))) (-5 *4 (-566 *2)) (-4 *2 (-13 (-375 *5) (-27) (-1143))) (-4 *5 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1041)))) (-3206 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-566 *3)) (-4 *3 (-13 (-375 *6) (-27) (-1143))) (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-1111 (-361 (-1111 *3)))) (-5 *1 (-513 *6 *3 *7)) (-5 *5 (-1111 *3)) (-4 *7 (-1041)))) (-2176 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-566 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1117))) (-5 *5 (-361 (-1111 *2))) (-4 *2 (-13 (-375 *6) (-27) (-1143))) (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1041)))) (-2176 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-566 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1117))) (-5 *5 (-1111 *2)) (-4 *2 (-13 (-375 *6) (-27) (-1143))) (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1041)))) (-2175 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-566 *3)) (-5 *5 (-599 *3)) (-5 *6 (-361 (-1111 *3))) (-4 *3 (-13 (-375 *7) (-27) (-1143))) (-4 *7 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1041)))) (-2175 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-566 *3)) (-5 *5 (-599 *3)) (-5 *6 (-1111 *3)) (-4 *3 (-13 (-375 *7) (-27) (-1143))) (-4 *7 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1041)))) (-2174 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-566 *3)) (-5 *5 (-361 (-1111 *3))) (-4 *3 (-13 (-375 *6) (-27) (-1143))) (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-2 (|:| -2237 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1041)))) (-2174 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-566 *3)) (-5 *5 (-1111 *3)) (-4 *3 (-13 (-375 *6) (-27) (-1143))) (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-2 (|:| -2237 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1041)))) (-2173 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-566 *3)) (-5 *5 (-361 (-1111 *3))) (-4 *3 (-13 (-375 *6) (-27) (-1143))) (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1041)))) (-2173 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-566 *3)) (-5 *5 (-1111 *3)) (-4 *3 (-13 (-375 *6) (-27) (-1143))) (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1041))))) +((-2187 (((-499) (-499) (-714)) 87 T ELT)) (-2186 (((-499) (-499)) 85 T ELT)) (-2185 (((-499) (-499)) 82 T ELT)) (-2184 (((-499) (-499)) 89 T ELT)) (-2926 (((-499) (-499) (-499)) 67 T ELT)) (-2183 (((-499) (-499) (-499)) 64 T ELT)) (-2182 (((-361 (-499)) (-499)) 29 T ELT)) (-2181 (((-499) (-499)) 34 T ELT)) (-2180 (((-499) (-499)) 76 T ELT)) (-2923 (((-499) (-499)) 47 T ELT)) (-2179 (((-599 (-499)) (-499)) 81 T ELT)) (-2178 (((-499) (-499) (-499) (-499) (-499)) 60 T ELT)) (-2919 (((-361 (-499)) (-499)) 56 T ELT))) +(((-514) (-10 -7 (-15 -2919 ((-361 (-499)) (-499))) (-15 -2178 ((-499) (-499) (-499) (-499) (-499))) (-15 -2179 ((-599 (-499)) (-499))) (-15 -2923 ((-499) (-499))) (-15 -2180 ((-499) (-499))) (-15 -2181 ((-499) (-499))) (-15 -2182 ((-361 (-499)) (-499))) (-15 -2183 ((-499) (-499) (-499))) (-15 -2926 ((-499) (-499) (-499))) (-15 -2184 ((-499) (-499))) (-15 -2185 ((-499) (-499))) (-15 -2186 ((-499) (-499))) (-15 -2187 ((-499) (-499) (-714))))) (T -514)) +((-2187 (*1 *2 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-714)) (-5 *1 (-514)))) (-2186 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) (-2185 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) (-2184 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) (-2926 (*1 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) (-2183 (*1 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) (-2182 (*1 *2 *3) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-514)) (-5 *3 (-499)))) (-2181 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) (-2180 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) (-2923 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) (-2179 (*1 *2 *3) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-514)) (-5 *3 (-499)))) (-2178 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) (-2919 (*1 *2 *3) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-514)) (-5 *3 (-499))))) +((-2188 (((-2 (|:| |answer| |#4|) (|:| -2236 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) +(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2188 ((-2 (|:| |answer| |#4|) (|:| -2236 |#4|)) |#4| (-1 |#2| |#2|)))) (-318) (-1183 |#1|) (-1183 (-361 |#2|)) (-297 |#1| |#2| |#3|)) (T -515)) +((-2188 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) (-4 *7 (-1183 (-361 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2236 *3))) (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-297 *5 *6 *7))))) +((-2188 (((-2 (|:| |answer| (-361 |#2|)) (|:| -2236 (-361 |#2|)) (|:| |specpart| (-361 |#2|)) (|:| |polypart| |#2|)) (-361 |#2|) (-1 |#2| |#2|)) 18 T ELT))) +(((-516 |#1| |#2|) (-10 -7 (-15 -2188 ((-2 (|:| |answer| (-361 |#2|)) (|:| -2236 (-361 |#2|)) (|:| |specpart| (-361 |#2|)) (|:| |polypart| |#2|)) (-361 |#2|) (-1 |#2| |#2|)))) (-318) (-1183 |#1|)) (T -516)) +((-2188 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) (-5 *2 (-2 (|:| |answer| (-361 *6)) (|:| -2236 (-361 *6)) (|:| |specpart| (-361 *6)) (|:| |polypart| *6))) (-5 *1 (-516 *5 *6)) (-5 *3 (-361 *6))))) +((-2191 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-566 |#2|) (-566 |#2|) (-599 |#2|)) 195 T ELT)) (-2189 (((-534 |#2|) |#2| (-566 |#2|) (-566 |#2|)) 97 T ELT)) (-2190 (((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-566 |#2|) (-566 |#2|) |#2|) 191 T ELT)) (-2192 (((-3 |#2| #1#) |#2| |#2| |#2| (-566 |#2|) (-566 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1117))) 200 T ELT)) (-2193 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2113 (-599 |#2|))) |#3| |#2| (-566 |#2|) (-566 |#2|) (-1117)) 209 (|has| |#3| (-616 |#2|)) ELT))) +(((-517 |#1| |#2| |#3|) (-10 -7 (-15 -2189 ((-534 |#2|) |#2| (-566 |#2|) (-566 |#2|))) (-15 -2190 ((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-566 |#2|) (-566 |#2|) |#2|)) (-15 -2191 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-566 |#2|) (-566 |#2|) (-599 |#2|))) (-15 -2192 ((-3 |#2| #1#) |#2| |#2| |#2| (-566 |#2|) (-566 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1117)))) (IF (|has| |#3| (-616 |#2|)) (-15 -2193 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2113 (-599 |#2|))) |#3| |#2| (-566 |#2|) (-566 |#2|) (-1117))) |%noBranch|)) (-13 (-406) (-978 (-499)) (-120) (-596 (-499))) (-13 (-375 |#1|) (-27) (-1143)) (-1041)) (T -517)) +((-2193 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-566 *4)) (-5 *6 (-1117)) (-4 *4 (-13 (-375 *7) (-27) (-1143))) (-4 *7 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2113 (-599 *4)))) (-5 *1 (-517 *7 *4 *3)) (-4 *3 (-616 *4)) (-4 *3 (-1041)))) (-2192 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-566 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1117))) (-4 *2 (-13 (-375 *5) (-27) (-1143))) (-4 *5 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *1 (-517 *5 *2 *6)) (-4 *6 (-1041)))) (-2191 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-566 *3)) (-5 *5 (-599 *3)) (-4 *3 (-13 (-375 *6) (-27) (-1143))) (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1041)))) (-2190 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-566 *3)) (-4 *3 (-13 (-375 *5) (-27) (-1143))) (-4 *5 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-2 (|:| -2237 *3) (|:| |coeff| *3))) (-5 *1 (-517 *5 *3 *6)) (-4 *6 (-1041)))) (-2189 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-566 *3)) (-4 *3 (-13 (-375 *5) (-27) (-1143))) (-4 *5 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-534 *3)) (-5 *1 (-517 *5 *3 *6)) (-4 *6 (-1041))))) +((-2194 (((-2 (|:| -2444 |#2|) (|:| |nconst| |#2|)) |#2| (-1117)) 64 T ELT)) (-2196 (((-3 |#2| #1="failed") |#2| (-1117) (-775 |#2|) (-775 |#2|)) 175 (-12 (|has| |#2| (-1079)) (|has| |#1| (-569 (-825 (-499)))) (|has| |#1| (-821 (-499)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1117)) 155 (-12 (|has| |#2| (-585)) (|has| |#1| (-569 (-825 (-499)))) (|has| |#1| (-821 (-499)))) ELT)) (-2195 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1117)) 157 (-12 (|has| |#2| (-585)) (|has| |#1| (-569 (-825 (-499)))) (|has| |#1| (-821 (-499)))) ELT))) +(((-518 |#1| |#2|) (-10 -7 (-15 -2194 ((-2 (|:| -2444 |#2|) (|:| |nconst| |#2|)) |#2| (-1117))) (IF (|has| |#1| (-569 (-825 (-499)))) (IF (|has| |#1| (-821 (-499))) (PROGN (IF (|has| |#2| (-585)) (PROGN (-15 -2195 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1117))) (-15 -2196 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1117)))) |%noBranch|) (IF (|has| |#2| (-1079)) (-15 -2196 ((-3 |#2| #1#) |#2| (-1117) (-775 |#2|) (-775 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-978 (-499)) (-406) (-596 (-499))) (-13 (-27) (-1143) (-375 |#1|))) (T -518)) +((-2196 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1117)) (-5 *4 (-775 *2)) (-4 *2 (-1079)) (-4 *2 (-13 (-27) (-1143) (-375 *5))) (-4 *5 (-569 (-825 (-499)))) (-4 *5 (-821 (-499))) (-4 *5 (-13 (-978 (-499)) (-406) (-596 (-499)))) (-5 *1 (-518 *5 *2)))) (-2196 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-569 (-825 (-499)))) (-4 *5 (-821 (-499))) (-4 *5 (-13 (-978 (-499)) (-406) (-596 (-499)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-585)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) (-2195 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-569 (-825 (-499)))) (-4 *5 (-821 (-499))) (-4 *5 (-13 (-978 (-499)) (-406) (-596 (-499)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-585)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) (-2194 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-978 (-499)) (-406) (-596 (-499)))) (-5 *2 (-2 (|:| -2444 *3) (|:| |nconst| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5)))))) +((-2199 (((-3 (-2 (|:| |mainpart| (-361 |#2|)) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| (-361 |#2|)) (|:| |logand| (-361 |#2|)))))) #1="failed") (-361 |#2|) (-599 (-361 |#2|))) 41 T ELT)) (-3962 (((-534 (-361 |#2|)) (-361 |#2|)) 28 T ELT)) (-2197 (((-3 (-361 |#2|) #1#) (-361 |#2|)) 17 T ELT)) (-2198 (((-3 (-2 (|:| -2237 (-361 |#2|)) (|:| |coeff| (-361 |#2|))) #1#) (-361 |#2|) (-361 |#2|)) 48 T ELT))) +(((-519 |#1| |#2|) (-10 -7 (-15 -3962 ((-534 (-361 |#2|)) (-361 |#2|))) (-15 -2197 ((-3 (-361 |#2|) #1="failed") (-361 |#2|))) (-15 -2198 ((-3 (-2 (|:| -2237 (-361 |#2|)) (|:| |coeff| (-361 |#2|))) #1#) (-361 |#2|) (-361 |#2|))) (-15 -2199 ((-3 (-2 (|:| |mainpart| (-361 |#2|)) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| (-361 |#2|)) (|:| |logand| (-361 |#2|)))))) #1#) (-361 |#2|) (-599 (-361 |#2|))))) (-13 (-318) (-120) (-978 (-499))) (-1183 |#1|)) (T -519)) +((-2199 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-599 (-361 *6))) (-5 *3 (-361 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-13 (-318) (-120) (-978 (-499)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *5 *6)))) (-2198 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-318) (-120) (-978 (-499)))) (-4 *5 (-1183 *4)) (-5 *2 (-2 (|:| -2237 (-361 *5)) (|:| |coeff| (-361 *5)))) (-5 *1 (-519 *4 *5)) (-5 *3 (-361 *5)))) (-2197 (*1 *2 *2) (|partial| -12 (-5 *2 (-361 *4)) (-4 *4 (-1183 *3)) (-4 *3 (-13 (-318) (-120) (-978 (-499)))) (-5 *1 (-519 *3 *4)))) (-3962 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-120) (-978 (-499)))) (-4 *5 (-1183 *4)) (-5 *2 (-534 (-361 *5))) (-5 *1 (-519 *4 *5)) (-5 *3 (-361 *5))))) +((-2200 (((-3 (-499) "failed") |#1|) 14 T ELT)) (-3397 (((-85) |#1|) 13 T ELT)) (-3393 (((-499) |#1|) 9 T ELT))) +(((-520 |#1|) (-10 -7 (-15 -3393 ((-499) |#1|)) (-15 -3397 ((-85) |#1|)) (-15 -2200 ((-3 (-499) "failed") |#1|))) (-978 (-499))) (T -520)) +((-2200 (*1 *2 *3) (|partial| -12 (-5 *2 (-499)) (-5 *1 (-520 *3)) (-4 *3 (-978 *2)))) (-3397 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-520 *3)) (-4 *3 (-978 (-499))))) (-3393 (*1 *2 *3) (-12 (-5 *2 (-499)) (-5 *1 (-520 *3)) (-4 *3 (-978 *2))))) +((-2203 (((-3 (-2 (|:| |mainpart| (-361 (-884 |#1|))) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| (-361 (-884 |#1|))) (|:| |logand| (-361 (-884 |#1|))))))) #1="failed") (-361 (-884 |#1|)) (-1117) (-599 (-361 (-884 |#1|)))) 48 T ELT)) (-2201 (((-534 (-361 (-884 |#1|))) (-361 (-884 |#1|)) (-1117)) 28 T ELT)) (-2202 (((-3 (-361 (-884 |#1|)) #1#) (-361 (-884 |#1|)) (-1117)) 23 T ELT)) (-2204 (((-3 (-2 (|:| -2237 (-361 (-884 |#1|))) (|:| |coeff| (-361 (-884 |#1|)))) #1#) (-361 (-884 |#1|)) (-1117) (-361 (-884 |#1|))) 35 T ELT))) +(((-521 |#1|) (-10 -7 (-15 -2201 ((-534 (-361 (-884 |#1|))) (-361 (-884 |#1|)) (-1117))) (-15 -2202 ((-3 (-361 (-884 |#1|)) #1="failed") (-361 (-884 |#1|)) (-1117))) (-15 -2203 ((-3 (-2 (|:| |mainpart| (-361 (-884 |#1|))) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| (-361 (-884 |#1|))) (|:| |logand| (-361 (-884 |#1|))))))) #1#) (-361 (-884 |#1|)) (-1117) (-599 (-361 (-884 |#1|))))) (-15 -2204 ((-3 (-2 (|:| -2237 (-361 (-884 |#1|))) (|:| |coeff| (-361 (-884 |#1|)))) #1#) (-361 (-884 |#1|)) (-1117) (-361 (-884 |#1|))))) (-13 (-510) (-978 (-499)) (-120))) (T -521)) +((-2204 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-13 (-510) (-978 (-499)) (-120))) (-5 *2 (-2 (|:| -2237 (-361 (-884 *5))) (|:| |coeff| (-361 (-884 *5))))) (-5 *1 (-521 *5)) (-5 *3 (-361 (-884 *5))))) (-2203 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-599 (-361 (-884 *6)))) (-5 *3 (-361 (-884 *6))) (-4 *6 (-13 (-510) (-978 (-499)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *6)))) (-2202 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-361 (-884 *4))) (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)) (-120))) (-5 *1 (-521 *4)))) (-2201 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-510) (-978 (-499)) (-120))) (-5 *2 (-534 (-361 (-884 *5)))) (-5 *1 (-521 *5)) (-5 *3 (-361 (-884 *5)))))) +((-2687 (((-85) $ $) 77 T ELT)) (-3326 (((-85) $) 49 T ELT)) (-2723 ((|#1| $) 39 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) 81 T ELT)) (-3632 (($ $) 142 T ELT)) (-3789 (($ $) 120 T ELT)) (-2600 ((|#1| $) 37 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3158 (($ $) NIL T ELT)) (-3630 (($ $) 144 T ELT)) (-3788 (($ $) 116 T ELT)) (-3634 (($ $) 146 T ELT)) (-3787 (($ $) 124 T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) 95 T ELT)) (-3294 (((-499) $) 97 T ELT)) (-3607 (((-3 $ #1#) $) 80 T ELT)) (-2160 (($ |#1| |#1|) 35 T ELT)) (-3324 (((-85) $) 44 T ELT)) (-3777 (($) 106 T ELT)) (-2528 (((-85) $) 56 T ELT)) (-3132 (($ $ (-499)) NIL T ELT)) (-3325 (((-85) $) 46 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-4092 (($ $) 108 T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2161 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-361 (-499))) 94 T ELT)) (-2159 ((|#1| $) 36 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) 83 T ELT) (($ (-599 $)) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) 82 T ELT)) (-4093 (($ $) 110 T ELT)) (-3635 (($ $) 150 T ELT)) (-3786 (($ $) 122 T ELT)) (-3633 (($ $) 152 T ELT)) (-3785 (($ $) 126 T ELT)) (-3631 (($ $) 148 T ELT)) (-3784 (($ $) 118 T ELT)) (-2158 (((-85) $ |#1|) 42 T ELT)) (-4096 (((-797) $) 102 T ELT) (($ (-499)) 85 T ELT) (($ $) NIL T ELT) (($ (-499)) 85 T ELT)) (-3248 (((-714)) 104 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) 164 T ELT)) (-3626 (($ $) 132 T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3636 (($ $) 162 T ELT)) (-3624 (($ $) 128 T ELT)) (-3640 (($ $) 160 T ELT)) (-3628 (($ $) 140 T ELT)) (-3641 (($ $) 158 T ELT)) (-3629 (($ $) 138 T ELT)) (-3639 (($ $) 156 T ELT)) (-3627 (($ $) 134 T ELT)) (-3637 (($ $) 154 T ELT)) (-3625 (($ $) 130 T ELT)) (-2779 (($) 30 T CONST)) (-2785 (($) 10 T CONST)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 50 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 48 T ELT)) (-3987 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3989 (($ $ $) 53 T ELT)) (** (($ $ (-857)) 73 T ELT) (($ $ (-714)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-361 (-499))) 166 T ELT)) (* (($ (-857) $) 67 T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 66 T ELT) (($ $ $) 62 T ELT))) +(((-522 |#1|) (-508 |#1|) (-13 (-358) (-1143))) (T -522)) +NIL +((-2825 (((-3 (-599 (-1111 (-499))) "failed") (-599 (-1111 (-499))) (-1111 (-499))) 27 T ELT))) +(((-523) (-10 -7 (-15 -2825 ((-3 (-599 (-1111 (-499))) "failed") (-599 (-1111 (-499))) (-1111 (-499)))))) (T -523)) +((-2825 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-599 (-1111 (-499)))) (-5 *3 (-1111 (-499))) (-5 *1 (-523))))) +((-2205 (((-599 (-566 |#2|)) (-599 (-566 |#2|)) (-1117)) 19 T ELT)) (-2208 (((-599 (-566 |#2|)) (-599 |#2|) (-1117)) 23 T ELT)) (-3372 (((-599 (-566 |#2|)) (-599 (-566 |#2|)) (-599 (-566 |#2|))) 11 T ELT)) (-2209 ((|#2| |#2| (-1117)) 59 (|has| |#1| (-510)) ELT)) (-2210 ((|#2| |#2| (-1117)) 87 (-12 (|has| |#2| (-238)) (|has| |#1| (-406))) ELT)) (-2207 (((-566 |#2|) (-566 |#2|) (-599 (-566 |#2|)) (-1117)) 25 T ELT)) (-2206 (((-566 |#2|) (-599 (-566 |#2|))) 24 T ELT)) (-2211 (((-534 |#2|) |#2| (-1117) (-1 (-534 |#2|) |#2| (-1117)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117))) 115 (-12 (|has| |#2| (-238)) (|has| |#2| (-585)) (|has| |#2| (-978 (-1117))) (|has| |#1| (-569 (-825 (-499)))) (|has| |#1| (-406)) (|has| |#1| (-821 (-499)))) ELT))) +(((-524 |#1| |#2|) (-10 -7 (-15 -2205 ((-599 (-566 |#2|)) (-599 (-566 |#2|)) (-1117))) (-15 -2206 ((-566 |#2|) (-599 (-566 |#2|)))) (-15 -2207 ((-566 |#2|) (-566 |#2|) (-599 (-566 |#2|)) (-1117))) (-15 -3372 ((-599 (-566 |#2|)) (-599 (-566 |#2|)) (-599 (-566 |#2|)))) (-15 -2208 ((-599 (-566 |#2|)) (-599 |#2|) (-1117))) (IF (|has| |#1| (-510)) (-15 -2209 (|#2| |#2| (-1117))) |%noBranch|) (IF (|has| |#1| (-406)) (IF (|has| |#2| (-238)) (PROGN (-15 -2210 (|#2| |#2| (-1117))) (IF (|has| |#1| (-569 (-825 (-499)))) (IF (|has| |#1| (-821 (-499))) (IF (|has| |#2| (-585)) (IF (|has| |#2| (-978 (-1117))) (-15 -2211 ((-534 |#2|) |#2| (-1117) (-1 (-534 |#2|) |#2| (-1117)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1041) (-375 |#1|)) (T -524)) +((-2211 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-534 *3) *3 (-1117))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1117))) (-4 *3 (-238)) (-4 *3 (-585)) (-4 *3 (-978 *4)) (-4 *3 (-375 *7)) (-5 *4 (-1117)) (-4 *7 (-569 (-825 (-499)))) (-4 *7 (-406)) (-4 *7 (-821 (-499))) (-4 *7 (-1041)) (-5 *2 (-534 *3)) (-5 *1 (-524 *7 *3)))) (-2210 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-406)) (-4 *4 (-1041)) (-5 *1 (-524 *4 *2)) (-4 *2 (-238)) (-4 *2 (-375 *4)))) (-2209 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-4 *4 (-1041)) (-5 *1 (-524 *4 *2)) (-4 *2 (-375 *4)))) (-2208 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6)) (-5 *4 (-1117)) (-4 *6 (-375 *5)) (-4 *5 (-1041)) (-5 *2 (-599 (-566 *6))) (-5 *1 (-524 *5 *6)))) (-3372 (*1 *2 *2 *2) (-12 (-5 *2 (-599 (-566 *4))) (-4 *4 (-375 *3)) (-4 *3 (-1041)) (-5 *1 (-524 *3 *4)))) (-2207 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-599 (-566 *6))) (-5 *4 (-1117)) (-5 *2 (-566 *6)) (-4 *6 (-375 *5)) (-4 *5 (-1041)) (-5 *1 (-524 *5 *6)))) (-2206 (*1 *2 *3) (-12 (-5 *3 (-599 (-566 *5))) (-4 *4 (-1041)) (-5 *2 (-566 *5)) (-5 *1 (-524 *4 *5)) (-4 *5 (-375 *4)))) (-2205 (*1 *2 *2 *3) (-12 (-5 *2 (-599 (-566 *5))) (-5 *3 (-1117)) (-4 *5 (-375 *4)) (-4 *4 (-1041)) (-5 *1 (-524 *4 *5))))) +((-2214 (((-2 (|:| |answer| (-534 (-361 |#2|))) (|:| |a0| |#1|)) (-361 |#2|) (-1 |#2| |#2|) (-1 (-3 (-599 |#1|) #1="failed") (-499) |#1| |#1|)) 199 T ELT)) (-2217 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-361 |#2|)) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| (-361 |#2|)) (|:| |logand| (-361 |#2|))))))) (|:| |a0| |#1|)) #1#) (-361 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2237 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-599 (-361 |#2|))) 174 T ELT)) (-2220 (((-3 (-2 (|:| |mainpart| (-361 |#2|)) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| (-361 |#2|)) (|:| |logand| (-361 |#2|)))))) #1#) (-361 |#2|) (-1 |#2| |#2|) (-599 (-361 |#2|))) 171 T ELT)) (-2221 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2237 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2212 (((-2 (|:| |answer| (-534 (-361 |#2|))) (|:| |a0| |#1|)) (-361 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2237 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2219 (((-3 (-2 (|:| -2237 (-361 |#2|)) (|:| |coeff| (-361 |#2|))) #1#) (-361 |#2|) (-1 |#2| |#2|) (-361 |#2|)) 202 T ELT)) (-2215 (((-3 (-2 (|:| |answer| (-361 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2237 (-361 |#2|)) (|:| |coeff| (-361 |#2|))) #1#) (-361 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2237 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-361 |#2|)) 205 T ELT)) (-2223 (((-2 (|:| |ir| (-534 (-361 |#2|))) (|:| |specpart| (-361 |#2|)) (|:| |polypart| |#2|)) (-361 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2224 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2218 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-361 |#2|)) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| (-361 |#2|)) (|:| |logand| (-361 |#2|))))))) (|:| |a0| |#1|)) #1#) (-361 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3259 |#1|) (|:| |sol?| (-85))) (-499) |#1|) (-599 (-361 |#2|))) 178 T ELT)) (-2222 (((-3 (-578 |#1| |#2|) #1#) (-578 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3259 |#1|) (|:| |sol?| (-85))) (-499) |#1|)) 166 T ELT)) (-2213 (((-2 (|:| |answer| (-534 (-361 |#2|))) (|:| |a0| |#1|)) (-361 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3259 |#1|) (|:| |sol?| (-85))) (-499) |#1|)) 189 T ELT)) (-2216 (((-3 (-2 (|:| |answer| (-361 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2237 (-361 |#2|)) (|:| |coeff| (-361 |#2|))) #1#) (-361 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3259 |#1|) (|:| |sol?| (-85))) (-499) |#1|) (-361 |#2|)) 210 T ELT))) +(((-525 |#1| |#2|) (-10 -7 (-15 -2212 ((-2 (|:| |answer| (-534 (-361 |#2|))) (|:| |a0| |#1|)) (-361 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2237 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2213 ((-2 (|:| |answer| (-534 (-361 |#2|))) (|:| |a0| |#1|)) (-361 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3259 |#1|) (|:| |sol?| (-85))) (-499) |#1|))) (-15 -2214 ((-2 (|:| |answer| (-534 (-361 |#2|))) (|:| |a0| |#1|)) (-361 |#2|) (-1 |#2| |#2|) (-1 (-3 (-599 |#1|) #1#) (-499) |#1| |#1|))) (-15 -2215 ((-3 (-2 (|:| |answer| (-361 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2237 (-361 |#2|)) (|:| |coeff| (-361 |#2|))) #1#) (-361 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2237 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-361 |#2|))) (-15 -2216 ((-3 (-2 (|:| |answer| (-361 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2237 (-361 |#2|)) (|:| |coeff| (-361 |#2|))) #1#) (-361 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3259 |#1|) (|:| |sol?| (-85))) (-499) |#1|) (-361 |#2|))) (-15 -2217 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-361 |#2|)) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| (-361 |#2|)) (|:| |logand| (-361 |#2|))))))) (|:| |a0| |#1|)) #1#) (-361 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2237 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-599 (-361 |#2|)))) (-15 -2218 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-361 |#2|)) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| (-361 |#2|)) (|:| |logand| (-361 |#2|))))))) (|:| |a0| |#1|)) #1#) (-361 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3259 |#1|) (|:| |sol?| (-85))) (-499) |#1|) (-599 (-361 |#2|)))) (-15 -2219 ((-3 (-2 (|:| -2237 (-361 |#2|)) (|:| |coeff| (-361 |#2|))) #1#) (-361 |#2|) (-1 |#2| |#2|) (-361 |#2|))) (-15 -2220 ((-3 (-2 (|:| |mainpart| (-361 |#2|)) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| (-361 |#2|)) (|:| |logand| (-361 |#2|)))))) #1#) (-361 |#2|) (-1 |#2| |#2|) (-599 (-361 |#2|)))) (-15 -2221 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2237 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2222 ((-3 (-578 |#1| |#2|) #1#) (-578 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3259 |#1|) (|:| |sol?| (-85))) (-499) |#1|))) (-15 -2223 ((-2 (|:| |ir| (-534 (-361 |#2|))) (|:| |specpart| (-361 |#2|)) (|:| |polypart| |#2|)) (-361 |#2|) (-1 |#2| |#2|))) (-15 -2224 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-318) (-1183 |#1|)) (T -525)) +((-2224 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-318)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-525 *5 *3)))) (-2223 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) (-5 *2 (-2 (|:| |ir| (-534 (-361 *6))) (|:| |specpart| (-361 *6)) (|:| |polypart| *6))) (-5 *1 (-525 *5 *6)) (-5 *3 (-361 *6)))) (-2222 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3259 *4) (|:| |sol?| (-85))) (-499) *4)) (-4 *4 (-318)) (-4 *5 (-1183 *4)) (-5 *1 (-525 *4 *5)))) (-2221 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2237 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-318)) (-5 *1 (-525 *4 *2)) (-4 *2 (-1183 *4)))) (-2220 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-599 (-361 *7))) (-4 *7 (-1183 *6)) (-5 *3 (-361 *7)) (-4 *6 (-318)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-525 *6 *7)))) (-2219 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) (-5 *2 (-2 (|:| -2237 (-361 *6)) (|:| |coeff| (-361 *6)))) (-5 *1 (-525 *5 *6)) (-5 *3 (-361 *6)))) (-2218 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3259 *7) (|:| |sol?| (-85))) (-499) *7)) (-5 *6 (-599 (-361 *8))) (-4 *7 (-318)) (-4 *8 (-1183 *7)) (-5 *3 (-361 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-525 *7 *8)))) (-2217 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2237 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-599 (-361 *8))) (-4 *7 (-318)) (-4 *8 (-1183 *7)) (-5 *3 (-361 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-525 *7 *8)))) (-2216 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3259 *6) (|:| |sol?| (-85))) (-499) *6)) (-4 *6 (-318)) (-4 *7 (-1183 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-361 *7)) (|:| |a0| *6)) (-2 (|:| -2237 (-361 *7)) (|:| |coeff| (-361 *7))) "failed")) (-5 *1 (-525 *6 *7)) (-5 *3 (-361 *7)))) (-2215 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2237 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-318)) (-4 *7 (-1183 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-361 *7)) (|:| |a0| *6)) (-2 (|:| -2237 (-361 *7)) (|:| |coeff| (-361 *7))) "failed")) (-5 *1 (-525 *6 *7)) (-5 *3 (-361 *7)))) (-2214 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-599 *6) "failed") (-499) *6 *6)) (-4 *6 (-318)) (-4 *7 (-1183 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-361 *7))) (|:| |a0| *6))) (-5 *1 (-525 *6 *7)) (-5 *3 (-361 *7)))) (-2213 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3259 *6) (|:| |sol?| (-85))) (-499) *6)) (-4 *6 (-318)) (-4 *7 (-1183 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-361 *7))) (|:| |a0| *6))) (-5 *1 (-525 *6 *7)) (-5 *3 (-361 *7)))) (-2212 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2237 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-318)) (-4 *7 (-1183 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-361 *7))) (|:| |a0| *6))) (-5 *1 (-525 *6 *7)) (-5 *3 (-361 *7))))) +((-2225 (((-3 |#2| "failed") |#2| (-1117) (-1117)) 10 T ELT))) +(((-526 |#1| |#2|) (-10 -7 (-15 -2225 ((-3 |#2| "failed") |#2| (-1117) (-1117)))) (-13 (-261) (-120) (-978 (-499)) (-596 (-499))) (-13 (-1143) (-898) (-1079) (-29 |#1|))) (T -526)) +((-2225 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *1 (-526 *4 *2)) (-4 *2 (-13 (-1143) (-898) (-1079) (-29 *4)))))) +((-2674 (((-649 (-1166)) $ (-1166)) 27 T ELT)) (-2675 (((-649 (-503)) $ (-503)) 26 T ELT)) (-2673 (((-714) $ (-102)) 28 T ELT)) (-2676 (((-649 (-101)) $ (-101)) 25 T ELT)) (-2101 (((-649 (-1166)) $) 12 T ELT)) (-2097 (((-649 (-1164)) $) 8 T ELT)) (-2099 (((-649 (-1163)) $) 10 T ELT)) (-2102 (((-649 (-503)) $) 13 T ELT)) (-2098 (((-649 (-501)) $) 9 T ELT)) (-2100 (((-649 (-500)) $) 11 T ELT)) (-2096 (((-714) $ (-102)) 7 T ELT)) (-2103 (((-649 (-101)) $) 14 T ELT)) (-1793 (($ $) 6 T ELT))) +(((-527) (-113)) (T -527)) +NIL +(-13 (-480) (-795)) +(((-147) . T) ((-480) . T) ((-795) . T)) +((-2674 (((-649 (-1166)) $ (-1166)) NIL T ELT)) (-2675 (((-649 (-503)) $ (-503)) NIL T ELT)) (-2673 (((-714) $ (-102)) NIL T ELT)) (-2676 (((-649 (-101)) $ (-101)) NIL T ELT)) (-2101 (((-649 (-1166)) $) NIL T ELT)) (-2097 (((-649 (-1164)) $) NIL T ELT)) (-2099 (((-649 (-1163)) $) NIL T ELT)) (-2102 (((-649 (-503)) $) NIL T ELT)) (-2098 (((-649 (-501)) $) NIL T ELT)) (-2100 (((-649 (-500)) $) NIL T ELT)) (-2096 (((-714) $ (-102)) NIL T ELT)) (-2103 (((-649 (-101)) $) NIL T ELT)) (-2677 (((-85) $) NIL T ELT)) (-2226 (($ (-344)) 14 T ELT) (($ (-1099)) 16 T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1793 (($ $) NIL T ELT))) +(((-528) (-13 (-527) (-568 (-797)) (-10 -8 (-15 -2226 ($ (-344))) (-15 -2226 ($ (-1099))) (-15 -2677 ((-85) $))))) (T -528)) +((-2226 (*1 *1 *2) (-12 (-5 *2 (-344)) (-5 *1 (-528)))) (-2226 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-528)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-528))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3600 (($) 7 T CONST)) (-3380 (((-1099) $) NIL T ELT)) (-2229 (($) 6 T CONST)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 15 T ELT)) (-2227 (($) 9 T CONST)) (-2228 (($) 8 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 11 T ELT))) +(((-529) (-13 (-1041) (-10 -8 (-15 -2229 ($) -4102) (-15 -3600 ($) -4102) (-15 -2228 ($) -4102) (-15 -2227 ($) -4102)))) (T -529)) +((-2229 (*1 *1) (-5 *1 (-529))) (-3600 (*1 *1) (-5 *1 (-529))) (-2228 (*1 *1) (-5 *1 (-529))) (-2227 (*1 *1) (-5 *1 (-529)))) +((-2687 (((-85) $ $) NIL T ELT)) (-2230 (((-649 $) (-445)) 21 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2232 (($ (-1099)) 14 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 33 T ELT)) (-2231 (((-166 4 (-101)) $) 24 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 26 T ELT))) +(((-530) (-13 (-1041) (-10 -8 (-15 -2232 ($ (-1099))) (-15 -2231 ((-166 4 (-101)) $)) (-15 -2230 ((-649 $) (-445)))))) (T -530)) +((-2232 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-530)))) (-2231 (*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-530)))) (-2230 (*1 *2 *3) (-12 (-5 *3 (-445)) (-5 *2 (-649 (-530))) (-5 *1 (-530))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3158 (($ $ (-499)) 76 T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2730 (($ (-1111 (-499)) (-499)) 82 T ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) 66 T ELT)) (-2731 (($ $) 43 T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3922 (((-714) $) 16 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2733 (((-499)) 37 T ELT)) (-2732 (((-499) $) 41 T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3919 (($ $ (-499)) 24 T ELT)) (-3606 (((-3 $ #1#) $ $) 72 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) 17 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 73 T ELT)) (-2734 (((-1095 (-499)) $) 19 T ELT)) (-3012 (($ $) 26 T ELT)) (-4096 (((-797) $) 103 T ELT) (($ (-499)) 61 T ELT) (($ $) NIL T ELT)) (-3248 (((-714)) 15 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3920 (((-499) $ (-499)) 46 T ELT)) (-2779 (($) 44 T CONST)) (-2785 (($) 21 T CONST)) (-3174 (((-85) $ $) 52 T ELT)) (-3987 (($ $) 60 T ELT) (($ $ $) 48 T ELT)) (-3989 (($ $ $) 59 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 62 T ELT) (($ $ $) 63 T ELT))) +(((-531 |#1| |#2|) (-804 |#1|) (-499) (-85)) (T -531)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 30 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 (($ $ (-857)) NIL (|has| $ (-323)) ELT) (($ $) NIL T ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) 59 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 $ #1#) $) 95 T ELT)) (-3294 (($ $) 94 T ELT)) (-1890 (($ (-1207 $)) 93 T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) 47 T ELT)) (-3115 (($) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) 61 T ELT)) (-1773 (((-85) $) NIL T ELT)) (-1864 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-766 (-857)) $) NIL T ELT) (((-857) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) 49 (|has| $ (-323)) ELT)) (-2112 (((-85) $) NIL (|has| $ (-323)) ELT)) (-3254 (($ $ (-857)) NIL (|has| $ (-323)) ELT) (($ $) NIL T ELT)) (-3585 (((-649 $) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 $) $ (-857)) NIL (|has| $ (-323)) ELT) (((-1111 $) $) 104 T ELT)) (-2111 (((-857) $) 67 T ELT)) (-1697 (((-1111 $) $) NIL (|has| $ (-323)) ELT)) (-1696 (((-3 (-1111 $) #1#) $ $) NIL (|has| $ (-323)) ELT) (((-1111 $) $) NIL (|has| $ (-323)) ELT)) (-1698 (($ $ (-1111 $)) NIL (|has| $ (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL T CONST)) (-2518 (($ (-857)) 60 T ELT)) (-4081 (((-85) $) 87 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($) 28 (|has| $ (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) 54 T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-857)) 86 T ELT) (((-766 (-857))) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-3 (-714) #1#) $ $) NIL T ELT) (((-714) $) NIL T ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-4098 (((-857) $) 85 T ELT) (((-766 (-857)) $) NIL T ELT)) (-3323 (((-1111 $)) 102 T ELT)) (-1767 (($) 66 T ELT)) (-1699 (($) 50 (|has| $ (-323)) ELT)) (-3362 (((-647 $) (-1207 $)) NIL T ELT) (((-1207 $) $) 91 T ELT)) (-4122 (((-499) $) 42 T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) 45 T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT)) (-2823 (((-649 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3248 (((-714)) 51 T CONST)) (-1297 (((-85) $ $) 107 T ELT)) (-2113 (((-1207 $) (-857)) 97 T ELT) (((-1207 $)) 96 T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) 31 T CONST)) (-2785 (($) 27 T CONST)) (-4078 (($ $ (-714)) NIL (|has| $ (-323)) ELT) (($ $) NIL (|has| $ (-323)) ELT)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) 34 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT))) +(((-532 |#1|) (-13 (-305) (-283 $) (-569 (-499))) (-857)) (T -532)) +NIL +((-2233 (((-1213) (-1099)) 10 T ELT))) +(((-533) (-10 -7 (-15 -2233 ((-1213) (-1099))))) (T -533)) +((-2233 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-533))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) 77 T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-2237 ((|#1| $) 30 T ELT)) (-2235 (((-599 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2238 (($ |#1| (-599 (-2 (|:| |scalar| (-361 (-499))) (|:| |coeff| (-1111 |#1|)) (|:| |logand| (-1111 |#1|)))) (-599 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2236 (((-599 (-2 (|:| |scalar| (-361 (-499))) (|:| |coeff| (-1111 |#1|)) (|:| |logand| (-1111 |#1|)))) $) 31 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2953 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1117)) 49 (|has| |#1| (-978 (-1117))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2234 (((-85) $) 35 T ELT)) (-3908 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1117)) 90 (|has| |#1| (-836 (-1117))) ELT)) (-4096 (((-797) $) 110 T ELT) (($ |#1|) 29 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 18 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 86 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 16 T ELT) (($ (-361 (-499)) $) 41 T ELT) (($ $ (-361 (-499))) NIL T ELT))) +(((-534 |#1|) (-13 (-675 (-361 (-499))) (-978 |#1|) (-10 -8 (-15 -2238 ($ |#1| (-599 (-2 (|:| |scalar| (-361 (-499))) (|:| |coeff| (-1111 |#1|)) (|:| |logand| (-1111 |#1|)))) (-599 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2237 (|#1| $)) (-15 -2236 ((-599 (-2 (|:| |scalar| (-361 (-499))) (|:| |coeff| (-1111 |#1|)) (|:| |logand| (-1111 |#1|)))) $)) (-15 -2235 ((-599 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2234 ((-85) $)) (-15 -2953 ($ |#1| |#1|)) (-15 -3908 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-836 (-1117))) (-15 -3908 (|#1| $ (-1117))) |%noBranch|) (IF (|has| |#1| (-978 (-1117))) (-15 -2953 ($ |#1| (-1117))) |%noBranch|))) (-318)) (T -534)) +((-2238 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-599 (-2 (|:| |scalar| (-361 (-499))) (|:| |coeff| (-1111 *2)) (|:| |logand| (-1111 *2))))) (-5 *4 (-599 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-318)) (-5 *1 (-534 *2)))) (-2237 (*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-318)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| |scalar| (-361 (-499))) (|:| |coeff| (-1111 *3)) (|:| |logand| (-1111 *3))))) (-5 *1 (-534 *3)) (-4 *3 (-318)))) (-2235 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-534 *3)) (-4 *3 (-318)))) (-2234 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-534 *3)) (-4 *3 (-318)))) (-2953 (*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-318)))) (-3908 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-534 *2)) (-4 *2 (-318)))) (-3908 (*1 *2 *1 *3) (-12 (-4 *2 (-318)) (-4 *2 (-836 *3)) (-5 *1 (-534 *2)) (-5 *3 (-1117)))) (-2953 (*1 *1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *1 (-534 *2)) (-4 *2 (-978 *3)) (-4 *2 (-318))))) +((-4108 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2237 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|)) 30 T ELT))) +(((-535 |#1| |#2|) (-10 -7 (-15 -4108 ((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|))) (-15 -4108 ((-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2237 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -4108 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -4108 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-318) (-318)) (T -535)) +((-4108 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-318)) (-4 *6 (-318)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-535 *5 *6)))) (-4108 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-318)) (-4 *2 (-318)) (-5 *1 (-535 *5 *2)))) (-4108 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2237 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-318)) (-4 *6 (-318)) (-5 *2 (-2 (|:| -2237 *6) (|:| |coeff| *6))) (-5 *1 (-535 *5 *6)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-534 *5)) (-4 *5 (-318)) (-4 *6 (-318)) (-5 *2 (-534 *6)) (-5 *1 (-535 *5 *6))))) +((-3558 (((-534 |#2|) (-534 |#2|)) 42 T ELT)) (-4113 (((-599 |#2|) (-534 |#2|)) 44 T ELT)) (-2249 ((|#2| (-534 |#2|)) 50 T ELT))) +(((-536 |#1| |#2|) (-10 -7 (-15 -3558 ((-534 |#2|) (-534 |#2|))) (-15 -4113 ((-599 |#2|) (-534 |#2|))) (-15 -2249 (|#2| (-534 |#2|)))) (-13 (-406) (-978 (-499)) (-596 (-499))) (-13 (-29 |#1|) (-1143))) (T -536)) +((-2249 (*1 *2 *3) (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1143))) (-5 *1 (-536 *4 *2)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))))) (-4113 (*1 *2 *3) (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1143))) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-599 *5)) (-5 *1 (-536 *4 *5)))) (-3558 (*1 *2 *2) (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1143))) (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-536 *3 *4))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2241 (($ (-460) (-547)) 14 T ELT)) (-2239 (($ (-460) (-547) $) 16 T ELT)) (-2240 (($ (-460) (-547)) 15 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-1122)) 7 T ELT) (((-1122) $) 6 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-537) (-13 (-1041) (-444 (-1122)) (-10 -8 (-15 -2241 ($ (-460) (-547))) (-15 -2240 ($ (-460) (-547))) (-15 -2239 ($ (-460) (-547) $))))) (T -537)) +((-2241 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-547)) (-5 *1 (-537)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-547)) (-5 *1 (-537)))) (-2239 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-460)) (-5 *3 (-547)) (-5 *1 (-537))))) +((-2245 (((-85) |#1|) 16 T ELT)) (-2246 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2243 (((-2 (|:| -2815 |#1|) (|:| -2519 (-714))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-714)) 18 T ELT)) (-2242 (((-85) |#1| (-714)) 19 T ELT)) (-2247 ((|#1| |#1|) 41 T ELT)) (-2244 ((|#1| |#1| (-714)) 44 T ELT))) +(((-538 |#1|) (-10 -7 (-15 -2242 ((-85) |#1| (-714))) (-15 -2243 ((-3 |#1| #1="failed") |#1| (-714))) (-15 -2243 ((-2 (|:| -2815 |#1|) (|:| -2519 (-714))) |#1|)) (-15 -2244 (|#1| |#1| (-714))) (-15 -2245 ((-85) |#1|)) (-15 -2246 ((-3 |#1| #1#) |#1|)) (-15 -2247 (|#1| |#1|))) (-498)) (T -538)) +((-2247 (*1 *2 *2) (-12 (-5 *1 (-538 *2)) (-4 *2 (-498)))) (-2246 (*1 *2 *2) (|partial| -12 (-5 *1 (-538 *2)) (-4 *2 (-498)))) (-2245 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-538 *3)) (-4 *3 (-498)))) (-2244 (*1 *2 *2 *3) (-12 (-5 *3 (-714)) (-5 *1 (-538 *2)) (-4 *2 (-498)))) (-2243 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2815 *3) (|:| -2519 (-714)))) (-5 *1 (-538 *3)) (-4 *3 (-498)))) (-2243 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-714)) (-5 *1 (-538 *2)) (-4 *2 (-498)))) (-2242 (*1 *2 *3 *4) (-12 (-5 *4 (-714)) (-5 *2 (-85)) (-5 *1 (-538 *3)) (-4 *3 (-498))))) +((-2248 (((-1111 |#1|) (-857)) 44 T ELT))) +(((-539 |#1|) (-10 -7 (-15 -2248 ((-1111 |#1|) (-857)))) (-305)) (T -539)) +((-2248 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-539 *4)) (-4 *4 (-305))))) +((-3558 (((-534 (-361 (-884 |#1|))) (-534 (-361 (-884 |#1|)))) 27 T ELT)) (-3962 (((-3 (-268 |#1|) (-599 (-268 |#1|))) (-361 (-884 |#1|)) (-1117)) 34 (|has| |#1| (-120)) ELT)) (-4113 (((-599 (-268 |#1|)) (-534 (-361 (-884 |#1|)))) 19 T ELT)) (-2250 (((-268 |#1|) (-361 (-884 |#1|)) (-1117)) 32 (|has| |#1| (-120)) ELT)) (-2249 (((-268 |#1|) (-534 (-361 (-884 |#1|)))) 21 T ELT))) +(((-540 |#1|) (-10 -7 (-15 -3558 ((-534 (-361 (-884 |#1|))) (-534 (-361 (-884 |#1|))))) (-15 -4113 ((-599 (-268 |#1|)) (-534 (-361 (-884 |#1|))))) (-15 -2249 ((-268 |#1|) (-534 (-361 (-884 |#1|))))) (IF (|has| |#1| (-120)) (PROGN (-15 -3962 ((-3 (-268 |#1|) (-599 (-268 |#1|))) (-361 (-884 |#1|)) (-1117))) (-15 -2250 ((-268 |#1|) (-361 (-884 |#1|)) (-1117)))) |%noBranch|)) (-13 (-406) (-978 (-499)) (-596 (-499)))) (T -540)) +((-2250 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-120)) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-268 *5)) (-5 *1 (-540 *5)))) (-3962 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-120)) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-3 (-268 *5) (-599 (-268 *5)))) (-5 *1 (-540 *5)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-534 (-361 (-884 *4)))) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-268 *4)) (-5 *1 (-540 *4)))) (-4113 (*1 *2 *3) (-12 (-5 *3 (-534 (-361 (-884 *4)))) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-599 (-268 *4))) (-5 *1 (-540 *4)))) (-3558 (*1 *2 *2) (-12 (-5 *2 (-534 (-361 (-884 *3)))) (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-540 *3))))) +((-2252 (((-599 (-647 (-499))) (-599 (-857)) (-599 (-840 (-499)))) 80 T ELT) (((-599 (-647 (-499))) (-599 (-857))) 81 T ELT) (((-647 (-499)) (-599 (-857)) (-840 (-499))) 74 T ELT)) (-2251 (((-714) (-599 (-857))) 71 T ELT))) +(((-541) (-10 -7 (-15 -2251 ((-714) (-599 (-857)))) (-15 -2252 ((-647 (-499)) (-599 (-857)) (-840 (-499)))) (-15 -2252 ((-599 (-647 (-499))) (-599 (-857)))) (-15 -2252 ((-599 (-647 (-499))) (-599 (-857)) (-599 (-840 (-499))))))) (T -541)) +((-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-857))) (-5 *4 (-599 (-840 (-499)))) (-5 *2 (-599 (-647 (-499)))) (-5 *1 (-541)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-599 (-857))) (-5 *2 (-599 (-647 (-499)))) (-5 *1 (-541)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-857))) (-5 *4 (-840 (-499))) (-5 *2 (-647 (-499))) (-5 *1 (-541)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-599 (-857))) (-5 *2 (-714)) (-5 *1 (-541))))) +((-3351 (((-599 |#5|) |#5| (-85)) 97 T ELT)) (-2253 (((-85) |#5| (-599 |#5|)) 34 T ELT))) +(((-542 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3351 ((-599 |#5|) |#5| (-85))) (-15 -2253 ((-85) |#5| (-599 |#5|)))) (-13 (-261) (-120)) (-738) (-781) (-1005 |#1| |#2| |#3|) (-1049 |#1| |#2| |#3| |#4|)) (T -542)) +((-2253 (*1 *2 *3 *4) (-12 (-5 *4 (-599 *3)) (-4 *3 (-1049 *5 *6 *7 *8)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-1005 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-542 *5 *6 *7 *8 *3)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-1005 *5 *6 *7)) (-5 *2 (-599 *3)) (-5 *1 (-542 *5 *6 *7 *8 *3)) (-4 *3 (-1049 *5 *6 *7 *8))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3668 (((-1075) $) 11 T ELT)) (-3669 (((-1075) $) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 17 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-543) (-13 (-1023) (-10 -8 (-15 -3669 ((-1075) $)) (-15 -3668 ((-1075) $))))) (T -543)) +((-3669 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-543)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-543))))) +((-3672 (((-2 (|:| |num| |#4|) (|:| |den| (-499))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-499))) |#4| |#2| (-1029 |#4|)) 32 T ELT))) +(((-544 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3672 ((-2 (|:| |num| |#4|) (|:| |den| (-499))) |#4| |#2| (-1029 |#4|))) (-15 -3672 ((-2 (|:| |num| |#4|) (|:| |den| (-499))) |#4| |#2|))) (-738) (-781) (-510) (-888 |#3| |#1| |#2|)) (T -544)) +((-3672 (*1 *2 *3 *4) (-12 (-4 *5 (-738)) (-4 *4 (-781)) (-4 *6 (-510)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-499)))) (-5 *1 (-544 *5 *4 *6 *3)) (-4 *3 (-888 *6 *5 *4)))) (-3672 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1029 *3)) (-4 *3 (-888 *7 *6 *4)) (-4 *6 (-738)) (-4 *4 (-781)) (-4 *7 (-510)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-499)))) (-5 *1 (-544 *6 *4 *7 *3))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 71 T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-499)) 58 T ELT) (($ $ (-499) (-499)) 59 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))) $) 65 T ELT)) (-2284 (($ $) 109 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2282 (((-797) (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))) (-966 (-775 (-499))) (-1117) |#1| (-361 (-499))) 241 T ELT)) (-3968 (($ (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|)))) 36 T ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3013 (((-85) $) NIL T ELT)) (-3922 (((-499) $) 63 T ELT) (((-499) $ (-499)) 64 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3927 (($ $ (-857)) 83 T ELT)) (-3965 (($ (-1 |#1| (-499)) $) 80 T ELT)) (-4087 (((-85) $) 26 T ELT)) (-3014 (($ |#1| (-499)) 22 T ELT) (($ $ (-1022) (-499)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-499))) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2288 (($ (-966 (-775 (-499))) (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|)))) 13 T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3962 (($ $) 161 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2285 (((-3 $ #1#) $ $ (-85)) 108 T ELT)) (-2283 (($ $ $) 116 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2286 (((-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))) $) 15 T ELT)) (-2287 (((-966 (-775 (-499))) $) 14 T ELT)) (-3919 (($ $ (-499)) 47 T ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-3918 (((-1095 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-499)))) ELT)) (-3950 ((|#1| $ (-499)) 62 T ELT) (($ $ $) NIL (|has| (-499) (-1052)) ELT)) (-3908 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-499) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-499) |#1|))) ELT)) (-4098 (((-499) $) NIL T ELT)) (-3012 (($ $) 48 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) 29 T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ |#1|) 28 (|has| |#1| (-146)) ELT)) (-3827 ((|#1| $ (-499)) 61 T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 39 T CONST)) (-3923 ((|#1| $) NIL T ELT)) (-2263 (($ $) 198 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2275 (($ $) 169 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2265 (($ $) 202 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2277 (($ $) 174 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2261 (($ $) 201 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2273 (($ $) 173 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2280 (($ $ (-361 (-499))) 177 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2281 (($ $ |#1|) 157 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2278 (($ $) 204 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2279 (($ $) 160 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2260 (($ $) 203 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2272 (($ $) 175 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2262 (($ $) 199 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2274 (($ $) 171 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2264 (($ $) 200 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2276 (($ $) 172 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2257 (($ $) 209 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2269 (($ $) 185 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2259 (($ $) 206 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2271 (($ $) 181 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2255 (($ $) 213 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2267 (($ $) 189 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2254 (($ $) 215 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2266 (($ $) 191 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2256 (($ $) 211 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2268 (($ $) 187 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2258 (($ $) 208 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2270 (($ $) 183 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3920 ((|#1| $ (-499)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-499)))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-2779 (($) 30 T CONST)) (-2785 (($) 40 T CONST)) (-2790 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-499) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-499) |#1|))) ELT)) (-3174 (((-85) $ $) 73 T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3989 (($ $ $) 88 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 111 T ELT)) (* (($ (-857) $) 98 T ELT) (($ (-714) $) 96 T ELT) (($ (-499) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-545 |#1|) (-13 (-1186 |#1| (-499)) (-10 -8 (-15 -2288 ($ (-966 (-775 (-499))) (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))))) (-15 -2287 ((-966 (-775 (-499))) $)) (-15 -2286 ((-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))) $)) (-15 -3968 ($ (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))))) (-15 -4087 ((-85) $)) (-15 -3965 ($ (-1 |#1| (-499)) $)) (-15 -2285 ((-3 $ "failed") $ $ (-85))) (-15 -2284 ($ $)) (-15 -2283 ($ $ $)) (-15 -2282 ((-797) (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))) (-966 (-775 (-499))) (-1117) |#1| (-361 (-499)))) (IF (|has| |#1| (-38 (-361 (-499)))) (PROGN (-15 -3962 ($ $)) (-15 -2281 ($ $ |#1|)) (-15 -2280 ($ $ (-361 (-499)))) (-15 -2279 ($ $)) (-15 -2278 ($ $)) (-15 -2277 ($ $)) (-15 -2276 ($ $)) (-15 -2275 ($ $)) (-15 -2274 ($ $)) (-15 -2273 ($ $)) (-15 -2272 ($ $)) (-15 -2271 ($ $)) (-15 -2270 ($ $)) (-15 -2269 ($ $)) (-15 -2268 ($ $)) (-15 -2267 ($ $)) (-15 -2266 ($ $)) (-15 -2265 ($ $)) (-15 -2264 ($ $)) (-15 -2263 ($ $)) (-15 -2262 ($ $)) (-15 -2261 ($ $)) (-15 -2260 ($ $)) (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)) (-15 -2256 ($ $)) (-15 -2255 ($ $)) (-15 -2254 ($ $))) |%noBranch|))) (-989)) (T -545)) +((-4087 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-545 *3)) (-4 *3 (-989)))) (-2288 (*1 *1 *2 *3) (-12 (-5 *2 (-966 (-775 (-499)))) (-5 *3 (-1095 (-2 (|:| |k| (-499)) (|:| |c| *4)))) (-4 *4 (-989)) (-5 *1 (-545 *4)))) (-2287 (*1 *2 *1) (-12 (-5 *2 (-966 (-775 (-499)))) (-5 *1 (-545 *3)) (-4 *3 (-989)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1095 (-2 (|:| |k| (-499)) (|:| |c| *3)))) (-5 *1 (-545 *3)) (-4 *3 (-989)))) (-3968 (*1 *1 *2) (-12 (-5 *2 (-1095 (-2 (|:| |k| (-499)) (|:| |c| *3)))) (-4 *3 (-989)) (-5 *1 (-545 *3)))) (-3965 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-499))) (-4 *3 (-989)) (-5 *1 (-545 *3)))) (-2285 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-545 *3)) (-4 *3 (-989)))) (-2284 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-989)))) (-2283 (*1 *1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-989)))) (-2282 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1095 (-2 (|:| |k| (-499)) (|:| |c| *6)))) (-5 *4 (-966 (-775 (-499)))) (-5 *5 (-1117)) (-5 *7 (-361 (-499))) (-4 *6 (-989)) (-5 *2 (-797)) (-5 *1 (-545 *6)))) (-3962 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2281 (*1 *1 *1 *2) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2280 (*1 *1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-545 *3)) (-4 *3 (-38 *2)) (-4 *3 (-989)))) (-2279 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2278 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2277 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2276 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2275 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2274 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2273 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2272 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2271 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2270 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2269 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2268 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2267 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2266 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2265 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2264 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2263 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2262 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2261 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2260 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2259 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2258 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2257 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2256 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2255 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) (-2254 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 63 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3968 (($ (-1095 |#1|)) 9 T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ #1#) $) 44 T ELT)) (-3013 (((-85) $) 56 T ELT)) (-3922 (((-714) $) 61 T ELT) (((-714) $ (-714)) 60 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) 46 (|has| |#1| (-510)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3967 (((-1095 |#1|) $) 25 T ELT)) (-3248 (((-714)) 55 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-2779 (($) 10 T CONST)) (-2785 (($) 14 T CONST)) (-3174 (((-85) $ $) 24 T ELT)) (-3987 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3989 (($ $ $) 27 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 53 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-499)) 38 T ELT))) +(((-546 |#1|) (-13 (-989) (-82 |#1| |#1|) (-10 -8 (-15 -3967 ((-1095 |#1|) $)) (-15 -3968 ($ (-1095 |#1|))) (-15 -3013 ((-85) $)) (-15 -3922 ((-714) $)) (-15 -3922 ((-714) $ (-714))) (-15 * ($ $ (-499))) (IF (|has| |#1| (-510)) (-6 (-510)) |%noBranch|))) (-989)) (T -546)) +((-3967 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-546 *3)) (-4 *3 (-989)))) (-3968 (*1 *1 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-546 *3)))) (-3013 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-546 *3)) (-4 *3 (-989)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-546 *3)) (-4 *3 (-989)))) (-3922 (*1 *2 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-546 *3)) (-4 *3 (-989)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-546 *3)) (-4 *3 (-989))))) +((-2687 (((-85) $ $) NIL T ELT)) (-2291 (($) 8 T CONST)) (-2292 (($) 7 T CONST)) (-2289 (($ $ (-599 $)) 16 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2293 (($) 6 T CONST)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-1122)) 15 T ELT) (((-1122) $) 10 T ELT)) (-2290 (($) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-547) (-13 (-1041) (-444 (-1122)) (-10 -8 (-15 -2293 ($) -4102) (-15 -2292 ($) -4102) (-15 -2291 ($) -4102) (-15 -2290 ($) -4102) (-15 -2289 ($ $ (-599 $)))))) (T -547)) +((-2293 (*1 *1) (-5 *1 (-547))) (-2292 (*1 *1) (-5 *1 (-547))) (-2291 (*1 *1) (-5 *1 (-547))) (-2290 (*1 *1) (-5 *1 (-547))) (-2289 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-547))) (-5 *1 (-547))))) +((-4108 (((-551 |#2|) (-1 |#2| |#1|) (-551 |#1|)) 15 T ELT))) +(((-548 |#1| |#2|) (-13 (-1157) (-10 -7 (-15 -4108 ((-551 |#2|) (-1 |#2| |#1|) (-551 |#1|))))) (-1157) (-1157)) (T -548)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-551 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-551 *6)) (-5 *1 (-548 *5 *6))))) +((-4108 (((-1095 |#3|) (-1 |#3| |#1| |#2|) (-551 |#1|) (-1095 |#2|)) 20 T ELT) (((-1095 |#3|) (-1 |#3| |#1| |#2|) (-1095 |#1|) (-551 |#2|)) 19 T ELT) (((-551 |#3|) (-1 |#3| |#1| |#2|) (-551 |#1|) (-551 |#2|)) 18 T ELT))) +(((-549 |#1| |#2| |#3|) (-10 -7 (-15 -4108 ((-551 |#3|) (-1 |#3| |#1| |#2|) (-551 |#1|) (-551 |#2|))) (-15 -4108 ((-1095 |#3|) (-1 |#3| |#1| |#2|) (-1095 |#1|) (-551 |#2|))) (-15 -4108 ((-1095 |#3|) (-1 |#3| |#1| |#2|) (-551 |#1|) (-1095 |#2|)))) (-1157) (-1157) (-1157)) (T -549)) +((-4108 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-551 *6)) (-5 *5 (-1095 *7)) (-4 *6 (-1157)) (-4 *7 (-1157)) (-4 *8 (-1157)) (-5 *2 (-1095 *8)) (-5 *1 (-549 *6 *7 *8)))) (-4108 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1095 *6)) (-5 *5 (-551 *7)) (-4 *6 (-1157)) (-4 *7 (-1157)) (-4 *8 (-1157)) (-5 *2 (-1095 *8)) (-5 *1 (-549 *6 *7 *8)))) (-4108 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-551 *6)) (-5 *5 (-551 *7)) (-4 *6 (-1157)) (-4 *7 (-1157)) (-4 *8 (-1157)) (-5 *2 (-551 *8)) (-5 *1 (-549 *6 *7 *8))))) +((-2298 ((|#3| |#3| (-599 (-566 |#3|)) (-599 (-1117))) 57 T ELT)) (-2297 (((-142 |#2|) |#3|) 122 T ELT)) (-2294 ((|#3| (-142 |#2|)) 46 T ELT)) (-2295 ((|#2| |#3|) 21 T ELT)) (-2296 ((|#3| |#2|) 35 T ELT))) +(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -2294 (|#3| (-142 |#2|))) (-15 -2295 (|#2| |#3|)) (-15 -2296 (|#3| |#2|)) (-15 -2297 ((-142 |#2|) |#3|)) (-15 -2298 (|#3| |#3| (-599 (-566 |#3|)) (-599 (-1117))))) (-510) (-13 (-375 |#1|) (-942) (-1143)) (-13 (-375 (-142 |#1|)) (-942) (-1143))) (T -550)) +((-2298 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-599 (-566 *2))) (-5 *4 (-599 (-1117))) (-4 *2 (-13 (-375 (-142 *5)) (-942) (-1143))) (-4 *5 (-510)) (-5 *1 (-550 *5 *6 *2)) (-4 *6 (-13 (-375 *5) (-942) (-1143))))) (-2297 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-142 *5)) (-5 *1 (-550 *4 *5 *3)) (-4 *5 (-13 (-375 *4) (-942) (-1143))) (-4 *3 (-13 (-375 (-142 *4)) (-942) (-1143))))) (-2296 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *2 (-13 (-375 (-142 *4)) (-942) (-1143))) (-5 *1 (-550 *4 *3 *2)) (-4 *3 (-13 (-375 *4) (-942) (-1143))))) (-2295 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *2 (-13 (-375 *4) (-942) (-1143))) (-5 *1 (-550 *4 *2 *3)) (-4 *3 (-13 (-375 (-142 *4)) (-942) (-1143))))) (-2294 (*1 *2 *3) (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-375 *4) (-942) (-1143))) (-4 *4 (-510)) (-4 *2 (-13 (-375 (-142 *4)) (-942) (-1143))) (-5 *1 (-550 *4 *5 *2))))) +((-3860 (($ (-1 (-85) |#1|) $) 19 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3597 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3596 (($ (-1 (-85) |#1|) $) 15 T ELT)) (-3595 (($ (-1 (-85) |#1|) $) 17 T ELT)) (-3670 (((-1095 |#1|) $) 20 T ELT)) (-4096 (((-797) $) 25 T ELT))) +(((-551 |#1|) (-13 (-568 (-797)) (-10 -8 (-15 -4108 ($ (-1 |#1| |#1|) $)) (-15 -3596 ($ (-1 (-85) |#1|) $)) (-15 -3595 ($ (-1 (-85) |#1|) $)) (-15 -3860 ($ (-1 (-85) |#1|) $)) (-15 -3597 ($ (-1 |#1| |#1|) |#1|)) (-15 -3670 ((-1095 |#1|) $)))) (-1157)) (T -551)) +((-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1157)) (-5 *1 (-551 *3)))) (-3596 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1157)) (-5 *1 (-551 *3)))) (-3595 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1157)) (-5 *1 (-551 *3)))) (-3860 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1157)) (-5 *1 (-551 *3)))) (-3597 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1157)) (-5 *1 (-551 *3)))) (-3670 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1157))))) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3988 (($ (-714)) NIL (|has| |#1| (-23)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| |#1| (-781))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-781)) ELT)) (-3938 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) NIL T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) NIL T ELT) (((-499) |#1| $) NIL (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) NIL (|has| |#1| (-1041)) ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3985 (((-647 |#1|) $ $) NIL (|has| |#1| (-989)) ELT)) (-3764 (($ (-714) |#1|) NIL T ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3982 ((|#1| $) NIL (-12 (|has| |#1| (-942)) (|has| |#1| (-989))) ELT)) (-3983 ((|#1| $) NIL (-12 (|has| |#1| (-942)) (|has| |#1| (-989))) ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2300 (($ $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-499) |#1|) NIL T ELT) ((|#1| $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-3986 ((|#1| $ $) NIL (|has| |#1| (-989)) ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-3984 (($ $ $) NIL (|has| |#1| (-989)) ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) NIL T ELT)) (-3952 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3987 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3989 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-499) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-684)) ELT) (($ $ |#1|) NIL (|has| |#1| (-684)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-552 |#1| |#2|) (-1206 |#1|) (-1157) (-499)) (T -552)) +NIL +((-2299 (((-1213) $ |#2| |#2|) 35 T ELT)) (-2301 ((|#2| $) 23 T ELT)) (-2302 ((|#2| $) 21 T ELT)) (-2051 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-4108 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3951 ((|#3| $) 26 T ELT)) (-2300 (($ $ |#3|) 33 T ELT)) (-2303 (((-85) |#3| $) 17 T ELT)) (-2306 (((-599 |#3|) $) 15 T ELT)) (-3950 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) +(((-553 |#1| |#2| |#3|) (-10 -7 (-15 -2299 ((-1213) |#1| |#2| |#2|)) (-15 -2300 (|#1| |#1| |#3|)) (-15 -3951 (|#3| |#1|)) (-15 -2301 (|#2| |#1|)) (-15 -2302 (|#2| |#1|)) (-15 -2303 ((-85) |#3| |#1|)) (-15 -2306 ((-599 |#3|) |#1|)) (-15 -3950 (|#3| |#1| |#2|)) (-15 -3950 (|#3| |#1| |#2| |#3|)) (-15 -2051 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4108 (|#1| (-1 |#3| |#3|) |#1|))) (-554 |#2| |#3|) (-1041) (-1157)) (T -553)) +NIL +((-2687 (((-85) $ $) 19 (|has| |#2| (-73)) ELT)) (-2299 (((-1213) $ |#1| |#1|) 44 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -4146)) ELT)) (-3874 (($) 7 T CONST)) (-1609 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) 55 T ELT)) (-3010 (((-599 |#2|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2301 ((|#1| $) 47 (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#2|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#2| $) 27 (-12 (|has| |#2| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 ((|#1| $) 48 (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3380 (((-1099) $) 22 (|has| |#2| (-1041)) ELT)) (-2304 (((-599 |#1|) $) 50 T ELT)) (-2305 (((-85) |#1| $) 51 T ELT)) (-3381 (((-1060) $) 21 (|has| |#2| (-1041)) ELT)) (-3951 ((|#2| $) 46 (|has| |#1| (-781)) ELT)) (-2300 (($ $ |#2|) 45 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#2|))) 26 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) 25 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) 23 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) 52 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#2| $) 28 (-12 (|has| |#2| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-797) $) 17 (|has| |#2| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#2| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#2| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-554 |#1| |#2|) (-113) (-1041) (-1157)) (T -554)) +((-2306 (*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1157)) (-5 *2 (-599 *4)))) (-2305 (*1 *2 *3 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1157)) (-5 *2 (-85)))) (-2304 (*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1157)) (-5 *2 (-599 *3)))) (-2303 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-554 *4 *3)) (-4 *4 (-1041)) (-4 *3 (-1157)) (-4 *3 (-1041)) (-5 *2 (-85)))) (-2302 (*1 *2 *1) (-12 (-4 *1 (-554 *2 *3)) (-4 *3 (-1157)) (-4 *2 (-1041)) (-4 *2 (-781)))) (-2301 (*1 *2 *1) (-12 (-4 *1 (-554 *2 *3)) (-4 *3 (-1157)) (-4 *2 (-1041)) (-4 *2 (-781)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1041)) (-4 *3 (-781)) (-4 *2 (-1157)))) (-2300 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-554 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1157)))) (-2299 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-554 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1157)) (-5 *2 (-1213))))) +(-13 (-443 |t#2|) (-242 |t#1| |t#2|) (-10 -8 (-15 -2306 ((-599 |t#2|) $)) (-15 -2305 ((-85) |t#1| $)) (-15 -2304 ((-599 |t#1|) $)) (IF (|has| |t#2| (-1041)) (IF (|has| $ (-6 -4145)) (-15 -2303 ((-85) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-781)) (PROGN (-15 -2302 (|t#1| $)) (-15 -2301 (|t#1| $)) (-15 -3951 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4146)) (PROGN (-15 -2300 ($ $ |t#2|)) (-15 -2299 ((-1213) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-73) -3677 (|has| |#2| (-1041)) (|has| |#2| (-73))) ((-568 (-797)) -3677 (|has| |#2| (-1041)) (|has| |#2| (-568 (-797)))) ((-240 |#1| |#2|) . T) ((-242 |#1| |#2|) . T) ((-263 |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ((-443 |#2|) . T) ((-468 |#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ((-1041) |has| |#2| (-1041)) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT) (((-1158) $) 14 T ELT) (($ (-599 (-1158))) 13 T ELT)) (-2307 (((-599 (-1158)) $) 10 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-555) (-13 (-1023) (-568 (-1158)) (-10 -8 (-15 -4096 ($ (-599 (-1158)))) (-15 -2307 ((-599 (-1158)) $))))) (T -555)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-1158))) (-5 *1 (-555)))) (-2307 (*1 *2 *1) (-12 (-5 *2 (-599 (-1158))) (-5 *1 (-555))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1870 (((-3 $ #1="failed")) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1345 (((-3 $ #1#) $ $) NIL T ELT)) (-3361 (((-1207 (-647 |#1|))) NIL (|has| |#2| (-372 |#1|)) ELT) (((-1207 (-647 |#1|)) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1822 (((-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-3874 (($) NIL T CONST)) (-2008 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1796 (((-3 $ #1#)) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1886 (((-647 |#1|)) NIL (|has| |#2| (-372 |#1|)) ELT) (((-647 |#1|) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1820 ((|#1| $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1884 (((-647 |#1|) $) NIL (|has| |#2| (-372 |#1|)) ELT) (((-647 |#1|) $ (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2522 (((-3 $ #1#) $) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-2002 (((-1111 (-884 |#1|))) NIL (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-318))) ELT)) (-2525 (($ $ (-857)) NIL T ELT)) (-1818 ((|#1| $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1798 (((-1111 |#1|) $) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1888 ((|#1|) NIL (|has| |#2| (-372 |#1|)) ELT) ((|#1| (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1816 (((-1111 |#1|) $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1810 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1890 (($ (-1207 |#1|)) NIL (|has| |#2| (-372 |#1|)) ELT) (($ (-1207 |#1|) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-3607 (((-3 $ #1#) $) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-3231 (((-857)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1807 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2549 (($ $ (-857)) NIL T ELT)) (-1803 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1801 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1805 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2009 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1797 (((-3 $ #1#)) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1887 (((-647 |#1|)) NIL (|has| |#2| (-372 |#1|)) ELT) (((-647 |#1|) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1821 ((|#1| $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1885 (((-647 |#1|) $) NIL (|has| |#2| (-372 |#1|)) ELT) (((-647 |#1|) $ (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2523 (((-3 $ #1#) $) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-2006 (((-1111 (-884 |#1|))) NIL (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-318))) ELT)) (-2524 (($ $ (-857)) NIL T ELT)) (-1819 ((|#1| $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1799 (((-1111 |#1|) $) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1889 ((|#1|) NIL (|has| |#2| (-372 |#1|)) ELT) ((|#1| (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1817 (((-1111 |#1|) $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1811 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1802 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1804 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1806 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1809 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-3950 ((|#1| $ (-499)) NIL (|has| |#2| (-372 |#1|)) ELT)) (-3362 (((-647 |#1|) (-1207 $)) NIL (|has| |#2| (-372 |#1|)) ELT) (((-1207 |#1|) $) NIL (|has| |#2| (-372 |#1|)) ELT) (((-647 |#1|) (-1207 $) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT) (((-1207 |#1|) $ (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-4122 (($ (-1207 |#1|)) NIL (|has| |#2| (-372 |#1|)) ELT) (((-1207 |#1|) $) NIL (|has| |#2| (-372 |#1|)) ELT)) (-1994 (((-599 (-884 |#1|))) NIL (|has| |#2| (-372 |#1|)) ELT) (((-599 (-884 |#1|)) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2551 (($ $ $) NIL T ELT)) (-1815 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-4096 (((-797) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL (|has| |#2| (-372 |#1|)) ELT)) (-1800 (((-599 (-1207 |#1|))) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-2552 (($ $ $ $) NIL T ELT)) (-1813 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2664 (($ (-647 |#1|) $) NIL (|has| |#2| (-372 |#1|)) ELT)) (-2550 (($ $ $) NIL T ELT)) (-1814 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1812 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1808 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2779 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) 24 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-556 |#1| |#2|) (-13 (-702 |#1|) (-568 |#2|) (-10 -8 (-15 -4096 ($ |#2|)) (IF (|has| |#2| (-372 |#1|)) (-6 (-372 |#1|)) |%noBranch|) (IF (|has| |#2| (-322 |#1|)) (-6 (-322 |#1|)) |%noBranch|))) (-146) (-702 |#1|)) (T -556)) +((-4096 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-556 *3 *2)) (-4 *2 (-702 *3))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-101)) 6 T ELT) (((-101) $) 7 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-557) (-13 (-1041) (-444 (-101)))) (T -557)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2309 (($) 12 T CONST)) (-2331 (($) 10 T CONST)) (-2308 (($) 13 T CONST)) (-2327 (($) 11 T CONST)) (-2324 (($) 14 T CONST)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2411 (($ $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2412 (($ $ $) NIL T ELT))) +(((-558) (-13 (-1041) (-620) (-10 -8 (-15 -2331 ($) -4102) (-15 -2327 ($) -4102) (-15 -2309 ($) -4102) (-15 -2308 ($) -4102) (-15 -2324 ($) -4102)))) (T -558)) +((-2331 (*1 *1) (-5 *1 (-558))) (-2327 (*1 *1) (-5 *1 (-558))) (-2309 (*1 *1) (-5 *1 (-558))) (-2308 (*1 *1) (-5 *1 (-558))) (-2324 (*1 *1) (-5 *1 (-558)))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2320 (($) 11 T CONST)) (-2314 (($) 17 T CONST)) (-2310 (($) 21 T CONST)) (-2312 (($) 19 T CONST)) (-2317 (($) 14 T CONST)) (-2311 (($) 20 T CONST)) (-2319 (($) 12 T CONST)) (-2318 (($) 13 T CONST)) (-2313 (($) 18 T CONST)) (-2316 (($) 15 T CONST)) (-2315 (($) 16 T CONST)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (((-101) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-559) (-13 (-1041) (-568 (-101)) (-10 -8 (-15 -2320 ($) -4102) (-15 -2319 ($) -4102) (-15 -2318 ($) -4102) (-15 -2317 ($) -4102) (-15 -2316 ($) -4102) (-15 -2315 ($) -4102) (-15 -2314 ($) -4102) (-15 -2313 ($) -4102) (-15 -2312 ($) -4102) (-15 -2311 ($) -4102) (-15 -2310 ($) -4102)))) (T -559)) +((-2320 (*1 *1) (-5 *1 (-559))) (-2319 (*1 *1) (-5 *1 (-559))) (-2318 (*1 *1) (-5 *1 (-559))) (-2317 (*1 *1) (-5 *1 (-559))) (-2316 (*1 *1) (-5 *1 (-559))) (-2315 (*1 *1) (-5 *1 (-559))) (-2314 (*1 *1) (-5 *1 (-559))) (-2313 (*1 *1) (-5 *1 (-559))) (-2312 (*1 *1) (-5 *1 (-559))) (-2311 (*1 *1) (-5 *1 (-559))) (-2310 (*1 *1) (-5 *1 (-559)))) +((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2322 (($) 15 T CONST)) (-2321 (($) 16 T CONST)) (-2328 (($) 13 T CONST)) (-2331 (($) 10 T CONST)) (-2329 (($) 12 T CONST)) (-2330 (($) 11 T CONST)) (-2327 (($) 14 T CONST)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2411 (($ $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2412 (($ $ $) NIL T ELT))) +(((-560) (-13 (-1041) (-620) (-10 -8 (-15 -2331 ($) -4102) (-15 -2330 ($) -4102) (-15 -2329 ($) -4102) (-15 -2328 ($) -4102) (-15 -2327 ($) -4102) (-15 -2322 ($) -4102) (-15 -2321 ($) -4102)))) (T -560)) +((-2331 (*1 *1) (-5 *1 (-560))) (-2330 (*1 *1) (-5 *1 (-560))) (-2329 (*1 *1) (-5 *1 (-560))) (-2328 (*1 *1) (-5 *1 (-560))) (-2327 (*1 *1) (-5 *1 (-560))) (-2322 (*1 *1) (-5 *1 (-560))) (-2321 (*1 *1) (-5 *1 (-560)))) +((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2326 (($) 15 T CONST)) (-2323 (($) 18 T CONST)) (-2328 (($) 13 T CONST)) (-2331 (($) 10 T CONST)) (-2329 (($) 12 T CONST)) (-2330 (($) 11 T CONST)) (-2325 (($) 16 T CONST)) (-2327 (($) 14 T CONST)) (-2324 (($) 17 T CONST)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2411 (($ $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2412 (($ $ $) NIL T ELT))) +(((-561) (-13 (-1041) (-620) (-10 -8 (-15 -2331 ($) -4102) (-15 -2330 ($) -4102) (-15 -2329 ($) -4102) (-15 -2328 ($) -4102) (-15 -2327 ($) -4102) (-15 -2326 ($) -4102) (-15 -2325 ($) -4102) (-15 -2324 ($) -4102) (-15 -2323 ($) -4102)))) (T -561)) +((-2331 (*1 *1) (-5 *1 (-561))) (-2330 (*1 *1) (-5 *1 (-561))) (-2329 (*1 *1) (-5 *1 (-561))) (-2328 (*1 *1) (-5 *1 (-561))) (-2327 (*1 *1) (-5 *1 (-561))) (-2326 (*1 *1) (-5 *1 (-561))) (-2325 (*1 *1) (-5 *1 (-561))) (-2324 (*1 *1) (-5 *1 (-561))) (-2323 (*1 *1) (-5 *1 (-561)))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 19 T ELT) (($ (-557)) 12 T ELT) (((-557) $) 11 T ELT) (($ (-101)) NIL T ELT) (((-101) $) 14 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-562) (-13 (-1041) (-444 (-557)) (-444 (-101)))) (T -562)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-1790 (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) 40 T ELT)) (-3747 (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2299 (((-1213) $ (-1099) (-1099)) NIL (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ (-1099) |#1|) 50 T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 |#1| #1="failed") (-1099) $) 53 T ELT)) (-3874 (($) NIL T CONST)) (-1794 (($ $ (-1099)) 25 T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT)) (-3545 (((-3 |#1| #1#) (-1099) $) 54 T ELT) (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3546 (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT)) (-3992 (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT)) (-1791 (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1609 ((|#1| $ (-1099) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-1099)) NIL T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2372 (($ $) 55 T ELT)) (-1795 (($ (-344)) 23 T ELT) (($ (-344) (-1099)) 22 T ELT)) (-3690 (((-344) $) 41 T ELT)) (-2301 (((-1099) $) NIL (|has| (-1099) (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (((-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT)) (-2302 (((-1099) $) NIL (|has| (-1099) (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2333 (((-599 (-1099)) $) 46 T ELT)) (-2334 (((-85) (-1099) $) NIL T ELT)) (-1792 (((-1099) $) 42 T ELT)) (-1308 (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2304 (((-599 (-1099)) $) NIL T ELT)) (-2305 (((-85) (-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 ((|#1| $) NIL (|has| (-1099) (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2300 (($ $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (($ $ (-599 (-247 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) 44 T ELT)) (-3950 ((|#1| $ (-1099) |#1|) NIL T ELT) ((|#1| $ (-1099)) 49 T ELT)) (-1499 (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (((-714) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (((-714) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL T ELT)) (-4096 (((-797) $) 21 T ELT)) (-1793 (($ $) 26 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-1310 (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 20 T ELT)) (-4107 (((-714) $) 48 (|has| $ (-6 -4145)) ELT))) +(((-563 |#1|) (-13 (-320 (-344) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) (-1134 (-1099) |#1|) (-10 -8 (-6 -4145) (-15 -2372 ($ $)))) (-1041)) (T -563)) +((-2372 (*1 *1 *1) (-12 (-5 *1 (-563 *2)) (-4 *2 (-1041))))) +((-3383 (((-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2333 (((-599 |#2|) $) 20 T ELT)) (-2334 (((-85) |#2| $) 12 T ELT))) +(((-564 |#1| |#2| |#3|) (-10 -7 (-15 -2333 ((-599 |#2|) |#1|)) (-15 -2334 ((-85) |#2| |#1|)) (-15 -3383 ((-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) |#1|))) (-565 |#2| |#3|) (-1041) (-1041)) (T -564)) +NIL +((-2687 (((-85) $ $) 19 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 |#2| "failed") |#1| $) 65 T ELT)) (-3874 (($) 7 T CONST)) (-1386 (($ $) 62 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT)) (-3545 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -4145)) ELT) (((-3 |#2| "failed") |#1| $) 66 T ELT)) (-3546 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 35 T ELT)) (-3380 (((-1099) $) 22 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-2333 (((-599 |#1|) $) 67 T ELT)) (-2334 (((-85) |#1| $) 68 T ELT)) (-1308 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3757 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-3381 (((-1060) $) 21 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ELT)) (-1387 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-1309 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-1499 (($) 53 T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 63 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-4096 (((-797) $) 17 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-565 |#1| |#2|) (-113) (-1041) (-1041)) (T -565)) +((-2334 (*1 *2 *3 *1) (-12 (-4 *1 (-565 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-5 *2 (-85)))) (-2333 (*1 *2 *1) (-12 (-4 *1 (-565 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-5 *2 (-599 *3)))) (-3545 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-565 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041)))) (-2332 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-565 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041))))) +(-13 (-183 (-2 (|:| -4010 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -2334 ((-85) |t#1| $)) (-15 -2333 ((-599 |t#1|) $)) (-15 -3545 ((-3 |t#2| "failed") |t#1| $)) (-15 -2332 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-78 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-73) -3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73))) ((-568 (-797)) -3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797)))) ((-124 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-569 (-488)) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ((-183 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-192 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ((-443 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-468 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ((-1041) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-2335 (((-3 (-1117) "failed") $) 46 T ELT)) (-1346 (((-1213) $ (-714)) 22 T ELT)) (-3559 (((-714) $) 20 T ELT)) (-3743 (((-86) $) 9 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2336 (($ (-86) (-599 |#1|) (-714)) 32 T ELT) (($ (-1117)) 33 T ELT)) (-2752 (((-85) $ (-86)) 15 T ELT) (((-85) $ (-1117)) 13 T ELT)) (-2722 (((-714) $) 17 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4122 (((-825 (-499)) $) 99 (|has| |#1| (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) 106 (|has| |#1| (-569 (-825 (-333)))) ELT) (((-488) $) 92 (|has| |#1| (-569 (-488))) ELT)) (-4096 (((-797) $) 74 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2337 (((-599 |#1|) $) 19 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 51 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 53 T ELT))) +(((-566 |#1|) (-13 (-105) (-781) (-819 |#1|) (-10 -8 (-15 -3743 ((-86) $)) (-15 -2337 ((-599 |#1|) $)) (-15 -2722 ((-714) $)) (-15 -2336 ($ (-86) (-599 |#1|) (-714))) (-15 -2336 ($ (-1117))) (-15 -2335 ((-3 (-1117) "failed") $)) (-15 -2752 ((-85) $ (-86))) (-15 -2752 ((-85) $ (-1117))) (IF (|has| |#1| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|))) (-1041)) (T -566)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-566 *3)) (-4 *3 (-1041)))) (-2337 (*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-566 *3)) (-4 *3 (-1041)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-566 *3)) (-4 *3 (-1041)))) (-2336 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-86)) (-5 *3 (-599 *5)) (-5 *4 (-714)) (-4 *5 (-1041)) (-5 *1 (-566 *5)))) (-2336 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-566 *3)) (-4 *3 (-1041)))) (-2335 (*1 *2 *1) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-566 *3)) (-4 *3 (-1041)))) (-2752 (*1 *2 *1 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-566 *4)) (-4 *4 (-1041)))) (-2752 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-85)) (-5 *1 (-566 *4)) (-4 *4 (-1041))))) +((-2338 (((-566 |#2|) |#1|) 17 T ELT)) (-2339 (((-3 |#1| "failed") (-566 |#2|)) 21 T ELT))) +(((-567 |#1| |#2|) (-10 -7 (-15 -2338 ((-566 |#2|) |#1|)) (-15 -2339 ((-3 |#1| "failed") (-566 |#2|)))) (-1041) (-1041)) (T -567)) +((-2339 (*1 *2 *3) (|partial| -12 (-5 *3 (-566 *4)) (-4 *4 (-1041)) (-4 *2 (-1041)) (-5 *1 (-567 *2 *4)))) (-2338 (*1 *2 *3) (-12 (-5 *2 (-566 *4)) (-5 *1 (-567 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) +((-4096 ((|#1| $) 6 T ELT))) +(((-568 |#1|) (-113) (-1157)) (T -568)) +((-4096 (*1 *2 *1) (-12 (-4 *1 (-568 *2)) (-4 *2 (-1157))))) +(-13 (-10 -8 (-15 -4096 (|t#1| $)))) +((-4122 ((|#1| $) 6 T ELT))) +(((-569 |#1|) (-113) (-1157)) (T -569)) +((-4122 (*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-1157))))) +(-13 (-10 -8 (-15 -4122 (|t#1| $)))) +((-2340 (((-3 (-1111 (-361 |#2|)) #1="failed") (-361 |#2|) (-361 |#2|) (-361 |#2|) (-1 (-359 |#2|) |#2|)) 15 T ELT) (((-3 (-1111 (-361 |#2|)) #1#) (-361 |#2|) (-361 |#2|) (-361 |#2|)) 16 T ELT))) +(((-570 |#1| |#2|) (-10 -7 (-15 -2340 ((-3 (-1111 (-361 |#2|)) #1="failed") (-361 |#2|) (-361 |#2|) (-361 |#2|))) (-15 -2340 ((-3 (-1111 (-361 |#2|)) #1#) (-361 |#2|) (-361 |#2|) (-361 |#2|) (-1 (-359 |#2|) |#2|)))) (-13 (-120) (-27) (-978 (-499)) (-978 (-361 (-499)))) (-1183 |#1|)) (T -570)) +((-2340 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-359 *6) *6)) (-4 *6 (-1183 *5)) (-4 *5 (-13 (-120) (-27) (-978 (-499)) (-978 (-361 (-499))))) (-5 *2 (-1111 (-361 *6))) (-5 *1 (-570 *5 *6)) (-5 *3 (-361 *6)))) (-2340 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-120) (-27) (-978 (-499)) (-978 (-361 (-499))))) (-4 *5 (-1183 *4)) (-5 *2 (-1111 (-361 *5))) (-5 *1 (-570 *4 *5)) (-5 *3 (-361 *5))))) +((-4096 (($ |#1|) 6 T ELT))) +(((-571 |#1|) (-113) (-1157)) (T -571)) +((-4096 (*1 *1 *2) (-12 (-4 *1 (-571 *2)) (-4 *2 (-1157))))) +(-13 (-10 -8 (-15 -4096 ($ |t#1|)))) +((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-2341 (($) 14 T CONST)) (-2976 (($) 15 T CONST)) (-2680 (($ $ $) 29 T ELT)) (-2679 (($ $) 27 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2974 (($ $ $) 30 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2975 (($) 11 T CONST)) (-2973 (($ $ $) 31 T ELT)) (-4096 (((-797) $) 35 T ELT)) (-3714 (((-85) $ (|[\|\|]| -2975)) 24 T ELT) (((-85) $ (|[\|\|]| -2341)) 26 T ELT) (((-85) $ (|[\|\|]| -2976)) 21 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2681 (($ $ $) 28 T ELT)) (-2411 (($ $ $) NIL T ELT)) (-3174 (((-85) $ $) 18 T ELT)) (-2412 (($ $ $) NIL T ELT))) +(((-572) (-13 (-907) (-10 -8 (-15 -2341 ($) -4102) (-15 -3714 ((-85) $ (|[\|\|]| -2975))) (-15 -3714 ((-85) $ (|[\|\|]| -2341))) (-15 -3714 ((-85) $ (|[\|\|]| -2976)))))) (T -572)) +((-2341 (*1 *1) (-5 *1 (-572))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2975)) (-5 *2 (-85)) (-5 *1 (-572)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2341)) (-5 *2 (-85)) (-5 *1 (-572)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2976)) (-5 *2 (-85)) (-5 *1 (-572))))) +((-4122 (($ |#1|) 6 T ELT))) +(((-573 |#1|) (-113) (-1157)) (T -573)) +((-4122 (*1 *1 *2) (-12 (-4 *1 (-573 *2)) (-4 *2 (-1157))))) +(-13 (-10 -8 (-15 -4122 ($ |t#1|)))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| |#1| (-780)) ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3324 (((-85) $) NIL (|has| |#1| (-780)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3119 ((|#1| $) 13 T ELT)) (-3325 (((-85) $) NIL (|has| |#1| (-780)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-780)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-780)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3118 ((|#3| $) 15 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3248 (((-714)) 20 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3523 (($ $) NIL (|has| |#1| (-780)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) 12 T CONST)) (-2685 (((-85) $ $) NIL (|has| |#1| (-780)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-780)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-780)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-780)) ELT)) (-4099 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-574 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-780)) (-6 (-780)) |%noBranch|) (-15 -4099 ($ $ |#3|)) (-15 -4099 ($ |#1| |#3|)) (-15 -3119 (|#1| $)) (-15 -3118 (|#3| $)))) (-38 |#2|) (-146) (|SubsetCategory| (-684) |#2|)) (T -574)) +((-4099 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-574 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-684) *4)))) (-4099 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-574 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-684) *4)))) (-3119 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-574 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-684) *3)))) (-3118 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-684) *4)) (-5 *1 (-574 *3 *4 *2)) (-4 *3 (-38 *4))))) +((-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-575 |#1| |#2|) (-10 -7 (-15 -4096 (|#1| |#2|)) (-15 -4096 (|#1| (-499))) (-15 -4096 ((-797) |#1|))) (-576 |#2|) (-989)) (T -575)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 46 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 47 T ELT))) +(((-576 |#1|) (-113) (-989)) (T -576)) +((-4096 (*1 *1 *2) (-12 (-4 *1 (-576 *2)) (-4 *2 (-989))))) +(-13 (-989) (-606 |t#1|) (-10 -8 (-15 -4096 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-684) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2342 ((|#2| |#2| (-1117) (-1117)) 16 T ELT))) +(((-577 |#1| |#2|) (-10 -7 (-15 -2342 (|#2| |#2| (-1117) (-1117)))) (-13 (-261) (-120) (-978 (-499)) (-596 (-499))) (-13 (-1143) (-898) (-29 |#1|))) (T -577)) +((-2342 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *1 (-577 *4 *2)) (-4 *2 (-13 (-1143) (-898) (-29 *4)))))) +((-2687 (((-85) $ $) 64 T ELT)) (-3326 (((-85) $) 58 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-2343 ((|#1| $) 55 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3901 (((-2 (|:| -1862 $) (|:| -1861 (-361 |#2|))) (-361 |#2|)) 111 (|has| |#1| (-318)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) 27 T ELT)) (-3607 (((-3 $ #1#) $) 88 T ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3922 (((-499) $) 22 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) 40 T ELT)) (-3014 (($ |#1| (-499)) 24 T ELT)) (-3312 ((|#1| $) 57 T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) 101 (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3606 (((-3 $ #1#) $ $) 93 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-1677 (((-714) $) 115 (|has| |#1| (-318)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 114 (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-714)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1117)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#2| (-838 (-1117))) ELT)) (-4098 (((-499) $) 38 T ELT)) (-4122 (((-361 |#2|) $) 47 T ELT)) (-4096 (((-797) $) 69 T ELT) (($ (-499)) 35 T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3827 ((|#1| $ (-499)) 72 T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 32 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2779 (($) 9 T CONST)) (-2785 (($) 14 T CONST)) (-2790 (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-714)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1117)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#2| (-838 (-1117))) ELT)) (-3174 (((-85) $ $) 21 T ELT)) (-3987 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 90 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 49 T ELT))) +(((-578 |#1| |#2|) (-13 (-184 |#2|) (-510) (-569 (-361 |#2|)) (-366 |#1|) (-978 |#2|) (-10 -8 (-15 -4087 ((-85) $)) (-15 -4098 ((-499) $)) (-15 -3922 ((-499) $)) (-15 -4109 ($ $)) (-15 -3312 (|#1| $)) (-15 -2343 (|#1| $)) (-15 -3827 (|#1| $ (-499))) (-15 -3014 ($ |#1| (-499))) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-318)) (PROGN (-6 (-261)) (-15 -3901 ((-2 (|:| -1862 $) (|:| -1861 (-361 |#2|))) (-361 |#2|)))) |%noBranch|))) (-510) (-1183 |#1|)) (T -578)) +((-4087 (*1 *2 *1) (-12 (-4 *3 (-510)) (-5 *2 (-85)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1183 *3)))) (-4098 (*1 *2 *1) (-12 (-4 *3 (-510)) (-5 *2 (-499)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1183 *3)))) (-3922 (*1 *2 *1) (-12 (-4 *3 (-510)) (-5 *2 (-499)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1183 *3)))) (-4109 (*1 *1 *1) (-12 (-4 *2 (-510)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1183 *2)))) (-3312 (*1 *2 *1) (-12 (-4 *2 (-510)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1183 *2)))) (-2343 (*1 *2 *1) (-12 (-4 *2 (-510)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1183 *2)))) (-3827 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *2 (-510)) (-5 *1 (-578 *2 *4)) (-4 *4 (-1183 *2)))) (-3014 (*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-4 *2 (-510)) (-5 *1 (-578 *2 *4)) (-4 *4 (-1183 *2)))) (-3901 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *4 (-510)) (-4 *5 (-1183 *4)) (-5 *2 (-2 (|:| -1862 (-578 *4 *5)) (|:| -1861 (-361 *5)))) (-5 *1 (-578 *4 *5)) (-5 *3 (-361 *5))))) +((-3832 (((-599 |#6|) (-599 |#4|) (-85)) 54 T ELT)) (-2344 ((|#6| |#6|) 48 T ELT))) +(((-579 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2344 (|#6| |#6|)) (-15 -3832 ((-599 |#6|) (-599 |#4|) (-85)))) (-406) (-738) (-781) (-1005 |#1| |#2| |#3|) (-1011 |#1| |#2| |#3| |#4|) (-1049 |#1| |#2| |#3| |#4|)) (T -579)) +((-3832 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 *10)) (-5 *1 (-579 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *10 (-1049 *5 *6 *7 *8)))) (-2344 (*1 *2 *2) (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *1 (-579 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *2 (-1049 *3 *4 *5 *6))))) +((-2345 (((-85) |#3| (-714) (-599 |#3|)) 30 T ELT)) (-2346 (((-3 (-2 (|:| |polfac| (-599 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-599 (-1111 |#3|)))) "failed") |#3| (-599 (-1111 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1877 (-599 (-2 (|:| |irr| |#4|) (|:| -2513 (-499)))))) (-599 |#3|) (-599 |#1|) (-599 |#3|)) 68 T ELT))) +(((-580 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2345 ((-85) |#3| (-714) (-599 |#3|))) (-15 -2346 ((-3 (-2 (|:| |polfac| (-599 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-599 (-1111 |#3|)))) "failed") |#3| (-599 (-1111 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1877 (-599 (-2 (|:| |irr| |#4|) (|:| -2513 (-499)))))) (-599 |#3|) (-599 |#1|) (-599 |#3|)))) (-781) (-738) (-261) (-888 |#3| |#2| |#1|)) (T -580)) +((-2346 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1877 (-599 (-2 (|:| |irr| *10) (|:| -2513 (-499))))))) (-5 *6 (-599 *3)) (-5 *7 (-599 *8)) (-4 *8 (-781)) (-4 *3 (-261)) (-4 *10 (-888 *3 *9 *8)) (-4 *9 (-738)) (-5 *2 (-2 (|:| |polfac| (-599 *10)) (|:| |correct| *3) (|:| |corrfact| (-599 (-1111 *3))))) (-5 *1 (-580 *8 *9 *3 *10)) (-5 *4 (-599 (-1111 *3))))) (-2345 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-714)) (-5 *5 (-599 *3)) (-4 *3 (-261)) (-4 *6 (-781)) (-4 *7 (-738)) (-5 *2 (-85)) (-5 *1 (-580 *6 *7 *3 *8)) (-4 *8 (-888 *3 *7 *6))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3668 (((-1075) $) 11 T ELT)) (-3669 (((-1075) $) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 17 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-581) (-13 (-1023) (-10 -8 (-15 -3669 ((-1075) $)) (-15 -3668 ((-1075) $))))) (T -581)) +((-3669 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-581)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-581))))) +((-2687 (((-85) $ $) NIL T ELT)) (-4084 (((-599 |#1|) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ "failed") $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-4086 (($ $) 77 T ELT)) (-4092 (((-622 |#1| |#2|) $) 60 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 81 T ELT)) (-2347 (((-599 (-247 |#2|)) $ $) 42 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4093 (($ (-622 |#1| |#2|)) 56 T ELT)) (-3130 (($ $ $) NIL T ELT)) (-2551 (($ $ $) NIL T ELT)) (-4096 (((-797) $) 66 T ELT) (((-1223 |#1| |#2|) $) NIL T ELT) (((-1228 |#1| |#2|) $) 74 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2785 (($) 61 T CONST)) (-2348 (((-599 (-2 (|:| |k| (-630 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2349 (((-599 (-622 |#1| |#2|)) (-599 |#1|)) 73 T ELT)) (-2784 (((-599 (-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3174 (((-85) $ $) 62 T ELT)) (-4099 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ $ $) 52 T ELT))) +(((-582 |#1| |#2| |#3|) (-13 (-427) (-10 -8 (-15 -4093 ($ (-622 |#1| |#2|))) (-15 -4092 ((-622 |#1| |#2|) $)) (-15 -2784 ((-599 (-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|))) $)) (-15 -4096 ((-1223 |#1| |#2|) $)) (-15 -4096 ((-1228 |#1| |#2|) $)) (-15 -4086 ($ $)) (-15 -4084 ((-599 |#1|) $)) (-15 -2349 ((-599 (-622 |#1| |#2|)) (-599 |#1|))) (-15 -2348 ((-599 (-2 (|:| |k| (-630 |#1|)) (|:| |c| |#2|))) $)) (-15 -2347 ((-599 (-247 |#2|)) $ $)))) (-781) (-13 (-146) (-675 (-361 (-499)))) (-857)) (T -582)) +((-4093 (*1 *1 *2) (-12 (-5 *2 (-622 *3 *4)) (-4 *3 (-781)) (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-5 *1 (-582 *3 *4 *5)) (-14 *5 (-857)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-622 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| |k| (-828 *3)) (|:| |c| *4)))) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-1223 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-1228 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) (-4086 (*1 *1 *1) (-12 (-5 *1 (-582 *2 *3 *4)) (-4 *2 (-781)) (-4 *3 (-13 (-146) (-675 (-361 (-499))))) (-14 *4 (-857)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) (-2349 (*1 *2 *3) (-12 (-5 *3 (-599 *4)) (-4 *4 (-781)) (-5 *2 (-599 (-622 *4 *5))) (-5 *1 (-582 *4 *5 *6)) (-4 *5 (-13 (-146) (-675 (-361 (-499))))) (-14 *6 (-857)))) (-2348 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| |k| (-630 *3)) (|:| |c| *4)))) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) (-2347 (*1 *2 *1 *1) (-12 (-5 *2 (-599 (-247 *4))) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857))))) +((-3832 (((-599 (-1086 |#1| (-484 (-798 |#2|)) (-798 |#2|) (-723 |#1| (-798 |#2|)))) (-599 (-723 |#1| (-798 |#2|))) (-85)) 103 T ELT) (((-599 (-986 |#1| |#2|)) (-599 (-723 |#1| (-798 |#2|))) (-85)) 77 T ELT)) (-2350 (((-85) (-599 (-723 |#1| (-798 |#2|)))) 26 T ELT)) (-2354 (((-599 (-1086 |#1| (-484 (-798 |#2|)) (-798 |#2|) (-723 |#1| (-798 |#2|)))) (-599 (-723 |#1| (-798 |#2|))) (-85)) 102 T ELT)) (-2353 (((-599 (-986 |#1| |#2|)) (-599 (-723 |#1| (-798 |#2|))) (-85)) 76 T ELT)) (-2352 (((-599 (-723 |#1| (-798 |#2|))) (-599 (-723 |#1| (-798 |#2|)))) 30 T ELT)) (-2351 (((-3 (-599 (-723 |#1| (-798 |#2|))) "failed") (-599 (-723 |#1| (-798 |#2|)))) 29 T ELT))) +(((-583 |#1| |#2|) (-10 -7 (-15 -2350 ((-85) (-599 (-723 |#1| (-798 |#2|))))) (-15 -2351 ((-3 (-599 (-723 |#1| (-798 |#2|))) "failed") (-599 (-723 |#1| (-798 |#2|))))) (-15 -2352 ((-599 (-723 |#1| (-798 |#2|))) (-599 (-723 |#1| (-798 |#2|))))) (-15 -2353 ((-599 (-986 |#1| |#2|)) (-599 (-723 |#1| (-798 |#2|))) (-85))) (-15 -2354 ((-599 (-1086 |#1| (-484 (-798 |#2|)) (-798 |#2|) (-723 |#1| (-798 |#2|)))) (-599 (-723 |#1| (-798 |#2|))) (-85))) (-15 -3832 ((-599 (-986 |#1| |#2|)) (-599 (-723 |#1| (-798 |#2|))) (-85))) (-15 -3832 ((-599 (-1086 |#1| (-484 (-798 |#2|)) (-798 |#2|) (-723 |#1| (-798 |#2|)))) (-599 (-723 |#1| (-798 |#2|))) (-85)))) (-406) (-599 (-1117))) (T -583)) +((-3832 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-723 *5 (-798 *6)))) (-5 *4 (-85)) (-4 *5 (-406)) (-14 *6 (-599 (-1117))) (-5 *2 (-599 (-1086 *5 (-484 (-798 *6)) (-798 *6) (-723 *5 (-798 *6))))) (-5 *1 (-583 *5 *6)))) (-3832 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-723 *5 (-798 *6)))) (-5 *4 (-85)) (-4 *5 (-406)) (-14 *6 (-599 (-1117))) (-5 *2 (-599 (-986 *5 *6))) (-5 *1 (-583 *5 *6)))) (-2354 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-723 *5 (-798 *6)))) (-5 *4 (-85)) (-4 *5 (-406)) (-14 *6 (-599 (-1117))) (-5 *2 (-599 (-1086 *5 (-484 (-798 *6)) (-798 *6) (-723 *5 (-798 *6))))) (-5 *1 (-583 *5 *6)))) (-2353 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-723 *5 (-798 *6)))) (-5 *4 (-85)) (-4 *5 (-406)) (-14 *6 (-599 (-1117))) (-5 *2 (-599 (-986 *5 *6))) (-5 *1 (-583 *5 *6)))) (-2352 (*1 *2 *2) (-12 (-5 *2 (-599 (-723 *3 (-798 *4)))) (-4 *3 (-406)) (-14 *4 (-599 (-1117))) (-5 *1 (-583 *3 *4)))) (-2351 (*1 *2 *2) (|partial| -12 (-5 *2 (-599 (-723 *3 (-798 *4)))) (-4 *3 (-406)) (-14 *4 (-599 (-1117))) (-5 *1 (-583 *3 *4)))) (-2350 (*1 *2 *3) (-12 (-5 *3 (-599 (-723 *4 (-798 *5)))) (-4 *4 (-406)) (-14 *5 (-599 (-1117))) (-5 *2 (-85)) (-5 *1 (-583 *4 *5))))) +((-3743 (((-86) (-86)) 88 T ELT)) (-2358 ((|#2| |#2|) 28 T ELT)) (-2953 ((|#2| |#2| (-1032 |#2|)) 84 T ELT) ((|#2| |#2| (-1117)) 50 T ELT)) (-2356 ((|#2| |#2|) 27 T ELT)) (-2357 ((|#2| |#2|) 29 T ELT)) (-2355 (((-85) (-86)) 33 T ELT)) (-2360 ((|#2| |#2|) 24 T ELT)) (-2361 ((|#2| |#2|) 26 T ELT)) (-2359 ((|#2| |#2|) 25 T ELT))) +(((-584 |#1| |#2|) (-10 -7 (-15 -2355 ((-85) (-86))) (-15 -3743 ((-86) (-86))) (-15 -2361 (|#2| |#2|)) (-15 -2360 (|#2| |#2|)) (-15 -2359 (|#2| |#2|)) (-15 -2358 (|#2| |#2|)) (-15 -2356 (|#2| |#2|)) (-15 -2357 (|#2| |#2|)) (-15 -2953 (|#2| |#2| (-1117))) (-15 -2953 (|#2| |#2| (-1032 |#2|)))) (-510) (-13 (-375 |#1|) (-942) (-1143))) (T -584)) +((-2953 (*1 *2 *2 *3) (-12 (-5 *3 (-1032 *2)) (-4 *2 (-13 (-375 *4) (-942) (-1143))) (-4 *4 (-510)) (-5 *1 (-584 *4 *2)))) (-2953 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *1 (-584 *4 *2)) (-4 *2 (-13 (-375 *4) (-942) (-1143))))) (-2357 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-375 *3) (-942) (-1143))))) (-2356 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-375 *3) (-942) (-1143))))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-375 *3) (-942) (-1143))))) (-2359 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-375 *3) (-942) (-1143))))) (-2360 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-375 *3) (-942) (-1143))))) (-2361 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-375 *3) (-942) (-1143))))) (-3743 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-510)) (-5 *1 (-584 *3 *4)) (-4 *4 (-13 (-375 *3) (-942) (-1143))))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-584 *4 *5)) (-4 *5 (-13 (-375 *4) (-942) (-1143)))))) +((-3632 (($ $) 38 T ELT)) (-3789 (($ $) 21 T ELT)) (-3630 (($ $) 37 T ELT)) (-3788 (($ $) 22 T ELT)) (-3634 (($ $) 36 T ELT)) (-3787 (($ $) 23 T ELT)) (-3777 (($) 48 T ELT)) (-4092 (($ $) 45 T ELT)) (-2358 (($ $) 17 T ELT)) (-2953 (($ $ (-1032 $)) 7 T ELT) (($ $ (-1117)) 6 T ELT)) (-4093 (($ $) 46 T ELT)) (-2356 (($ $) 15 T ELT)) (-2357 (($ $) 16 T ELT)) (-3635 (($ $) 35 T ELT)) (-3786 (($ $) 24 T ELT)) (-3633 (($ $) 34 T ELT)) (-3785 (($ $) 25 T ELT)) (-3631 (($ $) 33 T ELT)) (-3784 (($ $) 26 T ELT)) (-3638 (($ $) 44 T ELT)) (-3626 (($ $) 32 T ELT)) (-3636 (($ $) 43 T ELT)) (-3624 (($ $) 31 T ELT)) (-3640 (($ $) 42 T ELT)) (-3628 (($ $) 30 T ELT)) (-3641 (($ $) 41 T ELT)) (-3629 (($ $) 29 T ELT)) (-3639 (($ $) 40 T ELT)) (-3627 (($ $) 28 T ELT)) (-3637 (($ $) 39 T ELT)) (-3625 (($ $) 27 T ELT)) (-2360 (($ $) 19 T ELT)) (-2361 (($ $) 20 T ELT)) (-2359 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) +(((-585) (-113)) (T -585)) +((-2361 (*1 *1 *1) (-4 *1 (-585))) (-2360 (*1 *1 *1) (-4 *1 (-585))) (-2359 (*1 *1 *1) (-4 *1 (-585))) (-2358 (*1 *1 *1) (-4 *1 (-585))) (-2357 (*1 *1 *1) (-4 *1 (-585))) (-2356 (*1 *1 *1) (-4 *1 (-585)))) +(-13 (-898) (-1143) (-10 -8 (-15 -2361 ($ $)) (-15 -2360 ($ $)) (-15 -2359 ($ $)) (-15 -2358 ($ $)) (-15 -2357 ($ $)) (-15 -2356 ($ $)))) +(((-35) . T) ((-66) . T) ((-238) . T) ((-447) . T) ((-898) . T) ((-1143) . T) ((-1146) . T)) +((-2371 (((-435 |#1| |#2|) (-205 |#1| |#2|)) 65 T ELT)) (-2364 (((-599 (-205 |#1| |#2|)) (-599 (-435 |#1| |#2|))) 90 T ELT)) (-2365 (((-435 |#1| |#2|) (-599 (-435 |#1| |#2|)) (-798 |#1|)) 92 T ELT) (((-435 |#1| |#2|) (-599 (-435 |#1| |#2|)) (-599 (-435 |#1| |#2|)) (-798 |#1|)) 91 T ELT)) (-2362 (((-2 (|:| |gblist| (-599 (-205 |#1| |#2|))) (|:| |gvlist| (-599 (-499)))) (-599 (-435 |#1| |#2|))) 136 T ELT)) (-2369 (((-599 (-435 |#1| |#2|)) (-798 |#1|) (-599 (-435 |#1| |#2|)) (-599 (-435 |#1| |#2|))) 105 T ELT)) (-2363 (((-2 (|:| |glbase| (-599 (-205 |#1| |#2|))) (|:| |glval| (-599 (-499)))) (-599 (-205 |#1| |#2|))) 147 T ELT)) (-2367 (((-1207 |#2|) (-435 |#1| |#2|) (-599 (-435 |#1| |#2|))) 70 T ELT)) (-2366 (((-599 (-435 |#1| |#2|)) (-599 (-435 |#1| |#2|))) 47 T ELT)) (-2370 (((-205 |#1| |#2|) (-205 |#1| |#2|) (-599 (-205 |#1| |#2|))) 61 T ELT)) (-2368 (((-205 |#1| |#2|) (-599 |#2|) (-205 |#1| |#2|) (-599 (-205 |#1| |#2|))) 113 T ELT))) +(((-586 |#1| |#2|) (-10 -7 (-15 -2362 ((-2 (|:| |gblist| (-599 (-205 |#1| |#2|))) (|:| |gvlist| (-599 (-499)))) (-599 (-435 |#1| |#2|)))) (-15 -2363 ((-2 (|:| |glbase| (-599 (-205 |#1| |#2|))) (|:| |glval| (-599 (-499)))) (-599 (-205 |#1| |#2|)))) (-15 -2364 ((-599 (-205 |#1| |#2|)) (-599 (-435 |#1| |#2|)))) (-15 -2365 ((-435 |#1| |#2|) (-599 (-435 |#1| |#2|)) (-599 (-435 |#1| |#2|)) (-798 |#1|))) (-15 -2365 ((-435 |#1| |#2|) (-599 (-435 |#1| |#2|)) (-798 |#1|))) (-15 -2366 ((-599 (-435 |#1| |#2|)) (-599 (-435 |#1| |#2|)))) (-15 -2367 ((-1207 |#2|) (-435 |#1| |#2|) (-599 (-435 |#1| |#2|)))) (-15 -2368 ((-205 |#1| |#2|) (-599 |#2|) (-205 |#1| |#2|) (-599 (-205 |#1| |#2|)))) (-15 -2369 ((-599 (-435 |#1| |#2|)) (-798 |#1|) (-599 (-435 |#1| |#2|)) (-599 (-435 |#1| |#2|)))) (-15 -2370 ((-205 |#1| |#2|) (-205 |#1| |#2|) (-599 (-205 |#1| |#2|)))) (-15 -2371 ((-435 |#1| |#2|) (-205 |#1| |#2|)))) (-599 (-1117)) (-406)) (T -586)) +((-2371 (*1 *2 *3) (-12 (-5 *3 (-205 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-406)) (-5 *2 (-435 *4 *5)) (-5 *1 (-586 *4 *5)))) (-2370 (*1 *2 *2 *3) (-12 (-5 *3 (-599 (-205 *4 *5))) (-5 *2 (-205 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-406)) (-5 *1 (-586 *4 *5)))) (-2369 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-599 (-435 *4 *5))) (-5 *3 (-798 *4)) (-14 *4 (-599 (-1117))) (-4 *5 (-406)) (-5 *1 (-586 *4 *5)))) (-2368 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-599 *6)) (-5 *4 (-599 (-205 *5 *6))) (-4 *6 (-406)) (-5 *2 (-205 *5 *6)) (-14 *5 (-599 (-1117))) (-5 *1 (-586 *5 *6)))) (-2367 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-435 *5 *6))) (-5 *3 (-435 *5 *6)) (-14 *5 (-599 (-1117))) (-4 *6 (-406)) (-5 *2 (-1207 *6)) (-5 *1 (-586 *5 *6)))) (-2366 (*1 *2 *2) (-12 (-5 *2 (-599 (-435 *3 *4))) (-14 *3 (-599 (-1117))) (-4 *4 (-406)) (-5 *1 (-586 *3 *4)))) (-2365 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-435 *5 *6))) (-5 *4 (-798 *5)) (-14 *5 (-599 (-1117))) (-5 *2 (-435 *5 *6)) (-5 *1 (-586 *5 *6)) (-4 *6 (-406)))) (-2365 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-599 (-435 *5 *6))) (-5 *4 (-798 *5)) (-14 *5 (-599 (-1117))) (-5 *2 (-435 *5 *6)) (-5 *1 (-586 *5 *6)) (-4 *6 (-406)))) (-2364 (*1 *2 *3) (-12 (-5 *3 (-599 (-435 *4 *5))) (-14 *4 (-599 (-1117))) (-4 *5 (-406)) (-5 *2 (-599 (-205 *4 *5))) (-5 *1 (-586 *4 *5)))) (-2363 (*1 *2 *3) (-12 (-14 *4 (-599 (-1117))) (-4 *5 (-406)) (-5 *2 (-2 (|:| |glbase| (-599 (-205 *4 *5))) (|:| |glval| (-599 (-499))))) (-5 *1 (-586 *4 *5)) (-5 *3 (-599 (-205 *4 *5))))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-599 (-435 *4 *5))) (-14 *4 (-599 (-1117))) (-4 *5 (-406)) (-5 *2 (-2 (|:| |gblist| (-599 (-205 *4 *5))) (|:| |gvlist| (-599 (-499))))) (-5 *1 (-586 *4 *5))))) +((-2687 (((-85) $ $) NIL (-3677 (|has| (-51) (-73)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-73))) ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))))) NIL T ELT)) (-2299 (((-1213) $ (-1099) (-1099)) NIL (|has| $ (-6 -4146)) ELT)) (-3938 (((-51) $ (-1099) (-51)) NIL T ELT) (((-51) $ (-1117) (-51)) 16 T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 (-51) #1="failed") (-1099) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 (-51) #1#) (-1099) $) NIL T ELT)) (-3546 (($ (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $ (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT) (((-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $ (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 (((-51) $ (-1099) (-51)) NIL (|has| $ (-6 -4146)) ELT)) (-3235 (((-51) $ (-1099)) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-2372 (($ $) NIL T ELT)) (-2301 (((-1099) $) NIL (|has| (-1099) (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT) (((-85) (-51) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-51) (-1041))) ELT)) (-2302 (((-1099) $) NIL (|has| (-1099) (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2373 (($ (-344)) 8 T ELT)) (-3380 (((-1099) $) NIL (-3677 (|has| (-51) (-1041)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT)) (-2333 (((-599 (-1099)) $) NIL T ELT)) (-2334 (((-85) (-1099) $) NIL T ELT)) (-1308 (((-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) $) NIL T ELT)) (-2304 (((-599 (-1099)) $) NIL T ELT)) (-2305 (((-85) (-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-51) (-1041)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT)) (-3951 (((-51) $) NIL (|has| (-1099) (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2300 (($ $ (-51)) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-599 (-51)) (-599 (-51))) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT) (($ $ (-247 (-51))) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT) (($ $ (-599 (-247 (-51)))) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) (-51) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-51) (-1041))) ELT)) (-2306 (((-599 (-51)) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 (((-51) $ (-1099)) NIL T ELT) (((-51) $ (-1099) (-51)) NIL T ELT) (((-51) $ (-1117)) 14 T ELT)) (-1499 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-1041))) ELT) (((-714) (-51) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-51) (-1041))) ELT) (((-714) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))))) NIL T ELT)) (-4096 (((-797) $) NIL (-3677 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-568 (-797))) (|has| (-51) (-568 (-797)))) ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-51) (-73)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (-3677 (|has| (-51) (-73)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| (-51))) (-73))) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-587) (-13 (-1134 (-1099) (-51)) (-240 (-1117) (-51)) (-10 -8 (-15 -2373 ($ (-344))) (-15 -2372 ($ $)) (-15 -3938 ((-51) $ (-1117) (-51)))))) (T -587)) +((-2373 (*1 *1 *2) (-12 (-5 *2 (-344)) (-5 *1 (-587)))) (-2372 (*1 *1 *1) (-5 *1 (-587))) (-3938 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1117)) (-5 *1 (-587))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1870 (((-3 $ #1="failed")) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1345 (((-3 $ #1#) $ $) NIL T ELT)) (-3361 (((-1207 (-647 |#1|))) NIL (|has| |#2| (-372 |#1|)) ELT) (((-1207 (-647 |#1|)) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1822 (((-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-3874 (($) NIL T CONST)) (-2008 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1796 (((-3 $ #1#)) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1886 (((-647 |#1|)) NIL (|has| |#2| (-372 |#1|)) ELT) (((-647 |#1|) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1820 ((|#1| $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1884 (((-647 |#1|) $) NIL (|has| |#2| (-372 |#1|)) ELT) (((-647 |#1|) $ (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2522 (((-3 $ #1#) $) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-2002 (((-1111 (-884 |#1|))) NIL (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-318))) ELT)) (-2525 (($ $ (-857)) NIL T ELT)) (-1818 ((|#1| $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1798 (((-1111 |#1|) $) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1888 ((|#1|) NIL (|has| |#2| (-372 |#1|)) ELT) ((|#1| (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1816 (((-1111 |#1|) $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1810 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1890 (($ (-1207 |#1|)) NIL (|has| |#2| (-372 |#1|)) ELT) (($ (-1207 |#1|) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-3607 (((-3 $ #1#) $) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-3231 (((-857)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1807 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2549 (($ $ (-857)) NIL T ELT)) (-1803 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1801 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1805 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2009 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1797 (((-3 $ #1#)) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1887 (((-647 |#1|)) NIL (|has| |#2| (-372 |#1|)) ELT) (((-647 |#1|) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1821 ((|#1| $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1885 (((-647 |#1|) $) NIL (|has| |#2| (-372 |#1|)) ELT) (((-647 |#1|) $ (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2523 (((-3 $ #1#) $) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-2006 (((-1111 (-884 |#1|))) NIL (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-318))) ELT)) (-2524 (($ $ (-857)) NIL T ELT)) (-1819 ((|#1| $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1799 (((-1111 |#1|) $) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-1889 ((|#1|) NIL (|has| |#2| (-372 |#1|)) ELT) ((|#1| (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1817 (((-1111 |#1|) $) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1811 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1802 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1804 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1806 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1809 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-3950 ((|#1| $ (-499)) NIL (|has| |#2| (-372 |#1|)) ELT)) (-3362 (((-647 |#1|) (-1207 $)) NIL (|has| |#2| (-372 |#1|)) ELT) (((-1207 |#1|) $) NIL (|has| |#2| (-372 |#1|)) ELT) (((-647 |#1|) (-1207 $) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT) (((-1207 |#1|) $ (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-4122 (($ (-1207 |#1|)) NIL (|has| |#2| (-372 |#1|)) ELT) (((-1207 |#1|) $) NIL (|has| |#2| (-372 |#1|)) ELT)) (-1994 (((-599 (-884 |#1|))) NIL (|has| |#2| (-372 |#1|)) ELT) (((-599 (-884 |#1|)) (-1207 $)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2551 (($ $ $) NIL T ELT)) (-1815 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-4096 (((-797) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL (|has| |#2| (-372 |#1|)) ELT)) (-1800 (((-599 (-1207 |#1|))) NIL (-3677 (-12 (|has| |#2| (-322 |#1|)) (|has| |#1| (-510))) (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-510)))) ELT)) (-2552 (($ $ $ $) NIL T ELT)) (-1813 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2664 (($ (-647 |#1|) $) NIL (|has| |#2| (-372 |#1|)) ELT)) (-2550 (($ $ $) NIL T ELT)) (-1814 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1812 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-1808 (((-85)) NIL (|has| |#2| (-322 |#1|)) ELT)) (-2779 (($) 18 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) 19 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-588 |#1| |#2|) (-13 (-702 |#1|) (-568 |#2|) (-10 -8 (-15 -4096 ($ |#2|)) (IF (|has| |#2| (-372 |#1|)) (-6 (-372 |#1|)) |%noBranch|) (IF (|has| |#2| (-322 |#1|)) (-6 (-322 |#1|)) |%noBranch|))) (-146) (-702 |#1|)) (T -588)) +((-4096 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-588 *3 *2)) (-4 *2 (-702 *3))))) +((-4099 (($ $ |#2|) 10 T ELT))) +(((-589 |#1| |#2|) (-10 -7 (-15 -4099 (|#1| |#1| |#2|))) (-590 |#2|) (-146)) (T -589)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3670 (($ $ $) 39 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 38 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-590 |#1|) (-113) (-146)) (T -590)) +((-3670 (*1 *1 *1 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-146)))) (-4099 (*1 *1 *1 *2) (-12 (-4 *1 (-590 *2)) (-4 *2 (-146)) (-4 *2 (-318))))) +(-13 (-675 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3670 ($ $ $)) (IF (|has| |t#1| (-318)) (-15 -4099 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-598 |#1|) . T) ((-675 |#1|) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-2375 (((-3 (-775 |#2|) #1="failed") |#2| (-247 |#2|) (-1099)) 105 T ELT) (((-3 (-775 |#2|) (-2 (|:| |leftHandLimit| (-3 (-775 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-775 |#2|) #1#))) #1#) |#2| (-247 (-775 |#2|))) 130 T ELT)) (-2374 (((-3 (-766 |#2|) #1#) |#2| (-247 (-766 |#2|))) 135 T ELT))) +(((-591 |#1| |#2|) (-10 -7 (-15 -2375 ((-3 (-775 |#2|) (-2 (|:| |leftHandLimit| (-3 (-775 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-775 |#2|) #1#))) #1#) |#2| (-247 (-775 |#2|)))) (-15 -2374 ((-3 (-766 |#2|) #1#) |#2| (-247 (-766 |#2|)))) (-15 -2375 ((-3 (-775 |#2|) #1#) |#2| (-247 |#2|) (-1099)))) (-13 (-406) (-978 (-499)) (-596 (-499))) (-13 (-27) (-1143) (-375 |#1|))) (T -591)) +((-2375 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-247 *3)) (-5 *5 (-1099)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-775 *3)) (-5 *1 (-591 *6 *3)))) (-2374 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-247 (-766 *3))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-766 *3)) (-5 *1 (-591 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) (-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-247 (-775 *3))) (-4 *3 (-13 (-27) (-1143) (-375 *5))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-3 (-775 *3) (-2 (|:| |leftHandLimit| (-3 (-775 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-775 *3) #1#))) "failed")) (-5 *1 (-591 *5 *3))))) +((-2375 (((-3 (-775 (-361 (-884 |#1|))) #1="failed") (-361 (-884 |#1|)) (-247 (-361 (-884 |#1|))) (-1099)) 86 T ELT) (((-3 (-775 (-361 (-884 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-775 (-361 (-884 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-775 (-361 (-884 |#1|))) #1#))) #1#) (-361 (-884 |#1|)) (-247 (-361 (-884 |#1|)))) 20 T ELT) (((-3 (-775 (-361 (-884 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-775 (-361 (-884 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-775 (-361 (-884 |#1|))) #1#))) #1#) (-361 (-884 |#1|)) (-247 (-775 (-884 |#1|)))) 35 T ELT)) (-2374 (((-766 (-361 (-884 |#1|))) (-361 (-884 |#1|)) (-247 (-361 (-884 |#1|)))) 23 T ELT) (((-766 (-361 (-884 |#1|))) (-361 (-884 |#1|)) (-247 (-766 (-884 |#1|)))) 43 T ELT))) +(((-592 |#1|) (-10 -7 (-15 -2375 ((-3 (-775 (-361 (-884 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-775 (-361 (-884 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-775 (-361 (-884 |#1|))) #1#))) #1#) (-361 (-884 |#1|)) (-247 (-775 (-884 |#1|))))) (-15 -2375 ((-3 (-775 (-361 (-884 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-775 (-361 (-884 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-775 (-361 (-884 |#1|))) #1#))) #1#) (-361 (-884 |#1|)) (-247 (-361 (-884 |#1|))))) (-15 -2374 ((-766 (-361 (-884 |#1|))) (-361 (-884 |#1|)) (-247 (-766 (-884 |#1|))))) (-15 -2374 ((-766 (-361 (-884 |#1|))) (-361 (-884 |#1|)) (-247 (-361 (-884 |#1|))))) (-15 -2375 ((-3 (-775 (-361 (-884 |#1|))) #1#) (-361 (-884 |#1|)) (-247 (-361 (-884 |#1|))) (-1099)))) (-406)) (T -592)) +((-2375 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-247 (-361 (-884 *6)))) (-5 *5 (-1099)) (-5 *3 (-361 (-884 *6))) (-4 *6 (-406)) (-5 *2 (-775 *3)) (-5 *1 (-592 *6)))) (-2374 (*1 *2 *3 *4) (-12 (-5 *4 (-247 (-361 (-884 *5)))) (-5 *3 (-361 (-884 *5))) (-4 *5 (-406)) (-5 *2 (-766 *3)) (-5 *1 (-592 *5)))) (-2374 (*1 *2 *3 *4) (-12 (-5 *4 (-247 (-766 (-884 *5)))) (-4 *5 (-406)) (-5 *2 (-766 (-361 (-884 *5)))) (-5 *1 (-592 *5)) (-5 *3 (-361 (-884 *5))))) (-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-247 (-361 (-884 *5)))) (-5 *3 (-361 (-884 *5))) (-4 *5 (-406)) (-5 *2 (-3 (-775 *3) (-2 (|:| |leftHandLimit| (-3 (-775 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-775 *3) #1#))) #2="failed")) (-5 *1 (-592 *5)))) (-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-247 (-775 (-884 *5)))) (-4 *5 (-406)) (-5 *2 (-3 (-775 (-361 (-884 *5))) (-2 (|:| |leftHandLimit| (-3 (-775 (-361 (-884 *5))) #1#)) (|:| |rightHandLimit| (-3 (-775 (-361 (-884 *5))) #1#))) #2#)) (-5 *1 (-592 *5)) (-5 *3 (-361 (-884 *5)))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) 11 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2972 (($ (-168 |#1|)) 12 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-798 |#1|)) 7 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT))) +(((-593 |#1|) (-13 (-777) (-571 (-798 |#1|)) (-10 -8 (-15 -2972 ($ (-168 |#1|))))) (-599 (-1117))) (T -593)) +((-2972 (*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-599 (-1117))) (-5 *1 (-593 *3))))) +((-2378 (((-3 (-1207 (-361 |#1|)) #1="failed") (-1207 |#2|) |#2|) 64 (-2679 (|has| |#1| (-318))) ELT) (((-3 (-1207 |#1|) #1#) (-1207 |#2|) |#2|) 49 (|has| |#1| (-318)) ELT)) (-2376 (((-85) (-1207 |#2|)) 33 T ELT)) (-2377 (((-3 (-1207 |#1|) #1#) (-1207 |#2|)) 40 T ELT))) +(((-594 |#1| |#2|) (-10 -7 (-15 -2376 ((-85) (-1207 |#2|))) (-15 -2377 ((-3 (-1207 |#1|) #1="failed") (-1207 |#2|))) (IF (|has| |#1| (-318)) (-15 -2378 ((-3 (-1207 |#1|) #1#) (-1207 |#2|) |#2|)) (-15 -2378 ((-3 (-1207 (-361 |#1|)) #1#) (-1207 |#2|) |#2|)))) (-510) (-13 (-989) (-596 |#1|))) (T -594)) +((-2378 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1207 *4)) (-4 *4 (-13 (-989) (-596 *5))) (-2679 (-4 *5 (-318))) (-4 *5 (-510)) (-5 *2 (-1207 (-361 *5))) (-5 *1 (-594 *5 *4)))) (-2378 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1207 *4)) (-4 *4 (-13 (-989) (-596 *5))) (-4 *5 (-318)) (-4 *5 (-510)) (-5 *2 (-1207 *5)) (-5 *1 (-594 *5 *4)))) (-2377 (*1 *2 *3) (|partial| -12 (-5 *3 (-1207 *5)) (-4 *5 (-13 (-989) (-596 *4))) (-4 *4 (-510)) (-5 *2 (-1207 *4)) (-5 *1 (-594 *4 *5)))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-1207 *5)) (-4 *5 (-13 (-989) (-596 *4))) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-594 *4 *5))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3924 (((-599 (-807 (-593 |#2|) |#1|)) $) NIL T ELT)) (-1345 (((-3 $ "failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3014 (($ |#1| (-593 |#2|)) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2379 (($ (-599 |#1|)) 25 T ELT)) (-2086 (((-593 |#2|) $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4061 (((-107)) 16 T ELT)) (-3362 (((-1207 |#1|) $) 44 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-593 |#2|)) 11 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 20 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 17 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-595 |#1| |#2|) (-13 (-1215 |#1|) (-571 (-593 |#2|)) (-463 |#1| (-593 |#2|)) (-10 -8 (-15 -2379 ($ (-599 |#1|))) (-15 -3362 ((-1207 |#1|) $)))) (-318) (-599 (-1117))) (T -595)) +((-2379 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-318)) (-5 *1 (-595 *3 *4)) (-14 *4 (-599 (-1117))))) (-3362 (*1 *2 *1) (-12 (-5 *2 (-1207 *3)) (-5 *1 (-595 *3 *4)) (-4 *3 (-318)) (-14 *4 (-599 (-1117)))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-2380 (((-647 |#1|) (-647 $)) 35 T ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 34 T ELT)) (-2381 (((-647 |#1|) (-1207 $)) 37 T ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 36 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT))) +(((-596 |#1|) (-113) (-989)) (T -596)) +((-2381 (*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-596 *4)) (-4 *4 (-989)) (-5 *2 (-647 *4)))) (-2381 (*1 *2 *3 *1) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-596 *4)) (-4 *4 (-989)) (-5 *2 (-2 (|:| -1673 (-647 *4)) (|:| |vec| (-1207 *4)))))) (-2380 (*1 *2 *3) (-12 (-5 *3 (-647 *1)) (-4 *1 (-596 *4)) (-4 *4 (-989)) (-5 *2 (-647 *4)))) (-2380 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *1)) (-5 *4 (-1207 *1)) (-4 *1 (-596 *5)) (-4 *5 (-989)) (-5 *2 (-2 (|:| -1673 (-647 *5)) (|:| |vec| (-1207 *5))))))) +(-13 (-606 |t#1|) (-10 -8 (-15 -2381 ((-647 |t#1|) (-1207 $))) (-15 -2381 ((-2 (|:| -1673 (-647 |t#1|)) (|:| |vec| (-1207 |t#1|))) (-1207 $) $)) (-15 -2380 ((-647 |t#1|) (-647 $))) (-15 -2380 ((-2 (|:| -1673 (-647 |t#1|)) (|:| |vec| (-1207 |t#1|))) (-647 $) (-1207 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ "failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2382 (($ (-599 |#1|)) 23 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3950 ((|#1| $ (-595 |#1| |#2|)) 46 T ELT)) (-4061 (((-107)) 13 T ELT)) (-3362 (((-1207 |#1|) $) 42 T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 18 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 14 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-597 |#1| |#2|) (-13 (-1215 |#1|) (-240 (-595 |#1| |#2|) |#1|) (-10 -8 (-15 -2382 ($ (-599 |#1|))) (-15 -3362 ((-1207 |#1|) $)))) (-318) (-599 (-1117))) (T -597)) +((-2382 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-318)) (-5 *1 (-597 *3 *4)) (-14 *4 (-599 (-1117))))) (-3362 (*1 *2 *1) (-12 (-5 *2 (-1207 *3)) (-5 *1 (-597 *3 *4)) (-4 *3 (-318)) (-14 *4 (-599 (-1117)))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) +(((-598 |#1|) (-113) (-1052)) (T -598)) +NIL +(-13 (-604 |t#1|) (-991 |t#1|)) +(((-73) . T) ((-568 (-797)) . T) ((-604 |#1|) . T) ((-991 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) NIL T ELT)) (-3945 ((|#1| $) NIL T ELT)) (-3947 (($ $) NIL T ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3935 (($ $ (-499)) 71 (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) $) NIL (|has| |#1| (-781)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1823 (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| |#1| (-781))) ELT) (($ (-1 (-85) |#1| |#1|) $) 68 (|has| $ (-6 -4146)) ELT)) (-3030 (($ $) NIL (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3582 (((-85) $ (-714)) NIL T ELT)) (-3146 ((|#1| $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3937 (($ $ $) 26 (|has| $ (-6 -4146)) ELT)) (-3936 ((|#1| $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3939 ((|#1| $ |#1|) 24 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-6 -4146)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-6 -4146)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) NIL (|has| $ (-6 -4146)) ELT)) (-2385 (($ $ $) 77 (|has| |#1| (-1041)) ELT)) (-2384 (($ $ $) 78 (|has| |#1| (-1041)) ELT)) (-2383 (($ $ $) 81 (|has| |#1| (-1041)) ELT)) (-1603 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3946 ((|#1| $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) 31 (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) 32 T ELT)) (-3949 (($ $) 21 T ELT) (($ $ (-714)) 36 T ELT)) (-2481 (($ $) 66 (|has| |#1| (-1041)) ELT)) (-1386 (($ $) 76 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3545 (($ |#1| $) NIL (|has| |#1| (-1041)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3546 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1609 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) NIL T ELT)) (-3583 (((-85) $) NIL T ELT)) (-3559 (((-499) |#1| $ (-499)) NIL (|has| |#1| (-1041)) ELT) (((-499) |#1| $) NIL (|has| |#1| (-1041)) ELT) (((-499) (-1 (-85) |#1|) $) NIL T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2387 (((-85) $) 9 T ELT)) (-3152 (((-599 $) $) NIL T ELT)) (-3148 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-2388 (($) 7 T CONST)) (-3764 (($ (-714) |#1|) NIL T ELT)) (-3869 (((-85) $ (-714)) NIL T ELT)) (-2301 (((-499) $) 35 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2977 (($ $ $) NIL (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 69 T ELT)) (-3658 (($ $ $) NIL (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 64 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3682 (($ |#1|) NIL T ELT)) (-3866 (((-85) $ (-714)) NIL T ELT)) (-3151 (((-599 |#1|) $) NIL T ELT)) (-3667 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) 62 (|has| |#1| (-1041)) ELT)) (-3948 ((|#1| $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3757 (($ $ $ (-499)) NIL T ELT) (($ |#1| $ (-499)) NIL T ELT)) (-2404 (($ $ $ (-499)) NIL T ELT) (($ |#1| $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) 16 T ELT) (($ $ (-714)) NIL T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2300 (($ $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3584 (((-85) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 15 T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) 20 T ELT)) (-3713 (($) 19 T ELT)) (-3950 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT) ((|#1| $ (-499)) 80 T ELT) ((|#1| $ (-499) |#1|) NIL T ELT)) (-3150 (((-499) $ $) NIL T ELT)) (-1604 (($ $ (-1174 (-499))) NIL T ELT) (($ $ (-499)) NIL T ELT)) (-2405 (($ $ (-1174 (-499))) NIL T ELT) (($ $ (-499)) NIL T ELT)) (-3783 (((-85) $) 39 T ELT)) (-3942 (($ $) NIL T ELT)) (-3940 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-3943 (((-714) $) NIL T ELT)) (-3944 (($ $) 44 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 40 T ELT)) (-4122 (((-488) $) 89 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 29 T ELT)) (-3601 (($ |#1| $) 10 T ELT)) (-3941 (($ $ $) 65 T ELT) (($ $ |#1|) NIL T ELT)) (-3952 (($ $ $) 75 T ELT) (($ |#1| $) 14 T ELT) (($ (-599 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4096 (((-797) $) 54 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) NIL T ELT)) (-3149 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2386 (($ $ $) 11 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 58 (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-4107 (((-714) $) 13 (|has| $ (-6 -4145)) ELT))) +(((-599 |#1|) (-13 (-624 |#1|) (-10 -8 (-15 -2388 ($) -4102) (-15 -2387 ((-85) $)) (-15 -3601 ($ |#1| $)) (-15 -2386 ($ $ $)) (IF (|has| |#1| (-1041)) (PROGN (-15 -2385 ($ $ $)) (-15 -2384 ($ $ $)) (-15 -2383 ($ $ $))) |%noBranch|))) (-1157)) (T -599)) +((-2388 (*1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1157)))) (-2387 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-599 *3)) (-4 *3 (-1157)))) (-3601 (*1 *1 *2 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1157)))) (-2386 (*1 *1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1157)))) (-2385 (*1 *1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1041)) (-4 *2 (-1157)))) (-2384 (*1 *1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1041)) (-4 *2 (-1157)))) (-2383 (*1 *1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1041)) (-4 *2 (-1157))))) +((-3991 (((-599 |#2|) (-1 |#2| |#1| |#2|) (-599 |#1|) |#2|) 16 T ELT)) (-3992 ((|#2| (-1 |#2| |#1| |#2|) (-599 |#1|) |#2|) 18 T ELT)) (-4108 (((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)) 13 T ELT))) +(((-600 |#1| |#2|) (-10 -7 (-15 -3991 ((-599 |#2|) (-1 |#2| |#1| |#2|) (-599 |#1|) |#2|)) (-15 -3992 (|#2| (-1 |#2| |#1| |#2|) (-599 |#1|) |#2|)) (-15 -4108 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)))) (-1157) (-1157)) (T -600)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-599 *6)) (-5 *1 (-600 *5 *6)))) (-3992 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-599 *5)) (-4 *5 (-1157)) (-4 *2 (-1157)) (-5 *1 (-600 *5 *2)))) (-3991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-599 *6)) (-4 *6 (-1157)) (-4 *5 (-1157)) (-5 *2 (-599 *5)) (-5 *1 (-600 *6 *5))))) +((-3562 ((|#2| (-599 |#1|) (-599 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-599 |#1|) (-599 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-599 |#1|) (-599 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-599 |#1|) (-599 |#2|) |#2|) 17 T ELT) ((|#2| (-599 |#1|) (-599 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-599 |#1|) (-599 |#2|)) 12 T ELT))) +(((-601 |#1| |#2|) (-10 -7 (-15 -3562 ((-1 |#2| |#1|) (-599 |#1|) (-599 |#2|))) (-15 -3562 (|#2| (-599 |#1|) (-599 |#2|) |#1|)) (-15 -3562 ((-1 |#2| |#1|) (-599 |#1|) (-599 |#2|) |#2|)) (-15 -3562 (|#2| (-599 |#1|) (-599 |#2|) |#1| |#2|)) (-15 -3562 ((-1 |#2| |#1|) (-599 |#1|) (-599 |#2|) (-1 |#2| |#1|))) (-15 -3562 (|#2| (-599 |#1|) (-599 |#2|) |#1| (-1 |#2| |#1|)))) (-1041) (-1157)) (T -601)) +((-3562 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-599 *5)) (-5 *4 (-599 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1041)) (-4 *2 (-1157)) (-5 *1 (-601 *5 *2)))) (-3562 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-599 *5)) (-5 *4 (-599 *6)) (-4 *5 (-1041)) (-4 *6 (-1157)) (-5 *1 (-601 *5 *6)))) (-3562 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-599 *5)) (-5 *4 (-599 *2)) (-4 *5 (-1041)) (-4 *2 (-1157)) (-5 *1 (-601 *5 *2)))) (-3562 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 *6)) (-5 *4 (-599 *5)) (-4 *6 (-1041)) (-4 *5 (-1157)) (-5 *2 (-1 *5 *6)) (-5 *1 (-601 *6 *5)))) (-3562 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 *5)) (-5 *4 (-599 *2)) (-4 *5 (-1041)) (-4 *2 (-1157)) (-5 *1 (-601 *5 *2)))) (-3562 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *5)) (-5 *4 (-599 *6)) (-4 *5 (-1041)) (-4 *6 (-1157)) (-5 *2 (-1 *6 *5)) (-5 *1 (-601 *5 *6))))) +((-4108 (((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|)) 21 T ELT))) +(((-602 |#1| |#2| |#3|) (-10 -7 (-15 -4108 ((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|)))) (-1157) (-1157) (-1157)) (T -602)) +((-4108 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-599 *7)) (-4 *6 (-1157)) (-4 *7 (-1157)) (-4 *8 (-1157)) (-5 *2 (-599 *8)) (-5 *1 (-602 *6 *7 *8))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 11 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-603 |#1|) (-13 (-1023) (-568 |#1|)) (-1041)) (T -603)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) +(((-604 |#1|) (-113) (-1052)) (T -604)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1052))))) +(-13 (-1041) (-10 -8 (-15 * ($ |t#1| $)))) +(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2389 (($ |#1| |#1| $) 44 T ELT)) (-1603 (($ (-1 (-85) |#1|) $) 60 (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2481 (($ $) 46 T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3545 (($ |#1| $) 57 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -4145)) ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 |#1|) $) 9 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 48 T ELT)) (-3757 (($ |#1| $) 29 T ELT) (($ |#1| $ (-714)) 43 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1309 ((|#1| $) 51 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 23 T ELT)) (-3713 (($) 28 T ELT)) (-2390 (((-85) $) 55 T ELT)) (-2480 (((-599 (-2 (|:| |entry| |#1|) (|:| -2048 (-714)))) $) 68 T ELT)) (-1499 (($) 26 T ELT) (($ (-599 |#1|)) 19 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 64 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) 20 T ELT)) (-4122 (((-488) $) 35 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) NIL T ELT)) (-4096 (((-797) $) 14 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) 24 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 70 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 17 (|has| $ (-6 -4145)) ELT))) +(((-605 |#1|) (-13 (-653 |#1|) (-10 -8 (-6 -4145) (-15 -2390 ((-85) $)) (-15 -2389 ($ |#1| |#1| $)))) (-1041)) (T -605)) +((-2390 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-605 *3)) (-4 *3 (-1041)))) (-2389 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1041))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT))) +(((-606 |#1|) (-113) (-997)) (T -606)) +NIL +(-13 (-21) (-604 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714) $) 17 T ELT)) (-2395 (($ $ |#1|) 69 T ELT)) (-2397 (($ $) 39 T ELT)) (-2398 (($ $) 37 T ELT)) (-3295 (((-3 |#1| "failed") $) 61 T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-2432 (($ |#1| |#2| $) 79 T ELT) (($ $ $) 81 T ELT)) (-3673 (((-797) $ (-1 (-797) (-797) (-797)) (-1 (-797) (-797) (-797)) (-499)) 56 T ELT)) (-2399 ((|#1| $ (-499)) 35 T ELT)) (-2400 ((|#2| $ (-499)) 34 T ELT)) (-2391 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2392 (($ (-1 |#2| |#2|) $) 47 T ELT)) (-2396 (($) 11 T ELT)) (-2402 (($ |#1| |#2|) 24 T ELT)) (-2401 (($ (-599 (-2 (|:| |gen| |#1|) (|:| -4093 |#2|)))) 25 T ELT)) (-2403 (((-599 (-2 (|:| |gen| |#1|) (|:| -4093 |#2|))) $) 14 T ELT)) (-2394 (($ |#1| $) 71 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2393 (((-85) $ $) 76 T ELT)) (-4096 (((-797) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 27 T ELT))) +(((-607 |#1| |#2| |#3|) (-13 (-1041) (-978 |#1|) (-10 -8 (-15 -3673 ((-797) $ (-1 (-797) (-797) (-797)) (-1 (-797) (-797) (-797)) (-499))) (-15 -2403 ((-599 (-2 (|:| |gen| |#1|) (|:| -4093 |#2|))) $)) (-15 -2402 ($ |#1| |#2|)) (-15 -2401 ($ (-599 (-2 (|:| |gen| |#1|) (|:| -4093 |#2|))))) (-15 -2400 (|#2| $ (-499))) (-15 -2399 (|#1| $ (-499))) (-15 -2398 ($ $)) (-15 -2397 ($ $)) (-15 -3258 ((-714) $)) (-15 -2396 ($)) (-15 -2395 ($ $ |#1|)) (-15 -2394 ($ |#1| $)) (-15 -2432 ($ |#1| |#2| $)) (-15 -2432 ($ $ $)) (-15 -2393 ((-85) $ $)) (-15 -2392 ($ (-1 |#2| |#2|) $)) (-15 -2391 ($ (-1 |#1| |#1|) $)))) (-1041) (-23) |#2|) (T -607)) +((-3673 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-797) (-797) (-797))) (-5 *4 (-499)) (-5 *2 (-797)) (-5 *1 (-607 *5 *6 *7)) (-4 *5 (-1041)) (-4 *6 (-23)) (-14 *7 *6))) (-2403 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| |gen| *3) (|:| -4093 *4)))) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-1041)) (-4 *4 (-23)) (-14 *5 *4))) (-2402 (*1 *1 *2 *3) (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3))) (-2401 (*1 *1 *2) (-12 (-5 *2 (-599 (-2 (|:| |gen| *3) (|:| -4093 *4)))) (-4 *3 (-1041)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-607 *3 *4 *5)))) (-2400 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *2 (-23)) (-5 *1 (-607 *4 *2 *5)) (-4 *4 (-1041)) (-14 *5 *2))) (-2399 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *2 (-1041)) (-5 *1 (-607 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2398 (*1 *1 *1) (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3))) (-2397 (*1 *1 *1) (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-1041)) (-4 *4 (-23)) (-14 *5 *4))) (-2396 (*1 *1) (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3))) (-2395 (*1 *1 *1 *2) (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3))) (-2394 (*1 *1 *2 *1) (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3))) (-2432 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3))) (-2432 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3))) (-2393 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-1041)) (-4 *4 (-23)) (-14 *5 *4))) (-2392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-1041)))) (-2391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1041)) (-5 *1 (-607 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +((-2302 (((-499) $) 30 T ELT)) (-2404 (($ |#2| $ (-499)) 26 T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) 12 T ELT)) (-2305 (((-85) (-499) $) 17 T ELT)) (-3952 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT))) +(((-608 |#1| |#2|) (-10 -7 (-15 -2404 (|#1| |#1| |#1| (-499))) (-15 -2404 (|#1| |#2| |#1| (-499))) (-15 -3952 (|#1| (-599 |#1|))) (-15 -3952 (|#1| |#1| |#1|)) (-15 -3952 (|#1| |#2| |#1|)) (-15 -3952 (|#1| |#1| |#2|)) (-15 -2302 ((-499) |#1|)) (-15 -2304 ((-599 (-499)) |#1|)) (-15 -2305 ((-85) (-499) |#1|))) (-609 |#2|) (-1157)) (T -608)) +NIL +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-2299 (((-1213) $ (-499) (-499)) 44 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ (-499) |#1|) 56 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) 64 (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-1386 (($ $) 84 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#1| $) 83 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) 57 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 55 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) |#1|) 74 T ELT)) (-2301 (((-499) $) 47 (|has| (-499) (-781)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 48 (|has| (-499) (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) 66 T ELT) (($ $ $ (-499)) 65 T ELT)) (-2304 (((-599 (-499)) $) 50 T ELT)) (-2305 (((-85) (-499) $) 51 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) 46 (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2300 (($ $ |#1|) 45 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) 52 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ (-499) |#1|) 54 T ELT) ((|#1| $ (-499)) 53 T ELT) (($ $ (-1174 (-499))) 75 T ELT)) (-2405 (($ $ (-499)) 68 T ELT) (($ $ (-1174 (-499))) 67 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 85 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 76 T ELT)) (-3952 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-599 $)) 70 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-609 |#1|) (-113) (-1157)) (T -609)) +((-3764 (*1 *1 *2 *3) (-12 (-5 *2 (-714)) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) (-3952 (*1 *1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1157)))) (-3952 (*1 *1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1157)))) (-3952 (*1 *1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1157)))) (-3952 (*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) (-4108 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) (-2405 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) (-2405 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 (-499))) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) (-2404 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-609 *2)) (-4 *2 (-1157)))) (-2404 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) (-3938 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1174 (-499))) (|has| *1 (-6 -4146)) (-4 *1 (-609 *2)) (-4 *2 (-1157))))) +(-13 (-554 (-499) |t#1|) (-124 |t#1|) (-240 (-1174 (-499)) $) (-10 -8 (-15 -3764 ($ (-714) |t#1|)) (-15 -3952 ($ $ |t#1|)) (-15 -3952 ($ |t#1| $)) (-15 -3952 ($ $ $)) (-15 -3952 ($ (-599 $))) (-15 -4108 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2405 ($ $ (-499))) (-15 -2405 ($ $ (-1174 (-499)))) (-15 -2404 ($ |t#1| $ (-499))) (-15 -2404 ($ $ $ (-499))) (IF (|has| $ (-6 -4146)) (-15 -3938 (|t#1| $ (-1174 (-499)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-240 (-499) |#1|) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-554 (-499) |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 15 T ELT)) (-1345 (((-3 $ "failed") $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| |#1| (-735)) ELT)) (-3874 (($) NIL T CONST)) (-3324 (((-85) $) NIL (|has| |#1| (-735)) ELT)) (-3119 ((|#1| $) 23 T ELT)) (-3325 (((-85) $) NIL (|has| |#1| (-735)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-735)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-735)) ELT)) (-3380 (((-1099) $) 48 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3118 ((|#3| $) 24 T ELT)) (-4096 (((-797) $) 43 T ELT)) (-1297 (((-85) $ $) 22 T ELT)) (-3523 (($ $) NIL (|has| |#1| (-735)) ELT)) (-2779 (($) 10 T CONST)) (-2685 (((-85) $ $) NIL (|has| |#1| (-735)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-735)) ELT)) (-3174 (((-85) $ $) 20 T ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-735)) ELT)) (-2806 (((-85) $ $) 26 (|has| |#1| (-735)) ELT)) (-4099 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3987 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 29 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) +(((-610 |#1| |#2| |#3|) (-13 (-675 |#2|) (-10 -8 (IF (|has| |#1| (-735)) (-6 (-735)) |%noBranch|) (-15 -4099 ($ $ |#3|)) (-15 -4099 ($ |#1| |#3|)) (-15 -3119 (|#1| $)) (-15 -3118 (|#3| $)))) (-675 |#2|) (-146) (|SubsetCategory| (-684) |#2|)) (T -610)) +((-4099 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-610 *3 *4 *2)) (-4 *3 (-675 *4)) (-4 *2 (|SubsetCategory| (-684) *4)))) (-4099 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-610 *2 *4 *3)) (-4 *2 (-675 *4)) (-4 *3 (|SubsetCategory| (-684) *4)))) (-3119 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-675 *3)) (-5 *1 (-610 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-684) *3)))) (-3118 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-684) *4)) (-5 *1 (-610 *3 *4 *2)) (-4 *3 (-675 *4))))) +((-3721 (((-3 |#2| #1="failed") |#3| |#2| (-1117) |#2| (-599 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2113 (-599 |#2|))) #1#) |#3| |#2| (-1117)) 44 T ELT))) +(((-611 |#1| |#2| |#3|) (-10 -7 (-15 -3721 ((-3 (-2 (|:| |particular| |#2|) (|:| -2113 (-599 |#2|))) #1="failed") |#3| |#2| (-1117))) (-15 -3721 ((-3 |#2| #1#) |#3| |#2| (-1117) |#2| (-599 |#2|)))) (-13 (-261) (-978 (-499)) (-596 (-499)) (-120)) (-13 (-29 |#1|) (-1143) (-898)) (-616 |#2|)) (T -611)) +((-3721 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-599 *2)) (-4 *2 (-13 (-29 *6) (-1143) (-898))) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *1 (-611 *6 *2 *3)) (-4 *3 (-616 *2)))) (-3721 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1117)) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-4 *4 (-13 (-29 *6) (-1143) (-898))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2113 (-599 *4)))) (-5 *1 (-611 *6 *4 *3)) (-4 *3 (-616 *4))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2406 (($ $) NIL (|has| |#1| (-318)) ELT)) (-2408 (($ $ $) 28 (|has| |#1| (-318)) ELT)) (-2409 (($ $ (-714)) 31 (|has| |#1| (-318)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2655 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2656 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2657 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2653 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2652 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-2654 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-2668 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) NIL T ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-714)) NIL T ELT)) (-2666 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-510)) ELT)) (-2665 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-510)) ELT)) (-2941 (((-714) $) NIL T ELT)) (-2661 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2662 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2651 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2659 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-2660 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-2667 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT)) (-3950 ((|#1| $ |#1|) 24 T ELT)) (-2410 (($ $ $) 33 (|has| |#1| (-318)) ELT)) (-4098 (((-714) $) NIL T ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT)) (-4096 (((-797) $) 20 T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (($ |#1|) NIL T ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-714)) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2664 ((|#1| $ |#1| |#1|) 23 T ELT)) (-2638 (($ $) NIL T ELT)) (-2779 (($) 21 T CONST)) (-2785 (($) 8 T CONST)) (-2790 (($) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-612 |#1| |#2|) (-616 |#1|) (-989) (-1 |#1| |#1|)) (T -612)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2406 (($ $) NIL (|has| |#1| (-318)) ELT)) (-2408 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2409 (($ $ (-714)) NIL (|has| |#1| (-318)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2655 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2656 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2657 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2653 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2652 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-2654 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-2668 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) NIL T ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-714)) NIL T ELT)) (-2666 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-510)) ELT)) (-2665 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-510)) ELT)) (-2941 (((-714) $) NIL T ELT)) (-2661 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2662 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2651 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2659 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-2660 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-2667 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT)) (-3950 ((|#1| $ |#1|) NIL T ELT)) (-2410 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4098 (((-714) $) NIL T ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (($ |#1|) NIL T ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-714)) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2664 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2638 (($ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-613 |#1|) (-616 |#1|) (-190)) (T -613)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2406 (($ $) NIL (|has| |#1| (-318)) ELT)) (-2408 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2409 (($ $ (-714)) NIL (|has| |#1| (-318)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2655 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2656 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2657 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2653 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2652 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-2654 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-2668 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) NIL T ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-714)) NIL T ELT)) (-2666 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-510)) ELT)) (-2665 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-510)) ELT)) (-2941 (((-714) $) NIL T ELT)) (-2661 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2662 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2651 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2659 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-2660 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-2667 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT)) (-3950 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2410 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4098 (((-714) $) NIL T ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (($ |#1|) NIL T ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-714)) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2664 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2638 (($ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-614 |#1| |#2|) (-13 (-616 |#1|) (-240 |#2| |#2|)) (-190) (-13 (-606 |#1|) (-10 -8 (-15 -3908 ($ $))))) (T -614)) +NIL +((-2406 (($ $) 29 T ELT)) (-2638 (($ $) 27 T ELT)) (-2790 (($) 13 T ELT))) +(((-615 |#1| |#2|) (-10 -7 (-15 -2406 (|#1| |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -2790 (|#1|))) (-616 |#2|) (-989)) (T -615)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2406 (($ $) 93 (|has| |#1| (-318)) ELT)) (-2408 (($ $ $) 95 (|has| |#1| (-318)) ELT)) (-2409 (($ $ (-714)) 94 (|has| |#1| (-318)) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-2655 (($ $ $) 55 (|has| |#1| (-318)) ELT)) (-2656 (($ $ $) 56 (|has| |#1| (-318)) ELT)) (-2657 (($ $ $) 58 (|has| |#1| (-318)) ELT)) (-2653 (($ $ $) 53 (|has| |#1| (-318)) ELT)) (-2652 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 52 (|has| |#1| (-318)) ELT)) (-2654 (((-3 $ #1="failed") $ $) 54 (|has| |#1| (-318)) ELT)) (-2668 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 57 (|has| |#1| (-318)) ELT)) (-3295 (((-3 (-499) #2="failed") $) 85 (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #2#) $) 82 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #2#) $) 79 T ELT)) (-3294 (((-499) $) 84 (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) 81 (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) 80 T ELT)) (-4109 (($ $) 74 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3643 (($ $) 65 (|has| |#1| (-406)) ELT)) (-2528 (((-85) $) 40 T ELT)) (-3014 (($ |#1| (-714)) 72 T ELT)) (-2666 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 67 (|has| |#1| (-510)) ELT)) (-2665 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 68 (|has| |#1| (-510)) ELT)) (-2941 (((-714) $) 76 T ELT)) (-2661 (($ $ $) 62 (|has| |#1| (-318)) ELT)) (-2662 (($ $ $) 63 (|has| |#1| (-318)) ELT)) (-2651 (($ $ $) 51 (|has| |#1| (-318)) ELT)) (-2659 (($ $ $) 60 (|has| |#1| (-318)) ELT)) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 59 (|has| |#1| (-318)) ELT)) (-2660 (((-3 $ #1#) $ $) 61 (|has| |#1| (-318)) ELT)) (-2667 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 64 (|has| |#1| (-318)) ELT)) (-3312 ((|#1| $) 75 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3606 (((-3 $ #1#) $ |#1|) 69 (|has| |#1| (-510)) ELT)) (-3950 ((|#1| $ |#1|) 98 T ELT)) (-2410 (($ $ $) 92 (|has| |#1| (-318)) ELT)) (-4098 (((-714) $) 77 T ELT)) (-2938 ((|#1| $) 66 (|has| |#1| (-406)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ (-361 (-499))) 83 (|has| |#1| (-978 (-361 (-499)))) ELT) (($ |#1|) 78 T ELT)) (-3967 (((-599 |#1|) $) 71 T ELT)) (-3827 ((|#1| $ (-714)) 73 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2664 ((|#1| $ |#1| |#1|) 70 T ELT)) (-2638 (($ $) 96 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($) 97 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 87 T ELT) (($ |#1| $) 86 T ELT))) +(((-616 |#1|) (-113) (-989)) (T -616)) +((-2790 (*1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-989)))) (-2638 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-989)))) (-2408 (*1 *1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2409 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-616 *3)) (-4 *3 (-989)) (-4 *3 (-318)))) (-2406 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2410 (*1 *1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) +(-13 (-786 |t#1|) (-240 |t#1| |t#1|) (-10 -8 (-15 -2790 ($)) (-15 -2638 ($ $)) (IF (|has| |t#1| (-318)) (PROGN (-15 -2408 ($ $ $)) (-15 -2409 ($ $ (-714))) (-15 -2406 ($ $)) (-15 -2410 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-571 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-240 |#1| |#1|) . T) ((-366 |#1|) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-598 |#1|) |has| |#1| (-146)) ((-675 |#1|) |has| |#1| (-146)) ((-684) . T) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-786 |#1|) . T)) +((-2407 (((-599 (-613 (-361 |#2|))) (-613 (-361 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3882 (((-599 (-613 (-361 |#2|))) (-613 (-361 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-599 (-613 (-361 |#2|))) (-613 (-361 |#2|)) (-1 (-599 |#1|) |#2|)) 19 T ELT))) +(((-617 |#1| |#2|) (-10 -7 (-15 -3882 ((-599 (-613 (-361 |#2|))) (-613 (-361 |#2|)) (-1 (-599 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3882 ((-599 (-613 (-361 |#2|))) (-613 (-361 |#2|)))) (-15 -2407 ((-599 (-613 (-361 |#2|))) (-613 (-361 |#2|))))) |%noBranch|)) (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499)))) (-1183 |#1|)) (T -617)) +((-2407 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-4 *5 (-1183 *4)) (-5 *2 (-599 (-613 (-361 *5)))) (-5 *1 (-617 *4 *5)) (-5 *3 (-613 (-361 *5))))) (-3882 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-4 *5 (-1183 *4)) (-5 *2 (-599 (-613 (-361 *5)))) (-5 *1 (-617 *4 *5)) (-5 *3 (-613 (-361 *5))))) (-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-599 *5) *6)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) (-5 *2 (-599 (-613 (-361 *6)))) (-5 *1 (-617 *5 *6)) (-5 *3 (-613 (-361 *6)))))) +((-2408 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2409 ((|#2| |#2| (-714) (-1 |#1| |#1|)) 45 T ELT)) (-2410 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) +(((-618 |#1| |#2|) (-10 -7 (-15 -2408 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2409 (|#2| |#2| (-714) (-1 |#1| |#1|))) (-15 -2410 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-318) (-616 |#1|)) (T -618)) +((-2410 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-318)) (-5 *1 (-618 *4 *2)) (-4 *2 (-616 *4)))) (-2409 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-714)) (-5 *4 (-1 *5 *5)) (-4 *5 (-318)) (-5 *1 (-618 *5 *2)) (-4 *2 (-616 *5)))) (-2408 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-318)) (-5 *1 (-618 *4 *2)) (-4 *2 (-616 *4))))) +((-2411 (($ $ $) 9 T ELT))) +(((-619 |#1|) (-10 -7 (-15 -2411 (|#1| |#1| |#1|))) (-620)) (T -619)) +NIL +((-2413 (($ $) 8 T ELT)) (-2411 (($ $ $) 6 T ELT)) (-2412 (($ $ $) 7 T ELT))) +(((-620) (-113)) (T -620)) +((-2413 (*1 *1 *1) (-4 *1 (-620))) (-2412 (*1 *1 *1 *1) (-4 *1 (-620))) (-2411 (*1 *1 *1 *1) (-4 *1 (-620)))) +(-13 (-1157) (-10 -8 (-15 -2413 ($ $)) (-15 -2412 ($ $ $)) (-15 -2411 ($ $ $)))) +(((-1157) . T)) +((-2414 (((-3 (-599 (-1111 |#1|)) "failed") (-599 (-1111 |#1|)) (-1111 |#1|)) 33 T ELT))) +(((-621 |#1|) (-10 -7 (-15 -2414 ((-3 (-599 (-1111 |#1|)) "failed") (-599 (-1111 |#1|)) (-1111 |#1|)))) (-848)) (T -621)) +((-2414 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-599 (-1111 *4))) (-5 *3 (-1111 *4)) (-4 *4 (-848)) (-5 *1 (-621 *4))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-4084 (((-599 |#1|) $) 84 T ELT)) (-4097 (($ $ (-714)) 94 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-4089 (((-1232 |#1| |#2|) (-1232 |#1| |#2|) $) 50 T ELT)) (-3295 (((-3 (-630 |#1|) #1#) $) NIL T ELT)) (-3294 (((-630 |#1|) $) NIL T ELT)) (-4109 (($ $) 93 T ELT)) (-2536 (((-714) $) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-4088 (($ (-630 |#1|) |#2|) 70 T ELT)) (-4086 (($ $) 89 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4090 (((-1232 |#1| |#2|) (-1232 |#1| |#2|) $) 49 T ELT)) (-1842 (((-2 (|:| |k| (-630 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3015 (((-630 |#1|) $) NIL T ELT)) (-3312 ((|#2| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3918 (($ $ |#1| $) 32 T ELT) (($ $ (-599 |#1|) (-599 $)) 34 T ELT)) (-4098 (((-714) $) 91 T ELT)) (-3670 (($ $ $) 20 T ELT) (($ (-630 |#1|) (-630 |#1|)) 79 T ELT) (($ (-630 |#1|) $) 77 T ELT) (($ $ (-630 |#1|)) 78 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1223 |#1| |#2|) $) 60 T ELT) (((-1232 |#1| |#2|) $) 43 T ELT) (($ (-630 |#1|)) 27 T ELT)) (-3967 (((-599 |#2|) $) NIL T ELT)) (-3827 ((|#2| $ (-630 |#1|)) NIL T ELT)) (-4104 ((|#2| (-1232 |#1| |#2|) $) 45 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 23 T CONST)) (-2784 (((-599 (-2 (|:| |k| (-630 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-4095 (((-3 $ #1#) (-1223 |#1| |#2|)) 62 T ELT)) (-1826 (($ (-630 |#1|)) 14 T ELT)) (-3174 (((-85) $ $) 46 T ELT)) (-4099 (($ $ |#2|) NIL (|has| |#2| (-318)) ELT)) (-3987 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 31 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-630 |#1|)) NIL T ELT))) +(((-622 |#1| |#2|) (-13 (-329 |#1| |#2|) (-339 |#2| (-630 |#1|)) (-10 -8 (-15 -4095 ((-3 $ "failed") (-1223 |#1| |#2|))) (-15 -3670 ($ (-630 |#1|) (-630 |#1|))) (-15 -3670 ($ (-630 |#1|) $)) (-15 -3670 ($ $ (-630 |#1|))))) (-781) (-146)) (T -622)) +((-4095 (*1 *1 *2) (|partial| -12 (-5 *2 (-1223 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) (-5 *1 (-622 *3 *4)))) (-3670 (*1 *1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-781)) (-5 *1 (-622 *3 *4)) (-4 *4 (-146)))) (-3670 (*1 *1 *2 *1) (-12 (-5 *2 (-630 *3)) (-4 *3 (-781)) (-5 *1 (-622 *3 *4)) (-4 *4 (-146)))) (-3670 (*1 *1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-781)) (-5 *1 (-622 *3 *4)) (-4 *4 (-146))))) +((-1825 (((-85) $) NIL T ELT) (((-85) (-1 (-85) |#2| |#2|) $) 59 T ELT)) (-1823 (($ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $) 12 T ELT)) (-1603 (($ (-1 (-85) |#2|) $) 29 T ELT)) (-2397 (($ $) 65 T ELT)) (-2481 (($ $) 74 T ELT)) (-3545 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 43 T ELT)) (-3992 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3559 (((-499) |#2| $ (-499)) 71 T ELT) (((-499) |#2| $) NIL T ELT) (((-499) (-1 (-85) |#2|) $) 54 T ELT)) (-3764 (($ (-714) |#2|) 63 T ELT)) (-2977 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 31 T ELT)) (-3658 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 24 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3682 (($ |#2|) 15 T ELT)) (-3757 (($ $ $ (-499)) 42 T ELT) (($ |#2| $ (-499)) 40 T ELT)) (-1387 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 53 T ELT)) (-1604 (($ $ (-1174 (-499))) 51 T ELT) (($ $ (-499)) 44 T ELT)) (-1824 (($ $ $ (-499)) 70 T ELT)) (-3540 (($ $) 68 T ELT)) (-2806 (((-85) $ $) 76 T ELT))) +(((-623 |#1| |#2|) (-10 -7 (-15 -3682 (|#1| |#2|)) (-15 -1604 (|#1| |#1| (-499))) (-15 -1604 (|#1| |#1| (-1174 (-499)))) (-15 -3545 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3757 (|#1| |#2| |#1| (-499))) (-15 -3757 (|#1| |#1| |#1| (-499))) (-15 -2977 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1603 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3545 (|#1| |#2| |#1|)) (-15 -2481 (|#1| |#1|)) (-15 -2977 (|#1| |#1| |#1|)) (-15 -3658 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1825 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3559 ((-499) (-1 (-85) |#2|) |#1|)) (-15 -3559 ((-499) |#2| |#1|)) (-15 -3559 ((-499) |#2| |#1| (-499))) (-15 -3658 (|#1| |#1| |#1|)) (-15 -1825 ((-85) |#1|)) (-15 -1824 (|#1| |#1| |#1| (-499))) (-15 -2397 (|#1| |#1|)) (-15 -1823 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -2806 ((-85) |#1| |#1|)) (-15 -3992 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3992 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3992 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1387 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3764 (|#1| (-714) |#2|)) (-15 -4108 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4108 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3540 (|#1| |#1|))) (-624 |#2|) (-1157)) (T -623)) +NIL +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 52 T ELT)) (-3945 ((|#1| $) 71 T ELT)) (-3947 (($ $) 73 T ELT)) (-2299 (((-1213) $ (-499) (-499)) 107 (|has| $ (-6 -4146)) ELT)) (-3935 (($ $ (-499)) 58 (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) $) 153 (|has| |#1| (-781)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) 147 T ELT)) (-1823 (($ $) 157 (-12 (|has| |#1| (-781)) (|has| $ (-6 -4146))) ELT) (($ (-1 (-85) |#1| |#1|) $) 156 (|has| $ (-6 -4146)) ELT)) (-3030 (($ $) 152 (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $) 146 T ELT)) (-3582 (((-85) $ (-714)) 90 T ELT)) (-3146 ((|#1| $ |#1|) 43 (|has| $ (-6 -4146)) ELT)) (-3937 (($ $ $) 62 (|has| $ (-6 -4146)) ELT)) (-3936 ((|#1| $ |#1|) 60 (|has| $ (-6 -4146)) ELT)) (-3939 ((|#1| $ |#1|) 64 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4146)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -4146)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -4146)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) 127 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-499) |#1|) 96 (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 45 (|has| $ (-6 -4146)) ELT)) (-1603 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-3860 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -4145)) ELT)) (-3946 ((|#1| $) 72 T ELT)) (-3874 (($) 7 T CONST)) (-2397 (($ $) 155 (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) 145 T ELT)) (-3949 (($ $) 79 T ELT) (($ $ (-714)) 77 T ELT)) (-2481 (($ $) 142 (|has| |#1| (-1041)) ELT)) (-1386 (($ $) 109 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3545 (($ |#1| $) 141 (|has| |#1| (-1041)) ELT) (($ (-1 (-85) |#1|) $) 136 T ELT)) (-3546 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -4145)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-1609 ((|#1| $ (-499) |#1|) 95 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 97 T ELT)) (-3583 (((-85) $) 93 T ELT)) (-3559 (((-499) |#1| $ (-499)) 150 (|has| |#1| (-1041)) ELT) (((-499) |#1| $) 149 (|has| |#1| (-1041)) ELT) (((-499) (-1 (-85) |#1|) $) 148 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) 54 T ELT)) (-3148 (((-85) $ $) 46 (|has| |#1| (-1041)) ELT)) (-3764 (($ (-714) |#1|) 119 T ELT)) (-3869 (((-85) $ (-714)) 91 T ELT)) (-2301 (((-499) $) 105 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) 163 (|has| |#1| (-781)) ELT)) (-2977 (($ $ $) 143 (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 139 T ELT)) (-3658 (($ $ $) 151 (|has| |#1| (-781)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 144 T ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 104 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) 162 (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3682 (($ |#1|) 133 T ELT)) (-3866 (((-85) $ (-714)) 92 T ELT)) (-3151 (((-599 |#1|) $) 49 T ELT)) (-3667 (((-85) $) 53 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3948 ((|#1| $) 76 T ELT) (($ $ (-714)) 74 T ELT)) (-3757 (($ $ $ (-499)) 138 T ELT) (($ |#1| $ (-499)) 137 T ELT)) (-2404 (($ $ $ (-499)) 126 T ELT) (($ |#1| $ (-499)) 125 T ELT)) (-2304 (((-599 (-499)) $) 102 T ELT)) (-2305 (((-85) (-499) $) 101 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) 82 T ELT) (($ $ (-714)) 80 T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2300 (($ $ |#1|) 106 (|has| $ (-6 -4146)) ELT)) (-3584 (((-85) $) 94 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) 100 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1174 (-499))) 118 T ELT) ((|#1| $ (-499)) 99 T ELT) ((|#1| $ (-499) |#1|) 98 T ELT)) (-3150 (((-499) $ $) 48 T ELT)) (-1604 (($ $ (-1174 (-499))) 135 T ELT) (($ $ (-499)) 134 T ELT)) (-2405 (($ $ (-1174 (-499))) 124 T ELT) (($ $ (-499)) 123 T ELT)) (-3783 (((-85) $) 50 T ELT)) (-3942 (($ $) 68 T ELT)) (-3940 (($ $) 65 (|has| $ (-6 -4146)) ELT)) (-3943 (((-714) $) 69 T ELT)) (-3944 (($ $) 70 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-1824 (($ $ $ (-499)) 154 (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 108 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 117 T ELT)) (-3941 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-3952 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-599 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) 55 T ELT)) (-3149 (((-85) $ $) 47 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) 161 (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) 159 (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) 160 (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 158 (|has| |#1| (-781)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-624 |#1|) (-113) (-1157)) (T -624)) +((-3682 (*1 *1 *2) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1157))))) +(-13 (-1090 |t#1|) (-327 |t#1|) (-236 |t#1|) (-10 -8 (-15 -3682 ($ |t#1|)))) +(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-240 (-499) |#1|) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-236 |#1|) . T) ((-327 |#1|) . T) ((-443 |#1|) . T) ((-554 (-499) |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-609 |#1|) . T) ((-781) |has| |#1| (-781)) ((-784) |has| |#1| (-781)) ((-950 |#1|) . T) ((-1041) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781))) ((-1090 |#1|) . T) ((-1157) . T) ((-1196 |#1|) . T)) +((-3721 (((-599 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2113 (-599 |#3|)))) |#4| (-599 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2113 (-599 |#3|))) |#4| |#3|) 60 T ELT)) (-3231 (((-714) |#4| |#3|) 18 T ELT)) (-3480 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2415 (((-85) |#4| |#3|) 14 T ELT))) +(((-625 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3721 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2113 (-599 |#3|))) |#4| |#3|)) (-15 -3721 ((-599 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2113 (-599 |#3|)))) |#4| (-599 |#3|))) (-15 -3480 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2415 ((-85) |#4| |#3|)) (-15 -3231 ((-714) |#4| |#3|))) (-318) (-13 (-327 |#1|) (-10 -7 (-6 -4146))) (-13 (-327 |#1|) (-10 -7 (-6 -4146))) (-644 |#1| |#2| |#3|)) (T -625)) +((-3231 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-4 *6 (-13 (-327 *5) (-10 -7 (-6 -4146)))) (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4146)))) (-5 *2 (-714)) (-5 *1 (-625 *5 *6 *4 *3)) (-4 *3 (-644 *5 *6 *4)))) (-2415 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-4 *6 (-13 (-327 *5) (-10 -7 (-6 -4146)))) (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4146)))) (-5 *2 (-85)) (-5 *1 (-625 *5 *6 *4 *3)) (-4 *3 (-644 *5 *6 *4)))) (-3480 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-318)) (-4 *5 (-13 (-327 *4) (-10 -7 (-6 -4146)))) (-4 *2 (-13 (-327 *4) (-10 -7 (-6 -4146)))) (-5 *1 (-625 *4 *5 *2 *3)) (-4 *3 (-644 *4 *5 *2)))) (-3721 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-4 *6 (-13 (-327 *5) (-10 -7 (-6 -4146)))) (-4 *7 (-13 (-327 *5) (-10 -7 (-6 -4146)))) (-5 *2 (-599 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2113 (-599 *7))))) (-5 *1 (-625 *5 *6 *7 *3)) (-5 *4 (-599 *7)) (-4 *3 (-644 *5 *6 *7)))) (-3721 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-4 *6 (-13 (-327 *5) (-10 -7 (-6 -4146)))) (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4146)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2113 (-599 *4)))) (-5 *1 (-625 *5 *6 *4 *3)) (-4 *3 (-644 *5 *6 *4))))) +((-3721 (((-599 (-2 (|:| |particular| (-3 (-1207 |#1|) #1="failed")) (|:| -2113 (-599 (-1207 |#1|))))) (-599 (-599 |#1|)) (-599 (-1207 |#1|))) 22 T ELT) (((-599 (-2 (|:| |particular| (-3 (-1207 |#1|) #1#)) (|:| -2113 (-599 (-1207 |#1|))))) (-647 |#1|) (-599 (-1207 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1207 |#1|) #1#)) (|:| -2113 (-599 (-1207 |#1|)))) (-599 (-599 |#1|)) (-1207 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1207 |#1|) #1#)) (|:| -2113 (-599 (-1207 |#1|)))) (-647 |#1|) (-1207 |#1|)) 14 T ELT)) (-3231 (((-714) (-647 |#1|) (-1207 |#1|)) 30 T ELT)) (-3480 (((-3 (-1207 |#1|) #1#) (-647 |#1|) (-1207 |#1|)) 24 T ELT)) (-2415 (((-85) (-647 |#1|) (-1207 |#1|)) 27 T ELT))) +(((-626 |#1|) (-10 -7 (-15 -3721 ((-2 (|:| |particular| (-3 (-1207 |#1|) #1="failed")) (|:| -2113 (-599 (-1207 |#1|)))) (-647 |#1|) (-1207 |#1|))) (-15 -3721 ((-2 (|:| |particular| (-3 (-1207 |#1|) #1#)) (|:| -2113 (-599 (-1207 |#1|)))) (-599 (-599 |#1|)) (-1207 |#1|))) (-15 -3721 ((-599 (-2 (|:| |particular| (-3 (-1207 |#1|) #1#)) (|:| -2113 (-599 (-1207 |#1|))))) (-647 |#1|) (-599 (-1207 |#1|)))) (-15 -3721 ((-599 (-2 (|:| |particular| (-3 (-1207 |#1|) #1#)) (|:| -2113 (-599 (-1207 |#1|))))) (-599 (-599 |#1|)) (-599 (-1207 |#1|)))) (-15 -3480 ((-3 (-1207 |#1|) #1#) (-647 |#1|) (-1207 |#1|))) (-15 -2415 ((-85) (-647 |#1|) (-1207 |#1|))) (-15 -3231 ((-714) (-647 |#1|) (-1207 |#1|)))) (-318)) (T -626)) +((-3231 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *5)) (-5 *4 (-1207 *5)) (-4 *5 (-318)) (-5 *2 (-714)) (-5 *1 (-626 *5)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *5)) (-5 *4 (-1207 *5)) (-4 *5 (-318)) (-5 *2 (-85)) (-5 *1 (-626 *5)))) (-3480 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1207 *4)) (-5 *3 (-647 *4)) (-4 *4 (-318)) (-5 *1 (-626 *4)))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-599 *5))) (-4 *5 (-318)) (-5 *2 (-599 (-2 (|:| |particular| (-3 (-1207 *5) #1="failed")) (|:| -2113 (-599 (-1207 *5)))))) (-5 *1 (-626 *5)) (-5 *4 (-599 (-1207 *5))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *5)) (-4 *5 (-318)) (-5 *2 (-599 (-2 (|:| |particular| (-3 (-1207 *5) #1#)) (|:| -2113 (-599 (-1207 *5)))))) (-5 *1 (-626 *5)) (-5 *4 (-599 (-1207 *5))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-599 *5))) (-4 *5 (-318)) (-5 *2 (-2 (|:| |particular| (-3 (-1207 *5) #1#)) (|:| -2113 (-599 (-1207 *5))))) (-5 *1 (-626 *5)) (-5 *4 (-1207 *5)))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *5)) (-4 *5 (-318)) (-5 *2 (-2 (|:| |particular| (-3 (-1207 *5) #1#)) (|:| -2113 (-599 (-1207 *5))))) (-5 *1 (-626 *5)) (-5 *4 (-1207 *5))))) +((-2416 (((-2 (|:| |particular| (-3 (-1207 (-361 |#4|)) "failed")) (|:| -2113 (-599 (-1207 (-361 |#4|))))) (-599 |#4|) (-599 |#3|)) 51 T ELT))) +(((-627 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2416 ((-2 (|:| |particular| (-3 (-1207 (-361 |#4|)) "failed")) (|:| -2113 (-599 (-1207 (-361 |#4|))))) (-599 |#4|) (-599 |#3|)))) (-510) (-738) (-781) (-888 |#1| |#2| |#3|)) (T -627)) +((-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 *7)) (-4 *7 (-781)) (-4 *8 (-888 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) (-5 *2 (-2 (|:| |particular| (-3 (-1207 (-361 *8)) "failed")) (|:| -2113 (-599 (-1207 (-361 *8)))))) (-5 *1 (-627 *5 *6 *7 *8))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1870 (((-3 $ #1="failed")) NIL (|has| |#2| (-510)) ELT)) (-3470 ((|#2| $) NIL T ELT)) (-3243 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1#) $ $) NIL T ELT)) (-3361 (((-1207 (-647 |#2|))) NIL T ELT) (((-1207 (-647 |#2|)) (-1207 $)) NIL T ELT)) (-3245 (((-85) $) NIL T ELT)) (-1822 (((-1207 $)) 41 T ELT)) (-3473 (($ |#2|) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3232 (($ $) NIL (|has| |#2| (-261)) ELT)) (-3234 (((-196 |#1| |#2|) $ (-499)) NIL T ELT)) (-2008 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) NIL (|has| |#2| (-510)) ELT)) (-1796 (((-3 $ #1#)) NIL (|has| |#2| (-510)) ELT)) (-1886 (((-647 |#2|)) NIL T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-1820 ((|#2| $) NIL T ELT)) (-1884 (((-647 |#2|) $) NIL T ELT) (((-647 |#2|) $ (-1207 $)) NIL T ELT)) (-2522 (((-3 $ #1#) $) NIL (|has| |#2| (-510)) ELT)) (-2002 (((-1111 (-884 |#2|))) NIL (|has| |#2| (-318)) ELT)) (-2525 (($ $ (-857)) NIL T ELT)) (-1818 ((|#2| $) NIL T ELT)) (-1798 (((-1111 |#2|) $) NIL (|has| |#2| (-510)) ELT)) (-1888 ((|#2|) NIL T ELT) ((|#2| (-1207 $)) NIL T ELT)) (-1816 (((-1111 |#2|) $) NIL T ELT)) (-1810 (((-85)) NIL T ELT)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) ((|#2| $) NIL T ELT)) (-1890 (($ (-1207 |#2|)) NIL T ELT) (($ (-1207 |#2|) (-1207 $)) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#2|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3231 (((-714) $) NIL (|has| |#2| (-510)) ELT) (((-857)) 42 T ELT)) (-3235 ((|#2| $ (-499) (-499)) NIL T ELT)) (-1807 (((-85)) NIL T ELT)) (-2549 (($ $ (-857)) NIL T ELT)) (-3010 (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3230 (((-714) $) NIL (|has| |#2| (-510)) ELT)) (-3229 (((-599 (-196 |#1| |#2|)) $) NIL (|has| |#2| (-510)) ELT)) (-3237 (((-714) $) NIL T ELT)) (-1803 (((-85)) NIL T ELT)) (-3236 (((-714) $) NIL T ELT)) (-3467 ((|#2| $) NIL (|has| |#2| (-6 (-4147 #2="*"))) ELT)) (-3241 (((-499) $) NIL T ELT)) (-3239 (((-499) $) NIL T ELT)) (-2727 (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-3240 (((-499) $) NIL T ELT)) (-3238 (((-499) $) NIL T ELT)) (-3246 (($ (-599 (-599 |#2|))) NIL T ELT)) (-2051 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3742 (((-599 (-599 |#2|)) $) NIL T ELT)) (-1801 (((-85)) NIL T ELT)) (-1805 (((-85)) NIL T ELT)) (-2009 (((-3 (-2 (|:| |particular| $) (|:| -2113 (-599 $))) #1#)) NIL (|has| |#2| (-510)) ELT)) (-1797 (((-3 $ #1#)) NIL (|has| |#2| (-510)) ELT)) (-1887 (((-647 |#2|)) NIL T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-1821 ((|#2| $) NIL T ELT)) (-1885 (((-647 |#2|) $) NIL T ELT) (((-647 |#2|) $ (-1207 $)) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-2523 (((-3 $ #1#) $) NIL (|has| |#2| (-510)) ELT)) (-2006 (((-1111 (-884 |#2|))) NIL (|has| |#2| (-318)) ELT)) (-2524 (($ $ (-857)) NIL T ELT)) (-1819 ((|#2| $) NIL T ELT)) (-1799 (((-1111 |#2|) $) NIL (|has| |#2| (-510)) ELT)) (-1889 ((|#2|) NIL T ELT) ((|#2| (-1207 $)) NIL T ELT)) (-1817 (((-1111 |#2|) $) NIL T ELT)) (-1811 (((-85)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1802 (((-85)) NIL T ELT)) (-1804 (((-85)) NIL T ELT)) (-1806 (((-85)) NIL T ELT)) (-3738 (((-3 $ #1#) $) NIL (|has| |#2| (-318)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1809 (((-85)) NIL T ELT)) (-3606 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-510)) ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#2| $ (-499) (-499) |#2|) NIL T ELT) ((|#2| $ (-499) (-499)) 27 T ELT) ((|#2| $ (-499)) NIL T ELT)) (-3908 (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-714)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1117)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#2| (-838 (-1117))) ELT)) (-3469 ((|#2| $) NIL T ELT)) (-3472 (($ (-599 |#2|)) NIL T ELT)) (-3244 (((-85) $) NIL T ELT)) (-3471 (((-196 |#1| |#2|) $) NIL T ELT)) (-3468 ((|#2| $) NIL (|has| |#2| (-6 (-4147 #2#))) ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-3362 (((-647 |#2|) (-1207 $)) NIL T ELT) (((-1207 |#2|) $) NIL T ELT) (((-647 |#2|) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 |#2|) $ (-1207 $)) 30 T ELT)) (-4122 (($ (-1207 |#2|)) NIL T ELT) (((-1207 |#2|) $) NIL T ELT)) (-1994 (((-599 (-884 |#2|))) NIL T ELT) (((-599 (-884 |#2|)) (-1207 $)) NIL T ELT)) (-2551 (($ $ $) NIL T ELT)) (-1815 (((-85)) NIL T ELT)) (-3233 (((-196 |#1| |#2|) $ (-499)) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (($ |#2|) NIL T ELT) (((-647 |#2|) $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) 40 T ELT)) (-1800 (((-599 (-1207 |#2|))) NIL (|has| |#2| (-510)) ELT)) (-2552 (($ $ $ $) NIL T ELT)) (-1813 (((-85)) NIL T ELT)) (-2664 (($ (-647 |#2|) $) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3242 (((-85) $) NIL T ELT)) (-2550 (($ $ $) NIL T ELT)) (-1814 (((-85)) NIL T ELT)) (-1812 (((-85)) NIL T ELT)) (-1808 (((-85)) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-714)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1117)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#2| (-838 (-1117))) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#2|) NIL (|has| |#2| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| |#2| (-318)) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-196 |#1| |#2|) $ (-196 |#1| |#2|)) NIL T ELT) (((-196 |#1| |#2|) (-196 |#1| |#2|) $) NIL T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-628 |#1| |#2|) (-13 (-1063 |#1| |#2| (-196 |#1| |#2|) (-196 |#1| |#2|)) (-568 (-647 |#2|)) (-372 |#2|)) (-857) (-146)) (T -628)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3386 (((-599 (-1075)) $) 10 T ELT)) (-4096 (((-797) $) 16 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-629) (-13 (-1023) (-10 -8 (-15 -3386 ((-599 (-1075)) $))))) (T -629)) +((-3386 (*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-629))))) +((-2687 (((-85) $ $) NIL T ELT)) (-4084 (((-599 |#1|) $) NIL T ELT)) (-3259 (($ $) 62 T ELT)) (-2783 (((-85) $) NIL T ELT)) (-3295 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-2419 (((-3 $ #1#) (-762 |#1|)) 28 T ELT)) (-2421 (((-85) (-762 |#1|)) 18 T ELT)) (-2420 (($ (-762 |#1|)) 29 T ELT)) (-2629 (((-85) $ $) 36 T ELT)) (-3983 (((-857) $) 43 T ELT)) (-3260 (($ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3882 (((-599 $) (-762 |#1|)) 20 T ELT)) (-4096 (((-797) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-762 |#1|) $) 47 T ELT) (((-635 |#1|) $) 52 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2418 (((-58 (-599 $)) (-599 |#1|) (-857)) 67 T ELT)) (-2417 (((-599 $) (-599 |#1|) (-857)) 70 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 63 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 46 T ELT))) +(((-630 |#1|) (-13 (-781) (-978 |#1|) (-10 -8 (-15 -2783 ((-85) $)) (-15 -3260 ($ $)) (-15 -3259 ($ $)) (-15 -3983 ((-857) $)) (-15 -2629 ((-85) $ $)) (-15 -4096 ((-762 |#1|) $)) (-15 -4096 ((-635 |#1|) $)) (-15 -3882 ((-599 $) (-762 |#1|))) (-15 -2421 ((-85) (-762 |#1|))) (-15 -2420 ($ (-762 |#1|))) (-15 -2419 ((-3 $ "failed") (-762 |#1|))) (-15 -4084 ((-599 |#1|) $)) (-15 -2418 ((-58 (-599 $)) (-599 |#1|) (-857))) (-15 -2417 ((-599 $) (-599 |#1|) (-857))))) (-781)) (T -630)) +((-2783 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) (-3260 (*1 *1 *1) (-12 (-5 *1 (-630 *2)) (-4 *2 (-781)))) (-3259 (*1 *1 *1) (-12 (-5 *1 (-630 *2)) (-4 *2 (-781)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) (-2629 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-762 *3)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) (-3882 (*1 *2 *3) (-12 (-5 *3 (-762 *4)) (-4 *4 (-781)) (-5 *2 (-599 (-630 *4))) (-5 *1 (-630 *4)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-762 *4)) (-4 *4 (-781)) (-5 *2 (-85)) (-5 *1 (-630 *4)))) (-2420 (*1 *1 *2) (-12 (-5 *2 (-762 *3)) (-4 *3 (-781)) (-5 *1 (-630 *3)))) (-2419 (*1 *1 *2) (|partial| -12 (-5 *2 (-762 *3)) (-4 *3 (-781)) (-5 *1 (-630 *3)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) (-2418 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *5)) (-5 *4 (-857)) (-4 *5 (-781)) (-5 *2 (-58 (-599 (-630 *5)))) (-5 *1 (-630 *5)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *5)) (-5 *4 (-857)) (-4 *5 (-781)) (-5 *2 (-599 (-630 *5))) (-5 *1 (-630 *5))))) +((-3542 ((|#2| $) 100 T ELT)) (-3947 (($ $) 121 T ELT)) (-3582 (((-85) $ (-714)) 35 T ELT)) (-3949 (($ $) 109 T ELT) (($ $ (-714)) 112 T ELT)) (-3583 (((-85) $) 122 T ELT)) (-3152 (((-599 $) $) 96 T ELT)) (-3148 (((-85) $ $) 92 T ELT)) (-3869 (((-85) $ (-714)) 33 T ELT)) (-2301 (((-499) $) 66 T ELT)) (-2302 (((-499) $) 65 T ELT)) (-3866 (((-85) $ (-714)) 31 T ELT)) (-3667 (((-85) $) 98 T ELT)) (-3948 ((|#2| $) 113 T ELT) (($ $ (-714)) 117 T ELT)) (-2404 (($ $ $ (-499)) 83 T ELT) (($ |#2| $ (-499)) 82 T ELT)) (-2304 (((-599 (-499)) $) 64 T ELT)) (-2305 (((-85) (-499) $) 59 T ELT)) (-3951 ((|#2| $) NIL T ELT) (($ $ (-714)) 108 T ELT)) (-3919 (($ $ (-499)) 125 T ELT)) (-3584 (((-85) $) 124 T ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) 42 T ELT)) (-2306 (((-599 |#2|) $) 46 T ELT)) (-3950 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1174 (-499))) 79 T ELT) ((|#2| $ (-499)) 57 T ELT) ((|#2| $ (-499) |#2|) 58 T ELT)) (-3150 (((-499) $ $) 91 T ELT)) (-2405 (($ $ (-1174 (-499))) 78 T ELT) (($ $ (-499)) 72 T ELT)) (-3783 (((-85) $) 87 T ELT)) (-3942 (($ $) 105 T ELT)) (-3943 (((-714) $) 104 T ELT)) (-3944 (($ $) 103 T ELT)) (-3670 (($ (-599 |#2|)) 53 T ELT)) (-3012 (($ $) 126 T ELT)) (-3662 (((-599 $) $) 90 T ELT)) (-3149 (((-85) $ $) 89 T ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) 41 T ELT)) (-3174 (((-85) $ $) 20 T ELT)) (-4107 (((-714) $) 39 T ELT))) +(((-631 |#1| |#2|) (-10 -7 (-15 -3174 ((-85) |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -3919 (|#1| |#1| (-499))) (-15 -3582 ((-85) |#1| (-714))) (-15 -3869 ((-85) |#1| (-714))) (-15 -3866 ((-85) |#1| (-714))) (-15 -3583 ((-85) |#1|)) (-15 -3584 ((-85) |#1|)) (-15 -3950 (|#2| |#1| (-499) |#2|)) (-15 -3950 (|#2| |#1| (-499))) (-15 -2306 ((-599 |#2|) |#1|)) (-15 -2305 ((-85) (-499) |#1|)) (-15 -2304 ((-599 (-499)) |#1|)) (-15 -2302 ((-499) |#1|)) (-15 -2301 ((-499) |#1|)) (-15 -3670 (|#1| (-599 |#2|))) (-15 -3950 (|#1| |#1| (-1174 (-499)))) (-15 -2405 (|#1| |#1| (-499))) (-15 -2405 (|#1| |#1| (-1174 (-499)))) (-15 -2404 (|#1| |#2| |#1| (-499))) (-15 -2404 (|#1| |#1| |#1| (-499))) (-15 -3942 (|#1| |#1|)) (-15 -3943 ((-714) |#1|)) (-15 -3944 (|#1| |#1|)) (-15 -3947 (|#1| |#1|)) (-15 -3948 (|#1| |#1| (-714))) (-15 -3950 (|#2| |#1| "last")) (-15 -3948 (|#2| |#1|)) (-15 -3949 (|#1| |#1| (-714))) (-15 -3950 (|#1| |#1| "rest")) (-15 -3949 (|#1| |#1|)) (-15 -3951 (|#1| |#1| (-714))) (-15 -3950 (|#2| |#1| "first")) (-15 -3951 (|#2| |#1|)) (-15 -3148 ((-85) |#1| |#1|)) (-15 -3149 ((-85) |#1| |#1|)) (-15 -3150 ((-499) |#1| |#1|)) (-15 -3783 ((-85) |#1|)) (-15 -3950 (|#2| |#1| "value")) (-15 -3542 (|#2| |#1|)) (-15 -3667 ((-85) |#1|)) (-15 -3152 ((-599 |#1|) |#1|)) (-15 -3662 ((-599 |#1|) |#1|)) (-15 -2049 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -2050 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -4107 ((-714) |#1|))) (-632 |#2|) (-1157)) (T -631)) +NIL +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 52 T ELT)) (-3945 ((|#1| $) 71 T ELT)) (-3947 (($ $) 73 T ELT)) (-2299 (((-1213) $ (-499) (-499)) 107 (|has| $ (-6 -4146)) ELT)) (-3935 (($ $ (-499)) 58 (|has| $ (-6 -4146)) ELT)) (-3582 (((-85) $ (-714)) 90 T ELT)) (-3146 ((|#1| $ |#1|) 43 (|has| $ (-6 -4146)) ELT)) (-3937 (($ $ $) 62 (|has| $ (-6 -4146)) ELT)) (-3936 ((|#1| $ |#1|) 60 (|has| $ (-6 -4146)) ELT)) (-3939 ((|#1| $ |#1|) 64 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4146)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -4146)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -4146)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) 127 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-499) |#1|) 96 (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 45 (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 112 T ELT)) (-3946 ((|#1| $) 72 T ELT)) (-3874 (($) 7 T CONST)) (-2423 (($ $) 135 T ELT)) (-3949 (($ $) 79 T ELT) (($ $ (-714)) 77 T ELT)) (-1386 (($ $) 109 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#1| $) 110 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 113 T ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-1609 ((|#1| $ (-499) |#1|) 95 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 97 T ELT)) (-3583 (((-85) $) 93 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2422 (((-714) $) 134 T ELT)) (-3152 (((-599 $) $) 54 T ELT)) (-3148 (((-85) $ $) 46 (|has| |#1| (-1041)) ELT)) (-3764 (($ (-714) |#1|) 119 T ELT)) (-3869 (((-85) $ (-714)) 91 T ELT)) (-2301 (((-499) $) 105 (|has| (-499) (-781)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 104 (|has| (-499) (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3866 (((-85) $ (-714)) 92 T ELT)) (-3151 (((-599 |#1|) $) 49 T ELT)) (-3667 (((-85) $) 53 T ELT)) (-2425 (($ $) 137 T ELT)) (-2426 (((-85) $) 138 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3948 ((|#1| $) 76 T ELT) (($ $ (-714)) 74 T ELT)) (-2404 (($ $ $ (-499)) 126 T ELT) (($ |#1| $ (-499)) 125 T ELT)) (-2304 (((-599 (-499)) $) 102 T ELT)) (-2305 (((-85) (-499) $) 101 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-2424 ((|#1| $) 136 T ELT)) (-3951 ((|#1| $) 82 T ELT) (($ $ (-714)) 80 T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2300 (($ $ |#1|) 106 (|has| $ (-6 -4146)) ELT)) (-3919 (($ $ (-499)) 133 T ELT)) (-3584 (((-85) $) 94 T ELT)) (-2427 (((-85) $) 139 T ELT)) (-2428 (((-85) $) 140 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) 100 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1174 (-499))) 118 T ELT) ((|#1| $ (-499)) 99 T ELT) ((|#1| $ (-499) |#1|) 98 T ELT)) (-3150 (((-499) $ $) 48 T ELT)) (-2405 (($ $ (-1174 (-499))) 124 T ELT) (($ $ (-499)) 123 T ELT)) (-3783 (((-85) $) 50 T ELT)) (-3942 (($ $) 68 T ELT)) (-3940 (($ $) 65 (|has| $ (-6 -4146)) ELT)) (-3943 (((-714) $) 69 T ELT)) (-3944 (($ $) 70 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 108 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 117 T ELT)) (-3941 (($ $ $) 67 (|has| $ (-6 -4146)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -4146)) ELT)) (-3952 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-599 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3012 (($ $) 132 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) 55 T ELT)) (-3149 (((-85) $ $) 47 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-632 |#1|) (-113) (-1157)) (T -632)) +((-3546 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-632 *3)) (-4 *3 (-1157)))) (-3860 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-632 *3)) (-4 *3 (-1157)))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-632 *3)) (-4 *3 (-1157)) (-5 *2 (-85)))) (-2427 (*1 *2 *1) (-12 (-4 *1 (-632 *3)) (-4 *3 (-1157)) (-5 *2 (-85)))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-632 *3)) (-4 *3 (-1157)) (-5 *2 (-85)))) (-2425 (*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1157)))) (-2424 (*1 *2 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1157)))) (-2423 (*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1157)))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-632 *3)) (-4 *3 (-1157)) (-5 *2 (-714)))) (-3919 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-632 *3)) (-4 *3 (-1157)))) (-3012 (*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1157))))) +(-13 (-1090 |t#1|) (-10 -8 (-15 -3546 ($ (-1 (-85) |t#1|) $)) (-15 -3860 ($ (-1 (-85) |t#1|) $)) (-15 -2428 ((-85) $)) (-15 -2427 ((-85) $)) (-15 -2426 ((-85) $)) (-15 -2425 ($ $)) (-15 -2424 (|t#1| $)) (-15 -2423 ($ $)) (-15 -2422 ((-714) $)) (-15 -3919 ($ $ (-499))) (-15 -3012 ($ $)))) +(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-240 (-499) |#1|) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-554 (-499) |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-609 |#1|) . T) ((-950 |#1|) . T) ((-1041) |has| |#1| (-1041)) ((-1090 |#1|) . T) ((-1157) . T) ((-1196 |#1|) . T)) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2434 (($ (-714) (-714) (-714)) 53 (|has| |#1| (-989)) ELT)) (-2431 ((|#1| $ (-714) (-714) (-714) |#1|) 47 T ELT)) (-3874 (($) NIL T CONST)) (-2432 (($ $ $) 57 (|has| |#1| (-989)) ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2429 (((-1207 (-714)) $) 12 T ELT)) (-2430 (($ (-1117) $ $) 34 T ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-2433 (($ (-714)) 55 (|has| |#1| (-989)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-714) (-714) (-714)) 44 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-3670 (($ (-599 (-599 (-599 |#1|)))) 67 T ELT)) (-4096 (($ (-896 (-896 (-896 |#1|)))) 23 T ELT) (((-896 (-896 (-896 |#1|))) $) 19 T ELT) (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-633 |#1|) (-13 (-443 |#1|) (-10 -8 (IF (|has| |#1| (-989)) (PROGN (-15 -2434 ($ (-714) (-714) (-714))) (-15 -2433 ($ (-714))) (-15 -2432 ($ $ $))) |%noBranch|) (-15 -3670 ($ (-599 (-599 (-599 |#1|))))) (-15 -3950 (|#1| $ (-714) (-714) (-714))) (-15 -2431 (|#1| $ (-714) (-714) (-714) |#1|)) (-15 -4096 ($ (-896 (-896 (-896 |#1|))))) (-15 -4096 ((-896 (-896 (-896 |#1|))) $)) (-15 -2430 ($ (-1117) $ $)) (-15 -2429 ((-1207 (-714)) $)))) (-1041)) (T -633)) +((-2434 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-714)) (-5 *1 (-633 *3)) (-4 *3 (-989)) (-4 *3 (-1041)))) (-2433 (*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-633 *3)) (-4 *3 (-989)) (-4 *3 (-1041)))) (-2432 (*1 *1 *1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-989)) (-4 *2 (-1041)))) (-3670 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 (-599 *3)))) (-4 *3 (-1041)) (-5 *1 (-633 *3)))) (-3950 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-714)) (-5 *1 (-633 *2)) (-4 *2 (-1041)))) (-2431 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-633 *2)) (-4 *2 (-1041)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-896 (-896 (-896 *3)))) (-4 *3 (-1041)) (-5 *1 (-633 *3)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-896 (-896 (-896 *3)))) (-5 *1 (-633 *3)) (-4 *3 (-1041)))) (-2430 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-633 *3)) (-4 *3 (-1041)))) (-2429 (*1 *2 *1) (-12 (-5 *2 (-1207 (-714))) (-5 *1 (-633 *3)) (-4 *3 (-1041))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3316 (((-437) $) 10 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 19 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3371 (((-1075) $) 12 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-634) (-13 (-1023) (-10 -8 (-15 -3316 ((-437) $)) (-15 -3371 ((-1075) $))))) (T -634)) +((-3316 (*1 *2 *1) (-12 (-5 *2 (-437)) (-5 *1 (-634)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-634))))) +((-2687 (((-85) $ $) NIL T ELT)) (-4084 (((-599 |#1|) $) 15 T ELT)) (-3259 (($ $) 19 T ELT)) (-2783 (((-85) $) 20 T ELT)) (-3295 (((-3 |#1| "failed") $) 23 T ELT)) (-3294 ((|#1| $) 21 T ELT)) (-3949 (($ $) 37 T ELT)) (-4086 (($ $) 25 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-2629 (((-85) $ $) 46 T ELT)) (-3983 (((-857) $) 40 T ELT)) (-3260 (($ $) 18 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 ((|#1| $) 36 T ELT)) (-4096 (((-797) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-762 |#1|) $) 28 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 13 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) +(((-635 |#1|) (-13 (-781) (-978 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4096 ((-762 |#1|) $)) (-15 -3951 (|#1| $)) (-15 -3260 ($ $)) (-15 -3983 ((-857) $)) (-15 -2629 ((-85) $ $)) (-15 -4086 ($ $)) (-15 -3949 ($ $)) (-15 -2783 ((-85) $)) (-15 -3259 ($ $)) (-15 -4084 ((-599 |#1|) $)))) (-781)) (T -635)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-762 *3)) (-5 *1 (-635 *3)) (-4 *3 (-781)))) (-3951 (*1 *2 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) (-3260 (*1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-635 *3)) (-4 *3 (-781)))) (-2629 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-635 *3)) (-4 *3 (-781)))) (-4086 (*1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) (-3949 (*1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-635 *3)) (-4 *3 (-781)))) (-3259 (*1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-635 *3)) (-4 *3 (-781))))) +((-2443 ((|#1| (-1 |#1| (-714) |#1|) (-714) |#1|) 11 T ELT)) (-2435 ((|#1| (-1 |#1| |#1|) (-714) |#1|) 9 T ELT))) +(((-636 |#1|) (-10 -7 (-15 -2435 (|#1| (-1 |#1| |#1|) (-714) |#1|)) (-15 -2443 (|#1| (-1 |#1| (-714) |#1|) (-714) |#1|))) (-1041)) (T -636)) +((-2443 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-714) *2)) (-5 *4 (-714)) (-4 *2 (-1041)) (-5 *1 (-636 *2)))) (-2435 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-714)) (-4 *2 (-1041)) (-5 *1 (-636 *2))))) +((-2437 ((|#2| |#1| |#2|) 9 T ELT)) (-2436 ((|#1| |#1| |#2|) 8 T ELT))) +(((-637 |#1| |#2|) (-10 -7 (-15 -2436 (|#1| |#1| |#2|)) (-15 -2437 (|#2| |#1| |#2|))) (-1041) (-1041)) (T -637)) +((-2437 (*1 *2 *3 *2) (-12 (-5 *1 (-637 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041)))) (-2436 (*1 *2 *2 *3) (-12 (-5 *1 (-637 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041))))) +((-2438 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) +(((-638 |#1| |#2| |#3|) (-10 -7 (-15 -2438 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1041) (-1041) (-1041)) (T -638)) +((-2438 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041)) (-5 *1 (-638 *5 *6 *2))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3456 (((-1158) $) 21 T ELT)) (-3455 (((-599 (-1158)) $) 19 T ELT)) (-2439 (($ (-599 (-1158)) (-1158)) 14 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 29 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT) (((-1158) $) 22 T ELT) (($ (-1055)) 10 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-639) (-13 (-1023) (-568 (-1158)) (-10 -8 (-15 -4096 ($ (-1055))) (-15 -2439 ($ (-599 (-1158)) (-1158))) (-15 -3455 ((-599 (-1158)) $)) (-15 -3456 ((-1158) $))))) (T -639)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-1055)) (-5 *1 (-639)))) (-2439 (*1 *1 *2 *3) (-12 (-5 *2 (-599 (-1158))) (-5 *3 (-1158)) (-5 *1 (-639)))) (-3455 (*1 *2 *1) (-12 (-5 *2 (-599 (-1158))) (-5 *1 (-639)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-639))))) +((-2443 (((-1 |#1| (-714) |#1|) (-1 |#1| (-714) |#1|)) 26 T ELT)) (-2440 (((-1 |#1|) |#1|) 8 T ELT)) (-2442 ((|#1| |#1|) 19 T ELT)) (-2441 (((-599 |#1|) (-1 (-599 |#1|) (-599 |#1|)) (-499)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-4096 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-714)) 23 T ELT))) +(((-640 |#1|) (-10 -7 (-15 -2440 ((-1 |#1|) |#1|)) (-15 -4096 ((-1 |#1|) |#1|)) (-15 -2441 (|#1| (-1 |#1| |#1|))) (-15 -2441 ((-599 |#1|) (-1 (-599 |#1|) (-599 |#1|)) (-499))) (-15 -2442 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-714))) (-15 -2443 ((-1 |#1| (-714) |#1|) (-1 |#1| (-714) |#1|)))) (-1041)) (T -640)) +((-2443 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-714) *3)) (-4 *3 (-1041)) (-5 *1 (-640 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-714)) (-4 *4 (-1041)) (-5 *1 (-640 *4)))) (-2442 (*1 *2 *2) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1041)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-599 *5) (-599 *5))) (-5 *4 (-499)) (-5 *2 (-599 *5)) (-5 *1 (-640 *5)) (-4 *5 (-1041)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-640 *2)) (-4 *2 (-1041)))) (-4096 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-640 *3)) (-4 *3 (-1041)))) (-2440 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-640 *3)) (-4 *3 (-1041))))) +((-2446 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2445 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-4102 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2444 (((-1 |#2| |#1|) |#2|) 11 T ELT))) +(((-641 |#1| |#2|) (-10 -7 (-15 -2444 ((-1 |#2| |#1|) |#2|)) (-15 -2445 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4102 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2446 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1041) (-1041)) (T -641)) +((-2446 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-5 *2 (-1 *5 *4)) (-5 *1 (-641 *4 *5)))) (-4102 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1041)) (-5 *2 (-1 *5 *4)) (-5 *1 (-641 *4 *5)) (-4 *4 (-1041)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-5 *2 (-1 *5)) (-5 *1 (-641 *4 *5)))) (-2444 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-641 *4 *3)) (-4 *4 (-1041)) (-4 *3 (-1041))))) +((-2451 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2447 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2448 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2449 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2450 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) +(((-642 |#1| |#2| |#3|) (-10 -7 (-15 -2447 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2448 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2449 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2450 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2451 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1041) (-1041) (-1041)) (T -642)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-1 *7 *5)) (-5 *1 (-642 *5 *6 *7)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-642 *4 *5 *6)))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-642 *4 *5 *6)) (-4 *4 (-1041)))) (-2449 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1041)) (-4 *6 (-1041)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-642 *4 *5 *6)) (-4 *5 (-1041)))) (-2448 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *4 *5 *6)))) (-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1041)) (-4 *4 (-1041)) (-4 *6 (-1041)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *5 *4 *6))))) +((-3988 (($ (-714) (-714)) 42 T ELT)) (-2456 (($ $ $) 73 T ELT)) (-3554 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3243 (((-85) $) 36 T ELT)) (-2455 (($ $ (-499) (-499)) 84 T ELT)) (-2454 (($ $ (-499) (-499)) 85 T ELT)) (-2453 (($ $ (-499) (-499) (-499) (-499)) 90 T ELT)) (-2458 (($ $) 71 T ELT)) (-3245 (((-85) $) 15 T ELT)) (-2452 (($ $ (-499) (-499) $) 91 T ELT)) (-3938 ((|#2| $ (-499) (-499) |#2|) NIL T ELT) (($ $ (-599 (-499)) (-599 (-499)) $) 89 T ELT)) (-3473 (($ (-714) |#2|) 55 T ELT)) (-3246 (($ (-599 (-599 |#2|))) 51 T ELT) (($ (-714) (-714) (-1 |#2| (-499) (-499))) 53 T ELT)) (-3742 (((-599 (-599 |#2|)) $) 80 T ELT)) (-2457 (($ $ $) 72 T ELT)) (-3606 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3950 ((|#2| $ (-499) (-499)) NIL T ELT) ((|#2| $ (-499) (-499) |#2|) NIL T ELT) (($ $ (-599 (-499)) (-599 (-499))) 88 T ELT)) (-3472 (($ (-599 |#2|)) 56 T ELT) (($ (-599 $)) 58 T ELT)) (-3244 (((-85) $) 28 T ELT)) (-4096 (($ |#4|) 63 T ELT) (((-797) $) NIL T ELT)) (-3242 (((-85) $) 38 T ELT)) (-4099 (($ $ |#2|) 124 T ELT)) (-3987 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3989 (($ $ $) 93 T ELT)) (** (($ $ (-714)) 111 T ELT) (($ $ (-499)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-499) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) +(((-643 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4096 ((-797) |#1|)) (-15 ** (|#1| |#1| (-499))) (-15 -4099 (|#1| |#1| |#2|)) (-15 -3606 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-714))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-499) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -3989 (|#1| |#1| |#1|)) (-15 -2452 (|#1| |#1| (-499) (-499) |#1|)) (-15 -2453 (|#1| |#1| (-499) (-499) (-499) (-499))) (-15 -2454 (|#1| |#1| (-499) (-499))) (-15 -2455 (|#1| |#1| (-499) (-499))) (-15 -3938 (|#1| |#1| (-599 (-499)) (-599 (-499)) |#1|)) (-15 -3950 (|#1| |#1| (-599 (-499)) (-599 (-499)))) (-15 -3742 ((-599 (-599 |#2|)) |#1|)) (-15 -2456 (|#1| |#1| |#1|)) (-15 -2457 (|#1| |#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 -3554 (|#1| |#1|)) (-15 -3554 (|#1| |#3|)) (-15 -4096 (|#1| |#4|)) (-15 -3472 (|#1| (-599 |#1|))) (-15 -3472 (|#1| (-599 |#2|))) (-15 -3473 (|#1| (-714) |#2|)) (-15 -3246 (|#1| (-714) (-714) (-1 |#2| (-499) (-499)))) (-15 -3246 (|#1| (-599 (-599 |#2|)))) (-15 -3988 (|#1| (-714) (-714))) (-15 -3242 ((-85) |#1|)) (-15 -3243 ((-85) |#1|)) (-15 -3244 ((-85) |#1|)) (-15 -3245 ((-85) |#1|)) (-15 -3938 (|#2| |#1| (-499) (-499) |#2|)) (-15 -3950 (|#2| |#1| (-499) (-499) |#2|)) (-15 -3950 (|#2| |#1| (-499) (-499)))) (-644 |#2| |#3| |#4|) (-989) (-327 |#2|) (-327 |#2|)) (T -643)) +NIL +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3988 (($ (-714) (-714)) 103 T ELT)) (-2456 (($ $ $) 92 T ELT)) (-3554 (($ |#2|) 96 T ELT) (($ $) 95 T ELT)) (-3243 (((-85) $) 105 T ELT)) (-2455 (($ $ (-499) (-499)) 88 T ELT)) (-2454 (($ $ (-499) (-499)) 87 T ELT)) (-2453 (($ $ (-499) (-499) (-499) (-499)) 86 T ELT)) (-2458 (($ $) 94 T ELT)) (-3245 (((-85) $) 107 T ELT)) (-2452 (($ $ (-499) (-499) $) 85 T ELT)) (-3938 ((|#1| $ (-499) (-499) |#1|) 48 T ELT) (($ $ (-599 (-499)) (-599 (-499)) $) 89 T ELT)) (-1283 (($ $ (-499) |#2|) 46 T ELT)) (-1282 (($ $ (-499) |#3|) 45 T ELT)) (-3473 (($ (-714) |#1|) 100 T ELT)) (-3874 (($) 7 T CONST)) (-3232 (($ $) 72 (|has| |#1| (-261)) ELT)) (-3234 ((|#2| $ (-499)) 50 T ELT)) (-3231 (((-714) $) 71 (|has| |#1| (-510)) ELT)) (-1609 ((|#1| $ (-499) (-499) |#1|) 47 T ELT)) (-3235 ((|#1| $ (-499) (-499)) 52 T ELT)) (-3010 (((-599 |#1|) $) 30 T ELT)) (-3230 (((-714) $) 70 (|has| |#1| (-510)) ELT)) (-3229 (((-599 |#3|) $) 69 (|has| |#1| (-510)) ELT)) (-3237 (((-714) $) 55 T ELT)) (-3764 (($ (-714) (-714) |#1|) 61 T ELT)) (-3236 (((-714) $) 54 T ELT)) (-3467 ((|#1| $) 67 (|has| |#1| (-6 (-4147 #1="*"))) ELT)) (-3241 (((-499) $) 59 T ELT)) (-3239 (((-499) $) 57 T ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3240 (((-499) $) 58 T ELT)) (-3238 (((-499) $) 56 T ELT)) (-3246 (($ (-599 (-599 |#1|))) 102 T ELT) (($ (-714) (-714) (-1 |#1| (-499) (-499))) 101 T ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3742 (((-599 (-599 |#1|)) $) 91 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3738 (((-3 $ "failed") $) 66 (|has| |#1| (-318)) ELT)) (-2457 (($ $ $) 93 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-2300 (($ $ |#1|) 60 T ELT)) (-3606 (((-3 $ "failed") $ |#1|) 74 (|has| |#1| (-510)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ (-499) (-499)) 53 T ELT) ((|#1| $ (-499) (-499) |#1|) 51 T ELT) (($ $ (-599 (-499)) (-599 (-499))) 90 T ELT)) (-3472 (($ (-599 |#1|)) 99 T ELT) (($ (-599 $)) 98 T ELT)) (-3244 (((-85) $) 106 T ELT)) (-3468 ((|#1| $) 68 (|has| |#1| (-6 (-4147 #1#))) ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-3233 ((|#3| $ (-499)) 49 T ELT)) (-4096 (($ |#3|) 97 T ELT) (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3242 (((-85) $) 104 T ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4099 (($ $ |#1|) 73 (|has| |#1| (-318)) ELT)) (-3987 (($ $ $) 83 T ELT) (($ $) 82 T ELT)) (-3989 (($ $ $) 84 T ELT)) (** (($ $ (-714)) 75 T ELT) (($ $ (-499)) 65 (|has| |#1| (-318)) ELT)) (* (($ $ $) 81 T ELT) (($ |#1| $) 80 T ELT) (($ $ |#1|) 79 T ELT) (($ (-499) $) 78 T ELT) ((|#3| $ |#3|) 77 T ELT) ((|#2| |#2| $) 76 T ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-644 |#1| |#2| |#3|) (-113) (-989) (-327 |t#1|) (-327 |t#1|)) (T -644)) +((-3245 (*1 *2 *1) (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-85)))) (-3244 (*1 *2 *1) (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-85)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-85)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-85)))) (-3988 (*1 *1 *2 *2) (-12 (-5 *2 (-714)) (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *5)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-3246 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *5)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-3246 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-714)) (-5 *3 (-1 *4 (-499) (-499))) (-4 *4 (-989)) (-4 *1 (-644 *4 *5 *6)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)))) (-3473 (*1 *1 *2 *3) (-12 (-5 *2 (-714)) (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *5)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-3472 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *5)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-3472 (*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *5)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-4096 (*1 *1 *2) (-12 (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *2)) (-4 *4 (-327 *3)) (-4 *2 (-327 *3)))) (-3554 (*1 *1 *2) (-12 (-4 *3 (-989)) (-4 *1 (-644 *3 *2 *4)) (-4 *2 (-327 *3)) (-4 *4 (-327 *3)))) (-3554 (*1 *1 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (-2458 (*1 *1 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (-2457 (*1 *1 *1 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (-2456 (*1 *1 *1 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-599 (-599 *3))))) (-3950 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-599 (-499))) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-3938 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-599 (-499))) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-2455 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-2454 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-2453 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-2452 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-3989 (*1 *1 *1 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (-3987 (*1 *1 *1 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (-3987 (*1 *1 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-644 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *2 (-327 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-644 *3 *2 *4)) (-4 *3 (-989)) (-4 *2 (-327 *3)) (-4 *4 (-327 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) (-3606 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)) (-4 *2 (-510)))) (-4099 (*1 *1 *1 *2) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)) (-4 *2 (-318)))) (-3232 (*1 *1 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)) (-4 *2 (-261)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-4 *3 (-510)) (-5 *2 (-714)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-4 *3 (-510)) (-5 *2 (-714)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-4 *3 (-510)) (-5 *2 (-599 *5)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)) (|has| *2 (-6 (-4147 #1="*"))) (-4 *2 (-989)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)) (|has| *2 (-6 (-4147 #1#))) (-4 *2 (-989)))) (-3738 (*1 *1 *1) (|partial| -12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)) (-4 *2 (-318)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-4 *3 (-318))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4146) (-6 -4145) (-15 -3245 ((-85) $)) (-15 -3244 ((-85) $)) (-15 -3243 ((-85) $)) (-15 -3242 ((-85) $)) (-15 -3988 ($ (-714) (-714))) (-15 -3246 ($ (-599 (-599 |t#1|)))) (-15 -3246 ($ (-714) (-714) (-1 |t#1| (-499) (-499)))) (-15 -3473 ($ (-714) |t#1|)) (-15 -3472 ($ (-599 |t#1|))) (-15 -3472 ($ (-599 $))) (-15 -4096 ($ |t#3|)) (-15 -3554 ($ |t#2|)) (-15 -3554 ($ $)) (-15 -2458 ($ $)) (-15 -2457 ($ $ $)) (-15 -2456 ($ $ $)) (-15 -3742 ((-599 (-599 |t#1|)) $)) (-15 -3950 ($ $ (-599 (-499)) (-599 (-499)))) (-15 -3938 ($ $ (-599 (-499)) (-599 (-499)) $)) (-15 -2455 ($ $ (-499) (-499))) (-15 -2454 ($ $ (-499) (-499))) (-15 -2453 ($ $ (-499) (-499) (-499) (-499))) (-15 -2452 ($ $ (-499) (-499) $)) (-15 -3989 ($ $ $)) (-15 -3987 ($ $ $)) (-15 -3987 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-499) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-714))) (IF (|has| |t#1| (-510)) (-15 -3606 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-318)) (-15 -4099 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-261)) (-15 -3232 ($ $)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -3231 ((-714) $)) (-15 -3230 ((-714) $)) (-15 -3229 ((-599 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4147 "*"))) (PROGN (-15 -3468 (|t#1| $)) (-15 -3467 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-318)) (PROGN (-15 -3738 ((-3 $ "failed") $)) (-15 ** ($ $ (-499)))) |%noBranch|))) +(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-57 |#1| |#2| |#3|) . T) ((-1157) . T)) +((-3992 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-4108 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) +(((-645 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4108 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4108 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3992 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-989) (-327 |#1|) (-327 |#1|) (-644 |#1| |#2| |#3|) (-989) (-327 |#5|) (-327 |#5|) (-644 |#5| |#6| |#7|)) (T -645)) +((-3992 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-989)) (-4 *2 (-989)) (-4 *6 (-327 *5)) (-4 *7 (-327 *5)) (-4 *8 (-327 *2)) (-4 *9 (-327 *2)) (-5 *1 (-645 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-644 *5 *6 *7)) (-4 *10 (-644 *2 *8 *9)))) (-4108 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-989)) (-4 *8 (-989)) (-4 *6 (-327 *5)) (-4 *7 (-327 *5)) (-4 *2 (-644 *8 *9 *10)) (-5 *1 (-645 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-644 *5 *6 *7)) (-4 *9 (-327 *8)) (-4 *10 (-327 *8)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-989)) (-4 *8 (-989)) (-4 *6 (-327 *5)) (-4 *7 (-327 *5)) (-4 *2 (-644 *8 *9 *10)) (-5 *1 (-645 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-644 *5 *6 *7)) (-4 *9 (-327 *8)) (-4 *10 (-327 *8))))) +((-3232 ((|#4| |#4|) 92 (|has| |#1| (-261)) ELT)) (-3231 (((-714) |#4|) 121 (|has| |#1| (-510)) ELT)) (-3230 (((-714) |#4|) 96 (|has| |#1| (-510)) ELT)) (-3229 (((-599 |#3|) |#4|) 103 (|has| |#1| (-510)) ELT)) (-2497 (((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|) 137 (|has| |#1| (-261)) ELT)) (-3467 ((|#1| |#4|) 52 T ELT)) (-2463 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-510)) ELT)) (-3738 (((-3 |#4| #1#) |#4|) 100 (|has| |#1| (-318)) ELT)) (-2462 ((|#4| |#4|) 88 (|has| |#1| (-510)) ELT)) (-2460 ((|#4| |#4| |#1| (-499) (-499)) 60 T ELT)) (-2459 ((|#4| |#4| (-499) (-499)) 55 T ELT)) (-2461 ((|#4| |#4| |#1| (-499) (-499)) 65 T ELT)) (-3468 ((|#1| |#4|) 98 T ELT)) (-2638 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-510)) ELT))) +(((-646 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3468 (|#1| |#4|)) (-15 -3467 (|#1| |#4|)) (-15 -2459 (|#4| |#4| (-499) (-499))) (-15 -2460 (|#4| |#4| |#1| (-499) (-499))) (-15 -2461 (|#4| |#4| |#1| (-499) (-499))) (IF (|has| |#1| (-510)) (PROGN (-15 -3231 ((-714) |#4|)) (-15 -3230 ((-714) |#4|)) (-15 -3229 ((-599 |#3|) |#4|)) (-15 -2462 (|#4| |#4|)) (-15 -2463 ((-3 |#4| #1="failed") |#4|)) (-15 -2638 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-261)) (PROGN (-15 -3232 (|#4| |#4|)) (-15 -2497 ((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-318)) (-15 -3738 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-146) (-327 |#1|) (-327 |#1|) (-644 |#1| |#2| |#3|)) (T -646)) +((-3738 (*1 *2 *2) (|partial| -12 (-4 *3 (-318)) (-4 *3 (-146)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-646 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) (-2497 (*1 *2 *3 *3) (-12 (-4 *3 (-261)) (-4 *3 (-146)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-646 *3 *4 *5 *6)) (-4 *6 (-644 *3 *4 *5)))) (-3232 (*1 *2 *2) (-12 (-4 *3 (-261)) (-4 *3 (-146)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-646 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) (-2638 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *4 (-146)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-646 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) (-2463 (*1 *2 *2) (|partial| -12 (-4 *3 (-510)) (-4 *3 (-146)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-646 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) (-2462 (*1 *2 *2) (-12 (-4 *3 (-510)) (-4 *3 (-146)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-646 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) (-3229 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *4 (-146)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-599 *6)) (-5 *1 (-646 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) (-3230 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *4 (-146)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-714)) (-5 *1 (-646 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) (-3231 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *4 (-146)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-714)) (-5 *1 (-646 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) (-2461 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-499)) (-4 *3 (-146)) (-4 *5 (-327 *3)) (-4 *6 (-327 *3)) (-5 *1 (-646 *3 *5 *6 *2)) (-4 *2 (-644 *3 *5 *6)))) (-2460 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-499)) (-4 *3 (-146)) (-4 *5 (-327 *3)) (-4 *6 (-327 *3)) (-5 *1 (-646 *3 *5 *6 *2)) (-4 *2 (-644 *3 *5 *6)))) (-2459 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-499)) (-4 *4 (-146)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *1 (-646 *4 *5 *6 *2)) (-4 *2 (-644 *4 *5 *6)))) (-3467 (*1 *2 *3) (-12 (-4 *4 (-327 *2)) (-4 *5 (-327 *2)) (-4 *2 (-146)) (-5 *1 (-646 *2 *4 *5 *3)) (-4 *3 (-644 *2 *4 *5)))) (-3468 (*1 *2 *3) (-12 (-4 *4 (-327 *2)) (-4 *5 (-327 *2)) (-4 *2 (-146)) (-5 *1 (-646 *2 *4 *5 *3)) (-4 *3 (-644 *2 *4 *5))))) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3988 (($ (-714) (-714)) 64 T ELT)) (-2456 (($ $ $) NIL T ELT)) (-3554 (($ (-1207 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3243 (((-85) $) NIL T ELT)) (-2455 (($ $ (-499) (-499)) 22 T ELT)) (-2454 (($ $ (-499) (-499)) NIL T ELT)) (-2453 (($ $ (-499) (-499) (-499) (-499)) NIL T ELT)) (-2458 (($ $) NIL T ELT)) (-3245 (((-85) $) NIL T ELT)) (-2452 (($ $ (-499) (-499) $) NIL T ELT)) (-3938 ((|#1| $ (-499) (-499) |#1|) NIL T ELT) (($ $ (-599 (-499)) (-599 (-499)) $) NIL T ELT)) (-1283 (($ $ (-499) (-1207 |#1|)) NIL T ELT)) (-1282 (($ $ (-499) (-1207 |#1|)) NIL T ELT)) (-3473 (($ (-714) |#1|) 37 T ELT)) (-3874 (($) NIL T CONST)) (-3232 (($ $) 46 (|has| |#1| (-261)) ELT)) (-3234 (((-1207 |#1|) $ (-499)) NIL T ELT)) (-3231 (((-714) $) 48 (|has| |#1| (-510)) ELT)) (-1609 ((|#1| $ (-499) (-499) |#1|) 69 T ELT)) (-3235 ((|#1| $ (-499) (-499)) NIL T ELT)) (-3010 (((-599 |#1|) $) NIL T ELT)) (-3230 (((-714) $) 50 (|has| |#1| (-510)) ELT)) (-3229 (((-599 (-1207 |#1|)) $) 53 (|has| |#1| (-510)) ELT)) (-3237 (((-714) $) 32 T ELT)) (-3764 (($ (-714) (-714) |#1|) NIL T ELT)) (-3236 (((-714) $) 33 T ELT)) (-3467 ((|#1| $) 44 (|has| |#1| (-6 (-4147 #1="*"))) ELT)) (-3241 (((-499) $) 10 T ELT)) (-3239 (((-499) $) 11 T ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3240 (((-499) $) 14 T ELT)) (-3238 (((-499) $) 65 T ELT)) (-3246 (($ (-599 (-599 |#1|))) NIL T ELT) (($ (-714) (-714) (-1 |#1| (-499) (-499))) NIL T ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3742 (((-599 (-599 |#1|)) $) 76 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3738 (((-3 $ #2="failed") $) 60 (|has| |#1| (-318)) ELT)) (-2457 (($ $ $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2300 (($ $ |#1|) NIL T ELT)) (-3606 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-510)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-499) (-499)) NIL T ELT) ((|#1| $ (-499) (-499) |#1|) NIL T ELT) (($ $ (-599 (-499)) (-599 (-499))) NIL T ELT)) (-3472 (($ (-599 |#1|)) NIL T ELT) (($ (-599 $)) NIL T ELT) (($ (-1207 |#1|)) 70 T ELT)) (-3244 (((-85) $) NIL T ELT)) (-3468 ((|#1| $) 42 (|has| |#1| (-6 (-4147 #1#))) ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) 80 (|has| |#1| (-569 (-488))) ELT)) (-3233 (((-1207 |#1|) $ (-499)) NIL T ELT)) (-4096 (($ (-1207 |#1|)) NIL T ELT) (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3242 (((-85) $) NIL T ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-714)) 38 T ELT) (($ $ (-499)) 62 (|has| |#1| (-318)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-499) $) NIL T ELT) (((-1207 |#1|) $ (-1207 |#1|)) NIL T ELT) (((-1207 |#1|) (-1207 |#1|) $) NIL T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-647 |#1|) (-13 (-644 |#1| (-1207 |#1|) (-1207 |#1|)) (-10 -8 (-15 -3472 ($ (-1207 |#1|))) (IF (|has| |#1| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|) (IF (|has| |#1| (-318)) (-15 -3738 ((-3 $ "failed") $)) |%noBranch|))) (-989)) (T -647)) +((-3738 (*1 *1 *1) (|partial| -12 (-5 *1 (-647 *2)) (-4 *2 (-318)) (-4 *2 (-989)))) (-3472 (*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-989)) (-5 *1 (-647 *3))))) +((-2469 (((-647 |#1|) (-647 |#1|) (-647 |#1|) (-647 |#1|)) 37 T ELT)) (-2468 (((-647 |#1|) (-647 |#1|) (-647 |#1|) |#1|) 32 T ELT)) (-2470 (((-647 |#1|) (-647 |#1|) (-647 |#1|) (-647 |#1|) (-647 |#1|) (-714)) 43 T ELT)) (-2465 (((-647 |#1|) (-647 |#1|) (-647 |#1|) (-647 |#1|)) 25 T ELT)) (-2466 (((-647 |#1|) (-647 |#1|) (-647 |#1|) (-647 |#1|)) 29 T ELT) (((-647 |#1|) (-647 |#1|) (-647 |#1|)) 27 T ELT)) (-2467 (((-647 |#1|) (-647 |#1|) |#1| (-647 |#1|)) 31 T ELT)) (-2464 (((-647 |#1|) (-647 |#1|) (-647 |#1|)) 23 T ELT)) (** (((-647 |#1|) (-647 |#1|) (-714)) 46 T ELT))) +(((-648 |#1|) (-10 -7 (-15 -2464 ((-647 |#1|) (-647 |#1|) (-647 |#1|))) (-15 -2465 ((-647 |#1|) (-647 |#1|) (-647 |#1|) (-647 |#1|))) (-15 -2466 ((-647 |#1|) (-647 |#1|) (-647 |#1|))) (-15 -2466 ((-647 |#1|) (-647 |#1|) (-647 |#1|) (-647 |#1|))) (-15 -2467 ((-647 |#1|) (-647 |#1|) |#1| (-647 |#1|))) (-15 -2468 ((-647 |#1|) (-647 |#1|) (-647 |#1|) |#1|)) (-15 -2469 ((-647 |#1|) (-647 |#1|) (-647 |#1|) (-647 |#1|))) (-15 -2470 ((-647 |#1|) (-647 |#1|) (-647 |#1|) (-647 |#1|) (-647 |#1|) (-714))) (-15 ** ((-647 |#1|) (-647 |#1|) (-714)))) (-989)) (T -648)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-647 *4)) (-5 *3 (-714)) (-4 *4 (-989)) (-5 *1 (-648 *4)))) (-2470 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-647 *4)) (-5 *3 (-714)) (-4 *4 (-989)) (-5 *1 (-648 *4)))) (-2469 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3)))) (-2468 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3)))) (-2467 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3)))) (-2466 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3)))) (-2466 (*1 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3)))) (-2465 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3)))) (-2464 (*1 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3))))) +((-3295 (((-3 |#1| "failed") $) 18 T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-2471 (($) 7 T CONST)) (-2472 (($ |#1|) 8 T ELT)) (-4096 (($ |#1|) 16 T ELT) (((-797) $) 23 T ELT)) (-3714 (((-85) $ (|[\|\|]| |#1|)) 14 T ELT) (((-85) $ (|[\|\|]| -2471)) 11 T ELT)) (-3720 ((|#1| $) 15 T ELT))) +(((-649 |#1|) (-13 (-1203) (-978 |#1|) (-568 (-797)) (-10 -8 (-15 -2472 ($ |#1|)) (-15 -3714 ((-85) $ (|[\|\|]| |#1|))) (-15 -3714 ((-85) $ (|[\|\|]| -2471))) (-15 -3720 (|#1| $)) (-15 -2471 ($) -4102))) (-568 (-797))) (T -649)) +((-2472 (*1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-568 (-797))))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-568 (-797))) (-5 *2 (-85)) (-5 *1 (-649 *4)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2471)) (-5 *2 (-85)) (-5 *1 (-649 *4)) (-4 *4 (-568 (-797))))) (-3720 (*1 *2 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-568 (-797))))) (-2471 (*1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-568 (-797)))))) +((-2475 ((|#2| |#2| |#4|) 29 T ELT)) (-2478 (((-647 |#2|) |#3| |#4|) 35 T ELT)) (-2476 (((-647 |#2|) |#2| |#4|) 34 T ELT)) (-2473 (((-1207 |#2|) |#2| |#4|) 16 T ELT)) (-2474 ((|#2| |#3| |#4|) 28 T ELT)) (-2479 (((-647 |#2|) |#3| |#4| (-714) (-714)) 48 T ELT)) (-2477 (((-647 |#2|) |#2| |#4| (-714)) 47 T ELT))) +(((-650 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2473 ((-1207 |#2|) |#2| |#4|)) (-15 -2474 (|#2| |#3| |#4|)) (-15 -2475 (|#2| |#2| |#4|)) (-15 -2476 ((-647 |#2|) |#2| |#4|)) (-15 -2477 ((-647 |#2|) |#2| |#4| (-714))) (-15 -2478 ((-647 |#2|) |#3| |#4|)) (-15 -2479 ((-647 |#2|) |#3| |#4| (-714) (-714)))) (-1041) (-836 |#1|) (-327 |#2|) (-13 (-327 |#1|) (-10 -7 (-6 -4145)))) (T -650)) +((-2479 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-714)) (-4 *6 (-1041)) (-4 *7 (-836 *6)) (-5 *2 (-647 *7)) (-5 *1 (-650 *6 *7 *3 *4)) (-4 *3 (-327 *7)) (-4 *4 (-13 (-327 *6) (-10 -7 (-6 -4145)))))) (-2478 (*1 *2 *3 *4) (-12 (-4 *5 (-1041)) (-4 *6 (-836 *5)) (-5 *2 (-647 *6)) (-5 *1 (-650 *5 *6 *3 *4)) (-4 *3 (-327 *6)) (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4145)))))) (-2477 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-714)) (-4 *6 (-1041)) (-4 *3 (-836 *6)) (-5 *2 (-647 *3)) (-5 *1 (-650 *6 *3 *7 *4)) (-4 *7 (-327 *3)) (-4 *4 (-13 (-327 *6) (-10 -7 (-6 -4145)))))) (-2476 (*1 *2 *3 *4) (-12 (-4 *5 (-1041)) (-4 *3 (-836 *5)) (-5 *2 (-647 *3)) (-5 *1 (-650 *5 *3 *6 *4)) (-4 *6 (-327 *3)) (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4145)))))) (-2475 (*1 *2 *2 *3) (-12 (-4 *4 (-1041)) (-4 *2 (-836 *4)) (-5 *1 (-650 *4 *2 *5 *3)) (-4 *5 (-327 *2)) (-4 *3 (-13 (-327 *4) (-10 -7 (-6 -4145)))))) (-2474 (*1 *2 *3 *4) (-12 (-4 *5 (-1041)) (-4 *2 (-836 *5)) (-5 *1 (-650 *5 *2 *3 *4)) (-4 *3 (-327 *2)) (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4145)))))) (-2473 (*1 *2 *3 *4) (-12 (-4 *5 (-1041)) (-4 *3 (-836 *5)) (-5 *2 (-1207 *3)) (-5 *1 (-650 *5 *3 *6 *4)) (-4 *6 (-327 *3)) (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4145))))))) +((-3891 (((-2 (|:| |num| (-647 |#1|)) (|:| |den| |#1|)) (-647 |#2|)) 20 T ELT)) (-3889 ((|#1| (-647 |#2|)) 9 T ELT)) (-3890 (((-647 |#1|) (-647 |#2|)) 18 T ELT))) +(((-651 |#1| |#2|) (-10 -7 (-15 -3889 (|#1| (-647 |#2|))) (-15 -3890 ((-647 |#1|) (-647 |#2|))) (-15 -3891 ((-2 (|:| |num| (-647 |#1|)) (|:| |den| |#1|)) (-647 |#2|)))) (-510) (-931 |#1|)) (T -651)) +((-3891 (*1 *2 *3) (-12 (-5 *3 (-647 *5)) (-4 *5 (-931 *4)) (-4 *4 (-510)) (-5 *2 (-2 (|:| |num| (-647 *4)) (|:| |den| *4))) (-5 *1 (-651 *4 *5)))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-647 *5)) (-4 *5 (-931 *4)) (-4 *4 (-510)) (-5 *2 (-647 *4)) (-5 *1 (-651 *4 *5)))) (-3889 (*1 *2 *3) (-12 (-5 *3 (-647 *4)) (-4 *4 (-931 *2)) (-4 *2 (-510)) (-5 *1 (-651 *2 *4))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1880 (((-647 (-657))) NIL T ELT) (((-647 (-657)) (-1207 $)) NIL T ELT)) (-3470 (((-657) $) NIL T ELT)) (-3632 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3789 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| (-657) (-305)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-657) (-261)) (|has| (-657) (-848))) ELT)) (-3925 (($ $) NIL (-3677 (-12 (|has| (-657) (-261)) (|has| (-657) (-848))) (|has| (-657) (-318))) ELT)) (-4121 (((-359 $) $) NIL (-3677 (-12 (|has| (-657) (-261)) (|has| (-657) (-848))) (|has| (-657) (-318))) ELT)) (-3158 (($ $) NIL (-12 (|has| (-657) (-942)) (|has| (-657) (-1143))) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-657) (-261)) (|has| (-657) (-848))) ELT)) (-1678 (((-85) $ $) NIL (|has| (-657) (-261)) ELT)) (-3258 (((-714)) NIL (|has| (-657) (-323)) ELT)) (-3630 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3788 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3634 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3787 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL T ELT) (((-3 (-657) #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| (-657) (-978 (-361 (-499)))) ELT)) (-3294 (((-499) $) NIL T ELT) (((-657) $) NIL T ELT) (((-361 (-499)) $) NIL (|has| (-657) (-978 (-361 (-499)))) ELT)) (-1890 (($ (-1207 (-657))) NIL T ELT) (($ (-1207 (-657)) (-1207 $)) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-657) (-305)) ELT)) (-2683 (($ $ $) NIL (|has| (-657) (-261)) ELT)) (-1879 (((-647 (-657)) $) NIL T ELT) (((-647 (-657)) $ (-1207 $)) NIL T ELT)) (-2380 (((-647 (-657)) (-647 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-657))) (|:| |vec| (-1207 (-657)))) (-647 $) (-1207 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| (-657) (-596 (-499))) ELT) (((-647 (-499)) (-647 $)) NIL (|has| (-657) (-596 (-499))) ELT)) (-3992 (((-3 $ #1#) (-361 (-1111 (-657)))) NIL (|has| (-657) (-318)) ELT) (($ (-1111 (-657))) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3793 (((-657) $) 29 T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) NIL (|has| (-657) (-498)) ELT)) (-3144 (((-85) $) NIL (|has| (-657) (-498)) ELT)) (-3143 (((-361 (-499)) $) NIL (|has| (-657) (-498)) ELT)) (-3231 (((-857)) NIL T ELT)) (-3115 (($) NIL (|has| (-657) (-323)) ELT)) (-2682 (($ $ $) NIL (|has| (-657) (-261)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| (-657) (-261)) ELT)) (-2954 (($) NIL (|has| (-657) (-305)) ELT)) (-1773 (((-85) $) NIL (|has| (-657) (-305)) ELT)) (-1864 (($ $) NIL (|has| (-657) (-305)) ELT) (($ $ (-714)) NIL (|has| (-657) (-305)) ELT)) (-3873 (((-85) $) NIL (-3677 (-12 (|has| (-657) (-261)) (|has| (-657) (-848))) (|has| (-657) (-318))) ELT)) (-1408 (((-2 (|:| |r| (-657)) (|:| |phi| (-657))) $) NIL (-12 (|has| (-657) (-1000)) (|has| (-657) (-1143))) ELT)) (-3777 (($) NIL (|has| (-657) (-1143)) ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| (-657) (-821 (-333))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| (-657) (-821 (-499))) ELT)) (-3922 (((-766 (-857)) $) NIL (|has| (-657) (-305)) ELT) (((-857) $) NIL (|has| (-657) (-305)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL (-12 (|has| (-657) (-942)) (|has| (-657) (-1143))) ELT)) (-3254 (((-657) $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| (-657) (-305)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| (-657) (-261)) ELT)) (-2115 (((-1111 (-657)) $) NIL (|has| (-657) (-318)) ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-4108 (($ (-1 (-657) (-657)) $) NIL T ELT)) (-2111 (((-857) $) NIL (|has| (-657) (-323)) ELT)) (-4092 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3200 (((-1111 (-657)) $) NIL T ELT)) (-2381 (((-647 (-657)) (-1207 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-657))) (|:| |vec| (-1207 (-657)))) (-1207 $) $) NIL T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| (-657) (-596 (-499))) ELT) (((-647 (-499)) (-1207 $)) NIL (|has| (-657) (-596 (-499))) ELT)) (-1993 (($ (-599 $)) NIL (|has| (-657) (-261)) ELT) (($ $ $) NIL (|has| (-657) (-261)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| (-657) (-318)) ELT)) (-3586 (($) NIL (|has| (-657) (-305)) CONST)) (-2518 (($ (-857)) NIL (|has| (-657) (-323)) ELT)) (-1410 (($) NIL T ELT)) (-3794 (((-657) $) 31 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| (-657) (-261)) ELT)) (-3282 (($ (-599 $)) NIL (|has| (-657) (-261)) ELT) (($ $ $) NIL (|has| (-657) (-261)) ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| (-657) (-305)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-657) (-261)) (|has| (-657) (-848))) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-657) (-261)) (|has| (-657) (-848))) ELT)) (-3882 (((-359 $) $) NIL (-3677 (-12 (|has| (-657) (-261)) (|has| (-657) (-848))) (|has| (-657) (-318))) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-657) (-261)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| (-657) (-261)) ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ (-657)) NIL (|has| (-657) (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| (-657) (-261)) ELT)) (-4093 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3918 (($ $ (-1117) (-657)) NIL (|has| (-657) (-468 (-1117) (-657))) ELT) (($ $ (-599 (-1117)) (-599 (-657))) NIL (|has| (-657) (-468 (-1117) (-657))) ELT) (($ $ (-599 (-247 (-657)))) NIL (|has| (-657) (-263 (-657))) ELT) (($ $ (-247 (-657))) NIL (|has| (-657) (-263 (-657))) ELT) (($ $ (-657) (-657)) NIL (|has| (-657) (-263 (-657))) ELT) (($ $ (-599 (-657)) (-599 (-657))) NIL (|has| (-657) (-263 (-657))) ELT)) (-1677 (((-714) $) NIL (|has| (-657) (-261)) ELT)) (-3950 (($ $ (-657)) NIL (|has| (-657) (-240 (-657) (-657))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| (-657) (-261)) ELT)) (-3907 (((-657)) NIL T ELT) (((-657) (-1207 $)) NIL T ELT)) (-1865 (((-3 (-714) #1#) $ $) NIL (|has| (-657) (-305)) ELT) (((-714) $) NIL (|has| (-657) (-305)) ELT)) (-3908 (($ $ (-1 (-657) (-657)) (-714)) NIL T ELT) (($ $ (-1 (-657) (-657))) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| (-657) (-318)) (|has| (-657) (-836 (-1117)))) (|has| (-657) (-838 (-1117)))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| (-657) (-318)) (|has| (-657) (-836 (-1117)))) (|has| (-657) (-838 (-1117)))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| (-657) (-318)) (|has| (-657) (-836 (-1117)))) (|has| (-657) (-838 (-1117)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| (-657) (-318)) (|has| (-657) (-836 (-1117)))) (|has| (-657) (-838 (-1117)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| (-657) (-190)) (|has| (-657) (-318))) (|has| (-657) (-189))) ELT) (($ $) NIL (-3677 (-12 (|has| (-657) (-190)) (|has| (-657) (-318))) (|has| (-657) (-189))) ELT)) (-2526 (((-647 (-657)) (-1207 $) (-1 (-657) (-657))) NIL (|has| (-657) (-318)) ELT)) (-3323 (((-1111 (-657))) NIL T ELT)) (-3635 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3786 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-1767 (($) NIL (|has| (-657) (-305)) ELT)) (-3633 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3785 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3631 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3784 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3362 (((-647 (-657)) (-1207 $)) NIL T ELT) (((-1207 (-657)) $) NIL T ELT) (((-647 (-657)) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 (-657)) $ (-1207 $)) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-657) (-569 (-488))) ELT) (((-142 (-179)) $) NIL (|has| (-657) (-960)) ELT) (((-142 (-333)) $) NIL (|has| (-657) (-960)) ELT) (((-825 (-333)) $) NIL (|has| (-657) (-569 (-825 (-333)))) ELT) (((-825 (-499)) $) NIL (|has| (-657) (-569 (-825 (-499)))) ELT) (($ (-1111 (-657))) NIL T ELT) (((-1111 (-657)) $) NIL T ELT) (($ (-1207 (-657))) NIL T ELT) (((-1207 (-657)) $) NIL T ELT)) (-3130 (($ $) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-3677 (-12 (|has| (-657) (-261)) (|has| $ (-118)) (|has| (-657) (-848))) (|has| (-657) (-305))) ELT)) (-1409 (($ (-657) (-657)) 12 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-657)) NIL T ELT) (($ (-142 (-333))) 13 T ELT) (($ (-142 (-499))) 19 T ELT) (($ (-142 (-657))) 28 T ELT) (($ (-142 (-659))) 25 T ELT) (((-142 (-333)) $) 33 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| (-657) (-318)) (|has| (-657) (-978 (-361 (-499))))) ELT)) (-2823 (($ $) NIL (|has| (-657) (-305)) ELT) (((-649 $) $) NIL (-3677 (-12 (|has| (-657) (-261)) (|has| $ (-118)) (|has| (-657) (-848))) (|has| (-657) (-118))) ELT)) (-2565 (((-1111 (-657)) $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT)) (-3638 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3626 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3636 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3624 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3640 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3628 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-2337 (((-657) $) NIL (|has| (-657) (-1143)) ELT)) (-3641 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3629 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3639 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3627 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3637 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3625 (($ $) NIL (|has| (-657) (-1143)) ELT)) (-3523 (($ $) NIL (|has| (-657) (-1000)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1 (-657) (-657)) (-714)) NIL T ELT) (($ $ (-1 (-657) (-657))) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| (-657) (-318)) (|has| (-657) (-836 (-1117)))) (|has| (-657) (-838 (-1117)))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| (-657) (-318)) (|has| (-657) (-836 (-1117)))) (|has| (-657) (-838 (-1117)))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| (-657) (-318)) (|has| (-657) (-836 (-1117)))) (|has| (-657) (-838 (-1117)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| (-657) (-318)) (|has| (-657) (-836 (-1117)))) (|has| (-657) (-838 (-1117)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| (-657) (-190)) (|has| (-657) (-318))) (|has| (-657) (-189))) ELT) (($ $) NIL (-3677 (-12 (|has| (-657) (-190)) (|has| (-657) (-318))) (|has| (-657) (-189))) ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL (|has| (-657) (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ $) NIL (|has| (-657) (-1143)) ELT) (($ $ (-361 (-499))) NIL (-12 (|has| (-657) (-942)) (|has| (-657) (-1143))) ELT) (($ $ (-499)) NIL (|has| (-657) (-318)) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-657) $) NIL T ELT) (($ $ (-657)) NIL T ELT) (($ (-361 (-499)) $) NIL (|has| (-657) (-318)) ELT) (($ $ (-361 (-499))) NIL (|has| (-657) (-318)) ELT))) +(((-652) (-13 (-343) (-139 (-657)) (-10 -8 (-15 -4096 ($ (-142 (-333)))) (-15 -4096 ($ (-142 (-499)))) (-15 -4096 ($ (-142 (-657)))) (-15 -4096 ($ (-142 (-659)))) (-15 -4096 ((-142 (-333)) $))))) (T -652)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-142 (-333))) (-5 *1 (-652)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-142 (-499))) (-5 *1 (-652)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-142 (-657))) (-5 *1 (-652)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-142 (-659))) (-5 *1 (-652)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-142 (-333))) (-5 *1 (-652))))) +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-1603 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-2481 (($ $) 66 T ELT)) (-1386 (($ $) 62 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3545 (($ |#1| $) 51 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3546 (($ |#1| $) 61 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 43 T ELT)) (-3757 (($ |#1| $) 44 T ELT) (($ |#1| $ (-714)) 67 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-2480 (((-599 (-2 (|:| |entry| |#1|) (|:| -2048 (-714)))) $) 65 T ELT)) (-1499 (($) 53 T ELT) (($ (-599 |#1|)) 52 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 63 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 54 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-653 |#1|) (-113) (-1041)) (T -653)) +((-3757 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-653 *2)) (-4 *2 (-1041)))) (-2481 (*1 *1 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1041)))) (-2480 (*1 *2 *1) (-12 (-4 *1 (-653 *3)) (-4 *3 (-1041)) (-5 *2 (-599 (-2 (|:| |entry| *3) (|:| -2048 (-714)))))))) +(-13 (-192 |t#1|) (-10 -8 (-15 -3757 ($ |t#1| $ (-714))) (-15 -2481 ($ $)) (-15 -2480 ((-599 (-2 (|:| |entry| |t#1|) (|:| -2048 (-714)))) $)))) +(((-34) . T) ((-78 |#1|) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-192 |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) +((-2484 (((-599 |#1|) (-599 (-2 (|:| -3882 |#1|) (|:| -4098 (-499)))) (-499)) 66 T ELT)) (-2482 ((|#1| |#1| (-499)) 63 T ELT)) (-3282 ((|#1| |#1| |#1| (-499)) 46 T ELT)) (-3882 (((-599 |#1|) |#1| (-499)) 49 T ELT)) (-2485 ((|#1| |#1| (-499) |#1| (-499)) 40 T ELT)) (-2483 (((-599 (-2 (|:| -3882 |#1|) (|:| -4098 (-499)))) |#1| (-499)) 62 T ELT))) +(((-654 |#1|) (-10 -7 (-15 -3282 (|#1| |#1| |#1| (-499))) (-15 -2482 (|#1| |#1| (-499))) (-15 -3882 ((-599 |#1|) |#1| (-499))) (-15 -2483 ((-599 (-2 (|:| -3882 |#1|) (|:| -4098 (-499)))) |#1| (-499))) (-15 -2484 ((-599 |#1|) (-599 (-2 (|:| -3882 |#1|) (|:| -4098 (-499)))) (-499))) (-15 -2485 (|#1| |#1| (-499) |#1| (-499)))) (-1183 (-499))) (T -654)) +((-2485 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-654 *2)) (-4 *2 (-1183 *3)))) (-2484 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-2 (|:| -3882 *5) (|:| -4098 (-499))))) (-5 *4 (-499)) (-4 *5 (-1183 *4)) (-5 *2 (-599 *5)) (-5 *1 (-654 *5)))) (-2483 (*1 *2 *3 *4) (-12 (-5 *4 (-499)) (-5 *2 (-599 (-2 (|:| -3882 *3) (|:| -4098 *4)))) (-5 *1 (-654 *3)) (-4 *3 (-1183 *4)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-499)) (-5 *2 (-599 *3)) (-5 *1 (-654 *3)) (-4 *3 (-1183 *4)))) (-2482 (*1 *2 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-654 *2)) (-4 *2 (-1183 *3)))) (-3282 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-654 *2)) (-4 *2 (-1183 *3))))) +((-2489 (((-1 (-881 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 17 T ELT)) (-2486 (((-1073 (-179)) (-1073 (-179)) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-179)) (-1029 (-179)) (-599 (-220))) 53 T ELT) (((-1073 (-179)) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-179)) (-1029 (-179)) (-599 (-220))) 55 T ELT) (((-1073 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1029 (-179)) (-1029 (-179)) (-599 (-220))) 57 T ELT)) (-2488 (((-1073 (-179)) (-268 (-499)) (-268 (-499)) (-268 (-499)) (-1 (-179) (-179)) (-1029 (-179)) (-599 (-220))) NIL T ELT)) (-2487 (((-1073 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1029 (-179)) (-1029 (-179)) (-599 (-220))) 58 T ELT))) +(((-655) (-10 -7 (-15 -2486 ((-1073 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1029 (-179)) (-1029 (-179)) (-599 (-220)))) (-15 -2486 ((-1073 (-179)) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-179)) (-1029 (-179)) (-599 (-220)))) (-15 -2486 ((-1073 (-179)) (-1073 (-179)) (-1 (-881 (-179)) (-179) (-179)) (-1029 (-179)) (-1029 (-179)) (-599 (-220)))) (-15 -2487 ((-1073 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1029 (-179)) (-1029 (-179)) (-599 (-220)))) (-15 -2488 ((-1073 (-179)) (-268 (-499)) (-268 (-499)) (-268 (-499)) (-1 (-179) (-179)) (-1029 (-179)) (-599 (-220)))) (-15 -2489 ((-1 (-881 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -655)) +((-2489 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) (-5 *2 (-1 (-881 (-179)) (-179) (-179))) (-5 *1 (-655)))) (-2488 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-268 (-499))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1029 (-179))) (-5 *6 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-655)))) (-2487 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined")) (-5 *5 (-1029 (-179))) (-5 *6 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-655)))) (-2486 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1073 (-179))) (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-179))) (-5 *5 (-599 (-220))) (-5 *1 (-655)))) (-2486 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-179))) (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-655)))) (-2486 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1#)) (-5 *5 (-1029 (-179))) (-5 *6 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-655))))) +((-3882 (((-359 (-1111 |#4|)) (-1111 |#4|)) 86 T ELT) (((-359 |#4|) |#4|) 269 T ELT))) +(((-656 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3882 ((-359 |#4|) |#4|)) (-15 -3882 ((-359 (-1111 |#4|)) (-1111 |#4|)))) (-781) (-738) (-305) (-888 |#3| |#2| |#1|)) (T -656)) +((-3882 (*1 *2 *3) (-12 (-4 *4 (-781)) (-4 *5 (-738)) (-4 *6 (-305)) (-4 *7 (-888 *6 *5 *4)) (-5 *2 (-359 (-1111 *7))) (-5 *1 (-656 *4 *5 *6 *7)) (-5 *3 (-1111 *7)))) (-3882 (*1 *2 *3) (-12 (-4 *4 (-781)) (-4 *5 (-738)) (-4 *6 (-305)) (-5 *2 (-359 *3)) (-5 *1 (-656 *4 *5 *6 *3)) (-4 *3 (-888 *6 *5 *4))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 97 T ELT)) (-3251 (((-499) $) 34 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-3921 (($ $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-3158 (($ $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3249 (($ $) NIL T ELT)) (-3295 (((-3 (-499) #1#) $) 85 T ELT) (((-3 (-361 (-499)) #1#) $) 28 T ELT) (((-3 (-333) #1#) $) 82 T ELT)) (-3294 (((-499) $) 87 T ELT) (((-361 (-499)) $) 79 T ELT) (((-333) $) 80 T ELT)) (-2683 (($ $ $) 109 T ELT)) (-3607 (((-3 $ #1#) $) 100 T ELT)) (-2682 (($ $ $) 108 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2492 (((-857)) 89 T ELT) (((-857) (-857)) 88 T ELT)) (-3324 (((-85) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL T ELT)) (-3922 (((-499) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL T ELT)) (-3254 (($ $) NIL T ELT)) (-3325 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2490 (((-499) (-499)) 94 T ELT) (((-499)) 95 T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL (-12 (-2679 (|has| $ (-6 -4128))) (-2679 (|has| $ (-6 -4136)))) ELT)) (-2491 (((-499) (-499)) 92 T ELT) (((-499)) 93 T ELT)) (-2978 (($ $ $) NIL T ELT) (($) NIL (-12 (-2679 (|has| $ (-6 -4128))) (-2679 (|has| $ (-6 -4136)))) ELT)) (-2493 (((-499) $) 17 T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 104 T ELT)) (-1867 (((-857) (-499)) NIL (|has| $ (-6 -4136)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL T ELT)) (-3252 (($ $) NIL T ELT)) (-3392 (($ (-499) (-499)) NIL T ELT) (($ (-499) (-499) (-857)) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) 105 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2519 (((-499) $) 24 T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 107 T ELT)) (-2734 (((-857)) NIL T ELT) (((-857) (-857)) NIL (|has| $ (-6 -4136)) ELT)) (-1866 (((-857) (-499)) NIL (|has| $ (-6 -4136)) ELT)) (-4122 (((-333) $) NIL T ELT) (((-179) $) NIL T ELT) (((-825 (-333)) $) NIL T ELT)) (-4096 (((-797) $) 63 T ELT) (($ (-499)) 75 T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) 78 T ELT) (($ (-499)) 75 T ELT) (($ (-361 (-499))) 78 T ELT) (($ (-333)) 72 T ELT) (((-333) $) 61 T ELT) (($ (-659)) 66 T ELT)) (-3248 (((-714)) 119 T CONST)) (-3068 (($ (-499) (-499) (-857)) 54 T ELT)) (-3253 (($ $) NIL T ELT)) (-1868 (((-857)) NIL T ELT) (((-857) (-857)) NIL (|has| $ (-6 -4136)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2815 (((-857)) 91 T ELT) (((-857) (-857)) 90 T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3523 (($ $) NIL T ELT)) (-2779 (($) 37 T CONST)) (-2785 (($) 18 T CONST)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 96 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 118 T ELT)) (-4099 (($ $ $) 77 T ELT)) (-3987 (($ $) 115 T ELT) (($ $ $) 116 T ELT)) (-3989 (($ $ $) 114 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT) (($ $ (-361 (-499))) 103 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 110 T ELT) (($ $ $) 101 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT))) +(((-657) (-13 (-358) (-343) (-318) (-978 (-333)) (-978 (-361 (-499))) (-120) (-10 -8 (-15 -2492 ((-857) (-857))) (-15 -2492 ((-857))) (-15 -2815 ((-857) (-857))) (-15 -2491 ((-499) (-499))) (-15 -2491 ((-499))) (-15 -2490 ((-499) (-499))) (-15 -2490 ((-499))) (-15 -4096 ((-333) $)) (-15 -4096 ($ (-659))) (-15 -2493 ((-499) $)) (-15 -2519 ((-499) $)) (-15 -3068 ($ (-499) (-499) (-857)))))) (T -657)) +((-2519 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-657)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-657)))) (-2492 (*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-657)))) (-2492 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-657)))) (-2815 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-657)))) (-2491 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-657)))) (-2491 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-657)))) (-2490 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-657)))) (-2490 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-657)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-333)) (-5 *1 (-657)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-659)) (-5 *1 (-657)))) (-3068 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-857)) (-5 *1 (-657))))) +((-2496 (((-647 |#1|) (-647 |#1|) |#1| |#1|) 85 T ELT)) (-3232 (((-647 |#1|) (-647 |#1|) |#1|) 66 T ELT)) (-2495 (((-647 |#1|) (-647 |#1|) |#1|) 86 T ELT)) (-2494 (((-647 |#1|) (-647 |#1|)) 67 T ELT)) (-2497 (((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|) 84 T ELT))) +(((-658 |#1|) (-10 -7 (-15 -2494 ((-647 |#1|) (-647 |#1|))) (-15 -3232 ((-647 |#1|) (-647 |#1|) |#1|)) (-15 -2495 ((-647 |#1|) (-647 |#1|) |#1|)) (-15 -2496 ((-647 |#1|) (-647 |#1|) |#1| |#1|)) (-15 -2497 ((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|))) (-261)) (T -658)) +((-2497 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-658 *3)) (-4 *3 (-261)))) (-2496 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-647 *3)) (-4 *3 (-261)) (-5 *1 (-658 *3)))) (-2495 (*1 *2 *2 *3) (-12 (-5 *2 (-647 *3)) (-4 *3 (-261)) (-5 *1 (-658 *3)))) (-3232 (*1 *2 *2 *3) (-12 (-5 *2 (-647 *3)) (-4 *3 (-261)) (-5 *1 (-658 *3)))) (-2494 (*1 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-261)) (-5 *1 (-658 *3))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-2148 (($ $ $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2143 (($ $ $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL T ELT)) (-2557 (($ $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) 31 T ELT)) (-3294 (((-499) $) 29 T ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) NIL T ELT)) (-3144 (((-85) $) NIL T ELT)) (-3143 (((-361 (-499)) $) NIL T ELT)) (-3115 (($ $) NIL T ELT) (($) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2141 (($ $ $ $) NIL T ELT)) (-2149 (($ $ $) NIL T ELT)) (-3324 (((-85) $) NIL T ELT)) (-1402 (($ $ $) NIL T ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2794 (((-85) $) NIL T ELT)) (-3585 (((-649 $) $) NIL T ELT)) (-3325 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2142 (($ $ $ $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2498 (((-857) (-857)) 10 T ELT) (((-857)) 9 T ELT)) (-2978 (($ $ $) NIL T ELT)) (-2145 (($ $) NIL T ELT)) (-3983 (($ $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL T ELT)) (-1993 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2140 (($ $ $) NIL T ELT)) (-3586 (($) NIL T CONST)) (-2147 (($ $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1400 (($ $) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2795 (((-85) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT)) (-2146 (($ $) NIL T ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-179) $) NIL T ELT) (((-333) $) NIL T ELT) (((-825 (-499)) $) NIL T ELT) (((-488) $) NIL T ELT) (((-499) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) 28 T ELT) (($ $) NIL T ELT) (($ (-499)) 28 T ELT) (((-268 $) (-268 (-499))) 18 T ELT)) (-3248 (((-714)) NIL T CONST)) (-2150 (((-85) $ $) NIL T ELT)) (-3224 (($ $ $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2815 (($) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2144 (($ $ $ $) NIL T ELT)) (-3523 (($ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-659) (-13 (-343) (-498) (-10 -8 (-15 -2498 ((-857) (-857))) (-15 -2498 ((-857))) (-15 -4096 ((-268 $) (-268 (-499))))))) (T -659)) +((-2498 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-659)))) (-2498 (*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-659)))) (-4096 (*1 *2 *3) (-12 (-5 *3 (-268 (-499))) (-5 *2 (-268 (-659))) (-5 *1 (-659))))) +((-2504 (((-1 |#4| |#2| |#3|) |#1| (-1117) (-1117)) 19 T ELT)) (-2499 (((-1 |#4| |#2| |#3|) (-1117)) 12 T ELT))) +(((-660 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2499 ((-1 |#4| |#2| |#3|) (-1117))) (-15 -2504 ((-1 |#4| |#2| |#3|) |#1| (-1117) (-1117)))) (-569 (-488)) (-1157) (-1157) (-1157)) (T -660)) +((-2504 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1117)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-660 *3 *5 *6 *7)) (-4 *3 (-569 (-488))) (-4 *5 (-1157)) (-4 *6 (-1157)) (-4 *7 (-1157)))) (-2499 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-660 *4 *5 *6 *7)) (-4 *4 (-569 (-488))) (-4 *5 (-1157)) (-4 *6 (-1157)) (-4 *7 (-1157))))) +((-2500 (((-1 (-179) (-179) (-179)) |#1| (-1117) (-1117)) 43 T ELT) (((-1 (-179) (-179)) |#1| (-1117)) 48 T ELT))) +(((-661 |#1|) (-10 -7 (-15 -2500 ((-1 (-179) (-179)) |#1| (-1117))) (-15 -2500 ((-1 (-179) (-179) (-179)) |#1| (-1117) (-1117)))) (-569 (-488))) (T -661)) +((-2500 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1117)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-661 *3)) (-4 *3 (-569 (-488))))) (-2500 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-661 *3)) (-4 *3 (-569 (-488)))))) +((-2501 (((-1117) |#1| (-1117) (-599 (-1117))) 10 T ELT) (((-1117) |#1| (-1117) (-1117) (-1117)) 13 T ELT) (((-1117) |#1| (-1117) (-1117)) 12 T ELT) (((-1117) |#1| (-1117)) 11 T ELT))) +(((-662 |#1|) (-10 -7 (-15 -2501 ((-1117) |#1| (-1117))) (-15 -2501 ((-1117) |#1| (-1117) (-1117))) (-15 -2501 ((-1117) |#1| (-1117) (-1117) (-1117))) (-15 -2501 ((-1117) |#1| (-1117) (-599 (-1117))))) (-569 (-488))) (T -662)) +((-2501 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-599 (-1117))) (-5 *2 (-1117)) (-5 *1 (-662 *3)) (-4 *3 (-569 (-488))))) (-2501 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-662 *3)) (-4 *3 (-569 (-488))))) (-2501 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-662 *3)) (-4 *3 (-569 (-488))))) (-2501 (*1 *2 *3 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-662 *3)) (-4 *3 (-569 (-488)))))) +((-2502 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) +(((-663 |#1| |#2|) (-10 -7 (-15 -2502 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1157) (-1157)) (T -663)) +((-2502 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-663 *3 *4)) (-4 *3 (-1157)) (-4 *4 (-1157))))) +((-2503 (((-1 |#3| |#2|) (-1117)) 11 T ELT)) (-2504 (((-1 |#3| |#2|) |#1| (-1117)) 21 T ELT))) +(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -2503 ((-1 |#3| |#2|) (-1117))) (-15 -2504 ((-1 |#3| |#2|) |#1| (-1117)))) (-569 (-488)) (-1157) (-1157)) (T -664)) +((-2504 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *3 *5 *6)) (-4 *3 (-569 (-488))) (-4 *5 (-1157)) (-4 *6 (-1157)))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *4 *5 *6)) (-4 *4 (-569 (-488))) (-4 *5 (-1157)) (-4 *6 (-1157))))) +((-2507 (((-3 (-599 (-1111 |#4|)) #1="failed") (-1111 |#4|) (-599 |#2|) (-599 (-1111 |#4|)) (-599 |#3|) (-599 |#4|) (-599 (-599 (-2 (|:| -3199 (-714)) (|:| |pcoef| |#4|)))) (-599 (-714)) (-1207 (-599 (-1111 |#3|))) |#3|) 92 T ELT)) (-2506 (((-3 (-599 (-1111 |#4|)) #1#) (-1111 |#4|) (-599 |#2|) (-599 (-1111 |#3|)) (-599 |#3|) (-599 |#4|) (-599 (-714)) |#3|) 110 T ELT)) (-2505 (((-3 (-599 (-1111 |#4|)) #1#) (-1111 |#4|) (-599 |#2|) (-599 |#3|) (-599 (-714)) (-599 (-1111 |#4|)) (-1207 (-599 (-1111 |#3|))) |#3|) 48 T ELT))) +(((-665 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2505 ((-3 (-599 (-1111 |#4|)) #1="failed") (-1111 |#4|) (-599 |#2|) (-599 |#3|) (-599 (-714)) (-599 (-1111 |#4|)) (-1207 (-599 (-1111 |#3|))) |#3|)) (-15 -2506 ((-3 (-599 (-1111 |#4|)) #1#) (-1111 |#4|) (-599 |#2|) (-599 (-1111 |#3|)) (-599 |#3|) (-599 |#4|) (-599 (-714)) |#3|)) (-15 -2507 ((-3 (-599 (-1111 |#4|)) #1#) (-1111 |#4|) (-599 |#2|) (-599 (-1111 |#4|)) (-599 |#3|) (-599 |#4|) (-599 (-599 (-2 (|:| -3199 (-714)) (|:| |pcoef| |#4|)))) (-599 (-714)) (-1207 (-599 (-1111 |#3|))) |#3|))) (-738) (-781) (-261) (-888 |#3| |#1| |#2|)) (T -665)) +((-2507 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-599 (-1111 *13))) (-5 *3 (-1111 *13)) (-5 *4 (-599 *12)) (-5 *5 (-599 *10)) (-5 *6 (-599 *13)) (-5 *7 (-599 (-599 (-2 (|:| -3199 (-714)) (|:| |pcoef| *13))))) (-5 *8 (-599 (-714))) (-5 *9 (-1207 (-599 (-1111 *10)))) (-4 *12 (-781)) (-4 *10 (-261)) (-4 *13 (-888 *10 *11 *12)) (-4 *11 (-738)) (-5 *1 (-665 *11 *12 *10 *13)))) (-2506 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-599 *11)) (-5 *5 (-599 (-1111 *9))) (-5 *6 (-599 *9)) (-5 *7 (-599 *12)) (-5 *8 (-599 (-714))) (-4 *11 (-781)) (-4 *9 (-261)) (-4 *12 (-888 *9 *10 *11)) (-4 *10 (-738)) (-5 *2 (-599 (-1111 *12))) (-5 *1 (-665 *10 *11 *9 *12)) (-5 *3 (-1111 *12)))) (-2505 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-599 (-1111 *11))) (-5 *3 (-1111 *11)) (-5 *4 (-599 *10)) (-5 *5 (-599 *8)) (-5 *6 (-599 (-714))) (-5 *7 (-1207 (-599 (-1111 *8)))) (-4 *10 (-781)) (-4 *8 (-261)) (-4 *11 (-888 *8 *9 *10)) (-4 *9 (-738)) (-5 *1 (-665 *9 *10 *8 *11))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-4109 (($ $) 53 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3014 (($ |#1| (-714)) 51 T ELT)) (-2941 (((-714) $) 55 T ELT)) (-3312 ((|#1| $) 54 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4098 (((-714) $) 56 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 50 (|has| |#1| (-146)) ELT)) (-3827 ((|#1| $ (-714)) 52 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 58 T ELT) (($ |#1| $) 57 T ELT))) +(((-666 |#1|) (-113) (-989)) (T -666)) +((-4098 (*1 *2 *1) (-12 (-4 *1 (-666 *3)) (-4 *3 (-989)) (-5 *2 (-714)))) (-2941 (*1 *2 *1) (-12 (-4 *1 (-666 *3)) (-4 *3 (-989)) (-5 *2 (-714)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-989)))) (-4109 (*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-989)))) (-3827 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-666 *2)) (-4 *2 (-989)))) (-3014 (*1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-666 *2)) (-4 *2 (-989))))) +(-13 (-989) (-82 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4098 ((-714) $)) (-15 -2941 ((-714) $)) (-15 -3312 (|t#1| $)) (-15 -4109 ($ $)) (-15 -3827 (|t#1| $ (-714))) (-15 -3014 ($ |t#1| (-714))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 |#1|) |has| |#1| (-146)) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-598 |#1|) |has| |#1| (-146)) ((-675 |#1|) |has| |#1| (-146)) ((-684) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-4108 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) +(((-667 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4108 (|#6| (-1 |#4| |#1|) |#3|))) (-510) (-1183 |#1|) (-1183 (-361 |#2|)) (-510) (-1183 |#4|) (-1183 (-361 |#5|))) (T -667)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-510)) (-4 *7 (-510)) (-4 *6 (-1183 *5)) (-4 *2 (-1183 (-361 *8))) (-5 *1 (-667 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1183 (-361 *6))) (-4 *8 (-1183 *7))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2508 (((-1099) (-797)) 38 T ELT)) (-3767 (((-1213) (-1099)) 31 T ELT)) (-2510 (((-1099) (-797)) 28 T ELT)) (-2509 (((-1099) (-797)) 29 T ELT)) (-4096 (((-797) $) NIL T ELT) (((-1099) (-797)) 27 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-668) (-13 (-1041) (-10 -7 (-15 -4096 ((-1099) (-797))) (-15 -2510 ((-1099) (-797))) (-15 -2509 ((-1099) (-797))) (-15 -2508 ((-1099) (-797))) (-15 -3767 ((-1213) (-1099)))))) (T -668)) +((-4096 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1099)) (-5 *1 (-668)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1099)) (-5 *1 (-668)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1099)) (-5 *1 (-668)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1099)) (-5 *1 (-668)))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-668))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2683 (($ $ $) NIL T ELT)) (-3992 (($ |#1| |#2|) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2733 ((|#2| $) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2520 (((-3 $ #1#) $ $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT))) +(((-669 |#1| |#2| |#3| |#4| |#5|) (-13 (-318) (-10 -8 (-15 -2733 (|#2| $)) (-15 -4096 (|#1| $)) (-15 -3992 ($ |#1| |#2|)) (-15 -2520 ((-3 $ #1="failed") $ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -669)) +((-2733 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-669 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4096 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-669 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3992 (*1 *1 *2 *3) (-12 (-5 *1 (-669 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2520 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-669 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 36 T ELT)) (-3917 (((-1207 |#1|) $ (-714)) NIL T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3915 (($ (-1111 |#1|)) NIL T ELT)) (-3206 (((-1111 $) $ (-1022)) NIL T ELT) (((-1111 |#1|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-1022))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3905 (($ $ $) NIL (|has| |#1| (-510)) ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3258 (((-714)) 54 (|has| |#1| (-323)) ELT)) (-3911 (($ $ (-714)) NIL T ELT)) (-3910 (($ $ (-714)) NIL T ELT)) (-2517 ((|#2| |#2|) 50 T ELT)) (-3901 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-406)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-1022) #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-1022) $) NIL T ELT)) (-3906 (($ $ $ (-1022)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) NIL (|has| |#1| (-146)) ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) 40 T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3992 (($ |#2|) 48 T ELT)) (-3607 (((-3 $ #1#) $) 97 T ELT)) (-3115 (($) 58 (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3909 (($ $ $) NIL T ELT)) (-3903 (($ $ $) NIL (|has| |#1| (-510)) ELT)) (-3902 (((-2 (|:| -4104 |#1|) (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-510)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT) (($ $ (-1022)) NIL (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-848)) ELT)) (-2513 (((-896 $)) 88 T ELT)) (-1694 (($ $ |#1| (-714) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-1022) (-821 (-333))) (|has| |#1| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-1022) (-821 (-499))) (|has| |#1| (-821 (-499)))) ELT)) (-3922 (((-714) $ $) NIL (|has| |#1| (-510)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-1092)) ELT)) (-3207 (($ (-1111 |#1|) (-1022)) NIL T ELT) (($ (-1111 $) (-1022)) NIL T ELT)) (-3927 (($ $ (-714)) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-714)) 85 T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-1022)) NIL T ELT) (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-2733 ((|#2|) 51 T ELT)) (-2941 (((-714) $) NIL T ELT) (((-714) $ (-1022)) NIL T ELT) (((-599 (-714)) $ (-599 (-1022))) NIL T ELT)) (-1695 (($ (-1 (-714) (-714)) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3916 (((-1111 |#1|) $) NIL T ELT)) (-3205 (((-3 (-1022) #1#) $) NIL T ELT)) (-2111 (((-857) $) NIL (|has| |#1| (-323)) ELT)) (-3200 ((|#2| $) 47 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) 34 T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3912 (((-2 (|:| -2075 $) (|:| -3023 $)) $ (-714)) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-1022)) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3962 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3586 (($) NIL (|has| |#1| (-1092)) CONST)) (-2518 (($ (-857)) NIL (|has| |#1| (-323)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-2511 (($ $) 87 (|has| |#1| (-305)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-848)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ $) 96 (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-1022) |#1|) NIL T ELT) (($ $ (-599 (-1022)) (-599 |#1|)) NIL T ELT) (($ $ (-1022) $) NIL T ELT) (($ $ (-599 (-1022)) (-599 $)) NIL T ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-361 $) (-361 $) (-361 $)) NIL (|has| |#1| (-510)) ELT) ((|#1| (-361 $) |#1|) NIL (|has| |#1| (-318)) ELT) (((-361 $) $ (-361 $)) NIL (|has| |#1| (-510)) ELT)) (-3914 (((-3 $ #1#) $ (-714)) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 98 (|has| |#1| (-318)) ELT)) (-3907 (($ $ (-1022)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022))) NIL T ELT) (($ $ (-1022)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT)) (-4098 (((-714) $) 38 T ELT) (((-714) $ (-1022)) NIL T ELT) (((-599 (-714)) $ (-599 (-1022))) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-1022) (-569 (-825 (-333)))) (|has| |#1| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-1022) (-569 (-825 (-499)))) (|has| |#1| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-1022) (-569 (-488))) (|has| |#1| (-569 (-488)))) ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT) (($ $ (-1022)) NIL (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-2512 (((-896 $)) 42 T ELT)) (-3904 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT) (((-3 (-361 $) #1#) (-361 $) $) NIL (|has| |#1| (-510)) ELT)) (-4096 (((-797) $) 68 T ELT) (($ (-499)) NIL T ELT) (($ |#1|) 65 T ELT) (($ (-1022)) NIL T ELT) (($ |#2|) 75 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-714)) 70 T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-2779 (($) 25 T CONST)) (-2516 (((-1207 |#1|) $) 83 T ELT)) (-2515 (($ (-1207 |#1|)) 57 T ELT)) (-2785 (($) 8 T CONST)) (-2790 (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022))) NIL T ELT) (($ $ (-1022)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT)) (-2514 (((-1207 |#1|) $) NIL T ELT)) (-3174 (((-85) $ $) 76 T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) 79 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 39 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 92 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 64 T ELT) (($ $ $) 82 T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 62 T ELT) (($ $ |#1|) NIL T ELT))) +(((-670 |#1| |#2|) (-13 (-1183 |#1|) (-571 |#2|) (-10 -8 (-15 -2517 (|#2| |#2|)) (-15 -2733 (|#2|)) (-15 -3992 ($ |#2|)) (-15 -3200 (|#2| $)) (-15 -2516 ((-1207 |#1|) $)) (-15 -2515 ($ (-1207 |#1|))) (-15 -2514 ((-1207 |#1|) $)) (-15 -2513 ((-896 $))) (-15 -2512 ((-896 $))) (IF (|has| |#1| (-305)) (-15 -2511 ($ $)) |%noBranch|) (IF (|has| |#1| (-323)) (-6 (-323)) |%noBranch|))) (-989) (-1183 |#1|)) (T -670)) +((-2517 (*1 *2 *2) (-12 (-4 *3 (-989)) (-5 *1 (-670 *3 *2)) (-4 *2 (-1183 *3)))) (-2733 (*1 *2) (-12 (-4 *2 (-1183 *3)) (-5 *1 (-670 *3 *2)) (-4 *3 (-989)))) (-3992 (*1 *1 *2) (-12 (-4 *3 (-989)) (-5 *1 (-670 *3 *2)) (-4 *2 (-1183 *3)))) (-3200 (*1 *2 *1) (-12 (-4 *2 (-1183 *3)) (-5 *1 (-670 *3 *2)) (-4 *3 (-989)))) (-2516 (*1 *2 *1) (-12 (-4 *3 (-989)) (-5 *2 (-1207 *3)) (-5 *1 (-670 *3 *4)) (-4 *4 (-1183 *3)))) (-2515 (*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-989)) (-5 *1 (-670 *3 *4)) (-4 *4 (-1183 *3)))) (-2514 (*1 *2 *1) (-12 (-4 *3 (-989)) (-5 *2 (-1207 *3)) (-5 *1 (-670 *3 *4)) (-4 *4 (-1183 *3)))) (-2513 (*1 *2) (-12 (-4 *3 (-989)) (-5 *2 (-896 (-670 *3 *4))) (-5 *1 (-670 *3 *4)) (-4 *4 (-1183 *3)))) (-2512 (*1 *2) (-12 (-4 *3 (-989)) (-5 *2 (-896 (-670 *3 *4))) (-5 *1 (-670 *3 *4)) (-4 *4 (-1183 *3)))) (-2511 (*1 *1 *1) (-12 (-4 *2 (-305)) (-4 *2 (-989)) (-5 *1 (-670 *2 *3)) (-4 *3 (-1183 *2))))) +((-2687 (((-85) $ $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 ((|#1| $) 13 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2519 ((|#2| $) 12 T ELT)) (-3670 (($ |#1| |#2|) 16 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-2 (|:| -2518 |#1|) (|:| -2519 |#2|))) 15 T ELT) (((-2 (|:| -2518 |#1|) (|:| -2519 |#2|)) $) 14 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 11 T ELT))) +(((-671 |#1| |#2| |#3|) (-13 (-781) (-444 (-2 (|:| -2518 |#1|) (|:| -2519 |#2|))) (-10 -8 (-15 -2519 (|#2| $)) (-15 -2518 (|#1| $)) (-15 -3670 ($ |#1| |#2|)))) (-781) (-1041) (-1 (-85) (-2 (|:| -2518 |#1|) (|:| -2519 |#2|)) (-2 (|:| -2518 |#1|) (|:| -2519 |#2|)))) (T -671)) +((-2519 (*1 *2 *1) (-12 (-4 *2 (-1041)) (-5 *1 (-671 *3 *2 *4)) (-4 *3 (-781)) (-14 *4 (-1 (-85) (-2 (|:| -2518 *3) (|:| -2519 *2)) (-2 (|:| -2518 *3) (|:| -2519 *2)))))) (-2518 (*1 *2 *1) (-12 (-4 *2 (-781)) (-5 *1 (-671 *2 *3 *4)) (-4 *3 (-1041)) (-14 *4 (-1 (-85) (-2 (|:| -2518 *2) (|:| -2519 *3)) (-2 (|:| -2518 *2) (|:| -2519 *3)))))) (-3670 (*1 *1 *2 *3) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-781)) (-4 *3 (-1041)) (-14 *4 (-1 (-85) (-2 (|:| -2518 *2) (|:| -2519 *3)) (-2 (|:| -2518 *2) (|:| -2519 *3))))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 66 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-86) #1#) $) 107 T ELT)) (-3294 ((|#1| $) NIL T ELT) (((-86) $) 39 T ELT)) (-3607 (((-3 $ #1#) $) 102 T ELT)) (-2634 ((|#2| (-86) |#2|) 93 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2633 (($ |#1| (-316 (-86))) 14 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2635 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2636 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3950 ((|#2| $ |#2|) 33 T ELT)) (-2637 ((|#1| |#1|) 117 (|has| |#1| (-146)) ELT)) (-4096 (((-797) $) 73 T ELT) (($ (-499)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-86)) 23 T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2638 (($ $) 111 (|has| |#1| (-146)) ELT) (($ $ $) 115 (|has| |#1| (-146)) ELT)) (-2779 (($) 21 T CONST)) (-2785 (($) 9 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 83 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ (-86) (-499)) NIL T ELT) (($ $ (-499)) 64 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-146)) ELT) (($ $ |#1|) 109 (|has| |#1| (-146)) ELT))) +(((-672 |#1| |#2|) (-13 (-989) (-978 |#1|) (-978 (-86)) (-240 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2638 ($ $)) (-15 -2638 ($ $ $)) (-15 -2637 (|#1| |#1|))) |%noBranch|) (-15 -2636 ($ $ (-1 |#2| |#2|))) (-15 -2635 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-86) (-499))) (-15 ** ($ $ (-499))) (-15 -2634 (|#2| (-86) |#2|)) (-15 -2633 ($ |#1| (-316 (-86)))))) (-989) (-606 |#1|)) (T -672)) +((-2638 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-989)) (-5 *1 (-672 *2 *3)) (-4 *3 (-606 *2)))) (-2638 (*1 *1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-989)) (-5 *1 (-672 *2 *3)) (-4 *3 (-606 *2)))) (-2637 (*1 *2 *2) (-12 (-4 *2 (-146)) (-4 *2 (-989)) (-5 *1 (-672 *2 *3)) (-4 *3 (-606 *2)))) (-2636 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-606 *3)) (-4 *3 (-989)) (-5 *1 (-672 *3 *4)))) (-2635 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-606 *3)) (-4 *3 (-989)) (-5 *1 (-672 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-499)) (-4 *4 (-989)) (-5 *1 (-672 *4 *5)) (-4 *5 (-606 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *3 (-989)) (-5 *1 (-672 *3 *4)) (-4 *4 (-606 *3)))) (-2634 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-4 *4 (-989)) (-5 *1 (-672 *4 *2)) (-4 *2 (-606 *4)))) (-2633 (*1 *1 *2 *3) (-12 (-5 *3 (-316 (-86))) (-4 *2 (-989)) (-5 *1 (-672 *2 *4)) (-4 *4 (-606 *2))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 33 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3992 (($ |#1| |#2|) 25 T ELT)) (-3607 (((-3 $ #1#) $) 51 T ELT)) (-2528 (((-85) $) 35 T ELT)) (-2733 ((|#2| $) 12 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 52 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2520 (((-3 $ #1#) $ $) 50 T ELT)) (-4096 (((-797) $) 24 T ELT) (($ (-499)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3248 (((-714)) 28 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 16 T CONST)) (-2785 (($) 30 T CONST)) (-3174 (((-85) $ $) 41 T ELT)) (-3987 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3989 (($ $ $) 43 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 21 T ELT) (($ $ $) 20 T ELT))) +(((-673 |#1| |#2| |#3| |#4| |#5|) (-13 (-989) (-10 -8 (-15 -2733 (|#2| $)) (-15 -4096 (|#1| $)) (-15 -3992 ($ |#1| |#2|)) (-15 -2520 ((-3 $ #1="failed") $ $)) (-15 -3607 ((-3 $ #1#) $)) (-15 -2601 ($ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -673)) +((-3607 (*1 *1 *1) (|partial| -12 (-5 *1 (-673 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2733 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-673 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4096 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-673 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3992 (*1 *1 *2 *3) (-12 (-5 *1 (-673 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2520 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-673 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2601 (*1 *1 *1) (-12 (-5 *1 (-673 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +((* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) +(((-674 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-499) |#1|)) (-15 * (|#1| (-714) |#1|)) (-15 * (|#1| (-857) |#1|))) (-675 |#2|) (-146)) (T -674)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-675 |#1|) (-113) (-146)) (T -675)) +NIL +(-13 (-82 |t#1| |t#1|) (-598 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-598 |#1|) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-2557 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3997 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2521 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 16 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3918 ((|#1| $ |#1|) 24 T ELT) (((-766 |#1|) $ (-766 |#1|)) 32 T ELT)) (-3130 (($ $ $) NIL T ELT)) (-2551 (($ $ $) NIL T ELT)) (-4096 (((-797) $) 39 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2785 (($) 9 T CONST)) (-3174 (((-85) $ $) 48 T ELT)) (-4099 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ $ $) 14 T ELT))) +(((-676 |#1|) (-13 (-427) (-10 -8 (-15 -2521 ($ |#1| |#1| |#1| |#1|)) (-15 -2557 ($ |#1|)) (-15 -3997 ($ |#1|)) (-15 -3607 ($)) (-15 -2557 ($ $ |#1|)) (-15 -3997 ($ $ |#1|)) (-15 -3607 ($ $)) (-15 -3918 (|#1| $ |#1|)) (-15 -3918 ((-766 |#1|) $ (-766 |#1|))))) (-318)) (T -676)) +((-2521 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) (-2557 (*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) (-3997 (*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) (-3607 (*1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) (-2557 (*1 *1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) (-3997 (*1 *1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) (-3607 (*1 *1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) (-3918 (*1 *2 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) (-3918 (*1 *2 *1 *2) (-12 (-5 *2 (-766 *3)) (-4 *3 (-318)) (-5 *1 (-676 *3))))) +((-2525 (($ $ (-857)) 19 T ELT)) (-2524 (($ $ (-857)) 20 T ELT)) (** (($ $ (-857)) 10 T ELT))) +(((-677 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-857))) (-15 -2524 (|#1| |#1| (-857))) (-15 -2525 (|#1| |#1| (-857)))) (-678)) (T -677)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-2525 (($ $ (-857)) 19 T ELT)) (-2524 (($ $ (-857)) 18 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (** (($ $ (-857)) 17 T ELT)) (* (($ $ $) 20 T ELT))) +(((-678) (-113)) (T -678)) +((* (*1 *1 *1 *1) (-4 *1 (-678))) (-2525 (*1 *1 *1 *2) (-12 (-4 *1 (-678)) (-5 *2 (-857)))) (-2524 (*1 *1 *1 *2) (-12 (-4 *1 (-678)) (-5 *2 (-857)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-678)) (-5 *2 (-857))))) +(-13 (-1041) (-10 -8 (-15 * ($ $ $)) (-15 -2525 ($ $ (-857))) (-15 -2524 ($ $ (-857))) (-15 ** ($ $ (-857))))) +(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) +((-2525 (($ $ (-857)) NIL T ELT) (($ $ (-714)) 18 T ELT)) (-2528 (((-85) $) 10 T ELT)) (-2524 (($ $ (-857)) NIL T ELT) (($ $ (-714)) 19 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 16 T ELT))) +(((-679 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-714))) (-15 -2524 (|#1| |#1| (-714))) (-15 -2525 (|#1| |#1| (-714))) (-15 -2528 ((-85) |#1|)) (-15 ** (|#1| |#1| (-857))) (-15 -2524 (|#1| |#1| (-857))) (-15 -2525 (|#1| |#1| (-857)))) (-680)) (T -679)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-2522 (((-3 $ "failed") $) 22 T ELT)) (-2525 (($ $ (-857)) 19 T ELT) (($ $ (-714)) 27 T ELT)) (-3607 (((-3 $ "failed") $) 24 T ELT)) (-2528 (((-85) $) 28 T ELT)) (-2523 (((-3 $ "failed") $) 23 T ELT)) (-2524 (($ $ (-857)) 18 T ELT) (($ $ (-714)) 26 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2785 (($) 29 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (** (($ $ (-857)) 17 T ELT) (($ $ (-714)) 25 T ELT)) (* (($ $ $) 20 T ELT))) +(((-680) (-113)) (T -680)) +((-2785 (*1 *1) (-4 *1 (-680))) (-2528 (*1 *2 *1) (-12 (-4 *1 (-680)) (-5 *2 (-85)))) (-2525 (*1 *1 *1 *2) (-12 (-4 *1 (-680)) (-5 *2 (-714)))) (-2524 (*1 *1 *1 *2) (-12 (-4 *1 (-680)) (-5 *2 (-714)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-680)) (-5 *2 (-714)))) (-3607 (*1 *1 *1) (|partial| -4 *1 (-680))) (-2523 (*1 *1 *1) (|partial| -4 *1 (-680))) (-2522 (*1 *1 *1) (|partial| -4 *1 (-680)))) +(-13 (-678) (-10 -8 (-15 (-2785) ($) -4102) (-15 -2528 ((-85) $)) (-15 -2525 ($ $ (-714))) (-15 -2524 ($ $ (-714))) (-15 ** ($ $ (-714))) (-15 -3607 ((-3 $ "failed") $)) (-15 -2523 ((-3 $ "failed") $)) (-15 -2522 ((-3 $ "failed") $)))) +(((-73) . T) ((-568 (-797)) . T) ((-678) . T) ((-1041) . T) ((-1157) . T)) +((-3258 (((-714)) 39 T ELT)) (-3295 (((-3 (-499) #1="failed") $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3294 (((-499) $) NIL T ELT) (((-361 (-499)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3992 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-361 |#3|)) 49 T ELT)) (-3607 (((-3 $ #1#) $) 69 T ELT)) (-3115 (($) 43 T ELT)) (-3254 ((|#2| $) 21 T ELT)) (-2527 (($) 18 T ELT)) (-3908 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT)) (-2526 (((-647 |#2|) (-1207 $) (-1 |#2| |#2|)) 64 T ELT)) (-4122 (((-1207 |#2|) $) NIL T ELT) (($ (-1207 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2565 ((|#3| $) 36 T ELT)) (-2113 (((-1207 $)) 33 T ELT))) +(((-681 |#1| |#2| |#3|) (-10 -7 (-15 -3908 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1| (-1117))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -3115 (|#1|)) (-15 -3258 ((-714))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|) (-714))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2526 ((-647 |#2|) (-1207 |#1|) (-1 |#2| |#2|))) (-15 -3992 ((-3 |#1| #1="failed") (-361 |#3|))) (-15 -4122 (|#1| |#3|)) (-15 -3992 (|#1| |#3|)) (-15 -2527 (|#1|)) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -4122 (|#3| |#1|)) (-15 -4122 (|#1| (-1207 |#2|))) (-15 -4122 ((-1207 |#2|) |#1|)) (-15 -2113 ((-1207 |#1|))) (-15 -2565 (|#3| |#1|)) (-15 -3254 (|#2| |#1|)) (-15 -3607 ((-3 |#1| #1#) |#1|))) (-682 |#2| |#3|) (-146) (-1183 |#2|)) (T -681)) +((-3258 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1183 *4)) (-5 *2 (-714)) (-5 *1 (-681 *3 *4 *5)) (-4 *3 (-682 *4 *5))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 111 (|has| |#1| (-318)) ELT)) (-2164 (($ $) 112 (|has| |#1| (-318)) ELT)) (-2162 (((-85) $) 114 (|has| |#1| (-318)) ELT)) (-1880 (((-647 |#1|) (-1207 $)) 58 T ELT) (((-647 |#1|)) 74 T ELT)) (-3470 ((|#1| $) 64 T ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) 164 (|has| |#1| (-305)) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 131 (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) 132 (|has| |#1| (-318)) ELT)) (-1678 (((-85) $ $) 122 (|has| |#1| (-318)) ELT)) (-3258 (((-714)) 105 (|has| |#1| (-323)) ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 (-499) #1="failed") $) 191 (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) 189 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 186 T ELT)) (-3294 (((-499) $) 190 (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) 188 (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) 187 T ELT)) (-1890 (($ (-1207 |#1|) (-1207 $)) 60 T ELT) (($ (-1207 |#1|)) 77 T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| |#1| (-305)) ELT)) (-2683 (($ $ $) 126 (|has| |#1| (-318)) ELT)) (-1879 (((-647 |#1|) $ (-1207 $)) 65 T ELT) (((-647 |#1|) $) 72 T ELT)) (-2380 (((-647 (-499)) (-647 $)) 183 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 182 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 181 T ELT) (((-647 |#1|) (-647 $)) 180 T ELT)) (-3992 (($ |#2|) 175 T ELT) (((-3 $ "failed") (-361 |#2|)) 172 (|has| |#1| (-318)) ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3231 (((-857)) 66 T ELT)) (-3115 (($) 108 (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) 125 (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 120 (|has| |#1| (-318)) ELT)) (-2954 (($) 166 (|has| |#1| (-305)) ELT)) (-1773 (((-85) $) 167 (|has| |#1| (-305)) ELT)) (-1864 (($ $ (-714)) 158 (|has| |#1| (-305)) ELT) (($ $) 157 (|has| |#1| (-305)) ELT)) (-3873 (((-85) $) 133 (|has| |#1| (-318)) ELT)) (-3922 (((-857) $) 169 (|has| |#1| (-305)) ELT) (((-766 (-857)) $) 155 (|has| |#1| (-305)) ELT)) (-2528 (((-85) $) 40 T ELT)) (-3254 ((|#1| $) 63 T ELT)) (-3585 (((-649 $) $) 159 (|has| |#1| (-305)) ELT)) (-1675 (((-3 (-599 $) #2="failed") (-599 $) $) 129 (|has| |#1| (-318)) ELT)) (-2115 ((|#2| $) 56 (|has| |#1| (-318)) ELT)) (-2111 (((-857) $) 107 (|has| |#1| (-323)) ELT)) (-3200 ((|#2| $) 173 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 185 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 184 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 179 T ELT) (((-647 |#1|) (-1207 $)) 178 T ELT)) (-1993 (($ (-599 $)) 118 (|has| |#1| (-318)) ELT) (($ $ $) 117 (|has| |#1| (-318)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 134 (|has| |#1| (-318)) ELT)) (-3586 (($) 160 (|has| |#1| (-305)) CONST)) (-2518 (($ (-857)) 106 (|has| |#1| (-323)) ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2527 (($) 177 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 119 (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) 116 (|has| |#1| (-318)) ELT) (($ $ $) 115 (|has| |#1| (-318)) ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) 163 (|has| |#1| (-305)) ELT)) (-3882 (((-359 $) $) 130 (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 127 (|has| |#1| (-318)) ELT)) (-3606 (((-3 $ "failed") $ $) 110 (|has| |#1| (-318)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 121 (|has| |#1| (-318)) ELT)) (-1677 (((-714) $) 123 (|has| |#1| (-318)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 124 (|has| |#1| (-318)) ELT)) (-3907 ((|#1| (-1207 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-1865 (((-714) $) 168 (|has| |#1| (-305)) ELT) (((-3 (-714) "failed") $ $) 156 (|has| |#1| (-305)) ELT)) (-3908 (($ $ (-714)) 153 (-3677 (-2681 (|has| |#1| (-189)) (|has| |#1| (-318))) (|has| |#1| (-305))) ELT) (($ $) 151 (-3677 (-2681 (|has| |#1| (-189)) (|has| |#1| (-318))) (|has| |#1| (-305))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 147 (-2681 (|has| |#1| (-838 (-1117))) (|has| |#1| (-318))) ELT) (($ $ (-1117) (-714)) 146 (-2681 (|has| |#1| (-838 (-1117))) (|has| |#1| (-318))) ELT) (($ $ (-599 (-1117))) 145 (-2681 (|has| |#1| (-838 (-1117))) (|has| |#1| (-318))) ELT) (($ $ (-1117)) 143 (-2681 (|has| |#1| (-838 (-1117))) (|has| |#1| (-318))) ELT) (($ $ (-1 |#1| |#1|)) 142 (|has| |#1| (-318)) ELT) (($ $ (-1 |#1| |#1|) (-714)) 141 (|has| |#1| (-318)) ELT)) (-2526 (((-647 |#1|) (-1207 $) (-1 |#1| |#1|)) 171 (|has| |#1| (-318)) ELT)) (-3323 ((|#2|) 176 T ELT)) (-1767 (($) 165 (|has| |#1| (-305)) ELT)) (-3362 (((-1207 |#1|) $ (-1207 $)) 62 T ELT) (((-647 |#1|) (-1207 $) (-1207 $)) 61 T ELT) (((-1207 |#1|) $) 79 T ELT) (((-647 |#1|) (-1207 $)) 78 T ELT)) (-4122 (((-1207 |#1|) $) 76 T ELT) (($ (-1207 |#1|)) 75 T ELT) ((|#2| $) 192 T ELT) (($ |#2|) 174 T ELT)) (-2824 (((-3 (-1207 $) "failed") (-647 $)) 162 (|has| |#1| (-305)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 49 T ELT) (($ $) 109 (|has| |#1| (-318)) ELT) (($ (-361 (-499))) 104 (-3677 (|has| |#1| (-318)) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-2823 (($ $) 161 (|has| |#1| (-305)) ELT) (((-649 $) $) 55 (|has| |#1| (-118)) ELT)) (-2565 ((|#2| $) 57 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2113 (((-1207 $)) 80 T ELT)) (-2163 (((-85) $ $) 113 (|has| |#1| (-318)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-714)) 154 (-3677 (-2681 (|has| |#1| (-189)) (|has| |#1| (-318))) (|has| |#1| (-305))) ELT) (($ $) 152 (-3677 (-2681 (|has| |#1| (-189)) (|has| |#1| (-318))) (|has| |#1| (-305))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 150 (-2681 (|has| |#1| (-838 (-1117))) (|has| |#1| (-318))) ELT) (($ $ (-1117) (-714)) 149 (-2681 (|has| |#1| (-838 (-1117))) (|has| |#1| (-318))) ELT) (($ $ (-599 (-1117))) 148 (-2681 (|has| |#1| (-838 (-1117))) (|has| |#1| (-318))) ELT) (($ $ (-1117)) 144 (-2681 (|has| |#1| (-838 (-1117))) (|has| |#1| (-318))) ELT) (($ $ (-1 |#1| |#1|)) 140 (|has| |#1| (-318)) ELT) (($ $ (-1 |#1| |#1|) (-714)) 139 (|has| |#1| (-318)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 138 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 135 (|has| |#1| (-318)) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ (-361 (-499)) $) 137 (|has| |#1| (-318)) ELT) (($ $ (-361 (-499))) 136 (|has| |#1| (-318)) ELT))) +(((-682 |#1| |#2|) (-113) (-146) (-1183 |t#1|)) (T -682)) +((-2527 (*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-682 *2 *3)) (-4 *3 (-1183 *2)))) (-3323 (*1 *2) (-12 (-4 *1 (-682 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1183 *3)))) (-3992 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-682 *3 *2)) (-4 *2 (-1183 *3)))) (-4122 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-682 *3 *2)) (-4 *2 (-1183 *3)))) (-3200 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1183 *3)))) (-3992 (*1 *1 *2) (|partial| -12 (-5 *2 (-361 *4)) (-4 *4 (-1183 *3)) (-4 *3 (-318)) (-4 *3 (-146)) (-4 *1 (-682 *3 *4)))) (-2526 (*1 *2 *3 *4) (-12 (-5 *3 (-1207 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-318)) (-4 *1 (-682 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1183 *5)) (-5 *2 (-647 *5))))) +(-13 (-364 |t#1| |t#2|) (-146) (-569 |t#2|) (-366 |t#1|) (-332 |t#1|) (-10 -8 (-15 -2527 ($)) (-15 -3323 (|t#2|)) (-15 -3992 ($ |t#2|)) (-15 -4122 ($ |t#2|)) (-15 -3200 (|t#2| $)) (IF (|has| |t#1| (-323)) (-6 (-323)) |%noBranch|) (IF (|has| |t#1| (-318)) (PROGN (-6 (-318)) (-6 (-184 |t#1|)) (-15 -3992 ((-3 $ "failed") (-361 |t#2|))) (-15 -2526 ((-647 |t#1|) (-1207 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-305)) (-6 (-305)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-38 |#1|) . T) ((-38 $) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) -3677 (|has| |#1| (-305)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-305)) (|has| |#1| (-318))) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-571 $) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-568 (-797)) . T) ((-146) . T) ((-569 |#2|) . T) ((-186 $) -3677 (|has| |#1| (-305)) (-12 (|has| |#1| (-189)) (|has| |#1| (-318))) (-12 (|has| |#1| (-190)) (|has| |#1| (-318)))) ((-184 |#1|) |has| |#1| (-318)) ((-190) -3677 (|has| |#1| (-305)) (-12 (|has| |#1| (-190)) (|has| |#1| (-318)))) ((-189) -3677 (|has| |#1| (-305)) (-12 (|has| |#1| (-189)) (|has| |#1| (-318))) (-12 (|has| |#1| (-190)) (|has| |#1| (-318)))) ((-224 |#1|) |has| |#1| (-318)) ((-200) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-244) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-261) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-318) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-356) |has| |#1| (-305)) ((-323) -3677 (|has| |#1| (-305)) (|has| |#1| (-323))) ((-305) |has| |#1| (-305)) ((-325 |#1| |#2|) . T) ((-364 |#1| |#2|) . T) ((-332 |#1|) . T) ((-366 |#1|) . T) ((-406) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-510) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-604 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-606 (-499)) |has| |#1| (-596 (-499))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-598 |#1|) . T) ((-598 $) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-596 (-499)) |has| |#1| (-596 (-499))) ((-596 |#1|) . T) ((-675 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-675 |#1|) . T) ((-675 $) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-684) . T) ((-831 $ (-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117))))) ((-836 (-1117)) -12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117)))) ((-838 (-1117)) -3677 (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) (-12 (|has| |#1| (-318)) (|has| |#1| (-836 (-1117))))) ((-859) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T) ((-991 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-991 |#1|) . T) ((-991 $) . T) ((-996 (-361 (-499))) -3677 (|has| |#1| (-305)) (|has| |#1| (-318))) ((-996 |#1|) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1092) |has| |#1| (-305)) ((-1157) . T) ((-1162) -3677 (|has| |#1| (-305)) (|has| |#1| (-318)))) +((-3874 (($) 11 T ELT)) (-3607 (((-3 $ "failed") $) 14 T ELT)) (-2528 (((-85) $) 10 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 20 T ELT))) +(((-683 |#1|) (-10 -7 (-15 -3607 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-714))) (-15 -2528 ((-85) |#1|)) (-15 -3874 (|#1|)) (-15 ** (|#1| |#1| (-857)))) (-684)) (T -683)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3874 (($) 23 T CONST)) (-3607 (((-3 $ "failed") $) 20 T ELT)) (-2528 (((-85) $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2785 (($) 24 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (** (($ $ (-857)) 17 T ELT) (($ $ (-714)) 21 T ELT)) (* (($ $ $) 18 T ELT))) +(((-684) (-113)) (T -684)) +((-2785 (*1 *1) (-4 *1 (-684))) (-3874 (*1 *1) (-4 *1 (-684))) (-2528 (*1 *2 *1) (-12 (-4 *1 (-684)) (-5 *2 (-85)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-684)) (-5 *2 (-714)))) (-3607 (*1 *1 *1) (|partial| -4 *1 (-684)))) +(-13 (-1052) (-10 -8 (-15 (-2785) ($) -4102) (-15 -3874 ($) -4102) (-15 -2528 ((-85) $)) (-15 ** ($ $ (-714))) (-15 -3607 ((-3 $ "failed") $)))) +(((-73) . T) ((-568 (-797)) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2529 (((-2 (|:| -3212 (-359 |#2|)) (|:| |special| (-359 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3558 (((-2 (|:| -3212 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2530 ((|#2| (-361 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3575 (((-2 (|:| |poly| |#2|) (|:| -3212 (-361 |#2|)) (|:| |special| (-361 |#2|))) (-361 |#2|) (-1 |#2| |#2|)) 48 T ELT))) +(((-685 |#1| |#2|) (-10 -7 (-15 -3558 ((-2 (|:| -3212 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2529 ((-2 (|:| -3212 (-359 |#2|)) (|:| |special| (-359 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2530 (|#2| (-361 |#2|) (-1 |#2| |#2|))) (-15 -3575 ((-2 (|:| |poly| |#2|) (|:| -3212 (-361 |#2|)) (|:| |special| (-361 |#2|))) (-361 |#2|) (-1 |#2| |#2|)))) (-318) (-1183 |#1|)) (T -685)) +((-3575 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3212 (-361 *6)) (|:| |special| (-361 *6)))) (-5 *1 (-685 *5 *6)) (-5 *3 (-361 *6)))) (-2530 (*1 *2 *3 *4) (-12 (-5 *3 (-361 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1183 *5)) (-5 *1 (-685 *5 *2)) (-4 *5 (-318)))) (-2529 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-318)) (-5 *2 (-2 (|:| -3212 (-359 *3)) (|:| |special| (-359 *3)))) (-5 *1 (-685 *5 *3)))) (-3558 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-318)) (-5 *2 (-2 (|:| -3212 *3) (|:| |special| *3))) (-5 *1 (-685 *5 *3))))) +((-2531 ((|#7| (-599 |#5|) |#6|) NIL T ELT)) (-4108 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) +(((-686 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4108 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2531 (|#7| (-599 |#5|) |#6|))) (-781) (-738) (-738) (-989) (-989) (-888 |#4| |#2| |#1|) (-888 |#5| |#3| |#1|)) (T -686)) +((-2531 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *9)) (-4 *9 (-989)) (-4 *5 (-781)) (-4 *6 (-738)) (-4 *8 (-989)) (-4 *2 (-888 *9 *7 *5)) (-5 *1 (-686 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-738)) (-4 *4 (-888 *8 *6 *5)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-989)) (-4 *9 (-989)) (-4 *5 (-781)) (-4 *6 (-738)) (-4 *2 (-888 *9 *7 *5)) (-5 *1 (-686 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-738)) (-4 *4 (-888 *8 *6 *5))))) +((-4108 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) +(((-687 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4108 (|#7| (-1 |#2| |#1|) |#6|))) (-781) (-781) (-738) (-738) (-989) (-888 |#5| |#3| |#1|) (-888 |#5| |#4| |#2|)) (T -687)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-781)) (-4 *6 (-781)) (-4 *7 (-738)) (-4 *9 (-989)) (-4 *2 (-888 *9 *8 *6)) (-5 *1 (-687 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-738)) (-4 *4 (-888 *9 *7 *5))))) +((-3882 (((-359 |#4|) |#4|) 42 T ELT))) +(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3882 ((-359 |#4|) |#4|))) (-738) (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ "failed") (-1117))))) (-261) (-888 (-884 |#3|) |#1| |#2|)) (T -688)) +((-3882 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ "failed") (-1117)))))) (-4 *6 (-261)) (-5 *2 (-359 *3)) (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-888 (-884 *6) *4 *5))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-798 |#1|)) $) NIL T ELT)) (-3206 (((-1111 $) $ (-798 |#1|)) NIL T ELT) (((-1111 |#2|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#2| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#2| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#2| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-798 |#1|))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#2| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#2| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-3 (-798 |#1|) #1#) $) NIL T ELT)) (-3294 ((|#2| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-798 |#1|) $) NIL T ELT)) (-3906 (($ $ $ (-798 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#2|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#2| (-406)) ELT) (($ $ (-798 |#1|)) NIL (|has| |#2| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#2| (-848)) ELT)) (-1694 (($ $ |#2| (-484 (-798 |#1|)) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-798 |#1|) (-821 (-333))) (|has| |#2| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-798 |#1|) (-821 (-499))) (|has| |#2| (-821 (-499)))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3207 (($ (-1111 |#2|) (-798 |#1|)) NIL T ELT) (($ (-1111 $) (-798 |#1|)) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#2| (-484 (-798 |#1|))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-798 |#1|)) NIL T ELT)) (-2941 (((-484 (-798 |#1|)) $) NIL T ELT) (((-714) $ (-798 |#1|)) NIL T ELT) (((-599 (-714)) $ (-599 (-798 |#1|))) NIL T ELT)) (-1695 (($ (-1 (-484 (-798 |#1|)) (-484 (-798 |#1|))) $) NIL T ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3205 (((-3 (-798 |#1|) #1#) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#2| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#2| (-406)) ELT) (($ $ $) NIL (|has| |#2| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-798 |#1|)) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 ((|#2| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#2| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#2| (-406)) ELT) (($ $ $) NIL (|has| |#2| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#2| (-848)) ELT)) (-3606 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-510)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-798 |#1|) |#2|) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 |#2|)) NIL T ELT) (($ $ (-798 |#1|) $) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 $)) NIL T ELT)) (-3907 (($ $ (-798 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3908 (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|))) NIL T ELT) (($ $ (-798 |#1|)) NIL T ELT)) (-4098 (((-484 (-798 |#1|)) $) NIL T ELT) (((-714) $ (-798 |#1|)) NIL T ELT) (((-599 (-714)) $ (-599 (-798 |#1|))) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-798 |#1|) (-569 (-825 (-333)))) (|has| |#2| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-798 |#1|) (-569 (-825 (-499)))) (|has| |#2| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-798 |#1|) (-569 (-488))) (|has| |#2| (-569 (-488)))) ELT)) (-2938 ((|#2| $) NIL (|has| |#2| (-406)) ELT) (($ $ (-798 |#1|)) NIL (|has| |#2| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-798 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-510)) ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#2| (-38 (-361 (-499)))) (|has| |#2| (-978 (-361 (-499))))) ELT)) (-3967 (((-599 |#2|) $) NIL T ELT)) (-3827 ((|#2| $ (-484 (-798 |#1|))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#2| (-848))) (|has| |#2| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#2| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#2| (-510)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-599 (-798 |#1|)) (-599 (-714))) NIL T ELT) (($ $ (-798 |#1|) (-714)) NIL T ELT) (($ $ (-599 (-798 |#1|))) NIL T ELT) (($ $ (-798 |#1|)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#2|) NIL (|has| |#2| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#2| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#2| (-38 (-361 (-499)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-689 |#1| |#2|) (-888 |#2| (-484 (-798 |#1|)) (-798 |#1|)) (-599 (-1117)) (-989)) (T -689)) +NIL +((-2532 (((-2 (|:| -2600 (-884 |#3|)) (|:| -2159 (-884 |#3|))) |#4|) 14 T ELT)) (-3107 ((|#4| |#4| |#2|) 33 T ELT)) (-2535 ((|#4| (-361 (-884 |#3|)) |#2|) 62 T ELT)) (-2534 ((|#4| (-1111 (-884 |#3|)) |#2|) 74 T ELT)) (-2533 ((|#4| (-1111 |#4|) |#2|) 49 T ELT)) (-3106 ((|#4| |#4| |#2|) 52 T ELT)) (-3882 (((-359 |#4|) |#4|) 40 T ELT))) +(((-690 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2532 ((-2 (|:| -2600 (-884 |#3|)) (|:| -2159 (-884 |#3|))) |#4|)) (-15 -3106 (|#4| |#4| |#2|)) (-15 -2533 (|#4| (-1111 |#4|) |#2|)) (-15 -3107 (|#4| |#4| |#2|)) (-15 -2534 (|#4| (-1111 (-884 |#3|)) |#2|)) (-15 -2535 (|#4| (-361 (-884 |#3|)) |#2|)) (-15 -3882 ((-359 |#4|) |#4|))) (-738) (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)))) (-510) (-888 (-361 (-884 |#3|)) |#1| |#2|)) (T -690)) +((-3882 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))) (-4 *6 (-510)) (-5 *2 (-359 *3)) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-888 (-361 (-884 *6)) *4 *5)))) (-2535 (*1 *2 *3 *4) (-12 (-4 *6 (-510)) (-4 *2 (-888 *3 *5 *4)) (-5 *1 (-690 *5 *4 *6 *2)) (-5 *3 (-361 (-884 *6))) (-4 *5 (-738)) (-4 *4 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))))) (-2534 (*1 *2 *3 *4) (-12 (-5 *3 (-1111 (-884 *6))) (-4 *6 (-510)) (-4 *2 (-888 (-361 (-884 *6)) *5 *4)) (-5 *1 (-690 *5 *4 *6 *2)) (-4 *5 (-738)) (-4 *4 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))))) (-3107 (*1 *2 *2 *3) (-12 (-4 *4 (-738)) (-4 *3 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))) (-4 *5 (-510)) (-5 *1 (-690 *4 *3 *5 *2)) (-4 *2 (-888 (-361 (-884 *5)) *4 *3)))) (-2533 (*1 *2 *3 *4) (-12 (-5 *3 (-1111 *2)) (-4 *2 (-888 (-361 (-884 *6)) *5 *4)) (-5 *1 (-690 *5 *4 *6 *2)) (-4 *5 (-738)) (-4 *4 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))) (-4 *6 (-510)))) (-3106 (*1 *2 *2 *3) (-12 (-4 *4 (-738)) (-4 *3 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))) (-4 *5 (-510)) (-5 *1 (-690 *4 *3 *5 *2)) (-4 *2 (-888 (-361 (-884 *5)) *4 *3)))) (-2532 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))) (-4 *6 (-510)) (-5 *2 (-2 (|:| -2600 (-884 *6)) (|:| -2159 (-884 *6)))) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-888 (-361 (-884 *6)) *4 *5))))) +((-3882 (((-359 |#4|) |#4|) 54 T ELT))) +(((-691 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3882 ((-359 |#4|) |#4|))) (-738) (-781) (-13 (-261) (-120)) (-888 (-361 |#3|) |#1| |#2|)) (T -691)) +((-3882 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-13 (-261) (-120))) (-5 *2 (-359 *3)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-888 (-361 *6) *4 *5))))) +((-4108 (((-693 |#2| |#3|) (-1 |#2| |#1|) (-693 |#1| |#3|)) 18 T ELT))) +(((-692 |#1| |#2| |#3|) (-10 -7 (-15 -4108 ((-693 |#2| |#3|) (-1 |#2| |#1|) (-693 |#1| |#3|)))) (-989) (-989) (-684)) (T -692)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-693 *5 *7)) (-4 *5 (-989)) (-4 *6 (-989)) (-4 *7 (-684)) (-5 *2 (-693 *6 *7)) (-5 *1 (-692 *5 *6 *7))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 36 T ELT)) (-3924 (((-599 (-2 (|:| -4104 |#1|) (|:| -4088 |#2|))) $) 37 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3258 (((-714)) 22 (-12 (|has| |#2| (-323)) (|has| |#1| (-323))) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3294 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-4109 (($ $) 99 (|has| |#2| (-781)) ELT)) (-3607 (((-3 $ #1#) $) 83 T ELT)) (-3115 (($) 48 (-12 (|has| |#2| (-323)) (|has| |#1| (-323))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) 70 T ELT)) (-2942 (((-599 $) $) 52 T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| |#2|) 17 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2111 (((-857) $) 43 (-12 (|has| |#2| (-323)) (|has| |#1| (-323))) ELT)) (-3015 ((|#2| $) 98 (|has| |#2| (-781)) ELT)) (-3312 ((|#1| $) 97 (|has| |#2| (-781)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) 35 (-12 (|has| |#2| (-323)) (|has| |#1| (-323))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 96 T ELT) (($ (-499)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-599 (-2 (|:| -4104 |#1|) (|:| -4088 |#2|)))) 11 T ELT)) (-3967 (((-599 |#1|) $) 54 T ELT)) (-3827 ((|#1| $ |#2|) 114 T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 12 T CONST)) (-2785 (($) 44 T CONST)) (-3174 (((-85) $ $) 104 T ELT)) (-3987 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 33 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-693 |#1| |#2|) (-13 (-989) (-978 |#2|) (-978 |#1|) (-10 -8 (-15 -3014 ($ |#1| |#2|)) (-15 -3827 (|#1| $ |#2|)) (-15 -4096 ($ (-599 (-2 (|:| -4104 |#1|) (|:| -4088 |#2|))))) (-15 -3924 ((-599 (-2 (|:| -4104 |#1|) (|:| -4088 |#2|))) $)) (-15 -4108 ($ (-1 |#1| |#1|) $)) (-15 -4087 ((-85) $)) (-15 -3967 ((-599 |#1|) $)) (-15 -2942 ((-599 $) $)) (-15 -2536 ((-714) $)) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-323)) (IF (|has| |#2| (-323)) (-6 (-323)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-781)) (PROGN (-15 -3015 (|#2| $)) (-15 -3312 (|#1| $)) (-15 -4109 ($ $))) |%noBranch|))) (-989) (-684)) (T -693)) +((-3014 (*1 *1 *2 *3) (-12 (-5 *1 (-693 *2 *3)) (-4 *2 (-989)) (-4 *3 (-684)))) (-3827 (*1 *2 *1 *3) (-12 (-4 *2 (-989)) (-5 *1 (-693 *2 *3)) (-4 *3 (-684)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-2 (|:| -4104 *3) (|:| -4088 *4)))) (-4 *3 (-989)) (-4 *4 (-684)) (-5 *1 (-693 *3 *4)))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| -4104 *3) (|:| -4088 *4)))) (-5 *1 (-693 *3 *4)) (-4 *3 (-989)) (-4 *4 (-684)))) (-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-693 *3 *4)) (-4 *4 (-684)))) (-4087 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-693 *3 *4)) (-4 *3 (-989)) (-4 *4 (-684)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-693 *3 *4)) (-4 *3 (-989)) (-4 *4 (-684)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-599 (-693 *3 *4))) (-5 *1 (-693 *3 *4)) (-4 *3 (-989)) (-4 *4 (-684)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-693 *3 *4)) (-4 *3 (-989)) (-4 *4 (-684)))) (-3015 (*1 *2 *1) (-12 (-4 *2 (-684)) (-4 *2 (-781)) (-5 *1 (-693 *3 *2)) (-4 *3 (-989)))) (-3312 (*1 *2 *1) (-12 (-4 *2 (-989)) (-5 *1 (-693 *2 *3)) (-4 *3 (-781)) (-4 *3 (-684)))) (-4109 (*1 *1 *1) (-12 (-5 *1 (-693 *2 *3)) (-4 *3 (-781)) (-4 *2 (-989)) (-4 *3 (-684))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3372 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3374 (($ $ $) 99 T ELT)) (-3373 (((-85) $ $) 107 T ELT)) (-3377 (($ (-599 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1603 (($ (-1 (-85) |#1|) $) 86 (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2481 (($ $) 88 T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3545 (($ |#1| $) 71 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -4145)) ELT) (($ |#1| $ (-499)) 78 T ELT) (($ (-1 (-85) |#1|) $ (-499)) 81 T ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (($ |#1| $ (-499)) 83 T ELT) (($ (-1 (-85) |#1|) $ (-499)) 84 T ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3379 (((-85) $ $) 106 T ELT)) (-2537 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-599 |#1|)) 23 T ELT)) (-2727 (((-599 |#1|) $) 38 T ELT)) (-3383 (((-85) |#1| $) 66 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3376 (($ $ $) 97 T ELT)) (-1308 ((|#1| $) 63 T ELT)) (-3757 (($ |#1| $) 64 T ELT) (($ |#1| $ (-714)) 89 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1309 ((|#1| $) 62 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 57 T ELT)) (-3713 (($) 14 T ELT)) (-2480 (((-599 (-2 (|:| |entry| |#1|) (|:| -2048 (-714)))) $) 56 T ELT)) (-3375 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1499 (($) 16 T ELT) (($ (-599 |#1|)) 25 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 69 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) 82 T ELT)) (-4122 (((-488) $) 36 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 22 T ELT)) (-4096 (((-797) $) 50 T ELT)) (-3378 (($ (-599 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-1310 (($ (-599 |#1|)) 24 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 103 T ELT)) (-4107 (((-714) $) 68 (|has| $ (-6 -4145)) ELT))) +(((-694 |#1|) (-13 (-695 |#1|) (-10 -8 (-6 -4145) (-6 -4146) (-15 -2537 ($)) (-15 -2537 ($ |#1|)) (-15 -2537 ($ (-599 |#1|))) (-15 -2727 ((-599 |#1|) $)) (-15 -3546 ($ |#1| $ (-499))) (-15 -3546 ($ (-1 (-85) |#1|) $ (-499))) (-15 -3545 ($ |#1| $ (-499))) (-15 -3545 ($ (-1 (-85) |#1|) $ (-499))))) (-1041)) (T -694)) +((-2537 (*1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1041)))) (-2537 (*1 *1 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1041)))) (-2537 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-694 *3)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1041)))) (-3546 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *1 (-694 *2)) (-4 *2 (-1041)))) (-3546 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-499)) (-4 *4 (-1041)) (-5 *1 (-694 *4)))) (-3545 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *1 (-694 *2)) (-4 *2 (-1041)))) (-3545 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-499)) (-4 *4 (-1041)) (-5 *1 (-694 *4))))) +((-2687 (((-85) $ $) 19 T ELT)) (-3372 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3374 (($ $ $) 77 T ELT)) (-3373 (((-85) $ $) 78 T ELT)) (-3377 (($ (-599 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1603 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-2481 (($ $) 66 T ELT)) (-1386 (($ $) 62 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3545 (($ |#1| $) 51 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3546 (($ |#1| $) 61 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3379 (((-85) $ $) 69 T ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3380 (((-1099) $) 22 T ELT)) (-3376 (($ $ $) 74 T ELT)) (-1308 ((|#1| $) 43 T ELT)) (-3757 (($ |#1| $) 44 T ELT) (($ |#1| $ (-714)) 67 T ELT)) (-3381 (((-1060) $) 21 T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-2480 (((-599 (-2 (|:| |entry| |#1|) (|:| -2048 (-714)))) $) 65 T ELT)) (-3375 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1499 (($) 53 T ELT) (($ (-599 |#1|)) 52 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 63 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 54 T ELT)) (-4096 (((-797) $) 17 T ELT)) (-3378 (($ (-599 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1297 (((-85) $ $) 20 T ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 T ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-695 |#1|) (-113) (-1041)) (T -695)) +NIL +(-13 (-653 |t#1|) (-1039 |t#1|)) +(((-34) . T) ((-78 |#1|) . T) ((-73) . T) ((-568 (-797)) . T) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-192 |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-653 |#1|) . T) ((-1039 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-2538 (((-1213) (-1099)) 8 T ELT))) +(((-696) (-10 -7 (-15 -2538 ((-1213) (-1099))))) (T -696)) +((-2538 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-696))))) +((-2539 (((-599 |#1|) (-599 |#1|) (-599 |#1|)) 15 T ELT))) +(((-697 |#1|) (-10 -7 (-15 -2539 ((-599 |#1|) (-599 |#1|) (-599 |#1|)))) (-781)) (T -697)) +((-2539 (*1 *2 *2 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-697 *3))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3204 (((-599 |#2|) $) 156 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 149 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 148 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 146 (|has| |#1| (-510)) ELT)) (-3632 (($ $) 105 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 88 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3158 (($ $) 87 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3630 (($ $) 104 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 89 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3634 (($ $) 103 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 90 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) 22 T CONST)) (-4109 (($ $) 140 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3964 (((-884 |#1|) $ (-714)) 118 T ELT) (((-884 |#1|) $ (-714) (-714)) 117 T ELT)) (-3013 (((-85) $) 157 T ELT)) (-3777 (($) 115 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-714) $ |#2|) 120 T ELT) (((-714) $ |#2| (-714)) 119 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 86 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-4087 (((-85) $) 138 T ELT)) (-3014 (($ $ (-599 |#2|) (-599 (-484 |#2|))) 155 T ELT) (($ $ |#2| (-484 |#2|)) 154 T ELT) (($ |#1| (-484 |#2|)) 139 T ELT) (($ $ |#2| (-714)) 122 T ELT) (($ $ (-599 |#2|) (-599 (-714))) 121 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 137 T ELT)) (-4092 (($ $) 112 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) 135 T ELT)) (-3312 ((|#1| $) 134 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3962 (($ $ |#2|) 116 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3919 (($ $ (-714)) 123 T ELT)) (-3606 (((-3 $ "failed") $ $) 150 (|has| |#1| (-510)) ELT)) (-4093 (($ $) 113 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (($ $ |#2| $) 131 T ELT) (($ $ (-599 |#2|) (-599 $)) 130 T ELT) (($ $ (-599 (-247 $))) 129 T ELT) (($ $ (-247 $)) 128 T ELT) (($ $ $ $) 127 T ELT) (($ $ (-599 $) (-599 $)) 126 T ELT)) (-3908 (($ $ (-599 |#2|) (-599 (-714))) 49 T ELT) (($ $ |#2| (-714)) 48 T ELT) (($ $ (-599 |#2|)) 47 T ELT) (($ $ |#2|) 45 T ELT)) (-4098 (((-484 |#2|) $) 136 T ELT)) (-3635 (($ $) 102 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 91 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 101 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 92 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 100 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 93 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) 158 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 153 (|has| |#1| (-146)) ELT) (($ $) 151 (|has| |#1| (-510)) ELT) (($ (-361 (-499))) 143 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3827 ((|#1| $ (-484 |#2|)) 141 T ELT) (($ $ |#2| (-714)) 125 T ELT) (($ $ (-599 |#2|) (-599 (-714))) 124 T ELT)) (-2823 (((-649 $) $) 152 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-3638 (($ $) 111 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 99 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) 147 (|has| |#1| (-510)) ELT)) (-3636 (($ $) 110 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 98 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 109 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 97 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3641 (($ $) 108 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 96 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 107 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 95 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 106 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 94 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-599 |#2|) (-599 (-714))) 52 T ELT) (($ $ |#2| (-714)) 51 T ELT) (($ $ (-599 |#2|)) 50 T ELT) (($ $ |#2|) 46 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 142 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ $) 114 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 85 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 145 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) 144 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 133 T ELT) (($ $ |#1|) 132 T ELT))) +(((-698 |#1| |#2|) (-113) (-989) (-781)) (T -698)) +((-3827 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-698 *4 *2)) (-4 *4 (-989)) (-4 *2 (-781)))) (-3827 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 *5)) (-5 *3 (-599 (-714))) (-4 *1 (-698 *4 *5)) (-4 *4 (-989)) (-4 *5 (-781)))) (-3919 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-698 *3 *4)) (-4 *3 (-989)) (-4 *4 (-781)))) (-3014 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-698 *4 *2)) (-4 *4 (-989)) (-4 *2 (-781)))) (-3014 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 *5)) (-5 *3 (-599 (-714))) (-4 *1 (-698 *4 *5)) (-4 *4 (-989)) (-4 *5 (-781)))) (-3922 (*1 *2 *1 *3) (-12 (-4 *1 (-698 *4 *3)) (-4 *4 (-989)) (-4 *3 (-781)) (-5 *2 (-714)))) (-3922 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-714)) (-4 *1 (-698 *4 *3)) (-4 *4 (-989)) (-4 *3 (-781)))) (-3964 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-698 *4 *5)) (-4 *4 (-989)) (-4 *5 (-781)) (-5 *2 (-884 *4)))) (-3964 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-714)) (-4 *1 (-698 *4 *5)) (-4 *4 (-989)) (-4 *5 (-781)) (-5 *2 (-884 *4)))) (-3962 (*1 *1 *1 *2) (-12 (-4 *1 (-698 *3 *2)) (-4 *3 (-989)) (-4 *2 (-781)) (-4 *3 (-38 (-361 (-499))))))) +(-13 (-836 |t#2|) (-913 |t#1| (-484 |t#2|) |t#2|) (-468 |t#2| $) (-263 $) (-10 -8 (-15 -3827 ($ $ |t#2| (-714))) (-15 -3827 ($ $ (-599 |t#2|) (-599 (-714)))) (-15 -3919 ($ $ (-714))) (-15 -3014 ($ $ |t#2| (-714))) (-15 -3014 ($ $ (-599 |t#2|) (-599 (-714)))) (-15 -3922 ((-714) $ |t#2|)) (-15 -3922 ((-714) $ |t#2| (-714))) (-15 -3964 ((-884 |t#1|) $ (-714))) (-15 -3964 ((-884 |t#1|) $ (-714) (-714))) (IF (|has| |t#1| (-38 (-361 (-499)))) (PROGN (-15 -3962 ($ $ |t#2|)) (-6 (-942)) (-6 (-1143))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-484 |#2|)) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-510)) ((-35) |has| |#1| (-38 (-361 (-499)))) ((-66) |has| |#1| (-38 (-361 (-499)))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-571 (-499)) . T) ((-571 |#1|) |has| |#1| (-146)) ((-571 $) |has| |#1| (-510)) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-238) |has| |#1| (-38 (-361 (-499)))) ((-244) |has| |#1| (-510)) ((-263 $) . T) ((-447) |has| |#1| (-38 (-361 (-499)))) ((-468 |#2| $) . T) ((-468 $ $) . T) ((-510) |has| |#1| (-510)) ((-604 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) |has| |#1| (-510)) ((-675 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) |has| |#1| (-510)) ((-684) . T) ((-831 $ |#2|) . T) ((-836 |#2|) . T) ((-838 |#2|) . T) ((-913 |#1| (-484 |#2|) |#2|) . T) ((-942) |has| |#1| (-38 (-361 (-499)))) ((-991 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-996 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1143) |has| |#1| (-38 (-361 (-499)))) ((-1146) |has| |#1| (-38 (-361 (-499)))) ((-1157) . T)) +((-3882 (((-359 (-1111 |#4|)) (-1111 |#4|)) 30 T ELT) (((-359 |#4|) |#4|) 26 T ELT))) +(((-699 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3882 ((-359 |#4|) |#4|)) (-15 -3882 ((-359 (-1111 |#4|)) (-1111 |#4|)))) (-781) (-738) (-13 (-261) (-120)) (-888 |#3| |#2| |#1|)) (T -699)) +((-3882 (*1 *2 *3) (-12 (-4 *4 (-781)) (-4 *5 (-738)) (-4 *6 (-13 (-261) (-120))) (-4 *7 (-888 *6 *5 *4)) (-5 *2 (-359 (-1111 *7))) (-5 *1 (-699 *4 *5 *6 *7)) (-5 *3 (-1111 *7)))) (-3882 (*1 *2 *3) (-12 (-4 *4 (-781)) (-4 *5 (-738)) (-4 *6 (-13 (-261) (-120))) (-5 *2 (-359 *3)) (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-888 *6 *5 *4))))) +((-2542 (((-359 |#4|) |#4| |#2|) 141 T ELT)) (-2540 (((-359 |#4|) |#4|) NIL T ELT)) (-4121 (((-359 (-1111 |#4|)) (-1111 |#4|)) 128 T ELT) (((-359 |#4|) |#4|) 52 T ELT)) (-2544 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-599 (-2 (|:| -3882 (-1111 |#4|)) (|:| -2519 (-499)))))) (-1111 |#4|) (-599 |#2|) (-599 (-599 |#3|))) 81 T ELT)) (-2548 (((-1111 |#3|) (-1111 |#3|) (-499)) 168 T ELT)) (-2547 (((-599 (-714)) (-1111 |#4|) (-599 |#2|) (-714)) 75 T ELT)) (-3200 (((-3 (-599 (-1111 |#4|)) "failed") (-1111 |#4|) (-1111 |#3|) (-1111 |#3|) |#4| (-599 |#2|) (-599 (-714)) (-599 |#3|)) 79 T ELT)) (-2545 (((-2 (|:| |upol| (-1111 |#3|)) (|:| |Lval| (-599 |#3|)) (|:| |Lfact| (-599 (-2 (|:| -3882 (-1111 |#3|)) (|:| -2519 (-499))))) (|:| |ctpol| |#3|)) (-1111 |#4|) (-599 |#2|) (-599 (-599 |#3|))) 27 T ELT)) (-2543 (((-2 (|:| -2105 (-1111 |#4|)) (|:| |polval| (-1111 |#3|))) (-1111 |#4|) (-1111 |#3|) (-499)) 72 T ELT)) (-2541 (((-499) (-599 (-2 (|:| -3882 (-1111 |#3|)) (|:| -2519 (-499))))) 164 T ELT)) (-2546 ((|#4| (-499) (-359 |#4|)) 73 T ELT)) (-3497 (((-85) (-599 (-2 (|:| -3882 (-1111 |#3|)) (|:| -2519 (-499)))) (-599 (-2 (|:| -3882 (-1111 |#3|)) (|:| -2519 (-499))))) NIL T ELT))) +(((-700 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4121 ((-359 |#4|) |#4|)) (-15 -4121 ((-359 (-1111 |#4|)) (-1111 |#4|))) (-15 -2540 ((-359 |#4|) |#4|)) (-15 -2541 ((-499) (-599 (-2 (|:| -3882 (-1111 |#3|)) (|:| -2519 (-499)))))) (-15 -2542 ((-359 |#4|) |#4| |#2|)) (-15 -2543 ((-2 (|:| -2105 (-1111 |#4|)) (|:| |polval| (-1111 |#3|))) (-1111 |#4|) (-1111 |#3|) (-499))) (-15 -2544 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-599 (-2 (|:| -3882 (-1111 |#4|)) (|:| -2519 (-499)))))) (-1111 |#4|) (-599 |#2|) (-599 (-599 |#3|)))) (-15 -2545 ((-2 (|:| |upol| (-1111 |#3|)) (|:| |Lval| (-599 |#3|)) (|:| |Lfact| (-599 (-2 (|:| -3882 (-1111 |#3|)) (|:| -2519 (-499))))) (|:| |ctpol| |#3|)) (-1111 |#4|) (-599 |#2|) (-599 (-599 |#3|)))) (-15 -2546 (|#4| (-499) (-359 |#4|))) (-15 -3497 ((-85) (-599 (-2 (|:| -3882 (-1111 |#3|)) (|:| -2519 (-499)))) (-599 (-2 (|:| -3882 (-1111 |#3|)) (|:| -2519 (-499)))))) (-15 -3200 ((-3 (-599 (-1111 |#4|)) "failed") (-1111 |#4|) (-1111 |#3|) (-1111 |#3|) |#4| (-599 |#2|) (-599 (-714)) (-599 |#3|))) (-15 -2547 ((-599 (-714)) (-1111 |#4|) (-599 |#2|) (-714))) (-15 -2548 ((-1111 |#3|) (-1111 |#3|) (-499)))) (-738) (-781) (-261) (-888 |#3| |#1| |#2|)) (T -700)) +((-2548 (*1 *2 *2 *3) (-12 (-5 *2 (-1111 *6)) (-5 *3 (-499)) (-4 *6 (-261)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-700 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5)))) (-2547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1111 *9)) (-5 *4 (-599 *7)) (-4 *7 (-781)) (-4 *9 (-888 *8 *6 *7)) (-4 *6 (-738)) (-4 *8 (-261)) (-5 *2 (-599 (-714))) (-5 *1 (-700 *6 *7 *8 *9)) (-5 *5 (-714)))) (-3200 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1111 *11)) (-5 *6 (-599 *10)) (-5 *7 (-599 (-714))) (-5 *8 (-599 *11)) (-4 *10 (-781)) (-4 *11 (-261)) (-4 *9 (-738)) (-4 *5 (-888 *11 *9 *10)) (-5 *2 (-599 (-1111 *5))) (-5 *1 (-700 *9 *10 *11 *5)) (-5 *3 (-1111 *5)))) (-3497 (*1 *2 *3 *3) (-12 (-5 *3 (-599 (-2 (|:| -3882 (-1111 *6)) (|:| -2519 (-499))))) (-4 *6 (-261)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) (-5 *1 (-700 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-499)) (-5 *4 (-359 *2)) (-4 *2 (-888 *7 *5 *6)) (-5 *1 (-700 *5 *6 *7 *2)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-261)))) (-2545 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1111 *9)) (-5 *4 (-599 *7)) (-5 *5 (-599 (-599 *8))) (-4 *7 (-781)) (-4 *8 (-261)) (-4 *9 (-888 *8 *6 *7)) (-4 *6 (-738)) (-5 *2 (-2 (|:| |upol| (-1111 *8)) (|:| |Lval| (-599 *8)) (|:| |Lfact| (-599 (-2 (|:| -3882 (-1111 *8)) (|:| -2519 (-499))))) (|:| |ctpol| *8))) (-5 *1 (-700 *6 *7 *8 *9)))) (-2544 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-599 *7)) (-5 *5 (-599 (-599 *8))) (-4 *7 (-781)) (-4 *8 (-261)) (-4 *6 (-738)) (-4 *9 (-888 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-599 (-2 (|:| -3882 (-1111 *9)) (|:| -2519 (-499))))))) (-5 *1 (-700 *6 *7 *8 *9)) (-5 *3 (-1111 *9)))) (-2543 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-499)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-261)) (-4 *9 (-888 *8 *6 *7)) (-5 *2 (-2 (|:| -2105 (-1111 *9)) (|:| |polval| (-1111 *8)))) (-5 *1 (-700 *6 *7 *8 *9)) (-5 *3 (-1111 *9)) (-5 *4 (-1111 *8)))) (-2542 (*1 *2 *3 *4) (-12 (-4 *5 (-738)) (-4 *4 (-781)) (-4 *6 (-261)) (-5 *2 (-359 *3)) (-5 *1 (-700 *5 *4 *6 *3)) (-4 *3 (-888 *6 *5 *4)))) (-2541 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| -3882 (-1111 *6)) (|:| -2519 (-499))))) (-4 *6 (-261)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-499)) (-5 *1 (-700 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5)))) (-2540 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)) (-5 *2 (-359 *3)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-888 *6 *4 *5)))) (-4121 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-359 (-1111 *7))) (-5 *1 (-700 *4 *5 *6 *7)) (-5 *3 (-1111 *7)))) (-4121 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)) (-5 *2 (-359 *3)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-888 *6 *4 *5))))) +((-2549 (($ $ (-857)) 17 T ELT))) +(((-701 |#1| |#2|) (-10 -7 (-15 -2549 (|#1| |#1| (-857)))) (-702 |#2|) (-146)) (T -701)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-2525 (($ $ (-857)) 36 T ELT)) (-2549 (($ $ (-857)) 43 T ELT)) (-2524 (($ $ (-857)) 37 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2551 (($ $ $) 33 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2552 (($ $ $ $) 34 T ELT)) (-2550 (($ $ $) 32 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 38 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) +(((-702 |#1|) (-113) (-146)) (T -702)) +((-2549 (*1 *1 *1 *2) (-12 (-5 *2 (-857)) (-4 *1 (-702 *3)) (-4 *3 (-146))))) +(-13 (-704) (-675 |t#1|) (-10 -8 (-15 -2549 ($ $ (-857))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-598 |#1|) . T) ((-675 |#1|) . T) ((-678) . T) ((-704) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-2551 (($ $ $) 10 T ELT)) (-2552 (($ $ $ $) 9 T ELT)) (-2550 (($ $ $) 12 T ELT))) +(((-703 |#1|) (-10 -7 (-15 -2550 (|#1| |#1| |#1|)) (-15 -2551 (|#1| |#1| |#1|)) (-15 -2552 (|#1| |#1| |#1| |#1|))) (-704)) (T -703)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-2525 (($ $ (-857)) 36 T ELT)) (-2524 (($ $ (-857)) 37 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2551 (($ $ $) 33 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2552 (($ $ $ $) 34 T ELT)) (-2550 (($ $ $) 32 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 38 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 35 T ELT))) +(((-704) (-113)) (T -704)) +((-2552 (*1 *1 *1 *1 *1) (-4 *1 (-704))) (-2551 (*1 *1 *1 *1) (-4 *1 (-704))) (-2550 (*1 *1 *1 *1) (-4 *1 (-704)))) +(-13 (-21) (-678) (-10 -8 (-15 -2552 ($ $ $ $)) (-15 -2551 ($ $ $)) (-15 -2550 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-678) . T) ((-1041) . T) ((-1157) . T)) +((-4096 (((-797) $) NIL T ELT) (($ (-499)) 10 T ELT))) +(((-705 |#1|) (-10 -7 (-15 -4096 (|#1| (-499))) (-15 -4096 ((-797) |#1|))) (-706)) (T -705)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-2522 (((-3 $ #1="failed") $) 48 T ELT)) (-2525 (($ $ (-857)) 36 T ELT) (($ $ (-714)) 43 T ELT)) (-3607 (((-3 $ #1#) $) 46 T ELT)) (-2528 (((-85) $) 42 T ELT)) (-2523 (((-3 $ #1#) $) 47 T ELT)) (-2524 (($ $ (-857)) 37 T ELT) (($ $ (-714)) 44 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2551 (($ $ $) 33 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 39 T ELT)) (-3248 (((-714)) 40 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2552 (($ $ $ $) 34 T ELT)) (-2550 (($ $ $) 32 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 41 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 38 T ELT) (($ $ (-714)) 45 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 35 T ELT))) +(((-706) (-113)) (T -706)) +((-3248 (*1 *2) (-12 (-4 *1 (-706)) (-5 *2 (-714)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-706))))) +(-13 (-704) (-680) (-10 -8 (-15 -3248 ((-714)) -4102) (-15 -4096 ($ (-499))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-678) . T) ((-680) . T) ((-704) . T) ((-1041) . T) ((-1157) . T)) +((-2554 (((-599 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-499)) (|:| |outvect| (-599 (-647 (-142 |#1|)))))) (-647 (-142 (-361 (-499)))) |#1|) 33 T ELT)) (-2553 (((-599 (-142 |#1|)) (-647 (-142 (-361 (-499)))) |#1|) 23 T ELT)) (-2565 (((-884 (-142 (-361 (-499)))) (-647 (-142 (-361 (-499)))) (-1117)) 20 T ELT) (((-884 (-142 (-361 (-499)))) (-647 (-142 (-361 (-499))))) 19 T ELT))) +(((-707 |#1|) (-10 -7 (-15 -2565 ((-884 (-142 (-361 (-499)))) (-647 (-142 (-361 (-499)))))) (-15 -2565 ((-884 (-142 (-361 (-499)))) (-647 (-142 (-361 (-499)))) (-1117))) (-15 -2553 ((-599 (-142 |#1|)) (-647 (-142 (-361 (-499)))) |#1|)) (-15 -2554 ((-599 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-499)) (|:| |outvect| (-599 (-647 (-142 |#1|)))))) (-647 (-142 (-361 (-499)))) |#1|))) (-13 (-318) (-780))) (T -707)) +((-2554 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-142 (-361 (-499))))) (-5 *2 (-599 (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-499)) (|:| |outvect| (-599 (-647 (-142 *4))))))) (-5 *1 (-707 *4)) (-4 *4 (-13 (-318) (-780))))) (-2553 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-142 (-361 (-499))))) (-5 *2 (-599 (-142 *4))) (-5 *1 (-707 *4)) (-4 *4 (-13 (-318) (-780))))) (-2565 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-142 (-361 (-499))))) (-5 *4 (-1117)) (-5 *2 (-884 (-142 (-361 (-499))))) (-5 *1 (-707 *5)) (-4 *5 (-13 (-318) (-780))))) (-2565 (*1 *2 *3) (-12 (-5 *3 (-647 (-142 (-361 (-499))))) (-5 *2 (-884 (-142 (-361 (-499))))) (-5 *1 (-707 *4)) (-4 *4 (-13 (-318) (-780)))))) +((-2735 (((-148 (-499)) |#1|) 27 T ELT))) +(((-708 |#1|) (-10 -7 (-15 -2735 ((-148 (-499)) |#1|))) (-358)) (T -708)) +((-2735 (*1 *2 *3) (-12 (-5 *2 (-148 (-499))) (-5 *1 (-708 *3)) (-4 *3 (-358))))) +((-2661 ((|#1| |#1| |#1|) 28 T ELT)) (-2662 ((|#1| |#1| |#1|) 27 T ELT)) (-2651 ((|#1| |#1| |#1|) 38 T ELT)) (-2659 ((|#1| |#1| |#1|) 33 T ELT)) (-2660 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2667 (((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|) 26 T ELT))) +(((-709 |#1| |#2|) (-10 -7 (-15 -2667 ((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|)) (-15 -2662 (|#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| |#1|)) (-15 -2660 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2659 (|#1| |#1| |#1|)) (-15 -2651 (|#1| |#1| |#1|))) (-666 |#2|) (-318)) (T -709)) +((-2651 (*1 *2 *2 *2) (-12 (-4 *3 (-318)) (-5 *1 (-709 *2 *3)) (-4 *2 (-666 *3)))) (-2659 (*1 *2 *2 *2) (-12 (-4 *3 (-318)) (-5 *1 (-709 *2 *3)) (-4 *2 (-666 *3)))) (-2660 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-318)) (-5 *1 (-709 *2 *3)) (-4 *2 (-666 *3)))) (-2661 (*1 *2 *2 *2) (-12 (-4 *3 (-318)) (-5 *1 (-709 *2 *3)) (-4 *2 (-666 *3)))) (-2662 (*1 *2 *2 *2) (-12 (-4 *3 (-318)) (-5 *1 (-709 *2 *3)) (-4 *2 (-666 *3)))) (-2667 (*1 *2 *3 *3) (-12 (-4 *4 (-318)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-709 *3 *4)) (-4 *3 (-666 *4))))) +((-2674 (((-649 (-1166)) $ (-1166)) 27 T ELT)) (-2675 (((-649 (-503)) $ (-503)) 26 T ELT)) (-2673 (((-714) $ (-102)) 28 T ELT)) (-2676 (((-649 (-101)) $ (-101)) 25 T ELT)) (-2101 (((-649 (-1166)) $) 12 T ELT)) (-2097 (((-649 (-1164)) $) 8 T ELT)) (-2099 (((-649 (-1163)) $) 10 T ELT)) (-2102 (((-649 (-503)) $) 13 T ELT)) (-2098 (((-649 (-501)) $) 9 T ELT)) (-2100 (((-649 (-500)) $) 11 T ELT)) (-2096 (((-714) $ (-102)) 7 T ELT)) (-2103 (((-649 (-101)) $) 14 T ELT)) (-2555 (((-85) $) 32 T ELT)) (-2556 (((-649 $) |#1| (-892)) 33 T ELT)) (-1793 (($ $) 6 T ELT))) +(((-710 |#1|) (-113) (-1041)) (T -710)) +((-2556 (*1 *2 *3 *4) (-12 (-5 *4 (-892)) (-4 *3 (-1041)) (-5 *2 (-649 *1)) (-4 *1 (-710 *3)))) (-2555 (*1 *2 *1) (-12 (-4 *1 (-710 *3)) (-4 *3 (-1041)) (-5 *2 (-85))))) +(-13 (-527) (-10 -8 (-15 -2556 ((-649 $) |t#1| (-892))) (-15 -2555 ((-85) $)))) +(((-147) . T) ((-480) . T) ((-527) . T) ((-795) . T)) +((-4069 (((-2 (|:| -2113 (-647 (-499))) (|:| |basisDen| (-499)) (|:| |basisInv| (-647 (-499)))) (-499)) 72 T ELT)) (-4068 (((-2 (|:| -2113 (-647 (-499))) (|:| |basisDen| (-499)) (|:| |basisInv| (-647 (-499))))) 70 T ELT)) (-3907 (((-499)) 86 T ELT))) +(((-711 |#1| |#2|) (-10 -7 (-15 -3907 ((-499))) (-15 -4068 ((-2 (|:| -2113 (-647 (-499))) (|:| |basisDen| (-499)) (|:| |basisInv| (-647 (-499)))))) (-15 -4069 ((-2 (|:| -2113 (-647 (-499))) (|:| |basisDen| (-499)) (|:| |basisInv| (-647 (-499)))) (-499)))) (-1183 (-499)) (-364 (-499) |#1|)) (T -711)) +((-4069 (*1 *2 *3) (-12 (-5 *3 (-499)) (-4 *4 (-1183 *3)) (-5 *2 (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) (-5 *1 (-711 *4 *5)) (-4 *5 (-364 *3 *4)))) (-4068 (*1 *2) (-12 (-4 *3 (-1183 (-499))) (-5 *2 (-2 (|:| -2113 (-647 (-499))) (|:| |basisDen| (-499)) (|:| |basisInv| (-647 (-499))))) (-5 *1 (-711 *3 *4)) (-4 *4 (-364 (-499) *3)))) (-3907 (*1 *2) (-12 (-4 *3 (-1183 *2)) (-5 *2 (-499)) (-5 *1 (-711 *3 *4)) (-4 *4 (-364 *2 *3))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3294 (((-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (|:| |mdnia| (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))) $) 21 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 20 T ELT) (($ (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) 13 T ELT) (($ (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) 16 T ELT) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (|:| |mdnia| (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))))) 18 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-712) (-13 (-1041) (-10 -8 (-15 -4096 ($ (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))) (-15 -4096 ($ (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))) (-15 -4096 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (|:| |mdnia| (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))))) (-15 -3294 ((-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (|:| |mdnia| (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))) $))))) (T -712)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (-5 *1 (-712)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (-5 *1 (-712)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (|:| |mdnia| (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))))) (-5 *1 (-712)))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (|:| |mdnia| (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))))) (-5 *1 (-712))))) +((-2626 (((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-884 |#1|))) 18 T ELT) (((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-884 |#1|)) (-599 (-1117))) 17 T ELT)) (-3721 (((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-884 |#1|))) 20 T ELT) (((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-884 |#1|)) (-599 (-1117))) 19 T ELT))) +(((-713 |#1|) (-10 -7 (-15 -2626 ((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-884 |#1|)) (-599 (-1117)))) (-15 -2626 ((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-884 |#1|)))) (-15 -3721 ((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-884 |#1|)) (-599 (-1117)))) (-15 -3721 ((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-884 |#1|))))) (-510)) (T -713)) +((-3721 (*1 *2 *3) (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-510)) (-5 *2 (-599 (-599 (-247 (-361 (-884 *4)))))) (-5 *1 (-713 *4)))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-599 (-1117))) (-4 *5 (-510)) (-5 *2 (-599 (-599 (-247 (-361 (-884 *5)))))) (-5 *1 (-713 *5)))) (-2626 (*1 *2 *3) (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-510)) (-5 *2 (-599 (-599 (-247 (-361 (-884 *4)))))) (-5 *1 (-713 *4)))) (-2626 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-599 (-1117))) (-4 *5 (-510)) (-5 *2 (-599 (-599 (-247 (-361 (-884 *5)))))) (-5 *1 (-713 *5))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2600 (($ $ $) 10 T ELT)) (-1345 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2557 (($ $ (-499)) 11 T ELT)) (-3874 (($) NIL T CONST)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($ $) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-3324 (((-85) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3282 (($ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 6 T CONST)) (-2785 (($) NIL T CONST)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-714)) NIL T ELT) (($ $ (-857)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-714) (-13 (-738) (-684) (-10 -8 (-15 -2682 ($ $ $)) (-15 -2683 ($ $ $)) (-15 -3282 ($ $ $)) (-15 -3000 ((-2 (|:| -2075 $) (|:| -3023 $)) $ $)) (-15 -3606 ((-3 $ "failed") $ $)) (-15 -2557 ($ $ (-499))) (-15 -3115 ($ $)) (-6 (-4147 "*"))))) (T -714)) +((-2682 (*1 *1 *1 *1) (-5 *1 (-714))) (-2683 (*1 *1 *1 *1) (-5 *1 (-714))) (-3282 (*1 *1 *1 *1) (-5 *1 (-714))) (-3000 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2075 (-714)) (|:| -3023 (-714)))) (-5 *1 (-714)))) (-3606 (*1 *1 *1 *1) (|partial| -5 *1 (-714))) (-2557 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-714)))) (-3115 (*1 *1 *1) (-5 *1 (-714)))) +((-499) (|%not| (|%ilt| |#1| 0))) +((-3721 (((-3 |#2| "failed") |#2| |#2| (-86) (-1117)) 37 T ELT))) +(((-715 |#1| |#2|) (-10 -7 (-15 -3721 ((-3 |#2| "failed") |#2| |#2| (-86) (-1117)))) (-13 (-261) (-978 (-499)) (-596 (-499)) (-120)) (-13 (-29 |#1|) (-1143) (-898))) (T -715)) +((-3721 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *1 (-715 *5 *2)) (-4 *2 (-13 (-29 *5) (-1143) (-898)))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 7 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 9 T ELT))) +(((-716) (-1041)) (T -716)) +NIL +((-4096 (((-716) |#1|) 8 T ELT))) +(((-717 |#1|) (-10 -7 (-15 -4096 ((-716) |#1|))) (-1157)) (T -717)) +((-4096 (*1 *2 *3) (-12 (-5 *2 (-716)) (-5 *1 (-717 *3)) (-4 *3 (-1157))))) +((-3254 ((|#2| |#4|) 35 T ELT))) +(((-718 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3254 (|#2| |#4|))) (-406) (-1183 |#1|) (-682 |#1| |#2|) (-1183 |#3|)) (T -718)) +((-3254 (*1 *2 *3) (-12 (-4 *4 (-406)) (-4 *5 (-682 *4 *2)) (-4 *2 (-1183 *4)) (-5 *1 (-718 *4 *2 *5 *3)) (-4 *3 (-1183 *5))))) +((-3607 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2560 (((-1213) (-1099) (-1099) |#4| |#5|) 33 T ELT)) (-2558 ((|#4| |#4| |#5|) 74 T ELT)) (-2559 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#5|) 79 T ELT)) (-2561 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 |#5|))) |#4| |#5|) 16 T ELT))) +(((-719 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3607 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2558 (|#4| |#4| |#5|)) (-15 -2559 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#5|)) (-15 -2560 ((-1213) (-1099) (-1099) |#4| |#5|)) (-15 -2561 ((-599 (-2 (|:| |val| (-85)) (|:| -1633 |#5|))) |#4| |#5|))) (-406) (-738) (-781) (-1005 |#1| |#2| |#3|) (-1011 |#1| |#2| |#3| |#4|)) (T -719)) +((-2561 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *4)))) (-5 *1 (-719 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-2560 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1099)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *4 (-1005 *6 *7 *8)) (-5 *2 (-1213)) (-5 *1 (-719 *6 *7 *8 *4 *5)) (-4 *5 (-1011 *6 *7 *8 *4)))) (-2559 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-719 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-2558 (*1 *2 *2 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *2 (-1005 *4 *5 *6)) (-5 *1 (-719 *4 *5 *6 *2 *3)) (-4 *3 (-1011 *4 *5 *6 *2)))) (-3607 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-719 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) +((-3295 (((-3 (-1111 (-1111 |#1|)) "failed") |#4|) 53 T ELT)) (-2562 (((-599 |#4|) |#4|) 22 T ELT)) (-4078 ((|#4| |#4|) 17 T ELT))) +(((-720 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2562 ((-599 |#4|) |#4|)) (-15 -3295 ((-3 (-1111 (-1111 |#1|)) "failed") |#4|)) (-15 -4078 (|#4| |#4|))) (-305) (-283 |#1|) (-1183 |#2|) (-1183 |#3|) (-857)) (T -720)) +((-4078 (*1 *2 *2) (-12 (-4 *3 (-305)) (-4 *4 (-283 *3)) (-4 *5 (-1183 *4)) (-5 *1 (-720 *3 *4 *5 *2 *6)) (-4 *2 (-1183 *5)) (-14 *6 (-857)))) (-3295 (*1 *2 *3) (|partial| -12 (-4 *4 (-305)) (-4 *5 (-283 *4)) (-4 *6 (-1183 *5)) (-5 *2 (-1111 (-1111 *4))) (-5 *1 (-720 *4 *5 *6 *3 *7)) (-4 *3 (-1183 *6)) (-14 *7 (-857)))) (-2562 (*1 *2 *3) (-12 (-4 *4 (-305)) (-4 *5 (-283 *4)) (-4 *6 (-1183 *5)) (-5 *2 (-599 *3)) (-5 *1 (-720 *4 *5 *6 *3 *7)) (-4 *3 (-1183 *6)) (-14 *7 (-857))))) +((-2563 (((-2 (|:| |deter| (-599 (-1111 |#5|))) (|:| |dterm| (-599 (-599 (-2 (|:| -3199 (-714)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-599 |#1|)) (|:| |nlead| (-599 |#5|))) (-1111 |#5|) (-599 |#1|) (-599 |#5|)) 72 T ELT)) (-2564 (((-599 (-714)) |#1|) 20 T ELT))) +(((-721 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2563 ((-2 (|:| |deter| (-599 (-1111 |#5|))) (|:| |dterm| (-599 (-599 (-2 (|:| -3199 (-714)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-599 |#1|)) (|:| |nlead| (-599 |#5|))) (-1111 |#5|) (-599 |#1|) (-599 |#5|))) (-15 -2564 ((-599 (-714)) |#1|))) (-1183 |#4|) (-738) (-781) (-261) (-888 |#4| |#2| |#3|)) (T -721)) +((-2564 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)) (-5 *2 (-599 (-714))) (-5 *1 (-721 *3 *4 *5 *6 *7)) (-4 *3 (-1183 *6)) (-4 *7 (-888 *6 *4 *5)))) (-2563 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1183 *9)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *9 (-261)) (-4 *10 (-888 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-599 (-1111 *10))) (|:| |dterm| (-599 (-599 (-2 (|:| -3199 (-714)) (|:| |pcoef| *10))))) (|:| |nfacts| (-599 *6)) (|:| |nlead| (-599 *10)))) (-5 *1 (-721 *6 *7 *8 *9 *10)) (-5 *3 (-1111 *10)) (-5 *4 (-599 *6)) (-5 *5 (-599 *10))))) +((-2567 (((-599 (-2 (|:| |outval| |#1|) (|:| |outmult| (-499)) (|:| |outvect| (-599 (-647 |#1|))))) (-647 (-361 (-499))) |#1|) 31 T ELT)) (-2566 (((-599 |#1|) (-647 (-361 (-499))) |#1|) 21 T ELT)) (-2565 (((-884 (-361 (-499))) (-647 (-361 (-499))) (-1117)) 18 T ELT) (((-884 (-361 (-499))) (-647 (-361 (-499)))) 17 T ELT))) +(((-722 |#1|) (-10 -7 (-15 -2565 ((-884 (-361 (-499))) (-647 (-361 (-499))))) (-15 -2565 ((-884 (-361 (-499))) (-647 (-361 (-499))) (-1117))) (-15 -2566 ((-599 |#1|) (-647 (-361 (-499))) |#1|)) (-15 -2567 ((-599 (-2 (|:| |outval| |#1|) (|:| |outmult| (-499)) (|:| |outvect| (-599 (-647 |#1|))))) (-647 (-361 (-499))) |#1|))) (-13 (-318) (-780))) (T -722)) +((-2567 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-361 (-499)))) (-5 *2 (-599 (-2 (|:| |outval| *4) (|:| |outmult| (-499)) (|:| |outvect| (-599 (-647 *4)))))) (-5 *1 (-722 *4)) (-4 *4 (-13 (-318) (-780))))) (-2566 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-361 (-499)))) (-5 *2 (-599 *4)) (-5 *1 (-722 *4)) (-4 *4 (-13 (-318) (-780))))) (-2565 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-361 (-499)))) (-5 *4 (-1117)) (-5 *2 (-884 (-361 (-499)))) (-5 *1 (-722 *5)) (-4 *5 (-13 (-318) (-780))))) (-2565 (*1 *2 *3) (-12 (-5 *3 (-647 (-361 (-499)))) (-5 *2 (-884 (-361 (-499)))) (-5 *1 (-722 *4)) (-4 *4 (-13 (-318) (-780)))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 36 T ELT)) (-3204 (((-599 |#2|) $) NIL T ELT)) (-3206 (((-1111 $) $ |#2|) NIL T ELT) (((-1111 |#1|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 |#2|)) NIL T ELT)) (-3947 (($ $) 30 T ELT)) (-3304 (((-85) $ $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3905 (($ $ $) 110 (|has| |#1| (-510)) ELT)) (-3286 (((-599 $) $ $) 123 (|has| |#1| (-510)) ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-884 (-361 (-499)))) NIL (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#2| (-569 (-1117)))) ELT) (((-3 $ #1#) (-884 (-499))) NIL (-3677 (-12 (|has| |#1| (-38 (-499))) (|has| |#2| (-569 (-1117))) (-2679 (|has| |#1| (-38 (-361 (-499)))))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#2| (-569 (-1117))))) ELT) (((-3 $ #1#) (-884 |#1|)) NIL (-3677 (-12 (|has| |#2| (-569 (-1117))) (-2679 (|has| |#1| (-38 (-361 (-499))))) (-2679 (|has| |#1| (-38 (-499))))) (-12 (|has| |#1| (-38 (-499))) (|has| |#2| (-569 (-1117))) (-2679 (|has| |#1| (-38 (-361 (-499))))) (-2679 (|has| |#1| (-498)))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#2| (-569 (-1117))) (-2679 (|has| |#1| (-931 (-499)))))) ELT) (((-3 (-1065 |#1| |#2|) #1#) $) 21 T ELT)) (-3294 ((|#1| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) ((|#2| $) NIL T ELT) (($ (-884 (-361 (-499)))) NIL (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#2| (-569 (-1117)))) ELT) (($ (-884 (-499))) NIL (-3677 (-12 (|has| |#1| (-38 (-499))) (|has| |#2| (-569 (-1117))) (-2679 (|has| |#1| (-38 (-361 (-499)))))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#2| (-569 (-1117))))) ELT) (($ (-884 |#1|)) NIL (-3677 (-12 (|has| |#2| (-569 (-1117))) (-2679 (|has| |#1| (-38 (-361 (-499))))) (-2679 (|has| |#1| (-38 (-499))))) (-12 (|has| |#1| (-38 (-499))) (|has| |#2| (-569 (-1117))) (-2679 (|has| |#1| (-38 (-361 (-499))))) (-2679 (|has| |#1| (-498)))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#2| (-569 (-1117))) (-2679 (|has| |#1| (-931 (-499)))))) ELT) (((-1065 |#1| |#2|) $) NIL T ELT)) (-3906 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT) (($ $ $) 121 (|has| |#1| (-510)) ELT)) (-4109 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3844 (((-85) $ $) NIL T ELT) (((-85) $ (-599 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3310 (((-85) $) NIL T ELT)) (-3902 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 81 T ELT)) (-3281 (($ $) 136 (|has| |#1| (-406)) ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT) (($ $ |#2|) NIL (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-848)) ELT)) (-3292 (($ $) NIL (|has| |#1| (-510)) ELT)) (-3293 (($ $) NIL (|has| |#1| (-510)) ELT)) (-3303 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3302 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1694 (($ $ |#1| (-484 |#2|) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| |#1| (-821 (-333))) (|has| |#2| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| |#1| (-821 (-499))) (|has| |#2| (-821 (-499)))) ELT)) (-2528 (((-85) $) 57 T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3845 (((-85) $ $) NIL T ELT) (((-85) $ (-599 $)) NIL T ELT)) (-3283 (($ $ $ $ $) 107 (|has| |#1| (-510)) ELT)) (-3318 ((|#2| $) 22 T ELT)) (-3207 (($ (-1111 |#1|) |#2|) NIL T ELT) (($ (-1111 $) |#2|) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-484 |#2|)) NIL T ELT) (($ $ |#2| (-714)) 38 T ELT) (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT)) (-3297 (($ $ $) 63 T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ |#2|) NIL T ELT)) (-3311 (((-85) $) NIL T ELT)) (-2941 (((-484 |#2|) $) NIL T ELT) (((-714) $ |#2|) NIL T ELT) (((-599 (-714)) $ (-599 |#2|)) NIL T ELT)) (-3317 (((-714) $) 23 T ELT)) (-1695 (($ (-1 (-484 |#2|) (-484 |#2|)) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3205 (((-3 |#2| #1#) $) NIL T ELT)) (-3278 (($ $) NIL (|has| |#1| (-406)) ELT)) (-3279 (($ $) NIL (|has| |#1| (-406)) ELT)) (-3306 (((-599 $) $) NIL T ELT)) (-3309 (($ $) 39 T ELT)) (-3280 (($ $) NIL (|has| |#1| (-406)) ELT)) (-3307 (((-599 $) $) 43 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-3308 (($ $) 41 T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3296 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3621 (-714))) $ $) 96 T ELT)) (-3298 (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -2075 $) (|:| -3023 $)) $ $) 78 T ELT) (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -2075 $) (|:| -3023 $)) $ $ |#2|) NIL T ELT)) (-3299 (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -3023 $)) $ $) NIL T ELT) (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -3023 $)) $ $ |#2|) NIL T ELT)) (-3301 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3300 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3328 (($ $ $) 125 (|has| |#1| (-510)) ELT)) (-3314 (((-599 $) $) 32 T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| |#2|) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3841 (((-85) $ $) NIL T ELT) (((-85) $ (-599 $)) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (-3586 (($ $) 24 T ELT)) (-3849 (((-85) $ $) NIL T ELT)) (-3842 (((-85) $ $) NIL T ELT) (((-85) $ (-599 $)) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (-3316 (($ $) 26 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3287 (((-2 (|:| -3282 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-510)) ELT)) (-3288 (((-2 (|:| -3282 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-510)) ELT)) (-1895 (((-85) $) 56 T ELT)) (-1894 ((|#1| $) 58 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-406)) ELT)) (-3282 ((|#1| |#1| $) 133 (|has| |#1| (-406)) ELT) (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-848)) ELT)) (-3289 (((-2 (|:| -3282 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-510)) ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-510)) ELT)) (-3290 (($ $ |#1|) 129 (|has| |#1| (-510)) ELT) (($ $ $) NIL (|has| |#1| (-510)) ELT)) (-3291 (($ $ |#1|) 128 (|has| |#1| (-510)) ELT) (($ $ $) NIL (|has| |#1| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-599 |#2|) (-599 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-599 |#2|) (-599 $)) NIL T ELT)) (-3907 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT) (($ $ |#2| (-714)) NIL T ELT) (($ $ (-599 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-4098 (((-484 |#2|) $) NIL T ELT) (((-714) $ |#2|) 45 T ELT) (((-599 (-714)) $ (-599 |#2|)) NIL T ELT)) (-3315 (($ $) NIL T ELT)) (-3313 (($ $) 35 T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| |#1| (-569 (-825 (-333)))) (|has| |#2| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| |#1| (-569 (-825 (-499)))) (|has| |#2| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| |#1| (-569 (-488))) (|has| |#2| (-569 (-488)))) ELT) (($ (-884 (-361 (-499)))) NIL (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#2| (-569 (-1117)))) ELT) (($ (-884 (-499))) NIL (-3677 (-12 (|has| |#1| (-38 (-499))) (|has| |#2| (-569 (-1117))) (-2679 (|has| |#1| (-38 (-361 (-499)))))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#2| (-569 (-1117))))) ELT) (($ (-884 |#1|)) NIL (|has| |#2| (-569 (-1117))) ELT) (((-1099) $) NIL (-12 (|has| |#1| (-978 (-499))) (|has| |#2| (-569 (-1117)))) ELT) (((-884 |#1|) $) NIL (|has| |#2| (-569 (-1117))) ELT)) (-2938 ((|#1| $) 132 (|has| |#1| (-406)) ELT) (($ $ |#2|) NIL (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-884 |#1|) $) NIL (|has| |#2| (-569 (-1117))) ELT) (((-1065 |#1| |#2|) $) 18 T ELT) (($ (-1065 |#1| |#2|)) 19 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-484 |#2|)) NIL T ELT) (($ $ |#2| (-714)) 47 T ELT) (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-2779 (($) 13 T CONST)) (-3305 (((-3 (-85) #1#) $ $) NIL T ELT)) (-2785 (($) 37 T CONST)) (-3284 (($ $ $ $ (-714)) 105 (|has| |#1| (-510)) ELT)) (-3285 (($ $ $ (-714)) 104 (|has| |#1| (-510)) ELT)) (-2790 (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT) (($ $ |#2| (-714)) NIL T ELT) (($ $ (-599 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3989 (($ $ $) 85 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 70 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) +(((-723 |#1| |#2|) (-13 (-1005 |#1| (-484 |#2|) |#2|) (-568 (-1065 |#1| |#2|)) (-978 (-1065 |#1| |#2|))) (-989) (-781)) (T -723)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 12 T ELT)) (-3917 (((-1207 |#1|) $ (-714)) NIL T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3915 (($ (-1111 |#1|)) NIL T ELT)) (-3206 (((-1111 $) $ (-1022)) NIL T ELT) (((-1111 |#1|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-1022))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2571 (((-599 $) $ $) 54 (|has| |#1| (-510)) ELT)) (-3905 (($ $ $) 50 (|has| |#1| (-510)) ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3911 (($ $ (-714)) NIL T ELT)) (-3910 (($ $ (-714)) NIL T ELT)) (-3901 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-406)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-1022) #1#) $) NIL T ELT) (((-3 (-1111 |#1|) #1#) $) 10 T ELT)) (-3294 ((|#1| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-1022) $) NIL T ELT) (((-1111 |#1|) $) NIL T ELT)) (-3906 (($ $ $ (-1022)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 58 (|has| |#1| (-146)) ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3909 (($ $ $) NIL T ELT)) (-3903 (($ $ $) 87 (|has| |#1| (-510)) ELT)) (-3902 (((-2 (|:| -4104 |#1|) (|:| -2075 $) (|:| -3023 $)) $ $) 86 (|has| |#1| (-510)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT) (($ $ (-1022)) NIL (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-848)) ELT)) (-1694 (($ $ |#1| (-714) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-1022) (-821 (-333))) (|has| |#1| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-1022) (-821 (-499))) (|has| |#1| (-821 (-499)))) ELT)) (-3922 (((-714) $ $) NIL (|has| |#1| (-510)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-1092)) ELT)) (-3207 (($ (-1111 |#1|) (-1022)) NIL T ELT) (($ (-1111 $) (-1022)) NIL T ELT)) (-3927 (($ $ (-714)) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-714)) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-3297 (($ $ $) 27 T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-1022)) NIL T ELT) (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-2941 (((-714) $) NIL T ELT) (((-714) $ (-1022)) NIL T ELT) (((-599 (-714)) $ (-599 (-1022))) NIL T ELT)) (-1695 (($ (-1 (-714) (-714)) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3916 (((-1111 |#1|) $) NIL T ELT)) (-3205 (((-3 (-1022) #1#) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3296 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3621 (-714))) $ $) 37 T ELT)) (-2573 (($ $ $) 41 T ELT)) (-2572 (($ $ $) 47 T ELT)) (-3298 (((-2 (|:| -4104 |#1|) (|:| |gap| (-714)) (|:| -2075 $) (|:| -3023 $)) $ $) 46 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3328 (($ $ $) 56 (|has| |#1| (-510)) ELT)) (-3912 (((-2 (|:| -2075 $) (|:| -3023 $)) $ (-714)) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-1022)) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3962 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3586 (($) NIL (|has| |#1| (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-3287 (((-2 (|:| -3282 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-510)) ELT)) (-3288 (((-2 (|:| -3282 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-510)) ELT)) (-2568 (((-2 (|:| -3906 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-510)) ELT)) (-2569 (((-2 (|:| -3906 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-510)) ELT)) (-1895 (((-85) $) 13 T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3888 (($ $ (-714) |#1| $) 26 T ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-848)) ELT)) (-3289 (((-2 (|:| -3282 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-510)) ELT)) (-2570 (((-2 (|:| -3906 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-510)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-1022) |#1|) NIL T ELT) (($ $ (-599 (-1022)) (-599 |#1|)) NIL T ELT) (($ $ (-1022) $) NIL T ELT) (($ $ (-599 (-1022)) (-599 $)) NIL T ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-361 $) (-361 $) (-361 $)) NIL (|has| |#1| (-510)) ELT) ((|#1| (-361 $) |#1|) NIL (|has| |#1| (-318)) ELT) (((-361 $) $ (-361 $)) NIL (|has| |#1| (-510)) ELT)) (-3914 (((-3 $ #1#) $ (-714)) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3907 (($ $ (-1022)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022))) NIL T ELT) (($ $ (-1022)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT)) (-4098 (((-714) $) NIL T ELT) (((-714) $ (-1022)) NIL T ELT) (((-599 (-714)) $ (-599 (-1022))) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-1022) (-569 (-825 (-333)))) (|has| |#1| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-1022) (-569 (-825 (-499)))) (|has| |#1| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-1022) (-569 (-488))) (|has| |#1| (-569 (-488)))) ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT) (($ $ (-1022)) NIL (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-3904 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT) (((-3 (-361 $) #1#) (-361 $) $) NIL (|has| |#1| (-510)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1022)) NIL T ELT) (((-1111 |#1|) $) 7 T ELT) (($ (-1111 |#1|)) 8 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-714)) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-2779 (($) 28 T CONST)) (-2785 (($) 32 T CONST)) (-2790 (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022))) NIL T ELT) (($ $ (-1022)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) +(((-724 |#1|) (-13 (-1183 |#1|) (-568 (-1111 |#1|)) (-978 (-1111 |#1|)) (-10 -8 (-15 -3888 ($ $ (-714) |#1| $)) (-15 -3297 ($ $ $)) (-15 -3296 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3621 (-714))) $ $)) (-15 -2573 ($ $ $)) (-15 -3298 ((-2 (|:| -4104 |#1|) (|:| |gap| (-714)) (|:| -2075 $) (|:| -3023 $)) $ $)) (-15 -2572 ($ $ $)) (IF (|has| |#1| (-510)) (PROGN (-15 -2571 ((-599 $) $ $)) (-15 -3328 ($ $ $)) (-15 -3289 ((-2 (|:| -3282 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3288 ((-2 (|:| -3282 $) (|:| |coef1| $)) $ $)) (-15 -3287 ((-2 (|:| -3282 $) (|:| |coef2| $)) $ $)) (-15 -2570 ((-2 (|:| -3906 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2569 ((-2 (|:| -3906 |#1|) (|:| |coef1| $)) $ $)) (-15 -2568 ((-2 (|:| -3906 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-989)) (T -724)) +((-3888 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-714)) (-5 *1 (-724 *3)) (-4 *3 (-989)))) (-3297 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-989)))) (-3296 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-724 *3)) (|:| |polden| *3) (|:| -3621 (-714)))) (-5 *1 (-724 *3)) (-4 *3 (-989)))) (-2573 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-989)))) (-3298 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4104 *3) (|:| |gap| (-714)) (|:| -2075 (-724 *3)) (|:| -3023 (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-989)))) (-2572 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-989)))) (-2571 (*1 *2 *1 *1) (-12 (-5 *2 (-599 (-724 *3))) (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989)))) (-3328 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-510)) (-4 *2 (-989)))) (-3289 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3282 (-724 *3)) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989)))) (-3288 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3282 (-724 *3)) (|:| |coef1| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989)))) (-3287 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3282 (-724 *3)) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989)))) (-2570 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3906 *3) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989)))) (-2569 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3906 *3) (|:| |coef1| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989)))) (-2568 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3906 *3) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989))))) +((-4108 (((-724 |#2|) (-1 |#2| |#1|) (-724 |#1|)) 13 T ELT))) +(((-725 |#1| |#2|) (-10 -7 (-15 -4108 ((-724 |#2|) (-1 |#2| |#1|) (-724 |#1|)))) (-989) (-989)) (T -725)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-724 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-5 *2 (-724 *6)) (-5 *1 (-725 *5 *6))))) +((-2575 ((|#1| (-714) |#1|) 33 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2922 ((|#1| (-714) |#1|) 23 T ELT)) (-2574 ((|#1| (-714) |#1|) 35 (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-726 |#1|) (-10 -7 (-15 -2922 (|#1| (-714) |#1|)) (IF (|has| |#1| (-38 (-361 (-499)))) (PROGN (-15 -2574 (|#1| (-714) |#1|)) (-15 -2575 (|#1| (-714) |#1|))) |%noBranch|)) (-146)) (T -726)) +((-2575 (*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-726 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-146)))) (-2574 (*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-726 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-146)))) (-2922 (*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-726 *2)) (-4 *2 (-146))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3831 (((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 |#4|)))) (-599 |#4|)) 90 T ELT)) (-3832 (((-599 $) (-599 |#4|)) 91 T ELT) (((-599 $) (-599 |#4|) (-85)) 118 T ELT)) (-3204 (((-599 |#3|) $) 37 T ELT)) (-3029 (((-85) $) 30 T ELT)) (-3020 (((-85) $) 21 (|has| |#1| (-510)) ELT)) (-3843 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3838 ((|#4| |#4| $) 97 T ELT)) (-3925 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| $) 133 T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3860 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -4145)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3874 (($) 46 T CONST)) (-3025 (((-85) $) 26 (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) 28 (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) 27 (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) 29 (|has| |#1| (-510)) ELT)) (-3839 (((-599 |#4|) (-599 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) 22 (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) 23 (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ "failed") (-599 |#4|)) 40 T ELT)) (-3294 (($ (-599 |#4|)) 39 T ELT)) (-3949 (((-3 $ #1#) $) 87 T ELT)) (-3835 ((|#4| |#4| $) 94 T ELT)) (-1386 (($ $) 69 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#4| $) 68 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-510)) ELT)) (-3844 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3833 ((|#4| |#4| $) 92 T ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4145)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3846 (((-2 (|:| -4011 (-599 |#4|)) (|:| -1795 (-599 |#4|))) $) 110 T ELT)) (-3335 (((-85) |#4| $) 143 T ELT)) (-3333 (((-85) |#4| $) 140 T ELT)) (-3336 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-3010 (((-599 |#4|) $) 53 (|has| $ (-6 -4145)) ELT)) (-3845 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3318 ((|#3| $) 38 T ELT)) (-2727 (((-599 |#4|) $) 54 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3035 (((-599 |#3|) $) 36 T ELT)) (-3034 (((-85) |#3| $) 35 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3329 (((-3 |#4| (-599 $)) |#4| |#4| $) 135 T ELT)) (-3328 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| |#4| $) 134 T ELT)) (-3948 (((-3 |#4| #1#) $) 88 T ELT)) (-3330 (((-599 $) |#4| $) 136 T ELT)) (-3332 (((-3 (-85) (-599 $)) |#4| $) 139 T ELT)) (-3331 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3376 (((-599 $) |#4| $) 132 T ELT) (((-599 $) (-599 |#4|) $) 131 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 130 T ELT) (((-599 $) |#4| (-599 $)) 129 T ELT)) (-3580 (($ |#4| $) 124 T ELT) (($ (-599 |#4|) $) 123 T ELT)) (-3847 (((-599 |#4|) $) 112 T ELT)) (-3841 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3836 ((|#4| |#4| $) 95 T ELT)) (-3849 (((-85) $ $) 115 T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-510)) ELT)) (-3842 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3837 ((|#4| |#4| $) 96 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3951 (((-3 |#4| #1#) $) 89 T ELT)) (-1387 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3829 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3919 (($ $ |#4|) 82 T ELT) (((-599 $) |#4| $) 122 T ELT) (((-599 $) |#4| (-599 $)) 121 T ELT) (((-599 $) (-599 |#4|) $) 120 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 119 T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) 60 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) 58 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) 57 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) 42 T ELT)) (-3543 (((-85) $) 45 T ELT)) (-3713 (($) 44 T ELT)) (-4098 (((-714) $) 111 T ELT)) (-2048 (((-714) |#4| $) 55 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 43 T ELT)) (-4122 (((-488) $) 70 (|has| |#4| (-569 (-488))) ELT)) (-3670 (($ (-599 |#4|)) 61 T ELT)) (-3031 (($ $ |#3|) 32 T ELT)) (-3033 (($ $ |#3|) 34 T ELT)) (-3834 (($ $) 93 T ELT)) (-3032 (($ $ |#3|) 33 T ELT)) (-4096 (((-797) $) 13 T ELT) (((-599 |#4|) $) 41 T ELT)) (-3828 (((-714) $) 81 (|has| |#3| (-323)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3840 (((-85) $ (-1 (-85) |#4| (-599 |#4|))) 103 T ELT)) (-3327 (((-599 $) |#4| $) 128 T ELT) (((-599 $) |#4| (-599 $)) 127 T ELT) (((-599 $) (-599 |#4|) $) 126 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 125 T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3830 (((-599 |#3|) $) 86 T ELT)) (-3334 (((-85) |#4| $) 142 T ELT)) (-4083 (((-85) |#3| $) 85 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4107 (((-714) $) 47 (|has| $ (-6 -4145)) ELT))) +(((-727 |#1| |#2| |#3| |#4|) (-113) (-406) (-738) (-781) (-1005 |t#1| |t#2| |t#3|)) (T -727)) +NIL +(-13 (-1011 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-73) . T) ((-568 (-599 |#4|)) . T) ((-568 (-797)) . T) ((-124 |#4|) . T) ((-569 (-488)) |has| |#4| (-569 (-488))) ((-263 |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-443 |#4|) . T) ((-468 |#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1011 |#1| |#2| |#3| |#4|) . T) ((-1041) . T) ((-1152 |#1| |#2| |#3| |#4|) . T) ((-1157) . T)) +((-2578 (((-3 (-333) #1="failed") (-268 |#1|) (-857)) 62 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-3 (-333) #1#) (-268 |#1|)) 54 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-3 (-333) #1#) (-361 (-884 |#1|)) (-857)) 41 (|has| |#1| (-510)) ELT) (((-3 (-333) #1#) (-361 (-884 |#1|))) 40 (|has| |#1| (-510)) ELT) (((-3 (-333) #1#) (-884 |#1|) (-857)) 31 (|has| |#1| (-989)) ELT) (((-3 (-333) #1#) (-884 |#1|)) 30 (|has| |#1| (-989)) ELT)) (-2576 (((-333) (-268 |#1|) (-857)) 99 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-333) (-268 |#1|)) 94 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-333) (-361 (-884 |#1|)) (-857)) 91 (|has| |#1| (-510)) ELT) (((-333) (-361 (-884 |#1|))) 90 (|has| |#1| (-510)) ELT) (((-333) (-884 |#1|) (-857)) 86 (|has| |#1| (-989)) ELT) (((-333) (-884 |#1|)) 85 (|has| |#1| (-989)) ELT) (((-333) |#1| (-857)) 76 T ELT) (((-333) |#1|) 22 T ELT)) (-2579 (((-3 (-142 (-333)) #1#) (-268 (-142 |#1|)) (-857)) 71 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-3 (-142 (-333)) #1#) (-268 (-142 |#1|))) 70 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-3 (-142 (-333)) #1#) (-268 |#1|) (-857)) 63 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-3 (-142 (-333)) #1#) (-268 |#1|)) 61 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-3 (-142 (-333)) #1#) (-361 (-884 (-142 |#1|))) (-857)) 46 (|has| |#1| (-510)) ELT) (((-3 (-142 (-333)) #1#) (-361 (-884 (-142 |#1|)))) 45 (|has| |#1| (-510)) ELT) (((-3 (-142 (-333)) #1#) (-361 (-884 |#1|)) (-857)) 39 (|has| |#1| (-510)) ELT) (((-3 (-142 (-333)) #1#) (-361 (-884 |#1|))) 38 (|has| |#1| (-510)) ELT) (((-3 (-142 (-333)) #1#) (-884 |#1|) (-857)) 28 (|has| |#1| (-989)) ELT) (((-3 (-142 (-333)) #1#) (-884 |#1|)) 26 (|has| |#1| (-989)) ELT) (((-3 (-142 (-333)) #1#) (-884 (-142 |#1|)) (-857)) 18 (|has| |#1| (-146)) ELT) (((-3 (-142 (-333)) #1#) (-884 (-142 |#1|))) 15 (|has| |#1| (-146)) ELT)) (-2577 (((-142 (-333)) (-268 (-142 |#1|)) (-857)) 102 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-142 (-333)) (-268 (-142 |#1|))) 101 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-142 (-333)) (-268 |#1|) (-857)) 100 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-142 (-333)) (-268 |#1|)) 98 (-12 (|has| |#1| (-510)) (|has| |#1| (-781))) ELT) (((-142 (-333)) (-361 (-884 (-142 |#1|))) (-857)) 93 (|has| |#1| (-510)) ELT) (((-142 (-333)) (-361 (-884 (-142 |#1|)))) 92 (|has| |#1| (-510)) ELT) (((-142 (-333)) (-361 (-884 |#1|)) (-857)) 89 (|has| |#1| (-510)) ELT) (((-142 (-333)) (-361 (-884 |#1|))) 88 (|has| |#1| (-510)) ELT) (((-142 (-333)) (-884 |#1|) (-857)) 84 (|has| |#1| (-989)) ELT) (((-142 (-333)) (-884 |#1|)) 83 (|has| |#1| (-989)) ELT) (((-142 (-333)) (-884 (-142 |#1|)) (-857)) 78 (|has| |#1| (-146)) ELT) (((-142 (-333)) (-884 (-142 |#1|))) 77 (|has| |#1| (-146)) ELT) (((-142 (-333)) (-142 |#1|) (-857)) 80 (|has| |#1| (-146)) ELT) (((-142 (-333)) (-142 |#1|)) 79 (|has| |#1| (-146)) ELT) (((-142 (-333)) |#1| (-857)) 27 T ELT) (((-142 (-333)) |#1|) 25 T ELT))) +(((-728 |#1|) (-10 -7 (-15 -2576 ((-333) |#1|)) (-15 -2576 ((-333) |#1| (-857))) (-15 -2577 ((-142 (-333)) |#1|)) (-15 -2577 ((-142 (-333)) |#1| (-857))) (IF (|has| |#1| (-146)) (PROGN (-15 -2577 ((-142 (-333)) (-142 |#1|))) (-15 -2577 ((-142 (-333)) (-142 |#1|) (-857))) (-15 -2577 ((-142 (-333)) (-884 (-142 |#1|)))) (-15 -2577 ((-142 (-333)) (-884 (-142 |#1|)) (-857)))) |%noBranch|) (IF (|has| |#1| (-989)) (PROGN (-15 -2576 ((-333) (-884 |#1|))) (-15 -2576 ((-333) (-884 |#1|) (-857))) (-15 -2577 ((-142 (-333)) (-884 |#1|))) (-15 -2577 ((-142 (-333)) (-884 |#1|) (-857)))) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -2576 ((-333) (-361 (-884 |#1|)))) (-15 -2576 ((-333) (-361 (-884 |#1|)) (-857))) (-15 -2577 ((-142 (-333)) (-361 (-884 |#1|)))) (-15 -2577 ((-142 (-333)) (-361 (-884 |#1|)) (-857))) (-15 -2577 ((-142 (-333)) (-361 (-884 (-142 |#1|))))) (-15 -2577 ((-142 (-333)) (-361 (-884 (-142 |#1|))) (-857))) (IF (|has| |#1| (-781)) (PROGN (-15 -2576 ((-333) (-268 |#1|))) (-15 -2576 ((-333) (-268 |#1|) (-857))) (-15 -2577 ((-142 (-333)) (-268 |#1|))) (-15 -2577 ((-142 (-333)) (-268 |#1|) (-857))) (-15 -2577 ((-142 (-333)) (-268 (-142 |#1|)))) (-15 -2577 ((-142 (-333)) (-268 (-142 |#1|)) (-857)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-15 -2579 ((-3 (-142 (-333)) #1="failed") (-884 (-142 |#1|)))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-884 (-142 |#1|)) (-857)))) |%noBranch|) (IF (|has| |#1| (-989)) (PROGN (-15 -2578 ((-3 (-333) #1#) (-884 |#1|))) (-15 -2578 ((-3 (-333) #1#) (-884 |#1|) (-857))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-884 |#1|))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-884 |#1|) (-857)))) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -2578 ((-3 (-333) #1#) (-361 (-884 |#1|)))) (-15 -2578 ((-3 (-333) #1#) (-361 (-884 |#1|)) (-857))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-361 (-884 |#1|)))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-361 (-884 |#1|)) (-857))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-361 (-884 (-142 |#1|))))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-361 (-884 (-142 |#1|))) (-857))) (IF (|has| |#1| (-781)) (PROGN (-15 -2578 ((-3 (-333) #1#) (-268 |#1|))) (-15 -2578 ((-3 (-333) #1#) (-268 |#1|) (-857))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-268 |#1|))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-268 |#1|) (-857))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-268 (-142 |#1|)))) (-15 -2579 ((-3 (-142 (-333)) #1#) (-268 (-142 |#1|)) (-857)))) |%noBranch|)) |%noBranch|)) (-569 (-333))) (T -728)) +((-2579 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-268 (-142 *5))) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2579 (*1 *2 *3) (|partial| -12 (-5 *3 (-268 (-142 *4))) (-4 *4 (-510)) (-4 *4 (-781)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2579 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-268 *5)) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2579 (*1 *2 *3) (|partial| -12 (-5 *3 (-268 *4)) (-4 *4 (-510)) (-4 *4 (-781)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2578 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-268 *5)) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) (-4 *5 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *5)))) (-2578 (*1 *2 *3) (|partial| -12 (-5 *3 (-268 *4)) (-4 *4 (-510)) (-4 *4 (-781)) (-4 *4 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *4)))) (-2579 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-361 (-884 (-142 *5)))) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2579 (*1 *2 *3) (|partial| -12 (-5 *3 (-361 (-884 (-142 *4)))) (-4 *4 (-510)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2579 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2579 (*1 *2 *3) (|partial| -12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2578 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *5)))) (-2578 (*1 *2 *3) (|partial| -12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-4 *4 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *4)))) (-2579 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-884 *5)) (-5 *4 (-857)) (-4 *5 (-989)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2579 (*1 *2 *3) (|partial| -12 (-5 *3 (-884 *4)) (-4 *4 (-989)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2578 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-884 *5)) (-5 *4 (-857)) (-4 *5 (-989)) (-4 *5 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *5)))) (-2578 (*1 *2 *3) (|partial| -12 (-5 *3 (-884 *4)) (-4 *4 (-989)) (-4 *4 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *4)))) (-2579 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-884 (-142 *5))) (-5 *4 (-857)) (-4 *5 (-146)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2579 (*1 *2 *3) (|partial| -12 (-5 *3 (-884 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-268 (-142 *5))) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-268 (-142 *4))) (-4 *4 (-510)) (-4 *4 (-781)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-268 *5)) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-268 *4)) (-4 *4 (-510)) (-4 *4 (-781)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2576 (*1 *2 *3 *4) (-12 (-5 *3 (-268 *5)) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) (-4 *5 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *5)))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-268 *4)) (-4 *4 (-510)) (-4 *4 (-781)) (-4 *4 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *4)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 (-142 *5)))) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-361 (-884 (-142 *4)))) (-4 *4 (-510)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2576 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *5)))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-4 *4 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *4)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-884 *5)) (-5 *4 (-857)) (-4 *5 (-989)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-884 *4)) (-4 *4 (-989)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2576 (*1 *2 *3 *4) (-12 (-5 *3 (-884 *5)) (-5 *4 (-857)) (-4 *5 (-989)) (-4 *5 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *5)))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-884 *4)) (-4 *4 (-989)) (-4 *4 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *4)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-884 (-142 *5))) (-5 *4 (-857)) (-4 *5 (-146)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-884 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-142 *5)) (-5 *4 (-857)) (-4 *5 (-146)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *4 (-857)) (-5 *2 (-142 (-333))) (-5 *1 (-728 *3)) (-4 *3 (-569 (-333))))) (-2577 (*1 *2 *3) (-12 (-5 *2 (-142 (-333))) (-5 *1 (-728 *3)) (-4 *3 (-569 (-333))))) (-2576 (*1 *2 *3 *4) (-12 (-5 *4 (-857)) (-5 *2 (-333)) (-5 *1 (-728 *3)) (-4 *3 (-569 *2)))) (-2576 (*1 *2 *3) (-12 (-5 *2 (-333)) (-5 *1 (-728 *3)) (-4 *3 (-569 *2))))) +((-2583 (((-857) (-1099)) 90 T ELT)) (-2585 (((-3 (-333) "failed") (-1099)) 36 T ELT)) (-2584 (((-333) (-1099)) 34 T ELT)) (-2581 (((-857) (-1099)) 64 T ELT)) (-2582 (((-1099) (-857)) 74 T ELT)) (-2580 (((-1099) (-857)) 63 T ELT))) +(((-729) (-10 -7 (-15 -2580 ((-1099) (-857))) (-15 -2581 ((-857) (-1099))) (-15 -2582 ((-1099) (-857))) (-15 -2583 ((-857) (-1099))) (-15 -2584 ((-333) (-1099))) (-15 -2585 ((-3 (-333) "failed") (-1099))))) (T -729)) +((-2585 (*1 *2 *3) (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-729)))) (-2584 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-729)))) (-2583 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-857)) (-5 *1 (-729)))) (-2582 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1099)) (-5 *1 (-729)))) (-2581 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-857)) (-5 *1 (-729)))) (-2580 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1099)) (-5 *1 (-729))))) +((-2687 (((-85) $ $) 7 T ELT)) (-2586 (((-975) (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179))) (-975)) 19 T ELT) (((-975) (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179))) (-975)) 17 T ELT)) (-2787 (((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)) (|:| |extra| (-975))) (-1003) (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) 20 T ELT) (((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)) (|:| |extra| (-975))) (-1003) (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) 18 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-730) (-113)) (T -730)) +((-2787 (*1 *2 *3 *4) (-12 (-4 *1 (-730)) (-5 *3 (-1003)) (-5 *4 (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (-5 *2 (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)) (|:| |extra| (-975)))))) (-2586 (*1 *2 *3 *2) (-12 (-4 *1 (-730)) (-5 *2 (-975)) (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))))) (-2787 (*1 *2 *3 *4) (-12 (-4 *1 (-730)) (-5 *3 (-1003)) (-5 *4 (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (-5 *2 (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)) (|:| |extra| (-975)))))) (-2586 (*1 *2 *3 *2) (-12 (-4 *1 (-730)) (-5 *2 (-975)) (-5 *3 (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))))) +(-13 (-1041) (-10 -7 (-15 -2787 ((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)) (|:| |extra| (-975))) (-1003) (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))) (-15 -2586 ((-975) (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) (|:| |relerr| (-179))) (-975))) (-15 -2787 ((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)) (|:| |extra| (-975))) (-1003) (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))) (-15 -2586 ((-975) (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) (|:| |abserr| (-179)) (|:| |relerr| (-179))) (-975))))) +(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) +((-2589 (((-1213) (-1207 (-333)) (-499) (-333) (-2 (|:| |tryValue| (-333)) (|:| |did| (-333)) (|:| -1508 (-333))) (-333) (-1207 (-333)) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333))) 54 T ELT) (((-1213) (-1207 (-333)) (-499) (-333) (-2 (|:| |tryValue| (-333)) (|:| |did| (-333)) (|:| -1508 (-333))) (-333) (-1207 (-333)) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333))) 51 T ELT)) (-2590 (((-1213) (-1207 (-333)) (-499) (-333) (-333) (-499) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333))) 61 T ELT)) (-2588 (((-1213) (-1207 (-333)) (-499) (-333) (-333) (-333) (-333) (-499) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333))) 49 T ELT)) (-2587 (((-1213) (-1207 (-333)) (-499) (-333) (-333) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333))) 63 T ELT) (((-1213) (-1207 (-333)) (-499) (-333) (-333) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333))) 62 T ELT))) +(((-731) (-10 -7 (-15 -2587 ((-1213) (-1207 (-333)) (-499) (-333) (-333) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333)))) (-15 -2587 ((-1213) (-1207 (-333)) (-499) (-333) (-333) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)))) (-15 -2588 ((-1213) (-1207 (-333)) (-499) (-333) (-333) (-333) (-333) (-499) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333)))) (-15 -2589 ((-1213) (-1207 (-333)) (-499) (-333) (-2 (|:| |tryValue| (-333)) (|:| |did| (-333)) (|:| -1508 (-333))) (-333) (-1207 (-333)) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333)))) (-15 -2589 ((-1213) (-1207 (-333)) (-499) (-333) (-2 (|:| |tryValue| (-333)) (|:| |did| (-333)) (|:| -1508 (-333))) (-333) (-1207 (-333)) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)) (-1207 (-333)))) (-15 -2590 ((-1213) (-1207 (-333)) (-499) (-333) (-333) (-499) (-1 (-1213) (-1207 (-333)) (-1207 (-333)) (-333)))))) (T -731)) +((-2590 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-499)) (-5 *6 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) (-5 *3 (-1207 (-333))) (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731)))) (-2589 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-499)) (-5 *6 (-2 (|:| |tryValue| (-333)) (|:| |did| (-333)) (|:| -1508 (-333)))) (-5 *7 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) (-5 *3 (-1207 (-333))) (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731)))) (-2589 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-499)) (-5 *6 (-2 (|:| |tryValue| (-333)) (|:| |did| (-333)) (|:| -1508 (-333)))) (-5 *7 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) (-5 *3 (-1207 (-333))) (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731)))) (-2588 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-499)) (-5 *6 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) (-5 *3 (-1207 (-333))) (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731)))) (-2587 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-499)) (-5 *6 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) (-5 *3 (-1207 (-333))) (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731)))) (-2587 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-499)) (-5 *6 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) (-5 *3 (-1207 (-333))) (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731))))) +((-2599 (((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499)) 65 T ELT)) (-2596 (((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499)) 40 T ELT)) (-2598 (((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499)) 64 T ELT)) (-2595 (((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499)) 38 T ELT)) (-2597 (((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499)) 63 T ELT)) (-2594 (((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499)) 24 T ELT)) (-2593 (((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499) (-499)) 41 T ELT)) (-2592 (((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499) (-499)) 39 T ELT)) (-2591 (((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499) (-499)) 37 T ELT))) +(((-732) (-10 -7 (-15 -2591 ((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499) (-499))) (-15 -2592 ((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499) (-499))) (-15 -2593 ((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499) (-499))) (-15 -2594 ((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499))) (-15 -2595 ((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499))) (-15 -2596 ((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499))) (-15 -2597 ((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499))) (-15 -2598 ((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499))) (-15 -2599 ((-2 (|:| -3542 (-333)) (|:| -1629 (-333)) (|:| |totalpts| (-499)) (|:| |success| (-85))) (-1 (-333) (-333)) (-333) (-333) (-333) (-333) (-499) (-499))))) (T -732)) +((-2599 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) (|:| |success| (-85)))) (-5 *1 (-732)) (-5 *5 (-499)))) (-2598 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) (|:| |success| (-85)))) (-5 *1 (-732)) (-5 *5 (-499)))) (-2597 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) (|:| |success| (-85)))) (-5 *1 (-732)) (-5 *5 (-499)))) (-2596 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) (|:| |success| (-85)))) (-5 *1 (-732)) (-5 *5 (-499)))) (-2595 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) (|:| |success| (-85)))) (-5 *1 (-732)) (-5 *5 (-499)))) (-2594 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) (|:| |success| (-85)))) (-5 *1 (-732)) (-5 *5 (-499)))) (-2593 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) (|:| |success| (-85)))) (-5 *1 (-732)) (-5 *5 (-499)))) (-2592 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) (|:| |success| (-85)))) (-5 *1 (-732)) (-5 *5 (-499)))) (-2591 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) (|:| |success| (-85)))) (-5 *1 (-732)) (-5 *5 (-499))))) +((-3855 (((-1153 |#1|) |#1| (-179) (-499)) 69 T ELT))) +(((-733 |#1|) (-10 -7 (-15 -3855 ((-1153 |#1|) |#1| (-179) (-499)))) (-914)) (T -733)) +((-3855 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-179)) (-5 *5 (-499)) (-5 *2 (-1153 *3)) (-5 *1 (-733 *3)) (-4 *3 (-914))))) +((-3773 (((-499) $) 17 T ELT)) (-3325 (((-85) $) 10 T ELT)) (-3523 (($ $) 19 T ELT))) +(((-734 |#1|) (-10 -7 (-15 -3523 (|#1| |#1|)) (-15 -3773 ((-499) |#1|)) (-15 -3325 ((-85) |#1|))) (-735)) (T -734)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 31 T ELT)) (-1345 (((-3 $ "failed") $ $) 34 T ELT)) (-3773 (((-499) $) 37 T ELT)) (-3874 (($) 30 T CONST)) (-3324 (((-85) $) 28 T ELT)) (-3325 (((-85) $) 38 T ELT)) (-2650 (($ $ $) 23 T ELT)) (-2978 (($ $ $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3523 (($ $) 36 T ELT)) (-2779 (($) 29 T CONST)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT)) (-3987 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-3989 (($ $ $) 25 T ELT)) (* (($ (-857) $) 26 T ELT) (($ (-714) $) 32 T ELT) (($ (-499) $) 39 T ELT))) +(((-735) (-113)) (T -735)) +((-3325 (*1 *2 *1) (-12 (-4 *1 (-735)) (-5 *2 (-85)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-735)) (-5 *2 (-499)))) (-3523 (*1 *1 *1) (-4 *1 (-735)))) +(-13 (-742) (-21) (-10 -8 (-15 -3325 ((-85) $)) (-15 -3773 ((-499) $)) (-15 -3523 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-737) . T) ((-739) . T) ((-742) . T) ((-781) . T) ((-784) . T) ((-1041) . T) ((-1157) . T)) +((-3324 (((-85) $) 10 T ELT))) +(((-736 |#1|) (-10 -7 (-15 -3324 ((-85) |#1|))) (-737)) (T -736)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 31 T ELT)) (-3874 (($) 30 T CONST)) (-3324 (((-85) $) 28 T ELT)) (-2650 (($ $ $) 23 T ELT)) (-2978 (($ $ $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 29 T CONST)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT)) (-3989 (($ $ $) 25 T ELT)) (* (($ (-857) $) 26 T ELT) (($ (-714) $) 32 T ELT))) +(((-737) (-113)) (T -737)) +((-3324 (*1 *2 *1) (-12 (-4 *1 (-737)) (-5 *2 (-85))))) +(-13 (-739) (-23) (-10 -8 (-15 -3324 ((-85) $)))) +(((-23) . T) ((-25) . T) ((-73) . T) ((-568 (-797)) . T) ((-739) . T) ((-781) . T) ((-784) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 31 T ELT)) (-2600 (($ $ $) 35 T ELT)) (-1345 (((-3 $ "failed") $ $) 34 T ELT)) (-3874 (($) 30 T CONST)) (-3324 (((-85) $) 28 T ELT)) (-2650 (($ $ $) 23 T ELT)) (-2978 (($ $ $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 29 T CONST)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT)) (-3989 (($ $ $) 25 T ELT)) (* (($ (-857) $) 26 T ELT) (($ (-714) $) 32 T ELT))) +(((-738) (-113)) (T -738)) +((-2600 (*1 *1 *1 *1) (-4 *1 (-738)))) +(-13 (-742) (-10 -8 (-15 -2600 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-737) . T) ((-739) . T) ((-742) . T) ((-781) . T) ((-784) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) 7 T ELT)) (-2650 (($ $ $) 23 T ELT)) (-2978 (($ $ $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT)) (-3989 (($ $ $) 25 T ELT)) (* (($ (-857) $) 26 T ELT))) +(((-739) (-113)) (T -739)) +NIL +(-13 (-781) (-25)) +(((-25) . T) ((-73) . T) ((-568 (-797)) . T) ((-781) . T) ((-784) . T) ((-1041) . T) ((-1157) . T)) +((-3326 (((-85) $) 42 T ELT)) (-3295 (((-3 (-499) #1="failed") $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3294 (((-499) $) NIL T ELT) (((-361 (-499)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) 78 T ELT)) (-3144 (((-85) $) 72 T ELT)) (-3143 (((-361 (-499)) $) 76 T ELT)) (-3254 ((|#2| $) 26 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2601 (($ $) 58 T ELT)) (-4122 (((-488) $) 67 T ELT)) (-3130 (($ $) 21 T ELT)) (-4096 (((-797) $) 53 T ELT) (($ (-499)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-361 (-499))) NIL T ELT)) (-3248 (((-714)) 10 T ELT)) (-3523 ((|#2| $) 71 T ELT)) (-3174 (((-85) $ $) 30 T ELT)) (-2806 (((-85) $ $) 69 T ELT)) (-3987 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 31 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) +(((-740 |#1| |#2|) (-10 -7 (-15 -2806 ((-85) |#1| |#1|)) (-15 -4122 ((-488) |#1|)) (-15 -2601 (|#1| |#1|)) (-15 -3145 ((-3 (-361 (-499)) #1="failed") |#1|)) (-15 -3143 ((-361 (-499)) |#1|)) (-15 -3144 ((-85) |#1|)) (-15 -3523 (|#2| |#1|)) (-15 -3254 (|#2| |#1|)) (-15 -3130 (|#1| |#1|)) (-15 -4108 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -4096 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3248 ((-714))) (-15 -4096 (|#1| (-499))) (-15 * (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1|)) (-15 * (|#1| (-499) |#1|)) (-15 * (|#1| (-714) |#1|)) (-15 -3326 ((-85) |#1|)) (-15 * (|#1| (-857) |#1|)) (-15 -3989 (|#1| |#1| |#1|)) (-15 -4096 ((-797) |#1|)) (-15 -3174 ((-85) |#1| |#1|))) (-741 |#2|) (-146)) (T -740)) +((-3248 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-714)) (-5 *1 (-740 *3 *4)) (-4 *3 (-741 *4))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3258 (((-714)) 64 (|has| |#1| (-323)) ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 (-499) #1="failed") $) 106 (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) 103 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 100 T ELT)) (-3294 (((-499) $) 105 (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) 102 (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) 101 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3793 ((|#1| $) 90 T ELT)) (-3145 (((-3 (-361 (-499)) "failed") $) 77 (|has| |#1| (-498)) ELT)) (-3144 (((-85) $) 79 (|has| |#1| (-498)) ELT)) (-3143 (((-361 (-499)) $) 78 (|has| |#1| (-498)) ELT)) (-3115 (($) 67 (|has| |#1| (-323)) ELT)) (-2528 (((-85) $) 40 T ELT)) (-2606 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 81 T ELT)) (-3254 ((|#1| $) 82 T ELT)) (-2650 (($ $ $) 68 (|has| |#1| (-781)) ELT)) (-2978 (($ $ $) 69 (|has| |#1| (-781)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-2111 (((-857) $) 66 (|has| |#1| (-323)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 76 (|has| |#1| (-318)) ELT)) (-2518 (($ (-857)) 65 (|has| |#1| (-323)) ELT)) (-2603 ((|#1| $) 87 T ELT)) (-2604 ((|#1| $) 88 T ELT)) (-2605 ((|#1| $) 89 T ELT)) (-3127 ((|#1| $) 83 T ELT)) (-3128 ((|#1| $) 84 T ELT)) (-3129 ((|#1| $) 85 T ELT)) (-2602 ((|#1| $) 86 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3918 (($ $ (-599 |#1|) (-599 |#1|)) 98 (|has| |#1| (-263 |#1|)) ELT) (($ $ |#1| |#1|) 97 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-247 |#1|)) 96 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-247 |#1|))) 95 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) 94 (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-1117) |#1|) 93 (|has| |#1| (-468 (-1117) |#1|)) ELT)) (-3950 (($ $ |#1|) 99 (|has| |#1| (-240 |#1| |#1|)) ELT)) (-4122 (((-488) $) 74 (|has| |#1| (-569 (-488))) ELT)) (-3130 (($ $) 91 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-361 (-499))) 104 (|has| |#1| (-978 (-361 (-499)))) ELT)) (-2823 (((-649 $) $) 75 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-3523 ((|#1| $) 80 (|has| |#1| (-1000)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2685 (((-85) $ $) 70 (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) 72 (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 71 (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 73 (|has| |#1| (-781)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) +(((-741 |#1|) (-113) (-146)) (T -741)) +((-3130 (*1 *1 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-2602 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-3128 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-2606 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)) (-4 *2 (-1000)))) (-3144 (*1 *2 *1) (-12 (-4 *1 (-741 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-85)))) (-3143 (*1 *2 *1) (-12 (-4 *1 (-741 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-361 (-499))))) (-3145 (*1 *2 *1) (|partial| -12 (-4 *1 (-741 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-361 (-499))))) (-2601 (*1 *1 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)) (-4 *2 (-318))))) +(-13 (-38 |t#1|) (-366 |t#1|) (-293 |t#1|) (-10 -8 (-15 -3130 ($ $)) (-15 -3793 (|t#1| $)) (-15 -2605 (|t#1| $)) (-15 -2604 (|t#1| $)) (-15 -2603 (|t#1| $)) (-15 -2602 (|t#1| $)) (-15 -3129 (|t#1| $)) (-15 -3128 (|t#1| $)) (-15 -3127 (|t#1| $)) (-15 -3254 (|t#1| $)) (-15 -2606 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-323)) (-6 (-323)) |%noBranch|) (IF (|has| |t#1| (-781)) (-6 (-781)) |%noBranch|) (IF (|has| |t#1| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-1000)) (-15 -3523 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-498)) (PROGN (-15 -3144 ((-85) $)) (-15 -3143 ((-361 (-499)) $)) (-15 -3145 ((-3 (-361 (-499)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-318)) (-15 -2601 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-240 |#1| $) |has| |#1| (-240 |#1| |#1|)) ((-263 |#1|) |has| |#1| (-263 |#1|)) ((-323) |has| |#1| (-323)) ((-293 |#1|) . T) ((-366 |#1|) . T) ((-468 (-1117) |#1|) |has| |#1| (-468 (-1117) |#1|)) ((-468 |#1| |#1|) |has| |#1| (-263 |#1|)) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-598 |#1|) . T) ((-675 |#1|) . T) ((-684) . T) ((-781) |has| |#1| (-781)) ((-784) |has| |#1| (-781)) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 31 T ELT)) (-1345 (((-3 $ "failed") $ $) 34 T ELT)) (-3874 (($) 30 T CONST)) (-3324 (((-85) $) 28 T ELT)) (-2650 (($ $ $) 23 T ELT)) (-2978 (($ $ $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 29 T CONST)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT)) (-3989 (($ $ $) 25 T ELT)) (* (($ (-857) $) 26 T ELT) (($ (-714) $) 32 T ELT))) +(((-742) (-113)) (T -742)) +NIL +(-13 (-737) (-104)) +(((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-737) . T) ((-739) . T) ((-781) . T) ((-784) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3258 (((-714)) NIL (|has| |#1| (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-936 |#1|) #1#) $) 35 T ELT) (((-3 (-499) #1#) $) NIL (-3677 (|has| (-936 |#1|) (-978 (-499))) (|has| |#1| (-978 (-499)))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (-3677 (|has| (-936 |#1|) (-978 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-3294 ((|#1| $) NIL T ELT) (((-936 |#1|) $) 33 T ELT) (((-499) $) NIL (-3677 (|has| (-936 |#1|) (-978 (-499))) (|has| |#1| (-978 (-499)))) ELT) (((-361 (-499)) $) NIL (-3677 (|has| (-936 |#1|) (-978 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3793 ((|#1| $) 16 T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-498)) ELT)) (-3144 (((-85) $) NIL (|has| |#1| (-498)) ELT)) (-3143 (((-361 (-499)) $) NIL (|has| |#1| (-498)) ELT)) (-3115 (($) NIL (|has| |#1| (-323)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2606 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-936 |#1|) (-936 |#1|)) 29 T ELT)) (-3254 ((|#1| $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2111 (((-857) $) NIL (|has| |#1| (-323)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| |#1| (-318)) ELT)) (-2518 (($ (-857)) NIL (|has| |#1| (-323)) ELT)) (-2603 ((|#1| $) 22 T ELT)) (-2604 ((|#1| $) 20 T ELT)) (-2605 ((|#1| $) 18 T ELT)) (-3127 ((|#1| $) 26 T ELT)) (-3128 ((|#1| $) 25 T ELT)) (-3129 ((|#1| $) 24 T ELT)) (-2602 ((|#1| $) 23 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3918 (($ $ (-599 |#1|) (-599 |#1|)) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-247 |#1|)) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-247 |#1|))) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) NIL (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-1117) |#1|) NIL (|has| |#1| (-468 (-1117) |#1|)) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-240 |#1| |#1|)) ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3130 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-936 |#1|)) 30 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| (-936 |#1|) (-978 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3523 ((|#1| $) NIL (|has| |#1| (-1000)) ELT)) (-2779 (($) 8 T CONST)) (-2785 (($) 12 T CONST)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-743 |#1|) (-13 (-741 |#1|) (-366 (-936 |#1|)) (-10 -8 (-15 -2606 ($ (-936 |#1|) (-936 |#1|))))) (-146)) (T -743)) +((-2606 (*1 *1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-146)) (-5 *1 (-743 *3))))) +((-4108 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) +(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4108 (|#3| (-1 |#4| |#2|) |#1|))) (-741 |#2|) (-146) (-741 |#4|) (-146)) (T -744)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-741 *6)) (-5 *1 (-744 *4 *5 *2 *6)) (-4 *4 (-741 *5))))) +((-2687 (((-85) $ $) 7 T ELT)) (-2787 (((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099))) (-1003) (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) 18 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2607 (((-975) (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) 17 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-745) (-113)) (T -745)) +((-2787 (*1 *2 *3 *4) (-12 (-4 *1 (-745)) (-5 *3 (-1003)) (-5 *4 (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (-5 *2 (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)))))) (-2607 (*1 *2 *3) (-12 (-4 *1 (-745)) (-5 *3 (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (-5 *2 (-975))))) +(-13 (-1041) (-10 -7 (-15 -2787 ((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099))) (-1003) (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))) (-15 -2607 ((-975) (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))))) +(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) +((-2608 (((-2 (|:| |particular| |#2|) (|:| -2113 (-599 |#2|))) |#3| |#2| (-1117)) 19 T ELT))) +(((-746 |#1| |#2| |#3|) (-10 -7 (-15 -2608 ((-2 (|:| |particular| |#2|) (|:| -2113 (-599 |#2|))) |#3| |#2| (-1117)))) (-13 (-261) (-978 (-499)) (-596 (-499)) (-120)) (-13 (-29 |#1|) (-1143) (-898)) (-616 |#2|)) (T -746)) +((-2608 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1117)) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-4 *4 (-13 (-29 *6) (-1143) (-898))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2113 (-599 *4)))) (-5 *1 (-746 *6 *4 *3)) (-4 *3 (-616 *4))))) +((-3721 (((-3 |#2| #1="failed") |#2| (-86) (-247 |#2|) (-599 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-247 |#2|) (-86) (-247 |#2|) (-599 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2113 (-599 |#2|))) |#2| #1#) |#2| (-86) (-1117)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2113 (-599 |#2|))) |#2| #1#) (-247 |#2|) (-86) (-1117)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1207 |#2|)) (|:| -2113 (-599 (-1207 |#2|)))) #1#) (-599 |#2|) (-599 (-86)) (-1117)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1207 |#2|)) (|:| -2113 (-599 (-1207 |#2|)))) #1#) (-599 (-247 |#2|)) (-599 (-86)) (-1117)) 26 T ELT) (((-3 (-599 (-1207 |#2|)) #1#) (-647 |#2|) (-1117)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1207 |#2|)) (|:| -2113 (-599 (-1207 |#2|)))) #1#) (-647 |#2|) (-1207 |#2|) (-1117)) 35 T ELT))) +(((-747 |#1| |#2|) (-10 -7 (-15 -3721 ((-3 (-2 (|:| |particular| (-1207 |#2|)) (|:| -2113 (-599 (-1207 |#2|)))) #1="failed") (-647 |#2|) (-1207 |#2|) (-1117))) (-15 -3721 ((-3 (-599 (-1207 |#2|)) #1#) (-647 |#2|) (-1117))) (-15 -3721 ((-3 (-2 (|:| |particular| (-1207 |#2|)) (|:| -2113 (-599 (-1207 |#2|)))) #1#) (-599 (-247 |#2|)) (-599 (-86)) (-1117))) (-15 -3721 ((-3 (-2 (|:| |particular| (-1207 |#2|)) (|:| -2113 (-599 (-1207 |#2|)))) #1#) (-599 |#2|) (-599 (-86)) (-1117))) (-15 -3721 ((-3 (-2 (|:| |particular| |#2|) (|:| -2113 (-599 |#2|))) |#2| #1#) (-247 |#2|) (-86) (-1117))) (-15 -3721 ((-3 (-2 (|:| |particular| |#2|) (|:| -2113 (-599 |#2|))) |#2| #1#) |#2| (-86) (-1117))) (-15 -3721 ((-3 |#2| #1#) (-247 |#2|) (-86) (-247 |#2|) (-599 |#2|))) (-15 -3721 ((-3 |#2| #1#) |#2| (-86) (-247 |#2|) (-599 |#2|)))) (-13 (-261) (-978 (-499)) (-596 (-499)) (-120)) (-13 (-29 |#1|) (-1143) (-898))) (T -747)) +((-3721 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-247 *2)) (-5 *5 (-599 *2)) (-4 *2 (-13 (-29 *6) (-1143) (-898))) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *1 (-747 *6 *2)))) (-3721 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-247 *2)) (-5 *4 (-86)) (-5 *5 (-599 *2)) (-4 *2 (-13 (-29 *6) (-1143) (-898))) (-5 *1 (-747 *6 *2)) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))))) (-3721 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-86)) (-5 *5 (-1117)) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2113 (-599 *3))) *3 #1="failed")) (-5 *1 (-747 *6 *3)) (-4 *3 (-13 (-29 *6) (-1143) (-898))))) (-3721 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-247 *7)) (-5 *4 (-86)) (-5 *5 (-1117)) (-4 *7 (-13 (-29 *6) (-1143) (-898))) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2113 (-599 *7))) *7 #1#)) (-5 *1 (-747 *6 *7)))) (-3721 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-599 *7)) (-5 *4 (-599 (-86))) (-5 *5 (-1117)) (-4 *7 (-13 (-29 *6) (-1143) (-898))) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-2 (|:| |particular| (-1207 *7)) (|:| -2113 (-599 (-1207 *7))))) (-5 *1 (-747 *6 *7)))) (-3721 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-599 (-247 *7))) (-5 *4 (-599 (-86))) (-5 *5 (-1117)) (-4 *7 (-13 (-29 *6) (-1143) (-898))) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-2 (|:| |particular| (-1207 *7)) (|:| -2113 (-599 (-1207 *7))))) (-5 *1 (-747 *6 *7)))) (-3721 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-647 *6)) (-5 *4 (-1117)) (-4 *6 (-13 (-29 *5) (-1143) (-898))) (-4 *5 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-599 (-1207 *6))) (-5 *1 (-747 *5 *6)))) (-3721 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-647 *7)) (-5 *5 (-1117)) (-4 *7 (-13 (-29 *6) (-1143) (-898))) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-2 (|:| |particular| (-1207 *7)) (|:| -2113 (-599 (-1207 *7))))) (-5 *1 (-747 *6 *7)) (-5 *4 (-1207 *7))))) +((-3610 ((|#2| |#2| (-1117)) 17 T ELT)) (-2609 ((|#2| |#2| (-1117)) 56 T ELT)) (-2610 (((-1 |#2| |#2|) (-1117)) 11 T ELT))) +(((-748 |#1| |#2|) (-10 -7 (-15 -3610 (|#2| |#2| (-1117))) (-15 -2609 (|#2| |#2| (-1117))) (-15 -2610 ((-1 |#2| |#2|) (-1117)))) (-13 (-261) (-978 (-499)) (-596 (-499)) (-120)) (-13 (-29 |#1|) (-1143) (-898))) (T -748)) +((-2610 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-1 *5 *5)) (-5 *1 (-748 *4 *5)) (-4 *5 (-13 (-29 *4) (-1143) (-898))))) (-2609 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *1 (-748 *4 *2)) (-4 *2 (-13 (-29 *4) (-1143) (-898))))) (-3610 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *1 (-748 *4 *2)) (-4 *2 (-13 (-29 *4) (-1143) (-898)))))) +((-2611 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2113 (-599 |#4|))) (-613 |#4|) |#4|) 33 T ELT))) +(((-749 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2611 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2113 (-599 |#4|))) (-613 |#4|) |#4|))) (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499)))) (-1183 |#1|) (-1183 (-361 |#2|)) (-297 |#1| |#2| |#3|)) (T -749)) +((-2611 (*1 *2 *3 *4) (-12 (-5 *3 (-613 *4)) (-4 *4 (-297 *5 *6 *7)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2113 (-599 *4)))) (-5 *1 (-749 *5 *6 *7 *4))))) +((-3891 (((-2 (|:| -3404 |#3|) (|:| |rh| (-599 (-361 |#2|)))) |#4| (-599 (-361 |#2|))) 53 T ELT)) (-2613 (((-599 (-2 (|:| -3923 |#2|) (|:| -3364 |#2|))) |#4| |#2|) 62 T ELT) (((-599 (-2 (|:| -3923 |#2|) (|:| -3364 |#2|))) |#4|) 61 T ELT) (((-599 (-2 (|:| -3923 |#2|) (|:| -3364 |#2|))) |#3| |#2|) 20 T ELT) (((-599 (-2 (|:| -3923 |#2|) (|:| -3364 |#2|))) |#3|) 21 T ELT)) (-2614 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2612 ((|#2| |#3| (-599 (-361 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-361 |#2|)) 105 T ELT))) +(((-750 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2612 ((-3 |#2| "failed") |#3| (-361 |#2|))) (-15 -2612 (|#2| |#3| (-599 (-361 |#2|)))) (-15 -2613 ((-599 (-2 (|:| -3923 |#2|) (|:| -3364 |#2|))) |#3|)) (-15 -2613 ((-599 (-2 (|:| -3923 |#2|) (|:| -3364 |#2|))) |#3| |#2|)) (-15 -2614 (|#2| |#3| |#1|)) (-15 -2613 ((-599 (-2 (|:| -3923 |#2|) (|:| -3364 |#2|))) |#4|)) (-15 -2613 ((-599 (-2 (|:| -3923 |#2|) (|:| -3364 |#2|))) |#4| |#2|)) (-15 -2614 (|#2| |#4| |#1|)) (-15 -3891 ((-2 (|:| -3404 |#3|) (|:| |rh| (-599 (-361 |#2|)))) |#4| (-599 (-361 |#2|))))) (-13 (-318) (-120) (-978 (-361 (-499)))) (-1183 |#1|) (-616 |#2|) (-616 (-361 |#2|))) (T -750)) +((-3891 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) (-5 *2 (-2 (|:| -3404 *7) (|:| |rh| (-599 (-361 *6))))) (-5 *1 (-750 *5 *6 *7 *3)) (-5 *4 (-599 (-361 *6))) (-4 *7 (-616 *6)) (-4 *3 (-616 (-361 *6))))) (-2614 (*1 *2 *3 *4) (-12 (-4 *2 (-1183 *4)) (-5 *1 (-750 *4 *2 *5 *3)) (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *5 (-616 *2)) (-4 *3 (-616 (-361 *2))))) (-2613 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *4 (-1183 *5)) (-5 *2 (-599 (-2 (|:| -3923 *4) (|:| -3364 *4)))) (-5 *1 (-750 *5 *4 *6 *3)) (-4 *6 (-616 *4)) (-4 *3 (-616 (-361 *4))))) (-2613 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *5 (-1183 *4)) (-5 *2 (-599 (-2 (|:| -3923 *5) (|:| -3364 *5)))) (-5 *1 (-750 *4 *5 *6 *3)) (-4 *6 (-616 *5)) (-4 *3 (-616 (-361 *5))))) (-2614 (*1 *2 *3 *4) (-12 (-4 *2 (-1183 *4)) (-5 *1 (-750 *4 *2 *3 *5)) (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *3 (-616 *2)) (-4 *5 (-616 (-361 *2))))) (-2613 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *4 (-1183 *5)) (-5 *2 (-599 (-2 (|:| -3923 *4) (|:| -3364 *4)))) (-5 *1 (-750 *5 *4 *3 *6)) (-4 *3 (-616 *4)) (-4 *6 (-616 (-361 *4))))) (-2613 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *5 (-1183 *4)) (-5 *2 (-599 (-2 (|:| -3923 *5) (|:| -3364 *5)))) (-5 *1 (-750 *4 *5 *3 *6)) (-4 *3 (-616 *5)) (-4 *6 (-616 (-361 *5))))) (-2612 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-361 *2))) (-4 *2 (-1183 *5)) (-5 *1 (-750 *5 *2 *3 *6)) (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *3 (-616 *2)) (-4 *6 (-616 (-361 *2))))) (-2612 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-361 *2)) (-4 *2 (-1183 *5)) (-5 *1 (-750 *5 *2 *3 *6)) (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *3 (-616 *2)) (-4 *6 (-616 *4))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3294 (((-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179))) $) 13 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 15 T ELT) (($ (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) 12 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-751) (-13 (-1041) (-10 -8 (-15 -4096 ($ (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179))))) (-15 -3294 ((-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179))) $))))) (T -751)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (-5 *1 (-751)))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (-5 *1 (-751))))) +((-2622 (((-599 (-2 (|:| |frac| (-361 |#2|)) (|:| -3404 |#3|))) |#3| (-1 (-599 |#2|) |#2| (-1111 |#2|)) (-1 (-359 |#2|) |#2|)) 156 T ELT)) (-2623 (((-599 (-2 (|:| |poly| |#2|) (|:| -3404 |#3|))) |#3| (-1 (-599 |#1|) |#2|)) 52 T ELT)) (-2616 (((-599 (-2 (|:| |deg| (-714)) (|:| -3404 |#2|))) |#3|) 123 T ELT)) (-2615 ((|#2| |#3|) 42 T ELT)) (-2617 (((-599 (-2 (|:| -4102 |#1|) (|:| -3404 |#3|))) |#3| (-1 (-599 |#1|) |#2|)) 100 T ELT)) (-2618 ((|#3| |#3| (-361 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) +(((-752 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2615 (|#2| |#3|)) (-15 -2616 ((-599 (-2 (|:| |deg| (-714)) (|:| -3404 |#2|))) |#3|)) (-15 -2617 ((-599 (-2 (|:| -4102 |#1|) (|:| -3404 |#3|))) |#3| (-1 (-599 |#1|) |#2|))) (-15 -2623 ((-599 (-2 (|:| |poly| |#2|) (|:| -3404 |#3|))) |#3| (-1 (-599 |#1|) |#2|))) (-15 -2622 ((-599 (-2 (|:| |frac| (-361 |#2|)) (|:| -3404 |#3|))) |#3| (-1 (-599 |#2|) |#2| (-1111 |#2|)) (-1 (-359 |#2|) |#2|))) (-15 -2618 (|#3| |#3| |#2|)) (-15 -2618 (|#3| |#3| (-361 |#2|)))) (-13 (-318) (-120) (-978 (-361 (-499)))) (-1183 |#1|) (-616 |#2|) (-616 (-361 |#2|))) (T -752)) +((-2618 (*1 *2 *2 *3) (-12 (-5 *3 (-361 *5)) (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *5 (-1183 *4)) (-5 *1 (-752 *4 *5 *2 *6)) (-4 *2 (-616 *5)) (-4 *6 (-616 *3)))) (-2618 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *3 (-1183 *4)) (-5 *1 (-752 *4 *3 *2 *5)) (-4 *2 (-616 *3)) (-4 *5 (-616 (-361 *3))))) (-2622 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-599 *7) *7 (-1111 *7))) (-5 *5 (-1 (-359 *7) *7)) (-4 *7 (-1183 *6)) (-4 *6 (-13 (-318) (-120) (-978 (-361 (-499))))) (-5 *2 (-599 (-2 (|:| |frac| (-361 *7)) (|:| -3404 *3)))) (-5 *1 (-752 *6 *7 *3 *8)) (-4 *3 (-616 *7)) (-4 *8 (-616 (-361 *7))))) (-2623 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-599 *5) *6)) (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) (-5 *2 (-599 (-2 (|:| |poly| *6) (|:| -3404 *3)))) (-5 *1 (-752 *5 *6 *3 *7)) (-4 *3 (-616 *6)) (-4 *7 (-616 (-361 *6))))) (-2617 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-599 *5) *6)) (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) (-5 *2 (-599 (-2 (|:| -4102 *5) (|:| -3404 *3)))) (-5 *1 (-752 *5 *6 *3 *7)) (-4 *3 (-616 *6)) (-4 *7 (-616 (-361 *6))))) (-2616 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *5 (-1183 *4)) (-5 *2 (-599 (-2 (|:| |deg| (-714)) (|:| -3404 *5)))) (-5 *1 (-752 *4 *5 *3 *6)) (-4 *3 (-616 *5)) (-4 *6 (-616 (-361 *5))))) (-2615 (*1 *2 *3) (-12 (-4 *2 (-1183 *4)) (-5 *1 (-752 *4 *2 *3 *5)) (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *3 (-616 *2)) (-4 *5 (-616 (-361 *2)))))) +((-2619 (((-2 (|:| -2113 (-599 (-361 |#2|))) (|:| -1673 (-647 |#1|))) (-614 |#2| (-361 |#2|)) (-599 (-361 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-361 |#2|) #1="failed")) (|:| -2113 (-599 (-361 |#2|)))) (-614 |#2| (-361 |#2|)) (-361 |#2|)) 145 T ELT) (((-2 (|:| -2113 (-599 (-361 |#2|))) (|:| -1673 (-647 |#1|))) (-613 (-361 |#2|)) (-599 (-361 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-361 |#2|) #1#)) (|:| -2113 (-599 (-361 |#2|)))) (-613 (-361 |#2|)) (-361 |#2|)) 138 T ELT)) (-2620 ((|#2| (-614 |#2| (-361 |#2|))) 86 T ELT) ((|#2| (-613 (-361 |#2|))) 89 T ELT))) +(((-753 |#1| |#2|) (-10 -7 (-15 -2619 ((-2 (|:| |particular| (-3 (-361 |#2|) #1="failed")) (|:| -2113 (-599 (-361 |#2|)))) (-613 (-361 |#2|)) (-361 |#2|))) (-15 -2619 ((-2 (|:| -2113 (-599 (-361 |#2|))) (|:| -1673 (-647 |#1|))) (-613 (-361 |#2|)) (-599 (-361 |#2|)))) (-15 -2619 ((-2 (|:| |particular| (-3 (-361 |#2|) #1#)) (|:| -2113 (-599 (-361 |#2|)))) (-614 |#2| (-361 |#2|)) (-361 |#2|))) (-15 -2619 ((-2 (|:| -2113 (-599 (-361 |#2|))) (|:| -1673 (-647 |#1|))) (-614 |#2| (-361 |#2|)) (-599 (-361 |#2|)))) (-15 -2620 (|#2| (-613 (-361 |#2|)))) (-15 -2620 (|#2| (-614 |#2| (-361 |#2|))))) (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499)))) (-1183 |#1|)) (T -753)) +((-2620 (*1 *2 *3) (-12 (-5 *3 (-614 *2 (-361 *2))) (-4 *2 (-1183 *4)) (-5 *1 (-753 *4 *2)) (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))))) (-2620 (*1 *2 *3) (-12 (-5 *3 (-613 (-361 *2))) (-4 *2 (-1183 *4)) (-5 *1 (-753 *4 *2)) (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-614 *6 (-361 *6))) (-4 *6 (-1183 *5)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-5 *2 (-2 (|:| -2113 (-599 (-361 *6))) (|:| -1673 (-647 *5)))) (-5 *1 (-753 *5 *6)) (-5 *4 (-599 (-361 *6))))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-614 *6 (-361 *6))) (-5 *4 (-361 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2113 (-599 *4)))) (-5 *1 (-753 *5 *6)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-613 (-361 *6))) (-4 *6 (-1183 *5)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-5 *2 (-2 (|:| -2113 (-599 (-361 *6))) (|:| -1673 (-647 *5)))) (-5 *1 (-753 *5 *6)) (-5 *4 (-599 (-361 *6))))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-613 (-361 *6))) (-5 *4 (-361 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2113 (-599 *4)))) (-5 *1 (-753 *5 *6))))) +((-2621 (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#1|))) |#5| |#4|) 49 T ELT))) +(((-754 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2621 ((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#1|))) |#5| |#4|))) (-318) (-616 |#1|) (-1183 |#1|) (-682 |#1| |#3|) (-616 |#4|)) (T -754)) +((-2621 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-4 *7 (-1183 *5)) (-4 *4 (-682 *5 *7)) (-5 *2 (-2 (|:| -1673 (-647 *6)) (|:| |vec| (-1207 *5)))) (-5 *1 (-754 *5 *6 *7 *4 *3)) (-4 *6 (-616 *5)) (-4 *3 (-616 *4))))) +((-2622 (((-599 (-2 (|:| |frac| (-361 |#2|)) (|:| -3404 (-614 |#2| (-361 |#2|))))) (-614 |#2| (-361 |#2|)) (-1 (-359 |#2|) |#2|)) 47 T ELT)) (-2624 (((-599 (-361 |#2|)) (-614 |#2| (-361 |#2|)) (-1 (-359 |#2|) |#2|)) 167 (|has| |#1| (-27)) ELT) (((-599 (-361 |#2|)) (-614 |#2| (-361 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-599 (-361 |#2|)) (-613 (-361 |#2|)) (-1 (-359 |#2|) |#2|)) 168 (|has| |#1| (-27)) ELT) (((-599 (-361 |#2|)) (-613 (-361 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-599 (-361 |#2|)) (-614 |#2| (-361 |#2|)) (-1 (-599 |#1|) |#2|) (-1 (-359 |#2|) |#2|)) 38 T ELT) (((-599 (-361 |#2|)) (-614 |#2| (-361 |#2|)) (-1 (-599 |#1|) |#2|)) 39 T ELT) (((-599 (-361 |#2|)) (-613 (-361 |#2|)) (-1 (-599 |#1|) |#2|) (-1 (-359 |#2|) |#2|)) 36 T ELT) (((-599 (-361 |#2|)) (-613 (-361 |#2|)) (-1 (-599 |#1|) |#2|)) 37 T ELT)) (-2623 (((-599 (-2 (|:| |poly| |#2|) (|:| -3404 (-614 |#2| (-361 |#2|))))) (-614 |#2| (-361 |#2|)) (-1 (-599 |#1|) |#2|)) 96 T ELT))) +(((-755 |#1| |#2|) (-10 -7 (-15 -2624 ((-599 (-361 |#2|)) (-613 (-361 |#2|)) (-1 (-599 |#1|) |#2|))) (-15 -2624 ((-599 (-361 |#2|)) (-613 (-361 |#2|)) (-1 (-599 |#1|) |#2|) (-1 (-359 |#2|) |#2|))) (-15 -2624 ((-599 (-361 |#2|)) (-614 |#2| (-361 |#2|)) (-1 (-599 |#1|) |#2|))) (-15 -2624 ((-599 (-361 |#2|)) (-614 |#2| (-361 |#2|)) (-1 (-599 |#1|) |#2|) (-1 (-359 |#2|) |#2|))) (-15 -2622 ((-599 (-2 (|:| |frac| (-361 |#2|)) (|:| -3404 (-614 |#2| (-361 |#2|))))) (-614 |#2| (-361 |#2|)) (-1 (-359 |#2|) |#2|))) (-15 -2623 ((-599 (-2 (|:| |poly| |#2|) (|:| -3404 (-614 |#2| (-361 |#2|))))) (-614 |#2| (-361 |#2|)) (-1 (-599 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2624 ((-599 (-361 |#2|)) (-613 (-361 |#2|)))) (-15 -2624 ((-599 (-361 |#2|)) (-613 (-361 |#2|)) (-1 (-359 |#2|) |#2|))) (-15 -2624 ((-599 (-361 |#2|)) (-614 |#2| (-361 |#2|)))) (-15 -2624 ((-599 (-361 |#2|)) (-614 |#2| (-361 |#2|)) (-1 (-359 |#2|) |#2|)))) |%noBranch|)) (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499)))) (-1183 |#1|)) (T -755)) +((-2624 (*1 *2 *3 *4) (-12 (-5 *3 (-614 *6 (-361 *6))) (-5 *4 (-1 (-359 *6) *6)) (-4 *6 (-1183 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-5 *2 (-599 (-361 *6))) (-5 *1 (-755 *5 *6)))) (-2624 (*1 *2 *3) (-12 (-5 *3 (-614 *5 (-361 *5))) (-4 *5 (-1183 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-5 *2 (-599 (-361 *5))) (-5 *1 (-755 *4 *5)))) (-2624 (*1 *2 *3 *4) (-12 (-5 *3 (-613 (-361 *6))) (-5 *4 (-1 (-359 *6) *6)) (-4 *6 (-1183 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-5 *2 (-599 (-361 *6))) (-5 *1 (-755 *5 *6)))) (-2624 (*1 *2 *3) (-12 (-5 *3 (-613 (-361 *5))) (-4 *5 (-1183 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-5 *2 (-599 (-361 *5))) (-5 *1 (-755 *4 *5)))) (-2623 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-599 *5) *6)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) (-5 *2 (-599 (-2 (|:| |poly| *6) (|:| -3404 (-614 *6 (-361 *6)))))) (-5 *1 (-755 *5 *6)) (-5 *3 (-614 *6 (-361 *6))))) (-2622 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-359 *6) *6)) (-4 *6 (-1183 *5)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-5 *2 (-599 (-2 (|:| |frac| (-361 *6)) (|:| -3404 (-614 *6 (-361 *6)))))) (-5 *1 (-755 *5 *6)) (-5 *3 (-614 *6 (-361 *6))))) (-2624 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-614 *7 (-361 *7))) (-5 *4 (-1 (-599 *6) *7)) (-5 *5 (-1 (-359 *7) *7)) (-4 *6 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-4 *7 (-1183 *6)) (-5 *2 (-599 (-361 *7))) (-5 *1 (-755 *6 *7)))) (-2624 (*1 *2 *3 *4) (-12 (-5 *3 (-614 *6 (-361 *6))) (-5 *4 (-1 (-599 *5) *6)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) (-5 *2 (-599 (-361 *6))) (-5 *1 (-755 *5 *6)))) (-2624 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-613 (-361 *7))) (-5 *4 (-1 (-599 *6) *7)) (-5 *5 (-1 (-359 *7) *7)) (-4 *6 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-4 *7 (-1183 *6)) (-5 *2 (-599 (-361 *7))) (-5 *1 (-755 *6 *7)))) (-2624 (*1 *2 *3 *4) (-12 (-5 *3 (-613 (-361 *6))) (-5 *4 (-1 (-599 *5) *6)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) (-5 *2 (-599 (-361 *6))) (-5 *1 (-755 *5 *6))))) +((-2625 (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#1|))) (-647 |#2|) (-1207 |#1|)) 110 T ELT) (((-2 (|:| A (-647 |#1|)) (|:| |eqs| (-599 (-2 (|:| C (-647 |#1|)) (|:| |g| (-1207 |#1|)) (|:| -3404 |#2|) (|:| |rh| |#1|))))) (-647 |#1|) (-1207 |#1|)) 15 T ELT)) (-2626 (((-2 (|:| |particular| (-3 (-1207 |#1|) #1="failed")) (|:| -2113 (-599 (-1207 |#1|)))) (-647 |#2|) (-1207 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2113 (-599 |#1|))) |#2| |#1|)) 116 T ELT)) (-3721 (((-3 (-2 (|:| |particular| (-1207 |#1|)) (|:| -2113 (-647 |#1|))) #1#) (-647 |#1|) (-1207 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2113 (-599 |#1|))) #1#) |#2| |#1|)) 54 T ELT))) +(((-756 |#1| |#2|) (-10 -7 (-15 -2625 ((-2 (|:| A (-647 |#1|)) (|:| |eqs| (-599 (-2 (|:| C (-647 |#1|)) (|:| |g| (-1207 |#1|)) (|:| -3404 |#2|) (|:| |rh| |#1|))))) (-647 |#1|) (-1207 |#1|))) (-15 -2625 ((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#1|))) (-647 |#2|) (-1207 |#1|))) (-15 -3721 ((-3 (-2 (|:| |particular| (-1207 |#1|)) (|:| -2113 (-647 |#1|))) #1="failed") (-647 |#1|) (-1207 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2113 (-599 |#1|))) #1#) |#2| |#1|))) (-15 -2626 ((-2 (|:| |particular| (-3 (-1207 |#1|) #1#)) (|:| -2113 (-599 (-1207 |#1|)))) (-647 |#2|) (-1207 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2113 (-599 |#1|))) |#2| |#1|)))) (-318) (-616 |#1|)) (T -756)) +((-2626 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-647 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2113 (-599 *6))) *7 *6)) (-4 *6 (-318)) (-4 *7 (-616 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1207 *6) "failed")) (|:| -2113 (-599 (-1207 *6))))) (-5 *1 (-756 *6 *7)) (-5 *4 (-1207 *6)))) (-3721 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2113 (-599 *6))) "failed") *7 *6)) (-4 *6 (-318)) (-4 *7 (-616 *6)) (-5 *2 (-2 (|:| |particular| (-1207 *6)) (|:| -2113 (-647 *6)))) (-5 *1 (-756 *6 *7)) (-5 *3 (-647 *6)) (-5 *4 (-1207 *6)))) (-2625 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-4 *6 (-616 *5)) (-5 *2 (-2 (|:| -1673 (-647 *6)) (|:| |vec| (-1207 *5)))) (-5 *1 (-756 *5 *6)) (-5 *3 (-647 *6)) (-5 *4 (-1207 *5)))) (-2625 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-5 *2 (-2 (|:| A (-647 *5)) (|:| |eqs| (-599 (-2 (|:| C (-647 *5)) (|:| |g| (-1207 *5)) (|:| -3404 *6) (|:| |rh| *5)))))) (-5 *1 (-756 *5 *6)) (-5 *3 (-647 *5)) (-5 *4 (-1207 *5)) (-4 *6 (-616 *5))))) +((-2627 (((-647 |#1|) (-599 |#1|) (-714)) 14 T ELT) (((-647 |#1|) (-599 |#1|)) 15 T ELT)) (-2628 (((-3 (-1207 |#1|) #1="failed") |#2| |#1| (-599 |#1|)) 39 T ELT)) (-3480 (((-3 |#1| #1#) |#2| |#1| (-599 |#1|) (-1 |#1| |#1|)) 46 T ELT))) +(((-757 |#1| |#2|) (-10 -7 (-15 -2627 ((-647 |#1|) (-599 |#1|))) (-15 -2627 ((-647 |#1|) (-599 |#1|) (-714))) (-15 -2628 ((-3 (-1207 |#1|) #1="failed") |#2| |#1| (-599 |#1|))) (-15 -3480 ((-3 |#1| #1#) |#2| |#1| (-599 |#1|) (-1 |#1| |#1|)))) (-318) (-616 |#1|)) (T -757)) +((-3480 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-599 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-318)) (-5 *1 (-757 *2 *3)) (-4 *3 (-616 *2)))) (-2628 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-599 *4)) (-4 *4 (-318)) (-5 *2 (-1207 *4)) (-5 *1 (-757 *4 *3)) (-4 *3 (-616 *4)))) (-2627 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *5)) (-5 *4 (-714)) (-4 *5 (-318)) (-5 *2 (-647 *5)) (-5 *1 (-757 *5 *6)) (-4 *6 (-616 *5)))) (-2627 (*1 *2 *3) (-12 (-5 *3 (-599 *4)) (-4 *4 (-318)) (-5 *2 (-647 *4)) (-5 *1 (-757 *4 *5)) (-4 *5 (-616 *4))))) +((-2687 (((-85) $ $) NIL (|has| |#2| (-73)) ELT)) (-3326 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3857 (($ (-857)) NIL (|has| |#2| (-989)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-2600 (($ $ $) NIL (|has| |#2| (-738)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3258 (((-714)) NIL (|has| |#2| (-323)) ELT)) (-3938 ((|#2| $ (-499) |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (-12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1041)) ELT)) (-3294 (((-499) $) NIL (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) ELT) (((-361 (-499)) $) NIL (-12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) ((|#2| $) NIL (|has| |#2| (-1041)) ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL (|has| |#2| (-989)) ELT) (((-647 |#2|) (-647 $)) NIL (|has| |#2| (-989)) ELT)) (-3607 (((-3 $ #1#) $) NIL (|has| |#2| (-989)) ELT)) (-3115 (($) NIL (|has| |#2| (-323)) ELT)) (-1609 ((|#2| $ (-499) |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ (-499)) NIL T ELT)) (-3324 (((-85) $) NIL (|has| |#2| (-738)) ELT)) (-3010 (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2528 (((-85) $) NIL (|has| |#2| (-989)) ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#2| (-781)) ELT)) (-2727 (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#2| (-781)) ELT)) (-2051 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2111 (((-857) $) NIL (|has| |#2| (-323)) ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (-12 (|has| |#2| (-596 (-499))) (|has| |#2| (-989))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL (|has| |#2| (-989)) ELT) (((-647 |#2|) (-1207 $)) NIL (|has| |#2| (-989)) ELT)) (-3380 (((-1099) $) NIL (|has| |#2| (-1041)) ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-2518 (($ (-857)) NIL (|has| |#2| (-323)) ELT)) (-3381 (((-1060) $) NIL (|has| |#2| (-1041)) ELT)) (-3951 ((|#2| $) NIL (|has| (-499) (-781)) ELT)) (-2300 (($ $ |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#2| $ (-499) |#2|) NIL T ELT) ((|#2| $ (-499)) NIL T ELT)) (-3986 ((|#2| $ $) NIL (|has| |#2| (-989)) ELT)) (-1501 (($ (-1207 |#2|)) NIL T ELT)) (-4061 (((-107)) NIL (|has| |#2| (-318)) ELT)) (-3908 (($ $ (-714)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-989)) ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL (|has| |#2| (-989)) ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-1207 |#2|) $) NIL T ELT) (($ (-499)) NIL (-3677 (-12 (|has| |#2| (-978 (-499))) (|has| |#2| (-1041))) (|has| |#2| (-989))) ELT) (($ (-361 (-499))) NIL (-12 (|has| |#2| (-978 (-361 (-499)))) (|has| |#2| (-1041))) ELT) (($ |#2|) NIL (|has| |#2| (-1041)) ELT) (((-797) $) NIL (|has| |#2| (-568 (-797))) ELT)) (-3248 (((-714)) NIL (|has| |#2| (-989)) CONST)) (-1297 (((-85) $ $) NIL (|has| |#2| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2779 (($) NIL (|has| |#2| (-23)) CONST)) (-2785 (($) NIL (|has| |#2| (-989)) CONST)) (-2790 (($ $ (-714)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1117)) NIL (-12 (|has| |#2| (-838 (-1117))) (|has| |#2| (-989))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-989)) ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL (|has| |#2| (-989)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#2| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-2806 (((-85) $ $) 11 (|has| |#2| (-781)) ELT)) (-4099 (($ $ |#2|) NIL (|has| |#2| (-318)) ELT)) (-3987 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3989 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-714)) NIL (|has| |#2| (-989)) ELT) (($ $ (-857)) NIL (|has| |#2| (-989)) ELT)) (* (($ $ $) NIL (|has| |#2| (-989)) ELT) (($ $ |#2|) NIL (|has| |#2| (-684)) ELT) (($ |#2| $) NIL (|has| |#2| (-684)) ELT) (($ (-499) $) NIL (|has| |#2| (-21)) ELT) (($ (-714) $) NIL (|has| |#2| (-23)) ELT) (($ (-857) $) NIL (|has| |#2| (-25)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-758 |#1| |#2| |#3|) (-195 |#1| |#2|) (-714) (-738) (-1 (-85) (-1207 |#2|) (-1207 |#2|))) (T -758)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1521 (((-599 (-714)) $) NIL T ELT) (((-599 (-714)) $ (-1117)) NIL T ELT)) (-1555 (((-714) $) NIL T ELT) (((-714) $ (-1117)) NIL T ELT)) (-3204 (((-599 (-761 (-1117))) $) NIL T ELT)) (-3206 (((-1111 $) $ (-761 (-1117))) NIL T ELT) (((-1111 |#1|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-761 (-1117)))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-1517 (($ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-761 (-1117)) #1#) $) NIL T ELT) (((-3 (-1117) #1#) $) NIL T ELT) (((-3 (-1065 |#1| (-1117)) #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-761 (-1117)) $) NIL T ELT) (((-1117) $) NIL T ELT) (((-1065 |#1| (-1117)) $) NIL T ELT)) (-3906 (($ $ $ (-761 (-1117))) NIL (|has| |#1| (-146)) ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT) (($ $ (-761 (-1117))) NIL (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-848)) ELT)) (-1694 (($ $ |#1| (-484 (-761 (-1117))) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-761 (-1117)) (-821 (-333))) (|has| |#1| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-761 (-1117)) (-821 (-499))) (|has| |#1| (-821 (-499)))) ELT)) (-3922 (((-714) $ (-1117)) NIL T ELT) (((-714) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3207 (($ (-1111 |#1|) (-761 (-1117))) NIL T ELT) (($ (-1111 $) (-761 (-1117))) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-484 (-761 (-1117)))) NIL T ELT) (($ $ (-761 (-1117)) (-714)) NIL T ELT) (($ $ (-599 (-761 (-1117))) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-761 (-1117))) NIL T ELT)) (-2941 (((-484 (-761 (-1117))) $) NIL T ELT) (((-714) $ (-761 (-1117))) NIL T ELT) (((-599 (-714)) $ (-599 (-761 (-1117)))) NIL T ELT)) (-1695 (($ (-1 (-484 (-761 (-1117))) (-484 (-761 (-1117)))) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1556 (((-1 $ (-714)) (-1117)) NIL T ELT) (((-1 $ (-714)) $) NIL (|has| |#1| (-190)) ELT)) (-3205 (((-3 (-761 (-1117)) #1#) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1519 (((-761 (-1117)) $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1520 (((-85) $) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-761 (-1117))) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-1518 (($ $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-848)) ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-761 (-1117)) |#1|) NIL T ELT) (($ $ (-599 (-761 (-1117))) (-599 |#1|)) NIL T ELT) (($ $ (-761 (-1117)) $) NIL T ELT) (($ $ (-599 (-761 (-1117))) (-599 $)) NIL T ELT) (($ $ (-1117) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-599 (-1117)) (-599 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1117) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3907 (($ $ (-761 (-1117))) NIL (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 (-761 (-1117))) (-599 (-714))) NIL T ELT) (($ $ (-761 (-1117)) (-714)) NIL T ELT) (($ $ (-599 (-761 (-1117)))) NIL T ELT) (($ $ (-761 (-1117))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT)) (-1522 (((-599 (-1117)) $) NIL T ELT)) (-4098 (((-484 (-761 (-1117))) $) NIL T ELT) (((-714) $ (-761 (-1117))) NIL T ELT) (((-599 (-714)) $ (-599 (-761 (-1117)))) NIL T ELT) (((-714) $ (-1117)) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-761 (-1117)) (-569 (-825 (-333)))) (|has| |#1| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-761 (-1117)) (-569 (-825 (-499)))) (|has| |#1| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-761 (-1117)) (-569 (-488))) (|has| |#1| (-569 (-488)))) ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT) (($ $ (-761 (-1117))) NIL (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-761 (-1117))) NIL T ELT) (($ (-1117)) NIL T ELT) (($ (-1065 |#1| (-1117))) NIL T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-484 (-761 (-1117)))) NIL T ELT) (($ $ (-761 (-1117)) (-714)) NIL T ELT) (($ $ (-599 (-761 (-1117))) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-599 (-761 (-1117))) (-599 (-714))) NIL T ELT) (($ $ (-761 (-1117)) (-714)) NIL T ELT) (($ $ (-599 (-761 (-1117)))) NIL T ELT) (($ $ (-761 (-1117))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-759 |#1|) (-13 (-212 |#1| (-1117) (-761 (-1117)) (-484 (-761 (-1117)))) (-978 (-1065 |#1| (-1117)))) (-989)) (T -759)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#2| (-318)) ELT)) (-2164 (($ $) NIL (|has| |#2| (-318)) ELT)) (-2162 (((-85) $) NIL (|has| |#2| (-318)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL (|has| |#2| (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#2| (-318)) ELT)) (-1678 (((-85) $ $) NIL (|has| |#2| (-318)) ELT)) (-3874 (($) NIL T CONST)) (-2683 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#2| (-318)) ELT)) (-3873 (((-85) $) NIL (|has| |#2| (-318)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#2| (-318)) ELT)) (-1993 (($ (-599 $)) NIL (|has| |#2| (-318)) ELT) (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 20 (|has| |#2| (-318)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#2| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#2| (-318)) ELT) (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#2| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#2| (-318)) ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#2| (-318)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#2| (-318)) ELT)) (-1677 (((-714) $) NIL (|has| |#2| (-318)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#2| (-318)) ELT)) (-3908 (($ $) 13 T ELT) (($ $ (-714)) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-361 (-499))) NIL (|has| |#2| (-318)) ELT) (($ $) NIL (|has| |#2| (-318)) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#2| (-318)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) 15 (|has| |#2| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-714)) NIL T ELT) (($ $ (-857)) NIL T ELT) (($ $ (-499)) 18 (|has| |#2| (-318)) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-361 (-499)) $) NIL (|has| |#2| (-318)) ELT) (($ $ (-361 (-499))) NIL (|has| |#2| (-318)) ELT))) +(((-760 |#1| |#2| |#3|) (-13 (-82 $ $) (-190) (-444 |#2|) (-10 -7 (IF (|has| |#2| (-318)) (-6 (-318)) |%noBranch|))) (-1041) (-836 |#1|) |#1|) (T -760)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-1555 (((-714) $) NIL T ELT)) (-3981 ((|#1| $) 10 T ELT)) (-3295 (((-3 |#1| "failed") $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-3922 (((-714) $) 11 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-1556 (($ |#1| (-714)) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3908 (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2790 (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT))) +(((-761 |#1|) (-227 |#1|) (-781)) (T -761)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-4084 (((-599 |#1|) $) 38 T ELT)) (-3258 (((-714) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-4089 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 28 T ELT)) (-3295 (((-3 |#1| #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-3949 (($ $) 42 T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-1843 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2399 ((|#1| $ (-499)) NIL T ELT)) (-2400 (((-714) $ (-499)) NIL T ELT)) (-4086 (($ $) 54 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-2391 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2392 (($ (-1 (-714) (-714)) $) NIL T ELT)) (-4090 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 25 T ELT)) (-2629 (((-85) $ $) 51 T ELT)) (-3983 (((-714) $) 34 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1844 (($ $ $) NIL T ELT)) (-1845 (($ $ $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 ((|#1| $) 41 T ELT)) (-1877 (((-599 (-2 (|:| |gen| |#1|) (|:| -4093 (-714)))) $) NIL T ELT)) (-3000 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2684 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2785 (($) 7 T CONST)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 53 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ |#1| (-714)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-762 |#1|) (-13 (-341 |#1|) (-779) (-10 -8 (-15 -3951 (|#1| $)) (-15 -3949 ($ $)) (-15 -4086 ($ $)) (-15 -2629 ((-85) $ $)) (-15 -4090 ((-3 $ #1="failed") $ |#1|)) (-15 -4089 ((-3 $ #1#) $ |#1|)) (-15 -2684 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3983 ((-714) $)) (-15 -4084 ((-599 |#1|) $)))) (-781)) (T -762)) +((-3951 (*1 *2 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-781)))) (-3949 (*1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-781)))) (-4086 (*1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-781)))) (-2629 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-762 *3)) (-4 *3 (-781)))) (-4090 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-762 *2)) (-4 *2 (-781)))) (-4089 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-762 *2)) (-4 *2 (-781)))) (-2684 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-762 *3)) (|:| |rm| (-762 *3)))) (-5 *1 (-762 *3)) (-4 *3 (-781)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-762 *3)) (-4 *3 (-781)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-762 *3)) (-4 *3 (-781))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3773 (((-499) $) 65 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3324 (((-85) $) 63 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3325 (((-85) $) 64 T ELT)) (-2650 (($ $ $) 57 T ELT)) (-2978 (($ $ $) 58 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-3523 (($ $) 66 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2685 (((-85) $ $) 59 T ELT)) (-2686 (((-85) $ $) 61 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 60 T ELT)) (-2806 (((-85) $ $) 62 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-763) (-113)) (T -763)) +NIL +(-13 (-510) (-780)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-244) . T) ((-510) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-598 $) . T) ((-675 $) . T) ((-684) . T) ((-735) . T) ((-737) . T) ((-739) . T) ((-742) . T) ((-780) . T) ((-781) . T) ((-784) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2630 ((|#1| $) 10 T ELT)) (-2631 (($ |#1|) 9 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3014 (($ |#2| (-714)) NIL T ELT)) (-2941 (((-714) $) NIL T ELT)) (-3312 ((|#2| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3908 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-714)) NIL (|has| |#1| (-190)) ELT)) (-4098 (((-714) $) NIL T ELT)) (-4096 (((-797) $) 17 T ELT) (($ (-499)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-146)) ELT)) (-3827 ((|#2| $ (-714)) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-714)) NIL (|has| |#1| (-190)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-764 |#1| |#2|) (-13 (-666 |#2|) (-10 -8 (IF (|has| |#1| (-190)) (-6 (-190)) |%noBranch|) (-15 -2631 ($ |#1|)) (-15 -2630 (|#1| $)))) (-666 |#2|) (-989)) (T -764)) +((-2631 (*1 *1 *2) (-12 (-4 *3 (-989)) (-5 *1 (-764 *2 *3)) (-4 *2 (-666 *3)))) (-2630 (*1 *2 *1) (-12 (-4 *2 (-666 *3)) (-5 *1 (-764 *2 *3)) (-4 *3 (-989))))) +((-2687 (((-85) $ $) 19 T ELT)) (-3372 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3374 (($ $ $) 77 T ELT)) (-3373 (((-85) $ $) 78 T ELT)) (-3377 (($ (-599 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1603 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-2481 (($ $) 66 T ELT)) (-1386 (($ $) 62 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3545 (($ |#1| $) 51 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3546 (($ |#1| $) 61 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3379 (((-85) $ $) 69 T ELT)) (-2650 ((|#1| $) 83 T ELT)) (-2977 (($ $ $) 86 T ELT)) (-3658 (($ $ $) 85 T ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2978 ((|#1| $) 84 T ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3380 (((-1099) $) 22 T ELT)) (-3376 (($ $ $) 74 T ELT)) (-1308 ((|#1| $) 43 T ELT)) (-3757 (($ |#1| $) 44 T ELT) (($ |#1| $ (-714)) 67 T ELT)) (-3381 (((-1060) $) 21 T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-2480 (((-599 (-2 (|:| |entry| |#1|) (|:| -2048 (-714)))) $) 65 T ELT)) (-3375 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1499 (($) 53 T ELT) (($ (-599 |#1|)) 52 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 63 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 54 T ELT)) (-4096 (((-797) $) 17 T ELT)) (-3378 (($ (-599 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1297 (((-85) $ $) 20 T ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 T ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-765 |#1|) (-113) (-781)) (T -765)) +((-2650 (*1 *2 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-781))))) +(-13 (-695 |t#1|) (-908 |t#1|) (-10 -8 (-15 -2650 (|t#1| $)))) +(((-34) . T) ((-78 |#1|) . T) ((-73) . T) ((-568 (-797)) . T) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-192 |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-653 |#1|) . T) ((-695 |#1|) . T) ((-908 |#1|) . T) ((-1039 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3773 (((-499) $) NIL (|has| |#1| (-780)) ELT)) (-3874 (($) NIL (|has| |#1| (-21)) CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) 9 T ELT)) (-3607 (((-3 $ #1#) $) 42 (|has| |#1| (-780)) ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) 52 (|has| |#1| (-498)) ELT)) (-3144 (((-85) $) 46 (|has| |#1| (-498)) ELT)) (-3143 (((-361 (-499)) $) 49 (|has| |#1| (-498)) ELT)) (-3324 (((-85) $) NIL (|has| |#1| (-780)) ELT)) (-2528 (((-85) $) NIL (|has| |#1| (-780)) ELT)) (-3325 (((-85) $) NIL (|has| |#1| (-780)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-780)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-780)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2632 (($) 13 T ELT)) (-2643 (((-85) $) 12 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2644 (((-85) $) 11 T ELT)) (-4096 (((-797) $) 18 T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (($ |#1|) 8 T ELT) (($ (-499)) NIL (-3677 (|has| |#1| (-780)) (|has| |#1| (-978 (-499)))) ELT)) (-3248 (((-714)) 36 (|has| |#1| (-780)) CONST)) (-1297 (((-85) $ $) 54 T ELT)) (-3523 (($ $) NIL (|has| |#1| (-780)) ELT)) (-2779 (($) 23 (|has| |#1| (-21)) CONST)) (-2785 (($) 33 (|has| |#1| (-780)) CONST)) (-2685 (((-85) $ $) NIL (|has| |#1| (-780)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-780)) ELT)) (-3174 (((-85) $ $) 21 T ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-780)) ELT)) (-2806 (((-85) $ $) 45 (|has| |#1| (-780)) ELT)) (-3987 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3989 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-857)) NIL (|has| |#1| (-780)) ELT) (($ $ (-714)) NIL (|has| |#1| (-780)) ELT)) (* (($ $ $) 39 (|has| |#1| (-780)) ELT) (($ (-499) $) 27 (|has| |#1| (-21)) ELT) (($ (-714) $) NIL (|has| |#1| (-21)) ELT) (($ (-857) $) NIL (|has| |#1| (-21)) ELT))) +(((-766 |#1|) (-13 (-1041) (-366 |#1|) (-10 -8 (-15 -2632 ($)) (-15 -2644 ((-85) $)) (-15 -2643 ((-85) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-780)) (-6 (-780)) |%noBranch|) (IF (|has| |#1| (-498)) (PROGN (-15 -3144 ((-85) $)) (-15 -3143 ((-361 (-499)) $)) (-15 -3145 ((-3 (-361 (-499)) "failed") $))) |%noBranch|))) (-1041)) (T -766)) +((-2632 (*1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-1041)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-766 *3)) (-4 *3 (-1041)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-766 *3)) (-4 *3 (-1041)))) (-3144 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-766 *3)) (-4 *3 (-498)) (-4 *3 (-1041)))) (-3143 (*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-766 *3)) (-4 *3 (-498)) (-4 *3 (-1041)))) (-3145 (*1 *2 *1) (|partial| -12 (-5 *2 (-361 (-499))) (-5 *1 (-766 *3)) (-4 *3 (-498)) (-4 *3 (-1041))))) +((-4108 (((-766 |#2|) (-1 |#2| |#1|) (-766 |#1|) (-766 |#2|)) 12 T ELT) (((-766 |#2|) (-1 |#2| |#1|) (-766 |#1|)) 13 T ELT))) +(((-767 |#1| |#2|) (-10 -7 (-15 -4108 ((-766 |#2|) (-1 |#2| |#1|) (-766 |#1|))) (-15 -4108 ((-766 |#2|) (-1 |#2| |#1|) (-766 |#1|) (-766 |#2|)))) (-1041) (-1041)) (T -767)) +((-4108 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-766 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-766 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *1 (-767 *5 *6)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-766 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *2 (-766 *6)) (-5 *1 (-767 *5 *6))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-86) #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT) (((-86) $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2634 ((|#1| (-86) |#1|) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2633 (($ |#1| (-316 (-86))) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2635 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2636 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3950 ((|#1| $ |#1|) NIL T ELT)) (-2637 ((|#1| |#1|) NIL (|has| |#1| (-146)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-86)) NIL T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2638 (($ $) NIL (|has| |#1| (-146)) ELT) (($ $ $) NIL (|has| |#1| (-146)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ (-86) (-499)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-768 |#1|) (-13 (-989) (-978 |#1|) (-978 (-86)) (-240 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2638 ($ $)) (-15 -2638 ($ $ $)) (-15 -2637 (|#1| |#1|))) |%noBranch|) (-15 -2636 ($ $ (-1 |#1| |#1|))) (-15 -2635 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-86) (-499))) (-15 ** ($ $ (-499))) (-15 -2634 (|#1| (-86) |#1|)) (-15 -2633 ($ |#1| (-316 (-86)))))) (-989)) (T -768)) +((-2638 (*1 *1 *1) (-12 (-5 *1 (-768 *2)) (-4 *2 (-146)) (-4 *2 (-989)))) (-2638 (*1 *1 *1 *1) (-12 (-5 *1 (-768 *2)) (-4 *2 (-146)) (-4 *2 (-989)))) (-2637 (*1 *2 *2) (-12 (-5 *1 (-768 *2)) (-4 *2 (-146)) (-4 *2 (-989)))) (-2636 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-768 *3)))) (-2635 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-768 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-499)) (-5 *1 (-768 *4)) (-4 *4 (-989)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-768 *3)) (-4 *3 (-989)))) (-2634 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-768 *2)) (-4 *2 (-989)))) (-2633 (*1 *1 *2 *3) (-12 (-5 *3 (-316 (-86))) (-5 *1 (-768 *2)) (-4 *2 (-989))))) +((-2752 (((-85) $ |#2|) 14 T ELT)) (-4096 (((-797) $) 11 T ELT))) +(((-769 |#1| |#2|) (-10 -7 (-15 -2752 ((-85) |#1| |#2|)) (-15 -4096 ((-797) |#1|))) (-770 |#2|) (-1041)) (T -769)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3690 ((|#1| $) 19 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2752 (((-85) $ |#1|) 17 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2639 (((-55) $) 18 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-770 |#1|) (-113) (-1041)) (T -770)) +((-3690 (*1 *2 *1) (-12 (-4 *1 (-770 *2)) (-4 *2 (-1041)))) (-2639 (*1 *2 *1) (-12 (-4 *1 (-770 *3)) (-4 *3 (-1041)) (-5 *2 (-55)))) (-2752 (*1 *2 *1 *3) (-12 (-4 *1 (-770 *3)) (-4 *3 (-1041)) (-5 *2 (-85))))) +(-13 (-1041) (-10 -8 (-15 -3690 (|t#1| $)) (-15 -2639 ((-55) $)) (-15 -2752 ((-85) $ |t#1|)))) +(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) +((-2640 (((-167 (-456)) (-1099)) 9 T ELT))) +(((-771) (-10 -7 (-15 -2640 ((-167 (-456)) (-1099))))) (T -771)) +((-2640 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-167 (-456))) (-5 *1 (-771))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3457 (((-1055) $) 10 T ELT)) (-3690 (((-460) $) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2752 (((-85) $ (-460)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3670 (($ (-460) (-1055)) 8 T ELT)) (-4096 (((-797) $) 25 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2639 (((-55) $) 20 T ELT)) (-3174 (((-85) $ $) 12 T ELT))) +(((-772) (-13 (-770 (-460)) (-10 -8 (-15 -3457 ((-1055) $)) (-15 -3670 ($ (-460) (-1055)))))) (T -772)) +((-3457 (*1 *2 *1) (-12 (-5 *2 (-1055)) (-5 *1 (-772)))) (-3670 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-1055)) (-5 *1 (-772))))) +((-2687 (((-85) $ $) 7 T ELT)) (-2641 (((-975) (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))) 18 T ELT) (((-975) (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) 17 T ELT)) (-2787 (((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099))) (-1003) (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) 20 T ELT) (((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099))) (-1003) (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))) 19 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-773) (-113)) (T -773)) +((-2787 (*1 *2 *3 *4) (-12 (-4 *1 (-773)) (-5 *3 (-1003)) (-5 *4 (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) (-5 *2 (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)))))) (-2787 (*1 *2 *3 *4) (-12 (-4 *1 (-773)) (-5 *3 (-1003)) (-5 *4 (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))) (-5 *2 (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)))))) (-2641 (*1 *2 *3) (-12 (-4 *1 (-773)) (-5 *3 (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))) (-5 *2 (-975)))) (-2641 (*1 *2 *3) (-12 (-4 *1 (-773)) (-5 *3 (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) (-5 *2 (-975))))) +(-13 (-1041) (-10 -7 (-15 -2787 ((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099))) (-1003) (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179))))))) (-15 -2787 ((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099))) (-1003) (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179)))))) (-15 -2641 ((-975) (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179)))))) (-15 -2641 ((-975) (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179))))))))) +(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3294 (((-3 (|:| |noa| (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) (|:| |lsa| (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179)))))) $) 21 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 20 T ELT) (($ (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) 14 T ELT) (($ (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))) 16 T ELT) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) (|:| |lsa| (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))))) 18 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-774) (-13 (-1041) (-10 -8 (-15 -4096 ($ (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179))))))) (-15 -4096 ($ (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179)))))) (-15 -4096 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) (|:| |lsa| (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179)))))))) (-15 -3294 ((-3 (|:| |noa| (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) (|:| |lsa| (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179)))))) $))))) (T -774)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) (-5 *1 (-774)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))) (-5 *1 (-774)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) (|:| |lsa| (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))))) (-5 *1 (-774)))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) (|:| |ub| (-599 (-775 (-179)))))) (|:| |lsa| (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))))) (-5 *1 (-774))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-2642 (((-1060) $) 31 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3773 (((-499) $) NIL (|has| |#1| (-780)) ELT)) (-3874 (($) NIL (|has| |#1| (-21)) CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) 9 T ELT)) (-3607 (((-3 $ #1#) $) 57 (|has| |#1| (-780)) ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) 65 (|has| |#1| (-498)) ELT)) (-3144 (((-85) $) 60 (|has| |#1| (-498)) ELT)) (-3143 (((-361 (-499)) $) 63 (|has| |#1| (-498)) ELT)) (-3324 (((-85) $) NIL (|has| |#1| (-780)) ELT)) (-2646 (($) 14 T ELT)) (-2528 (((-85) $) NIL (|has| |#1| (-780)) ELT)) (-3325 (((-85) $) NIL (|has| |#1| (-780)) ELT)) (-2645 (($) 16 T ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-780)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-780)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2643 (((-85) $) 12 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2644 (((-85) $) 11 T ELT)) (-4096 (((-797) $) 24 T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (($ |#1|) 8 T ELT) (($ (-499)) NIL (-3677 (|has| |#1| (-780)) (|has| |#1| (-978 (-499)))) ELT)) (-3248 (((-714)) 50 (|has| |#1| (-780)) CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3523 (($ $) NIL (|has| |#1| (-780)) ELT)) (-2779 (($) 37 (|has| |#1| (-21)) CONST)) (-2785 (($) 47 (|has| |#1| (-780)) CONST)) (-2685 (((-85) $ $) NIL (|has| |#1| (-780)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-780)) ELT)) (-3174 (((-85) $ $) 35 T ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-780)) ELT)) (-2806 (((-85) $ $) 59 (|has| |#1| (-780)) ELT)) (-3987 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3989 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-857)) NIL (|has| |#1| (-780)) ELT) (($ $ (-714)) NIL (|has| |#1| (-780)) ELT)) (* (($ $ $) 54 (|has| |#1| (-780)) ELT) (($ (-499) $) 41 (|has| |#1| (-21)) ELT) (($ (-714) $) NIL (|has| |#1| (-21)) ELT) (($ (-857) $) NIL (|has| |#1| (-21)) ELT))) +(((-775 |#1|) (-13 (-1041) (-366 |#1|) (-10 -8 (-15 -2646 ($)) (-15 -2645 ($)) (-15 -2644 ((-85) $)) (-15 -2643 ((-85) $)) (-15 -2642 ((-1060) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-780)) (-6 (-780)) |%noBranch|) (IF (|has| |#1| (-498)) (PROGN (-15 -3144 ((-85) $)) (-15 -3143 ((-361 (-499)) $)) (-15 -3145 ((-3 (-361 (-499)) "failed") $))) |%noBranch|))) (-1041)) (T -775)) +((-2646 (*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1041)))) (-2645 (*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1041)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-775 *3)) (-4 *3 (-1041)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-775 *3)) (-4 *3 (-1041)))) (-2642 (*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-775 *3)) (-4 *3 (-1041)))) (-3144 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-775 *3)) (-4 *3 (-498)) (-4 *3 (-1041)))) (-3143 (*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-775 *3)) (-4 *3 (-498)) (-4 *3 (-1041)))) (-3145 (*1 *2 *1) (|partial| -12 (-5 *2 (-361 (-499))) (-5 *1 (-775 *3)) (-4 *3 (-498)) (-4 *3 (-1041))))) +((-4108 (((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|) (-775 |#2|)) 13 T ELT) (((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|)) 14 T ELT))) +(((-776 |#1| |#2|) (-10 -7 (-15 -4108 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|))) (-15 -4108 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|) (-775 |#2|)))) (-1041) (-1041)) (T -776)) +((-4108 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-775 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *1 (-776 *5 *6)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *2 (-775 *6)) (-5 *1 (-776 *5 *6))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3258 (((-714)) 27 T ELT)) (-3115 (($) 30 T ELT)) (-2650 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2978 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2111 (((-857) $) 29 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2518 (($ (-857)) 28 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT))) +(((-777) (-113)) (T -777)) +((-2650 (*1 *1) (-4 *1 (-777))) (-2978 (*1 *1) (-4 *1 (-777)))) +(-13 (-781) (-323) (-10 -8 (-15 -2650 ($) -4102) (-15 -2978 ($) -4102))) +(((-73) . T) ((-568 (-797)) . T) ((-323) . T) ((-781) . T) ((-784) . T) ((-1041) . T) ((-1157) . T)) +((-2648 (((-85) (-1207 |#2|) (-1207 |#2|)) 19 T ELT)) (-2649 (((-85) (-1207 |#2|) (-1207 |#2|)) 20 T ELT)) (-2647 (((-85) (-1207 |#2|) (-1207 |#2|)) 16 T ELT))) +(((-778 |#1| |#2|) (-10 -7 (-15 -2647 ((-85) (-1207 |#2|) (-1207 |#2|))) (-15 -2648 ((-85) (-1207 |#2|) (-1207 |#2|))) (-15 -2649 ((-85) (-1207 |#2|) (-1207 |#2|)))) (-714) (-737)) (T -778)) +((-2649 (*1 *2 *3 *3) (-12 (-5 *3 (-1207 *5)) (-4 *5 (-737)) (-5 *2 (-85)) (-5 *1 (-778 *4 *5)) (-14 *4 (-714)))) (-2648 (*1 *2 *3 *3) (-12 (-5 *3 (-1207 *5)) (-4 *5 (-737)) (-5 *2 (-85)) (-5 *1 (-778 *4 *5)) (-14 *4 (-714)))) (-2647 (*1 *2 *3 *3) (-12 (-5 *3 (-1207 *5)) (-4 *5 (-737)) (-5 *2 (-85)) (-5 *1 (-778 *4 *5)) (-14 *4 (-714))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3874 (($) 29 T CONST)) (-3607 (((-3 $ "failed") $) 32 T ELT)) (-2528 (((-85) $) 30 T ELT)) (-2650 (($ $ $) 23 T ELT)) (-2978 (($ $ $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2785 (($) 28 T CONST)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT)) (** (($ $ (-857)) 26 T ELT) (($ $ (-714)) 31 T ELT)) (* (($ $ $) 25 T ELT))) +(((-779) (-113)) (T -779)) +NIL +(-13 (-791) (-684)) +(((-73) . T) ((-568 (-797)) . T) ((-684) . T) ((-791) . T) ((-781) . T) ((-784) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 31 T ELT)) (-1345 (((-3 $ "failed") $ $) 34 T ELT)) (-3773 (((-499) $) 37 T ELT)) (-3874 (($) 30 T CONST)) (-3607 (((-3 $ "failed") $) 49 T ELT)) (-3324 (((-85) $) 28 T ELT)) (-2528 (((-85) $) 51 T ELT)) (-3325 (((-85) $) 38 T ELT)) (-2650 (($ $ $) 23 T ELT)) (-2978 (($ $ $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 53 T ELT)) (-3248 (((-714)) 54 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-3523 (($ $) 36 T ELT)) (-2779 (($) 29 T CONST)) (-2785 (($) 52 T CONST)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT)) (-3987 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-3989 (($ $ $) 25 T ELT)) (** (($ $ (-714)) 50 T ELT) (($ $ (-857)) 47 T ELT)) (* (($ (-857) $) 26 T ELT) (($ (-714) $) 32 T ELT) (($ (-499) $) 39 T ELT) (($ $ $) 48 T ELT))) +(((-780) (-113)) (T -780)) +NIL +(-13 (-735) (-989) (-684)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-684) . T) ((-735) . T) ((-737) . T) ((-739) . T) ((-742) . T) ((-781) . T) ((-784) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) 7 T ELT)) (-2650 (($ $ $) 23 T ELT)) (-2978 (($ $ $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT))) +(((-781) (-113)) (T -781)) +NIL +(-13 (-1041) (-784)) +(((-73) . T) ((-568 (-797)) . T) ((-784) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-4096 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-797) $) 15 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 12 T ELT))) +(((-782 |#1| |#2|) (-13 (-784) (-444 |#1|) (-10 -7 (IF (|has| |#1| (-568 (-797))) (-6 (-568 (-797))) |%noBranch|))) (-1157) (-1 (-85) |#1| |#1|)) (T -782)) +NIL +((-2650 (($ $ $) 16 T ELT)) (-2978 (($ $ $) 15 T ELT)) (-1297 (((-85) $ $) 17 T ELT)) (-2685 (((-85) $ $) 12 T ELT)) (-2686 (((-85) $ $) 9 T ELT)) (-3174 (((-85) $ $) 14 T ELT)) (-2805 (((-85) $ $) 11 T ELT))) +(((-783 |#1|) (-10 -7 (-15 -2650 (|#1| |#1| |#1|)) (-15 -2978 (|#1| |#1| |#1|)) (-15 -2685 ((-85) |#1| |#1|)) (-15 -2805 ((-85) |#1| |#1|)) (-15 -2686 ((-85) |#1| |#1|)) (-15 -1297 ((-85) |#1| |#1|)) (-15 -3174 ((-85) |#1| |#1|))) (-784)) (T -783)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-2650 (($ $ $) 10 T ELT)) (-2978 (($ $ $) 11 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2685 (((-85) $ $) 12 T ELT)) (-2686 (((-85) $ $) 14 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 13 T ELT)) (-2806 (((-85) $ $) 15 T ELT))) +(((-784) (-113)) (T -784)) +((-2806 (*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-85)))) (-2686 (*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-85)))) (-2805 (*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-85)))) (-2685 (*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-85)))) (-2978 (*1 *1 *1 *1) (-4 *1 (-784))) (-2650 (*1 *1 *1 *1) (-4 *1 (-784)))) +(-13 (-73) (-10 -8 (-15 -2806 ((-85) $ $)) (-15 -2686 ((-85) $ $)) (-15 -2805 ((-85) $ $)) (-15 -2685 ((-85) $ $)) (-15 -2978 ($ $ $)) (-15 -2650 ($ $ $)))) +(((-73) . T) ((-1157) . T)) +((-2655 (($ $ $) 49 T ELT)) (-2656 (($ $ $) 48 T ELT)) (-2657 (($ $ $) 46 T ELT)) (-2653 (($ $ $) 55 T ELT)) (-2652 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 50 T ELT)) (-2654 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3295 (((-3 (-499) #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3643 (($ $) 39 T ELT)) (-2661 (($ $ $) 43 T ELT)) (-2662 (($ $ $) 42 T ELT)) (-2651 (($ $ $) 51 T ELT)) (-2659 (($ $ $) 57 T ELT)) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 45 T ELT)) (-2660 (((-3 $ #1#) $ $) 52 T ELT)) (-3606 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2938 ((|#2| $) 36 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3967 (((-599 |#2|) $) 21 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) +(((-785 |#1| |#2|) (-10 -7 (-15 -2651 (|#1| |#1| |#1|)) (-15 -2652 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2527 |#1|)) |#1| |#1|)) (-15 -2653 (|#1| |#1| |#1|)) (-15 -2654 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2655 (|#1| |#1| |#1|)) (-15 -2656 (|#1| |#1| |#1|)) (-15 -2657 (|#1| |#1| |#1|)) (-15 -2658 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2527 |#1|)) |#1| |#1|)) (-15 -2659 (|#1| |#1| |#1|)) (-15 -2660 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2661 (|#1| |#1| |#1|)) (-15 -2662 (|#1| |#1| |#1|)) (-15 -3643 (|#1| |#1|)) (-15 -2938 (|#2| |#1|)) (-15 -3606 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3967 ((-599 |#2|) |#1|)) (-15 -4096 (|#1| |#2|)) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4096 (|#1| (-499))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-499) |#1|)) (-15 * (|#1| (-714) |#1|)) (-15 * (|#1| (-857) |#1|)) (-15 -4096 ((-797) |#1|))) (-786 |#2|) (-989)) (T -785)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-2655 (($ $ $) 55 (|has| |#1| (-318)) ELT)) (-2656 (($ $ $) 56 (|has| |#1| (-318)) ELT)) (-2657 (($ $ $) 58 (|has| |#1| (-318)) ELT)) (-2653 (($ $ $) 53 (|has| |#1| (-318)) ELT)) (-2652 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 52 (|has| |#1| (-318)) ELT)) (-2654 (((-3 $ "failed") $ $) 54 (|has| |#1| (-318)) ELT)) (-2668 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 57 (|has| |#1| (-318)) ELT)) (-3295 (((-3 (-499) #1="failed") $) 85 (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) 82 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3294 (((-499) $) 84 (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) 81 (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) 80 T ELT)) (-4109 (($ $) 74 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3643 (($ $) 65 (|has| |#1| (-406)) ELT)) (-2528 (((-85) $) 40 T ELT)) (-3014 (($ |#1| (-714)) 72 T ELT)) (-2666 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 67 (|has| |#1| (-510)) ELT)) (-2665 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 68 (|has| |#1| (-510)) ELT)) (-2941 (((-714) $) 76 T ELT)) (-2661 (($ $ $) 62 (|has| |#1| (-318)) ELT)) (-2662 (($ $ $) 63 (|has| |#1| (-318)) ELT)) (-2651 (($ $ $) 51 (|has| |#1| (-318)) ELT)) (-2659 (($ $ $) 60 (|has| |#1| (-318)) ELT)) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 59 (|has| |#1| (-318)) ELT)) (-2660 (((-3 $ "failed") $ $) 61 (|has| |#1| (-318)) ELT)) (-2667 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 64 (|has| |#1| (-318)) ELT)) (-3312 ((|#1| $) 75 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3606 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-510)) ELT)) (-4098 (((-714) $) 77 T ELT)) (-2938 ((|#1| $) 66 (|has| |#1| (-406)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ (-361 (-499))) 83 (|has| |#1| (-978 (-361 (-499)))) ELT) (($ |#1|) 78 T ELT)) (-3967 (((-599 |#1|) $) 71 T ELT)) (-3827 ((|#1| $ (-714)) 73 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2664 ((|#1| $ |#1| |#1|) 70 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 87 T ELT) (($ |#1| $) 86 T ELT))) +(((-786 |#1|) (-113) (-989)) (T -786)) +((-4098 (*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-989)) (-5 *2 (-714)))) (-2941 (*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-989)) (-5 *2 (-714)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)))) (-4109 (*1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)))) (-3827 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-786 *2)) (-4 *2 (-989)))) (-3014 (*1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-786 *2)) (-4 *2 (-989)))) (-3967 (*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-989)) (-5 *2 (-599 *3)))) (-2664 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)))) (-3606 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-510)))) (-2665 (*1 *2 *1 *1) (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-786 *3)))) (-2666 (*1 *2 *1 *1) (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-786 *3)))) (-2938 (*1 *2 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-406)))) (-3643 (*1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-406)))) (-2667 (*1 *2 *1 *1) (-12 (-4 *3 (-318)) (-4 *3 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-786 *3)))) (-2662 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2661 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2660 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2659 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2658 (*1 *2 *1 *1) (-12 (-4 *3 (-318)) (-4 *3 (-989)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2527 *1))) (-4 *1 (-786 *3)))) (-2657 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2668 (*1 *2 *1 *1) (-12 (-4 *3 (-318)) (-4 *3 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-786 *3)))) (-2656 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2655 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2654 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2653 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-2652 (*1 *2 *1 *1) (-12 (-4 *3 (-318)) (-4 *3 (-989)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2527 *1))) (-4 *1 (-786 *3)))) (-2651 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) +(-13 (-989) (-82 |t#1| |t#1|) (-366 |t#1|) (-10 -8 (-15 -4098 ((-714) $)) (-15 -2941 ((-714) $)) (-15 -3312 (|t#1| $)) (-15 -4109 ($ $)) (-15 -3827 (|t#1| $ (-714))) (-15 -3014 ($ |t#1| (-714))) (-15 -3967 ((-599 |t#1|) $)) (-15 -2664 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -3606 ((-3 $ "failed") $ |t#1|)) (-15 -2665 ((-2 (|:| -2075 $) (|:| -3023 $)) $ $)) (-15 -2666 ((-2 (|:| -2075 $) (|:| -3023 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-406)) (PROGN (-15 -2938 (|t#1| $)) (-15 -3643 ($ $))) |%noBranch|) (IF (|has| |t#1| (-318)) (PROGN (-15 -2667 ((-2 (|:| -2075 $) (|:| -3023 $)) $ $)) (-15 -2662 ($ $ $)) (-15 -2661 ($ $ $)) (-15 -2660 ((-3 $ "failed") $ $)) (-15 -2659 ($ $ $)) (-15 -2658 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $)) (-15 -2657 ($ $ $)) (-15 -2668 ((-2 (|:| -2075 $) (|:| -3023 $)) $ $)) (-15 -2656 ($ $ $)) (-15 -2655 ($ $ $)) (-15 -2654 ((-3 $ "failed") $ $)) (-15 -2653 ($ $ $)) (-15 -2652 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $)) (-15 -2651 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-571 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-366 |#1|) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-598 |#1|) |has| |#1| (-146)) ((-675 |#1|) |has| |#1| (-146)) ((-684) . T) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2663 ((|#2| |#2| |#2| (-70 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2668 (((-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2| (-70 |#1|)) 46 (|has| |#1| (-318)) ELT)) (-2666 (((-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2| (-70 |#1|)) 43 (|has| |#1| (-510)) ELT)) (-2665 (((-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2| (-70 |#1|)) 42 (|has| |#1| (-510)) ELT)) (-2667 (((-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2| (-70 |#1|)) 45 (|has| |#1| (-318)) ELT)) (-2664 ((|#1| |#2| |#1| |#1| (-70 |#1|) (-1 |#1| |#1|)) 33 T ELT))) +(((-787 |#1| |#2|) (-10 -7 (-15 -2663 (|#2| |#2| |#2| (-70 |#1|) (-1 |#1| |#1|))) (-15 -2664 (|#1| |#2| |#1| |#1| (-70 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-510)) (PROGN (-15 -2665 ((-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2| (-70 |#1|))) (-15 -2666 ((-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2| (-70 |#1|)))) |%noBranch|) (IF (|has| |#1| (-318)) (PROGN (-15 -2667 ((-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2| (-70 |#1|))) (-15 -2668 ((-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2| (-70 |#1|)))) |%noBranch|)) (-989) (-786 |#1|)) (T -787)) +((-2668 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-70 *5)) (-4 *5 (-318)) (-4 *5 (-989)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-787 *5 *3)) (-4 *3 (-786 *5)))) (-2667 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-70 *5)) (-4 *5 (-318)) (-4 *5 (-989)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-787 *5 *3)) (-4 *3 (-786 *5)))) (-2666 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-70 *5)) (-4 *5 (-510)) (-4 *5 (-989)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-787 *5 *3)) (-4 *3 (-786 *5)))) (-2665 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-70 *5)) (-4 *5 (-510)) (-4 *5 (-989)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-787 *5 *3)) (-4 *3 (-786 *5)))) (-2664 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-70 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-989)) (-5 *1 (-787 *2 *3)) (-4 *3 (-786 *2)))) (-2663 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-70 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-989)) (-5 *1 (-787 *5 *2)) (-4 *2 (-786 *5))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2655 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2656 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2657 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2653 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2652 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-2654 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-2668 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 34 (|has| |#1| (-318)) ELT)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) NIL T ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT)) (-3673 (((-797) $ (-797)) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-714)) NIL T ELT)) (-2666 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 30 (|has| |#1| (-510)) ELT)) (-2665 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 28 (|has| |#1| (-510)) ELT)) (-2941 (((-714) $) NIL T ELT)) (-2661 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2662 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2651 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2659 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-2660 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-2667 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 32 (|has| |#1| (-318)) ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT)) (-4098 (((-714) $) NIL T ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (($ |#1|) NIL T ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-714)) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2664 ((|#1| $ |#1| |#1|) 15 T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) 23 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) 19 T ELT) (($ $ (-714)) 24 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-788 |#1| |#2| |#3|) (-13 (-786 |#1|) (-10 -8 (-15 -3673 ((-797) $ (-797))))) (-989) (-70 |#1|) (-1 |#1| |#1|)) (T -788)) +((-3673 (*1 *2 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-788 *3 *4 *5)) (-4 *3 (-989)) (-14 *4 (-70 *3)) (-14 *5 (-1 *3 *3))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2655 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-2656 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-2657 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-2653 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-2652 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#2| (-318)) ELT)) (-2654 (((-3 $ #1#) $ $) NIL (|has| |#2| (-318)) ELT)) (-2668 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#2| (-318)) ELT)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) ((|#2| $) NIL T ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#2| (-406)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3014 (($ |#2| (-714)) 17 T ELT)) (-2666 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#2| (-510)) ELT)) (-2665 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#2| (-510)) ELT)) (-2941 (((-714) $) NIL T ELT)) (-2661 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-2662 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-2651 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-2659 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#2| (-318)) ELT)) (-2660 (((-3 $ #1#) $ $) NIL (|has| |#2| (-318)) ELT)) (-2667 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#2| (-318)) ELT)) (-3312 ((|#2| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3606 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-510)) ELT)) (-4098 (((-714) $) NIL T ELT)) (-2938 ((|#2| $) NIL (|has| |#2| (-406)) ELT)) (-4096 (((-797) $) 24 T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (($ |#2|) NIL T ELT) (($ (-1204 |#1|)) 19 T ELT)) (-3967 (((-599 |#2|) $) NIL T ELT)) (-3827 ((|#2| $ (-714)) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2664 ((|#2| $ |#2| |#2|) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) 13 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-789 |#1| |#2| |#3| |#4|) (-13 (-786 |#2|) (-571 (-1204 |#1|))) (-1117) (-989) (-70 |#2|) (-1 |#2| |#2|)) (T -789)) +NIL +((-2671 ((|#1| (-714) |#1|) 45 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2670 ((|#1| (-714) (-714) |#1|) 36 T ELT) ((|#1| (-714) |#1|) 24 T ELT)) (-2669 ((|#1| (-714) |#1|) 40 T ELT)) (-2921 ((|#1| (-714) |#1|) 38 T ELT)) (-2920 ((|#1| (-714) |#1|) 37 T ELT))) +(((-790 |#1|) (-10 -7 (-15 -2920 (|#1| (-714) |#1|)) (-15 -2921 (|#1| (-714) |#1|)) (-15 -2669 (|#1| (-714) |#1|)) (-15 -2670 (|#1| (-714) |#1|)) (-15 -2670 (|#1| (-714) (-714) |#1|)) (IF (|has| |#1| (-38 (-361 (-499)))) (-15 -2671 (|#1| (-714) |#1|)) |%noBranch|)) (-146)) (T -790)) +((-2671 (*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-146)))) (-2670 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-146)))) (-2670 (*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-146)))) (-2669 (*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-146)))) (-2921 (*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-146)))) (-2920 (*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-146))))) +((-2687 (((-85) $ $) 7 T ELT)) (-2650 (($ $ $) 23 T ELT)) (-2978 (($ $ $) 22 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2685 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 19 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 20 T ELT)) (-2806 (((-85) $ $) 18 T ELT)) (** (($ $ (-857)) 26 T ELT)) (* (($ $ $) 25 T ELT))) +(((-791) (-113)) (T -791)) +NIL +(-13 (-781) (-1052)) +(((-73) . T) ((-568 (-797)) . T) ((-781) . T) ((-784) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3542 (((-499) $) 14 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 20 T ELT) (($ (-499)) 13 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 9 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 11 T ELT))) +(((-792) (-13 (-781) (-10 -8 (-15 -4096 ($ (-499))) (-15 -3542 ((-499) $))))) (T -792)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-792)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-792))))) +((-2672 (((-1213) (-599 (-51))) 23 T ELT)) (-3600 (((-1213) (-1099) (-797)) 13 T ELT) (((-1213) (-797)) 8 T ELT) (((-1213) (-1099)) 10 T ELT))) +(((-793) (-10 -7 (-15 -3600 ((-1213) (-1099))) (-15 -3600 ((-1213) (-797))) (-15 -3600 ((-1213) (-1099) (-797))) (-15 -2672 ((-1213) (-599 (-51)))))) (T -793)) +((-2672 (*1 *2 *3) (-12 (-5 *3 (-599 (-51))) (-5 *2 (-1213)) (-5 *1 (-793)))) (-3600 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-797)) (-5 *2 (-1213)) (-5 *1 (-793)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1213)) (-5 *1 (-793)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-793))))) +((-2674 (((-649 (-1166)) $ (-1166)) 15 T ELT)) (-2675 (((-649 (-503)) $ (-503)) 12 T ELT)) (-2673 (((-714) $ (-102)) 30 T ELT))) +(((-794 |#1|) (-10 -7 (-15 -2673 ((-714) |#1| (-102))) (-15 -2674 ((-649 (-1166)) |#1| (-1166))) (-15 -2675 ((-649 (-503)) |#1| (-503)))) (-795)) (T -794)) +NIL +((-2674 (((-649 (-1166)) $ (-1166)) 8 T ELT)) (-2675 (((-649 (-503)) $ (-503)) 9 T ELT)) (-2673 (((-714) $ (-102)) 7 T ELT)) (-2676 (((-649 (-101)) $ (-101)) 10 T ELT)) (-1793 (($ $) 6 T ELT))) +(((-795) (-113)) (T -795)) +((-2676 (*1 *2 *1 *3) (-12 (-4 *1 (-795)) (-5 *2 (-649 (-101))) (-5 *3 (-101)))) (-2675 (*1 *2 *1 *3) (-12 (-4 *1 (-795)) (-5 *2 (-649 (-503))) (-5 *3 (-503)))) (-2674 (*1 *2 *1 *3) (-12 (-4 *1 (-795)) (-5 *2 (-649 (-1166))) (-5 *3 (-1166)))) (-2673 (*1 *2 *1 *3) (-12 (-4 *1 (-795)) (-5 *3 (-102)) (-5 *2 (-714))))) +(-13 (-147) (-10 -8 (-15 -2676 ((-649 (-101)) $ (-101))) (-15 -2675 ((-649 (-503)) $ (-503))) (-15 -2674 ((-649 (-1166)) $ (-1166))) (-15 -2673 ((-714) $ (-102))))) +(((-147) . T)) +((-2674 (((-649 (-1166)) $ (-1166)) NIL T ELT)) (-2675 (((-649 (-503)) $ (-503)) NIL T ELT)) (-2673 (((-714) $ (-102)) NIL T ELT)) (-2676 (((-649 (-101)) $ (-101)) 22 T ELT)) (-2678 (($ (-344)) 12 T ELT) (($ (-1099)) 14 T ELT)) (-2677 (((-85) $) 19 T ELT)) (-4096 (((-797) $) 26 T ELT)) (-1793 (($ $) 23 T ELT))) +(((-796) (-13 (-795) (-568 (-797)) (-10 -8 (-15 -2678 ($ (-344))) (-15 -2678 ($ (-1099))) (-15 -2677 ((-85) $))))) (T -796)) +((-2678 (*1 *1 *2) (-12 (-5 *2 (-344)) (-5 *1 (-796)))) (-2678 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-796)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-796))))) +((-2687 (((-85) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2708 (($ $ $) 125 T ELT)) (-2723 (((-499) $) 31 T ELT) (((-499)) 36 T ELT)) (-2718 (($ (-499)) 53 T ELT)) (-2715 (($ $ $) 54 T ELT) (($ (-599 $)) 84 T ELT)) (-2699 (($ $ (-599 $)) 82 T ELT)) (-2720 (((-499) $) 34 T ELT)) (-2702 (($ $ $) 73 T ELT)) (-3672 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2721 (((-499) $) 33 T ELT)) (-2703 (($ $ $) 72 T ELT)) (-3683 (($ $) 114 T ELT)) (-2706 (($ $ $) 129 T ELT)) (-2689 (($ (-599 $)) 61 T ELT)) (-3688 (($ $ (-599 $)) 79 T ELT)) (-2717 (($ (-499) (-499)) 55 T ELT)) (-2730 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3259 (($ $ (-499)) 43 T ELT) (($ $) 46 T ELT)) (-2683 (($ $ $) 97 T ELT)) (-2704 (($ $ $) 132 T ELT)) (-2698 (($ $) 115 T ELT)) (-2682 (($ $ $) 98 T ELT)) (-2694 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2958 (((-1213) $) 10 T ELT)) (-2697 (($ $) 118 T ELT) (($ $ (-714)) 122 T ELT)) (-2700 (($ $ $) 75 T ELT)) (-2701 (($ $ $) 74 T ELT)) (-2714 (($ $ (-599 $)) 110 T ELT)) (-2712 (($ $ $) 113 T ELT)) (-2691 (($ (-599 $)) 59 T ELT)) (-2692 (($ $) 70 T ELT) (($ (-599 $)) 71 T ELT)) (-2695 (($ $ $) 123 T ELT)) (-2696 (($ $) 116 T ELT)) (-2707 (($ $ $) 128 T ELT)) (-3673 (($ (-499)) 21 T ELT) (($ (-1117)) 23 T ELT) (($ (-1099)) 30 T ELT) (($ (-179)) 25 T ELT)) (-2680 (($ $ $) 101 T ELT)) (-2679 (($ $) 102 T ELT)) (-2725 (((-1213) (-1099)) 15 T ELT)) (-2726 (($ (-1099)) 14 T ELT)) (-3246 (($ (-599 (-599 $))) 58 T ELT)) (-3260 (($ $ (-499)) 42 T ELT) (($ $) 45 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2710 (($ $ $) 131 T ELT)) (-3610 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2711 (((-85) $) 108 T ELT)) (-2713 (($ $ (-599 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2719 (($ (-499)) 39 T ELT)) (-2722 (((-499) $) 32 T ELT) (((-499)) 35 T ELT)) (-2716 (($ $ $) 40 T ELT) (($ (-599 $)) 83 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3606 (($ $ $) 99 T ELT)) (-3713 (($) 13 T ELT)) (-3950 (($ $ (-599 $)) 109 T ELT)) (-2724 (((-1099) (-1099)) 8 T ELT)) (-3986 (($ $) 117 T ELT) (($ $ (-714)) 121 T ELT)) (-2684 (($ $ $) 96 T ELT)) (-3908 (($ $ (-714)) 139 T ELT)) (-2690 (($ (-599 $)) 60 T ELT)) (-4096 (((-797) $) 19 T ELT)) (-3923 (($ $ (-499)) 41 T ELT) (($ $) 44 T ELT)) (-2693 (($ $) 68 T ELT) (($ (-599 $)) 69 T ELT)) (-3378 (($ $) 66 T ELT) (($ (-599 $)) 67 T ELT)) (-2709 (($ $) 124 T ELT)) (-2688 (($ (-599 $)) 65 T ELT)) (-3224 (($ $ $) 105 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2705 (($ $ $) 130 T ELT)) (-2681 (($ $ $) 100 T ELT)) (-3887 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2685 (($ $ $) 89 T ELT)) (-2686 (($ $ $) 87 T ELT)) (-3174 (((-85) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2805 (($ $ $) 88 T ELT)) (-2806 (($ $ $) 86 T ELT)) (-4099 (($ $ $) 94 T ELT)) (-3987 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3989 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) +(((-797) (-13 (-1041) (-10 -8 (-15 -2958 ((-1213) $)) (-15 -2726 ($ (-1099))) (-15 -2725 ((-1213) (-1099))) (-15 -3673 ($ (-499))) (-15 -3673 ($ (-1117))) (-15 -3673 ($ (-1099))) (-15 -3673 ($ (-179))) (-15 -3713 ($)) (-15 -2724 ((-1099) (-1099))) (-15 -2723 ((-499) $)) (-15 -2722 ((-499) $)) (-15 -2723 ((-499))) (-15 -2722 ((-499))) (-15 -2721 ((-499) $)) (-15 -2720 ((-499) $)) (-15 -2719 ($ (-499))) (-15 -2718 ($ (-499))) (-15 -2717 ($ (-499) (-499))) (-15 -3260 ($ $ (-499))) (-15 -3259 ($ $ (-499))) (-15 -3923 ($ $ (-499))) (-15 -3260 ($ $)) (-15 -3259 ($ $)) (-15 -3923 ($ $)) (-15 -2716 ($ $ $)) (-15 -2715 ($ $ $)) (-15 -2716 ($ (-599 $))) (-15 -2715 ($ (-599 $))) (-15 -2714 ($ $ (-599 $))) (-15 -2713 ($ $ (-599 $))) (-15 -2713 ($ $ $ $)) (-15 -2712 ($ $ $)) (-15 -2711 ((-85) $)) (-15 -3950 ($ $ (-599 $))) (-15 -3683 ($ $)) (-15 -2710 ($ $ $)) (-15 -2709 ($ $)) (-15 -3246 ($ (-599 (-599 $)))) (-15 -2708 ($ $ $)) (-15 -2730 ($ $)) (-15 -2730 ($ $ $)) (-15 -2707 ($ $ $)) (-15 -2706 ($ $ $)) (-15 -2705 ($ $ $)) (-15 -2704 ($ $ $)) (-15 -3908 ($ $ (-714))) (-15 -3224 ($ $ $)) (-15 -2703 ($ $ $)) (-15 -2702 ($ $ $)) (-15 -2701 ($ $ $)) (-15 -2700 ($ $ $)) (-15 -3688 ($ $ (-599 $))) (-15 -2699 ($ $ (-599 $))) (-15 -2698 ($ $)) (-15 -3986 ($ $)) (-15 -3986 ($ $ (-714))) (-15 -2697 ($ $)) (-15 -2697 ($ $ (-714))) (-15 -2696 ($ $)) (-15 -2695 ($ $ $)) (-15 -3672 ($ $)) (-15 -3672 ($ $ $)) (-15 -3672 ($ $ $ $)) (-15 -2694 ($ $)) (-15 -2694 ($ $ $)) (-15 -2694 ($ $ $ $)) (-15 -3610 ($ $)) (-15 -3610 ($ $ $)) (-15 -3610 ($ $ $ $)) (-15 -3378 ($ $)) (-15 -3378 ($ (-599 $))) (-15 -2693 ($ $)) (-15 -2693 ($ (-599 $))) (-15 -2692 ($ $)) (-15 -2692 ($ (-599 $))) (-15 -2691 ($ (-599 $))) (-15 -2690 ($ (-599 $))) (-15 -2689 ($ (-599 $))) (-15 -2688 ($ (-599 $))) (-15 -3174 ($ $ $)) (-15 -2687 ($ $ $)) (-15 -2806 ($ $ $)) (-15 -2686 ($ $ $)) (-15 -2805 ($ $ $)) (-15 -2685 ($ $ $)) (-15 -3989 ($ $ $)) (-15 -3987 ($ $ $)) (-15 -3987 ($ $)) (-15 * ($ $ $)) (-15 -4099 ($ $ $)) (-15 ** ($ $ $)) (-15 -2684 ($ $ $)) (-15 -2683 ($ $ $)) (-15 -2682 ($ $ $)) (-15 -3606 ($ $ $)) (-15 -2681 ($ $ $)) (-15 -2680 ($ $ $)) (-15 -2679 ($ $)) (-15 -3887 ($ $ $)) (-15 -3887 ($ $))))) (T -797)) +((-2958 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-797)))) (-2726 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-797)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-797)))) (-3673 (*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-3673 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-797)))) (-3673 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-797)))) (-3673 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-797)))) (-3713 (*1 *1) (-5 *1 (-797))) (-2724 (*1 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-797)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-2723 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-2722 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-2720 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-2719 (*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-2718 (*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-2717 (*1 *1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-3260 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-3259 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-3923 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) (-3260 (*1 *1 *1) (-5 *1 (-797))) (-3259 (*1 *1 *1) (-5 *1 (-797))) (-3923 (*1 *1 *1) (-5 *1 (-797))) (-2716 (*1 *1 *1 *1) (-5 *1 (-797))) (-2715 (*1 *1 *1 *1) (-5 *1 (-797))) (-2716 (*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2715 (*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2714 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2713 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2713 (*1 *1 *1 *1 *1) (-5 *1 (-797))) (-2712 (*1 *1 *1 *1) (-5 *1 (-797))) (-2711 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-797)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-3683 (*1 *1 *1) (-5 *1 (-797))) (-2710 (*1 *1 *1 *1) (-5 *1 (-797))) (-2709 (*1 *1 *1) (-5 *1 (-797))) (-3246 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 (-797)))) (-5 *1 (-797)))) (-2708 (*1 *1 *1 *1) (-5 *1 (-797))) (-2730 (*1 *1 *1) (-5 *1 (-797))) (-2730 (*1 *1 *1 *1) (-5 *1 (-797))) (-2707 (*1 *1 *1 *1) (-5 *1 (-797))) (-2706 (*1 *1 *1 *1) (-5 *1 (-797))) (-2705 (*1 *1 *1 *1) (-5 *1 (-797))) (-2704 (*1 *1 *1 *1) (-5 *1 (-797))) (-3908 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-797)))) (-3224 (*1 *1 *1 *1) (-5 *1 (-797))) (-2703 (*1 *1 *1 *1) (-5 *1 (-797))) (-2702 (*1 *1 *1 *1) (-5 *1 (-797))) (-2701 (*1 *1 *1 *1) (-5 *1 (-797))) (-2700 (*1 *1 *1 *1) (-5 *1 (-797))) (-3688 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2699 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2698 (*1 *1 *1) (-5 *1 (-797))) (-3986 (*1 *1 *1) (-5 *1 (-797))) (-3986 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-797)))) (-2697 (*1 *1 *1) (-5 *1 (-797))) (-2697 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-797)))) (-2696 (*1 *1 *1) (-5 *1 (-797))) (-2695 (*1 *1 *1 *1) (-5 *1 (-797))) (-3672 (*1 *1 *1) (-5 *1 (-797))) (-3672 (*1 *1 *1 *1) (-5 *1 (-797))) (-3672 (*1 *1 *1 *1 *1) (-5 *1 (-797))) (-2694 (*1 *1 *1) (-5 *1 (-797))) (-2694 (*1 *1 *1 *1) (-5 *1 (-797))) (-2694 (*1 *1 *1 *1 *1) (-5 *1 (-797))) (-3610 (*1 *1 *1) (-5 *1 (-797))) (-3610 (*1 *1 *1 *1) (-5 *1 (-797))) (-3610 (*1 *1 *1 *1 *1) (-5 *1 (-797))) (-3378 (*1 *1 *1) (-5 *1 (-797))) (-3378 (*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2693 (*1 *1 *1) (-5 *1 (-797))) (-2693 (*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2692 (*1 *1 *1) (-5 *1 (-797))) (-2692 (*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2691 (*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2690 (*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2689 (*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-2688 (*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) (-3174 (*1 *1 *1 *1) (-5 *1 (-797))) (-2687 (*1 *1 *1 *1) (-5 *1 (-797))) (-2806 (*1 *1 *1 *1) (-5 *1 (-797))) (-2686 (*1 *1 *1 *1) (-5 *1 (-797))) (-2805 (*1 *1 *1 *1) (-5 *1 (-797))) (-2685 (*1 *1 *1 *1) (-5 *1 (-797))) (-3989 (*1 *1 *1 *1) (-5 *1 (-797))) (-3987 (*1 *1 *1 *1) (-5 *1 (-797))) (-3987 (*1 *1 *1) (-5 *1 (-797))) (* (*1 *1 *1 *1) (-5 *1 (-797))) (-4099 (*1 *1 *1 *1) (-5 *1 (-797))) (** (*1 *1 *1 *1) (-5 *1 (-797))) (-2684 (*1 *1 *1 *1) (-5 *1 (-797))) (-2683 (*1 *1 *1 *1) (-5 *1 (-797))) (-2682 (*1 *1 *1 *1) (-5 *1 (-797))) (-3606 (*1 *1 *1 *1) (-5 *1 (-797))) (-2681 (*1 *1 *1 *1) (-5 *1 (-797))) (-2680 (*1 *1 *1 *1) (-5 *1 (-797))) (-2679 (*1 *1 *1) (-5 *1 (-797))) (-3887 (*1 *1 *1 *1) (-5 *1 (-797))) (-3887 (*1 *1 *1) (-5 *1 (-797)))) +((-2687 (((-85) $ $) NIL T ELT)) (-3981 (((-3 $ "failed") (-1117)) 36 T ELT)) (-3258 (((-714)) 32 T ELT)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) 29 T ELT)) (-3380 (((-1099) $) 43 T ELT)) (-2518 (($ (-857)) 28 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4122 (((-1117) $) 13 T ELT) (((-488) $) 19 T ELT) (((-825 (-333)) $) 26 T ELT) (((-825 (-499)) $) 22 T ELT)) (-4096 (((-797) $) 16 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 40 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 38 T ELT))) +(((-798 |#1|) (-13 (-777) (-569 (-1117)) (-569 (-488)) (-569 (-825 (-333))) (-569 (-825 (-499))) (-10 -8 (-15 -3981 ((-3 $ "failed") (-1117))))) (-599 (-1117))) (T -798)) +((-3981 (*1 *1 *2) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-798 *3)) (-14 *3 (-599 *2))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3690 (((-460) $) 9 T ELT)) (-2727 (((-599 (-393)) $) 13 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 21 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 16 T ELT))) +(((-799) (-13 (-1041) (-10 -8 (-15 -3690 ((-460) $)) (-15 -2727 ((-599 (-393)) $))))) (T -799)) +((-3690 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-799)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-599 (-393))) (-5 *1 (-799))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-884 |#1|)) NIL T ELT) (((-884 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3248 (((-714)) NIL T CONST)) (-4073 (((-1213) (-714)) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-800 |#1| |#2| |#3| |#4|) (-13 (-989) (-444 (-884 |#1|)) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-318)) (-15 -4099 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4073 ((-1213) (-714))))) (-989) (-599 (-1117)) (-599 (-714)) (-714)) (T -800)) +((-4099 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-800 *2 *3 *4 *5)) (-4 *2 (-318)) (-4 *2 (-989)) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-714))) (-14 *5 (-714)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-800 *4 *5 *6 *7)) (-4 *4 (-989)) (-14 *5 (-599 (-1117))) (-14 *6 (-599 *3)) (-14 *7 *3)))) +((-2728 (((-3 (-148 |#3|) #1="failed") (-714) (-714) |#2| |#2|) 38 T ELT)) (-2729 (((-3 (-361 |#3|) #1#) (-714) (-714) |#2| |#2|) 29 T ELT))) +(((-801 |#1| |#2| |#3|) (-10 -7 (-15 -2729 ((-3 (-361 |#3|) #1="failed") (-714) (-714) |#2| |#2|)) (-15 -2728 ((-3 (-148 |#3|) #1#) (-714) (-714) |#2| |#2|))) (-318) (-1200 |#1|) (-1183 |#1|)) (T -801)) +((-2728 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-714)) (-4 *5 (-318)) (-5 *2 (-148 *6)) (-5 *1 (-801 *5 *4 *6)) (-4 *4 (-1200 *5)) (-4 *6 (-1183 *5)))) (-2729 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-714)) (-4 *5 (-318)) (-5 *2 (-361 *6)) (-5 *1 (-801 *5 *4 *6)) (-4 *4 (-1200 *5)) (-4 *6 (-1183 *5))))) +((-2729 (((-3 (-361 (-1176 |#2| |#1|)) #1="failed") (-714) (-714) (-1197 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-361 (-1176 |#2| |#1|)) #1#) (-714) (-714) (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|)) 28 T ELT))) +(((-802 |#1| |#2| |#3|) (-10 -7 (-15 -2729 ((-3 (-361 (-1176 |#2| |#1|)) #1="failed") (-714) (-714) (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|))) (-15 -2729 ((-3 (-361 (-1176 |#2| |#1|)) #1#) (-714) (-714) (-1197 |#1| |#2| |#3|)))) (-318) (-1117) |#1|) (T -802)) +((-2729 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-714)) (-5 *4 (-1197 *5 *6 *7)) (-4 *5 (-318)) (-14 *6 (-1117)) (-14 *7 *5) (-5 *2 (-361 (-1176 *6 *5))) (-5 *1 (-802 *5 *6 *7)))) (-2729 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-714)) (-5 *4 (-1197 *5 *6 *7)) (-4 *5 (-318)) (-14 *6 (-1117)) (-14 *7 *5) (-5 *2 (-361 (-1176 *6 *5))) (-5 *1 (-802 *5 *6 *7))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3158 (($ $ (-499)) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2730 (($ (-1111 (-499)) (-499)) NIL T ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2731 (($ $) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3922 (((-714) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2733 (((-499)) NIL T ELT)) (-2732 (((-499) $) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3919 (($ $ (-499)) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-2734 (((-1095 (-499)) $) NIL T ELT)) (-3012 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3920 (((-499) $ (-499)) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-803 |#1|) (-804 |#1|) (-499)) (T -803)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3158 (($ $ (-499)) 75 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3874 (($) 22 T CONST)) (-2730 (($ (-1111 (-499)) (-499)) 74 T ELT)) (-2683 (($ $ $) 68 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2731 (($ $) 77 T ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-3922 (((-714) $) 82 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 65 T ELT)) (-2733 (((-499)) 79 T ELT)) (-2732 (((-499) $) 78 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3919 (($ $ (-499)) 81 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-2734 (((-1095 (-499)) $) 83 T ELT)) (-3012 (($ $) 80 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-3920 (((-499) $ (-499)) 76 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-804 |#1|) (-113) (-499)) (T -804)) +((-2734 (*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-1095 (-499))))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-714)))) (-3919 (*1 *1 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-499)))) (-3012 (*1 *1 *1) (-4 *1 (-804 *2))) (-2733 (*1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-499)))) (-2732 (*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-499)))) (-2731 (*1 *1 *1) (-4 *1 (-804 *2))) (-3920 (*1 *2 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-499)))) (-3158 (*1 *1 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-499)))) (-2730 (*1 *1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *3 (-499)) (-4 *1 (-804 *4))))) +(-13 (-261) (-120) (-10 -8 (-15 -2734 ((-1095 (-499)) $)) (-15 -3922 ((-714) $)) (-15 -3919 ($ $ (-499))) (-15 -3012 ($ $)) (-15 -2733 ((-499))) (-15 -2732 ((-499) $)) (-15 -2731 ($ $)) (-15 -3920 ((-499) $ (-499))) (-15 -3158 ($ $ (-499))) (-15 -2730 ($ (-1111 (-499)) (-499))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-244) . T) ((-261) . T) ((-406) . T) ((-510) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-598 $) . T) ((-675 $) . T) ((-684) . T) ((-859) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3251 (((-803 |#1|) $) NIL (|has| (-803 |#1|) (-261)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-803 |#1|) (-848)) ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| (-803 |#1|) (-848)) ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| (-803 |#1|) (-763)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-803 |#1|) #1#) $) NIL T ELT) (((-3 (-1117) #1#) $) NIL (|has| (-803 |#1|) (-978 (-1117))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| (-803 |#1|) (-978 (-499))) ELT) (((-3 (-499) #1#) $) NIL (|has| (-803 |#1|) (-978 (-499))) ELT)) (-3294 (((-803 |#1|) $) NIL T ELT) (((-1117) $) NIL (|has| (-803 |#1|) (-978 (-1117))) ELT) (((-361 (-499)) $) NIL (|has| (-803 |#1|) (-978 (-499))) ELT) (((-499) $) NIL (|has| (-803 |#1|) (-978 (-499))) ELT)) (-3880 (($ $) NIL T ELT) (($ (-499) $) NIL T ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| (-803 |#1|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| (-803 |#1|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-803 |#1|))) (|:| |vec| (-1207 (-803 |#1|)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-803 |#1|)) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-803 |#1|) (-498)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3324 (((-85) $) NIL (|has| (-803 |#1|) (-763)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| (-803 |#1|) (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| (-803 |#1|) (-821 (-333))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL T ELT)) (-3119 (((-803 |#1|) $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| (-803 |#1|) (-1092)) ELT)) (-3325 (((-85) $) NIL (|has| (-803 |#1|) (-763)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| (-803 |#1|) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| (-803 |#1|) (-781)) ELT)) (-4108 (($ (-1 (-803 |#1|) (-803 |#1|)) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| (-803 |#1|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| (-803 |#1|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-803 |#1|))) (|:| |vec| (-1207 (-803 |#1|)))) (-1207 $) $) NIL T ELT) (((-647 (-803 |#1|)) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-803 |#1|) (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL (|has| (-803 |#1|) (-261)) ELT)) (-3252 (((-803 |#1|) $) NIL (|has| (-803 |#1|) (-498)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-803 |#1|) (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-803 |#1|) (-848)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-3918 (($ $ (-599 (-803 |#1|)) (-599 (-803 |#1|))) NIL (|has| (-803 |#1|) (-263 (-803 |#1|))) ELT) (($ $ (-803 |#1|) (-803 |#1|)) NIL (|has| (-803 |#1|) (-263 (-803 |#1|))) ELT) (($ $ (-247 (-803 |#1|))) NIL (|has| (-803 |#1|) (-263 (-803 |#1|))) ELT) (($ $ (-599 (-247 (-803 |#1|)))) NIL (|has| (-803 |#1|) (-263 (-803 |#1|))) ELT) (($ $ (-599 (-1117)) (-599 (-803 |#1|))) NIL (|has| (-803 |#1|) (-468 (-1117) (-803 |#1|))) ELT) (($ $ (-1117) (-803 |#1|)) NIL (|has| (-803 |#1|) (-468 (-1117) (-803 |#1|))) ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ $ (-803 |#1|)) NIL (|has| (-803 |#1|) (-240 (-803 |#1|) (-803 |#1|))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $ (-1 (-803 |#1|) (-803 |#1|))) NIL T ELT) (($ $ (-1 (-803 |#1|) (-803 |#1|)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-803 |#1|) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-803 |#1|) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-803 |#1|) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-803 |#1|) (-838 (-1117))) ELT) (($ $) NIL (|has| (-803 |#1|) (-189)) ELT) (($ $ (-714)) NIL (|has| (-803 |#1|) (-189)) ELT)) (-3116 (($ $) NIL T ELT)) (-3118 (((-803 |#1|) $) NIL T ELT)) (-4122 (((-825 (-499)) $) NIL (|has| (-803 |#1|) (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| (-803 |#1|) (-569 (-825 (-333)))) ELT) (((-488) $) NIL (|has| (-803 |#1|) (-569 (-488))) ELT) (((-333) $) NIL (|has| (-803 |#1|) (-960)) ELT) (((-179) $) NIL (|has| (-803 |#1|) (-960)) ELT)) (-2735 (((-148 (-361 (-499))) $) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| (-803 |#1|) (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-803 |#1|)) NIL T ELT) (($ (-1117)) NIL (|has| (-803 |#1|) (-978 (-1117))) ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| (-803 |#1|) (-848))) (|has| (-803 |#1|) (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-3253 (((-803 |#1|) $) NIL (|has| (-803 |#1|) (-498)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3920 (((-361 (-499)) $ (-499)) NIL T ELT)) (-3523 (($ $) NIL (|has| (-803 |#1|) (-763)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1 (-803 |#1|) (-803 |#1|))) NIL T ELT) (($ $ (-1 (-803 |#1|) (-803 |#1|)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-803 |#1|) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-803 |#1|) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-803 |#1|) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-803 |#1|) (-838 (-1117))) ELT) (($ $) NIL (|has| (-803 |#1|) (-189)) ELT) (($ $ (-714)) NIL (|has| (-803 |#1|) (-189)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-803 |#1|) (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-803 |#1|) (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| (-803 |#1|) (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| (-803 |#1|) (-781)) ELT)) (-4099 (($ $ $) NIL T ELT) (($ (-803 |#1|) (-803 |#1|)) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ (-803 |#1|) $) NIL T ELT) (($ $ (-803 |#1|)) NIL T ELT))) +(((-805 |#1|) (-13 (-931 (-803 |#1|)) (-10 -8 (-15 -3920 ((-361 (-499)) $ (-499))) (-15 -2735 ((-148 (-361 (-499))) $)) (-15 -3880 ($ $)) (-15 -3880 ($ (-499) $)))) (-499)) (T -805)) +((-3920 (*1 *2 *1 *3) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-805 *4)) (-14 *4 *3) (-5 *3 (-499)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-148 (-361 (-499)))) (-5 *1 (-805 *3)) (-14 *3 (-499)))) (-3880 (*1 *1 *1) (-12 (-5 *1 (-805 *2)) (-14 *2 (-499)))) (-3880 (*1 *1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-805 *3)) (-14 *3 *2)))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3251 ((|#2| $) NIL (|has| |#2| (-261)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| |#2| (-763)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1117) #1#) $) NIL (|has| |#2| (-978 (-1117))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#2| (-978 (-499))) ELT)) (-3294 ((|#2| $) NIL T ELT) (((-1117) $) NIL (|has| |#2| (-978 (-1117))) ELT) (((-361 (-499)) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-499) $) NIL (|has| |#2| (-978 (-499))) ELT)) (-3880 (($ $) 35 T ELT) (($ (-499) $) 38 T ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#2|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) 64 T ELT)) (-3115 (($) NIL (|has| |#2| (-498)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3324 (((-85) $) NIL (|has| |#2| (-763)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| |#2| (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| |#2| (-821 (-333))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL T ELT)) (-3119 ((|#2| $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| |#2| (-1092)) ELT)) (-3325 (((-85) $) NIL (|has| |#2| (-763)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| |#2| (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#2| (-781)) ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 60 T ELT)) (-3586 (($) NIL (|has| |#2| (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL (|has| |#2| (-261)) ELT)) (-3252 ((|#2| $) NIL (|has| |#2| (-498)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-3918 (($ $ (-599 |#2|) (-599 |#2|)) NIL (|has| |#2| (-263 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-263 |#2|)) ELT) (($ $ (-247 |#2|)) NIL (|has| |#2| (-263 |#2|)) ELT) (($ $ (-599 (-247 |#2|))) NIL (|has| |#2| (-263 |#2|)) ELT) (($ $ (-599 (-1117)) (-599 |#2|)) NIL (|has| |#2| (-468 (-1117) |#2|)) ELT) (($ $ (-1117) |#2|) NIL (|has| |#2| (-468 (-1117) |#2|)) ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-240 |#2| |#2|)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-714)) NIL (|has| |#2| (-189)) ELT)) (-3116 (($ $) NIL T ELT)) (-3118 ((|#2| $) NIL T ELT)) (-4122 (((-825 (-499)) $) NIL (|has| |#2| (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| |#2| (-569 (-825 (-333)))) ELT) (((-488) $) NIL (|has| |#2| (-569 (-488))) ELT) (((-333) $) NIL (|has| |#2| (-960)) ELT) (((-179) $) NIL (|has| |#2| (-960)) ELT)) (-2735 (((-148 (-361 (-499))) $) 78 T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-848))) ELT)) (-4096 (((-797) $) 106 T ELT) (($ (-499)) 20 T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1117)) NIL (|has| |#2| (-978 (-1117))) ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#2| (-848))) (|has| |#2| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-3253 ((|#2| $) NIL (|has| |#2| (-498)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3920 (((-361 (-499)) $ (-499)) 71 T ELT)) (-3523 (($ $) NIL (|has| |#2| (-763)) ELT)) (-2779 (($) 15 T CONST)) (-2785 (($) 17 T CONST)) (-2790 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-714)) NIL (|has| |#2| (-189)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-3174 (((-85) $ $) 46 T ELT)) (-2805 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#2| (-781)) ELT)) (-4099 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3987 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3989 (($ $ $) 48 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) 61 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) +(((-806 |#1| |#2|) (-13 (-931 |#2|) (-10 -8 (-15 -3920 ((-361 (-499)) $ (-499))) (-15 -2735 ((-148 (-361 (-499))) $)) (-15 -3880 ($ $)) (-15 -3880 ($ (-499) $)))) (-499) (-804 |#1|)) (T -806)) +((-3920 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-361 (-499))) (-5 *1 (-806 *4 *5)) (-5 *3 (-499)) (-4 *5 (-804 *4)))) (-2735 (*1 *2 *1) (-12 (-14 *3 (-499)) (-5 *2 (-148 (-361 (-499)))) (-5 *1 (-806 *3 *4)) (-4 *4 (-804 *3)))) (-3880 (*1 *1 *1) (-12 (-14 *2 (-499)) (-5 *1 (-806 *2 *3)) (-4 *3 (-804 *2)))) (-3880 (*1 *1 *2 *1) (-12 (-5 *2 (-499)) (-14 *3 *2) (-5 *1 (-806 *3 *4)) (-4 *4 (-804 *3))))) +((-2687 (((-85) $ $) NIL (-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) ELT)) (-3946 ((|#2| $) 12 T ELT)) (-2736 (($ |#1| |#2|) 9 T ELT)) (-3380 (((-1099) $) NIL (-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) ELT)) (-3381 (((-1060) $) NIL (-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) ELT)) (-3951 ((|#1| $) 11 T ELT)) (-3670 (($ |#1| |#2|) 10 T ELT)) (-4096 (((-797) $) 18 (-3677 (-12 (|has| |#1| (-568 (-797))) (|has| |#2| (-568 (-797)))) (-12 (|has| |#1| (-1041)) (|has| |#2| (-1041)))) ELT)) (-1297 (((-85) $ $) NIL (-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) ELT)) (-3174 (((-85) $ $) 23 (-12 (|has| |#1| (-1041)) (|has| |#2| (-1041))) ELT))) +(((-807 |#1| |#2|) (-13 (-1157) (-10 -8 (IF (|has| |#1| (-568 (-797))) (IF (|has| |#2| (-568 (-797))) (-6 (-568 (-797))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1041)) (IF (|has| |#2| (-1041)) (-6 (-1041)) |%noBranch|) |%noBranch|) (-15 -2736 ($ |#1| |#2|)) (-15 -3670 ($ |#1| |#2|)) (-15 -3951 (|#1| $)) (-15 -3946 (|#2| $)))) (-1157) (-1157)) (T -807)) +((-2736 (*1 *1 *2 *3) (-12 (-5 *1 (-807 *2 *3)) (-4 *2 (-1157)) (-4 *3 (-1157)))) (-3670 (*1 *1 *2 *3) (-12 (-5 *1 (-807 *2 *3)) (-4 *2 (-1157)) (-4 *3 (-1157)))) (-3951 (*1 *2 *1) (-12 (-4 *2 (-1157)) (-5 *1 (-807 *2 *3)) (-4 *3 (-1157)))) (-3946 (*1 *2 *1) (-12 (-4 *2 (-1157)) (-5 *1 (-807 *3 *2)) (-4 *3 (-1157))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3078 (((-499) $) 16 T ELT)) (-2738 (($ (-130)) 13 T ELT)) (-2737 (($ (-130)) 14 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3077 (((-130) $) 15 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2740 (($ (-130)) 11 T ELT)) (-2741 (($ (-130)) 10 T ELT)) (-4096 (((-797) $) 24 T ELT) (($ (-130)) 17 T ELT)) (-2739 (($ (-130)) 12 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-808) (-13 (-1041) (-571 (-130)) (-10 -8 (-15 -2741 ($ (-130))) (-15 -2740 ($ (-130))) (-15 -2739 ($ (-130))) (-15 -2738 ($ (-130))) (-15 -2737 ($ (-130))) (-15 -3077 ((-130) $)) (-15 -3078 ((-499) $))))) (T -808)) +((-2741 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-808)))) (-2740 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-808)))) (-2739 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-808)))) (-2738 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-808)))) (-2737 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-808)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-808)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-808))))) +((-4096 (((-268 (-499)) (-361 (-884 (-48)))) 23 T ELT) (((-268 (-499)) (-884 (-48))) 18 T ELT))) +(((-809) (-10 -7 (-15 -4096 ((-268 (-499)) (-884 (-48)))) (-15 -4096 ((-268 (-499)) (-361 (-884 (-48))))))) (T -809)) +((-4096 (*1 *2 *3) (-12 (-5 *3 (-361 (-884 (-48)))) (-5 *2 (-268 (-499))) (-5 *1 (-809)))) (-4096 (*1 *2 *3) (-12 (-5 *3 (-884 (-48))) (-5 *2 (-268 (-499))) (-5 *1 (-809))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 18 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3714 (((-85) $ (|[\|\|]| (-460))) 9 T ELT) (((-85) $ (|[\|\|]| (-1099))) 13 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3720 (((-460) $) 10 T ELT) (((-1099) $) 14 T ELT)) (-3174 (((-85) $ $) 15 T ELT))) +(((-810) (-13 (-1023) (-1203) (-10 -8 (-15 -3714 ((-85) $ (|[\|\|]| (-460)))) (-15 -3720 ((-460) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1099)))) (-15 -3720 ((-1099) $))))) (T -810)) +((-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-460))) (-5 *2 (-85)) (-5 *1 (-810)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-810)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-85)) (-5 *1 (-810)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-810))))) +((-4108 (((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|)) 15 T ELT))) +(((-811 |#1| |#2|) (-10 -7 (-15 -4108 ((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|)))) (-1157) (-1157)) (T -811)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-812 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-812 *6)) (-5 *1 (-811 *5 *6))))) +((-3511 (($ |#1| |#1|) 8 T ELT)) (-2744 ((|#1| $ (-714)) 15 T ELT))) +(((-812 |#1|) (-10 -8 (-15 -3511 ($ |#1| |#1|)) (-15 -2744 (|#1| $ (-714)))) (-1157)) (T -812)) +((-2744 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *1 (-812 *2)) (-4 *2 (-1157)))) (-3511 (*1 *1 *2 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1157))))) +((-4108 (((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)) 15 T ELT))) +(((-813 |#1| |#2|) (-10 -7 (-15 -4108 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)))) (-1157) (-1157)) (T -813)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6))))) +((-3511 (($ |#1| |#1| |#1|) 8 T ELT)) (-2744 ((|#1| $ (-714)) 15 T ELT))) +(((-814 |#1|) (-10 -8 (-15 -3511 ($ |#1| |#1| |#1|)) (-15 -2744 (|#1| $ (-714)))) (-1157)) (T -814)) +((-2744 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *1 (-814 *2)) (-4 *2 (-1157)))) (-3511 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1157))))) +((-2742 (((-599 (-1122)) (-1099)) 9 T ELT))) +(((-815) (-10 -7 (-15 -2742 ((-599 (-1122)) (-1099))))) (T -815)) +((-2742 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-599 (-1122))) (-5 *1 (-815))))) +((-4108 (((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|)) 15 T ELT))) +(((-816 |#1| |#2|) (-10 -7 (-15 -4108 ((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|)))) (-1157) (-1157)) (T -816)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-817 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-817 *6)) (-5 *1 (-816 *5 *6))))) +((-2743 (($ |#1| |#1| |#1|) 8 T ELT)) (-2744 ((|#1| $ (-714)) 15 T ELT))) +(((-817 |#1|) (-10 -8 (-15 -2743 ($ |#1| |#1| |#1|)) (-15 -2744 (|#1| $ (-714)))) (-1157)) (T -817)) +((-2744 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *1 (-817 *2)) (-4 *2 (-1157)))) (-2743 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-1157))))) +((-2747 (((-1095 (-599 (-499))) (-599 (-499)) (-1095 (-599 (-499)))) 41 T ELT)) (-2746 (((-1095 (-599 (-499))) (-599 (-499)) (-599 (-499))) 31 T ELT)) (-2748 (((-1095 (-599 (-499))) (-599 (-499))) 53 T ELT) (((-1095 (-599 (-499))) (-599 (-499)) (-599 (-499))) 50 T ELT)) (-2749 (((-1095 (-599 (-499))) (-499)) 55 T ELT)) (-2745 (((-1095 (-599 (-857))) (-1095 (-599 (-857)))) 22 T ELT)) (-3130 (((-599 (-857)) (-599 (-857))) 18 T ELT))) +(((-818) (-10 -7 (-15 -3130 ((-599 (-857)) (-599 (-857)))) (-15 -2745 ((-1095 (-599 (-857))) (-1095 (-599 (-857))))) (-15 -2746 ((-1095 (-599 (-499))) (-599 (-499)) (-599 (-499)))) (-15 -2747 ((-1095 (-599 (-499))) (-599 (-499)) (-1095 (-599 (-499))))) (-15 -2748 ((-1095 (-599 (-499))) (-599 (-499)) (-599 (-499)))) (-15 -2748 ((-1095 (-599 (-499))) (-599 (-499)))) (-15 -2749 ((-1095 (-599 (-499))) (-499))))) (T -818)) +((-2749 (*1 *2 *3) (-12 (-5 *2 (-1095 (-599 (-499)))) (-5 *1 (-818)) (-5 *3 (-499)))) (-2748 (*1 *2 *3) (-12 (-5 *2 (-1095 (-599 (-499)))) (-5 *1 (-818)) (-5 *3 (-599 (-499))))) (-2748 (*1 *2 *3 *3) (-12 (-5 *2 (-1095 (-599 (-499)))) (-5 *1 (-818)) (-5 *3 (-599 (-499))))) (-2747 (*1 *2 *3 *2) (-12 (-5 *2 (-1095 (-599 (-499)))) (-5 *3 (-599 (-499))) (-5 *1 (-818)))) (-2746 (*1 *2 *3 *3) (-12 (-5 *2 (-1095 (-599 (-499)))) (-5 *1 (-818)) (-5 *3 (-599 (-499))))) (-2745 (*1 *2 *2) (-12 (-5 *2 (-1095 (-599 (-857)))) (-5 *1 (-818)))) (-3130 (*1 *2 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-818))))) +((-4122 (((-825 (-333)) $) 9 (|has| |#1| (-569 (-825 (-333)))) ELT) (((-825 (-499)) $) 8 (|has| |#1| (-569 (-825 (-499)))) ELT))) +(((-819 |#1|) (-113) (-1157)) (T -819)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-569 (-825 (-499)))) (-6 (-569 (-825 (-499)))) |%noBranch|) (IF (|has| |t#1| (-569 (-825 (-333)))) (-6 (-569 (-825 (-333)))) |%noBranch|))) +(((-569 (-825 (-333))) |has| |#1| (-569 (-825 (-333)))) ((-569 (-825 (-499))) |has| |#1| (-569 (-825 (-499))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3764 (($) 14 T ELT)) (-2751 (($ (-823 |#1| |#2|) (-823 |#1| |#3|)) 28 T ELT)) (-2750 (((-823 |#1| |#3|) $) 16 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2759 (((-85) $) 22 T ELT)) (-2758 (($) 19 T ELT)) (-4096 (((-797) $) 31 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2971 (((-823 |#1| |#2|) $) 15 T ELT)) (-3174 (((-85) $ $) 26 T ELT))) +(((-820 |#1| |#2| |#3|) (-13 (-1041) (-10 -8 (-15 -2759 ((-85) $)) (-15 -2758 ($)) (-15 -3764 ($)) (-15 -2751 ($ (-823 |#1| |#2|) (-823 |#1| |#3|))) (-15 -2971 ((-823 |#1| |#2|) $)) (-15 -2750 ((-823 |#1| |#3|) $)))) (-1041) (-1041) (-624 |#2|)) (T -820)) +((-2759 (*1 *2 *1) (-12 (-4 *4 (-1041)) (-5 *2 (-85)) (-5 *1 (-820 *3 *4 *5)) (-4 *3 (-1041)) (-4 *5 (-624 *4)))) (-2758 (*1 *1) (-12 (-4 *3 (-1041)) (-5 *1 (-820 *2 *3 *4)) (-4 *2 (-1041)) (-4 *4 (-624 *3)))) (-3764 (*1 *1) (-12 (-4 *3 (-1041)) (-5 *1 (-820 *2 *3 *4)) (-4 *2 (-1041)) (-4 *4 (-624 *3)))) (-2751 (*1 *1 *2 *3) (-12 (-5 *2 (-823 *4 *5)) (-5 *3 (-823 *4 *6)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-624 *5)) (-5 *1 (-820 *4 *5 *6)))) (-2971 (*1 *2 *1) (-12 (-4 *4 (-1041)) (-5 *2 (-823 *3 *4)) (-5 *1 (-820 *3 *4 *5)) (-4 *3 (-1041)) (-4 *5 (-624 *4)))) (-2750 (*1 *2 *1) (-12 (-4 *4 (-1041)) (-5 *2 (-823 *3 *5)) (-5 *1 (-820 *3 *4 *5)) (-4 *3 (-1041)) (-4 *5 (-624 *4))))) +((-2687 (((-85) $ $) 7 T ELT)) (-2917 (((-823 |#1| $) $ (-825 |#1|) (-823 |#1| $)) 17 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-821 |#1|) (-113) (-1041)) (T -821)) +((-2917 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-823 *4 *1)) (-5 *3 (-825 *4)) (-4 *1 (-821 *4)) (-4 *4 (-1041))))) +(-13 (-1041) (-10 -8 (-15 -2917 ((-823 |t#1| $) $ (-825 |t#1|) (-823 |t#1| $))))) +(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) +((-2752 (((-85) (-599 |#2|) |#3|) 23 T ELT) (((-85) |#2| |#3|) 18 T ELT)) (-2753 (((-823 |#1| |#2|) |#2| |#3|) 45 (-12 (-2679 (|has| |#2| (-978 (-1117)))) (-2679 (|has| |#2| (-989)))) ELT) (((-599 (-247 (-884 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-989)) (-2679 (|has| |#2| (-978 (-1117))))) ELT) (((-599 (-247 |#2|)) |#2| |#3|) 36 (|has| |#2| (-978 (-1117))) ELT) (((-820 |#1| |#2| (-599 |#2|)) (-599 |#2|) |#3|) 21 T ELT))) +(((-822 |#1| |#2| |#3|) (-10 -7 (-15 -2752 ((-85) |#2| |#3|)) (-15 -2752 ((-85) (-599 |#2|) |#3|)) (-15 -2753 ((-820 |#1| |#2| (-599 |#2|)) (-599 |#2|) |#3|)) (IF (|has| |#2| (-978 (-1117))) (-15 -2753 ((-599 (-247 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-989)) (-15 -2753 ((-599 (-247 (-884 |#2|))) |#2| |#3|)) (-15 -2753 ((-823 |#1| |#2|) |#2| |#3|))))) (-1041) (-821 |#1|) (-569 (-825 |#1|))) (T -822)) +((-2753 (*1 *2 *3 *4) (-12 (-4 *5 (-1041)) (-5 *2 (-823 *5 *3)) (-5 *1 (-822 *5 *3 *4)) (-2679 (-4 *3 (-978 (-1117)))) (-2679 (-4 *3 (-989))) (-4 *3 (-821 *5)) (-4 *4 (-569 (-825 *5))))) (-2753 (*1 *2 *3 *4) (-12 (-4 *5 (-1041)) (-5 *2 (-599 (-247 (-884 *3)))) (-5 *1 (-822 *5 *3 *4)) (-4 *3 (-989)) (-2679 (-4 *3 (-978 (-1117)))) (-4 *3 (-821 *5)) (-4 *4 (-569 (-825 *5))))) (-2753 (*1 *2 *3 *4) (-12 (-4 *5 (-1041)) (-5 *2 (-599 (-247 *3))) (-5 *1 (-822 *5 *3 *4)) (-4 *3 (-978 (-1117))) (-4 *3 (-821 *5)) (-4 *4 (-569 (-825 *5))))) (-2753 (*1 *2 *3 *4) (-12 (-4 *5 (-1041)) (-4 *6 (-821 *5)) (-5 *2 (-820 *5 *6 (-599 *6))) (-5 *1 (-822 *5 *6 *4)) (-5 *3 (-599 *6)) (-4 *4 (-569 (-825 *5))))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6)) (-4 *6 (-821 *5)) (-4 *5 (-1041)) (-5 *2 (-85)) (-5 *1 (-822 *5 *6 *4)) (-4 *4 (-569 (-825 *5))))) (-2752 (*1 *2 *3 *4) (-12 (-4 *5 (-1041)) (-5 *2 (-85)) (-5 *1 (-822 *5 *3 *4)) (-4 *3 (-821 *5)) (-4 *4 (-569 (-825 *5)))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3372 (($ $ $) 40 T ELT)) (-2780 (((-3 (-85) #1="failed") $ (-825 |#1|)) 37 T ELT)) (-3764 (($) 12 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2755 (($ (-825 |#1|) |#2| $) 20 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2757 (((-3 |#2| #1#) (-825 |#1|) $) 51 T ELT)) (-2759 (((-85) $) 15 T ELT)) (-2758 (($) 13 T ELT)) (-3395 (((-599 (-2 (|:| -4010 (-1117)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3670 (($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| |#2|)))) 23 T ELT)) (-4096 (((-797) $) 45 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2754 (($ (-825 |#1|) |#2| $ |#2|) 49 T ELT)) (-2756 (($ (-825 |#1|) |#2| $) 48 T ELT)) (-3174 (((-85) $ $) 42 T ELT))) +(((-823 |#1| |#2|) (-13 (-1041) (-10 -8 (-15 -2759 ((-85) $)) (-15 -2758 ($)) (-15 -3764 ($)) (-15 -3372 ($ $ $)) (-15 -2757 ((-3 |#2| #1="failed") (-825 |#1|) $)) (-15 -2756 ($ (-825 |#1|) |#2| $)) (-15 -2755 ($ (-825 |#1|) |#2| $)) (-15 -2754 ($ (-825 |#1|) |#2| $ |#2|)) (-15 -3395 ((-599 (-2 (|:| -4010 (-1117)) (|:| |entry| |#2|))) $)) (-15 -3670 ($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| |#2|))))) (-15 -2780 ((-3 (-85) #1#) $ (-825 |#1|))))) (-1041) (-1041)) (T -823)) +((-2759 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-823 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)))) (-2758 (*1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041)))) (-3764 (*1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041)))) (-3372 (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041)))) (-2757 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-825 *4)) (-4 *4 (-1041)) (-4 *2 (-1041)) (-5 *1 (-823 *4 *2)))) (-2756 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-825 *4)) (-4 *4 (-1041)) (-5 *1 (-823 *4 *3)) (-4 *3 (-1041)))) (-2755 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-825 *4)) (-4 *4 (-1041)) (-5 *1 (-823 *4 *3)) (-4 *3 (-1041)))) (-2754 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-825 *4)) (-4 *4 (-1041)) (-5 *1 (-823 *4 *3)) (-4 *3 (-1041)))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| *4)))) (-5 *1 (-823 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)))) (-3670 (*1 *1 *2) (-12 (-5 *2 (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| *4)))) (-4 *4 (-1041)) (-5 *1 (-823 *3 *4)) (-4 *3 (-1041)))) (-2780 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-825 *4)) (-4 *4 (-1041)) (-5 *2 (-85)) (-5 *1 (-823 *4 *5)) (-4 *5 (-1041))))) +((-4108 (((-823 |#1| |#3|) (-1 |#3| |#2|) (-823 |#1| |#2|)) 22 T ELT))) +(((-824 |#1| |#2| |#3|) (-10 -7 (-15 -4108 ((-823 |#1| |#3|) (-1 |#3| |#2|) (-823 |#1| |#2|)))) (-1041) (-1041) (-1041)) (T -824)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-823 *5 *6)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-823 *5 *7)) (-5 *1 (-824 *5 *6 *7))))) +((-2687 (((-85) $ $) NIL T ELT)) (-2767 (($ $ (-599 (-51))) 74 T ELT)) (-3204 (((-599 $) $) 139 T ELT)) (-2764 (((-2 (|:| |var| (-599 (-1117))) (|:| |pred| (-51))) $) 30 T ELT)) (-3398 (((-85) $) 35 T ELT)) (-2765 (($ $ (-599 (-1117)) (-51)) 31 T ELT)) (-2768 (($ $ (-599 (-51))) 73 T ELT)) (-3295 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1117) #1#) $) 167 T ELT)) (-3294 ((|#1| $) 68 T ELT) (((-1117) $) NIL T ELT)) (-2762 (($ $) 126 T ELT)) (-2774 (((-85) $) 55 T ELT)) (-2769 (((-599 (-51)) $) 50 T ELT)) (-2766 (($ (-1117) (-85) (-85) (-85)) 75 T ELT)) (-2760 (((-3 (-599 $) #1#) (-599 $)) 82 T ELT)) (-2771 (((-85) $) 58 T ELT)) (-2772 (((-85) $) 57 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) 41 T ELT)) (-2777 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2946 (((-3 (-2 (|:| |val| $) (|:| -2519 $)) #1#) $) 97 T ELT)) (-2943 (((-3 (-599 $) #1#) $) 40 T ELT)) (-2778 (((-3 (-599 $) #1#) $ (-86)) 124 T ELT) (((-3 (-2 (|:| -2631 (-86)) (|:| |arg| (-599 $))) #1#) $) 107 T ELT)) (-2776 (((-3 (-599 $) #1#) $) 42 T ELT)) (-2945 (((-3 (-2 (|:| |val| $) (|:| -2519 (-714))) #1#) $) 45 T ELT)) (-2775 (((-85) $) 34 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2763 (((-85) $) 28 T ELT)) (-2770 (((-85) $) 52 T ELT)) (-2761 (((-599 (-51)) $) 130 T ELT)) (-2773 (((-85) $) 56 T ELT)) (-3950 (($ (-86) (-599 $)) 104 T ELT)) (-3463 (((-714) $) 33 T ELT)) (-3540 (($ $) 72 T ELT)) (-4122 (($ (-599 $)) 69 T ELT)) (-4103 (((-85) $) 32 T ELT)) (-4096 (((-797) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1117)) 76 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2781 (($ $ (-51)) 129 T ELT)) (-2779 (($) 103 T CONST)) (-2785 (($) 83 T CONST)) (-3174 (((-85) $ $) 93 T ELT)) (-4099 (($ $ $) 117 T ELT)) (-3989 (($ $ $) 121 T ELT)) (** (($ $ (-714)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) +(((-825 |#1|) (-13 (-1041) (-978 |#1|) (-978 (-1117)) (-10 -8 (-15 0 ($) -4102) (-15 1 ($) -4102) (-15 -2943 ((-3 (-599 $) #1="failed") $)) (-15 -2944 ((-3 (-599 $) #1#) $)) (-15 -2778 ((-3 (-599 $) #1#) $ (-86))) (-15 -2778 ((-3 (-2 (|:| -2631 (-86)) (|:| |arg| (-599 $))) #1#) $)) (-15 -2945 ((-3 (-2 (|:| |val| $) (|:| -2519 (-714))) #1#) $)) (-15 -2777 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2776 ((-3 (-599 $) #1#) $)) (-15 -2946 ((-3 (-2 (|:| |val| $) (|:| -2519 $)) #1#) $)) (-15 -3950 ($ (-86) (-599 $))) (-15 -3989 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-714))) (-15 ** ($ $ $)) (-15 -4099 ($ $ $)) (-15 -3463 ((-714) $)) (-15 -4122 ($ (-599 $))) (-15 -3540 ($ $)) (-15 -2775 ((-85) $)) (-15 -2774 ((-85) $)) (-15 -3398 ((-85) $)) (-15 -4103 ((-85) $)) (-15 -2773 ((-85) $)) (-15 -2772 ((-85) $)) (-15 -2771 ((-85) $)) (-15 -2770 ((-85) $)) (-15 -2769 ((-599 (-51)) $)) (-15 -2768 ($ $ (-599 (-51)))) (-15 -2767 ($ $ (-599 (-51)))) (-15 -2766 ($ (-1117) (-85) (-85) (-85))) (-15 -2765 ($ $ (-599 (-1117)) (-51))) (-15 -2764 ((-2 (|:| |var| (-599 (-1117))) (|:| |pred| (-51))) $)) (-15 -2763 ((-85) $)) (-15 -2762 ($ $)) (-15 -2781 ($ $ (-51))) (-15 -2761 ((-599 (-51)) $)) (-15 -3204 ((-599 $) $)) (-15 -2760 ((-3 (-599 $) #1#) (-599 $))))) (-1041)) (T -825)) +((-2779 (*1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) (-2785 (*1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) (-2943 (*1 *2 *1) (|partial| -12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2944 (*1 *2 *1) (|partial| -12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2778 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-599 (-825 *4))) (-5 *1 (-825 *4)) (-4 *4 (-1041)))) (-2778 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2631 (-86)) (|:| |arg| (-599 (-825 *3))))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2945 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-825 *3)) (|:| -2519 (-714)))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2777 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-825 *3)) (|:| |den| (-825 *3)))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2776 (*1 *2 *1) (|partial| -12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2946 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-825 *3)) (|:| -2519 (-825 *3)))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-3950 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-599 (-825 *4))) (-5 *1 (-825 *4)) (-4 *4 (-1041)))) (-3989 (*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) (-4099 (*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-3540 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2774 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-4103 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2771 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2770 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2769 (*1 *2 *1) (-12 (-5 *2 (-599 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2768 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2767 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2766 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-85)) (-5 *1 (-825 *4)) (-4 *4 (-1041)))) (-2765 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-51)) (-5 *1 (-825 *4)) (-4 *4 (-1041)))) (-2764 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-599 (-1117))) (|:| |pred| (-51)))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2763 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2762 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) (-2781 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2761 (*1 *2 *1) (-12 (-5 *2 (-599 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-3204 (*1 *2 *1) (-12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) (-2760 (*1 *2 *2) (|partial| -12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) +((-3347 (((-825 |#1|) (-825 |#1|) (-599 (-1117)) (-1 (-85) (-599 |#2|))) 32 T ELT) (((-825 |#1|) (-825 |#1|) (-599 (-1 (-85) |#2|))) 46 T ELT) (((-825 |#1|) (-825 |#1|) (-1 (-85) |#2|)) 35 T ELT)) (-2780 (((-85) (-599 |#2|) (-825 |#1|)) 42 T ELT) (((-85) |#2| (-825 |#1|)) 36 T ELT)) (-3671 (((-1 (-85) |#2|) (-825 |#1|)) 16 T ELT)) (-2782 (((-599 |#2|) (-825 |#1|)) 24 T ELT)) (-2781 (((-825 |#1|) (-825 |#1|) |#2|) 20 T ELT))) +(((-826 |#1| |#2|) (-10 -7 (-15 -3347 ((-825 |#1|) (-825 |#1|) (-1 (-85) |#2|))) (-15 -3347 ((-825 |#1|) (-825 |#1|) (-599 (-1 (-85) |#2|)))) (-15 -3347 ((-825 |#1|) (-825 |#1|) (-599 (-1117)) (-1 (-85) (-599 |#2|)))) (-15 -3671 ((-1 (-85) |#2|) (-825 |#1|))) (-15 -2780 ((-85) |#2| (-825 |#1|))) (-15 -2780 ((-85) (-599 |#2|) (-825 |#1|))) (-15 -2781 ((-825 |#1|) (-825 |#1|) |#2|)) (-15 -2782 ((-599 |#2|) (-825 |#1|)))) (-1041) (-1157)) (T -826)) +((-2782 (*1 *2 *3) (-12 (-5 *3 (-825 *4)) (-4 *4 (-1041)) (-5 *2 (-599 *5)) (-5 *1 (-826 *4 *5)) (-4 *5 (-1157)))) (-2781 (*1 *2 *2 *3) (-12 (-5 *2 (-825 *4)) (-4 *4 (-1041)) (-5 *1 (-826 *4 *3)) (-4 *3 (-1157)))) (-2780 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-4 *6 (-1157)) (-5 *2 (-85)) (-5 *1 (-826 *5 *6)))) (-2780 (*1 *2 *3 *4) (-12 (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-5 *2 (-85)) (-5 *1 (-826 *5 *3)) (-4 *3 (-1157)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-825 *4)) (-4 *4 (-1041)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-826 *4 *5)) (-4 *5 (-1157)))) (-3347 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-825 *5)) (-5 *3 (-599 (-1117))) (-5 *4 (-1 (-85) (-599 *6))) (-4 *5 (-1041)) (-4 *6 (-1157)) (-5 *1 (-826 *5 *6)))) (-3347 (*1 *2 *2 *3) (-12 (-5 *2 (-825 *4)) (-5 *3 (-599 (-1 (-85) *5))) (-4 *4 (-1041)) (-4 *5 (-1157)) (-5 *1 (-826 *4 *5)))) (-3347 (*1 *2 *2 *3) (-12 (-5 *2 (-825 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1041)) (-4 *5 (-1157)) (-5 *1 (-826 *4 *5))))) +((-4108 (((-825 |#2|) (-1 |#2| |#1|) (-825 |#1|)) 19 T ELT))) +(((-827 |#1| |#2|) (-10 -7 (-15 -4108 ((-825 |#2|) (-1 |#2| |#1|) (-825 |#1|)))) (-1041) (-1041)) (T -827)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *2 (-825 *6)) (-5 *1 (-827 *5 *6))))) +((-2687 (((-85) $ $) NIL T ELT)) (-4084 (((-599 |#1|) $) 19 T ELT)) (-2783 (((-85) $) 49 T ELT)) (-3295 (((-3 (-630 |#1|) "failed") $) 55 T ELT)) (-3294 (((-630 |#1|) $) 53 T ELT)) (-3949 (($ $) 23 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3983 (((-714) $) 60 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 (((-630 |#1|) $) 21 T ELT)) (-4096 (((-797) $) 47 T ELT) (($ (-630 |#1|)) 26 T ELT) (((-762 |#1|) $) 36 T ELT) (($ |#1|) 25 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2785 (($) 9 T CONST)) (-2784 (((-599 (-630 |#1|)) $) 28 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 12 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 66 T ELT))) +(((-828 |#1|) (-13 (-781) (-978 (-630 |#1|)) (-10 -8 (-15 1 ($) -4102) (-15 -4096 ((-762 |#1|) $)) (-15 -4096 ($ |#1|)) (-15 -3951 ((-630 |#1|) $)) (-15 -3983 ((-714) $)) (-15 -2784 ((-599 (-630 |#1|)) $)) (-15 -3949 ($ $)) (-15 -2783 ((-85) $)) (-15 -4084 ((-599 |#1|) $)))) (-781)) (T -828)) +((-2785 (*1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-781)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-762 *3)) (-5 *1 (-828 *3)) (-4 *3 (-781)))) (-4096 (*1 *1 *2) (-12 (-5 *1 (-828 *2)) (-4 *2 (-781)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-630 *3)) (-5 *1 (-828 *3)) (-4 *3 (-781)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-828 *3)) (-4 *3 (-781)))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-599 (-630 *3))) (-5 *1 (-828 *3)) (-4 *3 (-781)))) (-3949 (*1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-781)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-828 *3)) (-4 *3 (-781)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-828 *3)) (-4 *3 (-781))))) +((-3614 ((|#1| |#1| |#1|) 19 T ELT))) +(((-829 |#1| |#2|) (-10 -7 (-15 -3614 (|#1| |#1| |#1|))) (-1183 |#2|) (-989)) (T -829)) +((-3614 (*1 *2 *2 *2) (-12 (-4 *3 (-989)) (-5 *1 (-829 *2 *3)) (-4 *2 (-1183 *3))))) +((-2790 ((|#2| $ |#3|) 10 T ELT))) +(((-830 |#1| |#2| |#3|) (-10 -7 (-15 -2790 (|#2| |#1| |#3|))) (-831 |#2| |#3|) (-1157) (-1157)) (T -830)) +NIL +((-3908 ((|#1| $ |#2|) 7 T ELT)) (-2790 ((|#1| $ |#2|) 6 T ELT))) +(((-831 |#1| |#2|) (-113) (-1157) (-1157)) (T -831)) +((-3908 (*1 *2 *1 *3) (-12 (-4 *1 (-831 *2 *3)) (-4 *3 (-1157)) (-4 *2 (-1157)))) (-2790 (*1 *2 *1 *3) (-12 (-4 *1 (-831 *2 *3)) (-4 *3 (-1157)) (-4 *2 (-1157))))) +(-13 (-1157) (-10 -8 (-15 -3908 (|t#1| $ |t#2|)) (-15 -2790 (|t#1| $ |t#2|)))) +(((-1157) . T)) +((-2687 (((-85) $ $) 7 T ELT)) (-2787 (((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099))) (-1003) (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179)))) 18 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2786 (((-975) (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179)))) 17 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-832) (-113)) (T -832)) +((-2787 (*1 *2 *3 *4) (-12 (-4 *1 (-832)) (-5 *3 (-1003)) (-5 *4 (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179)))) (-5 *2 (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)))))) (-2786 (*1 *2 *3) (-12 (-4 *1 (-832)) (-5 *3 (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179)))) (-5 *2 (-975))))) +(-13 (-1041) (-10 -7 (-15 -2787 ((-2 (|:| -2787 (-333)) (|:| |explanations| (-1099))) (-1003) (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179))))) (-15 -2786 ((-975) (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179))))))) +(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) +((-2789 ((|#1| |#1| (-714)) 26 T ELT)) (-2788 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3575 (((-3 (-2 (|:| -3260 |#1|) (|:| -3259 |#1|)) #1#) |#1| (-714) (-714)) 29 T ELT) (((-599 |#1|) |#1|) 38 T ELT))) +(((-833 |#1| |#2|) (-10 -7 (-15 -3575 ((-599 |#1|) |#1|)) (-15 -3575 ((-3 (-2 (|:| -3260 |#1|) (|:| -3259 |#1|)) #1="failed") |#1| (-714) (-714))) (-15 -2788 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2789 (|#1| |#1| (-714)))) (-1183 |#2|) (-318)) (T -833)) +((-2789 (*1 *2 *2 *3) (-12 (-5 *3 (-714)) (-4 *4 (-318)) (-5 *1 (-833 *2 *4)) (-4 *2 (-1183 *4)))) (-2788 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-318)) (-5 *1 (-833 *2 *3)) (-4 *2 (-1183 *3)))) (-3575 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-714)) (-4 *5 (-318)) (-5 *2 (-2 (|:| -3260 *3) (|:| -3259 *3))) (-5 *1 (-833 *3 *5)) (-4 *3 (-1183 *5)))) (-3575 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-599 *3)) (-5 *1 (-833 *3 *4)) (-4 *3 (-1183 *4))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3294 (((-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179))) $) 19 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 21 T ELT) (($ (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179)))) 18 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-834) (-13 (-1041) (-10 -8 (-15 -4096 ($ (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179))))) (-15 -3294 ((-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179))) $))))) (T -834)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179)))) (-5 *1 (-834)))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| (-599 (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) (|:| |dFinish| (-647 (-179)))))) (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) (|:| |tol| (-179)))) (-5 *1 (-834))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3908 (($ $ (-599 |#2|) (-599 (-714))) 44 T ELT) (($ $ |#2| (-714)) 43 T ELT) (($ $ (-599 |#2|)) 42 T ELT) (($ $ |#2|) 40 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2790 (($ $ (-599 |#2|) (-599 (-714))) 47 T ELT) (($ $ |#2| (-714)) 46 T ELT) (($ $ (-599 |#2|)) 45 T ELT) (($ $ |#2|) 41 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-835 |#1| |#2|) (-113) (-989) (-1041)) (T -835)) +NIL +(-13 (-82 |t#1| |t#1|) (-838 |t#2|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-675 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-598 |#1|) |has| |#1| (-146)) ((-675 |#1|) |has| |#1| (-146)) ((-831 $ |#2|) . T) ((-838 |#2|) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3908 (($ $ (-599 |#1|) (-599 (-714))) 49 T ELT) (($ $ |#1| (-714)) 48 T ELT) (($ $ (-599 |#1|)) 47 T ELT) (($ $ |#1|) 45 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-599 |#1|) (-599 (-714))) 52 T ELT) (($ $ |#1| (-714)) 51 T ELT) (($ $ (-599 |#1|)) 50 T ELT) (($ $ |#1|) 46 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-836 |#1|) (-113) (-1041)) (T -836)) +NIL +(-13 (-989) (-838 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-684) . T) ((-831 $ |#1|) . T) ((-838 |#1|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-3908 (($ $ |#2|) NIL T ELT) (($ $ (-599 |#2|)) 10 T ELT) (($ $ |#2| (-714)) 12 T ELT) (($ $ (-599 |#2|) (-599 (-714))) 15 T ELT)) (-2790 (($ $ |#2|) 16 T ELT) (($ $ (-599 |#2|)) 18 T ELT) (($ $ |#2| (-714)) 19 T ELT) (($ $ (-599 |#2|) (-599 (-714))) 21 T ELT))) +(((-837 |#1| |#2|) (-10 -7 (-15 -2790 (|#1| |#1| (-599 |#2|) (-599 (-714)))) (-15 -2790 (|#1| |#1| |#2| (-714))) (-15 -2790 (|#1| |#1| (-599 |#2|))) (-15 -3908 (|#1| |#1| (-599 |#2|) (-599 (-714)))) (-15 -3908 (|#1| |#1| |#2| (-714))) (-15 -3908 (|#1| |#1| (-599 |#2|))) (-15 -2790 (|#1| |#1| |#2|)) (-15 -3908 (|#1| |#1| |#2|))) (-838 |#2|) (-1041)) (T -837)) +NIL +((-3908 (($ $ |#1|) 7 T ELT) (($ $ (-599 |#1|)) 15 T ELT) (($ $ |#1| (-714)) 14 T ELT) (($ $ (-599 |#1|) (-599 (-714))) 13 T ELT)) (-2790 (($ $ |#1|) 6 T ELT) (($ $ (-599 |#1|)) 12 T ELT) (($ $ |#1| (-714)) 11 T ELT) (($ $ (-599 |#1|) (-599 (-714))) 10 T ELT))) +(((-838 |#1|) (-113) (-1041)) (T -838)) +((-3908 (*1 *1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *1 (-838 *3)) (-4 *3 (-1041)))) (-3908 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-838 *2)) (-4 *2 (-1041)))) (-3908 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 *4)) (-5 *3 (-599 (-714))) (-4 *1 (-838 *4)) (-4 *4 (-1041)))) (-2790 (*1 *1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *1 (-838 *3)) (-4 *3 (-1041)))) (-2790 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-838 *2)) (-4 *2 (-1041)))) (-2790 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 *4)) (-5 *3 (-599 (-714))) (-4 *1 (-838 *4)) (-4 *4 (-1041))))) +(-13 (-831 $ |t#1|) (-10 -8 (-15 -3908 ($ $ (-599 |t#1|))) (-15 -3908 ($ $ |t#1| (-714))) (-15 -3908 ($ $ (-599 |t#1|) (-599 (-714)))) (-15 -2790 ($ $ (-599 |t#1|))) (-15 -2790 ($ $ |t#1| (-714))) (-15 -2790 ($ $ (-599 |t#1|) (-599 (-714)))))) +(((-831 $ |#1|) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 26 T ELT)) (-3146 ((|#1| $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-1326 (($ $ $) NIL (|has| $ (-6 -4146)) ELT)) (-1327 (($ $ $) NIL (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4146)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4146)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3259 (($ $) 25 T ELT)) (-2791 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) NIL T ELT)) (-3148 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3260 (($ $) 23 T ELT)) (-3151 (((-599 |#1|) $) NIL T ELT)) (-3667 (((-85) $) 20 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3150 (((-499) $ $) NIL T ELT)) (-3783 (((-85) $) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-1144 |#1|) $) 9 T ELT) (((-797) $) 29 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) NIL T ELT)) (-3149 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 21 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-839 |#1|) (-13 (-92 |#1|) (-568 (-1144 |#1|)) (-10 -8 (-15 -2791 ($ |#1|)) (-15 -2791 ($ $ $)))) (-1041)) (T -839)) +((-2791 (*1 *1 *2) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1041)))) (-2791 (*1 *1 *1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1041))))) +((-2687 (((-85) $ $) NIL T ELT)) (-2807 (((-1037 |#1|) $) 60 T ELT)) (-3030 (((-599 $) (-599 $)) 103 T ELT)) (-3773 (((-499) $) 83 T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ "failed") $) NIL T ELT)) (-3922 (((-714) $) 80 T ELT)) (-2811 (((-1037 |#1|) $ |#1|) 70 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2794 (((-85) $) 88 T ELT)) (-2796 (((-714) $) 84 T ELT)) (-2650 (($ $ $) NIL (-3677 (|has| |#1| (-323)) (|has| |#1| (-781))) ELT)) (-2978 (($ $ $) NIL (-3677 (|has| |#1| (-323)) (|has| |#1| (-781))) ELT)) (-2800 (((-2 (|:| |preimage| (-599 |#1|)) (|:| |image| (-599 |#1|))) $) 55 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 130 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2793 (((-1037 |#1|) $) 136 (|has| |#1| (-323)) ELT)) (-2795 (((-85) $) 81 T ELT)) (-3950 ((|#1| $ |#1|) 68 T ELT)) (-4098 (((-714) $) 62 T ELT)) (-2802 (($ (-599 (-599 |#1|))) 118 T ELT)) (-2797 (((-911) $) 74 T ELT)) (-2803 (($ (-599 |#1|)) 32 T ELT)) (-3130 (($ $ $) NIL T ELT)) (-2551 (($ $ $) NIL T ELT)) (-2799 (($ (-599 (-599 |#1|))) 57 T ELT)) (-2798 (($ (-599 (-599 |#1|))) 123 T ELT)) (-2792 (($ (-599 |#1|)) 132 T ELT)) (-4096 (((-797) $) 117 T ELT) (($ (-599 (-599 |#1|))) 91 T ELT) (($ (-599 |#1|)) 92 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2785 (($) 24 T CONST)) (-2685 (((-85) $ $) NIL (-3677 (|has| |#1| (-323)) (|has| |#1| (-781))) ELT)) (-2686 (((-85) $ $) NIL (-3677 (|has| |#1| (-323)) (|has| |#1| (-781))) ELT)) (-3174 (((-85) $ $) 66 T ELT)) (-2805 (((-85) $ $) NIL (-3677 (|has| |#1| (-323)) (|has| |#1| (-781))) ELT)) (-2806 (((-85) $ $) 90 T ELT)) (-4099 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ $ $) 33 T ELT))) +(((-840 |#1|) (-13 (-842 |#1|) (-10 -8 (-15 -2800 ((-2 (|:| |preimage| (-599 |#1|)) (|:| |image| (-599 |#1|))) $)) (-15 -2799 ($ (-599 (-599 |#1|)))) (-15 -4096 ($ (-599 (-599 |#1|)))) (-15 -4096 ($ (-599 |#1|))) (-15 -2798 ($ (-599 (-599 |#1|)))) (-15 -4098 ((-714) $)) (-15 -2797 ((-911) $)) (-15 -3922 ((-714) $)) (-15 -2796 ((-714) $)) (-15 -3773 ((-499) $)) (-15 -2795 ((-85) $)) (-15 -2794 ((-85) $)) (-15 -3030 ((-599 $) (-599 $))) (IF (|has| |#1| (-323)) (-15 -2793 ((-1037 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-498)) (-15 -2792 ($ (-599 |#1|))) (IF (|has| |#1| (-323)) (-15 -2792 ($ (-599 |#1|))) |%noBranch|)))) (-1041)) (T -840)) +((-2800 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-599 *3)) (|:| |image| (-599 *3)))) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) (-2799 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-1041)) (-5 *1 (-840 *3)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-1041)) (-5 *1 (-840 *3)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-840 *3)))) (-2798 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-1041)) (-5 *1 (-840 *3)))) (-4098 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) (-2796 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) (-3030 (*1 *2 *2) (-12 (-5 *2 (-599 (-840 *3))) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) (-2793 (*1 *2 *1) (-12 (-5 *2 (-1037 *3)) (-5 *1 (-840 *3)) (-4 *3 (-323)) (-4 *3 (-1041)))) (-2792 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-840 *3))))) +((-2801 ((|#2| (-1082 |#1| |#2|)) 48 T ELT))) +(((-841 |#1| |#2|) (-10 -7 (-15 -2801 (|#2| (-1082 |#1| |#2|)))) (-857) (-13 (-989) (-10 -7 (-6 (-4147 "*"))))) (T -841)) +((-2801 (*1 *2 *3) (-12 (-5 *3 (-1082 *4 *2)) (-14 *4 (-857)) (-4 *2 (-13 (-989) (-10 -7 (-6 (-4147 "*"))))) (-5 *1 (-841 *4 *2))))) +((-2687 (((-85) $ $) 7 T ELT)) (-2807 (((-1037 |#1|) $) 42 T ELT)) (-3874 (($) 23 T CONST)) (-3607 (((-3 $ "failed") $) 20 T ELT)) (-2811 (((-1037 |#1|) $ |#1|) 41 T ELT)) (-2528 (((-85) $) 22 T ELT)) (-2650 (($ $ $) 35 (-3677 (|has| |#1| (-781)) (|has| |#1| (-323))) ELT)) (-2978 (($ $ $) 36 (-3677 (|has| |#1| (-781)) (|has| |#1| (-323))) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 30 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3950 ((|#1| $ |#1|) 45 T ELT)) (-2802 (($ (-599 (-599 |#1|))) 43 T ELT)) (-2803 (($ (-599 |#1|)) 44 T ELT)) (-3130 (($ $ $) 27 T ELT)) (-2551 (($ $ $) 26 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2785 (($) 24 T CONST)) (-2685 (((-85) $ $) 37 (-3677 (|has| |#1| (-781)) (|has| |#1| (-323))) ELT)) (-2686 (((-85) $ $) 39 (-3677 (|has| |#1| (-781)) (|has| |#1| (-323))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 38 (-3677 (|has| |#1| (-781)) (|has| |#1| (-323))) ELT)) (-2806 (((-85) $ $) 40 T ELT)) (-4099 (($ $ $) 29 T ELT)) (** (($ $ (-857)) 17 T ELT) (($ $ (-714)) 21 T ELT) (($ $ (-499)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +(((-842 |#1|) (-113) (-1041)) (T -842)) +((-2803 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-4 *1 (-842 *3)))) (-2802 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-1041)) (-4 *1 (-842 *3)))) (-2807 (*1 *2 *1) (-12 (-4 *1 (-842 *3)) (-4 *3 (-1041)) (-5 *2 (-1037 *3)))) (-2811 (*1 *2 *1 *3) (-12 (-4 *1 (-842 *3)) (-4 *3 (-1041)) (-5 *2 (-1037 *3)))) (-2806 (*1 *2 *1 *1) (-12 (-4 *1 (-842 *3)) (-4 *3 (-1041)) (-5 *2 (-85))))) +(-13 (-427) (-240 |t#1| |t#1|) (-10 -8 (-15 -2803 ($ (-599 |t#1|))) (-15 -2802 ($ (-599 (-599 |t#1|)))) (-15 -2807 ((-1037 |t#1|) $)) (-15 -2811 ((-1037 |t#1|) $ |t#1|)) (-15 -2806 ((-85) $ $)) (IF (|has| |t#1| (-781)) (-6 (-781)) |%noBranch|) (IF (|has| |t#1| (-323)) (-6 (-781)) |%noBranch|))) +(((-73) . T) ((-568 (-797)) . T) ((-240 |#1| |#1|) . T) ((-427) . T) ((-684) . T) ((-781) -3677 (|has| |#1| (-781)) (|has| |#1| (-323))) ((-784) -3677 (|has| |#1| (-781)) (|has| |#1| (-323))) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-2813 (((-599 (-599 (-714))) $) 163 T ELT)) (-2809 (((-599 (-714)) (-840 |#1|) $) 191 T ELT)) (-2808 (((-599 (-714)) (-840 |#1|) $) 192 T ELT)) (-2807 (((-1037 |#1|) $) 155 T ELT)) (-2814 (((-599 (-840 |#1|)) $) 152 T ELT)) (-3115 (((-840 |#1|) $ (-499)) 157 T ELT) (((-840 |#1|) $) 158 T ELT)) (-2812 (($ (-599 (-840 |#1|))) 165 T ELT)) (-3922 (((-714) $) 159 T ELT)) (-2810 (((-1037 (-1037 |#1|)) $) 189 T ELT)) (-2811 (((-1037 |#1|) $ |#1|) 180 T ELT) (((-1037 (-1037 |#1|)) $ (-1037 |#1|)) 201 T ELT) (((-1037 (-599 |#1|)) $ (-599 |#1|)) 204 T ELT)) (-3383 (((-85) (-840 |#1|) $) 140 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2804 (((-1213) $) 145 T ELT) (((-1213) $ (-499) (-499)) 205 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2816 (((-599 (-840 |#1|)) $) 146 T ELT)) (-3950 (((-840 |#1|) $ (-714)) 153 T ELT)) (-4098 (((-714) $) 160 T ELT)) (-4096 (((-797) $) 177 T ELT) (((-599 (-840 |#1|)) $) 28 T ELT) (($ (-599 (-840 |#1|))) 164 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2815 (((-599 |#1|) $) 162 T ELT)) (-3174 (((-85) $ $) 198 T ELT)) (-2805 (((-85) $ $) 195 T ELT)) (-2806 (((-85) $ $) 194 T ELT))) +(((-843 |#1|) (-13 (-1041) (-10 -8 (-15 -4096 ((-599 (-840 |#1|)) $)) (-15 -2816 ((-599 (-840 |#1|)) $)) (-15 -3950 ((-840 |#1|) $ (-714))) (-15 -3115 ((-840 |#1|) $ (-499))) (-15 -3115 ((-840 |#1|) $)) (-15 -3922 ((-714) $)) (-15 -4098 ((-714) $)) (-15 -2815 ((-599 |#1|) $)) (-15 -2814 ((-599 (-840 |#1|)) $)) (-15 -2813 ((-599 (-599 (-714))) $)) (-15 -4096 ($ (-599 (-840 |#1|)))) (-15 -2812 ($ (-599 (-840 |#1|)))) (-15 -2811 ((-1037 |#1|) $ |#1|)) (-15 -2810 ((-1037 (-1037 |#1|)) $)) (-15 -2811 ((-1037 (-1037 |#1|)) $ (-1037 |#1|))) (-15 -2811 ((-1037 (-599 |#1|)) $ (-599 |#1|))) (-15 -3383 ((-85) (-840 |#1|) $)) (-15 -2809 ((-599 (-714)) (-840 |#1|) $)) (-15 -2808 ((-599 (-714)) (-840 |#1|) $)) (-15 -2807 ((-1037 |#1|) $)) (-15 -2806 ((-85) $ $)) (-15 -2805 ((-85) $ $)) (-15 -2804 ((-1213) $)) (-15 -2804 ((-1213) $ (-499) (-499))))) (-1041)) (T -843)) +((-4096 (*1 *2 *1) (-12 (-5 *2 (-599 (-840 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-599 (-840 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *2 (-840 *4)) (-5 *1 (-843 *4)) (-4 *4 (-1041)))) (-3115 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *2 (-840 *4)) (-5 *1 (-843 *4)) (-4 *4 (-1041)))) (-3115 (*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-4098 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-2815 (*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-599 (-840 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-2813 (*1 *2 *1) (-12 (-5 *2 (-599 (-599 (-714)))) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-599 (-840 *3))) (-4 *3 (-1041)) (-5 *1 (-843 *3)))) (-2812 (*1 *1 *2) (-12 (-5 *2 (-599 (-840 *3))) (-4 *3 (-1041)) (-5 *1 (-843 *3)))) (-2811 (*1 *2 *1 *3) (-12 (-5 *2 (-1037 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-1037 (-1037 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-2811 (*1 *2 *1 *3) (-12 (-4 *4 (-1041)) (-5 *2 (-1037 (-1037 *4))) (-5 *1 (-843 *4)) (-5 *3 (-1037 *4)))) (-2811 (*1 *2 *1 *3) (-12 (-4 *4 (-1041)) (-5 *2 (-1037 (-599 *4))) (-5 *1 (-843 *4)) (-5 *3 (-599 *4)))) (-3383 (*1 *2 *3 *1) (-12 (-5 *3 (-840 *4)) (-4 *4 (-1041)) (-5 *2 (-85)) (-5 *1 (-843 *4)))) (-2809 (*1 *2 *3 *1) (-12 (-5 *3 (-840 *4)) (-4 *4 (-1041)) (-5 *2 (-599 (-714))) (-5 *1 (-843 *4)))) (-2808 (*1 *2 *3 *1) (-12 (-5 *3 (-840 *4)) (-4 *4 (-1041)) (-5 *2 (-599 (-714))) (-5 *1 (-843 *4)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-1037 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-2806 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-2805 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) (-2804 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-499)) (-5 *2 (-1213)) (-5 *1 (-843 *4)) (-4 *4 (-1041))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-4082 (((-85) $) NIL T ELT)) (-4079 (((-714)) NIL T ELT)) (-3470 (($ $ (-857)) NIL (|has| $ (-323)) ELT) (($ $) NIL T ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 $ #1#) $) NIL T ELT)) (-3294 (($ $) NIL T ELT)) (-1890 (($ (-1207 $)) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-2954 (($) NIL T ELT)) (-1773 (((-85) $) NIL T ELT)) (-1864 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3922 (((-766 (-857)) $) NIL T ELT) (((-857) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2114 (($) NIL (|has| $ (-323)) ELT)) (-2112 (((-85) $) NIL (|has| $ (-323)) ELT)) (-3254 (($ $ (-857)) NIL (|has| $ (-323)) ELT) (($ $) NIL T ELT)) (-3585 (((-649 $) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2115 (((-1111 $) $ (-857)) NIL (|has| $ (-323)) ELT) (((-1111 $) $) NIL T ELT)) (-2111 (((-857) $) NIL T ELT)) (-1697 (((-1111 $) $) NIL (|has| $ (-323)) ELT)) (-1696 (((-3 (-1111 $) #1#) $ $) NIL (|has| $ (-323)) ELT) (((-1111 $) $) NIL (|has| $ (-323)) ELT)) (-1698 (($ $ (-1111 $)) NIL (|has| $ (-323)) ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL T CONST)) (-2518 (($ (-857)) NIL T ELT)) (-4081 (((-85) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($) NIL (|has| $ (-323)) ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-4080 (((-857)) NIL T ELT) (((-766 (-857))) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-1865 (((-3 (-714) #1#) $ $) NIL T ELT) (((-714) $) NIL T ELT)) (-4061 (((-107)) NIL T ELT)) (-3908 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-4098 (((-857) $) NIL T ELT) (((-766 (-857)) $) NIL T ELT)) (-3323 (((-1111 $)) NIL T ELT)) (-1767 (($) NIL T ELT)) (-1699 (($) NIL (|has| $ (-323)) ELT)) (-3362 (((-647 $) (-1207 $)) NIL T ELT) (((-1207 $) $) NIL T ELT)) (-4122 (((-499) $) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT)) (-2823 (((-649 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $) (-857)) NIL T ELT) (((-1207 $)) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-4083 (((-85) $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-4078 (($ $ (-714)) NIL (|has| $ (-323)) ELT) (($ $) NIL (|has| $ (-323)) ELT)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT))) +(((-844 |#1|) (-13 (-305) (-283 $) (-569 (-499))) (-857)) (T -844)) +NIL +((-2818 (((-3 (-599 (-1111 |#4|)) #1="failed") (-599 (-1111 |#4|)) (-1111 |#4|)) 164 T ELT)) (-2821 ((|#1|) 101 T ELT)) (-2820 (((-359 (-1111 |#4|)) (-1111 |#4|)) 173 T ELT)) (-2822 (((-359 (-1111 |#4|)) (-599 |#3|) (-1111 |#4|)) 83 T ELT)) (-2819 (((-359 (-1111 |#4|)) (-1111 |#4|)) 183 T ELT)) (-2817 (((-3 (-599 (-1111 |#4|)) #1#) (-599 (-1111 |#4|)) (-1111 |#4|) |#3|) 117 T ELT))) +(((-845 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2818 ((-3 (-599 (-1111 |#4|)) #1="failed") (-599 (-1111 |#4|)) (-1111 |#4|))) (-15 -2819 ((-359 (-1111 |#4|)) (-1111 |#4|))) (-15 -2820 ((-359 (-1111 |#4|)) (-1111 |#4|))) (-15 -2821 (|#1|)) (-15 -2817 ((-3 (-599 (-1111 |#4|)) #1#) (-599 (-1111 |#4|)) (-1111 |#4|) |#3|)) (-15 -2822 ((-359 (-1111 |#4|)) (-599 |#3|) (-1111 |#4|)))) (-848) (-738) (-781) (-888 |#1| |#2| |#3|)) (T -845)) +((-2822 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *7)) (-4 *7 (-781)) (-4 *5 (-848)) (-4 *6 (-738)) (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-359 (-1111 *8))) (-5 *1 (-845 *5 *6 *7 *8)) (-5 *4 (-1111 *8)))) (-2817 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-599 (-1111 *7))) (-5 *3 (-1111 *7)) (-4 *7 (-888 *5 *6 *4)) (-4 *5 (-848)) (-4 *6 (-738)) (-4 *4 (-781)) (-5 *1 (-845 *5 *6 *4 *7)))) (-2821 (*1 *2) (-12 (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-848)) (-5 *1 (-845 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))) (-2820 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-359 (-1111 *7))) (-5 *1 (-845 *4 *5 *6 *7)) (-5 *3 (-1111 *7)))) (-2819 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-359 (-1111 *7))) (-5 *1 (-845 *4 *5 *6 *7)) (-5 *3 (-1111 *7)))) (-2818 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-599 (-1111 *7))) (-5 *3 (-1111 *7)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-848)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-845 *4 *5 *6 *7))))) +((-2818 (((-3 (-599 (-1111 |#2|)) "failed") (-599 (-1111 |#2|)) (-1111 |#2|)) 39 T ELT)) (-2821 ((|#1|) 71 T ELT)) (-2820 (((-359 (-1111 |#2|)) (-1111 |#2|)) 125 T ELT)) (-2822 (((-359 (-1111 |#2|)) (-1111 |#2|)) 109 T ELT)) (-2819 (((-359 (-1111 |#2|)) (-1111 |#2|)) 136 T ELT))) +(((-846 |#1| |#2|) (-10 -7 (-15 -2818 ((-3 (-599 (-1111 |#2|)) "failed") (-599 (-1111 |#2|)) (-1111 |#2|))) (-15 -2819 ((-359 (-1111 |#2|)) (-1111 |#2|))) (-15 -2820 ((-359 (-1111 |#2|)) (-1111 |#2|))) (-15 -2821 (|#1|)) (-15 -2822 ((-359 (-1111 |#2|)) (-1111 |#2|)))) (-848) (-1183 |#1|)) (T -846)) +((-2822 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-1183 *4)) (-5 *2 (-359 (-1111 *5))) (-5 *1 (-846 *4 *5)) (-5 *3 (-1111 *5)))) (-2821 (*1 *2) (-12 (-4 *2 (-848)) (-5 *1 (-846 *2 *3)) (-4 *3 (-1183 *2)))) (-2820 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-1183 *4)) (-5 *2 (-359 (-1111 *5))) (-5 *1 (-846 *4 *5)) (-5 *3 (-1111 *5)))) (-2819 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-1183 *4)) (-5 *2 (-359 (-1111 *5))) (-5 *1 (-846 *4 *5)) (-5 *3 (-1111 *5)))) (-2818 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-599 (-1111 *5))) (-5 *3 (-1111 *5)) (-4 *5 (-1183 *4)) (-4 *4 (-848)) (-5 *1 (-846 *4 *5))))) +((-2825 (((-3 (-599 (-1111 $)) "failed") (-599 (-1111 $)) (-1111 $)) 46 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 18 T ELT)) (-2823 (((-649 $) $) 40 T ELT))) +(((-847 |#1|) (-10 -7 (-15 -2823 ((-649 |#1|) |#1|)) (-15 -2825 ((-3 (-599 (-1111 |#1|)) "failed") (-599 (-1111 |#1|)) (-1111 |#1|))) (-15 -2829 ((-1111 |#1|) (-1111 |#1|) (-1111 |#1|)))) (-848)) (T -847)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 72 T ELT)) (-3925 (($ $) 63 T ELT)) (-4121 (((-359 $) $) 64 T ELT)) (-2825 (((-3 (-599 (-1111 $)) "failed") (-599 (-1111 $)) (-1111 $)) 69 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3873 (((-85) $) 65 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 70 T ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 71 T ELT)) (-3882 (((-359 $) $) 62 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2824 (((-3 (-1207 $) "failed") (-647 $)) 68 (|has| $ (-118)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT)) (-2823 (((-649 $) $) 67 (|has| $ (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-848) (-113)) (T -848)) +((-2829 (*1 *2 *2 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-848)))) (-2828 (*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *2 (-359 (-1111 *1))) (-5 *3 (-1111 *1)))) (-2827 (*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *2 (-359 (-1111 *1))) (-5 *3 (-1111 *1)))) (-2826 (*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *2 (-359 (-1111 *1))) (-5 *3 (-1111 *1)))) (-2825 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-599 (-1111 *1))) (-5 *3 (-1111 *1)) (-4 *1 (-848)))) (-2824 (*1 *2 *3) (|partial| -12 (-5 *3 (-647 *1)) (-4 *1 (-118)) (-4 *1 (-848)) (-5 *2 (-1207 *1)))) (-2823 (*1 *2 *1) (-12 (-5 *2 (-649 *1)) (-4 *1 (-118)) (-4 *1 (-848))))) +(-13 (-1162) (-10 -8 (-15 -2828 ((-359 (-1111 $)) (-1111 $))) (-15 -2827 ((-359 (-1111 $)) (-1111 $))) (-15 -2826 ((-359 (-1111 $)) (-1111 $))) (-15 -2829 ((-1111 $) (-1111 $) (-1111 $))) (-15 -2825 ((-3 (-599 (-1111 $)) "failed") (-599 (-1111 $)) (-1111 $))) (IF (|has| $ (-118)) (PROGN (-15 -2824 ((-3 (-1207 $) "failed") (-647 $))) (-15 -2823 ((-649 $) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-244) . T) ((-406) . T) ((-510) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-598 $) . T) ((-675 $) . T) ((-684) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) . T)) +((-2831 (((-3 (-2 (|:| -3922 (-714)) (|:| -2501 |#5|)) #1="failed") (-288 |#2| |#3| |#4| |#5|)) 77 T ELT)) (-2830 (((-85) (-288 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3922 (((-3 (-714) #1#) (-288 |#2| |#3| |#4| |#5|)) 15 T ELT))) +(((-849 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3922 ((-3 (-714) #1="failed") (-288 |#2| |#3| |#4| |#5|))) (-15 -2830 ((-85) (-288 |#2| |#3| |#4| |#5|))) (-15 -2831 ((-3 (-2 (|:| -3922 (-714)) (|:| -2501 |#5|)) #1#) (-288 |#2| |#3| |#4| |#5|)))) (-13 (-510) (-978 (-499))) (-375 |#1|) (-1183 |#2|) (-1183 (-361 |#3|)) (-297 |#2| |#3| |#4|)) (T -849)) +((-2831 (*1 *2 *3) (|partial| -12 (-5 *3 (-288 *5 *6 *7 *8)) (-4 *5 (-375 *4)) (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) (-4 *8 (-297 *5 *6 *7)) (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-2 (|:| -3922 (-714)) (|:| -2501 *8))) (-5 *1 (-849 *4 *5 *6 *7 *8)))) (-2830 (*1 *2 *3) (-12 (-5 *3 (-288 *5 *6 *7 *8)) (-4 *5 (-375 *4)) (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) (-4 *8 (-297 *5 *6 *7)) (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-85)) (-5 *1 (-849 *4 *5 *6 *7 *8)))) (-3922 (*1 *2 *3) (|partial| -12 (-5 *3 (-288 *5 *6 *7 *8)) (-4 *5 (-375 *4)) (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) (-4 *8 (-297 *5 *6 *7)) (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-714)) (-5 *1 (-849 *4 *5 *6 *7 *8))))) +((-2831 (((-3 (-2 (|:| -3922 (-714)) (|:| -2501 |#3|)) #1="failed") (-288 (-361 (-499)) |#1| |#2| |#3|)) 64 T ELT)) (-2830 (((-85) (-288 (-361 (-499)) |#1| |#2| |#3|)) 16 T ELT)) (-3922 (((-3 (-714) #1#) (-288 (-361 (-499)) |#1| |#2| |#3|)) 14 T ELT))) +(((-850 |#1| |#2| |#3|) (-10 -7 (-15 -3922 ((-3 (-714) #1="failed") (-288 (-361 (-499)) |#1| |#2| |#3|))) (-15 -2830 ((-85) (-288 (-361 (-499)) |#1| |#2| |#3|))) (-15 -2831 ((-3 (-2 (|:| -3922 (-714)) (|:| -2501 |#3|)) #1#) (-288 (-361 (-499)) |#1| |#2| |#3|)))) (-1183 (-361 (-499))) (-1183 (-361 |#1|)) (-297 (-361 (-499)) |#1| |#2|)) (T -850)) +((-2831 (*1 *2 *3) (|partial| -12 (-5 *3 (-288 (-361 (-499)) *4 *5 *6)) (-4 *4 (-1183 (-361 (-499)))) (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 (-361 (-499)) *4 *5)) (-5 *2 (-2 (|:| -3922 (-714)) (|:| -2501 *6))) (-5 *1 (-850 *4 *5 *6)))) (-2830 (*1 *2 *3) (-12 (-5 *3 (-288 (-361 (-499)) *4 *5 *6)) (-4 *4 (-1183 (-361 (-499)))) (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 (-361 (-499)) *4 *5)) (-5 *2 (-85)) (-5 *1 (-850 *4 *5 *6)))) (-3922 (*1 *2 *3) (|partial| -12 (-5 *3 (-288 (-361 (-499)) *4 *5 *6)) (-4 *4 (-1183 (-361 (-499)))) (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 (-361 (-499)) *4 *5)) (-5 *2 (-714)) (-5 *1 (-850 *4 *5 *6))))) +((-2836 ((|#2| |#2|) 26 T ELT)) (-2834 (((-499) (-599 (-2 (|:| |den| (-499)) (|:| |gcdnum| (-499))))) 15 T ELT)) (-2832 (((-857) (-499)) 38 T ELT)) (-2835 (((-499) |#2|) 45 T ELT)) (-2833 (((-499) |#2|) 21 T ELT) (((-2 (|:| |den| (-499)) (|:| |gcdnum| (-499))) |#1|) 20 T ELT))) +(((-851 |#1| |#2|) (-10 -7 (-15 -2832 ((-857) (-499))) (-15 -2833 ((-2 (|:| |den| (-499)) (|:| |gcdnum| (-499))) |#1|)) (-15 -2833 ((-499) |#2|)) (-15 -2834 ((-499) (-599 (-2 (|:| |den| (-499)) (|:| |gcdnum| (-499)))))) (-15 -2835 ((-499) |#2|)) (-15 -2836 (|#2| |#2|))) (-1183 (-361 (-499))) (-1183 (-361 |#1|))) (T -851)) +((-2836 (*1 *2 *2) (-12 (-4 *3 (-1183 (-361 (-499)))) (-5 *1 (-851 *3 *2)) (-4 *2 (-1183 (-361 *3))))) (-2835 (*1 *2 *3) (-12 (-4 *4 (-1183 (-361 *2))) (-5 *2 (-499)) (-5 *1 (-851 *4 *3)) (-4 *3 (-1183 (-361 *4))))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| |den| (-499)) (|:| |gcdnum| (-499))))) (-4 *4 (-1183 (-361 *2))) (-5 *2 (-499)) (-5 *1 (-851 *4 *5)) (-4 *5 (-1183 (-361 *4))))) (-2833 (*1 *2 *3) (-12 (-4 *4 (-1183 (-361 *2))) (-5 *2 (-499)) (-5 *1 (-851 *4 *3)) (-4 *3 (-1183 (-361 *4))))) (-2833 (*1 *2 *3) (-12 (-4 *3 (-1183 (-361 (-499)))) (-5 *2 (-2 (|:| |den| (-499)) (|:| |gcdnum| (-499)))) (-5 *1 (-851 *3 *4)) (-4 *4 (-1183 (-361 *3))))) (-2832 (*1 *2 *3) (-12 (-5 *3 (-499)) (-4 *4 (-1183 (-361 *3))) (-5 *2 (-857)) (-5 *1 (-851 *4 *5)) (-4 *5 (-1183 (-361 *4)))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3251 ((|#1| $) 99 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2683 (($ $ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) 93 T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2844 (($ |#1| (-359 |#1|)) 91 T ELT)) (-2838 (((-1111 |#1|) |#1| |#1|) 52 T ELT)) (-2837 (($ $) 60 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2839 (((-499) $) 96 T ELT)) (-2840 (($ $ (-499)) 98 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-2841 ((|#1| $) 95 T ELT)) (-2842 (((-359 |#1|) $) 94 T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) 92 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-2843 (($ $) 49 T ELT)) (-4096 (((-797) $) 123 T ELT) (($ (-499)) 72 T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#1|) 40 T ELT) (((-361 |#1|) $) 77 T ELT) (($ (-361 (-359 |#1|))) 85 T ELT)) (-3248 (((-714)) 70 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2779 (($) 24 T CONST)) (-2785 (($) 12 T CONST)) (-3174 (((-85) $ $) 86 T ELT)) (-4099 (($ $ $) NIL T ELT)) (-3987 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 48 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) +(((-852 |#1|) (-13 (-318) (-38 |#1|) (-10 -8 (-15 -4096 ((-361 |#1|) $)) (-15 -4096 ($ (-361 (-359 |#1|)))) (-15 -2843 ($ $)) (-15 -2842 ((-359 |#1|) $)) (-15 -2841 (|#1| $)) (-15 -2840 ($ $ (-499))) (-15 -2839 ((-499) $)) (-15 -2838 ((-1111 |#1|) |#1| |#1|)) (-15 -2837 ($ $)) (-15 -2844 ($ |#1| (-359 |#1|))) (-15 -3251 (|#1| $)))) (-261)) (T -852)) +((-4096 (*1 *2 *1) (-12 (-5 *2 (-361 *3)) (-5 *1 (-852 *3)) (-4 *3 (-261)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-361 (-359 *3))) (-4 *3 (-261)) (-5 *1 (-852 *3)))) (-2843 (*1 *1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-261)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-359 *3)) (-5 *1 (-852 *3)) (-4 *3 (-261)))) (-2841 (*1 *2 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-261)))) (-2840 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-852 *3)) (-4 *3 (-261)))) (-2839 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-852 *3)) (-4 *3 (-261)))) (-2838 (*1 *2 *3 *3) (-12 (-5 *2 (-1111 *3)) (-5 *1 (-852 *3)) (-4 *3 (-261)))) (-2837 (*1 *1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-261)))) (-2844 (*1 *1 *2 *3) (-12 (-5 *3 (-359 *2)) (-4 *2 (-261)) (-5 *1 (-852 *2)))) (-3251 (*1 *2 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-261))))) +((-2844 (((-51) (-884 |#1|) (-359 (-884 |#1|)) (-1117)) 17 T ELT) (((-51) (-361 (-884 |#1|)) (-1117)) 18 T ELT))) +(((-853 |#1|) (-10 -7 (-15 -2844 ((-51) (-361 (-884 |#1|)) (-1117))) (-15 -2844 ((-51) (-884 |#1|) (-359 (-884 |#1|)) (-1117)))) (-13 (-261) (-120))) (T -853)) +((-2844 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-359 (-884 *6))) (-5 *5 (-1117)) (-5 *3 (-884 *6)) (-4 *6 (-13 (-261) (-120))) (-5 *2 (-51)) (-5 *1 (-853 *6)))) (-2844 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-51)) (-5 *1 (-853 *5))))) +((-2845 ((|#4| (-599 |#4|)) 148 T ELT) (((-1111 |#4|) (-1111 |#4|) (-1111 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3282 (((-1111 |#4|) (-599 (-1111 |#4|))) 141 T ELT) (((-1111 |#4|) (-1111 |#4|) (-1111 |#4|)) 61 T ELT) ((|#4| (-599 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) +(((-854 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3282 (|#4| |#4| |#4|)) (-15 -3282 (|#4| (-599 |#4|))) (-15 -3282 ((-1111 |#4|) (-1111 |#4|) (-1111 |#4|))) (-15 -3282 ((-1111 |#4|) (-599 (-1111 |#4|)))) (-15 -2845 (|#4| |#4| |#4|)) (-15 -2845 ((-1111 |#4|) (-1111 |#4|) (-1111 |#4|))) (-15 -2845 (|#4| (-599 |#4|)))) (-738) (-781) (-261) (-888 |#3| |#1| |#2|)) (T -854)) +((-2845 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *6 *4 *5)) (-5 *1 (-854 *4 *5 *6 *2)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)))) (-2845 (*1 *2 *2 *2) (-12 (-5 *2 (-1111 *6)) (-4 *6 (-888 *5 *3 *4)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *5 (-261)) (-5 *1 (-854 *3 *4 *5 *6)))) (-2845 (*1 *2 *2 *2) (-12 (-4 *3 (-738)) (-4 *4 (-781)) (-4 *5 (-261)) (-5 *1 (-854 *3 *4 *5 *2)) (-4 *2 (-888 *5 *3 *4)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-599 (-1111 *7))) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)) (-5 *2 (-1111 *7)) (-5 *1 (-854 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5)))) (-3282 (*1 *2 *2 *2) (-12 (-5 *2 (-1111 *6)) (-4 *6 (-888 *5 *3 *4)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *5 (-261)) (-5 *1 (-854 *3 *4 *5 *6)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *6 *4 *5)) (-5 *1 (-854 *4 *5 *6 *2)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)))) (-3282 (*1 *2 *2 *2) (-12 (-4 *3 (-738)) (-4 *4 (-781)) (-4 *5 (-261)) (-5 *1 (-854 *3 *4 *5 *2)) (-4 *2 (-888 *5 *3 *4))))) +((-2858 (((-843 (-499)) (-911)) 38 T ELT) (((-843 (-499)) (-599 (-499))) 34 T ELT)) (-2846 (((-843 (-499)) (-599 (-499))) 66 T ELT) (((-843 (-499)) (-857)) 67 T ELT)) (-2857 (((-843 (-499))) 39 T ELT)) (-2855 (((-843 (-499))) 53 T ELT) (((-843 (-499)) (-599 (-499))) 52 T ELT)) (-2854 (((-843 (-499))) 51 T ELT) (((-843 (-499)) (-599 (-499))) 50 T ELT)) (-2853 (((-843 (-499))) 49 T ELT) (((-843 (-499)) (-599 (-499))) 48 T ELT)) (-2852 (((-843 (-499))) 47 T ELT) (((-843 (-499)) (-599 (-499))) 46 T ELT)) (-2851 (((-843 (-499))) 45 T ELT) (((-843 (-499)) (-599 (-499))) 44 T ELT)) (-2856 (((-843 (-499))) 55 T ELT) (((-843 (-499)) (-599 (-499))) 54 T ELT)) (-2850 (((-843 (-499)) (-599 (-499))) 71 T ELT) (((-843 (-499)) (-857)) 73 T ELT)) (-2849 (((-843 (-499)) (-599 (-499))) 68 T ELT) (((-843 (-499)) (-857)) 69 T ELT)) (-2847 (((-843 (-499)) (-599 (-499))) 64 T ELT) (((-843 (-499)) (-857)) 65 T ELT)) (-2848 (((-843 (-499)) (-599 (-857))) 57 T ELT))) +(((-855) (-10 -7 (-15 -2846 ((-843 (-499)) (-857))) (-15 -2846 ((-843 (-499)) (-599 (-499)))) (-15 -2847 ((-843 (-499)) (-857))) (-15 -2847 ((-843 (-499)) (-599 (-499)))) (-15 -2848 ((-843 (-499)) (-599 (-857)))) (-15 -2849 ((-843 (-499)) (-857))) (-15 -2849 ((-843 (-499)) (-599 (-499)))) (-15 -2850 ((-843 (-499)) (-857))) (-15 -2850 ((-843 (-499)) (-599 (-499)))) (-15 -2851 ((-843 (-499)) (-599 (-499)))) (-15 -2851 ((-843 (-499)))) (-15 -2852 ((-843 (-499)) (-599 (-499)))) (-15 -2852 ((-843 (-499)))) (-15 -2853 ((-843 (-499)) (-599 (-499)))) (-15 -2853 ((-843 (-499)))) (-15 -2854 ((-843 (-499)) (-599 (-499)))) (-15 -2854 ((-843 (-499)))) (-15 -2855 ((-843 (-499)) (-599 (-499)))) (-15 -2855 ((-843 (-499)))) (-15 -2856 ((-843 (-499)) (-599 (-499)))) (-15 -2856 ((-843 (-499)))) (-15 -2857 ((-843 (-499)))) (-15 -2858 ((-843 (-499)) (-599 (-499)))) (-15 -2858 ((-843 (-499)) (-911))))) (T -855)) +((-2858 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2857 (*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2856 (*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2856 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2855 (*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2854 (*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2854 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2853 (*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2853 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2852 (*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2851 (*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2851 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-599 (-857))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2846 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) (-2846 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-843 (-499))) (-5 *1 (-855))))) +((-2860 (((-599 (-884 |#1|)) (-599 (-884 |#1|)) (-599 (-1117))) 14 T ELT)) (-2859 (((-599 (-884 |#1|)) (-599 (-884 |#1|)) (-599 (-1117))) 13 T ELT))) +(((-856 |#1|) (-10 -7 (-15 -2859 ((-599 (-884 |#1|)) (-599 (-884 |#1|)) (-599 (-1117)))) (-15 -2860 ((-599 (-884 |#1|)) (-599 (-884 |#1|)) (-599 (-1117))))) (-406)) (T -856)) +((-2860 (*1 *2 *2 *3) (-12 (-5 *2 (-599 (-884 *4))) (-5 *3 (-599 (-1117))) (-4 *4 (-406)) (-5 *1 (-856 *4)))) (-2859 (*1 *2 *2 *3) (-12 (-5 *2 (-599 (-884 *4))) (-5 *3 (-599 (-1117))) (-4 *4 (-406)) (-5 *1 (-856 *4))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ "failed") $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3282 (($ $ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2785 (($) NIL T CONST)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-714)) NIL T ELT) (($ $ (-857)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-857) (-13 (-739) (-684) (-10 -8 (-15 -3282 ($ $ $)) (-6 (-4147 "*"))))) (T -857)) +((-3282 (*1 *1 *1 *1) (-5 *1 (-857)))) +((-714) (|%ilt| 0 |#1|)) +((-4096 (((-268 |#1|) (-431)) 16 T ELT))) +(((-858 |#1|) (-10 -7 (-15 -4096 ((-268 |#1|) (-431)))) (-510)) (T -858)) +((-4096 (*1 *2 *3) (-12 (-5 *3 (-431)) (-5 *2 (-268 *4)) (-5 *1 (-858 *4)) (-4 *4 (-510))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-859) (-113)) (T -859)) +((-2862 (*1 *2 *3) (-12 (-4 *1 (-859)) (-5 *2 (-2 (|:| -4104 (-599 *1)) (|:| -2527 *1))) (-5 *3 (-599 *1)))) (-2861 (*1 *2 *3 *1) (-12 (-4 *1 (-859)) (-5 *2 (-649 (-599 *1))) (-5 *3 (-599 *1))))) +(-13 (-406) (-10 -8 (-15 -2862 ((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $))) (-15 -2861 ((-649 (-599 $)) (-599 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-244) . T) ((-406) . T) ((-510) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-598 $) . T) ((-675 $) . T) ((-684) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-3228 (((-1111 |#2|) (-599 |#2|) (-599 |#2|)) 17 T ELT) (((-1176 |#1| |#2|) (-1176 |#1| |#2|) (-599 |#2|) (-599 |#2|)) 13 T ELT))) +(((-860 |#1| |#2|) (-10 -7 (-15 -3228 ((-1176 |#1| |#2|) (-1176 |#1| |#2|) (-599 |#2|) (-599 |#2|))) (-15 -3228 ((-1111 |#2|) (-599 |#2|) (-599 |#2|)))) (-1117) (-318)) (T -860)) +((-3228 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *5)) (-4 *5 (-318)) (-5 *2 (-1111 *5)) (-5 *1 (-860 *4 *5)) (-14 *4 (-1117)))) (-3228 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1176 *4 *5)) (-5 *3 (-599 *5)) (-14 *4 (-1117)) (-4 *5 (-318)) (-5 *1 (-860 *4 *5))))) +((-2863 ((|#2| (-599 |#1|) (-599 |#1|)) 28 T ELT))) +(((-861 |#1| |#2|) (-10 -7 (-15 -2863 (|#2| (-599 |#1|) (-599 |#1|)))) (-318) (-1183 |#1|)) (T -861)) +((-2863 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *4)) (-4 *4 (-318)) (-4 *2 (-1183 *4)) (-5 *1 (-861 *4 *2))))) +((-2865 (((-499) (-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-1099)) 175 T ELT)) (-2884 ((|#4| |#4|) 194 T ELT)) (-2869 (((-599 (-361 (-884 |#1|))) (-599 (-1117))) 146 T ELT)) (-2883 (((-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))) (-647 |#4|) (-599 (-361 (-884 |#1|))) (-599 (-599 |#4|)) (-714) (-714) (-499)) 88 T ELT)) (-2873 (((-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|)))))) (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|)))))) (-599 |#4|)) 69 T ELT)) (-2882 (((-647 |#4|) (-647 |#4|) (-599 |#4|)) 65 T ELT)) (-2866 (((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-1099)) 187 T ELT)) (-2864 (((-499) (-647 |#4|) (-857) (-1099)) 167 T ELT) (((-499) (-647 |#4|) (-599 (-1117)) (-857) (-1099)) 166 T ELT) (((-499) (-647 |#4|) (-599 |#4|) (-857) (-1099)) 165 T ELT) (((-499) (-647 |#4|) (-1099)) 154 T ELT) (((-499) (-647 |#4|) (-599 (-1117)) (-1099)) 153 T ELT) (((-499) (-647 |#4|) (-599 |#4|) (-1099)) 152 T ELT) (((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|) (-857)) 151 T ELT) (((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|) (-599 (-1117)) (-857)) 150 T ELT) (((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|) (-599 |#4|) (-857)) 149 T ELT) (((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|)) 148 T ELT) (((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|) (-599 (-1117))) 147 T ELT) (((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|) (-599 |#4|)) 143 T ELT)) (-2870 ((|#4| (-884 |#1|)) 80 T ELT)) (-2880 (((-85) (-599 |#4|) (-599 (-599 |#4|))) 191 T ELT)) (-2879 (((-599 (-599 (-499))) (-499) (-499)) 161 T ELT)) (-2878 (((-599 (-599 |#4|)) (-599 (-599 |#4|))) 106 T ELT)) (-2877 (((-714) (-599 (-2 (|:| -3231 (-714)) (|:| |eqns| (-599 (-2 (|:| |det| |#4|) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (|:| |fgb| (-599 |#4|))))) 100 T ELT)) (-2876 (((-714) (-599 (-2 (|:| -3231 (-714)) (|:| |eqns| (-599 (-2 (|:| |det| |#4|) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (|:| |fgb| (-599 |#4|))))) 99 T ELT)) (-2885 (((-85) (-599 (-884 |#1|))) 19 T ELT) (((-85) (-599 |#4|)) 15 T ELT)) (-2871 (((-2 (|:| |sysok| (-85)) (|:| |z0| (-599 |#4|)) (|:| |n0| (-599 |#4|))) (-599 |#4|) (-599 |#4|)) 84 T ELT)) (-2875 (((-599 |#4|) |#4|) 57 T ELT)) (-2868 (((-599 (-361 (-884 |#1|))) (-599 |#4|)) 142 T ELT) (((-647 (-361 (-884 |#1|))) (-647 |#4|)) 66 T ELT) (((-361 (-884 |#1|)) |#4|) 139 T ELT)) (-2867 (((-2 (|:| |rgl| (-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|)))))))))) (|:| |rgsz| (-499))) (-647 |#4|) (-599 (-361 (-884 |#1|))) (-714) (-1099) (-499)) 112 T ELT)) (-2872 (((-599 (-2 (|:| -3231 (-714)) (|:| |eqns| (-599 (-2 (|:| |det| |#4|) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (|:| |fgb| (-599 |#4|)))) (-647 |#4|) (-714)) 98 T ELT)) (-2881 (((-599 (-2 (|:| |det| |#4|) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499))))) (-647 |#4|) (-714)) 121 T ELT)) (-2874 (((-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|)))))) (-2 (|:| -1673 (-647 (-361 (-884 |#1|)))) (|:| |vec| (-599 (-361 (-884 |#1|)))) (|:| -3231 (-714)) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499))))) 56 T ELT))) +(((-862 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2864 ((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|) (-599 |#4|))) (-15 -2864 ((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|) (-599 (-1117)))) (-15 -2864 ((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|))) (-15 -2864 ((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|) (-599 |#4|) (-857))) (-15 -2864 ((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|) (-599 (-1117)) (-857))) (-15 -2864 ((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-647 |#4|) (-857))) (-15 -2864 ((-499) (-647 |#4|) (-599 |#4|) (-1099))) (-15 -2864 ((-499) (-647 |#4|) (-599 (-1117)) (-1099))) (-15 -2864 ((-499) (-647 |#4|) (-1099))) (-15 -2864 ((-499) (-647 |#4|) (-599 |#4|) (-857) (-1099))) (-15 -2864 ((-499) (-647 |#4|) (-599 (-1117)) (-857) (-1099))) (-15 -2864 ((-499) (-647 |#4|) (-857) (-1099))) (-15 -2865 ((-499) (-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-1099))) (-15 -2866 ((-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|))))))))) (-1099))) (-15 -2867 ((-2 (|:| |rgl| (-599 (-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|)))))))))) (|:| |rgsz| (-499))) (-647 |#4|) (-599 (-361 (-884 |#1|))) (-714) (-1099) (-499))) (-15 -2868 ((-361 (-884 |#1|)) |#4|)) (-15 -2868 ((-647 (-361 (-884 |#1|))) (-647 |#4|))) (-15 -2868 ((-599 (-361 (-884 |#1|))) (-599 |#4|))) (-15 -2869 ((-599 (-361 (-884 |#1|))) (-599 (-1117)))) (-15 -2870 (|#4| (-884 |#1|))) (-15 -2871 ((-2 (|:| |sysok| (-85)) (|:| |z0| (-599 |#4|)) (|:| |n0| (-599 |#4|))) (-599 |#4|) (-599 |#4|))) (-15 -2872 ((-599 (-2 (|:| -3231 (-714)) (|:| |eqns| (-599 (-2 (|:| |det| |#4|) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (|:| |fgb| (-599 |#4|)))) (-647 |#4|) (-714))) (-15 -2873 ((-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|)))))) (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|)))))) (-599 |#4|))) (-15 -2874 ((-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|)))))) (-2 (|:| -1673 (-647 (-361 (-884 |#1|)))) (|:| |vec| (-599 (-361 (-884 |#1|)))) (|:| -3231 (-714)) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (-15 -2875 ((-599 |#4|) |#4|)) (-15 -2876 ((-714) (-599 (-2 (|:| -3231 (-714)) (|:| |eqns| (-599 (-2 (|:| |det| |#4|) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (|:| |fgb| (-599 |#4|)))))) (-15 -2877 ((-714) (-599 (-2 (|:| -3231 (-714)) (|:| |eqns| (-599 (-2 (|:| |det| |#4|) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (|:| |fgb| (-599 |#4|)))))) (-15 -2878 ((-599 (-599 |#4|)) (-599 (-599 |#4|)))) (-15 -2879 ((-599 (-599 (-499))) (-499) (-499))) (-15 -2880 ((-85) (-599 |#4|) (-599 (-599 |#4|)))) (-15 -2881 ((-599 (-2 (|:| |det| |#4|) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499))))) (-647 |#4|) (-714))) (-15 -2882 ((-647 |#4|) (-647 |#4|) (-599 |#4|))) (-15 -2883 ((-2 (|:| |eqzro| (-599 |#4|)) (|:| |neqzro| (-599 |#4|)) (|:| |wcond| (-599 (-884 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 |#1|)))) (|:| -2113 (-599 (-1207 (-361 (-884 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))) (-647 |#4|) (-599 (-361 (-884 |#1|))) (-599 (-599 |#4|)) (-714) (-714) (-499))) (-15 -2884 (|#4| |#4|)) (-15 -2885 ((-85) (-599 |#4|))) (-15 -2885 ((-85) (-599 (-884 |#1|))))) (-13 (-261) (-120)) (-13 (-781) (-569 (-1117))) (-738) (-888 |#1| |#3| |#2|)) (T -862)) +((-2885 (*1 *2 *3) (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-85)) (-5 *1 (-862 *4 *5 *6 *7)) (-4 *7 (-888 *4 *6 *5)))) (-2885 (*1 *2 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-85)) (-5 *1 (-862 *4 *5 *6 *7)))) (-2884 (*1 *2 *2) (-12 (-4 *3 (-13 (-261) (-120))) (-4 *4 (-13 (-781) (-569 (-1117)))) (-4 *5 (-738)) (-5 *1 (-862 *3 *4 *5 *2)) (-4 *2 (-888 *3 *5 *4)))) (-2883 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499))))) (-5 *4 (-647 *12)) (-5 *5 (-599 (-361 (-884 *9)))) (-5 *6 (-599 (-599 *12))) (-5 *7 (-714)) (-5 *8 (-499)) (-4 *9 (-13 (-261) (-120))) (-4 *12 (-888 *9 *11 *10)) (-4 *10 (-13 (-781) (-569 (-1117)))) (-4 *11 (-738)) (-5 *2 (-2 (|:| |eqzro| (-599 *12)) (|:| |neqzro| (-599 *12)) (|:| |wcond| (-599 (-884 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 *9)))) (|:| -2113 (-599 (-1207 (-361 (-884 *9))))))))) (-5 *1 (-862 *9 *10 *11 *12)))) (-2882 (*1 *2 *2 *3) (-12 (-5 *2 (-647 *7)) (-5 *3 (-599 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *1 (-862 *4 *5 *6 *7)))) (-2881 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *8)) (-5 *4 (-714)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) (-5 *2 (-599 (-2 (|:| |det| *8) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (-5 *1 (-862 *5 *6 *7 *8)))) (-2880 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-599 *8))) (-5 *3 (-599 *8)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) (-5 *2 (-85)) (-5 *1 (-862 *5 *6 *7 *8)))) (-2879 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-599 (-599 (-499)))) (-5 *1 (-862 *4 *5 *6 *7)) (-5 *3 (-499)) (-4 *7 (-888 *4 *6 *5)))) (-2878 (*1 *2 *2) (-12 (-5 *2 (-599 (-599 *6))) (-4 *6 (-888 *3 *5 *4)) (-4 *3 (-13 (-261) (-120))) (-4 *4 (-13 (-781) (-569 (-1117)))) (-4 *5 (-738)) (-5 *1 (-862 *3 *4 *5 *6)))) (-2877 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| -3231 (-714)) (|:| |eqns| (-599 (-2 (|:| |det| *7) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (|:| |fgb| (-599 *7))))) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-714)) (-5 *1 (-862 *4 *5 *6 *7)))) (-2876 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| -3231 (-714)) (|:| |eqns| (-599 (-2 (|:| |det| *7) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (|:| |fgb| (-599 *7))))) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-714)) (-5 *1 (-862 *4 *5 *6 *7)))) (-2875 (*1 *2 *3) (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-599 *3)) (-5 *1 (-862 *4 *5 *6 *3)) (-4 *3 (-888 *4 *6 *5)))) (-2874 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1673 (-647 (-361 (-884 *4)))) (|:| |vec| (-599 (-361 (-884 *4)))) (|:| -3231 (-714)) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499))))) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-2 (|:| |partsol| (-1207 (-361 (-884 *4)))) (|:| -2113 (-599 (-1207 (-361 (-884 *4))))))) (-5 *1 (-862 *4 *5 *6 *7)) (-4 *7 (-888 *4 *6 *5)))) (-2873 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1207 (-361 (-884 *4)))) (|:| -2113 (-599 (-1207 (-361 (-884 *4))))))) (-5 *3 (-599 *7)) (-4 *4 (-13 (-261) (-120))) (-4 *7 (-888 *4 *6 *5)) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *1 (-862 *4 *5 *6 *7)))) (-2872 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *8)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) (-5 *2 (-599 (-2 (|:| -3231 (-714)) (|:| |eqns| (-599 (-2 (|:| |det| *8) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499)))))) (|:| |fgb| (-599 *8))))) (-5 *1 (-862 *5 *6 *7 *8)) (-5 *4 (-714)))) (-2871 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-4 *7 (-888 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-599 *7)) (|:| |n0| (-599 *7)))) (-5 *1 (-862 *4 *5 *6 *7)) (-5 *3 (-599 *7)))) (-2870 (*1 *2 *3) (-12 (-5 *3 (-884 *4)) (-4 *4 (-13 (-261) (-120))) (-4 *2 (-888 *4 *6 *5)) (-5 *1 (-862 *4 *5 *6 *2)) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)))) (-2869 (*1 *2 *3) (-12 (-5 *3 (-599 (-1117))) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-599 (-361 (-884 *4)))) (-5 *1 (-862 *4 *5 *6 *7)) (-4 *7 (-888 *4 *6 *5)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-599 (-361 (-884 *4)))) (-5 *1 (-862 *4 *5 *6 *7)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-647 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-647 (-361 (-884 *4)))) (-5 *1 (-862 *4 *5 *6 *7)))) (-2868 (*1 *2 *3) (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-361 (-884 *4))) (-5 *1 (-862 *4 *5 *6 *3)) (-4 *3 (-888 *4 *6 *5)))) (-2867 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-647 *11)) (-5 *4 (-599 (-361 (-884 *8)))) (-5 *5 (-714)) (-5 *6 (-1099)) (-4 *8 (-13 (-261) (-120))) (-4 *11 (-888 *8 *10 *9)) (-4 *9 (-13 (-781) (-569 (-1117)))) (-4 *10 (-738)) (-5 *2 (-2 (|:| |rgl| (-599 (-2 (|:| |eqzro| (-599 *11)) (|:| |neqzro| (-599 *11)) (|:| |wcond| (-599 (-884 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 *8)))) (|:| -2113 (-599 (-1207 (-361 (-884 *8)))))))))) (|:| |rgsz| (-499)))) (-5 *1 (-862 *8 *9 *10 *11)) (-5 *7 (-499)))) (-2866 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-599 (-2 (|:| |eqzro| (-599 *7)) (|:| |neqzro| (-599 *7)) (|:| |wcond| (-599 (-884 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 *4)))) (|:| -2113 (-599 (-1207 (-361 (-884 *4)))))))))) (-5 *1 (-862 *4 *5 *6 *7)) (-4 *7 (-888 *4 *6 *5)))) (-2865 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-2 (|:| |eqzro| (-599 *8)) (|:| |neqzro| (-599 *8)) (|:| |wcond| (-599 (-884 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 *5)))) (|:| -2113 (-599 (-1207 (-361 (-884 *5)))))))))) (-5 *4 (-1099)) (-4 *5 (-13 (-261) (-120))) (-4 *8 (-888 *5 *7 *6)) (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) (-5 *2 (-499)) (-5 *1 (-862 *5 *6 *7 *8)))) (-2864 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-647 *9)) (-5 *4 (-857)) (-5 *5 (-1099)) (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-261) (-120))) (-4 *7 (-13 (-781) (-569 (-1117)))) (-4 *8 (-738)) (-5 *2 (-499)) (-5 *1 (-862 *6 *7 *8 *9)))) (-2864 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-647 *10)) (-5 *4 (-599 (-1117))) (-5 *5 (-857)) (-5 *6 (-1099)) (-4 *10 (-888 *7 *9 *8)) (-4 *7 (-13 (-261) (-120))) (-4 *8 (-13 (-781) (-569 (-1117)))) (-4 *9 (-738)) (-5 *2 (-499)) (-5 *1 (-862 *7 *8 *9 *10)))) (-2864 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-647 *10)) (-5 *4 (-599 *10)) (-5 *5 (-857)) (-5 *6 (-1099)) (-4 *10 (-888 *7 *9 *8)) (-4 *7 (-13 (-261) (-120))) (-4 *8 (-13 (-781) (-569 (-1117)))) (-4 *9 (-738)) (-5 *2 (-499)) (-5 *1 (-862 *7 *8 *9 *10)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *8)) (-5 *4 (-1099)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) (-5 *2 (-499)) (-5 *1 (-862 *5 *6 *7 *8)))) (-2864 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-647 *9)) (-5 *4 (-599 (-1117))) (-5 *5 (-1099)) (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-261) (-120))) (-4 *7 (-13 (-781) (-569 (-1117)))) (-4 *8 (-738)) (-5 *2 (-499)) (-5 *1 (-862 *6 *7 *8 *9)))) (-2864 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-647 *9)) (-5 *4 (-599 *9)) (-5 *5 (-1099)) (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-261) (-120))) (-4 *7 (-13 (-781) (-569 (-1117)))) (-4 *8 (-738)) (-5 *2 (-499)) (-5 *1 (-862 *6 *7 *8 *9)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *8)) (-5 *4 (-857)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) (-5 *2 (-599 (-2 (|:| |eqzro| (-599 *8)) (|:| |neqzro| (-599 *8)) (|:| |wcond| (-599 (-884 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 *5)))) (|:| -2113 (-599 (-1207 (-361 (-884 *5)))))))))) (-5 *1 (-862 *5 *6 *7 *8)))) (-2864 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-647 *9)) (-5 *4 (-599 (-1117))) (-5 *5 (-857)) (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-261) (-120))) (-4 *7 (-13 (-781) (-569 (-1117)))) (-4 *8 (-738)) (-5 *2 (-599 (-2 (|:| |eqzro| (-599 *9)) (|:| |neqzro| (-599 *9)) (|:| |wcond| (-599 (-884 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 *6)))) (|:| -2113 (-599 (-1207 (-361 (-884 *6)))))))))) (-5 *1 (-862 *6 *7 *8 *9)))) (-2864 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-647 *9)) (-5 *5 (-857)) (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-261) (-120))) (-4 *7 (-13 (-781) (-569 (-1117)))) (-4 *8 (-738)) (-5 *2 (-599 (-2 (|:| |eqzro| (-599 *9)) (|:| |neqzro| (-599 *9)) (|:| |wcond| (-599 (-884 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 *6)))) (|:| -2113 (-599 (-1207 (-361 (-884 *6)))))))))) (-5 *1 (-862 *6 *7 *8 *9)) (-5 *4 (-599 *9)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-647 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-599 (-2 (|:| |eqzro| (-599 *7)) (|:| |neqzro| (-599 *7)) (|:| |wcond| (-599 (-884 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 *4)))) (|:| -2113 (-599 (-1207 (-361 (-884 *4)))))))))) (-5 *1 (-862 *4 *5 *6 *7)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *8)) (-5 *4 (-599 (-1117))) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) (-5 *2 (-599 (-2 (|:| |eqzro| (-599 *8)) (|:| |neqzro| (-599 *8)) (|:| |wcond| (-599 (-884 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 *5)))) (|:| -2113 (-599 (-1207 (-361 (-884 *5)))))))))) (-5 *1 (-862 *5 *6 *7 *8)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *8)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) (-5 *2 (-599 (-2 (|:| |eqzro| (-599 *8)) (|:| |neqzro| (-599 *8)) (|:| |wcond| (-599 (-884 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1207 (-361 (-884 *5)))) (|:| -2113 (-599 (-1207 (-361 (-884 *5)))))))))) (-5 *1 (-862 *5 *6 *7 *8)) (-5 *4 (-599 *8))))) +((-4024 (($ $ (-1029 (-179))) 125 T ELT) (($ $ (-1029 (-179)) (-1029 (-179))) 126 T ELT)) (-3017 (((-1029 (-179)) $) 73 T ELT)) (-3018 (((-1029 (-179)) $) 72 T ELT)) (-2909 (((-1029 (-179)) $) 74 T ELT)) (-2890 (((-499) (-499)) 66 T ELT)) (-2894 (((-499) (-499)) 61 T ELT)) (-2892 (((-499) (-499)) 64 T ELT)) (-2888 (((-85) (-85)) 68 T ELT)) (-2891 (((-499)) 65 T ELT)) (-3256 (($ $ (-1029 (-179))) 129 T ELT) (($ $) 130 T ELT)) (-2911 (($ (-1 (-881 (-179)) (-179)) (-1029 (-179))) 148 T ELT) (($ (-1 (-881 (-179)) (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179))) 149 T ELT)) (-2897 (($ (-1 (-179) (-179)) (-1029 (-179))) 156 T ELT) (($ (-1 (-179) (-179))) 160 T ELT)) (-2910 (($ (-1 (-179) (-179)) (-1029 (-179))) 144 T ELT) (($ (-1 (-179) (-179)) (-1029 (-179)) (-1029 (-179))) 145 T ELT) (($ (-599 (-1 (-179) (-179))) (-1029 (-179))) 153 T ELT) (($ (-599 (-1 (-179) (-179))) (-1029 (-179)) (-1029 (-179))) 154 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1029 (-179))) 146 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179))) 147 T ELT) (($ $ (-1029 (-179))) 131 T ELT)) (-2896 (((-85) $) 69 T ELT)) (-2887 (((-499)) 70 T ELT)) (-2895 (((-499)) 59 T ELT)) (-2893 (((-499)) 62 T ELT)) (-3019 (((-599 (-599 (-881 (-179)))) $) 35 T ELT)) (-2886 (((-85) (-85)) 71 T ELT)) (-4096 (((-797) $) 174 T ELT)) (-2889 (((-85)) 67 T ELT))) +(((-863) (-13 (-893) (-10 -8 (-15 -2910 ($ (-1 (-179) (-179)) (-1029 (-179)))) (-15 -2910 ($ (-1 (-179) (-179)) (-1029 (-179)) (-1029 (-179)))) (-15 -2910 ($ (-599 (-1 (-179) (-179))) (-1029 (-179)))) (-15 -2910 ($ (-599 (-1 (-179) (-179))) (-1029 (-179)) (-1029 (-179)))) (-15 -2910 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1029 (-179)))) (-15 -2910 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179)))) (-15 -2911 ($ (-1 (-881 (-179)) (-179)) (-1029 (-179)))) (-15 -2911 ($ (-1 (-881 (-179)) (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179)))) (-15 -2897 ($ (-1 (-179) (-179)) (-1029 (-179)))) (-15 -2897 ($ (-1 (-179) (-179)))) (-15 -2910 ($ $ (-1029 (-179)))) (-15 -2896 ((-85) $)) (-15 -4024 ($ $ (-1029 (-179)))) (-15 -4024 ($ $ (-1029 (-179)) (-1029 (-179)))) (-15 -3256 ($ $ (-1029 (-179)))) (-15 -3256 ($ $)) (-15 -2909 ((-1029 (-179)) $)) (-15 -2895 ((-499))) (-15 -2894 ((-499) (-499))) (-15 -2893 ((-499))) (-15 -2892 ((-499) (-499))) (-15 -2891 ((-499))) (-15 -2890 ((-499) (-499))) (-15 -2889 ((-85))) (-15 -2888 ((-85) (-85))) (-15 -2887 ((-499))) (-15 -2886 ((-85) (-85)))))) (T -863)) +((-2910 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) (-2910 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) (-2910 (*1 *1 *2 *3) (-12 (-5 *2 (-599 (-1 (-179) (-179)))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) (-2910 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-599 (-1 (-179) (-179)))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) (-2910 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) (-2910 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-881 (-179)) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) (-2911 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-881 (-179)) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) (-2897 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) (-2897 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-863)))) (-2910 (*1 *1 *1 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-863)))) (-2896 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-863)))) (-4024 (*1 *1 *1 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-863)))) (-4024 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-863)))) (-3256 (*1 *1 *1 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-863)))) (-3256 (*1 *1 *1) (-5 *1 (-863))) (-2909 (*1 *2 *1) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-863)))) (-2895 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863)))) (-2894 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863)))) (-2893 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863)))) (-2892 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863)))) (-2891 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863)))) (-2890 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863)))) (-2889 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-863)))) (-2888 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-863)))) (-2887 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863)))) (-2886 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-863))))) +((-2897 (((-863) |#1| (-1117)) 17 T ELT) (((-863) |#1| (-1117) (-1029 (-179))) 21 T ELT)) (-2910 (((-863) |#1| |#1| (-1117) (-1029 (-179))) 19 T ELT) (((-863) |#1| (-1117) (-1029 (-179))) 15 T ELT))) +(((-864 |#1|) (-10 -7 (-15 -2910 ((-863) |#1| (-1117) (-1029 (-179)))) (-15 -2910 ((-863) |#1| |#1| (-1117) (-1029 (-179)))) (-15 -2897 ((-863) |#1| (-1117) (-1029 (-179)))) (-15 -2897 ((-863) |#1| (-1117)))) (-569 (-488))) (T -864)) +((-2897 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-5 *2 (-863)) (-5 *1 (-864 *3)) (-4 *3 (-569 (-488))))) (-2897 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117)) (-5 *5 (-1029 (-179))) (-5 *2 (-863)) (-5 *1 (-864 *3)) (-4 *3 (-569 (-488))))) (-2910 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1117)) (-5 *5 (-1029 (-179))) (-5 *2 (-863)) (-5 *1 (-864 *3)) (-4 *3 (-569 (-488))))) (-2910 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117)) (-5 *5 (-1029 (-179))) (-5 *2 (-863)) (-5 *1 (-864 *3)) (-4 *3 (-569 (-488)))))) +((-4024 (($ $ (-1029 (-179)) (-1029 (-179)) (-1029 (-179))) 123 T ELT)) (-3016 (((-1029 (-179)) $) 64 T ELT)) (-3017 (((-1029 (-179)) $) 63 T ELT)) (-3018 (((-1029 (-179)) $) 62 T ELT)) (-2908 (((-599 (-599 (-179))) $) 69 T ELT)) (-2909 (((-1029 (-179)) $) 65 T ELT)) (-2902 (((-499) (-499)) 57 T ELT)) (-2906 (((-499) (-499)) 52 T ELT)) (-2904 (((-499) (-499)) 55 T ELT)) (-2900 (((-85) (-85)) 59 T ELT)) (-2903 (((-499)) 56 T ELT)) (-3256 (($ $ (-1029 (-179))) 126 T ELT) (($ $) 127 T ELT)) (-2911 (($ (-1 (-881 (-179)) (-179)) (-1029 (-179))) 133 T ELT) (($ (-1 (-881 (-179)) (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179))) 134 T ELT)) (-2910 (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1029 (-179))) 140 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179))) 141 T ELT) (($ $ (-1029 (-179))) 129 T ELT)) (-2899 (((-499)) 60 T ELT)) (-2907 (((-499)) 50 T ELT)) (-2905 (((-499)) 53 T ELT)) (-3019 (((-599 (-599 (-881 (-179)))) $) 157 T ELT)) (-2898 (((-85) (-85)) 61 T ELT)) (-4096 (((-797) $) 155 T ELT)) (-2901 (((-85)) 58 T ELT))) +(((-865) (-13 (-914) (-10 -8 (-15 -2911 ($ (-1 (-881 (-179)) (-179)) (-1029 (-179)))) (-15 -2911 ($ (-1 (-881 (-179)) (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179)))) (-15 -2910 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1029 (-179)))) (-15 -2910 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179)) (-1029 (-179)))) (-15 -2910 ($ $ (-1029 (-179)))) (-15 -4024 ($ $ (-1029 (-179)) (-1029 (-179)) (-1029 (-179)))) (-15 -3256 ($ $ (-1029 (-179)))) (-15 -3256 ($ $)) (-15 -2909 ((-1029 (-179)) $)) (-15 -2908 ((-599 (-599 (-179))) $)) (-15 -2907 ((-499))) (-15 -2906 ((-499) (-499))) (-15 -2905 ((-499))) (-15 -2904 ((-499) (-499))) (-15 -2903 ((-499))) (-15 -2902 ((-499) (-499))) (-15 -2901 ((-85))) (-15 -2900 ((-85) (-85))) (-15 -2899 ((-499))) (-15 -2898 ((-85) (-85)))))) (T -865)) +((-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-881 (-179)) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-865)))) (-2911 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-881 (-179)) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-865)))) (-2910 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-865)))) (-2910 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-865)))) (-2910 (*1 *1 *1 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-865)))) (-4024 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-865)))) (-3256 (*1 *1 *1 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-865)))) (-3256 (*1 *1 *1) (-5 *1 (-865))) (-2909 (*1 *2 *1) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-865)))) (-2908 (*1 *2 *1) (-12 (-5 *2 (-599 (-599 (-179)))) (-5 *1 (-865)))) (-2907 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865)))) (-2906 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865)))) (-2905 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865)))) (-2904 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865)))) (-2903 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865)))) (-2902 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865)))) (-2901 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-865)))) (-2900 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-865)))) (-2899 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865)))) (-2898 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-865))))) +((-2912 (((-599 (-1029 (-179))) (-599 (-599 (-881 (-179))))) 34 T ELT))) +(((-866) (-10 -7 (-15 -2912 ((-599 (-1029 (-179))) (-599 (-599 (-881 (-179)))))))) (T -866)) +((-2912 (*1 *2 *3) (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *2 (-599 (-1029 (-179)))) (-5 *1 (-866))))) +((-2914 (((-268 (-499)) (-1117)) 16 T ELT)) (-2915 (((-268 (-499)) (-1117)) 14 T ELT)) (-4102 (((-268 (-499)) (-1117)) 12 T ELT)) (-2913 (((-268 (-499)) (-1117) (-460)) 19 T ELT))) +(((-867) (-10 -7 (-15 -2913 ((-268 (-499)) (-1117) (-460))) (-15 -4102 ((-268 (-499)) (-1117))) (-15 -2914 ((-268 (-499)) (-1117))) (-15 -2915 ((-268 (-499)) (-1117))))) (T -867)) +((-2915 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-268 (-499))) (-5 *1 (-867)))) (-2914 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-268 (-499))) (-5 *1 (-867)))) (-4102 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-268 (-499))) (-5 *1 (-867)))) (-2913 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-460)) (-5 *2 (-268 (-499))) (-5 *1 (-867))))) +((-2914 ((|#2| |#2|) 28 T ELT)) (-2915 ((|#2| |#2|) 29 T ELT)) (-4102 ((|#2| |#2|) 27 T ELT)) (-2913 ((|#2| |#2| (-460)) 26 T ELT))) +(((-868 |#1| |#2|) (-10 -7 (-15 -2913 (|#2| |#2| (-460))) (-15 -4102 (|#2| |#2|)) (-15 -2914 (|#2| |#2|)) (-15 -2915 (|#2| |#2|))) (-1041) (-375 |#1|)) (T -868)) +((-2915 (*1 *2 *2) (-12 (-4 *3 (-1041)) (-5 *1 (-868 *3 *2)) (-4 *2 (-375 *3)))) (-2914 (*1 *2 *2) (-12 (-4 *3 (-1041)) (-5 *1 (-868 *3 *2)) (-4 *2 (-375 *3)))) (-4102 (*1 *2 *2) (-12 (-4 *3 (-1041)) (-5 *1 (-868 *3 *2)) (-4 *2 (-375 *3)))) (-2913 (*1 *2 *2 *3) (-12 (-5 *3 (-460)) (-4 *4 (-1041)) (-5 *1 (-868 *4 *2)) (-4 *2 (-375 *4))))) +((-2917 (((-823 |#1| |#3|) |#2| (-825 |#1|) (-823 |#1| |#3|)) 25 T ELT)) (-2916 (((-1 (-85) |#2|) (-1 (-85) |#3|)) 13 T ELT))) +(((-869 |#1| |#2| |#3|) (-10 -7 (-15 -2916 ((-1 (-85) |#2|) (-1 (-85) |#3|))) (-15 -2917 ((-823 |#1| |#3|) |#2| (-825 |#1|) (-823 |#1| |#3|)))) (-1041) (-821 |#1|) (-13 (-1041) (-978 |#2|))) (T -869)) +((-2917 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *6)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-4 *6 (-13 (-1041) (-978 *3))) (-4 *3 (-821 *5)) (-5 *1 (-869 *5 *3 *6)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1041) (-978 *5))) (-4 *5 (-821 *4)) (-4 *4 (-1041)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-869 *4 *5 *6))))) +((-2917 (((-823 |#1| |#3|) |#3| (-825 |#1|) (-823 |#1| |#3|)) 30 T ELT))) +(((-870 |#1| |#2| |#3|) (-10 -7 (-15 -2917 ((-823 |#1| |#3|) |#3| (-825 |#1|) (-823 |#1| |#3|)))) (-1041) (-13 (-510) (-821 |#1|)) (-13 (-375 |#2|) (-569 (-825 |#1|)) (-821 |#1|) (-978 (-566 $)))) (T -870)) +((-2917 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *3)) (-4 *5 (-1041)) (-4 *3 (-13 (-375 *6) (-569 *4) (-821 *5) (-978 (-566 $)))) (-5 *4 (-825 *5)) (-4 *6 (-13 (-510) (-821 *5))) (-5 *1 (-870 *5 *6 *3))))) +((-2917 (((-823 (-499) |#1|) |#1| (-825 (-499)) (-823 (-499) |#1|)) 13 T ELT))) +(((-871 |#1|) (-10 -7 (-15 -2917 ((-823 (-499) |#1|) |#1| (-825 (-499)) (-823 (-499) |#1|)))) (-498)) (T -871)) +((-2917 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 (-499) *3)) (-5 *4 (-825 (-499))) (-4 *3 (-498)) (-5 *1 (-871 *3))))) +((-2917 (((-823 |#1| |#2|) (-566 |#2|) (-825 |#1|) (-823 |#1| |#2|)) 57 T ELT))) +(((-872 |#1| |#2|) (-10 -7 (-15 -2917 ((-823 |#1| |#2|) (-566 |#2|) (-825 |#1|) (-823 |#1| |#2|)))) (-1041) (-13 (-1041) (-978 (-566 $)) (-569 (-825 |#1|)) (-821 |#1|))) (T -872)) +((-2917 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *6)) (-5 *3 (-566 *6)) (-4 *5 (-1041)) (-4 *6 (-13 (-1041) (-978 (-566 $)) (-569 *4) (-821 *5))) (-5 *4 (-825 *5)) (-5 *1 (-872 *5 *6))))) +((-2917 (((-820 |#1| |#2| |#3|) |#3| (-825 |#1|) (-820 |#1| |#2| |#3|)) 17 T ELT))) +(((-873 |#1| |#2| |#3|) (-10 -7 (-15 -2917 ((-820 |#1| |#2| |#3|) |#3| (-825 |#1|) (-820 |#1| |#2| |#3|)))) (-1041) (-821 |#1|) (-624 |#2|)) (T -873)) +((-2917 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *6 *3)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-4 *6 (-821 *5)) (-4 *3 (-624 *6)) (-5 *1 (-873 *5 *6 *3))))) +((-2917 (((-823 |#1| |#5|) |#5| (-825 |#1|) (-823 |#1| |#5|)) 17 (|has| |#3| (-821 |#1|)) ELT) (((-823 |#1| |#5|) |#5| (-825 |#1|) (-823 |#1| |#5|) (-1 (-823 |#1| |#5|) |#3| (-825 |#1|) (-823 |#1| |#5|))) 16 T ELT))) +(((-874 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2917 ((-823 |#1| |#5|) |#5| (-825 |#1|) (-823 |#1| |#5|) (-1 (-823 |#1| |#5|) |#3| (-825 |#1|) (-823 |#1| |#5|)))) (IF (|has| |#3| (-821 |#1|)) (-15 -2917 ((-823 |#1| |#5|) |#5| (-825 |#1|) (-823 |#1| |#5|))) |%noBranch|)) (-1041) (-738) (-781) (-13 (-989) (-821 |#1|)) (-13 (-888 |#4| |#2| |#3|) (-569 (-825 |#1|)))) (T -874)) +((-2917 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *3)) (-4 *5 (-1041)) (-4 *3 (-13 (-888 *8 *6 *7) (-569 *4))) (-5 *4 (-825 *5)) (-4 *7 (-821 *5)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-13 (-989) (-821 *5))) (-5 *1 (-874 *5 *6 *7 *8 *3)))) (-2917 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-823 *6 *3) *8 (-825 *6) (-823 *6 *3))) (-4 *8 (-781)) (-5 *2 (-823 *6 *3)) (-5 *4 (-825 *6)) (-4 *6 (-1041)) (-4 *3 (-13 (-888 *9 *7 *8) (-569 *4))) (-4 *7 (-738)) (-4 *9 (-13 (-989) (-821 *6))) (-5 *1 (-874 *6 *7 *8 *9 *3))))) +((-3347 (((-268 (-499)) (-1117) (-599 (-1 (-85) |#1|))) 18 T ELT) (((-268 (-499)) (-1117) (-1 (-85) |#1|)) 15 T ELT))) +(((-875 |#1|) (-10 -7 (-15 -3347 ((-268 (-499)) (-1117) (-1 (-85) |#1|))) (-15 -3347 ((-268 (-499)) (-1117) (-599 (-1 (-85) |#1|))))) (-1157)) (T -875)) +((-3347 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-599 (-1 (-85) *5))) (-4 *5 (-1157)) (-5 *2 (-268 (-499))) (-5 *1 (-875 *5)))) (-3347 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1157)) (-5 *2 (-268 (-499))) (-5 *1 (-875 *5))))) +((-3347 ((|#2| |#2| (-599 (-1 (-85) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-85) |#3|)) 13 T ELT))) +(((-876 |#1| |#2| |#3|) (-10 -7 (-15 -3347 (|#2| |#2| (-1 (-85) |#3|))) (-15 -3347 (|#2| |#2| (-599 (-1 (-85) |#3|))))) (-1041) (-375 |#1|) (-1157)) (T -876)) +((-3347 (*1 *2 *2 *3) (-12 (-5 *3 (-599 (-1 (-85) *5))) (-4 *5 (-1157)) (-4 *4 (-1041)) (-5 *1 (-876 *4 *2 *5)) (-4 *2 (-375 *4)))) (-3347 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1157)) (-4 *4 (-1041)) (-5 *1 (-876 *4 *2 *5)) (-4 *2 (-375 *4))))) +((-2917 (((-823 |#1| |#3|) |#3| (-825 |#1|) (-823 |#1| |#3|)) 25 T ELT))) +(((-877 |#1| |#2| |#3|) (-10 -7 (-15 -2917 ((-823 |#1| |#3|) |#3| (-825 |#1|) (-823 |#1| |#3|)))) (-1041) (-13 (-510) (-821 |#1|) (-569 (-825 |#1|))) (-931 |#2|)) (T -877)) +((-2917 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *3)) (-4 *5 (-1041)) (-4 *3 (-931 *6)) (-4 *6 (-13 (-510) (-821 *5) (-569 *4))) (-5 *4 (-825 *5)) (-5 *1 (-877 *5 *6 *3))))) +((-2917 (((-823 |#1| (-1117)) (-1117) (-825 |#1|) (-823 |#1| (-1117))) 18 T ELT))) +(((-878 |#1|) (-10 -7 (-15 -2917 ((-823 |#1| (-1117)) (-1117) (-825 |#1|) (-823 |#1| (-1117))))) (-1041)) (T -878)) +((-2917 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 (-1117))) (-5 *3 (-1117)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-5 *1 (-878 *5))))) +((-2918 (((-823 |#1| |#3|) (-599 |#3|) (-599 (-825 |#1|)) (-823 |#1| |#3|) (-1 (-823 |#1| |#3|) |#3| (-825 |#1|) (-823 |#1| |#3|))) 34 T ELT)) (-2917 (((-823 |#1| |#3|) (-599 |#3|) (-599 (-825 |#1|)) (-1 |#3| (-599 |#3|)) (-823 |#1| |#3|) (-1 (-823 |#1| |#3|) |#3| (-825 |#1|) (-823 |#1| |#3|))) 33 T ELT))) +(((-879 |#1| |#2| |#3|) (-10 -7 (-15 -2917 ((-823 |#1| |#3|) (-599 |#3|) (-599 (-825 |#1|)) (-1 |#3| (-599 |#3|)) (-823 |#1| |#3|) (-1 (-823 |#1| |#3|) |#3| (-825 |#1|) (-823 |#1| |#3|)))) (-15 -2918 ((-823 |#1| |#3|) (-599 |#3|) (-599 (-825 |#1|)) (-823 |#1| |#3|) (-1 (-823 |#1| |#3|) |#3| (-825 |#1|) (-823 |#1| |#3|))))) (-1041) (-989) (-13 (-989) (-569 (-825 |#1|)) (-978 |#2|))) (T -879)) +((-2918 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 (-825 *6))) (-5 *5 (-1 (-823 *6 *8) *8 (-825 *6) (-823 *6 *8))) (-4 *6 (-1041)) (-4 *8 (-13 (-989) (-569 (-825 *6)) (-978 *7))) (-5 *2 (-823 *6 *8)) (-4 *7 (-989)) (-5 *1 (-879 *6 *7 *8)))) (-2917 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-599 (-825 *7))) (-5 *5 (-1 *9 (-599 *9))) (-5 *6 (-1 (-823 *7 *9) *9 (-825 *7) (-823 *7 *9))) (-4 *7 (-1041)) (-4 *9 (-13 (-989) (-569 (-825 *7)) (-978 *8))) (-5 *2 (-823 *7 *9)) (-5 *3 (-599 *9)) (-4 *8 (-989)) (-5 *1 (-879 *7 *8 *9))))) +((-2926 (((-1111 (-361 (-499))) (-499)) 80 T ELT)) (-2925 (((-1111 (-499)) (-499)) 83 T ELT)) (-3474 (((-1111 (-499)) (-499)) 77 T ELT)) (-2924 (((-499) (-1111 (-499))) 73 T ELT)) (-2923 (((-1111 (-361 (-499))) (-499)) 66 T ELT)) (-2922 (((-1111 (-499)) (-499)) 49 T ELT)) (-2921 (((-1111 (-499)) (-499)) 85 T ELT)) (-2920 (((-1111 (-499)) (-499)) 84 T ELT)) (-2919 (((-1111 (-361 (-499))) (-499)) 68 T ELT))) +(((-880) (-10 -7 (-15 -2919 ((-1111 (-361 (-499))) (-499))) (-15 -2920 ((-1111 (-499)) (-499))) (-15 -2921 ((-1111 (-499)) (-499))) (-15 -2922 ((-1111 (-499)) (-499))) (-15 -2923 ((-1111 (-361 (-499))) (-499))) (-15 -2924 ((-499) (-1111 (-499)))) (-15 -3474 ((-1111 (-499)) (-499))) (-15 -2925 ((-1111 (-499)) (-499))) (-15 -2926 ((-1111 (-361 (-499))) (-499))))) (T -880)) +((-2926 (*1 *2 *3) (-12 (-5 *2 (-1111 (-361 (-499)))) (-5 *1 (-880)) (-5 *3 (-499)))) (-2925 (*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-880)) (-5 *3 (-499)))) (-3474 (*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-880)) (-5 *3 (-499)))) (-2924 (*1 *2 *3) (-12 (-5 *3 (-1111 (-499))) (-5 *2 (-499)) (-5 *1 (-880)))) (-2923 (*1 *2 *3) (-12 (-5 *2 (-1111 (-361 (-499)))) (-5 *1 (-880)) (-5 *3 (-499)))) (-2922 (*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-880)) (-5 *3 (-499)))) (-2921 (*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-880)) (-5 *3 (-499)))) (-2920 (*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-880)) (-5 *3 (-499)))) (-2919 (*1 *2 *3) (-12 (-5 *2 (-1111 (-361 (-499)))) (-5 *1 (-880)) (-5 *3 (-499))))) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3988 (($ (-714)) NIL (|has| |#1| (-23)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| |#1| (-781))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-781)) ELT)) (-3938 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) NIL T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) NIL T ELT) (((-499) |#1| $) NIL (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) NIL (|has| |#1| (-1041)) ELT)) (-3856 (($ (-599 |#1|)) 9 T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3985 (((-647 |#1|) $ $) NIL (|has| |#1| (-989)) ELT)) (-3764 (($ (-714) |#1|) NIL T ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3982 ((|#1| $) NIL (-12 (|has| |#1| (-942)) (|has| |#1| (-989))) ELT)) (-3983 ((|#1| $) NIL (-12 (|has| |#1| (-942)) (|has| |#1| (-989))) ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2300 (($ $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3919 (($ $ (-599 |#1|)) 25 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-499) |#1|) NIL T ELT) ((|#1| $ (-499)) 18 T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-3986 ((|#1| $ $) NIL (|has| |#1| (-989)) ELT)) (-4061 (((-857) $) 13 T ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-3984 (($ $ $) 23 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT) (($ (-599 |#1|)) 14 T ELT)) (-3670 (($ (-599 |#1|)) NIL T ELT)) (-3952 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-599 $)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3987 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3989 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-499) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-684)) ELT) (($ $ |#1|) NIL (|has| |#1| (-684)) ELT)) (-4107 (((-714) $) 11 (|has| $ (-6 -4145)) ELT))) +(((-881 |#1|) (-920 |#1|) (-989)) (T -881)) +NIL +((-2929 (((-435 |#1| |#2|) (-884 |#2|)) 22 T ELT)) (-2932 (((-205 |#1| |#2|) (-884 |#2|)) 35 T ELT)) (-2930 (((-884 |#2|) (-435 |#1| |#2|)) 27 T ELT)) (-2928 (((-205 |#1| |#2|) (-435 |#1| |#2|)) 57 T ELT)) (-2931 (((-884 |#2|) (-205 |#1| |#2|)) 32 T ELT)) (-2927 (((-435 |#1| |#2|) (-205 |#1| |#2|)) 48 T ELT))) +(((-882 |#1| |#2|) (-10 -7 (-15 -2927 ((-435 |#1| |#2|) (-205 |#1| |#2|))) (-15 -2928 ((-205 |#1| |#2|) (-435 |#1| |#2|))) (-15 -2929 ((-435 |#1| |#2|) (-884 |#2|))) (-15 -2930 ((-884 |#2|) (-435 |#1| |#2|))) (-15 -2931 ((-884 |#2|) (-205 |#1| |#2|))) (-15 -2932 ((-205 |#1| |#2|) (-884 |#2|)))) (-599 (-1117)) (-989)) (T -882)) +((-2932 (*1 *2 *3) (-12 (-5 *3 (-884 *5)) (-4 *5 (-989)) (-5 *2 (-205 *4 *5)) (-5 *1 (-882 *4 *5)) (-14 *4 (-599 (-1117))))) (-2931 (*1 *2 *3) (-12 (-5 *3 (-205 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-989)) (-5 *2 (-884 *5)) (-5 *1 (-882 *4 *5)))) (-2930 (*1 *2 *3) (-12 (-5 *3 (-435 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-989)) (-5 *2 (-884 *5)) (-5 *1 (-882 *4 *5)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-884 *5)) (-4 *5 (-989)) (-5 *2 (-435 *4 *5)) (-5 *1 (-882 *4 *5)) (-14 *4 (-599 (-1117))))) (-2928 (*1 *2 *3) (-12 (-5 *3 (-435 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-989)) (-5 *2 (-205 *4 *5)) (-5 *1 (-882 *4 *5)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-205 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-989)) (-5 *2 (-435 *4 *5)) (-5 *1 (-882 *4 *5))))) +((-2933 (((-599 |#2|) |#2| |#2|) 10 T ELT)) (-2936 (((-714) (-599 |#1|)) 47 (|has| |#1| (-780)) ELT)) (-2934 (((-599 |#2|) |#2|) 11 T ELT)) (-2937 (((-714) (-599 |#1|) (-499) (-499)) 52 (|has| |#1| (-780)) ELT)) (-2935 ((|#1| |#2|) 37 (|has| |#1| (-780)) ELT))) +(((-883 |#1| |#2|) (-10 -7 (-15 -2933 ((-599 |#2|) |#2| |#2|)) (-15 -2934 ((-599 |#2|) |#2|)) (IF (|has| |#1| (-780)) (PROGN (-15 -2935 (|#1| |#2|)) (-15 -2936 ((-714) (-599 |#1|))) (-15 -2937 ((-714) (-599 |#1|) (-499) (-499)))) |%noBranch|)) (-318) (-1183 |#1|)) (T -883)) +((-2937 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-599 *5)) (-5 *4 (-499)) (-4 *5 (-780)) (-4 *5 (-318)) (-5 *2 (-714)) (-5 *1 (-883 *5 *6)) (-4 *6 (-1183 *5)))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-599 *4)) (-4 *4 (-780)) (-4 *4 (-318)) (-5 *2 (-714)) (-5 *1 (-883 *4 *5)) (-4 *5 (-1183 *4)))) (-2935 (*1 *2 *3) (-12 (-4 *2 (-318)) (-4 *2 (-780)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1183 *2)))) (-2934 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-599 *3)) (-5 *1 (-883 *4 *3)) (-4 *3 (-1183 *4)))) (-2933 (*1 *2 *3 *3) (-12 (-4 *4 (-318)) (-5 *2 (-599 *3)) (-5 *1 (-883 *4 *3)) (-4 *3 (-1183 *4))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-1117)) $) 16 T ELT)) (-3206 (((-1111 $) $ (-1117)) 21 T ELT) (((-1111 |#1|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-1117))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-1117) #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-1117) $) NIL T ELT)) (-3906 (($ $ $ (-1117)) NIL (|has| |#1| (-146)) ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT) (($ $ (-1117)) NIL (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-848)) ELT)) (-1694 (($ $ |#1| (-484 (-1117)) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-1117) (-821 (-333))) (|has| |#1| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-1117) (-821 (-499))) (|has| |#1| (-821 (-499)))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3207 (($ (-1111 |#1|) (-1117)) NIL T ELT) (($ (-1111 $) (-1117)) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-484 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-1117)) NIL T ELT)) (-2941 (((-484 (-1117)) $) NIL T ELT) (((-714) $ (-1117)) NIL T ELT) (((-599 (-714)) $ (-599 (-1117))) NIL T ELT)) (-1695 (($ (-1 (-484 (-1117)) (-484 (-1117))) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3205 (((-3 (-1117) #1#) $) 19 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-1117)) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3962 (($ $ (-1117)) 29 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-848)) ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-1117) |#1|) NIL T ELT) (($ $ (-599 (-1117)) (-599 |#1|)) NIL T ELT) (($ $ (-1117) $) NIL T ELT) (($ $ (-599 (-1117)) (-599 $)) NIL T ELT)) (-3907 (($ $ (-1117)) NIL (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117)) NIL T ELT)) (-4098 (((-484 (-1117)) $) NIL T ELT) (((-714) $ (-1117)) NIL T ELT) (((-599 (-714)) $ (-599 (-1117))) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-1117) (-569 (-825 (-333)))) (|has| |#1| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-1117) (-569 (-825 (-499)))) (|has| |#1| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-1117) (-569 (-488))) (|has| |#1| (-569 (-488)))) ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT) (($ $ (-1117)) NIL (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) 25 T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1117)) 27 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-484 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-884 |#1|) (-13 (-888 |#1| (-484 (-1117)) (-1117)) (-10 -8 (IF (|has| |#1| (-38 (-361 (-499)))) (-15 -3962 ($ $ (-1117))) |%noBranch|))) (-989)) (T -884)) +((-3962 (*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-884 *3)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989))))) +((-4108 (((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)) 19 T ELT))) +(((-885 |#1| |#2|) (-10 -7 (-15 -4108 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)))) (-989) (-989)) (T -885)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-5 *2 (-884 *6)) (-5 *1 (-885 *5 *6))))) +((-3206 (((-1176 |#1| (-884 |#2|)) (-884 |#2|) (-1204 |#1|)) 18 T ELT))) +(((-886 |#1| |#2|) (-10 -7 (-15 -3206 ((-1176 |#1| (-884 |#2|)) (-884 |#2|) (-1204 |#1|)))) (-1117) (-989)) (T -886)) +((-3206 (*1 *2 *3 *4) (-12 (-5 *4 (-1204 *5)) (-14 *5 (-1117)) (-4 *6 (-989)) (-5 *2 (-1176 *5 (-884 *6))) (-5 *1 (-886 *5 *6)) (-5 *3 (-884 *6))))) +((-2940 (((-714) $) 88 T ELT) (((-714) $ (-599 |#4|)) 93 T ELT)) (-3925 (($ $) 213 T ELT)) (-4121 (((-359 $) $) 205 T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1="failed") (-599 (-1111 $)) (-1111 $)) 141 T ELT)) (-3295 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 (-499) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3294 ((|#2| $) NIL T ELT) (((-361 (-499)) $) NIL T ELT) (((-499) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3906 (($ $ $ |#4|) 95 T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) 131 T ELT) (((-647 |#2|) (-647 $)) 121 T ELT)) (-3643 (($ $) 220 T ELT) (($ $ |#4|) 223 T ELT)) (-2939 (((-599 $) $) 77 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 239 T ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 232 T ELT)) (-2942 (((-599 $) $) 34 T ELT)) (-3014 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-714)) NIL T ELT) (($ $ (-599 |#4|) (-599 (-714))) 71 T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ |#4|) 202 T ELT)) (-2944 (((-3 (-599 $) #1#) $) 52 T ELT)) (-2943 (((-3 (-599 $) #1#) $) 39 T ELT)) (-2945 (((-3 (-2 (|:| |var| |#4|) (|:| -2519 (-714))) #1#) $) 57 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 134 T ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 147 T ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 145 T ELT)) (-3882 (((-359 $) $) 165 T ELT)) (-3918 (($ $ (-599 (-247 $))) 24 T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-599 |#4|) (-599 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-599 |#4|) (-599 $)) NIL T ELT)) (-3907 (($ $ |#4|) 97 T ELT)) (-4122 (((-825 (-333)) $) 253 T ELT) (((-825 (-499)) $) 246 T ELT) (((-488) $) 261 T ELT)) (-2938 ((|#2| $) NIL T ELT) (($ $ |#4|) 215 T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) 184 T ELT)) (-3827 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-714)) 62 T ELT) (($ $ (-599 |#4|) (-599 (-714))) 69 T ELT)) (-2823 (((-649 $) $) 194 T ELT)) (-1297 (((-85) $ $) 226 T ELT))) +(((-887 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2829 ((-1111 |#1|) (-1111 |#1|) (-1111 |#1|))) (-15 -4121 ((-359 |#1|) |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -2823 ((-649 |#1|) |#1|)) (-15 -4122 ((-488) |#1|)) (-15 -4122 ((-825 (-499)) |#1|)) (-15 -4122 ((-825 (-333)) |#1|)) (-15 -2917 ((-823 (-499) |#1|) |#1| (-825 (-499)) (-823 (-499) |#1|))) (-15 -2917 ((-823 (-333) |#1|) |#1| (-825 (-333)) (-823 (-333) |#1|))) (-15 -3882 ((-359 |#1|) |#1|)) (-15 -2827 ((-359 (-1111 |#1|)) (-1111 |#1|))) (-15 -2826 ((-359 (-1111 |#1|)) (-1111 |#1|))) (-15 -2825 ((-3 (-599 (-1111 |#1|)) #1="failed") (-599 (-1111 |#1|)) (-1111 |#1|))) (-15 -2824 ((-3 (-1207 |#1|) #1#) (-647 |#1|))) (-15 -3643 (|#1| |#1| |#4|)) (-15 -2938 (|#1| |#1| |#4|)) (-15 -3907 (|#1| |#1| |#4|)) (-15 -3906 (|#1| |#1| |#1| |#4|)) (-15 -2939 ((-599 |#1|) |#1|)) (-15 -2940 ((-714) |#1| (-599 |#4|))) (-15 -2940 ((-714) |#1|)) (-15 -2945 ((-3 (-2 (|:| |var| |#4|) (|:| -2519 (-714))) #1#) |#1|)) (-15 -2944 ((-3 (-599 |#1|) #1#) |#1|)) (-15 -2943 ((-3 (-599 |#1|) #1#) |#1|)) (-15 -3014 (|#1| |#1| (-599 |#4|) (-599 (-714)))) (-15 -3014 (|#1| |#1| |#4| (-714))) (-15 -3913 ((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1| |#4|)) (-15 -2942 ((-599 |#1|) |#1|)) (-15 -3827 (|#1| |#1| (-599 |#4|) (-599 (-714)))) (-15 -3827 (|#1| |#1| |#4| (-714))) (-15 -2380 ((-647 |#2|) (-647 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 |#1|) (-1207 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 |#1|) (-1207 |#1|))) (-15 -2380 ((-647 (-499)) (-647 |#1|))) (-15 -3295 ((-3 |#4| #1#) |#1|)) (-15 -3294 (|#4| |#1|)) (-15 -3918 (|#1| |#1| (-599 |#4|) (-599 |#1|))) (-15 -3918 (|#1| |#1| |#4| |#1|)) (-15 -3918 (|#1| |#1| (-599 |#4|) (-599 |#2|))) (-15 -3918 (|#1| |#1| |#4| |#2|)) (-15 -3918 (|#1| |#1| (-599 |#1|) (-599 |#1|))) (-15 -3918 (|#1| |#1| |#1| |#1|)) (-15 -3918 (|#1| |#1| (-247 |#1|))) (-15 -3918 (|#1| |#1| (-599 (-247 |#1|)))) (-15 -3014 (|#1| |#2| |#3|)) (-15 -3827 (|#2| |#1| |#3|)) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -2938 (|#2| |#1|)) (-15 -3643 (|#1| |#1|)) (-15 -1297 ((-85) |#1| |#1|))) (-888 |#2| |#3| |#4|) (-989) (-738) (-781)) (T -887)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3204 (((-599 |#3|) $) 120 T ELT)) (-3206 (((-1111 $) $ |#3|) 135 T ELT) (((-1111 |#1|) $) 134 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 97 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 98 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 100 (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) 122 T ELT) (((-714) $ (-599 |#3|)) 121 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 110 (|has| |#1| (-848)) ELT)) (-3925 (($ $) 108 (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) 107 (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1="failed") (-599 (-1111 $)) (-1111 $)) 113 (|has| |#1| (-848)) ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-361 (-499)) #2#) $) 175 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #2#) $) 173 (|has| |#1| (-978 (-499))) ELT) (((-3 |#3| #2#) $) 150 T ELT)) (-3294 ((|#1| $) 177 T ELT) (((-361 (-499)) $) 176 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) 174 (|has| |#1| (-978 (-499))) ELT) ((|#3| $) 151 T ELT)) (-3906 (($ $ $ |#3|) 118 (|has| |#1| (-146)) ELT)) (-4109 (($ $) 168 T ELT)) (-2380 (((-647 (-499)) (-647 $)) 146 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 145 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 144 T ELT) (((-647 |#1|) (-647 $)) 143 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3643 (($ $) 190 (|has| |#1| (-406)) ELT) (($ $ |#3|) 115 (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) 119 T ELT)) (-3873 (((-85) $) 106 (|has| |#1| (-848)) ELT)) (-1694 (($ $ |#1| |#2| $) 186 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 94 (-12 (|has| |#3| (-821 (-333))) (|has| |#1| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 93 (-12 (|has| |#3| (-821 (-499))) (|has| |#1| (-821 (-499)))) ELT)) (-2528 (((-85) $) 40 T ELT)) (-2536 (((-714) $) 183 T ELT)) (-3207 (($ (-1111 |#1|) |#3|) 127 T ELT) (($ (-1111 $) |#3|) 126 T ELT)) (-2942 (((-599 $) $) 136 T ELT)) (-4087 (((-85) $) 166 T ELT)) (-3014 (($ |#1| |#2|) 167 T ELT) (($ $ |#3| (-714)) 129 T ELT) (($ $ (-599 |#3|) (-599 (-714))) 128 T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ |#3|) 130 T ELT)) (-2941 ((|#2| $) 184 T ELT) (((-714) $ |#3|) 132 T ELT) (((-599 (-714)) $ (-599 |#3|)) 131 T ELT)) (-1695 (($ (-1 |#2| |#2|) $) 185 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3205 (((-3 |#3| "failed") $) 133 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 148 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 147 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 142 T ELT) (((-647 |#1|) (-1207 $)) 141 T ELT)) (-3015 (($ $) 163 T ELT)) (-3312 ((|#1| $) 162 T ELT)) (-1993 (($ (-599 $)) 104 (|has| |#1| (-406)) ELT) (($ $ $) 103 (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2944 (((-3 (-599 $) "failed") $) 124 T ELT)) (-2943 (((-3 (-599 $) "failed") $) 125 T ELT)) (-2945 (((-3 (-2 (|:| |var| |#3|) (|:| -2519 (-714))) "failed") $) 123 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1895 (((-85) $) 180 T ELT)) (-1894 ((|#1| $) 181 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 105 (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) 102 (|has| |#1| (-406)) ELT) (($ $ $) 101 (|has| |#1| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 112 (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 111 (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) 109 (|has| |#1| (-848)) ELT)) (-3606 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-510)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) 159 T ELT) (($ $ (-247 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-599 $) (-599 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-599 |#3|) (-599 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-599 |#3|) (-599 $)) 152 T ELT)) (-3907 (($ $ |#3|) 117 (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 |#3|) (-599 (-714))) 49 T ELT) (($ $ |#3| (-714)) 48 T ELT) (($ $ (-599 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT)) (-4098 ((|#2| $) 164 T ELT) (((-714) $ |#3|) 140 T ELT) (((-599 (-714)) $ (-599 |#3|)) 139 T ELT)) (-4122 (((-825 (-333)) $) 92 (-12 (|has| |#3| (-569 (-825 (-333)))) (|has| |#1| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) 91 (-12 (|has| |#3| (-569 (-825 (-499)))) (|has| |#1| (-569 (-825 (-499))))) ELT) (((-488) $) 90 (-12 (|has| |#3| (-569 (-488))) (|has| |#1| (-569 (-488)))) ELT)) (-2938 ((|#1| $) 189 (|has| |#1| (-406)) ELT) (($ $ |#3|) 116 (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) 114 (-2681 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (($ $) 95 (|has| |#1| (-510)) ELT) (($ (-361 (-499))) 88 (-3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-38 (-361 (-499))))) ELT)) (-3967 (((-599 |#1|) $) 182 T ELT)) (-3827 ((|#1| $ |#2|) 169 T ELT) (($ $ |#3| (-714)) 138 T ELT) (($ $ (-599 |#3|) (-599 (-714))) 137 T ELT)) (-2823 (((-649 $) $) 89 (-3677 (-2681 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) 37 T CONST)) (-1693 (($ $ $ (-714)) 187 (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 99 (|has| |#1| (-510)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-599 |#3|) (-599 (-714))) 52 T ELT) (($ $ |#3| (-714)) 51 T ELT) (($ $ (-599 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 170 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 172 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) 171 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) +(((-888 |#1| |#2| |#3|) (-113) (-989) (-738) (-781)) (T -888)) +((-3643 (*1 *1 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-406)))) (-4098 (*1 *2 *1 *3) (-12 (-4 *1 (-888 *4 *5 *3)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) (-5 *2 (-714)))) (-4098 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *6)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 (-714))))) (-3827 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-888 *4 *5 *2)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *2 (-781)))) (-3827 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 *6)) (-5 *3 (-599 (-714))) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)))) (-2942 (*1 *2 *1) (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-888 *3 *4 *5)))) (-3206 (*1 *2 *1 *3) (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) (-5 *2 (-1111 *1)) (-4 *1 (-888 *4 *5 *3)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-1111 *3)))) (-3205 (*1 *2 *1) (|partial| -12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) (-2941 (*1 *2 *1 *3) (-12 (-4 *1 (-888 *4 *5 *3)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) (-5 *2 (-714)))) (-2941 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *6)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 (-714))))) (-3913 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-888 *4 *5 *3)))) (-3014 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-888 *4 *5 *2)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *2 (-781)))) (-3014 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 *6)) (-5 *3 (-599 (-714))) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)))) (-3207 (*1 *1 *2 *3) (-12 (-5 *2 (-1111 *4)) (-4 *4 (-989)) (-4 *1 (-888 *4 *5 *3)) (-4 *5 (-738)) (-4 *3 (-781)))) (-3207 (*1 *1 *2 *3) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-888 *4 *5 *3)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)))) (-2943 (*1 *2 *1) (|partial| -12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-888 *3 *4 *5)))) (-2944 (*1 *2 *1) (|partial| -12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-888 *3 *4 *5)))) (-2945 (*1 *2 *1) (|partial| -12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-2 (|:| |var| *5) (|:| -2519 (-714)))))) (-2940 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-714)))) (-2940 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *6)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-714)))) (-3204 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *5)))) (-2939 (*1 *2 *1) (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-888 *3 *4 *5)))) (-3906 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) (-4 *3 (-146)))) (-3907 (*1 *1 *1 *2) (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) (-4 *3 (-146)))) (-2938 (*1 *1 *1 *2) (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) (-4 *3 (-406)))) (-3643 (*1 *1 *1 *2) (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) (-4 *3 (-406)))) (-3925 (*1 *1 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-406)))) (-4121 (*1 *2 *1) (-12 (-4 *3 (-406)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-359 *1)) (-4 *1 (-888 *3 *4 *5))))) +(-13 (-836 |t#3|) (-280 |t#1| |t#2|) (-263 $) (-468 |t#3| |t#1|) (-468 |t#3| $) (-978 |t#3|) (-332 |t#1|) (-10 -8 (-15 -4098 ((-714) $ |t#3|)) (-15 -4098 ((-599 (-714)) $ (-599 |t#3|))) (-15 -3827 ($ $ |t#3| (-714))) (-15 -3827 ($ $ (-599 |t#3|) (-599 (-714)))) (-15 -2942 ((-599 $) $)) (-15 -3206 ((-1111 $) $ |t#3|)) (-15 -3206 ((-1111 |t#1|) $)) (-15 -3205 ((-3 |t#3| "failed") $)) (-15 -2941 ((-714) $ |t#3|)) (-15 -2941 ((-599 (-714)) $ (-599 |t#3|))) (-15 -3913 ((-2 (|:| -2075 $) (|:| -3023 $)) $ $ |t#3|)) (-15 -3014 ($ $ |t#3| (-714))) (-15 -3014 ($ $ (-599 |t#3|) (-599 (-714)))) (-15 -3207 ($ (-1111 |t#1|) |t#3|)) (-15 -3207 ($ (-1111 $) |t#3|)) (-15 -2943 ((-3 (-599 $) "failed") $)) (-15 -2944 ((-3 (-599 $) "failed") $)) (-15 -2945 ((-3 (-2 (|:| |var| |t#3|) (|:| -2519 (-714))) "failed") $)) (-15 -2940 ((-714) $)) (-15 -2940 ((-714) $ (-599 |t#3|))) (-15 -3204 ((-599 |t#3|) $)) (-15 -2939 ((-599 $) $)) (IF (|has| |t#1| (-569 (-488))) (IF (|has| |t#3| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-569 (-825 (-499)))) (IF (|has| |t#3| (-569 (-825 (-499)))) (-6 (-569 (-825 (-499)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-569 (-825 (-333)))) (IF (|has| |t#3| (-569 (-825 (-333)))) (-6 (-569 (-825 (-333)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-821 (-499))) (IF (|has| |t#3| (-821 (-499))) (-6 (-821 (-499))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-821 (-333))) (IF (|has| |t#3| (-821 (-333))) (-6 (-821 (-333))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3906 ($ $ $ |t#3|)) (-15 -3907 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-406)) (PROGN (-6 (-406)) (-15 -2938 ($ $ |t#3|)) (-15 -3643 ($ $)) (-15 -3643 ($ $ |t#3|)) (-15 -4121 ((-359 $) $)) (-15 -3925 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4143)) (-6 -4143) |%noBranch|) (IF (|has| |t#1| (-848)) (-6 (-848)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-38 (-361 (-499))))) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-571 |#3|) . T) ((-571 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-569 (-488)) -12 (|has| |#1| (-569 (-488))) (|has| |#3| (-569 (-488)))) ((-569 (-825 (-333))) -12 (|has| |#1| (-569 (-825 (-333)))) (|has| |#3| (-569 (-825 (-333))))) ((-569 (-825 (-499))) -12 (|has| |#1| (-569 (-825 (-499)))) (|has| |#3| (-569 (-825 (-499))))) ((-244) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-263 $) . T) ((-280 |#1| |#2|) . T) ((-332 |#1|) . T) ((-366 |#1|) . T) ((-406) -3677 (|has| |#1| (-848)) (|has| |#1| (-406))) ((-468 |#3| |#1|) . T) ((-468 |#3| $) . T) ((-468 $ $) . T) ((-510) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-604 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-606 (-499)) |has| |#1| (-596 (-499))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-596 (-499)) |has| |#1| (-596 (-499))) ((-596 |#1|) . T) ((-675 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-684) . T) ((-831 $ |#3|) . T) ((-836 |#3|) . T) ((-838 |#3|) . T) ((-821 (-333)) -12 (|has| |#1| (-821 (-333))) (|has| |#3| (-821 (-333)))) ((-821 (-499)) -12 (|has| |#1| (-821 (-499))) (|has| |#3| (-821 (-499)))) ((-848) |has| |#1| (-848)) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T) ((-978 |#3|) . T) ((-991 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-996 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) |has| |#1| (-848))) +((-3204 (((-599 |#2|) |#5|) 40 T ELT)) (-3206 (((-1111 |#5|) |#5| |#2| (-1111 |#5|)) 23 T ELT) (((-361 (-1111 |#5|)) |#5| |#2|) 16 T ELT)) (-3207 ((|#5| (-361 (-1111 |#5|)) |#2|) 30 T ELT)) (-3205 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2944 (((-3 (-599 |#5|) #1#) |#5|) 64 T ELT)) (-2946 (((-3 (-2 (|:| |val| |#5|) (|:| -2519 (-499))) #1#) |#5|) 53 T ELT)) (-2943 (((-3 (-599 |#5|) #1#) |#5|) 66 T ELT)) (-2945 (((-3 (-2 (|:| |var| |#2|) (|:| -2519 (-499))) #1#) |#5|) 56 T ELT))) +(((-889 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3204 ((-599 |#2|) |#5|)) (-15 -3205 ((-3 |#2| #1="failed") |#5|)) (-15 -3206 ((-361 (-1111 |#5|)) |#5| |#2|)) (-15 -3207 (|#5| (-361 (-1111 |#5|)) |#2|)) (-15 -3206 ((-1111 |#5|) |#5| |#2| (-1111 |#5|))) (-15 -2943 ((-3 (-599 |#5|) #1#) |#5|)) (-15 -2944 ((-3 (-599 |#5|) #1#) |#5|)) (-15 -2945 ((-3 (-2 (|:| |var| |#2|) (|:| -2519 (-499))) #1#) |#5|)) (-15 -2946 ((-3 (-2 (|:| |val| |#5|) (|:| -2519 (-499))) #1#) |#5|))) (-738) (-781) (-989) (-888 |#3| |#1| |#2|) (-13 (-318) (-10 -8 (-15 -4096 ($ |#4|)) (-15 -3119 (|#4| $)) (-15 -3118 (|#4| $))))) (T -889)) +((-2946 (*1 *2 *3) (|partial| -12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2519 (-499)))) (-5 *1 (-889 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))))) (-2945 (*1 *2 *3) (|partial| -12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2519 (-499)))) (-5 *1 (-889 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))))) (-2944 (*1 *2 *3) (|partial| -12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-599 *3)) (-5 *1 (-889 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))))) (-2943 (*1 *2 *3) (|partial| -12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-599 *3)) (-5 *1 (-889 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))))) (-3206 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1111 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))) (-4 *7 (-888 *6 *5 *4)) (-4 *5 (-738)) (-4 *4 (-781)) (-4 *6 (-989)) (-5 *1 (-889 *5 *4 *6 *7 *3)))) (-3207 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-1111 *2))) (-4 *5 (-738)) (-4 *4 (-781)) (-4 *6 (-989)) (-4 *2 (-13 (-318) (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))) (-5 *1 (-889 *5 *4 *6 *7 *2)) (-4 *7 (-888 *6 *5 *4)))) (-3206 (*1 *2 *3 *4) (-12 (-4 *5 (-738)) (-4 *4 (-781)) (-4 *6 (-989)) (-4 *7 (-888 *6 *5 *4)) (-5 *2 (-361 (-1111 *3))) (-5 *1 (-889 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))))) (-3205 (*1 *2 *3) (|partial| -12 (-4 *4 (-738)) (-4 *5 (-989)) (-4 *6 (-888 *5 *4 *2)) (-4 *2 (-781)) (-5 *1 (-889 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4096 ($ *6)) (-15 -3119 (*6 $)) (-15 -3118 (*6 $))))))) (-3204 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-599 *5)) (-5 *1 (-889 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $)))))))) +((-4108 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) +(((-890 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4108 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-738) (-781) (-989) (-888 |#3| |#1| |#2|) (-13 (-1041) (-10 -8 (-15 -3989 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-714)))))) (T -890)) +((-4108 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-781)) (-4 *8 (-989)) (-4 *6 (-738)) (-4 *2 (-13 (-1041) (-10 -8 (-15 -3989 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-714)))))) (-5 *1 (-890 *6 *7 *8 *5 *2)) (-4 *5 (-888 *8 *6 *7))))) +((-2947 (((-2 (|:| -2519 (-714)) (|:| -4104 |#5|) (|:| |radicand| |#5|)) |#3| (-714)) 48 T ELT)) (-2948 (((-2 (|:| -2519 (-714)) (|:| -4104 |#5|) (|:| |radicand| |#5|)) (-361 (-499)) (-714)) 43 T ELT)) (-2950 (((-2 (|:| -2519 (-714)) (|:| -4104 |#4|) (|:| |radicand| (-599 |#4|))) |#4| (-714)) 64 T ELT)) (-2949 (((-2 (|:| -2519 (-714)) (|:| -4104 |#5|) (|:| |radicand| |#5|)) |#5| (-714)) 73 (|has| |#3| (-406)) ELT))) +(((-891 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2947 ((-2 (|:| -2519 (-714)) (|:| -4104 |#5|) (|:| |radicand| |#5|)) |#3| (-714))) (-15 -2948 ((-2 (|:| -2519 (-714)) (|:| -4104 |#5|) (|:| |radicand| |#5|)) (-361 (-499)) (-714))) (IF (|has| |#3| (-406)) (-15 -2949 ((-2 (|:| -2519 (-714)) (|:| -4104 |#5|) (|:| |radicand| |#5|)) |#5| (-714))) |%noBranch|) (-15 -2950 ((-2 (|:| -2519 (-714)) (|:| -4104 |#4|) (|:| |radicand| (-599 |#4|))) |#4| (-714)))) (-738) (-781) (-510) (-888 |#3| |#1| |#2|) (-13 (-318) (-10 -8 (-15 -4096 ($ |#4|)) (-15 -3119 (|#4| $)) (-15 -3118 (|#4| $))))) (T -891)) +((-2950 (*1 *2 *3 *4) (-12 (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-510)) (-4 *3 (-888 *7 *5 *6)) (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *3) (|:| |radicand| (-599 *3)))) (-5 *1 (-891 *5 *6 *7 *3 *8)) (-5 *4 (-714)) (-4 *8 (-13 (-318) (-10 -8 (-15 -4096 ($ *3)) (-15 -3119 (*3 $)) (-15 -3118 (*3 $))))))) (-2949 (*1 *2 *3 *4) (-12 (-4 *7 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-510)) (-4 *8 (-888 *7 *5 *6)) (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *3) (|:| |radicand| *3))) (-5 *1 (-891 *5 *6 *7 *8 *3)) (-5 *4 (-714)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4096 ($ *8)) (-15 -3119 (*8 $)) (-15 -3118 (*8 $))))))) (-2948 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-499))) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-510)) (-4 *8 (-888 *7 *5 *6)) (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *9) (|:| |radicand| *9))) (-5 *1 (-891 *5 *6 *7 *8 *9)) (-5 *4 (-714)) (-4 *9 (-13 (-318) (-10 -8 (-15 -4096 ($ *8)) (-15 -3119 (*8 $)) (-15 -3118 (*8 $))))))) (-2947 (*1 *2 *3 *4) (-12 (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-510)) (-4 *7 (-888 *3 *5 *6)) (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *8) (|:| |radicand| *8))) (-5 *1 (-891 *5 *6 *3 *7 *8)) (-5 *4 (-714)) (-4 *8 (-13 (-318) (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $)))))))) +((-2687 (((-85) $ $) NIL T ELT)) (-2951 (($ (-1060)) 8 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 15 T ELT) (((-1060) $) 12 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 11 T ELT))) +(((-892) (-13 (-1041) (-568 (-1060)) (-10 -8 (-15 -2951 ($ (-1060)))))) (T -892)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-892))))) +((-3017 (((-1029 (-179)) $) 8 T ELT)) (-3018 (((-1029 (-179)) $) 9 T ELT)) (-3019 (((-599 (-599 (-881 (-179)))) $) 10 T ELT)) (-4096 (((-797) $) 6 T ELT))) +(((-893) (-113)) (T -893)) +((-3019 (*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-599 (-599 (-881 (-179))))))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-1029 (-179))))) (-3017 (*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-1029 (-179)))))) +(-13 (-568 (-797)) (-10 -8 (-15 -3019 ((-599 (-599 (-881 (-179)))) $)) (-15 -3018 ((-1029 (-179)) $)) (-15 -3017 ((-1029 (-179)) $)))) +(((-568 (-797)) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 79 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 80 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 34 T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) NIL T ELT)) (-4109 (($ $) 31 T ELT)) (-3607 (((-3 $ #1#) $) 42 T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT)) (-1694 (($ $ |#1| |#2| $) 63 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) 17 T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| |#2|) NIL T ELT)) (-2941 ((|#2| $) 24 T ELT)) (-1695 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3015 (($ $) 28 T ELT)) (-3312 ((|#1| $) 26 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) 51 T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-3888 (($ $ |#2| |#1| $) 91 (-12 (|has| |#2| (-104)) (|has| |#1| (-510))) ELT)) (-3606 (((-3 $ #1#) $ $) 92 (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ |#1|) 86 (|has| |#1| (-510)) ELT)) (-4098 ((|#2| $) 22 T ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) 46 T ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ |#1|) 41 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ |#2|) 37 T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 15 T CONST)) (-1693 (($ $ $ (-714)) 75 (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) 85 (|has| |#1| (-510)) ELT)) (-2779 (($) 27 T CONST)) (-2785 (($) 12 T CONST)) (-3174 (((-85) $ $) 84 T ELT)) (-4099 (($ $ |#1|) 93 (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) 70 T ELT) (($ $ (-714)) 68 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 67 T ELT) (($ $ |#1|) 65 T ELT) (($ |#1| $) 64 T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-894 |#1| |#2|) (-13 (-280 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-510)) (IF (|has| |#2| (-104)) (-15 -3888 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4143)) (-6 -4143) |%noBranch|))) (-989) (-737)) (T -894)) +((-3888 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-894 *3 *2)) (-4 *2 (-104)) (-4 *3 (-510)) (-4 *3 (-989)) (-4 *2 (-737))))) +((-2952 (((-3 (-647 |#1|) "failed") |#2| (-857)) 18 T ELT))) +(((-895 |#1| |#2|) (-10 -7 (-15 -2952 ((-3 (-647 |#1|) "failed") |#2| (-857)))) (-510) (-616 |#1|)) (T -895)) +((-2952 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-857)) (-4 *5 (-510)) (-5 *2 (-647 *5)) (-5 *1 (-895 *5 *3)) (-4 *3 (-616 *5))))) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| |#1| (-781))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-781)) ELT)) (-3938 ((|#1| $ (-499) |#1|) 20 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) 19 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 17 T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) NIL T ELT) (((-499) |#1| $) NIL (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) NIL (|has| |#1| (-1041)) ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) |#1|) 16 T ELT)) (-2301 (((-499) $) 11 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2300 (($ $ |#1|) 21 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) 13 T ELT)) (-3950 ((|#1| $ (-499) |#1|) NIL T ELT) ((|#1| $ (-499)) 18 T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 22 T ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 15 T ELT)) (-3952 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-4107 (((-714) $) 8 (|has| $ (-6 -4145)) ELT))) +(((-896 |#1|) (-19 |#1|) (-1157)) (T -896)) +NIL +((-3991 (((-896 |#2|) (-1 |#2| |#1| |#2|) (-896 |#1|) |#2|) 16 T ELT)) (-3992 ((|#2| (-1 |#2| |#1| |#2|) (-896 |#1|) |#2|) 18 T ELT)) (-4108 (((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)) 13 T ELT))) +(((-897 |#1| |#2|) (-10 -7 (-15 -3991 ((-896 |#2|) (-1 |#2| |#1| |#2|) (-896 |#1|) |#2|)) (-15 -3992 (|#2| (-1 |#2| |#1| |#2|) (-896 |#1|) |#2|)) (-15 -4108 ((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)))) (-1157) (-1157)) (T -897)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-896 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-896 *6)) (-5 *1 (-897 *5 *6)))) (-3992 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-896 *5)) (-4 *5 (-1157)) (-4 *2 (-1157)) (-5 *1 (-897 *5 *2)))) (-3991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-896 *6)) (-4 *6 (-1157)) (-4 *5 (-1157)) (-5 *2 (-896 *5)) (-5 *1 (-897 *6 *5))))) +((-2953 (($ $ (-1032 $)) 7 T ELT) (($ $ (-1117)) 6 T ELT))) +(((-898) (-113)) (T -898)) +((-2953 (*1 *1 *1 *2) (-12 (-5 *2 (-1032 *1)) (-4 *1 (-898)))) (-2953 (*1 *1 *1 *2) (-12 (-4 *1 (-898)) (-5 *2 (-1117))))) +(-13 (-10 -8 (-15 -2953 ($ $ (-1117))) (-15 -2953 ($ $ (-1032 $))))) +((-2954 (((-2 (|:| -4104 (-599 (-499))) (|:| |poly| (-599 (-1111 |#1|))) (|:| |prim| (-1111 |#1|))) (-599 (-884 |#1|)) (-599 (-1117)) (-1117)) 26 T ELT) (((-2 (|:| -4104 (-599 (-499))) (|:| |poly| (-599 (-1111 |#1|))) (|:| |prim| (-1111 |#1|))) (-599 (-884 |#1|)) (-599 (-1117))) 27 T ELT) (((-2 (|:| |coef1| (-499)) (|:| |coef2| (-499)) (|:| |prim| (-1111 |#1|))) (-884 |#1|) (-1117) (-884 |#1|) (-1117)) 49 T ELT))) +(((-899 |#1|) (-10 -7 (-15 -2954 ((-2 (|:| |coef1| (-499)) (|:| |coef2| (-499)) (|:| |prim| (-1111 |#1|))) (-884 |#1|) (-1117) (-884 |#1|) (-1117))) (-15 -2954 ((-2 (|:| -4104 (-599 (-499))) (|:| |poly| (-599 (-1111 |#1|))) (|:| |prim| (-1111 |#1|))) (-599 (-884 |#1|)) (-599 (-1117)))) (-15 -2954 ((-2 (|:| -4104 (-599 (-499))) (|:| |poly| (-599 (-1111 |#1|))) (|:| |prim| (-1111 |#1|))) (-599 (-884 |#1|)) (-599 (-1117)) (-1117)))) (-13 (-318) (-120))) (T -899)) +((-2954 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 (-884 *6))) (-5 *4 (-599 (-1117))) (-5 *5 (-1117)) (-4 *6 (-13 (-318) (-120))) (-5 *2 (-2 (|:| -4104 (-599 (-499))) (|:| |poly| (-599 (-1111 *6))) (|:| |prim| (-1111 *6)))) (-5 *1 (-899 *6)))) (-2954 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-599 (-1117))) (-4 *5 (-13 (-318) (-120))) (-5 *2 (-2 (|:| -4104 (-599 (-499))) (|:| |poly| (-599 (-1111 *5))) (|:| |prim| (-1111 *5)))) (-5 *1 (-899 *5)))) (-2954 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-884 *5)) (-5 *4 (-1117)) (-4 *5 (-13 (-318) (-120))) (-5 *2 (-2 (|:| |coef1| (-499)) (|:| |coef2| (-499)) (|:| |prim| (-1111 *5)))) (-5 *1 (-899 *5))))) +((-2957 (((-599 |#1|) |#1| |#1|) 47 T ELT)) (-3873 (((-85) |#1|) 44 T ELT)) (-2956 ((|#1| |#1|) 80 T ELT)) (-2955 ((|#1| |#1|) 79 T ELT))) +(((-900 |#1|) (-10 -7 (-15 -3873 ((-85) |#1|)) (-15 -2955 (|#1| |#1|)) (-15 -2956 (|#1| |#1|)) (-15 -2957 ((-599 |#1|) |#1| |#1|))) (-498)) (T -900)) +((-2957 (*1 *2 *3 *3) (-12 (-5 *2 (-599 *3)) (-5 *1 (-900 *3)) (-4 *3 (-498)))) (-2956 (*1 *2 *2) (-12 (-5 *1 (-900 *2)) (-4 *2 (-498)))) (-2955 (*1 *2 *2) (-12 (-5 *1 (-900 *2)) (-4 *2 (-498)))) (-3873 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-900 *3)) (-4 *3 (-498))))) +((-2958 (((-1213) (-797)) 9 T ELT))) +(((-901) (-10 -7 (-15 -2958 ((-1213) (-797))))) (T -901)) +((-2958 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1213)) (-5 *1 (-901))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL (-3677 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) ELT)) (-2600 (($ $ $) 65 (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) ELT)) (-1345 (((-3 $ #1="failed") $ $) 52 (-3677 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) ELT)) (-3258 (((-714)) 36 (-12 (|has| |#1| (-323)) (|has| |#2| (-323))) ELT)) (-2959 ((|#2| $) 22 T ELT)) (-2960 ((|#1| $) 21 T ELT)) (-3874 (($) NIL (-3677 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) (-12 (|has| |#1| (-684)) (|has| |#2| (-684))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) CONST)) (-3607 (((-3 $ #1#) $) NIL (-3677 (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) (-12 (|has| |#1| (-684)) (|has| |#2| (-684)))) ELT)) (-3115 (($) NIL (-12 (|has| |#1| (-323)) (|has| |#2| (-323))) ELT)) (-3324 (((-85) $) NIL (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) ELT)) (-2528 (((-85) $) NIL (-3677 (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) (-12 (|has| |#1| (-684)) (|has| |#2| (-684)))) ELT)) (-2650 (($ $ $) NIL (-3677 (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-781)) (|has| |#2| (-781)))) ELT)) (-2978 (($ $ $) NIL (-3677 (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-781)) (|has| |#2| (-781)))) ELT)) (-2961 (($ |#1| |#2|) 20 T ELT)) (-2111 (((-857) $) NIL (-12 (|has| |#1| (-323)) (|has| |#2| (-323))) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 39 (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) ELT)) (-2518 (($ (-857)) NIL (-12 (|has| |#1| (-323)) (|has| |#2| (-323))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3130 (($ $ $) NIL (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) ELT)) (-2551 (($ $ $) NIL (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) ELT)) (-4096 (((-797) $) 14 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 42 (-3677 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) CONST)) (-2785 (($) 25 (-3677 (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) (-12 (|has| |#1| (-684)) (|has| |#2| (-684)))) CONST)) (-2685 (((-85) $ $) NIL (-3677 (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-781)) (|has| |#2| (-781)))) ELT)) (-2686 (((-85) $ $) NIL (-3677 (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-781)) (|has| |#2| (-781)))) ELT)) (-3174 (((-85) $ $) 19 T ELT)) (-2805 (((-85) $ $) NIL (-3677 (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-781)) (|has| |#2| (-781)))) ELT)) (-2806 (((-85) $ $) 69 (-3677 (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-781)) (|has| |#2| (-781)))) ELT)) (-4099 (($ $ $) NIL (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) ELT)) (-3987 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3989 (($ $ $) 45 (-3677 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) ELT)) (** (($ $ (-499)) NIL (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) ELT) (($ $ (-714)) 32 (-3677 (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) (-12 (|has| |#1| (-684)) (|has| |#2| (-684)))) ELT) (($ $ (-857)) NIL (-3677 (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) (-12 (|has| |#1| (-684)) (|has| |#2| (-684)))) ELT)) (* (($ (-499) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-714) $) 48 (-3677 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) ELT) (($ (-857) $) NIL (-3677 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) ELT) (($ $ $) 28 (-3677 (-12 (|has| |#1| (-427)) (|has| |#2| (-427))) (-12 (|has| |#1| (-684)) (|has| |#2| (-684)))) ELT))) +(((-902 |#1| |#2|) (-13 (-1041) (-10 -8 (IF (|has| |#1| (-323)) (IF (|has| |#2| (-323)) (-6 (-323)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-684)) (IF (|has| |#2| (-684)) (-6 (-684)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-104)) (IF (|has| |#2| (-104)) (-6 (-104)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-427)) (IF (|has| |#2| (-427)) (-6 (-427)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-781)) (IF (|has| |#2| (-781)) (-6 (-781)) |%noBranch|) |%noBranch|) (-15 -2961 ($ |#1| |#2|)) (-15 -2960 (|#1| $)) (-15 -2959 (|#2| $)))) (-1041) (-1041)) (T -902)) +((-2961 (*1 *1 *2 *3) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041)))) (-2960 (*1 *2 *1) (-12 (-4 *2 (-1041)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1041)))) (-2959 (*1 *2 *1) (-12 (-4 *2 (-1041)) (-5 *1 (-902 *3 *2)) (-4 *3 (-1041))))) +((-3542 (((-1043) $) 12 T ELT)) (-2962 (($ (-460) (-1043)) 14 T ELT)) (-3690 (((-460) $) 9 T ELT)) (-4096 (((-797) $) 24 T ELT))) +(((-903) (-13 (-568 (-797)) (-10 -8 (-15 -3690 ((-460) $)) (-15 -3542 ((-1043) $)) (-15 -2962 ($ (-460) (-1043)))))) (T -903)) +((-3690 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-903)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-903)))) (-2962 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-1043)) (-5 *1 (-903))))) +((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-2976 (($) 17 T CONST)) (-2680 (($ $ $) 37 T ELT)) (-2679 (($ $) 29 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2967 (((-649 (-807 $ $)) $) 62 T ELT)) (-2969 (((-649 $) $) 52 T ELT)) (-2966 (((-649 (-807 $ $)) $) 63 T ELT)) (-2965 (((-649 (-807 $ $)) $) 64 T ELT)) (-2970 (((-649 |#1|) $) 43 T ELT)) (-2968 (((-649 (-807 $ $)) $) 61 T ELT)) (-2974 (($ $ $) 38 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2975 (($) 16 T CONST)) (-2973 (($ $ $) 39 T ELT)) (-2963 (($ $ $) 36 T ELT)) (-2964 (($ $ $) 34 T ELT)) (-4096 (((-797) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2681 (($ $ $) 35 T ELT)) (-2411 (($ $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2412 (($ $ $) NIL T ELT))) +(((-904 |#1|) (-13 (-907) (-571 |#1|) (-10 -8 (-15 -2970 ((-649 |#1|) $)) (-15 -2969 ((-649 $) $)) (-15 -2968 ((-649 (-807 $ $)) $)) (-15 -2967 ((-649 (-807 $ $)) $)) (-15 -2966 ((-649 (-807 $ $)) $)) (-15 -2965 ((-649 (-807 $ $)) $)) (-15 -2964 ($ $ $)) (-15 -2963 ($ $ $)))) (-1041)) (T -904)) +((-2970 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1041)))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-649 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1041)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-649 (-807 (-904 *3) (-904 *3)))) (-5 *1 (-904 *3)) (-4 *3 (-1041)))) (-2967 (*1 *2 *1) (-12 (-5 *2 (-649 (-807 (-904 *3) (-904 *3)))) (-5 *1 (-904 *3)) (-4 *3 (-1041)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-649 (-807 (-904 *3) (-904 *3)))) (-5 *1 (-904 *3)) (-4 *3 (-1041)))) (-2965 (*1 *2 *1) (-12 (-5 *2 (-649 (-807 (-904 *3) (-904 *3)))) (-5 *1 (-904 *3)) (-4 *3 (-1041)))) (-2964 (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1041)))) (-2963 (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1041))))) +((-3799 (((-904 |#1|) (-904 |#1|)) 46 T ELT)) (-2972 (((-904 |#1|) (-904 |#1|)) 22 T ELT)) (-2971 (((-1037 |#1|) (-904 |#1|)) 41 T ELT))) +(((-905 |#1|) (-13 (-1157) (-10 -7 (-15 -2972 ((-904 |#1|) (-904 |#1|))) (-15 -2971 ((-1037 |#1|) (-904 |#1|))) (-15 -3799 ((-904 |#1|) (-904 |#1|))))) (-1041)) (T -905)) +((-2972 (*1 *2 *2) (-12 (-5 *2 (-904 *3)) (-4 *3 (-1041)) (-5 *1 (-905 *3)))) (-2971 (*1 *2 *3) (-12 (-5 *3 (-904 *4)) (-4 *4 (-1041)) (-5 *2 (-1037 *4)) (-5 *1 (-905 *4)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-904 *3)) (-4 *3 (-1041)) (-5 *1 (-905 *3))))) +((-4108 (((-904 |#2|) (-1 |#2| |#1|) (-904 |#1|)) 29 T ELT))) +(((-906 |#1| |#2|) (-13 (-1157) (-10 -7 (-15 -4108 ((-904 |#2|) (-1 |#2| |#1|) (-904 |#1|))))) (-1041) (-1041)) (T -906)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-904 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *2 (-904 *6)) (-5 *1 (-906 *5 *6))))) +((-2687 (((-85) $ $) 19 T ELT)) (-2413 (($ $) 8 T ELT)) (-2976 (($) 17 T CONST)) (-2680 (($ $ $) 9 T ELT)) (-2679 (($ $) 11 T ELT)) (-3380 (((-1099) $) 23 T ELT)) (-2974 (($ $ $) 15 T ELT)) (-3381 (((-1060) $) 22 T ELT)) (-2975 (($) 16 T CONST)) (-2973 (($ $ $) 14 T ELT)) (-4096 (((-797) $) 21 T ELT)) (-1297 (((-85) $ $) 20 T ELT)) (-2681 (($ $ $) 10 T ELT)) (-2411 (($ $ $) 6 T ELT)) (-3174 (((-85) $ $) 18 T ELT)) (-2412 (($ $ $) 7 T ELT))) +(((-907) (-113)) (T -907)) +((-2976 (*1 *1) (-4 *1 (-907))) (-2975 (*1 *1) (-4 *1 (-907))) (-2974 (*1 *1 *1 *1) (-4 *1 (-907))) (-2973 (*1 *1 *1 *1) (-4 *1 (-907)))) +(-13 (-84) (-1041) (-10 -8 (-15 -2976 ($) -4102) (-15 -2975 ($) -4102) (-15 -2974 ($ $ $)) (-15 -2973 ($ $ $)))) +(((-73) . T) ((-84) . T) ((-568 (-797)) . T) ((-620) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3874 (($) 7 T CONST)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2977 (($ $ $) 47 T ELT)) (-3658 (($ $ $) 48 T ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2978 ((|#1| $) 49 T ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 43 T ELT)) (-3757 (($ |#1| $) 44 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-908 |#1|) (-113) (-781)) (T -908)) +((-2978 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-781)))) (-3658 (*1 *1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-781)))) (-2977 (*1 *1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-781))))) +(-13 (-78 |t#1|) (-10 -8 (-6 -4145) (-15 -2978 (|t#1| $)) (-15 -3658 ($ $ $)) (-15 -2977 ($ $ $)))) +(((-34) . T) ((-78 |#1|) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) +((-2990 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3282 |#2|)) |#2| |#2|) 105 T ELT)) (-3905 ((|#2| |#2| |#2|) 103 T ELT)) (-2991 (((-2 (|:| |coef2| |#2|) (|:| -3282 |#2|)) |#2| |#2|) 107 T ELT)) (-2992 (((-2 (|:| |coef1| |#2|) (|:| -3282 |#2|)) |#2| |#2|) 109 T ELT)) (-2999 (((-2 (|:| |coef2| |#2|) (|:| -2997 |#1|)) |#2| |#2|) 132 (|has| |#1| (-406)) ELT)) (-3006 (((-2 (|:| |coef2| |#2|) (|:| -3906 |#1|)) |#2| |#2|) 56 T ELT)) (-2980 (((-2 (|:| |coef2| |#2|) (|:| -3906 |#1|)) |#2| |#2|) 80 T ELT)) (-2981 (((-2 (|:| |coef1| |#2|) (|:| -3906 |#1|)) |#2| |#2|) 82 T ELT)) (-2989 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2984 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-714)) 89 T ELT)) (-2994 (((-2 (|:| |coef2| |#2|) (|:| -3907 |#1|)) |#2|) 121 T ELT)) (-2987 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-714)) 92 T ELT)) (-2996 (((-599 (-714)) |#2| |#2|) 102 T ELT)) (-3004 ((|#1| |#2| |#2|) 50 T ELT)) (-2998 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2997 |#1|)) |#2| |#2|) 130 (|has| |#1| (-406)) ELT)) (-2997 ((|#1| |#2| |#2|) 128 (|has| |#1| (-406)) ELT)) (-3005 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3906 |#1|)) |#2| |#2|) 54 T ELT)) (-2979 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3906 |#1|)) |#2| |#2|) 79 T ELT)) (-3906 ((|#1| |#2| |#2|) 76 T ELT)) (-3902 (((-2 (|:| -4104 |#1|) (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2|) 41 T ELT)) (-3003 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2988 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3328 ((|#2| |#2| |#2|) 93 T ELT)) (-2983 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-714)) 87 T ELT)) (-2982 ((|#2| |#2| |#2| (-714)) 85 T ELT)) (-3282 ((|#2| |#2| |#2|) 136 (|has| |#1| (-406)) ELT)) (-3606 (((-1207 |#2|) (-1207 |#2|) |#1|) 22 T ELT)) (-3000 (((-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2|) 46 T ELT)) (-2993 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3907 |#1|)) |#2|) 119 T ELT)) (-3907 ((|#1| |#2|) 116 T ELT)) (-2986 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-714)) 91 T ELT)) (-2985 ((|#2| |#2| |#2| (-714)) 90 T ELT)) (-2995 (((-599 |#2|) |#2| |#2|) 99 T ELT)) (-3002 ((|#2| |#2| |#1| |#1| (-714)) 62 T ELT)) (-3001 ((|#1| |#1| |#1| (-714)) 61 T ELT)) (* (((-1207 |#2|) |#1| (-1207 |#2|)) 17 T ELT))) +(((-909 |#1| |#2|) (-10 -7 (-15 -3906 (|#1| |#2| |#2|)) (-15 -2979 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3906 |#1|)) |#2| |#2|)) (-15 -2980 ((-2 (|:| |coef2| |#2|) (|:| -3906 |#1|)) |#2| |#2|)) (-15 -2981 ((-2 (|:| |coef1| |#2|) (|:| -3906 |#1|)) |#2| |#2|)) (-15 -2982 (|#2| |#2| |#2| (-714))) (-15 -2983 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-714))) (-15 -2984 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-714))) (-15 -2985 (|#2| |#2| |#2| (-714))) (-15 -2986 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-714))) (-15 -2987 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-714))) (-15 -3328 (|#2| |#2| |#2|)) (-15 -2988 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2989 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3905 (|#2| |#2| |#2|)) (-15 -2990 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3282 |#2|)) |#2| |#2|)) (-15 -2991 ((-2 (|:| |coef2| |#2|) (|:| -3282 |#2|)) |#2| |#2|)) (-15 -2992 ((-2 (|:| |coef1| |#2|) (|:| -3282 |#2|)) |#2| |#2|)) (-15 -3907 (|#1| |#2|)) (-15 -2993 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3907 |#1|)) |#2|)) (-15 -2994 ((-2 (|:| |coef2| |#2|) (|:| -3907 |#1|)) |#2|)) (-15 -2995 ((-599 |#2|) |#2| |#2|)) (-15 -2996 ((-599 (-714)) |#2| |#2|)) (IF (|has| |#1| (-406)) (PROGN (-15 -2997 (|#1| |#2| |#2|)) (-15 -2998 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2997 |#1|)) |#2| |#2|)) (-15 -2999 ((-2 (|:| |coef2| |#2|) (|:| -2997 |#1|)) |#2| |#2|)) (-15 -3282 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1207 |#2|) |#1| (-1207 |#2|))) (-15 -3606 ((-1207 |#2|) (-1207 |#2|) |#1|)) (-15 -3902 ((-2 (|:| -4104 |#1|) (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2|)) (-15 -3000 ((-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) |#2| |#2|)) (-15 -3001 (|#1| |#1| |#1| (-714))) (-15 -3002 (|#2| |#2| |#1| |#1| (-714))) (-15 -3003 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3004 (|#1| |#2| |#2|)) (-15 -3005 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3906 |#1|)) |#2| |#2|)) (-15 -3006 ((-2 (|:| |coef2| |#2|) (|:| -3906 |#1|)) |#2| |#2|))) (-510) (-1183 |#1|)) (T -909)) +((-3006 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3906 *4))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-3005 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3906 *4))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-3004 (*1 *2 *3 *3) (-12 (-4 *2 (-510)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1183 *2)))) (-3003 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-510)) (-5 *1 (-909 *3 *2)) (-4 *2 (-1183 *3)))) (-3002 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-714)) (-4 *3 (-510)) (-5 *1 (-909 *3 *2)) (-4 *2 (-1183 *3)))) (-3001 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-714)) (-4 *2 (-510)) (-5 *1 (-909 *2 *4)) (-4 *4 (-1183 *2)))) (-3000 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-3902 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| -4104 *4) (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-3606 (*1 *2 *2 *3) (-12 (-5 *2 (-1207 *4)) (-4 *4 (-1183 *3)) (-4 *3 (-510)) (-5 *1 (-909 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1207 *4)) (-4 *4 (-1183 *3)) (-4 *3 (-510)) (-5 *1 (-909 *3 *4)))) (-3282 (*1 *2 *2 *2) (-12 (-4 *3 (-406)) (-4 *3 (-510)) (-5 *1 (-909 *3 *2)) (-4 *2 (-1183 *3)))) (-2999 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2997 *4))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-2998 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2997 *4))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-2997 (*1 *2 *3 *3) (-12 (-4 *2 (-510)) (-4 *2 (-406)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1183 *2)))) (-2996 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-599 (-714))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-2995 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-599 *3)) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-2994 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3907 *4))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-2993 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3907 *4))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-3907 (*1 *2 *3) (-12 (-4 *2 (-510)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1183 *2)))) (-2992 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3282 *3))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-2991 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3282 *3))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-2990 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3282 *3))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-3905 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-909 *3 *2)) (-4 *2 (-1183 *3)))) (-2989 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-2988 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-3328 (*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-909 *3 *2)) (-4 *2 (-1183 *3)))) (-2987 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-714)) (-4 *5 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-909 *5 *3)) (-4 *3 (-1183 *5)))) (-2986 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-714)) (-4 *5 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-909 *5 *3)) (-4 *3 (-1183 *5)))) (-2985 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-714)) (-4 *4 (-510)) (-5 *1 (-909 *4 *2)) (-4 *2 (-1183 *4)))) (-2984 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-714)) (-4 *5 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-909 *5 *3)) (-4 *3 (-1183 *5)))) (-2983 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-714)) (-4 *5 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-909 *5 *3)) (-4 *3 (-1183 *5)))) (-2982 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-714)) (-4 *4 (-510)) (-5 *1 (-909 *4 *2)) (-4 *2 (-1183 *4)))) (-2981 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3906 *4))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-2980 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3906 *4))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-2979 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3906 *4))) (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) (-3906 (*1 *2 *3 *3) (-12 (-4 *2 (-510)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1183 *2))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3456 (((-1158) $) 13 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3344 (((-1075) $) 10 T ELT)) (-4096 (((-797) $) 20 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-910) (-13 (-1023) (-10 -8 (-15 -3344 ((-1075) $)) (-15 -3456 ((-1158) $))))) (T -910)) +((-3344 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-910)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-910))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 40 T ELT)) (-1345 (((-3 $ "failed") $ $) 54 T ELT)) (-3874 (($) NIL T CONST)) (-3008 (((-599 (-807 (-857) (-857))) $) 67 T ELT)) (-3324 (((-85) $) NIL T ELT)) (-3007 (((-857) $) 94 T ELT)) (-3010 (((-599 (-857)) $) 17 T ELT)) (-3009 (((-1095 $) (-714)) 39 T ELT)) (-3011 (($ (-599 (-857))) 16 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3130 (($ $) 70 T ELT)) (-4096 (((-797) $) 90 T ELT) (((-599 (-857)) $) 11 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 8 T CONST)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 44 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 42 T ELT)) (-3989 (($ $ $) 46 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) 49 T ELT)) (-4107 (((-714) $) 22 T ELT))) +(((-911) (-13 (-742) (-568 (-599 (-857))) (-10 -8 (-15 -3011 ($ (-599 (-857)))) (-15 -3010 ((-599 (-857)) $)) (-15 -4107 ((-714) $)) (-15 -3009 ((-1095 $) (-714))) (-15 -3008 ((-599 (-807 (-857) (-857))) $)) (-15 -3007 ((-857) $)) (-15 -3130 ($ $))))) (T -911)) +((-3011 (*1 *1 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-911)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-911)))) (-4107 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-911)))) (-3009 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1095 (-911))) (-5 *1 (-911)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-599 (-807 (-857) (-857)))) (-5 *1 (-911)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-911)))) (-3130 (*1 *1 *1) (-5 *1 (-911)))) +((-4099 (($ $ |#2|) 31 T ELT)) (-3987 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-361 (-499)) $) 27 T ELT) (($ $ (-361 (-499))) 29 T ELT))) +(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-361 (-499)))) (-15 * (|#1| (-361 (-499)) |#1|)) (-15 -4099 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1|)) (-15 * (|#1| (-499) |#1|)) (-15 * (|#1| (-714) |#1|)) (-15 * (|#1| (-857) |#1|))) (-913 |#2| |#3| |#4|) (-989) (-737) (-781)) (T -912)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3204 (((-599 |#3|) $) 92 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 68 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 69 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 71 (|has| |#1| (-510)) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-4109 (($ $) 77 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3013 (((-85) $) 91 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-4087 (((-85) $) 79 T ELT)) (-3014 (($ |#1| |#2|) 78 T ELT) (($ $ |#3| |#2|) 94 T ELT) (($ $ (-599 |#3|) (-599 |#2|)) 93 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3015 (($ $) 82 T ELT)) (-3312 ((|#1| $) 83 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3606 (((-3 $ "failed") $ $) 67 (|has| |#1| (-510)) ELT)) (-4098 ((|#2| $) 81 T ELT)) (-3012 (($ $) 90 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ (-361 (-499))) 74 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) 66 (|has| |#1| (-510)) ELT) (($ |#1|) 64 (|has| |#1| (-146)) ELT)) (-3827 ((|#1| $ |#2|) 76 T ELT)) (-2823 (((-649 $) $) 65 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 70 (|has| |#1| (-510)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 75 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-361 (-499)) $) 73 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 72 (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-913 |#1| |#2| |#3|) (-113) (-989) (-737) (-781)) (T -913)) +((-3312 (*1 *2 *1) (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *3 (-737)) (-4 *4 (-781)) (-4 *2 (-989)))) (-3015 (*1 *1 *1) (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-737)) (-4 *4 (-781)))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *2 *4)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *2 (-737)))) (-3014 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-913 *4 *3 *2)) (-4 *4 (-989)) (-4 *3 (-737)) (-4 *2 (-781)))) (-3014 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 *6)) (-5 *3 (-599 *5)) (-4 *1 (-913 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-737)) (-4 *6 (-781)))) (-3204 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-737)) (-4 *5 (-781)) (-5 *2 (-599 *5)))) (-3013 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-737)) (-4 *5 (-781)) (-5 *2 (-85)))) (-3012 (*1 *1 *1) (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-737)) (-4 *4 (-781))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3014 ($ $ |t#3| |t#2|)) (-15 -3014 ($ $ (-599 |t#3|) (-599 |t#2|))) (-15 -3015 ($ $)) (-15 -3312 (|t#1| $)) (-15 -4098 (|t#2| $)) (-15 -3204 ((-599 |t#3|) $)) (-15 -3013 ((-85) $)) (-15 -3012 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-510)) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-571 (-499)) . T) ((-571 |#1|) |has| |#1| (-146)) ((-571 $) |has| |#1| (-510)) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-244) |has| |#1| (-510)) ((-510) |has| |#1| (-510)) ((-604 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) |has| |#1| (-510)) ((-675 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) |has| |#1| (-510)) ((-684) . T) ((-991 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-996 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-3016 (((-1029 (-179)) $) 8 T ELT)) (-3017 (((-1029 (-179)) $) 9 T ELT)) (-3018 (((-1029 (-179)) $) 10 T ELT)) (-3019 (((-599 (-599 (-881 (-179)))) $) 11 T ELT)) (-4096 (((-797) $) 6 T ELT))) +(((-914) (-113)) (T -914)) +((-3019 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-599 (-599 (-881 (-179))))))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1029 (-179))))) (-3017 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1029 (-179))))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1029 (-179)))))) +(-13 (-568 (-797)) (-10 -8 (-15 -3019 ((-599 (-599 (-881 (-179)))) $)) (-15 -3018 ((-1029 (-179)) $)) (-15 -3017 ((-1029 (-179)) $)) (-15 -3016 ((-1029 (-179)) $)))) +(((-568 (-797)) . T)) +((-3204 (((-599 |#4|) $) 23 T ELT)) (-3029 (((-85) $) 55 T ELT)) (-3020 (((-85) $) 54 T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-3025 (((-85) $) 56 T ELT)) (-3027 (((-85) $ $) 62 T ELT)) (-3026 (((-85) $ $) 65 T ELT)) (-3028 (((-85) $) 60 T ELT)) (-3021 (((-599 |#5|) (-599 |#5|) $) 98 T ELT)) (-3022 (((-599 |#5|) (-599 |#5|) $) 95 T ELT)) (-3023 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-3035 (((-599 |#4|) $) 27 T ELT)) (-3034 (((-85) |#4| $) 34 T ELT)) (-3024 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-3031 (($ $ |#4|) 39 T ELT)) (-3033 (($ $ |#4|) 38 T ELT)) (-3032 (($ $ |#4|) 40 T ELT)) (-3174 (((-85) $ $) 46 T ELT))) +(((-915 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3020 ((-85) |#1|)) (-15 -3021 ((-599 |#5|) (-599 |#5|) |#1|)) (-15 -3022 ((-599 |#5|) (-599 |#5|) |#1|)) (-15 -3023 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3024 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3025 ((-85) |#1|)) (-15 -3026 ((-85) |#1| |#1|)) (-15 -3027 ((-85) |#1| |#1|)) (-15 -3028 ((-85) |#1|)) (-15 -3029 ((-85) |#1|)) (-15 -3030 ((-2 (|:| |under| |#1|) (|:| -3252 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3031 (|#1| |#1| |#4|)) (-15 -3032 (|#1| |#1| |#4|)) (-15 -3033 (|#1| |#1| |#4|)) (-15 -3034 ((-85) |#4| |#1|)) (-15 -3035 ((-599 |#4|) |#1|)) (-15 -3204 ((-599 |#4|) |#1|)) (-15 -3174 ((-85) |#1| |#1|))) (-916 |#2| |#3| |#4| |#5|) (-989) (-738) (-781) (-1005 |#2| |#3| |#4|)) (T -915)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3204 (((-599 |#3|) $) 37 T ELT)) (-3029 (((-85) $) 30 T ELT)) (-3020 (((-85) $) 21 (|has| |#1| (-510)) ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3860 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 46 T CONST)) (-3025 (((-85) $) 26 (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) 28 (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) 27 (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) 29 (|has| |#1| (-510)) ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) 22 (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) 23 (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ "failed") (-599 |#4|)) 40 T ELT)) (-3294 (($ (-599 |#4|)) 39 T ELT)) (-1386 (($ $) 69 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#4| $) 68 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-510)) ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 |#4|) $) 53 (|has| $ (-6 -4145)) ELT)) (-3318 ((|#3| $) 38 T ELT)) (-2727 (((-599 |#4|) $) 54 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3035 (((-599 |#3|) $) 36 T ELT)) (-3034 (((-85) |#3| $) 35 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-510)) ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1387 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) 60 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) 58 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) 57 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) 42 T ELT)) (-3543 (((-85) $) 45 T ELT)) (-3713 (($) 44 T ELT)) (-2048 (((-714) |#4| $) 55 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 43 T ELT)) (-4122 (((-488) $) 70 (|has| |#4| (-569 (-488))) ELT)) (-3670 (($ (-599 |#4|)) 61 T ELT)) (-3031 (($ $ |#3|) 32 T ELT)) (-3033 (($ $ |#3|) 34 T ELT)) (-3032 (($ $ |#3|) 33 T ELT)) (-4096 (((-797) $) 13 T ELT) (((-599 |#4|) $) 41 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4107 (((-714) $) 47 (|has| $ (-6 -4145)) ELT))) +(((-916 |#1| |#2| |#3| |#4|) (-113) (-989) (-738) (-781) (-1005 |t#1| |t#2| |t#3|)) (T -916)) +((-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *1 (-916 *3 *4 *5 *6)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *1 (-916 *3 *4 *5 *6)))) (-3318 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-1005 *3 *4 *2)) (-4 *2 (-781)))) (-3204 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-599 *5)))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-599 *5)))) (-3034 (*1 *2 *3 *1) (-12 (-4 *1 (-916 *4 *5 *3 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) (-4 *6 (-1005 *4 *5 *3)) (-5 *2 (-85)))) (-3033 (*1 *1 *1 *2) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) (-4 *5 (-1005 *3 *4 *2)))) (-3032 (*1 *1 *1 *2) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) (-4 *5 (-1005 *3 *4 *2)))) (-3031 (*1 *1 *1 *2) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) (-4 *5 (-1005 *3 *4 *2)))) (-3030 (*1 *2 *1 *3) (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) (-4 *6 (-1005 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3252 *1) (|:| |upper| *1))) (-4 *1 (-916 *4 *5 *3 *6)))) (-3029 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) (-3028 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-5 *2 (-85)))) (-3027 (*1 *2 *1 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-5 *2 (-85)))) (-3026 (*1 *2 *1 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-5 *2 (-85)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-5 *2 (-85)))) (-3024 (*1 *2 *3 *1) (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3023 (*1 *2 *3 *1) (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3022 (*1 *2 *2 *1) (-12 (-5 *2 (-599 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)))) (-3021 (*1 *2 *2 *1) (-12 (-5 *2 (-599 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)))) (-3020 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-5 *2 (-85))))) +(-13 (-1041) (-124 |t#4|) (-568 (-599 |t#4|)) (-10 -8 (-6 -4145) (-15 -3295 ((-3 $ "failed") (-599 |t#4|))) (-15 -3294 ($ (-599 |t#4|))) (-15 -3318 (|t#3| $)) (-15 -3204 ((-599 |t#3|) $)) (-15 -3035 ((-599 |t#3|) $)) (-15 -3034 ((-85) |t#3| $)) (-15 -3033 ($ $ |t#3|)) (-15 -3032 ($ $ |t#3|)) (-15 -3031 ($ $ |t#3|)) (-15 -3030 ((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |t#3|)) (-15 -3029 ((-85) $)) (IF (|has| |t#1| (-510)) (PROGN (-15 -3028 ((-85) $)) (-15 -3027 ((-85) $ $)) (-15 -3026 ((-85) $ $)) (-15 -3025 ((-85) $)) (-15 -3024 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3023 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3022 ((-599 |t#4|) (-599 |t#4|) $)) (-15 -3021 ((-599 |t#4|) (-599 |t#4|) $)) (-15 -3020 ((-85) $))) |%noBranch|))) +(((-34) . T) ((-73) . T) ((-568 (-599 |#4|)) . T) ((-568 (-797)) . T) ((-124 |#4|) . T) ((-569 (-488)) |has| |#4| (-569 (-488))) ((-263 |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-443 |#4|) . T) ((-468 |#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-1041) . T) ((-1157) . T)) +((-3037 (((-599 |#4|) |#4| |#4|) 137 T ELT)) (-3060 (((-599 |#4|) (-599 |#4|) (-85)) 125 (|has| |#1| (-406)) ELT) (((-599 |#4|) (-599 |#4|)) 126 (|has| |#1| (-406)) ELT)) (-3047 (((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 |#4|)) 44 T ELT)) (-3046 (((-85) |#4|) 43 T ELT)) (-3059 (((-599 |#4|) |#4|) 121 (|has| |#1| (-406)) ELT)) (-3042 (((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-1 (-85) |#4|) (-599 |#4|)) 24 T ELT)) (-3043 (((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 (-1 (-85) |#4|)) (-599 |#4|)) 30 T ELT)) (-3044 (((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 (-1 (-85) |#4|)) (-599 |#4|)) 31 T ELT)) (-3055 (((-3 (-2 (|:| |bas| (-430 |#1| |#2| |#3| |#4|)) (|:| -3464 (-599 |#4|))) "failed") (-599 |#4|)) 90 T ELT)) (-3057 (((-599 |#4|) (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-3058 (((-599 |#4|) (-599 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129 T ELT)) (-3036 (((-599 |#4|) (-599 |#4|)) 128 T ELT)) (-3052 (((-599 |#4|) (-599 |#4|) (-599 |#4|) (-85)) 59 T ELT) (((-599 |#4|) (-599 |#4|) (-599 |#4|)) 61 T ELT)) (-3053 ((|#4| |#4| (-599 |#4|)) 60 T ELT)) (-3061 (((-599 |#4|) (-599 |#4|) (-599 |#4|)) 133 (|has| |#1| (-406)) ELT)) (-3063 (((-599 |#4|) (-599 |#4|) (-599 |#4|)) 136 (|has| |#1| (-406)) ELT)) (-3062 (((-599 |#4|) (-599 |#4|) (-599 |#4|)) 135 (|has| |#1| (-406)) ELT)) (-3038 (((-599 |#4|) (-599 |#4|) (-599 |#4|) (-1 (-599 |#4|) (-599 |#4|))) 105 T ELT) (((-599 |#4|) (-599 |#4|) (-599 |#4|)) 107 T ELT) (((-599 |#4|) (-599 |#4|) |#4|) 141 T ELT) (((-599 |#4|) |#4| |#4|) 138 T ELT) (((-599 |#4|) (-599 |#4|)) 106 T ELT)) (-3066 (((-599 |#4|) (-599 |#4|) (-599 |#4|)) 118 (-12 (|has| |#1| (-120)) (|has| |#1| (-261))) ELT)) (-3045 (((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 |#4|)) 52 T ELT)) (-3041 (((-85) (-599 |#4|)) 79 T ELT)) (-3040 (((-85) (-599 |#4|) (-599 (-599 |#4|))) 67 T ELT)) (-3049 (((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 |#4|)) 37 T ELT)) (-3048 (((-85) |#4|) 36 T ELT)) (-3065 (((-599 |#4|) (-599 |#4|)) 116 (-12 (|has| |#1| (-120)) (|has| |#1| (-261))) ELT)) (-3064 (((-599 |#4|) (-599 |#4|)) 117 (-12 (|has| |#1| (-120)) (|has| |#1| (-261))) ELT)) (-3054 (((-599 |#4|) (-599 |#4|)) 83 T ELT)) (-3056 (((-599 |#4|) (-599 |#4|)) 97 T ELT)) (-3039 (((-85) (-599 |#4|) (-599 |#4|)) 65 T ELT)) (-3051 (((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 |#4|)) 50 T ELT)) (-3050 (((-85) |#4|) 45 T ELT))) +(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3038 ((-599 |#4|) (-599 |#4|))) (-15 -3038 ((-599 |#4|) |#4| |#4|)) (-15 -3036 ((-599 |#4|) (-599 |#4|))) (-15 -3037 ((-599 |#4|) |#4| |#4|)) (-15 -3038 ((-599 |#4|) (-599 |#4|) |#4|)) (-15 -3038 ((-599 |#4|) (-599 |#4|) (-599 |#4|))) (-15 -3038 ((-599 |#4|) (-599 |#4|) (-599 |#4|) (-1 (-599 |#4|) (-599 |#4|)))) (-15 -3039 ((-85) (-599 |#4|) (-599 |#4|))) (-15 -3040 ((-85) (-599 |#4|) (-599 (-599 |#4|)))) (-15 -3041 ((-85) (-599 |#4|))) (-15 -3042 ((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-1 (-85) |#4|) (-599 |#4|))) (-15 -3043 ((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 (-1 (-85) |#4|)) (-599 |#4|))) (-15 -3044 ((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 (-1 (-85) |#4|)) (-599 |#4|))) (-15 -3045 ((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 |#4|))) (-15 -3046 ((-85) |#4|)) (-15 -3047 ((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 |#4|))) (-15 -3048 ((-85) |#4|)) (-15 -3049 ((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 |#4|))) (-15 -3050 ((-85) |#4|)) (-15 -3051 ((-2 (|:| |goodPols| (-599 |#4|)) (|:| |badPols| (-599 |#4|))) (-599 |#4|))) (-15 -3052 ((-599 |#4|) (-599 |#4|) (-599 |#4|))) (-15 -3052 ((-599 |#4|) (-599 |#4|) (-599 |#4|) (-85))) (-15 -3053 (|#4| |#4| (-599 |#4|))) (-15 -3054 ((-599 |#4|) (-599 |#4|))) (-15 -3055 ((-3 (-2 (|:| |bas| (-430 |#1| |#2| |#3| |#4|)) (|:| -3464 (-599 |#4|))) "failed") (-599 |#4|))) (-15 -3056 ((-599 |#4|) (-599 |#4|))) (-15 -3057 ((-599 |#4|) (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3058 ((-599 |#4|) (-599 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-406)) (PROGN (-15 -3059 ((-599 |#4|) |#4|)) (-15 -3060 ((-599 |#4|) (-599 |#4|))) (-15 -3060 ((-599 |#4|) (-599 |#4|) (-85))) (-15 -3061 ((-599 |#4|) (-599 |#4|) (-599 |#4|))) (-15 -3062 ((-599 |#4|) (-599 |#4|) (-599 |#4|))) (-15 -3063 ((-599 |#4|) (-599 |#4|) (-599 |#4|)))) |%noBranch|) (IF (|has| |#1| (-261)) (IF (|has| |#1| (-120)) (PROGN (-15 -3064 ((-599 |#4|) (-599 |#4|))) (-15 -3065 ((-599 |#4|) (-599 |#4|))) (-15 -3066 ((-599 |#4|) (-599 |#4|) (-599 |#4|)))) |%noBranch|) |%noBranch|)) (-510) (-738) (-781) (-1005 |#1| |#2| |#3|)) (T -917)) +((-3066 (*1 *2 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-261)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3065 (*1 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-261)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3064 (*1 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-261)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3063 (*1 *2 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-406)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3062 (*1 *2 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-406)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3061 (*1 *2 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-406)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3060 (*1 *2 *2 *3) (-12 (-5 *2 (-599 *7)) (-5 *3 (-85)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3060 (*1 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-406)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3059 (*1 *2 *3) (-12 (-4 *4 (-406)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6)))) (-3058 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-599 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-917 *5 *6 *7 *8)))) (-3057 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-599 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1005 *6 *7 *8)) (-4 *6 (-510)) (-4 *7 (-738)) (-4 *8 (-781)) (-5 *1 (-917 *6 *7 *8 *9)))) (-3056 (*1 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3055 (*1 *2 *3) (|partial| -12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-430 *4 *5 *6 *7)) (|:| -3464 (-599 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-599 *7)))) (-3054 (*1 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3053 (*1 *2 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-917 *4 *5 *6 *2)))) (-3052 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-599 *7)) (-5 *3 (-85)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3052 (*1 *2 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3051 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-599 *7)) (|:| |badPols| (-599 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-599 *7)))) (-3050 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6)))) (-3049 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-599 *7)) (|:| |badPols| (-599 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-599 *7)))) (-3048 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6)))) (-3047 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-599 *7)) (|:| |badPols| (-599 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-599 *7)))) (-3046 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6)))) (-3045 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-599 *7)) (|:| |badPols| (-599 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-599 *7)))) (-3044 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-1 (-85) *8))) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-2 (|:| |goodPols| (-599 *8)) (|:| |badPols| (-599 *8)))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-599 *8)))) (-3043 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-1 (-85) *8))) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-2 (|:| |goodPols| (-599 *8)) (|:| |badPols| (-599 *8)))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-599 *8)))) (-3042 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-2 (|:| |goodPols| (-599 *8)) (|:| |badPols| (-599 *8)))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-599 *8)))) (-3041 (*1 *2 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3040 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-599 *8))) (-5 *3 (-599 *8)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-85)) (-5 *1 (-917 *5 *6 *7 *8)))) (-3039 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3038 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-599 *7) (-599 *7))) (-5 *2 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3038 (*1 *2 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3038 (*1 *2 *2 *3) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-917 *4 *5 *6 *3)))) (-3037 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6)))) (-3036 (*1 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3038 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6)))) (-3038 (*1 *2 *2) (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6))))) +((-3067 (((-2 (|:| R (-647 |#1|)) (|:| A (-647 |#1|)) (|:| |Ainv| (-647 |#1|))) (-647 |#1|) (-70 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-3069 (((-599 (-2 (|:| C (-647 |#1|)) (|:| |g| (-1207 |#1|)))) (-647 |#1|) (-1207 |#1|)) 45 T ELT)) (-3068 (((-647 |#1|) (-647 |#1|) (-647 |#1|) (-70 |#1|) (-1 |#1| |#1|)) 16 T ELT))) +(((-918 |#1|) (-10 -7 (-15 -3067 ((-2 (|:| R (-647 |#1|)) (|:| A (-647 |#1|)) (|:| |Ainv| (-647 |#1|))) (-647 |#1|) (-70 |#1|) (-1 |#1| |#1|))) (-15 -3068 ((-647 |#1|) (-647 |#1|) (-647 |#1|) (-70 |#1|) (-1 |#1| |#1|))) (-15 -3069 ((-599 (-2 (|:| C (-647 |#1|)) (|:| |g| (-1207 |#1|)))) (-647 |#1|) (-1207 |#1|)))) (-318)) (T -918)) +((-3069 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-5 *2 (-599 (-2 (|:| C (-647 *5)) (|:| |g| (-1207 *5))))) (-5 *1 (-918 *5)) (-5 *3 (-647 *5)) (-5 *4 (-1207 *5)))) (-3068 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-647 *5)) (-5 *3 (-70 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-318)) (-5 *1 (-918 *5)))) (-3067 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-70 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-318)) (-5 *2 (-2 (|:| R (-647 *6)) (|:| A (-647 *6)) (|:| |Ainv| (-647 *6)))) (-5 *1 (-918 *6)) (-5 *3 (-647 *6))))) +((-4121 (((-359 |#4|) |#4|) 61 T ELT))) +(((-919 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4121 ((-359 |#4|) |#4|))) (-781) (-738) (-406) (-888 |#3| |#2| |#1|)) (T -919)) +((-4121 (*1 *2 *3) (-12 (-4 *4 (-781)) (-4 *5 (-738)) (-4 *6 (-406)) (-5 *2 (-359 *3)) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-888 *6 *5 *4))))) +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3988 (($ (-714)) 121 (|has| |#1| (-23)) ELT)) (-2299 (((-1213) $ (-499) (-499)) 44 (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -4146)) ELT) (($ $) 97 (-12 (|has| |#1| (-781)) (|has| $ (-6 -4146))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-781)) ELT)) (-3938 ((|#1| $ (-499) |#1|) 56 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) 64 (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-2397 (($ $) 99 (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) 109 T ELT)) (-1386 (($ $) 84 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#1| $) 83 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) 57 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 55 T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) 106 T ELT) (((-499) |#1| $) 105 (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) 104 (|has| |#1| (-1041)) ELT)) (-3856 (($ (-599 |#1|)) 127 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3985 (((-647 |#1|) $ $) 114 (|has| |#1| (-989)) ELT)) (-3764 (($ (-714) |#1|) 74 T ELT)) (-2301 (((-499) $) 47 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) 91 (|has| |#1| (-781)) ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 48 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) 92 (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3982 ((|#1| $) 111 (-12 (|has| |#1| (-989)) (|has| |#1| (-942))) ELT)) (-3983 ((|#1| $) 112 (-12 (|has| |#1| (-989)) (|has| |#1| (-942))) ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) 66 T ELT) (($ $ $ (-499)) 65 T ELT)) (-2304 (((-599 (-499)) $) 50 T ELT)) (-2305 (((-85) (-499) $) 51 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) 46 (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2300 (($ $ |#1|) 45 (|has| $ (-6 -4146)) ELT)) (-3919 (($ $ (-599 |#1|)) 125 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) 52 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ (-499) |#1|) 54 T ELT) ((|#1| $ (-499)) 53 T ELT) (($ $ (-1174 (-499))) 75 T ELT)) (-3986 ((|#1| $ $) 115 (|has| |#1| (-989)) ELT)) (-4061 (((-857) $) 126 T ELT)) (-2405 (($ $ (-499)) 68 T ELT) (($ $ (-1174 (-499))) 67 T ELT)) (-3984 (($ $ $) 113 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-1824 (($ $ $ (-499)) 100 (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 85 (|has| |#1| (-569 (-488))) ELT) (($ (-599 |#1|)) 128 T ELT)) (-3670 (($ (-599 |#1|)) 76 T ELT)) (-3952 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-599 $)) 70 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) 93 (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) 95 (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) 94 (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 96 (|has| |#1| (-781)) ELT)) (-3987 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3989 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-499) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-684)) ELT) (($ $ |#1|) 116 (|has| |#1| (-684)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-920 |#1|) (-113) (-989)) (T -920)) +((-3856 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-989)) (-4 *1 (-920 *3)))) (-4061 (*1 *2 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-989)) (-5 *2 (-857)))) (-3984 (*1 *1 *1 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-989)))) (-3919 (*1 *1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *1 (-920 *3)) (-4 *3 (-989))))) +(-13 (-1206 |t#1|) (-573 (-599 |t#1|)) (-10 -8 (-15 -3856 ($ (-599 |t#1|))) (-15 -4061 ((-857) $)) (-15 -3984 ($ $ $)) (-15 -3919 ($ $ (-599 |t#1|))))) +(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-573 (-599 |#1|)) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-240 (-499) |#1|) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-327 |#1|) . T) ((-443 |#1|) . T) ((-554 (-499) |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-609 |#1|) . T) ((-19 |#1|) . T) ((-781) |has| |#1| (-781)) ((-784) |has| |#1| (-781)) ((-1041) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781))) ((-1157) . T) ((-1206 |#1|) . T)) +((-4108 (((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)) 17 T ELT))) +(((-921 |#1| |#2|) (-10 -7 (-15 -4108 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)))) (-989) (-989)) (T -921)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-5 *2 (-881 *6)) (-5 *1 (-921 *5 *6))))) +((-3072 ((|#1| (-881 |#1|)) 14 T ELT)) (-3071 ((|#1| (-881 |#1|)) 13 T ELT)) (-3070 ((|#1| (-881 |#1|)) 12 T ELT)) (-3074 ((|#1| (-881 |#1|)) 16 T ELT)) (-3078 ((|#1| (-881 |#1|)) 24 T ELT)) (-3073 ((|#1| (-881 |#1|)) 15 T ELT)) (-3075 ((|#1| (-881 |#1|)) 17 T ELT)) (-3077 ((|#1| (-881 |#1|)) 23 T ELT)) (-3076 ((|#1| (-881 |#1|)) 22 T ELT))) +(((-922 |#1|) (-10 -7 (-15 -3070 (|#1| (-881 |#1|))) (-15 -3071 (|#1| (-881 |#1|))) (-15 -3072 (|#1| (-881 |#1|))) (-15 -3073 (|#1| (-881 |#1|))) (-15 -3074 (|#1| (-881 |#1|))) (-15 -3075 (|#1| (-881 |#1|))) (-15 -3076 (|#1| (-881 |#1|))) (-15 -3077 (|#1| (-881 |#1|))) (-15 -3078 (|#1| (-881 |#1|)))) (-989)) (T -922)) +((-3078 (*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989)))) (-3074 (*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989)))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989))))) +((-3096 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-3084 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-3094 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-3082 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-3098 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-3086 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-3079 (((-3 |#1| "failed") |#1| (-714)) 1 T ELT)) (-3081 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-3080 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-3099 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-3087 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-3097 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-3085 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-3095 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-3083 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-3102 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-3090 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-3100 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-3088 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-3104 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-3092 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-3105 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-3093 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-3103 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-3091 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-3101 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-3089 (((-3 |#1| "failed") |#1|) 11 T ELT))) +(((-923 |#1|) (-113) (-1143)) (T -923)) +((-3105 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3104 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3103 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3102 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3101 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3100 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3099 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3098 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3097 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3096 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3095 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3094 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3093 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3092 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3091 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3090 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3089 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3088 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3087 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3086 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3085 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3084 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3083 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3082 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3081 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3080 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143)))) (-3079 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-714)) (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(-13 (-10 -7 (-15 -3079 ((-3 |t#1| "failed") |t#1| (-714))) (-15 -3080 ((-3 |t#1| "failed") |t#1|)) (-15 -3081 ((-3 |t#1| "failed") |t#1|)) (-15 -3082 ((-3 |t#1| "failed") |t#1|)) (-15 -3083 ((-3 |t#1| "failed") |t#1|)) (-15 -3084 ((-3 |t#1| "failed") |t#1|)) (-15 -3085 ((-3 |t#1| "failed") |t#1|)) (-15 -3086 ((-3 |t#1| "failed") |t#1|)) (-15 -3087 ((-3 |t#1| "failed") |t#1|)) (-15 -3088 ((-3 |t#1| "failed") |t#1|)) (-15 -3089 ((-3 |t#1| "failed") |t#1|)) (-15 -3090 ((-3 |t#1| "failed") |t#1|)) (-15 -3091 ((-3 |t#1| "failed") |t#1|)) (-15 -3092 ((-3 |t#1| "failed") |t#1|)) (-15 -3093 ((-3 |t#1| "failed") |t#1|)) (-15 -3094 ((-3 |t#1| "failed") |t#1|)) (-15 -3095 ((-3 |t#1| "failed") |t#1|)) (-15 -3096 ((-3 |t#1| "failed") |t#1|)) (-15 -3097 ((-3 |t#1| "failed") |t#1|)) (-15 -3098 ((-3 |t#1| "failed") |t#1|)) (-15 -3099 ((-3 |t#1| "failed") |t#1|)) (-15 -3100 ((-3 |t#1| "failed") |t#1|)) (-15 -3101 ((-3 |t#1| "failed") |t#1|)) (-15 -3102 ((-3 |t#1| "failed") |t#1|)) (-15 -3103 ((-3 |t#1| "failed") |t#1|)) (-15 -3104 ((-3 |t#1| "failed") |t#1|)) (-15 -3105 ((-3 |t#1| "failed") |t#1|)))) +((-3107 ((|#4| |#4| (-599 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-3106 ((|#4| |#4| (-599 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-4108 ((|#4| (-1 |#4| (-884 |#1|)) |#4|) 31 T ELT))) +(((-924 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3106 (|#4| |#4| |#3|)) (-15 -3106 (|#4| |#4| (-599 |#3|))) (-15 -3107 (|#4| |#4| |#3|)) (-15 -3107 (|#4| |#4| (-599 |#3|))) (-15 -4108 (|#4| (-1 |#4| (-884 |#1|)) |#4|))) (-989) (-738) (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ "failed") (-1117))))) (-888 (-884 |#1|) |#2| |#3|)) (T -924)) +((-4108 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-884 *4))) (-4 *4 (-989)) (-4 *2 (-888 (-884 *4) *5 *6)) (-4 *5 (-738)) (-4 *6 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ #1="failed") (-1117)))))) (-5 *1 (-924 *4 *5 *6 *2)))) (-3107 (*1 *2 *2 *3) (-12 (-5 *3 (-599 *6)) (-4 *6 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ #1#) (-1117)))))) (-4 *4 (-989)) (-4 *5 (-738)) (-5 *1 (-924 *4 *5 *6 *2)) (-4 *2 (-888 (-884 *4) *5 *6)))) (-3107 (*1 *2 *2 *3) (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ #1#) (-1117)))))) (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-888 (-884 *4) *5 *3)))) (-3106 (*1 *2 *2 *3) (-12 (-5 *3 (-599 *6)) (-4 *6 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ #1#) (-1117)))))) (-4 *4 (-989)) (-4 *5 (-738)) (-5 *1 (-924 *4 *5 *6 *2)) (-4 *2 (-888 (-884 *4) *5 *6)))) (-3106 (*1 *2 *2 *3) (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ #1#) (-1117)))))) (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-888 (-884 *4) *5 *3))))) +((-3108 ((|#2| |#3|) 35 T ELT)) (-4069 (((-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|))) |#2|) 79 T ELT)) (-4068 (((-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|)))) 100 T ELT))) +(((-925 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4068 ((-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|))))) (-15 -4069 ((-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|))) |#2|)) (-15 -3108 (|#2| |#3|))) (-305) (-1183 |#1|) (-1183 |#2|) (-682 |#2| |#3|)) (T -925)) +((-3108 (*1 *2 *3) (-12 (-4 *3 (-1183 *2)) (-4 *2 (-1183 *4)) (-5 *1 (-925 *4 *2 *3 *5)) (-4 *4 (-305)) (-4 *5 (-682 *2 *3)))) (-4069 (*1 *2 *3) (-12 (-4 *4 (-305)) (-4 *3 (-1183 *4)) (-4 *5 (-1183 *3)) (-5 *2 (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) (-5 *1 (-925 *4 *3 *5 *6)) (-4 *6 (-682 *3 *5)))) (-4068 (*1 *2) (-12 (-4 *3 (-305)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 *4)) (-5 *2 (-2 (|:| -2113 (-647 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-647 *4)))) (-5 *1 (-925 *3 *4 *5 *6)) (-4 *6 (-682 *4 *5))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3541 (((-3 (-85) #1="failed") $) 71 T ELT)) (-3799 (($ $) 36 (-12 (|has| |#1| (-120)) (|has| |#1| (-261))) ELT)) (-3112 (($ $ (-3 (-85) #1#)) 72 T ELT)) (-3113 (($ (-599 |#4|) |#4|) 25 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3109 (($ $) 69 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3543 (((-85) $) 70 T ELT)) (-3713 (($) 30 T ELT)) (-3110 ((|#4| $) 74 T ELT)) (-3111 (((-599 |#4|) $) 73 T ELT)) (-4096 (((-797) $) 68 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-926 |#1| |#2| |#3| |#4|) (-13 (-1041) (-568 (-797)) (-10 -8 (-15 -3713 ($)) (-15 -3113 ($ (-599 |#4|) |#4|)) (-15 -3541 ((-3 (-85) #1="failed") $)) (-15 -3112 ($ $ (-3 (-85) #1#))) (-15 -3543 ((-85) $)) (-15 -3111 ((-599 |#4|) $)) (-15 -3110 (|#4| $)) (-15 -3109 ($ $)) (IF (|has| |#1| (-261)) (IF (|has| |#1| (-120)) (-15 -3799 ($ $)) |%noBranch|) |%noBranch|))) (-406) (-781) (-738) (-888 |#1| |#3| |#2|)) (T -926)) +((-3713 (*1 *1) (-12 (-4 *2 (-406)) (-4 *3 (-781)) (-4 *4 (-738)) (-5 *1 (-926 *2 *3 *4 *5)) (-4 *5 (-888 *2 *4 *3)))) (-3113 (*1 *1 *2 *3) (-12 (-5 *2 (-599 *3)) (-4 *3 (-888 *4 *6 *5)) (-4 *4 (-406)) (-4 *5 (-781)) (-4 *6 (-738)) (-5 *1 (-926 *4 *5 *6 *3)))) (-3541 (*1 *2 *1) (|partial| -12 (-4 *3 (-406)) (-4 *4 (-781)) (-4 *5 (-738)) (-5 *2 (-85)) (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4)))) (-3112 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-406)) (-4 *4 (-781)) (-4 *5 (-738)) (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4)))) (-3543 (*1 *2 *1) (-12 (-4 *3 (-406)) (-4 *4 (-781)) (-4 *5 (-738)) (-5 *2 (-85)) (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4)))) (-3111 (*1 *2 *1) (-12 (-4 *3 (-406)) (-4 *4 (-781)) (-4 *5 (-738)) (-5 *2 (-599 *6)) (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4)))) (-3110 (*1 *2 *1) (-12 (-4 *2 (-888 *3 *5 *4)) (-5 *1 (-926 *3 *4 *5 *2)) (-4 *3 (-406)) (-4 *4 (-781)) (-4 *5 (-738)))) (-3109 (*1 *1 *1) (-12 (-4 *2 (-406)) (-4 *3 (-781)) (-4 *4 (-738)) (-5 *1 (-926 *2 *3 *4 *5)) (-4 *5 (-888 *2 *4 *3)))) (-3799 (*1 *1 *1) (-12 (-4 *2 (-120)) (-4 *2 (-261)) (-4 *2 (-406)) (-4 *3 (-781)) (-4 *4 (-738)) (-5 *1 (-926 *2 *3 *4 *5)) (-4 *5 (-888 *2 *4 *3))))) +((-3114 (((-926 (-361 (-499)) (-798 |#1|) (-196 |#2| (-714)) (-205 |#1| (-361 (-499)))) (-926 (-361 (-499)) (-798 |#1|) (-196 |#2| (-714)) (-205 |#1| (-361 (-499))))) 82 T ELT))) +(((-927 |#1| |#2|) (-10 -7 (-15 -3114 ((-926 (-361 (-499)) (-798 |#1|) (-196 |#2| (-714)) (-205 |#1| (-361 (-499)))) (-926 (-361 (-499)) (-798 |#1|) (-196 |#2| (-714)) (-205 |#1| (-361 (-499))))))) (-599 (-1117)) (-714)) (T -927)) +((-3114 (*1 *2 *2) (-12 (-5 *2 (-926 (-361 (-499)) (-798 *3) (-196 *4 (-714)) (-205 *3 (-361 (-499))))) (-14 *3 (-599 (-1117))) (-14 *4 (-714)) (-5 *1 (-927 *3 *4))))) +((-3408 (((-85) |#5| |#5|) 44 T ELT)) (-3411 (((-85) |#5| |#5|) 59 T ELT)) (-3416 (((-85) |#5| (-599 |#5|)) 81 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3412 (((-85) (-599 |#4|) (-599 |#4|)) 65 T ELT)) (-3418 (((-85) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|)) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) 70 T ELT)) (-3407 (((-1213)) 32 T ELT)) (-3406 (((-1213) (-1099) (-1099) (-1099)) 28 T ELT)) (-3417 (((-599 |#5|) (-599 |#5|)) 100 T ELT)) (-3419 (((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|)))) 92 T ELT)) (-3420 (((-599 (-2 (|:| -3404 (-599 |#4|)) (|:| -1633 |#5|) (|:| |ineq| (-599 |#4|)))) (-599 |#4|) (-599 |#5|) (-85) (-85)) 122 T ELT)) (-3410 (((-85) |#5| |#5|) 53 T ELT)) (-3415 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3413 (((-85) (-599 |#4|) (-599 |#4|)) 64 T ELT)) (-3414 (((-85) (-599 |#4|) (-599 |#4|)) 66 T ELT)) (-3849 (((-85) (-599 |#4|) (-599 |#4|)) 67 T ELT)) (-3421 (((-3 (-2 (|:| -3404 (-599 |#4|)) (|:| -1633 |#5|) (|:| |ineq| (-599 |#4|))) #1#) (-599 |#4|) |#5| (-599 |#4|) (-85) (-85) (-85) (-85) (-85)) 117 T ELT)) (-3409 (((-599 |#5|) (-599 |#5|)) 49 T ELT))) +(((-928 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3406 ((-1213) (-1099) (-1099) (-1099))) (-15 -3407 ((-1213))) (-15 -3408 ((-85) |#5| |#5|)) (-15 -3409 ((-599 |#5|) (-599 |#5|))) (-15 -3410 ((-85) |#5| |#5|)) (-15 -3411 ((-85) |#5| |#5|)) (-15 -3412 ((-85) (-599 |#4|) (-599 |#4|))) (-15 -3413 ((-85) (-599 |#4|) (-599 |#4|))) (-15 -3414 ((-85) (-599 |#4|) (-599 |#4|))) (-15 -3849 ((-85) (-599 |#4|) (-599 |#4|))) (-15 -3415 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3416 ((-85) |#5| |#5|)) (-15 -3416 ((-85) |#5| (-599 |#5|))) (-15 -3417 ((-599 |#5|) (-599 |#5|))) (-15 -3418 ((-85) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|)) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|)))) (-15 -3419 ((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) (-15 -3420 ((-599 (-2 (|:| -3404 (-599 |#4|)) (|:| -1633 |#5|) (|:| |ineq| (-599 |#4|)))) (-599 |#4|) (-599 |#5|) (-85) (-85))) (-15 -3421 ((-3 (-2 (|:| -3404 (-599 |#4|)) (|:| -1633 |#5|) (|:| |ineq| (-599 |#4|))) #1#) (-599 |#4|) |#5| (-599 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-406) (-738) (-781) (-1005 |#1| |#2| |#3|) (-1011 |#1| |#2| |#3| |#4|)) (T -928)) +((-3421 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *9 (-1005 *6 *7 *8)) (-5 *2 (-2 (|:| -3404 (-599 *9)) (|:| -1633 *4) (|:| |ineq| (-599 *9)))) (-5 *1 (-928 *6 *7 *8 *9 *4)) (-5 *3 (-599 *9)) (-4 *4 (-1011 *6 *7 *8 *9)))) (-3420 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-599 *10)) (-5 *5 (-85)) (-4 *10 (-1011 *6 *7 *8 *9)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *9 (-1005 *6 *7 *8)) (-5 *2 (-599 (-2 (|:| -3404 (-599 *9)) (|:| -1633 *10) (|:| |ineq| (-599 *9))))) (-5 *1 (-928 *6 *7 *8 *9 *10)) (-5 *3 (-599 *9)))) (-3419 (*1 *2 *2) (-12 (-5 *2 (-599 (-2 (|:| |val| (-599 *6)) (|:| -1633 *7)))) (-4 *6 (-1005 *3 *4 *5)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-928 *3 *4 *5 *6 *7)))) (-3418 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-599 *7)) (|:| -1633 *8))) (-4 *7 (-1005 *4 *5 *6)) (-4 *8 (-1011 *4 *5 *6 *7)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *8)))) (-3417 (*1 *2 *2) (-12 (-5 *2 (-599 *7)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *1 (-928 *3 *4 *5 *6 *7)))) (-3416 (*1 *2 *3 *4) (-12 (-5 *4 (-599 *3)) (-4 *3 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-1005 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-928 *5 *6 *7 *8 *3)))) (-3416 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) (-3415 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) (-3849 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7)))) (-3414 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7)))) (-3413 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7)))) (-3412 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7)))) (-3411 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) (-3410 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) (-3409 (*1 *2 *2) (-12 (-5 *2 (-599 *7)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *1 (-928 *3 *4 *5 *6 *7)))) (-3408 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) (-3407 (*1 *2) (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-1213)) (-5 *1 (-928 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6)))) (-3406 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7))))) +((-3981 (((-1117) $) 15 T ELT)) (-3542 (((-1099) $) 16 T ELT)) (-3364 (($ (-1117) (-1099)) 14 T ELT)) (-4096 (((-797) $) 13 T ELT))) +(((-929) (-13 (-568 (-797)) (-10 -8 (-15 -3364 ($ (-1117) (-1099))) (-15 -3981 ((-1117) $)) (-15 -3542 ((-1099) $))))) (T -929)) +((-3364 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1099)) (-5 *1 (-929)))) (-3981 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-929)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-929))))) +((-3295 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1117) #1#) $) 72 T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 (-499) #1#) $) 102 T ELT)) (-3294 ((|#2| $) NIL T ELT) (((-1117) $) 67 T ELT) (((-361 (-499)) $) NIL T ELT) (((-499) $) 99 T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) 121 T ELT) (((-647 |#2|) (-647 $)) 35 T ELT)) (-3115 (($) 105 T ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 82 T ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 91 T ELT)) (-3117 (($ $) 10 T ELT)) (-3585 (((-649 $) $) 27 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3586 (($) 16 T ELT)) (-3250 (($ $) 61 T ELT)) (-3908 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1117)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3116 (($ $) 12 T ELT)) (-4122 (((-825 (-499)) $) 77 T ELT) (((-825 (-333)) $) 86 T ELT) (((-488) $) 47 T ELT) (((-333) $) 51 T ELT) (((-179) $) 55 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1117)) 64 T ELT)) (-3248 (((-714)) 38 T ELT)) (-2806 (((-85) $ $) 57 T ELT))) +(((-930 |#1| |#2|) (-10 -7 (-15 -2806 ((-85) |#1| |#1|)) (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117))) (-15 -3586 (|#1|)) (-15 -3585 ((-649 |#1|) |#1|)) (-15 -3295 ((-3 (-499) #1="failed") |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -4122 ((-179) |#1|)) (-15 -4122 ((-333) |#1|)) (-15 -4122 ((-488) |#1|)) (-15 -4096 (|#1| (-1117))) (-15 -3295 ((-3 (-1117) #1#) |#1|)) (-15 -3294 ((-1117) |#1|)) (-15 -3115 (|#1|)) (-15 -3250 (|#1| |#1|)) (-15 -3116 (|#1| |#1|)) (-15 -3117 (|#1| |#1|)) (-15 -2917 ((-823 (-333) |#1|) |#1| (-825 (-333)) (-823 (-333) |#1|))) (-15 -2917 ((-823 (-499) |#1|) |#1| (-825 (-499)) (-823 (-499) |#1|))) (-15 -4122 ((-825 (-333)) |#1|)) (-15 -4122 ((-825 (-499)) |#1|)) (-15 -2380 ((-647 |#2|) (-647 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 |#1|) (-1207 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 |#1|) (-1207 |#1|))) (-15 -2380 ((-647 (-499)) (-647 |#1|))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|) (-714))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4108 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -4096 (|#1| |#2|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -4096 (|#1| |#1|)) (-15 -3248 ((-714))) (-15 -4096 (|#1| (-499))) (-15 -4096 ((-797) |#1|))) (-931 |#2|) (-510)) (T -930)) +((-3248 (*1 *2) (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-930 *3 *4)) (-4 *3 (-931 *4))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3251 ((|#1| $) 170 (|has| |#1| (-261)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 161 (|has| |#1| (-848)) ELT)) (-3925 (($ $) 88 T ELT)) (-4121 (((-359 $) $) 87 T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1="failed") (-599 (-1111 $)) (-1111 $)) 164 (|has| |#1| (-848)) ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3773 (((-499) $) 151 (|has| |#1| (-763)) ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#1| #2="failed") $) 200 T ELT) (((-3 (-1117) #2#) $) 159 (|has| |#1| (-978 (-1117))) ELT) (((-3 (-361 (-499)) #2#) $) 142 (|has| |#1| (-978 (-499))) ELT) (((-3 (-499) #2#) $) 140 (|has| |#1| (-978 (-499))) ELT)) (-3294 ((|#1| $) 201 T ELT) (((-1117) $) 160 (|has| |#1| (-978 (-1117))) ELT) (((-361 (-499)) $) 143 (|has| |#1| (-978 (-499))) ELT) (((-499) $) 141 (|has| |#1| (-978 (-499))) ELT)) (-2683 (($ $ $) 68 T ELT)) (-2380 (((-647 (-499)) (-647 $)) 185 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 184 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 183 T ELT) (((-647 |#1|) (-647 $)) 182 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3115 (($) 168 (|has| |#1| (-498)) ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-3873 (((-85) $) 86 T ELT)) (-3324 (((-85) $) 153 (|has| |#1| (-763)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 177 (|has| |#1| (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 176 (|has| |#1| (-821 (-333))) ELT)) (-2528 (((-85) $) 40 T ELT)) (-3117 (($ $) 172 T ELT)) (-3119 ((|#1| $) 174 T ELT)) (-3585 (((-649 $) $) 139 (|has| |#1| (-1092)) ELT)) (-3325 (((-85) $) 152 (|has| |#1| (-763)) ELT)) (-1675 (((-3 (-599 $) #3="failed") (-599 $) $) 65 T ELT)) (-2650 (($ $ $) 144 (|has| |#1| (-781)) ELT)) (-2978 (($ $ $) 145 (|has| |#1| (-781)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 192 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 187 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 186 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 181 T ELT) (((-647 |#1|) (-1207 $)) 180 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 85 T ELT)) (-3586 (($) 138 (|has| |#1| (-1092)) CONST)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3250 (($ $) 169 (|has| |#1| (-261)) ELT)) (-3252 ((|#1| $) 166 (|has| |#1| (-498)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 163 (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 162 (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) 89 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-3918 (($ $ (-599 |#1|) (-599 |#1|)) 198 (|has| |#1| (-263 |#1|)) ELT) (($ $ |#1| |#1|) 197 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-247 |#1|)) 196 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-247 |#1|))) 195 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) 194 (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-1117) |#1|) 193 (|has| |#1| (-468 (-1117) |#1|)) ELT)) (-1677 (((-714) $) 71 T ELT)) (-3950 (($ $ |#1|) 199 (|has| |#1| (-240 |#1| |#1|)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-3908 (($ $ (-1 |#1| |#1|)) 191 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 190 T ELT) (($ $) 137 (|has| |#1| (-189)) ELT) (($ $ (-714)) 135 (|has| |#1| (-189)) ELT) (($ $ (-1117)) 133 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 131 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 130 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 129 (|has| |#1| (-838 (-1117))) ELT)) (-3116 (($ $) 171 T ELT)) (-3118 ((|#1| $) 173 T ELT)) (-4122 (((-825 (-499)) $) 179 (|has| |#1| (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) 178 (|has| |#1| (-569 (-825 (-333)))) ELT) (((-488) $) 156 (|has| |#1| (-569 (-488))) ELT) (((-333) $) 155 (|has| |#1| (-960)) ELT) (((-179) $) 154 (|has| |#1| (-960)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) 165 (-2681 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-361 (-499))) 81 T ELT) (($ |#1|) 204 T ELT) (($ (-1117)) 158 (|has| |#1| (-978 (-1117))) ELT)) (-2823 (((-649 $) $) 157 (-3677 (|has| |#1| (-118)) (-2681 (|has| $ (-118)) (|has| |#1| (-848)))) ELT)) (-3248 (((-714)) 37 T CONST)) (-3253 ((|#1| $) 167 (|has| |#1| (-498)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-3523 (($ $) 150 (|has| |#1| (-763)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1 |#1| |#1|)) 189 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 188 T ELT) (($ $) 136 (|has| |#1| (-189)) ELT) (($ $ (-714)) 134 (|has| |#1| (-189)) ELT) (($ $ (-1117)) 132 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 128 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 127 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 126 (|has| |#1| (-838 (-1117))) ELT)) (-2685 (((-85) $ $) 146 (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) 148 (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 147 (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 149 (|has| |#1| (-781)) ELT)) (-4099 (($ $ $) 80 T ELT) (($ |#1| |#1|) 175 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 84 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 83 T ELT) (($ (-361 (-499)) $) 82 T ELT) (($ |#1| $) 203 T ELT) (($ $ |#1|) 202 T ELT))) +(((-931 |#1|) (-113) (-510)) (T -931)) +((-4099 (*1 *1 *2 *2) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)))) (-3117 (*1 *1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)))) (-3116 (*1 *1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)))) (-3251 (*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)) (-4 *2 (-261)))) (-3250 (*1 *1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)) (-4 *2 (-261)))) (-3115 (*1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-498)) (-4 *2 (-510)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)) (-4 *2 (-498)))) (-3252 (*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)) (-4 *2 (-498))))) +(-13 (-318) (-38 |t#1|) (-978 |t#1|) (-293 |t#1|) (-184 |t#1|) (-332 |t#1|) (-819 |t#1|) (-354 |t#1|) (-10 -8 (-15 -4099 ($ |t#1| |t#1|)) (-15 -3119 (|t#1| $)) (-15 -3118 (|t#1| $)) (-15 -3117 ($ $)) (-15 -3116 ($ $)) (IF (|has| |t#1| (-1092)) (-6 (-1092)) |%noBranch|) (IF (|has| |t#1| (-978 (-499))) (PROGN (-6 (-978 (-499))) (-6 (-978 (-361 (-499))))) |%noBranch|) (IF (|has| |t#1| (-781)) (-6 (-781)) |%noBranch|) (IF (|has| |t#1| (-763)) (-6 (-763)) |%noBranch|) (IF (|has| |t#1| (-960)) (-6 (-960)) |%noBranch|) (IF (|has| |t#1| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-978 (-1117))) (-6 (-978 (-1117))) |%noBranch|) (IF (|has| |t#1| (-261)) (PROGN (-15 -3251 (|t#1| $)) (-15 -3250 ($ $))) |%noBranch|) (IF (|has| |t#1| (-498)) (PROGN (-15 -3115 ($)) (-15 -3253 (|t#1| $)) (-15 -3252 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-848)) (-6 (-848)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-571 (-1117)) |has| |#1| (-978 (-1117))) ((-571 |#1|) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-569 (-179)) |has| |#1| (-960)) ((-569 (-333)) |has| |#1| (-960)) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-569 (-825 (-333))) |has| |#1| (-569 (-825 (-333)))) ((-569 (-825 (-499))) |has| |#1| (-569 (-825 (-499)))) ((-186 $) -3677 (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) -3677 (|has| |#1| (-189)) (|has| |#1| (-190))) ((-224 |#1|) . T) ((-200) . T) ((-240 |#1| $) |has| |#1| (-240 |#1| |#1|)) ((-244) . T) ((-261) . T) ((-263 |#1|) |has| |#1| (-263 |#1|)) ((-318) . T) ((-293 |#1|) . T) ((-332 |#1|) . T) ((-354 |#1|) . T) ((-406) . T) ((-468 (-1117) |#1|) |has| |#1| (-468 (-1117) |#1|)) ((-468 |#1| |#1|) |has| |#1| (-263 |#1|)) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 (-499)) |has| |#1| (-596 (-499))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 |#1|) . T) ((-598 $) . T) ((-596 (-499)) |has| |#1| (-596 (-499))) ((-596 |#1|) . T) ((-675 (-361 (-499))) . T) ((-675 |#1|) . T) ((-675 $) . T) ((-684) . T) ((-735) |has| |#1| (-763)) ((-737) |has| |#1| (-763)) ((-739) |has| |#1| (-763)) ((-742) |has| |#1| (-763)) ((-763) |has| |#1| (-763)) ((-780) |has| |#1| (-763)) ((-781) -3677 (|has| |#1| (-781)) (|has| |#1| (-763))) ((-784) -3677 (|has| |#1| (-781)) (|has| |#1| (-763))) ((-831 $ (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-836 (-1117)) |has| |#1| (-836 (-1117))) ((-838 (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-821 (-333)) |has| |#1| (-821 (-333))) ((-821 (-499)) |has| |#1| (-821 (-499))) ((-819 |#1|) . T) ((-848) |has| |#1| (-848)) ((-859) . T) ((-960) |has| |#1| (-960)) ((-978 (-361 (-499))) |has| |#1| (-978 (-499))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 (-1117)) |has| |#1| (-978 (-1117))) ((-978 |#1|) . T) ((-991 (-361 (-499))) . T) ((-991 |#1|) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 |#1|) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1092) |has| |#1| (-1092)) ((-1157) . T) ((-1162) . T)) +((-4108 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) +(((-932 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4108 (|#4| (-1 |#2| |#1|) |#3|))) (-510) (-510) (-931 |#1|) (-931 |#2|)) (T -932)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-510)) (-4 *6 (-510)) (-4 *2 (-931 *6)) (-5 *1 (-932 *5 *6 *4 *2)) (-4 *4 (-931 *5))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ "failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3120 (($ (-1082 |#1| |#2|)) 11 T ELT)) (-3246 (((-1082 |#1| |#2|) $) 12 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3950 ((|#2| $ (-196 |#1| |#2|)) 16 T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT))) +(((-933 |#1| |#2|) (-13 (-21) (-240 (-196 |#1| |#2|) |#2|) (-10 -8 (-15 -3120 ($ (-1082 |#1| |#2|))) (-15 -3246 ((-1082 |#1| |#2|) $)))) (-857) (-318)) (T -933)) +((-3120 (*1 *1 *2) (-12 (-5 *2 (-1082 *3 *4)) (-14 *3 (-857)) (-4 *4 (-318)) (-5 *1 (-933 *3 *4)))) (-3246 (*1 *2 *1) (-12 (-5 *2 (-1082 *3 *4)) (-5 *1 (-933 *3 *4)) (-14 *3 (-857)) (-4 *4 (-318))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3344 (((-1075) $) 9 T ELT)) (-4096 (((-797) $) 15 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-934) (-13 (-1023) (-10 -8 (-15 -3344 ((-1075) $))))) (T -934)) +((-3344 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-934))))) +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3874 (($) 7 T CONST)) (-3123 (($ $) 50 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3983 (((-714) $) 49 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 43 T ELT)) (-3757 (($ |#1| $) 44 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3122 ((|#1| $) 48 T ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3125 ((|#1| |#1| $) 52 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3124 ((|#1| $) 51 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-3121 ((|#1| $) 47 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-935 |#1|) (-113) (-1157)) (T -935)) +((-3125 (*1 *2 *2 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1157)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1157)))) (-3123 (*1 *1 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1157)))) (-3983 (*1 *2 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1157)) (-5 *2 (-714)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1157)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1157))))) +(-13 (-78 |t#1|) (-10 -8 (-6 -4145) (-15 -3125 (|t#1| |t#1| $)) (-15 -3124 (|t#1| $)) (-15 -3123 ($ $)) (-15 -3983 ((-714) $)) (-15 -3122 (|t#1| $)) (-15 -3121 (|t#1| $)))) +(((-34) . T) ((-78 |#1|) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3793 ((|#1| $) 12 T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-498)) ELT)) (-3144 (((-85) $) NIL (|has| |#1| (-498)) ELT)) (-3143 (((-361 (-499)) $) NIL (|has| |#1| (-498)) ELT)) (-3126 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3254 ((|#1| $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3127 ((|#1| $) 15 T ELT)) (-3128 ((|#1| $) 14 T ELT)) (-3129 ((|#1| $) 13 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3918 (($ $ (-599 |#1|) (-599 |#1|)) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-247 |#1|)) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-247 |#1|))) NIL (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) NIL (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-1117) |#1|) NIL (|has| |#1| (-468 (-1117) |#1|)) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-240 |#1| |#1|)) ELT)) (-3908 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3130 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-318)) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3523 ((|#1| $) NIL (|has| |#1| (-1000)) ELT)) (-2779 (($) 8 T CONST)) (-2785 (($) 10 T CONST)) (-2790 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-318)) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-318)) ELT))) +(((-936 |#1|) (-938 |#1|) (-146)) (T -936)) +NIL +((-3326 (((-85) $) 43 T ELT)) (-3295 (((-3 (-499) #1="failed") $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3294 (((-499) $) NIL T ELT) (((-361 (-499)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) 78 T ELT)) (-3144 (((-85) $) 72 T ELT)) (-3143 (((-361 (-499)) $) 76 T ELT)) (-2528 (((-85) $) 42 T ELT)) (-3254 ((|#2| $) 22 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2601 (($ $) 58 T ELT)) (-3908 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1117)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-4122 (((-488) $) 67 T ELT)) (-3130 (($ $) 17 T ELT)) (-4096 (((-797) $) 53 T ELT) (($ (-499)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-361 (-499))) NIL T ELT)) (-3248 (((-714)) 10 T ELT)) (-3523 ((|#2| $) 71 T ELT)) (-3174 (((-85) $ $) 26 T ELT)) (-2806 (((-85) $ $) 69 T ELT)) (-3987 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3989 (($ $ $) 27 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT))) +(((-937 |#1| |#2|) (-10 -7 (-15 -4096 (|#1| (-361 (-499)))) (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117))) (-15 -2806 ((-85) |#1| |#1|)) (-15 * (|#1| (-361 (-499)) |#1|)) (-15 * (|#1| |#1| (-361 (-499)))) (-15 -2601 (|#1| |#1|)) (-15 -4122 ((-488) |#1|)) (-15 -3145 ((-3 (-361 (-499)) #1="failed") |#1|)) (-15 -3143 ((-361 (-499)) |#1|)) (-15 -3144 ((-85) |#1|)) (-15 -3523 (|#2| |#1|)) (-15 -3254 (|#2| |#1|)) (-15 -3130 (|#1| |#1|)) (-15 -4108 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|) (-714))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -4096 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3248 ((-714))) (-15 -4096 (|#1| (-499))) (-15 -2528 ((-85) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1|)) (-15 * (|#1| (-499) |#1|)) (-15 * (|#1| (-714) |#1|)) (-15 -3326 ((-85) |#1|)) (-15 * (|#1| (-857) |#1|)) (-15 -3989 (|#1| |#1| |#1|)) (-15 -4096 ((-797) |#1|)) (-15 -3174 ((-85) |#1| |#1|))) (-938 |#2|) (-146)) (T -937)) +((-3248 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-714)) (-5 *1 (-937 *3 *4)) (-4 *3 (-938 *4))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 (-499) #1="failed") $) 140 (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) 138 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) 135 T ELT)) (-3294 (((-499) $) 139 (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) 137 (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) 136 T ELT)) (-2380 (((-647 (-499)) (-647 $)) 120 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 119 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 118 T ELT) (((-647 |#1|) (-647 $)) 117 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3793 ((|#1| $) 108 T ELT)) (-3145 (((-3 (-361 (-499)) "failed") $) 104 (|has| |#1| (-498)) ELT)) (-3144 (((-85) $) 106 (|has| |#1| (-498)) ELT)) (-3143 (((-361 (-499)) $) 105 (|has| |#1| (-498)) ELT)) (-3126 (($ |#1| |#1| |#1| |#1|) 109 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3254 ((|#1| $) 110 T ELT)) (-2650 (($ $ $) 92 (|has| |#1| (-781)) ELT)) (-2978 (($ $ $) 93 (|has| |#1| (-781)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 123 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 122 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 121 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 116 T ELT) (((-647 |#1|) (-1207 $)) 115 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 101 (|has| |#1| (-318)) ELT)) (-3127 ((|#1| $) 111 T ELT)) (-3128 ((|#1| $) 112 T ELT)) (-3129 ((|#1| $) 113 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3918 (($ $ (-599 |#1|) (-599 |#1|)) 129 (|has| |#1| (-263 |#1|)) ELT) (($ $ |#1| |#1|) 128 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-247 |#1|)) 127 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-247 |#1|))) 126 (|has| |#1| (-263 |#1|)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) 125 (|has| |#1| (-468 (-1117) |#1|)) ELT) (($ $ (-1117) |#1|) 124 (|has| |#1| (-468 (-1117) |#1|)) ELT)) (-3950 (($ $ |#1|) 130 (|has| |#1| (-240 |#1| |#1|)) ELT)) (-3908 (($ $ (-1 |#1| |#1|)) 134 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 133 T ELT) (($ $) 91 (|has| |#1| (-189)) ELT) (($ $ (-714)) 89 (|has| |#1| (-189)) ELT) (($ $ (-1117)) 87 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 85 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 84 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 83 (|has| |#1| (-838 (-1117))) ELT)) (-4122 (((-488) $) 102 (|has| |#1| (-569 (-488))) ELT)) (-3130 (($ $) 114 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-361 (-499))) 79 (-3677 (|has| |#1| (-318)) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-2823 (((-649 $) $) 103 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-3523 ((|#1| $) 107 (|has| |#1| (-1000)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1 |#1| |#1|)) 132 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 131 T ELT) (($ $) 90 (|has| |#1| (-189)) ELT) (($ $ (-714)) 88 (|has| |#1| (-189)) ELT) (($ $ (-1117)) 86 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 82 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 81 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 80 (|has| |#1| (-838 (-1117))) ELT)) (-2685 (((-85) $ $) 94 (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) 96 (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 95 (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 97 (|has| |#1| (-781)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 100 (|has| |#1| (-318)) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ $ (-361 (-499))) 99 (|has| |#1| (-318)) ELT) (($ (-361 (-499)) $) 98 (|has| |#1| (-318)) ELT))) +(((-938 |#1|) (-113) (-146)) (T -938)) +((-3130 (*1 *1 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)))) (-3128 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)))) (-3126 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)) (-4 *2 (-1000)))) (-3144 (*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-85)))) (-3143 (*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-361 (-499))))) (-3145 (*1 *2 *1) (|partial| -12 (-4 *1 (-938 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-361 (-499)))))) +(-13 (-38 |t#1|) (-366 |t#1|) (-184 |t#1|) (-293 |t#1|) (-332 |t#1|) (-10 -8 (-15 -3130 ($ $)) (-15 -3129 (|t#1| $)) (-15 -3128 (|t#1| $)) (-15 -3127 (|t#1| $)) (-15 -3254 (|t#1| $)) (-15 -3126 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3793 (|t#1| $)) (IF (|has| |t#1| (-244)) (-6 (-244)) |%noBranch|) (IF (|has| |t#1| (-781)) (-6 (-781)) |%noBranch|) (IF (|has| |t#1| (-318)) (-6 (-200)) |%noBranch|) (IF (|has| |t#1| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-1000)) (-15 -3523 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-498)) (PROGN (-15 -3144 ((-85) $)) (-15 -3143 ((-361 (-499)) $)) (-15 -3145 ((-3 (-361 (-499)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-318)) ((-38 |#1|) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-318)) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-318)) (|has| |#1| (-244))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-318))) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-186 $) -3677 (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) -3677 (|has| |#1| (-189)) (|has| |#1| (-190))) ((-224 |#1|) . T) ((-200) |has| |#1| (-318)) ((-240 |#1| $) |has| |#1| (-240 |#1| |#1|)) ((-244) -3677 (|has| |#1| (-318)) (|has| |#1| (-244))) ((-263 |#1|) |has| |#1| (-263 |#1|)) ((-293 |#1|) . T) ((-332 |#1|) . T) ((-366 |#1|) . T) ((-468 (-1117) |#1|) |has| |#1| (-468 (-1117) |#1|)) ((-468 |#1| |#1|) |has| |#1| (-263 |#1|)) ((-604 (-361 (-499))) |has| |#1| (-318)) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-318)) ((-606 (-499)) |has| |#1| (-596 (-499))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-318)) ((-598 |#1|) . T) ((-596 (-499)) |has| |#1| (-596 (-499))) ((-596 |#1|) . T) ((-675 (-361 (-499))) |has| |#1| (-318)) ((-675 |#1|) . T) ((-684) . T) ((-781) |has| |#1| (-781)) ((-784) |has| |#1| (-781)) ((-831 $ (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-836 (-1117)) |has| |#1| (-836 (-1117))) ((-838 (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T) ((-991 (-361 (-499))) |has| |#1| (-318)) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-318)) (|has| |#1| (-244))) ((-996 (-361 (-499))) |has| |#1| (-318)) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-318)) (|has| |#1| (-244))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-4108 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) +(((-939 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4108 (|#3| (-1 |#4| |#2|) |#1|))) (-938 |#2|) (-146) (-938 |#4|) (-146)) (T -939)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-938 *6)) (-5 *1 (-939 *4 *5 *2 *6)) (-4 *4 (-938 *5))))) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3874 (($) NIL T CONST)) (-3123 (($ $) 23 T ELT)) (-3131 (($ (-599 |#1|)) 33 T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3983 (((-714) $) 26 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 28 T ELT)) (-3757 (($ |#1| $) 17 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3122 ((|#1| $) 27 T ELT)) (-1309 ((|#1| $) 22 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3125 ((|#1| |#1| $) 16 T ELT)) (-3543 (((-85) $) 18 T ELT)) (-3713 (($) NIL T ELT)) (-3124 ((|#1| $) 21 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) NIL T ELT)) (-3121 ((|#1| $) 30 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-940 |#1|) (-13 (-935 |#1|) (-10 -8 (-15 -3131 ($ (-599 |#1|))))) (-1041)) (T -940)) +((-3131 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-940 *3))))) +((-3158 (($ $) 12 T ELT)) (-3132 (($ $ (-499)) 13 T ELT))) +(((-941 |#1|) (-10 -7 (-15 -3158 (|#1| |#1|)) (-15 -3132 (|#1| |#1| (-499)))) (-942)) (T -941)) +NIL +((-3158 (($ $) 6 T ELT)) (-3132 (($ $ (-499)) 7 T ELT)) (** (($ $ (-361 (-499))) 8 T ELT))) +(((-942) (-113)) (T -942)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-942)) (-5 *2 (-361 (-499))))) (-3132 (*1 *1 *1 *2) (-12 (-4 *1 (-942)) (-5 *2 (-499)))) (-3158 (*1 *1 *1) (-4 *1 (-942)))) +(-13 (-10 -8 (-15 -3158 ($ $)) (-15 -3132 ($ $ (-499))) (-15 ** ($ $ (-361 (-499)))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1740 (((-2 (|:| |num| (-1207 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2164 (($ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2162 (((-85) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1880 (((-647 (-361 |#2|)) (-1207 $)) NIL T ELT) (((-647 (-361 |#2|))) NIL T ELT)) (-3470 (((-361 |#2|) $) NIL T ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| (-361 |#2|) (-305)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1678 (((-85) $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3258 (((-714)) NIL (|has| (-361 |#2|) (-323)) ELT)) (-1754 (((-85)) NIL T ELT)) (-1753 (((-85) |#1|) 162 T ELT) (((-85) |#2|) 166 T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| (-361 |#2|) (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| (-361 |#2|) (-978 (-361 (-499)))) ELT) (((-3 (-361 |#2|) #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| (-361 |#2|) (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| (-361 |#2|) (-978 (-361 (-499)))) ELT) (((-361 |#2|) $) NIL T ELT)) (-1890 (($ (-1207 (-361 |#2|)) (-1207 $)) NIL T ELT) (($ (-1207 (-361 |#2|))) 79 T ELT) (($ (-1207 |#2|) |#2|) NIL T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-361 |#2|) (-305)) ELT)) (-2683 (($ $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1879 (((-647 (-361 |#2|)) $ (-1207 $)) NIL T ELT) (((-647 (-361 |#2|)) $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-361 |#2|))) (|:| |vec| (-1207 (-361 |#2|)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-361 |#2|)) (-647 $)) NIL T ELT)) (-1745 (((-1207 $) (-1207 $)) NIL T ELT)) (-3992 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-361 |#3|)) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-1732 (((-599 (-599 |#1|))) NIL (|has| |#1| (-323)) ELT)) (-1757 (((-85) |#1| |#1|) NIL T ELT)) (-3231 (((-857)) NIL T ELT)) (-3115 (($) NIL (|has| (-361 |#2|) (-323)) ELT)) (-1752 (((-85)) NIL T ELT)) (-1751 (((-85) |#1|) 61 T ELT) (((-85) |#2|) 164 T ELT)) (-2682 (($ $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3643 (($ $) NIL T ELT)) (-2954 (($) NIL (|has| (-361 |#2|) (-305)) ELT)) (-1773 (((-85) $) NIL (|has| (-361 |#2|) (-305)) ELT)) (-1864 (($ $ (-714)) NIL (|has| (-361 |#2|) (-305)) ELT) (($ $) NIL (|has| (-361 |#2|) (-305)) ELT)) (-3873 (((-85) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3922 (((-857) $) NIL (|has| (-361 |#2|) (-305)) ELT) (((-766 (-857)) $) NIL (|has| (-361 |#2|) (-305)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3517 (((-714)) NIL T ELT)) (-1746 (((-1207 $) (-1207 $)) NIL T ELT)) (-3254 (((-361 |#2|) $) NIL T ELT)) (-1733 (((-599 (-884 |#1|)) (-1117)) NIL (|has| |#1| (-318)) ELT)) (-3585 (((-649 $) $) NIL (|has| (-361 |#2|) (-305)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2115 ((|#3| $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2111 (((-857) $) NIL (|has| (-361 |#2|) (-323)) ELT)) (-3200 ((|#3| $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| (-361 |#2|) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-361 |#2|))) (|:| |vec| (-1207 (-361 |#2|)))) (-1207 $) $) NIL T ELT) (((-647 (-361 |#2|)) (-1207 $)) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1741 (((-647 (-361 |#2|))) 57 T ELT)) (-1743 (((-647 (-361 |#2|))) 56 T ELT)) (-2601 (($ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1738 (($ (-1207 |#2|) |#2|) 80 T ELT)) (-1742 (((-647 (-361 |#2|))) 55 T ELT)) (-1744 (((-647 (-361 |#2|))) 54 T ELT)) (-1737 (((-2 (|:| |num| (-647 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1739 (((-2 (|:| |num| (-1207 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1750 (((-1207 $)) 51 T ELT)) (-4068 (((-1207 $)) 50 T ELT)) (-1749 (((-85) $) NIL T ELT)) (-1748 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3586 (($) NIL (|has| (-361 |#2|) (-305)) CONST)) (-2518 (($ (-857)) NIL (|has| (-361 |#2|) (-323)) ELT)) (-1735 (((-3 |#2| #1#)) 70 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1759 (((-714)) NIL T ELT)) (-2527 (($) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| (-361 |#2|) (-305)) ELT)) (-3882 (((-359 $) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-361 |#2|) (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1677 (((-714) $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3950 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1736 (((-3 |#2| #1#)) 68 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3907 (((-361 |#2|) (-1207 $)) NIL T ELT) (((-361 |#2|)) 47 T ELT)) (-1865 (((-714) $) NIL (|has| (-361 |#2|) (-305)) ELT) (((-3 (-714) #1#) $ $) NIL (|has| (-361 |#2|) (-305)) ELT)) (-3908 (($ $ (-1 (-361 |#2|) (-361 |#2|))) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ (-1 (-361 |#2|) (-361 |#2|)) (-714)) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318))) (-12 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT) (($ $) NIL (-3677 (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318))) (-12 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT)) (-2526 (((-647 (-361 |#2|)) (-1207 $) (-1 (-361 |#2|) (-361 |#2|))) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3323 ((|#3|) 58 T ELT)) (-1767 (($) NIL (|has| (-361 |#2|) (-305)) ELT)) (-3362 (((-1207 (-361 |#2|)) $ (-1207 $)) NIL T ELT) (((-647 (-361 |#2|)) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 (-361 |#2|)) $) 81 T ELT) (((-647 (-361 |#2|)) (-1207 $)) NIL T ELT)) (-4122 (((-1207 (-361 |#2|)) $) NIL T ELT) (($ (-1207 (-361 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| (-361 |#2|) (-305)) ELT)) (-1747 (((-1207 $) (-1207 $)) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-361 |#2|)) NIL T ELT) (($ (-361 (-499))) NIL (-3677 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-2823 (($ $) NIL (|has| (-361 |#2|) (-305)) ELT) (((-649 $) $) NIL (|has| (-361 |#2|) (-118)) ELT)) (-2565 ((|#3| $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1756 (((-85)) 65 T ELT)) (-1755 (((-85) |#1|) 167 T ELT) (((-85) |#2|) 168 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-1734 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1758 (((-85)) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-1 (-361 |#2|) (-361 |#2|))) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ (-1 (-361 |#2|) (-361 |#2|)) (-714)) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-836 (-1117)))) (-12 (|has| (-361 |#2|) (-318)) (|has| (-361 |#2|) (-838 (-1117))))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318))) (-12 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT) (($ $) NIL (-3677 (-12 (|has| (-361 |#2|) (-190)) (|has| (-361 |#2|) (-318))) (-12 (|has| (-361 |#2|) (-189)) (|has| (-361 |#2|) (-318))) (|has| (-361 |#2|) (-305))) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ $) NIL (|has| (-361 |#2|) (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| (-361 |#2|) (-318)) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 |#2|)) NIL T ELT) (($ (-361 |#2|) $) NIL T ELT) (($ (-361 (-499)) $) NIL (|has| (-361 |#2|) (-318)) ELT) (($ $ (-361 (-499))) NIL (|has| (-361 |#2|) (-318)) ELT))) +(((-943 |#1| |#2| |#3| |#4| |#5|) (-297 |#1| |#2| |#3|) (-1162) (-1183 |#1|) (-1183 (-361 |#2|)) (-361 |#2|) (-714)) (T -943)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3138 (((-599 (-499)) $) 73 T ELT)) (-3134 (($ (-599 (-499))) 81 T ELT)) (-3251 (((-499) $) 48 (|has| (-499) (-261)) ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL (|has| (-499) (-763)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) 60 T ELT) (((-3 (-1117) #1#) $) NIL (|has| (-499) (-978 (-1117))) ELT) (((-3 (-361 (-499)) #1#) $) 57 (|has| (-499) (-978 (-499))) ELT) (((-3 (-499) #1#) $) 60 (|has| (-499) (-978 (-499))) ELT)) (-3294 (((-499) $) NIL T ELT) (((-1117) $) NIL (|has| (-499) (-978 (-1117))) ELT) (((-361 (-499)) $) NIL (|has| (-499) (-978 (-499))) ELT) (((-499) $) NIL (|has| (-499) (-978 (-499))) ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-499)) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3115 (($) NIL (|has| (-499) (-498)) ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3136 (((-599 (-499)) $) 79 T ELT)) (-3324 (((-85) $) NIL (|has| (-499) (-763)) ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (|has| (-499) (-821 (-499))) ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (|has| (-499) (-821 (-333))) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL T ELT)) (-3119 (((-499) $) 45 T ELT)) (-3585 (((-649 $) $) NIL (|has| (-499) (-1092)) ELT)) (-3325 (((-85) $) NIL (|has| (-499) (-763)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| (-499) (-781)) ELT)) (-4108 (($ (-1 (-499) (-499)) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| (-499) (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL T ELT) (((-647 (-499)) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL T ELT)) (-3586 (($) NIL (|has| (-499) (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3250 (($ $) NIL (|has| (-499) (-261)) ELT) (((-361 (-499)) $) 50 T ELT)) (-3137 (((-1095 (-499)) $) 78 T ELT)) (-3133 (($ (-599 (-499)) (-599 (-499))) 82 T ELT)) (-3252 (((-499) $) 64 (|has| (-499) (-498)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| (-499) (-848)) ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-3918 (($ $ (-599 (-499)) (-599 (-499))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-499) (-499)) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-247 (-499))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-599 (-247 (-499)))) NIL (|has| (-499) (-263 (-499))) ELT) (($ $ (-599 (-1117)) (-599 (-499))) NIL (|has| (-499) (-468 (-1117) (-499))) ELT) (($ $ (-1117) (-499)) NIL (|has| (-499) (-468 (-1117) (-499))) ELT)) (-1677 (((-714) $) NIL T ELT)) (-3950 (($ $ (-499)) NIL (|has| (-499) (-240 (-499) (-499))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $ (-1 (-499) (-499))) NIL T ELT) (($ $ (-1 (-499) (-499)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $) 15 (|has| (-499) (-189)) ELT) (($ $ (-714)) NIL (|has| (-499) (-189)) ELT)) (-3116 (($ $) NIL T ELT)) (-3118 (((-499) $) 47 T ELT)) (-3135 (((-599 (-499)) $) 80 T ELT)) (-4122 (((-825 (-499)) $) NIL (|has| (-499) (-569 (-825 (-499)))) ELT) (((-825 (-333)) $) NIL (|has| (-499) (-569 (-825 (-333)))) ELT) (((-488) $) NIL (|has| (-499) (-569 (-488))) ELT) (((-333) $) NIL (|has| (-499) (-960)) ELT) (((-179) $) NIL (|has| (-499) (-960)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| (-499) (-848))) ELT)) (-4096 (((-797) $) 108 T ELT) (($ (-499)) 51 T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) 27 T ELT) (($ (-499)) 51 T ELT) (($ (-1117)) NIL (|has| (-499) (-978 (-1117))) ELT) (((-361 (-499)) $) 25 T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| (-499) (-848))) (|has| (-499) (-118))) ELT)) (-3248 (((-714)) 13 T CONST)) (-3253 (((-499) $) 62 (|has| (-499) (-498)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3523 (($ $) NIL (|has| (-499) (-763)) ELT)) (-2779 (($) 14 T CONST)) (-2785 (($) 17 T CONST)) (-2790 (($ $ (-1 (-499) (-499))) NIL T ELT) (($ $ (-1 (-499) (-499)) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| (-499) (-838 (-1117))) ELT) (($ $) NIL (|has| (-499) (-189)) ELT) (($ $ (-714)) NIL (|has| (-499) (-189)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-3174 (((-85) $ $) 21 T ELT)) (-2805 (((-85) $ $) NIL (|has| (-499) (-781)) ELT)) (-2806 (((-85) $ $) 40 (|has| (-499) (-781)) ELT)) (-4099 (($ $ $) 36 T ELT) (($ (-499) (-499)) 38 T ELT)) (-3987 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3989 (($ $ $) 28 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ (-499) $) 32 T ELT) (($ $ (-499)) NIL T ELT))) +(((-944 |#1|) (-13 (-931 (-499)) (-568 (-361 (-499))) (-10 -8 (-15 -3250 ((-361 (-499)) $)) (-15 -3138 ((-599 (-499)) $)) (-15 -3137 ((-1095 (-499)) $)) (-15 -3136 ((-599 (-499)) $)) (-15 -3135 ((-599 (-499)) $)) (-15 -3134 ($ (-599 (-499)))) (-15 -3133 ($ (-599 (-499)) (-599 (-499)))))) (-499)) (T -944)) +((-3250 (*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499)))) (-3138 (*1 *2 *1) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499)))) (-3137 (*1 *2 *1) (-12 (-5 *2 (-1095 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499)))) (-3136 (*1 *2 *1) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499)))) (-3134 (*1 *1 *2) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499)))) (-3133 (*1 *1 *2 *2) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499))))) +((-3139 (((-51) (-361 (-499)) (-499)) 9 T ELT))) +(((-945) (-10 -7 (-15 -3139 ((-51) (-361 (-499)) (-499))))) (T -945)) +((-3139 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-499))) (-5 *4 (-499)) (-5 *2 (-51)) (-5 *1 (-945))))) +((-3258 (((-499)) 21 T ELT)) (-3142 (((-499)) 26 T ELT)) (-3141 (((-1213) (-499)) 24 T ELT)) (-3140 (((-499) (-499)) 27 T ELT) (((-499)) 20 T ELT))) +(((-946) (-10 -7 (-15 -3140 ((-499))) (-15 -3258 ((-499))) (-15 -3140 ((-499) (-499))) (-15 -3141 ((-1213) (-499))) (-15 -3142 ((-499))))) (T -946)) +((-3142 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-946)))) (-3141 (*1 *2 *3) (-12 (-5 *3 (-499)) (-5 *2 (-1213)) (-5 *1 (-946)))) (-3140 (*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-946)))) (-3258 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-946)))) (-3140 (*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-946))))) +((-3883 (((-359 |#1|) |#1|) 43 T ELT)) (-3882 (((-359 |#1|) |#1|) 41 T ELT))) +(((-947 |#1|) (-10 -7 (-15 -3882 ((-359 |#1|) |#1|)) (-15 -3883 ((-359 |#1|) |#1|))) (-1183 (-361 (-499)))) (T -947)) +((-3883 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-947 *3)) (-4 *3 (-1183 (-361 (-499)))))) (-3882 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-947 *3)) (-4 *3 (-1183 (-361 (-499))))))) +((-3145 (((-3 (-361 (-499)) "failed") |#1|) 15 T ELT)) (-3144 (((-85) |#1|) 14 T ELT)) (-3143 (((-361 (-499)) |#1|) 10 T ELT))) +(((-948 |#1|) (-10 -7 (-15 -3143 ((-361 (-499)) |#1|)) (-15 -3144 ((-85) |#1|)) (-15 -3145 ((-3 (-361 (-499)) "failed") |#1|))) (-978 (-361 (-499)))) (T -948)) +((-3145 (*1 *2 *3) (|partial| -12 (-5 *2 (-361 (-499))) (-5 *1 (-948 *3)) (-4 *3 (-978 *2)))) (-3144 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-948 *3)) (-4 *3 (-978 (-361 (-499)))))) (-3143 (*1 *2 *3) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-948 *3)) (-4 *3 (-978 *2))))) +((-3938 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3950 ((|#2| $ #1#) 10 T ELT)) (-3149 (((-85) $ $) 18 T ELT))) +(((-949 |#1| |#2|) (-10 -7 (-15 -3938 (|#2| |#1| #1="value" |#2|)) (-15 -3149 ((-85) |#1| |#1|)) (-15 -3950 (|#2| |#1| #1#))) (-950 |#2|) (-1157)) (T -949)) +NIL +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 52 T ELT)) (-3146 ((|#1| $ |#1|) 43 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 45 (|has| $ (-6 -4146)) ELT)) (-3874 (($) 7 T CONST)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) 54 T ELT)) (-3148 (((-85) $ $) 46 (|has| |#1| (-1041)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3151 (((-599 |#1|) $) 49 T ELT)) (-3667 (((-85) $) 53 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ "value") 51 T ELT)) (-3150 (((-499) $ $) 48 T ELT)) (-3783 (((-85) $) 50 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) 55 T ELT)) (-3149 (((-85) $ $) 47 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-950 |#1|) (-113) (-1157)) (T -950)) +((-3662 (*1 *2 *1) (-12 (-4 *3 (-1157)) (-5 *2 (-599 *1)) (-4 *1 (-950 *3)))) (-3152 (*1 *2 *1) (-12 (-4 *3 (-1157)) (-5 *2 (-599 *1)) (-4 *1 (-950 *3)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-5 *2 (-85)))) (-3542 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1157)))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-950 *2)) (-4 *2 (-1157)))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-5 *2 (-85)))) (-3151 (*1 *2 *1) (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-5 *2 (-599 *3)))) (-3150 (*1 *2 *1 *1) (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-5 *2 (-499)))) (-3149 (*1 *2 *1 *1) (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)) (-5 *2 (-85)))) (-3148 (*1 *2 *1 *1) (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)) (-5 *2 (-85)))) (-3147 (*1 *1 *1 *2) (-12 (-5 *2 (-599 *1)) (|has| *1 (-6 -4146)) (-4 *1 (-950 *3)) (-4 *3 (-1157)))) (-3938 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4146)) (-4 *1 (-950 *2)) (-4 *2 (-1157)))) (-3146 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-950 *2)) (-4 *2 (-1157))))) +(-13 (-443 |t#1|) (-10 -8 (-15 -3662 ((-599 $) $)) (-15 -3152 ((-599 $) $)) (-15 -3667 ((-85) $)) (-15 -3542 (|t#1| $)) (-15 -3950 (|t#1| $ "value")) (-15 -3783 ((-85) $)) (-15 -3151 ((-599 |t#1|) $)) (-15 -3150 ((-499) $ $)) (IF (|has| |t#1| (-1041)) (PROGN (-15 -3149 ((-85) $ $)) (-15 -3148 ((-85) $ $))) |%noBranch|) (IF (|has| $ (-6 -4146)) (PROGN (-15 -3147 ($ $ (-599 $))) (-15 -3938 (|t#1| $ "value" |t#1|)) (-15 -3146 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) +((-3158 (($ $) 9 T ELT) (($ $ (-857)) 49 T ELT) (($ (-361 (-499))) 13 T ELT) (($ (-499)) 15 T ELT)) (-3321 (((-3 $ #1="failed") (-1111 $) (-857) (-797)) 24 T ELT) (((-3 $ #1#) (-1111 $) (-857)) 32 T ELT)) (-3132 (($ $ (-499)) 58 T ELT)) (-3248 (((-714)) 18 T ELT)) (-3322 (((-599 $) (-1111 $)) NIL T ELT) (((-599 $) (-1111 (-361 (-499)))) 63 T ELT) (((-599 $) (-1111 (-499))) 68 T ELT) (((-599 $) (-884 $)) 72 T ELT) (((-599 $) (-884 (-361 (-499)))) 76 T ELT) (((-599 $) (-884 (-499))) 80 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT) (($ $ (-361 (-499))) 53 T ELT))) +(((-951 |#1|) (-10 -7 (-15 -3158 (|#1| (-499))) (-15 -3158 (|#1| (-361 (-499)))) (-15 -3158 (|#1| |#1| (-857))) (-15 -3322 ((-599 |#1|) (-884 (-499)))) (-15 -3322 ((-599 |#1|) (-884 (-361 (-499))))) (-15 -3322 ((-599 |#1|) (-884 |#1|))) (-15 -3322 ((-599 |#1|) (-1111 (-499)))) (-15 -3322 ((-599 |#1|) (-1111 (-361 (-499))))) (-15 -3322 ((-599 |#1|) (-1111 |#1|))) (-15 -3321 ((-3 |#1| #1="failed") (-1111 |#1|) (-857))) (-15 -3321 ((-3 |#1| #1#) (-1111 |#1|) (-857) (-797))) (-15 ** (|#1| |#1| (-361 (-499)))) (-15 -3132 (|#1| |#1| (-499))) (-15 -3158 (|#1| |#1|)) (-15 ** (|#1| |#1| (-499))) (-15 -3248 ((-714))) (-15 ** (|#1| |#1| (-714))) (-15 ** (|#1| |#1| (-857)))) (-952)) (T -951)) +((-3248 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-951 *3)) (-4 *3 (-952))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 108 T ELT)) (-2164 (($ $) 109 T ELT)) (-2162 (((-85) $) 111 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 128 T ELT)) (-4121 (((-359 $) $) 129 T ELT)) (-3158 (($ $) 92 T ELT) (($ $ (-857)) 78 T ELT) (($ (-361 (-499))) 77 T ELT) (($ (-499)) 76 T ELT)) (-1678 (((-85) $ $) 119 T ELT)) (-3773 (((-499) $) 145 T ELT)) (-3874 (($) 22 T CONST)) (-3321 (((-3 $ "failed") (-1111 $) (-857) (-797)) 86 T ELT) (((-3 $ "failed") (-1111 $) (-857)) 85 T ELT)) (-3295 (((-3 (-499) #1="failed") $) 105 (|has| (-361 (-499)) (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) 103 (|has| (-361 (-499)) (-978 (-361 (-499)))) ELT) (((-3 (-361 (-499)) #1#) $) 100 T ELT)) (-3294 (((-499) $) 104 (|has| (-361 (-499)) (-978 (-499))) ELT) (((-361 (-499)) $) 102 (|has| (-361 (-499)) (-978 (-361 (-499)))) ELT) (((-361 (-499)) $) 101 T ELT)) (-3154 (($ $ (-797)) 75 T ELT)) (-3153 (($ $ (-797)) 74 T ELT)) (-2683 (($ $ $) 123 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 122 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 117 T ELT)) (-3873 (((-85) $) 130 T ELT)) (-3324 (((-85) $) 143 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 91 T ELT)) (-3325 (((-85) $) 144 T ELT)) (-1675 (((-3 (-599 $) #2="failed") (-599 $) $) 126 T ELT)) (-2650 (($ $ $) 137 T ELT)) (-2978 (($ $ $) 138 T ELT)) (-3155 (((-3 (-1111 $) "failed") $) 87 T ELT)) (-3157 (((-3 (-797) "failed") $) 89 T ELT)) (-3156 (((-3 (-1111 $) "failed") $) 88 T ELT)) (-1993 (($ (-599 $)) 115 T ELT) (($ $ $) 114 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 131 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 116 T ELT)) (-3282 (($ (-599 $)) 113 T ELT) (($ $ $) 112 T ELT)) (-3882 (((-359 $) $) 127 T ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 125 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 124 T ELT)) (-3606 (((-3 $ "failed") $ $) 107 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 118 T ELT)) (-1677 (((-714) $) 120 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 121 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ (-361 (-499))) 135 T ELT) (($ $) 106 T ELT) (($ (-361 (-499))) 99 T ELT) (($ (-499)) 98 T ELT) (($ (-361 (-499))) 95 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 110 T ELT)) (-3920 (((-361 (-499)) $ $) 73 T ELT)) (-3322 (((-599 $) (-1111 $)) 84 T ELT) (((-599 $) (-1111 (-361 (-499)))) 83 T ELT) (((-599 $) (-1111 (-499))) 82 T ELT) (((-599 $) (-884 $)) 81 T ELT) (((-599 $) (-884 (-361 (-499)))) 80 T ELT) (((-599 $) (-884 (-499))) 79 T ELT)) (-3523 (($ $) 146 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2685 (((-85) $ $) 139 T ELT)) (-2686 (((-85) $ $) 141 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 140 T ELT)) (-2806 (((-85) $ $) 142 T ELT)) (-4099 (($ $ $) 136 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 132 T ELT) (($ $ (-361 (-499))) 90 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-361 (-499)) $) 134 T ELT) (($ $ (-361 (-499))) 133 T ELT) (($ (-499) $) 97 T ELT) (($ $ (-499)) 96 T ELT) (($ (-361 (-499)) $) 94 T ELT) (($ $ (-361 (-499))) 93 T ELT))) +(((-952) (-113)) (T -952)) +((-3158 (*1 *1 *1) (-4 *1 (-952))) (-3157 (*1 *2 *1) (|partial| -12 (-4 *1 (-952)) (-5 *2 (-797)))) (-3156 (*1 *2 *1) (|partial| -12 (-5 *2 (-1111 *1)) (-4 *1 (-952)))) (-3155 (*1 *2 *1) (|partial| -12 (-5 *2 (-1111 *1)) (-4 *1 (-952)))) (-3321 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1111 *1)) (-5 *3 (-857)) (-5 *4 (-797)) (-4 *1 (-952)))) (-3321 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1111 *1)) (-5 *3 (-857)) (-4 *1 (-952)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-1111 *1)) (-4 *1 (-952)) (-5 *2 (-599 *1)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-1111 (-361 (-499)))) (-5 *2 (-599 *1)) (-4 *1 (-952)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-1111 (-499))) (-5 *2 (-599 *1)) (-4 *1 (-952)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-884 *1)) (-4 *1 (-952)) (-5 *2 (-599 *1)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-884 (-361 (-499)))) (-5 *2 (-599 *1)) (-4 *1 (-952)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-884 (-499))) (-5 *2 (-599 *1)) (-4 *1 (-952)))) (-3158 (*1 *1 *1 *2) (-12 (-4 *1 (-952)) (-5 *2 (-857)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-4 *1 (-952)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-952)))) (-3154 (*1 *1 *1 *2) (-12 (-4 *1 (-952)) (-5 *2 (-797)))) (-3153 (*1 *1 *1 *2) (-12 (-4 *1 (-952)) (-5 *2 (-797)))) (-3920 (*1 *2 *1 *1) (-12 (-4 *1 (-952)) (-5 *2 (-361 (-499)))))) +(-13 (-120) (-780) (-146) (-318) (-366 (-361 (-499))) (-38 (-499)) (-38 (-361 (-499))) (-942) (-10 -8 (-15 -3157 ((-3 (-797) "failed") $)) (-15 -3156 ((-3 (-1111 $) "failed") $)) (-15 -3155 ((-3 (-1111 $) "failed") $)) (-15 -3321 ((-3 $ "failed") (-1111 $) (-857) (-797))) (-15 -3321 ((-3 $ "failed") (-1111 $) (-857))) (-15 -3322 ((-599 $) (-1111 $))) (-15 -3322 ((-599 $) (-1111 (-361 (-499))))) (-15 -3322 ((-599 $) (-1111 (-499)))) (-15 -3322 ((-599 $) (-884 $))) (-15 -3322 ((-599 $) (-884 (-361 (-499))))) (-15 -3322 ((-599 $) (-884 (-499)))) (-15 -3158 ($ $ (-857))) (-15 -3158 ($ $)) (-15 -3158 ($ (-361 (-499)))) (-15 -3158 ($ (-499))) (-15 -3154 ($ $ (-797))) (-15 -3153 ($ $ (-797))) (-15 -3920 ((-361 (-499)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 (-499)) . T) ((-38 $) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 (-499) (-499)) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-200) . T) ((-244) . T) ((-261) . T) ((-318) . T) ((-366 (-361 (-499))) . T) ((-406) . T) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 (-499)) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 (-499)) . T) ((-598 $) . T) ((-675 (-361 (-499))) . T) ((-675 (-499)) . T) ((-675 $) . T) ((-684) . T) ((-735) . T) ((-737) . T) ((-739) . T) ((-742) . T) ((-780) . T) ((-781) . T) ((-784) . T) ((-859) . T) ((-942) . T) ((-978 (-361 (-499))) . T) ((-978 (-499)) |has| (-361 (-499)) (-978 (-499))) ((-991 (-361 (-499))) . T) ((-991 (-499)) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 (-499)) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) . T)) +((-3159 (((-2 (|:| |ans| |#2|) (|:| -3259 |#2|) (|:| |sol?| (-85))) (-499) |#2| |#2| (-1117) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-599 |#2|)) (-1 (-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT))) +(((-953 |#1| |#2|) (-10 -7 (-15 -3159 ((-2 (|:| |ans| |#2|) (|:| -3259 |#2|) (|:| |sol?| (-85))) (-499) |#2| |#2| (-1117) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-599 |#2|)) (-1 (-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-406) (-120) (-978 (-499)) (-596 (-499))) (-13 (-1143) (-27) (-375 |#1|))) (T -953)) +((-3159 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1117)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-599 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2237 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1143) (-27) (-375 *8))) (-4 *8 (-13 (-406) (-120) (-978 *3) (-596 *3))) (-5 *3 (-499)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3259 *4) (|:| |sol?| (-85)))) (-5 *1 (-953 *8 *4))))) +((-3160 (((-3 (-599 |#2|) #1="failed") (-499) |#2| |#2| |#2| (-1117) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-599 |#2|)) (-1 (-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT))) +(((-954 |#1| |#2|) (-10 -7 (-15 -3160 ((-3 (-599 |#2|) #1="failed") (-499) |#2| |#2| |#2| (-1117) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-599 |#2|)) (-1 (-3 (-2 (|:| -2237 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-406) (-120) (-978 (-499)) (-596 (-499))) (-13 (-1143) (-27) (-375 |#1|))) (T -954)) +((-3160 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1117)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-599 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2237 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1143) (-27) (-375 *8))) (-4 *8 (-13 (-406) (-120) (-978 *3) (-596 *3))) (-5 *3 (-499)) (-5 *2 (-599 *4)) (-5 *1 (-954 *8 *4))))) +((-3163 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3404 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-499)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-499) (-1 |#2| |#2|)) 39 T ELT)) (-3161 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-361 |#2|)) (|:| |c| (-361 |#2|)) (|:| -3216 |#2|)) "failed") (-361 |#2|) (-361 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3162 (((-2 (|:| |ans| (-361 |#2|)) (|:| |nosol| (-85))) (-361 |#2|) (-361 |#2|)) 76 T ELT))) +(((-955 |#1| |#2|) (-10 -7 (-15 -3161 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-361 |#2|)) (|:| |c| (-361 |#2|)) (|:| -3216 |#2|)) "failed") (-361 |#2|) (-361 |#2|) (-1 |#2| |#2|))) (-15 -3162 ((-2 (|:| |ans| (-361 |#2|)) (|:| |nosol| (-85))) (-361 |#2|) (-361 |#2|))) (-15 -3163 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3404 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-499)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-499) (-1 |#2| |#2|)))) (-13 (-318) (-120) (-978 (-499))) (-1183 |#1|)) (T -955)) +((-3163 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1183 *6)) (-4 *6 (-13 (-318) (-120) (-978 *4))) (-5 *4 (-499)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) (|:| -3404 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-955 *6 *3)))) (-3162 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-318) (-120) (-978 (-499)))) (-4 *5 (-1183 *4)) (-5 *2 (-2 (|:| |ans| (-361 *5)) (|:| |nosol| (-85)))) (-5 *1 (-955 *4 *5)) (-5 *3 (-361 *5)))) (-3161 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-13 (-318) (-120) (-978 (-499)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-361 *6)) (|:| |c| (-361 *6)) (|:| -3216 *6))) (-5 *1 (-955 *5 *6)) (-5 *3 (-361 *6))))) +((-3164 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-361 |#2|)) (|:| |h| |#2|) (|:| |c1| (-361 |#2|)) (|:| |c2| (-361 |#2|)) (|:| -3216 |#2|)) #1="failed") (-361 |#2|) (-361 |#2|) (-361 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3165 (((-3 (-599 (-361 |#2|)) #1#) (-361 |#2|) (-361 |#2|) (-361 |#2|)) 34 T ELT))) +(((-956 |#1| |#2|) (-10 -7 (-15 -3164 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-361 |#2|)) (|:| |h| |#2|) (|:| |c1| (-361 |#2|)) (|:| |c2| (-361 |#2|)) (|:| -3216 |#2|)) #1="failed") (-361 |#2|) (-361 |#2|) (-361 |#2|) (-1 |#2| |#2|))) (-15 -3165 ((-3 (-599 (-361 |#2|)) #1#) (-361 |#2|) (-361 |#2|) (-361 |#2|)))) (-13 (-318) (-120) (-978 (-499))) (-1183 |#1|)) (T -956)) +((-3165 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-318) (-120) (-978 (-499)))) (-4 *5 (-1183 *4)) (-5 *2 (-599 (-361 *5))) (-5 *1 (-956 *4 *5)) (-5 *3 (-361 *5)))) (-3164 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-13 (-318) (-120) (-978 (-499)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-361 *6)) (|:| |h| *6) (|:| |c1| (-361 *6)) (|:| |c2| (-361 *6)) (|:| -3216 *6))) (-5 *1 (-956 *5 *6)) (-5 *3 (-361 *6))))) +((-3166 (((-1 |#1|) (-599 (-2 (|:| -3542 |#1|) (|:| -1555 (-499))))) 34 T ELT)) (-3223 (((-1 |#1|) (-1037 |#1|)) 42 T ELT)) (-3167 (((-1 |#1|) (-1207 |#1|) (-1207 (-499)) (-499)) 31 T ELT))) +(((-957 |#1|) (-10 -7 (-15 -3223 ((-1 |#1|) (-1037 |#1|))) (-15 -3166 ((-1 |#1|) (-599 (-2 (|:| -3542 |#1|) (|:| -1555 (-499)))))) (-15 -3167 ((-1 |#1|) (-1207 |#1|) (-1207 (-499)) (-499)))) (-1041)) (T -957)) +((-3167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1207 *6)) (-5 *4 (-1207 (-499))) (-5 *5 (-499)) (-4 *6 (-1041)) (-5 *2 (-1 *6)) (-5 *1 (-957 *6)))) (-3166 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| -3542 *4) (|:| -1555 (-499))))) (-4 *4 (-1041)) (-5 *2 (-1 *4)) (-5 *1 (-957 *4)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-1037 *4)) (-4 *4 (-1041)) (-5 *2 (-1 *4)) (-5 *1 (-957 *4))))) +((-3922 (((-714) (-288 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) +(((-958 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3922 ((-714) (-288 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-318) (-1183 |#1|) (-1183 (-361 |#2|)) (-297 |#1| |#2| |#3|) (-13 (-323) (-318))) (T -958)) +((-3922 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-288 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-318)) (-4 *7 (-1183 *6)) (-4 *4 (-1183 (-361 *7))) (-4 *8 (-297 *6 *7 *4)) (-4 *9 (-13 (-323) (-318))) (-5 *2 (-714)) (-5 *1 (-958 *6 *7 *4 *8 *9))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3743 (((-1075) $) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3371 (((-1075) $) 11 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-959) (-13 (-1023) (-10 -8 (-15 -3743 ((-1075) $)) (-15 -3371 ((-1075) $))))) (T -959)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-959)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-959))))) +((-4122 (((-179) $) 6 T ELT) (((-333) $) 9 T ELT))) +(((-960) (-113)) (T -960)) +NIL +(-13 (-569 (-179)) (-569 (-333))) +(((-569 (-179)) . T) ((-569 (-333)) . T)) +((-3256 (((-3 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) "failed") |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) 32 T ELT) (((-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-361 (-499))) 29 T ELT)) (-3170 (((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-361 (-499))) 34 T ELT) (((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-361 (-499))) 30 T ELT) (((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) 33 T ELT) (((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1|) 28 T ELT)) (-3169 (((-599 (-361 (-499))) (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) 20 T ELT)) (-3168 (((-361 (-499)) (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) 17 T ELT))) +(((-961 |#1|) (-10 -7 (-15 -3170 ((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1|)) (-15 -3170 ((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-15 -3170 ((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-361 (-499)))) (-15 -3170 ((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-361 (-499)))) (-15 -3256 ((-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-361 (-499)))) (-15 -3256 ((-3 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) "failed") |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-15 -3168 ((-361 (-499)) (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-15 -3169 ((-599 (-361 (-499))) (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))))) (-1183 (-499))) (T -961)) +((-3169 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-5 *2 (-599 (-361 (-499)))) (-5 *1 (-961 *4)) (-4 *4 (-1183 (-499))))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) (-5 *2 (-361 (-499))) (-5 *1 (-961 *4)) (-4 *4 (-1183 (-499))))) (-3256 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))))) (-3256 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) (-5 *4 (-361 (-499))) (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))))) (-3170 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-361 (-499))) (-5 *2 (-599 (-2 (|:| -3260 *5) (|:| -3259 *5)))) (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))) (-5 *4 (-2 (|:| -3260 *5) (|:| -3259 *5))))) (-3170 (*1 *2 *3 *4) (-12 (-5 *2 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))) (-5 *4 (-361 (-499))))) (-3170 (*1 *2 *3 *4) (-12 (-5 *2 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))) (-5 *4 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))))) (-3170 (*1 *2 *3) (-12 (-5 *2 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499)))))) +((-3256 (((-3 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) "failed") |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) 35 T ELT) (((-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-361 (-499))) 32 T ELT)) (-3170 (((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-361 (-499))) 30 T ELT) (((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-361 (-499))) 26 T ELT) (((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) 28 T ELT) (((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1|) 24 T ELT))) +(((-962 |#1|) (-10 -7 (-15 -3170 ((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1|)) (-15 -3170 ((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-15 -3170 ((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-361 (-499)))) (-15 -3170 ((-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-361 (-499)))) (-15 -3256 ((-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-361 (-499)))) (-15 -3256 ((-3 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) "failed") |#1| (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))) (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))))) (-1183 (-361 (-499)))) (T -962)) +((-3256 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) (-5 *1 (-962 *3)) (-4 *3 (-1183 (-361 (-499)))))) (-3256 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) (-5 *4 (-361 (-499))) (-5 *1 (-962 *3)) (-4 *3 (-1183 *4)))) (-3170 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-361 (-499))) (-5 *2 (-599 (-2 (|:| -3260 *5) (|:| -3259 *5)))) (-5 *1 (-962 *3)) (-4 *3 (-1183 *5)) (-5 *4 (-2 (|:| -3260 *5) (|:| -3259 *5))))) (-3170 (*1 *2 *3 *4) (-12 (-5 *4 (-361 (-499))) (-5 *2 (-599 (-2 (|:| -3260 *4) (|:| -3259 *4)))) (-5 *1 (-962 *3)) (-4 *3 (-1183 *4)))) (-3170 (*1 *2 *3 *4) (-12 (-5 *2 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-5 *1 (-962 *3)) (-4 *3 (-1183 (-361 (-499)))) (-5 *4 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))))) (-3170 (*1 *2 *3) (-12 (-5 *2 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) (-5 *1 (-962 *3)) (-4 *3 (-1183 (-361 (-499))))))) +((-3721 (((-599 (-333)) (-884 (-499)) (-333)) 28 T ELT) (((-599 (-333)) (-884 (-361 (-499))) (-333)) 27 T ELT)) (-4119 (((-599 (-599 (-333))) (-599 (-884 (-499))) (-599 (-1117)) (-333)) 37 T ELT))) +(((-963) (-10 -7 (-15 -3721 ((-599 (-333)) (-884 (-361 (-499))) (-333))) (-15 -3721 ((-599 (-333)) (-884 (-499)) (-333))) (-15 -4119 ((-599 (-599 (-333))) (-599 (-884 (-499))) (-599 (-1117)) (-333))))) (T -963)) +((-4119 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-599 (-1117))) (-5 *2 (-599 (-599 (-333)))) (-5 *1 (-963)) (-5 *5 (-333)))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-884 (-499))) (-5 *2 (-599 (-333))) (-5 *1 (-963)) (-5 *4 (-333)))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-884 (-361 (-499)))) (-5 *2 (-599 (-333))) (-5 *1 (-963)) (-5 *4 (-333))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 75 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-3158 (($ $) NIL T ELT) (($ $ (-857)) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-499)) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) 70 T ELT)) (-3874 (($) NIL T CONST)) (-3321 (((-3 $ #1#) (-1111 $) (-857) (-797)) NIL T ELT) (((-3 $ #1#) (-1111 $) (-857)) 55 T ELT)) (-3295 (((-3 (-361 (-499)) #1#) $) NIL (|has| (-361 (-499)) (-978 (-361 (-499)))) ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 116 T ELT) (((-3 (-499) #1#) $) NIL (-3677 (|has| (-361 (-499)) (-978 (-499))) (|has| |#1| (-978 (-499)))) ELT)) (-3294 (((-361 (-499)) $) 17 (|has| (-361 (-499)) (-978 (-361 (-499)))) ELT) (((-361 (-499)) $) 17 T ELT) ((|#1| $) 117 T ELT) (((-499) $) NIL (-3677 (|has| (-361 (-499)) (-978 (-499))) (|has| |#1| (-978 (-499)))) ELT)) (-3154 (($ $ (-797)) 47 T ELT)) (-3153 (($ $ (-797)) 48 T ELT)) (-2683 (($ $ $) NIL T ELT)) (-3320 (((-361 (-499)) $ $) 21 T ELT)) (-3607 (((-3 $ #1#) $) 88 T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-3324 (((-85) $) 66 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL T ELT)) (-3325 (((-85) $) 69 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3155 (((-3 (-1111 $) #1#) $) 83 T ELT)) (-3157 (((-3 (-797) #1#) $) 82 T ELT)) (-3156 (((-3 (-1111 $) #1#) $) 80 T ELT)) (-3171 (((-3 (-1001 $ (-1111 $)) #1#) $) 78 T ELT)) (-1993 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 89 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-4096 (((-797) $) 87 T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ $) 63 T ELT) (($ (-361 (-499))) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#1|) 119 T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-3920 (((-361 (-499)) $ $) 27 T ELT)) (-3322 (((-599 $) (-1111 $)) 61 T ELT) (((-599 $) (-1111 (-361 (-499)))) NIL T ELT) (((-599 $) (-1111 (-499))) NIL T ELT) (((-599 $) (-884 $)) NIL T ELT) (((-599 $) (-884 (-361 (-499)))) NIL T ELT) (((-599 $) (-884 (-499))) NIL T ELT)) (-3172 (($ (-1001 $ (-1111 $)) (-797)) 46 T ELT)) (-3523 (($ $) 22 T ELT)) (-2779 (($) 32 T CONST)) (-2785 (($) 39 T CONST)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 76 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 24 T ELT)) (-4099 (($ $ $) 37 T ELT)) (-3987 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3989 (($ $ $) 112 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 98 T ELT) (($ $ $) 104 T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ (-499) $) 98 T ELT) (($ $ (-499)) NIL T ELT) (($ (-361 (-499)) $) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT) (($ |#1| $) 102 T ELT) (($ $ |#1|) NIL T ELT))) +(((-964 |#1|) (-13 (-952) (-366 |#1|) (-38 |#1|) (-10 -8 (-15 -3172 ($ (-1001 $ (-1111 $)) (-797))) (-15 -3171 ((-3 (-1001 $ (-1111 $)) "failed") $)) (-15 -3320 ((-361 (-499)) $ $)))) (-13 (-780) (-318) (-960))) (T -964)) +((-3172 (*1 *1 *2 *3) (-12 (-5 *2 (-1001 (-964 *4) (-1111 (-964 *4)))) (-5 *3 (-797)) (-5 *1 (-964 *4)) (-4 *4 (-13 (-780) (-318) (-960))))) (-3171 (*1 *2 *1) (|partial| -12 (-5 *2 (-1001 (-964 *3) (-1111 (-964 *3)))) (-5 *1 (-964 *3)) (-4 *3 (-13 (-780) (-318) (-960))))) (-3320 (*1 *2 *1 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-964 *3)) (-4 *3 (-13 (-780) (-318) (-960)))))) +((-3173 (((-2 (|:| -3404 |#2|) (|:| -2631 (-599 |#1|))) |#2| (-599 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) +(((-965 |#1| |#2|) (-10 -7 (-15 -3173 (|#2| |#2| |#1|)) (-15 -3173 ((-2 (|:| -3404 |#2|) (|:| -2631 (-599 |#1|))) |#2| (-599 |#1|)))) (-318) (-616 |#1|)) (T -965)) +((-3173 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-5 *2 (-2 (|:| -3404 *3) (|:| -2631 (-599 *5)))) (-5 *1 (-965 *5 *3)) (-5 *4 (-599 *5)) (-4 *3 (-616 *5)))) (-3173 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-965 *3 *2)) (-4 *2 (-616 *3))))) +((-2687 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3175 ((|#1| $ |#1|) 14 T ELT)) (-3938 ((|#1| $ |#1|) 12 T ELT)) (-3177 (($ |#1|) 10 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3950 ((|#1| $) 11 T ELT)) (-3176 ((|#1| $) 13 T ELT)) (-4096 (((-797) $) 19 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3174 (((-85) $ $) 9 T ELT))) +(((-966 |#1|) (-13 (-1157) (-10 -8 (-15 -3177 ($ |#1|)) (-15 -3950 (|#1| $)) (-15 -3938 (|#1| $ |#1|)) (-15 -3176 (|#1| $)) (-15 -3175 (|#1| $ |#1|)) (-15 -3174 ((-85) $ $)) (IF (|has| |#1| (-1041)) (-6 (-1041)) |%noBranch|))) (-1157)) (T -966)) +((-3177 (*1 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1157)))) (-3950 (*1 *2 *1) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1157)))) (-3938 (*1 *2 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1157)))) (-3176 (*1 *2 *1) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1157)))) (-3175 (*1 *2 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1157)))) (-3174 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-966 *3)) (-4 *3 (-1157))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3831 (((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 |#4|)))) (-599 |#4|)) NIL T ELT)) (-3832 (((-599 $) (-599 |#4|)) 117 T ELT) (((-599 $) (-599 |#4|) (-85)) 118 T ELT) (((-599 $) (-599 |#4|) (-85) (-85)) 116 T ELT) (((-599 $) (-599 |#4|) (-85) (-85) (-85) (-85)) 119 T ELT)) (-3204 (((-599 |#3|) $) NIL T ELT)) (-3029 (((-85) $) NIL T ELT)) (-3020 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3843 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3838 ((|#4| |#4| $) NIL T ELT)) (-3925 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| $) 111 T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3860 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#4| #1="failed") $ |#3|) 66 T ELT)) (-3874 (($) NIL T CONST)) (-3025 (((-85) $) 29 (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3839 (((-599 |#4|) (-599 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) NIL (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) NIL (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ #1#) (-599 |#4|)) NIL T ELT)) (-3294 (($ (-599 |#4|)) NIL T ELT)) (-3949 (((-3 $ #1#) $) 45 T ELT)) (-3835 ((|#4| |#4| $) 69 T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-3546 (($ |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 84 (|has| |#1| (-510)) ELT)) (-3844 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3833 ((|#4| |#4| $) NIL T ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4145)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3846 (((-2 (|:| -4011 (-599 |#4|)) (|:| -1795 (-599 |#4|))) $) NIL T ELT)) (-3335 (((-85) |#4| $) NIL T ELT)) (-3333 (((-85) |#4| $) NIL T ELT)) (-3336 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3578 (((-2 (|:| |val| (-599 |#4|)) (|:| |towers| (-599 $))) (-599 |#4|) (-85) (-85)) 132 T ELT)) (-3010 (((-599 |#4|) $) 18 (|has| $ (-6 -4145)) ELT)) (-3845 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3318 ((|#3| $) 38 T ELT)) (-2727 (((-599 |#4|) $) 19 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-2051 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3035 (((-599 |#3|) $) NIL T ELT)) (-3034 (((-85) |#3| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3329 (((-3 |#4| (-599 $)) |#4| |#4| $) NIL T ELT)) (-3328 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| |#4| $) 109 T ELT)) (-3948 (((-3 |#4| #1#) $) 42 T ELT)) (-3330 (((-599 $) |#4| $) 92 T ELT)) (-3332 (((-3 (-85) (-599 $)) |#4| $) NIL T ELT)) (-3331 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 $))) |#4| $) 102 T ELT) (((-85) |#4| $) 64 T ELT)) (-3376 (((-599 $) |#4| $) 114 T ELT) (((-599 $) (-599 |#4|) $) NIL T ELT) (((-599 $) (-599 |#4|) (-599 $)) 115 T ELT) (((-599 $) |#4| (-599 $)) NIL T ELT)) (-3579 (((-599 $) (-599 |#4|) (-85) (-85) (-85)) 127 T ELT)) (-3580 (($ |#4| $) 81 T ELT) (($ (-599 |#4|) $) 82 T ELT) (((-599 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 78 T ELT)) (-3847 (((-599 |#4|) $) NIL T ELT)) (-3841 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3836 ((|#4| |#4| $) NIL T ELT)) (-3849 (((-85) $ $) NIL T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-510)) ELT)) (-3842 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3837 ((|#4| |#4| $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 (((-3 |#4| #1#) $) 40 T ELT)) (-1387 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3829 (((-3 $ #1#) $ |#4|) 59 T ELT)) (-3919 (($ $ |#4|) NIL T ELT) (((-599 $) |#4| $) 94 T ELT) (((-599 $) |#4| (-599 $)) NIL T ELT) (((-599 $) (-599 |#4|) $) NIL T ELT) (((-599 $) (-599 |#4|) (-599 $)) 88 T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 17 T ELT)) (-3713 (($) 14 T ELT)) (-4098 (((-714) $) NIL T ELT)) (-2048 (((-714) |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) (((-714) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 13 T ELT)) (-4122 (((-488) $) NIL (|has| |#4| (-569 (-488))) ELT)) (-3670 (($ (-599 |#4|)) 22 T ELT)) (-3031 (($ $ |#3|) 52 T ELT)) (-3033 (($ $ |#3|) 54 T ELT)) (-3834 (($ $) NIL T ELT)) (-3032 (($ $ |#3|) NIL T ELT)) (-4096 (((-797) $) 35 T ELT) (((-599 |#4|) $) 46 T ELT)) (-3828 (((-714) $) NIL (|has| |#3| (-323)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3840 (((-85) $ (-1 (-85) |#4| (-599 |#4|))) NIL T ELT)) (-3327 (((-599 $) |#4| $) 91 T ELT) (((-599 $) |#4| (-599 $)) NIL T ELT) (((-599 $) (-599 |#4|) $) NIL T ELT) (((-599 $) (-599 |#4|) (-599 $)) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3830 (((-599 |#3|) $) NIL T ELT)) (-3334 (((-85) |#4| $) NIL T ELT)) (-4083 (((-85) |#3| $) 65 T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-967 |#1| |#2| |#3| |#4|) (-13 (-1011 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3580 ((-599 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3832 ((-599 $) (-599 |#4|) (-85) (-85))) (-15 -3832 ((-599 $) (-599 |#4|) (-85) (-85) (-85) (-85))) (-15 -3579 ((-599 $) (-599 |#4|) (-85) (-85) (-85))) (-15 -3578 ((-2 (|:| |val| (-599 |#4|)) (|:| |towers| (-599 $))) (-599 |#4|) (-85) (-85))))) (-406) (-738) (-781) (-1005 |#1| |#2| |#3|)) (T -967)) +((-3580 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-967 *5 *6 *7 *3))) (-5 *1 (-967 *5 *6 *7 *3)) (-4 *3 (-1005 *5 *6 *7)))) (-3832 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-967 *5 *6 *7 *8))) (-5 *1 (-967 *5 *6 *7 *8)))) (-3832 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-967 *5 *6 *7 *8))) (-5 *1 (-967 *5 *6 *7 *8)))) (-3579 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-967 *5 *6 *7 *8))) (-5 *1 (-967 *5 *6 *7 *8)))) (-3578 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-1005 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-599 *8)) (|:| |towers| (-599 (-967 *5 *6 *7 *8))))) (-5 *1 (-967 *5 *6 *7 *8)) (-5 *3 (-599 *8))))) +((-3178 (((-599 (-2 (|:| |radval| (-268 (-499))) (|:| |radmult| (-499)) (|:| |radvect| (-599 (-647 (-268 (-499))))))) (-647 (-361 (-884 (-499))))) 67 T ELT)) (-3179 (((-599 (-647 (-268 (-499)))) (-268 (-499)) (-647 (-361 (-884 (-499))))) 52 T ELT)) (-3180 (((-599 (-268 (-499))) (-647 (-361 (-884 (-499))))) 45 T ELT)) (-3184 (((-599 (-647 (-268 (-499)))) (-647 (-361 (-884 (-499))))) 85 T ELT)) (-3182 (((-647 (-268 (-499))) (-647 (-268 (-499)))) 38 T ELT)) (-3183 (((-599 (-647 (-268 (-499)))) (-599 (-647 (-268 (-499))))) 74 T ELT)) (-3181 (((-3 (-647 (-268 (-499))) "failed") (-647 (-361 (-884 (-499))))) 82 T ELT))) +(((-968) (-10 -7 (-15 -3178 ((-599 (-2 (|:| |radval| (-268 (-499))) (|:| |radmult| (-499)) (|:| |radvect| (-599 (-647 (-268 (-499))))))) (-647 (-361 (-884 (-499)))))) (-15 -3179 ((-599 (-647 (-268 (-499)))) (-268 (-499)) (-647 (-361 (-884 (-499)))))) (-15 -3180 ((-599 (-268 (-499))) (-647 (-361 (-884 (-499)))))) (-15 -3181 ((-3 (-647 (-268 (-499))) "failed") (-647 (-361 (-884 (-499)))))) (-15 -3182 ((-647 (-268 (-499))) (-647 (-268 (-499))))) (-15 -3183 ((-599 (-647 (-268 (-499)))) (-599 (-647 (-268 (-499)))))) (-15 -3184 ((-599 (-647 (-268 (-499)))) (-647 (-361 (-884 (-499)))))))) (T -968)) +((-3184 (*1 *2 *3) (-12 (-5 *3 (-647 (-361 (-884 (-499))))) (-5 *2 (-599 (-647 (-268 (-499))))) (-5 *1 (-968)))) (-3183 (*1 *2 *2) (-12 (-5 *2 (-599 (-647 (-268 (-499))))) (-5 *1 (-968)))) (-3182 (*1 *2 *2) (-12 (-5 *2 (-647 (-268 (-499)))) (-5 *1 (-968)))) (-3181 (*1 *2 *3) (|partial| -12 (-5 *3 (-647 (-361 (-884 (-499))))) (-5 *2 (-647 (-268 (-499)))) (-5 *1 (-968)))) (-3180 (*1 *2 *3) (-12 (-5 *3 (-647 (-361 (-884 (-499))))) (-5 *2 (-599 (-268 (-499)))) (-5 *1 (-968)))) (-3179 (*1 *2 *3 *4) (-12 (-5 *4 (-647 (-361 (-884 (-499))))) (-5 *2 (-599 (-647 (-268 (-499))))) (-5 *1 (-968)) (-5 *3 (-268 (-499))))) (-3178 (*1 *2 *3) (-12 (-5 *3 (-647 (-361 (-884 (-499))))) (-5 *2 (-599 (-2 (|:| |radval| (-268 (-499))) (|:| |radmult| (-499)) (|:| |radvect| (-599 (-647 (-268 (-499)))))))) (-5 *1 (-968))))) +((-3188 (((-599 (-647 |#1|)) (-599 (-647 |#1|))) 70 T ELT) (((-647 |#1|) (-647 |#1|)) 69 T ELT) (((-599 (-647 |#1|)) (-599 (-647 |#1|)) (-599 (-647 |#1|))) 68 T ELT) (((-647 |#1|) (-647 |#1|) (-647 |#1|)) 65 T ELT)) (-3187 (((-599 (-647 |#1|)) (-599 (-647 |#1|)) (-857)) 63 T ELT) (((-647 |#1|) (-647 |#1|) (-857)) 62 T ELT)) (-3189 (((-599 (-647 (-499))) (-599 (-599 (-499)))) 81 T ELT) (((-599 (-647 (-499))) (-599 (-840 (-499))) (-499)) 80 T ELT) (((-647 (-499)) (-599 (-499))) 77 T ELT) (((-647 (-499)) (-840 (-499)) (-499)) 75 T ELT)) (-3186 (((-647 (-884 |#1|)) (-714)) 95 T ELT)) (-3185 (((-599 (-647 |#1|)) (-599 (-647 |#1|)) (-857)) 49 (|has| |#1| (-6 (-4147 #1="*"))) ELT) (((-647 |#1|) (-647 |#1|) (-857)) 47 (|has| |#1| (-6 (-4147 #1#))) ELT))) +(((-969 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4147 #1="*"))) (-15 -3185 ((-647 |#1|) (-647 |#1|) (-857))) |%noBranch|) (IF (|has| |#1| (-6 (-4147 #1#))) (-15 -3185 ((-599 (-647 |#1|)) (-599 (-647 |#1|)) (-857))) |%noBranch|) (-15 -3186 ((-647 (-884 |#1|)) (-714))) (-15 -3187 ((-647 |#1|) (-647 |#1|) (-857))) (-15 -3187 ((-599 (-647 |#1|)) (-599 (-647 |#1|)) (-857))) (-15 -3188 ((-647 |#1|) (-647 |#1|) (-647 |#1|))) (-15 -3188 ((-599 (-647 |#1|)) (-599 (-647 |#1|)) (-599 (-647 |#1|)))) (-15 -3188 ((-647 |#1|) (-647 |#1|))) (-15 -3188 ((-599 (-647 |#1|)) (-599 (-647 |#1|)))) (-15 -3189 ((-647 (-499)) (-840 (-499)) (-499))) (-15 -3189 ((-647 (-499)) (-599 (-499)))) (-15 -3189 ((-599 (-647 (-499))) (-599 (-840 (-499))) (-499))) (-15 -3189 ((-599 (-647 (-499))) (-599 (-599 (-499)))))) (-989)) (T -969)) +((-3189 (*1 *2 *3) (-12 (-5 *3 (-599 (-599 (-499)))) (-5 *2 (-599 (-647 (-499)))) (-5 *1 (-969 *4)) (-4 *4 (-989)))) (-3189 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-840 (-499)))) (-5 *4 (-499)) (-5 *2 (-599 (-647 *4))) (-5 *1 (-969 *5)) (-4 *5 (-989)))) (-3189 (*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-647 (-499))) (-5 *1 (-969 *4)) (-4 *4 (-989)))) (-3189 (*1 *2 *3 *4) (-12 (-5 *3 (-840 (-499))) (-5 *4 (-499)) (-5 *2 (-647 *4)) (-5 *1 (-969 *5)) (-4 *5 (-989)))) (-3188 (*1 *2 *2) (-12 (-5 *2 (-599 (-647 *3))) (-4 *3 (-989)) (-5 *1 (-969 *3)))) (-3188 (*1 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-969 *3)))) (-3188 (*1 *2 *2 *2) (-12 (-5 *2 (-599 (-647 *3))) (-4 *3 (-989)) (-5 *1 (-969 *3)))) (-3188 (*1 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-969 *3)))) (-3187 (*1 *2 *2 *3) (-12 (-5 *2 (-599 (-647 *4))) (-5 *3 (-857)) (-4 *4 (-989)) (-5 *1 (-969 *4)))) (-3187 (*1 *2 *2 *3) (-12 (-5 *2 (-647 *4)) (-5 *3 (-857)) (-4 *4 (-989)) (-5 *1 (-969 *4)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-647 (-884 *4))) (-5 *1 (-969 *4)) (-4 *4 (-989)))) (-3185 (*1 *2 *2 *3) (-12 (-5 *2 (-599 (-647 *4))) (-5 *3 (-857)) (|has| *4 (-6 (-4147 "*"))) (-4 *4 (-989)) (-5 *1 (-969 *4)))) (-3185 (*1 *2 *2 *3) (-12 (-5 *2 (-647 *4)) (-5 *3 (-857)) (|has| *4 (-6 (-4147 "*"))) (-4 *4 (-989)) (-5 *1 (-969 *4))))) +((-3193 (((-647 |#1|) (-599 (-647 |#1|)) (-1207 |#1|)) 69 (|has| |#1| (-261)) ELT)) (-3558 (((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)) (-1207 (-1207 |#1|))) 109 (|has| |#1| (-318)) ELT) (((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)) (-1207 |#1|)) 116 (|has| |#1| (-318)) ELT)) (-3197 (((-1207 |#1|) (-599 (-1207 |#1|)) (-499)) 135 (-12 (|has| |#1| (-318)) (|has| |#1| (-323))) ELT)) (-3196 (((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)) (-857)) 123 (-12 (|has| |#1| (-318)) (|has| |#1| (-323))) ELT) (((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)) (-85)) 122 (-12 (|has| |#1| (-318)) (|has| |#1| (-323))) ELT) (((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|))) 121 (-12 (|has| |#1| (-318)) (|has| |#1| (-323))) ELT) (((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)) (-85) (-499) (-499)) 120 (-12 (|has| |#1| (-318)) (|has| |#1| (-323))) ELT)) (-3195 (((-85) (-599 (-647 |#1|))) 102 (|has| |#1| (-318)) ELT) (((-85) (-599 (-647 |#1|)) (-499)) 105 (|has| |#1| (-318)) ELT)) (-3192 (((-1207 (-1207 |#1|)) (-599 (-647 |#1|)) (-1207 |#1|)) 66 (|has| |#1| (-261)) ELT)) (-3191 (((-647 |#1|) (-599 (-647 |#1|)) (-647 |#1|)) 46 T ELT)) (-3190 (((-647 |#1|) (-1207 (-1207 |#1|))) 39 T ELT)) (-3194 (((-647 |#1|) (-599 (-647 |#1|)) (-599 (-647 |#1|)) (-499)) 93 (|has| |#1| (-318)) ELT) (((-647 |#1|) (-599 (-647 |#1|)) (-599 (-647 |#1|))) 92 (|has| |#1| (-318)) ELT) (((-647 |#1|) (-599 (-647 |#1|)) (-599 (-647 |#1|)) (-85) (-499)) 100 (|has| |#1| (-318)) ELT))) +(((-970 |#1|) (-10 -7 (-15 -3190 ((-647 |#1|) (-1207 (-1207 |#1|)))) (-15 -3191 ((-647 |#1|) (-599 (-647 |#1|)) (-647 |#1|))) (IF (|has| |#1| (-261)) (PROGN (-15 -3192 ((-1207 (-1207 |#1|)) (-599 (-647 |#1|)) (-1207 |#1|))) (-15 -3193 ((-647 |#1|) (-599 (-647 |#1|)) (-1207 |#1|)))) |%noBranch|) (IF (|has| |#1| (-318)) (PROGN (-15 -3194 ((-647 |#1|) (-599 (-647 |#1|)) (-599 (-647 |#1|)) (-85) (-499))) (-15 -3194 ((-647 |#1|) (-599 (-647 |#1|)) (-599 (-647 |#1|)))) (-15 -3194 ((-647 |#1|) (-599 (-647 |#1|)) (-599 (-647 |#1|)) (-499))) (-15 -3195 ((-85) (-599 (-647 |#1|)) (-499))) (-15 -3195 ((-85) (-599 (-647 |#1|)))) (-15 -3558 ((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)) (-1207 |#1|))) (-15 -3558 ((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)) (-1207 (-1207 |#1|))))) |%noBranch|) (IF (|has| |#1| (-323)) (IF (|has| |#1| (-318)) (PROGN (-15 -3196 ((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)) (-85) (-499) (-499))) (-15 -3196 ((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)))) (-15 -3196 ((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)) (-85))) (-15 -3196 ((-599 (-599 (-647 |#1|))) (-599 (-647 |#1|)) (-857))) (-15 -3197 ((-1207 |#1|) (-599 (-1207 |#1|)) (-499)))) |%noBranch|) |%noBranch|)) (-989)) (T -970)) +((-3197 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-1207 *5))) (-5 *4 (-499)) (-5 *2 (-1207 *5)) (-5 *1 (-970 *5)) (-4 *5 (-318)) (-4 *5 (-323)) (-4 *5 (-989)))) (-3196 (*1 *2 *3 *4) (-12 (-5 *4 (-857)) (-4 *5 (-318)) (-4 *5 (-323)) (-4 *5 (-989)) (-5 *2 (-599 (-599 (-647 *5)))) (-5 *1 (-970 *5)) (-5 *3 (-599 (-647 *5))))) (-3196 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-318)) (-4 *5 (-323)) (-4 *5 (-989)) (-5 *2 (-599 (-599 (-647 *5)))) (-5 *1 (-970 *5)) (-5 *3 (-599 (-647 *5))))) (-3196 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *4 (-323)) (-4 *4 (-989)) (-5 *2 (-599 (-599 (-647 *4)))) (-5 *1 (-970 *4)) (-5 *3 (-599 (-647 *4))))) (-3196 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-85)) (-5 *5 (-499)) (-4 *6 (-318)) (-4 *6 (-323)) (-4 *6 (-989)) (-5 *2 (-599 (-599 (-647 *6)))) (-5 *1 (-970 *6)) (-5 *3 (-599 (-647 *6))))) (-3558 (*1 *2 *3 *4) (-12 (-5 *4 (-1207 (-1207 *5))) (-4 *5 (-318)) (-4 *5 (-989)) (-5 *2 (-599 (-599 (-647 *5)))) (-5 *1 (-970 *5)) (-5 *3 (-599 (-647 *5))))) (-3558 (*1 *2 *3 *4) (-12 (-5 *4 (-1207 *5)) (-4 *5 (-318)) (-4 *5 (-989)) (-5 *2 (-599 (-599 (-647 *5)))) (-5 *1 (-970 *5)) (-5 *3 (-599 (-647 *5))))) (-3195 (*1 *2 *3) (-12 (-5 *3 (-599 (-647 *4))) (-4 *4 (-318)) (-4 *4 (-989)) (-5 *2 (-85)) (-5 *1 (-970 *4)))) (-3195 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-647 *5))) (-5 *4 (-499)) (-4 *5 (-318)) (-4 *5 (-989)) (-5 *2 (-85)) (-5 *1 (-970 *5)))) (-3194 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-599 (-647 *5))) (-5 *4 (-499)) (-5 *2 (-647 *5)) (-5 *1 (-970 *5)) (-4 *5 (-318)) (-4 *5 (-989)))) (-3194 (*1 *2 *3 *3) (-12 (-5 *3 (-599 (-647 *4))) (-5 *2 (-647 *4)) (-5 *1 (-970 *4)) (-4 *4 (-318)) (-4 *4 (-989)))) (-3194 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-599 (-647 *6))) (-5 *4 (-85)) (-5 *5 (-499)) (-5 *2 (-647 *6)) (-5 *1 (-970 *6)) (-4 *6 (-318)) (-4 *6 (-989)))) (-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-647 *5))) (-5 *4 (-1207 *5)) (-4 *5 (-261)) (-4 *5 (-989)) (-5 *2 (-647 *5)) (-5 *1 (-970 *5)))) (-3192 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-647 *5))) (-4 *5 (-261)) (-4 *5 (-989)) (-5 *2 (-1207 (-1207 *5))) (-5 *1 (-970 *5)) (-5 *4 (-1207 *5)))) (-3191 (*1 *2 *3 *2) (-12 (-5 *3 (-599 (-647 *4))) (-5 *2 (-647 *4)) (-4 *4 (-989)) (-5 *1 (-970 *4)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-1207 (-1207 *4))) (-4 *4 (-989)) (-5 *2 (-647 *4)) (-5 *1 (-970 *4))))) +((-3198 ((|#1| (-857) |#1|) 18 T ELT))) +(((-971 |#1|) (-10 -7 (-15 -3198 (|#1| (-857) |#1|))) (-13 (-1041) (-10 -8 (-15 -3989 ($ $ $))))) (T -971)) +((-3198 (*1 *2 *3 *2) (-12 (-5 *3 (-857)) (-5 *1 (-971 *2)) (-4 *2 (-13 (-1041) (-10 -8 (-15 -3989 ($ $ $)))))))) +((-3199 ((|#1| |#1| (-857)) 18 T ELT))) +(((-972 |#1|) (-10 -7 (-15 -3199 (|#1| |#1| (-857)))) (-13 (-1041) (-10 -8 (-15 * ($ $ $))))) (T -972)) +((-3199 (*1 *2 *2 *3) (-12 (-5 *3 (-857)) (-5 *1 (-972 *2)) (-4 *2 (-13 (-1041) (-10 -8 (-15 * ($ $ $)))))))) +((-4096 ((|#1| (-265)) 11 T ELT) (((-1213) |#1|) 9 T ELT))) +(((-973 |#1|) (-10 -7 (-15 -4096 ((-1213) |#1|)) (-15 -4096 (|#1| (-265)))) (-1157)) (T -973)) +((-4096 (*1 *2 *3) (-12 (-5 *3 (-265)) (-5 *1 (-973 *2)) (-4 *2 (-1157)))) (-4096 (*1 *2 *3) (-12 (-5 *2 (-1213)) (-5 *1 (-973 *3)) (-4 *3 (-1157))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3992 (($ |#4|) 25 T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3200 ((|#4| $) 27 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 46 T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 26 T ELT)) (-3248 (((-714)) 43 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 21 T CONST)) (-2785 (($) 23 T CONST)) (-3174 (((-85) $ $) 40 T ELT)) (-3987 (($ $) 31 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 29 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 36 T ELT) (($ $ $) 33 T ELT) (($ |#1| $) 38 T ELT) (($ $ |#1|) NIL T ELT))) +(((-974 |#1| |#2| |#3| |#4| |#5|) (-13 (-146) (-38 |#1|) (-10 -8 (-15 -3992 ($ |#4|)) (-15 -4096 ($ |#4|)) (-15 -3200 (|#4| $)))) (-318) (-738) (-781) (-888 |#1| |#2| |#3|) (-599 |#4|)) (T -974)) +((-3992 (*1 *1 *2) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *2 (-888 *3 *4 *5)) (-14 *6 (-599 *2)))) (-4096 (*1 *1 *2) (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *2 (-888 *3 *4 *5)) (-14 *6 (-599 *2)))) (-3200 (*1 *2 *1) (-12 (-4 *2 (-888 *3 *4 *5)) (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-14 *6 (-599 *2))))) +((-2687 (((-85) $ $) NIL (-3677 (|has| (-51) (-73)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-73))) ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL T ELT)) (-2299 (((-1213) $ (-1117) (-1117)) NIL (|has| $ (-6 -4146)) ELT)) (-3202 (((-85) (-85)) 43 T ELT)) (-3201 (((-85) (-85)) 42 T ELT)) (-3938 (((-51) $ (-1117) (-51)) NIL T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 (-51) #1="failed") (-1117) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 (-51) #1#) (-1117) $) NIL T ELT)) (-3546 (($ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 (((-51) $ (-1117) (-51)) NIL (|has| $ (-6 -4146)) ELT)) (-3235 (((-51) $ (-1117)) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-2301 (((-1117) $) NIL (|has| (-1117) (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (((-85) (-51) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-51) (-1041))) ELT)) (-2302 (((-1117) $) NIL (|has| (-1117) (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (-3677 (|has| (-51) (-1041)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT)) (-2333 (((-599 (-1117)) $) 37 T ELT)) (-2334 (((-85) (-1117) $) NIL T ELT)) (-1308 (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL T ELT)) (-2304 (((-599 (-1117)) $) NIL T ELT)) (-2305 (((-85) (-1117) $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-51) (-1041)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT)) (-3951 (((-51) $) NIL (|has| (-1117) (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2300 (($ $ (-51)) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-599 (-51)) (-599 (-51))) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT) (($ $ (-247 (-51))) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT) (($ $ (-599 (-247 (-51)))) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) (-51) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-51) (-1041))) ELT)) (-2306 (((-599 (-51)) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 (((-51) $ (-1117)) 39 T ELT) (((-51) $ (-1117) (-51)) NIL T ELT)) (-1499 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (((-714) (-51) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-51) (-1041))) ELT) (((-714) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL T ELT)) (-4096 (((-797) $) 41 (-3677 (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-568 (-797))) (|has| (-51) (-568 (-797)))) ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-51) (-73)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (-3677 (|has| (-51) (-73)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-73))) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-975) (-13 (-1134 (-1117) (-51)) (-10 -7 (-15 -3202 ((-85) (-85))) (-15 -3201 ((-85) (-85))) (-6 -4145)))) (T -975)) +((-3202 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-975)))) (-3201 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-975))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3344 (((-1075) $) 9 T ELT)) (-4096 (((-797) $) 15 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-976) (-13 (-1023) (-10 -8 (-15 -3344 ((-1075) $))))) (T -976)) +((-3344 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-976))))) +((-3294 ((|#2| $) 10 T ELT))) +(((-977 |#1| |#2|) (-10 -7 (-15 -3294 (|#2| |#1|))) (-978 |#2|) (-1157)) (T -977)) +NIL +((-3295 (((-3 |#1| "failed") $) 9 T ELT)) (-3294 ((|#1| $) 8 T ELT)) (-4096 (($ |#1|) 6 T ELT))) +(((-978 |#1|) (-113) (-1157)) (T -978)) +((-3295 (*1 *2 *1) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1157)))) (-3294 (*1 *2 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-1157))))) +(-13 (-571 |t#1|) (-10 -8 (-15 -3295 ((-3 |t#1| "failed") $)) (-15 -3294 (|t#1| $)))) +(((-571 |#1|) . T)) +((-3203 (((-599 (-599 (-247 (-361 (-884 |#2|))))) (-599 (-884 |#2|)) (-599 (-1117))) 38 T ELT))) +(((-979 |#1| |#2|) (-10 -7 (-15 -3203 ((-599 (-599 (-247 (-361 (-884 |#2|))))) (-599 (-884 |#2|)) (-599 (-1117))))) (-510) (-13 (-510) (-978 |#1|))) (T -979)) +((-3203 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-884 *6))) (-5 *4 (-599 (-1117))) (-4 *6 (-13 (-510) (-978 *5))) (-4 *5 (-510)) (-5 *2 (-599 (-599 (-247 (-361 (-884 *6)))))) (-5 *1 (-979 *5 *6))))) +((-3204 (((-599 (-1117)) (-361 (-884 |#1|))) 17 T ELT)) (-3206 (((-361 (-1111 (-361 (-884 |#1|)))) (-361 (-884 |#1|)) (-1117)) 24 T ELT)) (-3207 (((-361 (-884 |#1|)) (-361 (-1111 (-361 (-884 |#1|)))) (-1117)) 26 T ELT)) (-3205 (((-3 (-1117) "failed") (-361 (-884 |#1|))) 20 T ELT)) (-3918 (((-361 (-884 |#1|)) (-361 (-884 |#1|)) (-599 (-247 (-361 (-884 |#1|))))) 32 T ELT) (((-361 (-884 |#1|)) (-361 (-884 |#1|)) (-247 (-361 (-884 |#1|)))) 33 T ELT) (((-361 (-884 |#1|)) (-361 (-884 |#1|)) (-599 (-1117)) (-599 (-361 (-884 |#1|)))) 28 T ELT) (((-361 (-884 |#1|)) (-361 (-884 |#1|)) (-1117) (-361 (-884 |#1|))) 29 T ELT)) (-4096 (((-361 (-884 |#1|)) |#1|) 11 T ELT))) +(((-980 |#1|) (-10 -7 (-15 -3204 ((-599 (-1117)) (-361 (-884 |#1|)))) (-15 -3205 ((-3 (-1117) "failed") (-361 (-884 |#1|)))) (-15 -3206 ((-361 (-1111 (-361 (-884 |#1|)))) (-361 (-884 |#1|)) (-1117))) (-15 -3207 ((-361 (-884 |#1|)) (-361 (-1111 (-361 (-884 |#1|)))) (-1117))) (-15 -3918 ((-361 (-884 |#1|)) (-361 (-884 |#1|)) (-1117) (-361 (-884 |#1|)))) (-15 -3918 ((-361 (-884 |#1|)) (-361 (-884 |#1|)) (-599 (-1117)) (-599 (-361 (-884 |#1|))))) (-15 -3918 ((-361 (-884 |#1|)) (-361 (-884 |#1|)) (-247 (-361 (-884 |#1|))))) (-15 -3918 ((-361 (-884 |#1|)) (-361 (-884 |#1|)) (-599 (-247 (-361 (-884 |#1|)))))) (-15 -4096 ((-361 (-884 |#1|)) |#1|))) (-510)) (T -980)) +((-4096 (*1 *2 *3) (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-980 *3)) (-4 *3 (-510)))) (-3918 (*1 *2 *2 *3) (-12 (-5 *3 (-599 (-247 (-361 (-884 *4))))) (-5 *2 (-361 (-884 *4))) (-4 *4 (-510)) (-5 *1 (-980 *4)))) (-3918 (*1 *2 *2 *3) (-12 (-5 *3 (-247 (-361 (-884 *4)))) (-5 *2 (-361 (-884 *4))) (-4 *4 (-510)) (-5 *1 (-980 *4)))) (-3918 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-599 (-1117))) (-5 *4 (-599 (-361 (-884 *5)))) (-5 *2 (-361 (-884 *5))) (-4 *5 (-510)) (-5 *1 (-980 *5)))) (-3918 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-361 (-884 *4))) (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *1 (-980 *4)))) (-3207 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-1111 (-361 (-884 *5))))) (-5 *4 (-1117)) (-5 *2 (-361 (-884 *5))) (-5 *1 (-980 *5)) (-4 *5 (-510)))) (-3206 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-510)) (-5 *2 (-361 (-1111 (-361 (-884 *5))))) (-5 *1 (-980 *5)) (-5 *3 (-361 (-884 *5))))) (-3205 (*1 *2 *3) (|partial| -12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-5 *2 (-1117)) (-5 *1 (-980 *4)))) (-3204 (*1 *2 *3) (-12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-5 *2 (-599 (-1117))) (-5 *1 (-980 *4))))) +((-3208 (((-333)) 17 T ELT)) (-3223 (((-1 (-333)) (-333) (-333)) 22 T ELT)) (-3216 (((-1 (-333)) (-714)) 48 T ELT)) (-3209 (((-333)) 37 T ELT)) (-3212 (((-1 (-333)) (-333) (-333)) 38 T ELT)) (-3210 (((-333)) 29 T ELT)) (-3213 (((-1 (-333)) (-333)) 30 T ELT)) (-3211 (((-333) (-714)) 43 T ELT)) (-3214 (((-1 (-333)) (-714)) 44 T ELT)) (-3215 (((-1 (-333)) (-714) (-714)) 47 T ELT)) (-3524 (((-1 (-333)) (-714) (-714)) 45 T ELT))) +(((-981) (-10 -7 (-15 -3208 ((-333))) (-15 -3209 ((-333))) (-15 -3210 ((-333))) (-15 -3211 ((-333) (-714))) (-15 -3223 ((-1 (-333)) (-333) (-333))) (-15 -3212 ((-1 (-333)) (-333) (-333))) (-15 -3213 ((-1 (-333)) (-333))) (-15 -3214 ((-1 (-333)) (-714))) (-15 -3524 ((-1 (-333)) (-714) (-714))) (-15 -3215 ((-1 (-333)) (-714) (-714))) (-15 -3216 ((-1 (-333)) (-714))))) (T -981)) +((-3216 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1 (-333))) (-5 *1 (-981)))) (-3215 (*1 *2 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1 (-333))) (-5 *1 (-981)))) (-3524 (*1 *2 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1 (-333))) (-5 *1 (-981)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1 (-333))) (-5 *1 (-981)))) (-3213 (*1 *2 *3) (-12 (-5 *2 (-1 (-333))) (-5 *1 (-981)) (-5 *3 (-333)))) (-3212 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-333))) (-5 *1 (-981)) (-5 *3 (-333)))) (-3223 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-333))) (-5 *1 (-981)) (-5 *3 (-333)))) (-3211 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-333)) (-5 *1 (-981)))) (-3210 (*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-981)))) (-3209 (*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-981)))) (-3208 (*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-981))))) +((-3882 (((-359 |#1|) |#1|) 33 T ELT))) +(((-982 |#1|) (-10 -7 (-15 -3882 ((-359 |#1|) |#1|))) (-1183 (-361 (-884 (-499))))) (T -982)) +((-3882 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-982 *3)) (-4 *3 (-1183 (-361 (-884 (-499)))))))) +((-3217 (((-361 (-359 (-884 |#1|))) (-361 (-884 |#1|))) 14 T ELT))) +(((-983 |#1|) (-10 -7 (-15 -3217 ((-361 (-359 (-884 |#1|))) (-361 (-884 |#1|))))) (-261)) (T -983)) +((-3217 (*1 *2 *3) (-12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-261)) (-5 *2 (-361 (-359 (-884 *4)))) (-5 *1 (-983 *4))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3874 (($) 22 T CONST)) (-3221 ((|#1| $) 28 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3220 ((|#1| $) 27 T ELT)) (-3218 ((|#1|) 25 T CONST)) (-4096 (((-797) $) 13 T ELT)) (-3219 ((|#1| $) 26 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT))) +(((-984 |#1|) (-113) (-23)) (T -984)) +((-3221 (*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-23)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-23)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-23)))) (-3218 (*1 *2) (-12 (-4 *1 (-984 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3221 (|t#1| $)) (-15 -3220 (|t#1| $)) (-15 -3219 (|t#1| $)) (-15 -3218 (|t#1|) -4102))) +(((-23) . T) ((-25) . T) ((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3222 (($) 30 T CONST)) (-3874 (($) 22 T CONST)) (-3221 ((|#1| $) 28 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3220 ((|#1| $) 27 T ELT)) (-3218 ((|#1|) 25 T CONST)) (-4096 (((-797) $) 13 T ELT)) (-3219 ((|#1| $) 26 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT))) +(((-985 |#1|) (-113) (-23)) (T -985)) +((-3222 (*1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-23))))) +(-13 (-984 |t#1|) (-10 -8 (-15 -3222 ($) -4102))) +(((-23) . T) ((-25) . T) ((-73) . T) ((-568 (-797)) . T) ((-984 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3831 (((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 (-723 |#1| (-798 |#2|)))))) (-599 (-723 |#1| (-798 |#2|)))) NIL T ELT)) (-3832 (((-599 $) (-599 (-723 |#1| (-798 |#2|)))) NIL T ELT) (((-599 $) (-599 (-723 |#1| (-798 |#2|))) (-85)) NIL T ELT) (((-599 $) (-599 (-723 |#1| (-798 |#2|))) (-85) (-85)) NIL T ELT)) (-3204 (((-599 (-798 |#2|)) $) NIL T ELT)) (-3029 (((-85) $) NIL T ELT)) (-3020 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3843 (((-85) (-723 |#1| (-798 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3838 (((-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3925 (((-599 (-2 (|:| |val| (-723 |#1| (-798 |#2|))) (|:| -1633 $))) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ (-798 |#2|)) NIL T ELT)) (-3860 (($ (-1 (-85) (-723 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 (-723 |#1| (-798 |#2|)) #1="failed") $ (-798 |#2|)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3025 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3839 (((-599 (-723 |#1| (-798 |#2|))) (-599 (-723 |#1| (-798 |#2|))) $ (-1 (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|))) (-1 (-85) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)))) NIL T ELT)) (-3021 (((-599 (-723 |#1| (-798 |#2|))) (-599 (-723 |#1| (-798 |#2|))) $) NIL (|has| |#1| (-510)) ELT)) (-3022 (((-599 (-723 |#1| (-798 |#2|))) (-599 (-723 |#1| (-798 |#2|))) $) NIL (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ #1#) (-599 (-723 |#1| (-798 |#2|)))) NIL T ELT)) (-3294 (($ (-599 (-723 |#1| (-798 |#2|)))) NIL T ELT)) (-3949 (((-3 $ #1#) $) NIL T ELT)) (-3835 (((-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-723 |#1| (-798 |#2|)) (-1041))) ELT)) (-3546 (($ (-723 |#1| (-798 |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-723 |#1| (-798 |#2|)) (-1041))) ELT) (($ (-1 (-85) (-723 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-723 |#1| (-798 |#2|))) (|:| |den| |#1|)) (-723 |#1| (-798 |#2|)) $) NIL (|has| |#1| (-510)) ELT)) (-3844 (((-85) (-723 |#1| (-798 |#2|)) $ (-1 (-85) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)))) NIL T ELT)) (-3833 (((-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3992 (((-723 |#1| (-798 |#2|)) (-1 (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|))) $ (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-723 |#1| (-798 |#2|)) (-1041))) ELT) (((-723 |#1| (-798 |#2|)) (-1 (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|))) $ (-723 |#1| (-798 |#2|))) NIL (|has| $ (-6 -4145)) ELT) (((-723 |#1| (-798 |#2|)) (-1 (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) $ (-1 (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|))) (-1 (-85) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)))) NIL T ELT)) (-3846 (((-2 (|:| -4011 (-599 (-723 |#1| (-798 |#2|)))) (|:| -1795 (-599 (-723 |#1| (-798 |#2|))))) $) NIL T ELT)) (-3335 (((-85) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3333 (((-85) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3336 (((-85) (-723 |#1| (-798 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3010 (((-599 (-723 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3845 (((-85) (-723 |#1| (-798 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3318 (((-798 |#2|) $) NIL T ELT)) (-2727 (((-599 (-723 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-723 |#1| (-798 |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-723 |#1| (-798 |#2|)) (-1041))) ELT)) (-2051 (($ (-1 (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|))) $) NIL T ELT)) (-3035 (((-599 (-798 |#2|)) $) NIL T ELT)) (-3034 (((-85) (-798 |#2|) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3329 (((-3 (-723 |#1| (-798 |#2|)) (-599 $)) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3328 (((-599 (-2 (|:| |val| (-723 |#1| (-798 |#2|))) (|:| -1633 $))) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3948 (((-3 (-723 |#1| (-798 |#2|)) #1#) $) NIL T ELT)) (-3330 (((-599 $) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3332 (((-3 (-85) (-599 $)) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3331 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 $))) (-723 |#1| (-798 |#2|)) $) NIL T ELT) (((-85) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3376 (((-599 $) (-723 |#1| (-798 |#2|)) $) NIL T ELT) (((-599 $) (-599 (-723 |#1| (-798 |#2|))) $) NIL T ELT) (((-599 $) (-599 (-723 |#1| (-798 |#2|))) (-599 $)) NIL T ELT) (((-599 $) (-723 |#1| (-798 |#2|)) (-599 $)) NIL T ELT)) (-3580 (($ (-723 |#1| (-798 |#2|)) $) NIL T ELT) (($ (-599 (-723 |#1| (-798 |#2|))) $) NIL T ELT)) (-3847 (((-599 (-723 |#1| (-798 |#2|))) $) NIL T ELT)) (-3841 (((-85) (-723 |#1| (-798 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3836 (((-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3849 (((-85) $ $) NIL T ELT)) (-3024 (((-2 (|:| |num| (-723 |#1| (-798 |#2|))) (|:| |den| |#1|)) (-723 |#1| (-798 |#2|)) $) NIL (|has| |#1| (-510)) ELT)) (-3842 (((-85) (-723 |#1| (-798 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3837 (((-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 (((-3 (-723 |#1| (-798 |#2|)) #1#) $) NIL T ELT)) (-1387 (((-3 (-723 |#1| (-798 |#2|)) #1#) (-1 (-85) (-723 |#1| (-798 |#2|))) $) NIL T ELT)) (-3829 (((-3 $ #1#) $ (-723 |#1| (-798 |#2|))) NIL T ELT)) (-3919 (($ $ (-723 |#1| (-798 |#2|))) NIL T ELT) (((-599 $) (-723 |#1| (-798 |#2|)) $) NIL T ELT) (((-599 $) (-723 |#1| (-798 |#2|)) (-599 $)) NIL T ELT) (((-599 $) (-599 (-723 |#1| (-798 |#2|))) $) NIL T ELT) (((-599 $) (-599 (-723 |#1| (-798 |#2|))) (-599 $)) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-723 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-723 |#1| (-798 |#2|))) (-599 (-723 |#1| (-798 |#2|)))) NIL (-12 (|has| (-723 |#1| (-798 |#2|)) (-263 (-723 |#1| (-798 |#2|)))) (|has| (-723 |#1| (-798 |#2|)) (-1041))) ELT) (($ $ (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|))) NIL (-12 (|has| (-723 |#1| (-798 |#2|)) (-263 (-723 |#1| (-798 |#2|)))) (|has| (-723 |#1| (-798 |#2|)) (-1041))) ELT) (($ $ (-247 (-723 |#1| (-798 |#2|)))) NIL (-12 (|has| (-723 |#1| (-798 |#2|)) (-263 (-723 |#1| (-798 |#2|)))) (|has| (-723 |#1| (-798 |#2|)) (-1041))) ELT) (($ $ (-599 (-247 (-723 |#1| (-798 |#2|))))) NIL (-12 (|has| (-723 |#1| (-798 |#2|)) (-263 (-723 |#1| (-798 |#2|)))) (|has| (-723 |#1| (-798 |#2|)) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-4098 (((-714) $) NIL T ELT)) (-2048 (((-714) (-723 |#1| (-798 |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-723 |#1| (-798 |#2|)) (-1041))) ELT) (((-714) (-1 (-85) (-723 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-723 |#1| (-798 |#2|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-723 |#1| (-798 |#2|)))) NIL T ELT)) (-3031 (($ $ (-798 |#2|)) NIL T ELT)) (-3033 (($ $ (-798 |#2|)) NIL T ELT)) (-3834 (($ $) NIL T ELT)) (-3032 (($ $ (-798 |#2|)) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (((-599 (-723 |#1| (-798 |#2|))) $) NIL T ELT)) (-3828 (((-714) $) NIL (|has| (-798 |#2|) (-323)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 (-723 |#1| (-798 |#2|))))) #1#) (-599 (-723 |#1| (-798 |#2|))) (-1 (-85) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 (-723 |#1| (-798 |#2|))))) #1#) (-599 (-723 |#1| (-798 |#2|))) (-1 (-85) (-723 |#1| (-798 |#2|))) (-1 (-85) (-723 |#1| (-798 |#2|)) (-723 |#1| (-798 |#2|)))) NIL T ELT)) (-3840 (((-85) $ (-1 (-85) (-723 |#1| (-798 |#2|)) (-599 (-723 |#1| (-798 |#2|))))) NIL T ELT)) (-3327 (((-599 $) (-723 |#1| (-798 |#2|)) $) NIL T ELT) (((-599 $) (-723 |#1| (-798 |#2|)) (-599 $)) NIL T ELT) (((-599 $) (-599 (-723 |#1| (-798 |#2|))) $) NIL T ELT) (((-599 $) (-599 (-723 |#1| (-798 |#2|))) (-599 $)) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-723 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3830 (((-599 (-798 |#2|)) $) NIL T ELT)) (-3334 (((-85) (-723 |#1| (-798 |#2|)) $) NIL T ELT)) (-4083 (((-85) (-798 |#2|) $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-986 |#1| |#2|) (-13 (-1011 |#1| (-484 (-798 |#2|)) (-798 |#2|) (-723 |#1| (-798 |#2|))) (-10 -8 (-15 -3832 ((-599 $) (-599 (-723 |#1| (-798 |#2|))) (-85) (-85))))) (-406) (-599 (-1117))) (T -986)) +((-3832 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-599 (-723 *5 (-798 *6)))) (-5 *4 (-85)) (-4 *5 (-406)) (-14 *6 (-599 (-1117))) (-5 *2 (-599 (-986 *5 *6))) (-5 *1 (-986 *5 *6))))) +((-3223 (((-1 (-499)) (-1029 (-499))) 32 T ELT)) (-3227 (((-499) (-499) (-499) (-499) (-499)) 29 T ELT)) (-3225 (((-1 (-499)) |RationalNumber|) NIL T ELT)) (-3226 (((-1 (-499)) |RationalNumber|) NIL T ELT)) (-3224 (((-1 (-499)) (-499) |RationalNumber|) NIL T ELT))) +(((-987) (-10 -7 (-15 -3223 ((-1 (-499)) (-1029 (-499)))) (-15 -3224 ((-1 (-499)) (-499) |RationalNumber|)) (-15 -3225 ((-1 (-499)) |RationalNumber|)) (-15 -3226 ((-1 (-499)) |RationalNumber|)) (-15 -3227 ((-499) (-499) (-499) (-499) (-499))))) (T -987)) +((-3227 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-987)))) (-3226 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-499))) (-5 *1 (-987)))) (-3225 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-499))) (-5 *1 (-987)))) (-3224 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-499))) (-5 *1 (-987)) (-5 *3 (-499)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-1029 (-499))) (-5 *2 (-1 (-499))) (-5 *1 (-987))))) +((-4096 (((-797) $) NIL T ELT) (($ (-499)) 10 T ELT))) +(((-988 |#1|) (-10 -7 (-15 -4096 (|#1| (-499))) (-15 -4096 ((-797) |#1|))) (-989)) (T -988)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-989) (-113)) (T -989)) +((-3248 (*1 *2) (-12 (-4 *1 (-989)) (-5 *2 (-714))))) +(-13 (-997) (-684) (-606 $) (-571 (-499)) (-10 -7 (-15 -3248 ((-714)) -4102) (-6 -4142))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-571 (-499)) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-684) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-3228 (((-361 (-884 |#2|)) (-599 |#2|) (-599 |#2|) (-714) (-714)) 55 T ELT))) +(((-990 |#1| |#2|) (-10 -7 (-15 -3228 ((-361 (-884 |#2|)) (-599 |#2|) (-599 |#2|) (-714) (-714)))) (-1117) (-318)) (T -990)) +((-3228 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-599 *6)) (-5 *4 (-714)) (-4 *6 (-318)) (-5 *2 (-361 (-884 *6))) (-5 *1 (-990 *5 *6)) (-14 *5 (-1117))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) +(((-991 |#1|) (-113) (-1052)) (T -991)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1052))))) +(-13 (-1041) (-10 -8 (-15 * ($ $ |t#1|)))) +(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) +((-3243 (((-85) $) 38 T ELT)) (-3245 (((-85) $) 17 T ELT)) (-3237 (((-714) $) 13 T ELT)) (-3236 (((-714) $) 14 T ELT)) (-3244 (((-85) $) 30 T ELT)) (-3242 (((-85) $) 40 T ELT))) +(((-992 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3236 ((-714) |#1|)) (-15 -3237 ((-714) |#1|)) (-15 -3242 ((-85) |#1|)) (-15 -3243 ((-85) |#1|)) (-15 -3244 ((-85) |#1|)) (-15 -3245 ((-85) |#1|))) (-993 |#2| |#3| |#4| |#5| |#6|) (-714) (-714) (-989) (-195 |#3| |#4|) (-195 |#2| |#4|)) (T -992)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3243 (((-85) $) 61 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3245 (((-85) $) 63 T ELT)) (-3874 (($) 22 T CONST)) (-3232 (($ $) 44 (|has| |#3| (-261)) ELT)) (-3234 ((|#4| $ (-499)) 49 T ELT)) (-3231 (((-714) $) 43 (|has| |#3| (-510)) ELT)) (-3235 ((|#3| $ (-499) (-499)) 51 T ELT)) (-3010 (((-599 |#3|) $) 75 (|has| $ (-6 -4145)) ELT)) (-3230 (((-714) $) 42 (|has| |#3| (-510)) ELT)) (-3229 (((-599 |#5|) $) 41 (|has| |#3| (-510)) ELT)) (-3237 (((-714) $) 55 T ELT)) (-3236 (((-714) $) 54 T ELT)) (-3241 (((-499) $) 59 T ELT)) (-3239 (((-499) $) 57 T ELT)) (-2727 (((-599 |#3|) $) 76 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#3| $) 78 (-12 (|has| |#3| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3240 (((-499) $) 58 T ELT)) (-3238 (((-499) $) 56 T ELT)) (-3246 (($ (-599 (-599 |#3|))) 64 T ELT)) (-2051 (($ (-1 |#3| |#3|) $) 71 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 47 T ELT)) (-3742 (((-599 (-599 |#3|)) $) 53 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3606 (((-3 $ "failed") $ |#3|) 46 (|has| |#3| (-510)) ELT)) (-2049 (((-85) (-1 (-85) |#3|) $) 73 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#3|) (-599 |#3|)) 82 (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ |#3| |#3|) 81 (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ (-247 |#3|)) 80 (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ (-599 (-247 |#3|))) 79 (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT)) (-1248 (((-85) $ $) 65 T ELT)) (-3543 (((-85) $) 68 T ELT)) (-3713 (($) 67 T ELT)) (-3950 ((|#3| $ (-499) (-499)) 52 T ELT) ((|#3| $ (-499) (-499) |#3|) 50 T ELT)) (-3244 (((-85) $) 62 T ELT)) (-2048 (((-714) |#3| $) 77 (-12 (|has| |#3| (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) |#3|) $) 74 (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 66 T ELT)) (-3233 ((|#5| $ (-499)) 48 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2050 (((-85) (-1 (-85) |#3|) $) 72 (|has| $ (-6 -4145)) ELT)) (-3242 (((-85) $) 60 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#3|) 45 (|has| |#3| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#3| $) 32 T ELT) (($ $ |#3|) 36 T ELT)) (-4107 (((-714) $) 69 (|has| $ (-6 -4145)) ELT))) +(((-993 |#1| |#2| |#3| |#4| |#5|) (-113) (-714) (-714) (-989) (-195 |t#2| |t#3|) (-195 |t#1| |t#3|)) (T -993)) +((-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)))) (-3246 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 *5))) (-4 *5 (-989)) (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)))) (-3245 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-85)))) (-3244 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-85)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-85)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-85)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-499)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-499)))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-499)))) (-3238 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-499)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-714)))) (-3236 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-714)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-599 (-599 *5))))) (-3950 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-499)) (-4 *1 (-993 *4 *5 *2 *6 *7)) (-4 *6 (-195 *5 *2)) (-4 *7 (-195 *4 *2)) (-4 *2 (-989)))) (-3235 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-499)) (-4 *1 (-993 *4 *5 *2 *6 *7)) (-4 *6 (-195 *5 *2)) (-4 *7 (-195 *4 *2)) (-4 *2 (-989)))) (-3950 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-499)) (-4 *1 (-993 *4 *5 *2 *6 *7)) (-4 *2 (-989)) (-4 *6 (-195 *5 *2)) (-4 *7 (-195 *4 *2)))) (-3234 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-993 *4 *5 *6 *2 *7)) (-4 *6 (-989)) (-4 *7 (-195 *4 *6)) (-4 *2 (-195 *5 *6)))) (-3233 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-993 *4 *5 *6 *7 *2)) (-4 *6 (-989)) (-4 *7 (-195 *5 *6)) (-4 *2 (-195 *4 *6)))) (-4108 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)))) (-3606 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-993 *3 *4 *2 *5 *6)) (-4 *2 (-989)) (-4 *5 (-195 *4 *2)) (-4 *6 (-195 *3 *2)) (-4 *2 (-510)))) (-4099 (*1 *1 *1 *2) (-12 (-4 *1 (-993 *3 *4 *2 *5 *6)) (-4 *2 (-989)) (-4 *5 (-195 *4 *2)) (-4 *6 (-195 *3 *2)) (-4 *2 (-318)))) (-3232 (*1 *1 *1) (-12 (-4 *1 (-993 *2 *3 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-195 *3 *4)) (-4 *6 (-195 *2 *4)) (-4 *4 (-261)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-4 *5 (-510)) (-5 *2 (-714)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-4 *5 (-510)) (-5 *2 (-714)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-4 *5 (-510)) (-5 *2 (-599 *7))))) +(-13 (-82 |t#3| |t#3|) (-443 |t#3|) (-10 -8 (-6 -4145) (IF (|has| |t#3| (-146)) (-6 (-675 |t#3|)) |%noBranch|) (-15 -3246 ($ (-599 (-599 |t#3|)))) (-15 -3245 ((-85) $)) (-15 -3244 ((-85) $)) (-15 -3243 ((-85) $)) (-15 -3242 ((-85) $)) (-15 -3241 ((-499) $)) (-15 -3240 ((-499) $)) (-15 -3239 ((-499) $)) (-15 -3238 ((-499) $)) (-15 -3237 ((-714) $)) (-15 -3236 ((-714) $)) (-15 -3742 ((-599 (-599 |t#3|)) $)) (-15 -3950 (|t#3| $ (-499) (-499))) (-15 -3235 (|t#3| $ (-499) (-499))) (-15 -3950 (|t#3| $ (-499) (-499) |t#3|)) (-15 -3234 (|t#4| $ (-499))) (-15 -3233 (|t#5| $ (-499))) (-15 -4108 ($ (-1 |t#3| |t#3|) $)) (-15 -4108 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-510)) (-15 -3606 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-318)) (-15 -4099 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-261)) (-15 -3232 ($ $)) |%noBranch|) (IF (|has| |t#3| (-510)) (PROGN (-15 -3231 ((-714) $)) (-15 -3230 ((-714) $)) (-15 -3229 ((-599 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-73) . T) ((-82 |#3| |#3|) . T) ((-104) . T) ((-568 (-797)) . T) ((-263 |#3|) -12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ((-443 |#3|) . T) ((-468 |#3| |#3|) -12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ((-604 (-499)) . T) ((-604 |#3|) . T) ((-606 |#3|) . T) ((-598 |#3|) |has| |#3| (-146)) ((-675 |#3|) |has| |#3| (-146)) ((-991 |#3|) . T) ((-996 |#3|) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3243 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3245 (((-85) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3232 (($ $) 47 (|has| |#3| (-261)) ELT)) (-3234 (((-196 |#2| |#3|) $ (-499)) 36 T ELT)) (-3247 (($ (-647 |#3|)) 45 T ELT)) (-3231 (((-714) $) 49 (|has| |#3| (-510)) ELT)) (-3235 ((|#3| $ (-499) (-499)) NIL T ELT)) (-3010 (((-599 |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3230 (((-714) $) 51 (|has| |#3| (-510)) ELT)) (-3229 (((-599 (-196 |#1| |#3|)) $) 55 (|has| |#3| (-510)) ELT)) (-3237 (((-714) $) NIL T ELT)) (-3236 (((-714) $) NIL T ELT)) (-3241 (((-499) $) NIL T ELT)) (-3239 (((-499) $) NIL T ELT)) (-2727 (((-599 |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#3| (-1041))) ELT)) (-3240 (((-499) $) NIL T ELT)) (-3238 (((-499) $) NIL T ELT)) (-3246 (($ (-599 (-599 |#3|))) 31 T ELT)) (-2051 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3742 (((-599 (-599 |#3|)) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3606 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-510)) ELT)) (-2049 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#3|) (-599 |#3|)) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ (-247 |#3|)) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ (-599 (-247 |#3|))) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#3| $ (-499) (-499)) NIL T ELT) ((|#3| $ (-499) (-499) |#3|) NIL T ELT)) (-4061 (((-107)) 59 (|has| |#3| (-318)) ELT)) (-3244 (((-85) $) NIL T ELT)) (-2048 (((-714) |#3| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#3| (-1041))) ELT) (((-714) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) 66 (|has| |#3| (-569 (-488))) ELT)) (-3233 (((-196 |#1| |#3|) $ (-499)) 40 T ELT)) (-4096 (((-797) $) 19 T ELT) (((-647 |#3|) $) 42 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3242 (((-85) $) NIL T ELT)) (-2779 (($) 16 T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#3|) NIL (|has| |#3| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-994 |#1| |#2| |#3|) (-13 (-993 |#1| |#2| |#3| (-196 |#2| |#3|) (-196 |#1| |#3|)) (-568 (-647 |#3|)) (-10 -8 (IF (|has| |#3| (-318)) (-6 (-1215 |#3|)) |%noBranch|) (IF (|has| |#3| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|) (-15 -3247 ($ (-647 |#3|))))) (-714) (-714) (-989)) (T -994)) +((-3247 (*1 *1 *2) (-12 (-5 *2 (-647 *5)) (-4 *5 (-989)) (-5 *1 (-994 *3 *4 *5)) (-14 *3 (-714)) (-14 *4 (-714))))) +((-3992 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-4108 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) +(((-995 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4108 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3992 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-714) (-714) (-989) (-195 |#2| |#3|) (-195 |#1| |#3|) (-993 |#1| |#2| |#3| |#4| |#5|) (-989) (-195 |#2| |#7|) (-195 |#1| |#7|) (-993 |#1| |#2| |#7| |#8| |#9|)) (T -995)) +((-3992 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-989)) (-4 *2 (-989)) (-14 *5 (-714)) (-14 *6 (-714)) (-4 *8 (-195 *6 *7)) (-4 *9 (-195 *5 *7)) (-4 *10 (-195 *6 *2)) (-4 *11 (-195 *5 *2)) (-5 *1 (-995 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-993 *5 *6 *7 *8 *9)) (-4 *12 (-993 *5 *6 *2 *10 *11)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-989)) (-4 *10 (-989)) (-14 *5 (-714)) (-14 *6 (-714)) (-4 *8 (-195 *6 *7)) (-4 *9 (-195 *5 *7)) (-4 *2 (-993 *5 *6 *10 *11 *12)) (-5 *1 (-995 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-993 *5 *6 *7 *8 *9)) (-4 *11 (-195 *6 *10)) (-4 *12 (-195 *5 *10))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ |#1|) 32 T ELT))) +(((-996 |#1|) (-113) (-997)) (T -996)) +NIL +(-13 (-21) (-991 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-991 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-997) (-113)) (T -997)) +NIL +(-13 (-21) (-1052)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3981 (((-1117) $) 11 T ELT)) (-3886 ((|#1| $) 12 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3364 (($ (-1117) |#1|) 10 T ELT)) (-4096 (((-797) $) 22 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3174 (((-85) $ $) 17 (|has| |#1| (-1041)) ELT))) +(((-998 |#1| |#2|) (-13 (-1157) (-10 -8 (-15 -3364 ($ (-1117) |#1|)) (-15 -3981 ((-1117) $)) (-15 -3886 (|#1| $)) (IF (|has| |#1| (-1041)) (-6 (-1041)) |%noBranch|))) (-1034 |#2|) (-1157)) (T -998)) +((-3364 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-4 *4 (-1157)) (-5 *1 (-998 *3 *4)) (-4 *3 (-1034 *4)))) (-3981 (*1 *2 *1) (-12 (-4 *4 (-1157)) (-5 *2 (-1117)) (-5 *1 (-998 *3 *4)) (-4 *3 (-1034 *4)))) (-3886 (*1 *2 *1) (-12 (-4 *2 (-1034 *3)) (-5 *1 (-998 *2 *3)) (-4 *3 (-1157))))) +((-3921 (($ $) 17 T ELT)) (-3249 (($ $) 25 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 54 T ELT)) (-3254 (($ $) 27 T ELT)) (-3250 (($ $) 12 T ELT)) (-3252 (($ $) 40 T ELT)) (-4122 (((-333) $) NIL T ELT) (((-179) $) NIL T ELT) (((-825 (-333)) $) 36 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) 31 T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) 31 T ELT)) (-3248 (((-714)) 9 T ELT)) (-3253 (($ $) 44 T ELT))) +(((-999 |#1|) (-10 -7 (-15 -3249 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -3250 (|#1| |#1|)) (-15 -3252 (|#1| |#1|)) (-15 -3253 (|#1| |#1|)) (-15 -3254 (|#1| |#1|)) (-15 -2917 ((-823 (-333) |#1|) |#1| (-825 (-333)) (-823 (-333) |#1|))) (-15 -4122 ((-825 (-333)) |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -4096 (|#1| (-499))) (-15 -4122 ((-179) |#1|)) (-15 -4122 ((-333) |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -4096 (|#1| |#1|)) (-15 -3248 ((-714))) (-15 -4096 (|#1| (-499))) (-15 -4096 ((-797) |#1|))) (-1000)) (T -999)) +((-3248 (*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-999 *3)) (-4 *3 (-1000))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3251 (((-499) $) 105 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-3921 (($ $) 103 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 88 T ELT)) (-4121 (((-359 $) $) 87 T ELT)) (-3158 (($ $) 113 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3773 (((-499) $) 130 T ELT)) (-3874 (($) 22 T CONST)) (-3249 (($ $) 102 T ELT)) (-3295 (((-3 (-499) #1="failed") $) 118 T ELT) (((-3 (-361 (-499)) #1#) $) 115 T ELT)) (-3294 (((-499) $) 119 T ELT) (((-361 (-499)) $) 116 T ELT)) (-2683 (($ $ $) 68 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-3873 (((-85) $) 86 T ELT)) (-3324 (((-85) $) 128 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 109 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 112 T ELT)) (-3254 (($ $) 108 T ELT)) (-3325 (((-85) $) 129 T ELT)) (-1675 (((-3 (-599 $) #2="failed") (-599 $) $) 65 T ELT)) (-2650 (($ $ $) 122 T ELT)) (-2978 (($ $ $) 123 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 85 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3250 (($ $) 104 T ELT)) (-3252 (($ $) 106 T ELT)) (-3882 (((-359 $) $) 89 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-4122 (((-333) $) 121 T ELT) (((-179) $) 120 T ELT) (((-825 (-333)) $) 110 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-361 (-499))) 81 T ELT) (($ (-499)) 117 T ELT) (($ (-361 (-499))) 114 T ELT)) (-3248 (((-714)) 37 T CONST)) (-3253 (($ $) 107 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-3523 (($ $) 131 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2685 (((-85) $ $) 124 T ELT)) (-2686 (((-85) $ $) 126 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 125 T ELT)) (-2806 (((-85) $ $) 127 T ELT)) (-4099 (($ $ $) 80 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 84 T ELT) (($ $ (-361 (-499))) 111 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 83 T ELT) (($ (-361 (-499)) $) 82 T ELT))) +(((-1000) (-113)) (T -1000)) +((-3254 (*1 *1 *1) (-4 *1 (-1000))) (-3253 (*1 *1 *1) (-4 *1 (-1000))) (-3252 (*1 *1 *1) (-4 *1 (-1000))) (-3251 (*1 *2 *1) (-12 (-4 *1 (-1000)) (-5 *2 (-499)))) (-3250 (*1 *1 *1) (-4 *1 (-1000))) (-3921 (*1 *1 *1) (-4 *1 (-1000))) (-3249 (*1 *1 *1) (-4 *1 (-1000)))) +(-13 (-318) (-780) (-960) (-978 (-499)) (-978 (-361 (-499))) (-942) (-569 (-825 (-333))) (-821 (-333)) (-120) (-10 -8 (-15 -3254 ($ $)) (-15 -3253 ($ $)) (-15 -3252 ($ $)) (-15 -3251 ((-499) $)) (-15 -3250 ($ $)) (-15 -3921 ($ $)) (-15 -3249 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 $) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-569 (-179)) . T) ((-569 (-333)) . T) ((-569 (-825 (-333))) . T) ((-200) . T) ((-244) . T) ((-261) . T) ((-318) . T) ((-406) . T) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 $) . T) ((-675 (-361 (-499))) . T) ((-675 $) . T) ((-684) . T) ((-735) . T) ((-737) . T) ((-739) . T) ((-742) . T) ((-780) . T) ((-781) . T) ((-784) . T) ((-821 (-333)) . T) ((-859) . T) ((-942) . T) ((-960) . T) ((-978 (-361 (-499))) . T) ((-978 (-499)) . T) ((-991 (-361 (-499))) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) |#2| $) 26 T ELT)) (-3258 ((|#1| $) 10 T ELT)) (-3773 (((-499) |#2| $) 119 T ELT)) (-3321 (((-3 $ #1="failed") |#2| (-857)) 76 T ELT)) (-3259 ((|#1| $) 31 T ELT)) (-3320 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3256 (($ $) 28 T ELT)) (-3607 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3324 (((-85) |#2| $) NIL T ELT)) (-3325 (((-85) |#2| $) NIL T ELT)) (-3255 (((-85) |#2| $) 27 T ELT)) (-3257 ((|#1| $) 120 T ELT)) (-3260 ((|#1| $) 30 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3323 ((|#2| $) 104 T ELT)) (-4096 (((-797) $) 95 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3920 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3322 (((-599 $) |#2|) 78 T ELT)) (-3174 (((-85) $ $) 99 T ELT))) +(((-1001 |#1| |#2|) (-13 (-1008 |#1| |#2|) (-10 -8 (-15 -3260 (|#1| $)) (-15 -3259 (|#1| $)) (-15 -3258 (|#1| $)) (-15 -3257 (|#1| $)) (-15 -3256 ($ $)) (-15 -3255 ((-85) |#2| $)) (-15 -3320 (|#1| |#2| $ |#1|)))) (-13 (-780) (-318)) (-1183 |#1|)) (T -1001)) +((-3320 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2)))) (-3260 (*1 *2 *1) (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2)))) (-3259 (*1 *2 *1) (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2)))) (-3258 (*1 *2 *1) (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2)))) (-3257 (*1 *2 *1) (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2)))) (-3256 (*1 *1 *1) (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2)))) (-3255 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-780) (-318))) (-5 *2 (-85)) (-5 *1 (-1001 *4 *3)) (-4 *3 (-1183 *4))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-2148 (($ $ $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2143 (($ $ $ $) NIL T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3773 (((-499) $) NIL T ELT)) (-2557 (($ $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3261 (($ (-1117)) 10 T ELT) (($ (-499)) 7 T ELT)) (-3295 (((-3 (-499) #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL T ELT)) (-2683 (($ $ $) NIL T ELT)) (-2380 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-647 (-499)) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) NIL T ELT)) (-3144 (((-85) $) NIL T ELT)) (-3143 (((-361 (-499)) $) NIL T ELT)) (-3115 (($) NIL T ELT) (($ $) NIL T ELT)) (-2682 (($ $ $) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2141 (($ $ $ $) NIL T ELT)) (-2149 (($ $ $) NIL T ELT)) (-3324 (((-85) $) NIL T ELT)) (-1402 (($ $ $) NIL T ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2794 (((-85) $) NIL T ELT)) (-3585 (((-649 $) $) NIL T ELT)) (-3325 (((-85) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2142 (($ $ $ $) NIL T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-2145 (($ $) NIL T ELT)) (-3983 (($ $) NIL T ELT)) (-2381 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL T ELT) (((-647 (-499)) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2140 (($ $ $) NIL T ELT)) (-3586 (($) NIL T CONST)) (-2147 (($ $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-1400 (($ $) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2795 (((-85) $) NIL T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-3908 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-2146 (($ $) NIL T ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-499) $) 16 T ELT) (((-488) $) NIL T ELT) (((-825 (-499)) $) NIL T ELT) (((-333) $) NIL T ELT) (((-179) $) NIL T ELT) (($ (-1117)) 9 T ELT)) (-4096 (((-797) $) 23 T ELT) (($ (-499)) 6 T ELT) (($ $) NIL T ELT) (($ (-499)) 6 T ELT)) (-3248 (((-714)) NIL T CONST)) (-2150 (((-85) $ $) NIL T ELT)) (-3224 (($ $ $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2815 (($) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2144 (($ $ $ $) NIL T ELT)) (-3523 (($ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-3987 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-499) $) NIL T ELT))) +(((-1002) (-13 (-498) (-573 (-1117)) (-10 -8 (-6 -4132) (-6 -4137) (-6 -4133) (-15 -3261 ($ (-1117))) (-15 -3261 ($ (-499)))))) (T -1002)) +((-3261 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1002)))) (-3261 (*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-1002))))) +((-2687 (((-85) $ $) NIL (-3677 (|has| (-51) (-73)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-73))) ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL T ELT)) (-2299 (((-1213) $ (-1117) (-1117)) NIL (|has| $ (-6 -4146)) ELT)) (-3263 (($) 9 T ELT)) (-3938 (((-51) $ (-1117) (-51)) NIL T ELT)) (-3271 (($ $) 32 T ELT)) (-3274 (($ $) 30 T ELT)) (-3275 (($ $) 29 T ELT)) (-3273 (($ $) 31 T ELT)) (-3270 (($ $) 35 T ELT)) (-3269 (($ $) 36 T ELT)) (-3276 (($ $) 28 T ELT)) (-3272 (($ $) 33 T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) 27 (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 (-51) #1="failed") (-1117) $) 43 T ELT)) (-3874 (($) NIL T CONST)) (-3277 (($) 7 T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) 53 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 (-51) #1#) (-1117) $) NIL T ELT)) (-3546 (($ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3262 (((-3 (-1099) #1#) $ (-1099) (-499)) 72 T ELT)) (-1609 (((-51) $ (-1117) (-51)) NIL (|has| $ (-6 -4146)) ELT)) (-3235 (((-51) $ (-1117)) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-2301 (((-1117) $) NIL (|has| (-1117) (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) 38 (|has| $ (-6 -4145)) ELT) (((-599 (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (((-85) (-51) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-51) (-1041))) ELT)) (-2302 (((-1117) $) NIL (|has| (-1117) (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (-3677 (|has| (-51) (-1041)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT)) (-2333 (((-599 (-1117)) $) NIL T ELT)) (-2334 (((-85) (-1117) $) NIL T ELT)) (-1308 (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) 46 T ELT)) (-2304 (((-599 (-1117)) $) NIL T ELT)) (-2305 (((-85) (-1117) $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-51) (-1041)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT)) (-3266 (((-333) $ (-1117)) 52 T ELT)) (-3265 (((-599 (-1099)) $ (-1099)) 74 T ELT)) (-3951 (((-51) $) NIL (|has| (-1117) (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2300 (($ $ (-51)) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-263 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (($ $ (-599 (-51)) (-599 (-51))) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT) (($ $ (-247 (-51))) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT) (($ $ (-599 (-247 (-51)))) NIL (-12 (|has| (-51) (-263 (-51))) (|has| (-51) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) (-51) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-51) (-1041))) ELT)) (-2306 (((-599 (-51)) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 (((-51) $ (-1117)) NIL T ELT) (((-51) $ (-1117) (-51)) NIL T ELT)) (-1499 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL T ELT)) (-3264 (($ $ (-1117)) 54 T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-1041))) ELT) (((-714) (-51) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-51) (-1041))) ELT) (((-714) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) 40 T ELT)) (-3952 (($ $ $) 41 T ELT)) (-4096 (((-797) $) NIL (-3677 (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-568 (-797))) (|has| (-51) (-568 (-797)))) ELT)) (-3268 (($ $ (-1117) (-333)) 50 T ELT)) (-3267 (($ $ (-1117) (-333)) 51 T ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-51) (-73)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 (-1117)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (-3677 (|has| (-51) (-73)) (|has| (-2 (|:| -4010 (-1117)) (|:| |entry| (-51))) (-73))) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-1003) (-13 (-1134 (-1117) (-51)) (-10 -8 (-15 -3952 ($ $ $)) (-15 -3277 ($)) (-15 -3276 ($ $)) (-15 -3275 ($ $)) (-15 -3274 ($ $)) (-15 -3273 ($ $)) (-15 -3272 ($ $)) (-15 -3271 ($ $)) (-15 -3270 ($ $)) (-15 -3269 ($ $)) (-15 -3268 ($ $ (-1117) (-333))) (-15 -3267 ($ $ (-1117) (-333))) (-15 -3266 ((-333) $ (-1117))) (-15 -3265 ((-599 (-1099)) $ (-1099))) (-15 -3264 ($ $ (-1117))) (-15 -3263 ($)) (-15 -3262 ((-3 (-1099) "failed") $ (-1099) (-499))) (-6 -4145)))) (T -1003)) +((-3952 (*1 *1 *1 *1) (-5 *1 (-1003))) (-3277 (*1 *1) (-5 *1 (-1003))) (-3276 (*1 *1 *1) (-5 *1 (-1003))) (-3275 (*1 *1 *1) (-5 *1 (-1003))) (-3274 (*1 *1 *1) (-5 *1 (-1003))) (-3273 (*1 *1 *1) (-5 *1 (-1003))) (-3272 (*1 *1 *1) (-5 *1 (-1003))) (-3271 (*1 *1 *1) (-5 *1 (-1003))) (-3270 (*1 *1 *1) (-5 *1 (-1003))) (-3269 (*1 *1 *1) (-5 *1 (-1003))) (-3268 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-333)) (-5 *1 (-1003)))) (-3267 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-333)) (-5 *1 (-1003)))) (-3266 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-333)) (-5 *1 (-1003)))) (-3265 (*1 *2 *1 *3) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1003)) (-5 *3 (-1099)))) (-3264 (*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1003)))) (-3263 (*1 *1) (-5 *1 (-1003))) (-3262 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1099)) (-5 *3 (-499)) (-5 *1 (-1003))))) +((-3947 (($ $) 46 T ELT)) (-3304 (((-85) $ $) 82 T ELT)) (-3295 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 (-499) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-884 (-361 (-499)))) 247 T ELT) (((-3 $ #1#) (-884 (-499))) 246 T ELT) (((-3 $ #1#) (-884 |#2|)) 249 T ELT)) (-3294 ((|#2| $) NIL T ELT) (((-361 (-499)) $) NIL T ELT) (((-499) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-884 (-361 (-499)))) 235 T ELT) (($ (-884 (-499))) 231 T ELT) (($ (-884 |#2|)) 255 T ELT)) (-4109 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3844 (((-85) $ $) 131 T ELT) (((-85) $ (-599 $)) 135 T ELT)) (-3310 (((-85) $) 60 T ELT)) (-3902 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 125 T ELT)) (-3281 (($ $) 160 T ELT)) (-3292 (($ $) 156 T ELT)) (-3293 (($ $) 155 T ELT)) (-3303 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3302 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3845 (((-85) $ $) 143 T ELT) (((-85) $ (-599 $)) 144 T ELT)) (-3318 ((|#4| $) 32 T ELT)) (-3297 (($ $ $) 128 T ELT)) (-3311 (((-85) $) 59 T ELT)) (-3317 (((-714) $) 35 T ELT)) (-3278 (($ $) 174 T ELT)) (-3279 (($ $) 171 T ELT)) (-3306 (((-599 $) $) 72 T ELT)) (-3309 (($ $) 62 T ELT)) (-3280 (($ $) 167 T ELT)) (-3307 (((-599 $) $) 69 T ELT)) (-3308 (($ $) 64 T ELT)) (-3312 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3296 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3621 (-714))) $ $) 130 T ELT)) (-3298 (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -2075 $) (|:| -3023 $)) $ $) 126 T ELT) (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -2075 $) (|:| -3023 $)) $ $ |#4|) 127 T ELT)) (-3299 (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -3023 $)) $ $) 121 T ELT) (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -3023 $)) $ $ |#4|) 123 T ELT)) (-3301 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3300 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3314 (((-599 $) $) 54 T ELT)) (-3841 (((-85) $ $) 140 T ELT) (((-85) $ (-599 $)) 141 T ELT)) (-3836 (($ $ $) 116 T ELT)) (-3586 (($ $) 37 T ELT)) (-3849 (((-85) $ $) 80 T ELT)) (-3842 (((-85) $ $) 136 T ELT) (((-85) $ (-599 $)) 138 T ELT)) (-3837 (($ $ $) 112 T ELT)) (-3316 (($ $) 41 T ELT)) (-3282 ((|#2| |#2| $) 164 T ELT) (($ (-599 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3290 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3291 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3315 (($ $) 49 T ELT)) (-3313 (($ $) 55 T ELT)) (-4122 (((-825 (-333)) $) NIL T ELT) (((-825 (-499)) $) NIL T ELT) (((-488) $) NIL T ELT) (($ (-884 (-361 (-499)))) 237 T ELT) (($ (-884 (-499))) 233 T ELT) (($ (-884 |#2|)) 248 T ELT) (((-1099) $) 278 T ELT) (((-884 |#2|) $) 184 T ELT)) (-4096 (((-797) $) 29 T ELT) (($ (-499)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-884 |#2|) $) 185 T ELT) (($ (-361 (-499))) NIL T ELT) (($ $) NIL T ELT)) (-3305 (((-3 (-85) #1#) $ $) 79 T ELT))) +(((-1004 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4096 (|#1| |#1|)) (-15 -3282 (|#1| |#1| |#1|)) (-15 -3282 (|#1| (-599 |#1|))) (-15 -4096 (|#1| (-361 (-499)))) (-15 -4096 ((-884 |#2|) |#1|)) (-15 -4122 ((-884 |#2|) |#1|)) (-15 -4122 ((-1099) |#1|)) (-15 -3278 (|#1| |#1|)) (-15 -3279 (|#1| |#1|)) (-15 -3280 (|#1| |#1|)) (-15 -3281 (|#1| |#1|)) (-15 -3282 (|#2| |#2| |#1|)) (-15 -3290 (|#1| |#1| |#1|)) (-15 -3291 (|#1| |#1| |#1|)) (-15 -3290 (|#1| |#1| |#2|)) (-15 -3291 (|#1| |#1| |#2|)) (-15 -3292 (|#1| |#1|)) (-15 -3293 (|#1| |#1|)) (-15 -4122 (|#1| (-884 |#2|))) (-15 -3294 (|#1| (-884 |#2|))) (-15 -3295 ((-3 |#1| #1="failed") (-884 |#2|))) (-15 -4122 (|#1| (-884 (-499)))) (-15 -3294 (|#1| (-884 (-499)))) (-15 -3295 ((-3 |#1| #1#) (-884 (-499)))) (-15 -4122 (|#1| (-884 (-361 (-499))))) (-15 -3294 (|#1| (-884 (-361 (-499))))) (-15 -3295 ((-3 |#1| #1#) (-884 (-361 (-499))))) (-15 -3836 (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1| |#1|)) (-15 -3296 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3621 (-714))) |#1| |#1|)) (-15 -3297 (|#1| |#1| |#1|)) (-15 -3902 ((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|)) (-15 -3298 ((-2 (|:| -4104 |#1|) (|:| |gap| (-714)) (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1| |#4|)) (-15 -3298 ((-2 (|:| -4104 |#1|) (|:| |gap| (-714)) (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|)) (-15 -3299 ((-2 (|:| -4104 |#1|) (|:| |gap| (-714)) (|:| -3023 |#1|)) |#1| |#1| |#4|)) (-15 -3299 ((-2 (|:| -4104 |#1|) (|:| |gap| (-714)) (|:| -3023 |#1|)) |#1| |#1|)) (-15 -3300 (|#1| |#1| |#1| |#4|)) (-15 -3301 (|#1| |#1| |#1| |#4|)) (-15 -3300 (|#1| |#1| |#1|)) (-15 -3301 (|#1| |#1| |#1|)) (-15 -3302 (|#1| |#1| |#1| |#4|)) (-15 -3303 (|#1| |#1| |#1| |#4|)) (-15 -3302 (|#1| |#1| |#1|)) (-15 -3303 (|#1| |#1| |#1|)) (-15 -3845 ((-85) |#1| (-599 |#1|))) (-15 -3845 ((-85) |#1| |#1|)) (-15 -3841 ((-85) |#1| (-599 |#1|))) (-15 -3841 ((-85) |#1| |#1|)) (-15 -3842 ((-85) |#1| (-599 |#1|))) (-15 -3842 ((-85) |#1| |#1|)) (-15 -3844 ((-85) |#1| (-599 |#1|))) (-15 -3844 ((-85) |#1| |#1|)) (-15 -3304 ((-85) |#1| |#1|)) (-15 -3849 ((-85) |#1| |#1|)) (-15 -3305 ((-3 (-85) #1#) |#1| |#1|)) (-15 -3306 ((-599 |#1|) |#1|)) (-15 -3307 ((-599 |#1|) |#1|)) (-15 -3308 (|#1| |#1|)) (-15 -3309 (|#1| |#1|)) (-15 -3310 ((-85) |#1|)) (-15 -3311 ((-85) |#1|)) (-15 -4109 (|#1| |#1| |#4|)) (-15 -3312 (|#1| |#1| |#4|)) (-15 -3313 (|#1| |#1|)) (-15 -3314 ((-599 |#1|) |#1|)) (-15 -3315 (|#1| |#1|)) (-15 -3947 (|#1| |#1|)) (-15 -3316 (|#1| |#1|)) (-15 -3586 (|#1| |#1|)) (-15 -3317 ((-714) |#1|)) (-15 -3318 (|#4| |#1|)) (-15 -4122 ((-488) |#1|)) (-15 -4122 ((-825 (-499)) |#1|)) (-15 -4122 ((-825 (-333)) |#1|)) (-15 -4096 (|#1| |#4|)) (-15 -3295 ((-3 |#4| #1#) |#1|)) (-15 -3294 (|#4| |#1|)) (-15 -3312 (|#2| |#1|)) (-15 -4109 (|#1| |#1|)) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -4096 (|#1| |#2|)) (-15 -4096 (|#1| (-499))) (-15 -4096 ((-797) |#1|))) (-1005 |#2| |#3| |#4|) (-989) (-738) (-781)) (T -1004)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3204 (((-599 |#3|) $) 120 T ELT)) (-3206 (((-1111 $) $ |#3|) 135 T ELT) (((-1111 |#1|) $) 134 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 97 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 98 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 100 (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) 122 T ELT) (((-714) $ (-599 |#3|)) 121 T ELT)) (-3947 (($ $) 290 T ELT)) (-3304 (((-85) $ $) 276 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3905 (($ $ $) 235 (|has| |#1| (-510)) ELT)) (-3286 (((-599 $) $ $) 230 (|has| |#1| (-510)) ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 110 (|has| |#1| (-848)) ELT)) (-3925 (($ $) 108 (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) 107 (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1="failed") (-599 (-1111 $)) (-1111 $)) 113 (|has| |#1| (-848)) ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-361 (-499)) #2#) $) 175 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #2#) $) 173 (|has| |#1| (-978 (-499))) ELT) (((-3 |#3| #2#) $) 150 T ELT) (((-3 $ "failed") (-884 (-361 (-499)))) 250 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#3| (-569 (-1117)))) ELT) (((-3 $ "failed") (-884 (-499))) 247 (-3677 (-12 (-2679 (|has| |#1| (-38 (-361 (-499))))) (|has| |#1| (-38 (-499))) (|has| |#3| (-569 (-1117)))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#3| (-569 (-1117))))) ELT) (((-3 $ "failed") (-884 |#1|)) 244 (-3677 (-12 (-2679 (|has| |#1| (-38 (-361 (-499))))) (-2679 (|has| |#1| (-38 (-499)))) (|has| |#3| (-569 (-1117)))) (-12 (-2679 (|has| |#1| (-498))) (-2679 (|has| |#1| (-38 (-361 (-499))))) (|has| |#1| (-38 (-499))) (|has| |#3| (-569 (-1117)))) (-12 (-2679 (|has| |#1| (-931 (-499)))) (|has| |#1| (-38 (-361 (-499)))) (|has| |#3| (-569 (-1117))))) ELT)) (-3294 ((|#1| $) 177 T ELT) (((-361 (-499)) $) 176 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) 174 (|has| |#1| (-978 (-499))) ELT) ((|#3| $) 151 T ELT) (($ (-884 (-361 (-499)))) 249 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#3| (-569 (-1117)))) ELT) (($ (-884 (-499))) 246 (-3677 (-12 (-2679 (|has| |#1| (-38 (-361 (-499))))) (|has| |#1| (-38 (-499))) (|has| |#3| (-569 (-1117)))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#3| (-569 (-1117))))) ELT) (($ (-884 |#1|)) 243 (-3677 (-12 (-2679 (|has| |#1| (-38 (-361 (-499))))) (-2679 (|has| |#1| (-38 (-499)))) (|has| |#3| (-569 (-1117)))) (-12 (-2679 (|has| |#1| (-498))) (-2679 (|has| |#1| (-38 (-361 (-499))))) (|has| |#1| (-38 (-499))) (|has| |#3| (-569 (-1117)))) (-12 (-2679 (|has| |#1| (-931 (-499)))) (|has| |#1| (-38 (-361 (-499)))) (|has| |#3| (-569 (-1117))))) ELT)) (-3906 (($ $ $ |#3|) 118 (|has| |#1| (-146)) ELT) (($ $ $) 231 (|has| |#1| (-510)) ELT)) (-4109 (($ $) 168 T ELT) (($ $ |#3|) 285 T ELT)) (-2380 (((-647 (-499)) (-647 $)) 146 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 145 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 144 T ELT) (((-647 |#1|) (-647 $)) 143 T ELT)) (-3844 (((-85) $ $) 275 T ELT) (((-85) $ (-599 $)) 274 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3310 (((-85) $) 283 T ELT)) (-3902 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 255 T ELT)) (-3281 (($ $) 224 (|has| |#1| (-406)) ELT)) (-3643 (($ $) 190 (|has| |#1| (-406)) ELT) (($ $ |#3|) 115 (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) 119 T ELT)) (-3873 (((-85) $) 106 (|has| |#1| (-848)) ELT)) (-3292 (($ $) 240 (|has| |#1| (-510)) ELT)) (-3293 (($ $) 241 (|has| |#1| (-510)) ELT)) (-3303 (($ $ $) 267 T ELT) (($ $ $ |#3|) 265 T ELT)) (-3302 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-1694 (($ $ |#1| |#2| $) 186 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 94 (-12 (|has| |#3| (-821 (-333))) (|has| |#1| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 93 (-12 (|has| |#3| (-821 (-499))) (|has| |#1| (-821 (-499)))) ELT)) (-2528 (((-85) $) 40 T ELT)) (-2536 (((-714) $) 183 T ELT)) (-3845 (((-85) $ $) 269 T ELT) (((-85) $ (-599 $)) 268 T ELT)) (-3283 (($ $ $ $ $) 226 (|has| |#1| (-510)) ELT)) (-3318 ((|#3| $) 294 T ELT)) (-3207 (($ (-1111 |#1|) |#3|) 127 T ELT) (($ (-1111 $) |#3|) 126 T ELT)) (-2942 (((-599 $) $) 136 T ELT)) (-4087 (((-85) $) 166 T ELT)) (-3014 (($ |#1| |#2|) 167 T ELT) (($ $ |#3| (-714)) 129 T ELT) (($ $ (-599 |#3|) (-599 (-714))) 128 T ELT)) (-3297 (($ $ $) 254 T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ |#3|) 130 T ELT)) (-3311 (((-85) $) 284 T ELT)) (-2941 ((|#2| $) 184 T ELT) (((-714) $ |#3|) 132 T ELT) (((-599 (-714)) $ (-599 |#3|)) 131 T ELT)) (-3317 (((-714) $) 293 T ELT)) (-1695 (($ (-1 |#2| |#2|) $) 185 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3205 (((-3 |#3| #3="failed") $) 133 T ELT)) (-3278 (($ $) 221 (|has| |#1| (-406)) ELT)) (-3279 (($ $) 222 (|has| |#1| (-406)) ELT)) (-3306 (((-599 $) $) 279 T ELT)) (-3309 (($ $) 282 T ELT)) (-3280 (($ $) 223 (|has| |#1| (-406)) ELT)) (-3307 (((-599 $) $) 280 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 148 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 147 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 142 T ELT) (((-647 |#1|) (-1207 $)) 141 T ELT)) (-3308 (($ $) 281 T ELT)) (-3015 (($ $) 163 T ELT)) (-3312 ((|#1| $) 162 T ELT) (($ $ |#3|) 286 T ELT)) (-1993 (($ (-599 $)) 104 (|has| |#1| (-406)) ELT) (($ $ $) 103 (|has| |#1| (-406)) ELT)) (-3296 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3621 (-714))) $ $) 253 T ELT)) (-3298 (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -2075 $) (|:| -3023 $)) $ $) 257 T ELT) (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -2075 $) (|:| -3023 $)) $ $ |#3|) 256 T ELT)) (-3299 (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -3023 $)) $ $) 259 T ELT) (((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -3023 $)) $ $ |#3|) 258 T ELT)) (-3301 (($ $ $) 263 T ELT) (($ $ $ |#3|) 261 T ELT)) (-3300 (($ $ $) 262 T ELT) (($ $ $ |#3|) 260 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3328 (($ $ $) 229 (|has| |#1| (-510)) ELT)) (-3314 (((-599 $) $) 288 T ELT)) (-2944 (((-3 (-599 $) #3#) $) 124 T ELT)) (-2943 (((-3 (-599 $) #3#) $) 125 T ELT)) (-2945 (((-3 (-2 (|:| |var| |#3|) (|:| -2519 (-714))) #3#) $) 123 T ELT)) (-3841 (((-85) $ $) 271 T ELT) (((-85) $ (-599 $)) 270 T ELT)) (-3836 (($ $ $) 251 T ELT)) (-3586 (($ $) 292 T ELT)) (-3849 (((-85) $ $) 277 T ELT)) (-3842 (((-85) $ $) 273 T ELT) (((-85) $ (-599 $)) 272 T ELT)) (-3837 (($ $ $) 252 T ELT)) (-3316 (($ $) 291 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3287 (((-2 (|:| -3282 $) (|:| |coef2| $)) $ $) 232 (|has| |#1| (-510)) ELT)) (-3288 (((-2 (|:| -3282 $) (|:| |coef1| $)) $ $) 233 (|has| |#1| (-510)) ELT)) (-1895 (((-85) $) 180 T ELT)) (-1894 ((|#1| $) 181 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 105 (|has| |#1| (-406)) ELT)) (-3282 ((|#1| |#1| $) 225 (|has| |#1| (-406)) ELT) (($ (-599 $)) 102 (|has| |#1| (-406)) ELT) (($ $ $) 101 (|has| |#1| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 112 (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 111 (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) 109 (|has| |#1| (-848)) ELT)) (-3289 (((-2 (|:| -3282 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 234 (|has| |#1| (-510)) ELT)) (-3606 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-510)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-510)) ELT)) (-3290 (($ $ |#1|) 238 (|has| |#1| (-510)) ELT) (($ $ $) 236 (|has| |#1| (-510)) ELT)) (-3291 (($ $ |#1|) 239 (|has| |#1| (-510)) ELT) (($ $ $) 237 (|has| |#1| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) 159 T ELT) (($ $ (-247 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-599 $) (-599 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-599 |#3|) (-599 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-599 |#3|) (-599 $)) 152 T ELT)) (-3907 (($ $ |#3|) 117 (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 |#3|) (-599 (-714))) 49 T ELT) (($ $ |#3| (-714)) 48 T ELT) (($ $ (-599 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT)) (-4098 ((|#2| $) 164 T ELT) (((-714) $ |#3|) 140 T ELT) (((-599 (-714)) $ (-599 |#3|)) 139 T ELT)) (-3315 (($ $) 289 T ELT)) (-3313 (($ $) 287 T ELT)) (-4122 (((-825 (-333)) $) 92 (-12 (|has| |#3| (-569 (-825 (-333)))) (|has| |#1| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) 91 (-12 (|has| |#3| (-569 (-825 (-499)))) (|has| |#1| (-569 (-825 (-499))))) ELT) (((-488) $) 90 (-12 (|has| |#3| (-569 (-488))) (|has| |#1| (-569 (-488)))) ELT) (($ (-884 (-361 (-499)))) 248 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#3| (-569 (-1117)))) ELT) (($ (-884 (-499))) 245 (-3677 (-12 (-2679 (|has| |#1| (-38 (-361 (-499))))) (|has| |#1| (-38 (-499))) (|has| |#3| (-569 (-1117)))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#3| (-569 (-1117))))) ELT) (($ (-884 |#1|)) 242 (|has| |#3| (-569 (-1117))) ELT) (((-1099) $) 220 (-12 (|has| |#1| (-978 (-499))) (|has| |#3| (-569 (-1117)))) ELT) (((-884 |#1|) $) 219 (|has| |#3| (-569 (-1117))) ELT)) (-2938 ((|#1| $) 189 (|has| |#1| (-406)) ELT) (($ $ |#3|) 116 (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) 114 (-2681 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (((-884 |#1|) $) 218 (|has| |#3| (-569 (-1117))) ELT) (($ (-361 (-499))) 88 (-3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-38 (-361 (-499))))) ELT) (($ $) 95 (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) 182 T ELT)) (-3827 ((|#1| $ |#2|) 169 T ELT) (($ $ |#3| (-714)) 138 T ELT) (($ $ (-599 |#3|) (-599 (-714))) 137 T ELT)) (-2823 (((-649 $) $) 89 (-3677 (-2681 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) 37 T CONST)) (-1693 (($ $ $ (-714)) 187 (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 99 (|has| |#1| (-510)) ELT)) (-2779 (($) 23 T CONST)) (-3305 (((-3 (-85) "failed") $ $) 278 T ELT)) (-2785 (($) 39 T CONST)) (-3284 (($ $ $ $ (-714)) 227 (|has| |#1| (-510)) ELT)) (-3285 (($ $ $ (-714)) 228 (|has| |#1| (-510)) ELT)) (-2790 (($ $ (-599 |#3|) (-599 (-714))) 52 T ELT) (($ $ |#3| (-714)) 51 T ELT) (($ $ (-599 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 170 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 172 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) 171 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) +(((-1005 |#1| |#2| |#3|) (-113) (-989) (-738) (-781)) (T -1005)) +((-3318 (*1 *2 *1) (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) (-3317 (*1 *2 *1) (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-714)))) (-3586 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3316 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3947 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3315 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3314 (*1 *2 *1) (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1005 *3 *4 *5)))) (-3313 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3312 (*1 *1 *1 *2) (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) (-4109 (*1 *1 *1 *2) (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) (-3311 (*1 *2 *1) (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)))) (-3310 (*1 *2 *1) (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)))) (-3309 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3308 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3307 (*1 *2 *1) (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1005 *3 *4 *5)))) (-3306 (*1 *2 *1) (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1005 *3 *4 *5)))) (-3305 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)))) (-3849 (*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)))) (-3304 (*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)))) (-3844 (*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)))) (-3844 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *1)) (-4 *1 (-1005 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)))) (-3842 (*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)))) (-3842 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *1)) (-4 *1 (-1005 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)))) (-3841 (*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)))) (-3841 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *1)) (-4 *1 (-1005 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)))) (-3845 (*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)))) (-3845 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *1)) (-4 *1 (-1005 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)))) (-3303 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3302 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3303 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) (-3302 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) (-3301 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3300 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3301 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) (-3300 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) (-3299 (*1 *2 *1 *1) (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-2 (|:| -4104 *1) (|:| |gap| (-714)) (|:| -3023 *1))) (-4 *1 (-1005 *3 *4 *5)))) (-3299 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) (-5 *2 (-2 (|:| -4104 *1) (|:| |gap| (-714)) (|:| -3023 *1))) (-4 *1 (-1005 *4 *5 *3)))) (-3298 (*1 *2 *1 *1) (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-2 (|:| -4104 *1) (|:| |gap| (-714)) (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-1005 *3 *4 *5)))) (-3298 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) (-5 *2 (-2 (|:| -4104 *1) (|:| |gap| (-714)) (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-1005 *4 *5 *3)))) (-3902 (*1 *2 *1 *1) (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-1005 *3 *4 *5)))) (-3297 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3296 (*1 *2 *1 *1) (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3621 (-714)))) (-4 *1 (-1005 *3 *4 *5)))) (-3837 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3836 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) (-3295 (*1 *1 *2) (|partial| -12 (-5 *2 (-884 (-361 (-499)))) (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117))) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-884 (-361 (-499)))) (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117))) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-884 (-361 (-499)))) (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117))) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)))) (-3295 (*1 *1 *2) (|partial| -3677 (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) (-12 (-2679 (-4 *3 (-38 (-361 (-499))))) (-4 *3 (-38 (-499))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781))) (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781))))) (-3294 (*1 *1 *2) (-3677 (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) (-12 (-2679 (-4 *3 (-38 (-361 (-499))))) (-4 *3 (-38 (-499))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781))) (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781))))) (-4122 (*1 *1 *2) (-3677 (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) (-12 (-2679 (-4 *3 (-38 (-361 (-499))))) (-4 *3 (-38 (-499))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781))) (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781))))) (-3295 (*1 *1 *2) (|partial| -3677 (-12 (-5 *2 (-884 *3)) (-12 (-2679 (-4 *3 (-38 (-361 (-499))))) (-2679 (-4 *3 (-38 (-499)))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))) (-12 (-5 *2 (-884 *3)) (-12 (-2679 (-4 *3 (-498))) (-2679 (-4 *3 (-38 (-361 (-499))))) (-4 *3 (-38 (-499))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))) (-12 (-5 *2 (-884 *3)) (-12 (-2679 (-4 *3 (-931 (-499)))) (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))))) (-3294 (*1 *1 *2) (-3677 (-12 (-5 *2 (-884 *3)) (-12 (-2679 (-4 *3 (-38 (-361 (-499))))) (-2679 (-4 *3 (-38 (-499)))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))) (-12 (-5 *2 (-884 *3)) (-12 (-2679 (-4 *3 (-498))) (-2679 (-4 *3 (-38 (-361 (-499))))) (-4 *3 (-38 (-499))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))) (-12 (-5 *2 (-884 *3)) (-12 (-2679 (-4 *3 (-931 (-499)))) (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *5 (-569 (-1117))) (-4 *4 (-738)) (-4 *5 (-781)))) (-3293 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-510)))) (-3292 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-510)))) (-3291 (*1 *1 *1 *2) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-510)))) (-3290 (*1 *1 *1 *2) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-510)))) (-3291 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-510)))) (-3290 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-510)))) (-3905 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-510)))) (-3289 (*1 *2 *1 *1) (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-2 (|:| -3282 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1005 *3 *4 *5)))) (-3288 (*1 *2 *1 *1) (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-2 (|:| -3282 *1) (|:| |coef1| *1))) (-4 *1 (-1005 *3 *4 *5)))) (-3287 (*1 *2 *1 *1) (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-2 (|:| -3282 *1) (|:| |coef2| *1))) (-4 *1 (-1005 *3 *4 *5)))) (-3906 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-510)))) (-3286 (*1 *2 *1 *1) (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1005 *3 *4 *5)))) (-3328 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-510)))) (-3285 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *3 (-510)))) (-3284 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *3 (-510)))) (-3283 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-510)))) (-3282 (*1 *2 *2 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-406)))) (-3281 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-406)))) (-3280 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-406)))) (-3279 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-406)))) (-3278 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-406))))) +(-13 (-888 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3318 (|t#3| $)) (-15 -3317 ((-714) $)) (-15 -3586 ($ $)) (-15 -3316 ($ $)) (-15 -3947 ($ $)) (-15 -3315 ($ $)) (-15 -3314 ((-599 $) $)) (-15 -3313 ($ $)) (-15 -3312 ($ $ |t#3|)) (-15 -4109 ($ $ |t#3|)) (-15 -3311 ((-85) $)) (-15 -3310 ((-85) $)) (-15 -3309 ($ $)) (-15 -3308 ($ $)) (-15 -3307 ((-599 $) $)) (-15 -3306 ((-599 $) $)) (-15 -3305 ((-3 (-85) "failed") $ $)) (-15 -3849 ((-85) $ $)) (-15 -3304 ((-85) $ $)) (-15 -3844 ((-85) $ $)) (-15 -3844 ((-85) $ (-599 $))) (-15 -3842 ((-85) $ $)) (-15 -3842 ((-85) $ (-599 $))) (-15 -3841 ((-85) $ $)) (-15 -3841 ((-85) $ (-599 $))) (-15 -3845 ((-85) $ $)) (-15 -3845 ((-85) $ (-599 $))) (-15 -3303 ($ $ $)) (-15 -3302 ($ $ $)) (-15 -3303 ($ $ $ |t#3|)) (-15 -3302 ($ $ $ |t#3|)) (-15 -3301 ($ $ $)) (-15 -3300 ($ $ $)) (-15 -3301 ($ $ $ |t#3|)) (-15 -3300 ($ $ $ |t#3|)) (-15 -3299 ((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -3023 $)) $ $)) (-15 -3299 ((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -3023 $)) $ $ |t#3|)) (-15 -3298 ((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -2075 $) (|:| -3023 $)) $ $)) (-15 -3298 ((-2 (|:| -4104 $) (|:| |gap| (-714)) (|:| -2075 $) (|:| -3023 $)) $ $ |t#3|)) (-15 -3902 ((-2 (|:| -2075 $) (|:| -3023 $)) $ $)) (-15 -3297 ($ $ $)) (-15 -3296 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3621 (-714))) $ $)) (-15 -3837 ($ $ $)) (-15 -3836 ($ $ $)) (IF (|has| |t#3| (-569 (-1117))) (PROGN (-6 (-568 (-884 |t#1|))) (-6 (-569 (-884 |t#1|))) (IF (|has| |t#1| (-38 (-361 (-499)))) (PROGN (-15 -3295 ((-3 $ "failed") (-884 (-361 (-499))))) (-15 -3294 ($ (-884 (-361 (-499))))) (-15 -4122 ($ (-884 (-361 (-499))))) (-15 -3295 ((-3 $ "failed") (-884 (-499)))) (-15 -3294 ($ (-884 (-499)))) (-15 -4122 ($ (-884 (-499)))) (IF (|has| |t#1| (-931 (-499))) |%noBranch| (PROGN (-15 -3295 ((-3 $ "failed") (-884 |t#1|))) (-15 -3294 ($ (-884 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-499))) (IF (|has| |t#1| (-38 (-361 (-499)))) |%noBranch| (PROGN (-15 -3295 ((-3 $ "failed") (-884 (-499)))) (-15 -3294 ($ (-884 (-499)))) (-15 -4122 ($ (-884 (-499)))) (IF (|has| |t#1| (-498)) |%noBranch| (PROGN (-15 -3295 ((-3 $ "failed") (-884 |t#1|))) (-15 -3294 ($ (-884 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-499))) |%noBranch| (IF (|has| |t#1| (-38 (-361 (-499)))) |%noBranch| (PROGN (-15 -3295 ((-3 $ "failed") (-884 |t#1|))) (-15 -3294 ($ (-884 |t#1|)))))) (-15 -4122 ($ (-884 |t#1|))) (IF (|has| |t#1| (-978 (-499))) (-6 (-569 (-1099))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -3293 ($ $)) (-15 -3292 ($ $)) (-15 -3291 ($ $ |t#1|)) (-15 -3290 ($ $ |t#1|)) (-15 -3291 ($ $ $)) (-15 -3290 ($ $ $)) (-15 -3905 ($ $ $)) (-15 -3289 ((-2 (|:| -3282 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3288 ((-2 (|:| -3282 $) (|:| |coef1| $)) $ $)) (-15 -3287 ((-2 (|:| -3282 $) (|:| |coef2| $)) $ $)) (-15 -3906 ($ $ $)) (-15 -3286 ((-599 $) $ $)) (-15 -3328 ($ $ $)) (-15 -3285 ($ $ $ (-714))) (-15 -3284 ($ $ $ $ (-714))) (-15 -3283 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-406)) (PROGN (-15 -3282 (|t#1| |t#1| $)) (-15 -3281 ($ $)) (-15 -3280 ($ $)) (-15 -3279 ($ $)) (-15 -3278 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-38 (-361 (-499))))) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-571 |#3|) . T) ((-571 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-568 (-797)) . T) ((-568 (-884 |#1|)) |has| |#3| (-569 (-1117))) ((-146) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-569 (-488)) -12 (|has| |#1| (-569 (-488))) (|has| |#3| (-569 (-488)))) ((-569 (-825 (-333))) -12 (|has| |#1| (-569 (-825 (-333)))) (|has| |#3| (-569 (-825 (-333))))) ((-569 (-825 (-499))) -12 (|has| |#1| (-569 (-825 (-499)))) (|has| |#3| (-569 (-825 (-499))))) ((-569 (-884 |#1|)) |has| |#3| (-569 (-1117))) ((-569 (-1099)) -12 (|has| |#1| (-978 (-499))) (|has| |#3| (-569 (-1117)))) ((-244) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-263 $) . T) ((-280 |#1| |#2|) . T) ((-332 |#1|) . T) ((-366 |#1|) . T) ((-406) -3677 (|has| |#1| (-848)) (|has| |#1| (-406))) ((-468 |#3| |#1|) . T) ((-468 |#3| $) . T) ((-468 $ $) . T) ((-510) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-604 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-606 (-499)) |has| |#1| (-596 (-499))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-596 (-499)) |has| |#1| (-596 (-499))) ((-596 |#1|) . T) ((-675 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406))) ((-684) . T) ((-831 $ |#3|) . T) ((-836 |#3|) . T) ((-838 |#3|) . T) ((-821 (-333)) -12 (|has| |#1| (-821 (-333))) (|has| |#3| (-821 (-333)))) ((-821 (-499)) -12 (|has| |#1| (-821 (-499))) (|has| |#3| (-821 (-499)))) ((-888 |#1| |#2| |#3|) . T) ((-848) |has| |#1| (-848)) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 |#1|) . T) ((-978 |#3|) . T) ((-991 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-996 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) |has| |#1| (-848))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3319 (((-599 (-1075)) $) 18 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 27 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3371 (((-1075) $) 20 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-1006) (-13 (-1023) (-10 -8 (-15 -3319 ((-599 (-1075)) $)) (-15 -3371 ((-1075) $))))) (T -1006)) +((-3319 (*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-1006)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1006))))) +((-3326 (((-85) |#3| $) 15 T ELT)) (-3321 (((-3 $ #1="failed") |#3| (-857)) 29 T ELT)) (-3607 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3324 (((-85) |#3| $) 19 T ELT)) (-3325 (((-85) |#3| $) 17 T ELT))) +(((-1007 |#1| |#2| |#3|) (-10 -7 (-15 -3321 ((-3 |#1| #1="failed") |#3| (-857))) (-15 -3607 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3324 ((-85) |#3| |#1|)) (-15 -3325 ((-85) |#3| |#1|)) (-15 -3326 ((-85) |#3| |#1|))) (-1008 |#2| |#3|) (-13 (-780) (-318)) (-1183 |#2|)) (T -1007)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) |#2| $) 25 T ELT)) (-3773 (((-499) |#2| $) 26 T ELT)) (-3321 (((-3 $ "failed") |#2| (-857)) 19 T ELT)) (-3320 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3607 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3324 (((-85) |#2| $) 23 T ELT)) (-3325 (((-85) |#2| $) 24 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3323 ((|#2| $) 21 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3920 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3322 (((-599 $) |#2|) 20 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-1008 |#1| |#2|) (-113) (-13 (-780) (-318)) (-1183 |t#1|)) (T -1008)) +((-3773 (*1 *2 *3 *1) (-12 (-4 *1 (-1008 *4 *3)) (-4 *4 (-13 (-780) (-318))) (-4 *3 (-1183 *4)) (-5 *2 (-499)))) (-3326 (*1 *2 *3 *1) (-12 (-4 *1 (-1008 *4 *3)) (-4 *4 (-13 (-780) (-318))) (-4 *3 (-1183 *4)) (-5 *2 (-85)))) (-3325 (*1 *2 *3 *1) (-12 (-4 *1 (-1008 *4 *3)) (-4 *4 (-13 (-780) (-318))) (-4 *3 (-1183 *4)) (-5 *2 (-85)))) (-3324 (*1 *2 *3 *1) (-12 (-4 *1 (-1008 *4 *3)) (-4 *4 (-13 (-780) (-318))) (-4 *3 (-1183 *4)) (-5 *2 (-85)))) (-3607 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1008 *3 *2)) (-4 *3 (-13 (-780) (-318))) (-4 *2 (-1183 *3)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *2)) (-4 *3 (-13 (-780) (-318))) (-4 *2 (-1183 *3)))) (-3322 (*1 *2 *3) (-12 (-4 *4 (-13 (-780) (-318))) (-4 *3 (-1183 *4)) (-5 *2 (-599 *1)) (-4 *1 (-1008 *4 *3)))) (-3321 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-857)) (-4 *4 (-13 (-780) (-318))) (-4 *1 (-1008 *4 *2)) (-4 *2 (-1183 *4)))) (-3920 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1008 *2 *3)) (-4 *2 (-13 (-780) (-318))) (-4 *3 (-1183 *2)))) (-3320 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1008 *2 *3)) (-4 *2 (-13 (-780) (-318))) (-4 *3 (-1183 *2))))) +(-13 (-1041) (-10 -8 (-15 -3773 ((-499) |t#2| $)) (-15 -3326 ((-85) |t#2| $)) (-15 -3325 ((-85) |t#2| $)) (-15 -3324 ((-85) |t#2| $)) (-15 -3607 ((-3 |t#2| "failed") |t#2| $)) (-15 -3323 (|t#2| $)) (-15 -3322 ((-599 $) |t#2|)) (-15 -3321 ((-3 $ "failed") |t#2| (-857))) (-15 -3920 (|t#1| |t#2| $ |t#1|)) (-15 -3320 (|t#1| |t#2| $ |t#1|)))) +(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) +((-3576 (((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-599 |#4|) (-599 |#5|) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) (-714)) 114 T ELT)) (-3573 (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714)) 63 T ELT)) (-3577 (((-1213) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-714)) 99 T ELT)) (-3571 (((-714) (-599 |#4|) (-599 |#5|)) 30 T ELT)) (-3574 (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714)) 65 T ELT) (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714) (-85)) 67 T ELT)) (-3575 (((-599 |#5|) (-599 |#4|) (-599 |#5|) (-85) (-85) (-85) (-85) (-85)) 86 T ELT) (((-599 |#5|) (-599 |#4|) (-599 |#5|) (-85) (-85)) 87 T ELT)) (-4122 (((-1099) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) 92 T ELT)) (-3572 (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-85)) 62 T ELT)) (-3570 (((-714) (-599 |#4|) (-599 |#5|)) 21 T ELT))) +(((-1009 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3570 ((-714) (-599 |#4|) (-599 |#5|))) (-15 -3571 ((-714) (-599 |#4|) (-599 |#5|))) (-15 -3572 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-85))) (-15 -3573 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714))) (-15 -3573 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5|)) (-15 -3574 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714) (-85))) (-15 -3574 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714))) (-15 -3574 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5|)) (-15 -3575 ((-599 |#5|) (-599 |#4|) (-599 |#5|) (-85) (-85))) (-15 -3575 ((-599 |#5|) (-599 |#4|) (-599 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3576 ((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-599 |#4|) (-599 |#5|) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) (-714))) (-15 -4122 ((-1099) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|)))) (-15 -3577 ((-1213) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-714)))) (-406) (-738) (-781) (-1005 |#1| |#2| |#3|) (-1011 |#1| |#2| |#3| |#4|)) (T -1009)) +((-3577 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-2 (|:| |val| (-599 *8)) (|:| -1633 *9)))) (-5 *4 (-714)) (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-1213)) (-5 *1 (-1009 *5 *6 *7 *8 *9)))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-599 *7)) (|:| -1633 *8))) (-4 *7 (-1005 *4 *5 *6)) (-4 *8 (-1011 *4 *5 *6 *7)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-1099)) (-5 *1 (-1009 *4 *5 *6 *7 *8)))) (-3576 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-599 *11)) (|:| |todo| (-599 (-2 (|:| |val| *3) (|:| -1633 *11)))))) (-5 *6 (-714)) (-5 *2 (-599 (-2 (|:| |val| (-599 *10)) (|:| -1633 *11)))) (-5 *3 (-599 *10)) (-5 *4 (-599 *11)) (-4 *10 (-1005 *7 *8 *9)) (-4 *11 (-1011 *7 *8 *9 *10)) (-4 *7 (-406)) (-4 *8 (-738)) (-4 *9 (-781)) (-5 *1 (-1009 *7 *8 *9 *10 *11)))) (-3575 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-599 *9)) (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-1009 *5 *6 *7 *8 *9)))) (-3575 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-599 *9)) (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-1009 *5 *6 *7 *8 *9)))) (-3574 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3574 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-714)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *3 (-1005 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1009 *6 *7 *8 *3 *4)) (-4 *4 (-1011 *6 *7 *8 *3)))) (-3574 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-714)) (-5 *6 (-85)) (-4 *7 (-406)) (-4 *8 (-738)) (-4 *9 (-781)) (-4 *3 (-1005 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1009 *7 *8 *9 *3 *4)) (-4 *4 (-1011 *7 *8 *9 *3)))) (-3573 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3573 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-714)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *3 (-1005 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1009 *6 *7 *8 *3 *4)) (-4 *4 (-1011 *6 *7 *8 *3)))) (-3572 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *3 (-1005 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1009 *6 *7 *8 *3 *4)) (-4 *4 (-1011 *6 *7 *8 *3)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 *9)) (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-714)) (-5 *1 (-1009 *5 *6 *7 *8 *9)))) (-3570 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 *9)) (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-714)) (-5 *1 (-1009 *5 *6 *7 *8 *9))))) +((-3335 (((-85) |#5| $) 26 T ELT)) (-3333 (((-85) |#5| $) 29 T ELT)) (-3336 (((-85) |#5| $) 18 T ELT) (((-85) $) 52 T ELT)) (-3376 (((-599 $) |#5| $) NIL T ELT) (((-599 $) (-599 |#5|) $) 94 T ELT) (((-599 $) (-599 |#5|) (-599 $)) 92 T ELT) (((-599 $) |#5| (-599 $)) 95 T ELT)) (-3919 (($ $ |#5|) NIL T ELT) (((-599 $) |#5| $) NIL T ELT) (((-599 $) |#5| (-599 $)) 73 T ELT) (((-599 $) (-599 |#5|) $) 75 T ELT) (((-599 $) (-599 |#5|) (-599 $)) 77 T ELT)) (-3327 (((-599 $) |#5| $) NIL T ELT) (((-599 $) |#5| (-599 $)) 64 T ELT) (((-599 $) (-599 |#5|) $) 69 T ELT) (((-599 $) (-599 |#5|) (-599 $)) 71 T ELT)) (-3334 (((-85) |#5| $) 32 T ELT))) +(((-1010 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3919 ((-599 |#1|) (-599 |#5|) (-599 |#1|))) (-15 -3919 ((-599 |#1|) (-599 |#5|) |#1|)) (-15 -3919 ((-599 |#1|) |#5| (-599 |#1|))) (-15 -3919 ((-599 |#1|) |#5| |#1|)) (-15 -3327 ((-599 |#1|) (-599 |#5|) (-599 |#1|))) (-15 -3327 ((-599 |#1|) (-599 |#5|) |#1|)) (-15 -3327 ((-599 |#1|) |#5| (-599 |#1|))) (-15 -3327 ((-599 |#1|) |#5| |#1|)) (-15 -3376 ((-599 |#1|) |#5| (-599 |#1|))) (-15 -3376 ((-599 |#1|) (-599 |#5|) (-599 |#1|))) (-15 -3376 ((-599 |#1|) (-599 |#5|) |#1|)) (-15 -3376 ((-599 |#1|) |#5| |#1|)) (-15 -3333 ((-85) |#5| |#1|)) (-15 -3336 ((-85) |#1|)) (-15 -3334 ((-85) |#5| |#1|)) (-15 -3335 ((-85) |#5| |#1|)) (-15 -3336 ((-85) |#5| |#1|)) (-15 -3919 (|#1| |#1| |#5|))) (-1011 |#2| |#3| |#4| |#5|) (-406) (-738) (-781) (-1005 |#2| |#3| |#4|)) (T -1010)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3831 (((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 |#4|)))) (-599 |#4|)) 90 T ELT)) (-3832 (((-599 $) (-599 |#4|)) 91 T ELT) (((-599 $) (-599 |#4|) (-85)) 118 T ELT)) (-3204 (((-599 |#3|) $) 37 T ELT)) (-3029 (((-85) $) 30 T ELT)) (-3020 (((-85) $) 21 (|has| |#1| (-510)) ELT)) (-3843 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3838 ((|#4| |#4| $) 97 T ELT)) (-3925 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| $) 133 T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3860 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -4145)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3874 (($) 46 T CONST)) (-3025 (((-85) $) 26 (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) 28 (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) 27 (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) 29 (|has| |#1| (-510)) ELT)) (-3839 (((-599 |#4|) (-599 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) 22 (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) 23 (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ "failed") (-599 |#4|)) 40 T ELT)) (-3294 (($ (-599 |#4|)) 39 T ELT)) (-3949 (((-3 $ #1#) $) 87 T ELT)) (-3835 ((|#4| |#4| $) 94 T ELT)) (-1386 (($ $) 69 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#4| $) 68 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-510)) ELT)) (-3844 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3833 ((|#4| |#4| $) 92 T ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4145)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3846 (((-2 (|:| -4011 (-599 |#4|)) (|:| -1795 (-599 |#4|))) $) 110 T ELT)) (-3335 (((-85) |#4| $) 143 T ELT)) (-3333 (((-85) |#4| $) 140 T ELT)) (-3336 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-3010 (((-599 |#4|) $) 53 (|has| $ (-6 -4145)) ELT)) (-3845 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3318 ((|#3| $) 38 T ELT)) (-2727 (((-599 |#4|) $) 54 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3035 (((-599 |#3|) $) 36 T ELT)) (-3034 (((-85) |#3| $) 35 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3329 (((-3 |#4| (-599 $)) |#4| |#4| $) 135 T ELT)) (-3328 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| |#4| $) 134 T ELT)) (-3948 (((-3 |#4| #1#) $) 88 T ELT)) (-3330 (((-599 $) |#4| $) 136 T ELT)) (-3332 (((-3 (-85) (-599 $)) |#4| $) 139 T ELT)) (-3331 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3376 (((-599 $) |#4| $) 132 T ELT) (((-599 $) (-599 |#4|) $) 131 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 130 T ELT) (((-599 $) |#4| (-599 $)) 129 T ELT)) (-3580 (($ |#4| $) 124 T ELT) (($ (-599 |#4|) $) 123 T ELT)) (-3847 (((-599 |#4|) $) 112 T ELT)) (-3841 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3836 ((|#4| |#4| $) 95 T ELT)) (-3849 (((-85) $ $) 115 T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-510)) ELT)) (-3842 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3837 ((|#4| |#4| $) 96 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3951 (((-3 |#4| #1#) $) 89 T ELT)) (-1387 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3829 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3919 (($ $ |#4|) 82 T ELT) (((-599 $) |#4| $) 122 T ELT) (((-599 $) |#4| (-599 $)) 121 T ELT) (((-599 $) (-599 |#4|) $) 120 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 119 T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) 60 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) 58 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) 57 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) 42 T ELT)) (-3543 (((-85) $) 45 T ELT)) (-3713 (($) 44 T ELT)) (-4098 (((-714) $) 111 T ELT)) (-2048 (((-714) |#4| $) 55 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 43 T ELT)) (-4122 (((-488) $) 70 (|has| |#4| (-569 (-488))) ELT)) (-3670 (($ (-599 |#4|)) 61 T ELT)) (-3031 (($ $ |#3|) 32 T ELT)) (-3033 (($ $ |#3|) 34 T ELT)) (-3834 (($ $) 93 T ELT)) (-3032 (($ $ |#3|) 33 T ELT)) (-4096 (((-797) $) 13 T ELT) (((-599 |#4|) $) 41 T ELT)) (-3828 (((-714) $) 81 (|has| |#3| (-323)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3840 (((-85) $ (-1 (-85) |#4| (-599 |#4|))) 103 T ELT)) (-3327 (((-599 $) |#4| $) 128 T ELT) (((-599 $) |#4| (-599 $)) 127 T ELT) (((-599 $) (-599 |#4|) $) 126 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 125 T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3830 (((-599 |#3|) $) 86 T ELT)) (-3334 (((-85) |#4| $) 142 T ELT)) (-4083 (((-85) |#3| $) 85 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4107 (((-714) $) 47 (|has| $ (-6 -4145)) ELT))) +(((-1011 |#1| |#2| |#3| |#4|) (-113) (-406) (-738) (-781) (-1005 |t#1| |t#2| |t#3|)) (T -1011)) +((-3336 (*1 *2 *3 *1) (-12 (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85)))) (-3335 (*1 *2 *3 *1) (-12 (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85)))) (-3334 (*1 *2 *3 *1) (-12 (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85)))) (-3336 (*1 *2 *1) (-12 (-4 *1 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) (-3333 (*1 *2 *3 *1) (-12 (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85)))) (-3332 (*1 *2 *3 *1) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-3 (-85) (-599 *1))) (-4 *1 (-1011 *4 *5 *6 *3)))) (-3331 (*1 *2 *3 *1) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *1)))) (-4 *1 (-1011 *4 *5 *6 *3)))) (-3331 (*1 *2 *3 *1) (-12 (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85)))) (-3330 (*1 *2 *3 *1) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)))) (-3329 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-3 *3 (-599 *1))) (-4 *1 (-1011 *4 *5 *6 *3)))) (-3328 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *1)))) (-4 *1 (-1011 *4 *5 *6 *3)))) (-3925 (*1 *2 *3 *1) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *1)))) (-4 *1 (-1011 *4 *5 *6 *3)))) (-3376 (*1 *2 *3 *1) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)))) (-3376 (*1 *2 *3 *1) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *7)))) (-3376 (*1 *2 *3 *2) (-12 (-5 *2 (-599 *1)) (-5 *3 (-599 *7)) (-4 *1 (-1011 *4 *5 *6 *7)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)))) (-3376 (*1 *2 *3 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)))) (-3327 (*1 *2 *3 *1) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)))) (-3327 (*1 *2 *3 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)))) (-3327 (*1 *2 *3 *1) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *7)))) (-3327 (*1 *2 *3 *2) (-12 (-5 *2 (-599 *1)) (-5 *3 (-599 *7)) (-4 *1 (-1011 *4 *5 *6 *7)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)))) (-3580 (*1 *1 *2 *1) (-12 (-4 *1 (-1011 *3 *4 *5 *2)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) (-3580 (*1 *1 *2 *1) (-12 (-5 *2 (-599 *6)) (-4 *1 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)))) (-3919 (*1 *2 *3 *1) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)))) (-3919 (*1 *2 *3 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)))) (-3919 (*1 *2 *3 *1) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *7)))) (-3919 (*1 *2 *3 *2) (-12 (-5 *2 (-599 *1)) (-5 *3 (-599 *7)) (-4 *1 (-1011 *4 *5 *6 *7)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)))) (-3832 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *5 *6 *7 *8))))) +(-13 (-1152 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3336 ((-85) |t#4| $)) (-15 -3335 ((-85) |t#4| $)) (-15 -3334 ((-85) |t#4| $)) (-15 -3336 ((-85) $)) (-15 -3333 ((-85) |t#4| $)) (-15 -3332 ((-3 (-85) (-599 $)) |t#4| $)) (-15 -3331 ((-599 (-2 (|:| |val| (-85)) (|:| -1633 $))) |t#4| $)) (-15 -3331 ((-85) |t#4| $)) (-15 -3330 ((-599 $) |t#4| $)) (-15 -3329 ((-3 |t#4| (-599 $)) |t#4| |t#4| $)) (-15 -3328 ((-599 (-2 (|:| |val| |t#4|) (|:| -1633 $))) |t#4| |t#4| $)) (-15 -3925 ((-599 (-2 (|:| |val| |t#4|) (|:| -1633 $))) |t#4| $)) (-15 -3376 ((-599 $) |t#4| $)) (-15 -3376 ((-599 $) (-599 |t#4|) $)) (-15 -3376 ((-599 $) (-599 |t#4|) (-599 $))) (-15 -3376 ((-599 $) |t#4| (-599 $))) (-15 -3327 ((-599 $) |t#4| $)) (-15 -3327 ((-599 $) |t#4| (-599 $))) (-15 -3327 ((-599 $) (-599 |t#4|) $)) (-15 -3327 ((-599 $) (-599 |t#4|) (-599 $))) (-15 -3580 ($ |t#4| $)) (-15 -3580 ($ (-599 |t#4|) $)) (-15 -3919 ((-599 $) |t#4| $)) (-15 -3919 ((-599 $) |t#4| (-599 $))) (-15 -3919 ((-599 $) (-599 |t#4|) $)) (-15 -3919 ((-599 $) (-599 |t#4|) (-599 $))) (-15 -3832 ((-599 $) (-599 |t#4|) (-85))))) +(((-34) . T) ((-73) . T) ((-568 (-599 |#4|)) . T) ((-568 (-797)) . T) ((-124 |#4|) . T) ((-569 (-488)) |has| |#4| (-569 (-488))) ((-263 |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-443 |#4|) . T) ((-468 |#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1041) . T) ((-1152 |#1| |#2| |#3| |#4|) . T) ((-1157) . T)) +((-3343 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#5|) 86 T ELT)) (-3340 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3342 (((-599 |#5|) |#4| |#5|) 74 T ELT)) (-3341 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3425 (((-1213)) 36 T ELT)) (-3423 (((-1213)) 25 T ELT)) (-3424 (((-1213) (-1099) (-1099) (-1099)) 32 T ELT)) (-3422 (((-1213) (-1099) (-1099) (-1099)) 21 T ELT)) (-3337 (((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3338 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) |#3| (-85)) 117 T ELT) (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3339 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5|) 112 T ELT))) +(((-1012 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3422 ((-1213) (-1099) (-1099) (-1099))) (-15 -3423 ((-1213))) (-15 -3424 ((-1213) (-1099) (-1099) (-1099))) (-15 -3425 ((-1213))) (-15 -3337 ((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) |#4| |#4| |#5|)) (-15 -3338 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3338 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) |#3| (-85))) (-15 -3339 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5|)) (-15 -3340 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5|)) (-15 -3341 ((-85) |#4| |#5|)) (-15 -3341 ((-599 (-2 (|:| |val| (-85)) (|:| -1633 |#5|))) |#4| |#5|)) (-15 -3342 ((-599 |#5|) |#4| |#5|)) (-15 -3343 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#5|))) (-406) (-738) (-781) (-1005 |#1| |#2| |#3|) (-1011 |#1| |#2| |#3| |#4|)) (T -1012)) +((-3343 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3342 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 *4)) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3341 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3341 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3340 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3339 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3338 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 (-2 (|:| |val| (-599 *8)) (|:| -1633 *9)))) (-5 *5 (-85)) (-4 *8 (-1005 *6 *7 *4)) (-4 *9 (-1011 *6 *7 *4 *8)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *4 (-781)) (-5 *2 (-599 (-2 (|:| |val| *8) (|:| -1633 *9)))) (-5 *1 (-1012 *6 *7 *4 *8 *9)))) (-3338 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *3 (-1005 *6 *7 *8)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-1012 *6 *7 *8 *3 *4)) (-4 *4 (-1011 *6 *7 *8 *3)))) (-3337 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3425 (*1 *2) (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-1213)) (-5 *1 (-1012 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6)))) (-3424 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7)))) (-3423 (*1 *2) (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-1213)) (-5 *1 (-1012 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6)))) (-3422 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3456 (((-1158) $) 13 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3344 (((-1075) $) 10 T ELT)) (-4096 (((-797) $) 20 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-1013) (-13 (-1023) (-10 -8 (-15 -3344 ((-1075) $)) (-15 -3456 ((-1158) $))))) (T -1013)) +((-3344 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1013)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1013))))) +((-3404 (((-85) $ $) 7 T ELT))) +(((-1014) (-13 (-1157) (-10 -8 (-15 -3404 ((-85) $ $))))) (T -1014)) +((-3404 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1014))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3347 (($ $ (-599 (-1117)) (-1 (-85) (-599 |#3|))) 34 T ELT)) (-3348 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-599 (-1117))) 21 T ELT)) (-3668 ((|#3| $) 13 T ELT)) (-3295 (((-3 (-247 |#3|) "failed") $) 60 T ELT)) (-3294 (((-247 |#3|) $) NIL T ELT)) (-3345 (((-599 (-1117)) $) 16 T ELT)) (-3346 (((-825 |#1|) $) 11 T ELT)) (-3669 ((|#3| $) 12 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3950 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-857)) 41 T ELT)) (-4096 (((-797) $) 89 T ELT) (($ (-247 |#3|)) 22 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 38 T ELT))) +(((-1015 |#1| |#2| |#3|) (-13 (-1041) (-240 |#3| |#3|) (-978 (-247 |#3|)) (-10 -8 (-15 -3348 ($ |#3| |#3|)) (-15 -3348 ($ |#3| |#3| (-599 (-1117)))) (-15 -3347 ($ $ (-599 (-1117)) (-1 (-85) (-599 |#3|)))) (-15 -3346 ((-825 |#1|) $)) (-15 -3669 (|#3| $)) (-15 -3668 (|#3| $)) (-15 -3950 (|#3| $ |#3| (-857))) (-15 -3345 ((-599 (-1117)) $)))) (-1041) (-13 (-989) (-821 |#1|) (-569 (-825 |#1|))) (-13 (-375 |#2|) (-821 |#1|) (-569 (-825 |#1|)))) (T -1015)) +((-3348 (*1 *1 *2 *2) (-12 (-4 *3 (-1041)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))) (-5 *1 (-1015 *3 *4 *2)) (-4 *2 (-13 (-375 *4) (-821 *3) (-569 (-825 *3)))))) (-3348 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-599 (-1117))) (-4 *4 (-1041)) (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-1015 *4 *5 *2)) (-4 *2 (-13 (-375 *5) (-821 *4) (-569 (-825 *4)))))) (-3347 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-1 (-85) (-599 *6))) (-4 *6 (-13 (-375 *5) (-821 *4) (-569 (-825 *4)))) (-4 *4 (-1041)) (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-1015 *4 *5 *6)))) (-3346 (*1 *2 *1) (-12 (-4 *3 (-1041)) (-4 *4 (-13 (-989) (-821 *3) (-569 *2))) (-5 *2 (-825 *3)) (-5 *1 (-1015 *3 *4 *5)) (-4 *5 (-13 (-375 *4) (-821 *3) (-569 *2))))) (-3669 (*1 *2 *1) (-12 (-4 *3 (-1041)) (-4 *2 (-13 (-375 *4) (-821 *3) (-569 (-825 *3)))) (-5 *1 (-1015 *3 *4 *2)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))))) (-3668 (*1 *2 *1) (-12 (-4 *3 (-1041)) (-4 *2 (-13 (-375 *4) (-821 *3) (-569 (-825 *3)))) (-5 *1 (-1015 *3 *4 *2)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))))) (-3950 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-857)) (-4 *4 (-1041)) (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-1015 *4 *5 *2)) (-4 *2 (-13 (-375 *5) (-821 *4) (-569 (-825 *4)))))) (-3345 (*1 *2 *1) (-12 (-4 *3 (-1041)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))) (-5 *2 (-599 (-1117))) (-5 *1 (-1015 *3 *4 *5)) (-4 *5 (-13 (-375 *4) (-821 *3) (-569 (-825 *3))))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3690 (((-1117) $) 8 T ELT)) (-3380 (((-1099) $) 17 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 11 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 14 T ELT))) +(((-1016 |#1|) (-13 (-1041) (-10 -8 (-15 -3690 ((-1117) $)))) (-1117)) (T -1016)) +((-3690 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1016 *3)) (-14 *3 *2)))) +((-2687 (((-85) $ $) NIL T ELT)) (-3350 (($ (-599 (-1015 |#1| |#2| |#3|))) 14 T ELT)) (-3349 (((-599 (-1015 |#1| |#2| |#3|)) $) 21 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3950 ((|#3| $ |#3|) 24 T ELT) ((|#3| $ |#3| (-857)) 27 T ELT)) (-4096 (((-797) $) 17 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 20 T ELT))) +(((-1017 |#1| |#2| |#3|) (-13 (-1041) (-240 |#3| |#3|) (-10 -8 (-15 -3350 ($ (-599 (-1015 |#1| |#2| |#3|)))) (-15 -3349 ((-599 (-1015 |#1| |#2| |#3|)) $)) (-15 -3950 (|#3| $ |#3| (-857))))) (-1041) (-13 (-989) (-821 |#1|) (-569 (-825 |#1|))) (-13 (-375 |#2|) (-821 |#1|) (-569 (-825 |#1|)))) (T -1017)) +((-3350 (*1 *1 *2) (-12 (-5 *2 (-599 (-1015 *3 *4 *5))) (-4 *3 (-1041)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))) (-4 *5 (-13 (-375 *4) (-821 *3) (-569 (-825 *3)))) (-5 *1 (-1017 *3 *4 *5)))) (-3349 (*1 *2 *1) (-12 (-4 *3 (-1041)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))) (-5 *2 (-599 (-1015 *3 *4 *5))) (-5 *1 (-1017 *3 *4 *5)) (-4 *5 (-13 (-375 *4) (-821 *3) (-569 (-825 *3)))))) (-3950 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-857)) (-4 *4 (-1041)) (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-1017 *4 *5 *2)) (-4 *2 (-13 (-375 *5) (-821 *4) (-569 (-825 *4))))))) +((-3351 (((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)) (-85) (-85)) 88 T ELT) (((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|))) 92 T ELT) (((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)) (-85)) 90 T ELT))) +(((-1018 |#1| |#2|) (-10 -7 (-15 -3351 ((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)) (-85))) (-15 -3351 ((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)))) (-15 -3351 ((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)) (-85) (-85)))) (-13 (-261) (-120)) (-599 (-1117))) (T -1018)) +((-3351 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-2 (|:| -1840 (-1111 *5)) (|:| -3362 (-599 (-884 *5)))))) (-5 *1 (-1018 *5 *6)) (-5 *3 (-599 (-884 *5))) (-14 *6 (-599 (-1117))))) (-3351 (*1 *2 *3) (-12 (-4 *4 (-13 (-261) (-120))) (-5 *2 (-599 (-2 (|:| -1840 (-1111 *4)) (|:| -3362 (-599 (-884 *4)))))) (-5 *1 (-1018 *4 *5)) (-5 *3 (-599 (-884 *4))) (-14 *5 (-599 (-1117))))) (-3351 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-2 (|:| -1840 (-1111 *5)) (|:| -3362 (-599 (-884 *5)))))) (-5 *1 (-1018 *5 *6)) (-5 *3 (-599 (-884 *5))) (-14 *6 (-599 (-1117)))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 136 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-318)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-318)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-1880 (((-647 |#1|) (-1207 $)) NIL T ELT) (((-647 |#1|)) 121 T ELT)) (-3470 ((|#1| $) 125 T ELT)) (-1768 (((-1129 (-857) (-714)) (-499)) NIL (|has| |#1| (-305)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3258 (((-714)) 43 (|has| |#1| (-323)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) NIL T ELT)) (-1890 (($ (-1207 |#1|) (-1207 $)) NIL T ELT) (($ (-1207 |#1|)) 46 T ELT)) (-1766 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-305)) ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-1879 (((-647 |#1|) $ (-1207 $)) NIL T ELT) (((-647 |#1|) $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 113 T ELT) (((-647 |#1|) (-647 $)) 108 T ELT)) (-3992 (($ |#2|) 65 T ELT) (((-3 $ #1#) (-361 |#2|)) NIL (|has| |#1| (-318)) ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3231 (((-857)) 84 T ELT)) (-3115 (($) 47 (|has| |#1| (-323)) ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-2954 (($) NIL (|has| |#1| (-305)) ELT)) (-1773 (((-85) $) NIL (|has| |#1| (-305)) ELT)) (-1864 (($ $ (-714)) NIL (|has| |#1| (-305)) ELT) (($ $) NIL (|has| |#1| (-305)) ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3922 (((-857) $) NIL (|has| |#1| (-305)) ELT) (((-766 (-857)) $) NIL (|has| |#1| (-305)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3254 ((|#1| $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-305)) ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-2115 ((|#2| $) 91 (|has| |#1| (-318)) ELT)) (-2111 (((-857) $) 145 (|has| |#1| (-323)) ELT)) (-3200 ((|#2| $) 62 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3586 (($) NIL (|has| |#1| (-305)) CONST)) (-2518 (($ (-857)) 135 (|has| |#1| (-323)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2527 (($) 127 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-1769 (((-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499))))) NIL (|has| |#1| (-305)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3907 ((|#1| (-1207 $)) NIL T ELT) ((|#1|) 117 T ELT)) (-1865 (((-714) $) NIL (|has| |#1| (-305)) ELT) (((-3 (-714) #1#) $ $) NIL (|has| |#1| (-305)) ELT)) (-3908 (($ $ (-714)) NIL (-3677 (-12 (|has| |#1| (-189)) (|has| |#1| (-318))) (|has| |#1| (-305))) ELT) (($ $) NIL (-3677 (-12 (|has| |#1| (-189)) (|has| |#1| (-318))) (|has| |#1| (-305))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-318)) ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL (|has| |#1| (-318)) ELT)) (-2526 (((-647 |#1|) (-1207 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-318)) ELT)) (-3323 ((|#2|) 81 T ELT)) (-1767 (($) NIL (|has| |#1| (-305)) ELT)) (-3362 (((-1207 |#1|) $ (-1207 $)) 96 T ELT) (((-647 |#1|) (-1207 $) (-1207 $)) NIL T ELT) (((-1207 |#1|) $) 75 T ELT) (((-647 |#1|) (-1207 $)) 92 T ELT)) (-4122 (((-1207 |#1|) $) NIL T ELT) (($ (-1207 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (|has| |#1| (-305)) ELT)) (-4096 (((-797) $) 61 T ELT) (($ (-499)) 56 T ELT) (($ |#1|) 58 T ELT) (($ $) NIL (|has| |#1| (-318)) ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-318)) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-2823 (($ $) NIL (|has| |#1| (-305)) ELT) (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-2565 ((|#2| $) 89 T ELT)) (-3248 (((-714)) 83 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2113 (((-1207 $)) 88 T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-2779 (($) 32 T CONST)) (-2785 (($) 19 T CONST)) (-2790 (($ $ (-714)) NIL (-3677 (-12 (|has| |#1| (-189)) (|has| |#1| (-318))) (|has| |#1| (-305))) ELT) (($ $) NIL (-3677 (-12 (|has| |#1| (-189)) (|has| |#1| (-318))) (|has| |#1| (-305))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1117)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-838 (-1117)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-318)) ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL (|has| |#1| (-318)) ELT)) (-3174 (((-85) $ $) 67 T ELT)) (-4099 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) 71 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 69 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 54 T ELT) (($ $ $) 73 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 51 T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-318)) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-318)) ELT))) +(((-1019 |#1| |#2| |#3|) (-682 |#1| |#2|) (-146) (-1183 |#1|) |#2|) (T -1019)) +NIL +((-3882 (((-359 |#3|) |#3|) 18 T ELT))) +(((-1020 |#1| |#2| |#3|) (-10 -7 (-15 -3882 ((-359 |#3|) |#3|))) (-1183 (-361 (-499))) (-13 (-318) (-120) (-682 (-361 (-499)) |#1|)) (-1183 |#2|)) (T -1020)) +((-3882 (*1 *2 *3) (-12 (-4 *4 (-1183 (-361 (-499)))) (-4 *5 (-13 (-318) (-120) (-682 (-361 (-499)) *4))) (-5 *2 (-359 *3)) (-5 *1 (-1020 *4 *5 *3)) (-4 *3 (-1183 *5))))) +((-3882 (((-359 |#3|) |#3|) 19 T ELT))) +(((-1021 |#1| |#2| |#3|) (-10 -7 (-15 -3882 ((-359 |#3|) |#3|))) (-1183 (-361 (-884 (-499)))) (-13 (-318) (-120) (-682 (-361 (-884 (-499))) |#1|)) (-1183 |#2|)) (T -1021)) +((-3882 (*1 *2 *3) (-12 (-4 *4 (-1183 (-361 (-884 (-499))))) (-4 *5 (-13 (-318) (-120) (-682 (-361 (-884 (-499))) *4))) (-5 *2 (-359 *3)) (-5 *1 (-1021 *4 *5 *3)) (-4 *3 (-1183 *5))))) +((-2687 (((-85) $ $) NIL T ELT)) (-2650 (($ $ $) 16 T ELT)) (-2978 (($ $ $) 17 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3352 (($) 6 T ELT)) (-4122 (((-1117) $) 20 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 15 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 9 T ELT))) +(((-1022) (-13 (-781) (-569 (-1117)) (-10 -8 (-15 -3352 ($))))) (T -1022)) +((-3352 (*1 *1) (-5 *1 (-1022)))) +((-2687 (((-85) $ $) 7 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-1122)) 20 T ELT) (((-1122) $) 19 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-1023) (-113)) (T -1023)) +NIL +(-13 (-64)) +(((-64) . T) ((-73) . T) ((-571 (-1122)) . T) ((-568 (-797)) . T) ((-568 (-1122)) . T) ((-444 (-1122)) . T) ((-1041) . T) ((-1157) . T)) +((-3355 ((|#1| |#1| (-1 (-499) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-85) |#1|)) 33 T ELT)) (-3353 (((-1213)) 21 T ELT)) (-3354 (((-599 |#1|)) 13 T ELT))) +(((-1024 |#1|) (-10 -7 (-15 -3353 ((-1213))) (-15 -3354 ((-599 |#1|))) (-15 -3355 (|#1| |#1| (-1 (-85) |#1|))) (-15 -3355 (|#1| |#1| (-1 (-499) |#1| |#1|)))) (-105)) (T -1024)) +((-3355 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-499) *2 *2)) (-4 *2 (-105)) (-5 *1 (-1024 *2)))) (-3355 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-1024 *2)))) (-3354 (*1 *2) (-12 (-5 *2 (-599 *3)) (-5 *1 (-1024 *3)) (-4 *3 (-105)))) (-3353 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1024 *3)) (-4 *3 (-105))))) +((-3358 (($ (-80) $) 20 T ELT)) (-3359 (((-649 (-80)) (-460) $) 19 T ELT)) (-3713 (($) 7 T ELT)) (-3357 (($) 21 T ELT)) (-3356 (($) 22 T ELT)) (-3360 (((-599 (-149)) $) 10 T ELT)) (-4096 (((-797) $) 25 T ELT))) +(((-1025) (-13 (-568 (-797)) (-10 -8 (-15 -3713 ($)) (-15 -3360 ((-599 (-149)) $)) (-15 -3359 ((-649 (-80)) (-460) $)) (-15 -3358 ($ (-80) $)) (-15 -3357 ($)) (-15 -3356 ($))))) (T -1025)) +((-3713 (*1 *1) (-5 *1 (-1025))) (-3360 (*1 *2 *1) (-12 (-5 *2 (-599 (-149))) (-5 *1 (-1025)))) (-3359 (*1 *2 *3 *1) (-12 (-5 *3 (-460)) (-5 *2 (-649 (-80))) (-5 *1 (-1025)))) (-3358 (*1 *1 *2 *1) (-12 (-5 *2 (-80)) (-5 *1 (-1025)))) (-3357 (*1 *1) (-5 *1 (-1025))) (-3356 (*1 *1) (-5 *1 (-1025)))) +((-3361 (((-1207 (-647 |#1|)) (-599 (-647 |#1|))) 45 T ELT) (((-1207 (-647 (-884 |#1|))) (-599 (-1117)) (-647 (-884 |#1|))) 75 T ELT) (((-1207 (-647 (-361 (-884 |#1|)))) (-599 (-1117)) (-647 (-361 (-884 |#1|)))) 92 T ELT)) (-3362 (((-1207 |#1|) (-647 |#1|) (-599 (-647 |#1|))) 39 T ELT))) +(((-1026 |#1|) (-10 -7 (-15 -3361 ((-1207 (-647 (-361 (-884 |#1|)))) (-599 (-1117)) (-647 (-361 (-884 |#1|))))) (-15 -3361 ((-1207 (-647 (-884 |#1|))) (-599 (-1117)) (-647 (-884 |#1|)))) (-15 -3361 ((-1207 (-647 |#1|)) (-599 (-647 |#1|)))) (-15 -3362 ((-1207 |#1|) (-647 |#1|) (-599 (-647 |#1|))))) (-318)) (T -1026)) +((-3362 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-647 *5))) (-5 *3 (-647 *5)) (-4 *5 (-318)) (-5 *2 (-1207 *5)) (-5 *1 (-1026 *5)))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-599 (-647 *4))) (-4 *4 (-318)) (-5 *2 (-1207 (-647 *4))) (-5 *1 (-1026 *4)))) (-3361 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-1117))) (-4 *5 (-318)) (-5 *2 (-1207 (-647 (-884 *5)))) (-5 *1 (-1026 *5)) (-5 *4 (-647 (-884 *5))))) (-3361 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-1117))) (-4 *5 (-318)) (-5 *2 (-1207 (-647 (-361 (-884 *5))))) (-5 *1 (-1026 *5)) (-5 *4 (-647 (-361 (-884 *5))))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1521 (((-599 (-714)) $) NIL T ELT) (((-599 (-714)) $ (-1117)) NIL T ELT)) (-1555 (((-714) $) NIL T ELT) (((-714) $ (-1117)) NIL T ELT)) (-3204 (((-599 (-1028 (-1117))) $) NIL T ELT)) (-3206 (((-1111 $) $ (-1028 (-1117))) NIL T ELT) (((-1111 |#1|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-1028 (-1117)))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-1517 (($ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-1028 (-1117)) #1#) $) NIL T ELT) (((-3 (-1117) #1#) $) NIL T ELT) (((-3 (-1065 |#1| (-1117)) #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-1028 (-1117)) $) NIL T ELT) (((-1117) $) NIL T ELT) (((-1065 |#1| (-1117)) $) NIL T ELT)) (-3906 (($ $ $ (-1028 (-1117))) NIL (|has| |#1| (-146)) ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT) (($ $ (-1028 (-1117))) NIL (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-848)) ELT)) (-1694 (($ $ |#1| (-484 (-1028 (-1117))) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-1028 (-1117)) (-821 (-333))) (|has| |#1| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-1028 (-1117)) (-821 (-499))) (|has| |#1| (-821 (-499)))) ELT)) (-3922 (((-714) $ (-1117)) NIL T ELT) (((-714) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3207 (($ (-1111 |#1|) (-1028 (-1117))) NIL T ELT) (($ (-1111 $) (-1028 (-1117))) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-484 (-1028 (-1117)))) NIL T ELT) (($ $ (-1028 (-1117)) (-714)) NIL T ELT) (($ $ (-599 (-1028 (-1117))) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-1028 (-1117))) NIL T ELT)) (-2941 (((-484 (-1028 (-1117))) $) NIL T ELT) (((-714) $ (-1028 (-1117))) NIL T ELT) (((-599 (-714)) $ (-599 (-1028 (-1117)))) NIL T ELT)) (-1695 (($ (-1 (-484 (-1028 (-1117))) (-484 (-1028 (-1117)))) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1556 (((-1 $ (-714)) (-1117)) NIL T ELT) (((-1 $ (-714)) $) NIL (|has| |#1| (-190)) ELT)) (-3205 (((-3 (-1028 (-1117)) #1#) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1519 (((-1028 (-1117)) $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1520 (((-85) $) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-1028 (-1117))) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-1518 (($ $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-848)) ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-1028 (-1117)) |#1|) NIL T ELT) (($ $ (-599 (-1028 (-1117))) (-599 |#1|)) NIL T ELT) (($ $ (-1028 (-1117)) $) NIL T ELT) (($ $ (-599 (-1028 (-1117))) (-599 $)) NIL T ELT) (($ $ (-1117) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-599 (-1117)) (-599 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1117) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-599 (-1117)) (-599 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3907 (($ $ (-1028 (-1117))) NIL (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 (-1028 (-1117))) (-599 (-714))) NIL T ELT) (($ $ (-1028 (-1117)) (-714)) NIL T ELT) (($ $ (-599 (-1028 (-1117)))) NIL T ELT) (($ $ (-1028 (-1117))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT)) (-1522 (((-599 (-1117)) $) NIL T ELT)) (-4098 (((-484 (-1028 (-1117))) $) NIL T ELT) (((-714) $ (-1028 (-1117))) NIL T ELT) (((-599 (-714)) $ (-599 (-1028 (-1117)))) NIL T ELT) (((-714) $ (-1117)) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-1028 (-1117)) (-569 (-825 (-333)))) (|has| |#1| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-1028 (-1117)) (-569 (-825 (-499)))) (|has| |#1| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-1028 (-1117)) (-569 (-488))) (|has| |#1| (-569 (-488)))) ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT) (($ $ (-1028 (-1117))) NIL (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1028 (-1117))) NIL T ELT) (($ (-1117)) NIL T ELT) (($ (-1065 |#1| (-1117))) NIL T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-484 (-1028 (-1117)))) NIL T ELT) (($ $ (-1028 (-1117)) (-714)) NIL T ELT) (($ $ (-599 (-1028 (-1117))) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-599 (-1028 (-1117))) (-599 (-714))) NIL T ELT) (($ $ (-1028 (-1117)) (-714)) NIL T ELT) (($ $ (-599 (-1028 (-1117)))) NIL T ELT) (($ $ (-1028 (-1117))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-714)) NIL (|has| |#1| (-189)) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1027 |#1|) (-13 (-212 |#1| (-1117) (-1028 (-1117)) (-484 (-1028 (-1117)))) (-978 (-1065 |#1| (-1117)))) (-989)) (T -1027)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-1555 (((-714) $) NIL T ELT)) (-3981 ((|#1| $) 10 T ELT)) (-3295 (((-3 |#1| "failed") $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT)) (-3922 (((-714) $) 11 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-1556 (($ |#1| (-714)) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3908 (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2790 (($ $ (-714)) NIL T ELT) (($ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 16 T ELT))) +(((-1028 |#1|) (-227 |#1|) (-781)) (T -1028)) +NIL +((-2687 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3886 (($ |#1| |#1|) 16 T ELT)) (-4108 (((-599 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-780)) ELT)) (-3367 ((|#1| $) 12 T ELT)) (-3369 ((|#1| $) 11 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3365 (((-499) $) 15 T ELT)) (-3366 ((|#1| $) 14 T ELT)) (-3368 ((|#1| $) 13 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-4113 (((-599 |#1|) $) 42 (|has| |#1| (-780)) ELT) (((-599 |#1|) (-599 $)) 41 (|has| |#1| (-780)) ELT)) (-4122 (($ |#1|) 29 T ELT)) (-4096 (((-797) $) 28 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3887 (($ |#1| |#1|) 10 T ELT)) (-3370 (($ $ (-499)) 17 T ELT)) (-3174 (((-85) $ $) 22 (|has| |#1| (-1041)) ELT))) +(((-1029 |#1|) (-13 (-1034 |#1|) (-10 -7 (IF (|has| |#1| (-1041)) (-6 (-1041)) |%noBranch|) (IF (|has| |#1| (-780)) (-6 (-1035 |#1| (-599 |#1|))) |%noBranch|))) (-1157)) (T -1029)) +NIL +((-4108 (((-599 |#2|) (-1 |#2| |#1|) (-1029 |#1|)) 27 (|has| |#1| (-780)) ELT) (((-1029 |#2|) (-1 |#2| |#1|) (-1029 |#1|)) 14 T ELT))) +(((-1030 |#1| |#2|) (-10 -7 (-15 -4108 ((-1029 |#2|) (-1 |#2| |#1|) (-1029 |#1|))) (IF (|has| |#1| (-780)) (-15 -4108 ((-599 |#2|) (-1 |#2| |#1|) (-1029 |#1|))) |%noBranch|)) (-1157) (-1157)) (T -1030)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1029 *5)) (-4 *5 (-780)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-599 *6)) (-5 *1 (-1030 *5 *6)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1029 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-1029 *6)) (-5 *1 (-1030 *5 *6))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 16 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3363 (((-599 (-1075)) $) 10 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-1031) (-13 (-1023) (-10 -8 (-15 -3363 ((-599 (-1075)) $))))) (T -1031)) +((-3363 (*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-1031))))) +((-2687 (((-85) $ $) NIL (|has| (-1029 |#1|) (-1041)) ELT)) (-3981 (((-1117) $) NIL T ELT)) (-3886 (((-1029 |#1|) $) NIL T ELT)) (-3380 (((-1099) $) NIL (|has| (-1029 |#1|) (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| (-1029 |#1|) (-1041)) ELT)) (-3364 (($ (-1117) (-1029 |#1|)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| (-1029 |#1|) (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| (-1029 |#1|) (-1041)) ELT)) (-3174 (((-85) $ $) NIL (|has| (-1029 |#1|) (-1041)) ELT))) +(((-1032 |#1|) (-13 (-1157) (-10 -8 (-15 -3364 ($ (-1117) (-1029 |#1|))) (-15 -3981 ((-1117) $)) (-15 -3886 ((-1029 |#1|) $)) (IF (|has| (-1029 |#1|) (-1041)) (-6 (-1041)) |%noBranch|))) (-1157)) (T -1032)) +((-3364 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1029 *4)) (-4 *4 (-1157)) (-5 *1 (-1032 *4)))) (-3981 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1032 *3)) (-4 *3 (-1157)))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-1029 *3)) (-5 *1 (-1032 *3)) (-4 *3 (-1157))))) +((-4108 (((-1032 |#2|) (-1 |#2| |#1|) (-1032 |#1|)) 19 T ELT))) +(((-1033 |#1| |#2|) (-10 -7 (-15 -4108 ((-1032 |#2|) (-1 |#2| |#1|) (-1032 |#1|)))) (-1157) (-1157)) (T -1033)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1032 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-1032 *6)) (-5 *1 (-1033 *5 *6))))) +((-3886 (($ |#1| |#1|) 8 T ELT)) (-3367 ((|#1| $) 11 T ELT)) (-3369 ((|#1| $) 13 T ELT)) (-3365 (((-499) $) 9 T ELT)) (-3366 ((|#1| $) 10 T ELT)) (-3368 ((|#1| $) 12 T ELT)) (-4122 (($ |#1|) 6 T ELT)) (-3887 (($ |#1| |#1|) 15 T ELT)) (-3370 (($ $ (-499)) 14 T ELT))) +(((-1034 |#1|) (-113) (-1157)) (T -1034)) +((-3887 (*1 *1 *2 *2) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157)))) (-3370 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-1034 *3)) (-4 *3 (-1157)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157)))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157)))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-1157)) (-5 *2 (-499)))) (-3886 (*1 *1 *2 *2) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157))))) +(-13 (-573 |t#1|) (-10 -8 (-15 -3887 ($ |t#1| |t#1|)) (-15 -3370 ($ $ (-499))) (-15 -3369 (|t#1| $)) (-15 -3368 (|t#1| $)) (-15 -3367 (|t#1| $)) (-15 -3366 (|t#1| $)) (-15 -3365 ((-499) $)) (-15 -3886 ($ |t#1| |t#1|)))) +(((-573 |#1|) . T)) +((-3886 (($ |#1| |#1|) 8 T ELT)) (-4108 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3367 ((|#1| $) 11 T ELT)) (-3369 ((|#1| $) 13 T ELT)) (-3365 (((-499) $) 9 T ELT)) (-3366 ((|#1| $) 10 T ELT)) (-3368 ((|#1| $) 12 T ELT)) (-4113 ((|#2| (-599 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-4122 (($ |#1|) 6 T ELT)) (-3887 (($ |#1| |#1|) 15 T ELT)) (-3370 (($ $ (-499)) 14 T ELT))) +(((-1035 |#1| |#2|) (-113) (-780) (-1090 |t#1|)) (T -1035)) +((-4113 (*1 *2 *3) (-12 (-5 *3 (-599 *1)) (-4 *1 (-1035 *4 *2)) (-4 *4 (-780)) (-4 *2 (-1090 *4)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2)) (-4 *3 (-780)) (-4 *2 (-1090 *3)))) (-4108 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1035 *4 *2)) (-4 *4 (-780)) (-4 *2 (-1090 *4))))) +(-13 (-1034 |t#1|) (-10 -8 (-15 -4113 (|t#2| (-599 $))) (-15 -4113 (|t#2| $)) (-15 -4108 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-573 |#1|) . T) ((-1034 |#1|) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3948 (((-1075) $) 12 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 18 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-3371 (((-599 (-1075)) $) 10 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-1036) (-13 (-1023) (-10 -8 (-15 -3371 ((-599 (-1075)) $)) (-15 -3948 ((-1075) $))))) (T -1036)) +((-3371 (*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-1036)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1036))))) +((-2687 (((-85) $ $) NIL T ELT)) (-1900 (($) NIL (|has| |#1| (-323)) ELT)) (-3372 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 83 T ELT)) (-3374 (($ $ $) 80 T ELT)) (-3373 (((-85) $ $) 82 T ELT)) (-3258 (((-714)) NIL (|has| |#1| (-323)) ELT)) (-3377 (($ (-599 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1603 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3545 (($ |#1| $) 74 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4145)) ELT)) (-3115 (($) NIL (|has| |#1| (-323)) ELT)) (-3010 (((-599 |#1|) $) 19 (|has| $ (-6 -4145)) ELT)) (-3379 (((-85) $ $) NIL T ELT)) (-2650 ((|#1| $) 55 (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 73 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2978 ((|#1| $) 53 (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2111 (((-857) $) NIL (|has| |#1| (-323)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3376 (($ $ $) 78 T ELT)) (-1308 ((|#1| $) 25 T ELT)) (-3757 (($ |#1| $) 69 T ELT)) (-2518 (($ (-857)) NIL (|has| |#1| (-323)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 31 T ELT)) (-1309 ((|#1| $) 27 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 21 T ELT)) (-3713 (($) 11 T ELT)) (-3375 (($ $ |#1|) NIL T ELT) (($ $ $) 79 T ELT)) (-1499 (($) NIL T ELT) (($ (-599 |#1|)) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) 16 T ELT)) (-4122 (((-488) $) 50 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 62 T ELT)) (-1901 (($ $) NIL (|has| |#1| (-323)) ELT)) (-4096 (((-797) $) NIL T ELT)) (-1902 (((-714) $) NIL T ELT)) (-3378 (($ (-599 |#1|)) NIL T ELT) (($) 12 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-1310 (($ (-599 |#1|)) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 52 T ELT)) (-4107 (((-714) $) 10 (|has| $ (-6 -4145)) ELT))) +(((-1037 |#1|) (-380 |#1|) (-1041)) (T -1037)) +NIL +((-3372 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3374 (($ $ $) 10 T ELT)) (-3375 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) +(((-1038 |#1| |#2|) (-10 -7 (-15 -3372 (|#1| |#2| |#1|)) (-15 -3372 (|#1| |#1| |#2|)) (-15 -3372 (|#1| |#1| |#1|)) (-15 -3374 (|#1| |#1| |#1|)) (-15 -3375 (|#1| |#1| |#2|)) (-15 -3375 (|#1| |#1| |#1|))) (-1039 |#2|) (-1041)) (T -1038)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3372 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3374 (($ $ $) 24 T ELT)) (-3373 (((-85) $ $) 23 T ELT)) (-3377 (($) 29 T ELT) (($ (-599 |#1|)) 28 T ELT)) (-3860 (($ (-1 (-85) |#1|) $) 57 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 37 T CONST)) (-1386 (($ $) 60 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#1| $) 59 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 56 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4145)) ELT)) (-3010 (((-599 |#1|) $) 44 (|has| $ (-6 -4145)) ELT)) (-3379 (((-85) $ $) 32 T ELT)) (-2727 (((-599 |#1|) $) 45 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 47 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3376 (($ $ $) 27 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 53 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 42 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#1|) (-599 |#1|)) 51 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 49 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 (-247 |#1|))) 48 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 33 T ELT)) (-3543 (((-85) $) 36 T ELT)) (-3713 (($) 35 T ELT)) (-3375 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-2048 (((-714) |#1| $) 46 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) |#1|) $) 43 (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 34 T ELT)) (-4122 (((-488) $) 61 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 52 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-3378 (($) 31 T ELT) (($ (-599 |#1|)) 30 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 41 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4107 (((-714) $) 38 (|has| $ (-6 -4145)) ELT))) +(((-1039 |#1|) (-113) (-1041)) (T -1039)) +((-3379 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-1041)) (-5 *2 (-85)))) (-3378 (*1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) (-3378 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-4 *1 (-1039 *3)))) (-3377 (*1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) (-3377 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-4 *1 (-1039 *3)))) (-3376 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) (-3375 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) (-3375 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) (-3374 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) (-3373 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-1041)) (-5 *2 (-85)))) (-3372 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) (-3372 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) (-3372 (*1 *1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041))))) +(-13 (-1041) (-124 |t#1|) (-10 -8 (-6 -4135) (-15 -3379 ((-85) $ $)) (-15 -3378 ($)) (-15 -3378 ($ (-599 |t#1|))) (-15 -3377 ($)) (-15 -3377 ($ (-599 |t#1|))) (-15 -3376 ($ $ $)) (-15 -3375 ($ $ $)) (-15 -3375 ($ $ |t#1|)) (-15 -3374 ($ $ $)) (-15 -3373 ((-85) $ $)) (-15 -3372 ($ $ $)) (-15 -3372 ($ $ |t#1|)) (-15 -3372 ($ |t#1| $)))) +(((-34) . T) ((-73) . T) ((-568 (-797)) . T) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) . T) ((-1157) . T)) +((-3380 (((-1099) $) 10 T ELT)) (-3381 (((-1060) $) 8 T ELT))) +(((-1040 |#1|) (-10 -7 (-15 -3380 ((-1099) |#1|)) (-15 -3381 ((-1060) |#1|))) (-1041)) (T -1040)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-1041) (-113)) (T -1041)) +((-3381 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1060)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1099))))) +(-13 (-73) (-568 (-797)) (-10 -8 (-15 -3381 ((-1060) $)) (-15 -3380 ((-1099) $)))) +(((-73) . T) ((-568 (-797)) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) 36 T ELT)) (-3385 (($ (-599 (-857))) 70 T ELT)) (-3387 (((-3 $ #1="failed") $ (-857) (-857)) 81 T ELT)) (-3115 (($) 40 T ELT)) (-3383 (((-85) (-857) $) 42 T ELT)) (-2111 (((-857) $) 64 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) 39 T ELT)) (-3388 (((-3 $ #1#) $ (-857)) 77 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3384 (((-1207 $)) 47 T ELT)) (-3386 (((-599 (-857)) $) 27 T ELT)) (-3382 (((-714) $ (-857) (-857)) 78 T ELT)) (-4096 (((-797) $) 32 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 24 T ELT))) +(((-1042 |#1| |#2|) (-13 (-323) (-10 -8 (-15 -3388 ((-3 $ #1="failed") $ (-857))) (-15 -3387 ((-3 $ #1#) $ (-857) (-857))) (-15 -3386 ((-599 (-857)) $)) (-15 -3385 ($ (-599 (-857)))) (-15 -3384 ((-1207 $))) (-15 -3383 ((-85) (-857) $)) (-15 -3382 ((-714) $ (-857) (-857))))) (-857) (-857)) (T -1042)) +((-3388 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-857)) (-5 *1 (-1042 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3387 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-857)) (-5 *1 (-1042 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3386 (*1 *2 *1) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-1042 *3 *4)) (-14 *3 (-857)) (-14 *4 (-857)))) (-3385 (*1 *1 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-1042 *3 *4)) (-14 *3 (-857)) (-14 *4 (-857)))) (-3384 (*1 *2) (-12 (-5 *2 (-1207 (-1042 *3 *4))) (-5 *1 (-1042 *3 *4)) (-14 *3 (-857)) (-14 *4 (-857)))) (-3383 (*1 *2 *3 *1) (-12 (-5 *3 (-857)) (-5 *2 (-85)) (-5 *1 (-1042 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3382 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-857)) (-5 *2 (-714)) (-5 *1 (-1042 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +((-2687 (((-85) $ $) NIL T ELT)) (-3398 (((-85) $) NIL T ELT)) (-3394 (((-1117) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3683 (((-1099) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3393 (((-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3396 (((-85) $) NIL T ELT)) (-3392 (((-179) $) NIL T ELT)) (-3391 (((-797) $) NIL T ELT)) (-3404 (((-85) $ $) NIL T ELT)) (-3950 (($ $ (-499)) NIL T ELT) (($ $ (-599 (-499))) NIL T ELT)) (-3395 (((-599 $) $) NIL T ELT)) (-4122 (($ (-1099)) NIL T ELT) (($ (-1117)) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-179)) NIL T ELT) (($ (-797)) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-3389 (($ $) NIL T ELT)) (-3390 (($ $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4107 (((-499) $) NIL T ELT))) +(((-1043) (-1044 (-1099) (-1117) (-499) (-179) (-797))) (T -1043)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3398 (((-85) $) 36 T ELT)) (-3394 ((|#2| $) 31 T ELT)) (-3399 (((-85) $) 37 T ELT)) (-3683 ((|#1| $) 32 T ELT)) (-3401 (((-85) $) 39 T ELT)) (-3403 (((-85) $) 41 T ELT)) (-3400 (((-85) $) 38 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3397 (((-85) $) 35 T ELT)) (-3393 ((|#3| $) 30 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3396 (((-85) $) 34 T ELT)) (-3392 ((|#4| $) 29 T ELT)) (-3391 ((|#5| $) 28 T ELT)) (-3404 (((-85) $ $) 42 T ELT)) (-3950 (($ $ (-499)) 44 T ELT) (($ $ (-599 (-499))) 43 T ELT)) (-3395 (((-599 $) $) 33 T ELT)) (-4122 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-599 $)) 45 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-3389 (($ $) 26 T ELT)) (-3390 (($ $) 27 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3402 (((-85) $) 40 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4107 (((-499) $) 25 T ELT))) +(((-1044 |#1| |#2| |#3| |#4| |#5|) (-113) (-1041) (-1041) (-1041) (-1041) (-1041)) (T -1044)) +((-3404 (*1 *2 *1 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85)))) (-3403 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85)))) (-3402 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85)))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85)))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85)))) (-3399 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85)))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85)))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85)))) (-3396 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85)))) (-3395 (*1 *2 *1) (-12 (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-599 *1)) (-4 *1 (-1044 *3 *4 *5 *6 *7)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1044 *2 *3 *4 *5 *6)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041)))) (-3394 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *2 *4 *5 *6)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041)))) (-3393 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *2 *5 *6)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041)))) (-3392 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *2 *6)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *2)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041)))) (-3390 (*1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4 *5 *6)) (-4 *2 (-1041)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)))) (-3389 (*1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4 *5 *6)) (-4 *2 (-1041)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)))) (-4107 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-499))))) +(-13 (-1041) (-573 |t#1|) (-573 |t#2|) (-573 |t#3|) (-573 |t#4|) (-573 |t#4|) (-573 |t#5|) (-573 (-599 $)) (-240 (-499) $) (-240 (-599 (-499)) $) (-10 -8 (-15 -3404 ((-85) $ $)) (-15 -3403 ((-85) $)) (-15 -3402 ((-85) $)) (-15 -3401 ((-85) $)) (-15 -3400 ((-85) $)) (-15 -3399 ((-85) $)) (-15 -3398 ((-85) $)) (-15 -3397 ((-85) $)) (-15 -3396 ((-85) $)) (-15 -3395 ((-599 $) $)) (-15 -3683 (|t#1| $)) (-15 -3394 (|t#2| $)) (-15 -3393 (|t#3| $)) (-15 -3392 (|t#4| $)) (-15 -3391 (|t#5| $)) (-15 -3390 ($ $)) (-15 -3389 ($ $)) (-15 -4107 ((-499) $)))) +(((-73) . T) ((-568 (-797)) . T) ((-573 (-599 $)) . T) ((-573 |#1|) . T) ((-573 |#2|) . T) ((-573 |#3|) . T) ((-573 |#4|) . T) ((-573 |#5|) . T) ((-240 (-499) $) . T) ((-240 (-599 (-499)) $) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3398 (((-85) $) 45 T ELT)) (-3394 ((|#2| $) 48 T ELT)) (-3399 (((-85) $) 20 T ELT)) (-3683 ((|#1| $) 21 T ELT)) (-3401 (((-85) $) 42 T ELT)) (-3403 (((-85) $) 14 T ELT)) (-3400 (((-85) $) 44 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3397 (((-85) $) 46 T ELT)) (-3393 ((|#3| $) 50 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3396 (((-85) $) 47 T ELT)) (-3392 ((|#4| $) 49 T ELT)) (-3391 ((|#5| $) 51 T ELT)) (-3404 (((-85) $ $) 41 T ELT)) (-3950 (($ $ (-499)) 62 T ELT) (($ $ (-599 (-499))) 64 T ELT)) (-3395 (((-599 $) $) 27 T ELT)) (-4122 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-599 $)) 52 T ELT)) (-4096 (((-797) $) 28 T ELT)) (-3389 (($ $) 26 T ELT)) (-3390 (($ $) 58 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 23 T ELT)) (-3174 (((-85) $ $) 40 T ELT)) (-4107 (((-499) $) 60 T ELT))) +(((-1045 |#1| |#2| |#3| |#4| |#5|) (-1044 |#1| |#2| |#3| |#4| |#5|) (-1041) (-1041) (-1041) (-1041) (-1041)) (T -1045)) +NIL +((-3520 (((-1213) $) 22 T ELT)) (-3405 (($ (-1117) (-388) |#2|) 11 T ELT)) (-4096 (((-797) $) 16 T ELT))) +(((-1046 |#1| |#2|) (-13 (-350) (-10 -8 (-15 -3405 ($ (-1117) (-388) |#2|)))) (-1041) (-375 |#1|)) (T -1046)) +((-3405 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-388)) (-4 *5 (-1041)) (-5 *1 (-1046 *5 *4)) (-4 *4 (-375 *5))))) +((-3408 (((-85) |#5| |#5|) 44 T ELT)) (-3411 (((-85) |#5| |#5|) 59 T ELT)) (-3416 (((-85) |#5| (-599 |#5|)) 82 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3412 (((-85) (-599 |#4|) (-599 |#4|)) 65 T ELT)) (-3418 (((-85) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|)) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) 70 T ELT)) (-3407 (((-1213)) 32 T ELT)) (-3406 (((-1213) (-1099) (-1099) (-1099)) 28 T ELT)) (-3417 (((-599 |#5|) (-599 |#5|)) 101 T ELT)) (-3419 (((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|)))) 93 T ELT)) (-3420 (((-599 (-2 (|:| -3404 (-599 |#4|)) (|:| -1633 |#5|) (|:| |ineq| (-599 |#4|)))) (-599 |#4|) (-599 |#5|) (-85) (-85)) 123 T ELT)) (-3410 (((-85) |#5| |#5|) 53 T ELT)) (-3415 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3413 (((-85) (-599 |#4|) (-599 |#4|)) 64 T ELT)) (-3414 (((-85) (-599 |#4|) (-599 |#4|)) 66 T ELT)) (-3849 (((-85) (-599 |#4|) (-599 |#4|)) 67 T ELT)) (-3421 (((-3 (-2 (|:| -3404 (-599 |#4|)) (|:| -1633 |#5|) (|:| |ineq| (-599 |#4|))) #1#) (-599 |#4|) |#5| (-599 |#4|) (-85) (-85) (-85) (-85) (-85)) 118 T ELT)) (-3409 (((-599 |#5|) (-599 |#5|)) 49 T ELT))) +(((-1047 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3406 ((-1213) (-1099) (-1099) (-1099))) (-15 -3407 ((-1213))) (-15 -3408 ((-85) |#5| |#5|)) (-15 -3409 ((-599 |#5|) (-599 |#5|))) (-15 -3410 ((-85) |#5| |#5|)) (-15 -3411 ((-85) |#5| |#5|)) (-15 -3412 ((-85) (-599 |#4|) (-599 |#4|))) (-15 -3413 ((-85) (-599 |#4|) (-599 |#4|))) (-15 -3414 ((-85) (-599 |#4|) (-599 |#4|))) (-15 -3849 ((-85) (-599 |#4|) (-599 |#4|))) (-15 -3415 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3416 ((-85) |#5| |#5|)) (-15 -3416 ((-85) |#5| (-599 |#5|))) (-15 -3417 ((-599 |#5|) (-599 |#5|))) (-15 -3418 ((-85) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|)) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|)))) (-15 -3419 ((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) (-15 -3420 ((-599 (-2 (|:| -3404 (-599 |#4|)) (|:| -1633 |#5|) (|:| |ineq| (-599 |#4|)))) (-599 |#4|) (-599 |#5|) (-85) (-85))) (-15 -3421 ((-3 (-2 (|:| -3404 (-599 |#4|)) (|:| -1633 |#5|) (|:| |ineq| (-599 |#4|))) #1#) (-599 |#4|) |#5| (-599 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-406) (-738) (-781) (-1005 |#1| |#2| |#3|) (-1011 |#1| |#2| |#3| |#4|)) (T -1047)) +((-3421 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *9 (-1005 *6 *7 *8)) (-5 *2 (-2 (|:| -3404 (-599 *9)) (|:| -1633 *4) (|:| |ineq| (-599 *9)))) (-5 *1 (-1047 *6 *7 *8 *9 *4)) (-5 *3 (-599 *9)) (-4 *4 (-1011 *6 *7 *8 *9)))) (-3420 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-599 *10)) (-5 *5 (-85)) (-4 *10 (-1011 *6 *7 *8 *9)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *9 (-1005 *6 *7 *8)) (-5 *2 (-599 (-2 (|:| -3404 (-599 *9)) (|:| -1633 *10) (|:| |ineq| (-599 *9))))) (-5 *1 (-1047 *6 *7 *8 *9 *10)) (-5 *3 (-599 *9)))) (-3419 (*1 *2 *2) (-12 (-5 *2 (-599 (-2 (|:| |val| (-599 *6)) (|:| -1633 *7)))) (-4 *6 (-1005 *3 *4 *5)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-1047 *3 *4 *5 *6 *7)))) (-3418 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-599 *7)) (|:| -1633 *8))) (-4 *7 (-1005 *4 *5 *6)) (-4 *8 (-1011 *4 *5 *6 *7)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *8)))) (-3417 (*1 *2 *2) (-12 (-5 *2 (-599 *7)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *1 (-1047 *3 *4 *5 *6 *7)))) (-3416 (*1 *2 *3 *4) (-12 (-5 *4 (-599 *3)) (-4 *3 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-1005 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1047 *5 *6 *7 *8 *3)))) (-3416 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) (-3415 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) (-3849 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7)))) (-3414 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7)))) (-3413 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7)))) (-3412 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7)))) (-3411 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) (-3410 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) (-3409 (*1 *2 *2) (-12 (-5 *2 (-599 *7)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *1 (-1047 *3 *4 *5 *6 *7)))) (-3408 (*1 *2 *3 *3) (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) (-3407 (*1 *2) (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-1213)) (-5 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6)))) (-3406 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-1047 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7))))) +((-3436 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#5|) 106 T ELT)) (-3426 (((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3429 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3431 (((-599 |#5|) |#4| |#5|) 122 T ELT)) (-3433 (((-599 |#5|) |#4| |#5|) 129 T ELT)) (-3435 (((-599 |#5|) |#4| |#5|) 130 T ELT)) (-3430 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 |#5|))) |#4| |#5|) 107 T ELT)) (-3432 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 |#5|))) |#4| |#5|) 128 T ELT)) (-3434 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3427 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) |#3| (-85)) 91 T ELT) (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3428 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3425 (((-1213)) 36 T ELT)) (-3423 (((-1213)) 25 T ELT)) (-3424 (((-1213) (-1099) (-1099) (-1099)) 32 T ELT)) (-3422 (((-1213) (-1099) (-1099) (-1099)) 21 T ELT))) +(((-1048 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3422 ((-1213) (-1099) (-1099) (-1099))) (-15 -3423 ((-1213))) (-15 -3424 ((-1213) (-1099) (-1099) (-1099))) (-15 -3425 ((-1213))) (-15 -3426 ((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) |#4| |#4| |#5|)) (-15 -3427 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3427 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) |#3| (-85))) (-15 -3428 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5|)) (-15 -3429 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#4| |#5|)) (-15 -3434 ((-85) |#4| |#5|)) (-15 -3430 ((-599 (-2 (|:| |val| (-85)) (|:| -1633 |#5|))) |#4| |#5|)) (-15 -3431 ((-599 |#5|) |#4| |#5|)) (-15 -3432 ((-599 (-2 (|:| |val| (-85)) (|:| -1633 |#5|))) |#4| |#5|)) (-15 -3433 ((-599 |#5|) |#4| |#5|)) (-15 -3434 ((-599 (-2 (|:| |val| (-85)) (|:| -1633 |#5|))) |#4| |#5|)) (-15 -3435 ((-599 |#5|) |#4| |#5|)) (-15 -3436 ((-599 (-2 (|:| |val| |#4|) (|:| -1633 |#5|))) |#4| |#5|))) (-406) (-738) (-781) (-1005 |#1| |#2| |#3|) (-1011 |#1| |#2| |#3| |#4|)) (T -1048)) +((-3436 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3435 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 *4)) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3434 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *4)))) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3433 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 *4)) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3432 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *4)))) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3431 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 *4)) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3430 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *4)))) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3434 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3429 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3428 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3427 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 (-2 (|:| |val| (-599 *8)) (|:| -1633 *9)))) (-5 *5 (-85)) (-4 *8 (-1005 *6 *7 *4)) (-4 *9 (-1011 *6 *7 *4 *8)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *4 (-781)) (-5 *2 (-599 (-2 (|:| |val| *8) (|:| -1633 *9)))) (-5 *1 (-1048 *6 *7 *4 *8 *9)))) (-3427 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *3 (-1005 *6 *7 *8)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-1048 *6 *7 *8 *3 *4)) (-4 *4 (-1011 *6 *7 *8 *3)))) (-3426 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) (-3425 (*1 *2) (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-1213)) (-5 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6)))) (-3424 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-1048 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7)))) (-3423 (*1 *2) (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-1213)) (-5 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6)))) (-3422 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-1048 *4 *5 *6 *7 *8)) (-4 *8 (-1011 *4 *5 *6 *7))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3831 (((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 |#4|)))) (-599 |#4|)) 90 T ELT)) (-3832 (((-599 $) (-599 |#4|)) 91 T ELT) (((-599 $) (-599 |#4|) (-85)) 118 T ELT)) (-3204 (((-599 |#3|) $) 37 T ELT)) (-3029 (((-85) $) 30 T ELT)) (-3020 (((-85) $) 21 (|has| |#1| (-510)) ELT)) (-3843 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3838 ((|#4| |#4| $) 97 T ELT)) (-3925 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| $) 133 T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3860 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -4145)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3874 (($) 46 T CONST)) (-3025 (((-85) $) 26 (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) 28 (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) 27 (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) 29 (|has| |#1| (-510)) ELT)) (-3839 (((-599 |#4|) (-599 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) 22 (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) 23 (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ "failed") (-599 |#4|)) 40 T ELT)) (-3294 (($ (-599 |#4|)) 39 T ELT)) (-3949 (((-3 $ #1#) $) 87 T ELT)) (-3835 ((|#4| |#4| $) 94 T ELT)) (-1386 (($ $) 69 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#4| $) 68 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-510)) ELT)) (-3844 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3833 ((|#4| |#4| $) 92 T ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4145)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3846 (((-2 (|:| -4011 (-599 |#4|)) (|:| -1795 (-599 |#4|))) $) 110 T ELT)) (-3335 (((-85) |#4| $) 143 T ELT)) (-3333 (((-85) |#4| $) 140 T ELT)) (-3336 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-3010 (((-599 |#4|) $) 53 (|has| $ (-6 -4145)) ELT)) (-3845 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3318 ((|#3| $) 38 T ELT)) (-2727 (((-599 |#4|) $) 54 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3035 (((-599 |#3|) $) 36 T ELT)) (-3034 (((-85) |#3| $) 35 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3329 (((-3 |#4| (-599 $)) |#4| |#4| $) 135 T ELT)) (-3328 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| |#4| $) 134 T ELT)) (-3948 (((-3 |#4| #1#) $) 88 T ELT)) (-3330 (((-599 $) |#4| $) 136 T ELT)) (-3332 (((-3 (-85) (-599 $)) |#4| $) 139 T ELT)) (-3331 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3376 (((-599 $) |#4| $) 132 T ELT) (((-599 $) (-599 |#4|) $) 131 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 130 T ELT) (((-599 $) |#4| (-599 $)) 129 T ELT)) (-3580 (($ |#4| $) 124 T ELT) (($ (-599 |#4|) $) 123 T ELT)) (-3847 (((-599 |#4|) $) 112 T ELT)) (-3841 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3836 ((|#4| |#4| $) 95 T ELT)) (-3849 (((-85) $ $) 115 T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-510)) ELT)) (-3842 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3837 ((|#4| |#4| $) 96 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3951 (((-3 |#4| #1#) $) 89 T ELT)) (-1387 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3829 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3919 (($ $ |#4|) 82 T ELT) (((-599 $) |#4| $) 122 T ELT) (((-599 $) |#4| (-599 $)) 121 T ELT) (((-599 $) (-599 |#4|) $) 120 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 119 T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) 60 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) 58 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) 57 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) 42 T ELT)) (-3543 (((-85) $) 45 T ELT)) (-3713 (($) 44 T ELT)) (-4098 (((-714) $) 111 T ELT)) (-2048 (((-714) |#4| $) 55 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 43 T ELT)) (-4122 (((-488) $) 70 (|has| |#4| (-569 (-488))) ELT)) (-3670 (($ (-599 |#4|)) 61 T ELT)) (-3031 (($ $ |#3|) 32 T ELT)) (-3033 (($ $ |#3|) 34 T ELT)) (-3834 (($ $) 93 T ELT)) (-3032 (($ $ |#3|) 33 T ELT)) (-4096 (((-797) $) 13 T ELT) (((-599 |#4|) $) 41 T ELT)) (-3828 (((-714) $) 81 (|has| |#3| (-323)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3840 (((-85) $ (-1 (-85) |#4| (-599 |#4|))) 103 T ELT)) (-3327 (((-599 $) |#4| $) 128 T ELT) (((-599 $) |#4| (-599 $)) 127 T ELT) (((-599 $) (-599 |#4|) $) 126 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 125 T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3830 (((-599 |#3|) $) 86 T ELT)) (-3334 (((-85) |#4| $) 142 T ELT)) (-4083 (((-85) |#3| $) 85 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4107 (((-714) $) 47 (|has| $ (-6 -4145)) ELT))) +(((-1049 |#1| |#2| |#3| |#4|) (-113) (-406) (-738) (-781) (-1005 |t#1| |t#2| |t#3|)) (T -1049)) +NIL +(-13 (-1011 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-73) . T) ((-568 (-599 |#4|)) . T) ((-568 (-797)) . T) ((-124 |#4|) . T) ((-569 (-488)) |has| |#4| (-569 (-488))) ((-263 |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-443 |#4|) . T) ((-468 |#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1011 |#1| |#2| |#3| |#4|) . T) ((-1041) . T) ((-1152 |#1| |#2| |#3| |#4|) . T) ((-1157) . T)) +((-3447 (((-599 (-499)) (-499) (-499) (-499)) 40 T ELT)) (-3446 (((-599 (-499)) (-499) (-499) (-499)) 30 T ELT)) (-3445 (((-599 (-499)) (-499) (-499) (-499)) 35 T ELT)) (-3444 (((-499) (-499) (-499)) 22 T ELT)) (-3443 (((-1207 (-499)) (-599 (-499)) (-1207 (-499)) (-499)) 79 T ELT) (((-1207 (-499)) (-1207 (-499)) (-1207 (-499)) (-499)) 74 T ELT)) (-3442 (((-599 (-499)) (-599 (-857)) (-599 (-499)) (-85)) 56 T ELT)) (-3441 (((-647 (-499)) (-599 (-499)) (-599 (-499)) (-647 (-499))) 78 T ELT)) (-3440 (((-647 (-499)) (-599 (-857)) (-599 (-499))) 61 T ELT)) (-3439 (((-599 (-647 (-499))) (-599 (-857))) 67 T ELT)) (-3438 (((-599 (-499)) (-599 (-499)) (-599 (-499)) (-647 (-499))) 82 T ELT)) (-3437 (((-647 (-499)) (-599 (-499)) (-599 (-499)) (-599 (-499))) 92 T ELT))) +(((-1050) (-10 -7 (-15 -3437 ((-647 (-499)) (-599 (-499)) (-599 (-499)) (-599 (-499)))) (-15 -3438 ((-599 (-499)) (-599 (-499)) (-599 (-499)) (-647 (-499)))) (-15 -3439 ((-599 (-647 (-499))) (-599 (-857)))) (-15 -3440 ((-647 (-499)) (-599 (-857)) (-599 (-499)))) (-15 -3441 ((-647 (-499)) (-599 (-499)) (-599 (-499)) (-647 (-499)))) (-15 -3442 ((-599 (-499)) (-599 (-857)) (-599 (-499)) (-85))) (-15 -3443 ((-1207 (-499)) (-1207 (-499)) (-1207 (-499)) (-499))) (-15 -3443 ((-1207 (-499)) (-599 (-499)) (-1207 (-499)) (-499))) (-15 -3444 ((-499) (-499) (-499))) (-15 -3445 ((-599 (-499)) (-499) (-499) (-499))) (-15 -3446 ((-599 (-499)) (-499) (-499) (-499))) (-15 -3447 ((-599 (-499)) (-499) (-499) (-499))))) (T -1050)) +((-3447 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-1050)) (-5 *3 (-499)))) (-3446 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-1050)) (-5 *3 (-499)))) (-3445 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-1050)) (-5 *3 (-499)))) (-3444 (*1 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-1050)))) (-3443 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1207 (-499))) (-5 *3 (-599 (-499))) (-5 *4 (-499)) (-5 *1 (-1050)))) (-3443 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1207 (-499))) (-5 *3 (-499)) (-5 *1 (-1050)))) (-3442 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-599 (-499))) (-5 *3 (-599 (-857))) (-5 *4 (-85)) (-5 *1 (-1050)))) (-3441 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-647 (-499))) (-5 *3 (-599 (-499))) (-5 *1 (-1050)))) (-3440 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-857))) (-5 *4 (-599 (-499))) (-5 *2 (-647 (-499))) (-5 *1 (-1050)))) (-3439 (*1 *2 *3) (-12 (-5 *3 (-599 (-857))) (-5 *2 (-599 (-647 (-499)))) (-5 *1 (-1050)))) (-3438 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-599 (-499))) (-5 *3 (-647 (-499))) (-5 *1 (-1050)))) (-3437 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-647 (-499))) (-5 *1 (-1050))))) +((** (($ $ (-857)) 10 T ELT))) +(((-1051 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-857)))) (-1052)) (T -1051)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (** (($ $ (-857)) 17 T ELT)) (* (($ $ $) 18 T ELT))) +(((-1052) (-113)) (T -1052)) +((* (*1 *1 *1 *1) (-4 *1 (-1052))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-857))))) +(-13 (-1041) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-857))))) +(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL (|has| |#3| (-73)) ELT)) (-3326 (((-85) $) NIL (|has| |#3| (-23)) ELT)) (-3857 (($ (-857)) NIL (|has| |#3| (-989)) ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-2600 (($ $ $) NIL (|has| |#3| (-738)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-104)) ELT)) (-3258 (((-714)) NIL (|has| |#3| (-323)) ELT)) (-3938 ((|#3| $ (-499) |#3|) NIL (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (-12 (|has| |#3| (-978 (-499))) (|has| |#3| (-1041))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (-12 (|has| |#3| (-978 (-361 (-499)))) (|has| |#3| (-1041))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1041)) ELT)) (-3294 (((-499) $) NIL (-12 (|has| |#3| (-978 (-499))) (|has| |#3| (-1041))) ELT) (((-361 (-499)) $) NIL (-12 (|has| |#3| (-978 (-361 (-499)))) (|has| |#3| (-1041))) ELT) ((|#3| $) NIL (|has| |#3| (-1041)) ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (-12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (-12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989))) ELT) (((-2 (|:| -1673 (-647 |#3|)) (|:| |vec| (-1207 |#3|))) (-647 $) (-1207 $)) NIL (|has| |#3| (-989)) ELT) (((-647 |#3|) (-647 $)) NIL (|has| |#3| (-989)) ELT)) (-3607 (((-3 $ #1#) $) NIL (|has| |#3| (-989)) ELT)) (-3115 (($) NIL (|has| |#3| (-323)) ELT)) (-1609 ((|#3| $ (-499) |#3|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#3| $ (-499)) 12 T ELT)) (-3324 (((-85) $) NIL (|has| |#3| (-738)) ELT)) (-3010 (((-599 |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2528 (((-85) $) NIL (|has| |#3| (-989)) ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#3| (-781)) ELT)) (-2727 (((-599 |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#3| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#3| (-781)) ELT)) (-2051 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2111 (((-857) $) NIL (|has| |#3| (-323)) ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (-12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (-12 (|has| |#3| (-596 (-499))) (|has| |#3| (-989))) ELT) (((-2 (|:| -1673 (-647 |#3|)) (|:| |vec| (-1207 |#3|))) (-1207 $) $) NIL (|has| |#3| (-989)) ELT) (((-647 |#3|) (-1207 $)) NIL (|has| |#3| (-989)) ELT)) (-3380 (((-1099) $) NIL (|has| |#3| (-1041)) ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-2518 (($ (-857)) NIL (|has| |#3| (-323)) ELT)) (-3381 (((-1060) $) NIL (|has| |#3| (-1041)) ELT)) (-3951 ((|#3| $) NIL (|has| (-499) (-781)) ELT)) (-2300 (($ $ |#3|) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#3|))) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ (-247 |#3|)) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT) (($ $ (-599 |#3|) (-599 |#3|)) NIL (-12 (|has| |#3| (-263 |#3|)) (|has| |#3| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#3| (-1041))) ELT)) (-2306 (((-599 |#3|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#3| $ (-499) |#3|) NIL T ELT) ((|#3| $ (-499)) NIL T ELT)) (-3986 ((|#3| $ $) NIL (|has| |#3| (-989)) ELT)) (-1501 (($ (-1207 |#3|)) NIL T ELT)) (-4061 (((-107)) NIL (|has| |#3| (-318)) ELT)) (-3908 (($ $ (-714)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-989))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-989))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))) ELT) (($ $ (-1117)) NIL (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-989)) ELT) (($ $ (-1 |#3| |#3|) (-714)) NIL (|has| |#3| (-989)) ELT)) (-2048 (((-714) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#3| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#3| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4096 (((-1207 |#3|) $) NIL T ELT) (($ (-499)) NIL (-3677 (-12 (|has| |#3| (-978 (-499))) (|has| |#3| (-1041))) (|has| |#3| (-989))) ELT) (($ (-361 (-499))) NIL (-12 (|has| |#3| (-978 (-361 (-499)))) (|has| |#3| (-1041))) ELT) (($ |#3|) NIL (|has| |#3| (-1041)) ELT) (((-797) $) NIL (|has| |#3| (-568 (-797))) ELT)) (-3248 (((-714)) NIL (|has| |#3| (-989)) CONST)) (-1297 (((-85) $ $) NIL (|has| |#3| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2779 (($) NIL (|has| |#3| (-23)) CONST)) (-2785 (($) NIL (|has| |#3| (-989)) CONST)) (-2790 (($ $ (-714)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-989))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-989))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))) ELT) (($ $ (-1117)) NIL (-12 (|has| |#3| (-838 (-1117))) (|has| |#3| (-989))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-989)) ELT) (($ $ (-1 |#3| |#3|) (-714)) NIL (|has| |#3| (-989)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#3| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#3| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#3| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#3| (-781)) ELT)) (-2806 (((-85) $ $) 24 (|has| |#3| (-781)) ELT)) (-4099 (($ $ |#3|) NIL (|has| |#3| (-318)) ELT)) (-3987 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3989 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-714)) NIL (|has| |#3| (-989)) ELT) (($ $ (-857)) NIL (|has| |#3| (-989)) ELT)) (* (($ $ $) NIL (|has| |#3| (-989)) ELT) (($ $ |#3|) NIL (|has| |#3| (-684)) ELT) (($ |#3| $) NIL (|has| |#3| (-684)) ELT) (($ (-499) $) NIL (|has| |#3| (-21)) ELT) (($ (-714) $) NIL (|has| |#3| (-23)) ELT) (($ (-857) $) NIL (|has| |#3| (-25)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-1053 |#1| |#2| |#3|) (-195 |#1| |#3|) (-714) (-714) (-738)) (T -1053)) +NIL +((-3448 (((-599 (-1176 |#2| |#1|)) (-1176 |#2| |#1|) (-1176 |#2| |#1|)) 50 T ELT)) (-3454 (((-499) (-1176 |#2| |#1|)) 96 (|has| |#1| (-406)) ELT)) (-3452 (((-499) (-1176 |#2| |#1|)) 79 T ELT)) (-3449 (((-599 (-1176 |#2| |#1|)) (-1176 |#2| |#1|) (-1176 |#2| |#1|)) 58 T ELT)) (-3453 (((-499) (-1176 |#2| |#1|) (-1176 |#2| |#1|)) 95 (|has| |#1| (-406)) ELT)) (-3450 (((-599 |#1|) (-1176 |#2| |#1|) (-1176 |#2| |#1|)) 61 T ELT)) (-3451 (((-499) (-1176 |#2| |#1|) (-1176 |#2| |#1|)) 78 T ELT))) +(((-1054 |#1| |#2|) (-10 -7 (-15 -3448 ((-599 (-1176 |#2| |#1|)) (-1176 |#2| |#1|) (-1176 |#2| |#1|))) (-15 -3449 ((-599 (-1176 |#2| |#1|)) (-1176 |#2| |#1|) (-1176 |#2| |#1|))) (-15 -3450 ((-599 |#1|) (-1176 |#2| |#1|) (-1176 |#2| |#1|))) (-15 -3451 ((-499) (-1176 |#2| |#1|) (-1176 |#2| |#1|))) (-15 -3452 ((-499) (-1176 |#2| |#1|))) (IF (|has| |#1| (-406)) (PROGN (-15 -3453 ((-499) (-1176 |#2| |#1|) (-1176 |#2| |#1|))) (-15 -3454 ((-499) (-1176 |#2| |#1|)))) |%noBranch|)) (-763) (-1117)) (T -1054)) +((-3454 (*1 *2 *3) (-12 (-5 *3 (-1176 *5 *4)) (-4 *4 (-406)) (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-499)) (-5 *1 (-1054 *4 *5)))) (-3453 (*1 *2 *3 *3) (-12 (-5 *3 (-1176 *5 *4)) (-4 *4 (-406)) (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-499)) (-5 *1 (-1054 *4 *5)))) (-3452 (*1 *2 *3) (-12 (-5 *3 (-1176 *5 *4)) (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-499)) (-5 *1 (-1054 *4 *5)))) (-3451 (*1 *2 *3 *3) (-12 (-5 *3 (-1176 *5 *4)) (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-499)) (-5 *1 (-1054 *4 *5)))) (-3450 (*1 *2 *3 *3) (-12 (-5 *3 (-1176 *5 *4)) (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-599 *4)) (-5 *1 (-1054 *4 *5)))) (-3449 (*1 *2 *3 *3) (-12 (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-599 (-1176 *5 *4))) (-5 *1 (-1054 *4 *5)) (-5 *3 (-1176 *5 *4)))) (-3448 (*1 *2 *3 *3) (-12 (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-599 (-1176 *5 *4))) (-5 *1 (-1054 *4 *5)) (-5 *3 (-1176 *5 *4))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3456 (((-1122) $) 12 T ELT)) (-3455 (((-599 (-1122)) $) 14 T ELT)) (-3457 (($ (-599 (-1122)) (-1122)) 10 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 29 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 17 T ELT))) +(((-1055) (-13 (-1041) (-10 -8 (-15 -3457 ($ (-599 (-1122)) (-1122))) (-15 -3456 ((-1122) $)) (-15 -3455 ((-599 (-1122)) $))))) (T -1055)) +((-3457 (*1 *1 *2 *3) (-12 (-5 *2 (-599 (-1122))) (-5 *3 (-1122)) (-5 *1 (-1055)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1055)))) (-3455 (*1 *2 *1) (-12 (-5 *2 (-599 (-1122))) (-5 *1 (-1055))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3458 (($ (-460) (-1055)) 13 T ELT)) (-3457 (((-1055) $) 19 T ELT)) (-3690 (((-460) $) 16 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 26 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-1056) (-13 (-1023) (-10 -8 (-15 -3458 ($ (-460) (-1055))) (-15 -3690 ((-460) $)) (-15 -3457 ((-1055) $))))) (T -1056)) +((-3458 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-1055)) (-5 *1 (-1056)))) (-3690 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-1056)))) (-3457 (*1 *2 *1) (-12 (-5 *2 (-1055)) (-5 *1 (-1056))))) +((-3773 (((-3 (-499) #1="failed") |#2| (-1117) |#2| (-1099)) 19 T ELT) (((-3 (-499) #1#) |#2| (-1117) (-775 |#2|)) 17 T ELT) (((-3 (-499) #1#) |#2|) 60 T ELT))) +(((-1057 |#1| |#2|) (-10 -7 (-15 -3773 ((-3 (-499) #1="failed") |#2|)) (-15 -3773 ((-3 (-499) #1#) |#2| (-1117) (-775 |#2|))) (-15 -3773 ((-3 (-499) #1#) |#2| (-1117) |#2| (-1099)))) (-13 (-510) (-978 (-499)) (-596 (-499)) (-406)) (-13 (-27) (-1143) (-375 |#1|))) (T -1057)) +((-3773 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-1099)) (-4 *6 (-13 (-510) (-978 *2) (-596 *2) (-406))) (-5 *2 (-499)) (-5 *1 (-1057 *6 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *6))))) (-3773 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-775 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) (-4 *6 (-13 (-510) (-978 *2) (-596 *2) (-406))) (-5 *2 (-499)) (-5 *1 (-1057 *6 *3)))) (-3773 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-510) (-978 *2) (-596 *2) (-406))) (-5 *2 (-499)) (-5 *1 (-1057 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4)))))) +((-3773 (((-3 (-499) #1="failed") (-361 (-884 |#1|)) (-1117) (-361 (-884 |#1|)) (-1099)) 38 T ELT) (((-3 (-499) #1#) (-361 (-884 |#1|)) (-1117) (-775 (-361 (-884 |#1|)))) 33 T ELT) (((-3 (-499) #1#) (-361 (-884 |#1|))) 14 T ELT))) +(((-1058 |#1|) (-10 -7 (-15 -3773 ((-3 (-499) #1="failed") (-361 (-884 |#1|)))) (-15 -3773 ((-3 (-499) #1#) (-361 (-884 |#1|)) (-1117) (-775 (-361 (-884 |#1|))))) (-15 -3773 ((-3 (-499) #1#) (-361 (-884 |#1|)) (-1117) (-361 (-884 |#1|)) (-1099)))) (-406)) (T -1058)) +((-3773 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-361 (-884 *6))) (-5 *4 (-1117)) (-5 *5 (-1099)) (-4 *6 (-406)) (-5 *2 (-499)) (-5 *1 (-1058 *6)))) (-3773 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-775 (-361 (-884 *6)))) (-5 *3 (-361 (-884 *6))) (-4 *6 (-406)) (-5 *2 (-499)) (-5 *1 (-1058 *6)))) (-3773 (*1 *2 *3) (|partial| -12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-406)) (-5 *2 (-499)) (-5 *1 (-1058 *4))))) +((-3799 (((-268 (-499)) (-48)) 12 T ELT))) +(((-1059) (-10 -7 (-15 -3799 ((-268 (-499)) (-48))))) (T -1059)) +((-3799 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-268 (-499))) (-5 *1 (-1059))))) +((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) 22 T ELT)) (-3326 (((-85) $) 52 T ELT)) (-3462 (($ $ $) 31 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 79 T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-2148 (($ $ $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2143 (($ $ $ $) 62 T ELT)) (-3925 (($ $) NIL T ELT)) (-4121 (((-359 $) $) NIL T ELT)) (-1678 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) 64 T ELT)) (-3773 (((-499) $) NIL T ELT)) (-2557 (($ $ $) 59 T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL T ELT)) (-2683 (($ $ $) 45 T ELT)) (-2380 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 73 T ELT) (((-647 (-499)) (-647 $)) 8 T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3145 (((-3 (-361 (-499)) #1#) $) NIL T ELT)) (-3144 (((-85) $) NIL T ELT)) (-3143 (((-361 (-499)) $) NIL T ELT)) (-3115 (($) 77 T ELT) (($ $) 76 T ELT)) (-2682 (($ $ $) 44 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL T ELT)) (-3873 (((-85) $) NIL T ELT)) (-2141 (($ $ $ $) NIL T ELT)) (-2149 (($ $ $) 74 T ELT)) (-3324 (((-85) $) 80 T ELT)) (-1402 (($ $ $) NIL T ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL T ELT)) (-2680 (($ $ $) 30 T ELT)) (-2528 (((-85) $) 53 T ELT)) (-2794 (((-85) $) 50 T ELT)) (-2679 (($ $) 23 T ELT)) (-3585 (((-649 $) $) NIL T ELT)) (-3325 (((-85) $) 63 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL T ELT)) (-2142 (($ $ $ $) 60 T ELT)) (-2650 (($ $ $) 55 T ELT) (($) 19 T CONST)) (-2978 (($ $ $) 54 T ELT) (($) 18 T CONST)) (-2145 (($ $) NIL T ELT)) (-2111 (((-857) $) 69 T ELT)) (-3983 (($ $) 58 T ELT)) (-2381 (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL T ELT) (((-647 (-499)) (-1207 $)) NIL T ELT)) (-1993 (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2140 (($ $ $) NIL T ELT)) (-3586 (($) NIL T CONST)) (-2518 (($ (-857)) 68 T ELT)) (-2147 (($ $) 36 T ELT)) (-3381 (((-1060) $) 57 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL T ELT)) (-3282 (($ $ $) 48 T ELT) (($ (-599 $)) NIL T ELT)) (-1400 (($ $) NIL T ELT)) (-3882 (((-359 $) $) NIL T ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL T ELT)) (-2795 (((-85) $) 51 T ELT)) (-1677 (((-714) $) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 47 T ELT)) (-3908 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-2146 (($ $) 37 T ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-499) $) 12 T ELT) (((-488) $) NIL T ELT) (((-825 (-499)) $) NIL T ELT) (((-333) $) NIL T ELT) (((-179) $) NIL T ELT)) (-4096 (((-797) $) 11 T ELT) (($ (-499)) 75 T ELT) (($ $) NIL T ELT) (($ (-499)) 75 T ELT)) (-3248 (((-714)) NIL T CONST)) (-2150 (((-85) $ $) NIL T ELT)) (-3224 (($ $ $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2815 (($) 17 T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2681 (($ $ $) 28 T ELT)) (-2144 (($ $ $ $) 61 T ELT)) (-3523 (($ $) 49 T ELT)) (-2411 (($ $ $) 25 T ELT)) (-2779 (($) 15 T CONST)) (-3459 (($ $ $) 29 T ELT)) (-2785 (($) 16 T CONST)) (-3461 (($ $) 26 T ELT)) (-2790 (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-3460 (($ $ $) 27 T ELT)) (-2685 (((-85) $ $) 35 T ELT)) (-2686 (((-85) $ $) 33 T ELT)) (-3174 (((-85) $ $) 21 T ELT)) (-2805 (((-85) $ $) 34 T ELT)) (-2806 (((-85) $ $) 32 T ELT)) (-2412 (($ $ $) 24 T ELT)) (-3987 (($ $) 38 T ELT) (($ $ $) 40 T ELT)) (-3989 (($ $ $) 39 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 43 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 14 T ELT) (($ $ $) 41 T ELT) (($ (-499) $) 14 T ELT))) +(((-1060) (-13 (-498) (-777) (-84) (-10 -8 (-6 -4132) (-6 -4137) (-6 -4133) (-15 -3462 ($ $ $)) (-15 -3461 ($ $)) (-15 -3460 ($ $ $)) (-15 -3459 ($ $ $))))) (T -1060)) +((-3462 (*1 *1 *1 *1) (-5 *1 (-1060))) (-3461 (*1 *1 *1) (-5 *1 (-1060))) (-3460 (*1 *1 *1 *1) (-5 *1 (-1060))) (-3459 (*1 *1 *1 *1) (-5 *1 (-1060)))) +((-499) (|%ismall?| |#1|)) +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3464 ((|#1| $) 48 T ELT)) (-3874 (($) 7 T CONST)) (-3466 ((|#1| |#1| $) 50 T ELT)) (-3465 ((|#1| $) 49 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 43 T ELT)) (-3757 (($ |#1| $) 44 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-1309 ((|#1| $) 45 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3463 (((-714) $) 47 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) 46 T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-1061 |#1|) (-113) (-1157)) (T -1061)) +((-3466 (*1 *2 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1157)))) (-3465 (*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1157)))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1157)))) (-3463 (*1 *2 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1157)) (-5 *2 (-714))))) +(-13 (-78 |t#1|) (-10 -8 (-6 -4145) (-15 -3466 (|t#1| |t#1| $)) (-15 -3465 (|t#1| $)) (-15 -3464 (|t#1| $)) (-15 -3463 ((-714) $)))) +(((-34) . T) ((-78 |#1|) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) +((-3470 ((|#3| $) 87 T ELT)) (-3295 (((-3 (-499) #1="failed") $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3294 (((-499) $) NIL T ELT) (((-361 (-499)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL T ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL T ELT) (((-2 (|:| -1673 (-647 |#3|)) (|:| |vec| (-1207 |#3|))) (-647 $) (-1207 $)) 84 T ELT) (((-647 |#3|) (-647 $)) 76 T ELT)) (-3908 (($ $ (-1 |#3| |#3|) (-714)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-1117)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT)) (-3469 ((|#3| $) 89 T ELT)) (-3471 ((|#4| $) 43 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 24 T ELT) (($ $ (-499)) 95 T ELT))) +(((-1062 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117))) (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1|)) (-15 ** (|#1| |#1| (-499))) (-15 -3469 (|#3| |#1|)) (-15 -3470 (|#3| |#1|)) (-15 -3471 (|#4| |#1|)) (-15 -2380 ((-647 |#3|) (-647 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 |#3|)) (|:| |vec| (-1207 |#3|))) (-647 |#1|) (-1207 |#1|))) (-15 -2380 ((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 |#1|) (-1207 |#1|))) (-15 -2380 ((-647 (-499)) (-647 |#1|))) (-15 -4096 (|#1| |#3|)) (-15 -3295 ((-3 |#3| #1="failed") |#1|)) (-15 -3294 (|#3| |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -3908 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3908 (|#1| |#1| (-1 |#3| |#3|) (-714))) (-15 -4096 (|#1| (-499))) (-15 ** (|#1| |#1| (-714))) (-15 ** (|#1| |#1| (-857))) (-15 -4096 ((-797) |#1|))) (-1063 |#2| |#3| |#4| |#5|) (-714) (-989) (-195 |#2| |#3|) (-195 |#2| |#3|)) (T -1062)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3470 ((|#2| $) 87 T ELT)) (-3243 (((-85) $) 128 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3245 (((-85) $) 126 T ELT)) (-3473 (($ |#2|) 90 T ELT)) (-3874 (($) 22 T CONST)) (-3232 (($ $) 145 (|has| |#2| (-261)) ELT)) (-3234 ((|#3| $ (-499)) 140 T ELT)) (-3295 (((-3 (-499) #1="failed") $) 106 (|has| |#2| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) 103 (|has| |#2| (-978 (-361 (-499)))) ELT) (((-3 |#2| #1#) $) 100 T ELT)) (-3294 (((-499) $) 105 (|has| |#2| (-978 (-499))) ELT) (((-361 (-499)) $) 102 (|has| |#2| (-978 (-361 (-499)))) ELT) ((|#2| $) 101 T ELT)) (-2380 (((-647 (-499)) (-647 $)) 96 (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 95 (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) 94 T ELT) (((-647 |#2|) (-647 $)) 93 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3231 (((-714) $) 146 (|has| |#2| (-510)) ELT)) (-3235 ((|#2| $ (-499) (-499)) 138 T ELT)) (-3010 (((-599 |#2|) $) 114 (|has| $ (-6 -4145)) ELT)) (-2528 (((-85) $) 40 T ELT)) (-3230 (((-714) $) 147 (|has| |#2| (-510)) ELT)) (-3229 (((-599 |#4|) $) 148 (|has| |#2| (-510)) ELT)) (-3237 (((-714) $) 134 T ELT)) (-3236 (((-714) $) 135 T ELT)) (-3467 ((|#2| $) 82 (|has| |#2| (-6 (-4147 #2="*"))) ELT)) (-3241 (((-499) $) 130 T ELT)) (-3239 (((-499) $) 132 T ELT)) (-2727 (((-599 |#2|) $) 113 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#2| $) 111 (-12 (|has| |#2| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3240 (((-499) $) 131 T ELT)) (-3238 (((-499) $) 133 T ELT)) (-3246 (($ (-599 (-599 |#2|))) 125 T ELT)) (-2051 (($ (-1 |#2| |#2|) $) 118 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#2| |#2| |#2|) $ $) 142 T ELT) (($ (-1 |#2| |#2|) $) 119 T ELT)) (-3742 (((-599 (-599 |#2|)) $) 136 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 98 (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 97 (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) 92 T ELT) (((-647 |#2|) (-1207 $)) 91 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3738 (((-3 $ "failed") $) 81 (|has| |#2| (-318)) ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3606 (((-3 $ "failed") $ |#2|) 143 (|has| |#2| (-510)) ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) 116 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#2|))) 110 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) 109 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) 108 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) 107 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) 124 T ELT)) (-3543 (((-85) $) 121 T ELT)) (-3713 (($) 122 T ELT)) (-3950 ((|#2| $ (-499) (-499) |#2|) 139 T ELT) ((|#2| $ (-499) (-499)) 137 T ELT)) (-3908 (($ $ (-1 |#2| |#2|) (-714)) 62 T ELT) (($ $ (-1 |#2| |#2|)) 61 T ELT) (($ $) 52 (|has| |#2| (-189)) ELT) (($ $ (-714)) 50 (|has| |#2| (-189)) ELT) (($ $ (-1117)) 60 (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 58 (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 57 (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 56 (|has| |#2| (-838 (-1117))) ELT)) (-3469 ((|#2| $) 86 T ELT)) (-3472 (($ (-599 |#2|)) 89 T ELT)) (-3244 (((-85) $) 127 T ELT)) (-3471 ((|#3| $) 88 T ELT)) (-3468 ((|#2| $) 83 (|has| |#2| (-6 (-4147 #2#))) ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) 115 (|has| $ (-6 -4145)) ELT) (((-714) |#2| $) 112 (-12 (|has| |#2| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 123 T ELT)) (-3233 ((|#4| $ (-499)) 141 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ (-361 (-499))) 104 (|has| |#2| (-978 (-361 (-499)))) ELT) (($ |#2|) 99 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) 117 (|has| $ (-6 -4145)) ELT)) (-3242 (((-85) $) 129 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1 |#2| |#2|) (-714)) 64 T ELT) (($ $ (-1 |#2| |#2|)) 63 T ELT) (($ $) 51 (|has| |#2| (-189)) ELT) (($ $ (-714)) 49 (|has| |#2| (-189)) ELT) (($ $ (-1117)) 59 (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 55 (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 54 (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 53 (|has| |#2| (-838 (-1117))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#2|) 144 (|has| |#2| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 80 (|has| |#2| (-318)) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#2|) 150 T ELT) (($ |#2| $) 149 T ELT) ((|#4| $ |#4|) 85 T ELT) ((|#3| |#3| $) 84 T ELT)) (-4107 (((-714) $) 120 (|has| $ (-6 -4145)) ELT))) +(((-1063 |#1| |#2| |#3| |#4|) (-113) (-714) (-989) (-195 |t#1| |t#2|) (-195 |t#1| |t#2|)) (T -1063)) +((-3473 (*1 *1 *2) (-12 (-4 *2 (-989)) (-4 *1 (-1063 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)))) (-3472 (*1 *1 *2) (-12 (-5 *2 (-599 *4)) (-4 *4 (-989)) (-4 *1 (-1063 *3 *4 *5 *6)) (-4 *5 (-195 *3 *4)) (-4 *6 (-195 *3 *4)))) (-3471 (*1 *2 *1) (-12 (-4 *1 (-1063 *3 *4 *2 *5)) (-4 *4 (-989)) (-4 *5 (-195 *3 *4)) (-4 *2 (-195 *3 *4)))) (-3470 (*1 *2 *1) (-12 (-4 *1 (-1063 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)) (-4 *2 (-989)))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-1063 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)) (-4 *2 (-989)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1063 *3 *4 *5 *2)) (-4 *4 (-989)) (-4 *5 (-195 *3 *4)) (-4 *2 (-195 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1063 *3 *4 *2 *5)) (-4 *4 (-989)) (-4 *2 (-195 *3 *4)) (-4 *5 (-195 *3 *4)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-1063 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)) (|has| *2 (-6 (-4147 #1="*"))) (-4 *2 (-989)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-1063 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)) (|has| *2 (-6 (-4147 #1#))) (-4 *2 (-989)))) (-3738 (*1 *1 *1) (|partial| -12 (-4 *1 (-1063 *2 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-195 *2 *3)) (-4 *5 (-195 *2 *3)) (-4 *3 (-318)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-1063 *3 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-195 *3 *4)) (-4 *6 (-195 *3 *4)) (-4 *4 (-318))))) +(-13 (-184 |t#2|) (-82 |t#2| |t#2|) (-993 |t#1| |t#1| |t#2| |t#3| |t#4|) (-366 |t#2|) (-332 |t#2|) (-10 -8 (IF (|has| |t#2| (-146)) (-6 (-675 |t#2|)) |%noBranch|) (-15 -3473 ($ |t#2|)) (-15 -3472 ($ (-599 |t#2|))) (-15 -3471 (|t#3| $)) (-15 -3470 (|t#2| $)) (-15 -3469 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4147 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3468 (|t#2| $)) (-15 -3467 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-318)) (PROGN (-15 -3738 ((-3 $ "failed") $)) (-15 ** ($ $ (-499)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4147 #1="*"))) ((-73) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-571 (-361 (-499))) |has| |#2| (-978 (-361 (-499)))) ((-571 (-499)) . T) ((-571 |#2|) . T) ((-568 (-797)) . T) ((-186 $) -3677 (|has| |#2| (-189)) (|has| |#2| (-190))) ((-184 |#2|) . T) ((-190) |has| |#2| (-190)) ((-189) -3677 (|has| |#2| (-189)) (|has| |#2| (-190))) ((-224 |#2|) . T) ((-263 |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ((-332 |#2|) . T) ((-366 |#2|) . T) ((-443 |#2|) . T) ((-468 |#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ((-604 (-499)) . T) ((-604 |#2|) . T) ((-604 $) . T) ((-606 (-499)) |has| |#2| (-596 (-499))) ((-606 |#2|) . T) ((-606 $) . T) ((-598 |#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-6 (-4147 #1#)))) ((-596 (-499)) |has| |#2| (-596 (-499))) ((-596 |#2|) . T) ((-675 |#2|) -3677 (|has| |#2| (-146)) (|has| |#2| (-6 (-4147 #1#)))) ((-684) . T) ((-831 $ (-1117)) -3677 (|has| |#2| (-838 (-1117))) (|has| |#2| (-836 (-1117)))) ((-836 (-1117)) |has| |#2| (-836 (-1117))) ((-838 (-1117)) -3677 (|has| |#2| (-838 (-1117))) (|has| |#2| (-836 (-1117)))) ((-993 |#1| |#1| |#2| |#3| |#4|) . T) ((-978 (-361 (-499))) |has| |#2| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#2| (-978 (-499))) ((-978 |#2|) . T) ((-991 |#2|) . T) ((-996 |#2|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-3476 ((|#4| |#4|) 81 T ELT)) (-3474 ((|#4| |#4|) 76 T ELT)) (-3478 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2113 (-599 |#3|))) |#4| |#3|) 91 T ELT)) (-3477 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3475 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) +(((-1064 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3474 (|#4| |#4|)) (-15 -3475 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3476 (|#4| |#4|)) (-15 -3477 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3478 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2113 (-599 |#3|))) |#4| |#3|))) (-261) (-327 |#1|) (-327 |#1|) (-644 |#1| |#2| |#3|)) (T -1064)) +((-3478 (*1 *2 *3 *4) (-12 (-4 *5 (-261)) (-4 *6 (-327 *5)) (-4 *4 (-327 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2113 (-599 *4)))) (-5 *1 (-1064 *5 *6 *4 *3)) (-4 *3 (-644 *5 *6 *4)))) (-3477 (*1 *2 *3) (-12 (-4 *4 (-261)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1064 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) (-3476 (*1 *2 *2) (-12 (-4 *3 (-261)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-1064 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) (-3475 (*1 *2 *3) (-12 (-4 *4 (-261)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1064 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-261)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-1064 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 18 T ELT)) (-3204 (((-599 |#2|) $) 174 T ELT)) (-3206 (((-1111 $) $ |#2|) 60 T ELT) (((-1111 |#1|) $) 49 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 116 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 118 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 120 (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 |#2|)) 214 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3294 ((|#1| $) 165 T ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) ((|#2| $) NIL T ELT)) (-3906 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-4109 (($ $) 218 T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) 90 T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT) (($ $ |#2|) NIL (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-848)) ELT)) (-1694 (($ $ |#1| (-484 |#2|) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| |#1| (-821 (-333))) (|has| |#2| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| |#1| (-821 (-499))) (|has| |#2| (-821 (-499)))) ELT)) (-2528 (((-85) $) 20 T ELT)) (-2536 (((-714) $) 30 T ELT)) (-3207 (($ (-1111 |#1|) |#2|) 54 T ELT) (($ (-1111 $) |#2|) 71 T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) 38 T ELT)) (-3014 (($ |#1| (-484 |#2|)) 78 T ELT) (($ $ |#2| (-714)) 58 T ELT) (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ |#2|) NIL T ELT)) (-2941 (((-484 |#2|) $) 205 T ELT) (((-714) $ |#2|) 206 T ELT) (((-599 (-714)) $ (-599 |#2|)) 207 T ELT)) (-1695 (($ (-1 (-484 |#2|) (-484 |#2|)) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3205 (((-3 |#2| #1#) $) 177 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-3015 (($ $) 217 T ELT)) (-3312 ((|#1| $) 43 T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| |#2|) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) 39 T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 148 (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) 153 (|has| |#1| (-406)) ELT) (($ $ $) 138 (|has| |#1| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-848)) ELT)) (-3606 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-510)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-599 |#2|) (-599 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-599 |#2|) (-599 $)) 194 T ELT)) (-3907 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT) (($ $ |#2| (-714)) NIL T ELT) (($ $ (-599 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-4098 (((-484 |#2|) $) 201 T ELT) (((-714) $ |#2|) 196 T ELT) (((-599 (-714)) $ (-599 |#2|)) 199 T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| |#1| (-569 (-825 (-333)))) (|has| |#2| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| |#1| (-569 (-825 (-499)))) (|has| |#2| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| |#1| (-569 (-488))) (|has| |#2| (-569 (-488)))) ELT)) (-2938 ((|#1| $) 134 (|has| |#1| (-406)) ELT) (($ $ |#2|) 137 (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-4096 (((-797) $) 159 T ELT) (($ (-499)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-3967 (((-599 |#1|) $) 162 T ELT)) (-3827 ((|#1| $ (-484 |#2|)) 80 T ELT) (($ $ |#2| (-714)) NIL T ELT) (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) 87 T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) 123 (|has| |#1| (-510)) ELT)) (-2779 (($) 12 T CONST)) (-2785 (($) 14 T CONST)) (-2790 (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT) (($ $ |#2| (-714)) NIL T ELT) (($ $ (-599 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3174 (((-85) $ $) 106 T ELT)) (-4099 (($ $ |#1|) 132 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3989 (($ $ $) 55 T ELT)) (** (($ $ (-857)) 110 T ELT) (($ $ (-714)) 109 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1065 |#1| |#2|) (-888 |#1| (-484 |#2|) |#2|) (-989) (-781)) (T -1065)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 |#2|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3632 (($ $) 152 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 128 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3630 (($ $) 148 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 124 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3634 (($ $) 156 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 132 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3964 (((-884 |#1|) $ (-714)) NIL T ELT) (((-884 |#1|) $ (-714) (-714)) NIL T ELT)) (-3013 (((-85) $) NIL T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-714) $ |#2|) NIL T ELT) (((-714) $ |#2| (-714)) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ $ (-599 |#2|) (-599 (-484 |#2|))) NIL T ELT) (($ $ |#2| (-484 |#2|)) NIL T ELT) (($ |#1| (-484 |#2|)) NIL T ELT) (($ $ |#2| (-714)) 63 T ELT) (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4092 (($ $) 122 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3962 (($ $ |#2|) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3826 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3919 (($ $ (-714)) 16 T ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-4093 (($ $) 120 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (($ $ |#2| $) 106 T ELT) (($ $ (-599 |#2|) (-599 $)) 99 T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT)) (-3908 (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT) (($ $ |#2| (-714)) NIL T ELT) (($ $ (-599 |#2|)) NIL T ELT) (($ $ |#2|) 109 T ELT)) (-4098 (((-484 |#2|) $) NIL T ELT)) (-3479 (((-1 (-1095 |#3|) |#3|) (-599 |#2|) (-599 (-1095 |#3|))) 87 T ELT)) (-3635 (($ $) 158 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 134 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 154 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 130 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 150 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 126 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) 18 T ELT)) (-4096 (((-797) $) 198 T ELT) (($ (-499)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3827 ((|#1| $ (-484 |#2|)) NIL T ELT) (($ $ |#2| (-714)) NIL T ELT) (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT) ((|#3| $ (-714)) 43 T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) 164 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 140 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) 160 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 136 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 168 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 144 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3641 (($ $) 170 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 146 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 166 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 142 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 162 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 138 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 52 T CONST)) (-2785 (($) 62 T CONST)) (-2790 (($ $ (-599 |#2|) (-599 (-714))) NIL T ELT) (($ $ |#2| (-714)) NIL T ELT) (($ $ (-599 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) 200 (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 66 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 112 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-361 (-499))) 117 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) 115 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) +(((-1066 |#1| |#2| |#3|) (-13 (-698 |#1| |#2|) (-10 -8 (-15 -3827 (|#3| $ (-714))) (-15 -4096 ($ |#2|)) (-15 -4096 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3479 ((-1 (-1095 |#3|) |#3|) (-599 |#2|) (-599 (-1095 |#3|)))) (IF (|has| |#1| (-38 (-361 (-499)))) (PROGN (-15 -3962 ($ $ |#2| |#1|)) (-15 -3826 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-989) (-781) (-888 |#1| (-484 |#2|) |#2|)) (T -1066)) +((-3827 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *2 (-888 *4 (-484 *5) *5)) (-5 *1 (-1066 *4 *5 *2)) (-4 *4 (-989)) (-4 *5 (-781)))) (-4096 (*1 *1 *2) (-12 (-4 *3 (-989)) (-4 *2 (-781)) (-5 *1 (-1066 *3 *2 *4)) (-4 *4 (-888 *3 (-484 *2) *2)))) (-4096 (*1 *1 *2) (-12 (-4 *3 (-989)) (-4 *4 (-781)) (-5 *1 (-1066 *3 *4 *2)) (-4 *2 (-888 *3 (-484 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-989)) (-4 *4 (-781)) (-5 *1 (-1066 *3 *4 *2)) (-4 *2 (-888 *3 (-484 *4) *4)))) (-3479 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6)) (-5 *4 (-599 (-1095 *7))) (-4 *6 (-781)) (-4 *7 (-888 *5 (-484 *6) *6)) (-4 *5 (-989)) (-5 *2 (-1 (-1095 *7) *7)) (-5 *1 (-1066 *5 *6 *7)))) (-3962 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-4 *2 (-781)) (-5 *1 (-1066 *3 *2 *4)) (-4 *4 (-888 *3 (-484 *2) *2)))) (-3826 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1066 *4 *3 *5))) (-4 *4 (-38 (-361 (-499)))) (-4 *4 (-989)) (-4 *3 (-781)) (-5 *1 (-1066 *4 *3 *5)) (-4 *5 (-888 *4 (-484 *3) *3))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3831 (((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 |#4|)))) (-599 |#4|)) 90 T ELT)) (-3832 (((-599 $) (-599 |#4|)) 91 T ELT) (((-599 $) (-599 |#4|) (-85)) 118 T ELT)) (-3204 (((-599 |#3|) $) 37 T ELT)) (-3029 (((-85) $) 30 T ELT)) (-3020 (((-85) $) 21 (|has| |#1| (-510)) ELT)) (-3843 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3838 ((|#4| |#4| $) 97 T ELT)) (-3925 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| $) 133 T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3860 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -4145)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3874 (($) 46 T CONST)) (-3025 (((-85) $) 26 (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) 28 (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) 27 (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) 29 (|has| |#1| (-510)) ELT)) (-3839 (((-599 |#4|) (-599 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) 22 (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) 23 (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ "failed") (-599 |#4|)) 40 T ELT)) (-3294 (($ (-599 |#4|)) 39 T ELT)) (-3949 (((-3 $ #1#) $) 87 T ELT)) (-3835 ((|#4| |#4| $) 94 T ELT)) (-1386 (($ $) 69 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#4| $) 68 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-510)) ELT)) (-3844 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3833 ((|#4| |#4| $) 92 T ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4145)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3846 (((-2 (|:| -4011 (-599 |#4|)) (|:| -1795 (-599 |#4|))) $) 110 T ELT)) (-3335 (((-85) |#4| $) 143 T ELT)) (-3333 (((-85) |#4| $) 140 T ELT)) (-3336 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-3010 (((-599 |#4|) $) 53 (|has| $ (-6 -4145)) ELT)) (-3845 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3318 ((|#3| $) 38 T ELT)) (-2727 (((-599 |#4|) $) 54 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3035 (((-599 |#3|) $) 36 T ELT)) (-3034 (((-85) |#3| $) 35 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3329 (((-3 |#4| (-599 $)) |#4| |#4| $) 135 T ELT)) (-3328 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| |#4| $) 134 T ELT)) (-3948 (((-3 |#4| #1#) $) 88 T ELT)) (-3330 (((-599 $) |#4| $) 136 T ELT)) (-3332 (((-3 (-85) (-599 $)) |#4| $) 139 T ELT)) (-3331 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3376 (((-599 $) |#4| $) 132 T ELT) (((-599 $) (-599 |#4|) $) 131 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 130 T ELT) (((-599 $) |#4| (-599 $)) 129 T ELT)) (-3580 (($ |#4| $) 124 T ELT) (($ (-599 |#4|) $) 123 T ELT)) (-3847 (((-599 |#4|) $) 112 T ELT)) (-3841 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3836 ((|#4| |#4| $) 95 T ELT)) (-3849 (((-85) $ $) 115 T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-510)) ELT)) (-3842 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3837 ((|#4| |#4| $) 96 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3951 (((-3 |#4| #1#) $) 89 T ELT)) (-1387 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3829 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3919 (($ $ |#4|) 82 T ELT) (((-599 $) |#4| $) 122 T ELT) (((-599 $) |#4| (-599 $)) 121 T ELT) (((-599 $) (-599 |#4|) $) 120 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 119 T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) 60 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) 58 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) 57 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) 42 T ELT)) (-3543 (((-85) $) 45 T ELT)) (-3713 (($) 44 T ELT)) (-4098 (((-714) $) 111 T ELT)) (-2048 (((-714) |#4| $) 55 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 43 T ELT)) (-4122 (((-488) $) 70 (|has| |#4| (-569 (-488))) ELT)) (-3670 (($ (-599 |#4|)) 61 T ELT)) (-3031 (($ $ |#3|) 32 T ELT)) (-3033 (($ $ |#3|) 34 T ELT)) (-3834 (($ $) 93 T ELT)) (-3032 (($ $ |#3|) 33 T ELT)) (-4096 (((-797) $) 13 T ELT) (((-599 |#4|) $) 41 T ELT)) (-3828 (((-714) $) 81 (|has| |#3| (-323)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3840 (((-85) $ (-1 (-85) |#4| (-599 |#4|))) 103 T ELT)) (-3327 (((-599 $) |#4| $) 128 T ELT) (((-599 $) |#4| (-599 $)) 127 T ELT) (((-599 $) (-599 |#4|) $) 126 T ELT) (((-599 $) (-599 |#4|) (-599 $)) 125 T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3830 (((-599 |#3|) $) 86 T ELT)) (-3334 (((-85) |#4| $) 142 T ELT)) (-4083 (((-85) |#3| $) 85 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4107 (((-714) $) 47 (|has| $ (-6 -4145)) ELT))) +(((-1067 |#1| |#2| |#3| |#4|) (-113) (-406) (-738) (-781) (-1005 |t#1| |t#2| |t#3|)) (T -1067)) +NIL +(-13 (-1049 |t#1| |t#2| |t#3| |t#4|) (-727 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-73) . T) ((-568 (-599 |#4|)) . T) ((-568 (-797)) . T) ((-124 |#4|) . T) ((-569 (-488)) |has| |#4| (-569 (-488))) ((-263 |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-443 |#4|) . T) ((-468 |#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-727 |#1| |#2| |#3| |#4|) . T) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1011 |#1| |#2| |#3| |#4|) . T) ((-1041) . T) ((-1049 |#1| |#2| |#3| |#4|) . T) ((-1152 |#1| |#2| |#3| |#4|) . T) ((-1157) . T)) +((-3721 (((-599 |#2|) |#1|) 15 T ELT)) (-3485 (((-599 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-599 |#2|) |#1|) 61 T ELT)) (-3483 (((-599 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-599 |#2|) |#1|) 59 T ELT)) (-3480 ((|#2| |#1|) 54 T ELT)) (-3481 (((-2 (|:| |solns| (-599 |#2|)) (|:| |maps| (-599 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3482 (((-599 |#2|) |#2| |#2|) 42 T ELT) (((-599 |#2|) |#1|) 58 T ELT)) (-3484 (((-599 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-599 |#2|) |#1|) 60 T ELT)) (-3489 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3487 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3486 ((|#2| |#2| |#2|) 50 T ELT)) (-3488 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) +(((-1068 |#1| |#2|) (-10 -7 (-15 -3721 ((-599 |#2|) |#1|)) (-15 -3480 (|#2| |#1|)) (-15 -3481 ((-2 (|:| |solns| (-599 |#2|)) (|:| |maps| (-599 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3482 ((-599 |#2|) |#1|)) (-15 -3483 ((-599 |#2|) |#1|)) (-15 -3484 ((-599 |#2|) |#1|)) (-15 -3485 ((-599 |#2|) |#1|)) (-15 -3482 ((-599 |#2|) |#2| |#2|)) (-15 -3483 ((-599 |#2|) |#2| |#2| |#2|)) (-15 -3484 ((-599 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3485 ((-599 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3486 (|#2| |#2| |#2|)) (-15 -3487 (|#2| |#2| |#2| |#2|)) (-15 -3488 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3489 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1183 |#2|) (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (T -1068)) +((-3489 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *1 (-1068 *3 *2)) (-4 *3 (-1183 *2)))) (-3488 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *1 (-1068 *3 *2)) (-4 *3 (-1183 *2)))) (-3487 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *1 (-1068 *3 *2)) (-4 *3 (-1183 *2)))) (-3486 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *1 (-1068 *3 *2)) (-4 *3 (-1183 *2)))) (-3485 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *2 (-599 *3)) (-5 *1 (-1068 *4 *3)) (-4 *4 (-1183 *3)))) (-3484 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *2 (-599 *3)) (-5 *1 (-1068 *4 *3)) (-4 *4 (-1183 *3)))) (-3483 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *2 (-599 *3)) (-5 *1 (-1068 *4 *3)) (-4 *4 (-1183 *3)))) (-3482 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *2 (-599 *3)) (-5 *1 (-1068 *4 *3)) (-4 *4 (-1183 *3)))) (-3485 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *2 (-599 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1183 *4)))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *2 (-599 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1183 *4)))) (-3483 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *2 (-599 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1183 *4)))) (-3482 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *2 (-599 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1183 *4)))) (-3481 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *2 (-2 (|:| |solns| (-599 *5)) (|:| |maps| (-599 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1068 *3 *5)) (-4 *3 (-1183 *5)))) (-3480 (*1 *2 *3) (-12 (-4 *2 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *1 (-1068 *3 *2)) (-4 *3 (-1183 *2)))) (-3721 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *2 (-599 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1183 *4))))) +((-3490 (((-599 (-599 (-247 (-268 |#1|)))) (-599 (-247 (-361 (-884 |#1|))))) 118 T ELT) (((-599 (-599 (-247 (-268 |#1|)))) (-599 (-247 (-361 (-884 |#1|)))) (-599 (-1117))) 117 T ELT) (((-599 (-599 (-247 (-268 |#1|)))) (-599 (-361 (-884 |#1|)))) 115 T ELT) (((-599 (-599 (-247 (-268 |#1|)))) (-599 (-361 (-884 |#1|))) (-599 (-1117))) 113 T ELT) (((-599 (-247 (-268 |#1|))) (-247 (-361 (-884 |#1|)))) 97 T ELT) (((-599 (-247 (-268 |#1|))) (-247 (-361 (-884 |#1|))) (-1117)) 98 T ELT) (((-599 (-247 (-268 |#1|))) (-361 (-884 |#1|))) 92 T ELT) (((-599 (-247 (-268 |#1|))) (-361 (-884 |#1|)) (-1117)) 82 T ELT)) (-3491 (((-599 (-599 (-268 |#1|))) (-599 (-361 (-884 |#1|))) (-599 (-1117))) 111 T ELT) (((-599 (-268 |#1|)) (-361 (-884 |#1|)) (-1117)) 54 T ELT)) (-3492 (((-1106 (-599 (-268 |#1|)) (-599 (-247 (-268 |#1|)))) (-361 (-884 |#1|)) (-1117)) 122 T ELT) (((-1106 (-599 (-268 |#1|)) (-599 (-247 (-268 |#1|)))) (-247 (-361 (-884 |#1|))) (-1117)) 121 T ELT))) +(((-1069 |#1|) (-10 -7 (-15 -3490 ((-599 (-247 (-268 |#1|))) (-361 (-884 |#1|)) (-1117))) (-15 -3490 ((-599 (-247 (-268 |#1|))) (-361 (-884 |#1|)))) (-15 -3490 ((-599 (-247 (-268 |#1|))) (-247 (-361 (-884 |#1|))) (-1117))) (-15 -3490 ((-599 (-247 (-268 |#1|))) (-247 (-361 (-884 |#1|))))) (-15 -3490 ((-599 (-599 (-247 (-268 |#1|)))) (-599 (-361 (-884 |#1|))) (-599 (-1117)))) (-15 -3490 ((-599 (-599 (-247 (-268 |#1|)))) (-599 (-361 (-884 |#1|))))) (-15 -3490 ((-599 (-599 (-247 (-268 |#1|)))) (-599 (-247 (-361 (-884 |#1|)))) (-599 (-1117)))) (-15 -3490 ((-599 (-599 (-247 (-268 |#1|)))) (-599 (-247 (-361 (-884 |#1|)))))) (-15 -3491 ((-599 (-268 |#1|)) (-361 (-884 |#1|)) (-1117))) (-15 -3491 ((-599 (-599 (-268 |#1|))) (-599 (-361 (-884 |#1|))) (-599 (-1117)))) (-15 -3492 ((-1106 (-599 (-268 |#1|)) (-599 (-247 (-268 |#1|)))) (-247 (-361 (-884 |#1|))) (-1117))) (-15 -3492 ((-1106 (-599 (-268 |#1|)) (-599 (-247 (-268 |#1|)))) (-361 (-884 |#1|)) (-1117)))) (-13 (-261) (-120))) (T -1069)) +((-3492 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-1106 (-599 (-268 *5)) (-599 (-247 (-268 *5))))) (-5 *1 (-1069 *5)))) (-3492 (*1 *2 *3 *4) (-12 (-5 *3 (-247 (-361 (-884 *5)))) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-1106 (-599 (-268 *5)) (-599 (-247 (-268 *5))))) (-5 *1 (-1069 *5)))) (-3491 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-361 (-884 *5)))) (-5 *4 (-599 (-1117))) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-599 (-268 *5)))) (-5 *1 (-1069 *5)))) (-3491 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-268 *5))) (-5 *1 (-1069 *5)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-599 (-247 (-361 (-884 *4))))) (-4 *4 (-13 (-261) (-120))) (-5 *2 (-599 (-599 (-247 (-268 *4))))) (-5 *1 (-1069 *4)))) (-3490 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-247 (-361 (-884 *5))))) (-5 *4 (-599 (-1117))) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-599 (-247 (-268 *5))))) (-5 *1 (-1069 *5)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-599 (-361 (-884 *4)))) (-4 *4 (-13 (-261) (-120))) (-5 *2 (-599 (-599 (-247 (-268 *4))))) (-5 *1 (-1069 *4)))) (-3490 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-361 (-884 *5)))) (-5 *4 (-599 (-1117))) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-599 (-247 (-268 *5))))) (-5 *1 (-1069 *5)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-247 (-361 (-884 *4)))) (-4 *4 (-13 (-261) (-120))) (-5 *2 (-599 (-247 (-268 *4)))) (-5 *1 (-1069 *4)))) (-3490 (*1 *2 *3 *4) (-12 (-5 *3 (-247 (-361 (-884 *5)))) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-247 (-268 *5)))) (-5 *1 (-1069 *5)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-13 (-261) (-120))) (-5 *2 (-599 (-247 (-268 *4)))) (-5 *1 (-1069 *4)))) (-3490 (*1 *2 *3 *4) (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-247 (-268 *5)))) (-5 *1 (-1069 *5))))) +((-3494 (((-361 (-1111 (-268 |#1|))) (-1207 (-268 |#1|)) (-361 (-1111 (-268 |#1|))) (-499)) 36 T ELT)) (-3493 (((-361 (-1111 (-268 |#1|))) (-361 (-1111 (-268 |#1|))) (-361 (-1111 (-268 |#1|))) (-361 (-1111 (-268 |#1|)))) 48 T ELT))) +(((-1070 |#1|) (-10 -7 (-15 -3493 ((-361 (-1111 (-268 |#1|))) (-361 (-1111 (-268 |#1|))) (-361 (-1111 (-268 |#1|))) (-361 (-1111 (-268 |#1|))))) (-15 -3494 ((-361 (-1111 (-268 |#1|))) (-1207 (-268 |#1|)) (-361 (-1111 (-268 |#1|))) (-499)))) (-510)) (T -1070)) +((-3494 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-361 (-1111 (-268 *5)))) (-5 *3 (-1207 (-268 *5))) (-5 *4 (-499)) (-4 *5 (-510)) (-5 *1 (-1070 *5)))) (-3493 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-361 (-1111 (-268 *3)))) (-4 *3 (-510)) (-5 *1 (-1070 *3))))) +((-3721 (((-599 (-599 (-247 (-268 |#1|)))) (-599 (-247 (-268 |#1|))) (-599 (-1117))) 244 T ELT) (((-599 (-247 (-268 |#1|))) (-268 |#1|) (-1117)) 23 T ELT) (((-599 (-247 (-268 |#1|))) (-247 (-268 |#1|)) (-1117)) 29 T ELT) (((-599 (-247 (-268 |#1|))) (-247 (-268 |#1|))) 28 T ELT) (((-599 (-247 (-268 |#1|))) (-268 |#1|)) 24 T ELT))) +(((-1071 |#1|) (-10 -7 (-15 -3721 ((-599 (-247 (-268 |#1|))) (-268 |#1|))) (-15 -3721 ((-599 (-247 (-268 |#1|))) (-247 (-268 |#1|)))) (-15 -3721 ((-599 (-247 (-268 |#1|))) (-247 (-268 |#1|)) (-1117))) (-15 -3721 ((-599 (-247 (-268 |#1|))) (-268 |#1|) (-1117))) (-15 -3721 ((-599 (-599 (-247 (-268 |#1|)))) (-599 (-247 (-268 |#1|))) (-599 (-1117))))) (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (T -1071)) +((-3721 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-1117))) (-4 *5 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-599 (-599 (-247 (-268 *5))))) (-5 *1 (-1071 *5)) (-5 *3 (-599 (-247 (-268 *5)))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-599 (-247 (-268 *5)))) (-5 *1 (-1071 *5)) (-5 *3 (-268 *5)))) (-3721 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-599 (-247 (-268 *5)))) (-5 *1 (-1071 *5)) (-5 *3 (-247 (-268 *5))))) (-3721 (*1 *2 *3) (-12 (-4 *4 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-599 (-247 (-268 *4)))) (-5 *1 (-1071 *4)) (-5 *3 (-247 (-268 *4))))) (-3721 (*1 *2 *3) (-12 (-4 *4 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *2 (-599 (-247 (-268 *4)))) (-5 *1 (-1071 *4)) (-5 *3 (-268 *4))))) +((-3496 ((|#2| |#2|) 28 (|has| |#1| (-781)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 25 T ELT)) (-3495 ((|#2| |#2|) 27 (|has| |#1| (-781)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 22 T ELT))) +(((-1072 |#1| |#2|) (-10 -7 (-15 -3495 (|#2| |#2| (-1 (-85) |#1| |#1|))) (-15 -3496 (|#2| |#2| (-1 (-85) |#1| |#1|))) (IF (|has| |#1| (-781)) (PROGN (-15 -3495 (|#2| |#2|)) (-15 -3496 (|#2| |#2|))) |%noBranch|)) (-1157) (-13 (-554 (-499) |#1|) (-10 -7 (-6 -4145) (-6 -4146)))) (T -1072)) +((-3496 (*1 *2 *2) (-12 (-4 *3 (-781)) (-4 *3 (-1157)) (-5 *1 (-1072 *3 *2)) (-4 *2 (-13 (-554 (-499) *3) (-10 -7 (-6 -4145) (-6 -4146)))))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-781)) (-4 *3 (-1157)) (-5 *1 (-1072 *3 *2)) (-4 *2 (-13 (-554 (-499) *3) (-10 -7 (-6 -4145) (-6 -4146)))))) (-3496 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1157)) (-5 *1 (-1072 *4 *2)) (-4 *2 (-13 (-554 (-499) *4) (-10 -7 (-6 -4145) (-6 -4146)))))) (-3495 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1157)) (-5 *1 (-1072 *4 *2)) (-4 *2 (-13 (-554 (-499) *4) (-10 -7 (-6 -4145) (-6 -4146))))))) +((-2687 (((-85) $ $) NIL T ELT)) (-4038 (((-1105 3 |#1|) $) 141 T ELT)) (-3506 (((-85) $) 101 T ELT)) (-3507 (($ $ (-599 (-881 |#1|))) 44 T ELT) (($ $ (-599 (-599 |#1|))) 104 T ELT) (($ (-599 (-881 |#1|))) 103 T ELT) (((-599 (-881 |#1|)) $) 102 T ELT)) (-3512 (((-85) $) 72 T ELT)) (-3856 (($ $ (-881 |#1|)) 76 T ELT) (($ $ (-599 |#1|)) 81 T ELT) (($ $ (-714)) 83 T ELT) (($ (-881 |#1|)) 77 T ELT) (((-881 |#1|) $) 75 T ELT)) (-3498 (((-2 (|:| -4000 (-714)) (|:| |curves| (-714)) (|:| |polygons| (-714)) (|:| |constructs| (-714))) $) 139 T ELT)) (-3516 (((-714) $) 53 T ELT)) (-3517 (((-714) $) 52 T ELT)) (-4037 (($ $ (-714) (-881 |#1|)) 67 T ELT)) (-3504 (((-85) $) 111 T ELT)) (-3505 (($ $ (-599 (-599 (-881 |#1|))) (-599 (-145)) (-145)) 118 T ELT) (($ $ (-599 (-599 (-599 |#1|))) (-599 (-145)) (-145)) 120 T ELT) (($ $ (-599 (-599 (-881 |#1|))) (-85) (-85)) 115 T ELT) (($ $ (-599 (-599 (-599 |#1|))) (-85) (-85)) 127 T ELT) (($ (-599 (-599 (-881 |#1|)))) 116 T ELT) (($ (-599 (-599 (-881 |#1|))) (-85) (-85)) 117 T ELT) (((-599 (-599 (-881 |#1|))) $) 114 T ELT)) (-3658 (($ (-599 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3499 (((-599 (-145)) $) 133 T ELT)) (-3503 (((-599 (-881 |#1|)) $) 130 T ELT)) (-3500 (((-599 (-599 (-145))) $) 132 T ELT)) (-3501 (((-599 (-599 (-599 (-881 |#1|)))) $) NIL T ELT)) (-3502 (((-599 (-599 (-599 (-714)))) $) 131 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3513 (((-714) $ (-599 (-881 |#1|))) 65 T ELT)) (-3510 (((-85) $) 84 T ELT)) (-3511 (($ $ (-599 (-881 |#1|))) 86 T ELT) (($ $ (-599 (-599 |#1|))) 92 T ELT) (($ (-599 (-881 |#1|))) 87 T ELT) (((-599 (-881 |#1|)) $) 85 T ELT)) (-3518 (($) 48 T ELT) (($ (-1105 3 |#1|)) 49 T ELT)) (-3540 (($ $) 63 T ELT)) (-3514 (((-599 $) $) 62 T ELT)) (-3904 (($ (-599 $)) 59 T ELT)) (-3515 (((-599 $) $) 61 T ELT)) (-4096 (((-797) $) 146 T ELT)) (-3508 (((-85) $) 94 T ELT)) (-3509 (($ $ (-599 (-881 |#1|))) 96 T ELT) (($ $ (-599 (-599 |#1|))) 99 T ELT) (($ (-599 (-881 |#1|))) 97 T ELT) (((-599 (-881 |#1|)) $) 95 T ELT)) (-3497 (($ $) 140 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-1073 |#1|) (-1074 |#1|) (-989)) (T -1073)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-4038 (((-1105 3 |#1|) $) 17 T ELT)) (-3506 (((-85) $) 33 T ELT)) (-3507 (($ $ (-599 (-881 |#1|))) 37 T ELT) (($ $ (-599 (-599 |#1|))) 36 T ELT) (($ (-599 (-881 |#1|))) 35 T ELT) (((-599 (-881 |#1|)) $) 34 T ELT)) (-3512 (((-85) $) 48 T ELT)) (-3856 (($ $ (-881 |#1|)) 53 T ELT) (($ $ (-599 |#1|)) 52 T ELT) (($ $ (-714)) 51 T ELT) (($ (-881 |#1|)) 50 T ELT) (((-881 |#1|) $) 49 T ELT)) (-3498 (((-2 (|:| -4000 (-714)) (|:| |curves| (-714)) (|:| |polygons| (-714)) (|:| |constructs| (-714))) $) 19 T ELT)) (-3516 (((-714) $) 62 T ELT)) (-3517 (((-714) $) 63 T ELT)) (-4037 (($ $ (-714) (-881 |#1|)) 54 T ELT)) (-3504 (((-85) $) 25 T ELT)) (-3505 (($ $ (-599 (-599 (-881 |#1|))) (-599 (-145)) (-145)) 32 T ELT) (($ $ (-599 (-599 (-599 |#1|))) (-599 (-145)) (-145)) 31 T ELT) (($ $ (-599 (-599 (-881 |#1|))) (-85) (-85)) 30 T ELT) (($ $ (-599 (-599 (-599 |#1|))) (-85) (-85)) 29 T ELT) (($ (-599 (-599 (-881 |#1|)))) 28 T ELT) (($ (-599 (-599 (-881 |#1|))) (-85) (-85)) 27 T ELT) (((-599 (-599 (-881 |#1|))) $) 26 T ELT)) (-3658 (($ (-599 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3499 (((-599 (-145)) $) 20 T ELT)) (-3503 (((-599 (-881 |#1|)) $) 24 T ELT)) (-3500 (((-599 (-599 (-145))) $) 21 T ELT)) (-3501 (((-599 (-599 (-599 (-881 |#1|)))) $) 22 T ELT)) (-3502 (((-599 (-599 (-599 (-714)))) $) 23 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3513 (((-714) $ (-599 (-881 |#1|))) 55 T ELT)) (-3510 (((-85) $) 43 T ELT)) (-3511 (($ $ (-599 (-881 |#1|))) 47 T ELT) (($ $ (-599 (-599 |#1|))) 46 T ELT) (($ (-599 (-881 |#1|))) 45 T ELT) (((-599 (-881 |#1|)) $) 44 T ELT)) (-3518 (($) 65 T ELT) (($ (-1105 3 |#1|)) 64 T ELT)) (-3540 (($ $) 56 T ELT)) (-3514 (((-599 $) $) 57 T ELT)) (-3904 (($ (-599 $)) 59 T ELT)) (-3515 (((-599 $) $) 58 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-3508 (((-85) $) 38 T ELT)) (-3509 (($ $ (-599 (-881 |#1|))) 42 T ELT) (($ $ (-599 (-599 |#1|))) 41 T ELT) (($ (-599 (-881 |#1|))) 40 T ELT) (((-599 (-881 |#1|)) $) 39 T ELT)) (-3497 (($ $) 18 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-1074 |#1|) (-113) (-989)) (T -1074)) +((-4096 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-797)))) (-3518 (*1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-989)))) (-3518 (*1 *1 *2) (-12 (-5 *2 (-1105 3 *3)) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-714)))) (-3516 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-714)))) (-3658 (*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3658 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-989)))) (-3904 (*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3515 (*1 *2 *1) (-12 (-4 *3 (-989)) (-5 *2 (-599 *1)) (-4 *1 (-1074 *3)))) (-3514 (*1 *2 *1) (-12 (-4 *3 (-989)) (-5 *2 (-599 *1)) (-4 *1 (-1074 *3)))) (-3540 (*1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-989)))) (-3513 (*1 *2 *1 *3) (-12 (-5 *3 (-599 (-881 *4))) (-4 *1 (-1074 *4)) (-4 *4 (-989)) (-5 *2 (-714)))) (-4037 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-714)) (-5 *3 (-881 *4)) (-4 *1 (-1074 *4)) (-4 *4 (-989)))) (-3856 (*1 *1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3856 (*1 *1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3856 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3856 (*1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) (-3856 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-881 *3)))) (-3512 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-85)))) (-3511 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-881 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3511 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3511 (*1 *1 *2) (-12 (-5 *2 (-599 (-881 *3))) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-881 *3))))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-85)))) (-3509 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-881 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3509 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3509 (*1 *1 *2) (-12 (-5 *2 (-599 (-881 *3))) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) (-3509 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-881 *3))))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-85)))) (-3507 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-881 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3507 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-599 (-881 *3))) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-881 *3))))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-85)))) (-3505 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-599 (-599 (-881 *5)))) (-5 *3 (-599 (-145))) (-5 *4 (-145)) (-4 *1 (-1074 *5)) (-4 *5 (-989)))) (-3505 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-599 (-599 (-599 *5)))) (-5 *3 (-599 (-145))) (-5 *4 (-145)) (-4 *1 (-1074 *5)) (-4 *5 (-989)))) (-3505 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-599 (-599 (-881 *4)))) (-5 *3 (-85)) (-4 *1 (-1074 *4)) (-4 *4 (-989)))) (-3505 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-599 (-599 (-599 *4)))) (-5 *3 (-85)) (-4 *1 (-1074 *4)) (-4 *4 (-989)))) (-3505 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 (-881 *3)))) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) (-3505 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-599 (-599 (-881 *4)))) (-5 *3 (-85)) (-4 *4 (-989)) (-4 *1 (-1074 *4)))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-599 (-881 *3)))))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-85)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-881 *3))))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-599 (-599 (-714))))))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-599 (-599 (-881 *3))))))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-599 (-145)))))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-145))))) (-3498 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-2 (|:| -4000 (-714)) (|:| |curves| (-714)) (|:| |polygons| (-714)) (|:| |constructs| (-714)))))) (-3497 (*1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-989)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-1105 3 *3))))) +(-13 (-1041) (-10 -8 (-15 -3518 ($)) (-15 -3518 ($ (-1105 3 |t#1|))) (-15 -3517 ((-714) $)) (-15 -3516 ((-714) $)) (-15 -3658 ($ (-599 $))) (-15 -3658 ($ $ $)) (-15 -3904 ($ (-599 $))) (-15 -3515 ((-599 $) $)) (-15 -3514 ((-599 $) $)) (-15 -3540 ($ $)) (-15 -3513 ((-714) $ (-599 (-881 |t#1|)))) (-15 -4037 ($ $ (-714) (-881 |t#1|))) (-15 -3856 ($ $ (-881 |t#1|))) (-15 -3856 ($ $ (-599 |t#1|))) (-15 -3856 ($ $ (-714))) (-15 -3856 ($ (-881 |t#1|))) (-15 -3856 ((-881 |t#1|) $)) (-15 -3512 ((-85) $)) (-15 -3511 ($ $ (-599 (-881 |t#1|)))) (-15 -3511 ($ $ (-599 (-599 |t#1|)))) (-15 -3511 ($ (-599 (-881 |t#1|)))) (-15 -3511 ((-599 (-881 |t#1|)) $)) (-15 -3510 ((-85) $)) (-15 -3509 ($ $ (-599 (-881 |t#1|)))) (-15 -3509 ($ $ (-599 (-599 |t#1|)))) (-15 -3509 ($ (-599 (-881 |t#1|)))) (-15 -3509 ((-599 (-881 |t#1|)) $)) (-15 -3508 ((-85) $)) (-15 -3507 ($ $ (-599 (-881 |t#1|)))) (-15 -3507 ($ $ (-599 (-599 |t#1|)))) (-15 -3507 ($ (-599 (-881 |t#1|)))) (-15 -3507 ((-599 (-881 |t#1|)) $)) (-15 -3506 ((-85) $)) (-15 -3505 ($ $ (-599 (-599 (-881 |t#1|))) (-599 (-145)) (-145))) (-15 -3505 ($ $ (-599 (-599 (-599 |t#1|))) (-599 (-145)) (-145))) (-15 -3505 ($ $ (-599 (-599 (-881 |t#1|))) (-85) (-85))) (-15 -3505 ($ $ (-599 (-599 (-599 |t#1|))) (-85) (-85))) (-15 -3505 ($ (-599 (-599 (-881 |t#1|))))) (-15 -3505 ($ (-599 (-599 (-881 |t#1|))) (-85) (-85))) (-15 -3505 ((-599 (-599 (-881 |t#1|))) $)) (-15 -3504 ((-85) $)) (-15 -3503 ((-599 (-881 |t#1|)) $)) (-15 -3502 ((-599 (-599 (-599 (-714)))) $)) (-15 -3501 ((-599 (-599 (-599 (-881 |t#1|)))) $)) (-15 -3500 ((-599 (-599 (-145))) $)) (-15 -3499 ((-599 (-145)) $)) (-15 -3498 ((-2 (|:| -4000 (-714)) (|:| |curves| (-714)) (|:| |polygons| (-714)) (|:| |constructs| (-714))) $)) (-15 -3497 ($ $)) (-15 -4038 ((-1105 3 |t#1|) $)) (-15 -4096 ((-797) $)))) +(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 184 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) 7 T ELT)) (-3714 (((-85) $ (|[\|\|]| (-477))) 19 T ELT) (((-85) $ (|[\|\|]| (-172))) 23 T ELT) (((-85) $ (|[\|\|]| (-634))) 27 T ELT) (((-85) $ (|[\|\|]| (-1218))) 31 T ELT) (((-85) $ (|[\|\|]| (-111))) 35 T ELT) (((-85) $ (|[\|\|]| (-555))) 39 T ELT) (((-85) $ (|[\|\|]| (-106))) 43 T ELT) (((-85) $ (|[\|\|]| (-1056))) 47 T ELT) (((-85) $ (|[\|\|]| (-67))) 51 T ELT) (((-85) $ (|[\|\|]| (-639))) 55 T ELT) (((-85) $ (|[\|\|]| (-471))) 59 T ELT) (((-85) $ (|[\|\|]| (-1006))) 63 T ELT) (((-85) $ (|[\|\|]| (-1219))) 67 T ELT) (((-85) $ (|[\|\|]| (-478))) 71 T ELT) (((-85) $ (|[\|\|]| (-1093))) 75 T ELT) (((-85) $ (|[\|\|]| (-127))) 79 T ELT) (((-85) $ (|[\|\|]| (-629))) 83 T ELT) (((-85) $ (|[\|\|]| (-266))) 87 T ELT) (((-85) $ (|[\|\|]| (-976))) 91 T ELT) (((-85) $ (|[\|\|]| (-154))) 95 T ELT) (((-85) $ (|[\|\|]| (-910))) 99 T ELT) (((-85) $ (|[\|\|]| (-1013))) 103 T ELT) (((-85) $ (|[\|\|]| (-1031))) 107 T ELT) (((-85) $ (|[\|\|]| (-1036))) 111 T ELT) (((-85) $ (|[\|\|]| (-581))) 115 T ELT) (((-85) $ (|[\|\|]| (-1107))) 119 T ELT) (((-85) $ (|[\|\|]| (-129))) 123 T ELT) (((-85) $ (|[\|\|]| (-110))) 127 T ELT) (((-85) $ (|[\|\|]| (-432))) 131 T ELT) (((-85) $ (|[\|\|]| (-543))) 135 T ELT) (((-85) $ (|[\|\|]| (-460))) 139 T ELT) (((-85) $ (|[\|\|]| (-1099))) 143 T ELT) (((-85) $ (|[\|\|]| (-499))) 147 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3720 (((-477) $) 20 T ELT) (((-172) $) 24 T ELT) (((-634) $) 28 T ELT) (((-1218) $) 32 T ELT) (((-111) $) 36 T ELT) (((-555) $) 40 T ELT) (((-106) $) 44 T ELT) (((-1056) $) 48 T ELT) (((-67) $) 52 T ELT) (((-639) $) 56 T ELT) (((-471) $) 60 T ELT) (((-1006) $) 64 T ELT) (((-1219) $) 68 T ELT) (((-478) $) 72 T ELT) (((-1093) $) 76 T ELT) (((-127) $) 80 T ELT) (((-629) $) 84 T ELT) (((-266) $) 88 T ELT) (((-976) $) 92 T ELT) (((-154) $) 96 T ELT) (((-910) $) 100 T ELT) (((-1013) $) 104 T ELT) (((-1031) $) 108 T ELT) (((-1036) $) 112 T ELT) (((-581) $) 116 T ELT) (((-1107) $) 120 T ELT) (((-129) $) 124 T ELT) (((-110) $) 128 T ELT) (((-432) $) 132 T ELT) (((-543) $) 136 T ELT) (((-460) $) 140 T ELT) (((-1099) $) 144 T ELT) (((-499) $) 148 T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-1075) (-1077)) (T -1075)) +NIL +((-3519 (((-599 (-1122)) (-1099)) 9 T ELT))) +(((-1076) (-10 -7 (-15 -3519 ((-599 (-1122)) (-1099))))) (T -1076)) +((-3519 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-599 (-1122))) (-5 *1 (-1076))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-1122)) 20 T ELT) (((-1122) $) 19 T ELT)) (-3714 (((-85) $ (|[\|\|]| (-477))) 88 T ELT) (((-85) $ (|[\|\|]| (-172))) 86 T ELT) (((-85) $ (|[\|\|]| (-634))) 84 T ELT) (((-85) $ (|[\|\|]| (-1218))) 82 T ELT) (((-85) $ (|[\|\|]| (-111))) 80 T ELT) (((-85) $ (|[\|\|]| (-555))) 78 T ELT) (((-85) $ (|[\|\|]| (-106))) 76 T ELT) (((-85) $ (|[\|\|]| (-1056))) 74 T ELT) (((-85) $ (|[\|\|]| (-67))) 72 T ELT) (((-85) $ (|[\|\|]| (-639))) 70 T ELT) (((-85) $ (|[\|\|]| (-471))) 68 T ELT) (((-85) $ (|[\|\|]| (-1006))) 66 T ELT) (((-85) $ (|[\|\|]| (-1219))) 64 T ELT) (((-85) $ (|[\|\|]| (-478))) 62 T ELT) (((-85) $ (|[\|\|]| (-1093))) 60 T ELT) (((-85) $ (|[\|\|]| (-127))) 58 T ELT) (((-85) $ (|[\|\|]| (-629))) 56 T ELT) (((-85) $ (|[\|\|]| (-266))) 54 T ELT) (((-85) $ (|[\|\|]| (-976))) 52 T ELT) (((-85) $ (|[\|\|]| (-154))) 50 T ELT) (((-85) $ (|[\|\|]| (-910))) 48 T ELT) (((-85) $ (|[\|\|]| (-1013))) 46 T ELT) (((-85) $ (|[\|\|]| (-1031))) 44 T ELT) (((-85) $ (|[\|\|]| (-1036))) 42 T ELT) (((-85) $ (|[\|\|]| (-581))) 40 T ELT) (((-85) $ (|[\|\|]| (-1107))) 38 T ELT) (((-85) $ (|[\|\|]| (-129))) 36 T ELT) (((-85) $ (|[\|\|]| (-110))) 34 T ELT) (((-85) $ (|[\|\|]| (-432))) 32 T ELT) (((-85) $ (|[\|\|]| (-543))) 30 T ELT) (((-85) $ (|[\|\|]| (-460))) 28 T ELT) (((-85) $ (|[\|\|]| (-1099))) 26 T ELT) (((-85) $ (|[\|\|]| (-499))) 24 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3720 (((-477) $) 87 T ELT) (((-172) $) 85 T ELT) (((-634) $) 83 T ELT) (((-1218) $) 81 T ELT) (((-111) $) 79 T ELT) (((-555) $) 77 T ELT) (((-106) $) 75 T ELT) (((-1056) $) 73 T ELT) (((-67) $) 71 T ELT) (((-639) $) 69 T ELT) (((-471) $) 67 T ELT) (((-1006) $) 65 T ELT) (((-1219) $) 63 T ELT) (((-478) $) 61 T ELT) (((-1093) $) 59 T ELT) (((-127) $) 57 T ELT) (((-629) $) 55 T ELT) (((-266) $) 53 T ELT) (((-976) $) 51 T ELT) (((-154) $) 49 T ELT) (((-910) $) 47 T ELT) (((-1013) $) 45 T ELT) (((-1031) $) 43 T ELT) (((-1036) $) 41 T ELT) (((-581) $) 39 T ELT) (((-1107) $) 37 T ELT) (((-129) $) 35 T ELT) (((-110) $) 33 T ELT) (((-432) $) 31 T ELT) (((-543) $) 29 T ELT) (((-460) $) 27 T ELT) (((-1099) $) 25 T ELT) (((-499) $) 23 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-1077) (-113)) (T -1077)) +((-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-477))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-477)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-172)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-634))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-634)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1218))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1218)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-111)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-555))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-555)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-106)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1056))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1056)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-67)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-639))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-639)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-471))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-471)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1006))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1006)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1219))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1219)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-478)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1093))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1093)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-127)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-629))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-629)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-266))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-266)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-976))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-976)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-154)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-910))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-910)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1013))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1013)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1031))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1031)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1036))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1036)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-581))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-581)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1107))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1107)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-129)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-110)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-432))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-432)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-543))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-543)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-460))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-460)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1099)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-499))) (-5 *2 (-85)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-499))))) +(-13 (-1023) (-1203) (-10 -8 (-15 -3714 ((-85) $ (|[\|\|]| (-477)))) (-15 -3720 ((-477) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-172)))) (-15 -3720 ((-172) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-634)))) (-15 -3720 ((-634) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1218)))) (-15 -3720 ((-1218) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-111)))) (-15 -3720 ((-111) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-555)))) (-15 -3720 ((-555) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-106)))) (-15 -3720 ((-106) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1056)))) (-15 -3720 ((-1056) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-67)))) (-15 -3720 ((-67) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-639)))) (-15 -3720 ((-639) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-471)))) (-15 -3720 ((-471) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1006)))) (-15 -3720 ((-1006) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1219)))) (-15 -3720 ((-1219) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-478)))) (-15 -3720 ((-478) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1093)))) (-15 -3720 ((-1093) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-127)))) (-15 -3720 ((-127) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-629)))) (-15 -3720 ((-629) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-266)))) (-15 -3720 ((-266) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-976)))) (-15 -3720 ((-976) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-154)))) (-15 -3720 ((-154) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-910)))) (-15 -3720 ((-910) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1013)))) (-15 -3720 ((-1013) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1031)))) (-15 -3720 ((-1031) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1036)))) (-15 -3720 ((-1036) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-581)))) (-15 -3720 ((-581) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1107)))) (-15 -3720 ((-1107) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-129)))) (-15 -3720 ((-129) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-110)))) (-15 -3720 ((-110) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-432)))) (-15 -3720 ((-432) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-543)))) (-15 -3720 ((-543) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-460)))) (-15 -3720 ((-460) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-1099)))) (-15 -3720 ((-1099) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-499)))) (-15 -3720 ((-499) $)))) +(((-64) . T) ((-73) . T) ((-571 (-1122)) . T) ((-568 (-797)) . T) ((-568 (-1122)) . T) ((-444 (-1122)) . T) ((-1041) . T) ((-1023) . T) ((-1157) . T) ((-1203) . T)) +((-3522 (((-1213) (-599 (-797))) 22 T ELT) (((-1213) (-797)) 21 T ELT)) (-3521 (((-1213) (-599 (-797))) 20 T ELT) (((-1213) (-797)) 19 T ELT)) (-3520 (((-1213) (-599 (-797))) 18 T ELT) (((-1213) (-797)) 10 T ELT) (((-1213) (-1099) (-797)) 16 T ELT))) +(((-1078) (-10 -7 (-15 -3520 ((-1213) (-1099) (-797))) (-15 -3520 ((-1213) (-797))) (-15 -3521 ((-1213) (-797))) (-15 -3522 ((-1213) (-797))) (-15 -3520 ((-1213) (-599 (-797)))) (-15 -3521 ((-1213) (-599 (-797)))) (-15 -3522 ((-1213) (-599 (-797)))))) (T -1078)) +((-3522 (*1 *2 *3) (-12 (-5 *3 (-599 (-797))) (-5 *2 (-1213)) (-5 *1 (-1078)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-599 (-797))) (-5 *2 (-1213)) (-5 *1 (-1078)))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-599 (-797))) (-5 *2 (-1213)) (-5 *1 (-1078)))) (-3522 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1213)) (-5 *1 (-1078)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1213)) (-5 *1 (-1078)))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1213)) (-5 *1 (-1078)))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-797)) (-5 *2 (-1213)) (-5 *1 (-1078))))) +((-3526 (($ $ $) 10 T ELT)) (-3525 (($ $) 9 T ELT)) (-3529 (($ $ $) 13 T ELT)) (-3531 (($ $ $) 15 T ELT)) (-3528 (($ $ $) 12 T ELT)) (-3530 (($ $ $) 14 T ELT)) (-3533 (($ $) 17 T ELT)) (-3532 (($ $) 16 T ELT)) (-3523 (($ $) 6 T ELT)) (-3527 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3524 (($ $ $) 8 T ELT))) +(((-1079) (-113)) (T -1079)) +((-3533 (*1 *1 *1) (-4 *1 (-1079))) (-3532 (*1 *1 *1) (-4 *1 (-1079))) (-3531 (*1 *1 *1 *1) (-4 *1 (-1079))) (-3530 (*1 *1 *1 *1) (-4 *1 (-1079))) (-3529 (*1 *1 *1 *1) (-4 *1 (-1079))) (-3528 (*1 *1 *1 *1) (-4 *1 (-1079))) (-3527 (*1 *1 *1 *1) (-4 *1 (-1079))) (-3526 (*1 *1 *1 *1) (-4 *1 (-1079))) (-3525 (*1 *1 *1) (-4 *1 (-1079))) (-3524 (*1 *1 *1 *1) (-4 *1 (-1079))) (-3527 (*1 *1 *1) (-4 *1 (-1079))) (-3523 (*1 *1 *1) (-4 *1 (-1079)))) +(-13 (-10 -8 (-15 -3523 ($ $)) (-15 -3527 ($ $)) (-15 -3524 ($ $ $)) (-15 -3525 ($ $)) (-15 -3526 ($ $ $)) (-15 -3527 ($ $ $)) (-15 -3528 ($ $ $)) (-15 -3529 ($ $ $)) (-15 -3530 ($ $ $)) (-15 -3531 ($ $ $)) (-15 -3532 ($ $)) (-15 -3533 ($ $)))) +((-2687 (((-85) $ $) 44 T ELT)) (-3542 ((|#1| $) 17 T ELT)) (-3534 (((-85) $ $ (-1 (-85) |#2| |#2|)) 39 T ELT)) (-3541 (((-85) $) 19 T ELT)) (-3539 (($ $ |#1|) 30 T ELT)) (-3537 (($ $ (-85)) 32 T ELT)) (-3536 (($ $) 33 T ELT)) (-3538 (($ $ |#2|) 31 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3535 (((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|)) 38 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3543 (((-85) $) 16 T ELT)) (-3713 (($) 13 T ELT)) (-3540 (($ $) 29 T ELT)) (-3670 (($ |#1| |#2| (-85)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1633 |#2|))) 23 T ELT) (((-599 $) (-599 (-2 (|:| |val| |#1|) (|:| -1633 |#2|)))) 26 T ELT) (((-599 $) |#1| (-599 |#2|)) 28 T ELT)) (-4072 ((|#2| $) 18 T ELT)) (-4096 (((-797) $) 53 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 42 T ELT))) +(((-1080 |#1| |#2|) (-13 (-1041) (-10 -8 (-15 -3713 ($)) (-15 -3543 ((-85) $)) (-15 -3542 (|#1| $)) (-15 -4072 (|#2| $)) (-15 -3541 ((-85) $)) (-15 -3670 ($ |#1| |#2| (-85))) (-15 -3670 ($ |#1| |#2|)) (-15 -3670 ($ (-2 (|:| |val| |#1|) (|:| -1633 |#2|)))) (-15 -3670 ((-599 $) (-599 (-2 (|:| |val| |#1|) (|:| -1633 |#2|))))) (-15 -3670 ((-599 $) |#1| (-599 |#2|))) (-15 -3540 ($ $)) (-15 -3539 ($ $ |#1|)) (-15 -3538 ($ $ |#2|)) (-15 -3537 ($ $ (-85))) (-15 -3536 ($ $)) (-15 -3535 ((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|))) (-15 -3534 ((-85) $ $ (-1 (-85) |#2| |#2|))))) (-13 (-1041) (-34)) (-13 (-1041) (-34))) (T -1080)) +((-3713 (*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34))))) (-3542 (*1 *2 *1) (-12 (-4 *2 (-13 (-1041) (-34))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-13 (-1041) (-34))))) (-4072 (*1 *2 *1) (-12 (-4 *2 (-13 (-1041) (-34))) (-5 *1 (-1080 *3 *2)) (-4 *3 (-13 (-1041) (-34))))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34))))) (-3670 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))))) (-3670 (*1 *1 *2 *3) (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))))) (-3670 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1633 *4))) (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34))) (-5 *1 (-1080 *3 *4)))) (-3670 (*1 *2 *3) (-12 (-5 *3 (-599 (-2 (|:| |val| *4) (|:| -1633 *5)))) (-4 *4 (-13 (-1041) (-34))) (-4 *5 (-13 (-1041) (-34))) (-5 *2 (-599 (-1080 *4 *5))) (-5 *1 (-1080 *4 *5)))) (-3670 (*1 *2 *3 *4) (-12 (-5 *4 (-599 *5)) (-4 *5 (-13 (-1041) (-34))) (-5 *2 (-599 (-1080 *3 *5))) (-5 *1 (-1080 *3 *5)) (-4 *3 (-13 (-1041) (-34))))) (-3540 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))))) (-3539 (*1 *1 *1 *2) (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))))) (-3538 (*1 *1 *1 *2) (-12 (-5 *1 (-1080 *3 *2)) (-4 *3 (-13 (-1041) (-34))) (-4 *2 (-13 (-1041) (-34))))) (-3537 (*1 *1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34))))) (-3536 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))))) (-3535 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1041) (-34))) (-4 *6 (-13 (-1041) (-34))) (-5 *2 (-85)) (-5 *1 (-1080 *5 *6)))) (-3534 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1041) (-34))) (-5 *2 (-85)) (-5 *1 (-1080 *4 *5)) (-4 *4 (-13 (-1041) (-34)))))) +((-2687 (((-85) $ $) NIL (|has| (-1080 |#1| |#2|) (-73)) ELT)) (-3542 (((-1080 |#1| |#2|) $) 27 T ELT)) (-3551 (($ $) 91 T ELT)) (-3547 (((-85) (-1080 |#1| |#2|) $ (-1 (-85) |#2| |#2|)) 100 T ELT)) (-3544 (($ $ $ (-599 (-1080 |#1| |#2|))) 108 T ELT) (($ $ $ (-599 (-1080 |#1| |#2|)) (-1 (-85) |#2| |#2|)) 109 T ELT)) (-3146 (((-1080 |#1| |#2|) $ (-1080 |#1| |#2|)) 46 (|has| $ (-6 -4146)) ELT)) (-3938 (((-1080 |#1| |#2|) $ #1="value" (-1080 |#1| |#2|)) NIL (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 44 (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3549 (((-599 (-2 (|:| |val| |#1|) (|:| -1633 |#2|))) $) 95 T ELT)) (-3545 (($ (-1080 |#1| |#2|) $) 42 T ELT)) (-3546 (($ (-1080 |#1| |#2|) $) 34 T ELT)) (-3010 (((-599 (-1080 |#1| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) 54 T ELT)) (-3548 (((-85) (-1080 |#1| |#2|) $) 97 T ELT)) (-3148 (((-85) $ $) NIL (|has| (-1080 |#1| |#2|) (-1041)) ELT)) (-2727 (((-599 (-1080 |#1| |#2|)) $) 58 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-1080 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-1080 |#1| |#2|) (-1041))) ELT)) (-2051 (($ (-1 (-1080 |#1| |#2|) (-1080 |#1| |#2|)) $) 50 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-1080 |#1| |#2|) (-1080 |#1| |#2|)) $) 49 T ELT)) (-3151 (((-599 (-1080 |#1| |#2|)) $) 56 T ELT)) (-3667 (((-85) $) 45 T ELT)) (-3380 (((-1099) $) NIL (|has| (-1080 |#1| |#2|) (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| (-1080 |#1| |#2|) (-1041)) ELT)) (-3552 (((-3 $ "failed") $) 89 T ELT)) (-2049 (((-85) (-1 (-85) (-1080 |#1| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-1080 |#1| |#2|)))) NIL (-12 (|has| (-1080 |#1| |#2|) (-263 (-1080 |#1| |#2|))) (|has| (-1080 |#1| |#2|) (-1041))) ELT) (($ $ (-247 (-1080 |#1| |#2|))) NIL (-12 (|has| (-1080 |#1| |#2|) (-263 (-1080 |#1| |#2|))) (|has| (-1080 |#1| |#2|) (-1041))) ELT) (($ $ (-1080 |#1| |#2|) (-1080 |#1| |#2|)) NIL (-12 (|has| (-1080 |#1| |#2|) (-263 (-1080 |#1| |#2|))) (|has| (-1080 |#1| |#2|) (-1041))) ELT) (($ $ (-599 (-1080 |#1| |#2|)) (-599 (-1080 |#1| |#2|))) NIL (-12 (|has| (-1080 |#1| |#2|) (-263 (-1080 |#1| |#2|))) (|has| (-1080 |#1| |#2|) (-1041))) ELT)) (-1248 (((-85) $ $) 53 T ELT)) (-3543 (((-85) $) 24 T ELT)) (-3713 (($) 26 T ELT)) (-3950 (((-1080 |#1| |#2|) $ #1#) NIL T ELT)) (-3150 (((-499) $ $) NIL T ELT)) (-3783 (((-85) $) 47 T ELT)) (-2048 (((-714) (-1 (-85) (-1080 |#1| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-1080 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-1080 |#1| |#2|) (-1041))) ELT)) (-3540 (($ $) 52 T ELT)) (-3670 (($ (-1080 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-599 $)) 13 T ELT) (($ |#1| |#2| (-599 (-1080 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-599 |#2|)) 18 T ELT)) (-3550 (((-599 |#2|) $) 96 T ELT)) (-4096 (((-797) $) 87 (|has| (-1080 |#1| |#2|) (-568 (-797))) ELT)) (-3662 (((-599 $) $) 31 T ELT)) (-3149 (((-85) $ $) NIL (|has| (-1080 |#1| |#2|) (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| (-1080 |#1| |#2|) (-73)) ELT)) (-2050 (((-85) (-1 (-85) (-1080 |#1| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 70 (|has| (-1080 |#1| |#2|) (-73)) ELT)) (-4107 (((-714) $) 64 (|has| $ (-6 -4145)) ELT))) +(((-1081 |#1| |#2|) (-13 (-950 (-1080 |#1| |#2|)) (-10 -8 (-6 -4146) (-6 -4145) (-15 -3552 ((-3 $ "failed") $)) (-15 -3551 ($ $)) (-15 -3670 ($ (-1080 |#1| |#2|))) (-15 -3670 ($ |#1| |#2| (-599 $))) (-15 -3670 ($ |#1| |#2| (-599 (-1080 |#1| |#2|)))) (-15 -3670 ($ |#1| |#2| |#1| (-599 |#2|))) (-15 -3550 ((-599 |#2|) $)) (-15 -3549 ((-599 (-2 (|:| |val| |#1|) (|:| -1633 |#2|))) $)) (-15 -3548 ((-85) (-1080 |#1| |#2|) $)) (-15 -3547 ((-85) (-1080 |#1| |#2|) $ (-1 (-85) |#2| |#2|))) (-15 -3546 ($ (-1080 |#1| |#2|) $)) (-15 -3545 ($ (-1080 |#1| |#2|) $)) (-15 -3544 ($ $ $ (-599 (-1080 |#1| |#2|)))) (-15 -3544 ($ $ $ (-599 (-1080 |#1| |#2|)) (-1 (-85) |#2| |#2|))))) (-13 (-1041) (-34)) (-13 (-1041) (-34))) (T -1081)) +((-3552 (*1 *1 *1) (|partial| -12 (-5 *1 (-1081 *2 *3)) (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))))) (-3551 (*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))))) (-3670 (*1 *1 *2) (-12 (-5 *2 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34))) (-5 *1 (-1081 *3 *4)))) (-3670 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-599 (-1081 *2 *3))) (-5 *1 (-1081 *2 *3)) (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))))) (-3670 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-599 (-1080 *2 *3))) (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))) (-5 *1 (-1081 *2 *3)))) (-3670 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-599 *3)) (-4 *3 (-13 (-1041) (-34))) (-5 *1 (-1081 *2 *3)) (-4 *2 (-13 (-1041) (-34))))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-599 *4)) (-5 *1 (-1081 *3 *4)) (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34))))) (-3549 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-1081 *3 *4)) (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34))))) (-3548 (*1 *2 *3 *1) (-12 (-5 *3 (-1080 *4 *5)) (-4 *4 (-13 (-1041) (-34))) (-4 *5 (-13 (-1041) (-34))) (-5 *2 (-85)) (-5 *1 (-1081 *4 *5)))) (-3547 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1080 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1041) (-34))) (-4 *6 (-13 (-1041) (-34))) (-5 *2 (-85)) (-5 *1 (-1081 *5 *6)))) (-3546 (*1 *1 *2 *1) (-12 (-5 *2 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34))) (-5 *1 (-1081 *3 *4)))) (-3545 (*1 *1 *2 *1) (-12 (-5 *2 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34))) (-5 *1 (-1081 *3 *4)))) (-3544 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-599 (-1080 *3 *4))) (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34))) (-5 *1 (-1081 *3 *4)))) (-3544 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-1080 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) (-4 *4 (-13 (-1041) (-34))) (-4 *5 (-13 (-1041) (-34))) (-5 *1 (-1081 *4 *5))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3554 (($ $) NIL T ELT)) (-3470 ((|#2| $) NIL T ELT)) (-3243 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3553 (($ (-647 |#2|)) 56 T ELT)) (-3245 (((-85) $) NIL T ELT)) (-3473 (($ |#2|) 14 T ELT)) (-3874 (($) NIL T CONST)) (-3232 (($ $) 69 (|has| |#2| (-261)) ELT)) (-3234 (((-196 |#1| |#2|) $ (-499)) 42 T ELT)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) ((|#2| $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#2|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) 83 T ELT)) (-3231 (((-714) $) 71 (|has| |#2| (-510)) ELT)) (-3235 ((|#2| $ (-499) (-499)) NIL T ELT)) (-3010 (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-3230 (((-714) $) 73 (|has| |#2| (-510)) ELT)) (-3229 (((-599 (-196 |#1| |#2|)) $) 77 (|has| |#2| (-510)) ELT)) (-3237 (((-714) $) NIL T ELT)) (-3764 (($ |#2|) 25 T ELT)) (-3236 (((-714) $) NIL T ELT)) (-3467 ((|#2| $) 67 (|has| |#2| (-6 (-4147 #2="*"))) ELT)) (-3241 (((-499) $) NIL T ELT)) (-3239 (((-499) $) NIL T ELT)) (-2727 (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-3240 (((-499) $) NIL T ELT)) (-3238 (((-499) $) NIL T ELT)) (-3246 (($ (-599 (-599 |#2|))) 37 T ELT)) (-2051 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3742 (((-599 (-599 |#2|)) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3738 (((-3 $ #1#) $) 80 (|has| |#2| (-318)) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3606 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-510)) ELT)) (-2049 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#2| $ (-499) (-499) |#2|) NIL T ELT) ((|#2| $ (-499) (-499)) NIL T ELT)) (-3908 (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-714)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1117)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#2| (-838 (-1117))) ELT)) (-3469 ((|#2| $) NIL T ELT)) (-3472 (($ (-599 |#2|)) 50 T ELT)) (-3244 (((-85) $) NIL T ELT)) (-3471 (((-196 |#1| |#2|) $) NIL T ELT)) (-3468 ((|#2| $) 65 (|has| |#2| (-6 (-4147 #2#))) ELT)) (-2048 (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) 90 (|has| |#2| (-569 (-488))) ELT)) (-3233 (((-196 |#1| |#2|) $ (-499)) 44 T ELT)) (-4096 (((-797) $) 47 T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (($ |#2|) NIL T ELT) (((-647 |#2|) $) 52 T ELT)) (-3248 (((-714)) 23 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3242 (((-85) $) NIL T ELT)) (-2779 (($) 16 T CONST)) (-2785 (($) 21 T CONST)) (-2790 (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-714)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1117)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#2| (-838 (-1117))) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#2|) NIL (|has| |#2| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 63 T ELT) (($ $ (-499)) 82 (|has| |#2| (-318)) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-196 |#1| |#2|) $ (-196 |#1| |#2|)) 59 T ELT) (((-196 |#1| |#2|) (-196 |#1| |#2|) $) 61 T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-1082 |#1| |#2|) (-13 (-1063 |#1| |#2| (-196 |#1| |#2|) (-196 |#1| |#2|)) (-568 (-647 |#2|)) (-10 -8 (-15 -3764 ($ |#2|)) (-15 -3554 ($ $)) (-15 -3553 ($ (-647 |#2|))) (IF (|has| |#2| (-6 (-4147 #1="*"))) (-6 -4134) |%noBranch|) (IF (|has| |#2| (-6 (-4147 #1#))) (IF (|has| |#2| (-6 -4142)) (-6 -4142) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-569 (-488))) (-6 (-569 (-488))) |%noBranch|))) (-714) (-989)) (T -1082)) +((-3764 (*1 *1 *2) (-12 (-5 *1 (-1082 *3 *2)) (-14 *3 (-714)) (-4 *2 (-989)))) (-3554 (*1 *1 *1) (-12 (-5 *1 (-1082 *2 *3)) (-14 *2 (-714)) (-4 *3 (-989)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-647 *4)) (-4 *4 (-989)) (-5 *1 (-1082 *3 *4)) (-14 *3 (-714))))) +((-3567 (($ $) 19 T ELT)) (-3557 (($ $ (-117)) 10 T ELT) (($ $ (-114)) 14 T ELT)) (-3565 (((-85) $ $) 24 T ELT)) (-3569 (($ $) 17 T ELT)) (-3950 (((-117) $ (-499) (-117)) NIL T ELT) (((-117) $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT) (($ $ $) 31 T ELT)) (-4096 (($ (-117)) 29 T ELT) (((-797) $) NIL T ELT))) +(((-1083 |#1|) (-10 -7 (-15 -4096 ((-797) |#1|)) (-15 -3950 (|#1| |#1| |#1|)) (-15 -3557 (|#1| |#1| (-114))) (-15 -3557 (|#1| |#1| (-117))) (-15 -4096 (|#1| (-117))) (-15 -3565 ((-85) |#1| |#1|)) (-15 -3567 (|#1| |#1|)) (-15 -3569 (|#1| |#1|)) (-15 -3950 (|#1| |#1| (-1174 (-499)))) (-15 -3950 ((-117) |#1| (-499))) (-15 -3950 ((-117) |#1| (-499) (-117)))) (-1084)) (T -1083)) +NIL +((-2687 (((-85) $ $) 19 (|has| (-117) (-73)) ELT)) (-3566 (($ $) 129 T ELT)) (-3567 (($ $) 130 T ELT)) (-3557 (($ $ (-117)) 117 T ELT) (($ $ (-114)) 116 T ELT)) (-2299 (((-1213) $ (-499) (-499)) 44 (|has| $ (-6 -4146)) ELT)) (-3564 (((-85) $ $) 127 T ELT)) (-3563 (((-85) $ $ (-499)) 126 T ELT)) (-3558 (((-599 $) $ (-117)) 119 T ELT) (((-599 $) $ (-114)) 118 T ELT)) (-1825 (((-85) (-1 (-85) (-117) (-117)) $) 107 T ELT) (((-85) $) 101 (|has| (-117) (-781)) ELT)) (-1823 (($ (-1 (-85) (-117) (-117)) $) 98 (|has| $ (-6 -4146)) ELT) (($ $) 97 (-12 (|has| (-117) (-781)) (|has| $ (-6 -4146))) ELT)) (-3030 (($ (-1 (-85) (-117) (-117)) $) 108 T ELT) (($ $) 102 (|has| (-117) (-781)) ELT)) (-3938 (((-117) $ (-499) (-117)) 56 (|has| $ (-6 -4146)) ELT) (((-117) $ (-1174 (-499)) (-117)) 64 (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) (-117)) $) 81 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-3555 (($ $ (-117)) 113 T ELT) (($ $ (-114)) 112 T ELT)) (-2397 (($ $) 99 (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) 109 T ELT)) (-3560 (($ $ (-1174 (-499)) $) 123 T ELT)) (-1386 (($ $) 84 (-12 (|has| (-117) (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ (-117) $) 83 (-12 (|has| (-117) (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) (-117)) $) 80 (|has| $ (-6 -4145)) ELT)) (-3992 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) 82 (-12 (|has| (-117) (-1041)) (|has| $ (-6 -4145))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) 79 (|has| $ (-6 -4145)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) 78 (|has| $ (-6 -4145)) ELT)) (-1609 (((-117) $ (-499) (-117)) 57 (|has| $ (-6 -4146)) ELT)) (-3235 (((-117) $ (-499)) 55 T ELT)) (-3565 (((-85) $ $) 128 T ELT)) (-3559 (((-499) (-1 (-85) (-117)) $) 106 T ELT) (((-499) (-117) $) 105 (|has| (-117) (-1041)) ELT) (((-499) (-117) $ (-499)) 104 (|has| (-117) (-1041)) ELT) (((-499) $ $ (-499)) 122 T ELT) (((-499) (-114) $ (-499)) 121 T ELT)) (-3010 (((-599 (-117)) $) 30 (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) (-117)) 74 T ELT)) (-2301 (((-499) $) 47 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) 91 (|has| (-117) (-781)) ELT)) (-3658 (($ (-1 (-85) (-117) (-117)) $ $) 110 T ELT) (($ $ $) 103 (|has| (-117) (-781)) ELT)) (-2727 (((-599 (-117)) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-117) $) 27 (-12 (|has| (-117) (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 48 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) 92 (|has| (-117) (-781)) ELT)) (-3561 (((-85) $ $ (-117)) 124 T ELT)) (-3562 (((-714) $ $ (-117)) 125 T ELT)) (-2051 (($ (-1 (-117) (-117)) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-117) (-117)) $) 35 T ELT) (($ (-1 (-117) (-117) (-117)) $ $) 69 T ELT)) (-3568 (($ $) 131 T ELT)) (-3569 (($ $) 132 T ELT)) (-3556 (($ $ (-117)) 115 T ELT) (($ $ (-114)) 114 T ELT)) (-3380 (((-1099) $) 22 (|has| (-117) (-1041)) ELT)) (-2404 (($ (-117) $ (-499)) 66 T ELT) (($ $ $ (-499)) 65 T ELT)) (-2304 (((-599 (-499)) $) 50 T ELT)) (-2305 (((-85) (-499) $) 51 T ELT)) (-3381 (((-1060) $) 21 (|has| (-117) (-1041)) ELT)) (-3951 (((-117) $) 46 (|has| (-499) (-781)) ELT)) (-1387 (((-3 (-117) "failed") (-1 (-85) (-117)) $) 77 T ELT)) (-2300 (($ $ (-117)) 45 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) (-117)) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-117)))) 26 (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT) (($ $ (-247 (-117))) 25 (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT) (($ $ (-117) (-117)) 24 (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT) (($ $ (-599 (-117)) (-599 (-117))) 23 (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) (-117) $) 49 (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT)) (-2306 (((-599 (-117)) $) 52 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 (((-117) $ (-499) (-117)) 54 T ELT) (((-117) $ (-499)) 53 T ELT) (($ $ (-1174 (-499))) 75 T ELT) (($ $ $) 111 T ELT)) (-2405 (($ $ (-499)) 68 T ELT) (($ $ (-1174 (-499))) 67 T ELT)) (-2048 (((-714) (-1 (-85) (-117)) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) (-117) $) 28 (-12 (|has| (-117) (-1041)) (|has| $ (-6 -4145))) ELT)) (-1824 (($ $ $ (-499)) 100 (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 85 (|has| (-117) (-569 (-488))) ELT)) (-3670 (($ (-599 (-117))) 76 T ELT)) (-3952 (($ $ (-117)) 73 T ELT) (($ (-117) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-599 $)) 70 T ELT)) (-4096 (($ (-117)) 120 T ELT) (((-797) $) 17 (|has| (-117) (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| (-117) (-73)) ELT)) (-2050 (((-85) (-1 (-85) (-117)) $) 33 (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) 93 (|has| (-117) (-781)) ELT)) (-2686 (((-85) $ $) 95 (|has| (-117) (-781)) ELT)) (-3174 (((-85) $ $) 18 (|has| (-117) (-73)) ELT)) (-2805 (((-85) $ $) 94 (|has| (-117) (-781)) ELT)) (-2806 (((-85) $ $) 96 (|has| (-117) (-781)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-1084) (-113)) (T -1084)) +((-3569 (*1 *1 *1) (-4 *1 (-1084))) (-3568 (*1 *1 *1) (-4 *1 (-1084))) (-3567 (*1 *1 *1) (-4 *1 (-1084))) (-3566 (*1 *1 *1) (-4 *1 (-1084))) (-3565 (*1 *2 *1 *1) (-12 (-4 *1 (-1084)) (-5 *2 (-85)))) (-3564 (*1 *2 *1 *1) (-12 (-4 *1 (-1084)) (-5 *2 (-85)))) (-3563 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1084)) (-5 *3 (-499)) (-5 *2 (-85)))) (-3562 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1084)) (-5 *3 (-117)) (-5 *2 (-714)))) (-3561 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1084)) (-5 *3 (-117)) (-5 *2 (-85)))) (-3560 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1084)) (-5 *2 (-1174 (-499))))) (-3559 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-499)))) (-3559 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-499)) (-5 *3 (-114)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1084)))) (-3558 (*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-599 *1)) (-4 *1 (-1084)))) (-3558 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-599 *1)) (-4 *1 (-1084)))) (-3557 (*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-117)))) (-3557 (*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-114)))) (-3556 (*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-117)))) (-3556 (*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-114)))) (-3555 (*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-117)))) (-3555 (*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-114)))) (-3950 (*1 *1 *1 *1) (-4 *1 (-1084)))) +(-13 (-19 (-117)) (-10 -8 (-15 -3569 ($ $)) (-15 -3568 ($ $)) (-15 -3567 ($ $)) (-15 -3566 ($ $)) (-15 -3565 ((-85) $ $)) (-15 -3564 ((-85) $ $)) (-15 -3563 ((-85) $ $ (-499))) (-15 -3562 ((-714) $ $ (-117))) (-15 -3561 ((-85) $ $ (-117))) (-15 -3560 ($ $ (-1174 (-499)) $)) (-15 -3559 ((-499) $ $ (-499))) (-15 -3559 ((-499) (-114) $ (-499))) (-15 -4096 ($ (-117))) (-15 -3558 ((-599 $) $ (-117))) (-15 -3558 ((-599 $) $ (-114))) (-15 -3557 ($ $ (-117))) (-15 -3557 ($ $ (-114))) (-15 -3556 ($ $ (-117))) (-15 -3556 ($ $ (-114))) (-15 -3555 ($ $ (-117))) (-15 -3555 ($ $ (-114))) (-15 -3950 ($ $ $)))) +(((-34) . T) ((-73) -3677 (|has| (-117) (-1041)) (|has| (-117) (-781)) (|has| (-117) (-73))) ((-568 (-797)) -3677 (|has| (-117) (-1041)) (|has| (-117) (-781)) (|has| (-117) (-568 (-797)))) ((-124 (-117)) . T) ((-569 (-488)) |has| (-117) (-569 (-488))) ((-240 (-499) (-117)) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) (-117)) . T) ((-263 (-117)) -12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ((-327 (-117)) . T) ((-443 (-117)) . T) ((-554 (-499) (-117)) . T) ((-468 (-117) (-117)) -12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ((-609 (-117)) . T) ((-19 (-117)) . T) ((-781) |has| (-117) (-781)) ((-784) |has| (-117) (-781)) ((-1041) -3677 (|has| (-117) (-1041)) (|has| (-117) (-781))) ((-1157) . T)) +((-3576 (((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-599 |#4|) (-599 |#5|) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) (-714)) 112 T ELT)) (-3573 (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714)) 61 T ELT)) (-3577 (((-1213) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-714)) 97 T ELT)) (-3571 (((-714) (-599 |#4|) (-599 |#5|)) 30 T ELT)) (-3574 (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714)) 63 T ELT) (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714) (-85)) 65 T ELT)) (-3575 (((-599 |#5|) (-599 |#4|) (-599 |#5|) (-85) (-85) (-85) (-85) (-85)) 84 T ELT) (((-599 |#5|) (-599 |#4|) (-599 |#5|) (-85) (-85)) 85 T ELT)) (-4122 (((-1099) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) 90 T ELT)) (-3572 (((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5|) 60 T ELT)) (-3570 (((-714) (-599 |#4|) (-599 |#5|)) 21 T ELT))) +(((-1085 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3570 ((-714) (-599 |#4|) (-599 |#5|))) (-15 -3571 ((-714) (-599 |#4|) (-599 |#5|))) (-15 -3572 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5|)) (-15 -3573 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714))) (-15 -3573 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5|)) (-15 -3574 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714) (-85))) (-15 -3574 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5| (-714))) (-15 -3574 ((-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) |#4| |#5|)) (-15 -3575 ((-599 |#5|) (-599 |#4|) (-599 |#5|) (-85) (-85))) (-15 -3575 ((-599 |#5|) (-599 |#4|) (-599 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3576 ((-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-599 |#4|) (-599 |#5|) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-2 (|:| |done| (-599 |#5|)) (|:| |todo| (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))))) (-714))) (-15 -4122 ((-1099) (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|)))) (-15 -3577 ((-1213) (-599 (-2 (|:| |val| (-599 |#4|)) (|:| -1633 |#5|))) (-714)))) (-406) (-738) (-781) (-1005 |#1| |#2| |#3|) (-1049 |#1| |#2| |#3| |#4|)) (T -1085)) +((-3577 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-2 (|:| |val| (-599 *8)) (|:| -1633 *9)))) (-5 *4 (-714)) (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1049 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-1213)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-599 *7)) (|:| -1633 *8))) (-4 *7 (-1005 *4 *5 *6)) (-4 *8 (-1049 *4 *5 *6 *7)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-1099)) (-5 *1 (-1085 *4 *5 *6 *7 *8)))) (-3576 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-599 *11)) (|:| |todo| (-599 (-2 (|:| |val| *3) (|:| -1633 *11)))))) (-5 *6 (-714)) (-5 *2 (-599 (-2 (|:| |val| (-599 *10)) (|:| -1633 *11)))) (-5 *3 (-599 *10)) (-5 *4 (-599 *11)) (-4 *10 (-1005 *7 *8 *9)) (-4 *11 (-1049 *7 *8 *9 *10)) (-4 *7 (-406)) (-4 *8 (-738)) (-4 *9 (-781)) (-5 *1 (-1085 *7 *8 *9 *10 *11)))) (-3575 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-599 *9)) (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1049 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) (-3575 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-599 *9)) (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1049 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) (-3574 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1049 *5 *6 *7 *3)))) (-3574 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-714)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *3 (-1005 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1049 *6 *7 *8 *3)))) (-3574 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-714)) (-5 *6 (-85)) (-4 *7 (-406)) (-4 *8 (-738)) (-4 *9 (-781)) (-4 *3 (-1005 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1085 *7 *8 *9 *3 *4)) (-4 *4 (-1049 *7 *8 *9 *3)))) (-3573 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1049 *5 *6 *7 *3)))) (-3573 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-714)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *3 (-1005 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1049 *6 *7 *8 *3)))) (-3572 (*1 *2 *3 *4) (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-599 *4)) (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1049 *5 *6 *7 *3)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 *9)) (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1049 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-714)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) (-3570 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 *9)) (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1049 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-714)) (-5 *1 (-1085 *5 *6 *7 *8 *9))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3831 (((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 |#4|)))) (-599 |#4|)) NIL T ELT)) (-3832 (((-599 $) (-599 |#4|)) 121 T ELT) (((-599 $) (-599 |#4|) (-85)) 122 T ELT) (((-599 $) (-599 |#4|) (-85) (-85)) 120 T ELT) (((-599 $) (-599 |#4|) (-85) (-85) (-85) (-85)) 123 T ELT)) (-3204 (((-599 |#3|) $) NIL T ELT)) (-3029 (((-85) $) NIL T ELT)) (-3020 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3843 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3838 ((|#4| |#4| $) NIL T ELT)) (-3925 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| $) 94 T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3860 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#4| #1="failed") $ |#3|) 73 T ELT)) (-3874 (($) NIL T CONST)) (-3025 (((-85) $) 29 (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3839 (((-599 |#4|) (-599 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) NIL (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) NIL (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ #1#) (-599 |#4|)) NIL T ELT)) (-3294 (($ (-599 |#4|)) NIL T ELT)) (-3949 (((-3 $ #1#) $) 45 T ELT)) (-3835 ((|#4| |#4| $) 76 T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-3546 (($ |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 88 (|has| |#1| (-510)) ELT)) (-3844 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3833 ((|#4| |#4| $) NIL T ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4145)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3846 (((-2 (|:| -4011 (-599 |#4|)) (|:| -1795 (-599 |#4|))) $) NIL T ELT)) (-3335 (((-85) |#4| $) NIL T ELT)) (-3333 (((-85) |#4| $) NIL T ELT)) (-3336 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3578 (((-2 (|:| |val| (-599 |#4|)) (|:| |towers| (-599 $))) (-599 |#4|) (-85) (-85)) 136 T ELT)) (-3010 (((-599 |#4|) $) 18 (|has| $ (-6 -4145)) ELT)) (-3845 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3318 ((|#3| $) 38 T ELT)) (-2727 (((-599 |#4|) $) 19 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-2051 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3035 (((-599 |#3|) $) NIL T ELT)) (-3034 (((-85) |#3| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3329 (((-3 |#4| (-599 $)) |#4| |#4| $) NIL T ELT)) (-3328 (((-599 (-2 (|:| |val| |#4|) (|:| -1633 $))) |#4| |#4| $) 114 T ELT)) (-3948 (((-3 |#4| #1#) $) 42 T ELT)) (-3330 (((-599 $) |#4| $) 99 T ELT)) (-3332 (((-3 (-85) (-599 $)) |#4| $) NIL T ELT)) (-3331 (((-599 (-2 (|:| |val| (-85)) (|:| -1633 $))) |#4| $) 109 T ELT) (((-85) |#4| $) 65 T ELT)) (-3376 (((-599 $) |#4| $) 118 T ELT) (((-599 $) (-599 |#4|) $) NIL T ELT) (((-599 $) (-599 |#4|) (-599 $)) 119 T ELT) (((-599 $) |#4| (-599 $)) NIL T ELT)) (-3579 (((-599 $) (-599 |#4|) (-85) (-85) (-85)) 131 T ELT)) (-3580 (($ |#4| $) 85 T ELT) (($ (-599 |#4|) $) 86 T ELT) (((-599 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 84 T ELT)) (-3847 (((-599 |#4|) $) NIL T ELT)) (-3841 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3836 ((|#4| |#4| $) NIL T ELT)) (-3849 (((-85) $ $) NIL T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-510)) ELT)) (-3842 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3837 ((|#4| |#4| $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 (((-3 |#4| #1#) $) 40 T ELT)) (-1387 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3829 (((-3 $ #1#) $ |#4|) 59 T ELT)) (-3919 (($ $ |#4|) NIL T ELT) (((-599 $) |#4| $) 101 T ELT) (((-599 $) |#4| (-599 $)) NIL T ELT) (((-599 $) (-599 |#4|) $) NIL T ELT) (((-599 $) (-599 |#4|) (-599 $)) 96 T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 17 T ELT)) (-3713 (($) 14 T ELT)) (-4098 (((-714) $) NIL T ELT)) (-2048 (((-714) |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) (((-714) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 13 T ELT)) (-4122 (((-488) $) NIL (|has| |#4| (-569 (-488))) ELT)) (-3670 (($ (-599 |#4|)) 22 T ELT)) (-3031 (($ $ |#3|) 52 T ELT)) (-3033 (($ $ |#3|) 54 T ELT)) (-3834 (($ $) NIL T ELT)) (-3032 (($ $ |#3|) NIL T ELT)) (-4096 (((-797) $) 35 T ELT) (((-599 |#4|) $) 46 T ELT)) (-3828 (((-714) $) NIL (|has| |#3| (-323)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3840 (((-85) $ (-1 (-85) |#4| (-599 |#4|))) NIL T ELT)) (-3327 (((-599 $) |#4| $) 66 T ELT) (((-599 $) |#4| (-599 $)) NIL T ELT) (((-599 $) (-599 |#4|) $) NIL T ELT) (((-599 $) (-599 |#4|) (-599 $)) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3830 (((-599 |#3|) $) NIL T ELT)) (-3334 (((-85) |#4| $) NIL T ELT)) (-4083 (((-85) |#3| $) 72 T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-1086 |#1| |#2| |#3| |#4|) (-13 (-1049 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3580 ((-599 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3832 ((-599 $) (-599 |#4|) (-85) (-85))) (-15 -3832 ((-599 $) (-599 |#4|) (-85) (-85) (-85) (-85))) (-15 -3579 ((-599 $) (-599 |#4|) (-85) (-85) (-85))) (-15 -3578 ((-2 (|:| |val| (-599 |#4|)) (|:| |towers| (-599 $))) (-599 |#4|) (-85) (-85))))) (-406) (-738) (-781) (-1005 |#1| |#2| |#3|)) (T -1086)) +((-3580 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-1086 *5 *6 *7 *3))) (-5 *1 (-1086 *5 *6 *7 *3)) (-4 *3 (-1005 *5 *6 *7)))) (-3832 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-1086 *5 *6 *7 *8))) (-5 *1 (-1086 *5 *6 *7 *8)))) (-3832 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-1086 *5 *6 *7 *8))) (-5 *1 (-1086 *5 *6 *7 *8)))) (-3579 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-1086 *5 *6 *7 *8))) (-5 *1 (-1086 *5 *6 *7 *8)))) (-3578 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-1005 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-599 *8)) (|:| |towers| (-599 (-1086 *5 *6 *7 *8))))) (-5 *1 (-1086 *5 *6 *7 *8)) (-5 *3 (-599 *8))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 31 T ELT)) (-2528 (((-85) $) 29 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 28 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-714)) 30 T ELT) (($ $ (-857)) 27 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ $ $) 26 T ELT))) +(((-1087) (-113)) (T -1087)) +NIL +(-13 (-23) (-684)) +(((-23) . T) ((-25) . T) ((-73) . T) ((-568 (-797)) . T) ((-684) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3464 ((|#1| $) 37 T ELT)) (-3581 (($ (-599 |#1|)) 45 T ELT)) (-3874 (($) NIL T CONST)) (-3466 ((|#1| |#1| $) 40 T ELT)) (-3465 ((|#1| $) 35 T ELT)) (-3010 (((-599 |#1|) $) 18 (|has| $ (-6 -4145)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-1308 ((|#1| $) 38 T ELT)) (-3757 (($ |#1| $) 41 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-1309 ((|#1| $) 36 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 32 T ELT)) (-3713 (($) 43 T ELT)) (-3463 (((-714) $) 30 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) 27 T ELT)) (-4096 (((-797) $) 14 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-1310 (($ (-599 |#1|)) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 17 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 31 (|has| $ (-6 -4145)) ELT))) +(((-1088 |#1|) (-13 (-1061 |#1|) (-10 -8 (-15 -3581 ($ (-599 |#1|))))) (-1157)) (T -1088)) +((-3581 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-1088 *3))))) +((-3938 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1174 (-499)) |#2|) 53 T ELT) ((|#2| $ (-499) |#2|) 50 T ELT)) (-3583 (((-85) $) 12 T ELT)) (-2051 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3951 ((|#2| $) NIL T ELT) (($ $ (-714)) 17 T ELT)) (-2300 (($ $ |#2|) 49 T ELT)) (-3584 (((-85) $) 11 T ELT)) (-3950 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1174 (-499))) 36 T ELT) ((|#2| $ (-499)) 25 T ELT) ((|#2| $ (-499) |#2|) NIL T ELT)) (-3941 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3952 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-599 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) +(((-1089 |#1| |#2|) (-10 -7 (-15 -3583 ((-85) |#1|)) (-15 -3584 ((-85) |#1|)) (-15 -3938 (|#2| |#1| (-499) |#2|)) (-15 -3950 (|#2| |#1| (-499) |#2|)) (-15 -3950 (|#2| |#1| (-499))) (-15 -2300 (|#1| |#1| |#2|)) (-15 -3950 (|#1| |#1| (-1174 (-499)))) (-15 -3952 (|#1| |#1| |#2|)) (-15 -3952 (|#1| (-599 |#1|))) (-15 -3938 (|#2| |#1| (-1174 (-499)) |#2|)) (-15 -3938 (|#2| |#1| #1="last" |#2|)) (-15 -3938 (|#1| |#1| #2="rest" |#1|)) (-15 -3938 (|#2| |#1| #3="first" |#2|)) (-15 -3941 (|#1| |#1| |#2|)) (-15 -3941 (|#1| |#1| |#1|)) (-15 -3950 (|#2| |#1| #1#)) (-15 -3950 (|#1| |#1| #2#)) (-15 -3951 (|#1| |#1| (-714))) (-15 -3950 (|#2| |#1| #3#)) (-15 -3951 (|#2| |#1|)) (-15 -3952 (|#1| |#2| |#1|)) (-15 -3952 (|#1| |#1| |#1|)) (-15 -3938 (|#2| |#1| #4="value" |#2|)) (-15 -3950 (|#2| |#1| #4#)) (-15 -2051 (|#1| (-1 |#2| |#2|) |#1|))) (-1090 |#2|) (-1157)) (T -1089)) +NIL +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 52 T ELT)) (-3945 ((|#1| $) 71 T ELT)) (-3947 (($ $) 73 T ELT)) (-2299 (((-1213) $ (-499) (-499)) 107 (|has| $ (-6 -4146)) ELT)) (-3935 (($ $ (-499)) 58 (|has| $ (-6 -4146)) ELT)) (-3582 (((-85) $ (-714)) 90 T ELT)) (-3146 ((|#1| $ |#1|) 43 (|has| $ (-6 -4146)) ELT)) (-3937 (($ $ $) 62 (|has| $ (-6 -4146)) ELT)) (-3936 ((|#1| $ |#1|) 60 (|has| $ (-6 -4146)) ELT)) (-3939 ((|#1| $ |#1|) 64 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4146)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -4146)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -4146)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) 127 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-499) |#1|) 96 (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 45 (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -4145)) ELT)) (-3946 ((|#1| $) 72 T ELT)) (-3874 (($) 7 T CONST)) (-3949 (($ $) 79 T ELT) (($ $ (-714)) 77 T ELT)) (-1386 (($ $) 109 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -4145)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-1609 ((|#1| $ (-499) |#1|) 95 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 97 T ELT)) (-3583 (((-85) $) 93 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) 54 T ELT)) (-3148 (((-85) $ $) 46 (|has| |#1| (-1041)) ELT)) (-3764 (($ (-714) |#1|) 119 T ELT)) (-3869 (((-85) $ (-714)) 91 T ELT)) (-2301 (((-499) $) 105 (|has| (-499) (-781)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 104 (|has| (-499) (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3866 (((-85) $ (-714)) 92 T ELT)) (-3151 (((-599 |#1|) $) 49 T ELT)) (-3667 (((-85) $) 53 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3948 ((|#1| $) 76 T ELT) (($ $ (-714)) 74 T ELT)) (-2404 (($ $ $ (-499)) 126 T ELT) (($ |#1| $ (-499)) 125 T ELT)) (-2304 (((-599 (-499)) $) 102 T ELT)) (-2305 (((-85) (-499) $) 101 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) 82 T ELT) (($ $ (-714)) 80 T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2300 (($ $ |#1|) 106 (|has| $ (-6 -4146)) ELT)) (-3584 (((-85) $) 94 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) 100 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1174 (-499))) 118 T ELT) ((|#1| $ (-499)) 99 T ELT) ((|#1| $ (-499) |#1|) 98 T ELT)) (-3150 (((-499) $ $) 48 T ELT)) (-2405 (($ $ (-1174 (-499))) 124 T ELT) (($ $ (-499)) 123 T ELT)) (-3783 (((-85) $) 50 T ELT)) (-3942 (($ $) 68 T ELT)) (-3940 (($ $) 65 (|has| $ (-6 -4146)) ELT)) (-3943 (((-714) $) 69 T ELT)) (-3944 (($ $) 70 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 108 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 117 T ELT)) (-3941 (($ $ $) 67 (|has| $ (-6 -4146)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -4146)) ELT)) (-3952 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-599 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) 55 T ELT)) (-3149 (((-85) $ $) 47 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-1090 |#1|) (-113) (-1157)) (T -1090)) +((-3584 (*1 *2 *1) (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1157)) (-5 *2 (-85)))) (-3583 (*1 *2 *1) (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1157)) (-5 *2 (-85)))) (-3866 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-1090 *4)) (-4 *4 (-1157)) (-5 *2 (-85)))) (-3869 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-1090 *4)) (-4 *4 (-1157)) (-5 *2 (-85)))) (-3582 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-1090 *4)) (-4 *4 (-1157)) (-5 *2 (-85))))) +(-13 (-1196 |t#1|) (-609 |t#1|) (-10 -8 (-15 -3584 ((-85) $)) (-15 -3583 ((-85) $)) (-15 -3866 ((-85) $ (-714))) (-15 -3869 ((-85) $ (-714))) (-15 -3582 ((-85) $ (-714))))) +(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-240 (-499) |#1|) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-554 (-499) |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-609 |#1|) . T) ((-950 |#1|) . T) ((-1041) |has| |#1| (-1041)) ((-1157) . T) ((-1196 |#1|) . T)) +((-2687 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2299 (((-1213) $ |#1| |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3938 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3546 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2301 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2302 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-2333 (((-599 |#1|) $) NIL T ELT)) (-2334 (((-85) |#1| $) NIL T ELT)) (-1308 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2304 (((-599 |#1|) $) NIL T ELT)) (-2305 (((-85) |#1| $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-3951 ((|#2| $) NIL (|has| |#1| (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2300 (($ $ |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1499 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT) (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-4096 (((-797) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) (|has| |#2| (-568 (-797)))) ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-1091 |#1| |#2| |#3|) (-1134 |#1| |#2|) (-1041) (-1041) |#2|) (T -1091)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3585 (((-649 $) $) 17 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3586 (($) 18 T CONST)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3174 (((-85) $ $) 8 T ELT))) +(((-1092) (-113)) (T -1092)) +((-3586 (*1 *1) (-4 *1 (-1092))) (-3585 (*1 *2 *1) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1092))))) +(-13 (-1041) (-10 -8 (-15 -3586 ($) -4102) (-15 -3585 ((-649 $) $)))) +(((-73) . T) ((-568 (-797)) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3588 (((-649 (-1075)) $) 27 T ELT)) (-3587 (((-1075) $) 15 T ELT)) (-3589 (((-1075) $) 17 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3590 (((-460) $) 13 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 37 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-1093) (-13 (-1023) (-10 -8 (-15 -3590 ((-460) $)) (-15 -3589 ((-1075) $)) (-15 -3588 ((-649 (-1075)) $)) (-15 -3587 ((-1075) $))))) (T -1093)) +((-3590 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-1093)))) (-3589 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1093)))) (-3588 (*1 *2 *1) (-12 (-5 *2 (-649 (-1075))) (-5 *1 (-1093)))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1093))))) +((-3593 (((-1095 |#1|) (-1095 |#1|)) 17 T ELT)) (-3591 (((-1095 |#1|) (-1095 |#1|)) 13 T ELT)) (-3594 (((-1095 |#1|) (-1095 |#1|) (-499) (-499)) 20 T ELT)) (-3592 (((-1095 |#1|) (-1095 |#1|)) 15 T ELT))) +(((-1094 |#1|) (-10 -7 (-15 -3591 ((-1095 |#1|) (-1095 |#1|))) (-15 -3592 ((-1095 |#1|) (-1095 |#1|))) (-15 -3593 ((-1095 |#1|) (-1095 |#1|))) (-15 -3594 ((-1095 |#1|) (-1095 |#1|) (-499) (-499)))) (-13 (-510) (-120))) (T -1094)) +((-3594 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1095 *4)) (-5 *3 (-499)) (-4 *4 (-13 (-510) (-120))) (-5 *1 (-1094 *4)))) (-3593 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-13 (-510) (-120))) (-5 *1 (-1094 *3)))) (-3592 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-13 (-510) (-120))) (-5 *1 (-1094 *3)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-13 (-510) (-120))) (-5 *1 (-1094 *3))))) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) NIL T ELT)) (-3945 ((|#1| $) NIL T ELT)) (-3947 (($ $) 62 T ELT)) (-2299 (((-1213) $ (-499) (-499)) 95 (|has| $ (-6 -4146)) ELT)) (-3935 (($ $ (-499)) 124 (|has| $ (-6 -4146)) ELT)) (-3582 (((-85) $ (-714)) NIL T ELT)) (-3599 (((-797) $) 51 (|has| |#1| (-1041)) ELT)) (-3598 (((-85)) 50 (|has| |#1| (-1041)) ELT)) (-3146 ((|#1| $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3937 (($ $ $) 111 (|has| $ (-6 -4146)) ELT) (($ $ (-499) $) 138 T ELT)) (-3936 ((|#1| $ |#1|) 121 (|has| $ (-6 -4146)) ELT)) (-3939 ((|#1| $ |#1|) 116 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ #2="first" |#1|) 118 (|has| $ (-6 -4146)) ELT) (($ $ #3="rest" $) 120 (|has| $ (-6 -4146)) ELT) ((|#1| $ #4="last" |#1|) 123 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) 108 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-499) |#1|) 74 (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) NIL (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 77 T ELT)) (-3946 ((|#1| $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-2423 (($ $) 11 T ELT)) (-3949 (($ $) 35 T ELT) (($ $ (-714)) 107 T ELT)) (-3604 (((-85) (-599 |#1|) $) 130 (|has| |#1| (-1041)) ELT)) (-3605 (($ (-599 |#1|)) 126 T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) 76 T ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1609 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) NIL T ELT)) (-3583 (((-85) $) NIL T ELT)) (-3010 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3600 (((-1213) (-499) $) 136 (|has| |#1| (-1041)) ELT)) (-2422 (((-714) $) 133 T ELT)) (-3152 (((-599 $) $) NIL T ELT)) (-3148 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3764 (($ (-714) |#1|) NIL T ELT)) (-3869 (((-85) $ (-714)) NIL T ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 82 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 86 T ELT)) (-3866 (((-85) $ (-714)) NIL T ELT)) (-3151 (((-599 |#1|) $) NIL T ELT)) (-3667 (((-85) $) NIL T ELT)) (-2425 (($ $) 109 T ELT)) (-2426 (((-85) $) 10 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3948 ((|#1| $) NIL T ELT) (($ $ (-714)) NIL T ELT)) (-2404 (($ $ $ (-499)) NIL T ELT) (($ |#1| $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) 92 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3597 (($ (-1 |#1|)) 140 T ELT) (($ (-1 |#1| |#1|) |#1|) 141 T ELT)) (-2424 ((|#1| $) 7 T ELT)) (-3951 ((|#1| $) 34 T ELT) (($ $ (-714)) 60 T ELT)) (-3603 (((-2 (|:| |cycle?| (-85)) (|:| -2714 (-714)) (|:| |period| (-714))) (-714) $) 29 T ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-3596 (($ (-1 (-85) |#1|) $) 142 T ELT)) (-3595 (($ (-1 (-85) |#1|) $) 143 T ELT)) (-2300 (($ $ |#1|) 87 (|has| $ (-6 -4146)) ELT)) (-3919 (($ $ (-499)) 40 T ELT)) (-3584 (((-85) $) 90 T ELT)) (-2427 (((-85) $) 9 T ELT)) (-2428 (((-85) $) 132 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 25 T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) 14 T ELT)) (-3713 (($) 55 T ELT)) (-3950 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT) ((|#1| $ (-499)) 72 T ELT) ((|#1| $ (-499) |#1|) NIL T ELT)) (-3150 (((-499) $ $) 59 T ELT)) (-2405 (($ $ (-1174 (-499))) NIL T ELT) (($ $ (-499)) NIL T ELT)) (-3602 (($ (-1 $)) 58 T ELT)) (-3783 (((-85) $) 88 T ELT)) (-3942 (($ $) 89 T ELT)) (-3940 (($ $) 112 (|has| $ (-6 -4146)) ELT)) (-3943 (((-714) $) NIL T ELT)) (-3944 (($ $) NIL T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) 54 T ELT)) (-4122 (((-488) $) NIL (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 70 T ELT)) (-3601 (($ |#1| $) 110 T ELT)) (-3941 (($ $ $) 114 (|has| $ (-6 -4146)) ELT) (($ $ |#1|) 115 (|has| $ (-6 -4146)) ELT)) (-3952 (($ $ $) 97 T ELT) (($ |#1| $) 56 T ELT) (($ (-599 $)) 102 T ELT) (($ $ |#1|) 96 T ELT)) (-3012 (($ $) 61 T ELT)) (-4096 (($ (-599 |#1|)) 125 T ELT) (((-797) $) 52 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) NIL T ELT)) (-3149 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 128 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-1095 |#1|) (-13 (-632 |#1|) (-571 (-599 |#1|)) (-10 -8 (-6 -4146) (-15 -3605 ($ (-599 |#1|))) (IF (|has| |#1| (-1041)) (-15 -3604 ((-85) (-599 |#1|) $)) |%noBranch|) (-15 -3603 ((-2 (|:| |cycle?| (-85)) (|:| -2714 (-714)) (|:| |period| (-714))) (-714) $)) (-15 -3602 ($ (-1 $))) (-15 -3601 ($ |#1| $)) (IF (|has| |#1| (-1041)) (PROGN (-15 -3600 ((-1213) (-499) $)) (-15 -3599 ((-797) $)) (-15 -3598 ((-85)))) |%noBranch|) (-15 -3937 ($ $ (-499) $)) (-15 -3597 ($ (-1 |#1|))) (-15 -3597 ($ (-1 |#1| |#1|) |#1|)) (-15 -3596 ($ (-1 (-85) |#1|) $)) (-15 -3595 ($ (-1 (-85) |#1|) $)))) (-1157)) (T -1095)) +((-3605 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-1095 *3)))) (-3604 (*1 *2 *3 *1) (-12 (-5 *3 (-599 *4)) (-4 *4 (-1041)) (-4 *4 (-1157)) (-5 *2 (-85)) (-5 *1 (-1095 *4)))) (-3603 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2714 (-714)) (|:| |period| (-714)))) (-5 *1 (-1095 *4)) (-4 *4 (-1157)) (-5 *3 (-714)))) (-3602 (*1 *1 *2) (-12 (-5 *2 (-1 (-1095 *3))) (-5 *1 (-1095 *3)) (-4 *3 (-1157)))) (-3601 (*1 *1 *2 *1) (-12 (-5 *1 (-1095 *2)) (-4 *2 (-1157)))) (-3600 (*1 *2 *3 *1) (-12 (-5 *3 (-499)) (-5 *2 (-1213)) (-5 *1 (-1095 *4)) (-4 *4 (-1041)) (-4 *4 (-1157)))) (-3599 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1095 *3)) (-4 *3 (-1041)) (-4 *3 (-1157)))) (-3598 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1095 *3)) (-4 *3 (-1041)) (-4 *3 (-1157)))) (-3937 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1095 *3)) (-4 *3 (-1157)))) (-3597 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1157)) (-5 *1 (-1095 *3)))) (-3597 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1157)) (-5 *1 (-1095 *3)))) (-3596 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1157)) (-5 *1 (-1095 *3)))) (-3595 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1157)) (-5 *1 (-1095 *3))))) +((-3952 (((-1095 |#1|) (-1095 (-1095 |#1|))) 15 T ELT))) +(((-1096 |#1|) (-10 -7 (-15 -3952 ((-1095 |#1|) (-1095 (-1095 |#1|))))) (-1157)) (T -1096)) +((-3952 (*1 *2 *3) (-12 (-5 *3 (-1095 (-1095 *4))) (-5 *2 (-1095 *4)) (-5 *1 (-1096 *4)) (-4 *4 (-1157))))) +((-3991 (((-1095 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1095 |#1|)) 25 T ELT)) (-3992 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1095 |#1|)) 26 T ELT)) (-4108 (((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|)) 16 T ELT))) +(((-1097 |#1| |#2|) (-10 -7 (-15 -4108 ((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|))) (-15 -3991 ((-1095 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1095 |#1|))) (-15 -3992 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1095 |#1|)))) (-1157) (-1157)) (T -1097)) +((-3992 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1095 *5)) (-4 *5 (-1157)) (-4 *2 (-1157)) (-5 *1 (-1097 *5 *2)))) (-3991 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1095 *6)) (-4 *6 (-1157)) (-4 *3 (-1157)) (-5 *2 (-1095 *3)) (-5 *1 (-1097 *6 *3)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1095 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-1095 *6)) (-5 *1 (-1097 *5 *6))))) +((-4108 (((-1095 |#3|) (-1 |#3| |#1| |#2|) (-1095 |#1|) (-1095 |#2|)) 21 T ELT))) +(((-1098 |#1| |#2| |#3|) (-10 -7 (-15 -4108 ((-1095 |#3|) (-1 |#3| |#1| |#2|) (-1095 |#1|) (-1095 |#2|)))) (-1157) (-1157) (-1157)) (T -1098)) +((-4108 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1095 *6)) (-5 *5 (-1095 *7)) (-4 *6 (-1157)) (-4 *7 (-1157)) (-4 *8 (-1157)) (-5 *2 (-1095 *8)) (-5 *1 (-1098 *6 *7 *8))))) +((-2687 (((-85) $ $) NIL (|has| (-117) (-73)) ELT)) (-3566 (($ $) 42 T ELT)) (-3567 (($ $) NIL T ELT)) (-3557 (($ $ (-117)) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3564 (((-85) $ $) 68 T ELT)) (-3563 (((-85) $ $ (-499)) 63 T ELT)) (-3683 (($ (-499)) 7 T ELT) (($ (-179)) 9 T ELT) (($ (-460)) 11 T ELT)) (-3558 (((-599 $) $ (-117)) 77 T ELT) (((-599 $) $ (-114)) 78 T ELT)) (-1825 (((-85) (-1 (-85) (-117) (-117)) $) NIL T ELT) (((-85) $) NIL (|has| (-117) (-781)) ELT)) (-1823 (($ (-1 (-85) (-117) (-117)) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| (-117) (-781))) ELT)) (-3030 (($ (-1 (-85) (-117) (-117)) $) NIL T ELT) (($ $) NIL (|has| (-117) (-781)) ELT)) (-3938 (((-117) $ (-499) (-117)) 60 (|has| $ (-6 -4146)) ELT) (((-117) $ (-1174 (-499)) (-117)) NIL (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-3555 (($ $ (-117)) 81 T ELT) (($ $ (-114)) 82 T ELT)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-3560 (($ $ (-1174 (-499)) $) 58 T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT)) (-3546 (($ (-117) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT) (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -4145)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 (((-117) $ (-499) (-117)) NIL (|has| $ (-6 -4146)) ELT)) (-3235 (((-117) $ (-499)) NIL T ELT)) (-3565 (((-85) $ $) 92 T ELT)) (-3559 (((-499) (-1 (-85) (-117)) $) NIL T ELT) (((-499) (-117) $) NIL (|has| (-117) (-1041)) ELT) (((-499) (-117) $ (-499)) 65 (|has| (-117) (-1041)) ELT) (((-499) $ $ (-499)) 64 T ELT) (((-499) (-114) $ (-499)) 67 T ELT)) (-3010 (((-599 (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3764 (($ (-714) (-117)) 14 T ELT)) (-2301 (((-499) $) 36 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| (-117) (-781)) ELT)) (-3658 (($ (-1 (-85) (-117) (-117)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-117) (-781)) ELT)) (-2727 (((-599 (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT)) (-2302 (((-499) $) 51 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| (-117) (-781)) ELT)) (-3561 (((-85) $ $ (-117)) 93 T ELT)) (-3562 (((-714) $ $ (-117)) 89 T ELT)) (-2051 (($ (-1 (-117) (-117)) $) 41 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-117) (-117)) $) NIL T ELT) (($ (-1 (-117) (-117) (-117)) $ $) NIL T ELT)) (-3568 (($ $) 45 T ELT)) (-3569 (($ $) NIL T ELT)) (-3556 (($ $ (-117)) 79 T ELT) (($ $ (-114)) 80 T ELT)) (-3380 (((-1099) $) 47 (|has| (-117) (-1041)) ELT)) (-2404 (($ (-117) $ (-499)) NIL T ELT) (($ $ $ (-499)) 31 T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) 88 (|has| (-117) (-1041)) ELT)) (-3951 (((-117) $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-2300 (($ $ (-117)) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-117)))) NIL (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT) (($ $ (-247 (-117))) NIL (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT) (($ $ (-599 (-117)) (-599 (-117))) NIL (-12 (|has| (-117) (-263 (-117))) (|has| (-117) (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT)) (-2306 (((-599 (-117)) $) NIL T ELT)) (-3543 (((-85) $) 19 T ELT)) (-3713 (($) 16 T ELT)) (-3950 (((-117) $ (-499) (-117)) NIL T ELT) (((-117) $ (-499)) 70 T ELT) (($ $ (-1174 (-499))) 29 T ELT) (($ $ $) NIL T ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-117) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-117) (-1041))) ELT)) (-1824 (($ $ $ (-499)) 84 (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 24 T ELT)) (-4122 (((-488) $) NIL (|has| (-117) (-569 (-488))) ELT)) (-3670 (($ (-599 (-117))) NIL T ELT)) (-3952 (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-599 $)) 85 T ELT)) (-4096 (($ (-117)) NIL T ELT) (((-797) $) 35 (|has| (-117) (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| (-117) (-73)) ELT)) (-2050 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-117) (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-117) (-781)) ELT)) (-3174 (((-85) $ $) 21 (|has| (-117) (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| (-117) (-781)) ELT)) (-2806 (((-85) $ $) 22 (|has| (-117) (-781)) ELT)) (-4107 (((-714) $) 20 (|has| $ (-6 -4145)) ELT))) +(((-1099) (-13 (-1084) (-10 -8 (-15 -3683 ($ (-499))) (-15 -3683 ($ (-179))) (-15 -3683 ($ (-460)))))) (T -1099)) +((-3683 (*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-1099)))) (-3683 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1099)))) (-3683 (*1 *1 *2) (-12 (-5 *2 (-460)) (-5 *1 (-1099))))) +((-2687 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-73)) (|has| |#1| (-73))) ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL T ELT)) (-2299 (((-1213) $ (-1099) (-1099)) NIL (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ (-1099) |#1|) NIL T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 |#1| #1="failed") (-1099) $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#1| #1#) (-1099) $) NIL T ELT)) (-3546 (($ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-1099) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-1099)) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2301 (((-1099) $) NIL (|has| (-1099) (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-1099) $) NIL (|has| (-1099) (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (-3677 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041)) (|has| |#1| (-1041))) ELT)) (-2333 (((-599 (-1099)) $) NIL T ELT)) (-2334 (((-85) (-1099) $) NIL T ELT)) (-1308 (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2304 (((-599 (-1099)) $) NIL T ELT)) (-2305 (((-85) (-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041)) (|has| |#1| (-1041))) ELT)) (-3951 ((|#1| $) NIL (|has| (-1099) (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2300 (($ $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-263 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-1099)) NIL T ELT) ((|#1| $ (-1099) |#1|) NIL T ELT)) (-1499 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-1041))) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL T ELT)) (-4096 (((-797) $) NIL (-3677 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-568 (-797))) (|has| |#1| (-568 (-797)))) ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-73)) (|has| |#1| (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 (-1099)) (|:| |entry| |#1|)) (-73)) (|has| |#1| (-73))) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-1100 |#1|) (-13 (-1134 (-1099) |#1|) (-10 -7 (-6 -4145))) (-1041)) (T -1100)) +NIL +((-3955 (((-1095 |#1|) (-1095 |#1|)) 83 T ELT)) (-3607 (((-3 (-1095 |#1|) #1="failed") (-1095 |#1|)) 39 T ELT)) (-3618 (((-1095 |#1|) (-361 (-499)) (-1095 |#1|)) 132 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3621 (((-1095 |#1|) |#1| (-1095 |#1|)) 137 (|has| |#1| (-318)) ELT)) (-3958 (((-1095 |#1|) (-1095 |#1|)) 97 T ELT)) (-3609 (((-1095 (-499)) (-499)) 63 T ELT)) (-3617 (((-1095 |#1|) (-1095 (-1095 |#1|))) 117 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3954 (((-1095 |#1|) (-499) (-499) (-1095 |#1|)) 103 T ELT)) (-4088 (((-1095 |#1|) |#1| (-499)) 51 T ELT)) (-3611 (((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) 66 T ELT)) (-3619 (((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) 135 (|has| |#1| (-318)) ELT)) (-3616 (((-1095 |#1|) |#1| (-1 (-1095 |#1|))) 116 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3620 (((-1095 |#1|) (-1 |#1| (-499)) |#1| (-1 (-1095 |#1|))) 136 (|has| |#1| (-318)) ELT)) (-3959 (((-1095 |#1|) (-1095 |#1|)) 96 T ELT)) (-3960 (((-1095 |#1|) (-1095 |#1|)) 82 T ELT)) (-3953 (((-1095 |#1|) (-499) (-499) (-1095 |#1|)) 104 T ELT)) (-3962 (((-1095 |#1|) |#1| (-1095 |#1|)) 113 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3608 (((-1095 (-499)) (-499)) 62 T ELT)) (-3610 (((-1095 |#1|) |#1|) 65 T ELT)) (-3956 (((-1095 |#1|) (-1095 |#1|) (-499) (-499)) 100 T ELT)) (-3613 (((-1095 |#1|) (-1 |#1| (-499)) (-1095 |#1|)) 72 T ELT)) (-3606 (((-3 (-1095 |#1|) #1#) (-1095 |#1|) (-1095 |#1|)) 37 T ELT)) (-3957 (((-1095 |#1|) (-1095 |#1|)) 98 T ELT)) (-3918 (((-1095 |#1|) (-1095 |#1|) |#1|) 77 T ELT)) (-3612 (((-1095 |#1|) (-1095 |#1|)) 68 T ELT)) (-3614 (((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) 78 T ELT)) (-4096 (((-1095 |#1|) |#1|) 73 T ELT)) (-3615 (((-1095 |#1|) (-1095 (-1095 |#1|))) 88 T ELT)) (-4099 (((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) 38 T ELT)) (-3987 (((-1095 |#1|) (-1095 |#1|)) 21 T ELT) (((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) 23 T ELT)) (-3989 (((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) 17 T ELT)) (* (((-1095 |#1|) (-1095 |#1|) |#1|) 29 T ELT) (((-1095 |#1|) |#1| (-1095 |#1|)) 26 T ELT) (((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) 27 T ELT))) +(((-1101 |#1|) (-10 -7 (-15 -3989 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3987 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3987 ((-1095 |#1|) (-1095 |#1|))) (-15 * ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 * ((-1095 |#1|) |#1| (-1095 |#1|))) (-15 * ((-1095 |#1|) (-1095 |#1|) |#1|)) (-15 -3606 ((-3 (-1095 |#1|) #1="failed") (-1095 |#1|) (-1095 |#1|))) (-15 -4099 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3607 ((-3 (-1095 |#1|) #1#) (-1095 |#1|))) (-15 -4088 ((-1095 |#1|) |#1| (-499))) (-15 -3608 ((-1095 (-499)) (-499))) (-15 -3609 ((-1095 (-499)) (-499))) (-15 -3610 ((-1095 |#1|) |#1|)) (-15 -3611 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3612 ((-1095 |#1|) (-1095 |#1|))) (-15 -3613 ((-1095 |#1|) (-1 |#1| (-499)) (-1095 |#1|))) (-15 -4096 ((-1095 |#1|) |#1|)) (-15 -3918 ((-1095 |#1|) (-1095 |#1|) |#1|)) (-15 -3614 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3960 ((-1095 |#1|) (-1095 |#1|))) (-15 -3955 ((-1095 |#1|) (-1095 |#1|))) (-15 -3615 ((-1095 |#1|) (-1095 (-1095 |#1|)))) (-15 -3959 ((-1095 |#1|) (-1095 |#1|))) (-15 -3958 ((-1095 |#1|) (-1095 |#1|))) (-15 -3957 ((-1095 |#1|) (-1095 |#1|))) (-15 -3956 ((-1095 |#1|) (-1095 |#1|) (-499) (-499))) (-15 -3954 ((-1095 |#1|) (-499) (-499) (-1095 |#1|))) (-15 -3953 ((-1095 |#1|) (-499) (-499) (-1095 |#1|))) (IF (|has| |#1| (-38 (-361 (-499)))) (PROGN (-15 -3962 ((-1095 |#1|) |#1| (-1095 |#1|))) (-15 -3616 ((-1095 |#1|) |#1| (-1 (-1095 |#1|)))) (-15 -3617 ((-1095 |#1|) (-1095 (-1095 |#1|)))) (-15 -3618 ((-1095 |#1|) (-361 (-499)) (-1095 |#1|)))) |%noBranch|) (IF (|has| |#1| (-318)) (PROGN (-15 -3619 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3620 ((-1095 |#1|) (-1 |#1| (-499)) |#1| (-1 (-1095 |#1|)))) (-15 -3621 ((-1095 |#1|) |#1| (-1095 |#1|)))) |%noBranch|)) (-989)) (T -1101)) +((-3621 (*1 *2 *3 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-318)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3620 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-499))) (-5 *5 (-1 (-1095 *4))) (-4 *4 (-318)) (-4 *4 (-989)) (-5 *2 (-1095 *4)) (-5 *1 (-1101 *4)))) (-3619 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-318)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3618 (*1 *2 *3 *2) (-12 (-5 *2 (-1095 *4)) (-4 *4 (-38 *3)) (-4 *4 (-989)) (-5 *3 (-361 (-499))) (-5 *1 (-1101 *4)))) (-3617 (*1 *2 *3) (-12 (-5 *3 (-1095 (-1095 *4))) (-5 *2 (-1095 *4)) (-5 *1 (-1101 *4)) (-4 *4 (-38 (-361 (-499)))) (-4 *4 (-989)))) (-3616 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1095 *3))) (-5 *2 (-1095 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)))) (-3962 (*1 *2 *3 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3953 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1095 *4)) (-5 *3 (-499)) (-4 *4 (-989)) (-5 *1 (-1101 *4)))) (-3954 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1095 *4)) (-5 *3 (-499)) (-4 *4 (-989)) (-5 *1 (-1101 *4)))) (-3956 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1095 *4)) (-5 *3 (-499)) (-4 *4 (-989)) (-5 *1 (-1101 *4)))) (-3957 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3958 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3959 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-1095 (-1095 *4))) (-5 *2 (-1095 *4)) (-5 *1 (-1101 *4)) (-4 *4 (-989)))) (-3955 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3614 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3918 (*1 *2 *2 *3) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-4096 (*1 *2 *3) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-989)))) (-3613 (*1 *2 *3 *2) (-12 (-5 *2 (-1095 *4)) (-5 *3 (-1 *4 (-499))) (-4 *4 (-989)) (-5 *1 (-1101 *4)))) (-3612 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3611 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3610 (*1 *2 *3) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-989)))) (-3609 (*1 *2 *3) (-12 (-5 *2 (-1095 (-499))) (-5 *1 (-1101 *4)) (-4 *4 (-989)) (-5 *3 (-499)))) (-3608 (*1 *2 *3) (-12 (-5 *2 (-1095 (-499))) (-5 *1 (-1101 *4)) (-4 *4 (-989)) (-5 *3 (-499)))) (-4088 (*1 *2 *3 *4) (-12 (-5 *4 (-499)) (-5 *2 (-1095 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-989)))) (-3607 (*1 *2 *2) (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-4099 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3606 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3987 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3987 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) (-3989 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3))))) +((-3632 (((-1095 |#1|) (-1095 |#1|)) 102 T ELT)) (-3789 (((-1095 |#1|) (-1095 |#1|)) 61 T ELT)) (-3623 (((-2 (|:| -3630 (-1095 |#1|)) (|:| -3631 (-1095 |#1|))) (-1095 |#1|)) 98 T ELT)) (-3630 (((-1095 |#1|) (-1095 |#1|)) 99 T ELT)) (-3622 (((-2 (|:| -3788 (-1095 |#1|)) (|:| -3784 (-1095 |#1|))) (-1095 |#1|)) 54 T ELT)) (-3788 (((-1095 |#1|) (-1095 |#1|)) 55 T ELT)) (-3634 (((-1095 |#1|) (-1095 |#1|)) 104 T ELT)) (-3787 (((-1095 |#1|) (-1095 |#1|)) 68 T ELT)) (-4092 (((-1095 |#1|) (-1095 |#1|)) 40 T ELT)) (-4093 (((-1095 |#1|) (-1095 |#1|)) 37 T ELT)) (-3635 (((-1095 |#1|) (-1095 |#1|)) 105 T ELT)) (-3786 (((-1095 |#1|) (-1095 |#1|)) 69 T ELT)) (-3633 (((-1095 |#1|) (-1095 |#1|)) 103 T ELT)) (-3785 (((-1095 |#1|) (-1095 |#1|)) 64 T ELT)) (-3631 (((-1095 |#1|) (-1095 |#1|)) 100 T ELT)) (-3784 (((-1095 |#1|) (-1095 |#1|)) 56 T ELT)) (-3638 (((-1095 |#1|) (-1095 |#1|)) 113 T ELT)) (-3626 (((-1095 |#1|) (-1095 |#1|)) 88 T ELT)) (-3636 (((-1095 |#1|) (-1095 |#1|)) 107 T ELT)) (-3624 (((-1095 |#1|) (-1095 |#1|)) 84 T ELT)) (-3640 (((-1095 |#1|) (-1095 |#1|)) 117 T ELT)) (-3628 (((-1095 |#1|) (-1095 |#1|)) 92 T ELT)) (-3641 (((-1095 |#1|) (-1095 |#1|)) 119 T ELT)) (-3629 (((-1095 |#1|) (-1095 |#1|)) 94 T ELT)) (-3639 (((-1095 |#1|) (-1095 |#1|)) 115 T ELT)) (-3627 (((-1095 |#1|) (-1095 |#1|)) 90 T ELT)) (-3637 (((-1095 |#1|) (-1095 |#1|)) 109 T ELT)) (-3625 (((-1095 |#1|) (-1095 |#1|)) 86 T ELT)) (** (((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) 41 T ELT))) +(((-1102 |#1|) (-10 -7 (-15 -4093 ((-1095 |#1|) (-1095 |#1|))) (-15 -4092 ((-1095 |#1|) (-1095 |#1|))) (-15 ** ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3622 ((-2 (|:| -3788 (-1095 |#1|)) (|:| -3784 (-1095 |#1|))) (-1095 |#1|))) (-15 -3788 ((-1095 |#1|) (-1095 |#1|))) (-15 -3784 ((-1095 |#1|) (-1095 |#1|))) (-15 -3789 ((-1095 |#1|) (-1095 |#1|))) (-15 -3785 ((-1095 |#1|) (-1095 |#1|))) (-15 -3787 ((-1095 |#1|) (-1095 |#1|))) (-15 -3786 ((-1095 |#1|) (-1095 |#1|))) (-15 -3624 ((-1095 |#1|) (-1095 |#1|))) (-15 -3625 ((-1095 |#1|) (-1095 |#1|))) (-15 -3626 ((-1095 |#1|) (-1095 |#1|))) (-15 -3627 ((-1095 |#1|) (-1095 |#1|))) (-15 -3628 ((-1095 |#1|) (-1095 |#1|))) (-15 -3629 ((-1095 |#1|) (-1095 |#1|))) (-15 -3623 ((-2 (|:| -3630 (-1095 |#1|)) (|:| -3631 (-1095 |#1|))) (-1095 |#1|))) (-15 -3630 ((-1095 |#1|) (-1095 |#1|))) (-15 -3631 ((-1095 |#1|) (-1095 |#1|))) (-15 -3632 ((-1095 |#1|) (-1095 |#1|))) (-15 -3633 ((-1095 |#1|) (-1095 |#1|))) (-15 -3634 ((-1095 |#1|) (-1095 |#1|))) (-15 -3635 ((-1095 |#1|) (-1095 |#1|))) (-15 -3636 ((-1095 |#1|) (-1095 |#1|))) (-15 -3637 ((-1095 |#1|) (-1095 |#1|))) (-15 -3638 ((-1095 |#1|) (-1095 |#1|))) (-15 -3639 ((-1095 |#1|) (-1095 |#1|))) (-15 -3640 ((-1095 |#1|) (-1095 |#1|))) (-15 -3641 ((-1095 |#1|) (-1095 |#1|)))) (-38 (-361 (-499)))) (T -1102)) +((-3641 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3633 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3630 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3623 (*1 *2 *3) (-12 (-4 *4 (-38 (-361 (-499)))) (-5 *2 (-2 (|:| -3630 (-1095 *4)) (|:| -3631 (-1095 *4)))) (-5 *1 (-1102 *4)) (-5 *3 (-1095 *4)))) (-3629 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3628 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3627 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3626 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3625 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3624 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3786 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3787 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3785 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3784 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3788 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-38 (-361 (-499)))) (-5 *2 (-2 (|:| -3788 (-1095 *4)) (|:| -3784 (-1095 *4)))) (-5 *1 (-1102 *4)) (-5 *3 (-1095 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-4092 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) (-4093 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3))))) +((-3632 (((-1095 |#1|) (-1095 |#1|)) 60 T ELT)) (-3789 (((-1095 |#1|) (-1095 |#1|)) 42 T ELT)) (-3630 (((-1095 |#1|) (-1095 |#1|)) 56 T ELT)) (-3788 (((-1095 |#1|) (-1095 |#1|)) 38 T ELT)) (-3634 (((-1095 |#1|) (-1095 |#1|)) 63 T ELT)) (-3787 (((-1095 |#1|) (-1095 |#1|)) 45 T ELT)) (-4092 (((-1095 |#1|) (-1095 |#1|)) 34 T ELT)) (-4093 (((-1095 |#1|) (-1095 |#1|)) 29 T ELT)) (-3635 (((-1095 |#1|) (-1095 |#1|)) 64 T ELT)) (-3786 (((-1095 |#1|) (-1095 |#1|)) 46 T ELT)) (-3633 (((-1095 |#1|) (-1095 |#1|)) 61 T ELT)) (-3785 (((-1095 |#1|) (-1095 |#1|)) 43 T ELT)) (-3631 (((-1095 |#1|) (-1095 |#1|)) 58 T ELT)) (-3784 (((-1095 |#1|) (-1095 |#1|)) 40 T ELT)) (-3638 (((-1095 |#1|) (-1095 |#1|)) 68 T ELT)) (-3626 (((-1095 |#1|) (-1095 |#1|)) 50 T ELT)) (-3636 (((-1095 |#1|) (-1095 |#1|)) 66 T ELT)) (-3624 (((-1095 |#1|) (-1095 |#1|)) 48 T ELT)) (-3640 (((-1095 |#1|) (-1095 |#1|)) 71 T ELT)) (-3628 (((-1095 |#1|) (-1095 |#1|)) 53 T ELT)) (-3641 (((-1095 |#1|) (-1095 |#1|)) 72 T ELT)) (-3629 (((-1095 |#1|) (-1095 |#1|)) 54 T ELT)) (-3639 (((-1095 |#1|) (-1095 |#1|)) 70 T ELT)) (-3627 (((-1095 |#1|) (-1095 |#1|)) 52 T ELT)) (-3637 (((-1095 |#1|) (-1095 |#1|)) 69 T ELT)) (-3625 (((-1095 |#1|) (-1095 |#1|)) 51 T ELT)) (** (((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) 36 T ELT))) +(((-1103 |#1|) (-10 -7 (-15 -4093 ((-1095 |#1|) (-1095 |#1|))) (-15 -4092 ((-1095 |#1|) (-1095 |#1|))) (-15 ** ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3788 ((-1095 |#1|) (-1095 |#1|))) (-15 -3784 ((-1095 |#1|) (-1095 |#1|))) (-15 -3789 ((-1095 |#1|) (-1095 |#1|))) (-15 -3785 ((-1095 |#1|) (-1095 |#1|))) (-15 -3787 ((-1095 |#1|) (-1095 |#1|))) (-15 -3786 ((-1095 |#1|) (-1095 |#1|))) (-15 -3624 ((-1095 |#1|) (-1095 |#1|))) (-15 -3625 ((-1095 |#1|) (-1095 |#1|))) (-15 -3626 ((-1095 |#1|) (-1095 |#1|))) (-15 -3627 ((-1095 |#1|) (-1095 |#1|))) (-15 -3628 ((-1095 |#1|) (-1095 |#1|))) (-15 -3629 ((-1095 |#1|) (-1095 |#1|))) (-15 -3630 ((-1095 |#1|) (-1095 |#1|))) (-15 -3631 ((-1095 |#1|) (-1095 |#1|))) (-15 -3632 ((-1095 |#1|) (-1095 |#1|))) (-15 -3633 ((-1095 |#1|) (-1095 |#1|))) (-15 -3634 ((-1095 |#1|) (-1095 |#1|))) (-15 -3635 ((-1095 |#1|) (-1095 |#1|))) (-15 -3636 ((-1095 |#1|) (-1095 |#1|))) (-15 -3637 ((-1095 |#1|) (-1095 |#1|))) (-15 -3638 ((-1095 |#1|) (-1095 |#1|))) (-15 -3639 ((-1095 |#1|) (-1095 |#1|))) (-15 -3640 ((-1095 |#1|) (-1095 |#1|))) (-15 -3641 ((-1095 |#1|) (-1095 |#1|)))) (-38 (-361 (-499)))) (T -1103)) +((-3641 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3633 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3630 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3629 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3628 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3627 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3626 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3625 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3624 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3786 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3787 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3785 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3784 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-3788 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-4092 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) (-4093 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) +((-3642 (((-896 |#2|) |#2| |#2|) 51 T ELT)) (-3643 ((|#2| |#2| |#1|) 19 (|has| |#1| (-261)) ELT))) +(((-1104 |#1| |#2|) (-10 -7 (-15 -3642 ((-896 |#2|) |#2| |#2|)) (IF (|has| |#1| (-261)) (-15 -3643 (|#2| |#2| |#1|)) |%noBranch|)) (-510) (-1183 |#1|)) (T -1104)) +((-3643 (*1 *2 *2 *3) (-12 (-4 *3 (-261)) (-4 *3 (-510)) (-5 *1 (-1104 *3 *2)) (-4 *2 (-1183 *3)))) (-3642 (*1 *2 *3 *3) (-12 (-4 *4 (-510)) (-5 *2 (-896 *3)) (-5 *1 (-1104 *4 *3)) (-4 *3 (-1183 *4))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3651 (($ $ (-599 (-714))) 79 T ELT)) (-4038 (($) 33 T ELT)) (-3660 (($ $) 51 T ELT)) (-3901 (((-599 $) $) 60 T ELT)) (-3666 (((-85) $) 19 T ELT)) (-3644 (((-599 (-881 |#2|)) $) 86 T ELT)) (-3645 (($ $) 80 T ELT)) (-3661 (((-714) $) 47 T ELT)) (-3764 (($) 32 T ELT)) (-3654 (($ $ (-599 (-714)) (-881 |#2|)) 72 T ELT) (($ $ (-599 (-714)) (-714)) 73 T ELT) (($ $ (-714) (-881 |#2|)) 75 T ELT)) (-3658 (($ $ $) 57 T ELT) (($ (-599 $)) 59 T ELT)) (-3646 (((-714) $) 87 T ELT)) (-3667 (((-85) $) 15 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3665 (((-85) $) 22 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3647 (((-145) $) 85 T ELT)) (-3650 (((-881 |#2|) $) 81 T ELT)) (-3649 (((-714) $) 82 T ELT)) (-3648 (((-85) $) 84 T ELT)) (-3652 (($ $ (-599 (-714)) (-145)) 78 T ELT)) (-3659 (($ $) 52 T ELT)) (-4096 (((-797) $) 99 T ELT)) (-3653 (($ $ (-599 (-714)) (-85)) 77 T ELT)) (-3662 (((-599 $) $) 11 T ELT)) (-3663 (($ $ (-714)) 46 T ELT)) (-3664 (($ $) 43 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3655 (($ $ $ (-881 |#2|) (-714)) 68 T ELT)) (-3656 (($ $ (-881 |#2|)) 67 T ELT)) (-3657 (($ $ (-599 (-714)) (-881 |#2|)) 66 T ELT) (($ $ (-599 (-714)) (-714)) 70 T ELT) (((-714) $ (-881 |#2|)) 71 T ELT)) (-3174 (((-85) $ $) 92 T ELT))) +(((-1105 |#1| |#2|) (-13 (-1041) (-10 -8 (-15 -3667 ((-85) $)) (-15 -3666 ((-85) $)) (-15 -3665 ((-85) $)) (-15 -3764 ($)) (-15 -4038 ($)) (-15 -3664 ($ $)) (-15 -3663 ($ $ (-714))) (-15 -3662 ((-599 $) $)) (-15 -3661 ((-714) $)) (-15 -3660 ($ $)) (-15 -3659 ($ $)) (-15 -3658 ($ $ $)) (-15 -3658 ($ (-599 $))) (-15 -3901 ((-599 $) $)) (-15 -3657 ($ $ (-599 (-714)) (-881 |#2|))) (-15 -3656 ($ $ (-881 |#2|))) (-15 -3655 ($ $ $ (-881 |#2|) (-714))) (-15 -3654 ($ $ (-599 (-714)) (-881 |#2|))) (-15 -3657 ($ $ (-599 (-714)) (-714))) (-15 -3654 ($ $ (-599 (-714)) (-714))) (-15 -3657 ((-714) $ (-881 |#2|))) (-15 -3654 ($ $ (-714) (-881 |#2|))) (-15 -3653 ($ $ (-599 (-714)) (-85))) (-15 -3652 ($ $ (-599 (-714)) (-145))) (-15 -3651 ($ $ (-599 (-714)))) (-15 -3650 ((-881 |#2|) $)) (-15 -3649 ((-714) $)) (-15 -3648 ((-85) $)) (-15 -3647 ((-145) $)) (-15 -3646 ((-714) $)) (-15 -3645 ($ $)) (-15 -3644 ((-599 (-881 |#2|)) $)))) (-857) (-989)) (T -1105)) +((-3667 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3665 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3764 (*1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989)))) (-4038 (*1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989)))) (-3664 (*1 *1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989)))) (-3663 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3662 (*1 *2 *1) (-12 (-5 *2 (-599 (-1105 *3 *4))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3661 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3660 (*1 *1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989)))) (-3659 (*1 *1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989)))) (-3658 (*1 *1 *1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989)))) (-3658 (*1 *1 *2) (-12 (-5 *2 (-599 (-1105 *3 *4))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3901 (*1 *2 *1) (-12 (-5 *2 (-599 (-1105 *3 *4))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3657 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-714))) (-5 *3 (-881 *5)) (-4 *5 (-989)) (-5 *1 (-1105 *4 *5)) (-14 *4 (-857)))) (-3656 (*1 *1 *1 *2) (-12 (-5 *2 (-881 *4)) (-4 *4 (-989)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)))) (-3655 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-881 *5)) (-5 *3 (-714)) (-4 *5 (-989)) (-5 *1 (-1105 *4 *5)) (-14 *4 (-857)))) (-3654 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-714))) (-5 *3 (-881 *5)) (-4 *5 (-989)) (-5 *1 (-1105 *4 *5)) (-14 *4 (-857)))) (-3657 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-714))) (-5 *3 (-714)) (-5 *1 (-1105 *4 *5)) (-14 *4 (-857)) (-4 *5 (-989)))) (-3654 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-714))) (-5 *3 (-714)) (-5 *1 (-1105 *4 *5)) (-14 *4 (-857)) (-4 *5 (-989)))) (-3657 (*1 *2 *1 *3) (-12 (-5 *3 (-881 *5)) (-4 *5 (-989)) (-5 *2 (-714)) (-5 *1 (-1105 *4 *5)) (-14 *4 (-857)))) (-3654 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-714)) (-5 *3 (-881 *5)) (-4 *5 (-989)) (-5 *1 (-1105 *4 *5)) (-14 *4 (-857)))) (-3653 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-714))) (-5 *3 (-85)) (-5 *1 (-1105 *4 *5)) (-14 *4 (-857)) (-4 *5 (-989)))) (-3652 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-714))) (-5 *3 (-145)) (-5 *1 (-1105 *4 *5)) (-14 *4 (-857)) (-4 *5 (-989)))) (-3651 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-714))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3650 (*1 *2 *1) (-12 (-5 *2 (-881 *4)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3648 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3647 (*1 *2 *1) (-12 (-5 *2 (-145)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3646 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989)))) (-3645 (*1 *1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989)))) (-3644 (*1 *2 *1) (-12 (-5 *2 (-599 (-881 *4))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3668 ((|#2| $) 11 T ELT)) (-3669 ((|#1| $) 10 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3670 (($ |#1| |#2|) 9 T ELT)) (-4096 (((-797) $) 16 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-1106 |#1| |#2|) (-13 (-1041) (-10 -8 (-15 -3670 ($ |#1| |#2|)) (-15 -3669 (|#1| $)) (-15 -3668 (|#2| $)))) (-1041) (-1041)) (T -1106)) +((-3670 (*1 *1 *2 *3) (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041)))) (-3669 (*1 *2 *1) (-12 (-4 *2 (-1041)) (-5 *1 (-1106 *2 *3)) (-4 *3 (-1041)))) (-3668 (*1 *2 *1) (-12 (-4 *2 (-1041)) (-5 *1 (-1106 *3 *2)) (-4 *3 (-1041))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3671 (((-1075) $) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 15 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-1107) (-13 (-1023) (-10 -8 (-15 -3671 ((-1075) $))))) (T -1107)) +((-3671 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1107))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3251 (((-1115 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-261)) (|has| |#1| (-318))) ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) 11 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT)) (-2164 (($ $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT)) (-2162 (((-85) $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT)) (-3921 (($ $ (-499)) NIL T ELT) (($ $ (-499) (-499)) 75 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))) $) NIL T ELT)) (-3881 (((-1115 |#1| |#2| |#3|) $) 42 T ELT)) (-3878 (((-3 (-1115 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3879 (((-1115 |#1| |#2| |#3|) $) 33 T ELT)) (-3632 (($ $) 116 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 92 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1#) $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) ELT)) (-3925 (($ $) NIL (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3630 (($ $) 112 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 88 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3773 (((-499) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) ELT)) (-3968 (($ (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|)))) NIL T ELT)) (-3634 (($ $) 120 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 96 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-1115 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1117) #1#) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-978 (-1117))) (|has| |#1| (-318))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-978 (-499))) (|has| |#1| (-318))) ELT) (((-3 (-499) #1#) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-978 (-499))) (|has| |#1| (-318))) ELT)) (-3294 (((-1115 |#1| |#2| |#3|) $) 140 T ELT) (((-1117) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-978 (-1117))) (|has| |#1| (-318))) ELT) (((-361 (-499)) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-978 (-499))) (|has| |#1| (-318))) ELT) (((-499) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-978 (-499))) (|has| |#1| (-318))) ELT)) (-3880 (($ $) 37 T ELT) (($ (-499) $) 38 T ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-1115 |#1| |#2| |#3|)) (-647 $)) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-1115 |#1| |#2| |#3|))) (|:| |vec| (-1207 (-1115 |#1| |#2| |#3|)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-596 (-499))) (|has| |#1| (-318))) ELT) (((-647 (-499)) (-647 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-596 (-499))) (|has| |#1| (-318))) ELT)) (-3607 (((-3 $ #1#) $) 54 T ELT)) (-3877 (((-361 (-884 |#1|)) $ (-499)) 74 (|has| |#1| (-510)) ELT) (((-361 (-884 |#1|)) $ (-499) (-499)) 76 (|has| |#1| (-510)) ELT)) (-3115 (($) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-498)) (|has| |#1| (-318))) ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3324 (((-85) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) ELT)) (-3013 (((-85) $) 28 T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-821 (-333))) (|has| |#1| (-318))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-821 (-499))) (|has| |#1| (-318))) ELT)) (-3922 (((-499) $) NIL T ELT) (((-499) $ (-499)) 26 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3119 (((-1115 |#1| |#2| |#3|) $) 44 (|has| |#1| (-318)) ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3585 (((-649 $) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-1092)) (|has| |#1| (-318))) ELT)) (-3325 (((-85) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) ELT)) (-3927 (($ $ (-857)) NIL T ELT)) (-3965 (($ (-1 |#1| (-499)) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-499)) 19 T ELT) (($ $ (-1022) (-499)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-499))) NIL T ELT)) (-2650 (($ $ $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-2978 (($ $ $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-318)) ELT)) (-4092 (($ $) 81 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2381 (((-647 (-1115 |#1| |#2| |#3|)) (-1207 $)) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-1115 |#1| |#2| |#3|))) (|:| |vec| (-1207 (-1115 |#1| |#2| |#3|)))) (-1207 $) $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-596 (-499))) (|has| |#1| (-318))) ELT) (((-647 (-499)) (-1207 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-596 (-499))) (|has| |#1| (-318))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3929 (($ (-499) (-1115 |#1| |#2| |#3|)) 36 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3962 (($ $) 79 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))))) ELT) (($ $ (-1204 |#2|)) 80 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3586 (($) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-1092)) (|has| |#1| (-318))) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3250 (($ $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-261)) (|has| |#1| (-318))) ELT)) (-3252 (((-1115 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-498)) (|has| |#1| (-318))) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-499)) 158 T ELT)) (-3606 (((-3 $ #1#) $ $) 55 (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4093 (($ $) 82 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-499)))) ELT) (($ $ (-1117) (-1115 |#1| |#2| |#3|)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-468 (-1117) (-1115 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT) (($ $ (-599 (-1117)) (-599 (-1115 |#1| |#2| |#3|))) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-468 (-1117) (-1115 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT) (($ $ (-599 (-247 (-1115 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-263 (-1115 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT) (($ $ (-247 (-1115 |#1| |#2| |#3|))) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-263 (-1115 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT) (($ $ (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-263 (-1115 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT) (($ $ (-599 (-1115 |#1| |#2| |#3|)) (-599 (-1115 |#1| |#2| |#3|))) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-263 (-1115 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-499)) NIL T ELT) (($ $ $) 61 (|has| (-499) (-1052)) ELT) (($ $ (-1115 |#1| |#2| |#3|)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-240 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) (-714)) NIL (|has| |#1| (-318)) ELT) (($ $ (-1 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|))) NIL (|has| |#1| (-318)) ELT) (($ $ (-1204 |#2|)) 57 T ELT) (($ $) 56 (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-190)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-190)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT)) (-3116 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3118 (((-1115 |#1| |#2| |#3|) $) 46 (|has| |#1| (-318)) ELT)) (-4098 (((-499) $) 43 T ELT)) (-3635 (($ $) 122 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 98 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 118 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 94 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 114 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 90 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-4122 (((-488) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-569 (-488))) (|has| |#1| (-318))) ELT) (((-333) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-960)) (|has| |#1| (-318))) ELT) (((-179) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-960)) (|has| |#1| (-318))) ELT) (((-825 (-333)) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-569 (-825 (-333)))) (|has| |#1| (-318))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-569 (-825 (-499)))) (|has| |#1| (-318))) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) ELT)) (-3012 (($ $) NIL T ELT)) (-4096 (((-797) $) 162 T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1115 |#1| |#2| |#3|)) 30 T ELT) (($ (-1204 |#2|)) 25 T ELT) (($ (-1117)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-978 (-1117))) (|has| |#1| (-318))) ELT) (($ $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT) (($ (-361 (-499))) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-978 (-499))) (|has| |#1| (-318))) (|has| |#1| (-38 (-361 (-499))))) ELT)) (-3827 ((|#1| $ (-499)) 77 T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-118)) (|has| |#1| (-318))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-3923 ((|#1| $) 12 T ELT)) (-3253 (((-1115 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-498)) (|has| |#1| (-318))) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) 128 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 104 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT)) (-3636 (($ $) 124 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 100 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 132 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 108 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-499)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-499)))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) 134 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 110 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 130 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 106 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 126 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 102 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3523 (($ $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) ELT)) (-2779 (($) 21 T CONST)) (-2785 (($) 16 T CONST)) (-2790 (($ $ (-1 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) (-714)) NIL (|has| |#1| (-318)) ELT) (($ $ (-1 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|))) NIL (|has| |#1| (-318)) ELT) (($ $ (-1204 |#2|)) NIL T ELT) (($ $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-190)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-190)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT)) (-2685 (((-85) $ $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-2686 (((-85) $ $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-2806 (((-85) $ $) NIL (-3677 (-12 (|has| (-1115 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT) (($ $ $) 49 (|has| |#1| (-318)) ELT) (($ (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) 50 (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 23 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 60 T ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 137 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1115 |#1| |#2| |#3|)) 48 (|has| |#1| (-318)) ELT) (($ (-1115 |#1| |#2| |#3|) $) 47 (|has| |#1| (-318)) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-1108 |#1| |#2| |#3|) (-13 (-1171 |#1| (-1115 |#1| |#2| |#3|)) (-831 $ (-1204 |#2|)) (-10 -8 (-15 -4096 ($ (-1204 |#2|))) (IF (|has| |#1| (-38 (-361 (-499)))) (-15 -3962 ($ $ (-1204 |#2|))) |%noBranch|))) (-989) (-1117) |#1|) (T -1108)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1108 *3 *4 *5)) (-4 *3 (-989)) (-14 *5 *3))) (-3962 (*1 *1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1108 *3 *4 *5)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3)))) +((-3672 ((|#2| |#2| (-1032 |#2|)) 26 T ELT) ((|#2| |#2| (-1117)) 28 T ELT))) +(((-1109 |#1| |#2|) (-10 -7 (-15 -3672 (|#2| |#2| (-1117))) (-15 -3672 (|#2| |#2| (-1032 |#2|)))) (-13 (-510) (-978 (-499)) (-596 (-499))) (-13 (-375 |#1|) (-133) (-27) (-1143))) (T -1109)) +((-3672 (*1 *2 *2 *3) (-12 (-5 *3 (-1032 *2)) (-4 *2 (-13 (-375 *4) (-133) (-27) (-1143))) (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1109 *4 *2)))) (-3672 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1109 *4 *2)) (-4 *2 (-13 (-375 *4) (-133) (-27) (-1143)))))) +((-3672 (((-3 (-361 (-884 |#1|)) (-268 |#1|)) (-361 (-884 |#1|)) (-1032 (-361 (-884 |#1|)))) 31 T ELT) (((-361 (-884 |#1|)) (-884 |#1|) (-1032 (-884 |#1|))) 44 T ELT) (((-3 (-361 (-884 |#1|)) (-268 |#1|)) (-361 (-884 |#1|)) (-1117)) 33 T ELT) (((-361 (-884 |#1|)) (-884 |#1|) (-1117)) 36 T ELT))) +(((-1110 |#1|) (-10 -7 (-15 -3672 ((-361 (-884 |#1|)) (-884 |#1|) (-1117))) (-15 -3672 ((-3 (-361 (-884 |#1|)) (-268 |#1|)) (-361 (-884 |#1|)) (-1117))) (-15 -3672 ((-361 (-884 |#1|)) (-884 |#1|) (-1032 (-884 |#1|)))) (-15 -3672 ((-3 (-361 (-884 |#1|)) (-268 |#1|)) (-361 (-884 |#1|)) (-1032 (-361 (-884 |#1|)))))) (-13 (-510) (-978 (-499)))) (T -1110)) +((-3672 (*1 *2 *3 *4) (-12 (-5 *4 (-1032 (-361 (-884 *5)))) (-5 *3 (-361 (-884 *5))) (-4 *5 (-13 (-510) (-978 (-499)))) (-5 *2 (-3 *3 (-268 *5))) (-5 *1 (-1110 *5)))) (-3672 (*1 *2 *3 *4) (-12 (-5 *4 (-1032 (-884 *5))) (-5 *3 (-884 *5)) (-4 *5 (-13 (-510) (-978 (-499)))) (-5 *2 (-361 *3)) (-5 *1 (-1110 *5)))) (-3672 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-510) (-978 (-499)))) (-5 *2 (-3 (-361 (-884 *5)) (-268 *5))) (-5 *1 (-1110 *5)) (-5 *3 (-361 (-884 *5))))) (-3672 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-510) (-978 (-499)))) (-5 *2 (-361 (-884 *5))) (-5 *1 (-1110 *5)) (-5 *3 (-884 *5))))) +((-2687 (((-85) $ $) 172 T ELT)) (-3326 (((-85) $) 43 T ELT)) (-3917 (((-1207 |#1|) $ (-714)) NIL T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3915 (($ (-1111 |#1|)) NIL T ELT)) (-3206 (((-1111 $) $ (-1022)) 82 T ELT) (((-1111 |#1|) $) 71 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) 165 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-1022))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3905 (($ $ $) 159 (|has| |#1| (-510)) ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 96 (|has| |#1| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) 116 (|has| |#1| (-848)) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3911 (($ $ (-714)) 61 T ELT)) (-3910 (($ $ (-714)) 63 T ELT)) (-3901 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-406)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-1022) #1#) $) NIL T ELT)) (-3294 ((|#1| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-1022) $) NIL T ELT)) (-3906 (($ $ $ (-1022)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 161 (|has| |#1| (-146)) ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) 80 T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#1|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3909 (($ $ $) 132 T ELT)) (-3903 (($ $ $) NIL (|has| |#1| (-510)) ELT)) (-3902 (((-2 (|:| -4104 |#1|) (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-510)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3643 (($ $) 166 (|has| |#1| (-406)) ELT) (($ $ (-1022)) NIL (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-848)) ELT)) (-1694 (($ $ |#1| (-714) $) 69 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-1022) (-821 (-333))) (|has| |#1| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-1022) (-821 (-499))) (|has| |#1| (-821 (-499)))) ELT)) (-3673 (((-797) $ (-797)) 149 T ELT)) (-3922 (((-714) $ $) NIL (|has| |#1| (-510)) ELT)) (-2528 (((-85) $) 48 T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| |#1| (-1092)) ELT)) (-3207 (($ (-1111 |#1|) (-1022)) 73 T ELT) (($ (-1111 $) (-1022)) 90 T ELT)) (-3927 (($ $ (-714)) 51 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-714)) 88 T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-1022)) NIL T ELT) (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 154 T ELT)) (-2941 (((-714) $) NIL T ELT) (((-714) $ (-1022)) NIL T ELT) (((-599 (-714)) $ (-599 (-1022))) NIL T ELT)) (-1695 (($ (-1 (-714) (-714)) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3916 (((-1111 |#1|) $) NIL T ELT)) (-3205 (((-3 (-1022) #1#) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) NIL T ELT) (((-647 |#1|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) 76 T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3912 (((-2 (|:| -2075 $) (|:| -3023 $)) $ (-714)) 60 T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-1022)) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3962 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3586 (($) NIL (|has| |#1| (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) 50 T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 104 (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-406)) ELT) (($ $ $) 168 (|has| |#1| (-406)) ELT)) (-3888 (($ $ (-714) |#1| $) 124 T ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 102 (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 101 (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) 109 (|has| |#1| (-848)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3606 (((-3 $ #1#) $ |#1|) 164 (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ $) 125 (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-1022) |#1|) NIL T ELT) (($ $ (-599 (-1022)) (-599 |#1|)) NIL T ELT) (($ $ (-1022) $) NIL T ELT) (($ $ (-599 (-1022)) (-599 $)) NIL T ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ |#1|) 151 T ELT) (($ $ $) 152 T ELT) (((-361 $) (-361 $) (-361 $)) NIL (|has| |#1| (-510)) ELT) ((|#1| (-361 $) |#1|) NIL (|has| |#1| (-318)) ELT) (((-361 $) $ (-361 $)) NIL (|has| |#1| (-510)) ELT)) (-3914 (((-3 $ #1#) $ (-714)) 54 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 173 (|has| |#1| (-318)) ELT)) (-3907 (($ $ (-1022)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) 157 (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022))) NIL T ELT) (($ $ (-1022)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT)) (-4098 (((-714) $) 78 T ELT) (((-714) $ (-1022)) NIL T ELT) (((-599 (-714)) $ (-599 (-1022))) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-1022) (-569 (-825 (-333)))) (|has| |#1| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-1022) (-569 (-825 (-499)))) (|has| |#1| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-1022) (-569 (-488))) (|has| |#1| (-569 (-488)))) ELT)) (-2938 ((|#1| $) 163 (|has| |#1| (-406)) ELT) (($ $ (-1022)) NIL (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-3904 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT) (((-3 (-361 $) #1#) (-361 $) $) NIL (|has| |#1| (-510)) ELT)) (-4096 (((-797) $) 150 T ELT) (($ (-499)) NIL T ELT) (($ |#1|) 77 T ELT) (($ (-1022)) NIL T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-714)) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) 41 (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-2779 (($) 17 T CONST)) (-2785 (($) 19 T CONST)) (-2790 (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022))) NIL T ELT) (($ $ (-1022)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#1| (-838 (-1117))) ELT)) (-3174 (((-85) $ $) 121 T ELT)) (-4099 (($ $ |#1|) 174 (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 91 T ELT)) (** (($ $ (-857)) 14 T ELT) (($ $ (-714)) 12 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 130 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1111 |#1|) (-13 (-1183 |#1|) (-10 -8 (-15 -3673 ((-797) $ (-797))) (-15 -3888 ($ $ (-714) |#1| $)))) (-989)) (T -1111)) +((-3673 (*1 *2 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1111 *3)) (-4 *3 (-989)))) (-3888 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-714)) (-5 *1 (-1111 *3)) (-4 *3 (-989))))) +((-4108 (((-1111 |#2|) (-1 |#2| |#1|) (-1111 |#1|)) 13 T ELT))) +(((-1112 |#1| |#2|) (-10 -7 (-15 -4108 ((-1111 |#2|) (-1 |#2| |#1|) (-1111 |#1|)))) (-989) (-989)) (T -1112)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1111 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-5 *2 (-1111 *6)) (-5 *1 (-1112 *5 *6))))) +((-4121 (((-359 (-1111 (-361 |#4|))) (-1111 (-361 |#4|))) 51 T ELT)) (-3882 (((-359 (-1111 (-361 |#4|))) (-1111 (-361 |#4|))) 52 T ELT))) +(((-1113 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3882 ((-359 (-1111 (-361 |#4|))) (-1111 (-361 |#4|)))) (-15 -4121 ((-359 (-1111 (-361 |#4|))) (-1111 (-361 |#4|))))) (-738) (-781) (-406) (-888 |#3| |#1| |#2|)) (T -1113)) +((-4121 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-406)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-359 (-1111 (-361 *7)))) (-5 *1 (-1113 *4 *5 *6 *7)) (-5 *3 (-1111 (-361 *7))))) (-3882 (*1 *2 *3) (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-406)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-359 (-1111 (-361 *7)))) (-5 *1 (-1113 *4 *5 *6 *7)) (-5 *3 (-1111 (-361 *7)))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) 11 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-361 (-499))) NIL T ELT) (($ $ (-361 (-499)) (-361 (-499))) NIL T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|))) $) NIL T ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-714) (-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|)))) NIL T ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-1108 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1115 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3294 (((-1108 |#1| |#2| |#3|) $) NIL T ELT) (((-1115 |#1| |#2| |#3|) $) NIL T ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3931 (((-361 (-499)) $) 59 T ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3932 (($ (-361 (-499)) (-1108 |#1| |#2| |#3|)) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3013 (((-85) $) NIL T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-361 (-499)) $) NIL T ELT) (((-361 (-499)) $ (-361 (-499))) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3927 (($ $ (-857)) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-361 (-499))) 20 T ELT) (($ $ (-1022) (-361 (-499))) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-361 (-499)))) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4092 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3930 (((-1108 |#1| |#2| |#3|) $) 41 T ELT)) (-3928 (((-3 (-1108 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3929 (((-1108 |#1| |#2| |#3|) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3962 (($ $) 39 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))))) ELT) (($ $ (-1204 |#2|)) 40 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-361 (-499))) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4093 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-361 (-499))) NIL T ELT) (($ $ $) NIL (|has| (-361 (-499)) (-1052)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-1204 |#2|)) 38 T ELT)) (-4098 (((-361 (-499)) $) NIL T ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) NIL T ELT)) (-4096 (((-797) $) 62 T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1108 |#1| |#2| |#3|)) 30 T ELT) (($ (-1115 |#1| |#2| |#3|)) 31 T ELT) (($ (-1204 |#2|)) 26 T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3827 ((|#1| $ (-361 (-499))) NIL T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-3923 ((|#1| $) 12 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-361 (-499))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 22 T CONST)) (-2785 (($) 16 T CONST)) (-2790 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-1204 |#2|)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 24 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-1114 |#1| |#2| |#3|) (-13 (-1192 |#1| (-1108 |#1| |#2| |#3|)) (-831 $ (-1204 |#2|)) (-978 (-1115 |#1| |#2| |#3|)) (-571 (-1204 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-361 (-499)))) (-15 -3962 ($ $ (-1204 |#2|))) |%noBranch|))) (-989) (-1117) |#1|) (T -1114)) +((-3962 (*1 *1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1114 *3 *4 *5)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3)))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 129 T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) 119 T ELT)) (-3961 (((-1176 |#2| |#1|) $ (-714)) 69 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-714)) 85 T ELT) (($ $ (-714) (-714)) 82 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-714)) (|:| |c| |#1|))) $) 105 T ELT)) (-3632 (($ $) 173 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 149 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3630 (($ $) 169 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 145 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-1095 (-2 (|:| |k| (-714)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1095 |#1|)) 113 T ELT)) (-3634 (($ $) 177 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 153 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) 25 T ELT)) (-3966 (($ $) 28 T ELT)) (-3964 (((-884 |#1|) $ (-714)) 81 T ELT) (((-884 |#1|) $ (-714) (-714)) 83 T ELT)) (-3013 (((-85) $) 124 T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-714) $) 126 T ELT) (((-714) $ (-714)) 128 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3927 (($ $ (-857)) NIL T ELT)) (-3965 (($ (-1 |#1| (-499)) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-714)) 13 T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4092 (($ $) 135 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3962 (($ $) 133 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))))) ELT) (($ $ (-1204 |#2|)) 134 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3919 (($ $ (-714)) 15 T ELT)) (-3606 (((-3 $ #1#) $ $) 26 (|has| |#1| (-510)) ELT)) (-4093 (($ $) 137 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-714)))) ELT)) (-3950 ((|#1| $ (-714)) 122 T ELT) (($ $ $) 132 (|has| (-714) (-1052)) ELT)) (-3908 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT) (($ $ (-1204 |#2|)) 31 T ELT)) (-4098 (((-714) $) NIL T ELT)) (-3635 (($ $) 179 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 155 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 175 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 151 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 171 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 147 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) NIL T ELT)) (-4096 (((-797) $) 206 T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ |#1|) 130 (|has| |#1| (-146)) ELT) (($ (-1176 |#2| |#1|)) 55 T ELT) (($ (-1204 |#2|)) 36 T ELT)) (-3967 (((-1095 |#1|) $) 101 T ELT)) (-3827 ((|#1| $ (-714)) 121 T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-3923 ((|#1| $) 58 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) 185 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 161 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) 181 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 157 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 189 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 165 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-714)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-714)))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) 191 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 167 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 187 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 163 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 183 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 159 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 17 T CONST)) (-2785 (($) 20 T CONST)) (-2790 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT) (($ $ (-1204 |#2|)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3989 (($ $ $) 35 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-318)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 141 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-1115 |#1| |#2| |#3|) (-13 (-1200 |#1|) (-831 $ (-1204 |#2|)) (-10 -8 (-15 -4096 ($ (-1176 |#2| |#1|))) (-15 -3961 ((-1176 |#2| |#1|) $ (-714))) (-15 -4096 ($ (-1204 |#2|))) (IF (|has| |#1| (-38 (-361 (-499)))) (-15 -3962 ($ $ (-1204 |#2|))) |%noBranch|))) (-989) (-1117) |#1|) (T -1115)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-1176 *4 *3)) (-4 *3 (-989)) (-14 *4 (-1117)) (-14 *5 *3) (-5 *1 (-1115 *3 *4 *5)))) (-3961 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1176 *5 *4)) (-5 *1 (-1115 *4 *5 *6)) (-4 *4 (-989)) (-14 *5 (-1117)) (-14 *6 *4))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1115 *3 *4 *5)) (-4 *3 (-989)) (-14 *5 *3))) (-3962 (*1 *1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1115 *3 *4 *5)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3)))) +((-4096 (((-797) $) 33 T ELT) (($ (-1117)) 35 T ELT)) (-3677 (($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $))) 46 T ELT)) (-3674 (($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $))) 39 T ELT) (($ $) 40 T ELT)) (-3681 (($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $))) 41 T ELT)) (-3679 (($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $))) 43 T ELT)) (-3680 (($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $))) 42 T ELT)) (-3678 (($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $))) 44 T ELT)) (-3676 (($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $))) 47 T ELT)) (-12 (($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $))) 45 T ELT))) +(((-1116) (-13 (-568 (-797)) (-10 -8 (-15 -4096 ($ (-1117))) (-15 -3681 ($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)))) (-15 -3680 ($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)))) (-15 -3679 ($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)))) (-15 -3678 ($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)))) (-15 -3677 ($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)))) (-15 -3676 ($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)) (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)))) (-15 -3674 ($ (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| $)))) (-15 -3674 ($ $))))) (T -1116)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1116)))) (-3681 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-3680 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-3679 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-3678 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-3677 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-3676 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-3674 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-3674 (*1 *1 *1) (-5 *1 (-1116)))) +((-2687 (((-85) $ $) NIL T ELT)) (-3685 (($ $ (-599 (-797))) 48 T ELT)) (-3686 (($ $ (-599 (-797))) 46 T ELT)) (-3683 (((-1099) $) 88 T ELT)) (-3688 (((-2 (|:| -2703 (-599 (-797))) (|:| -2600 (-599 (-797))) (|:| |presup| (-599 (-797))) (|:| -2701 (-599 (-797))) (|:| |args| (-599 (-797)))) $) 95 T ELT)) (-3689 (((-85) $) 86 T ELT)) (-3687 (($ $ (-599 (-599 (-797)))) 45 T ELT) (($ $ (-2 (|:| -2703 (-599 (-797))) (|:| -2600 (-599 (-797))) (|:| |presup| (-599 (-797))) (|:| -2701 (-599 (-797))) (|:| |args| (-599 (-797))))) 85 T ELT)) (-3874 (($) 151 T CONST)) (-3295 (((-3 (-460) "failed") $) 155 T ELT)) (-3294 (((-460) $) NIL T ELT)) (-3691 (((-1213)) 123 T ELT)) (-2917 (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 55 T ELT) (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 62 T ELT)) (-3764 (($) 109 T ELT) (($ $) 118 T ELT)) (-3690 (($ $) 87 T ELT)) (-2650 (($ $ $) NIL T ELT)) (-2978 (($ $ $) NIL T ELT)) (-3682 (((-599 $) $) 124 T ELT)) (-3380 (((-1099) $) 101 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3950 (($ $ (-599 (-797))) 47 T ELT)) (-4122 (((-488) $) 33 T ELT) (((-1117) $) 34 T ELT) (((-825 (-499)) $) 66 T ELT) (((-825 (-333)) $) 64 T ELT)) (-4096 (((-797) $) 41 T ELT) (($ (-1099)) 35 T ELT) (($ (-460)) 153 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3684 (($ $ (-599 (-797))) 49 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 37 T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) 38 T ELT))) +(((-1117) (-13 (-781) (-569 (-488)) (-569 (-1117)) (-571 (-1099)) (-978 (-460)) (-569 (-825 (-499))) (-569 (-825 (-333))) (-821 (-499)) (-821 (-333)) (-10 -8 (-15 -3764 ($)) (-15 -3764 ($ $)) (-15 -3691 ((-1213))) (-15 -3690 ($ $)) (-15 -3689 ((-85) $)) (-15 -3688 ((-2 (|:| -2703 (-599 (-797))) (|:| -2600 (-599 (-797))) (|:| |presup| (-599 (-797))) (|:| -2701 (-599 (-797))) (|:| |args| (-599 (-797)))) $)) (-15 -3687 ($ $ (-599 (-599 (-797))))) (-15 -3687 ($ $ (-2 (|:| -2703 (-599 (-797))) (|:| -2600 (-599 (-797))) (|:| |presup| (-599 (-797))) (|:| -2701 (-599 (-797))) (|:| |args| (-599 (-797)))))) (-15 -3686 ($ $ (-599 (-797)))) (-15 -3685 ($ $ (-599 (-797)))) (-15 -3684 ($ $ (-599 (-797)))) (-15 -3950 ($ $ (-599 (-797)))) (-15 -3683 ((-1099) $)) (-15 -3682 ((-599 $) $)) (-15 -3874 ($) -4102)))) (T -1117)) +((-3764 (*1 *1) (-5 *1 (-1117))) (-3764 (*1 *1 *1) (-5 *1 (-1117))) (-3691 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1117)))) (-3690 (*1 *1 *1) (-5 *1 (-1117))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1117)))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2703 (-599 (-797))) (|:| -2600 (-599 (-797))) (|:| |presup| (-599 (-797))) (|:| -2701 (-599 (-797))) (|:| |args| (-599 (-797))))) (-5 *1 (-1117)))) (-3687 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-599 (-797)))) (-5 *1 (-1117)))) (-3687 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2703 (-599 (-797))) (|:| -2600 (-599 (-797))) (|:| |presup| (-599 (-797))) (|:| -2701 (-599 (-797))) (|:| |args| (-599 (-797))))) (-5 *1 (-1117)))) (-3686 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-1117)))) (-3685 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-1117)))) (-3684 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-1117)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-1117)))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1117)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-1117)))) (-3874 (*1 *1) (-5 *1 (-1117)))) +((-3692 (((-1207 |#1|) |#1| (-857)) 18 T ELT) (((-1207 |#1|) (-599 |#1|)) 25 T ELT))) +(((-1118 |#1|) (-10 -7 (-15 -3692 ((-1207 |#1|) (-599 |#1|))) (-15 -3692 ((-1207 |#1|) |#1| (-857)))) (-989)) (T -1118)) +((-3692 (*1 *2 *3 *4) (-12 (-5 *4 (-857)) (-5 *2 (-1207 *3)) (-5 *1 (-1118 *3)) (-4 *3 (-989)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-599 *4)) (-4 *4 (-989)) (-5 *2 (-1207 *4)) (-5 *1 (-1118 *4))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3294 (((-499) $) NIL (|has| |#1| (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| |#1| (-978 (-361 (-499)))) ELT) ((|#1| $) NIL T ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3643 (($ $) NIL (|has| |#1| (-406)) ELT)) (-1694 (($ $ |#1| (-911) $) NIL T ELT)) (-2528 (((-85) $) 17 T ELT)) (-2536 (((-714) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-911)) NIL T ELT)) (-2941 (((-911) $) NIL T ELT)) (-1695 (($ (-1 (-911) (-911)) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 ((|#1| $) NIL T ELT)) (-3888 (($ $ (-911) |#1| $) NIL (-12 (|has| (-911) (-104)) (|has| |#1| (-510))) ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-510)) ELT)) (-4098 (((-911) $) NIL T ELT)) (-2938 ((|#1| $) NIL (|has| |#1| (-406)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ |#1|) NIL T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-978 (-361 (-499))))) ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-911)) NIL T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-2779 (($) 10 T CONST)) (-2785 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 21 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 22 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 16 T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-1119 |#1|) (-13 (-280 |#1| (-911)) (-10 -8 (IF (|has| |#1| (-510)) (IF (|has| (-911) (-104)) (-15 -3888 ($ $ (-911) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4143)) (-6 -4143) |%noBranch|))) (-989)) (T -1119)) +((-3888 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-911)) (-4 *2 (-104)) (-5 *1 (-1119 *3)) (-4 *3 (-510)) (-4 *3 (-989))))) +((-3693 (((-1121) (-1117) $) 25 T ELT)) (-3703 (($) 29 T ELT)) (-3695 (((-3 (|:| |fst| (-388)) (|:| -4060 #1="void")) (-1117) $) 22 T ELT)) (-3697 (((-1213) (-1117) (-3 (|:| |fst| (-388)) (|:| -4060 #1#)) $) 41 T ELT) (((-1213) (-1117) (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) 42 T ELT) (((-1213) (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) 43 T ELT)) (-3705 (((-1213) (-1117)) 58 T ELT)) (-3696 (((-1213) (-1117) $) 55 T ELT) (((-1213) (-1117)) 56 T ELT) (((-1213)) 57 T ELT)) (-3701 (((-1213) (-1117)) 37 T ELT)) (-3699 (((-1117)) 36 T ELT)) (-3713 (($) 34 T ELT)) (-3712 (((-390) (-1117) (-390) (-1117) $) 45 T ELT) (((-390) (-599 (-1117)) (-390) (-1117) $) 49 T ELT) (((-390) (-1117) (-390)) 46 T ELT) (((-390) (-1117) (-390) (-1117)) 50 T ELT)) (-3700 (((-1117)) 35 T ELT)) (-4096 (((-797) $) 28 T ELT)) (-3702 (((-1213)) 30 T ELT) (((-1213) (-1117)) 33 T ELT)) (-3694 (((-599 (-1117)) (-1117) $) 24 T ELT)) (-3698 (((-1213) (-1117) (-599 (-1117)) $) 38 T ELT) (((-1213) (-1117) (-599 (-1117))) 39 T ELT) (((-1213) (-599 (-1117))) 40 T ELT))) +(((-1120) (-13 (-568 (-797)) (-10 -8 (-15 -3703 ($)) (-15 -3702 ((-1213))) (-15 -3702 ((-1213) (-1117))) (-15 -3712 ((-390) (-1117) (-390) (-1117) $)) (-15 -3712 ((-390) (-599 (-1117)) (-390) (-1117) $)) (-15 -3712 ((-390) (-1117) (-390))) (-15 -3712 ((-390) (-1117) (-390) (-1117))) (-15 -3701 ((-1213) (-1117))) (-15 -3700 ((-1117))) (-15 -3699 ((-1117))) (-15 -3698 ((-1213) (-1117) (-599 (-1117)) $)) (-15 -3698 ((-1213) (-1117) (-599 (-1117)))) (-15 -3698 ((-1213) (-599 (-1117)))) (-15 -3697 ((-1213) (-1117) (-3 (|:| |fst| (-388)) (|:| -4060 #1="void")) $)) (-15 -3697 ((-1213) (-1117) (-3 (|:| |fst| (-388)) (|:| -4060 #1#)))) (-15 -3697 ((-1213) (-3 (|:| |fst| (-388)) (|:| -4060 #1#)))) (-15 -3696 ((-1213) (-1117) $)) (-15 -3696 ((-1213) (-1117))) (-15 -3696 ((-1213))) (-15 -3705 ((-1213) (-1117))) (-15 -3713 ($)) (-15 -3695 ((-3 (|:| |fst| (-388)) (|:| -4060 #1#)) (-1117) $)) (-15 -3694 ((-599 (-1117)) (-1117) $)) (-15 -3693 ((-1121) (-1117) $))))) (T -1120)) +((-3703 (*1 *1) (-5 *1 (-1120))) (-3702 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3712 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-390)) (-5 *3 (-1117)) (-5 *1 (-1120)))) (-3712 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-390)) (-5 *3 (-599 (-1117))) (-5 *4 (-1117)) (-5 *1 (-1120)))) (-3712 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1117)) (-5 *1 (-1120)))) (-3712 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-390)) (-5 *3 (-1117)) (-5 *1 (-1120)))) (-3701 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3700 (*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1120)))) (-3699 (*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1120)))) (-3698 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-599 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3698 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3698 (*1 *2 *3) (-12 (-5 *3 (-599 (-1117))) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3697 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1117)) (-5 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1="void"))) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3697 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3697 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3696 (*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3696 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3696 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3705 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) (-3713 (*1 *1) (-5 *1 (-1120))) (-3695 (*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-5 *1 (-1120)))) (-3694 (*1 *2 *3 *1) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-1120)) (-5 *3 (-1117)))) (-3693 (*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-1121)) (-5 *1 (-1120))))) +((-3707 (((-599 (-599 (-3 (|:| -3690 (-1117)) (|:| -3363 (-599 (-3 (|:| S (-1117)) (|:| P (-884 (-499))))))))) $) 66 T ELT)) (-3709 (((-599 (-3 (|:| -3690 (-1117)) (|:| -3363 (-599 (-3 (|:| S (-1117)) (|:| P (-884 (-499)))))))) (-388) $) 47 T ELT)) (-3704 (($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-390))))) 17 T ELT)) (-3705 (((-1213) $) 73 T ELT)) (-3710 (((-599 (-1117)) $) 22 T ELT)) (-3706 (((-1043) $) 60 T ELT)) (-3711 (((-390) (-1117) $) 27 T ELT)) (-3708 (((-599 (-1117)) $) 30 T ELT)) (-3713 (($) 19 T ELT)) (-3712 (((-390) (-599 (-1117)) (-390) $) 25 T ELT) (((-390) (-1117) (-390) $) 24 T ELT)) (-4096 (((-797) $) 9 T ELT) (((-1129 (-1117) (-390)) $) 13 T ELT))) +(((-1121) (-13 (-568 (-797)) (-10 -8 (-15 -4096 ((-1129 (-1117) (-390)) $)) (-15 -3713 ($)) (-15 -3712 ((-390) (-599 (-1117)) (-390) $)) (-15 -3712 ((-390) (-1117) (-390) $)) (-15 -3711 ((-390) (-1117) $)) (-15 -3710 ((-599 (-1117)) $)) (-15 -3709 ((-599 (-3 (|:| -3690 (-1117)) (|:| -3363 (-599 (-3 (|:| S (-1117)) (|:| P (-884 (-499)))))))) (-388) $)) (-15 -3708 ((-599 (-1117)) $)) (-15 -3707 ((-599 (-599 (-3 (|:| -3690 (-1117)) (|:| -3363 (-599 (-3 (|:| S (-1117)) (|:| P (-884 (-499))))))))) $)) (-15 -3706 ((-1043) $)) (-15 -3705 ((-1213) $)) (-15 -3704 ($ (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-390))))))))) (T -1121)) +((-4096 (*1 *2 *1) (-12 (-5 *2 (-1129 (-1117) (-390))) (-5 *1 (-1121)))) (-3713 (*1 *1) (-5 *1 (-1121))) (-3712 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-390)) (-5 *3 (-599 (-1117))) (-5 *1 (-1121)))) (-3712 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-390)) (-5 *3 (-1117)) (-5 *1 (-1121)))) (-3711 (*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-390)) (-5 *1 (-1121)))) (-3710 (*1 *2 *1) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-1121)))) (-3709 (*1 *2 *3 *1) (-12 (-5 *3 (-388)) (-5 *2 (-599 (-3 (|:| -3690 (-1117)) (|:| -3363 (-599 (-3 (|:| S (-1117)) (|:| P (-884 (-499))))))))) (-5 *1 (-1121)))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-1121)))) (-3707 (*1 *2 *1) (-12 (-5 *2 (-599 (-599 (-3 (|:| -3690 (-1117)) (|:| -3363 (-599 (-3 (|:| S (-1117)) (|:| P (-884 (-499)))))))))) (-5 *1 (-1121)))) (-3706 (*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-1121)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1121)))) (-3704 (*1 *1 *2) (-12 (-5 *2 (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-390))))) (-5 *1 (-1121))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3295 (((-3 (-499) #1="failed") $) 29 T ELT) (((-3 (-179) #1#) $) 35 T ELT) (((-3 (-460) #1#) $) 43 T ELT) (((-3 (-1099) #1#) $) 47 T ELT)) (-3294 (((-499) $) 30 T ELT) (((-179) $) 36 T ELT) (((-460) $) 40 T ELT) (((-1099) $) 48 T ELT)) (-3718 (((-85) $) 53 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3717 (((-3 (-499) (-179) (-460) (-1099) $) $) 56 T ELT)) (-3716 (((-599 $) $) 58 T ELT)) (-4122 (((-1043) $) 24 T ELT) (($ (-1043)) 25 T ELT)) (-3715 (((-85) $) 57 T ELT)) (-4096 (((-797) $) 23 T ELT) (($ (-499)) 26 T ELT) (($ (-179)) 32 T ELT) (($ (-460)) 38 T ELT) (($ (-1099)) 44 T ELT) (((-488) $) 60 T ELT) (((-499) $) 31 T ELT) (((-179) $) 37 T ELT) (((-460) $) 41 T ELT) (((-1099) $) 49 T ELT)) (-3714 (((-85) $ (|[\|\|]| (-499))) 10 T ELT) (((-85) $ (|[\|\|]| (-179))) 13 T ELT) (((-85) $ (|[\|\|]| (-460))) 19 T ELT) (((-85) $ (|[\|\|]| (-1099))) 16 T ELT)) (-3719 (($ (-460) (-599 $)) 51 T ELT) (($ $ (-599 $)) 52 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3720 (((-499) $) 27 T ELT) (((-179) $) 33 T ELT) (((-460) $) 39 T ELT) (((-1099) $) 45 T ELT)) (-3174 (((-85) $ $) 7 T ELT))) +(((-1122) (-13 (-1203) (-1041) (-978 (-499)) (-978 (-179)) (-978 (-460)) (-978 (-1099)) (-568 (-488)) (-10 -8 (-15 -4122 ((-1043) $)) (-15 -4122 ($ (-1043))) (-15 -4096 ((-499) $)) (-15 -3720 ((-499) $)) (-15 -4096 ((-179) $)) (-15 -3720 ((-179) $)) (-15 -4096 ((-460) $)) (-15 -3720 ((-460) $)) (-15 -4096 ((-1099) $)) (-15 -3720 ((-1099) $)) (-15 -3719 ($ (-460) (-599 $))) (-15 -3719 ($ $ (-599 $))) (-15 -3718 ((-85) $)) (-15 -3717 ((-3 (-499) (-179) (-460) (-1099) $) $)) (-15 -3716 ((-599 $) $)) (-15 -3715 ((-85) $)) (-15 -3714 ((-85) $ (|[\|\|]| (-499)))) (-15 -3714 ((-85) $ (|[\|\|]| (-179)))) (-15 -3714 ((-85) $ (|[\|\|]| (-460)))) (-15 -3714 ((-85) $ (|[\|\|]| (-1099))))))) (T -1122)) +((-4122 (*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-1122)))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-1043)) (-5 *1 (-1122)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1122)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1122)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1122)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1122)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-1122)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-1122)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1122)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1122)))) (-3719 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-599 (-1122))) (-5 *1 (-1122)))) (-3719 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-1122))) (-5 *1 (-1122)))) (-3718 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1122)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-3 (-499) (-179) (-460) (-1099) (-1122))) (-5 *1 (-1122)))) (-3716 (*1 *2 *1) (-12 (-5 *2 (-599 (-1122))) (-5 *1 (-1122)))) (-3715 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1122)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-499))) (-5 *2 (-85)) (-5 *1 (-1122)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1122)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-460))) (-5 *2 (-85)) (-5 *1 (-1122)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-85)) (-5 *1 (-1122))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3258 (((-714)) 21 T ELT)) (-3874 (($) 10 T CONST)) (-3115 (($) 25 T ELT)) (-2650 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2978 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2111 (((-857) $) 23 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) 22 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT))) +(((-1123 |#1|) (-13 (-777) (-10 -8 (-15 -3874 ($) -4102))) (-857)) (T -1123)) +((-3874 (*1 *1) (-12 (-5 *1 (-1123 *2)) (-14 *2 (-857))))) +((-499) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) +((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) 24 T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) 18 T CONST)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2978 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-3875 (($ $ $) 20 T ELT)) (-3876 (($ $ $) 19 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2411 (($ $ $) 22 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-2412 (($ $ $) 21 T ELT))) +(((-1124 |#1|) (-13 (-777) (-620) (-10 -8 (-15 -3876 ($ $ $)) (-15 -3875 ($ $ $)) (-15 -3874 ($) -4102))) (-857)) (T -1124)) +((-3876 (*1 *1 *1 *1) (-12 (-5 *1 (-1124 *2)) (-14 *2 (-857)))) (-3875 (*1 *1 *1 *1) (-12 (-5 *1 (-1124 *2)) (-14 *2 (-857)))) (-3874 (*1 *1) (-12 (-5 *1 (-1124 *2)) (-14 *2 (-857))))) +((-714) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 9 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 7 T ELT))) +(((-1125) (-1041)) (T -1125)) +NIL +((-3722 (((-599 (-599 (-884 |#1|))) (-599 (-361 (-884 |#1|))) (-599 (-1117))) 69 T ELT)) (-3721 (((-599 (-247 (-361 (-884 |#1|)))) (-247 (-361 (-884 |#1|)))) 81 T ELT) (((-599 (-247 (-361 (-884 |#1|)))) (-361 (-884 |#1|))) 77 T ELT) (((-599 (-247 (-361 (-884 |#1|)))) (-247 (-361 (-884 |#1|))) (-1117)) 82 T ELT) (((-599 (-247 (-361 (-884 |#1|)))) (-361 (-884 |#1|)) (-1117)) 76 T ELT) (((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-247 (-361 (-884 |#1|))))) 107 T ELT) (((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-361 (-884 |#1|)))) 106 T ELT) (((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-247 (-361 (-884 |#1|)))) (-599 (-1117))) 108 T ELT) (((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-361 (-884 |#1|))) (-599 (-1117))) 105 T ELT))) +(((-1126 |#1|) (-10 -7 (-15 -3721 ((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-361 (-884 |#1|))) (-599 (-1117)))) (-15 -3721 ((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-247 (-361 (-884 |#1|)))) (-599 (-1117)))) (-15 -3721 ((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-361 (-884 |#1|))))) (-15 -3721 ((-599 (-599 (-247 (-361 (-884 |#1|))))) (-599 (-247 (-361 (-884 |#1|)))))) (-15 -3721 ((-599 (-247 (-361 (-884 |#1|)))) (-361 (-884 |#1|)) (-1117))) (-15 -3721 ((-599 (-247 (-361 (-884 |#1|)))) (-247 (-361 (-884 |#1|))) (-1117))) (-15 -3721 ((-599 (-247 (-361 (-884 |#1|)))) (-361 (-884 |#1|)))) (-15 -3721 ((-599 (-247 (-361 (-884 |#1|)))) (-247 (-361 (-884 |#1|))))) (-15 -3722 ((-599 (-599 (-884 |#1|))) (-599 (-361 (-884 |#1|))) (-599 (-1117))))) (-510)) (T -1126)) +((-3722 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-361 (-884 *5)))) (-5 *4 (-599 (-1117))) (-4 *5 (-510)) (-5 *2 (-599 (-599 (-884 *5)))) (-5 *1 (-1126 *5)))) (-3721 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-599 (-247 (-361 (-884 *4))))) (-5 *1 (-1126 *4)) (-5 *3 (-247 (-361 (-884 *4)))))) (-3721 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-599 (-247 (-361 (-884 *4))))) (-5 *1 (-1126 *4)) (-5 *3 (-361 (-884 *4))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-510)) (-5 *2 (-599 (-247 (-361 (-884 *5))))) (-5 *1 (-1126 *5)) (-5 *3 (-247 (-361 (-884 *5)))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-510)) (-5 *2 (-599 (-247 (-361 (-884 *5))))) (-5 *1 (-1126 *5)) (-5 *3 (-361 (-884 *5))))) (-3721 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-599 (-599 (-247 (-361 (-884 *4)))))) (-5 *1 (-1126 *4)) (-5 *3 (-599 (-247 (-361 (-884 *4))))))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-599 (-361 (-884 *4)))) (-4 *4 (-510)) (-5 *2 (-599 (-599 (-247 (-361 (-884 *4)))))) (-5 *1 (-1126 *4)))) (-3721 (*1 *2 *3 *4) (-12 (-5 *4 (-599 (-1117))) (-4 *5 (-510)) (-5 *2 (-599 (-599 (-247 (-361 (-884 *5)))))) (-5 *1 (-1126 *5)) (-5 *3 (-599 (-247 (-361 (-884 *5))))))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-361 (-884 *5)))) (-5 *4 (-599 (-1117))) (-4 *5 (-510)) (-5 *2 (-599 (-599 (-247 (-361 (-884 *5)))))) (-5 *1 (-1126 *5))))) +((-3727 (((-1099)) 7 T ELT)) (-3724 (((-1099)) 11 T CONST)) (-3723 (((-1213) (-1099)) 13 T ELT)) (-3726 (((-1099)) 8 T CONST)) (-3725 (((-103)) 10 T CONST))) +(((-1127) (-13 (-1157) (-10 -7 (-15 -3727 ((-1099))) (-15 -3726 ((-1099)) -4102) (-15 -3725 ((-103)) -4102) (-15 -3724 ((-1099)) -4102) (-15 -3723 ((-1213) (-1099)))))) (T -1127)) +((-3727 (*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1127)))) (-3726 (*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1127)))) (-3725 (*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1127)))) (-3724 (*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1127)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1127))))) +((-3731 (((-599 (-599 |#1|)) (-599 (-599 |#1|)) (-599 (-599 (-599 |#1|)))) 56 T ELT)) (-3734 (((-599 (-599 (-599 |#1|))) (-599 (-599 |#1|))) 38 T ELT)) (-3735 (((-1130 (-599 |#1|)) (-599 |#1|)) 49 T ELT)) (-3737 (((-599 (-599 |#1|)) (-599 |#1|)) 45 T ELT)) (-3740 (((-2 (|:| |f1| (-599 |#1|)) (|:| |f2| (-599 (-599 (-599 |#1|)))) (|:| |f3| (-599 (-599 |#1|))) (|:| |f4| (-599 (-599 (-599 |#1|))))) (-599 (-599 (-599 |#1|)))) 53 T ELT)) (-3739 (((-2 (|:| |f1| (-599 |#1|)) (|:| |f2| (-599 (-599 (-599 |#1|)))) (|:| |f3| (-599 (-599 |#1|))) (|:| |f4| (-599 (-599 (-599 |#1|))))) (-599 |#1|) (-599 (-599 (-599 |#1|))) (-599 (-599 |#1|)) (-599 (-599 (-599 |#1|))) (-599 (-599 (-599 |#1|))) (-599 (-599 (-599 |#1|)))) 52 T ELT)) (-3736 (((-599 (-599 |#1|)) (-599 (-599 |#1|))) 43 T ELT)) (-3738 (((-599 |#1|) (-599 |#1|)) 46 T ELT)) (-3730 (((-599 (-599 (-599 |#1|))) (-599 |#1|) (-599 (-599 (-599 |#1|)))) 32 T ELT)) (-3729 (((-599 (-599 (-599 |#1|))) (-1 (-85) |#1| |#1|) (-599 |#1|) (-599 (-599 (-599 |#1|)))) 29 T ELT)) (-3728 (((-2 (|:| |fs| (-85)) (|:| |sd| (-599 |#1|)) (|:| |td| (-599 (-599 |#1|)))) (-1 (-85) |#1| |#1|) (-599 |#1|) (-599 (-599 |#1|))) 24 T ELT)) (-3732 (((-599 (-599 |#1|)) (-599 (-599 (-599 |#1|)))) 58 T ELT)) (-3733 (((-599 (-599 |#1|)) (-1130 (-599 |#1|))) 60 T ELT))) +(((-1128 |#1|) (-10 -7 (-15 -3728 ((-2 (|:| |fs| (-85)) (|:| |sd| (-599 |#1|)) (|:| |td| (-599 (-599 |#1|)))) (-1 (-85) |#1| |#1|) (-599 |#1|) (-599 (-599 |#1|)))) (-15 -3729 ((-599 (-599 (-599 |#1|))) (-1 (-85) |#1| |#1|) (-599 |#1|) (-599 (-599 (-599 |#1|))))) (-15 -3730 ((-599 (-599 (-599 |#1|))) (-599 |#1|) (-599 (-599 (-599 |#1|))))) (-15 -3731 ((-599 (-599 |#1|)) (-599 (-599 |#1|)) (-599 (-599 (-599 |#1|))))) (-15 -3732 ((-599 (-599 |#1|)) (-599 (-599 (-599 |#1|))))) (-15 -3733 ((-599 (-599 |#1|)) (-1130 (-599 |#1|)))) (-15 -3734 ((-599 (-599 (-599 |#1|))) (-599 (-599 |#1|)))) (-15 -3735 ((-1130 (-599 |#1|)) (-599 |#1|))) (-15 -3736 ((-599 (-599 |#1|)) (-599 (-599 |#1|)))) (-15 -3737 ((-599 (-599 |#1|)) (-599 |#1|))) (-15 -3738 ((-599 |#1|) (-599 |#1|))) (-15 -3739 ((-2 (|:| |f1| (-599 |#1|)) (|:| |f2| (-599 (-599 (-599 |#1|)))) (|:| |f3| (-599 (-599 |#1|))) (|:| |f4| (-599 (-599 (-599 |#1|))))) (-599 |#1|) (-599 (-599 (-599 |#1|))) (-599 (-599 |#1|)) (-599 (-599 (-599 |#1|))) (-599 (-599 (-599 |#1|))) (-599 (-599 (-599 |#1|))))) (-15 -3740 ((-2 (|:| |f1| (-599 |#1|)) (|:| |f2| (-599 (-599 (-599 |#1|)))) (|:| |f3| (-599 (-599 |#1|))) (|:| |f4| (-599 (-599 (-599 |#1|))))) (-599 (-599 (-599 |#1|)))))) (-781)) (T -1128)) +((-3740 (*1 *2 *3) (-12 (-4 *4 (-781)) (-5 *2 (-2 (|:| |f1| (-599 *4)) (|:| |f2| (-599 (-599 (-599 *4)))) (|:| |f3| (-599 (-599 *4))) (|:| |f4| (-599 (-599 (-599 *4)))))) (-5 *1 (-1128 *4)) (-5 *3 (-599 (-599 (-599 *4)))))) (-3739 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-781)) (-5 *3 (-599 *6)) (-5 *5 (-599 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-599 *5)) (|:| |f3| *5) (|:| |f4| (-599 *5)))) (-5 *1 (-1128 *6)) (-5 *4 (-599 *5)))) (-3738 (*1 *2 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-1128 *3)))) (-3737 (*1 *2 *3) (-12 (-4 *4 (-781)) (-5 *2 (-599 (-599 *4))) (-5 *1 (-1128 *4)) (-5 *3 (-599 *4)))) (-3736 (*1 *2 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-781)) (-5 *1 (-1128 *3)))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-781)) (-5 *2 (-1130 (-599 *4))) (-5 *1 (-1128 *4)) (-5 *3 (-599 *4)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-781)) (-5 *2 (-599 (-599 (-599 *4)))) (-5 *1 (-1128 *4)) (-5 *3 (-599 (-599 *4))))) (-3733 (*1 *2 *3) (-12 (-5 *3 (-1130 (-599 *4))) (-4 *4 (-781)) (-5 *2 (-599 (-599 *4))) (-5 *1 (-1128 *4)))) (-3732 (*1 *2 *3) (-12 (-5 *3 (-599 (-599 (-599 *4)))) (-5 *2 (-599 (-599 *4))) (-5 *1 (-1128 *4)) (-4 *4 (-781)))) (-3731 (*1 *2 *2 *3) (-12 (-5 *3 (-599 (-599 (-599 *4)))) (-5 *2 (-599 (-599 *4))) (-4 *4 (-781)) (-5 *1 (-1128 *4)))) (-3730 (*1 *2 *3 *2) (-12 (-5 *2 (-599 (-599 (-599 *4)))) (-5 *3 (-599 *4)) (-4 *4 (-781)) (-5 *1 (-1128 *4)))) (-3729 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-599 (-599 (-599 *5)))) (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-599 *5)) (-4 *5 (-781)) (-5 *1 (-1128 *5)))) (-3728 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-781)) (-5 *4 (-599 *6)) (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-599 *4)))) (-5 *1 (-1128 *6)) (-5 *5 (-599 *4))))) +((-2687 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-3747 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2299 (((-1213) $ |#1| |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3938 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-3545 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3546 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2301 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2302 ((|#1| $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4146)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-2333 (((-599 |#1|) $) NIL T ELT)) (-2334 (((-85) |#1| $) NIL T ELT)) (-1308 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3757 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2304 (((-599 |#1|) $) NIL T ELT)) (-2305 (((-85) |#1| $) NIL T ELT)) (-3381 (((-1060) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ELT)) (-3951 ((|#2| $) NIL (|has| |#1| (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2300 (($ $ |#2|) NIL (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1499 (($) NIL T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -4145)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (((-714) |#2| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT) (((-714) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-4096 (((-797) $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) (|has| |#2| (-568 (-797)))) ELT)) (-1297 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) NIL (-3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-73))) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-1129 |#1| |#2|) (-13 (-1134 |#1| |#2|) (-10 -7 (-6 -4145))) (-1041) (-1041)) (T -1129)) +NIL +((-3741 (($ (-599 (-599 |#1|))) 10 T ELT)) (-3742 (((-599 (-599 |#1|)) $) 11 T ELT)) (-4096 (((-797) $) 33 T ELT))) +(((-1130 |#1|) (-10 -8 (-15 -3741 ($ (-599 (-599 |#1|)))) (-15 -3742 ((-599 (-599 |#1|)) $)) (-15 -4096 ((-797) $))) (-1041)) (T -1130)) +((-4096 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1130 *3)) (-4 *3 (-1041)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-599 (-599 *3))) (-5 *1 (-1130 *3)) (-4 *3 (-1041)))) (-3741 (*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-1041)) (-5 *1 (-1130 *3))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3743 (($ |#1| (-55)) 10 T ELT)) (-3690 ((|#1| $) 12 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2752 (((-85) $ |#1|) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2639 (((-55) $) 14 T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-1131 |#1|) (-13 (-770 |#1|) (-10 -8 (-15 -3743 ($ |#1| (-55))))) (-1041)) (T -1131)) +((-3743 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1131 *2)) (-4 *2 (-1041))))) +((-3744 ((|#1| (-599 |#1|)) 46 T ELT)) (-3746 ((|#1| |#1| (-499)) 24 T ELT)) (-3745 (((-1111 |#1|) |#1| (-857)) 20 T ELT))) +(((-1132 |#1|) (-10 -7 (-15 -3744 (|#1| (-599 |#1|))) (-15 -3745 ((-1111 |#1|) |#1| (-857))) (-15 -3746 (|#1| |#1| (-499)))) (-318)) (T -1132)) +((-3746 (*1 *2 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-1132 *2)) (-4 *2 (-318)))) (-3745 (*1 *2 *3 *4) (-12 (-5 *4 (-857)) (-5 *2 (-1111 *3)) (-5 *1 (-1132 *3)) (-4 *3 (-318)))) (-3744 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-5 *1 (-1132 *2)) (-4 *2 (-318))))) +((-3747 (($) 10 T ELT) (($ (-599 (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3545 (($ (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) $) 67 T ELT) (($ (-1 (-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-3010 (((-599 (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) $) 39 T ELT) (((-599 |#3|) $) 41 T ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-1308 (((-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) $) 60 T ELT)) (-3757 (($ (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2304 (((-599 |#2|) $) 19 T ELT)) (-2305 (((-85) |#2| $) 65 T ELT)) (-1387 (((-3 (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) $) 64 T ELT)) (-1309 (((-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) $) 69 T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 73 T ELT)) (-2306 (((-599 |#3|) $) 43 T ELT)) (-3950 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-714) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-714) |#3| $) NIL T ELT) (((-714) (-1 (-85) |#3|) $) 79 T ELT)) (-4096 (((-797) $) 27 T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 71 T ELT)) (-3174 (((-85) $ $) 51 T ELT))) +(((-1133 |#1| |#2| |#3|) (-10 -7 (-15 -3174 ((-85) |#1| |#1|)) (-15 -4096 ((-797) |#1|)) (-15 -4108 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3747 (|#1| (-599 (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))))) (-15 -3747 (|#1|)) (-15 -4108 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2051 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2050 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -2049 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -2048 ((-714) (-1 (-85) |#3|) |#1|)) (-15 -3010 ((-599 |#3|) |#1|)) (-15 -2048 ((-714) |#3| |#1|)) (-15 -3950 (|#3| |#1| |#2| |#3|)) (-15 -3950 (|#3| |#1| |#2|)) (-15 -2306 ((-599 |#3|) |#1|)) (-15 -2305 ((-85) |#2| |#1|)) (-15 -2304 ((-599 |#2|) |#1|)) (-15 -3545 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3545 (|#1| (-1 (-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3545 (|#1| (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1387 ((-3 (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1308 ((-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3757 (|#1| (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1309 ((-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -2048 ((-714) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3010 ((-599 (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -2048 ((-714) (-1 (-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -2049 ((-85) (-1 (-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -2050 ((-85) (-1 (-85) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -2051 (|#1| (-1 (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -4108 (|#1| (-1 (-2 (|:| -4010 |#2|) (|:| |entry| |#3|)) (-2 (|:| -4010 |#2|) (|:| |entry| |#3|))) |#1|))) (-1134 |#2| |#3|) (-1041) (-1041)) (T -1133)) +NIL +((-2687 (((-85) $ $) 19 (-3677 (|has| |#2| (-73)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73))) ELT)) (-3747 (($) 77 T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2299 (((-1213) $ |#1| |#1|) 104 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#2| $ |#1| |#2|) 78 T ELT)) (-1603 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -4145)) ELT)) (-3860 (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -4145)) ELT)) (-2332 (((-3 |#2| #1="failed") |#1| $) 65 T ELT)) (-3874 (($) 7 T CONST)) (-1386 (($ $) 62 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT)) (-3545 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -4145)) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -4145)) ELT) (((-3 |#2| #1#) |#1| $) 66 T ELT)) (-3546 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -4145)) ELT)) (-3992 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -4145)) ELT) (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -4145)) ELT)) (-1609 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#2| $ |#1|) 93 T ELT)) (-3010 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) 84 (|has| $ (-6 -4145)) ELT)) (-2301 ((|#1| $) 101 (|has| |#1| (-781)) ELT)) (-2727 (((-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -4145)) ELT) (((-599 |#2|) $) 85 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (((-85) |#2| $) 87 (-12 (|has| |#2| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 ((|#1| $) 100 (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -4146)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT)) (-3380 (((-1099) $) 22 (-3677 (|has| |#2| (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-2333 (((-599 |#1|) $) 67 T ELT)) (-2334 (((-85) |#1| $) 68 T ELT)) (-1308 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3757 (($ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-2304 (((-599 |#1|) $) 98 T ELT)) (-2305 (((-85) |#1| $) 97 T ELT)) (-3381 (((-1060) $) 21 (-3677 (|has| |#2| (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT)) (-3951 ((|#2| $) 102 (|has| |#1| (-781)) ELT)) (-1387 (((-3 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-2300 (($ $ |#2|) 103 (|has| $ (-6 -4146)) ELT)) (-1309 (((-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-2049 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) 82 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-247 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) 91 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-247 |#2|)) 89 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT) (($ $ (-599 (-247 |#2|))) 88 (-12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#2| $) 99 (-12 (|has| $ (-6 -4145)) (|has| |#2| (-1041))) ELT)) (-2306 (((-599 |#2|) $) 96 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT)) (-1499 (($) 53 T ELT) (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-2048 (((-714) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) |#2| $) 86 (-12 (|has| |#2| (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) |#2|) $) 83 (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 63 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ELT)) (-3670 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-4096 (((-797) $) 17 (-3677 (|has| |#2| (-568 (-797))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797)))) ELT)) (-1297 (((-85) $ $) 20 (-3677 (|has| |#2| (-73)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73))) ELT)) (-1310 (($ (-599 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-2050 (((-85) (-1 (-85) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -4145)) ELT) (((-85) (-1 (-85) |#2|) $) 81 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (-3677 (|has| |#2| (-73)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73))) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-1134 |#1| |#2|) (-113) (-1041) (-1041)) (T -1134)) +((-3938 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041)))) (-3747 (*1 *1) (-12 (-4 *1 (-1134 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041)))) (-3747 (*1 *1 *2) (-12 (-5 *2 (-599 (-2 (|:| -4010 *3) (|:| |entry| *4)))) (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *1 (-1134 *3 *4)))) (-4108 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1134 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) +(-13 (-565 |t#1| |t#2|) (-554 |t#1| |t#2|) (-10 -8 (-15 -3938 (|t#2| $ |t#1| |t#2|)) (-15 -3747 ($)) (-15 -3747 ($ (-599 (-2 (|:| -4010 |t#1|) (|:| |entry| |t#2|))))) (-15 -4108 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-78 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-73) -3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-73)) (|has| |#2| (-1041)) (|has| |#2| (-73))) ((-568 (-797)) -3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-568 (-797))) (|has| |#2| (-1041)) (|has| |#2| (-568 (-797)))) ((-124 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-569 (-488)) |has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-569 (-488))) ((-183 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-192 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-240 |#1| |#2|) . T) ((-242 |#1| |#2|) . T) ((-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ((-263 |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ((-443 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) . T) ((-443 |#2|) . T) ((-554 |#1| |#2|) . T) ((-468 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-2 (|:| -4010 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-263 (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041))) ((-468 |#2| |#2|) -12 (|has| |#2| (-263 |#2|)) (|has| |#2| (-1041))) ((-565 |#1| |#2|) . T) ((-1041) -3677 (|has| (-2 (|:| -4010 |#1|) (|:| |entry| |#2|)) (-1041)) (|has| |#2| (-1041))) ((-1157) . T)) +((-3753 (((-85)) 29 T ELT)) (-3750 (((-1213) (-1099)) 31 T ELT)) (-3754 (((-85)) 41 T ELT)) (-3751 (((-1213)) 39 T ELT)) (-3749 (((-1213) (-1099) (-1099)) 30 T ELT)) (-3755 (((-85)) 42 T ELT)) (-3757 (((-1213) |#1| |#2|) 53 T ELT)) (-3748 (((-1213)) 26 T ELT)) (-3756 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3752 (((-1213)) 40 T ELT))) +(((-1135 |#1| |#2|) (-10 -7 (-15 -3748 ((-1213))) (-15 -3749 ((-1213) (-1099) (-1099))) (-15 -3750 ((-1213) (-1099))) (-15 -3751 ((-1213))) (-15 -3752 ((-1213))) (-15 -3753 ((-85))) (-15 -3754 ((-85))) (-15 -3755 ((-85))) (-15 -3756 ((-3 |#2| "failed") |#1|)) (-15 -3757 ((-1213) |#1| |#2|))) (-1041) (-1041)) (T -1135)) +((-3757 (*1 *2 *3 *4) (-12 (-5 *2 (-1213)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)))) (-3756 (*1 *2 *3) (|partial| -12 (-4 *2 (-1041)) (-5 *1 (-1135 *3 *2)) (-4 *3 (-1041)))) (-3755 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)))) (-3754 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)))) (-3753 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)))) (-3752 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)))) (-3751 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)))) (-3750 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1135 *4 *5)) (-4 *4 (-1041)) (-4 *5 (-1041)))) (-3749 (*1 *2 *3 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1135 *4 *5)) (-4 *4 (-1041)) (-4 *5 (-1041)))) (-3748 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) +((-3759 (((-1099) (-1099)) 22 T ELT)) (-3758 (((-51) (-1099)) 25 T ELT))) +(((-1136) (-10 -7 (-15 -3758 ((-51) (-1099))) (-15 -3759 ((-1099) (-1099))))) (T -1136)) +((-3759 (*1 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1136)))) (-3758 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-51)) (-5 *1 (-1136))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3765 (((-599 (-1099)) $) 39 T ELT)) (-3761 (((-599 (-1099)) $ (-599 (-1099))) 42 T ELT)) (-3760 (((-599 (-1099)) $ (-599 (-1099))) 41 T ELT)) (-3762 (((-599 (-1099)) $ (-599 (-1099))) 43 T ELT)) (-3763 (((-599 (-1099)) $) 38 T ELT)) (-3764 (($) 28 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3766 (((-599 (-1099)) $) 40 T ELT)) (-3767 (((-1213) $ (-499)) 35 T ELT) (((-1213) $) 36 T ELT)) (-4122 (($ (-797) (-499)) 33 T ELT) (($ (-797) (-499) (-797)) NIL T ELT)) (-4096 (((-797) $) 49 T ELT) (($ (-797)) 32 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-1137) (-13 (-1041) (-571 (-797)) (-10 -8 (-15 -4122 ($ (-797) (-499))) (-15 -4122 ($ (-797) (-499) (-797))) (-15 -3767 ((-1213) $ (-499))) (-15 -3767 ((-1213) $)) (-15 -3766 ((-599 (-1099)) $)) (-15 -3765 ((-599 (-1099)) $)) (-15 -3764 ($)) (-15 -3763 ((-599 (-1099)) $)) (-15 -3762 ((-599 (-1099)) $ (-599 (-1099)))) (-15 -3761 ((-599 (-1099)) $ (-599 (-1099)))) (-15 -3760 ((-599 (-1099)) $ (-599 (-1099))))))) (T -1137)) +((-4122 (*1 *1 *2 *3) (-12 (-5 *2 (-797)) (-5 *3 (-499)) (-5 *1 (-1137)))) (-4122 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-499)) (-5 *1 (-1137)))) (-3767 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *2 (-1213)) (-5 *1 (-1137)))) (-3767 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1137)))) (-3766 (*1 *2 *1) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137)))) (-3765 (*1 *2 *1) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137)))) (-3764 (*1 *1) (-5 *1 (-1137))) (-3763 (*1 *2 *1) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137)))) (-3762 (*1 *2 *1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137)))) (-3761 (*1 *2 *1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137)))) (-3760 (*1 *2 *1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137))))) +((-4096 (((-1137) |#1|) 11 T ELT))) +(((-1138 |#1|) (-10 -7 (-15 -4096 ((-1137) |#1|))) (-1041)) (T -1138)) +((-4096 (*1 *2 *3) (-12 (-5 *2 (-1137)) (-5 *1 (-1138 *3)) (-4 *3 (-1041))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3772 (((-1099) $ (-1099)) 21 T ELT) (((-1099) $) 20 T ELT)) (-1790 (((-1099) $ (-1099)) 19 T ELT)) (-1794 (($ $ (-1099)) NIL T ELT)) (-3770 (((-3 (-1099) #1="failed") $) 11 T ELT)) (-3771 (((-1099) $) 8 T ELT)) (-3769 (((-3 (-1099) #1#) $) 12 T ELT)) (-1791 (((-1099) $) 9 T ELT)) (-1795 (($ (-344)) NIL T ELT) (($ (-344) (-1099)) NIL T ELT)) (-3690 (((-344) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-1792 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3768 (((-85) $) 25 T ELT)) (-4096 (((-797) $) NIL T ELT)) (-1793 (($ $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-1139) (-13 (-320 (-344) (-1099)) (-10 -8 (-15 -3772 ((-1099) $ (-1099))) (-15 -3772 ((-1099) $)) (-15 -3771 ((-1099) $)) (-15 -3770 ((-3 (-1099) #1="failed") $)) (-15 -3769 ((-3 (-1099) #1#) $)) (-15 -3768 ((-85) $))))) (T -1139)) +((-3772 (*1 *2 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1139)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1139)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1139)))) (-3770 (*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-1139)))) (-3769 (*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-1139)))) (-3768 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1139))))) +((-3773 (((-3 (-499) #1="failed") |#1|) 19 T ELT)) (-3774 (((-3 (-499) #1#) |#1|) 14 T ELT)) (-3775 (((-499) (-1099)) 33 T ELT))) +(((-1140 |#1|) (-10 -7 (-15 -3773 ((-3 (-499) #1="failed") |#1|)) (-15 -3774 ((-3 (-499) #1#) |#1|)) (-15 -3775 ((-499) (-1099)))) (-989)) (T -1140)) +((-3775 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-499)) (-5 *1 (-1140 *4)) (-4 *4 (-989)))) (-3774 (*1 *2 *3) (|partial| -12 (-5 *2 (-499)) (-5 *1 (-1140 *3)) (-4 *3 (-989)))) (-3773 (*1 *2 *3) (|partial| -12 (-5 *2 (-499)) (-5 *1 (-1140 *3)) (-4 *3 (-989))))) +((-3776 (((-1073 (-179))) 9 T ELT))) +(((-1141) (-10 -7 (-15 -3776 ((-1073 (-179)))))) (T -1141)) +((-3776 (*1 *2) (-12 (-5 *2 (-1073 (-179))) (-5 *1 (-1141))))) +((-3777 (($) 12 T ELT)) (-3638 (($ $) 36 T ELT)) (-3636 (($ $) 34 T ELT)) (-3624 (($ $) 26 T ELT)) (-3640 (($ $) 18 T ELT)) (-3641 (($ $) 16 T ELT)) (-3639 (($ $) 20 T ELT)) (-3627 (($ $) 31 T ELT)) (-3637 (($ $) 35 T ELT)) (-3625 (($ $) 30 T ELT))) +(((-1142 |#1|) (-10 -7 (-15 -3777 (|#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3624 (|#1| |#1|)) (-15 -3627 (|#1| |#1|)) (-15 -3625 (|#1| |#1|))) (-1143)) (T -1142)) +NIL +((-3632 (($ $) 26 T ELT)) (-3789 (($ $) 11 T ELT)) (-3630 (($ $) 27 T ELT)) (-3788 (($ $) 10 T ELT)) (-3634 (($ $) 28 T ELT)) (-3787 (($ $) 9 T ELT)) (-3777 (($) 16 T ELT)) (-4092 (($ $) 19 T ELT)) (-4093 (($ $) 18 T ELT)) (-3635 (($ $) 29 T ELT)) (-3786 (($ $) 8 T ELT)) (-3633 (($ $) 30 T ELT)) (-3785 (($ $) 7 T ELT)) (-3631 (($ $) 31 T ELT)) (-3784 (($ $) 6 T ELT)) (-3638 (($ $) 20 T ELT)) (-3626 (($ $) 32 T ELT)) (-3636 (($ $) 21 T ELT)) (-3624 (($ $) 33 T ELT)) (-3640 (($ $) 22 T ELT)) (-3628 (($ $) 34 T ELT)) (-3641 (($ $) 23 T ELT)) (-3629 (($ $) 35 T ELT)) (-3639 (($ $) 24 T ELT)) (-3627 (($ $) 36 T ELT)) (-3637 (($ $) 25 T ELT)) (-3625 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) +(((-1143) (-113)) (T -1143)) +((-3777 (*1 *1) (-4 *1 (-1143)))) +(-13 (-1146) (-66) (-447) (-35) (-238) (-10 -8 (-15 -3777 ($)))) +(((-35) . T) ((-66) . T) ((-238) . T) ((-447) . T) ((-1146) . T)) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 19 T ELT)) (-3782 (($ |#1| (-599 $)) 28 T ELT) (($ (-599 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3146 ((|#1| $ |#1|) 14 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 13 (|has| $ (-6 -4146)) ELT)) (-3874 (($) NIL T CONST)) (-3010 (((-599 |#1|) $) 70 (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) 59 T ELT)) (-3148 (((-85) $ $) 50 (|has| |#1| (-1041)) ELT)) (-2727 (((-599 |#1|) $) 71 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 69 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3151 (((-599 |#1|) $) 55 T ELT)) (-3667 (((-85) $) 53 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 67 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 102 T ELT)) (-3543 (((-85) $) 9 T ELT)) (-3713 (($) 10 T ELT)) (-3950 ((|#1| $ #1#) NIL T ELT)) (-3150 (((-499) $ $) 48 T ELT)) (-3778 (((-599 $) $) 84 T ELT)) (-3779 (((-85) $ $) 105 T ELT)) (-3780 (((-599 $) $) 100 T ELT)) (-3781 (($ $) 101 T ELT)) (-3783 (((-85) $) 77 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 25 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 17 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3540 (($ $) 83 T ELT)) (-4096 (((-797) $) 86 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) 12 T ELT)) (-3149 (((-85) $ $) 39 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 66 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 37 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 81 (|has| $ (-6 -4145)) ELT))) +(((-1144 |#1|) (-13 (-950 |#1|) (-10 -8 (-6 -4145) (-6 -4146) (-15 -3782 ($ |#1| (-599 $))) (-15 -3782 ($ (-599 |#1|))) (-15 -3782 ($ |#1|)) (-15 -3783 ((-85) $)) (-15 -3781 ($ $)) (-15 -3780 ((-599 $) $)) (-15 -3779 ((-85) $ $)) (-15 -3778 ((-599 $) $)))) (-1041)) (T -1144)) +((-3783 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1144 *3)) (-4 *3 (-1041)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *3 (-599 (-1144 *2))) (-5 *1 (-1144 *2)) (-4 *2 (-1041)))) (-3782 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-1144 *3)))) (-3782 (*1 *1 *2) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1041)))) (-3781 (*1 *1 *1) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1041)))) (-3780 (*1 *2 *1) (-12 (-5 *2 (-599 (-1144 *3))) (-5 *1 (-1144 *3)) (-4 *3 (-1041)))) (-3779 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1144 *3)) (-4 *3 (-1041)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-599 (-1144 *3))) (-5 *1 (-1144 *3)) (-4 *3 (-1041))))) +((-3789 (($ $) 15 T ELT)) (-3787 (($ $) 12 T ELT)) (-3786 (($ $) 10 T ELT)) (-3785 (($ $) 17 T ELT))) +(((-1145 |#1|) (-10 -7 (-15 -3785 (|#1| |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3789 (|#1| |#1|))) (-1146)) (T -1145)) +NIL +((-3789 (($ $) 11 T ELT)) (-3788 (($ $) 10 T ELT)) (-3787 (($ $) 9 T ELT)) (-3786 (($ $) 8 T ELT)) (-3785 (($ $) 7 T ELT)) (-3784 (($ $) 6 T ELT))) +(((-1146) (-113)) (T -1146)) +((-3789 (*1 *1 *1) (-4 *1 (-1146))) (-3788 (*1 *1 *1) (-4 *1 (-1146))) (-3787 (*1 *1 *1) (-4 *1 (-1146))) (-3786 (*1 *1 *1) (-4 *1 (-1146))) (-3785 (*1 *1 *1) (-4 *1 (-1146))) (-3784 (*1 *1 *1) (-4 *1 (-1146)))) +(-13 (-10 -8 (-15 -3784 ($ $)) (-15 -3785 ($ $)) (-15 -3786 ($ $)) (-15 -3787 ($ $)) (-15 -3788 ($ $)) (-15 -3789 ($ $)))) +((-3792 ((|#2| |#2|) 95 T ELT)) (-3795 (((-85) |#2|) 29 T ELT)) (-3793 ((|#2| |#2|) 33 T ELT)) (-3794 ((|#2| |#2|) 35 T ELT)) (-3790 ((|#2| |#2| (-1117)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3796 (((-142 |#2|) |#2|) 31 T ELT)) (-3791 ((|#2| |#2| (-1117)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) +(((-1147 |#1| |#2|) (-10 -7 (-15 -3790 (|#2| |#2|)) (-15 -3790 (|#2| |#2| (-1117))) (-15 -3791 (|#2| |#2|)) (-15 -3791 (|#2| |#2| (-1117))) (-15 -3792 (|#2| |#2|)) (-15 -3793 (|#2| |#2|)) (-15 -3794 (|#2| |#2|)) (-15 -3795 ((-85) |#2|)) (-15 -3796 ((-142 |#2|) |#2|))) (-13 (-406) (-978 (-499)) (-596 (-499))) (-13 (-27) (-1143) (-375 |#1|))) (T -1147)) +((-3796 (*1 *2 *3) (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-142 *3)) (-5 *1 (-1147 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) (-3795 (*1 *2 *3) (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-85)) (-5 *1 (-1147 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) (-3794 (*1 *2 *2) (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *3 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *3))))) (-3793 (*1 *2 *2) (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *3 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *3))))) (-3792 (*1 *2 *2) (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *3 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *3))))) (-3791 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4))))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *3 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *3))))) (-3790 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4))))) (-3790 (*1 *2 *2) (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *3 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *3)))))) +((-3797 ((|#4| |#4| |#1|) 31 T ELT)) (-3798 ((|#4| |#4| |#1|) 32 T ELT))) +(((-1148 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3797 (|#4| |#4| |#1|)) (-15 -3798 (|#4| |#4| |#1|))) (-510) (-327 |#1|) (-327 |#1|) (-644 |#1| |#2| |#3|)) (T -1148)) +((-3798 (*1 *2 *2 *3) (-12 (-4 *3 (-510)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-1148 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) (-3797 (*1 *2 *2 *3) (-12 (-4 *3 (-510)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) (-5 *1 (-1148 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5))))) +((-3816 ((|#2| |#2|) 148 T ELT)) (-3818 ((|#2| |#2|) 145 T ELT)) (-3815 ((|#2| |#2|) 136 T ELT)) (-3817 ((|#2| |#2|) 133 T ELT)) (-3814 ((|#2| |#2|) 141 T ELT)) (-3813 ((|#2| |#2|) 129 T ELT)) (-3802 ((|#2| |#2|) 44 T ELT)) (-3801 ((|#2| |#2|) 105 T ELT)) (-3799 ((|#2| |#2|) 88 T ELT)) (-3812 ((|#2| |#2|) 143 T ELT)) (-3811 ((|#2| |#2|) 131 T ELT)) (-3824 ((|#2| |#2|) 153 T ELT)) (-3822 ((|#2| |#2|) 151 T ELT)) (-3823 ((|#2| |#2|) 152 T ELT)) (-3821 ((|#2| |#2|) 150 T ELT)) (-3800 ((|#2| |#2|) 163 T ELT)) (-3825 ((|#2| |#2|) 30 (-12 (|has| |#2| (-569 (-825 |#1|))) (|has| |#2| (-821 |#1|)) (|has| |#1| (-569 (-825 |#1|))) (|has| |#1| (-821 |#1|))) ELT)) (-3803 ((|#2| |#2|) 89 T ELT)) (-3804 ((|#2| |#2|) 154 T ELT)) (-4113 ((|#2| |#2|) 155 T ELT)) (-3810 ((|#2| |#2|) 142 T ELT)) (-3809 ((|#2| |#2|) 130 T ELT)) (-3808 ((|#2| |#2|) 149 T ELT)) (-3820 ((|#2| |#2|) 147 T ELT)) (-3807 ((|#2| |#2|) 137 T ELT)) (-3819 ((|#2| |#2|) 135 T ELT)) (-3806 ((|#2| |#2|) 139 T ELT)) (-3805 ((|#2| |#2|) 127 T ELT))) +(((-1149 |#1| |#2|) (-10 -7 (-15 -4113 (|#2| |#2|)) (-15 -3799 (|#2| |#2|)) (-15 -3800 (|#2| |#2|)) (-15 -3801 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3803 (|#2| |#2|)) (-15 -3804 (|#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -3806 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -3808 (|#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -3810 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3812 (|#2| |#2|)) (-15 -3813 (|#2| |#2|)) (-15 -3814 (|#2| |#2|)) (-15 -3815 (|#2| |#2|)) (-15 -3816 (|#2| |#2|)) (-15 -3817 (|#2| |#2|)) (-15 -3818 (|#2| |#2|)) (-15 -3819 (|#2| |#2|)) (-15 -3820 (|#2| |#2|)) (-15 -3821 (|#2| |#2|)) (-15 -3822 (|#2| |#2|)) (-15 -3823 (|#2| |#2|)) (-15 -3824 (|#2| |#2|)) (IF (|has| |#1| (-821 |#1|)) (IF (|has| |#1| (-569 (-825 |#1|))) (IF (|has| |#2| (-569 (-825 |#1|))) (IF (|has| |#2| (-821 |#1|)) (-15 -3825 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-406) (-13 (-375 |#1|) (-1143))) (T -1149)) +((-3825 (*1 *2 *2) (-12 (-4 *3 (-569 (-825 *3))) (-4 *3 (-821 *3)) (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-569 (-825 *3))) (-4 *2 (-821 *3)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3824 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3823 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3822 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3821 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3820 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3819 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3818 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3817 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3816 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3815 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3814 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3813 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3812 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3810 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3808 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3806 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3804 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3803 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-3799 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) (-4113 (*1 *2 *2) (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-1117)) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3964 (((-884 |#1|) $ (-714)) 17 T ELT) (((-884 |#1|) $ (-714) (-714)) NIL T ELT)) (-3013 (((-85) $) NIL T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-714) $ (-1117)) NIL T ELT) (((-714) $ (-1117) (-714)) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ $ (-599 (-1117)) (-599 (-484 (-1117)))) NIL T ELT) (($ $ (-1117) (-484 (-1117))) NIL T ELT) (($ |#1| (-484 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4092 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3962 (($ $ (-1117)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117) |#1|) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3826 (($ (-1 $) (-1117) |#1|) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3919 (($ $ (-714)) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-4093 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (($ $ (-1117) $) NIL T ELT) (($ $ (-599 (-1117)) (-599 $)) NIL T ELT) (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT)) (-3908 (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117)) NIL T ELT)) (-4098 (((-484 (-1117)) $) NIL T ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-1117)) NIL T ELT) (($ (-884 |#1|)) NIL T ELT)) (-3827 ((|#1| $ (-484 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (((-884 |#1|) $ (-714)) NIL T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-2790 (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1150 |#1|) (-13 (-698 |#1| (-1117)) (-10 -8 (-15 -3827 ((-884 |#1|) $ (-714))) (-15 -4096 ($ (-1117))) (-15 -4096 ($ (-884 |#1|))) (IF (|has| |#1| (-38 (-361 (-499)))) (PROGN (-15 -3962 ($ $ (-1117) |#1|)) (-15 -3826 ($ (-1 $) (-1117) |#1|))) |%noBranch|))) (-989)) (T -1150)) +((-3827 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *2 (-884 *4)) (-5 *1 (-1150 *4)) (-4 *4 (-989)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1150 *3)) (-4 *3 (-989)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-989)) (-5 *1 (-1150 *3)))) (-3962 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *1 (-1150 *3)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)))) (-3826 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1150 *4))) (-5 *3 (-1117)) (-5 *1 (-1150 *4)) (-4 *4 (-38 (-361 (-499)))) (-4 *4 (-989))))) +((-3843 (((-85) |#5| $) 68 T ELT) (((-85) $) 109 T ELT)) (-3838 ((|#5| |#5| $) 83 T ELT)) (-3860 (($ (-1 (-85) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3839 (((-599 |#5|) (-599 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 81 T ELT)) (-3295 (((-3 $ #1#) (-599 |#5|)) 134 T ELT)) (-3949 (((-3 $ #1#) $) 119 T ELT)) (-3835 ((|#5| |#5| $) 101 T ELT)) (-3844 (((-85) |#5| $ (-1 (-85) |#5| |#5|)) 36 T ELT)) (-3833 ((|#5| |#5| $) 105 T ELT)) (-3992 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 77 T ELT)) (-3846 (((-2 (|:| -4011 (-599 |#5|)) (|:| -1795 (-599 |#5|))) $) 63 T ELT)) (-3845 (((-85) |#5| $) 66 T ELT) (((-85) $) 110 T ELT)) (-3318 ((|#4| $) 115 T ELT)) (-3948 (((-3 |#5| #1#) $) 117 T ELT)) (-3847 (((-599 |#5|) $) 55 T ELT)) (-3841 (((-85) |#5| $) 75 T ELT) (((-85) $) 114 T ELT)) (-3836 ((|#5| |#5| $) 89 T ELT)) (-3849 (((-85) $ $) 29 T ELT)) (-3842 (((-85) |#5| $) 71 T ELT) (((-85) $) 112 T ELT)) (-3837 ((|#5| |#5| $) 86 T ELT)) (-3951 (((-3 |#5| #1#) $) 116 T ELT)) (-3919 (($ $ |#5|) 135 T ELT)) (-4098 (((-714) $) 60 T ELT)) (-3670 (($ (-599 |#5|)) 132 T ELT)) (-3031 (($ $ |#4|) 130 T ELT)) (-3033 (($ $ |#4|) 128 T ELT)) (-3834 (($ $) 127 T ELT)) (-4096 (((-797) $) NIL T ELT) (((-599 |#5|) $) 120 T ELT)) (-3828 (((-714) $) 139 T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#5|))) #1#) (-599 |#5|) (-1 (-85) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#5|))) #1#) (-599 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|)) 51 T ELT)) (-3840 (((-85) $ (-1 (-85) |#5| (-599 |#5|))) 107 T ELT)) (-3830 (((-599 |#4|) $) 122 T ELT)) (-4083 (((-85) |#4| $) 125 T ELT)) (-3174 (((-85) $ $) 20 T ELT))) +(((-1151 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3828 ((-714) |#1|)) (-15 -3919 (|#1| |#1| |#5|)) (-15 -3860 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -4083 ((-85) |#4| |#1|)) (-15 -3830 ((-599 |#4|) |#1|)) (-15 -3949 ((-3 |#1| #1#) |#1|)) (-15 -3948 ((-3 |#5| #1#) |#1|)) (-15 -3951 ((-3 |#5| #1#) |#1|)) (-15 -3833 (|#5| |#5| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3835 (|#5| |#5| |#1|)) (-15 -3836 (|#5| |#5| |#1|)) (-15 -3837 (|#5| |#5| |#1|)) (-15 -3838 (|#5| |#5| |#1|)) (-15 -3839 ((-599 |#5|) (-599 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3992 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3841 ((-85) |#1|)) (-15 -3842 ((-85) |#1|)) (-15 -3843 ((-85) |#1|)) (-15 -3840 ((-85) |#1| (-1 (-85) |#5| (-599 |#5|)))) (-15 -3841 ((-85) |#5| |#1|)) (-15 -3842 ((-85) |#5| |#1|)) (-15 -3843 ((-85) |#5| |#1|)) (-15 -3844 ((-85) |#5| |#1| (-1 (-85) |#5| |#5|))) (-15 -3845 ((-85) |#1|)) (-15 -3845 ((-85) |#5| |#1|)) (-15 -3846 ((-2 (|:| -4011 (-599 |#5|)) (|:| -1795 (-599 |#5|))) |#1|)) (-15 -4098 ((-714) |#1|)) (-15 -3847 ((-599 |#5|) |#1|)) (-15 -3848 ((-3 (-2 (|:| |bas| |#1|) (|:| -3464 (-599 |#5|))) #1#) (-599 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|))) (-15 -3848 ((-3 (-2 (|:| |bas| |#1|) (|:| -3464 (-599 |#5|))) #1#) (-599 |#5|) (-1 (-85) |#5| |#5|))) (-15 -3849 ((-85) |#1| |#1|)) (-15 -3031 (|#1| |#1| |#4|)) (-15 -3033 (|#1| |#1| |#4|)) (-15 -3318 (|#4| |#1|)) (-15 -3295 ((-3 |#1| #1#) (-599 |#5|))) (-15 -4096 ((-599 |#5|) |#1|)) (-15 -3670 (|#1| (-599 |#5|))) (-15 -3992 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3992 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3860 (|#1| (-1 (-85) |#5|) |#1|)) (-15 -3992 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4096 ((-797) |#1|)) (-15 -3174 ((-85) |#1| |#1|))) (-1152 |#2| |#3| |#4| |#5|) (-510) (-738) (-781) (-1005 |#2| |#3| |#4|)) (T -1151)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3831 (((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 |#4|)))) (-599 |#4|)) 90 T ELT)) (-3832 (((-599 $) (-599 |#4|)) 91 T ELT)) (-3204 (((-599 |#3|) $) 37 T ELT)) (-3029 (((-85) $) 30 T ELT)) (-3020 (((-85) $) 21 (|has| |#1| (-510)) ELT)) (-3843 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3838 ((|#4| |#4| $) 97 T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3860 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -4145)) ELT) (((-3 |#4| "failed") $ |#3|) 84 T ELT)) (-3874 (($) 46 T CONST)) (-3025 (((-85) $) 26 (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) 28 (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) 27 (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) 29 (|has| |#1| (-510)) ELT)) (-3839 (((-599 |#4|) (-599 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) 22 (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) 23 (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ "failed") (-599 |#4|)) 40 T ELT)) (-3294 (($ (-599 |#4|)) 39 T ELT)) (-3949 (((-3 $ "failed") $) 87 T ELT)) (-3835 ((|#4| |#4| $) 94 T ELT)) (-1386 (($ $) 69 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#4| $) 68 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-510)) ELT)) (-3844 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3833 ((|#4| |#4| $) 92 T ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4145)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3846 (((-2 (|:| -4011 (-599 |#4|)) (|:| -1795 (-599 |#4|))) $) 110 T ELT)) (-3010 (((-599 |#4|) $) 53 (|has| $ (-6 -4145)) ELT)) (-3845 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3318 ((|#3| $) 38 T ELT)) (-2727 (((-599 |#4|) $) 54 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3035 (((-599 |#3|) $) 36 T ELT)) (-3034 (((-85) |#3| $) 35 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3948 (((-3 |#4| "failed") $) 88 T ELT)) (-3847 (((-599 |#4|) $) 112 T ELT)) (-3841 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3836 ((|#4| |#4| $) 95 T ELT)) (-3849 (((-85) $ $) 115 T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-510)) ELT)) (-3842 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3837 ((|#4| |#4| $) 96 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3951 (((-3 |#4| "failed") $) 89 T ELT)) (-1387 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3829 (((-3 $ "failed") $ |#4|) 83 T ELT)) (-3919 (($ $ |#4|) 82 T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) 60 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) 58 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) 57 (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) 42 T ELT)) (-3543 (((-85) $) 45 T ELT)) (-3713 (($) 44 T ELT)) (-4098 (((-714) $) 111 T ELT)) (-2048 (((-714) |#4| $) 55 (-12 (|has| |#4| (-1041)) (|has| $ (-6 -4145))) ELT) (((-714) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) 43 T ELT)) (-4122 (((-488) $) 70 (|has| |#4| (-569 (-488))) ELT)) (-3670 (($ (-599 |#4|)) 61 T ELT)) (-3031 (($ $ |#3|) 32 T ELT)) (-3033 (($ $ |#3|) 34 T ELT)) (-3834 (($ $) 93 T ELT)) (-3032 (($ $ |#3|) 33 T ELT)) (-4096 (((-797) $) 13 T ELT) (((-599 |#4|) $) 41 T ELT)) (-3828 (((-714) $) 81 (|has| |#3| (-323)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) "failed") (-599 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) "failed") (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3840 (((-85) $ (-1 (-85) |#4| (-599 |#4|))) 103 T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -4145)) ELT)) (-3830 (((-599 |#3|) $) 86 T ELT)) (-4083 (((-85) |#3| $) 85 T ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4107 (((-714) $) 47 (|has| $ (-6 -4145)) ELT))) +(((-1152 |#1| |#2| |#3| |#4|) (-113) (-510) (-738) (-781) (-1005 |t#1| |t#2| |t#3|)) (T -1152)) +((-3849 (*1 *2 *1 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) (-3848 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3464 (-599 *8)))) (-5 *3 (-599 *8)) (-4 *1 (-1152 *5 *6 *7 *8)))) (-3848 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) (-4 *9 (-1005 *6 *7 *8)) (-4 *6 (-510)) (-4 *7 (-738)) (-4 *8 (-781)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3464 (-599 *9)))) (-5 *3 (-599 *9)) (-4 *1 (-1152 *6 *7 *8 *9)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-599 *6)))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-714)))) (-3846 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-2 (|:| -4011 (-599 *6)) (|:| -1795 (-599 *6)))))) (-3845 (*1 *2 *3 *1) (-12 (-4 *1 (-1152 *4 *5 *6 *3)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85)))) (-3845 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) (-3844 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1152 *5 *6 *7 *3)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-85)))) (-3843 (*1 *2 *3 *1) (-12 (-4 *1 (-1152 *4 *5 *6 *3)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85)))) (-3842 (*1 *2 *3 *1) (-12 (-4 *1 (-1152 *4 *5 *6 *3)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85)))) (-3841 (*1 *2 *3 *1) (-12 (-4 *1 (-1152 *4 *5 *6 *3)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85)))) (-3840 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-85) *7 (-599 *7))) (-4 *1 (-1152 *4 *5 *6 *7)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)))) (-3843 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) (-3842 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) (-3841 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) (-3992 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) (-4 *1 (-1152 *5 *6 *7 *2)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *2 (-1005 *5 *6 *7)))) (-3839 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-599 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) (-4 *1 (-1152 *5 *6 *7 *8)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-1005 *5 *6 *7)))) (-3838 (*1 *2 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) (-3837 (*1 *2 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) (-3836 (*1 *2 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) (-3835 (*1 *2 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) (-3834 (*1 *1 *1) (-12 (-4 *1 (-1152 *2 *3 *4 *5)) (-4 *2 (-510)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *5 (-1005 *2 *3 *4)))) (-3833 (*1 *2 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) (-3832 (*1 *2 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1152 *4 *5 *6 *7)))) (-3831 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-599 (-2 (|:| -4011 *1) (|:| -1795 (-599 *7))))) (-5 *3 (-599 *7)) (-4 *1 (-1152 *4 *5 *6 *7)))) (-3951 (*1 *2 *1) (|partial| -12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) (-3948 (*1 *2 *1) (|partial| -12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) (-3949 (*1 *1 *1) (|partial| -12 (-4 *1 (-1152 *2 *3 *4 *5)) (-4 *2 (-510)) (-4 *3 (-738)) (-4 *4 (-781)) (-4 *5 (-1005 *2 *3 *4)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-599 *5)))) (-4083 (*1 *2 *3 *1) (-12 (-4 *1 (-1152 *4 *5 *3 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *3 (-781)) (-4 *6 (-1005 *4 *5 *3)) (-5 *2 (-85)))) (-3860 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1152 *4 *5 *3 *2)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *3 (-781)) (-4 *2 (-1005 *4 *5 *3)))) (-3829 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) (-3919 (*1 *1 *1 *2) (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) (-3828 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-4 *5 (-323)) (-5 *2 (-714))))) +(-13 (-916 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4145) (-6 -4146) (-15 -3849 ((-85) $ $)) (-15 -3848 ((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |t#4|))) "failed") (-599 |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3848 ((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |t#4|))) "failed") (-599 |t#4|) (-1 (-85) |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3847 ((-599 |t#4|) $)) (-15 -4098 ((-714) $)) (-15 -3846 ((-2 (|:| -4011 (-599 |t#4|)) (|:| -1795 (-599 |t#4|))) $)) (-15 -3845 ((-85) |t#4| $)) (-15 -3845 ((-85) $)) (-15 -3844 ((-85) |t#4| $ (-1 (-85) |t#4| |t#4|))) (-15 -3843 ((-85) |t#4| $)) (-15 -3842 ((-85) |t#4| $)) (-15 -3841 ((-85) |t#4| $)) (-15 -3840 ((-85) $ (-1 (-85) |t#4| (-599 |t#4|)))) (-15 -3843 ((-85) $)) (-15 -3842 ((-85) $)) (-15 -3841 ((-85) $)) (-15 -3992 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3839 ((-599 |t#4|) (-599 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3838 (|t#4| |t#4| $)) (-15 -3837 (|t#4| |t#4| $)) (-15 -3836 (|t#4| |t#4| $)) (-15 -3835 (|t#4| |t#4| $)) (-15 -3834 ($ $)) (-15 -3833 (|t#4| |t#4| $)) (-15 -3832 ((-599 $) (-599 |t#4|))) (-15 -3831 ((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 |t#4|)))) (-599 |t#4|))) (-15 -3951 ((-3 |t#4| "failed") $)) (-15 -3948 ((-3 |t#4| "failed") $)) (-15 -3949 ((-3 $ "failed") $)) (-15 -3830 ((-599 |t#3|) $)) (-15 -4083 ((-85) |t#3| $)) (-15 -3860 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3829 ((-3 $ "failed") $ |t#4|)) (-15 -3919 ($ $ |t#4|)) (IF (|has| |t#3| (-323)) (-15 -3828 ((-714) $)) |%noBranch|))) +(((-34) . T) ((-73) . T) ((-568 (-599 |#4|)) . T) ((-568 (-797)) . T) ((-124 |#4|) . T) ((-569 (-488)) |has| |#4| (-569 (-488))) ((-263 |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-443 |#4|) . T) ((-468 |#4| |#4|) -12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1041) . T) ((-1157) . T)) +((-3855 (($ |#1| (-599 (-599 (-881 (-179)))) (-85)) 19 T ELT)) (-3854 (((-85) $ (-85)) 18 T ELT)) (-3853 (((-85) $) 17 T ELT)) (-3851 (((-599 (-599 (-881 (-179)))) $) 13 T ELT)) (-3850 ((|#1| $) 8 T ELT)) (-3852 (((-85) $) 15 T ELT))) +(((-1153 |#1|) (-10 -8 (-15 -3850 (|#1| $)) (-15 -3851 ((-599 (-599 (-881 (-179)))) $)) (-15 -3852 ((-85) $)) (-15 -3853 ((-85) $)) (-15 -3854 ((-85) $ (-85))) (-15 -3855 ($ |#1| (-599 (-599 (-881 (-179)))) (-85)))) (-914)) (T -1153)) +((-3855 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *4 (-85)) (-5 *1 (-1153 *2)) (-4 *2 (-914)))) (-3854 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1153 *3)) (-4 *3 (-914)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1153 *3)) (-4 *3 (-914)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1153 *3)) (-4 *3 (-914)))) (-3851 (*1 *2 *1) (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *1 (-1153 *3)) (-4 *3 (-914)))) (-3850 (*1 *2 *1) (-12 (-5 *1 (-1153 *2)) (-4 *2 (-914))))) +((-3857 (((-881 (-179)) (-881 (-179))) 31 T ELT)) (-3856 (((-881 (-179)) (-179) (-179) (-179) (-179)) 10 T ELT)) (-3859 (((-599 (-881 (-179))) (-881 (-179)) (-881 (-179)) (-881 (-179)) (-179) (-599 (-599 (-179)))) 57 T ELT)) (-3986 (((-179) (-881 (-179)) (-881 (-179))) 27 T ELT)) (-3984 (((-881 (-179)) (-881 (-179)) (-881 (-179))) 28 T ELT)) (-3858 (((-599 (-599 (-179))) (-499)) 45 T ELT)) (-3987 (((-881 (-179)) (-881 (-179)) (-881 (-179))) 26 T ELT)) (-3989 (((-881 (-179)) (-881 (-179)) (-881 (-179))) 24 T ELT)) (* (((-881 (-179)) (-179) (-881 (-179))) 22 T ELT))) +(((-1154) (-10 -7 (-15 -3856 ((-881 (-179)) (-179) (-179) (-179) (-179))) (-15 * ((-881 (-179)) (-179) (-881 (-179)))) (-15 -3989 ((-881 (-179)) (-881 (-179)) (-881 (-179)))) (-15 -3987 ((-881 (-179)) (-881 (-179)) (-881 (-179)))) (-15 -3986 ((-179) (-881 (-179)) (-881 (-179)))) (-15 -3984 ((-881 (-179)) (-881 (-179)) (-881 (-179)))) (-15 -3857 ((-881 (-179)) (-881 (-179)))) (-15 -3858 ((-599 (-599 (-179))) (-499))) (-15 -3859 ((-599 (-881 (-179))) (-881 (-179)) (-881 (-179)) (-881 (-179)) (-179) (-599 (-599 (-179))))))) (T -1154)) +((-3859 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-599 (-599 (-179)))) (-5 *4 (-179)) (-5 *2 (-599 (-881 *4))) (-5 *1 (-1154)) (-5 *3 (-881 *4)))) (-3858 (*1 *2 *3) (-12 (-5 *3 (-499)) (-5 *2 (-599 (-599 (-179)))) (-5 *1 (-1154)))) (-3857 (*1 *2 *2) (-12 (-5 *2 (-881 (-179))) (-5 *1 (-1154)))) (-3984 (*1 *2 *2 *2) (-12 (-5 *2 (-881 (-179))) (-5 *1 (-1154)))) (-3986 (*1 *2 *3 *3) (-12 (-5 *3 (-881 (-179))) (-5 *2 (-179)) (-5 *1 (-1154)))) (-3987 (*1 *2 *2 *2) (-12 (-5 *2 (-881 (-179))) (-5 *1 (-1154)))) (-3989 (*1 *2 *2 *2) (-12 (-5 *2 (-881 (-179))) (-5 *1 (-1154)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-881 (-179))) (-5 *3 (-179)) (-5 *1 (-1154)))) (-3856 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-881 (-179))) (-5 *1 (-1154)) (-5 *3 (-179))))) +((-2687 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3860 ((|#1| $ (-714)) 18 T ELT)) (-3983 (((-714) $) 13 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-4096 (((-896 |#1|) $) 12 T ELT) (($ (-896 |#1|)) 11 T ELT) (((-797) $) 29 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3174 (((-85) $ $) 22 (|has| |#1| (-1041)) ELT))) +(((-1155 |#1|) (-13 (-444 (-896 |#1|)) (-10 -8 (-15 -3860 (|#1| $ (-714))) (-15 -3983 ((-714) $)) (IF (|has| |#1| (-568 (-797))) (-6 (-568 (-797))) |%noBranch|) (IF (|has| |#1| (-1041)) (-6 (-1041)) |%noBranch|))) (-1157)) (T -1155)) +((-3860 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *1 (-1155 *2)) (-4 *2 (-1157)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-1155 *3)) (-4 *3 (-1157))))) +((-3863 (((-359 (-1111 (-1111 |#1|))) (-1111 (-1111 |#1|)) (-499)) 92 T ELT)) (-3861 (((-359 (-1111 (-1111 |#1|))) (-1111 (-1111 |#1|))) 84 T ELT)) (-3862 (((-359 (-1111 (-1111 |#1|))) (-1111 (-1111 |#1|))) 68 T ELT))) +(((-1156 |#1|) (-10 -7 (-15 -3861 ((-359 (-1111 (-1111 |#1|))) (-1111 (-1111 |#1|)))) (-15 -3862 ((-359 (-1111 (-1111 |#1|))) (-1111 (-1111 |#1|)))) (-15 -3863 ((-359 (-1111 (-1111 |#1|))) (-1111 (-1111 |#1|)) (-499)))) (-305)) (T -1156)) +((-3863 (*1 *2 *3 *4) (-12 (-5 *4 (-499)) (-4 *5 (-305)) (-5 *2 (-359 (-1111 (-1111 *5)))) (-5 *1 (-1156 *5)) (-5 *3 (-1111 (-1111 *5))))) (-3862 (*1 *2 *3) (-12 (-4 *4 (-305)) (-5 *2 (-359 (-1111 (-1111 *4)))) (-5 *1 (-1156 *4)) (-5 *3 (-1111 (-1111 *4))))) (-3861 (*1 *2 *3) (-12 (-4 *4 (-305)) (-5 *2 (-359 (-1111 (-1111 *4)))) (-5 *1 (-1156 *4)) (-5 *3 (-1111 (-1111 *4)))))) +NIL +(((-1157) (-113)) (T -1157)) +NIL +(-13 (-10 -7 (-6 -2388))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 9 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-1158) (-1023)) (T -1158)) +NIL +((-3867 (((-85)) 18 T ELT)) (-3864 (((-1213) (-599 |#1|) (-599 |#1|)) 22 T ELT) (((-1213) (-599 |#1|)) 23 T ELT)) (-3869 (((-85) |#1| |#1|) 37 (|has| |#1| (-781)) ELT)) (-3866 (((-85) |#1| |#1| (-1 (-85) |#1| |#1|)) 29 T ELT) (((-3 (-85) "failed") |#1| |#1|) 27 T ELT)) (-3868 ((|#1| (-599 |#1|)) 38 (|has| |#1| (-781)) ELT) ((|#1| (-599 |#1|) (-1 (-85) |#1| |#1|)) 32 T ELT)) (-3865 (((-2 (|:| -3367 (-599 |#1|)) (|:| -3366 (-599 |#1|)))) 20 T ELT))) +(((-1159 |#1|) (-10 -7 (-15 -3864 ((-1213) (-599 |#1|))) (-15 -3864 ((-1213) (-599 |#1|) (-599 |#1|))) (-15 -3865 ((-2 (|:| -3367 (-599 |#1|)) (|:| -3366 (-599 |#1|))))) (-15 -3866 ((-3 (-85) "failed") |#1| |#1|)) (-15 -3866 ((-85) |#1| |#1| (-1 (-85) |#1| |#1|))) (-15 -3868 (|#1| (-599 |#1|) (-1 (-85) |#1| |#1|))) (-15 -3867 ((-85))) (IF (|has| |#1| (-781)) (PROGN (-15 -3868 (|#1| (-599 |#1|))) (-15 -3869 ((-85) |#1| |#1|))) |%noBranch|)) (-1041)) (T -1159)) +((-3869 (*1 *2 *3 *3) (-12 (-5 *2 (-85)) (-5 *1 (-1159 *3)) (-4 *3 (-781)) (-4 *3 (-1041)))) (-3868 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-1041)) (-4 *2 (-781)) (-5 *1 (-1159 *2)))) (-3867 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1159 *3)) (-4 *3 (-1041)))) (-3868 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1159 *2)) (-4 *2 (-1041)))) (-3866 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1041)) (-5 *2 (-85)) (-5 *1 (-1159 *3)))) (-3866 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1159 *3)) (-4 *3 (-1041)))) (-3865 (*1 *2) (-12 (-5 *2 (-2 (|:| -3367 (-599 *3)) (|:| -3366 (-599 *3)))) (-5 *1 (-1159 *3)) (-4 *3 (-1041)))) (-3864 (*1 *2 *3 *3) (-12 (-5 *3 (-599 *4)) (-4 *4 (-1041)) (-5 *2 (-1213)) (-5 *1 (-1159 *4)))) (-3864 (*1 *2 *3) (-12 (-5 *3 (-599 *4)) (-4 *4 (-1041)) (-5 *2 (-1213)) (-5 *1 (-1159 *4))))) +((-3870 (((-1213) (-599 (-1117)) (-599 (-1117))) 14 T ELT) (((-1213) (-599 (-1117))) 12 T ELT)) (-3872 (((-1213)) 16 T ELT)) (-3871 (((-2 (|:| -3366 (-599 (-1117))) (|:| -3367 (-599 (-1117))))) 20 T ELT))) +(((-1160) (-10 -7 (-15 -3870 ((-1213) (-599 (-1117)))) (-15 -3870 ((-1213) (-599 (-1117)) (-599 (-1117)))) (-15 -3871 ((-2 (|:| -3366 (-599 (-1117))) (|:| -3367 (-599 (-1117)))))) (-15 -3872 ((-1213))))) (T -1160)) +((-3872 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1160)))) (-3871 (*1 *2) (-12 (-5 *2 (-2 (|:| -3366 (-599 (-1117))) (|:| -3367 (-599 (-1117))))) (-5 *1 (-1160)))) (-3870 (*1 *2 *3 *3) (-12 (-5 *3 (-599 (-1117))) (-5 *2 (-1213)) (-5 *1 (-1160)))) (-3870 (*1 *2 *3) (-12 (-5 *3 (-599 (-1117))) (-5 *2 (-1213)) (-5 *1 (-1160))))) +((-3925 (($ $) 17 T ELT)) (-3873 (((-85) $) 27 T ELT))) +(((-1161 |#1|) (-10 -7 (-15 -3925 (|#1| |#1|)) (-15 -3873 ((-85) |#1|))) (-1162)) (T -1161)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 63 T ELT)) (-4121 (((-359 $) $) 64 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3873 (((-85) $) 65 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3882 (((-359 $) $) 62 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-1162) (-113)) (T -1162)) +((-3873 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-85)))) (-4121 (*1 *2 *1) (-12 (-5 *2 (-359 *1)) (-4 *1 (-1162)))) (-3925 (*1 *1 *1) (-4 *1 (-1162))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-359 *1)) (-4 *1 (-1162))))) +(-13 (-406) (-10 -8 (-15 -3873 ((-85) $)) (-15 -4121 ((-359 $) $)) (-15 -3925 ($ $)) (-15 -3882 ((-359 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-73) . T) ((-82 $ $) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-244) . T) ((-406) . T) ((-510) . T) ((-604 (-499)) . T) ((-604 $) . T) ((-606 $) . T) ((-598 $) . T) ((-675 $) . T) ((-684) . T) ((-991 $) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-3875 (($ $ $) NIL T ELT)) (-3876 (($ $ $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2411 (($ $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-2412 (($ $ $) NIL T ELT))) +(((-1163) (-13 (-777) (-620) (-10 -8 (-15 -3876 ($ $ $)) (-15 -3875 ($ $ $)) (-15 -3874 ($) -4102)))) (T -1163)) +((-3876 (*1 *1 *1 *1) (-5 *1 (-1163))) (-3875 (*1 *1 *1 *1) (-5 *1 (-1163))) (-3874 (*1 *1) (-5 *1 (-1163)))) +((-714) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) +((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-3875 (($ $ $) NIL T ELT)) (-3876 (($ $ $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2411 (($ $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-2412 (($ $ $) NIL T ELT))) +(((-1164) (-13 (-777) (-620) (-10 -8 (-15 -3876 ($ $ $)) (-15 -3875 ($ $ $)) (-15 -3874 ($) -4102)))) (T -1164)) +((-3876 (*1 *1 *1 *1) (-5 *1 (-1164))) (-3875 (*1 *1 *1 *1) (-5 *1 (-1164))) (-3874 (*1 *1) (-5 *1 (-1164)))) +((-714) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) +((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-3875 (($ $ $) NIL T ELT)) (-3876 (($ $ $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2411 (($ $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-2412 (($ $ $) NIL T ELT))) +(((-1165) (-13 (-777) (-620) (-10 -8 (-15 -3876 ($ $ $)) (-15 -3875 ($ $ $)) (-15 -3874 ($) -4102)))) (T -1165)) +((-3876 (*1 *1 *1 *1) (-5 *1 (-1165))) (-3875 (*1 *1 *1 *1) (-5 *1 (-1165))) (-3874 (*1 *1) (-5 *1 (-1165)))) +((-714) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) +((-2687 (((-85) $ $) NIL T ELT)) (-2413 (($ $) NIL T ELT)) (-3258 (((-714)) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3115 (($) NIL T ELT)) (-2650 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2978 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2111 (((-857) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2518 (($ (-857)) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT)) (-3875 (($ $ $) NIL T ELT)) (-3876 (($ $ $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2411 (($ $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL T ELT)) (-2806 (((-85) $ $) NIL T ELT)) (-2412 (($ $ $) NIL T ELT))) +(((-1166) (-13 (-777) (-620) (-10 -8 (-15 -3876 ($ $ $)) (-15 -3875 ($ $ $)) (-15 -3874 ($) -4102)))) (T -1166)) +((-3876 (*1 *1 *1 *1) (-5 *1 (-1166))) (-3875 (*1 *1 *1 *1) (-5 *1 (-1166))) (-3874 (*1 *1) (-5 *1 (-1166)))) +((-714) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3251 (((-1197 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-261)) (|has| |#1| (-318))) ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) 10 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT)) (-2164 (($ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT)) (-2162 (((-85) $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT)) (-3921 (($ $ (-499)) NIL T ELT) (($ $ (-499) (-499)) NIL T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))) $) NIL T ELT)) (-3881 (((-1197 |#1| |#2| |#3|) $) NIL T ELT)) (-3878 (((-3 (-1197 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3879 (((-1197 |#1| |#2| |#3|) $) NIL T ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1#) $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) ELT)) (-3925 (($ $) NIL (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3773 (((-499) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) ELT)) (-3968 (($ (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|)))) NIL T ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-1197 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1117) #1#) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-978 (-1117))) (|has| |#1| (-318))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-978 (-499))) (|has| |#1| (-318))) ELT) (((-3 (-499) #1#) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-978 (-499))) (|has| |#1| (-318))) ELT)) (-3294 (((-1197 |#1| |#2| |#3|) $) NIL T ELT) (((-1117) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-978 (-1117))) (|has| |#1| (-318))) ELT) (((-361 (-499)) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-978 (-499))) (|has| |#1| (-318))) ELT) (((-499) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-978 (-499))) (|has| |#1| (-318))) ELT)) (-3880 (($ $) NIL T ELT) (($ (-499) $) NIL T ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-1197 |#1| |#2| |#3|)) (-647 $)) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-1197 |#1| |#2| |#3|))) (|:| |vec| (-1207 (-1197 |#1| |#2| |#3|)))) (-647 $) (-1207 $)) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-596 (-499))) (|has| |#1| (-318))) ELT) (((-647 (-499)) (-647 $)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-596 (-499))) (|has| |#1| (-318))) ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3877 (((-361 (-884 |#1|)) $ (-499)) NIL (|has| |#1| (-510)) ELT) (((-361 (-884 |#1|)) $ (-499) (-499)) NIL (|has| |#1| (-510)) ELT)) (-3115 (($) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-498)) (|has| |#1| (-318))) ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3324 (((-85) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) ELT)) (-3013 (((-85) $) NIL T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-821 (-333))) (|has| |#1| (-318))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-821 (-499))) (|has| |#1| (-318))) ELT)) (-3922 (((-499) $) NIL T ELT) (((-499) $ (-499)) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3119 (((-1197 |#1| |#2| |#3|) $) NIL (|has| |#1| (-318)) ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3585 (((-649 $) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-1092)) (|has| |#1| (-318))) ELT)) (-3325 (((-85) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) ELT)) (-3927 (($ $ (-857)) NIL T ELT)) (-3965 (($ (-1 |#1| (-499)) $) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-499)) 18 T ELT) (($ $ (-1022) (-499)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-499))) NIL T ELT)) (-2650 (($ $ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-2978 (($ $ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-318)) ELT)) (-4092 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2381 (((-647 (-1197 |#1| |#2| |#3|)) (-1207 $)) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-1197 |#1| |#2| |#3|))) (|:| |vec| (-1207 (-1197 |#1| |#2| |#3|)))) (-1207 $) $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-596 (-499))) (|has| |#1| (-318))) ELT) (((-647 (-499)) (-1207 $)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-596 (-499))) (|has| |#1| (-318))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3929 (($ (-499) (-1197 |#1| |#2| |#3|)) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3962 (($ $) 27 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))))) ELT) (($ $ (-1204 |#2|)) 28 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3586 (($) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-1092)) (|has| |#1| (-318))) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3250 (($ $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-261)) (|has| |#1| (-318))) ELT)) (-3252 (((-1197 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-498)) (|has| |#1| (-318))) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-499)) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4093 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-499)))) ELT) (($ $ (-1117) (-1197 |#1| |#2| |#3|)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-468 (-1117) (-1197 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT) (($ $ (-599 (-1117)) (-599 (-1197 |#1| |#2| |#3|))) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-468 (-1117) (-1197 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT) (($ $ (-599 (-247 (-1197 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-263 (-1197 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT) (($ $ (-247 (-1197 |#1| |#2| |#3|))) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-263 (-1197 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT) (($ $ (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-263 (-1197 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT) (($ $ (-599 (-1197 |#1| |#2| |#3|)) (-599 (-1197 |#1| |#2| |#3|))) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-263 (-1197 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-499)) NIL T ELT) (($ $ $) NIL (|has| (-499) (-1052)) ELT) (($ $ (-1197 |#1| |#2| |#3|)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-240 (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|))) (|has| |#1| (-318))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1 (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|)) (-714)) NIL (|has| |#1| (-318)) ELT) (($ $ (-1 (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|))) NIL (|has| |#1| (-318)) ELT) (($ $ (-1204 |#2|)) 26 T ELT) (($ $) 25 (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-190)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-190)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT)) (-3116 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3118 (((-1197 |#1| |#2| |#3|) $) NIL (|has| |#1| (-318)) ELT)) (-4098 (((-499) $) NIL T ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-4122 (((-488) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-569 (-488))) (|has| |#1| (-318))) ELT) (((-333) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-960)) (|has| |#1| (-318))) ELT) (((-179) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-960)) (|has| |#1| (-318))) ELT) (((-825 (-333)) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-569 (-825 (-333)))) (|has| |#1| (-318))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-569 (-825 (-499)))) (|has| |#1| (-318))) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) ELT)) (-3012 (($ $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1197 |#1| |#2| |#3|)) NIL T ELT) (($ (-1204 |#2|)) 24 T ELT) (($ (-1117)) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-978 (-1117))) (|has| |#1| (-318))) ELT) (($ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT) (($ (-361 (-499))) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-978 (-499))) (|has| |#1| (-318))) (|has| |#1| (-38 (-361 (-499))))) ELT)) (-3827 ((|#1| $ (-499)) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-118)) (|has| |#1| (-318))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-3923 ((|#1| $) 11 T ELT)) (-3253 (((-1197 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-498)) (|has| |#1| (-318))) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-848)) (|has| |#1| (-318))) (|has| |#1| (-510))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-499)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-499)))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3523 (($ $) NIL (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) ELT)) (-2779 (($) 20 T CONST)) (-2785 (($) 15 T CONST)) (-2790 (($ $ (-1 (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|)) (-714)) NIL (|has| |#1| (-318)) ELT) (($ $ (-1 (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|))) NIL (|has| |#1| (-318)) ELT) (($ $ (-1204 |#2|)) NIL T ELT) (($ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-190)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-190)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-836 (-1117))) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT)) (-2685 (((-85) $ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-2686 (((-85) $ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-2805 (((-85) $ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-2806 (((-85) $ $) NIL (-3677 (-12 (|has| (-1197 |#1| |#2| |#3|) (-763)) (|has| |#1| (-318))) (-12 (|has| (-1197 |#1| |#2| |#3|) (-781)) (|has| |#1| (-318)))) ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT) (($ (-1197 |#1| |#2| |#3|) (-1197 |#1| |#2| |#3|)) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 22 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1197 |#1| |#2| |#3|)) NIL (|has| |#1| (-318)) ELT) (($ (-1197 |#1| |#2| |#3|) $) NIL (|has| |#1| (-318)) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-1167 |#1| |#2| |#3|) (-13 (-1171 |#1| (-1197 |#1| |#2| |#3|)) (-831 $ (-1204 |#2|)) (-10 -8 (-15 -4096 ($ (-1204 |#2|))) (IF (|has| |#1| (-38 (-361 (-499)))) (-15 -3962 ($ $ (-1204 |#2|))) |%noBranch|))) (-989) (-1117) |#1|) (T -1167)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-989)) (-14 *5 *3))) (-3962 (*1 *1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3)))) +((-4108 (((-1167 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1167 |#1| |#3| |#5|)) 23 T ELT))) +(((-1168 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4108 ((-1167 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1167 |#1| |#3| |#5|)))) (-989) (-989) (-1117) (-1117) |#1| |#2|) (T -1168)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1167 *5 *7 *9)) (-4 *5 (-989)) (-4 *6 (-989)) (-14 *7 (-1117)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1167 *6 *8 *10)) (-5 *1 (-1168 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1117))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3204 (((-599 (-1022)) $) 92 T ELT)) (-3981 (((-1117) $) 126 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 68 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 69 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 71 (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-499)) 121 T ELT) (($ $ (-499) (-499)) 120 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))) $) 127 T ELT)) (-3632 (($ $) 160 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 143 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 187 (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) 188 (|has| |#1| (-318)) ELT)) (-3158 (($ $) 142 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1678 (((-85) $ $) 178 (|has| |#1| (-318)) ELT)) (-3630 (($ $) 159 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 144 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|)))) 198 T ELT)) (-3634 (($ $) 158 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 145 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) 22 T CONST)) (-2683 (($ $ $) 182 (|has| |#1| (-318)) ELT)) (-4109 (($ $) 77 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3877 (((-361 (-884 |#1|)) $ (-499)) 196 (|has| |#1| (-510)) ELT) (((-361 (-884 |#1|)) $ (-499) (-499)) 195 (|has| |#1| (-510)) ELT)) (-2682 (($ $ $) 181 (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 176 (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) 189 (|has| |#1| (-318)) ELT)) (-3013 (((-85) $) 91 T ELT)) (-3777 (($) 170 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-499) $) 123 T ELT) (((-499) $ (-499)) 122 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 141 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3927 (($ $ (-857)) 124 T ELT)) (-3965 (($ (-1 |#1| (-499)) $) 197 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 185 (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) 79 T ELT)) (-3014 (($ |#1| (-499)) 78 T ELT) (($ $ (-1022) (-499)) 94 T ELT) (($ $ (-599 (-1022)) (-599 (-499))) 93 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4092 (($ $) 167 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) 82 T ELT)) (-3312 ((|#1| $) 83 T ELT)) (-1993 (($ (-599 $)) 174 (|has| |#1| (-318)) ELT) (($ $ $) 173 (|has| |#1| (-318)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 190 (|has| |#1| (-318)) ELT)) (-3962 (($ $) 194 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) 193 (-3677 (-12 (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143)) (|has| |#1| (-38 (-361 (-499))))) (-12 (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-38 (-361 (-499)))))) ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 175 (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) 172 (|has| |#1| (-318)) ELT) (($ $ $) 171 (|has| |#1| (-318)) ELT)) (-3882 (((-359 $) $) 186 (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 183 (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-499)) 118 T ELT)) (-3606 (((-3 $ "failed") $ $) 67 (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 177 (|has| |#1| (-318)) ELT)) (-4093 (($ $) 168 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-499)))) ELT)) (-1677 (((-714) $) 179 (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-499)) 128 T ELT) (($ $ $) 104 (|has| (-499) (-1052)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 180 (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1117)) 116 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-599 (-1117))) 114 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117) (-714)) 113 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 112 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-499) |#1|))) ELT) (($ $ (-714)) 106 (|has| |#1| (-15 * (|#1| (-499) |#1|))) ELT)) (-4098 (((-499) $) 81 T ELT)) (-3635 (($ $) 157 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 146 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 156 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 147 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 155 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 148 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) 90 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-146)) ELT) (($ (-361 (-499))) 74 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) 66 (|has| |#1| (-510)) ELT)) (-3827 ((|#1| $ (-499)) 76 T ELT)) (-2823 (((-649 $) $) 65 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-3923 ((|#1| $) 125 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3638 (($ $) 166 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 154 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) 70 (|has| |#1| (-510)) ELT)) (-3636 (($ $) 165 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 153 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 164 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 152 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-499)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-499)))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) 163 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 151 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 162 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 150 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 161 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 149 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1117)) 115 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-599 (-1117))) 111 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117) (-714)) 110 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 109 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-499) |#1|))) ELT) (($ $ (-714)) 105 (|has| |#1| (-15 * (|#1| (-499) |#1|))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 75 (|has| |#1| (-318)) ELT) (($ $ $) 192 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 191 (|has| |#1| (-318)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 140 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-361 (-499)) $) 73 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 72 (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-1169 |#1|) (-113) (-989)) (T -1169)) +((-3968 (*1 *1 *2) (-12 (-5 *2 (-1095 (-2 (|:| |k| (-499)) (|:| |c| *3)))) (-4 *3 (-989)) (-4 *1 (-1169 *3)))) (-3965 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-499))) (-4 *1 (-1169 *3)) (-4 *3 (-989)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-1169 *4)) (-4 *4 (-989)) (-4 *4 (-510)) (-5 *2 (-361 (-884 *4))))) (-3877 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-499)) (-4 *1 (-1169 *4)) (-4 *4 (-989)) (-4 *4 (-510)) (-5 *2 (-361 (-884 *4))))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-989)) (-4 *2 (-38 (-361 (-499)))))) (-3962 (*1 *1 *1 *2) (-3677 (-12 (-5 *2 (-1117)) (-4 *1 (-1169 *3)) (-4 *3 (-989)) (-12 (-4 *3 (-29 (-499))) (-4 *3 (-898)) (-4 *3 (-1143)) (-4 *3 (-38 (-361 (-499)))))) (-12 (-5 *2 (-1117)) (-4 *1 (-1169 *3)) (-4 *3 (-989)) (-12 (|has| *3 (-15 -3204 ((-599 *2) *3))) (|has| *3 (-15 -3962 (*3 *3 *2))) (-4 *3 (-38 (-361 (-499))))))))) +(-13 (-1186 |t#1| (-499)) (-10 -8 (-15 -3968 ($ (-1095 (-2 (|:| |k| (-499)) (|:| |c| |t#1|))))) (-15 -3965 ($ (-1 |t#1| (-499)) $)) (IF (|has| |t#1| (-510)) (PROGN (-15 -3877 ((-361 (-884 |t#1|)) $ (-499))) (-15 -3877 ((-361 (-884 |t#1|)) $ (-499) (-499)))) |%noBranch|) (IF (|has| |t#1| (-38 (-361 (-499)))) (PROGN (-15 -3962 ($ $)) (IF (|has| |t#1| (-15 -3962 (|t#1| |t#1| (-1117)))) (IF (|has| |t#1| (-15 -3204 ((-599 (-1117)) |t#1|))) (-15 -3962 ($ $ (-1117))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1143)) (IF (|has| |t#1| (-898)) (IF (|has| |t#1| (-29 (-499))) (-15 -3962 ($ $ (-1117))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-942)) (-6 (-1143))) |%noBranch|) (IF (|has| |t#1| (-318)) (-6 (-318)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-499)) . T) ((-25) . T) ((-38 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-35) |has| |#1| (-38 (-361 (-499)))) ((-66) |has| |#1| (-38 (-361 (-499)))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-571 (-499)) . T) ((-571 |#1|) |has| |#1| (-146)) ((-571 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-499) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-499) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-499) |#1|))) ((-200) |has| |#1| (-318)) ((-238) |has| |#1| (-38 (-361 (-499)))) ((-240 (-499) |#1|) . T) ((-240 $ $) |has| (-499) (-1052)) ((-244) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-261) |has| |#1| (-318)) ((-318) |has| |#1| (-318)) ((-406) |has| |#1| (-318)) ((-447) |has| |#1| (-38 (-361 (-499)))) ((-510) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-604 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-675 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-684) . T) ((-831 $ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ((-836 (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ((-838 (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ((-913 |#1| (-499) (-1022)) . T) ((-859) |has| |#1| (-318)) ((-942) |has| |#1| (-38 (-361 (-499)))) ((-991 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-996 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1143) |has| |#1| (-38 (-361 (-499)))) ((-1146) |has| |#1| (-38 (-361 (-499)))) ((-1157) . T) ((-1162) |has| |#1| (-318)) ((-1186 |#1| (-499)) . T)) +((-3326 (((-85) $) 12 T ELT)) (-3295 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1117) #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 (-499) #1#) $) NIL T ELT)) (-3294 ((|#3| $) 14 T ELT) (((-1117) $) NIL T ELT) (((-361 (-499)) $) NIL T ELT) (((-499) $) NIL T ELT))) +(((-1170 |#1| |#2| |#3|) (-10 -7 (-15 -3295 ((-3 (-499) #1="failed") |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -3295 ((-3 (-1117) #1#) |#1|)) (-15 -3294 ((-1117) |#1|)) (-15 -3295 ((-3 |#3| #1#) |#1|)) (-15 -3294 (|#3| |#1|)) (-15 -3326 ((-85) |#1|))) (-1171 |#2| |#3|) (-989) (-1200 |#2|)) (T -1170)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3251 ((|#2| $) 263 (-2681 (|has| |#2| (-261)) (|has| |#1| (-318))) ELT)) (-3204 (((-599 (-1022)) $) 92 T ELT)) (-3981 (((-1117) $) 126 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 68 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 69 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 71 (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-499)) 121 T ELT) (($ $ (-499) (-499)) 120 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))) $) 127 T ELT)) (-3881 ((|#2| $) 299 T ELT)) (-3878 (((-3 |#2| "failed") $) 295 T ELT)) (-3879 ((|#2| $) 296 T ELT)) (-3632 (($ $) 160 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 143 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 272 (-2681 (|has| |#2| (-848)) (|has| |#1| (-318))) ELT)) (-3925 (($ $) 187 (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) 188 (|has| |#1| (-318)) ELT)) (-3158 (($ $) 142 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1="failed") (-599 (-1111 $)) (-1111 $)) 269 (-2681 (|has| |#2| (-848)) (|has| |#1| (-318))) ELT)) (-1678 (((-85) $ $) 178 (|has| |#1| (-318)) ELT)) (-3630 (($ $) 159 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 144 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3773 (((-499) $) 281 (-2681 (|has| |#2| (-763)) (|has| |#1| (-318))) ELT)) (-3968 (($ (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|)))) 198 T ELT)) (-3634 (($ $) 158 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 145 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#2| #2="failed") $) 302 T ELT) (((-3 (-499) #2#) $) 292 (-2681 (|has| |#2| (-978 (-499))) (|has| |#1| (-318))) ELT) (((-3 (-361 (-499)) #2#) $) 290 (-2681 (|has| |#2| (-978 (-499))) (|has| |#1| (-318))) ELT) (((-3 (-1117) #2#) $) 274 (-2681 (|has| |#2| (-978 (-1117))) (|has| |#1| (-318))) ELT)) (-3294 ((|#2| $) 303 T ELT) (((-499) $) 291 (-2681 (|has| |#2| (-978 (-499))) (|has| |#1| (-318))) ELT) (((-361 (-499)) $) 289 (-2681 (|has| |#2| (-978 (-499))) (|has| |#1| (-318))) ELT) (((-1117) $) 273 (-2681 (|has| |#2| (-978 (-1117))) (|has| |#1| (-318))) ELT)) (-3880 (($ $) 298 T ELT) (($ (-499) $) 297 T ELT)) (-2683 (($ $ $) 182 (|has| |#1| (-318)) ELT)) (-4109 (($ $) 77 T ELT)) (-2380 (((-647 |#2|) (-647 $)) 251 (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) 250 (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 249 (-2681 (|has| |#2| (-596 (-499))) (|has| |#1| (-318))) ELT) (((-647 (-499)) (-647 $)) 248 (-2681 (|has| |#2| (-596 (-499))) (|has| |#1| (-318))) ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3877 (((-361 (-884 |#1|)) $ (-499)) 196 (|has| |#1| (-510)) ELT) (((-361 (-884 |#1|)) $ (-499) (-499)) 195 (|has| |#1| (-510)) ELT)) (-3115 (($) 265 (-2681 (|has| |#2| (-498)) (|has| |#1| (-318))) ELT)) (-2682 (($ $ $) 181 (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 176 (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) 189 (|has| |#1| (-318)) ELT)) (-3324 (((-85) $) 279 (-2681 (|has| |#2| (-763)) (|has| |#1| (-318))) ELT)) (-3013 (((-85) $) 91 T ELT)) (-3777 (($) 170 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 257 (-2681 (|has| |#2| (-821 (-333))) (|has| |#1| (-318))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 256 (-2681 (|has| |#2| (-821 (-499))) (|has| |#1| (-318))) ELT)) (-3922 (((-499) $) 123 T ELT) (((-499) $ (-499)) 122 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3117 (($ $) 261 (|has| |#1| (-318)) ELT)) (-3119 ((|#2| $) 259 (|has| |#1| (-318)) ELT)) (-3132 (($ $ (-499)) 141 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3585 (((-649 $) $) 293 (-2681 (|has| |#2| (-1092)) (|has| |#1| (-318))) ELT)) (-3325 (((-85) $) 280 (-2681 (|has| |#2| (-763)) (|has| |#1| (-318))) ELT)) (-3927 (($ $ (-857)) 124 T ELT)) (-3965 (($ (-1 |#1| (-499)) $) 197 T ELT)) (-1675 (((-3 (-599 $) #3="failed") (-599 $) $) 185 (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) 79 T ELT)) (-3014 (($ |#1| (-499)) 78 T ELT) (($ $ (-1022) (-499)) 94 T ELT) (($ $ (-599 (-1022)) (-599 (-499))) 93 T ELT)) (-2650 (($ $ $) 288 (-2681 (|has| |#2| (-781)) (|has| |#1| (-318))) ELT)) (-2978 (($ $ $) 287 (-2681 (|has| |#2| (-781)) (|has| |#1| (-318))) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#2| |#2|) $) 241 (|has| |#1| (-318)) ELT)) (-4092 (($ $) 167 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2381 (((-647 |#2|) (-1207 $)) 253 (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) 252 (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 247 (-2681 (|has| |#2| (-596 (-499))) (|has| |#1| (-318))) ELT) (((-647 (-499)) (-1207 $)) 246 (-2681 (|has| |#2| (-596 (-499))) (|has| |#1| (-318))) ELT)) (-3015 (($ $) 82 T ELT)) (-3312 ((|#1| $) 83 T ELT)) (-1993 (($ (-599 $)) 174 (|has| |#1| (-318)) ELT) (($ $ $) 173 (|has| |#1| (-318)) ELT)) (-3929 (($ (-499) |#2|) 300 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 190 (|has| |#1| (-318)) ELT)) (-3962 (($ $) 194 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) 193 (-3677 (-12 (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143)) (|has| |#1| (-38 (-361 (-499))))) (-12 (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-38 (-361 (-499)))))) ELT)) (-3586 (($) 294 (-2681 (|has| |#2| (-1092)) (|has| |#1| (-318))) CONST)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 175 (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) 172 (|has| |#1| (-318)) ELT) (($ $ $) 171 (|has| |#1| (-318)) ELT)) (-3250 (($ $) 264 (-2681 (|has| |#2| (-261)) (|has| |#1| (-318))) ELT)) (-3252 ((|#2| $) 267 (-2681 (|has| |#2| (-498)) (|has| |#1| (-318))) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 270 (-2681 (|has| |#2| (-848)) (|has| |#1| (-318))) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 271 (-2681 (|has| |#2| (-848)) (|has| |#1| (-318))) ELT)) (-3882 (((-359 $) $) 186 (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 184 (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 183 (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-499)) 118 T ELT)) (-3606 (((-3 $ "failed") $ $) 67 (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 177 (|has| |#1| (-318)) ELT)) (-4093 (($ $) 168 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-499)))) ELT) (($ $ (-1117) |#2|) 240 (-2681 (|has| |#2| (-468 (-1117) |#2|)) (|has| |#1| (-318))) ELT) (($ $ (-599 (-1117)) (-599 |#2|)) 239 (-2681 (|has| |#2| (-468 (-1117) |#2|)) (|has| |#1| (-318))) ELT) (($ $ (-599 (-247 |#2|))) 238 (-2681 (|has| |#2| (-263 |#2|)) (|has| |#1| (-318))) ELT) (($ $ (-247 |#2|)) 237 (-2681 (|has| |#2| (-263 |#2|)) (|has| |#1| (-318))) ELT) (($ $ |#2| |#2|) 236 (-2681 (|has| |#2| (-263 |#2|)) (|has| |#1| (-318))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) 235 (-2681 (|has| |#2| (-263 |#2|)) (|has| |#1| (-318))) ELT)) (-1677 (((-714) $) 179 (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-499)) 128 T ELT) (($ $ $) 104 (|has| (-499) (-1052)) ELT) (($ $ |#2|) 234 (-2681 (|has| |#2| (-240 |#2| |#2|)) (|has| |#1| (-318))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 180 (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1 |#2| |#2|) (-714)) 243 (|has| |#1| (-318)) ELT) (($ $ (-1 |#2| |#2|)) 242 (|has| |#1| (-318)) ELT) (($ $) 108 (-3677 (-2681 (|has| |#2| (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-714)) 106 (-3677 (-2681 (|has| |#2| (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117)) 116 (-3677 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117))) 114 (-3677 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-1117) (-714)) 113 (-3677 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 112 (-3677 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT)) (-3116 (($ $) 262 (|has| |#1| (-318)) ELT)) (-3118 ((|#2| $) 260 (|has| |#1| (-318)) ELT)) (-4098 (((-499) $) 81 T ELT)) (-3635 (($ $) 157 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 146 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 156 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 147 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 155 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 148 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-4122 (((-179) $) 278 (-2681 (|has| |#2| (-960)) (|has| |#1| (-318))) ELT) (((-333) $) 277 (-2681 (|has| |#2| (-960)) (|has| |#1| (-318))) ELT) (((-488) $) 276 (-2681 (|has| |#2| (-569 (-488))) (|has| |#1| (-318))) ELT) (((-825 (-333)) $) 255 (-2681 (|has| |#2| (-569 (-825 (-333)))) (|has| |#1| (-318))) ELT) (((-825 (-499)) $) 254 (-2681 (|has| |#2| (-569 (-825 (-499)))) (|has| |#1| (-318))) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) 268 (-2681 (-2681 (|has| $ (-118)) (|has| |#2| (-848))) (|has| |#1| (-318))) ELT)) (-3012 (($ $) 90 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-146)) ELT) (($ |#2|) 301 T ELT) (($ (-1117)) 275 (-2681 (|has| |#2| (-978 (-1117))) (|has| |#1| (-318))) ELT) (($ (-361 (-499))) 74 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) 66 (|has| |#1| (-510)) ELT)) (-3827 ((|#1| $ (-499)) 76 T ELT)) (-2823 (((-649 $) $) 65 (-3677 (-2681 (-3677 (|has| |#2| (-118)) (-2681 (|has| $ (-118)) (|has| |#2| (-848)))) (|has| |#1| (-318))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) 37 T CONST)) (-3923 ((|#1| $) 125 T ELT)) (-3253 ((|#2| $) 266 (-2681 (|has| |#2| (-498)) (|has| |#1| (-318))) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3638 (($ $) 166 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 154 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) 70 (|has| |#1| (-510)) ELT)) (-3636 (($ $) 165 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 153 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 164 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 152 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-499)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-499)))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) 163 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 151 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 162 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 150 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 161 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 149 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3523 (($ $) 282 (-2681 (|has| |#2| (-763)) (|has| |#1| (-318))) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1 |#2| |#2|) (-714)) 245 (|has| |#1| (-318)) ELT) (($ $ (-1 |#2| |#2|)) 244 (|has| |#1| (-318)) ELT) (($ $) 107 (-3677 (-2681 (|has| |#2| (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-714)) 105 (-3677 (-2681 (|has| |#2| (-189)) (|has| |#1| (-318))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117)) 115 (-3677 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117))) 111 (-3677 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-1117) (-714)) 110 (-3677 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 109 (-3677 (-2681 (|has| |#2| (-838 (-1117))) (|has| |#1| (-318))) (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|))))) ELT)) (-2685 (((-85) $ $) 286 (-2681 (|has| |#2| (-781)) (|has| |#1| (-318))) ELT)) (-2686 (((-85) $ $) 284 (-2681 (|has| |#2| (-781)) (|has| |#1| (-318))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-2805 (((-85) $ $) 285 (-2681 (|has| |#2| (-781)) (|has| |#1| (-318))) ELT)) (-2806 (((-85) $ $) 283 (-2681 (|has| |#2| (-781)) (|has| |#1| (-318))) ELT)) (-4099 (($ $ |#1|) 75 (|has| |#1| (-318)) ELT) (($ $ $) 192 (|has| |#1| (-318)) ELT) (($ |#2| |#2|) 258 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 191 (|has| |#1| (-318)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 140 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ $ |#2|) 233 (|has| |#1| (-318)) ELT) (($ |#2| $) 232 (|has| |#1| (-318)) ELT) (($ (-361 (-499)) $) 73 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 72 (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-1171 |#1| |#2|) (-113) (-989) (-1200 |t#1|)) (T -1171)) +((-4098 (*1 *2 *1) (-12 (-4 *1 (-1171 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1200 *3)) (-5 *2 (-499)))) (-3929 (*1 *1 *2 *3) (-12 (-5 *2 (-499)) (-4 *4 (-989)) (-4 *1 (-1171 *4 *3)) (-4 *3 (-1200 *4)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1200 *3)))) (-3880 (*1 *1 *1) (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-989)) (-4 *3 (-1200 *2)))) (-3880 (*1 *1 *2 *1) (-12 (-5 *2 (-499)) (-4 *1 (-1171 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1200 *3)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1200 *3)))) (-3878 (*1 *2 *1) (|partial| -12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1200 *3))))) +(-13 (-1169 |t#1|) (-978 |t#2|) (-571 |t#2|) (-10 -8 (-15 -3929 ($ (-499) |t#2|)) (-15 -4098 ((-499) $)) (-15 -3881 (|t#2| $)) (-15 -3880 ($ $)) (-15 -3880 ($ (-499) $)) (-15 -3879 (|t#2| $)) (-15 -3878 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-318)) (-6 (-931 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-499)) . T) ((-25) . T) ((-38 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 |#2|) |has| |#1| (-318)) ((-38 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-35) |has| |#1| (-38 (-361 (-499)))) ((-66) |has| |#1| (-38 (-361 (-499)))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-82 |#1| |#1|) . T) ((-82 |#2| |#2|) |has| |#1| (-318)) ((-82 $ $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-104) . T) ((-118) -3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-120) -3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-120))) (|has| |#1| (-120))) ((-571 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-571 (-499)) . T) ((-571 (-1117)) -12 (|has| |#1| (-318)) (|has| |#2| (-978 (-1117)))) ((-571 |#1|) |has| |#1| (-146)) ((-571 |#2|) . T) ((-571 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-569 (-179)) -12 (|has| |#1| (-318)) (|has| |#2| (-960))) ((-569 (-333)) -12 (|has| |#1| (-318)) (|has| |#2| (-960))) ((-569 (-488)) -12 (|has| |#1| (-318)) (|has| |#2| (-569 (-488)))) ((-569 (-825 (-333))) -12 (|has| |#1| (-318)) (|has| |#2| (-569 (-825 (-333))))) ((-569 (-825 (-499))) -12 (|has| |#1| (-318)) (|has| |#2| (-569 (-825 (-499))))) ((-186 $) -3677 (|has| |#1| (-15 * (|#1| (-499) |#1|))) (-12 (|has| |#1| (-318)) (|has| |#2| (-189))) (-12 (|has| |#1| (-318)) (|has| |#2| (-190)))) ((-184 |#2|) |has| |#1| (-318)) ((-190) -3677 (|has| |#1| (-15 * (|#1| (-499) |#1|))) (-12 (|has| |#1| (-318)) (|has| |#2| (-190)))) ((-189) -3677 (|has| |#1| (-15 * (|#1| (-499) |#1|))) (-12 (|has| |#1| (-318)) (|has| |#2| (-189))) (-12 (|has| |#1| (-318)) (|has| |#2| (-190)))) ((-224 |#2|) |has| |#1| (-318)) ((-200) |has| |#1| (-318)) ((-238) |has| |#1| (-38 (-361 (-499)))) ((-240 (-499) |#1|) . T) ((-240 |#2| $) -12 (|has| |#1| (-318)) (|has| |#2| (-240 |#2| |#2|))) ((-240 $ $) |has| (-499) (-1052)) ((-244) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-261) |has| |#1| (-318)) ((-263 |#2|) -12 (|has| |#1| (-318)) (|has| |#2| (-263 |#2|))) ((-318) |has| |#1| (-318)) ((-293 |#2|) |has| |#1| (-318)) ((-332 |#2|) |has| |#1| (-318)) ((-354 |#2|) |has| |#1| (-318)) ((-406) |has| |#1| (-318)) ((-447) |has| |#1| (-38 (-361 (-499)))) ((-468 (-1117) |#2|) -12 (|has| |#1| (-318)) (|has| |#2| (-468 (-1117) |#2|))) ((-468 |#2| |#2|) -12 (|has| |#1| (-318)) (|has| |#2| (-263 |#2|))) ((-510) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-604 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 |#2|) |has| |#1| (-318)) ((-604 $) . T) ((-606 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-606 (-499)) -12 (|has| |#1| (-318)) (|has| |#2| (-596 (-499)))) ((-606 |#1|) . T) ((-606 |#2|) |has| |#1| (-318)) ((-606 $) . T) ((-598 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-598 |#1|) |has| |#1| (-146)) ((-598 |#2|) |has| |#1| (-318)) ((-598 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-596 (-499)) -12 (|has| |#1| (-318)) (|has| |#2| (-596 (-499)))) ((-596 |#2|) |has| |#1| (-318)) ((-675 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-675 |#1|) |has| |#1| (-146)) ((-675 |#2|) |has| |#1| (-318)) ((-675 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-684) . T) ((-735) -12 (|has| |#1| (-318)) (|has| |#2| (-763))) ((-737) -12 (|has| |#1| (-318)) (|has| |#2| (-763))) ((-739) -12 (|has| |#1| (-318)) (|has| |#2| (-763))) ((-742) -12 (|has| |#1| (-318)) (|has| |#2| (-763))) ((-763) -12 (|has| |#1| (-318)) (|has| |#2| (-763))) ((-780) -12 (|has| |#1| (-318)) (|has| |#2| (-763))) ((-781) -3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-781))) (-12 (|has| |#1| (-318)) (|has| |#2| (-763)))) ((-784) -3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-781))) (-12 (|has| |#1| (-318)) (|has| |#2| (-763)))) ((-831 $ (-1117)) -3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-836 (-1117))))) ((-836 (-1117)) -3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-836 (-1117))))) ((-838 (-1117)) -3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-836 (-1117))))) ((-821 (-333)) -12 (|has| |#1| (-318)) (|has| |#2| (-821 (-333)))) ((-821 (-499)) -12 (|has| |#1| (-318)) (|has| |#2| (-821 (-499)))) ((-819 |#2|) |has| |#1| (-318)) ((-848) -12 (|has| |#1| (-318)) (|has| |#2| (-848))) ((-913 |#1| (-499) (-1022)) . T) ((-859) |has| |#1| (-318)) ((-931 |#2|) |has| |#1| (-318)) ((-942) |has| |#1| (-38 (-361 (-499)))) ((-960) -12 (|has| |#1| (-318)) (|has| |#2| (-960))) ((-978 (-361 (-499))) -12 (|has| |#1| (-318)) (|has| |#2| (-978 (-499)))) ((-978 (-499)) -12 (|has| |#1| (-318)) (|has| |#2| (-978 (-499)))) ((-978 (-1117)) -12 (|has| |#1| (-318)) (|has| |#2| (-978 (-1117)))) ((-978 |#2|) . T) ((-991 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-991 |#1|) . T) ((-991 |#2|) |has| |#1| (-318)) ((-991 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-996 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-996 |#1|) . T) ((-996 |#2|) |has| |#1| (-318)) ((-996 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1092) -12 (|has| |#1| (-318)) (|has| |#2| (-1092))) ((-1143) |has| |#1| (-38 (-361 (-499)))) ((-1146) |has| |#1| (-38 (-361 (-499)))) ((-1157) . T) ((-1162) |has| |#1| (-318)) ((-1169 |#1|) . T) ((-1186 |#1| (-499)) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 83 T ELT)) (-3251 ((|#2| $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-261))) ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) 102 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-499)) 111 T ELT) (($ $ (-499) (-499)) 114 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|))) $) 51 T ELT)) (-3881 ((|#2| $) 11 T ELT)) (-3878 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3879 ((|#2| $) 36 T ELT)) (-3632 (($ $) 208 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 184 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1#) $ $) NIL T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-848))) ELT)) (-3925 (($ $) NIL (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-848))) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3630 (($ $) 204 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 180 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3773 (((-499) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-763))) ELT)) (-3968 (($ (-1095 (-2 (|:| |k| (-499)) (|:| |c| |#1|)))) 59 T ELT)) (-3634 (($ $) 212 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 188 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-499) #1#) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-978 (-499)))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-978 (-499)))) ELT) (((-3 (-1117) #1#) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-978 (-1117)))) ELT)) (-3294 ((|#2| $) 158 T ELT) (((-499) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-978 (-499)))) ELT) (((-361 (-499)) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-978 (-499)))) ELT) (((-1117) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-978 (-1117)))) ELT)) (-3880 (($ $) 65 T ELT) (($ (-499) $) 28 T ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 |#2|) (-647 $)) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-596 (-499)))) ELT) (((-647 (-499)) (-647 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-596 (-499)))) ELT)) (-3607 (((-3 $ #1#) $) 90 T ELT)) (-3877 (((-361 (-884 |#1|)) $ (-499)) 126 (|has| |#1| (-510)) ELT) (((-361 (-884 |#1|)) $ (-499) (-499)) 128 (|has| |#1| (-510)) ELT)) (-3115 (($) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-498))) ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3324 (((-85) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-763))) ELT)) (-3013 (((-85) $) 76 T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-821 (-499)))) ELT)) (-3922 (((-499) $) 107 T ELT) (((-499) $ (-499)) 109 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3117 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3119 ((|#2| $) 167 (|has| |#1| (-318)) ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3585 (((-649 $) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-1092))) ELT)) (-3325 (((-85) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-763))) ELT)) (-3927 (($ $ (-857)) 150 T ELT)) (-3965 (($ (-1 |#1| (-499)) $) 146 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-499)) 20 T ELT) (($ $ (-1022) (-499)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-499))) NIL T ELT)) (-2650 (($ $ $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-781))) ELT)) (-2978 (($ $ $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-781))) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-318)) ELT)) (-4092 (($ $) 178 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2381 (((-647 |#2|) (-1207 $)) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-596 (-499)))) ELT) (((-647 (-499)) (-1207 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-596 (-499)))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3929 (($ (-499) |#2|) 10 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 161 (|has| |#1| (-318)) ELT)) (-3962 (($ $) 230 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) 235 (-3677 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))))) ELT)) (-3586 (($) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-1092))) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3250 (($ $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-261))) ELT)) (-3252 ((|#2| $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-498))) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-848))) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-848))) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-499)) 140 T ELT)) (-3606 (((-3 $ #1#) $ $) 130 (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4093 (($ $) 176 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-499)))) ELT) (($ $ (-1117) |#2|) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-468 (-1117) |#2|))) ELT) (($ $ (-599 (-1117)) (-599 |#2|)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-468 (-1117) |#2|))) ELT) (($ $ (-599 (-247 |#2|))) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-263 |#2|))) ELT) (($ $ (-247 |#2|)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-263 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-263 |#2|))) ELT) (($ $ (-599 |#2|) (-599 |#2|)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-263 |#2|))) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-499)) 105 T ELT) (($ $ $) 92 (|has| (-499) (-1052)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-240 |#2| |#2|))) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1 |#2| |#2|) (-714)) NIL (|has| |#1| (-318)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-318)) ELT) (($ $) 151 (-3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117)) 155 (-3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117))))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117))))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117))))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117))))) ELT)) (-3116 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3118 ((|#2| $) 168 (|has| |#1| (-318)) ELT)) (-4098 (((-499) $) 12 T ELT)) (-3635 (($ $) 214 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 190 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 210 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 186 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 206 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 182 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-4122 (((-179) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-960))) ELT) (((-333) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-960))) ELT) (((-488) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-569 (-488)))) ELT) (((-825 (-333)) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-569 (-825 (-499))))) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-318)) (|has| |#2| (-848))) ELT)) (-3012 (($ $) 138 T ELT)) (-4096 (((-797) $) 268 T ELT) (($ (-499)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-146)) ELT) (($ |#2|) 21 T ELT) (($ (-1117)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-978 (-1117)))) ELT) (($ (-361 (-499))) 171 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3827 ((|#1| $ (-499)) 87 T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#1| (-318)) (|has| |#2| (-848))) (|has| |#1| (-118)) (-12 (|has| |#1| (-318)) (|has| |#2| (-118)))) ELT)) (-3248 (((-714)) 157 T CONST)) (-3923 ((|#1| $) 104 T ELT)) (-3253 ((|#2| $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-498))) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) 220 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 196 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) 216 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 192 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 224 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 200 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-499)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-499)))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) 226 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 202 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 222 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 198 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 218 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 194 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3523 (($ $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-763))) ELT)) (-2779 (($) 13 T CONST)) (-2785 (($) 18 T CONST)) (-2790 (($ $ (-1 |#2| |#2|) (-714)) NIL (|has| |#1| (-318)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-714)) NIL (-3677 (-12 (|has| |#1| (-318)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117))))) ELT) (($ $ (-599 (-1117))) NIL (-3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117))))) ELT) (($ $ (-1117) (-714)) NIL (-3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117))))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-3677 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-499) |#1|)))) (-12 (|has| |#1| (-318)) (|has| |#2| (-838 (-1117))))) ELT)) (-2685 (((-85) $ $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-781))) ELT)) (-2686 (((-85) $ $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-781))) ELT)) (-3174 (((-85) $ $) 74 T ELT)) (-2805 (((-85) $ $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-781))) ELT)) (-2806 (((-85) $ $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-781))) ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT) (($ $ $) 165 (|has| |#1| (-318)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3989 (($ $ $) 78 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 86 T ELT) (($ $ (-499)) 162 (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 174 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-318)) ELT) (($ |#2| $) 163 (|has| |#1| (-318)) ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-1172 |#1| |#2|) (-1171 |#1| |#2|) (-989) (-1200 |#1|)) (T -1172)) +NIL +((-3884 (((-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| |#1|) (|:| -2513 (-499)))))) |#1| (-85)) 13 T ELT)) (-3883 (((-359 |#1|) |#1|) 26 T ELT)) (-3882 (((-359 |#1|) |#1|) 24 T ELT))) +(((-1173 |#1|) (-10 -7 (-15 -3882 ((-359 |#1|) |#1|)) (-15 -3883 ((-359 |#1|) |#1|)) (-15 -3884 ((-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| |#1|) (|:| -2513 (-499)))))) |#1| (-85)))) (-1183 (-499))) (T -1173)) +((-3884 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-499)) (|:| -1877 (-599 (-2 (|:| |irr| *3) (|:| -2513 (-499))))))) (-5 *1 (-1173 *3)) (-4 *3 (-1183 (-499))))) (-3883 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-1173 *3)) (-4 *3 (-1183 (-499))))) (-3882 (*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-1173 *3)) (-4 *3 (-1183 (-499)))))) +((-2687 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3886 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-4108 (((-1095 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-780)) ELT)) (-3367 ((|#1| $) 15 T ELT)) (-3369 ((|#1| $) 12 T ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-3365 (((-499) $) 19 T ELT)) (-3366 ((|#1| $) 18 T ELT)) (-3368 ((|#1| $) 13 T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3885 (((-85) $) 17 T ELT)) (-4113 (((-1095 |#1|) $) 41 (|has| |#1| (-780)) ELT) (((-1095 |#1|) (-599 $)) 40 (|has| |#1| (-780)) ELT)) (-4122 (($ |#1|) 26 T ELT)) (-4096 (($ (-1029 |#1|)) 25 T ELT) (((-797) $) 37 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-1041)) ELT)) (-3887 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3370 (($ $ (-499)) 14 T ELT)) (-3174 (((-85) $ $) 30 (|has| |#1| (-1041)) ELT))) +(((-1174 |#1|) (-13 (-1034 |#1|) (-10 -8 (-15 -3887 ($ |#1|)) (-15 -3886 ($ |#1|)) (-15 -4096 ($ (-1029 |#1|))) (-15 -3885 ((-85) $)) (IF (|has| |#1| (-1041)) (-6 (-1041)) |%noBranch|) (IF (|has| |#1| (-780)) (-6 (-1035 |#1| (-1095 |#1|))) |%noBranch|))) (-1157)) (T -1174)) +((-3887 (*1 *1 *2) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-1157)))) (-3886 (*1 *1 *2) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-1157)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-1029 *3)) (-4 *3 (-1157)) (-5 *1 (-1174 *3)))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1174 *3)) (-4 *3 (-1157))))) +((-4108 (((-1095 |#2|) (-1 |#2| |#1|) (-1174 |#1|)) 23 (|has| |#1| (-780)) ELT) (((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|)) 17 T ELT))) +(((-1175 |#1| |#2|) (-10 -7 (-15 -4108 ((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|))) (IF (|has| |#1| (-780)) (-15 -4108 ((-1095 |#2|) (-1 |#2| |#1|) (-1174 |#1|))) |%noBranch|)) (-1157) (-1157)) (T -1175)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-780)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-1095 *6)) (-5 *1 (-1175 *5 *6)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-1174 *6)) (-5 *1 (-1175 *5 *6))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3917 (((-1207 |#2|) $ (-714)) NIL T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3915 (($ (-1111 |#2|)) NIL T ELT)) (-3206 (((-1111 $) $ (-1022)) NIL T ELT) (((-1111 |#2|) $) NIL T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#2| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#2| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#2| (-510)) ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-1022))) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3905 (($ $ $) NIL (|has| |#2| (-510)) ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3925 (($ $) NIL (|has| |#2| (-406)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#2| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1#) (-599 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-1678 (((-85) $ $) NIL (|has| |#2| (-318)) ELT)) (-3911 (($ $ (-714)) NIL T ELT)) (-3910 (($ $ (-714)) NIL T ELT)) (-3901 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-406)) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-3 (-499) #1#) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-3 (-1022) #1#) $) NIL T ELT)) (-3294 ((|#2| $) NIL T ELT) (((-361 (-499)) $) NIL (|has| |#2| (-978 (-361 (-499)))) ELT) (((-499) $) NIL (|has| |#2| (-978 (-499))) ELT) (((-1022) $) NIL T ELT)) (-3906 (($ $ $ (-1022)) NIL (|has| |#2| (-146)) ELT) ((|#2| $ $) NIL (|has| |#2| (-146)) ELT)) (-2683 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-4109 (($ $) NIL T ELT)) (-2380 (((-647 (-499)) (-647 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-647 $) (-1207 $)) NIL T ELT) (((-647 |#2|) (-647 $)) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2682 (($ $ $) NIL (|has| |#2| (-318)) ELT)) (-3909 (($ $ $) NIL T ELT)) (-3903 (($ $ $) NIL (|has| |#2| (-510)) ELT)) (-3902 (((-2 (|:| -4104 |#2|) (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#2| (-510)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#2| (-318)) ELT)) (-3643 (($ $) NIL (|has| |#2| (-406)) ELT) (($ $ (-1022)) NIL (|has| |#2| (-406)) ELT)) (-2939 (((-599 $) $) NIL T ELT)) (-3873 (((-85) $) NIL (|has| |#2| (-848)) ELT)) (-1694 (($ $ |#2| (-714) $) NIL T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) NIL (-12 (|has| (-1022) (-821 (-333))) (|has| |#2| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) NIL (-12 (|has| (-1022) (-821 (-499))) (|has| |#2| (-821 (-499)))) ELT)) (-3922 (((-714) $ $) NIL (|has| |#2| (-510)) ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-3585 (((-649 $) $) NIL (|has| |#2| (-1092)) ELT)) (-3207 (($ (-1111 |#2|) (-1022)) NIL T ELT) (($ (-1111 $) (-1022)) NIL T ELT)) (-3927 (($ $ (-714)) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#2| (-318)) ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#2| (-714)) 18 T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-1022)) NIL T ELT) (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL T ELT)) (-2941 (((-714) $) NIL T ELT) (((-714) $ (-1022)) NIL T ELT) (((-599 (-714)) $ (-599 (-1022))) NIL T ELT)) (-1695 (($ (-1 (-714) (-714)) $) NIL T ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3916 (((-1111 |#2|) $) NIL T ELT)) (-3205 (((-3 (-1022) #1#) $) NIL T ELT)) (-2381 (((-647 (-499)) (-1207 $)) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) NIL (|has| |#2| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#2|)) (|:| |vec| (-1207 |#2|))) (-1207 $) $) NIL T ELT) (((-647 |#2|) (-1207 $)) NIL T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#2| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#2| (-406)) ELT) (($ $ $) NIL (|has| |#2| (-406)) ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3912 (((-2 (|:| -2075 $) (|:| -3023 $)) $ (-714)) NIL T ELT)) (-2944 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2943 (((-3 (-599 $) #1#) $) NIL T ELT)) (-2945 (((-3 (-2 (|:| |var| (-1022)) (|:| -2519 (-714))) #1#) $) NIL T ELT)) (-3962 (($ $) NIL (|has| |#2| (-38 (-361 (-499)))) ELT)) (-3586 (($) NIL (|has| |#2| (-1092)) CONST)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 ((|#2| $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#2| (-406)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#2| (-406)) ELT) (($ $ $) NIL (|has| |#2| (-406)) ELT)) (-3888 (($ $ (-714) |#2| $) NIL T ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) NIL (|has| |#2| (-848)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#2| (-848)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#2| (-318)) ELT)) (-3606 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-510)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#2| (-318)) ELT)) (-3918 (($ $ (-599 (-247 $))) NIL T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-1022) |#2|) NIL T ELT) (($ $ (-599 (-1022)) (-599 |#2|)) NIL T ELT) (($ $ (-1022) $) NIL T ELT) (($ $ (-599 (-1022)) (-599 $)) NIL T ELT)) (-1677 (((-714) $) NIL (|has| |#2| (-318)) ELT)) (-3950 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-361 $) (-361 $) (-361 $)) NIL (|has| |#2| (-510)) ELT) ((|#2| (-361 $) |#2|) NIL (|has| |#2| (-318)) ELT) (((-361 $) $ (-361 $)) NIL (|has| |#2| (-510)) ELT)) (-3914 (((-3 $ #1#) $ (-714)) NIL T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#2| (-318)) ELT)) (-3907 (($ $ (-1022)) NIL (|has| |#2| (-146)) ELT) ((|#2| $) NIL (|has| |#2| (-146)) ELT)) (-3908 (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022))) NIL T ELT) (($ $ (-1022)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1117)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#2| (-838 (-1117))) ELT)) (-4098 (((-714) $) NIL T ELT) (((-714) $ (-1022)) NIL T ELT) (((-599 (-714)) $ (-599 (-1022))) NIL T ELT)) (-4122 (((-825 (-333)) $) NIL (-12 (|has| (-1022) (-569 (-825 (-333)))) (|has| |#2| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) NIL (-12 (|has| (-1022) (-569 (-825 (-499)))) (|has| |#2| (-569 (-825 (-499))))) ELT) (((-488) $) NIL (-12 (|has| (-1022) (-569 (-488))) (|has| |#2| (-569 (-488)))) ELT)) (-2938 ((|#2| $) NIL (|has| |#2| (-406)) ELT) (($ $ (-1022)) NIL (|has| |#2| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-848))) ELT)) (-3904 (((-3 $ #1#) $ $) NIL (|has| |#2| (-510)) ELT) (((-3 (-361 $) #1#) (-361 $) $) NIL (|has| |#2| (-510)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1022)) NIL T ELT) (($ (-1204 |#1|)) 20 T ELT) (($ (-361 (-499))) NIL (-3677 (|has| |#2| (-38 (-361 (-499)))) (|has| |#2| (-978 (-361 (-499))))) ELT) (($ $) NIL (|has| |#2| (-510)) ELT)) (-3967 (((-599 |#2|) $) NIL T ELT)) (-3827 ((|#2| $ (-714)) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-2823 (((-649 $) $) NIL (-3677 (-12 (|has| $ (-118)) (|has| |#2| (-848))) (|has| |#2| (-118))) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| |#2| (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL (|has| |#2| (-510)) ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) 14 T CONST)) (-2790 (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022))) NIL T ELT) (($ $ (-1022)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1117)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) NIL (|has| |#2| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (|has| |#2| (-838 (-1117))) ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#2|) NIL (|has| |#2| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-361 (-499))) NIL (|has| |#2| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) NIL (|has| |#2| (-38 (-361 (-499)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-1176 |#1| |#2|) (-13 (-1183 |#2|) (-571 (-1204 |#1|)) (-10 -8 (-15 -3888 ($ $ (-714) |#2| $)))) (-1117) (-989)) (T -1176)) +((-3888 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-714)) (-5 *1 (-1176 *4 *3)) (-14 *4 (-1117)) (-4 *3 (-989))))) +((-4108 (((-1176 |#3| |#4|) (-1 |#4| |#2|) (-1176 |#1| |#2|)) 15 T ELT))) +(((-1177 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4108 ((-1176 |#3| |#4|) (-1 |#4| |#2|) (-1176 |#1| |#2|)))) (-1117) (-989) (-1117) (-989)) (T -1177)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1176 *5 *6)) (-14 *5 (-1117)) (-4 *6 (-989)) (-4 *8 (-989)) (-5 *2 (-1176 *7 *8)) (-5 *1 (-1177 *5 *6 *7 *8)) (-14 *7 (-1117))))) +((-3891 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3889 ((|#1| |#3|) 13 T ELT)) (-3890 ((|#3| |#3|) 19 T ELT))) +(((-1178 |#1| |#2| |#3|) (-10 -7 (-15 -3889 (|#1| |#3|)) (-15 -3890 (|#3| |#3|)) (-15 -3891 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-510) (-931 |#1|) (-1183 |#2|)) (T -1178)) +((-3891 (*1 *2 *3) (-12 (-4 *4 (-510)) (-4 *5 (-931 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1178 *4 *5 *3)) (-4 *3 (-1183 *5)))) (-3890 (*1 *2 *2) (-12 (-4 *3 (-510)) (-4 *4 (-931 *3)) (-5 *1 (-1178 *3 *4 *2)) (-4 *2 (-1183 *4)))) (-3889 (*1 *2 *3) (-12 (-4 *4 (-931 *2)) (-4 *2 (-510)) (-5 *1 (-1178 *2 *4 *3)) (-4 *3 (-1183 *4))))) +((-3893 (((-3 |#2| #1="failed") |#2| (-714) |#1|) 35 T ELT)) (-3892 (((-3 |#2| #1#) |#2| (-714)) 36 T ELT)) (-3895 (((-3 (-2 (|:| -3260 |#2|) (|:| -3259 |#2|)) #1#) |#2|) 50 T ELT)) (-3896 (((-599 |#2|) |#2|) 52 T ELT)) (-3894 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT))) +(((-1179 |#1| |#2|) (-10 -7 (-15 -3892 ((-3 |#2| #1="failed") |#2| (-714))) (-15 -3893 ((-3 |#2| #1#) |#2| (-714) |#1|)) (-15 -3894 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3895 ((-3 (-2 (|:| -3260 |#2|) (|:| -3259 |#2|)) #1#) |#2|)) (-15 -3896 ((-599 |#2|) |#2|))) (-13 (-510) (-120)) (-1183 |#1|)) (T -1179)) +((-3896 (*1 *2 *3) (-12 (-4 *4 (-13 (-510) (-120))) (-5 *2 (-599 *3)) (-5 *1 (-1179 *4 *3)) (-4 *3 (-1183 *4)))) (-3895 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-510) (-120))) (-5 *2 (-2 (|:| -3260 *3) (|:| -3259 *3))) (-5 *1 (-1179 *4 *3)) (-4 *3 (-1183 *4)))) (-3894 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-510) (-120))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-1183 *3)))) (-3893 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-714)) (-4 *4 (-13 (-510) (-120))) (-5 *1 (-1179 *4 *2)) (-4 *2 (-1183 *4)))) (-3892 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-714)) (-4 *4 (-13 (-510) (-120))) (-5 *1 (-1179 *4 *2)) (-4 *2 (-1183 *4))))) +((-3897 (((-3 (-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) "failed") |#2| |#2|) 30 T ELT))) +(((-1180 |#1| |#2|) (-10 -7 (-15 -3897 ((-3 (-2 (|:| -2075 |#2|) (|:| -3023 |#2|)) "failed") |#2| |#2|))) (-510) (-1183 |#1|)) (T -1180)) +((-3897 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-510)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-1180 *4 *3)) (-4 *3 (-1183 *4))))) +((-3898 ((|#2| |#2| |#2|) 22 T ELT)) (-3899 ((|#2| |#2| |#2|) 36 T ELT)) (-3900 ((|#2| |#2| |#2| (-714) (-714)) 44 T ELT))) +(((-1181 |#1| |#2|) (-10 -7 (-15 -3898 (|#2| |#2| |#2|)) (-15 -3899 (|#2| |#2| |#2|)) (-15 -3900 (|#2| |#2| |#2| (-714) (-714)))) (-989) (-1183 |#1|)) (T -1181)) +((-3900 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-714)) (-4 *4 (-989)) (-5 *1 (-1181 *4 *2)) (-4 *2 (-1183 *4)))) (-3899 (*1 *2 *2 *2) (-12 (-4 *3 (-989)) (-5 *1 (-1181 *3 *2)) (-4 *2 (-1183 *3)))) (-3898 (*1 *2 *2 *2) (-12 (-4 *3 (-989)) (-5 *1 (-1181 *3 *2)) (-4 *2 (-1183 *3))))) +((-3917 (((-1207 |#2|) $ (-714)) 129 T ELT)) (-3204 (((-599 (-1022)) $) 16 T ELT)) (-3915 (($ (-1111 |#2|)) 80 T ELT)) (-2940 (((-714) $) NIL T ELT) (((-714) $ (-599 (-1022))) 21 T ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 216 T ELT)) (-3925 (($ $) 206 T ELT)) (-4121 (((-359 $) $) 204 T ELT)) (-2825 (((-3 (-599 (-1111 $)) #1="failed") (-599 (-1111 $)) (-1111 $)) 95 T ELT)) (-3911 (($ $ (-714)) 84 T ELT)) (-3910 (($ $ (-714)) 86 T ELT)) (-3901 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3295 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-361 (-499)) #1#) $) NIL T ELT) (((-3 (-499) #1#) $) NIL T ELT) (((-3 (-1022) #1#) $) NIL T ELT)) (-3294 ((|#2| $) 130 T ELT) (((-361 (-499)) $) NIL T ELT) (((-499) $) NIL T ELT) (((-1022) $) NIL T ELT)) (-3903 (($ $ $) 182 T ELT)) (-3902 (((-2 (|:| -4104 |#2|) (|:| -2075 $) (|:| -3023 $)) $ $) 184 T ELT)) (-3922 (((-714) $ $) 201 T ELT)) (-3585 (((-649 $) $) 149 T ELT)) (-3014 (($ |#2| (-714)) NIL T ELT) (($ $ (-1022) (-714)) 59 T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-2941 (((-714) $) NIL T ELT) (((-714) $ (-1022)) 54 T ELT) (((-599 (-714)) $ (-599 (-1022))) 55 T ELT)) (-3916 (((-1111 |#2|) $) 72 T ELT)) (-3205 (((-3 (-1022) #1#) $) 52 T ELT)) (-3912 (((-2 (|:| -2075 $) (|:| -3023 $)) $ (-714)) 83 T ELT)) (-3962 (($ $) 231 T ELT)) (-3586 (($) 134 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 213 T ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 101 T ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 99 T ELT)) (-3882 (((-359 $) $) 120 T ELT)) (-3918 (($ $ (-599 (-247 $))) 51 T ELT) (($ $ (-247 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-599 $) (-599 $)) NIL T ELT) (($ $ (-1022) |#2|) 39 T ELT) (($ $ (-599 (-1022)) (-599 |#2|)) 36 T ELT) (($ $ (-1022) $) 32 T ELT) (($ $ (-599 (-1022)) (-599 $)) 30 T ELT)) (-1677 (((-714) $) 219 T ELT)) (-3950 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-361 $) (-361 $) (-361 $)) 176 T ELT) ((|#2| (-361 $) |#2|) 218 T ELT) (((-361 $) $ (-361 $)) 200 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 224 T ELT)) (-3908 (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022))) NIL T ELT) (($ $ (-1022)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-714)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1117)) NIL T ELT) (($ $ (-599 (-1117))) NIL T ELT) (($ $ (-1117) (-714)) NIL T ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL T ELT)) (-4098 (((-714) $) NIL T ELT) (((-714) $ (-1022)) 17 T ELT) (((-599 (-714)) $ (-599 (-1022))) 23 T ELT)) (-2938 ((|#2| $) NIL T ELT) (($ $ (-1022)) 151 T ELT)) (-3904 (((-3 $ #1#) $ $) 192 T ELT) (((-3 (-361 $) #1#) (-361 $) $) 188 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1022)) 64 T ELT) (($ (-361 (-499))) NIL T ELT) (($ $) NIL T ELT))) +(((-1182 |#1| |#2|) (-10 -7 (-15 -4096 (|#1| |#1|)) (-15 -2829 ((-1111 |#1|) (-1111 |#1|) (-1111 |#1|))) (-15 -3908 (|#1| |#1| (-599 (-1117)) (-599 (-714)))) (-15 -3908 (|#1| |#1| (-1117) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1117)))) (-15 -3908 (|#1| |#1| (-1117))) (-15 -4121 ((-359 |#1|) |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -3586 (|#1|)) (-15 -3585 ((-649 |#1|) |#1|)) (-15 -3950 ((-361 |#1|) |#1| (-361 |#1|))) (-15 -1677 ((-714) |#1|)) (-15 -3000 ((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|)) (-15 -3962 (|#1| |#1|)) (-15 -3950 (|#2| (-361 |#1|) |#2|)) (-15 -3901 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3902 ((-2 (|:| -4104 |#2|) (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| |#1|)) (-15 -3903 (|#1| |#1| |#1|)) (-15 -3904 ((-3 (-361 |#1|) #1="failed") (-361 |#1|) |#1|)) (-15 -3904 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3922 ((-714) |#1| |#1|)) (-15 -3950 ((-361 |#1|) (-361 |#1|) (-361 |#1|))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3910 (|#1| |#1| (-714))) (-15 -3911 (|#1| |#1| (-714))) (-15 -3912 ((-2 (|:| -2075 |#1|) (|:| -3023 |#1|)) |#1| (-714))) (-15 -3915 (|#1| (-1111 |#2|))) (-15 -3916 ((-1111 |#2|) |#1|)) (-15 -3917 ((-1207 |#2|) |#1| (-714))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|) (-714))) (-15 -3908 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3908 (|#1| |#1| (-714))) (-15 -3908 (|#1| |#1|)) (-15 -3950 (|#1| |#1| |#1|)) (-15 -3950 (|#2| |#1| |#2|)) (-15 -3882 ((-359 |#1|) |#1|)) (-15 -2828 ((-359 (-1111 |#1|)) (-1111 |#1|))) (-15 -2827 ((-359 (-1111 |#1|)) (-1111 |#1|))) (-15 -2826 ((-359 (-1111 |#1|)) (-1111 |#1|))) (-15 -2825 ((-3 (-599 (-1111 |#1|)) #1#) (-599 (-1111 |#1|)) (-1111 |#1|))) (-15 -2938 (|#1| |#1| (-1022))) (-15 -3204 ((-599 (-1022)) |#1|)) (-15 -2940 ((-714) |#1| (-599 (-1022)))) (-15 -2940 ((-714) |#1|)) (-15 -3014 (|#1| |#1| (-599 (-1022)) (-599 (-714)))) (-15 -3014 (|#1| |#1| (-1022) (-714))) (-15 -2941 ((-599 (-714)) |#1| (-599 (-1022)))) (-15 -2941 ((-714) |#1| (-1022))) (-15 -3205 ((-3 (-1022) #1#) |#1|)) (-15 -4098 ((-599 (-714)) |#1| (-599 (-1022)))) (-15 -4098 ((-714) |#1| (-1022))) (-15 -4096 (|#1| (-1022))) (-15 -3295 ((-3 (-1022) #1#) |#1|)) (-15 -3294 ((-1022) |#1|)) (-15 -3918 (|#1| |#1| (-599 (-1022)) (-599 |#1|))) (-15 -3918 (|#1| |#1| (-1022) |#1|)) (-15 -3918 (|#1| |#1| (-599 (-1022)) (-599 |#2|))) (-15 -3918 (|#1| |#1| (-1022) |#2|)) (-15 -3918 (|#1| |#1| (-599 |#1|) (-599 |#1|))) (-15 -3918 (|#1| |#1| |#1| |#1|)) (-15 -3918 (|#1| |#1| (-247 |#1|))) (-15 -3918 (|#1| |#1| (-599 (-247 |#1|)))) (-15 -4098 ((-714) |#1|)) (-15 -3014 (|#1| |#2| (-714))) (-15 -3295 ((-3 (-499) #1#) |#1|)) (-15 -3294 ((-499) |#1|)) (-15 -3295 ((-3 (-361 (-499)) #1#) |#1|)) (-15 -3294 ((-361 (-499)) |#1|)) (-15 -3294 (|#2| |#1|)) (-15 -3295 ((-3 |#2| #1#) |#1|)) (-15 -4096 (|#1| |#2|)) (-15 -2941 ((-714) |#1|)) (-15 -2938 (|#2| |#1|)) (-15 -3908 (|#1| |#1| (-1022))) (-15 -3908 (|#1| |#1| (-599 (-1022)))) (-15 -3908 (|#1| |#1| (-1022) (-714))) (-15 -3908 (|#1| |#1| (-599 (-1022)) (-599 (-714)))) (-15 -4096 (|#1| (-499))) (-15 -4096 ((-797) |#1|))) (-1183 |#2|) (-989)) (T -1182)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3917 (((-1207 |#1|) $ (-714)) 268 T ELT)) (-3204 (((-599 (-1022)) $) 120 T ELT)) (-3915 (($ (-1111 |#1|)) 266 T ELT)) (-3206 (((-1111 $) $ (-1022)) 135 T ELT) (((-1111 |#1|) $) 134 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 97 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 98 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 100 (|has| |#1| (-510)) ELT)) (-2940 (((-714) $) 122 T ELT) (((-714) $ (-599 (-1022))) 121 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3905 (($ $ $) 253 (|has| |#1| (-510)) ELT)) (-2828 (((-359 (-1111 $)) (-1111 $)) 110 (|has| |#1| (-848)) ELT)) (-3925 (($ $) 108 (|has| |#1| (-406)) ELT)) (-4121 (((-359 $) $) 107 (|has| |#1| (-406)) ELT)) (-2825 (((-3 (-599 (-1111 $)) #1="failed") (-599 (-1111 $)) (-1111 $)) 113 (|has| |#1| (-848)) ELT)) (-1678 (((-85) $ $) 238 (|has| |#1| (-318)) ELT)) (-3911 (($ $ (-714)) 261 T ELT)) (-3910 (($ $ (-714)) 260 T ELT)) (-3901 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 248 (|has| |#1| (-406)) ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-361 (-499)) #2#) $) 175 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-3 (-499) #2#) $) 173 (|has| |#1| (-978 (-499))) ELT) (((-3 (-1022) #2#) $) 150 T ELT)) (-3294 ((|#1| $) 177 T ELT) (((-361 (-499)) $) 176 (|has| |#1| (-978 (-361 (-499)))) ELT) (((-499) $) 174 (|has| |#1| (-978 (-499))) ELT) (((-1022) $) 151 T ELT)) (-3906 (($ $ $ (-1022)) 118 (|has| |#1| (-146)) ELT) ((|#1| $ $) 256 (|has| |#1| (-146)) ELT)) (-2683 (($ $ $) 242 (|has| |#1| (-318)) ELT)) (-4109 (($ $) 168 T ELT)) (-2380 (((-647 (-499)) (-647 $)) 146 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-647 $) (-1207 $)) 145 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-647 $) (-1207 $)) 144 T ELT) (((-647 |#1|) (-647 $)) 143 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 241 (|has| |#1| (-318)) ELT)) (-3909 (($ $ $) 259 T ELT)) (-3903 (($ $ $) 250 (|has| |#1| (-510)) ELT)) (-3902 (((-2 (|:| -4104 |#1|) (|:| -2075 $) (|:| -3023 $)) $ $) 249 (|has| |#1| (-510)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 236 (|has| |#1| (-318)) ELT)) (-3643 (($ $) 190 (|has| |#1| (-406)) ELT) (($ $ (-1022)) 115 (|has| |#1| (-406)) ELT)) (-2939 (((-599 $) $) 119 T ELT)) (-3873 (((-85) $) 106 (|has| |#1| (-848)) ELT)) (-1694 (($ $ |#1| (-714) $) 186 T ELT)) (-2917 (((-823 (-333) $) $ (-825 (-333)) (-823 (-333) $)) 94 (-12 (|has| (-1022) (-821 (-333))) (|has| |#1| (-821 (-333)))) ELT) (((-823 (-499) $) $ (-825 (-499)) (-823 (-499) $)) 93 (-12 (|has| (-1022) (-821 (-499))) (|has| |#1| (-821 (-499)))) ELT)) (-3922 (((-714) $ $) 254 (|has| |#1| (-510)) ELT)) (-2528 (((-85) $) 40 T ELT)) (-2536 (((-714) $) 183 T ELT)) (-3585 (((-649 $) $) 234 (|has| |#1| (-1092)) ELT)) (-3207 (($ (-1111 |#1|) (-1022)) 127 T ELT) (($ (-1111 $) (-1022)) 126 T ELT)) (-3927 (($ $ (-714)) 265 T ELT)) (-1675 (((-3 (-599 $) #3="failed") (-599 $) $) 245 (|has| |#1| (-318)) ELT)) (-2942 (((-599 $) $) 136 T ELT)) (-4087 (((-85) $) 166 T ELT)) (-3014 (($ |#1| (-714)) 167 T ELT) (($ $ (-1022) (-714)) 129 T ELT) (($ $ (-599 (-1022)) (-599 (-714))) 128 T ELT)) (-3913 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $ (-1022)) 130 T ELT) (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 263 T ELT)) (-2941 (((-714) $) 184 T ELT) (((-714) $ (-1022)) 132 T ELT) (((-599 (-714)) $ (-599 (-1022))) 131 T ELT)) (-1695 (($ (-1 (-714) (-714)) $) 185 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3916 (((-1111 |#1|) $) 267 T ELT)) (-3205 (((-3 (-1022) #4="failed") $) 133 T ELT)) (-2381 (((-647 (-499)) (-1207 $)) 148 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 (-499))) (|:| |vec| (-1207 (-499)))) (-1207 $) $) 147 (|has| |#1| (-596 (-499))) ELT) (((-2 (|:| -1673 (-647 |#1|)) (|:| |vec| (-1207 |#1|))) (-1207 $) $) 142 T ELT) (((-647 |#1|) (-1207 $)) 141 T ELT)) (-3015 (($ $) 163 T ELT)) (-3312 ((|#1| $) 162 T ELT)) (-1993 (($ (-599 $)) 104 (|has| |#1| (-406)) ELT) (($ $ $) 103 (|has| |#1| (-406)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3912 (((-2 (|:| -2075 $) (|:| -3023 $)) $ (-714)) 262 T ELT)) (-2944 (((-3 (-599 $) #4#) $) 124 T ELT)) (-2943 (((-3 (-599 $) #4#) $) 125 T ELT)) (-2945 (((-3 (-2 (|:| |var| (-1022)) (|:| -2519 (-714))) #4#) $) 123 T ELT)) (-3962 (($ $) 246 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3586 (($) 233 (|has| |#1| (-1092)) CONST)) (-3381 (((-1060) $) 12 T ELT)) (-1895 (((-85) $) 180 T ELT)) (-1894 ((|#1| $) 181 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 105 (|has| |#1| (-406)) ELT)) (-3282 (($ (-599 $)) 102 (|has| |#1| (-406)) ELT) (($ $ $) 101 (|has| |#1| (-406)) ELT)) (-2826 (((-359 (-1111 $)) (-1111 $)) 112 (|has| |#1| (-848)) ELT)) (-2827 (((-359 (-1111 $)) (-1111 $)) 111 (|has| |#1| (-848)) ELT)) (-3882 (((-359 $) $) 109 (|has| |#1| (-848)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 244 (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 243 (|has| |#1| (-318)) ELT)) (-3606 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-510)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 237 (|has| |#1| (-318)) ELT)) (-3918 (($ $ (-599 (-247 $))) 159 T ELT) (($ $ (-247 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-599 $) (-599 $)) 156 T ELT) (($ $ (-1022) |#1|) 155 T ELT) (($ $ (-599 (-1022)) (-599 |#1|)) 154 T ELT) (($ $ (-1022) $) 153 T ELT) (($ $ (-599 (-1022)) (-599 $)) 152 T ELT)) (-1677 (((-714) $) 239 (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ |#1|) 278 T ELT) (($ $ $) 277 T ELT) (((-361 $) (-361 $) (-361 $)) 255 (|has| |#1| (-510)) ELT) ((|#1| (-361 $) |#1|) 247 (|has| |#1| (-318)) ELT) (((-361 $) $ (-361 $)) 235 (|has| |#1| (-510)) ELT)) (-3914 (((-3 $ "failed") $ (-714)) 264 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 240 (|has| |#1| (-318)) ELT)) (-3907 (($ $ (-1022)) 117 (|has| |#1| (-146)) ELT) ((|#1| $) 257 (|has| |#1| (-146)) ELT)) (-3908 (($ $ (-599 (-1022)) (-599 (-714))) 49 T ELT) (($ $ (-1022) (-714)) 48 T ELT) (($ $ (-599 (-1022))) 47 T ELT) (($ $ (-1022)) 45 T ELT) (($ $) 276 T ELT) (($ $ (-714)) 274 T ELT) (($ $ (-1 |#1| |#1|)) 272 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 271 T ELT) (($ $ (-1 |#1| |#1|) $) 258 T ELT) (($ $ (-1117)) 232 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 230 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 229 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 228 (|has| |#1| (-838 (-1117))) ELT)) (-4098 (((-714) $) 164 T ELT) (((-714) $ (-1022)) 140 T ELT) (((-599 (-714)) $ (-599 (-1022))) 139 T ELT)) (-4122 (((-825 (-333)) $) 92 (-12 (|has| (-1022) (-569 (-825 (-333)))) (|has| |#1| (-569 (-825 (-333))))) ELT) (((-825 (-499)) $) 91 (-12 (|has| (-1022) (-569 (-825 (-499)))) (|has| |#1| (-569 (-825 (-499))))) ELT) (((-488) $) 90 (-12 (|has| (-1022) (-569 (-488))) (|has| |#1| (-569 (-488)))) ELT)) (-2938 ((|#1| $) 189 (|has| |#1| (-406)) ELT) (($ $ (-1022)) 116 (|has| |#1| (-406)) ELT)) (-2824 (((-3 (-1207 $) #1#) (-647 $)) 114 (-2681 (|has| $ (-118)) (|has| |#1| (-848))) ELT)) (-3904 (((-3 $ "failed") $ $) 252 (|has| |#1| (-510)) ELT) (((-3 (-361 $) "failed") (-361 $) $) 251 (|has| |#1| (-510)) ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 179 T ELT) (($ (-1022)) 149 T ELT) (($ (-361 (-499))) 88 (-3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-38 (-361 (-499))))) ELT) (($ $) 95 (|has| |#1| (-510)) ELT)) (-3967 (((-599 |#1|) $) 182 T ELT)) (-3827 ((|#1| $ (-714)) 169 T ELT) (($ $ (-1022) (-714)) 138 T ELT) (($ $ (-599 (-1022)) (-599 (-714))) 137 T ELT)) (-2823 (((-649 $) $) 89 (-3677 (-2681 (|has| $ (-118)) (|has| |#1| (-848))) (|has| |#1| (-118))) ELT)) (-3248 (((-714)) 37 T CONST)) (-1693 (($ $ $ (-714)) 187 (|has| |#1| (-146)) ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 99 (|has| |#1| (-510)) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-599 (-1022)) (-599 (-714))) 52 T ELT) (($ $ (-1022) (-714)) 51 T ELT) (($ $ (-599 (-1022))) 50 T ELT) (($ $ (-1022)) 46 T ELT) (($ $) 275 T ELT) (($ $ (-714)) 273 T ELT) (($ $ (-1 |#1| |#1|)) 270 T ELT) (($ $ (-1 |#1| |#1|) (-714)) 269 T ELT) (($ $ (-1117)) 231 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117))) 227 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-1117) (-714)) 226 (|has| |#1| (-838 (-1117))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 225 (|has| |#1| (-838 (-1117))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 170 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 172 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ (-361 (-499)) $) 171 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) +(((-1183 |#1|) (-113) (-989)) (T -1183)) +((-3917 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-1183 *4)) (-4 *4 (-989)) (-5 *2 (-1207 *4)))) (-3916 (*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-989)) (-5 *2 (-1111 *3)))) (-3915 (*1 *1 *2) (-12 (-5 *2 (-1111 *3)) (-4 *3 (-989)) (-4 *1 (-1183 *3)))) (-3927 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1183 *3)) (-4 *3 (-989)))) (-3914 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-714)) (-4 *1 (-1183 *3)) (-4 *3 (-989)))) (-3913 (*1 *2 *1 *1) (-12 (-4 *3 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-1183 *3)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *4 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-1183 *4)))) (-3911 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1183 *3)) (-4 *3 (-989)))) (-3910 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1183 *3)) (-4 *3 (-989)))) (-3909 (*1 *1 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)))) (-3908 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1183 *3)) (-4 *3 (-989)))) (-3907 (*1 *2 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-146)))) (-3906 (*1 *2 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-146)))) (-3950 (*1 *2 *2 *2) (-12 (-5 *2 (-361 *1)) (-4 *1 (-1183 *3)) (-4 *3 (-989)) (-4 *3 (-510)))) (-3922 (*1 *2 *1 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-989)) (-4 *3 (-510)) (-5 *2 (-714)))) (-3905 (*1 *1 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-510)))) (-3904 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-510)))) (-3904 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-361 *1)) (-4 *1 (-1183 *3)) (-4 *3 (-989)) (-4 *3 (-510)))) (-3903 (*1 *1 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-510)))) (-3902 (*1 *2 *1 *1) (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-5 *2 (-2 (|:| -4104 *3) (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-1183 *3)))) (-3901 (*1 *2 *1 *1) (-12 (-4 *3 (-406)) (-4 *3 (-989)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1183 *3)))) (-3950 (*1 *2 *3 *2) (-12 (-5 *3 (-361 *1)) (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-38 (-361 (-499))))))) +(-13 (-888 |t#1| (-714) (-1022)) (-240 |t#1| |t#1|) (-240 $ $) (-190) (-184 |t#1|) (-10 -8 (-15 -3917 ((-1207 |t#1|) $ (-714))) (-15 -3916 ((-1111 |t#1|) $)) (-15 -3915 ($ (-1111 |t#1|))) (-15 -3927 ($ $ (-714))) (-15 -3914 ((-3 $ "failed") $ (-714))) (-15 -3913 ((-2 (|:| -2075 $) (|:| -3023 $)) $ $)) (-15 -3912 ((-2 (|:| -2075 $) (|:| -3023 $)) $ (-714))) (-15 -3911 ($ $ (-714))) (-15 -3910 ($ $ (-714))) (-15 -3909 ($ $ $)) (-15 -3908 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1092)) (-6 (-1092)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3907 (|t#1| $)) (-15 -3906 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-6 (-240 (-361 $) (-361 $))) (-15 -3950 ((-361 $) (-361 $) (-361 $))) (-15 -3922 ((-714) $ $)) (-15 -3905 ($ $ $)) (-15 -3904 ((-3 $ "failed") $ $)) (-15 -3904 ((-3 (-361 $) "failed") (-361 $) $)) (-15 -3903 ($ $ $)) (-15 -3902 ((-2 (|:| -4104 |t#1|) (|:| -2075 $) (|:| -3023 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-406)) (-15 -3901 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-318)) (PROGN (-6 (-261)) (-6 -4141) (-15 -3950 (|t#1| (-361 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-361 (-499)))) (-15 -3962 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-714)) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-318))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-978 (-361 (-499)))) (|has| |#1| (-38 (-361 (-499))))) ((-571 (-499)) . T) ((-571 (-1022)) . T) ((-571 |#1|) . T) ((-571 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-318))) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-569 (-488)) -12 (|has| |#1| (-569 (-488))) (|has| (-1022) (-569 (-488)))) ((-569 (-825 (-333))) -12 (|has| |#1| (-569 (-825 (-333)))) (|has| (-1022) (-569 (-825 (-333))))) ((-569 (-825 (-499))) -12 (|has| |#1| (-569 (-825 (-499)))) (|has| (-1022) (-569 (-825 (-499))))) ((-186 $) . T) ((-184 |#1|) . T) ((-190) . T) ((-189) . T) ((-224 |#1|) . T) ((-240 (-361 $) (-361 $)) |has| |#1| (-510)) ((-240 |#1| |#1|) . T) ((-240 $ $) . T) ((-244) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-318))) ((-261) |has| |#1| (-318)) ((-263 $) . T) ((-280 |#1| (-714)) . T) ((-332 |#1|) . T) ((-366 |#1|) . T) ((-406) -3677 (|has| |#1| (-848)) (|has| |#1| (-406)) (|has| |#1| (-318))) ((-468 (-1022) |#1|) . T) ((-468 (-1022) $) . T) ((-468 $ $) . T) ((-510) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-318))) ((-604 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-606 (-499)) |has| |#1| (-596 (-499))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-318))) ((-596 (-499)) |has| |#1| (-596 (-499))) ((-596 |#1|) . T) ((-675 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-318))) ((-684) . T) ((-831 $ (-1022)) . T) ((-831 $ (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-836 (-1022)) . T) ((-836 (-1117)) |has| |#1| (-836 (-1117))) ((-838 (-1022)) . T) ((-838 (-1117)) -3677 (|has| |#1| (-838 (-1117))) (|has| |#1| (-836 (-1117)))) ((-821 (-333)) -12 (|has| |#1| (-821 (-333))) (|has| (-1022) (-821 (-333)))) ((-821 (-499)) -12 (|has| |#1| (-821 (-499))) (|has| (-1022) (-821 (-499)))) ((-888 |#1| (-714) (-1022)) . T) ((-848) |has| |#1| (-848)) ((-859) |has| |#1| (-318)) ((-978 (-361 (-499))) |has| |#1| (-978 (-361 (-499)))) ((-978 (-499)) |has| |#1| (-978 (-499))) ((-978 (-1022)) . T) ((-978 |#1|) . T) ((-991 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-996 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-848)) (|has| |#1| (-510)) (|has| |#1| (-406)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1092) |has| |#1| (-1092)) ((-1157) . T) ((-1162) |has| |#1| (-848))) +((-4108 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) +(((-1184 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4108 (|#4| (-1 |#3| |#1|) |#2|))) (-989) (-1183 |#1|) (-989) (-1183 |#3|)) (T -1184)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-4 *2 (-1183 *6)) (-5 *1 (-1184 *5 *4 *6 *2)) (-4 *4 (-1183 *5))))) +((-3204 (((-599 (-1022)) $) 34 T ELT)) (-4109 (($ $) 31 T ELT)) (-3014 (($ |#2| |#3|) NIL T ELT) (($ $ (-1022) |#3|) 28 T ELT) (($ $ (-599 (-1022)) (-599 |#3|)) 27 T ELT)) (-3015 (($ $) 14 T ELT)) (-3312 ((|#2| $) 12 T ELT)) (-4098 ((|#3| $) 10 T ELT))) +(((-1185 |#1| |#2| |#3|) (-10 -7 (-15 -3204 ((-599 (-1022)) |#1|)) (-15 -3014 (|#1| |#1| (-599 (-1022)) (-599 |#3|))) (-15 -3014 (|#1| |#1| (-1022) |#3|)) (-15 -4109 (|#1| |#1|)) (-15 -3014 (|#1| |#2| |#3|)) (-15 -4098 (|#3| |#1|)) (-15 -3015 (|#1| |#1|)) (-15 -3312 (|#2| |#1|))) (-1186 |#2| |#3|) (-989) (-737)) (T -1185)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3204 (((-599 (-1022)) $) 92 T ELT)) (-3981 (((-1117) $) 126 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 68 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 69 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 71 (|has| |#1| (-510)) ELT)) (-3921 (($ $ |#2|) 121 T ELT) (($ $ |#2| |#2|) 120 T ELT)) (-3924 (((-1095 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 127 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-4109 (($ $) 77 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3013 (((-85) $) 91 T ELT)) (-3922 ((|#2| $) 123 T ELT) ((|#2| $ |#2|) 122 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3927 (($ $ (-857)) 124 T ELT)) (-4087 (((-85) $) 79 T ELT)) (-3014 (($ |#1| |#2|) 78 T ELT) (($ $ (-1022) |#2|) 94 T ELT) (($ $ (-599 (-1022)) (-599 |#2|)) 93 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3015 (($ $) 82 T ELT)) (-3312 ((|#1| $) 83 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3919 (($ $ |#2|) 118 T ELT)) (-3606 (((-3 $ "failed") $ $) 67 (|has| |#1| (-510)) ELT)) (-3918 (((-1095 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3950 ((|#1| $ |#2|) 128 T ELT) (($ $ $) 104 (|has| |#2| (-1052)) ELT)) (-3908 (($ $ (-1117)) 116 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-599 (-1117))) 114 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1117) (-714)) 113 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 112 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-714)) 106 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-4098 ((|#2| $) 81 T ELT)) (-3012 (($ $) 90 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ (-361 (-499))) 74 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) 66 (|has| |#1| (-510)) ELT) (($ |#1|) 64 (|has| |#1| (-146)) ELT)) (-3827 ((|#1| $ |#2|) 76 T ELT)) (-2823 (((-649 $) $) 65 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-3923 ((|#1| $) 125 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 70 (|has| |#1| (-510)) ELT)) (-3920 ((|#1| $ |#2|) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1117)) 115 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-599 (-1117))) 111 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1117) (-714)) 110 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 109 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-714)) 105 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 75 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-361 (-499)) $) 73 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 72 (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-1186 |#1| |#2|) (-113) (-989) (-737)) (T -1186)) +((-3924 (*1 *2 *1) (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-1095 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3981 (*1 *2 *1) (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-1117)))) (-3923 (*1 *2 *1) (-12 (-4 *1 (-1186 *2 *3)) (-4 *3 (-737)) (-4 *2 (-989)))) (-3927 (*1 *1 *1 *2) (-12 (-5 *2 (-857)) (-4 *1 (-1186 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) (-3922 (*1 *2 *1 *2) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) (-3921 (*1 *1 *1 *2) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) (-3921 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) (-3920 (*1 *2 *1 *3) (-12 (-4 *1 (-1186 *2 *3)) (-4 *3 (-737)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4096 (*2 (-1117)))) (-4 *2 (-989)))) (-3919 (*1 *1 *1 *2) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) (-3918 (*1 *2 *1 *3) (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1095 *3))))) +(-13 (-913 |t#1| |t#2| (-1022)) (-240 |t#2| |t#1|) (-10 -8 (-15 -3924 ((-1095 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3981 ((-1117) $)) (-15 -3923 (|t#1| $)) (-15 -3927 ($ $ (-857))) (-15 -3922 (|t#2| $)) (-15 -3922 (|t#2| $ |t#2|)) (-15 -3921 ($ $ |t#2|)) (-15 -3921 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4096 (|t#1| (-1117)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3920 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3919 ($ $ |t#2|)) (IF (|has| |t#2| (-1052)) (-6 (-240 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-190)) (IF (|has| |t#1| (-836 (-1117))) (-6 (-836 (-1117))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3918 ((-1095 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-510)) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-571 (-499)) . T) ((-571 |#1|) |has| |#1| (-146)) ((-571 $) |has| |#1| (-510)) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-190) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-189) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-240 |#2| |#1|) . T) ((-240 $ $) |has| |#2| (-1052)) ((-244) |has| |#1| (-510)) ((-510) |has| |#1| (-510)) ((-604 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) |has| |#1| (-510)) ((-675 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) |has| |#1| (-510)) ((-684) . T) ((-831 $ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-836 (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-838 (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-913 |#1| |#2| (-1022)) . T) ((-991 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-996 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-3925 ((|#2| |#2|) 12 T ELT)) (-4121 (((-359 |#2|) |#2|) 14 T ELT)) (-3926 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-499))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-499)))) 30 T ELT))) +(((-1187 |#1| |#2|) (-10 -7 (-15 -4121 ((-359 |#2|) |#2|)) (-15 -3925 (|#2| |#2|)) (-15 -3926 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-499))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-499)))))) (-510) (-13 (-1183 |#1|) (-510) (-10 -8 (-15 -3282 ($ $ $))))) (T -1187)) +((-3926 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-499)))) (-4 *4 (-13 (-1183 *3) (-510) (-10 -8 (-15 -3282 ($ $ $))))) (-4 *3 (-510)) (-5 *1 (-1187 *3 *4)))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-1183 *3) (-510) (-10 -8 (-15 -3282 ($ $ $))))))) (-4121 (*1 *2 *3) (-12 (-4 *4 (-510)) (-5 *2 (-359 *3)) (-5 *1 (-1187 *4 *3)) (-4 *3 (-13 (-1183 *4) (-510) (-10 -8 (-15 -3282 ($ $ $)))))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) 11 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-361 (-499))) NIL T ELT) (($ $ (-361 (-499)) (-361 (-499))) NIL T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|))) $) NIL T ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-714) (-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|)))) NIL T ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-1167 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1197 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3294 (((-1167 |#1| |#2| |#3|) $) NIL T ELT) (((-1197 |#1| |#2| |#3|) $) NIL T ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3931 (((-361 (-499)) $) 68 T ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3932 (($ (-361 (-499)) (-1167 |#1| |#2| |#3|)) NIL T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3013 (((-85) $) NIL T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-361 (-499)) $) NIL T ELT) (((-361 (-499)) $ (-361 (-499))) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3927 (($ $ (-857)) NIL T ELT) (($ $ (-361 (-499))) NIL T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-361 (-499))) 30 T ELT) (($ $ (-1022) (-361 (-499))) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-361 (-499)))) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4092 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3930 (((-1167 |#1| |#2| |#3|) $) 71 T ELT)) (-3928 (((-3 (-1167 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3929 (((-1167 |#1| |#2| |#3|) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3962 (($ $) 39 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) NIL (-3677 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))))) ELT) (($ $ (-1204 |#2|)) 40 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-361 (-499))) NIL T ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4093 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-361 (-499))) NIL T ELT) (($ $ $) NIL (|has| (-361 (-499)) (-1052)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-1204 |#2|)) 38 T ELT)) (-4098 (((-361 (-499)) $) NIL T ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) NIL T ELT)) (-4096 (((-797) $) 107 T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1167 |#1| |#2| |#3|)) 16 T ELT) (($ (-1197 |#1| |#2| |#3|)) 17 T ELT) (($ (-1204 |#2|)) 36 T ELT) (($ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3827 ((|#1| $ (-361 (-499))) NIL T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-3923 ((|#1| $) 12 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-361 (-499))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 32 T CONST)) (-2785 (($) 26 T CONST)) (-2790 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-1204 |#2|)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 34 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ (-499)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-1188 |#1| |#2| |#3|) (-13 (-1192 |#1| (-1167 |#1| |#2| |#3|)) (-831 $ (-1204 |#2|)) (-978 (-1197 |#1| |#2| |#3|)) (-571 (-1204 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-361 (-499)))) (-15 -3962 ($ $ (-1204 |#2|))) |%noBranch|))) (-989) (-1117) |#1|) (T -1188)) +((-3962 (*1 *1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1188 *3 *4 *5)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3)))) +((-4108 (((-1188 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1188 |#1| |#3| |#5|)) 24 T ELT))) +(((-1189 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4108 ((-1188 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1188 |#1| |#3| |#5|)))) (-989) (-989) (-1117) (-1117) |#1| |#2|) (T -1189)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1188 *5 *7 *9)) (-4 *5 (-989)) (-4 *6 (-989)) (-14 *7 (-1117)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1188 *6 *8 *10)) (-5 *1 (-1189 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1117))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3204 (((-599 (-1022)) $) 92 T ELT)) (-3981 (((-1117) $) 126 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 68 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 69 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 71 (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-361 (-499))) 121 T ELT) (($ $ (-361 (-499)) (-361 (-499))) 120 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|))) $) 127 T ELT)) (-3632 (($ $) 160 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 143 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 187 (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) 188 (|has| |#1| (-318)) ELT)) (-3158 (($ $) 142 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1678 (((-85) $ $) 178 (|has| |#1| (-318)) ELT)) (-3630 (($ $) 159 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 144 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-714) (-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|)))) 196 T ELT)) (-3634 (($ $) 158 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 145 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) 22 T CONST)) (-2683 (($ $ $) 182 (|has| |#1| (-318)) ELT)) (-4109 (($ $) 77 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 181 (|has| |#1| (-318)) ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 176 (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) 189 (|has| |#1| (-318)) ELT)) (-3013 (((-85) $) 91 T ELT)) (-3777 (($) 170 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-361 (-499)) $) 123 T ELT) (((-361 (-499)) $ (-361 (-499))) 122 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 141 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3927 (($ $ (-857)) 124 T ELT) (($ $ (-361 (-499))) 195 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 185 (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) 79 T ELT)) (-3014 (($ |#1| (-361 (-499))) 78 T ELT) (($ $ (-1022) (-361 (-499))) 94 T ELT) (($ $ (-599 (-1022)) (-599 (-361 (-499)))) 93 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4092 (($ $) 167 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) 82 T ELT)) (-3312 ((|#1| $) 83 T ELT)) (-1993 (($ (-599 $)) 174 (|has| |#1| (-318)) ELT) (($ $ $) 173 (|has| |#1| (-318)) ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 190 (|has| |#1| (-318)) ELT)) (-3962 (($ $) 194 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) 193 (-3677 (-12 (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143)) (|has| |#1| (-38 (-361 (-499))))) (-12 (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-38 (-361 (-499)))))) ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 175 (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) 172 (|has| |#1| (-318)) ELT) (($ $ $) 171 (|has| |#1| (-318)) ELT)) (-3882 (((-359 $) $) 186 (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 183 (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-361 (-499))) 118 T ELT)) (-3606 (((-3 $ "failed") $ $) 67 (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 177 (|has| |#1| (-318)) ELT)) (-4093 (($ $) 168 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) ELT)) (-1677 (((-714) $) 179 (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-361 (-499))) 128 T ELT) (($ $ $) 104 (|has| (-361 (-499)) (-1052)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 180 (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1117)) 116 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) 114 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) 113 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 112 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) 106 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT)) (-4098 (((-361 (-499)) $) 81 T ELT)) (-3635 (($ $) 157 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 146 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 156 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 147 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 155 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 148 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) 90 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-146)) ELT) (($ (-361 (-499))) 74 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) 66 (|has| |#1| (-510)) ELT)) (-3827 ((|#1| $ (-361 (-499))) 76 T ELT)) (-2823 (((-649 $) $) 65 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-3923 ((|#1| $) 125 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3638 (($ $) 166 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 154 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) 70 (|has| |#1| (-510)) ELT)) (-3636 (($ $) 165 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 153 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 164 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 152 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-361 (-499))) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) 163 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 151 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 162 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 150 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 161 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 149 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1117)) 115 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) 111 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) 110 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 109 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) 105 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 75 (|has| |#1| (-318)) ELT) (($ $ $) 192 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 191 (|has| |#1| (-318)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 140 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-361 (-499)) $) 73 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 72 (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-1190 |#1|) (-113) (-989)) (T -1190)) +((-3968 (*1 *1 *2 *3) (-12 (-5 *2 (-714)) (-5 *3 (-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| *4)))) (-4 *4 (-989)) (-4 *1 (-1190 *4)))) (-3927 (*1 *1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-4 *1 (-1190 *3)) (-4 *3 (-989)))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-1190 *2)) (-4 *2 (-989)) (-4 *2 (-38 (-361 (-499)))))) (-3962 (*1 *1 *1 *2) (-3677 (-12 (-5 *2 (-1117)) (-4 *1 (-1190 *3)) (-4 *3 (-989)) (-12 (-4 *3 (-29 (-499))) (-4 *3 (-898)) (-4 *3 (-1143)) (-4 *3 (-38 (-361 (-499)))))) (-12 (-5 *2 (-1117)) (-4 *1 (-1190 *3)) (-4 *3 (-989)) (-12 (|has| *3 (-15 -3204 ((-599 *2) *3))) (|has| *3 (-15 -3962 (*3 *3 *2))) (-4 *3 (-38 (-361 (-499))))))))) +(-13 (-1186 |t#1| (-361 (-499))) (-10 -8 (-15 -3968 ($ (-714) (-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |t#1|))))) (-15 -3927 ($ $ (-361 (-499)))) (IF (|has| |t#1| (-38 (-361 (-499)))) (PROGN (-15 -3962 ($ $)) (IF (|has| |t#1| (-15 -3962 (|t#1| |t#1| (-1117)))) (IF (|has| |t#1| (-15 -3204 ((-599 (-1117)) |t#1|))) (-15 -3962 ($ $ (-1117))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1143)) (IF (|has| |t#1| (-898)) (IF (|has| |t#1| (-29 (-499))) (-15 -3962 ($ $ (-1117))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-942)) (-6 (-1143))) |%noBranch|) (IF (|has| |t#1| (-318)) (-6 (-318)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-361 (-499))) . T) ((-25) . T) ((-38 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-35) |has| |#1| (-38 (-361 (-499)))) ((-66) |has| |#1| (-38 (-361 (-499)))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-571 (-499)) . T) ((-571 |#1|) |has| |#1| (-146)) ((-571 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ((-200) |has| |#1| (-318)) ((-238) |has| |#1| (-38 (-361 (-499)))) ((-240 (-361 (-499)) |#1|) . T) ((-240 $ $) |has| (-361 (-499)) (-1052)) ((-244) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-261) |has| |#1| (-318)) ((-318) |has| |#1| (-318)) ((-406) |has| |#1| (-318)) ((-447) |has| |#1| (-38 (-361 (-499)))) ((-510) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-604 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-675 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-684) . T) ((-831 $ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ((-836 (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ((-838 (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ((-913 |#1| (-361 (-499)) (-1022)) . T) ((-859) |has| |#1| (-318)) ((-942) |has| |#1| (-38 (-361 (-499)))) ((-991 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-996 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1143) |has| |#1| (-38 (-361 (-499)))) ((-1146) |has| |#1| (-38 (-361 (-499)))) ((-1157) . T) ((-1162) |has| |#1| (-318)) ((-1186 |#1| (-361 (-499))) . T)) +((-3326 (((-85) $) 12 T ELT)) (-3295 (((-3 |#3| "failed") $) 17 T ELT)) (-3294 ((|#3| $) 14 T ELT))) +(((-1191 |#1| |#2| |#3|) (-10 -7 (-15 -3295 ((-3 |#3| "failed") |#1|)) (-15 -3294 (|#3| |#1|)) (-15 -3326 ((-85) |#1|))) (-1192 |#2| |#3|) (-989) (-1169 |#2|)) (T -1191)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3204 (((-599 (-1022)) $) 92 T ELT)) (-3981 (((-1117) $) 126 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 68 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 69 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 71 (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-361 (-499))) 121 T ELT) (($ $ (-361 (-499)) (-361 (-499))) 120 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|))) $) 127 T ELT)) (-3632 (($ $) 160 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 143 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 187 (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) 188 (|has| |#1| (-318)) ELT)) (-3158 (($ $) 142 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1678 (((-85) $ $) 178 (|has| |#1| (-318)) ELT)) (-3630 (($ $) 159 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 144 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-714) (-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|)))) 196 T ELT)) (-3634 (($ $) 158 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 145 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#2| "failed") $) 209 T ELT)) (-3294 ((|#2| $) 210 T ELT)) (-2683 (($ $ $) 182 (|has| |#1| (-318)) ELT)) (-4109 (($ $) 77 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3931 (((-361 (-499)) $) 206 T ELT)) (-2682 (($ $ $) 181 (|has| |#1| (-318)) ELT)) (-3932 (($ (-361 (-499)) |#2|) 207 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 176 (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) 189 (|has| |#1| (-318)) ELT)) (-3013 (((-85) $) 91 T ELT)) (-3777 (($) 170 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-361 (-499)) $) 123 T ELT) (((-361 (-499)) $ (-361 (-499))) 122 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 141 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3927 (($ $ (-857)) 124 T ELT) (($ $ (-361 (-499))) 195 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 185 (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) 79 T ELT)) (-3014 (($ |#1| (-361 (-499))) 78 T ELT) (($ $ (-1022) (-361 (-499))) 94 T ELT) (($ $ (-599 (-1022)) (-599 (-361 (-499)))) 93 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4092 (($ $) 167 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) 82 T ELT)) (-3312 ((|#1| $) 83 T ELT)) (-1993 (($ (-599 $)) 174 (|has| |#1| (-318)) ELT) (($ $ $) 173 (|has| |#1| (-318)) ELT)) (-3930 ((|#2| $) 205 T ELT)) (-3928 (((-3 |#2| "failed") $) 203 T ELT)) (-3929 ((|#2| $) 204 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 190 (|has| |#1| (-318)) ELT)) (-3962 (($ $) 194 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) 193 (-3677 (-12 (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143)) (|has| |#1| (-38 (-361 (-499))))) (-12 (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-38 (-361 (-499)))))) ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 175 (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) 172 (|has| |#1| (-318)) ELT) (($ $ $) 171 (|has| |#1| (-318)) ELT)) (-3882 (((-359 $) $) 186 (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 183 (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-361 (-499))) 118 T ELT)) (-3606 (((-3 $ "failed") $ $) 67 (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 177 (|has| |#1| (-318)) ELT)) (-4093 (($ $) 168 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) ELT)) (-1677 (((-714) $) 179 (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-361 (-499))) 128 T ELT) (($ $ $) 104 (|has| (-361 (-499)) (-1052)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 180 (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1117)) 116 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) 114 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) 113 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 112 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) 106 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT)) (-4098 (((-361 (-499)) $) 81 T ELT)) (-3635 (($ $) 157 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 146 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 156 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 147 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 155 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 148 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) 90 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-146)) ELT) (($ |#2|) 208 T ELT) (($ (-361 (-499))) 74 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) 66 (|has| |#1| (-510)) ELT)) (-3827 ((|#1| $ (-361 (-499))) 76 T ELT)) (-2823 (((-649 $) $) 65 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-3923 ((|#1| $) 125 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3638 (($ $) 166 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 154 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) 70 (|has| |#1| (-510)) ELT)) (-3636 (($ $) 165 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 153 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 164 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 152 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-361 (-499))) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) 163 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 151 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 162 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 150 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 161 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 149 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1117)) 115 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) 111 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) 110 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 109 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) 105 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 75 (|has| |#1| (-318)) ELT) (($ $ $) 192 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 191 (|has| |#1| (-318)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 140 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-361 (-499)) $) 73 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 72 (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-1192 |#1| |#2|) (-113) (-989) (-1169 |t#1|)) (T -1192)) +((-4098 (*1 *2 *1) (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1169 *3)) (-5 *2 (-361 (-499))))) (-3932 (*1 *1 *2 *3) (-12 (-5 *2 (-361 (-499))) (-4 *4 (-989)) (-4 *1 (-1192 *4 *3)) (-4 *3 (-1169 *4)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1169 *3)) (-5 *2 (-361 (-499))))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1192 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1169 *3)))) (-3929 (*1 *2 *1) (-12 (-4 *1 (-1192 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1169 *3)))) (-3928 (*1 *2 *1) (|partial| -12 (-4 *1 (-1192 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1169 *3))))) +(-13 (-1190 |t#1|) (-978 |t#2|) (-571 |t#2|) (-10 -8 (-15 -3932 ($ (-361 (-499)) |t#2|)) (-15 -3931 ((-361 (-499)) $)) (-15 -3930 (|t#2| $)) (-15 -4098 ((-361 (-499)) $)) (-15 -3929 (|t#2| $)) (-15 -3928 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-361 (-499))) . T) ((-25) . T) ((-38 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-35) |has| |#1| (-38 (-361 (-499)))) ((-66) |has| |#1| (-38 (-361 (-499)))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-571 (-499)) . T) ((-571 |#1|) |has| |#1| (-146)) ((-571 |#2|) . T) ((-571 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ((-200) |has| |#1| (-318)) ((-238) |has| |#1| (-38 (-361 (-499)))) ((-240 (-361 (-499)) |#1|) . T) ((-240 $ $) |has| (-361 (-499)) (-1052)) ((-244) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-261) |has| |#1| (-318)) ((-318) |has| |#1| (-318)) ((-406) |has| |#1| (-318)) ((-447) |has| |#1| (-38 (-361 (-499)))) ((-510) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-604 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-675 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318))) ((-684) . T) ((-831 $ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ((-836 (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ((-838 (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ((-913 |#1| (-361 (-499)) (-1022)) . T) ((-859) |has| |#1| (-318)) ((-942) |has| |#1| (-38 (-361 (-499)))) ((-978 |#2|) . T) ((-991 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-996 (-361 (-499))) -3677 (|has| |#1| (-318)) (|has| |#1| (-38 (-361 (-499))))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-318)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1143) |has| |#1| (-38 (-361 (-499)))) ((-1146) |has| |#1| (-38 (-361 (-499)))) ((-1157) . T) ((-1162) |has| |#1| (-318)) ((-1186 |#1| (-361 (-499))) . T) ((-1190 |#1|) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) 104 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-361 (-499))) 116 T ELT) (($ $ (-361 (-499)) (-361 (-499))) 118 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|))) $) 54 T ELT)) (-3632 (($ $) 192 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 168 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3925 (($ $) NIL (|has| |#1| (-318)) ELT)) (-4121 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1678 (((-85) $ $) NIL (|has| |#1| (-318)) ELT)) (-3630 (($ $) 188 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 164 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-714) (-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#1|)))) 65 T ELT)) (-3634 (($ $) 196 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 172 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) NIL T ELT)) (-3294 ((|#2| $) NIL T ELT)) (-2683 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) 85 T ELT)) (-3931 (((-361 (-499)) $) 13 T ELT)) (-2682 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3932 (($ (-361 (-499)) |#2|) 11 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) NIL (|has| |#1| (-318)) ELT)) (-3873 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3013 (((-85) $) 74 T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-361 (-499)) $) 113 T ELT) (((-361 (-499)) $ (-361 (-499))) 114 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3927 (($ $ (-857)) 130 T ELT) (($ $ (-361 (-499))) 128 T ELT)) (-1675 (((-3 (-599 $) #1#) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-361 (-499))) 33 T ELT) (($ $ (-1022) (-361 (-499))) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-361 (-499)))) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-4092 (($ $) 162 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-1993 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3930 ((|#2| $) 12 T ELT)) (-3928 (((-3 |#2| #1#) $) 44 T ELT)) (-3929 ((|#2| $) 45 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-2601 (($ $) 101 (|has| |#1| (-318)) ELT)) (-3962 (($ $) 146 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) 151 (-3677 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) NIL (|has| |#1| (-318)) ELT)) (-3282 (($ (-599 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3882 (((-359 $) $) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3919 (($ $ (-361 (-499))) 122 T ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) NIL (|has| |#1| (-318)) ELT)) (-4093 (($ $) 160 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) ELT)) (-1677 (((-714) $) NIL (|has| |#1| (-318)) ELT)) (-3950 ((|#1| $ (-361 (-499))) 108 T ELT) (($ $ $) 94 (|has| (-361 (-499)) (-1052)) ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3908 (($ $ (-1117)) 138 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT)) (-4098 (((-361 (-499)) $) 16 T ELT)) (-3635 (($ $) 198 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 174 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 194 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 170 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 190 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 166 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) 120 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-146)) ELT) (($ |#2|) 34 T ELT) (($ (-361 (-499))) 139 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT)) (-3827 ((|#1| $ (-361 (-499))) 107 T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 127 T CONST)) (-3923 ((|#1| $) 106 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) 204 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 180 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) 200 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 176 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 208 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 184 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-361 (-499))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-361 (-499))))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) 210 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 186 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 206 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 182 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 202 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 178 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 21 T CONST)) (-2785 (($) 17 T CONST)) (-2790 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-361 (-499)) |#1|))) ELT)) (-3174 (((-85) $ $) 72 T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT) (($ $ $) 100 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3989 (($ $ $) 76 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 82 T ELT) (($ $ (-499)) 157 (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 158 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-1193 |#1| |#2|) (-1192 |#1| |#2|) (-989) (-1169 |#1|)) (T -1193)) +NIL +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 37 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL T ELT)) (-2164 (($ $) NIL T ELT)) (-2162 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 (-499) #1#) $) NIL (|has| (-1188 |#2| |#3| |#4|) (-978 (-499))) ELT) (((-3 (-361 (-499)) #1#) $) NIL (|has| (-1188 |#2| |#3| |#4|) (-978 (-361 (-499)))) ELT) (((-3 (-1188 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3294 (((-499) $) NIL (|has| (-1188 |#2| |#3| |#4|) (-978 (-499))) ELT) (((-361 (-499)) $) NIL (|has| (-1188 |#2| |#3| |#4|) (-978 (-361 (-499)))) ELT) (((-1188 |#2| |#3| |#4|) $) NIL T ELT)) (-4109 (($ $) 41 T ELT)) (-3607 (((-3 $ #1#) $) 27 T ELT)) (-3643 (($ $) NIL (|has| (-1188 |#2| |#3| |#4|) (-406)) ELT)) (-1694 (($ $ (-1188 |#2| |#3| |#4|) (-273 |#2| |#3| |#4|) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) 11 T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ (-1188 |#2| |#3| |#4|) (-273 |#2| |#3| |#4|)) 25 T ELT)) (-2941 (((-273 |#2| |#3| |#4|) $) NIL T ELT)) (-1695 (($ (-1 (-273 |#2| |#3| |#4|) (-273 |#2| |#3| |#4|)) $) NIL T ELT)) (-4108 (($ (-1 (-1188 |#2| |#3| |#4|) (-1188 |#2| |#3| |#4|)) $) NIL T ELT)) (-3934 (((-3 (-775 |#2|) #1#) $) 91 T ELT)) (-3015 (($ $) NIL T ELT)) (-3312 (((-1188 |#2| |#3| |#4|) $) 20 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-1895 (((-85) $) NIL T ELT)) (-1894 (((-1188 |#2| |#3| |#4|) $) NIL T ELT)) (-3606 (((-3 $ #1#) $ (-1188 |#2| |#3| |#4|)) NIL (|has| (-1188 |#2| |#3| |#4|) (-510)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3933 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1188 |#2| |#3| |#4|)) (|:| |%expon| (-273 |#2| |#3| |#4|)) (|:| |%expTerms| (-599 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#2|)))))) (|:| |%type| (-1099))) #1#) $) 74 T ELT)) (-4098 (((-273 |#2| |#3| |#4|) $) 17 T ELT)) (-2938 (((-1188 |#2| |#3| |#4|) $) NIL (|has| (-1188 |#2| |#3| |#4|) (-406)) ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ (-1188 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-361 (-499))) NIL (-3677 (|has| (-1188 |#2| |#3| |#4|) (-978 (-361 (-499)))) (|has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499))))) ELT)) (-3967 (((-599 (-1188 |#2| |#3| |#4|)) $) NIL T ELT)) (-3827 (((-1188 |#2| |#3| |#4|) $ (-273 |#2| |#3| |#4|)) NIL T ELT)) (-2823 (((-649 $) $) NIL (|has| (-1188 |#2| |#3| |#4|) (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-1693 (($ $ $ (-714)) NIL (|has| (-1188 |#2| |#3| |#4|) (-146)) ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2163 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-2785 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ (-1188 |#2| |#3| |#4|)) NIL (|has| (-1188 |#2| |#3| |#4|) (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1188 |#2| |#3| |#4|)) NIL T ELT) (($ (-1188 |#2| |#3| |#4|) $) NIL T ELT) (($ (-361 (-499)) $) NIL (|has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| (-1188 |#2| |#3| |#4|) (-38 (-361 (-499)))) ELT))) +(((-1194 |#1| |#2| |#3| |#4|) (-13 (-280 (-1188 |#2| |#3| |#4|) (-273 |#2| |#3| |#4|)) (-510) (-10 -8 (-15 -3934 ((-3 (-775 |#2|) #1="failed") $)) (-15 -3933 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1188 |#2| |#3| |#4|)) (|:| |%expon| (-273 |#2| |#3| |#4|)) (|:| |%expTerms| (-599 (-2 (|:| |k| (-361 (-499))) (|:| |c| |#2|)))))) (|:| |%type| (-1099))) #1#) $)))) (-13 (-978 (-499)) (-596 (-499)) (-406)) (-13 (-27) (-1143) (-375 |#1|)) (-1117) |#2|) (T -1194)) +((-3934 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-978 (-499)) (-596 (-499)) (-406))) (-5 *2 (-775 *4)) (-5 *1 (-1194 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1143) (-375 *3))) (-14 *5 (-1117)) (-14 *6 *4))) (-3933 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-978 (-499)) (-596 (-499)) (-406))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1188 *4 *5 *6)) (|:| |%expon| (-273 *4 *5 *6)) (|:| |%expTerms| (-599 (-2 (|:| |k| (-361 (-499))) (|:| |c| *4)))))) (|:| |%type| (-1099)))) (-5 *1 (-1194 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1143) (-375 *3))) (-14 *5 (-1117)) (-14 *6 *4)))) +((-3542 ((|#2| $) 34 T ELT)) (-3945 ((|#2| $) 18 T ELT)) (-3947 (($ $) 44 T ELT)) (-3935 (($ $ (-499)) 79 T ELT)) (-3146 ((|#2| $ |#2|) 76 T ELT)) (-3936 ((|#2| $ |#2|) 72 T ELT)) (-3938 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 65 T ELT) (($ $ #3="rest" $) 69 T ELT) ((|#2| $ #4="last" |#2|) 67 T ELT)) (-3147 (($ $ (-599 $)) 75 T ELT)) (-3946 ((|#2| $) 17 T ELT)) (-3949 (($ $) NIL T ELT) (($ $ (-714)) 52 T ELT)) (-3152 (((-599 $) $) 31 T ELT)) (-3148 (((-85) $ $) 63 T ELT)) (-3667 (((-85) $) 33 T ELT)) (-3948 ((|#2| $) 25 T ELT) (($ $ (-714)) 58 T ELT)) (-3950 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3783 (((-85) $) 23 T ELT)) (-3942 (($ $) 47 T ELT)) (-3940 (($ $) 80 T ELT)) (-3943 (((-714) $) 51 T ELT)) (-3944 (($ $) 50 T ELT)) (-3952 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-3662 (((-599 $) $) 32 T ELT)) (-3174 (((-85) $ $) 61 T ELT)) (-4107 (((-714) $) 43 T ELT))) +(((-1195 |#1| |#2|) (-10 -7 (-15 -3174 ((-85) |#1| |#1|)) (-15 -3935 (|#1| |#1| (-499))) (-15 -3938 (|#2| |#1| #1="last" |#2|)) (-15 -3936 (|#2| |#1| |#2|)) (-15 -3938 (|#1| |#1| #2="rest" |#1|)) (-15 -3938 (|#2| |#1| #3="first" |#2|)) (-15 -3940 (|#1| |#1|)) (-15 -3942 (|#1| |#1|)) (-15 -3943 ((-714) |#1|)) (-15 -3944 (|#1| |#1|)) (-15 -3945 (|#2| |#1|)) (-15 -3946 (|#2| |#1|)) (-15 -3947 (|#1| |#1|)) (-15 -3948 (|#1| |#1| (-714))) (-15 -3950 (|#2| |#1| #1#)) (-15 -3948 (|#2| |#1|)) (-15 -3949 (|#1| |#1| (-714))) (-15 -3950 (|#1| |#1| #2#)) (-15 -3949 (|#1| |#1|)) (-15 -3950 (|#2| |#1| #3#)) (-15 -3952 (|#1| |#2| |#1|)) (-15 -3952 (|#1| |#1| |#1|)) (-15 -3146 (|#2| |#1| |#2|)) (-15 -3938 (|#2| |#1| #4="value" |#2|)) (-15 -3147 (|#1| |#1| (-599 |#1|))) (-15 -3148 ((-85) |#1| |#1|)) (-15 -3783 ((-85) |#1|)) (-15 -3950 (|#2| |#1| #4#)) (-15 -3542 (|#2| |#1|)) (-15 -3667 ((-85) |#1|)) (-15 -3152 ((-599 |#1|) |#1|)) (-15 -3662 ((-599 |#1|) |#1|)) (-15 -4107 ((-714) |#1|))) (-1196 |#2|) (-1157)) (T -1195)) +NIL +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3542 ((|#1| $) 52 T ELT)) (-3945 ((|#1| $) 71 T ELT)) (-3947 (($ $) 73 T ELT)) (-3935 (($ $ (-499)) 58 (|has| $ (-6 -4146)) ELT)) (-3146 ((|#1| $ |#1|) 43 (|has| $ (-6 -4146)) ELT)) (-3937 (($ $ $) 62 (|has| $ (-6 -4146)) ELT)) (-3936 ((|#1| $ |#1|) 60 (|has| $ (-6 -4146)) ELT)) (-3939 ((|#1| $ |#1|) 64 (|has| $ (-6 -4146)) ELT)) (-3938 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4146)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -4146)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -4146)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -4146)) ELT)) (-3147 (($ $ (-599 $)) 45 (|has| $ (-6 -4146)) ELT)) (-3946 ((|#1| $) 72 T ELT)) (-3874 (($) 7 T CONST)) (-3949 (($ $) 79 T ELT) (($ $ (-714)) 77 T ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3152 (((-599 $) $) 54 T ELT)) (-3148 (((-85) $ $) 46 (|has| |#1| (-1041)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3151 (((-599 |#1|) $) 49 T ELT)) (-3667 (((-85) $) 53 T ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-3948 ((|#1| $) 76 T ELT) (($ $ (-714)) 74 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) 82 T ELT) (($ $ (-714)) 80 T ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3150 (((-499) $ $) 48 T ELT)) (-3783 (((-85) $) 50 T ELT)) (-3942 (($ $) 68 T ELT)) (-3940 (($ $) 65 (|has| $ (-6 -4146)) ELT)) (-3943 (((-714) $) 69 T ELT)) (-3944 (($ $) 70 T ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3540 (($ $) 10 T ELT)) (-3941 (($ $ $) 67 (|has| $ (-6 -4146)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -4146)) ELT)) (-3952 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-3662 (((-599 $) $) 55 T ELT)) (-3149 (((-85) $ $) 47 (|has| |#1| (-1041)) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-1196 |#1|) (-113) (-1157)) (T -1196)) +((-3952 (*1 *1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3952 (*1 *1 *2 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3951 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1196 *3)) (-4 *3 (-1157)))) (-3949 (*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1196 *3)) (-4 *3 (-1157)))) (-3949 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1196 *3)) (-4 *3 (-1157)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3948 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1196 *3)) (-4 *3 (-1157)))) (-3947 (*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3944 (*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-1157)) (-5 *2 (-714)))) (-3942 (*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3941 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3941 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3940 (*1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3939 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3938 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3937 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3938 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4146)) (-4 *1 (-1196 *3)) (-4 *3 (-1157)))) (-3936 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3938 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) (-3935 (*1 *1 *1 *2) (-12 (-5 *2 (-499)) (|has| *1 (-6 -4146)) (-4 *1 (-1196 *3)) (-4 *3 (-1157))))) +(-13 (-950 |t#1|) (-10 -8 (-15 -3952 ($ $ $)) (-15 -3952 ($ |t#1| $)) (-15 -3951 (|t#1| $)) (-15 -3950 (|t#1| $ "first")) (-15 -3951 ($ $ (-714))) (-15 -3949 ($ $)) (-15 -3950 ($ $ "rest")) (-15 -3949 ($ $ (-714))) (-15 -3948 (|t#1| $)) (-15 -3950 (|t#1| $ "last")) (-15 -3948 ($ $ (-714))) (-15 -3947 ($ $)) (-15 -3946 (|t#1| $)) (-15 -3945 (|t#1| $)) (-15 -3944 ($ $)) (-15 -3943 ((-714) $)) (-15 -3942 ($ $)) (IF (|has| $ (-6 -4146)) (PROGN (-15 -3941 ($ $ $)) (-15 -3941 ($ $ |t#1|)) (-15 -3940 ($ $)) (-15 -3939 (|t#1| $ |t#1|)) (-15 -3938 (|t#1| $ "first" |t#1|)) (-15 -3937 ($ $ $)) (-15 -3938 ($ $ "rest" $)) (-15 -3936 (|t#1| $ |t#1|)) (-15 -3938 (|t#1| $ "last" |t#1|)) (-15 -3935 ($ $ (-499)))) |%noBranch|))) +(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-568 (-797)))) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-443 |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-950 |#1|) . T) ((-1041) |has| |#1| (-1041)) ((-1157) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-3204 (((-599 (-1022)) $) NIL T ELT)) (-3981 (((-1117) $) 90 T ELT)) (-3961 (((-1176 |#2| |#1|) $ (-714)) 73 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) NIL (|has| |#1| (-510)) ELT)) (-2164 (($ $) NIL (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 143 (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-714)) 128 T ELT) (($ $ (-714) (-714)) 131 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-714)) (|:| |c| |#1|))) $) 43 T ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3158 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-1095 (-2 (|:| |k| (-714)) (|:| |c| |#1|)))) 52 T ELT) (($ (-1095 |#1|)) NIL T ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) NIL T CONST)) (-3955 (($ $) 135 T ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-3966 (($ $) 141 T ELT)) (-3964 (((-884 |#1|) $ (-714)) 63 T ELT) (((-884 |#1|) $ (-714) (-714)) 65 T ELT)) (-3013 (((-85) $) NIL T ELT)) (-3777 (($) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-714) $) NIL T ELT) (((-714) $ (-714)) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3958 (($ $) 118 T ELT)) (-3132 (($ $ (-499)) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3954 (($ (-499) (-499) $) 137 T ELT)) (-3927 (($ $ (-857)) 140 T ELT)) (-3965 (($ (-1 |#1| (-499)) $) 112 T ELT)) (-4087 (((-85) $) NIL T ELT)) (-3014 (($ |#1| (-714)) 16 T ELT) (($ $ (-1022) (-714)) NIL T ELT) (($ $ (-599 (-1022)) (-599 (-714))) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 99 T ELT)) (-4092 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3959 (($ $) 116 T ELT)) (-3960 (($ $) 114 T ELT)) (-3953 (($ (-499) (-499) $) 139 T ELT)) (-3962 (($ $) 151 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) 157 (-3677 (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143))) (-12 (|has| |#1| (-38 (-361 (-499)))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))))) ELT) (($ $ (-1204 |#2|)) 152 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3956 (($ $ (-499) (-499)) 122 T ELT)) (-3919 (($ $ (-714)) 124 T ELT)) (-3606 (((-3 $ #1#) $ $) NIL (|has| |#1| (-510)) ELT)) (-4093 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3957 (($ $) 120 T ELT)) (-3918 (((-1095 |#1|) $ |#1|) 101 (|has| |#1| (-15 ** (|#1| |#1| (-714)))) ELT)) (-3950 ((|#1| $ (-714)) 96 T ELT) (($ $ $) 133 (|has| (-714) (-1052)) ELT)) (-3908 (($ $ (-1117)) 109 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $) 103 (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT) (($ $ (-1204 |#2|)) 104 T ELT)) (-4098 (((-714) $) NIL T ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) 126 T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) 26 T ELT) (($ (-361 (-499))) 149 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) NIL (|has| |#1| (-510)) ELT) (($ |#1|) 25 (|has| |#1| (-146)) ELT) (($ (-1176 |#2| |#1|)) 81 T ELT) (($ (-1204 |#2|)) 22 T ELT)) (-3967 (((-1095 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ (-714)) 95 T ELT)) (-2823 (((-649 $) $) NIL (|has| |#1| (-118)) ELT)) (-3248 (((-714)) NIL T CONST)) (-3923 ((|#1| $) 91 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-714)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-714)))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 18 T CONST)) (-2785 (($) 13 T CONST)) (-2790 (($ $ (-1117)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-1117) (-714)) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) NIL (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT) (($ $ (-714)) NIL (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT) (($ $ (-1204 |#2|)) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4099 (($ $ |#1|) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) 108 T ELT)) (-3989 (($ $ $) 20 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ |#1|) 146 (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 107 T ELT) (($ (-361 (-499)) $) NIL (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) NIL (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-1197 |#1| |#2| |#3|) (-13 (-1200 |#1|) (-831 $ (-1204 |#2|)) (-10 -8 (-15 -4096 ($ (-1176 |#2| |#1|))) (-15 -3961 ((-1176 |#2| |#1|) $ (-714))) (-15 -4096 ($ (-1204 |#2|))) (-15 -3960 ($ $)) (-15 -3959 ($ $)) (-15 -3958 ($ $)) (-15 -3957 ($ $)) (-15 -3956 ($ $ (-499) (-499))) (-15 -3955 ($ $)) (-15 -3954 ($ (-499) (-499) $)) (-15 -3953 ($ (-499) (-499) $)) (IF (|has| |#1| (-38 (-361 (-499)))) (-15 -3962 ($ $ (-1204 |#2|))) |%noBranch|))) (-989) (-1117) |#1|) (T -1197)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-1176 *4 *3)) (-4 *3 (-989)) (-14 *4 (-1117)) (-14 *5 *3) (-5 *1 (-1197 *3 *4 *5)))) (-3961 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1176 *5 *4)) (-5 *1 (-1197 *4 *5 *6)) (-4 *4 (-989)) (-14 *5 (-1117)) (-14 *6 *4))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1197 *3 *4 *5)) (-4 *3 (-989)) (-14 *5 *3))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-1197 *2 *3 *4)) (-4 *2 (-989)) (-14 *3 (-1117)) (-14 *4 *2))) (-3959 (*1 *1 *1) (-12 (-5 *1 (-1197 *2 *3 *4)) (-4 *2 (-989)) (-14 *3 (-1117)) (-14 *4 *2))) (-3958 (*1 *1 *1) (-12 (-5 *1 (-1197 *2 *3 *4)) (-4 *2 (-989)) (-14 *3 (-1117)) (-14 *4 *2))) (-3957 (*1 *1 *1) (-12 (-5 *1 (-1197 *2 *3 *4)) (-4 *2 (-989)) (-14 *3 (-1117)) (-14 *4 *2))) (-3956 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-1197 *3 *4 *5)) (-4 *3 (-989)) (-14 *4 (-1117)) (-14 *5 *3))) (-3955 (*1 *1 *1) (-12 (-5 *1 (-1197 *2 *3 *4)) (-4 *2 (-989)) (-14 *3 (-1117)) (-14 *4 *2))) (-3954 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1197 *3 *4 *5)) (-4 *3 (-989)) (-14 *4 (-1117)) (-14 *5 *3))) (-3953 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1197 *3 *4 *5)) (-4 *3 (-989)) (-14 *4 (-1117)) (-14 *5 *3))) (-3962 (*1 *1 *1 *2) (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1197 *3 *4 *5)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3)))) +((-4108 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) +(((-1198 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4108 (|#4| (-1 |#2| |#1|) |#3|))) (-989) (-989) (-1200 |#1|) (-1200 |#2|)) (T -1198)) +((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-4 *2 (-1200 *6)) (-5 *1 (-1198 *5 *6 *4 *2)) (-4 *4 (-1200 *5))))) +((-3326 (((-85) $) 17 T ELT)) (-3632 (($ $) 105 T ELT)) (-3789 (($ $) 81 T ELT)) (-3630 (($ $) 101 T ELT)) (-3788 (($ $) 77 T ELT)) (-3634 (($ $) 109 T ELT)) (-3787 (($ $) 85 T ELT)) (-4092 (($ $) 75 T ELT)) (-4093 (($ $) 73 T ELT)) (-3635 (($ $) 111 T ELT)) (-3786 (($ $) 87 T ELT)) (-3633 (($ $) 107 T ELT)) (-3785 (($ $) 83 T ELT)) (-3631 (($ $) 103 T ELT)) (-3784 (($ $) 79 T ELT)) (-4096 (((-797) $) 61 T ELT) (($ (-499)) NIL T ELT) (($ (-361 (-499))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3638 (($ $) 117 T ELT)) (-3626 (($ $) 93 T ELT)) (-3636 (($ $) 113 T ELT)) (-3624 (($ $) 89 T ELT)) (-3640 (($ $) 121 T ELT)) (-3628 (($ $) 97 T ELT)) (-3641 (($ $) 123 T ELT)) (-3629 (($ $) 99 T ELT)) (-3639 (($ $) 119 T ELT)) (-3627 (($ $) 95 T ELT)) (-3637 (($ $) 115 T ELT)) (-3625 (($ $) 91 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-361 (-499))) 71 T ELT))) +(((-1199 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-361 (-499)))) (-15 -3789 (|#1| |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -3785 (|#1| |#1|)) (-15 -3784 (|#1| |#1|)) (-15 -3625 (|#1| |#1|)) (-15 -3627 (|#1| |#1|)) (-15 -3629 (|#1| |#1|)) (-15 -3628 (|#1| |#1|)) (-15 -3624 (|#1| |#1|)) (-15 -3626 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -3633 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -4092 (|#1| |#1|)) (-15 -4093 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4096 (|#1| |#2|)) (-15 -4096 (|#1| |#1|)) (-15 -4096 (|#1| (-361 (-499)))) (-15 -4096 (|#1| (-499))) (-15 ** (|#1| |#1| (-714))) (-15 ** (|#1| |#1| (-857))) (-15 -3326 ((-85) |#1|)) (-15 -4096 ((-797) |#1|))) (-1200 |#2|) (-989)) (T -1199)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-3204 (((-599 (-1022)) $) 92 T ELT)) (-3981 (((-1117) $) 126 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 68 (|has| |#1| (-510)) ELT)) (-2164 (($ $) 69 (|has| |#1| (-510)) ELT)) (-2162 (((-85) $) 71 (|has| |#1| (-510)) ELT)) (-3921 (($ $ (-714)) 121 T ELT) (($ $ (-714) (-714)) 120 T ELT)) (-3924 (((-1095 (-2 (|:| |k| (-714)) (|:| |c| |#1|))) $) 127 T ELT)) (-3632 (($ $) 160 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3789 (($ $) 143 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3158 (($ $) 142 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3630 (($ $) 159 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3788 (($ $) 144 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3968 (($ (-1095 (-2 (|:| |k| (-714)) (|:| |c| |#1|)))) 180 T ELT) (($ (-1095 |#1|)) 178 T ELT)) (-3634 (($ $) 158 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3787 (($ $) 145 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3874 (($) 22 T CONST)) (-4109 (($ $) 77 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-3966 (($ $) 177 T ELT)) (-3964 (((-884 |#1|) $ (-714)) 175 T ELT) (((-884 |#1|) $ (-714) (-714)) 174 T ELT)) (-3013 (((-85) $) 91 T ELT)) (-3777 (($) 170 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3922 (((-714) $) 123 T ELT) (((-714) $ (-714)) 122 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3132 (($ $ (-499)) 141 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3927 (($ $ (-857)) 124 T ELT)) (-3965 (($ (-1 |#1| (-499)) $) 176 T ELT)) (-4087 (((-85) $) 79 T ELT)) (-3014 (($ |#1| (-714)) 78 T ELT) (($ $ (-1022) (-714)) 94 T ELT) (($ $ (-599 (-1022)) (-599 (-714))) 93 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4092 (($ $) 167 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3015 (($ $) 82 T ELT)) (-3312 ((|#1| $) 83 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3962 (($ $) 172 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-1117)) 171 (-3677 (-12 (|has| |#1| (-29 (-499))) (|has| |#1| (-898)) (|has| |#1| (-1143)) (|has| |#1| (-38 (-361 (-499))))) (-12 (|has| |#1| (-15 -3204 ((-599 (-1117)) |#1|))) (|has| |#1| (-15 -3962 (|#1| |#1| (-1117)))) (|has| |#1| (-38 (-361 (-499)))))) ELT)) (-3381 (((-1060) $) 12 T ELT)) (-3919 (($ $ (-714)) 118 T ELT)) (-3606 (((-3 $ "failed") $ $) 67 (|has| |#1| (-510)) ELT)) (-4093 (($ $) 168 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3918 (((-1095 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-714)))) ELT)) (-3950 ((|#1| $ (-714)) 128 T ELT) (($ $ $) 104 (|has| (-714) (-1052)) ELT)) (-3908 (($ $ (-1117)) 116 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117))) 114 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-1117) (-714)) 113 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 112 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT) (($ $ (-714)) 106 (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT)) (-4098 (((-714) $) 81 T ELT)) (-3635 (($ $) 157 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3786 (($ $) 146 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3633 (($ $) 156 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3785 (($ $) 147 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3631 (($ $) 155 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3784 (($ $) 148 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3012 (($ $) 90 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ (-361 (-499))) 74 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $) 66 (|has| |#1| (-510)) ELT) (($ |#1|) 64 (|has| |#1| (-146)) ELT)) (-3967 (((-1095 |#1|) $) 179 T ELT)) (-3827 ((|#1| $ (-714)) 76 T ELT)) (-2823 (((-649 $) $) 65 (|has| |#1| (-118)) ELT)) (-3248 (((-714)) 37 T CONST)) (-3923 ((|#1| $) 125 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-3638 (($ $) 166 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3626 (($ $) 154 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2163 (((-85) $ $) 70 (|has| |#1| (-510)) ELT)) (-3636 (($ $) 165 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3624 (($ $) 153 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3640 (($ $) 164 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3628 (($ $) 152 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3920 ((|#1| $ (-714)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-714)))) (|has| |#1| (-15 -4096 (|#1| (-1117))))) ELT)) (-3641 (($ $) 163 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3629 (($ $) 151 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3639 (($ $) 162 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3627 (($ $) 150 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3637 (($ $) 161 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-3625 (($ $) 149 (|has| |#1| (-38 (-361 (-499)))) ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-2790 (($ $ (-1117)) 115 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117))) 111 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-1117) (-714)) 110 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $ (-599 (-1117)) (-599 (-714))) 109 (-12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT) (($ $ (-714)) 105 (|has| |#1| (-15 * (|#1| (-714) |#1|))) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 75 (|has| |#1| (-318)) ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ |#1|) 173 (|has| |#1| (-318)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 140 (|has| |#1| (-38 (-361 (-499)))) ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-361 (-499)) $) 73 (|has| |#1| (-38 (-361 (-499)))) ELT) (($ $ (-361 (-499))) 72 (|has| |#1| (-38 (-361 (-499)))) ELT))) +(((-1200 |#1|) (-113) (-989)) (T -1200)) +((-3968 (*1 *1 *2) (-12 (-5 *2 (-1095 (-2 (|:| |k| (-714)) (|:| |c| *3)))) (-4 *3 (-989)) (-4 *1 (-1200 *3)))) (-3967 (*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-989)) (-5 *2 (-1095 *3)))) (-3968 (*1 *1 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-4 *1 (-1200 *3)))) (-3966 (*1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-989)))) (-3965 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-499))) (-4 *1 (-1200 *3)) (-4 *3 (-989)))) (-3964 (*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-1200 *4)) (-4 *4 (-989)) (-5 *2 (-884 *4)))) (-3964 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-714)) (-4 *1 (-1200 *4)) (-4 *4 (-989)) (-5 *2 (-884 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-989)) (-4 *2 (-38 (-361 (-499)))))) (-3962 (*1 *1 *1 *2) (-3677 (-12 (-5 *2 (-1117)) (-4 *1 (-1200 *3)) (-4 *3 (-989)) (-12 (-4 *3 (-29 (-499))) (-4 *3 (-898)) (-4 *3 (-1143)) (-4 *3 (-38 (-361 (-499)))))) (-12 (-5 *2 (-1117)) (-4 *1 (-1200 *3)) (-4 *3 (-989)) (-12 (|has| *3 (-15 -3204 ((-599 *2) *3))) (|has| *3 (-15 -3962 (*3 *3 *2))) (-4 *3 (-38 (-361 (-499))))))))) +(-13 (-1186 |t#1| (-714)) (-10 -8 (-15 -3968 ($ (-1095 (-2 (|:| |k| (-714)) (|:| |c| |t#1|))))) (-15 -3967 ((-1095 |t#1|) $)) (-15 -3968 ($ (-1095 |t#1|))) (-15 -3966 ($ $)) (-15 -3965 ($ (-1 |t#1| (-499)) $)) (-15 -3964 ((-884 |t#1|) $ (-714))) (-15 -3964 ((-884 |t#1|) $ (-714) (-714))) (IF (|has| |t#1| (-318)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-361 (-499)))) (PROGN (-15 -3962 ($ $)) (IF (|has| |t#1| (-15 -3962 (|t#1| |t#1| (-1117)))) (IF (|has| |t#1| (-15 -3204 ((-599 (-1117)) |t#1|))) (-15 -3962 ($ $ (-1117))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1143)) (IF (|has| |t#1| (-898)) (IF (|has| |t#1| (-29 (-499))) (-15 -3962 ($ $ (-1117))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-942)) (-6 (-1143))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-714)) . T) ((-25) . T) ((-38 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-510)) ((-35) |has| |#1| (-38 (-361 (-499)))) ((-66) |has| |#1| (-38 (-361 (-499)))) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-82 |#1| |#1|) . T) ((-82 $ $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-571 (-499)) . T) ((-571 |#1|) |has| |#1| (-146)) ((-571 $) |has| |#1| (-510)) ((-568 (-797)) . T) ((-146) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-714) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-714) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-714) |#1|))) ((-238) |has| |#1| (-38 (-361 (-499)))) ((-240 (-714) |#1|) . T) ((-240 $ $) |has| (-714) (-1052)) ((-244) |has| |#1| (-510)) ((-447) |has| |#1| (-38 (-361 (-499)))) ((-510) |has| |#1| (-510)) ((-604 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-598 |#1|) |has| |#1| (-146)) ((-598 $) |has| |#1| (-510)) ((-675 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-675 |#1|) |has| |#1| (-146)) ((-675 $) |has| |#1| (-510)) ((-684) . T) ((-831 $ (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ((-836 (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ((-838 (-1117)) -12 (|has| |#1| (-836 (-1117))) (|has| |#1| (-15 * (|#1| (-714) |#1|)))) ((-913 |#1| (-714) (-1022)) . T) ((-942) |has| |#1| (-38 (-361 (-499)))) ((-991 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-991 |#1|) . T) ((-991 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-996 (-361 (-499))) |has| |#1| (-38 (-361 (-499)))) ((-996 |#1|) . T) ((-996 $) -3677 (|has| |#1| (-510)) (|has| |#1| (-146))) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1143) |has| |#1| (-38 (-361 (-499)))) ((-1146) |has| |#1| (-38 (-361 (-499)))) ((-1157) . T) ((-1186 |#1| (-714)) . T)) +((-3971 (((-1 (-1095 |#1|) (-599 (-1095 |#1|))) (-1 |#2| (-599 |#2|))) 24 T ELT)) (-3970 (((-1 (-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3969 (((-1 (-1095 |#1|) (-1095 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3974 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3973 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3975 ((|#2| (-1 |#2| (-599 |#2|)) (-599 |#1|)) 60 T ELT)) (-3976 (((-599 |#2|) (-599 |#1|) (-599 (-1 |#2| (-599 |#2|)))) 66 T ELT)) (-3972 ((|#2| |#2| |#2|) 43 T ELT))) +(((-1201 |#1| |#2|) (-10 -7 (-15 -3969 ((-1 (-1095 |#1|) (-1095 |#1|)) (-1 |#2| |#2|))) (-15 -3970 ((-1 (-1095 |#1|) (-1095 |#1|) (-1095 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3971 ((-1 (-1095 |#1|) (-599 (-1095 |#1|))) (-1 |#2| (-599 |#2|)))) (-15 -3972 (|#2| |#2| |#2|)) (-15 -3973 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3974 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3975 (|#2| (-1 |#2| (-599 |#2|)) (-599 |#1|))) (-15 -3976 ((-599 |#2|) (-599 |#1|) (-599 (-1 |#2| (-599 |#2|)))))) (-38 (-361 (-499))) (-1200 |#1|)) (T -1201)) +((-3976 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *5)) (-5 *4 (-599 (-1 *6 (-599 *6)))) (-4 *5 (-38 (-361 (-499)))) (-4 *6 (-1200 *5)) (-5 *2 (-599 *6)) (-5 *1 (-1201 *5 *6)))) (-3975 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-599 *2))) (-5 *4 (-599 *5)) (-4 *5 (-38 (-361 (-499)))) (-4 *2 (-1200 *5)) (-5 *1 (-1201 *5 *2)))) (-3974 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-1201 *4 *2)) (-4 *4 (-38 (-361 (-499)))))) (-3973 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-1201 *4 *2)) (-4 *4 (-38 (-361 (-499)))))) (-3972 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1201 *3 *2)) (-4 *2 (-1200 *3)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-599 *5))) (-4 *5 (-1200 *4)) (-4 *4 (-38 (-361 (-499)))) (-5 *2 (-1 (-1095 *4) (-599 (-1095 *4)))) (-5 *1 (-1201 *4 *5)))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-38 (-361 (-499)))) (-5 *2 (-1 (-1095 *4) (-1095 *4) (-1095 *4))) (-5 *1 (-1201 *4 *5)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-38 (-361 (-499)))) (-5 *2 (-1 (-1095 *4) (-1095 *4))) (-5 *1 (-1201 *4 *5))))) +((-3978 ((|#2| |#4| (-714)) 31 T ELT)) (-3977 ((|#4| |#2|) 26 T ELT)) (-3980 ((|#4| (-361 |#2|)) 49 (|has| |#1| (-510)) ELT)) (-3979 (((-1 |#4| (-599 |#4|)) |#3|) 43 T ELT))) +(((-1202 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3977 (|#4| |#2|)) (-15 -3978 (|#2| |#4| (-714))) (-15 -3979 ((-1 |#4| (-599 |#4|)) |#3|)) (IF (|has| |#1| (-510)) (-15 -3980 (|#4| (-361 |#2|))) |%noBranch|)) (-989) (-1183 |#1|) (-616 |#2|) (-1200 |#1|)) (T -1202)) +((-3980 (*1 *2 *3) (-12 (-5 *3 (-361 *5)) (-4 *5 (-1183 *4)) (-4 *4 (-510)) (-4 *4 (-989)) (-4 *2 (-1200 *4)) (-5 *1 (-1202 *4 *5 *6 *2)) (-4 *6 (-616 *5)))) (-3979 (*1 *2 *3) (-12 (-4 *4 (-989)) (-4 *5 (-1183 *4)) (-5 *2 (-1 *6 (-599 *6))) (-5 *1 (-1202 *4 *5 *3 *6)) (-4 *3 (-616 *5)) (-4 *6 (-1200 *4)))) (-3978 (*1 *2 *3 *4) (-12 (-5 *4 (-714)) (-4 *5 (-989)) (-4 *2 (-1183 *5)) (-5 *1 (-1202 *5 *2 *6 *3)) (-4 *6 (-616 *2)) (-4 *3 (-1200 *5)))) (-3977 (*1 *2 *3) (-12 (-4 *4 (-989)) (-4 *3 (-1183 *4)) (-4 *2 (-1200 *4)) (-5 *1 (-1202 *4 *3 *5 *2)) (-4 *5 (-616 *3))))) +NIL +(((-1203) (-113)) (T -1203)) +NIL +(-13 (-10 -7 (-6 -2388))) +((-2687 (((-85) $ $) NIL T ELT)) (-3981 (((-1117)) 12 T ELT)) (-3380 (((-1099) $) 18 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 11 T ELT) (((-1117) $) 8 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 15 T ELT))) +(((-1204 |#1|) (-13 (-1041) (-568 (-1117)) (-10 -8 (-15 -4096 ((-1117) $)) (-15 -3981 ((-1117))))) (-1117)) (T -1204)) +((-4096 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1204 *3)) (-14 *3 *2))) (-3981 (*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1204 *3)) (-14 *3 *2)))) +((-3988 (($ (-714)) 19 T ELT)) (-3985 (((-647 |#2|) $ $) 41 T ELT)) (-3982 ((|#2| $) 51 T ELT)) (-3983 ((|#2| $) 50 T ELT)) (-3986 ((|#2| $ $) 36 T ELT)) (-3984 (($ $ $) 47 T ELT)) (-3987 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3989 (($ $ $) 15 T ELT)) (* (($ (-499) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) +(((-1205 |#1| |#2|) (-10 -7 (-15 -3982 (|#2| |#1|)) (-15 -3983 (|#2| |#1|)) (-15 -3984 (|#1| |#1| |#1|)) (-15 -3985 ((-647 |#2|) |#1| |#1|)) (-15 -3986 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-499) |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1|)) (-15 -3988 (|#1| (-714))) (-15 -3989 (|#1| |#1| |#1|))) (-1206 |#2|) (-1157)) (T -1205)) +NIL +((-2687 (((-85) $ $) 19 (|has| |#1| (-73)) ELT)) (-3988 (($ (-714)) 121 (|has| |#1| (-23)) ELT)) (-2299 (((-1213) $ (-499) (-499)) 44 (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -4146)) ELT) (($ $) 97 (-12 (|has| |#1| (-781)) (|has| $ (-6 -4146))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-781)) ELT)) (-3938 ((|#1| $ (-499) |#1|) 56 (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) 64 (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -4145)) ELT)) (-3874 (($) 7 T CONST)) (-2397 (($ $) 99 (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) 109 T ELT)) (-1386 (($ $) 84 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-3546 (($ |#1| $) 83 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) 57 (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) 55 T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) 106 T ELT) (((-499) |#1| $) 105 (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) 104 (|has| |#1| (-1041)) ELT)) (-3010 (((-599 |#1|) $) 30 (|has| $ (-6 -4145)) ELT)) (-3985 (((-647 |#1|) $ $) 114 (|has| |#1| (-989)) ELT)) (-3764 (($ (-714) |#1|) 74 T ELT)) (-2301 (((-499) $) 47 (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) 91 (|has| |#1| (-781)) ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) 29 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-2302 (((-499) $) 48 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) 92 (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3982 ((|#1| $) 111 (-12 (|has| |#1| (-989)) (|has| |#1| (-942))) ELT)) (-3983 ((|#1| $) 112 (-12 (|has| |#1| (-989)) (|has| |#1| (-942))) ELT)) (-3380 (((-1099) $) 22 (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) 66 T ELT) (($ $ $ (-499)) 65 T ELT)) (-2304 (((-599 (-499)) $) 50 T ELT)) (-2305 (((-85) (-499) $) 51 T ELT)) (-3381 (((-1060) $) 21 (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) 46 (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2300 (($ $ |#1|) 45 (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) 26 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) 25 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) 23 (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) 11 T ELT)) (-2303 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) 52 T ELT)) (-3543 (((-85) $) 8 T ELT)) (-3713 (($) 9 T ELT)) (-3950 ((|#1| $ (-499) |#1|) 54 T ELT) ((|#1| $ (-499)) 53 T ELT) (($ $ (-1174 (-499))) 75 T ELT)) (-3986 ((|#1| $ $) 115 (|has| |#1| (-989)) ELT)) (-2405 (($ $ (-499)) 68 T ELT) (($ $ (-1174 (-499))) 67 T ELT)) (-3984 (($ $ $) 113 (|has| |#1| (-989)) ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) 28 (-12 (|has| |#1| (-1041)) (|has| $ (-6 -4145))) ELT)) (-1824 (($ $ $ (-499)) 100 (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) 10 T ELT)) (-4122 (((-488) $) 85 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 76 T ELT)) (-3952 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-599 $)) 70 T ELT)) (-4096 (((-797) $) 17 (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) 20 (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) 93 (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) 95 (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) 18 (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) 94 (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) 96 (|has| |#1| (-781)) ELT)) (-3987 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3989 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-499) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-684)) ELT) (($ $ |#1|) 116 (|has| |#1| (-684)) ELT)) (-4107 (((-714) $) 6 (|has| $ (-6 -4145)) ELT))) +(((-1206 |#1|) (-113) (-1157)) (T -1206)) +((-3989 (*1 *1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-25)))) (-3988 (*1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1206 *3)) (-4 *3 (-23)) (-4 *3 (-1157)))) (-3987 (*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-21)))) (-3987 (*1 *1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-499)) (-4 *1 (-1206 *3)) (-4 *3 (-1157)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-684)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-684)))) (-3986 (*1 *2 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-989)))) (-3985 (*1 *2 *1 *1) (-12 (-4 *1 (-1206 *3)) (-4 *3 (-1157)) (-4 *3 (-989)) (-5 *2 (-647 *3)))) (-3984 (*1 *1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-989)))) (-3983 (*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-942)) (-4 *2 (-989)))) (-3982 (*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-942)) (-4 *2 (-989))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3989 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3988 ($ (-714))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3987 ($ $)) (-15 -3987 ($ $ $)) (-15 * ($ (-499) $))) |%noBranch|) (IF (|has| |t#1| (-684)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-989)) (PROGN (-15 -3986 (|t#1| $ $)) (-15 -3985 ((-647 |t#1|) $ $)) (-15 -3984 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-942)) (IF (|has| |t#1| (-989)) (PROGN (-15 -3983 (|t#1| $)) (-15 -3982 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-73) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781)) (|has| |#1| (-73))) ((-568 (-797)) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781)) (|has| |#1| (-568 (-797)))) ((-124 |#1|) . T) ((-569 (-488)) |has| |#1| (-569 (-488))) ((-240 (-499) |#1|) . T) ((-240 (-1174 (-499)) $) . T) ((-242 (-499) |#1|) . T) ((-263 |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-327 |#1|) . T) ((-443 |#1|) . T) ((-554 (-499) |#1|) . T) ((-468 |#1| |#1|) -12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ((-609 |#1|) . T) ((-19 |#1|) . T) ((-781) |has| |#1| (-781)) ((-784) |has| |#1| (-781)) ((-1041) -3677 (|has| |#1| (-1041)) (|has| |#1| (-781))) ((-1157) . T)) +((-2687 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-3988 (($ (-714)) NIL (|has| |#1| (-23)) ELT)) (-3990 (($ (-599 |#1|)) 11 T ELT)) (-2299 (((-1213) $ (-499) (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-1825 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-781)) ELT)) (-1823 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4146)) (|has| |#1| (-781))) ELT)) (-3030 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-781)) ELT)) (-3938 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT) ((|#1| $ (-1174 (-499)) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3860 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3874 (($) NIL T CONST)) (-2397 (($ $) NIL (|has| $ (-6 -4146)) ELT)) (-2398 (($ $) NIL T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-3546 (($ |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3992 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4145)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-1609 ((|#1| $ (-499) |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-3235 ((|#1| $ (-499)) NIL T ELT)) (-3559 (((-499) (-1 (-85) |#1|) $) NIL T ELT) (((-499) |#1| $) NIL (|has| |#1| (-1041)) ELT) (((-499) |#1| $ (-499)) NIL (|has| |#1| (-1041)) ELT)) (-3010 (((-599 |#1|) $) 16 (|has| $ (-6 -4145)) ELT)) (-3985 (((-647 |#1|) $ $) NIL (|has| |#1| (-989)) ELT)) (-3764 (($ (-714) |#1|) NIL T ELT)) (-2301 (((-499) $) NIL (|has| (-499) (-781)) ELT)) (-2650 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-3658 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2727 (((-599 |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2302 (((-499) $) 12 (|has| (-499) (-781)) ELT)) (-2978 (($ $ $) NIL (|has| |#1| (-781)) ELT)) (-2051 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3982 ((|#1| $) NIL (-12 (|has| |#1| (-942)) (|has| |#1| (-989))) ELT)) (-3983 ((|#1| $) NIL (-12 (|has| |#1| (-942)) (|has| |#1| (-989))) ELT)) (-3380 (((-1099) $) NIL (|has| |#1| (-1041)) ELT)) (-2404 (($ |#1| $ (-499)) NIL T ELT) (($ $ $ (-499)) NIL T ELT)) (-2304 (((-599 (-499)) $) NIL T ELT)) (-2305 (((-85) (-499) $) NIL T ELT)) (-3381 (((-1060) $) NIL (|has| |#1| (-1041)) ELT)) (-3951 ((|#1| $) NIL (|has| (-499) (-781)) ELT)) (-1387 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2300 (($ $ |#1|) NIL (|has| $ (-6 -4146)) ELT)) (-2049 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 (-247 |#1|))) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-247 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT) (($ $ (-599 |#1|) (-599 |#1|)) NIL (-12 (|has| |#1| (-263 |#1|)) (|has| |#1| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-2303 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-2306 (((-599 |#1|) $) NIL T ELT)) (-3543 (((-85) $) NIL T ELT)) (-3713 (($) NIL T ELT)) (-3950 ((|#1| $ (-499) |#1|) NIL T ELT) ((|#1| $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-3986 ((|#1| $ $) NIL (|has| |#1| (-989)) ELT)) (-2405 (($ $ (-499)) NIL T ELT) (($ $ (-1174 (-499))) NIL T ELT)) (-3984 (($ $ $) NIL (|has| |#1| (-989)) ELT)) (-2048 (((-714) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT) (((-714) |#1| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#1| (-1041))) ELT)) (-1824 (($ $ $ (-499)) NIL (|has| $ (-6 -4146)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) 20 (|has| |#1| (-569 (-488))) ELT)) (-3670 (($ (-599 |#1|)) 10 T ELT)) (-3952 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-599 $)) NIL T ELT)) (-4096 (((-797) $) NIL (|has| |#1| (-568 (-797))) ELT)) (-1297 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2050 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -4145)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3174 (((-85) $ $) NIL (|has| |#1| (-73)) ELT)) (-2805 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-2806 (((-85) $ $) NIL (|has| |#1| (-781)) ELT)) (-3987 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3989 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-499) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-684)) ELT) (($ $ |#1|) NIL (|has| |#1| (-684)) ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-1207 |#1|) (-13 (-1206 |#1|) (-10 -8 (-15 -3990 ($ (-599 |#1|))))) (-1157)) (T -1207)) +((-3990 (*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-1207 *3))))) +((-3991 (((-1207 |#2|) (-1 |#2| |#1| |#2|) (-1207 |#1|) |#2|) 13 T ELT)) (-3992 ((|#2| (-1 |#2| |#1| |#2|) (-1207 |#1|) |#2|) 15 T ELT)) (-4108 (((-3 (-1207 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1207 |#1|)) 30 T ELT) (((-1207 |#2|) (-1 |#2| |#1|) (-1207 |#1|)) 18 T ELT))) +(((-1208 |#1| |#2|) (-10 -7 (-15 -3991 ((-1207 |#2|) (-1 |#2| |#1| |#2|) (-1207 |#1|) |#2|)) (-15 -3992 (|#2| (-1 |#2| |#1| |#2|) (-1207 |#1|) |#2|)) (-15 -4108 ((-1207 |#2|) (-1 |#2| |#1|) (-1207 |#1|))) (-15 -4108 ((-3 (-1207 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1207 |#1|)))) (-1157) (-1157)) (T -1208)) +((-4108 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1207 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-1207 *6)) (-5 *1 (-1208 *5 *6)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1207 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-1207 *6)) (-5 *1 (-1208 *5 *6)))) (-3992 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1207 *5)) (-4 *5 (-1157)) (-4 *2 (-1157)) (-5 *1 (-1208 *5 *2)))) (-3991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1207 *6)) (-4 *6 (-1157)) (-4 *5 (-1157)) (-5 *2 (-1207 *5)) (-5 *1 (-1208 *6 *5))))) +((-3993 (((-422) (-599 (-599 (-881 (-179)))) (-599 (-220))) 22 T ELT) (((-422) (-599 (-599 (-881 (-179))))) 21 T ELT) (((-422) (-599 (-599 (-881 (-179)))) (-808) (-808) (-857) (-599 (-220))) 20 T ELT)) (-3994 (((-1210) (-599 (-599 (-881 (-179)))) (-599 (-220))) 30 T ELT) (((-1210) (-599 (-599 (-881 (-179)))) (-808) (-808) (-857) (-599 (-220))) 29 T ELT)) (-4096 (((-1210) (-422)) 46 T ELT))) +(((-1209) (-10 -7 (-15 -3993 ((-422) (-599 (-599 (-881 (-179)))) (-808) (-808) (-857) (-599 (-220)))) (-15 -3993 ((-422) (-599 (-599 (-881 (-179)))))) (-15 -3993 ((-422) (-599 (-599 (-881 (-179)))) (-599 (-220)))) (-15 -3994 ((-1210) (-599 (-599 (-881 (-179)))) (-808) (-808) (-857) (-599 (-220)))) (-15 -3994 ((-1210) (-599 (-599 (-881 (-179)))) (-599 (-220)))) (-15 -4096 ((-1210) (-422))))) (T -1209)) +((-4096 (*1 *2 *3) (-12 (-5 *3 (-422)) (-5 *2 (-1210)) (-5 *1 (-1209)))) (-3994 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *4 (-599 (-220))) (-5 *2 (-1210)) (-5 *1 (-1209)))) (-3994 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *4 (-808)) (-5 *5 (-857)) (-5 *6 (-599 (-220))) (-5 *2 (-1210)) (-5 *1 (-1209)))) (-3993 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *4 (-599 (-220))) (-5 *2 (-422)) (-5 *1 (-1209)))) (-3993 (*1 *2 *3) (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *2 (-422)) (-5 *1 (-1209)))) (-3993 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *4 (-808)) (-5 *5 (-857)) (-5 *6 (-599 (-220))) (-5 *2 (-422)) (-5 *1 (-1209))))) +((-2687 (((-85) $ $) NIL T ELT)) (-4012 (((-1099) $ (-1099)) 107 T ELT) (((-1099) $ (-1099) (-1099)) 105 T ELT) (((-1099) $ (-1099) (-599 (-1099))) 104 T ELT)) (-4008 (($) 69 T ELT)) (-3995 (((-1213) $ (-422) (-857)) 54 T ELT)) (-4001 (((-1213) $ (-857) (-1099)) 89 T ELT) (((-1213) $ (-857) (-808)) 90 T ELT)) (-4023 (((-1213) $ (-857) (-333) (-333)) 57 T ELT)) (-4033 (((-1213) $ (-1099)) 84 T ELT)) (-3996 (((-1213) $ (-857) (-1099)) 94 T ELT)) (-3997 (((-1213) $ (-857) (-333) (-333)) 58 T ELT)) (-4034 (((-1213) $ (-857) (-857)) 55 T ELT)) (-4014 (((-1213) $) 85 T ELT)) (-3999 (((-1213) $ (-857) (-1099)) 93 T ELT)) (-4003 (((-1213) $ (-422) (-857)) 41 T ELT)) (-4000 (((-1213) $ (-857) (-1099)) 92 T ELT)) (-4036 (((-599 (-220)) $) 29 T ELT) (($ $ (-599 (-220))) 30 T ELT)) (-4035 (((-1213) $ (-714) (-714)) 52 T ELT)) (-4007 (($ $) 70 T ELT) (($ (-422) (-599 (-220))) 71 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-4010 (((-499) $) 48 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4004 (((-1207 (-3 (-422) "undefined")) $) 47 T ELT)) (-4005 (((-1207 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -4000 (-499)) (|:| -3998 (-499)) (|:| |spline| (-499)) (|:| -4029 (-499)) (|:| |axesColor| (-808)) (|:| -4001 (-499)) (|:| |unitsColor| (-808)) (|:| |showing| (-499)))) $) 46 T ELT)) (-4006 (((-1213) $ (-857) (-179) (-179) (-179) (-179) (-499) (-499) (-499) (-499) (-808) (-499) (-808) (-499)) 83 T ELT)) (-4009 (((-599 (-881 (-179))) $) NIL T ELT)) (-4002 (((-422) $ (-857)) 43 T ELT)) (-4032 (((-1213) $ (-714) (-714) (-857) (-857)) 50 T ELT)) (-4030 (((-1213) $ (-1099)) 95 T ELT)) (-3998 (((-1213) $ (-857) (-1099)) 91 T ELT)) (-4096 (((-797) $) 102 T ELT)) (-4011 (((-1213) $) 96 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-4029 (((-1213) $ (-857) (-1099)) 87 T ELT) (((-1213) $ (-857) (-808)) 88 T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-1210) (-13 (-1041) (-10 -8 (-15 -4009 ((-599 (-881 (-179))) $)) (-15 -4008 ($)) (-15 -4007 ($ $)) (-15 -4036 ((-599 (-220)) $)) (-15 -4036 ($ $ (-599 (-220)))) (-15 -4007 ($ (-422) (-599 (-220)))) (-15 -4006 ((-1213) $ (-857) (-179) (-179) (-179) (-179) (-499) (-499) (-499) (-499) (-808) (-499) (-808) (-499))) (-15 -4005 ((-1207 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -4000 (-499)) (|:| -3998 (-499)) (|:| |spline| (-499)) (|:| -4029 (-499)) (|:| |axesColor| (-808)) (|:| -4001 (-499)) (|:| |unitsColor| (-808)) (|:| |showing| (-499)))) $)) (-15 -4004 ((-1207 (-3 (-422) "undefined")) $)) (-15 -4033 ((-1213) $ (-1099))) (-15 -4003 ((-1213) $ (-422) (-857))) (-15 -4002 ((-422) $ (-857))) (-15 -4029 ((-1213) $ (-857) (-1099))) (-15 -4029 ((-1213) $ (-857) (-808))) (-15 -4001 ((-1213) $ (-857) (-1099))) (-15 -4001 ((-1213) $ (-857) (-808))) (-15 -4000 ((-1213) $ (-857) (-1099))) (-15 -3999 ((-1213) $ (-857) (-1099))) (-15 -3998 ((-1213) $ (-857) (-1099))) (-15 -4030 ((-1213) $ (-1099))) (-15 -4011 ((-1213) $)) (-15 -4032 ((-1213) $ (-714) (-714) (-857) (-857))) (-15 -3997 ((-1213) $ (-857) (-333) (-333))) (-15 -4023 ((-1213) $ (-857) (-333) (-333))) (-15 -3996 ((-1213) $ (-857) (-1099))) (-15 -4035 ((-1213) $ (-714) (-714))) (-15 -3995 ((-1213) $ (-422) (-857))) (-15 -4034 ((-1213) $ (-857) (-857))) (-15 -4012 ((-1099) $ (-1099))) (-15 -4012 ((-1099) $ (-1099) (-1099))) (-15 -4012 ((-1099) $ (-1099) (-599 (-1099)))) (-15 -4014 ((-1213) $)) (-15 -4010 ((-499) $)) (-15 -4096 ((-797) $))))) (T -1210)) +((-4096 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1210)))) (-4009 (*1 *2 *1) (-12 (-5 *2 (-599 (-881 (-179)))) (-5 *1 (-1210)))) (-4008 (*1 *1) (-5 *1 (-1210))) (-4007 (*1 *1 *1) (-5 *1 (-1210))) (-4036 (*1 *2 *1) (-12 (-5 *2 (-599 (-220))) (-5 *1 (-1210)))) (-4036 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-220))) (-5 *1 (-1210)))) (-4007 (*1 *1 *2 *3) (-12 (-5 *2 (-422)) (-5 *3 (-599 (-220))) (-5 *1 (-1210)))) (-4006 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-857)) (-5 *4 (-179)) (-5 *5 (-499)) (-5 *6 (-808)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4005 (*1 *2 *1) (-12 (-5 *2 (-1207 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -4000 (-499)) (|:| -3998 (-499)) (|:| |spline| (-499)) (|:| -4029 (-499)) (|:| |axesColor| (-808)) (|:| -4001 (-499)) (|:| |unitsColor| (-808)) (|:| |showing| (-499))))) (-5 *1 (-1210)))) (-4004 (*1 *2 *1) (-12 (-5 *2 (-1207 (-3 (-422) "undefined"))) (-5 *1 (-1210)))) (-4033 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4003 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-422)) (-5 *4 (-857)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4002 (*1 *2 *1 *3) (-12 (-5 *3 (-857)) (-5 *2 (-422)) (-5 *1 (-1210)))) (-4029 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4029 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-808)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4001 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4001 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-808)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4000 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-3999 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-3998 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4030 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4011 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4032 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-714)) (-5 *4 (-857)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-3997 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-857)) (-5 *4 (-333)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4023 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-857)) (-5 *4 (-333)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-3996 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4035 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-3995 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-422)) (-5 *4 (-857)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4034 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4012 (*1 *2 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1210)))) (-4012 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1210)))) (-4012 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-599 (-1099))) (-5 *2 (-1099)) (-5 *1 (-1210)))) (-4014 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1210)))) (-4010 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1210))))) +((-2687 (((-85) $ $) NIL T ELT)) (-4024 (((-1213) $ (-333)) 169 T ELT) (((-1213) $ (-333) (-333) (-333)) 170 T ELT)) (-4012 (((-1099) $ (-1099)) 178 T ELT) (((-1099) $ (-1099) (-1099)) 176 T ELT) (((-1099) $ (-1099) (-599 (-1099))) 175 T ELT)) (-4040 (($) 67 T ELT)) (-4031 (((-1213) $ (-333) (-333) (-333) (-333) (-333)) 141 T ELT) (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $) 139 T ELT) (((-1213) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 140 T ELT) (((-1213) $ (-499) (-499) (-333) (-333) (-333)) 144 T ELT) (((-1213) $ (-333) (-333)) 145 T ELT) (((-1213) $ (-333) (-333) (-333)) 152 T ELT)) (-4043 (((-333)) 122 T ELT) (((-333) (-333)) 123 T ELT)) (-4045 (((-333)) 117 T ELT) (((-333) (-333)) 119 T ELT)) (-4044 (((-333)) 120 T ELT) (((-333) (-333)) 121 T ELT)) (-4041 (((-333)) 126 T ELT) (((-333) (-333)) 127 T ELT)) (-4042 (((-333)) 124 T ELT) (((-333) (-333)) 125 T ELT)) (-4023 (((-1213) $ (-333) (-333)) 171 T ELT)) (-4033 (((-1213) $ (-1099)) 153 T ELT)) (-4038 (((-1073 (-179)) $) 68 T ELT) (($ $ (-1073 (-179))) 69 T ELT)) (-4019 (((-1213) $ (-1099)) 187 T ELT)) (-4018 (((-1213) $ (-1099)) 188 T ELT)) (-4025 (((-1213) $ (-333) (-333)) 151 T ELT) (((-1213) $ (-499) (-499)) 168 T ELT)) (-4034 (((-1213) $ (-857) (-857)) 160 T ELT)) (-4014 (((-1213) $) 137 T ELT)) (-4022 (((-1213) $ (-1099)) 186 T ELT)) (-4027 (((-1213) $ (-1099)) 134 T ELT)) (-4036 (((-599 (-220)) $) 70 T ELT) (($ $ (-599 (-220))) 71 T ELT)) (-4035 (((-1213) $ (-714) (-714)) 159 T ELT)) (-4037 (((-1213) $ (-714) (-881 (-179))) 193 T ELT)) (-4039 (($ $) 73 T ELT) (($ (-1073 (-179)) (-1099)) 74 T ELT) (($ (-1073 (-179)) (-599 (-220))) 75 T ELT)) (-4016 (((-1213) $ (-333) (-333) (-333)) 131 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-4010 (((-499) $) 128 T ELT)) (-4015 (((-1213) $ (-333)) 173 T ELT)) (-4020 (((-1213) $ (-333)) 191 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4021 (((-1213) $ (-333)) 190 T ELT)) (-4026 (((-1213) $ (-1099)) 136 T ELT)) (-4032 (((-1213) $ (-714) (-714) (-857) (-857)) 158 T ELT)) (-4028 (((-1213) $ (-1099)) 133 T ELT)) (-4030 (((-1213) $ (-1099)) 135 T ELT)) (-4013 (((-1213) $ (-130) (-130)) 157 T ELT)) (-4096 (((-797) $) 166 T ELT)) (-4011 (((-1213) $) 138 T ELT)) (-4017 (((-1213) $ (-1099)) 189 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-4029 (((-1213) $ (-1099)) 132 T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-1211) (-13 (-1041) (-10 -8 (-15 -4045 ((-333))) (-15 -4045 ((-333) (-333))) (-15 -4044 ((-333))) (-15 -4044 ((-333) (-333))) (-15 -4043 ((-333))) (-15 -4043 ((-333) (-333))) (-15 -4042 ((-333))) (-15 -4042 ((-333) (-333))) (-15 -4041 ((-333))) (-15 -4041 ((-333) (-333))) (-15 -4040 ($)) (-15 -4039 ($ $)) (-15 -4039 ($ (-1073 (-179)) (-1099))) (-15 -4039 ($ (-1073 (-179)) (-599 (-220)))) (-15 -4038 ((-1073 (-179)) $)) (-15 -4038 ($ $ (-1073 (-179)))) (-15 -4037 ((-1213) $ (-714) (-881 (-179)))) (-15 -4036 ((-599 (-220)) $)) (-15 -4036 ($ $ (-599 (-220)))) (-15 -4035 ((-1213) $ (-714) (-714))) (-15 -4034 ((-1213) $ (-857) (-857))) (-15 -4033 ((-1213) $ (-1099))) (-15 -4032 ((-1213) $ (-714) (-714) (-857) (-857))) (-15 -4031 ((-1213) $ (-333) (-333) (-333) (-333) (-333))) (-15 -4031 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $)) (-15 -4031 ((-1213) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -4031 ((-1213) $ (-499) (-499) (-333) (-333) (-333))) (-15 -4031 ((-1213) $ (-333) (-333))) (-15 -4031 ((-1213) $ (-333) (-333) (-333))) (-15 -4030 ((-1213) $ (-1099))) (-15 -4029 ((-1213) $ (-1099))) (-15 -4028 ((-1213) $ (-1099))) (-15 -4027 ((-1213) $ (-1099))) (-15 -4026 ((-1213) $ (-1099))) (-15 -4025 ((-1213) $ (-333) (-333))) (-15 -4025 ((-1213) $ (-499) (-499))) (-15 -4024 ((-1213) $ (-333))) (-15 -4024 ((-1213) $ (-333) (-333) (-333))) (-15 -4023 ((-1213) $ (-333) (-333))) (-15 -4022 ((-1213) $ (-1099))) (-15 -4021 ((-1213) $ (-333))) (-15 -4020 ((-1213) $ (-333))) (-15 -4019 ((-1213) $ (-1099))) (-15 -4018 ((-1213) $ (-1099))) (-15 -4017 ((-1213) $ (-1099))) (-15 -4016 ((-1213) $ (-333) (-333) (-333))) (-15 -4015 ((-1213) $ (-333))) (-15 -4014 ((-1213) $)) (-15 -4013 ((-1213) $ (-130) (-130))) (-15 -4012 ((-1099) $ (-1099))) (-15 -4012 ((-1099) $ (-1099) (-1099))) (-15 -4012 ((-1099) $ (-1099) (-599 (-1099)))) (-15 -4011 ((-1213) $)) (-15 -4010 ((-499) $))))) (T -1211)) +((-4045 (*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) (-4045 (*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) (-4044 (*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) (-4044 (*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) (-4043 (*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) (-4043 (*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) (-4042 (*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) (-4042 (*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) (-4041 (*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) (-4041 (*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) (-4040 (*1 *1) (-5 *1 (-1211))) (-4039 (*1 *1 *1) (-5 *1 (-1211))) (-4039 (*1 *1 *2 *3) (-12 (-5 *2 (-1073 (-179))) (-5 *3 (-1099)) (-5 *1 (-1211)))) (-4039 (*1 *1 *2 *3) (-12 (-5 *2 (-1073 (-179))) (-5 *3 (-599 (-220))) (-5 *1 (-1211)))) (-4038 (*1 *2 *1) (-12 (-5 *2 (-1073 (-179))) (-5 *1 (-1211)))) (-4038 (*1 *1 *1 *2) (-12 (-5 *2 (-1073 (-179))) (-5 *1 (-1211)))) (-4037 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-714)) (-5 *4 (-881 (-179))) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4036 (*1 *2 *1) (-12 (-5 *2 (-599 (-220))) (-5 *1 (-1211)))) (-4036 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-220))) (-5 *1 (-1211)))) (-4035 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4034 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4033 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4032 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-714)) (-5 *4 (-857)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4031 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-1211)))) (-4031 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4031 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-499)) (-5 *4 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4031 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4031 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4030 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4029 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4028 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4027 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4026 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4025 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4025 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-499)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4024 (*1 *2 *1 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4024 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4023 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4022 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4021 (*1 *2 *1 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4020 (*1 *2 *1 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4019 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4018 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4017 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4016 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4015 (*1 *2 *1 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4014 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4013 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4012 (*1 *2 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1211)))) (-4012 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1211)))) (-4012 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-599 (-1099))) (-5 *2 (-1099)) (-5 *1 (-1211)))) (-4011 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1211)))) (-4010 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1211))))) +((-4054 (((-599 (-1099)) (-599 (-1099))) 103 T ELT) (((-599 (-1099))) 96 T ELT)) (-4055 (((-599 (-1099))) 94 T ELT)) (-4052 (((-599 (-857)) (-599 (-857))) 69 T ELT) (((-599 (-857))) 64 T ELT)) (-4051 (((-599 (-714)) (-599 (-714))) 61 T ELT) (((-599 (-714))) 55 T ELT)) (-4053 (((-1213)) 71 T ELT)) (-4057 (((-857) (-857)) 87 T ELT) (((-857)) 86 T ELT)) (-4056 (((-857) (-857)) 85 T ELT) (((-857)) 84 T ELT)) (-4049 (((-808) (-808)) 81 T ELT) (((-808)) 80 T ELT)) (-4059 (((-179)) 91 T ELT) (((-179) (-333)) 93 T ELT)) (-4058 (((-857)) 88 T ELT) (((-857) (-857)) 89 T ELT)) (-4050 (((-857) (-857)) 83 T ELT) (((-857)) 82 T ELT)) (-4046 (((-808) (-808)) 75 T ELT) (((-808)) 73 T ELT)) (-4047 (((-808) (-808)) 77 T ELT) (((-808)) 76 T ELT)) (-4048 (((-808) (-808)) 79 T ELT) (((-808)) 78 T ELT))) +(((-1212) (-10 -7 (-15 -4046 ((-808))) (-15 -4046 ((-808) (-808))) (-15 -4047 ((-808))) (-15 -4047 ((-808) (-808))) (-15 -4048 ((-808))) (-15 -4048 ((-808) (-808))) (-15 -4049 ((-808))) (-15 -4049 ((-808) (-808))) (-15 -4050 ((-857))) (-15 -4050 ((-857) (-857))) (-15 -4051 ((-599 (-714)))) (-15 -4051 ((-599 (-714)) (-599 (-714)))) (-15 -4052 ((-599 (-857)))) (-15 -4052 ((-599 (-857)) (-599 (-857)))) (-15 -4053 ((-1213))) (-15 -4054 ((-599 (-1099)))) (-15 -4054 ((-599 (-1099)) (-599 (-1099)))) (-15 -4055 ((-599 (-1099)))) (-15 -4056 ((-857))) (-15 -4057 ((-857))) (-15 -4056 ((-857) (-857))) (-15 -4057 ((-857) (-857))) (-15 -4058 ((-857) (-857))) (-15 -4058 ((-857))) (-15 -4059 ((-179) (-333))) (-15 -4059 ((-179))))) (T -1212)) +((-4059 (*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1212)))) (-4059 (*1 *2 *3) (-12 (-5 *3 (-333)) (-5 *2 (-179)) (-5 *1 (-1212)))) (-4058 (*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) (-4058 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) (-4057 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) (-4056 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) (-4057 (*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) (-4056 (*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) (-4055 (*1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1212)))) (-4054 (*1 *2 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1212)))) (-4054 (*1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1212)))) (-4053 (*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1212)))) (-4052 (*1 *2 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-1212)))) (-4052 (*1 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-1212)))) (-4051 (*1 *2 *2) (-12 (-5 *2 (-599 (-714))) (-5 *1 (-1212)))) (-4051 (*1 *2) (-12 (-5 *2 (-599 (-714))) (-5 *1 (-1212)))) (-4050 (*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) (-4050 (*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) (-4049 (*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) (-4049 (*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) (-4048 (*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) (-4048 (*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) (-4047 (*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) (-4047 (*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) (-4046 (*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) (-4046 (*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212))))) +((-4060 (($) 6 T ELT)) (-4096 (((-797) $) 9 T ELT))) +(((-1213) (-13 (-568 (-797)) (-10 -8 (-15 -4060 ($))))) (T -1213)) +((-4060 (*1 *1) (-5 *1 (-1213)))) +((-4099 (($ $ |#2|) 10 T ELT))) +(((-1214 |#1| |#2|) (-10 -7 (-15 -4099 (|#1| |#1| |#2|))) (-1215 |#2|) (-318)) (T -1214)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4061 (((-107)) 38 T ELT)) (-4096 (((-797) $) 13 T ELT)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ |#1|) 39 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-1215 |#1|) (-113) (-318)) (T -1215)) +((-4099 (*1 *1 *1 *2) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-318)))) (-4061 (*1 *2) (-12 (-4 *1 (-1215 *3)) (-4 *3 (-318)) (-5 *2 (-107))))) +(-13 (-675 |t#1|) (-10 -8 (-15 -4099 ($ $ |t#1|)) (-15 -4061 ((-107))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-606 |#1|) . T) ((-598 |#1|) . T) ((-675 |#1|) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-1041) . T) ((-1157) . T)) +((-4066 (((-599 (-1150 |#1|)) (-1117) (-1150 |#1|)) 83 T ELT)) (-4064 (((-1095 (-1095 (-884 |#1|))) (-1117) (-1095 (-884 |#1|))) 63 T ELT)) (-4067 (((-1 (-1095 (-1150 |#1|)) (-1095 (-1150 |#1|))) (-714) (-1150 |#1|) (-1095 (-1150 |#1|))) 74 T ELT)) (-4062 (((-1 (-1095 (-884 |#1|)) (-1095 (-884 |#1|))) (-714)) 65 T ELT)) (-4065 (((-1 (-1111 (-884 |#1|)) (-884 |#1|)) (-1117)) 32 T ELT)) (-4063 (((-1 (-1095 (-884 |#1|)) (-1095 (-884 |#1|))) (-714)) 64 T ELT))) +(((-1216 |#1|) (-10 -7 (-15 -4062 ((-1 (-1095 (-884 |#1|)) (-1095 (-884 |#1|))) (-714))) (-15 -4063 ((-1 (-1095 (-884 |#1|)) (-1095 (-884 |#1|))) (-714))) (-15 -4064 ((-1095 (-1095 (-884 |#1|))) (-1117) (-1095 (-884 |#1|)))) (-15 -4065 ((-1 (-1111 (-884 |#1|)) (-884 |#1|)) (-1117))) (-15 -4066 ((-599 (-1150 |#1|)) (-1117) (-1150 |#1|))) (-15 -4067 ((-1 (-1095 (-1150 |#1|)) (-1095 (-1150 |#1|))) (-714) (-1150 |#1|) (-1095 (-1150 |#1|))))) (-318)) (T -1216)) +((-4067 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-714)) (-4 *6 (-318)) (-5 *4 (-1150 *6)) (-5 *2 (-1 (-1095 *4) (-1095 *4))) (-5 *1 (-1216 *6)) (-5 *5 (-1095 *4)))) (-4066 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-4 *5 (-318)) (-5 *2 (-599 (-1150 *5))) (-5 *1 (-1216 *5)) (-5 *4 (-1150 *5)))) (-4065 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1 (-1111 (-884 *4)) (-884 *4))) (-5 *1 (-1216 *4)) (-4 *4 (-318)))) (-4064 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-4 *5 (-318)) (-5 *2 (-1095 (-1095 (-884 *5)))) (-5 *1 (-1216 *5)) (-5 *4 (-1095 (-884 *5))))) (-4063 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1 (-1095 (-884 *4)) (-1095 (-884 *4)))) (-5 *1 (-1216 *4)) (-4 *4 (-318)))) (-4062 (*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1 (-1095 (-884 *4)) (-1095 (-884 *4)))) (-5 *1 (-1216 *4)) (-4 *4 (-318))))) +((-4069 (((-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|))) |#2|) 80 T ELT)) (-4068 (((-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|)))) 79 T ELT))) +(((-1217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4068 ((-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|))))) (-15 -4069 ((-2 (|:| -2113 (-647 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-647 |#2|))) |#2|))) (-305) (-1183 |#1|) (-1183 |#2|) (-364 |#2| |#3|)) (T -1217)) +((-4069 (*1 *2 *3) (-12 (-4 *4 (-305)) (-4 *3 (-1183 *4)) (-4 *5 (-1183 *3)) (-5 *2 (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) (-5 *1 (-1217 *4 *3 *5 *6)) (-4 *6 (-364 *3 *5)))) (-4068 (*1 *2) (-12 (-4 *3 (-305)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 *4)) (-5 *2 (-2 (|:| -2113 (-647 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-647 *4)))) (-5 *1 (-1217 *3 *4 *5 *6)) (-4 *6 (-364 *4 *5))))) +((-2687 (((-85) $ $) NIL T ELT)) (-4070 (((-1075) $) 11 T ELT)) (-4071 (((-1075) $) 9 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 17 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-1218) (-13 (-1023) (-10 -8 (-15 -4071 ((-1075) $)) (-15 -4070 ((-1075) $))))) (T -1218)) +((-4071 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1218)))) (-4070 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1218))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4072 (((-1075) $) 9 T ELT)) (-4096 (((-797) $) 15 T ELT) (($ (-1122)) NIL T ELT) (((-1122) $) NIL T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT))) +(((-1219) (-13 (-1023) (-10 -8 (-15 -4072 ((-1075) $))))) (T -1219)) +((-4072 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1219))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 58 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 81 T ELT) (($ (-499)) NIL T ELT) (($ |#4|) 65 T ELT) ((|#4| $) 70 T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3248 (((-714)) NIL T CONST)) (-4073 (((-1213) (-714)) 16 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 36 T CONST)) (-2785 (($) 84 T CONST)) (-3174 (((-85) $ $) 87 T ELT)) (-4099 (((-3 $ #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-3987 (($ $) 89 T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 63 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 91 T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-1220 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-989) (-444 |#4|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-318)) (-15 -4099 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4073 ((-1213) (-714))))) (-989) (-781) (-738) (-888 |#1| |#3| |#2|) (-599 |#2|) (-599 (-714)) (-714)) (T -1220)) +((-4099 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-318)) (-4 *2 (-989)) (-4 *3 (-781)) (-4 *4 (-738)) (-14 *6 (-599 *3)) (-5 *1 (-1220 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-888 *2 *4 *3)) (-14 *7 (-599 (-714))) (-14 *8 (-714)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-714)) (-4 *4 (-989)) (-4 *5 (-781)) (-4 *6 (-738)) (-14 *8 (-599 *5)) (-5 *2 (-1213)) (-5 *1 (-1220 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-888 *4 *6 *5)) (-14 *9 (-599 *3)) (-14 *10 *3)))) +((-2687 (((-85) $ $) NIL T ELT)) (-3831 (((-599 (-2 (|:| -4011 $) (|:| -1795 (-599 |#4|)))) (-599 |#4|)) NIL T ELT)) (-3832 (((-599 $) (-599 |#4|)) 96 T ELT)) (-3204 (((-599 |#3|) $) NIL T ELT)) (-3029 (((-85) $) NIL T ELT)) (-3020 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3843 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3838 ((|#4| |#4| $) NIL T ELT)) (-3030 (((-2 (|:| |under| $) (|:| -3252 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3860 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3025 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-510)) ELT)) (-3028 (((-85) $) NIL (|has| |#1| (-510)) ELT)) (-3839 (((-599 |#4|) (-599 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 31 T ELT)) (-3021 (((-599 |#4|) (-599 |#4|) $) 28 (|has| |#1| (-510)) ELT)) (-3022 (((-599 |#4|) (-599 |#4|) $) NIL (|has| |#1| (-510)) ELT)) (-3295 (((-3 $ #1#) (-599 |#4|)) NIL T ELT)) (-3294 (($ (-599 |#4|)) NIL T ELT)) (-3949 (((-3 $ #1#) $) 78 T ELT)) (-3835 ((|#4| |#4| $) 83 T ELT)) (-1386 (($ $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-3546 (($ |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-510)) ELT)) (-3844 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3833 ((|#4| |#4| $) NIL T ELT)) (-3992 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4145)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4145)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3846 (((-2 (|:| -4011 (-599 |#4|)) (|:| -1795 (-599 |#4|))) $) NIL T ELT)) (-3010 (((-599 |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3845 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3318 ((|#3| $) 84 T ELT)) (-2727 (((-599 |#4|) $) 32 (|has| $ (-6 -4145)) ELT)) (-3383 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT)) (-4076 (((-3 $ #1#) (-599 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-599 |#4|)) 38 T ELT)) (-2051 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4146)) ELT)) (-4108 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-3035 (((-599 |#3|) $) NIL T ELT)) (-3034 (((-85) |#3| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3948 (((-3 |#4| #1#) $) NIL T ELT)) (-3847 (((-599 |#4|) $) 54 T ELT)) (-3841 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3836 ((|#4| |#4| $) 82 T ELT)) (-3849 (((-85) $ $) 93 T ELT)) (-3024 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-510)) ELT)) (-3842 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3837 ((|#4| |#4| $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-3951 (((-3 |#4| #1#) $) 77 T ELT)) (-1387 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3829 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3919 (($ $ |#4|) NIL T ELT)) (-2049 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3918 (($ $ (-599 |#4|) (-599 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-247 |#4|)) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT) (($ $ (-599 (-247 |#4|))) NIL (-12 (|has| |#4| (-263 |#4|)) (|has| |#4| (-1041))) ELT)) (-1248 (((-85) $ $) NIL T ELT)) (-3543 (((-85) $) 75 T ELT)) (-3713 (($) 46 T ELT)) (-4098 (((-714) $) NIL T ELT)) (-2048 (((-714) |#4| $) NIL (-12 (|has| $ (-6 -4145)) (|has| |#4| (-1041))) ELT) (((-714) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3540 (($ $) NIL T ELT)) (-4122 (((-488) $) NIL (|has| |#4| (-569 (-488))) ELT)) (-3670 (($ (-599 |#4|)) NIL T ELT)) (-3031 (($ $ |#3|) NIL T ELT)) (-3033 (($ $ |#3|) NIL T ELT)) (-3834 (($ $) NIL T ELT)) (-3032 (($ $ |#3|) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (((-599 |#4|) $) 63 T ELT)) (-3828 (((-714) $) NIL (|has| |#3| (-323)) ELT)) (-4075 (((-3 $ #1#) (-599 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44 T ELT) (((-3 $ #1#) (-599 |#4|)) 45 T ELT)) (-4074 (((-599 $) (-599 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73 T ELT) (((-599 $) (-599 |#4|)) 74 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3848 (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3464 (-599 |#4|))) #1#) (-599 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3840 (((-85) $ (-1 (-85) |#4| (-599 |#4|))) NIL T ELT)) (-2050 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -4145)) ELT)) (-3830 (((-599 |#3|) $) NIL T ELT)) (-4083 (((-85) |#3| $) NIL T ELT)) (-3174 (((-85) $ $) NIL T ELT)) (-4107 (((-714) $) NIL (|has| $ (-6 -4145)) ELT))) +(((-1221 |#1| |#2| |#3| |#4|) (-13 (-1152 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4076 ((-3 $ #1="failed") (-599 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4076 ((-3 $ #1#) (-599 |#4|))) (-15 -4075 ((-3 $ #1#) (-599 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4075 ((-3 $ #1#) (-599 |#4|))) (-15 -4074 ((-599 $) (-599 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4074 ((-599 $) (-599 |#4|))))) (-510) (-738) (-781) (-1005 |#1| |#2| |#3|)) (T -1221)) +((-4076 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-599 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-1221 *5 *6 *7 *8)))) (-4076 (*1 *1 *2) (|partial| -12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-1221 *3 *4 *5 *6)))) (-4075 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-599 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-1221 *5 *6 *7 *8)))) (-4075 (*1 *1 *2) (|partial| -12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-1221 *3 *4 *5 *6)))) (-4074 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1005 *6 *7 *8)) (-4 *6 (-510)) (-4 *7 (-738)) (-4 *8 (-781)) (-5 *2 (-599 (-1221 *6 *7 *8 *9))) (-5 *1 (-1221 *6 *7 *8 *9)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 (-1221 *4 *5 *6 *7))) (-5 *1 (-1221 *4 *5 *6 *7))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3874 (($) 22 T CONST)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#1|) 50 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) +(((-1222 |#1|) (-113) (-989)) (T -1222)) +NIL +(-13 (-989) (-82 |t#1| |t#1|) (-571 |t#1|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-73) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-598 |#1|) |has| |#1| (-146)) ((-675 |#1|) |has| |#1| (-146)) ((-684) . T) ((-991 |#1|) . T) ((-996 |#1|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T)) +((-2687 (((-85) $ $) 67 T ELT)) (-3326 (((-85) $) NIL T ELT)) (-4084 (((-599 |#1|) $) 52 T ELT)) (-4097 (($ $ (-714)) 46 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4085 (($ $ (-714)) 24 (|has| |#2| (-146)) ELT) (($ $ $) 25 (|has| |#2| (-146)) ELT)) (-3874 (($) NIL T CONST)) (-4089 (($ $ $) 70 T ELT) (($ $ (-762 |#1|)) 56 T ELT) (($ $ |#1|) 60 T ELT)) (-3295 (((-3 (-762 |#1|) #1#) $) NIL T ELT)) (-3294 (((-762 |#1|) $) NIL T ELT)) (-4109 (($ $) 39 T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-4101 (((-85) $) NIL T ELT)) (-4100 (($ $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-4088 (($ (-762 |#1|) |#2|) 38 T ELT)) (-4086 (($ $) 40 T ELT)) (-4091 (((-2 (|:| |k| (-762 |#1|)) (|:| |c| |#2|)) $) 12 T ELT)) (-4105 (((-762 |#1|) $) NIL T ELT)) (-4106 (((-762 |#1|) $) 41 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4090 (($ $ $) 69 T ELT) (($ $ (-762 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-1842 (((-2 (|:| |k| (-762 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3015 (((-762 |#1|) $) 35 T ELT)) (-3312 ((|#2| $) 37 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4098 (((-714) $) 43 T ELT)) (-4103 (((-85) $) 47 T ELT)) (-4102 ((|#2| $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-762 |#1|)) 30 T ELT) (($ |#1|) 31 T ELT) (($ |#2|) NIL T ELT) (($ (-499)) NIL T ELT)) (-3967 (((-599 |#2|) $) NIL T ELT)) (-3827 ((|#2| $ (-762 |#1|)) NIL T ELT)) (-4104 ((|#2| $ $) 76 T ELT) ((|#2| $ (-762 |#1|)) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 13 T CONST)) (-2785 (($) 19 T CONST)) (-2784 (((-599 (-2 (|:| |k| (-762 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3174 (((-85) $ $) 44 T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 28 T ELT)) (** (($ $ (-714)) NIL T ELT) (($ $ (-857)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ |#2| $) 27 T ELT) (($ $ |#2|) 68 T ELT) (($ |#2| (-762 |#1|)) NIL T ELT) (($ |#1| $) 33 T ELT) (($ $ $) NIL T ELT))) +(((-1223 |#1| |#2|) (-13 (-339 |#2| (-762 |#1|)) (-1230 |#1| |#2|)) (-781) (-989)) (T -1223)) +NIL +((-4092 ((|#3| |#3| (-714)) 28 T ELT)) (-4093 ((|#3| |#3| (-714)) 34 T ELT)) (-4077 ((|#3| |#3| |#3| (-714)) 35 T ELT))) +(((-1224 |#1| |#2| |#3|) (-10 -7 (-15 -4093 (|#3| |#3| (-714))) (-15 -4092 (|#3| |#3| (-714))) (-15 -4077 (|#3| |#3| |#3| (-714)))) (-13 (-989) (-675 (-361 (-499)))) (-781) (-1230 |#2| |#1|)) (T -1224)) +((-4077 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-714)) (-4 *4 (-13 (-989) (-675 (-361 (-499))))) (-4 *5 (-781)) (-5 *1 (-1224 *4 *5 *2)) (-4 *2 (-1230 *5 *4)))) (-4092 (*1 *2 *2 *3) (-12 (-5 *3 (-714)) (-4 *4 (-13 (-989) (-675 (-361 (-499))))) (-4 *5 (-781)) (-5 *1 (-1224 *4 *5 *2)) (-4 *2 (-1230 *5 *4)))) (-4093 (*1 *2 *2 *3) (-12 (-5 *3 (-714)) (-4 *4 (-13 (-989) (-675 (-361 (-499))))) (-4 *5 (-781)) (-5 *1 (-1224 *4 *5 *2)) (-4 *2 (-1230 *5 *4))))) +((-4082 (((-85) $) 15 T ELT)) (-4083 (((-85) $) 14 T ELT)) (-4078 (($ $) 19 T ELT) (($ $ (-714)) 21 T ELT))) +(((-1225 |#1| |#2|) (-10 -7 (-15 -4078 (|#1| |#1| (-714))) (-15 -4078 (|#1| |#1|)) (-15 -4082 ((-85) |#1|)) (-15 -4083 ((-85) |#1|))) (-1226 |#2|) (-318)) (T -1225)) +NIL +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-2165 (((-2 (|:| -1870 $) (|:| -4132 $) (|:| |associate| $)) $) 52 T ELT)) (-2164 (($ $) 51 T ELT)) (-2162 (((-85) $) 49 T ELT)) (-4082 (((-85) $) 111 T ELT)) (-4079 (((-714)) 107 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-3925 (($ $) 88 T ELT)) (-4121 (((-359 $) $) 87 T ELT)) (-1678 (((-85) $ $) 72 T ELT)) (-3874 (($) 22 T CONST)) (-3295 (((-3 |#1| "failed") $) 118 T ELT)) (-3294 ((|#1| $) 119 T ELT)) (-2683 (($ $ $) 68 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-2682 (($ $ $) 69 T ELT)) (-2862 (((-2 (|:| -4104 (-599 $)) (|:| -2527 $)) (-599 $)) 63 T ELT)) (-1864 (($ $ (-714)) 104 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT) (($ $) 103 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3873 (((-85) $) 86 T ELT)) (-3922 (((-766 (-857)) $) 101 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-2528 (((-85) $) 40 T ELT)) (-1675 (((-3 (-599 $) #1="failed") (-599 $) $) 65 T ELT)) (-1993 (($ $ $) 57 T ELT) (($ (-599 $)) 56 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-2601 (($ $) 85 T ELT)) (-4081 (((-85) $) 110 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-2829 (((-1111 $) (-1111 $) (-1111 $)) 55 T ELT)) (-3282 (($ $ $) 59 T ELT) (($ (-599 $)) 58 T ELT)) (-3882 (((-359 $) $) 89 T ELT)) (-4080 (((-766 (-857))) 108 T ELT)) (-1676 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2527 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3606 (((-3 $ "failed") $ $) 53 T ELT)) (-2861 (((-649 (-599 $)) (-599 $) $) 62 T ELT)) (-1677 (((-714) $) 71 T ELT)) (-3000 (((-2 (|:| -2075 $) (|:| -3023 $)) $ $) 70 T ELT)) (-1865 (((-3 (-714) "failed") $ $) 102 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-4061 (((-107)) 116 T ELT)) (-4098 (((-766 (-857)) $) 109 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ $) 54 T ELT) (($ (-361 (-499))) 81 T ELT) (($ |#1|) 117 T ELT)) (-2823 (((-649 $) $) 100 (-3677 (|has| |#1| (-118)) (|has| |#1| (-323))) ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2163 (((-85) $ $) 50 T ELT)) (-4083 (((-85) $) 112 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-4078 (($ $) 106 (|has| |#1| (-323)) ELT) (($ $ (-714)) 105 (|has| |#1| (-323)) ELT)) (-3174 (((-85) $ $) 8 T ELT)) (-4099 (($ $ $) 80 T ELT) (($ $ |#1|) 115 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT) (($ $ (-499)) 84 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-361 (-499))) 83 T ELT) (($ (-361 (-499)) $) 82 T ELT) (($ $ |#1|) 114 T ELT) (($ |#1| $) 113 T ELT))) +(((-1226 |#1|) (-113) (-318)) (T -1226)) +((-4083 (*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-85)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-85)))) (-4081 (*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-85)))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-766 (-857))))) (-4080 (*1 *2) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-766 (-857))))) (-4079 (*1 *2) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-714)))) (-4078 (*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-318)) (-4 *2 (-323)))) (-4078 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-4 *3 (-323))))) +(-13 (-318) (-978 |t#1|) (-1215 |t#1|) (-10 -8 (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-356)) |%noBranch|) (-15 -4083 ((-85) $)) (-15 -4082 ((-85) $)) (-15 -4081 ((-85) $)) (-15 -4098 ((-766 (-857)) $)) (-15 -4080 ((-766 (-857)))) (-15 -4079 ((-714))) (IF (|has| |t#1| (-323)) (PROGN (-6 (-356)) (-15 -4078 ($ $)) (-15 -4078 ($ $ (-714)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-361 (-499))) . T) ((-38 $) . T) ((-73) . T) ((-82 (-361 (-499)) (-361 (-499))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) -3677 (|has| |#1| (-323)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-571 (-361 (-499))) . T) ((-571 (-499)) . T) ((-571 |#1|) . T) ((-571 $) . T) ((-568 (-797)) . T) ((-146) . T) ((-200) . T) ((-244) . T) ((-261) . T) ((-318) . T) ((-356) -3677 (|has| |#1| (-323)) (|has| |#1| (-118))) ((-406) . T) ((-510) . T) ((-604 (-361 (-499))) . T) ((-604 (-499)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-606 (-361 (-499))) . T) ((-606 |#1|) . T) ((-606 $) . T) ((-598 (-361 (-499))) . T) ((-598 |#1|) . T) ((-598 $) . T) ((-675 (-361 (-499))) . T) ((-675 |#1|) . T) ((-675 $) . T) ((-684) . T) ((-859) . T) ((-978 |#1|) . T) ((-991 (-361 (-499))) . T) ((-991 |#1|) . T) ((-991 $) . T) ((-996 (-361 (-499))) . T) ((-996 |#1|) . T) ((-996 $) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1162) . T) ((-1215 |#1|) . T)) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-4084 (((-599 |#1|) $) 52 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-4085 (($ $ $) 55 (|has| |#2| (-146)) ELT) (($ $ (-714)) 54 (|has| |#2| (-146)) ELT)) (-3874 (($) 22 T CONST)) (-4089 (($ $ |#1|) 66 T ELT) (($ $ (-762 |#1|)) 65 T ELT) (($ $ $) 64 T ELT)) (-3295 (((-3 (-762 |#1|) "failed") $) 76 T ELT)) (-3294 (((-762 |#1|) $) 77 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-4101 (((-85) $) 57 T ELT)) (-4100 (($ $) 56 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-4087 (((-85) $) 62 T ELT)) (-4088 (($ (-762 |#1|) |#2|) 63 T ELT)) (-4086 (($ $) 61 T ELT)) (-4091 (((-2 (|:| |k| (-762 |#1|)) (|:| |c| |#2|)) $) 72 T ELT)) (-4105 (((-762 |#1|) $) 73 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) 53 T ELT)) (-4090 (($ $ |#1|) 69 T ELT) (($ $ (-762 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4103 (((-85) $) 59 T ELT)) (-4102 ((|#2| $) 58 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#2|) 80 T ELT) (($ (-762 |#1|)) 75 T ELT) (($ |#1|) 60 T ELT)) (-4104 ((|#2| $ (-762 |#1|)) 71 T ELT) ((|#2| $ $) 70 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 79 T ELT) (($ $ |#2|) 78 T ELT) (($ |#1| $) 74 T ELT))) +(((-1227 |#1| |#2|) (-113) (-781) (-989)) (T -1227)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1227 *3 *2)) (-4 *3 (-781)) (-4 *2 (-989)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) (-4105 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-762 *3)))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-2 (|:| |k| (-762 *3)) (|:| |c| *4))))) (-4104 (*1 *2 *1 *3) (-12 (-5 *3 (-762 *4)) (-4 *1 (-1227 *4 *2)) (-4 *4 (-781)) (-4 *2 (-989)))) (-4104 (*1 *2 *1 *1) (-12 (-4 *1 (-1227 *3 *2)) (-4 *3 (-781)) (-4 *2 (-989)))) (-4090 (*1 *1 *1 *2) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) (-4090 (*1 *1 *1 *2) (-12 (-5 *2 (-762 *3)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)))) (-4090 (*1 *1 *1 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) (-4089 (*1 *1 *1 *2) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) (-4089 (*1 *1 *1 *2) (-12 (-5 *2 (-762 *3)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)))) (-4089 (*1 *1 *1 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) (-4088 (*1 *1 *2 *3) (-12 (-5 *2 (-762 *4)) (-4 *4 (-781)) (-4 *1 (-1227 *4 *3)) (-4 *3 (-989)))) (-4087 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-85)))) (-4086 (*1 *1 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) (-4096 (*1 *1 *2) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) (-4103 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-85)))) (-4102 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *2)) (-4 *3 (-781)) (-4 *2 (-989)))) (-4101 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-85)))) (-4100 (*1 *1 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) (-4085 (*1 *1 *1 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)) (-4 *3 (-146)))) (-4085 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-4 *4 (-146)))) (-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-599 *3))))) +(-13 (-989) (-1222 |t#2|) (-978 (-762 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4105 ((-762 |t#1|) $)) (-15 -4091 ((-2 (|:| |k| (-762 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4104 (|t#2| $ (-762 |t#1|))) (-15 -4104 (|t#2| $ $)) (-15 -4090 ($ $ |t#1|)) (-15 -4090 ($ $ (-762 |t#1|))) (-15 -4090 ($ $ $)) (-15 -4089 ($ $ |t#1|)) (-15 -4089 ($ $ (-762 |t#1|))) (-15 -4089 ($ $ $)) (-15 -4088 ($ (-762 |t#1|) |t#2|)) (-15 -4087 ((-85) $)) (-15 -4086 ($ $)) (-15 -4096 ($ |t#1|)) (-15 -4103 ((-85) $)) (-15 -4102 (|t#2| $)) (-15 -4101 ((-85) $)) (-15 -4100 ($ $)) (IF (|has| |t#2| (-146)) (PROGN (-15 -4085 ($ $ $)) (-15 -4085 ($ $ (-714)))) |%noBranch|) (-15 -4108 ($ (-1 |t#2| |t#2|) $)) (-15 -4084 ((-599 |t#1|) $)) (IF (|has| |t#2| (-6 -4138)) (-6 -4138) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-73) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 (-762 |#1|)) . T) ((-571 |#2|) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#2|) . T) ((-604 $) . T) ((-606 |#2|) . T) ((-606 $) . T) ((-598 |#2|) |has| |#2| (-146)) ((-675 |#2|) |has| |#2| (-146)) ((-684) . T) ((-978 (-762 |#1|)) . T) ((-991 |#2|) . T) ((-996 |#2|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1222 |#2|) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-4084 (((-599 |#1|) $) 97 T ELT)) (-4097 (($ $ (-714)) 101 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4085 (($ $ $) NIL (|has| |#2| (-146)) ELT) (($ $ (-714)) NIL (|has| |#2| (-146)) ELT)) (-3874 (($) NIL T CONST)) (-4089 (($ $ |#1|) NIL T ELT) (($ $ (-762 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3295 (((-3 (-762 |#1|) #1#) $) NIL T ELT) (((-3 (-828 |#1|) #1#) $) NIL T ELT)) (-3294 (((-762 |#1|) $) NIL T ELT) (((-828 |#1|) $) NIL T ELT)) (-4109 (($ $) 100 T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-4101 (((-85) $) 89 T ELT)) (-4100 (($ $) 92 T ELT)) (-4094 (($ $ $ (-714)) 102 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-4088 (($ (-762 |#1|) |#2|) NIL T ELT) (($ (-828 |#1|) |#2|) 28 T ELT)) (-4086 (($ $) 118 T ELT)) (-4091 (((-2 (|:| |k| (-762 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-4105 (((-762 |#1|) $) NIL T ELT)) (-4106 (((-762 |#1|) $) NIL T ELT)) (-4108 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4090 (($ $ |#1|) NIL T ELT) (($ $ (-762 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-4092 (($ $ (-714)) 111 (|has| |#2| (-675 (-361 (-499)))) ELT)) (-1842 (((-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3015 (((-828 |#1|) $) 82 T ELT)) (-3312 ((|#2| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4093 (($ $ (-714)) 108 (|has| |#2| (-675 (-361 (-499)))) ELT)) (-4098 (((-714) $) 98 T ELT)) (-4103 (((-85) $) 83 T ELT)) (-4102 ((|#2| $) 87 T ELT)) (-4096 (((-797) $) 68 T ELT) (($ (-499)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-762 |#1|)) NIL T ELT) (($ |#1|) 70 T ELT) (($ (-828 |#1|)) NIL T ELT) (($ (-622 |#1| |#2|)) 47 T ELT) (((-1223 |#1| |#2|) $) 75 T ELT) (((-1232 |#1| |#2|) $) 80 T ELT)) (-3967 (((-599 |#2|) $) NIL T ELT)) (-3827 ((|#2| $ (-828 |#1|)) NIL T ELT)) (-4104 ((|#2| $ (-762 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 21 T CONST)) (-2785 (($) 27 T CONST)) (-2784 (((-599 (-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-4095 (((-3 (-622 |#1| |#2|) #1#) $) 117 T ELT)) (-3174 (((-85) $ $) 76 T ELT)) (-3987 (($ $) 110 T ELT) (($ $ $) 109 T ELT)) (-3989 (($ $ $) 20 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-828 |#1|)) NIL T ELT))) +(((-1228 |#1| |#2|) (-13 (-1230 |#1| |#2|) (-339 |#2| (-828 |#1|)) (-10 -8 (-15 -4096 ($ (-622 |#1| |#2|))) (-15 -4096 ((-1223 |#1| |#2|) $)) (-15 -4096 ((-1232 |#1| |#2|) $)) (-15 -4095 ((-3 (-622 |#1| |#2|) "failed") $)) (-15 -4094 ($ $ $ (-714))) (IF (|has| |#2| (-675 (-361 (-499)))) (PROGN (-15 -4093 ($ $ (-714))) (-15 -4092 ($ $ (-714)))) |%noBranch|))) (-781) (-146)) (T -1228)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-622 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) (-5 *1 (-1228 *3 *4)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-1223 *3 *4)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-1232 *3 *4)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)))) (-4095 (*1 *2 *1) (|partial| -12 (-5 *2 (-622 *3 *4)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)))) (-4094 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)))) (-4093 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-1228 *3 *4)) (-4 *4 (-675 (-361 (-499)))) (-4 *3 (-781)) (-4 *4 (-146)))) (-4092 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-1228 *3 *4)) (-4 *4 (-675 (-361 (-499)))) (-4 *3 (-781)) (-4 *4 (-146))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-4084 (((-599 (-1117)) $) NIL T ELT)) (-4112 (($ (-1223 (-1117) |#1|)) NIL T ELT)) (-4097 (($ $ (-714)) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4085 (($ $ $) NIL (|has| |#1| (-146)) ELT) (($ $ (-714)) NIL (|has| |#1| (-146)) ELT)) (-3874 (($) NIL T CONST)) (-4089 (($ $ (-1117)) NIL T ELT) (($ $ (-762 (-1117))) NIL T ELT) (($ $ $) NIL T ELT)) (-3295 (((-3 (-762 (-1117)) #1#) $) NIL T ELT)) (-3294 (((-762 (-1117)) $) NIL T ELT)) (-3607 (((-3 $ #1#) $) NIL T ELT)) (-4101 (((-85) $) NIL T ELT)) (-4100 (($ $) NIL T ELT)) (-2528 (((-85) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-4088 (($ (-762 (-1117)) |#1|) NIL T ELT)) (-4086 (($ $) NIL T ELT)) (-4091 (((-2 (|:| |k| (-762 (-1117))) (|:| |c| |#1|)) $) NIL T ELT)) (-4105 (((-762 (-1117)) $) NIL T ELT)) (-4106 (((-762 (-1117)) $) NIL T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4090 (($ $ (-1117)) NIL T ELT) (($ $ (-762 (-1117))) NIL T ELT) (($ $ $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4113 (((-1223 (-1117) |#1|) $) NIL T ELT)) (-4098 (((-714) $) NIL T ELT)) (-4103 (((-85) $) NIL T ELT)) (-4102 ((|#1| $) NIL T ELT)) (-4096 (((-797) $) NIL T ELT) (($ (-499)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-762 (-1117))) NIL T ELT) (($ (-1117)) NIL T ELT)) (-4104 ((|#1| $ (-762 (-1117))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3248 (((-714)) NIL T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) NIL T CONST)) (-4111 (((-599 (-2 (|:| |k| (-1117)) (|:| |c| $))) $) NIL T ELT)) (-2785 (($) NIL T CONST)) (-3174 (((-85) $ $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) NIL T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) NIL T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1117) $) NIL T ELT))) +(((-1229 |#1|) (-13 (-1230 (-1117) |#1|) (-10 -8 (-15 -4113 ((-1223 (-1117) |#1|) $)) (-15 -4112 ($ (-1223 (-1117) |#1|))) (-15 -4111 ((-599 (-2 (|:| |k| (-1117)) (|:| |c| $))) $)))) (-989)) (T -1229)) +((-4113 (*1 *2 *1) (-12 (-5 *2 (-1223 (-1117) *3)) (-5 *1 (-1229 *3)) (-4 *3 (-989)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-1223 (-1117) *3)) (-4 *3 (-989)) (-5 *1 (-1229 *3)))) (-4111 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| |k| (-1117)) (|:| |c| (-1229 *3))))) (-5 *1 (-1229 *3)) (-4 *3 (-989))))) +((-2687 (((-85) $ $) 7 T ELT)) (-3326 (((-85) $) 21 T ELT)) (-4084 (((-599 |#1|) $) 52 T ELT)) (-4097 (($ $ (-714)) 86 T ELT)) (-1345 (((-3 $ "failed") $ $) 25 T ELT)) (-4085 (($ $ $) 55 (|has| |#2| (-146)) ELT) (($ $ (-714)) 54 (|has| |#2| (-146)) ELT)) (-3874 (($) 22 T CONST)) (-4089 (($ $ |#1|) 66 T ELT) (($ $ (-762 |#1|)) 65 T ELT) (($ $ $) 64 T ELT)) (-3295 (((-3 (-762 |#1|) "failed") $) 76 T ELT)) (-3294 (((-762 |#1|) $) 77 T ELT)) (-3607 (((-3 $ "failed") $) 42 T ELT)) (-4101 (((-85) $) 57 T ELT)) (-4100 (($ $) 56 T ELT)) (-2528 (((-85) $) 40 T ELT)) (-4087 (((-85) $) 62 T ELT)) (-4088 (($ (-762 |#1|) |#2|) 63 T ELT)) (-4086 (($ $) 61 T ELT)) (-4091 (((-2 (|:| |k| (-762 |#1|)) (|:| |c| |#2|)) $) 72 T ELT)) (-4105 (((-762 |#1|) $) 73 T ELT)) (-4106 (((-762 |#1|) $) 88 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) 53 T ELT)) (-4090 (($ $ |#1|) 69 T ELT) (($ $ (-762 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3380 (((-1099) $) 11 T ELT)) (-3381 (((-1060) $) 12 T ELT)) (-4098 (((-714) $) 87 T ELT)) (-4103 (((-85) $) 59 T ELT)) (-4102 ((|#2| $) 58 T ELT)) (-4096 (((-797) $) 13 T ELT) (($ (-499)) 38 T ELT) (($ |#2|) 80 T ELT) (($ (-762 |#1|)) 75 T ELT) (($ |#1|) 60 T ELT)) (-4104 ((|#2| $ (-762 |#1|)) 71 T ELT) ((|#2| $ $) 70 T ELT)) (-3248 (((-714)) 37 T CONST)) (-1297 (((-85) $ $) 6 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 39 T CONST)) (-3174 (((-85) $ $) 8 T ELT)) (-3987 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3989 (($ $ $) 18 T ELT)) (** (($ $ (-857)) 33 T ELT) (($ $ (-714)) 41 T ELT)) (* (($ (-857) $) 17 T ELT) (($ (-714) $) 20 T ELT) (($ (-499) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 79 T ELT) (($ $ |#2|) 78 T ELT) (($ |#1| $) 74 T ELT))) +(((-1230 |#1| |#2|) (-113) (-781) (-989)) (T -1230)) +((-4106 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-762 *3)))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-714)))) (-4097 (*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1230 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989))))) +(-13 (-1227 |t#1| |t#2|) (-10 -8 (-15 -4106 ((-762 |t#1|) $)) (-15 -4098 ((-714) $)) (-15 -4097 ($ $ (-714))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-73) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-571 (-499)) . T) ((-571 (-762 |#1|)) . T) ((-571 |#2|) . T) ((-568 (-797)) . T) ((-604 (-499)) . T) ((-604 |#2|) . T) ((-604 $) . T) ((-606 |#2|) . T) ((-606 $) . T) ((-598 |#2|) |has| |#2| (-146)) ((-675 |#2|) |has| |#2| (-146)) ((-684) . T) ((-978 (-762 |#1|)) . T) ((-991 |#2|) . T) ((-996 |#2|) . T) ((-989) . T) ((-997) . T) ((-1052) . T) ((-1041) . T) ((-1157) . T) ((-1222 |#2|) . T) ((-1227 |#1| |#2|) . T)) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) NIL T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3874 (($) NIL T CONST)) (-3295 (((-3 |#2| #1#) $) NIL T ELT)) (-3294 ((|#2| $) NIL T ELT)) (-4109 (($ $) NIL T ELT)) (-3607 (((-3 $ #1#) $) 42 T ELT)) (-4101 (((-85) $) 36 T ELT)) (-4100 (($ $) 37 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-2536 (((-714) $) NIL T ELT)) (-2942 (((-599 $) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-4088 (($ |#2| |#1|) NIL T ELT)) (-4105 ((|#2| $) 24 T ELT)) (-4106 ((|#2| $) 22 T ELT)) (-4108 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1842 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-3015 ((|#2| $) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4103 (((-85) $) 32 T ELT)) (-4102 ((|#1| $) 33 T ELT)) (-4096 (((-797) $) 65 T ELT) (($ (-499)) 46 T ELT) (($ |#1|) 41 T ELT) (($ |#2|) NIL T ELT)) (-3967 (((-599 |#1|) $) NIL T ELT)) (-3827 ((|#1| $ |#2|) NIL T ELT)) (-4104 ((|#1| $ |#2|) 28 T ELT)) (-3248 (((-714)) 14 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 29 T CONST)) (-2785 (($) 11 T CONST)) (-2784 (((-599 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3174 (((-85) $ $) 30 T ELT)) (-4099 (($ $ |#1|) 67 (|has| |#1| (-318)) ELT)) (-3987 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3989 (($ $ $) 50 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 52 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) NIL T ELT) (($ $ $) 51 T ELT) (($ |#1| $) 47 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-4107 (((-714) $) 16 T ELT))) +(((-1231 |#1| |#2|) (-13 (-989) (-1222 |#1|) (-339 |#1| |#2|) (-571 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4107 ((-714) $)) (-15 -4106 (|#2| $)) (-15 -4105 (|#2| $)) (-15 -4109 ($ $)) (-15 -4104 (|#1| $ |#2|)) (-15 -4103 ((-85) $)) (-15 -4102 (|#1| $)) (-15 -4101 ((-85) $)) (-15 -4100 ($ $)) (-15 -4108 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-318)) (-15 -4099 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4138)) (-6 -4138) |%noBranch|) (IF (|has| |#1| (-6 -4142)) (-6 -4142) |%noBranch|) (IF (|has| |#1| (-6 -4143)) (-6 -4143) |%noBranch|))) (-989) (-779)) (T -1231)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-989)) (-4 *3 (-779)))) (-4109 (*1 *1 *1) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-989)) (-4 *3 (-779)))) (-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-1231 *3 *4)) (-4 *4 (-779)))) (-4107 (*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-989)) (-4 *4 (-779)))) (-4106 (*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-1231 *3 *2)) (-4 *3 (-989)))) (-4105 (*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-1231 *3 *2)) (-4 *3 (-989)))) (-4104 (*1 *2 *1 *3) (-12 (-4 *2 (-989)) (-5 *1 (-1231 *2 *3)) (-4 *3 (-779)))) (-4103 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-989)) (-4 *4 (-779)))) (-4102 (*1 *2 *1) (-12 (-4 *2 (-989)) (-5 *1 (-1231 *2 *3)) (-4 *3 (-779)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-989)) (-4 *4 (-779)))) (-4100 (*1 *1 *1) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-989)) (-4 *3 (-779)))) (-4099 (*1 *1 *1 *2) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-318)) (-4 *2 (-989)) (-4 *3 (-779))))) +((-2687 (((-85) $ $) 27 T ELT)) (-3326 (((-85) $) NIL T ELT)) (-4084 (((-599 |#1|) $) 132 T ELT)) (-4112 (($ (-1223 |#1| |#2|)) 50 T ELT)) (-4097 (($ $ (-714)) 38 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4085 (($ $ $) 54 (|has| |#2| (-146)) ELT) (($ $ (-714)) 52 (|has| |#2| (-146)) ELT)) (-3874 (($) NIL T CONST)) (-4089 (($ $ |#1|) 114 T ELT) (($ $ (-762 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3295 (((-3 (-762 |#1|) #1#) $) NIL T ELT)) (-3294 (((-762 |#1|) $) NIL T ELT)) (-3607 (((-3 $ #1#) $) 122 T ELT)) (-4101 (((-85) $) 117 T ELT)) (-4100 (($ $) 118 T ELT)) (-2528 (((-85) $) NIL T ELT)) (-4087 (((-85) $) NIL T ELT)) (-4088 (($ (-762 |#1|) |#2|) 20 T ELT)) (-4086 (($ $) NIL T ELT)) (-4091 (((-2 (|:| |k| (-762 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-4105 (((-762 |#1|) $) 123 T ELT)) (-4106 (((-762 |#1|) $) 126 T ELT)) (-4108 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-4090 (($ $ |#1|) 112 T ELT) (($ $ (-762 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4113 (((-1223 |#1| |#2|) $) 94 T ELT)) (-4098 (((-714) $) 129 T ELT)) (-4103 (((-85) $) 81 T ELT)) (-4102 ((|#2| $) 32 T ELT)) (-4096 (((-797) $) 73 T ELT) (($ (-499)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-762 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-4104 ((|#2| $ (-762 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3248 (((-714)) 120 T CONST)) (-1297 (((-85) $ $) NIL T ELT)) (-2779 (($) 15 T CONST)) (-4111 (((-599 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2785 (($) 33 T CONST)) (-3174 (((-85) $ $) 14 T ELT)) (-3987 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3989 (($ $ $) 61 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 55 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) 53 T ELT) (($ (-499) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) +(((-1232 |#1| |#2|) (-13 (-1230 |#1| |#2|) (-10 -8 (-15 -4113 ((-1223 |#1| |#2|) $)) (-15 -4112 ($ (-1223 |#1| |#2|))) (-15 -4111 ((-599 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-781) (-989)) (T -1232)) +((-4113 (*1 *2 *1) (-12 (-5 *2 (-1223 *3 *4)) (-5 *1 (-1232 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-1223 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *1 (-1232 *3 *4)))) (-4111 (*1 *2 *1) (-12 (-5 *2 (-599 (-2 (|:| |k| *3) (|:| |c| (-1232 *3 *4))))) (-5 *1 (-1232 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989))))) +((-2687 (((-85) $ $) NIL T ELT)) (-4115 (($ (-599 (-857))) 10 T ELT)) (-4114 (((-911) $) 12 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4096 (((-797) $) 25 T ELT) (($ (-911)) 14 T ELT) (((-911) $) 13 T ELT)) (-1297 (((-85) $ $) NIL T ELT)) (-3174 (((-85) $ $) 17 T ELT))) +(((-1233) (-13 (-1041) (-444 (-911)) (-10 -8 (-15 -4115 ($ (-599 (-857)))) (-15 -4114 ((-911) $))))) (T -1233)) +((-4115 (*1 *1 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-1233)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-1233))))) +((-4116 (((-599 (-1095 |#1|)) (-1 (-599 (-1095 |#1|)) (-599 (-1095 |#1|))) (-499)) 16 T ELT) (((-1095 |#1|) (-1 (-1095 |#1|) (-1095 |#1|))) 13 T ELT))) +(((-1234 |#1|) (-10 -7 (-15 -4116 ((-1095 |#1|) (-1 (-1095 |#1|) (-1095 |#1|)))) (-15 -4116 ((-599 (-1095 |#1|)) (-1 (-599 (-1095 |#1|)) (-599 (-1095 |#1|))) (-499)))) (-1157)) (T -1234)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-599 (-1095 *5)) (-599 (-1095 *5)))) (-5 *4 (-499)) (-5 *2 (-599 (-1095 *5))) (-5 *1 (-1234 *5)) (-4 *5 (-1157)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-1 (-1095 *4) (-1095 *4))) (-5 *2 (-1095 *4)) (-5 *1 (-1234 *4)) (-4 *4 (-1157))))) +((-4118 (((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|))) 174 T ELT) (((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)) (-85)) 173 T ELT) (((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)) (-85) (-85)) 172 T ELT) (((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)) (-85) (-85) (-85)) 171 T ELT) (((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-986 |#1| |#2|)) 156 T ELT)) (-4117 (((-599 (-986 |#1| |#2|)) (-599 (-884 |#1|))) 85 T ELT) (((-599 (-986 |#1| |#2|)) (-599 (-884 |#1|)) (-85)) 84 T ELT) (((-599 (-986 |#1| |#2|)) (-599 (-884 |#1|)) (-85) (-85)) 83 T ELT)) (-4121 (((-599 (-1086 |#1| (-484 (-798 |#3|)) (-798 |#3|) (-723 |#1| (-798 |#3|)))) (-986 |#1| |#2|)) 73 T ELT)) (-4119 (((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|))) 140 T ELT) (((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)) (-85)) 139 T ELT) (((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)) (-85) (-85)) 138 T ELT) (((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)) (-85) (-85) (-85)) 137 T ELT) (((-599 (-599 (-964 (-361 |#1|)))) (-986 |#1| |#2|)) 132 T ELT)) (-4120 (((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|))) 145 T ELT) (((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)) (-85)) 144 T ELT) (((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)) (-85) (-85)) 143 T ELT) (((-599 (-599 (-964 (-361 |#1|)))) (-986 |#1| |#2|)) 142 T ELT)) (-4122 (((-599 (-723 |#1| (-798 |#3|))) (-1086 |#1| (-484 (-798 |#3|)) (-798 |#3|) (-723 |#1| (-798 |#3|)))) 111 T ELT) (((-1111 (-964 (-361 |#1|))) (-1111 |#1|)) 102 T ELT) (((-884 (-964 (-361 |#1|))) (-723 |#1| (-798 |#3|))) 109 T ELT) (((-884 (-964 (-361 |#1|))) (-884 |#1|)) 107 T ELT) (((-723 |#1| (-798 |#3|)) (-723 |#1| (-798 |#2|))) 33 T ELT))) +(((-1235 |#1| |#2| |#3|) (-10 -7 (-15 -4117 ((-599 (-986 |#1| |#2|)) (-599 (-884 |#1|)) (-85) (-85))) (-15 -4117 ((-599 (-986 |#1| |#2|)) (-599 (-884 |#1|)) (-85))) (-15 -4117 ((-599 (-986 |#1| |#2|)) (-599 (-884 |#1|)))) (-15 -4118 ((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-986 |#1| |#2|))) (-15 -4118 ((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)) (-85) (-85) (-85))) (-15 -4118 ((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)) (-85) (-85))) (-15 -4118 ((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)) (-85))) (-15 -4118 ((-599 (-2 (|:| -1840 (-1111 |#1|)) (|:| -3362 (-599 (-884 |#1|))))) (-599 (-884 |#1|)))) (-15 -4119 ((-599 (-599 (-964 (-361 |#1|)))) (-986 |#1| |#2|))) (-15 -4119 ((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)) (-85) (-85) (-85))) (-15 -4119 ((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)) (-85) (-85))) (-15 -4119 ((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)) (-85))) (-15 -4119 ((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)))) (-15 -4120 ((-599 (-599 (-964 (-361 |#1|)))) (-986 |#1| |#2|))) (-15 -4120 ((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)) (-85) (-85))) (-15 -4120 ((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)) (-85))) (-15 -4120 ((-599 (-599 (-964 (-361 |#1|)))) (-599 (-884 |#1|)))) (-15 -4121 ((-599 (-1086 |#1| (-484 (-798 |#3|)) (-798 |#3|) (-723 |#1| (-798 |#3|)))) (-986 |#1| |#2|))) (-15 -4122 ((-723 |#1| (-798 |#3|)) (-723 |#1| (-798 |#2|)))) (-15 -4122 ((-884 (-964 (-361 |#1|))) (-884 |#1|))) (-15 -4122 ((-884 (-964 (-361 |#1|))) (-723 |#1| (-798 |#3|)))) (-15 -4122 ((-1111 (-964 (-361 |#1|))) (-1111 |#1|))) (-15 -4122 ((-599 (-723 |#1| (-798 |#3|))) (-1086 |#1| (-484 (-798 |#3|)) (-798 |#3|) (-723 |#1| (-798 |#3|)))))) (-13 (-780) (-261) (-120) (-960)) (-599 (-1117)) (-599 (-1117))) (T -1235)) +((-4122 (*1 *2 *3) (-12 (-5 *3 (-1086 *4 (-484 (-798 *6)) (-798 *6) (-723 *4 (-798 *6)))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-14 *6 (-599 (-1117))) (-5 *2 (-599 (-723 *4 (-798 *6)))) (-5 *1 (-1235 *4 *5 *6)) (-14 *5 (-599 (-1117))))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-1111 *4)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-1111 (-964 (-361 *4)))) (-5 *1 (-1235 *4 *5 *6)) (-14 *5 (-599 (-1117))) (-14 *6 (-599 (-1117))))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-723 *4 (-798 *6))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-14 *6 (-599 (-1117))) (-5 *2 (-884 (-964 (-361 *4)))) (-5 *1 (-1235 *4 *5 *6)) (-14 *5 (-599 (-1117))))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-884 *4)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-884 (-964 (-361 *4)))) (-5 *1 (-1235 *4 *5 *6)) (-14 *5 (-599 (-1117))) (-14 *6 (-599 (-1117))))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-723 *4 (-798 *5))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-14 *5 (-599 (-1117))) (-5 *2 (-723 *4 (-798 *6))) (-5 *1 (-1235 *4 *5 *6)) (-14 *6 (-599 (-1117))))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-986 *4 *5)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-14 *5 (-599 (-1117))) (-5 *2 (-599 (-1086 *4 (-484 (-798 *6)) (-798 *6) (-723 *4 (-798 *6))))) (-5 *1 (-1235 *4 *5 *6)) (-14 *6 (-599 (-1117))))) (-4120 (*1 *2 *3) (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-599 (-964 (-361 *4))))) (-5 *1 (-1235 *4 *5 *6)) (-14 *5 (-599 (-1117))) (-14 *6 (-599 (-1117))))) (-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-599 (-964 (-361 *5))))) (-5 *1 (-1235 *5 *6 *7)) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) (-4120 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-599 (-964 (-361 *5))))) (-5 *1 (-1235 *5 *6 *7)) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) (-4120 (*1 *2 *3) (-12 (-5 *3 (-986 *4 *5)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-14 *5 (-599 (-1117))) (-5 *2 (-599 (-599 (-964 (-361 *4))))) (-5 *1 (-1235 *4 *5 *6)) (-14 *6 (-599 (-1117))))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-599 (-964 (-361 *4))))) (-5 *1 (-1235 *4 *5 *6)) (-14 *5 (-599 (-1117))) (-14 *6 (-599 (-1117))))) (-4119 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-599 (-964 (-361 *5))))) (-5 *1 (-1235 *5 *6 *7)) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) (-4119 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-599 (-964 (-361 *5))))) (-5 *1 (-1235 *5 *6 *7)) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) (-4119 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-599 (-964 (-361 *5))))) (-5 *1 (-1235 *5 *6 *7)) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-986 *4 *5)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-14 *5 (-599 (-1117))) (-5 *2 (-599 (-599 (-964 (-361 *4))))) (-5 *1 (-1235 *4 *5 *6)) (-14 *6 (-599 (-1117))))) (-4118 (*1 *2 *3) (-12 (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-2 (|:| -1840 (-1111 *4)) (|:| -3362 (-599 (-884 *4)))))) (-5 *1 (-1235 *4 *5 *6)) (-5 *3 (-599 (-884 *4))) (-14 *5 (-599 (-1117))) (-14 *6 (-599 (-1117))))) (-4118 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-2 (|:| -1840 (-1111 *5)) (|:| -3362 (-599 (-884 *5)))))) (-5 *1 (-1235 *5 *6 *7)) (-5 *3 (-599 (-884 *5))) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) (-4118 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-2 (|:| -1840 (-1111 *5)) (|:| -3362 (-599 (-884 *5)))))) (-5 *1 (-1235 *5 *6 *7)) (-5 *3 (-599 (-884 *5))) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) (-4118 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-2 (|:| -1840 (-1111 *5)) (|:| -3362 (-599 (-884 *5)))))) (-5 *1 (-1235 *5 *6 *7)) (-5 *3 (-599 (-884 *5))) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) (-4118 (*1 *2 *3) (-12 (-5 *3 (-986 *4 *5)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-14 *5 (-599 (-1117))) (-5 *2 (-599 (-2 (|:| -1840 (-1111 *4)) (|:| -3362 (-599 (-884 *4)))))) (-5 *1 (-1235 *4 *5 *6)) (-14 *6 (-599 (-1117))))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-986 *4 *5))) (-5 *1 (-1235 *4 *5 *6)) (-14 *5 (-599 (-1117))) (-14 *6 (-599 (-1117))))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-986 *5 *6))) (-5 *1 (-1235 *5 *6 *7)) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) (-4117 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-986 *5 *6))) (-5 *1 (-1235 *5 *6 *7)) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117)))))) +((-4125 (((-3 (-1207 (-361 (-499))) #1="failed") (-1207 |#1|) |#1|) 21 T ELT)) (-4123 (((-85) (-1207 |#1|)) 12 T ELT)) (-4124 (((-3 (-1207 (-499)) #1#) (-1207 |#1|)) 16 T ELT))) +(((-1236 |#1|) (-10 -7 (-15 -4123 ((-85) (-1207 |#1|))) (-15 -4124 ((-3 (-1207 (-499)) #1="failed") (-1207 |#1|))) (-15 -4125 ((-3 (-1207 (-361 (-499))) #1#) (-1207 |#1|) |#1|))) (-13 (-989) (-596 (-499)))) (T -1236)) +((-4125 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1207 *4)) (-4 *4 (-13 (-989) (-596 (-499)))) (-5 *2 (-1207 (-361 (-499)))) (-5 *1 (-1236 *4)))) (-4124 (*1 *2 *3) (|partial| -12 (-5 *3 (-1207 *4)) (-4 *4 (-13 (-989) (-596 (-499)))) (-5 *2 (-1207 (-499))) (-5 *1 (-1236 *4)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-1207 *4)) (-4 *4 (-13 (-989) (-596 (-499)))) (-5 *2 (-85)) (-5 *1 (-1236 *4))))) +((-2687 (((-85) $ $) NIL T ELT)) (-3326 (((-85) $) 12 T ELT)) (-1345 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3258 (((-714)) 9 T ELT)) (-3874 (($) NIL T CONST)) (-3607 (((-3 $ #1#) $) 57 T ELT)) (-3115 (($) 46 T ELT)) (-2528 (((-85) $) 38 T ELT)) (-3585 (((-649 $) $) 36 T ELT)) (-2111 (((-857) $) 14 T ELT)) (-3380 (((-1099) $) NIL T ELT)) (-3586 (($) 26 T CONST)) (-2518 (($ (-857)) 47 T ELT)) (-3381 (((-1060) $) NIL T ELT)) (-4122 (((-499) $) 16 T ELT)) (-4096 (((-797) $) 21 T ELT) (($ (-499)) 18 T ELT)) (-3248 (((-714)) 10 T CONST)) (-1297 (((-85) $ $) 59 T ELT)) (-2779 (($) 23 T CONST)) (-2785 (($) 25 T CONST)) (-3174 (((-85) $ $) 31 T ELT)) (-3987 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3989 (($ $ $) 29 T ELT)) (** (($ $ (-857)) NIL T ELT) (($ $ (-714)) 52 T ELT)) (* (($ (-857) $) NIL T ELT) (($ (-714) $) NIL T ELT) (($ (-499) $) 41 T ELT) (($ $ $) 40 T ELT))) +(((-1237 |#1|) (-13 (-146) (-323) (-569 (-499)) (-1092)) (-857)) (T -1237)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 2928061 2928066 2928071 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2928046 2928051 2928056 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2928031 2928036 2928041 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2928016 2928021 2928026 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1237 2927059 2927934 2928011 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1236 2926274 2926453 2926672 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1235 2917433 2919302 2921236 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1234 2916821 2916974 2917163 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1233 2916283 2916586 2916699 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1232 2913907 2915745 2915948 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1231 2910735 2912324 2912895 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1230 2908080 2909748 2909802 "XPOLYC" 2910087 XPOLYC (NIL T T) -9 NIL 2910200 NIL) (-1229 2905663 2907584 2907787 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1228 2901976 2904522 2904910 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1227 2896911 2898482 2898536 "XFALG" 2900681 XFALG (NIL T T) -9 NIL 2901465 NIL) (-1226 2892134 2894820 2894862 "XF" 2895480 XF (NIL T) -9 NIL 2895876 NIL) (-1225 2891852 2891962 2892129 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1224 2891079 2891201 2891405 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1223 2888885 2890979 2891074 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1222 2887554 2888287 2888329 "XALG" 2888334 XALG (NIL T) -9 NIL 2888443 NIL) (-1221 2881104 2885957 2886436 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1220 2879411 2880349 2880670 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1219 2879010 2879281 2879351 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1218 2878497 2878799 2878893 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1217 2877574 2877784 2878079 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1216 2875870 2876333 2876795 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1215 2874802 2875356 2875398 "VSPACE" 2875534 VSPACE (NIL T) -9 NIL 2875608 NIL) (-1214 2874673 2874706 2874797 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1213 2874516 2874570 2874638 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1212 2871499 2872294 2873031 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1211 2862597 2865198 2867371 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1210 2856174 2858065 2859644 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1209 2854658 2855053 2855459 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1208 2853485 2853766 2854082 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1207 2848599 2853312 2853404 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1206 2841704 2846312 2846355 "VECTCAT" 2847343 VECTCAT (NIL T) -9 NIL 2847927 NIL) (-1205 2840983 2841309 2841699 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1204 2840477 2840719 2840839 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1203 2840410 2840415 2840445 "UTYPE" 2840450 UTYPE (NIL) -9 NIL NIL NIL) (-1202 2839397 2839573 2839834 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1201 2837248 2837756 2838280 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1200 2827196 2833110 2833152 "UTSCAT" 2834253 UTSCAT (NIL T) -9 NIL 2835010 NIL) (-1199 2825261 2826204 2827191 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1198 2824935 2824984 2825115 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1197 2816703 2823131 2823610 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1196 2810704 2813517 2813560 "URAGG" 2815630 URAGG (NIL T) -9 NIL 2816352 NIL) (-1195 2808719 2809681 2810699 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1194 2804487 2807695 2808157 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1193 2796974 2804411 2804482 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1192 2785649 2793080 2793141 "UPXSCCA" 2793709 UPXSCCA (NIL T T) -9 NIL 2793941 NIL) (-1191 2785370 2785472 2785644 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1190 2773943 2781099 2781141 "UPXSCAT" 2781784 UPXSCAT (NIL T) -9 NIL 2782392 NIL) (-1189 2773456 2773541 2773718 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1188 2765200 2773047 2773309 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1187 2764095 2764365 2764715 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1186 2756869 2760295 2760349 "UPSCAT" 2761418 UPSCAT (NIL T T) -9 NIL 2762183 NIL) (-1185 2756283 2756538 2756864 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1184 2755957 2756006 2756137 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1183 2740076 2749011 2749053 "UPOLYC" 2751131 UPOLYC (NIL T) -9 NIL 2752352 NIL) (-1182 2734097 2736964 2740071 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1181 2733533 2733658 2733821 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1180 2733167 2733254 2733393 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1179 2731980 2732247 2732551 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1178 2731313 2731443 2731628 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1177 2730905 2730980 2731127 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1176 2721687 2730671 2730799 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1175 2721049 2721186 2721391 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1174 2719650 2720497 2720773 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1173 2718879 2719076 2719301 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1172 2705708 2718803 2718874 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1171 2685512 2698733 2698794 "ULSCCAT" 2699425 ULSCCAT (NIL T T) -9 NIL 2699712 NIL) (-1170 2684847 2685133 2685507 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1169 2673240 2680318 2680360 "ULSCAT" 2681216 ULSCAT (NIL T) -9 NIL 2681946 NIL) (-1168 2672753 2672838 2673015 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1167 2654850 2672252 2672493 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1166 2653884 2654577 2654691 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2654802) (-1165 2652917 2653610 2653724 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2653835) (-1164 2651950 2652643 2652757 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2652868) (-1163 2650983 2651676 2651790 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2651901) (-1162 2649078 2650237 2650267 "UFD" 2650478 UFD (NIL) -9 NIL 2650591 NIL) (-1161 2648922 2648979 2649073 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1160 2648174 2648381 2648597 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1159 2646394 2646847 2647312 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1158 2646118 2646358 2646389 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1157 2646051 2646056 2646086 "TYPE" 2646091 TYPE (NIL) -9 NIL NIL NIL) (-1156 2645210 2645430 2645670 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1155 2644388 2644819 2645054 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1154 2642542 2643115 2643654 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1153 2641576 2641812 2642048 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1152 2629906 2634374 2634471 "TSETCAT" 2639721 TSETCAT (NIL T T T T) -9 NIL 2641233 NIL) (-1151 2626242 2628058 2629901 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1150 2620698 2625468 2625750 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1149 2616035 2617048 2617977 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1148 2615532 2615607 2615770 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1147 2613608 2613898 2614253 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1146 2613092 2613241 2613271 "TRIGCAT" 2613484 TRIGCAT (NIL) -9 NIL NIL NIL) (-1145 2612843 2612946 2613087 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1144 2609839 2611952 2612230 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1143 2608945 2609641 2609671 "TRANFUN" 2609706 TRANFUN (NIL) -9 NIL 2609772 NIL) (-1142 2608409 2608660 2608940 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1141 2608246 2608284 2608345 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1140 2607703 2607834 2607985 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1139 2606444 2607101 2607337 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1138 2606256 2606293 2606365 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1137 2604470 2605116 2605545 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1136 2604174 2604249 2604339 "TEMUTL" NIL TEMUTL (NIL) -7 NIL NIL NIL) (-1135 2602554 2602891 2603213 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1134 2593597 2600358 2600414 "TBAGG" 2600816 TBAGG (NIL T T) -9 NIL 2601029 NIL) (-1133 2590128 2591820 2593592 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1132 2589605 2589730 2589875 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1131 2589115 2589435 2589525 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1130 2588612 2588729 2588867 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1129 2581681 2588514 2588607 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1128 2577434 2578729 2579974 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1127 2576803 2576962 2577143 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1126 2573957 2574710 2575493 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1125 2573731 2573921 2573952 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1124 2572685 2573370 2573496 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2573682) (-1123 2571949 2572497 2572576 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2572636) (-1122 2568772 2569931 2570631 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1121 2566456 2567138 2567772 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1120 2562534 2563580 2564557 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1119 2559694 2562189 2562418 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1118 2559290 2559377 2559499 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1117 2555914 2557388 2558207 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1116 2551085 2552840 2554560 "SWITCH" NIL SWITCH (NIL) -8 NIL NIL NIL) (-1115 2544103 2550282 2550575 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1114 2535847 2543694 2543956 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1113 2535126 2535265 2535482 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1112 2534810 2534875 2534986 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1111 2525551 2534522 2534647 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1110 2524281 2524579 2524934 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1109 2523686 2523764 2523955 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1108 2505818 2523185 2523426 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1107 2505417 2505688 2505758 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1106 2504753 2505034 2505174 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1105 2499355 2500614 2501567 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1104 2498887 2498987 2499151 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1103 2493998 2495280 2496427 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1102 2488456 2489927 2491238 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1101 2481371 2483435 2485226 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1100 2474183 2481283 2481366 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1099 2468877 2473897 2474012 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1098 2468464 2468547 2468691 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1097 2467615 2467816 2468051 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1096 2467355 2467413 2467506 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1095 2460093 2465560 2466166 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1094 2459269 2459474 2459705 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1093 2458513 2458884 2459032 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1092 2458013 2458255 2458285 "STEP" 2458379 STEP (NIL) -9 NIL 2458450 NIL) (-1091 2451098 2457931 2458008 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1090 2445319 2449902 2449945 "STAGG" 2450372 STAGG (NIL T) -9 NIL 2450546 NIL) (-1089 2443698 2444446 2445314 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1088 2441855 2443525 2443617 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1087 2441178 2441686 2441716 "SRING" 2441721 SRING (NIL) -9 NIL 2441741 NIL) (-1086 2433793 2439710 2440150 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1085 2427553 2428992 2430497 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1084 2419981 2424892 2424922 "SRAGG" 2426221 SRAGG (NIL) -9 NIL 2426825 NIL) (-1083 2419278 2419598 2419976 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1082 2413397 2418600 2419023 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1081 2407610 2410779 2411501 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1080 2404039 2404858 2405495 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1079 2403014 2403319 2403349 "SPFCAT" 2403793 SPFCAT (NIL) -9 NIL NIL NIL) (-1078 2401951 2402203 2402467 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1077 2392707 2394985 2395015 "SPADXPT" 2399656 SPADXPT (NIL) -9 NIL 2401785 NIL) (-1076 2392509 2392555 2392624 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1075 2390161 2392473 2392504 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1074 2381847 2383936 2383978 "SPACEC" 2388293 SPACEC (NIL T) -9 NIL 2390098 NIL) (-1073 2379676 2381794 2381842 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1072 2378609 2378798 2379087 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1071 2377013 2377346 2377757 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1070 2376278 2376512 2376773 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1069 2372458 2373418 2374413 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1068 2368816 2369515 2370244 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1067 2362612 2368166 2368263 "SNTSCAT" 2368268 SNTSCAT (NIL T T T T) -9 NIL 2368338 NIL) (-1066 2356497 2361253 2361643 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1065 2350327 2356416 2356492 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1064 2348759 2349090 2349488 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1063 2340437 2345351 2345453 "SMATCAT" 2346796 SMATCAT (NIL NIL T T T) -9 NIL 2347344 NIL) (-1062 2338278 2339262 2340432 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1061 2335876 2337490 2337533 "SKAGG" 2337794 SKAGG (NIL T) -9 NIL 2337928 NIL) (-1060 2331738 2335527 2335696 "SINT" NIL SINT (NIL) -8 NIL NIL 2335848) (-1059 2331548 2331592 2331658 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1058 2330623 2330855 2331123 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1057 2329627 2329789 2330065 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1056 2328972 2329312 2329436 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1055 2328318 2328625 2328765 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1054 2326429 2326921 2327427 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1053 2319965 2326348 2326424 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1052 2319480 2319717 2319747 "SGROUP" 2319840 SGROUP (NIL) -9 NIL 2319902 NIL) (-1051 2319370 2319402 2319475 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1050 2316793 2317562 2318284 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1049 2310687 2316241 2316338 "SFRTCAT" 2316343 SFRTCAT (NIL T T T T) -9 NIL 2316382 NIL) (-1048 2305043 2306156 2307285 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1047 2299181 2300342 2301508 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1046 2298842 2298949 2299060 "SFORT" NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1045 2297814 2298716 2298837 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1044 2293434 2294329 2294424 "SEXCAT" 2297037 SEXCAT (NIL T T T T T) -9 NIL 2297588 NIL) (-1043 2292407 2293361 2293429 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1042 2290798 2291383 2291685 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1041 2290333 2290518 2290548 "SETCAT" 2290665 SETCAT (NIL) -9 NIL 2290749 NIL) (-1040 2290165 2290229 2290328 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1039 2286400 2288631 2288674 "SETAGG" 2289542 SETAGG (NIL T) -9 NIL 2289880 NIL) (-1038 2286006 2286158 2286395 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1037 2282960 2285953 2286001 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1036 2282425 2282735 2282836 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1035 2281552 2281918 2281979 "SEGXCAT" 2282265 SEGXCAT (NIL T T) -9 NIL 2282385 NIL) (-1034 2280477 2280745 2280788 "SEGCAT" 2281310 SEGCAT (NIL T) -9 NIL 2281531 NIL) (-1033 2280157 2280222 2280335 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1032 2279223 2279693 2279901 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1031 2278800 2279079 2279156 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1030 2278165 2278301 2278505 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1029 2277231 2277978 2278160 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1028 2276484 2277179 2277226 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1027 2268027 2276351 2276479 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1026 2266881 2267171 2267490 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1025 2266179 2266391 2266581 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-1024 2265523 2265680 2265858 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1023 2265106 2265337 2265367 "SASTCAT" 2265372 SASTCAT (NIL) -9 NIL 2265385 NIL) (-1022 2264570 2264995 2265071 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-1021 2264170 2264211 2264384 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1020 2263798 2263839 2263998 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1019 2256926 2263713 2263793 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1018 2255571 2255900 2256298 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1017 2254321 2254684 2254988 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1016 2253942 2254163 2254246 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1015 2251392 2252026 2252481 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1014 2251228 2251261 2251331 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-1013 2250714 2251017 2251111 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-1012 2246299 2247167 2248082 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1011 2235073 2240627 2240724 "RSETCAT" 2244834 RSETCAT (NIL T T T T) -9 NIL 2245922 NIL) (-1010 2233607 2234249 2235068 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1009 2227338 2228783 2230294 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1008 2225220 2225777 2225851 "RRCC" 2226934 RRCC (NIL T T) -9 NIL 2227275 NIL) (-1007 2224742 2224941 2225215 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-1006 2224207 2224517 2224618 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-1005 2196695 2207364 2207430 "RPOLCAT" 2218000 RPOLCAT (NIL T T T) -9 NIL 2221145 NIL) (-1004 2190791 2193614 2196690 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-1003 2181719 2189462 2189944 "ROUTINE" NIL ROUTINE (NIL) -8 NIL NIL NIL) (-1002 2177946 2181463 2181603 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-1001 2176264 2177003 2177262 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1000 2171986 2174736 2174766 "RNS" 2175035 RNS (NIL) -9 NIL 2175287 NIL) (-999 2170895 2171380 2171912 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-998 2170013 2170414 2170614 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-997 2169313 2169813 2169841 "RNG" 2169846 RNG (NIL) -9 NIL 2169867 NIL) (-996 2168618 2169092 2169132 "RMODULE" 2169137 RMODULE (NIL T) -9 NIL 2169163 NIL) (-995 2167557 2167663 2167993 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-994 2164435 2167147 2167440 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-993 2157127 2159588 2159700 "RMATCAT" 2163005 RMATCAT (NIL NIL NIL T T T) -9 NIL 2163982 NIL) (-992 2156644 2156823 2157122 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-991 2156224 2156435 2156476 "RLINSET" 2156537 RLINSET (NIL T) -9 NIL 2156581 NIL) (-990 2155869 2155950 2156076 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-989 2154804 2155473 2155501 "RING" 2155556 RING (NIL) -9 NIL 2155647 NIL) (-988 2154649 2154705 2154799 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-987 2153703 2153970 2154226 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-986 2144689 2153330 2153532 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-985 2143957 2144437 2144476 "RGBCSPC" 2144533 RGBCSPC (NIL T) -9 NIL 2144584 NIL) (-984 2143034 2143489 2143528 "RGBCMDL" 2143756 RGBCMDL (NIL T) -9 NIL 2143870 NIL) (-983 2142746 2142815 2142916 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-982 2142509 2142550 2142645 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-981 2140933 2141363 2141743 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-980 2138520 2139188 2139856 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-979 2138070 2138168 2138328 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-978 2137692 2137790 2137831 "RETRACT" 2137962 RETRACT (NIL T) -9 NIL 2138049 NIL) (-977 2137572 2137603 2137687 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-976 2137174 2137445 2137513 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-975 2129653 2136942 2137063 "RESULT" NIL RESULT (NIL) -8 NIL NIL NIL) (-974 2128197 2129024 2129221 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-973 2127888 2127949 2128045 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-972 2127631 2127672 2127777 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-971 2127366 2127407 2127516 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-970 2122436 2123888 2125103 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-969 2119535 2120293 2121101 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-968 2117504 2118126 2118726 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-967 2110131 2116048 2116486 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-966 2109068 2109504 2109751 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-965 2108553 2108668 2108833 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-964 2104198 2107952 2108175 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-963 2103430 2103629 2103842 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-962 2100720 2101558 2102440 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-961 2097302 2098338 2099397 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-960 2097138 2097191 2097219 "REAL" 2097224 REAL (NIL) -9 NIL 2097259 NIL) (-959 2096628 2096931 2097023 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-958 2096108 2096186 2096391 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-957 2095341 2095533 2095744 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-956 2094229 2094526 2094893 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-955 2092496 2092966 2093499 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-954 2091418 2091695 2092082 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-953 2090245 2090554 2090973 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-952 2083684 2087131 2087159 "RCFIELD" 2088436 RCFIELD (NIL) -9 NIL 2089166 NIL) (-951 2082310 2082920 2083611 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-950 2078516 2080408 2080449 "RCAGG" 2081516 RCAGG (NIL T) -9 NIL 2081977 NIL) (-949 2078243 2078353 2078511 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-948 2077688 2077817 2077978 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-947 2077305 2077384 2077503 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-946 2076720 2076870 2077020 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-945 2076502 2076552 2076623 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-944 2069005 2075620 2075928 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-943 2058732 2068872 2069000 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-942 2058366 2058459 2058487 "RADCAT" 2058644 RADCAT (NIL) -9 NIL NIL NIL) (-941 2058204 2058264 2058361 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-940 2056304 2058035 2058124 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-939 2055985 2056034 2056161 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-938 2048330 2052353 2052393 "QUATCAT" 2053172 QUATCAT (NIL T) -9 NIL 2053937 NIL) (-937 2045588 2046866 2048236 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-936 2041488 2045538 2045583 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-935 2038881 2040548 2040589 "QUAGG" 2040964 QUAGG (NIL T) -9 NIL 2041138 NIL) (-934 2038483 2038754 2038822 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-933 2037521 2038119 2038282 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-932 2037202 2037251 2037378 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-931 2026894 2033004 2033044 "QFCAT" 2033702 QFCAT (NIL T) -9 NIL 2034695 NIL) (-930 2023794 2025229 2026800 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-929 2023340 2023474 2023604 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-928 2017498 2018659 2019823 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-927 2016917 2017097 2017329 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-926 2014739 2015267 2015690 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-925 2013638 2013880 2014197 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-924 2011999 2012197 2012550 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-923 2007755 2008971 2009012 "PTRANFN" 2010896 PTRANFN (NIL T) -9 NIL NIL NIL) (-922 2006402 2006747 2007068 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-921 2006095 2006158 2006265 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-920 2000171 2004894 2004934 "PTCAT" 2005226 PTCAT (NIL T) -9 NIL 2005379 NIL) (-919 1999864 1999905 2000029 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-918 1998743 1999059 1999393 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-917 1987584 1990145 1992455 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-916 1980482 1983378 1983473 "PSETCAT" 1986467 PSETCAT (NIL T T T T) -9 NIL 1987274 NIL) (-915 1978931 1979665 1980477 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-914 1978250 1978445 1978473 "PSCURVE" 1978741 PSCURVE (NIL) -9 NIL 1978908 NIL) (-913 1973928 1975686 1975750 "PSCAT" 1976585 PSCAT (NIL T T T) -9 NIL 1976824 NIL) (-912 1973242 1973524 1973923 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-911 1971672 1972554 1972817 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-910 1971162 1971465 1971557 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-909 1962182 1964604 1966792 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-908 1959931 1961508 1961548 "PRQAGG" 1961731 PRQAGG (NIL T) -9 NIL 1961832 NIL) (-907 1959116 1959562 1959590 "PROPLOG" 1959729 PROPLOG (NIL) -9 NIL 1959843 NIL) (-906 1958791 1958854 1958977 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-905 1958227 1958366 1958538 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-904 1956475 1957238 1957535 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-903 1956028 1956159 1956287 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-902 1950627 1954968 1955788 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-901 1950456 1950494 1950553 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-900 1949895 1950035 1950186 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-899 1948363 1948782 1949248 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-898 1948080 1948141 1948169 "PRIMCAT" 1948293 PRIMCAT (NIL) -9 NIL NIL NIL) (-897 1947251 1947447 1947675 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-896 1943129 1947201 1947246 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-895 1942828 1942890 1943001 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-894 1940025 1942477 1942710 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-893 1939476 1939633 1939661 "PPCURVE" 1939866 PPCURVE (NIL) -9 NIL 1940002 NIL) (-892 1939089 1939334 1939417 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-891 1936845 1937266 1937858 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-890 1936288 1936352 1936585 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-889 1933008 1933494 1934105 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-888 1918648 1924718 1924782 "POLYCAT" 1928267 POLYCAT (NIL T T T) -9 NIL 1930144 NIL) (-887 1914158 1916305 1918643 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-886 1913815 1913889 1914008 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-885 1913508 1913571 1913678 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-884 1906929 1913241 1913400 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-883 1905816 1906079 1906355 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-882 1904420 1904733 1905063 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-881 1899582 1904370 1904415 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-880 1898070 1898481 1898856 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-879 1896827 1897136 1897532 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-878 1896498 1896582 1896699 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-877 1896077 1896152 1896326 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-876 1895563 1895659 1895819 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-875 1895035 1895155 1895309 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-874 1893930 1894148 1894525 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-873 1893541 1893626 1893778 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-872 1893092 1893174 1893355 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-871 1892784 1892865 1892978 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-870 1892297 1892372 1892580 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-869 1891645 1891773 1891975 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-868 1891007 1891141 1891304 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-867 1890311 1890493 1890674 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-866 1890034 1890108 1890202 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-865 1886602 1887791 1888707 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-864 1885686 1885887 1886122 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-863 1881251 1882635 1883777 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-862 1861172 1866059 1870906 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-861 1860912 1860965 1861068 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-860 1860353 1860487 1860667 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-859 1858450 1859609 1859637 "PID" 1859834 PID (NIL) -9 NIL 1859961 NIL) (-858 1858238 1858281 1858356 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-857 1857425 1858085 1858172 "PI" NIL PI (NIL) -8 NIL NIL 1858212) (-856 1856877 1857028 1857204 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-855 1853205 1854163 1855068 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-854 1851569 1851858 1852224 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-853 1851011 1851126 1851287 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-852 1847616 1849880 1850233 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-851 1846222 1846502 1846827 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-850 1844987 1845241 1845589 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-849 1843697 1843924 1844276 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-848 1840795 1842293 1842321 "PFECAT" 1842914 PFECAT (NIL) -9 NIL 1843291 NIL) (-847 1840418 1840583 1840790 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-846 1839242 1839524 1839825 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-845 1837424 1837811 1838241 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-844 1833458 1837350 1837419 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-843 1829361 1830508 1831375 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-842 1827284 1828388 1828429 "PERMCAT" 1828828 PERMCAT (NIL T) -9 NIL 1829125 NIL) (-841 1826980 1827027 1827150 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-840 1823414 1825110 1825755 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-839 1820879 1823169 1823290 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-838 1819760 1820023 1820064 "PDSPC" 1820597 PDSPC (NIL T) -9 NIL 1820842 NIL) (-837 1819127 1819393 1819755 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-836 1817850 1818781 1818822 "PDRING" 1818827 PDRING (NIL T) -9 NIL 1818854 NIL) (-835 1816603 1817361 1817414 "PDMOD" 1817419 PDMOD (NIL T T) -9 NIL 1817522 NIL) (-834 1814421 1815244 1815912 "PDEPROB" NIL PDEPROB (NIL) -8 NIL NIL NIL) (-833 1813514 1813726 1813975 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-832 1811038 1811925 1811953 "PDECAT" 1812739 PDECAT (NIL) -9 NIL 1813451 NIL) (-831 1810655 1810722 1810776 "PDDOM" 1810941 PDDOM (NIL T T) -9 NIL 1811021 NIL) (-830 1810507 1810543 1810650 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-829 1810293 1810332 1810421 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-828 1808615 1809368 1809663 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-827 1808304 1808367 1808476 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-826 1806442 1806872 1807323 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-825 1800070 1801899 1803183 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-824 1799701 1799774 1799906 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-823 1797403 1798083 1798564 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-822 1795607 1796035 1796438 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-821 1795065 1795313 1795354 "PATMAB" 1795461 PATMAB (NIL T) -9 NIL 1795544 NIL) (-820 1793712 1794116 1794373 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-819 1793250 1793381 1793422 "PATAB" 1793427 PATAB (NIL T) -9 NIL 1793599 NIL) (-818 1791793 1792230 1792653 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-817 1791471 1791546 1791648 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-816 1791160 1791223 1791332 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-815 1790965 1791011 1791078 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-814 1790643 1790718 1790820 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-813 1790332 1790395 1790504 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-812 1790023 1790093 1790190 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-811 1789712 1789775 1789884 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-810 1788872 1789251 1789431 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-809 1788479 1788577 1788696 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-808 1787447 1787872 1788091 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-807 1786109 1786766 1787126 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-806 1779260 1785513 1785707 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-805 1771742 1778758 1778942 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-804 1768555 1770408 1770448 "PADICCT" 1771029 PADICCT (NIL NIL) -9 NIL 1771311 NIL) (-803 1766609 1768505 1768550 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-802 1765771 1765981 1766247 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-801 1765113 1765256 1765460 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-800 1763558 1764521 1764799 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-799 1763083 1763341 1763438 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-798 1762142 1762820 1762992 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-797 1752564 1755433 1757632 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-796 1751956 1752270 1752396 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-795 1751233 1751428 1751456 "OUTBCON" 1751774 OUTBCON (NIL) -9 NIL 1751940 NIL) (-794 1750941 1751071 1751228 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-793 1750322 1750467 1750628 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-792 1749694 1750120 1750209 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-791 1749121 1749536 1749564 "OSGROUP" 1749569 OSGROUP (NIL) -9 NIL 1749591 NIL) (-790 1748085 1748346 1748631 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-789 1745418 1747960 1748080 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-788 1742623 1745169 1745295 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-787 1740641 1741169 1741729 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-786 1734071 1736549 1736589 "OREPCAT" 1738910 OREPCAT (NIL T) -9 NIL 1740012 NIL) (-785 1732097 1733031 1734066 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-784 1731306 1731577 1731605 "ORDTYPE" 1731910 ORDTYPE (NIL) -9 NIL 1732068 NIL) (-783 1730840 1731051 1731301 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-782 1730302 1730678 1730835 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-781 1729808 1730171 1730199 "ORDSET" 1730204 ORDSET (NIL) -9 NIL 1730226 NIL) (-780 1728474 1729434 1729462 "ORDRING" 1729467 ORDRING (NIL) -9 NIL 1729495 NIL) (-779 1727734 1728291 1728319 "ORDMON" 1728324 ORDMON (NIL) -9 NIL 1728345 NIL) (-778 1727038 1727200 1727392 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-777 1726261 1726769 1726797 "ORDFIN" 1726862 ORDFIN (NIL) -9 NIL 1726936 NIL) (-776 1725655 1725794 1725980 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-775 1722426 1724623 1725029 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-774 1719744 1720711 1721525 "OPTPROB" NIL OPTPROB (NIL) -8 NIL NIL NIL) (-773 1717367 1718188 1718216 "OPTCAT" 1719033 OPTCAT (NIL) -9 NIL 1719681 NIL) (-772 1716774 1717129 1717234 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-771 1716582 1716627 1716693 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-770 1715895 1716171 1716212 "OPERCAT" 1716423 OPERCAT (NIL T) -9 NIL 1716519 NIL) (-769 1715707 1715774 1715890 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-768 1713137 1714509 1715005 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-767 1712558 1712685 1712859 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-766 1709555 1711697 1712063 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-765 1706198 1708997 1709037 "OMSAGG" 1709098 OMSAGG (NIL T) -9 NIL 1709162 NIL) (-764 1704674 1705869 1706037 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-763 1702971 1704150 1704178 "OINTDOM" 1704183 OINTDOM (NIL) -9 NIL 1704204 NIL) (-762 1700401 1701973 1702302 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-761 1699655 1700351 1700396 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-760 1696921 1699496 1699650 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-759 1688516 1696792 1696916 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-758 1682023 1688407 1688511 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-757 1680995 1681232 1681505 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-756 1678629 1679299 1680003 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-755 1674406 1675366 1676389 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-754 1673914 1674002 1674196 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-753 1671363 1671945 1672618 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-752 1668758 1669266 1669862 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-751 1667122 1667763 1668249 "ODEPROB" NIL ODEPROB (NIL) -8 NIL NIL NIL) (-750 1664119 1664658 1665304 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-749 1663474 1663582 1663840 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-748 1662632 1662757 1662978 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-747 1658916 1659712 1660625 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-746 1658356 1658451 1658673 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-745 1656426 1657131 1657159 "ODECAT" 1657763 ODECAT (NIL) -9 NIL 1658293 NIL) (-744 1656107 1656156 1656283 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-743 1652758 1655906 1656025 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-742 1651961 1652552 1652580 "OCAMON" 1652585 OCAMON (NIL) -9 NIL 1652606 NIL) (-741 1646261 1649011 1649051 "OC" 1650147 OC (NIL T) -9 NIL 1651004 NIL) (-740 1644269 1645193 1646167 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-739 1643697 1644115 1644143 "OASGP" 1644148 OASGP (NIL) -9 NIL 1644168 NIL) (-738 1642803 1643421 1643449 "OAMONS" 1643489 OAMONS (NIL) -9 NIL 1643532 NIL) (-737 1641991 1642541 1642569 "OAMON" 1642626 OAMON (NIL) -9 NIL 1642677 NIL) (-736 1641887 1641919 1641986 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-735 1640681 1641424 1641452 "OAGROUP" 1641598 OAGROUP (NIL) -9 NIL 1641690 NIL) (-734 1640472 1640559 1640676 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-733 1640212 1640268 1640356 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-732 1635274 1636837 1638364 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-731 1631969 1633003 1634038 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-730 1629270 1630201 1630229 "NUMINT" 1631148 NUMINT (NIL) -9 NIL 1631906 NIL) (-729 1628380 1628613 1628831 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-728 1617238 1620269 1622717 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-727 1611134 1616688 1616783 "NTSCAT" 1616788 NTSCAT (NIL T T T T) -9 NIL 1616827 NIL) (-726 1610475 1610654 1610847 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-725 1610168 1610231 1610338 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-724 1597853 1607788 1608598 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-723 1586904 1597717 1597848 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-722 1585624 1585949 1586306 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-721 1584460 1584724 1585082 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-720 1583627 1583760 1583976 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-719 1581933 1582252 1582660 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-718 1581646 1581680 1581804 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-717 1581465 1581500 1581569 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-716 1581241 1581431 1581460 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-715 1580805 1580872 1581049 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-714 1579123 1580168 1580423 "NNI" NIL NNI (NIL) -8 NIL NIL 1580770) (-713 1577851 1578188 1578552 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-712 1574914 1575966 1576865 "NIPROB" NIL NIPROB (NIL) -8 NIL NIL NIL) (-711 1573891 1574143 1574445 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-710 1572978 1573543 1573584 "NETCLT" 1573755 NETCLT (NIL T) -9 NIL 1573836 NIL) (-709 1571882 1572149 1572430 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-708 1571681 1571724 1571799 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-707 1570212 1570600 1571020 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-706 1568888 1569823 1569851 "NASRING" 1569961 NASRING (NIL) -9 NIL 1570041 NIL) (-705 1568733 1568789 1568883 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-704 1567705 1568352 1568380 "NARNG" 1568497 NARNG (NIL) -9 NIL 1568588 NIL) (-703 1567481 1567566 1567700 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-702 1566290 1567013 1567053 "NAALG" 1567132 NAALG (NIL T) -9 NIL 1567193 NIL) (-701 1566160 1566195 1566285 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-700 1561139 1562324 1563510 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-699 1560534 1560621 1560805 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-698 1552623 1557052 1557104 "MTSCAT" 1558164 MTSCAT (NIL T T) -9 NIL 1558678 NIL) (-697 1552389 1552449 1552541 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-696 1552215 1552254 1552314 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-695 1549089 1551778 1551819 "MSETAGG" 1551824 MSETAGG (NIL T) -9 NIL 1551858 NIL) (-694 1545226 1548135 1548453 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-693 1541564 1543323 1544063 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-692 1541201 1541274 1541403 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-691 1540854 1540895 1541039 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-690 1538719 1539056 1539487 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-689 1532175 1538618 1538714 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-688 1531700 1531741 1531949 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-687 1531259 1531308 1531491 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-686 1530533 1530626 1530845 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-685 1529150 1529511 1529901 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-684 1528302 1528681 1528709 "MONOID" 1528927 MONOID (NIL) -9 NIL 1529073 NIL) (-683 1527969 1528117 1528297 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-682 1516896 1523719 1523778 "MONOGEN" 1524452 MONOGEN (NIL T T) -9 NIL 1524908 NIL) (-681 1514908 1515794 1516777 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-680 1513632 1514176 1514204 "MONADWU" 1514595 MONADWU (NIL) -9 NIL 1514832 NIL) (-679 1513180 1513380 1513627 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-678 1512469 1512770 1512798 "MONAD" 1513005 MONAD (NIL) -9 NIL 1513117 NIL) (-677 1512236 1512332 1512464 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-676 1510626 1511396 1511675 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-675 1509803 1510299 1510339 "MODULE" 1510344 MODULE (NIL T) -9 NIL 1510382 NIL) (-674 1509482 1509608 1509798 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-673 1507257 1508079 1508393 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-672 1504500 1505853 1506366 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-671 1503134 1503708 1503984 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-670 1492371 1501799 1502212 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-669 1489391 1491371 1491640 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-668 1488475 1488842 1489032 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-667 1488044 1488093 1488272 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-666 1485957 1486891 1486931 "MLO" 1487348 MLO (NIL T) -9 NIL 1487588 NIL) (-665 1483838 1484365 1484960 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-664 1483306 1483402 1483556 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-663 1482976 1483052 1483175 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-662 1482188 1482374 1482602 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-661 1481681 1481797 1481953 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-660 1481053 1481167 1481352 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-659 1477212 1480723 1480859 "MINT" NIL MINT (NIL) -8 NIL NIL NIL) (-658 1476239 1476512 1476789 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-657 1471424 1475161 1475564 "MFLOAT" NIL MFLOAT (NIL) -8 NIL NIL NIL) (-656 1470857 1470945 1471116 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-655 1468015 1468894 1469773 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-654 1466682 1467030 1467383 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-653 1463345 1465812 1465853 "MDAGG" 1466110 MDAGG (NIL T) -9 NIL 1466255 NIL) (-652 1451340 1462825 1463032 "MCMPLX" NIL MCMPLX (NIL) -8 NIL NIL NIL) (-651 1450614 1450778 1450978 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-650 1448732 1449044 1449424 "MCALCFN" NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-649 1447810 1448096 1448326 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-648 1445907 1446484 1447045 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-647 1441677 1445497 1445744 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-646 1438024 1438795 1439529 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-645 1436777 1436946 1437275 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-644 1426296 1429885 1429961 "MATCAT" 1434949 MATCAT (NIL T T T) -9 NIL 1436417 NIL) (-643 1423577 1424883 1426291 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-642 1421978 1422338 1422722 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-641 1421111 1421308 1421530 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-640 1419862 1420188 1420515 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-639 1419023 1419425 1419602 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-638 1418692 1418756 1418879 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-637 1418340 1418413 1418527 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-636 1417875 1417990 1418132 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-635 1416084 1416852 1417153 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-634 1415577 1415879 1415970 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-633 1412383 1414248 1414708 "M3D" NIL M3D (NIL T) -8 NIL NIL NIL) (-632 1405898 1410704 1410745 "LZSTAGG" 1411522 LZSTAGG (NIL T) -9 NIL 1411812 NIL) (-631 1403017 1404451 1405893 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-630 1400404 1401370 1401853 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-629 1399984 1400263 1400338 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-628 1392212 1399845 1399979 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-627 1391575 1391720 1391948 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-626 1389059 1389757 1390469 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-625 1387171 1387494 1387942 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-624 1380343 1386261 1386302 "LSAGG" 1386364 LSAGG (NIL T) -9 NIL 1386442 NIL) (-623 1378037 1379136 1380338 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-622 1375549 1377386 1377635 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-621 1375216 1375307 1375430 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-620 1374899 1374978 1375006 "LOGIC" 1375117 LOGIC (NIL) -9 NIL 1375199 NIL) (-619 1374794 1374823 1374894 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-618 1374113 1374271 1374464 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-617 1372898 1373147 1373498 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-616 1368810 1371545 1371585 "LODOCAT" 1372017 LODOCAT (NIL T) -9 NIL 1372228 NIL) (-615 1368603 1368679 1368805 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-614 1365667 1368480 1368598 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-613 1362829 1365617 1365662 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-612 1359980 1362759 1362824 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-611 1359033 1359208 1359510 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-610 1357197 1358295 1358548 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-609 1352298 1355362 1355403 "LNAGG" 1356265 LNAGG (NIL T) -9 NIL 1356700 NIL) (-608 1351685 1351952 1352293 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-607 1348257 1349198 1349835 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-606 1347562 1348036 1348076 "LMODULE" 1348081 LMODULE (NIL T) -9 NIL 1348107 NIL) (-605 1344741 1347299 1347421 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-604 1344321 1344532 1344573 "LLINSET" 1344634 LLINSET (NIL T) -9 NIL 1344678 NIL) (-603 1343996 1344256 1344316 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-602 1343595 1343675 1343814 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-601 1342046 1342394 1342793 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-600 1341217 1341413 1341641 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-599 1334264 1340473 1340727 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-598 1333853 1334086 1334127 "LINSET" 1334132 LINSET (NIL T) -9 NIL 1334165 NIL) (-597 1332786 1333476 1333643 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-596 1331095 1331819 1331859 "LINEXP" 1332345 LINEXP (NIL T) -9 NIL 1332618 NIL) (-595 1329804 1330704 1330885 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-594 1328631 1328903 1329205 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-593 1327844 1328433 1328543 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-592 1325394 1326116 1326866 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-591 1324024 1324321 1324712 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-590 1322860 1323431 1323471 "LIECAT" 1323611 LIECAT (NIL T) -9 NIL 1323762 NIL) (-589 1322734 1322767 1322855 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-588 1316989 1322424 1322652 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-587 1309320 1316665 1316821 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-586 1305772 1306721 1307656 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-585 1304396 1305304 1305332 "LFCAT" 1305539 LFCAT (NIL) -9 NIL 1305678 NIL) (-584 1302635 1302965 1303310 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-583 1300152 1300817 1301498 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-582 1297164 1298142 1298645 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-581 1296655 1296957 1297049 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-580 1295362 1295686 1296086 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-579 1294622 1294707 1294935 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-578 1289689 1293190 1293726 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-577 1289314 1289364 1289524 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-576 1288173 1288884 1288924 "LALG" 1288985 LALG (NIL T) -9 NIL 1289043 NIL) (-575 1287956 1288033 1288168 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-574 1285873 1287224 1287475 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-573 1285702 1285732 1285773 "KVTFROM" 1285835 KVTFROM (NIL T) -9 NIL NIL NIL) (-572 1284636 1285240 1285422 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-571 1284465 1284495 1284536 "KRCFROM" 1284598 KRCFROM (NIL T) -9 NIL NIL NIL) (-570 1283567 1283764 1284059 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-569 1283396 1283426 1283467 "KONVERT" 1283529 KONVERT (NIL T) -9 NIL NIL NIL) (-568 1283225 1283255 1283296 "KOERCE" 1283358 KOERCE (NIL T) -9 NIL NIL NIL) (-567 1282795 1282888 1283020 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-566 1280848 1281742 1282114 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-565 1274031 1279046 1279100 "KDAGG" 1279476 KDAGG (NIL T T) -9 NIL 1279683 NIL) (-564 1273679 1273821 1274026 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-563 1266509 1273460 1273617 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-562 1266159 1266441 1266504 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-561 1265127 1265628 1265877 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-560 1264251 1264702 1264907 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-559 1263115 1263607 1263907 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-558 1262395 1262796 1262957 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-557 1262105 1262341 1262390 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-556 1256359 1261795 1262023 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-555 1255776 1256109 1256230 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-554 1251944 1253959 1254013 "IXAGG" 1254940 IXAGG (NIL T T) -9 NIL 1255397 NIL) (-553 1251150 1251521 1251939 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-552 1246404 1251086 1251145 "IVECTOR" NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-551 1245371 1245646 1245909 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-550 1244033 1244240 1244533 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-549 1242984 1243206 1243489 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-548 1242659 1242722 1242845 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-547 1241921 1242293 1242467 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-546 1239961 1241197 1241471 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-545 1229570 1235278 1236435 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-544 1228815 1228967 1229203 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-543 1228306 1228608 1228700 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-542 1227596 1227687 1227901 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-541 1226728 1226953 1227193 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-540 1225141 1225522 1225950 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-539 1224926 1224970 1225046 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-538 1223776 1224073 1224368 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-537 1223049 1223400 1223551 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-536 1222252 1222383 1222596 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-535 1220407 1220904 1221448 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-534 1217520 1218756 1219445 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-533 1217345 1217385 1217445 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-532 1213407 1217271 1217340 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-531 1211474 1213346 1213402 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-530 1210845 1211144 1211274 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-529 1210298 1210586 1210718 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-528 1209379 1210004 1210130 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-527 1208789 1209283 1209311 "IOBCON" 1209316 IOBCON (NIL) -9 NIL 1209337 NIL) (-526 1208360 1208424 1208606 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-525 1200404 1202775 1205100 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-524 1197515 1198298 1199162 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-523 1197192 1197289 1197406 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-522 1194698 1197128 1197187 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-521 1192810 1193339 1193906 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-520 1192312 1192426 1192566 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-519 1190696 1191102 1191564 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-518 1188475 1189069 1189680 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-517 1185848 1186458 1187178 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-516 1185252 1185410 1185618 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-515 1184771 1184857 1185045 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-514 1182976 1183497 1183954 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-513 1176058 1177711 1179440 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-512 1175424 1175586 1175759 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-511 1173297 1173761 1174305 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-510 1171511 1172399 1172427 "INTDOM" 1172726 INTDOM (NIL) -9 NIL 1172931 NIL) (-509 1171064 1171266 1171506 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-508 1166962 1169369 1169423 "INTCAT" 1170219 INTCAT (NIL T) -9 NIL 1170535 NIL) (-507 1166527 1166647 1166774 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-506 1165367 1165539 1165845 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-505 1164940 1165036 1165193 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-504 1157962 1164795 1164935 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-503 1157260 1157815 1157880 "INT8" NIL INT8 (NIL) -8 NIL NIL 1157914) (-502 1156557 1157112 1157177 "INT64" NIL INT64 (NIL) -8 NIL NIL 1157211) (-501 1155854 1156409 1156474 "INT32" NIL INT32 (NIL) -8 NIL NIL 1156508) (-500 1155151 1155706 1155771 "INT16" NIL INT16 (NIL) -8 NIL NIL 1155805) (-499 1151676 1155070 1155146 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-498 1145824 1149242 1149270 "INS" 1150200 INS (NIL) -9 NIL 1150859 NIL) (-497 1143902 1144816 1145751 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-496 1142961 1143184 1143459 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-495 1142175 1142316 1142513 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-494 1141165 1141306 1141543 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-493 1140317 1140481 1140741 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-492 1139597 1139712 1139900 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-491 1138336 1138605 1138929 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-490 1137616 1137757 1137940 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-489 1137279 1137351 1137449 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-488 1134365 1135851 1136366 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-487 1133964 1134071 1134185 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-486 1133120 1133765 1133866 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-485 1131970 1132238 1132559 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-484 1131042 1131900 1131965 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-483 1130667 1130747 1130864 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-482 1129581 1130126 1130330 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-481 1125676 1126731 1127674 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-480 1124530 1124853 1124881 "INBCON" 1125394 INBCON (NIL) -9 NIL 1125660 NIL) (-479 1123984 1124249 1124525 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-478 1123477 1123779 1123870 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-477 1122933 1123242 1123348 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-476 1119033 1122825 1122928 "IMATRIX" NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-475 1117873 1118012 1118327 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-474 1116297 1116564 1116901 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-473 1114113 1116179 1116292 "IIARRAY2" NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-472 1109005 1114044 1114108 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-471 1108385 1108718 1108834 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-470 1103192 1107823 1108009 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-469 1102254 1103114 1103187 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-468 1101826 1101903 1101957 "IEVALAB" 1102164 IEVALAB (NIL T T) -9 NIL NIL NIL) (-467 1101581 1101661 1101821 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-466 1100654 1101501 1101576 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-465 1099796 1100574 1100649 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-464 1099199 1099730 1099791 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-463 1097691 1098215 1098266 "IDPC" 1098772 IDPC (NIL T T) -9 NIL 1099052 NIL) (-462 1097057 1097613 1097686 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-461 1096306 1096979 1097052 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-460 1095999 1096212 1096272 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-459 1093070 1093951 1094843 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-458 1086696 1087973 1089012 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-457 1085958 1086088 1086287 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-456 1085132 1085630 1085768 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-455 1083521 1083852 1084243 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-454 1078954 1083223 1083335 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-453 1076212 1076836 1077531 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-452 1074438 1074918 1075451 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-451 1072202 1074330 1074433 "IARRAY2" NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-450 1068071 1072140 1072197 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-449 1061714 1067035 1067503 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-448 1061282 1061345 1061518 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-447 1060774 1060923 1060951 "HYPCAT" 1061158 HYPCAT (NIL) -9 NIL NIL NIL) (-446 1060430 1060583 1060769 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-445 1060043 1060288 1060371 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-444 1059876 1059925 1059966 "HOMOTOP" 1059971 HOMOTOP (NIL T) -9 NIL 1060004 NIL) (-443 1056450 1057824 1057865 "HOAGG" 1058840 HOAGG (NIL T) -9 NIL 1059561 NIL) (-442 1055456 1055926 1056445 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-441 1048717 1055181 1055329 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-440 1047652 1047910 1048173 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-439 1046619 1047517 1047647 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-438 1044813 1046452 1046540 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-437 1044127 1044479 1044613 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-436 1037677 1044060 1044122 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-435 1030874 1037413 1037564 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-434 1030327 1030484 1030647 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-433 1023392 1030218 1030322 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-432 1022883 1023185 1023277 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-431 1020497 1022670 1022849 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-430 1015889 1020379 1020492 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-429 1008957 1015786 1015884 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-428 1000952 1008326 1008581 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-427 999988 1000497 1000525 "GROUP" 1000728 GROUP (NIL) -9 NIL 1000862 NIL) (-426 999531 999732 999983 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-425 998203 998542 998929 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-424 997035 997392 997443 "GRMOD" 997972 GRMOD (NIL T T) -9 NIL 998140 NIL) (-423 996854 996902 997030 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-422 992977 994188 995188 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-421 991699 992023 992338 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-420 991252 991380 991521 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-419 990335 990834 990885 "GRALG" 991038 GRALG (NIL T T) -9 NIL 991130 NIL) (-418 990070 990167 990330 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-417 986785 989750 989927 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-416 986198 986261 986518 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-415 982084 982948 983473 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-414 981259 981461 981699 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-413 976262 977189 978208 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-412 976010 976067 976156 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-411 975492 975581 975746 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-410 975001 975042 975255 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-409 973802 974085 974389 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-408 967136 973492 973653 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-407 956949 961926 963030 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-406 955089 956130 956158 "GCDDOM" 956413 GCDDOM (NIL) -9 NIL 956570 NIL) (-405 954712 954869 955084 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-404 945505 947975 950363 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-403 943640 943965 944383 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-402 942581 942770 943037 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-401 941452 941659 941963 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-400 940915 941057 941205 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-399 939527 939875 940188 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-398 938072 938393 938715 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-397 935698 936054 936459 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-396 928950 930611 932189 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-395 926236 926996 927024 "FVFUN" 928180 FVFUN (NIL) -9 NIL 928900 NIL) (-394 925466 925684 925712 "FVC" 926003 FVC (NIL) -9 NIL 926186 NIL) (-393 925118 925339 925407 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-392 924742 924963 925044 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-391 923605 924226 924429 "FTEM" NIL FTEM (NIL) -8 NIL NIL NIL) (-390 921702 922385 922845 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-389 920295 920602 920994 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-388 918950 919309 919633 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-387 918253 918377 918564 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-386 917227 917493 917840 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-385 914885 915415 915897 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-384 914468 914528 914697 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-383 912832 913682 913985 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-382 911980 912114 912337 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-381 911151 911312 911539 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-380 907146 910097 910138 "FSAGG" 910508 FSAGG (NIL T) -9 NIL 910767 NIL) (-379 905500 906259 907051 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-378 903456 903752 904296 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-377 902503 902685 902985 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-376 902184 902233 902360 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-375 882492 891918 891959 "FS" 895829 FS (NIL T) -9 NIL 898107 NIL) (-374 874731 878222 882195 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-373 874265 874392 874544 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-372 868831 871958 871998 "FRNAALG" 873318 FRNAALG (NIL T) -9 NIL 873916 NIL) (-371 865572 866823 868081 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-370 865253 865302 865429 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-369 863740 864297 864591 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-368 863026 863119 863406 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-367 860860 861626 861942 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-366 859969 860412 860453 "FRETRCT" 860458 FRETRCT (NIL T) -9 NIL 860629 NIL) (-365 859342 859620 859964 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-364 856174 857632 857691 "FRAMALG" 858573 FRAMALG (NIL T T) -9 NIL 858865 NIL) (-363 854770 855321 855951 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-362 854463 854526 854633 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-361 848165 854268 854458 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-360 847858 847921 848028 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-359 840229 844737 846065 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-358 834093 837534 837562 "FPS" 838681 FPS (NIL) -9 NIL 839238 NIL) (-357 833650 833783 833947 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-356 830549 832529 832557 "FPC" 832782 FPC (NIL) -9 NIL 832924 NIL) (-355 830395 830447 830544 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-354 829157 829884 829925 "FPATMAB" 829930 FPATMAB (NIL T) -9 NIL 830082 NIL) (-353 827587 828183 828530 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-352 823486 824086 824768 "FORTRAN" NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-351 821060 821724 821752 "FORTFN" 822812 FORTFN (NIL) -9 NIL 823436 NIL) (-350 820812 820874 820902 "FORTCAT" 820961 FORTCAT (NIL) -9 NIL 821023 NIL) (-349 819017 819547 820086 "FORT" NIL FORT (NIL) -7 NIL NIL NIL) (-348 818592 818650 818823 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-347 817825 818025 818218 "FOP" NIL FOP (NIL) -7 NIL NIL NIL) (-346 816360 817223 817397 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-345 814987 815492 815520 "FNCAT" 815977 FNCAT (NIL) -9 NIL 816234 NIL) (-344 814444 814954 814982 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-343 812789 813951 813979 "FMTC" 813984 FMTC (NIL) -9 NIL 814019 NIL) (-342 811376 812738 812784 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-341 807976 809334 809375 "FMONCAT" 810592 FMONCAT (NIL T) -9 NIL 811196 NIL) (-340 805298 806046 806074 "FMFUN" 807218 FMFUN (NIL) -9 NIL 807926 NIL) (-339 802199 803246 803299 "FMCAT" 804480 FMCAT (NIL T T) -9 NIL 804972 NIL) (-338 801432 801649 801677 "FMC" 801967 FMC (NIL) -9 NIL 802149 NIL) (-337 800164 801255 801354 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-336 799292 800012 800159 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-335 797479 797931 798425 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-334 795414 795950 796528 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-333 788864 793751 794365 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-332 787388 788458 788498 "FLINEXP" 788503 FLINEXP (NIL T) -9 NIL 788596 NIL) (-331 786797 787056 787383 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-330 786012 786171 786392 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-329 782938 783986 784038 "FLALG" 785265 FLALG (NIL T T) -9 NIL 785732 NIL) (-328 782109 782270 782497 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-327 775521 779531 779572 "FLAGG" 780827 FLAGG (NIL T) -9 NIL 781472 NIL) (-326 774629 775033 775516 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-325 771278 772480 772539 "FINRALG" 773667 FINRALG (NIL T T) -9 NIL 774175 NIL) (-324 770669 770934 771273 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-323 769979 770275 770303 "FINITE" 770499 FINITE (NIL) -9 NIL 770606 NIL) (-322 761983 764543 764583 "FINAALG" 768235 FINAALG (NIL T) -9 NIL 769673 NIL) (-321 758250 759495 760618 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-320 756814 757233 757287 "FILECAT" 757971 FILECAT (NIL T T) -9 NIL 758187 NIL) (-319 756165 756639 756742 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-318 753501 755317 755345 "FIELD" 755385 FIELD (NIL) -9 NIL 755465 NIL) (-317 752526 752987 753496 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-316 750530 751476 751822 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-315 749773 749954 750173 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-314 745092 749711 749768 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-313 744754 744821 744956 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-312 744294 744336 744545 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-311 740974 741851 742628 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-310 736307 740906 740969 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-309 731035 735796 735986 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-308 725565 730316 730574 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-307 719821 725016 725227 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-306 718844 719054 719369 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-305 714373 717015 717043 "FFIELDC" 717662 FFIELDC (NIL) -9 NIL 718037 NIL) (-304 713450 713888 714368 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-303 713065 713123 713247 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-302 711209 711732 712249 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-301 706352 711008 711109 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-300 701499 706141 706248 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-299 696214 701290 701398 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-298 695668 695717 695952 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-297 674208 685219 685305 "FFCAT" 690455 FFCAT (NIL T T T) -9 NIL 691891 NIL) (-296 670448 671674 672980 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-295 665340 670379 670443 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-294 655297 659512 660694 "FEXPR" NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-293 654225 654694 654735 "FEVALAB" 654819 FEVALAB (NIL T) -9 NIL 655080 NIL) (-292 653630 653882 654220 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-291 650500 651380 651495 "FDIVCAT" 653062 FDIVCAT (NIL T T T T) -9 NIL 653498 NIL) (-290 650294 650326 650495 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-289 649601 649694 649971 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-288 648119 649085 649288 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-287 647212 647596 647798 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-286 646137 646426 646715 "FCPAK1" NIL FCPAK1 (NIL) -7 NIL NIL NIL) (-285 645259 645748 645888 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-284 632106 635935 639469 "FC" NIL FC (NIL) -8 NIL NIL NIL) (-283 623760 628356 628396 "FAXF" 630197 FAXF (NIL T) -9 NIL 630887 NIL) (-282 621676 622480 623295 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-281 616540 621198 621372 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-280 611071 613432 613484 "FAMR" 614495 FAMR (NIL T T) -9 NIL 614954 NIL) (-279 610270 610635 611066 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-278 609323 610212 610265 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-277 606960 607808 607861 "FAMONC" 608802 FAMONC (NIL T T) -9 NIL 609187 NIL) (-276 605548 606818 606955 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-275 603628 603989 604391 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-274 602905 603102 603324 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-273 594823 602352 602551 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-272 592842 593412 593998 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-271 589744 590386 591106 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-270 584901 585608 586413 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-269 584590 584653 584762 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-268 569489 583639 584065 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-267 560077 568809 569097 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-266 559571 559872 559963 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-265 559347 559537 559566 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-264 559036 559104 559217 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-263 558553 558695 558736 "EVALAB" 558906 EVALAB (NIL T) -9 NIL 559010 NIL) (-262 558181 558327 558548 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-261 555312 556845 556873 "EUCDOM" 557427 EUCDOM (NIL) -9 NIL 557776 NIL) (-260 554239 554732 555307 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-259 553932 553995 554102 "ESTOOLS2" NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-258 553725 553773 553853 "ESTOOLS1" NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-257 543803 546773 549512 "ESTOOLS" NIL ESTOOLS (NIL) -7 NIL NIL NIL) (-256 543583 543620 543701 "ESCONT1" NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-255 540654 541480 542259 "ESCONT" NIL ESCONT (NIL) -7 NIL NIL NIL) (-254 540379 540435 540535 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-253 540067 540131 540240 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-252 533850 535750 535778 "ES" 538520 ES (NIL) -9 NIL 539904 NIL) (-251 530365 531897 533689 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-250 529713 529866 530042 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-249 522784 529617 529708 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-248 522473 522536 522645 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-247 516184 519219 520652 "EQ" NIL -3676 (NIL T) -8 NIL NIL NIL) (-246 512487 513583 514676 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-245 511313 511664 511970 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-244 510286 510955 510983 "ENTIRER" 510988 ENTIRER (NIL) -9 NIL 511032 NIL) (-243 506983 508716 509065 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-242 506087 506298 506352 "ELTAGG" 506732 ELTAGG (NIL T T) -9 NIL 506943 NIL) (-241 505867 505941 506082 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-240 505625 505660 505714 "ELTAB" 505798 ELTAB (NIL T T) -9 NIL 505850 NIL) (-239 504876 505046 505245 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-238 504600 504674 504702 "ELEMFUN" 504807 ELEMFUN (NIL) -9 NIL NIL NIL) (-237 504500 504527 504595 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-236 499052 502547 502588 "ELAGG" 503525 ELAGG (NIL T) -9 NIL 503985 NIL) (-235 497850 498388 499047 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-234 497268 497435 497591 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-233 496181 496500 496779 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-232 489574 491572 492399 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-231 483553 485549 486359 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-230 481367 481773 482244 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-229 472367 474280 475821 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-228 471481 471981 472130 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-227 470191 470865 470905 "DVARCAT" 471188 DVARCAT (NIL T) -9 NIL 471328 NIL) (-226 469610 469874 470186 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-225 461735 469478 469605 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-224 460085 460876 460917 "DSEXT" 461280 DSEXT (NIL T) -9 NIL 461574 NIL) (-223 458890 459414 460080 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-222 458614 458679 458777 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-221 454765 455981 457112 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-220 450411 451766 452830 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-219 449086 449447 449833 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-218 448772 448831 448949 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-217 447747 448045 448335 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-216 447332 447407 447557 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-215 439745 441857 443972 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-214 435262 436281 437360 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-213 431863 433932 433973 "DQAGG" 434602 DQAGG (NIL T) -9 NIL 434875 NIL) (-212 418443 426024 426106 "DPOLCAT" 427943 DPOLCAT (NIL T T T T) -9 NIL 428486 NIL) (-211 414851 416499 418438 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-210 407899 414749 414846 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-209 400856 407728 407894 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-208 400450 400709 400798 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-207 399864 400312 400392 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-206 399150 399475 399626 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-205 392347 398886 399037 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-204 390133 391419 391459 "DMEXT" 391464 DMEXT (NIL T) -9 NIL 391639 NIL) (-203 389789 389851 389995 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-202 383114 389274 389464 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-201 379786 381943 381984 "DLAGG" 382534 DLAGG (NIL T) -9 NIL 382763 NIL) (-200 378225 379034 379062 "DIVRING" 379154 DIVRING (NIL) -9 NIL 379237 NIL) (-199 377676 377920 378220 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-198 376104 376521 376927 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-197 375141 375362 375627 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-196 368711 375073 375136 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-195 357101 363465 363518 "DIRPCAT" 363774 DIRPCAT (NIL NIL T) -9 NIL 364647 NIL) (-194 355115 355883 356764 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-193 354562 354728 354914 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-192 351114 353454 353495 "DIOPS" 353927 DIOPS (NIL T) -9 NIL 354153 NIL) (-191 350774 350918 351109 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-190 349690 350457 350485 "DIFRING" 350490 DIFRING (NIL) -9 NIL 350511 NIL) (-189 349338 349436 349464 "DIFFSPC" 349583 DIFFSPC (NIL) -9 NIL 349658 NIL) (-188 349079 349181 349333 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-187 348025 348619 348659 "DIFFMOD" 348664 DIFFMOD (NIL T) -9 NIL 348761 NIL) (-186 347721 347778 347819 "DIFFDOM" 347940 DIFFDOM (NIL T) -9 NIL 348008 NIL) (-185 347602 347632 347716 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-184 345351 346810 346850 "DIFEXT" 346855 DIFEXT (NIL T) -9 NIL 347007 NIL) (-183 342518 344858 344899 "DIAGG" 344904 DIAGG (NIL T) -9 NIL 344924 NIL) (-182 342074 342264 342513 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-181 337286 341264 341541 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-180 333744 334797 335807 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-179 328357 332898 333225 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-178 326923 327215 327590 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-177 324107 325295 325691 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-176 321827 323938 324027 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-175 321210 321355 321537 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-174 318528 319252 320052 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-173 316637 317095 317657 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-172 316019 316352 316467 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-171 309280 315744 315892 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-170 307200 307710 308214 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-169 306839 306888 307039 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-168 306098 306660 306751 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-167 304122 304564 304924 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-166 303414 303703 303849 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-165 302865 303011 303163 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-164 300227 301020 301747 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-163 299666 299812 299983 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-162 297738 298049 298416 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-161 297295 297550 297651 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-160 296508 296891 296919 "CTORCAT" 297100 CTORCAT (NIL) -9 NIL 297212 NIL) (-159 296211 296345 296503 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-158 295704 295961 296069 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-157 295120 295551 295624 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-156 294579 294696 294849 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-155 290973 291729 292484 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-154 290463 290766 290858 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-153 289682 289891 290119 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-152 289186 289291 289495 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-151 288939 288973 289079 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-150 285878 286640 287358 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-149 285397 285539 285678 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-148 281354 283860 284352 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-147 281228 281255 281283 "CONDUIT" 281320 CONDUIT (NIL) -9 NIL NIL NIL) (-146 280195 280864 280892 "COMRING" 280897 COMRING (NIL) -9 NIL 280947 NIL) (-145 279360 279727 279905 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-144 279056 279097 279225 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-143 278749 278812 278919 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-142 267578 278699 278744 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-141 267039 267178 267338 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-140 266792 266833 266931 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-139 248131 260411 260451 "COMPCAT" 261454 COMPCAT (NIL T) -9 NIL 262798 NIL) (-138 240677 244188 247775 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-137 240436 240470 240572 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-136 240266 240305 240363 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-135 239846 240125 240200 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-134 239423 239664 239751 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-133 238618 238866 238894 "COMBOPC" 239232 COMBOPC (NIL) -9 NIL 239407 NIL) (-132 237682 237934 238176 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-131 234614 235298 235921 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-130 233494 233945 234180 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-129 232985 233287 233379 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-128 232672 232725 232850 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-127 232142 232451 232550 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-126 228662 229732 230812 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-125 227021 227942 228180 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-124 223139 225147 225188 "CLAGG" 226114 CLAGG (NIL T) -9 NIL 226647 NIL) (-123 222032 222559 223134 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-122 221661 221752 221892 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-121 219598 220105 220653 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-120 218647 219316 219344 "CHARZ" 219349 CHARZ (NIL) -9 NIL 219363 NIL) (-119 218441 218487 218565 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-118 217368 218069 218097 "CHARNZ" 218158 CHARNZ (NIL) -9 NIL 218206 NIL) (-117 214846 215943 216466 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-116 214554 214633 214661 "CFCAT" 214772 CFCAT (NIL) -9 NIL NIL NIL) (-115 213897 214026 214208 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-114 209886 213310 213590 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-113 209264 209451 209628 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-112 208792 209211 209259 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-111 208264 208573 208671 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-110 207755 208057 208149 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-109 207004 207164 207385 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-108 203104 204361 205069 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-107 201502 202501 202752 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-106 201082 201361 201436 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-105 200528 200781 200809 "CACHSET" 200941 CACHSET (NIL) -9 NIL 201019 NIL) (-104 199923 200307 200335 "CABMON" 200385 CABMON (NIL) -9 NIL 200441 NIL) (-103 199453 199717 199827 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-102 194676 199110 199282 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-101 193645 194350 194485 "BYTE" NIL BYTE (NIL) -8 NIL NIL 194648) (-100 191116 193412 193518 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-99 188547 190859 190978 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-98 185793 187997 188036 "BTCAT" 188103 BTCAT (NIL T) -9 NIL 188179 NIL) (-97 185544 185642 185788 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-96 180666 184787 184813 "BTAGG" 184924 BTAGG (NIL) -9 NIL 185032 NIL) (-95 180297 180458 180661 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-94 177359 179767 179979 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-93 176629 176781 176959 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-92 173168 175341 175380 "BRAGG" 176021 BRAGG (NIL T) -9 NIL 176278 NIL) (-91 172123 172618 173163 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-90 164718 171628 171809 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-89 162774 164670 164713 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-88 162507 162543 162654 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-87 160746 161179 161627 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-86 156712 158128 159018 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-85 155588 156479 156601 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-84 155186 155343 155369 "BOOLE" 155477 BOOLE (NIL) -9 NIL 155558 NIL) (-83 155091 155118 155181 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-82 154272 154768 154818 "BMODULE" 154823 BMODULE (NIL T T) -9 NIL 154887 NIL) (-81 149889 154129 154198 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-80 149411 149554 149692 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-79 142678 149141 149286 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-78 140418 141913 141952 "BGAGG" 142208 BGAGG (NIL T) -9 NIL 142345 NIL) (-77 140287 140325 140413 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-76 139502 139860 140063 "BFUNCT" NIL BFUNCT (NIL) -8 NIL NIL NIL) (-75 138353 138554 138839 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-74 134991 137511 137838 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-73 134588 134681 134707 "BASTYPE" 134878 BASTYPE (NIL) -9 NIL 134974 NIL) (-72 134358 134454 134583 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-71 133873 133961 134111 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-70 132772 133447 133632 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-69 132498 132503 132529 "ATTREG" 132534 ATTREG (NIL) -9 NIL NIL NIL) (-68 130997 131529 131881 "ATTRBUT" NIL ATTRBUT (NIL) -8 NIL NIL NIL) (-67 130602 130873 130939 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 130102 130251 130277 "ATRIG" 130478 ATRIG (NIL) -9 NIL NIL NIL) (-65 129957 130010 130097 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 129539 129770 129796 "ASTCAT" 129801 ASTCAT (NIL) -9 NIL 129831 NIL) (-63 129338 129415 129534 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 127497 129171 129259 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 126304 126617 126982 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 124104 126208 126299 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 123295 123486 123707 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 118882 123026 123140 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 113054 115086 115161 "ARR2CAT" 117791 ARR2CAT (NIL T T T) -9 NIL 118549 NIL) (-56 111431 112201 113049 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 110799 111170 111292 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 109725 109895 110193 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 109426 109480 109598 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 108809 108955 109111 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 108214 108504 108624 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 105846 106943 107266 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 105371 105631 105727 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 99130 104433 104875 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 94740 96341 96391 "AMR" 97129 AMR (NIL T T) -9 NIL 97726 NIL) (-46 94094 94374 94735 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 77256 94028 94089 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73691 76932 77101 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70701 71361 71968 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 70080 70193 70377 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 66491 67117 67709 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 56005 66184 66334 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55322 55476 55654 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 54123 54856 54894 "ALGEBRA" 54899 ALGEBRA (NIL T) -9 NIL 54939 NIL) (-37 53909 53986 54118 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 33885 51118 51170 "ALAGG" 51308 ALAGG (NIL T T) -9 NIL 51473 NIL) (-35 33385 33534 33560 "AHYP" 33761 AHYP (NIL) -9 NIL NIL NIL) (-34 32693 32874 32900 "AGG" 33181 AGG (NIL) -9 NIL 33368 NIL) (-33 32490 32575 32688 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30628 31089 31489 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30123 30425 30515 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29493 29788 29944 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17115 26347 26385 "ACFS" 26992 ACFS (NIL T) -9 NIL 27231 NIL) (-28 15738 16348 17110 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11381 13695 13721 "ACF" 14600 ACF (NIL) -9 NIL 15012 NIL) (-26 10477 10883 11376 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 9991 10231 10257 "ABELSG" 10349 ABELSG (NIL) -9 NIL 10414 NIL) (-24 9889 9920 9986 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9165 9508 9534 "ABELMON" 9703 ABELMON (NIL) -9 NIL 9814 NIL) (-22 8916 9023 9160 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8171 8623 8649 "ABELGRP" 8721 ABELGRP (NIL) -9 NIL 8796 NIL) (-20 7785 7950 8166 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 7046 7085 "A1AGG" 7090 A1AGG (NIL T) -9 NIL 7130 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 45d86c97..a8f0543d 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,13920 +1,12988 @@ -(718691 . 3525059671) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1068) (-656 (-557)))) - (-5 *2 (-1286 (-419 (-557)))) (-5 *1 (-1315 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1068) (-656 (-557)))) - (-5 *2 (-1286 (-557))) (-5 *1 (-1315 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1068) (-656 (-557)))) (-5 *2 (-114)) - (-5 *1 (-1315 *4))))) -(((*1 *2 *3) - (-12 (-4 *5 (-13 (-629 *2) (-175))) (-5 *2 (-903 *4)) (-5 *1 (-173 *4 *5 *3)) - (-4 *4 (-1120)) (-4 *3 (-168 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-659 (-1108 (-853 (-391))))) - (-5 *2 (-659 (-1108 (-853 (-229))))) (-5 *1 (-315)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1286 *3)) (-4 *3 (-175)) (-4 *1 (-422 *3 *4)) - (-4 *4 (-1262 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1262 *3)) - (-5 *2 (-1286 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-175)) (-4 *1 (-430 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1286 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-417 *1)) (-4 *1 (-433 *3)) (-4 *3 (-568)) (-4 *3 (-1120)))) - ((*1 *1 *2) - (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-1068)) - (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-475 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-546)))) - ((*1 *2 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-742 *3 *2)) (-4 *2 (-1262 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2) - (-12 (-5 *2 (-963 *3)) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) - (-4 *5 (-629 (-1196))) (-4 *4 (-813)) (-4 *5 (-859)))) - ((*1 *1 *2) - (-3955 - (-12 (-5 *2 (-963 (-557))) (-4 *1 (-1084 *3 *4 *5)) - (-12 (-2957 (-4 *3 (-38 (-419 (-557))))) (-4 *3 (-38 (-557))) - (-4 *5 (-629 (-1196)))) - (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859))) - (-12 (-5 *2 (-963 (-557))) (-4 *1 (-1084 *3 *4 *5)) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *5 (-629 (-1196)))) (-4 *3 (-1068)) - (-4 *4 (-813)) (-4 *5 (-859))))) - ((*1 *1 *2) - (-12 (-5 *2 (-963 (-419 (-557)))) (-4 *1 (-1084 *3 *4 *5)) - (-4 *3 (-38 (-419 (-557)))) (-4 *5 (-629 (-1196))) (-4 *3 (-1068)) - (-4 *4 (-813)) (-4 *5 (-859)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-659 *7)) (|:| -1741 *8))) - (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-1178)) - (-5 *1 (-1088 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-659 *7)) (|:| -1741 *8))) - (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1128 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-1178)) - (-5 *1 (-1164 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1201)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-875)) (-5 *3 (-557)) (-5 *1 (-1216)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-875)) (-5 *3 (-557)) (-5 *1 (-1216)))) - ((*1 *2 *3) - (-12 (-5 *3 (-798 *4 (-876 *5))) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) - (-14 *5 (-659 (-1196))) (-5 *2 (-798 *4 (-876 *6))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *6 (-659 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-963 *4)) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) - (-5 *2 (-963 (-1043 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *5 (-659 (-1196))) (-14 *6 (-659 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-798 *4 (-876 *6))) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) - (-14 *6 (-659 (-1196))) (-5 *2 (-963 (-1043 (-419 *4)))) - (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-659 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1190 *4)) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) - (-5 *2 (-1190 (-1043 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *5 (-659 (-1196))) (-14 *6 (-659 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1165 *4 (-542 (-876 *6)) (-876 *6) (-798 *4 (-876 *6)))) - (-4 *4 (-13 (-858) (-319) (-149) (-1039))) (-14 *6 (-659 (-1196))) - (-5 *2 (-659 (-798 *4 (-876 *6)))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *5 (-659 (-1196)))))) -(((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-570 *3)) (-4 *3 (-556)))) - ((*1 *2 *3) - (-12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-319)) (-5 *2 (-417 *3)) - (-5 *1 (-760 *4 *5 *6 *3)) (-4 *3 (-967 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-319)) (-4 *7 (-967 *6 *4 *5)) - (-5 *2 (-417 (-1190 *7))) (-5 *1 (-760 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-417 *1)) (-4 *1 (-967 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-859)) (-4 *5 (-813)) (-4 *6 (-464)) (-5 *2 (-417 *3)) - (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-967 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-464)) (-4 *7 (-967 *6 *4 *5)) - (-5 *2 (-417 (-1190 (-419 *7)))) (-5 *1 (-1192 *4 *5 *6 *7)) - (-5 *3 (-1190 (-419 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1241)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-417 *3)) (-5 *1 (-1266 *4 *3)) - (-4 *3 (-13 (-1262 *4) (-568) (-10 -8 (-15 -3560 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) - (-14 *5 (-659 (-1196))) - (-5 *2 (-659 (-1165 *4 (-542 (-876 *6)) (-876 *6) (-798 *4 (-876 *6))))) - (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-659 (-1196)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) - (-14 *5 (-659 (-1196))) (-5 *2 (-659 (-659 (-1043 (-419 *4))))) - (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-659 (-1196))))) +(669735 . 3525483393) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1207 *4)) (-4 *4 (-13 (-989) (-596 (-499)))) + (-5 *2 (-1207 (-361 (-499)))) (-5 *1 (-1236 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1207 *4)) (-4 *4 (-13 (-989) (-596 (-499)))) + (-5 *2 (-1207 (-499))) (-5 *1 (-1236 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1207 *4)) (-4 *4 (-13 (-989) (-596 (-499)))) (-5 *2 (-85)) + (-5 *1 (-1236 *4))))) +(((*1 *2 *3) + (-12 (-4 *5 (-13 (-569 *2) (-146))) (-5 *2 (-825 *4)) (-5 *1 (-144 *4 *5 *3)) + (-4 *4 (-1041)) (-4 *3 (-139 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-599 (-1029 (-775 (-333))))) + (-5 *2 (-599 (-1029 (-775 (-179))))) (-5 *1 (-257)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1207 *3)) (-4 *3 (-146)) (-4 *1 (-364 *3 *4)) + (-4 *4 (-1183 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1183 *3)) + (-5 *2 (-1207 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-146)) (-4 *1 (-372 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-1207 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-359 *1)) (-4 *1 (-375 *3)) (-4 *3 (-510)) (-4 *3 (-1041)))) + ((*1 *1 *2) + (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) + (-4 *5 (-781)) (-5 *1 (-417 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1043)) (-5 *1 (-488)))) + ((*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-1157)))) + ((*1 *1 *2) (-12 (-4 *1 (-573 *2)) (-4 *2 (-1157)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-682 *3 *2)) (-4 *2 (-1183 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) + ((*1 *1 *2) + (-12 (-5 *2 (-884 *3)) (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) + (-4 *5 (-569 (-1117))) (-4 *4 (-738)) (-4 *5 (-781)))) + ((*1 *1 *2) + (-3677 + (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) + (-12 (-2679 (-4 *3 (-38 (-361 (-499))))) (-4 *3 (-38 (-499))) + (-4 *5 (-569 (-1117)))) + (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781))) + (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) + (-4 *4 (-738)) (-4 *5 (-781))))) + ((*1 *1 *2) + (-12 (-5 *2 (-884 (-361 (-499)))) (-4 *1 (-1005 *3 *4 *5)) + (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117))) (-4 *3 (-989)) + (-4 *4 (-738)) (-4 *5 (-781)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-599 *7)) (|:| -1633 *8))) + (-4 *7 (-1005 *4 *5 *6)) (-4 *8 (-1011 *4 *5 *6 *7)) (-4 *4 (-406)) + (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-1099)) + (-5 *1 (-1009 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-599 *7)) (|:| -1633 *8))) + (-4 *7 (-1005 *4 *5 *6)) (-4 *8 (-1049 *4 *5 *6 *7)) (-4 *4 (-406)) + (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-1099)) + (-5 *1 (-1085 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1043)) (-5 *1 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-1122)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-499)) (-5 *1 (-1137)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-797)) (-5 *3 (-499)) (-5 *1 (-1137)))) + ((*1 *2 *3) + (-12 (-5 *3 (-723 *4 (-798 *5))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) + (-14 *5 (-599 (-1117))) (-5 *2 (-723 *4 (-798 *6))) (-5 *1 (-1235 *4 *5 *6)) + (-14 *6 (-599 (-1117))))) + ((*1 *2 *3) + (-12 (-5 *3 (-884 *4)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) + (-5 *2 (-884 (-964 (-361 *4)))) (-5 *1 (-1235 *4 *5 *6)) + (-14 *5 (-599 (-1117))) (-14 *6 (-599 (-1117))))) + ((*1 *2 *3) + (-12 (-5 *3 (-723 *4 (-798 *6))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) + (-14 *6 (-599 (-1117))) (-5 *2 (-884 (-964 (-361 *4)))) + (-5 *1 (-1235 *4 *5 *6)) (-14 *5 (-599 (-1117))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1111 *4)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) + (-5 *2 (-1111 (-964 (-361 *4)))) (-5 *1 (-1235 *4 *5 *6)) + (-14 *5 (-599 (-1117))) (-14 *6 (-599 (-1117))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1086 *4 (-484 (-798 *6)) (-798 *6) (-723 *4 (-798 *6)))) + (-4 *4 (-13 (-780) (-261) (-120) (-960))) (-14 *6 (-599 (-1117))) + (-5 *2 (-599 (-723 *4 (-798 *6)))) (-5 *1 (-1235 *4 *5 *6)) + (-14 *5 (-599 (-1117)))))) +(((*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-512 *3)) (-4 *3 (-498)))) + ((*1 *2 *3) + (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)) (-5 *2 (-359 *3)) + (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-888 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)) (-4 *7 (-888 *6 *4 *5)) + (-5 *2 (-359 (-1111 *7))) (-5 *1 (-700 *4 *5 *6 *7)) (-5 *3 (-1111 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-406)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-359 *1)) (-4 *1 (-888 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-781)) (-4 *5 (-738)) (-4 *6 (-406)) (-5 *2 (-359 *3)) + (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-888 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-406)) (-4 *7 (-888 *6 *4 *5)) + (-5 *2 (-359 (-1111 (-361 *7)))) (-5 *1 (-1113 *4 *5 *6 *7)) + (-5 *3 (-1111 (-361 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-359 *1)) (-4 *1 (-1162)))) + ((*1 *2 *3) + (-12 (-4 *4 (-510)) (-5 *2 (-359 *3)) (-5 *1 (-1187 *4 *3)) + (-4 *3 (-13 (-1183 *4) (-510) (-10 -8 (-15 -3282 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-986 *4 *5)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) + (-14 *5 (-599 (-1117))) + (-5 *2 (-599 (-1086 *4 (-484 (-798 *6)) (-798 *6) (-723 *4 (-798 *6))))) + (-5 *1 (-1235 *4 *5 *6)) (-14 *6 (-599 (-1117)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-986 *4 *5)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) + (-14 *5 (-599 (-1117))) (-5 *2 (-599 (-599 (-964 (-361 *4))))) + (-5 *1 (-1235 *4 *5 *6)) (-14 *6 (-599 (-1117))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-659 (-963 *5))) (-5 *4 (-114)) - (-4 *5 (-13 (-858) (-319) (-149) (-1039))) - (-5 *2 (-659 (-659 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) - (-14 *6 (-659 (-1196))) (-14 *7 (-659 (-1196))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-963 *5))) (-5 *4 (-114)) - (-4 *5 (-13 (-858) (-319) (-149) (-1039))) - (-5 *2 (-659 (-659 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) - (-14 *6 (-659 (-1196))) (-14 *7 (-659 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-659 (-963 *4))) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) - (-5 *2 (-659 (-659 (-1043 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *5 (-659 (-1196))) (-14 *6 (-659 (-1196)))))) + (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-780) (-261) (-120) (-960))) + (-5 *2 (-599 (-599 (-964 (-361 *5))))) (-5 *1 (-1235 *5 *6 *7)) + (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-780) (-261) (-120) (-960))) + (-5 *2 (-599 (-599 (-964 (-361 *5))))) (-5 *1 (-1235 *5 *6 *7)) + (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) + ((*1 *2 *3) + (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) + (-5 *2 (-599 (-599 (-964 (-361 *4))))) (-5 *1 (-1235 *4 *5 *6)) + (-14 *5 (-599 (-1117))) (-14 *6 (-599 (-1117)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-659 (-963 (-557)))) (-5 *4 (-659 (-1196))) - (-5 *2 (-659 (-659 (-391)))) (-5 *1 (-1042)) (-5 *5 (-391)))) + (-12 (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-599 (-1117))) + (-5 *2 (-599 (-599 (-333)))) (-5 *1 (-963)) (-5 *5 (-333)))) ((*1 *2 *3) - (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) - (-14 *5 (-659 (-1196))) (-5 *2 (-659 (-659 (-1043 (-419 *4))))) - (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-659 (-1196))))) + (-12 (-5 *3 (-986 *4 *5)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) + (-14 *5 (-599 (-1117))) (-5 *2 (-599 (-599 (-964 (-361 *4))))) + (-5 *1 (-1235 *4 *5 *6)) (-14 *6 (-599 (-1117))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-659 (-963 *5))) (-5 *4 (-114)) - (-4 *5 (-13 (-858) (-319) (-149) (-1039))) - (-5 *2 (-659 (-659 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) - (-14 *6 (-659 (-1196))) (-14 *7 (-659 (-1196))))) + (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-780) (-261) (-120) (-960))) + (-5 *2 (-599 (-599 (-964 (-361 *5))))) (-5 *1 (-1235 *5 *6 *7)) + (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-659 (-963 *5))) (-5 *4 (-114)) - (-4 *5 (-13 (-858) (-319) (-149) (-1039))) - (-5 *2 (-659 (-659 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) - (-14 *6 (-659 (-1196))) (-14 *7 (-659 (-1196))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-963 *5))) (-5 *4 (-114)) - (-4 *5 (-13 (-858) (-319) (-149) (-1039))) - (-5 *2 (-659 (-659 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) - (-14 *6 (-659 (-1196))) (-14 *7 (-659 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-659 (-963 *4))) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) - (-5 *2 (-659 (-659 (-1043 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *5 (-659 (-1196))) (-14 *6 (-659 (-1196)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) - (-14 *5 (-659 (-1196))) - (-5 *2 (-659 (-2 (|:| -1948 (-1190 *4)) (|:| -3640 (-659 (-963 *4)))))) - (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-659 (-1196))))) + (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-780) (-261) (-120) (-960))) + (-5 *2 (-599 (-599 (-964 (-361 *5))))) (-5 *1 (-1235 *5 *6 *7)) + (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-780) (-261) (-120) (-960))) + (-5 *2 (-599 (-599 (-964 (-361 *5))))) (-5 *1 (-1235 *5 *6 *7)) + (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) + ((*1 *2 *3) + (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) + (-5 *2 (-599 (-599 (-964 (-361 *4))))) (-5 *1 (-1235 *4 *5 *6)) + (-14 *5 (-599 (-1117))) (-14 *6 (-599 (-1117)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-986 *4 *5)) (-4 *4 (-13 (-780) (-261) (-120) (-960))) + (-14 *5 (-599 (-1117))) + (-5 *2 (-599 (-2 (|:| -1840 (-1111 *4)) (|:| -3362 (-599 (-884 *4)))))) + (-5 *1 (-1235 *4 *5 *6)) (-14 *6 (-599 (-1117))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-858) (-319) (-149) (-1039))) - (-5 *2 (-659 (-2 (|:| -1948 (-1190 *5)) (|:| -3640 (-659 (-963 *5)))))) - (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-659 (-963 *5))) (-14 *6 (-659 (-1196))) - (-14 *7 (-659 (-1196))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) + (-5 *2 (-599 (-2 (|:| -1840 (-1111 *5)) (|:| -3362 (-599 (-884 *5)))))) + (-5 *1 (-1235 *5 *6 *7)) (-5 *3 (-599 (-884 *5))) (-14 *6 (-599 (-1117))) + (-14 *7 (-599 (-1117))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-858) (-319) (-149) (-1039))) - (-5 *2 (-659 (-2 (|:| -1948 (-1190 *5)) (|:| -3640 (-659 (-963 *5)))))) - (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-659 (-963 *5))) (-14 *6 (-659 (-1196))) - (-14 *7 (-659 (-1196))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-858) (-319) (-149) (-1039))) - (-5 *2 (-659 (-2 (|:| -1948 (-1190 *5)) (|:| -3640 (-659 (-963 *5)))))) - (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-659 (-963 *5))) (-14 *6 (-659 (-1196))) - (-14 *7 (-659 (-1196))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-858) (-319) (-149) (-1039))) - (-5 *2 (-659 (-2 (|:| -1948 (-1190 *4)) (|:| -3640 (-659 (-963 *4)))))) - (-5 *1 (-1314 *4 *5 *6)) (-5 *3 (-659 (-963 *4))) (-14 *5 (-659 (-1196))) - (-14 *6 (-659 (-1196)))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) + (-5 *2 (-599 (-2 (|:| -1840 (-1111 *5)) (|:| -3362 (-599 (-884 *5)))))) + (-5 *1 (-1235 *5 *6 *7)) (-5 *3 (-599 (-884 *5))) (-14 *6 (-599 (-1117))) + (-14 *7 (-599 (-1117))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-780) (-261) (-120) (-960))) + (-5 *2 (-599 (-2 (|:| -1840 (-1111 *5)) (|:| -3362 (-599 (-884 *5)))))) + (-5 *1 (-1235 *5 *6 *7)) (-5 *3 (-599 (-884 *5))) (-14 *6 (-599 (-1117))) + (-14 *7 (-599 (-1117))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-780) (-261) (-120) (-960))) + (-5 *2 (-599 (-2 (|:| -1840 (-1111 *4)) (|:| -3362 (-599 (-884 *4)))))) + (-5 *1 (-1235 *4 *5 *6)) (-5 *3 (-599 (-884 *4))) (-14 *5 (-599 (-1117))) + (-14 *6 (-599 (-1117)))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-659 (-963 *5))) (-5 *4 (-114)) - (-4 *5 (-13 (-858) (-319) (-149) (-1039))) (-5 *2 (-659 (-1065 *5 *6))) - (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-659 (-1196))) (-14 *7 (-659 (-1196))))) + (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-986 *5 *6))) + (-5 *1 (-1235 *5 *6 *7)) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-963 *5))) (-5 *4 (-114)) - (-4 *5 (-13 (-858) (-319) (-149) (-1039))) (-5 *2 (-659 (-1065 *5 *6))) - (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-659 (-1196))) (-14 *7 (-659 (-1196))))) + (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-780) (-261) (-120) (-960))) (-5 *2 (-599 (-986 *5 *6))) + (-5 *1 (-1235 *5 *6 *7)) (-14 *6 (-599 (-1117))) (-14 *7 (-599 (-1117))))) ((*1 *2 *3) - (-12 (-5 *3 (-659 (-963 *4))) (-4 *4 (-13 (-858) (-319) (-149) (-1039))) - (-5 *2 (-659 (-1065 *4 *5))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *5 (-659 (-1196))) (-14 *6 (-659 (-1196)))))) + (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-13 (-780) (-261) (-120) (-960))) + (-5 *2 (-599 (-986 *4 *5))) (-5 *1 (-1235 *4 *5 *6)) (-14 *5 (-599 (-1117))) + (-14 *6 (-599 (-1117)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1174 *4) (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1313 *4)) - (-4 *4 (-1236)))) + (-12 (-5 *3 (-1 (-1095 *4) (-1095 *4))) (-5 *2 (-1095 *4)) (-5 *1 (-1234 *4)) + (-4 *4 (-1157)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-659 (-1174 *5)) (-659 (-1174 *5)))) (-5 *4 (-557)) - (-5 *2 (-659 (-1174 *5))) (-5 *1 (-1313 *5)) (-4 *5 (-1236))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 (-936))) (-5 *1 (-1312))))) -(((*1 *2 *1) (-12 (-5 *2 (-990)) (-5 *1 (-1312))))) + (-12 (-5 *3 (-1 (-599 (-1095 *5)) (-599 (-1095 *5)))) (-5 *4 (-499)) + (-5 *2 (-599 (-1095 *5))) (-5 *1 (-1234 *5)) (-4 *5 (-1157))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-1233))))) +(((*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-1233))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-936)) (-4 *6 (-568)) (-5 *2 (-659 (-326 *6))) - (-5 *1 (-225 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1068)))) - ((*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-568)))) + (-12 (-5 *4 (-857)) (-4 *6 (-510)) (-5 *2 (-599 (-268 *6))) + (-5 *1 (-175 *5 *6)) (-5 *3 (-268 *6)) (-4 *5 (-989)))) + ((*1 *2 *1) (-12 (-5 *1 (-359 *2)) (-4 *2 (-510)))) ((*1 *2 *3) - (-12 (-5 *3 (-594 *5)) (-4 *5 (-13 (-29 *4) (-1222))) - (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-659 *5)) - (-5 *1 (-596 *4 *5)))) + (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1143))) + (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-599 *5)) + (-5 *1 (-536 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-594 (-419 (-963 *4)))) - (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-659 (-326 *4))) - (-5 *1 (-600 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1114 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1169 *3)))) + (-12 (-5 *3 (-534 (-361 (-884 *4)))) + (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-599 (-268 *4))) + (-5 *1 (-540 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2)) (-4 *3 (-780)) (-4 *2 (-1090 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-659 *1)) (-4 *1 (-1114 *4 *2)) (-4 *4 (-858)) - (-4 *2 (-1169 *4)))) + (-12 (-5 *3 (-599 *1)) (-4 *1 (-1035 *4 *2)) (-4 *4 (-780)) + (-4 *2 (-1090 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143))))) ((*1 *2 *1) - (-12 (-5 *2 (-1302 (-1196) *3)) (-5 *1 (-1308 *3)) (-4 *3 (-1068)))) + (-12 (-5 *2 (-1223 (-1117) *3)) (-5 *1 (-1229 *3)) (-4 *3 (-989)))) ((*1 *2 *1) - (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-859)) - (-4 *4 (-1068))))) + (-12 (-5 *2 (-1223 *3 *4)) (-5 *1 (-1232 *3 *4)) (-4 *3 (-781)) + (-4 *4 (-989))))) (((*1 *1 *2) - (-12 (-5 *2 (-1302 (-1196) *3)) (-4 *3 (-1068)) (-5 *1 (-1308 *3)))) + (-12 (-5 *2 (-1223 (-1117) *3)) (-4 *3 (-989)) (-5 *1 (-1229 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1302 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)) - (-5 *1 (-1311 *3 *4))))) + (-12 (-5 *2 (-1223 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) + (-5 *1 (-1232 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-659 (-2 (|:| |k| (-1196)) (|:| |c| (-1308 *3))))) - (-5 *1 (-1308 *3)) (-4 *3 (-1068)))) + (-12 (-5 *2 (-599 (-2 (|:| |k| (-1117)) (|:| |c| (-1229 *3))))) + (-5 *1 (-1229 *3)) (-4 *3 (-989)))) ((*1 *2 *1) - (-12 (-5 *2 (-659 (-2 (|:| |k| *3) (|:| |c| (-1311 *3 *4))))) - (-5 *1 (-1311 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-789)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-936)))) + (-12 (-5 *2 (-599 (-2 (|:| |k| *3) (|:| |c| (-1232 *3 *4))))) + (-5 *1 (-1232 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-714)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-857)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-557)) (-14 *3 (-789)) (-4 *4 (-175)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-159)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-159)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-130)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-376) (-1222))) (-5 *1 (-231 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1131)) (-4 *2 (-1236)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1131)) (-4 *2 (-1236)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-133)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-395 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-859)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1120)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1120)))) + (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143))) (-5 *1 (-181 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1052)) (-4 *2 (-1157)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1052)) (-4 *2 (-1157)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-104)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-316 *2)) (-4 *2 (-1041)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-1041)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-337 *3 *2)) (-4 *3 (-989)) (-4 *2 (-781)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-339 *2 *3)) (-4 *2 (-989)) (-4 *3 (-1041)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-341 *2)) (-4 *2 (-1041)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-1041)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-659 (-1196))) (-4 *4 (-175)) (-4 *6 (-245 (-4385 *3) (-789))) + (-12 (-14 *3 (-599 (-1117))) (-4 *4 (-146)) (-4 *6 (-195 (-4107 *3) (-714))) (-14 *7 - (-1 (-114) (-2 (|:| -2629 *5) (|:| -2630 *6)) - (-2 (|:| -2629 *5) (|:| -2630 *6)))) - (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-859)) - (-4 *2 (-967 *4 *6 (-876 *3))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) + (-1 (-85) (-2 (|:| -2518 *5) (|:| -2519 *6)) + (-2 (|:| -2518 *5) (|:| -2519 *6)))) + (-5 *1 (-415 *3 *4 *5 *6 *7 *2)) (-4 *5 (-781)) + (-4 *2 (-888 *4 *6 (-798 *3))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-376)) (-4 *3 (-813)) (-4 *4 (-859)) (-5 *1 (-516 *2 *3 *4 *5)) - (-4 *5 (-967 *2 *3 *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-363)) (-5 *1 (-539 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-546))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-606 *3)) (-4 *3 (-1068)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1131)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-859)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-4 *7 (-1120)) (-5 *2 (-1 *7 *5)) (-5 *1 (-702 *5 *6 *7)))) + (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) + (-4 *5 (-888 *2 *3 *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-305)) (-5 *1 (-481 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-488))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-546 *3)) (-4 *3 (-989)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) + (-4 *7 (-1041)) (-5 *2 (-1 *7 *5)) (-5 *1 (-642 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-704 *3 *2 *4)) (-4 *3 (-1068)) (-4 *2 (-385 *3)) - (-4 *4 (-385 *3)))) + (-12 (-4 *1 (-644 *3 *2 *4)) (-4 *3 (-989)) (-4 *2 (-327 *3)) + (-4 *4 (-327 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-704 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) - (-4 *2 (-385 *3)))) + (-12 (-4 *1 (-644 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-327 *3)) + (-4 *2 (-327 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-557)) (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)))) + (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)))) + (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) + (-4 *4 (-327 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)))) + (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) + (-4 *4 (-327 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-738))) ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1120)))) + (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) + (-4 *4 (-327 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-678))) ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-568)) - (-5 *1 (-988 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1131)))) - ((*1 *1 *1 *1) (-4 *1 (-1131))) + (-12 (-5 *2 (-1207 *4)) (-4 *4 (-1183 *3)) (-4 *3 (-510)) + (-5 *1 (-909 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *1) (-4 *1 (-1052))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1142 *3 *4 *2 *5)) (-4 *4 (-1068)) (-4 *2 (-245 *3 *4)) - (-4 *5 (-245 *3 *4)))) + (-12 (-4 *1 (-1063 *3 *4 *2 *5)) (-4 *4 (-989)) (-4 *2 (-195 *3 *4)) + (-4 *5 (-195 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1142 *3 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-245 *3 *4)) - (-4 *2 (-245 *3 *4)))) + (-12 (-4 *1 (-1063 *3 *4 *5 *2)) (-4 *4 (-989)) (-4 *5 (-195 *3 *4)) + (-4 *2 (-195 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-1068)) (-4 *4 (-859)) (-5 *1 (-1145 *3 *4 *2)) - (-4 *2 (-967 *3 (-542 *4) *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-960 (-229))) (-5 *3 (-229)) (-5 *1 (-1233)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1236)) (-4 *2 (-744)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1236)) (-4 *2 (-744)))) + (-12 (-4 *3 (-989)) (-4 *4 (-781)) (-5 *1 (-1066 *3 *4 *2)) + (-4 *2 (-888 *3 (-484 *4) *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-881 (-179))) (-5 *3 (-179)) (-5 *1 (-1154)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-684)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-684)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-557)) (-4 *1 (-1285 *3)) (-4 *3 (-1236)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1068)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1306 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1068)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-857))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-812)))) - ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1068)) (-14 *3 (-659 (-1196))))) + (-12 (-5 *2 (-499)) (-4 *1 (-1206 *3)) (-4 *3 (-1157)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1227 *3 *2)) (-4 *3 (-781)) (-4 *2 (-989)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-989)) (-4 *3 (-779))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)))) + ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-989)) (-14 *3 (-599 (-1117))))) ((*1 *1 *1) - (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1068) (-859))) - (-14 *3 (-659 (-1196))))) - ((*1 *1 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1120)))) + (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-989) (-781))) + (-14 *3 (-599 (-1117))))) + ((*1 *1 *1) (-12 (-4 *1 (-339 *2 *3)) (-4 *2 (-989)) (-4 *3 (-1041)))) ((*1 *1 *1) - (-12 (-14 *2 (-659 (-1196))) (-4 *3 (-175)) (-4 *5 (-245 (-4385 *2) (-789))) + (-12 (-14 *2 (-599 (-1117))) (-4 *3 (-146)) (-4 *5 (-195 (-4107 *2) (-714))) (-14 *6 - (-1 (-114) (-2 (|:| -2629 *4) (|:| -2630 *5)) - (-2 (|:| -2629 *4) (|:| -2630 *5)))) - (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-859)) - (-4 *7 (-967 *3 *5 (-876 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-862)))) - ((*1 *1 *1) (-12 (-4 *2 (-568)) (-5 *1 (-638 *2 *3)) (-4 *3 (-1262 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-1068)))) + (-1 (-85) (-2 (|:| -2518 *4) (|:| -2519 *5)) + (-2 (|:| -2518 *4) (|:| -2519 *5)))) + (-5 *1 (-415 *2 *3 *4 *5 *6 *7)) (-4 *4 (-781)) + (-4 *7 (-888 *3 *5 (-798 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-73)) (-4 *3 (-784)))) + ((*1 *1 *1) (-12 (-4 *2 (-510)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1183 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-989)))) ((*1 *1 *1) - (-12 (-5 *1 (-753 *2 *3)) (-4 *3 (-859)) (-4 *2 (-1068)) (-4 *3 (-744)))) - ((*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)))) + (-12 (-5 *1 (-693 *2 *3)) (-4 *3 (-781)) (-4 *2 (-989)) (-4 *3 (-684)))) + ((*1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)))) - ((*1 *1 *1) (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-857))))) + (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) + ((*1 *1 *1) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-989)) (-4 *3 (-779))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-659 (-1196))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-599 (-1117))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) + (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) + (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) + (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-557)) - (-14 *6 (-789)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) - (-5 *1 (-138 *5 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-499)) + (-14 *6 (-714)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) + (-5 *1 (-109 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-175)) (-4 *6 (-175)) - (-5 *2 (-171 *6)) (-5 *1 (-172 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) + (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1068) (-859))) - (-5 *1 (-227 *3 *4)) (-14 *4 (-659 (-1196))))) + (-12 (-5 *2 (-1 (-268 *3) (-268 *3))) (-4 *3 (-13 (-989) (-781))) + (-5 *1 (-177 *3 *4)) (-14 *4 (-599 (-1117))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-789)) (-4 *6 (-1236)) - (-4 *7 (-1236)) (-5 *2 (-246 *5 *7)) (-5 *1 (-247 *5 *6 *7)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-305 *3)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-196 *5 *6)) (-14 *5 (-714)) (-4 *6 (-1157)) + (-4 *7 (-1157)) (-5 *2 (-196 *5 *7)) (-5 *1 (-197 *5 *6 *7)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1157)) (-5 *1 (-247 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) - (-5 *2 (-305 *6)) (-5 *1 (-306 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-626 *1)) (-4 *1 (-310)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-247 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) + (-5 *2 (-247 *6)) (-5 *1 (-248 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-566 *1)) (-4 *1 (-252)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1178)) (-5 *5 (-626 *6)) (-4 *6 (-310)) - (-4 *2 (-1236)) (-5 *1 (-311 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1099)) (-5 *5 (-566 *6)) (-4 *6 (-252)) + (-4 *2 (-1157)) (-5 *1 (-253 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-626 *5)) (-4 *5 (-310)) (-4 *2 (-310)) - (-5 *1 (-312 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-566 *5)) (-4 *5 (-252)) (-4 *2 (-252)) + (-5 *1 (-254 *5 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-707 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) - (-5 *2 (-707 *6)) (-5 *1 (-317 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-647 *5)) (-4 *5 (-989)) (-4 *6 (-989)) + (-5 *2 (-647 *6)) (-5 *1 (-259 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-326 *6)) (-5 *1 (-327 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-268 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) + (-5 *2 (-268 *6)) (-5 *1 (-269 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-346 *5 *6 *7 *8)) (-4 *5 (-376)) - (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) - (-4 *9 (-376)) (-4 *10 (-1262 *9)) (-4 *11 (-1262 (-419 *10))) - (-5 *2 (-346 *9 *10 *11 *12)) (-5 *1 (-347 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-355 *9 *10 *11)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1120)))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-288 *5 *6 *7 *8)) (-4 *5 (-318)) + (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) (-4 *8 (-297 *5 *6 *7)) + (-4 *9 (-318)) (-4 *10 (-1183 *9)) (-4 *11 (-1183 (-361 *10))) + (-5 *2 (-288 *9 *10 *11 *12)) (-5 *1 (-289 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-297 *9 *10 *11)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3)) (-4 *3 (-1041)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1241)) (-4 *8 (-1241)) (-4 *6 (-1262 *5)) - (-4 *7 (-1262 (-419 *6))) (-4 *9 (-1262 *8)) (-4 *2 (-355 *8 *9 *10)) - (-5 *1 (-356 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-355 *5 *6 *7)) - (-4 *10 (-1262 (-419 *9))))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1162)) (-4 *8 (-1162)) (-4 *6 (-1183 *5)) + (-4 *7 (-1183 (-361 *6))) (-4 *9 (-1183 *8)) (-4 *2 (-297 *8 *9 *10)) + (-5 *1 (-298 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-297 *5 *6 *7)) + (-4 *10 (-1183 (-361 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-4 *2 (-385 *6)) - (-5 *1 (-386 *5 *4 *6 *2)) (-4 *4 (-385 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) (-4 *2 (-327 *6)) + (-5 *1 (-328 *5 *4 *6 *2)) (-4 *4 (-327 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3 *4)) (-4 *3 (-1068)) - (-4 *4 (-1120)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-417 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-510)) (-5 *1 (-359 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-568)) (-4 *6 (-568)) - (-5 *2 (-417 *6)) (-5 *1 (-418 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-359 *5)) (-4 *5 (-510)) (-4 *6 (-510)) + (-5 *2 (-359 *6)) (-5 *1 (-360 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568)) (-4 *6 (-568)) - (-5 *2 (-419 *6)) (-5 *1 (-420 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-361 *5)) (-4 *5 (-510)) (-4 *6 (-510)) + (-5 *2 (-361 *6)) (-5 *1 (-362 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-319)) - (-4 *6 (-1010 *5)) (-4 *7 (-1262 *6)) (-4 *8 (-13 (-422 *6 *7) (-1057 *6))) - (-4 *9 (-319)) (-4 *10 (-1010 *9)) (-4 *11 (-1262 *10)) - (-5 *2 (-425 *9 *10 *11 *12)) (-5 *1 (-426 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-422 *10 *11) (-1057 *10))))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-367 *5 *6 *7 *8)) (-4 *5 (-261)) + (-4 *6 (-931 *5)) (-4 *7 (-1183 *6)) (-4 *8 (-13 (-364 *6 *7) (-978 *6))) + (-4 *9 (-261)) (-4 *10 (-931 *9)) (-4 *11 (-1183 *10)) + (-5 *2 (-367 *9 *10 *11 *12)) (-5 *1 (-368 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-364 *10 *11) (-978 *10))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-430 *6)) - (-5 *1 (-428 *4 *5 *2 *6)) (-4 *4 (-430 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-372 *6)) + (-5 *1 (-370 *4 *5 *2 *6)) (-4 *4 (-372 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-433 *6)) - (-5 *1 (-434 *5 *4 *6 *2)) (-4 *4 (-433 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-4 *2 (-375 *6)) + (-5 *1 (-376 *5 *4 *6 *2)) (-4 *4 (-375 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-438 *6)) - (-5 *1 (-439 *5 *4 *6 *2)) (-4 *4 (-438 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1236)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-380 *6)) + (-5 *1 (-381 *5 *4 *6 *2)) (-4 *4 (-380 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-443 *3)) (-4 *3 (-1157)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-862)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-463 *3 *4)) (-4 *3 (-73)) (-4 *4 (-784)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-594 *5)) (-4 *5 (-376)) (-4 *6 (-376)) - (-5 *2 (-594 *6)) (-5 *1 (-595 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-534 *5)) (-4 *5 (-318)) (-4 *6 (-318)) + (-5 *2 (-534 *6)) (-5 *1 (-535 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2349 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-376)) - (-4 *6 (-376)) (-5 *2 (-2 (|:| -2349 *6) (|:| |coeff| *6))) - (-5 *1 (-595 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -2237 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-318)) + (-4 *6 (-318)) (-5 *2 (-2 (|:| -2237 *6) (|:| |coeff| *6))) + (-5 *1 (-535 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-376)) - (-4 *2 (-376)) (-5 *1 (-595 *5 *2)))) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-318)) + (-4 *2 (-318)) (-5 *1 (-535 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) - (-4 *5 (-376)) (-4 *6 (-376)) + (-4 *5 (-318)) (-4 *6 (-318)) (-5 *2 (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-595 *5 *6)))) + (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-535 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-611 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) - (-5 *2 (-611 *6)) (-5 *1 (-608 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-551 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) + (-5 *2 (-551 *6)) (-5 *1 (-548 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-611 *7)) - (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-611 *8)) - (-5 *1 (-609 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-551 *6)) (-5 *5 (-551 *7)) + (-4 *6 (-1157)) (-4 *7 (-1157)) (-4 *8 (-1157)) (-5 *2 (-551 *8)) + (-5 *1 (-549 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1174 *6)) (-5 *5 (-611 *7)) - (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1174 *8)) - (-5 *1 (-609 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1095 *6)) (-5 *5 (-551 *7)) + (-4 *6 (-1157)) (-4 *7 (-1157)) (-4 *8 (-1157)) (-5 *2 (-1095 *8)) + (-5 *1 (-549 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-1174 *7)) - (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1174 *8)) - (-5 *1 (-609 *6 *7 *8)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-611 *3)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-551 *6)) (-5 *5 (-1095 *7)) + (-4 *6 (-1157)) (-4 *7 (-1157)) (-4 *8 (-1157)) (-5 *2 (-1095 *8)) + (-5 *1 (-549 *6 *7 *8)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1157)) (-5 *1 (-551 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-659 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) - (-5 *2 (-659 *6)) (-5 *1 (-660 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) + (-5 *2 (-599 *6)) (-5 *1 (-600 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-659 *6)) (-5 *5 (-659 *7)) - (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-659 *8)) - (-5 *1 (-662 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-599 *7)) + (-4 *6 (-1157)) (-4 *7 (-1157)) (-4 *8 (-1157)) (-5 *2 (-599 *8)) + (-5 *1 (-602 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-669 *3)) (-4 *3 (-1236)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1068)) (-4 *8 (-1068)) (-4 *6 (-385 *5)) - (-4 *7 (-385 *5)) (-4 *2 (-704 *8 *9 *10)) - (-5 *1 (-705 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-704 *5 *6 *7)) - (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-989)) (-4 *8 (-989)) (-4 *6 (-327 *5)) + (-4 *7 (-327 *5)) (-4 *2 (-644 *8 *9 *10)) + (-5 *1 (-645 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-644 *5 *6 *7)) + (-4 *9 (-327 *8)) (-4 *10 (-327 *8)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1068)) - (-4 *8 (-1068)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-704 *8 *9 *10)) - (-5 *1 (-705 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-704 *5 *6 *7)) - (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-989)) (-4 *8 (-989)) + (-4 *6 (-327 *5)) (-4 *7 (-327 *5)) (-4 *2 (-644 *8 *9 *10)) + (-5 *1 (-645 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-644 *5 *6 *7)) + (-4 *9 (-327 *8)) (-4 *10 (-327 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568)) (-4 *6 (-1262 *5)) - (-4 *2 (-1262 (-419 *8))) (-5 *1 (-727 *5 *6 *4 *7 *8 *2)) - (-4 *4 (-1262 (-419 *6))) (-4 *8 (-1262 *7)))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-510)) (-4 *7 (-510)) (-4 *6 (-1183 *5)) + (-4 *2 (-1183 (-361 *8))) (-5 *1 (-667 *5 *6 *4 *7 *8 *2)) + (-4 *4 (-1183 (-361 *6))) (-4 *8 (-1183 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1068)) (-4 *9 (-1068)) (-4 *5 (-859)) - (-4 *6 (-813)) (-4 *2 (-967 *9 *7 *5)) (-5 *1 (-746 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-813)) (-4 *4 (-967 *8 *6 *5)))) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-989)) (-4 *9 (-989)) (-4 *5 (-781)) + (-4 *6 (-738)) (-4 *2 (-888 *9 *7 *5)) (-5 *1 (-686 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-738)) (-4 *4 (-888 *8 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-859)) (-4 *6 (-859)) (-4 *7 (-813)) - (-4 *9 (-1068)) (-4 *2 (-967 *9 *8 *6)) (-5 *1 (-747 *5 *6 *7 *8 *9 *4 *2)) - (-4 *8 (-813)) (-4 *4 (-967 *9 *7 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-781)) (-4 *6 (-781)) (-4 *7 (-738)) + (-4 *9 (-989)) (-4 *2 (-888 *9 *8 *6)) (-5 *1 (-687 *5 *6 *7 *8 *9 *4 *2)) + (-4 *8 (-738)) (-4 *4 (-888 *9 *7 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-753 *5 *7)) (-4 *5 (-1068)) (-4 *6 (-1068)) - (-4 *7 (-744)) (-5 *2 (-753 *6 *7)) (-5 *1 (-752 *5 *6 *7)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-693 *5 *7)) (-4 *5 (-989)) (-4 *6 (-989)) + (-4 *7 (-684)) (-5 *2 (-693 *6 *7)) (-5 *1 (-692 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-753 *3 *4)) (-4 *4 (-744)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-693 *3 *4)) (-4 *4 (-684)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-799 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) - (-5 *2 (-799 *6)) (-5 *1 (-800 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-724 *5)) (-4 *5 (-989)) (-4 *6 (-989)) + (-5 *2 (-724 *6)) (-5 *1 (-725 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-816 *6)) - (-5 *1 (-819 *4 *5 *2 *6)) (-4 *4 (-816 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-741 *6)) + (-5 *1 (-744 *4 *5 *2 *6)) (-4 *4 (-741 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-843 *6)) (-5 *1 (-844 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-766 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) + (-5 *2 (-766 *6)) (-5 *1 (-767 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-843 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *1 (-844 *5 *6)))) + (-12 (-5 *2 (-766 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-766 *5)) (-4 *5 (-1041)) + (-4 *6 (-1041)) (-5 *1 (-767 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-853 *6)) (-5 *1 (-854 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) + (-5 *2 (-775 *6)) (-5 *1 (-776 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-853 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *1 (-854 *5 *6)))) + (-12 (-5 *2 (-775 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1041)) + (-4 *6 (-1041)) (-5 *1 (-776 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) - (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-812 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) + (-5 *2 (-812 *6)) (-5 *1 (-811 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) - (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) + (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-895 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) - (-5 *2 (-895 *6)) (-5 *1 (-894 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-817 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) + (-5 *2 (-817 *6)) (-5 *1 (-816 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-901 *5 *6)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-4 *7 (-1120)) (-5 *2 (-901 *5 *7)) (-5 *1 (-902 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-823 *5 *6)) (-4 *5 (-1041)) (-4 *6 (-1041)) + (-4 *7 (-1041)) (-5 *2 (-823 *5 *7)) (-5 *1 (-824 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-903 *6)) (-5 *1 (-905 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) + (-5 *2 (-825 *6)) (-5 *1 (-827 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-963 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) - (-5 *2 (-963 *6)) (-5 *1 (-964 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-989)) (-4 *6 (-989)) + (-5 *2 (-884 *6)) (-5 *1 (-885 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-859)) (-4 *8 (-1068)) - (-4 *6 (-813)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-781)) (-4 *8 (-989)) + (-4 *6 (-738)) (-4 *2 - (-13 (-1120) - (-10 -8 (-15 -4267 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-789)))))) - (-5 *1 (-969 *6 *7 *8 *5 *2)) (-4 *5 (-967 *8 *6 *7)))) + (-13 (-1041) + (-10 -8 (-15 -3989 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-714)))))) + (-5 *1 (-890 *6 *7 *8 *5 *2)) (-4 *5 (-888 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-975 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) - (-5 *2 (-975 *6)) (-5 *1 (-976 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-896 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) + (-5 *2 (-896 *6)) (-5 *1 (-897 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-983 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-983 *6)) (-5 *1 (-985 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-904 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) + (-5 *2 (-904 *6)) (-5 *1 (-906 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-960 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) - (-5 *2 (-960 *6)) (-5 *1 (-1000 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-989)) (-4 *6 (-989)) + (-5 *2 (-881 *6)) (-5 *1 (-921 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-963 *4))) (-4 *4 (-1068)) (-4 *2 (-967 (-963 *4) *5 *6)) - (-4 *5 (-813)) + (-12 (-5 *3 (-1 *2 (-884 *4))) (-4 *4 (-989)) (-4 *2 (-888 (-884 *4) *5 *6)) + (-4 *5 (-738)) (-4 *6 - (-13 (-859) - (-10 -8 (-15 -4400 ((-1196) $)) (-15 -4259 ((-3 $ "failed") (-1196)))))) - (-5 *1 (-1003 *4 *5 *6 *2)))) + (-13 (-781) + (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ "failed") (-1117)))))) + (-5 *1 (-924 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-4 *2 (-1010 *6)) - (-5 *1 (-1011 *5 *6 *4 *2)) (-4 *4 (-1010 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-510)) (-4 *6 (-510)) (-4 *2 (-931 *6)) + (-5 *1 (-932 *5 *6 *4 *2)) (-4 *4 (-931 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-1017 *6)) - (-5 *1 (-1018 *4 *5 *2 *6)) (-4 *4 (-1017 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-938 *6)) + (-5 *1 (-939 *4 *5 *2 *6)) (-4 *4 (-938 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) - (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) + (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) - (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) + (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1068)) (-4 *10 (-1068)) (-14 *5 (-789)) - (-14 *6 (-789)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) - (-4 *2 (-1072 *5 *6 *10 *11 *12)) - (-5 *1 (-1074 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1072 *5 *6 *7 *8 *9)) (-4 *11 (-245 *6 *10)) - (-4 *12 (-245 *5 *10)))) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-989)) (-4 *10 (-989)) (-14 *5 (-714)) + (-14 *6 (-714)) (-4 *8 (-195 *6 *7)) (-4 *9 (-195 *5 *7)) + (-4 *2 (-993 *5 *6 *10 *11 *12)) + (-5 *1 (-995 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-993 *5 *6 *7 *8 *9)) (-4 *11 (-195 *6 *10)) + (-4 *12 (-195 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1108 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) - (-5 *2 (-1108 *6)) (-5 *1 (-1109 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1029 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) + (-5 *2 (-1029 *6)) (-5 *1 (-1030 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1108 *5)) (-4 *5 (-858)) (-4 *5 (-1236)) - (-4 *6 (-1236)) (-5 *2 (-659 *6)) (-5 *1 (-1109 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1029 *5)) (-4 *5 (-780)) (-4 *5 (-1157)) + (-4 *6 (-1157)) (-5 *2 (-599 *6)) (-5 *1 (-1030 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1111 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) - (-5 *2 (-1111 *6)) (-5 *1 (-1112 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1032 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) + (-5 *2 (-1032 *6)) (-5 *1 (-1033 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1114 *4 *2)) (-4 *4 (-858)) - (-4 *2 (-1169 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1035 *4 *2)) (-4 *4 (-780)) + (-4 *2 (-1090 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) - (-5 *2 (-1174 *6)) (-5 *1 (-1176 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1095 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) + (-5 *2 (-1095 *6)) (-5 *1 (-1097 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1174 *6)) (-5 *5 (-1174 *7)) - (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1174 *8)) - (-5 *1 (-1177 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1095 *6)) (-5 *5 (-1095 *7)) + (-4 *6 (-1157)) (-4 *7 (-1157)) (-4 *8 (-1157)) (-5 *2 (-1095 *8)) + (-5 *1 (-1098 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1190 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) - (-5 *2 (-1190 *6)) (-5 *1 (-1191 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1111 *5)) (-4 *5 (-989)) (-4 *6 (-989)) + (-5 *2 (-1111 *6)) (-5 *1 (-1112 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1213 *3 *4)) (-4 *3 (-1120)) - (-4 *4 (-1120)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1134 *3 *4)) (-4 *3 (-1041)) + (-4 *4 (-1041)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1246 *5 *7 *9)) (-4 *5 (-1068)) - (-4 *6 (-1068)) (-14 *7 (-1196)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1246 *6 *8 *10)) (-5 *1 (-1247 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1196)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1167 *5 *7 *9)) (-4 *5 (-989)) + (-4 *6 (-989)) (-14 *7 (-1117)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1167 *6 *8 *10)) (-5 *1 (-1168 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1117)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) - (-5 *2 (-1253 *6)) (-5 *1 (-1254 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) + (-5 *2 (-1174 *6)) (-5 *1 (-1175 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-858)) (-4 *5 (-1236)) - (-4 *6 (-1236)) (-5 *2 (-1174 *6)) (-5 *1 (-1254 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-780)) (-4 *5 (-1157)) + (-4 *6 (-1157)) (-5 *2 (-1095 *6)) (-5 *1 (-1175 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1255 *5 *6)) (-14 *5 (-1196)) - (-4 *6 (-1068)) (-4 *8 (-1068)) (-5 *2 (-1255 *7 *8)) - (-5 *1 (-1256 *5 *6 *7 *8)) (-14 *7 (-1196)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1176 *5 *6)) (-14 *5 (-1117)) (-4 *6 (-989)) + (-4 *8 (-989)) (-5 *2 (-1176 *7 *8)) (-5 *1 (-1177 *5 *6 *7 *8)) + (-14 *7 (-1117)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1262 *6)) - (-5 *1 (-1263 *5 *4 *6 *2)) (-4 *4 (-1262 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-4 *2 (-1183 *6)) + (-5 *1 (-1184 *5 *4 *6 *2)) (-4 *4 (-1183 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1267 *5 *7 *9)) (-4 *5 (-1068)) - (-4 *6 (-1068)) (-14 *7 (-1196)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1267 *6 *8 *10)) (-5 *1 (-1268 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1196)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1188 *5 *7 *9)) (-4 *5 (-989)) + (-4 *6 (-989)) (-14 *7 (-1117)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1188 *6 *8 *10)) (-5 *1 (-1189 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1117)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1279 *6)) - (-5 *1 (-1277 *5 *6 *4 *2)) (-4 *4 (-1279 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-989)) (-4 *6 (-989)) (-4 *2 (-1200 *6)) + (-5 *1 (-1198 *5 *6 *4 *2)) (-4 *4 (-1200 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) - (-5 *2 (-1286 *6)) (-5 *1 (-1287 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1207 *5)) (-4 *5 (-1157)) (-4 *6 (-1157)) + (-5 *2 (-1207 *6)) (-5 *1 (-1208 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1286 *5)) - (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1286 *6)) (-5 *1 (-1287 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1207 *5)) + (-4 *5 (-1157)) (-4 *6 (-1157)) (-5 *2 (-1207 *6)) (-5 *1 (-1208 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-859)) - (-4 *4 (-1068)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-1310 *3 *4)) - (-4 *4 (-857))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-34)) (-5 *2 (-789)))) - ((*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-258)))) - ((*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-990)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-1231 *3 *4)) (-4 *4 (-779))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-34)) (-5 *2 (-714)))) + ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-208)))) + ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-911)))) ((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-557)))) + (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) + (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-499)))) ((*1 *2 *1) - (-12 (-5 *2 (-789)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-857))))) + (-12 (-5 *2 (-714)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-989)) (-4 *4 (-779))))) (((*1 *2 *1) - (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)) (-5 *2 (-839 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-857)) (-5 *1 (-1310 *3 *2)) (-4 *3 (-1068))))) + (-12 (-4 *1 (-1230 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-762 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-1231 *3 *2)) (-4 *3 (-989))))) (((*1 *2 *1) - (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)) (-5 *2 (-839 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-857)) (-5 *1 (-1310 *3 *2)) (-4 *3 (-1068))))) + (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-762 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-1231 *3 *2)) (-4 *3 (-989))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1311 *4 *2)) (-4 *1 (-387 *4 *2)) (-4 *4 (-859)) - (-4 *2 (-175)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1306 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1068)))) + (-12 (-5 *3 (-1232 *4 *2)) (-4 *1 (-329 *4 *2)) (-4 *4 (-781)) + (-4 *2 (-146)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1227 *3 *2)) (-4 *3 (-781)) (-4 *2 (-989)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-839 *4)) (-4 *1 (-1306 *4 *2)) (-4 *4 (-859)) (-4 *2 (-1068)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-1068)) (-5 *1 (-1310 *2 *3)) (-4 *3 (-857))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) + (-12 (-5 *3 (-762 *4)) (-4 *1 (-1227 *4 *2)) (-4 *4 (-781)) (-4 *2 (-989)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-989)) (-5 *1 (-1231 *2 *3)) (-4 *3 (-779))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-233)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) ((*1 *2 *1) - (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-857))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-989)) (-4 *4 (-779))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1120)) (-5 *2 (-1 *5 *4)) (-5 *1 (-701 *4 *5)) - (-4 *4 (-1120)))) - ((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-557))) (-5 *1 (-946)))) - ((*1 *2 *2) (-12 (-4 *3 (-1120)) (-5 *1 (-947 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1306 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1068)))) - ((*1 *2 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-1310 *2 *3)) (-4 *3 (-857))))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1041)) (-5 *2 (-1 *5 *4)) (-5 *1 (-641 *4 *5)) + (-4 *4 (-1041)))) + ((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-268 (-499))) (-5 *1 (-867)))) + ((*1 *2 *2) (-12 (-4 *3 (-1041)) (-5 *1 (-868 *3 *2)) (-4 *2 (-375 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1227 *3 *2)) (-4 *3 (-781)) (-4 *2 (-989)))) + ((*1 *2 *1) (-12 (-4 *2 (-989)) (-5 *1 (-1231 *2 *3)) (-4 *3 (-779))))) (((*1 *2 *1) - (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-857))))) -(((*1 *1 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1068)))) - ((*1 *1 *1) (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-857))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-989)) (-4 *4 (-779))))) +(((*1 *1 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) + ((*1 *1 *1) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-989)) (-4 *3 (-779))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-812)) (-4 *2 (-376)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-229)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)) (-4 *2 (-318)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-179)))) ((*1 *1 *1 *1) - (-3955 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1236))) - (-12 (-5 *1 (-305 *2)) (-4 *2 (-485)) (-4 *2 (-1236))))) - ((*1 *1 *1 *1) (-4 *1 (-376))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-391)))) + (-3677 (-12 (-5 *1 (-247 *2)) (-4 *2 (-318)) (-4 *2 (-1157))) + (-12 (-5 *1 (-247 *2)) (-4 *2 (-427)) (-4 *2 (-1157))))) + ((*1 *1 *1 *1) (-4 *1 (-318))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-333)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1144 *3 (-626 *1))) (-4 *3 (-568)) (-4 *3 (-1120)) - (-4 *1 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-485))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-363)) (-5 *1 (-539 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-546))) + (-12 (-5 *2 (-1065 *3 (-566 *1))) (-4 *3 (-510)) (-4 *3 (-1041)) + (-4 *1 (-375 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-427))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-305)) (-5 *1 (-481 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-488))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-175)) (-5 *1 (-634 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-744) *4)))) + (-12 (-4 *4 (-146)) (-5 *1 (-574 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-684) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-175)) (-5 *1 (-634 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-744) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-650 *2)) (-4 *2 (-175)) (-4 *2 (-376)))) + (-12 (-4 *4 (-146)) (-5 *1 (-574 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-684) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-590 *2)) (-4 *2 (-146)) (-4 *2 (-318)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-175)) (-5 *1 (-670 *2 *4 *3)) (-4 *2 (-735 *4)) - (-4 *3 (|SubsetCategory| (-744) *4)))) + (-12 (-4 *4 (-146)) (-5 *1 (-610 *2 *4 *3)) (-4 *2 (-675 *4)) + (-4 *3 (|SubsetCategory| (-684) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-175)) (-5 *1 (-670 *3 *4 *2)) (-4 *3 (-735 *4)) - (-4 *2 (|SubsetCategory| (-744) *4)))) + (-12 (-4 *4 (-146)) (-5 *1 (-610 *3 *4 *2)) (-4 *3 (-675 *4)) + (-4 *2 (|SubsetCategory| (-684) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)) (-4 *2 (-376)))) - ((*1 *1 *1 *1) (-5 *1 (-875))) + (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) + (-4 *4 (-327 *2)) (-4 *2 (-318)))) + ((*1 *1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-878 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *2 (-1068)) - (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-789))) (-14 *5 (-789)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)))) + (|partial| -12 (-5 *1 (-800 *2 *3 *4 *5)) (-4 *2 (-318)) (-4 *2 (-989)) + (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-714))) (-14 *5 (-714)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1072 *3 *4 *2 *5 *6)) (-4 *2 (-1068)) (-4 *5 (-245 *4 *2)) - (-4 *6 (-245 *3 *2)) (-4 *2 (-376)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1294 *2)) (-4 *2 (-376)))) + (-12 (-4 *1 (-993 *3 *4 *2 *5 *6)) (-4 *2 (-989)) (-4 *5 (-195 *4 *2)) + (-4 *6 (-195 *3 *2)) (-4 *2 (-318)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-318)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-376)) (-4 *2 (-1068)) (-4 *3 (-859)) (-4 *4 (-813)) - (-14 *6 (-659 *3)) (-5 *1 (-1299 *2 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-967 *2 *4 *3)) (-14 *7 (-659 (-789))) (-14 *8 (-789)))) + (|partial| -12 (-4 *2 (-318)) (-4 *2 (-989)) (-4 *3 (-781)) (-4 *4 (-738)) + (-14 *6 (-599 *3)) (-5 *1 (-1220 *2 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-888 *2 *4 *3)) (-14 *7 (-599 (-714))) (-14 *8 (-714)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-376)) (-4 *2 (-1068)) (-4 *3 (-857))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-812)))) + (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-318)) (-4 *2 (-989)) (-4 *3 (-779))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) ((*1 *2 *1) - (-12 (-5 *2 (-789)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) - (-14 *4 (-659 (-1196))))) + (-12 (-5 *2 (-714)) (-5 *1 (-50 *3 *4)) (-4 *3 (-989)) + (-14 *4 (-599 (-1117))))) ((*1 *2 *1) - (-12 (-5 *2 (-557)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1068) (-859))) - (-14 *4 (-659 (-1196))))) + (-12 (-5 *2 (-499)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) + (-14 *4 (-599 (-1117))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-859)) - (-4 *5 (-277 *3)) (-4 *6 (-813)) (-5 *2 (-789)))) - ((*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-286)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1190 *8)) (-5 *4 (-659 *6)) (-4 *6 (-859)) - (-4 *8 (-967 *7 *5 *6)) (-4 *5 (-813)) (-4 *7 (-1068)) (-5 *2 (-659 (-789))) - (-5 *1 (-333 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-936)))) - ((*1 *2 *1) - (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-859)) (-4 *4 (-175)) (-5 *2 (-789)))) - ((*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-175)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-5 *2 (-557)) (-5 *1 (-638 *3 *4)) (-4 *4 (-1262 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-726 *3)) (-4 *3 (-1068)) (-5 *2 (-789)))) - ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-789)))) - ((*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-919 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) + (-12 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-989)) (-4 *3 (-781)) + (-4 *5 (-227 *3)) (-4 *6 (-738)) (-5 *2 (-714)))) + ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-228)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1111 *8)) (-5 *4 (-599 *6)) (-4 *6 (-781)) + (-4 *8 (-888 *7 *5 *6)) (-4 *5 (-738)) (-4 *7 (-989)) (-5 *2 (-599 (-714))) + (-5 *1 (-275 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-5 *2 (-857)))) + ((*1 *2 *1) + (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) (-5 *2 (-714)))) + ((*1 *2 *1) (-12 (-4 *1 (-424 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-510)) (-5 *2 (-499)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1183 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-666 *3)) (-4 *3 (-989)) (-5 *2 (-714)))) + ((*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-989)) (-5 *2 (-714)))) + ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) + ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-659 *6)) (-4 *1 (-967 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *2 (-659 (-789))))) + (-12 (-5 *3 (-599 *6)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-599 (-714))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-967 *4 *5 *3)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *3 (-859)) - (-5 *2 (-789)))) + (-12 (-4 *1 (-888 *4 *5 *3)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) + (-5 *2 (-714)))) ((*1 *2 *1) - (-12 (-4 *1 (-992 *3 *2 *4)) (-4 *3 (-1068)) (-4 *4 (-859)) (-4 *2 (-812)))) + (-12 (-4 *1 (-913 *3 *2 *4)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *2 (-737)))) ((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-789)))) + (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-714)))) ((*1 *2 *1) - (-12 (-4 *1 (-1250 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1279 *3)) - (-5 *2 (-557)))) + (-12 (-4 *1 (-1171 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1200 *3)) (-5 *2 (-499)))) ((*1 *2 *1) - (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1248 *3)) - (-5 *2 (-419 (-557))))) - ((*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-5 *2 (-843 (-936))))) + (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1169 *3)) + (-5 *2 (-361 (-499))))) + ((*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-766 (-857))))) ((*1 *2 *1) - (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)) (-5 *2 (-789))))) + (-12 (-4 *1 (-1230 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-714))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-789)) (-4 *1 (-387 *3 *4)) (-4 *3 (-859)) (-4 *4 (-175)))) + (-12 (-5 *2 (-714)) (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-789)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068))))) + (-12 (-5 *2 (-714)) (-4 *1 (-1230 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989))))) (((*1 *1 *2) - (-12 (-5 *2 (-1286 *3)) (-4 *3 (-376)) (-14 *6 (-1286 (-707 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))))) - ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1236)))) - ((*1 *1 *2) - (-12 (-5 *2 (-352 (-3948 'X) (-3948) (-717))) (-5 *1 (-61 *3)) - (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-352 (-3948 'JINT 'X 'ELAM) (-3948) (-717)))) - (-5 *1 (-62 *3)) (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-352 (-3948) (-3948 'XC) (-717)))) (-5 *1 (-64 *3)) - (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-352 (-3948) (-3948 'XC) (-717))) (-5 *1 (-66 *3)) - (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-352 (-3948 'X) (-3948 '-4394) (-717)))) (-5 *1 (-71 *3)) - (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-352 (-3948) (-3948 'X) (-717)))) (-5 *1 (-74 *3)) - (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-352 (-3948) (-3948 'X) (-717))) (-5 *1 (-75 *3)) - (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-352 (-3948 'X 'EPS) (-3948 '-4394) (-717)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1196)) (-14 *4 (-1196)) (-14 *5 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-352 (-3948 'EPS) (-3948 'YA 'YB) (-717)))) - (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1196)) (-14 *4 (-1196)) (-14 *5 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-352 (-3948) (-3948 'X) (-717))) (-5 *1 (-78 *3)) - (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-352 (-3948) (-3948 'XC) (-717)))) (-5 *1 (-79 *3)) - (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-352 (-3948) (-3948 'X) (-717)))) (-5 *1 (-80 *3)) - (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-352 (-3948 'X) (-3948 '-4394) (-717)))) (-5 *1 (-82 *3)) - (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-352 (-3948 'X '-4394) (-3948) (-717)))) (-5 *1 (-83 *3)) - (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-707 (-352 (-3948 'X '-4394) (-3948) (-717)))) (-5 *1 (-84 *3)) - (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-707 (-352 (-3948 'X) (-3948) (-717)))) (-5 *1 (-85 *3)) - (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-352 (-3948 'X) (-3948) (-717)))) (-5 *1 (-86 *3)) - (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-707 (-352 (-3948 'XL 'XR 'ELAM) (-3948) (-717)))) - (-5 *1 (-88 *3)) (-14 *3 (-1196)))) - ((*1 *1 *2) - (-12 (-5 *2 (-352 (-3948 'X) (-3948 '-4394) (-717))) (-5 *1 (-89 *3)) - (-14 *3 (-1196)))) + (-12 (-5 *2 (-1207 *3)) (-4 *3 (-318)) (-14 *6 (-1207 (-647 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))))) + ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1157)))) ((*1 *2 *3) - (-12 (-5 *3 (-1286 (-707 *4))) (-4 *4 (-175)) - (-5 *2 (-1286 (-707 (-419 (-963 *4))))) (-5 *1 (-192 *4)))) + (-12 (-5 *3 (-1207 (-647 *4))) (-4 *4 (-146)) + (-5 *2 (-1207 (-647 (-361 (-884 *4))))) (-5 *1 (-163 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1111 (-326 *4))) (-4 *4 (-13 (-859) (-568) (-629 (-391)))) - (-5 *2 (-1111 (-391))) (-5 *1 (-268 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-286)))) + (-12 (-5 *3 (-1032 (-268 *4))) (-4 *4 (-13 (-781) (-510) (-569 (-333)))) + (-5 *2 (-1032 (-333))) (-5 *1 (-218 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-228)))) ((*1 *2 *1) - (-12 (-4 *2 (-1262 *3)) (-5 *1 (-301 *3 *2 *4 *5 *6 *7)) (-4 *3 (-175)) + (-12 (-4 *2 (-1183 *3)) (-5 *1 (-243 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1267 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-433 *3))) - (-14 *5 (-1196)) (-14 *6 *4) - (-4 *3 (-13 (-1057 (-557)) (-656 (-557)) (-464))) - (-5 *1 (-325 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1188 *4 *5 *6)) (-4 *4 (-13 (-27) (-1143) (-375 *3))) + (-14 *5 (-1117)) (-14 *6 *4) + (-4 *3 (-13 (-978 (-499)) (-596 (-499)) (-406))) + (-5 *1 (-267 *3 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-326 *5)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-659 (-1196))) - (-14 *4 (-659 (-1196))) (-4 *5 (-401)))) + (-12 (-5 *2 (-268 *5)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 (-1117))) + (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) ((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *3 *4 *2)) - (-4 *3 (-341 *4)))) + (-12 (-4 *4 (-305)) (-4 *2 (-283 *4)) (-5 *1 (-303 *3 *4 *2)) + (-4 *3 (-283 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *2 *4 *3)) - (-4 *3 (-341 *4)))) + (-12 (-4 *4 (-305)) (-4 *2 (-283 *4)) (-5 *1 (-303 *2 *4 *3)) + (-4 *3 (-283 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-859)) (-4 *4 (-175)) - (-5 *2 (-1311 *3 *4)))) + (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) + (-5 *2 (-1232 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-859)) (-4 *4 (-175)) - (-5 *2 (-1302 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-859)) (-4 *3 (-175)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) - (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-342))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-707 (-717))) (-4 *1 (-396)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) - (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-342))) (-4 *1 (-398)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) - (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-342))) (-4 *1 (-409)))) - ((*1 *1 *2) - (-12 (-5 *2 (-305 (-326 (-171 (-391))))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1="void"))) - (-14 *5 (-659 (-1196))) (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-305 (-326 (-391)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) - (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-305 (-326 (-557)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) - (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) - (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 (-391))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) - (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 (-557))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) - (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-305 (-326 (-712)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) - (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-305 (-326 (-717)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) - (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-305 (-326 (-719)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) - (-14 *6 (-1200)))) + (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) + (-5 *2 (-1223 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-781)) (-4 *3 (-146)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-712))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) - (-14 *6 (-1200)))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) + (-4 *1 (-338)))) + ((*1 *1 *2) (-12 (-5 *2 (-284)) (-4 *1 (-338)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-4 *1 (-338)))) + ((*1 *1 *2) (-12 (-5 *2 (-647 (-657))) (-4 *1 (-338)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-717))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) - (-14 *6 (-1200)))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) + (-4 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-284)) (-4 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-4 *1 (-340)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-719))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) - (-14 *6 (-1200)))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) + (-4 *1 (-351)))) + ((*1 *1 *2) (-12 (-5 *2 (-284)) (-4 *1 (-351)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-4 *1 (-351)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) - (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) - (-14 *6 (-1200)))) + (-12 (-5 *2 (-247 (-268 (-142 (-333))))) (-5 *1 (-352 *3 *4 *5 *6)) + (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1="void"))) + (-14 *5 (-599 (-1117))) (-14 *6 (-1121)))) ((*1 *1 *2) - (-12 (-5 *2 (-659 (-342))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) - (-14 *6 (-1200)))) + (-12 (-5 *2 (-247 (-268 (-333)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) + (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) + (-14 *6 (-1121)))) ((*1 *1 *2) - (-12 (-5 *2 (-342)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-14 *5 (-659 (-1196))) - (-14 *6 (-1200)))) - ((*1 *1 *2) - (-12 (-5 *2 (-419 (-963 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1120)) - (-4 *1 (-433 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-963 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1120)) - (-4 *1 (-433 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1120)) (-4 *1 (-433 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1144 *3 (-626 *1))) (-4 *3 (-1068)) (-4 *3 (-1120)) - (-4 *1 (-433 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-343 *4)) (-4 *4 (-13 (-859) (-21))) (-5 *1 (-441 *3 *4)) - (-4 *3 (-13 (-175) (-38 (-419 (-557))))))) - ((*1 *1 *2) - (-12 (-5 *1 (-441 *2 *3)) (-4 *2 (-13 (-175) (-38 (-419 (-557))))) - (-4 *3 (-13 (-859) (-21))))) - ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-446)))) - ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-448)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) - (-4 *1 (-452)))) - ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-452)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-342))) (-4 *1 (-452)))) - ((*1 *1 *2) (-12 (-5 *2 (-1286 (-717))) (-4 *1 (-452)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -1811 (-659 (-342))))) - (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-342))) (-4 *1 (-453)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-419 (-963 *3)))) (-4 *3 (-175)) - (-14 *6 (-1286 (-707 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-14 *4 (-936)) - (-14 *5 (-659 (-1196))))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-659 (-960 (-229))))) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-875)) (-5 *1 (-480)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1267 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1196)) (-14 *5 *3) - (-5 *1 (-486 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-486 *3 *4 *5)) - (-4 *3 (-1068)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-659 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-813)) - (-4 *5 (-859)) (-5 *1 (-516 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-1237))) (-5 *1 (-535)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-1237))) (-5 *1 (-615)))) - ((*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-616 *3 *2)) (-4 *2 (-762 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1068)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-859)) - (-4 *4 (-13 (-175) (-735 (-419 (-557))))) (-14 *5 (-936)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-859)) - (-4 *4 (-13 (-175) (-735 (-419 (-557))))) (-14 *5 (-936)))) - ((*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-648 *3 *2)) (-4 *2 (-762 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-695 *3)) (-5 *1 (-690 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-839 *3)) (-5 *1 (-690 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) - (-12 (-5 *2 (-975 (-975 (-975 *3)))) (-5 *1 (-693 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2) - (-12 (-5 *2 (-975 (-975 (-975 *3)))) (-4 *3 (-1120)) (-5 *1 (-693 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-839 *3)) (-5 *1 (-695 *3)) (-4 *3 (-859)))) - ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-699)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-700 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1068)) (-4 *1 (-704 *3 *4 *2)) (-4 *4 (-385 *3)) - (-4 *2 (-385 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-712)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-719))) (-5 *1 (-712)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-717))) (-5 *1 (-712)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-557))) (-5 *1 (-712)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-712)))) - ((*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-717)))) - ((*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-717)))) - ((*1 *2 *3) (-12 (-5 *3 (-326 (-557))) (-5 *2 (-326 (-719))) (-5 *1 (-719)))) - ((*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1178)) (-5 *1 (-728)))) - ((*1 *2 *1) - (-12 (-4 *2 (-175)) (-5 *1 (-729 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-5 *2 (-247 (-268 (-499)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) + (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) + (-14 *6 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *2 (-268 (-142 (-333)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) + (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) + (-14 *6 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *2 (-268 (-333))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) + (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) + (-14 *6 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *2 (-268 (-499))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) + (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) + (-14 *6 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *2 (-247 (-268 (-652)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) + (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) + (-14 *6 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *2 (-247 (-268 (-657)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) + (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) + (-14 *6 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *2 (-247 (-268 (-659)))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) + (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) + (-14 *6 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *2 (-268 (-652))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) + (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) + (-14 *6 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *2 (-268 (-657))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) + (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) + (-14 *6 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *2 (-268 (-659))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) + (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) + (-14 *6 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) + (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) + (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) + (-14 *6 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *2 (-599 (-284))) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) + (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) + (-14 *6 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *2 (-284)) (-5 *1 (-352 *3 *4 *5 *6)) (-14 *3 (-1117)) + (-14 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-14 *5 (-599 (-1117))) + (-14 *6 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *2 (-361 (-884 (-361 *3)))) (-4 *3 (-510)) (-4 *3 (-1041)) + (-4 *1 (-375 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-884 (-361 *3))) (-4 *3 (-510)) (-4 *3 (-1041)) + (-4 *1 (-375 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-361 *3)) (-4 *3 (-510)) (-4 *3 (-1041)) (-4 *1 (-375 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1065 *3 (-566 *1))) (-4 *3 (-989)) (-4 *3 (-1041)) + (-4 *1 (-375 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-285 *4)) (-4 *4 (-13 (-781) (-21))) (-5 *1 (-383 *3 *4)) + (-4 *3 (-13 (-146) (-38 (-361 (-499))))))) + ((*1 *1 *2) + (-12 (-5 *1 (-383 *2 *3)) (-4 *2 (-13 (-146) (-38 (-361 (-499))))) + (-4 *3 (-13 (-781) (-21))))) + ((*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-388)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-390)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) + (-4 *1 (-394)))) + ((*1 *1 *2) (-12 (-5 *2 (-284)) (-4 *1 (-394)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-4 *1 (-394)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207 (-657))) (-4 *1 (-394)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -1703 (-599 (-284))))) + (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-284)) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-4 *1 (-395)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1207 (-361 (-884 *3)))) (-4 *3 (-146)) + (-14 *6 (-1207 (-647 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *4 (-857)) + (-14 *5 (-599 (-1117))))) + ((*1 *1 *2) (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *1 (-422)))) + ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-422)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1188 *3 *4 *5)) (-4 *3 (-989)) (-14 *4 (-1117)) (-14 *5 *3) + (-5 *1 (-428 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-428 *3 *4 *5)) + (-4 *3 (-989)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-318)) (-4 *4 (-738)) + (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 (-1158))) (-5 *1 (-477)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 (-1158))) (-5 *1 (-555)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-556 *3 *2)) (-4 *2 (-702 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-568 *2)) (-4 *2 (-1157)))) + ((*1 *1 *2) (-12 (-4 *1 (-571 *2)) (-4 *2 (-1157)))) + ((*1 *1 *2) (-12 (-4 *1 (-576 *2)) (-4 *2 (-989)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1228 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) + (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1223 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) + (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-588 *3 *2)) (-4 *2 (-702 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) + ((*1 *2 *1) (-12 (-5 *2 (-762 *3)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) + ((*1 *2 *1) + (-12 (-5 *2 (-896 (-896 (-896 *3)))) (-5 *1 (-633 *3)) (-4 *3 (-1041)))) + ((*1 *1 *2) + (-12 (-5 *2 (-896 (-896 (-896 *3)))) (-4 *3 (-1041)) (-5 *1 (-633 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-762 *3)) (-5 *1 (-635 *3)) (-4 *3 (-781)))) + ((*1 *1 *2) (-12 (-5 *2 (-1055)) (-5 *1 (-639)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-640 *3)) (-4 *3 (-1041)))) + ((*1 *1 *2) + (-12 (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *2)) (-4 *4 (-327 *3)) + (-4 *2 (-327 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-142 (-333))) (-5 *1 (-652)))) + ((*1 *1 *2) (-12 (-5 *2 (-142 (-659))) (-5 *1 (-652)))) + ((*1 *1 *2) (-12 (-5 *2 (-142 (-657))) (-5 *1 (-652)))) + ((*1 *1 *2) (-12 (-5 *2 (-142 (-499))) (-5 *1 (-652)))) + ((*1 *1 *2) (-12 (-5 *2 (-142 (-333))) (-5 *1 (-652)))) + ((*1 *1 *2) (-12 (-5 *2 (-659)) (-5 *1 (-657)))) + ((*1 *2 *1) (-12 (-5 *2 (-333)) (-5 *1 (-657)))) + ((*1 *2 *3) (-12 (-5 *3 (-268 (-499))) (-5 *2 (-268 (-659))) (-5 *1 (-659)))) + ((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1099)) (-5 *1 (-668)))) + ((*1 *2 *1) + (-12 (-4 *2 (-146)) (-5 *1 (-669 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-175)) (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-146)) (-5 *1 (-673 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-659 (-2 (|:| -4382 *3) (|:| -4366 *4)))) (-4 *3 (-1068)) - (-4 *4 (-744)) (-5 *1 (-753 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-557)) (-4 *1 (-781)))) + (-12 (-5 *2 (-599 (-2 (|:| -4104 *3) (|:| -4088 *4)))) (-4 *3 (-989)) + (-4 *4 (-684)) (-5 *1 (-693 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-706)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) - (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) - (|:| |relerr| (-229)))) + (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) + (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) + (|:| |relerr| (-179)))) (|:| |mdnia| - (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) - (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) - (-5 *1 (-787)))) + (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) + (|:| |abserr| (-179)) (|:| |relerr| (-179)))))) + (-5 *1 (-712)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) - (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *1 (-787)))) + (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) + (|:| |abserr| (-179)) (|:| |relerr| (-179)))) + (-5 *1 (-712)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) - (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) - (|:| |relerr| (-229)))) - (-5 *1 (-787)))) - ((*1 *2 *3) (-12 (-5 *2 (-791)) (-5 *1 (-792 *3)) (-4 *3 (-1236)))) + (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) + (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) + (|:| |relerr| (-179)))) + (-5 *1 (-712)))) + ((*1 *2 *3) (-12 (-5 *2 (-716)) (-5 *1 (-717 *3)) (-4 *3 (-1157)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) - (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) - (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *1 (-828)))) + (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) + (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) + (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) + (|:| |abserr| (-179)) (|:| |relerr| (-179)))) + (-5 *1 (-751)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) - (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) - (|:| |ub| (-659 (-853 (-229)))))) + (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) + (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) + (|:| |ub| (-599 (-775 (-179)))))) (|:| |lsa| - (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))))) - (-5 *1 (-852)))) + (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))))) + (-5 *1 (-774)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) - (-5 *1 (-852)))) + (-12 (-5 *2 (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))) + (-5 *1 (-774)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) - (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) - (|:| |ub| (-659 (-853 (-229)))))) - (-5 *1 (-852)))) - ((*1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-870)))) - ((*1 *2 *3) (-12 (-5 *3 (-963 (-48))) (-5 *2 (-326 (-557))) (-5 *1 (-887)))) + (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) + (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) + (|:| |ub| (-599 (-775 (-179)))))) + (-5 *1 (-774)))) + ((*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-792)))) + ((*1 *2 *3) (-12 (-5 *3 (-884 (-48))) (-5 *2 (-268 (-499))) (-5 *1 (-809)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-963 (-48)))) (-5 *2 (-326 (-557))) (-5 *1 (-887)))) - ((*1 *1 *2) (-12 (-5 *1 (-906 *2)) (-4 *2 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-839 *3)) (-5 *1 (-906 *3)) (-4 *3 (-859)))) + (-12 (-5 *3 (-361 (-884 (-48)))) (-5 *2 (-268 (-499))) (-5 *1 (-809)))) + ((*1 *1 *2) (-12 (-5 *1 (-828 *2)) (-4 *2 (-781)))) + ((*1 *2 *1) (-12 (-5 *2 (-762 *3)) (-5 *1 (-828 *3)) (-4 *3 (-781)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-659 (-326 (-229)))) + (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| - (-659 - (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) - (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) - (|:| |dFinish| (-707 (-229)))))) - (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) - (|:| |tol| (-229)))) - (-5 *1 (-913)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-5 *1 (-919 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-659 *3))) (-4 *3 (-1120)) (-5 *1 (-919 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-919 *3))) (-4 *3 (-1120)) (-5 *1 (-922 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 (-919 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-417 *3))) (-4 *3 (-319)) (-5 *1 (-931 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-931 *3)) (-4 *3 (-319)))) - ((*1 *2 *3) - (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-937 *4)) (-4 *4 (-568)))) - ((*1 *2 *3) (-12 (-5 *2 (-1292)) (-5 *1 (-1052 *3)) (-4 *3 (-1236)))) - ((*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1052 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2) - (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *1 (-1053 *3 *4 *5 *2 *6)) (-4 *2 (-967 *3 *4 *5)) (-14 *6 (-659 *2)))) - ((*1 *2 *3) (-12 (-5 *2 (-419 (-963 *3))) (-5 *1 (-1059 *3)) (-4 *3 (-568)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1068)) (-4 *4 (-859)) (-5 *1 (-1145 *3 *4 *2)) - (-4 *2 (-967 *3 (-542 *4) *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1068)) (-4 *2 (-859)) (-5 *1 (-1145 *3 *2 *4)) - (-4 *4 (-967 *3 (-542 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-875)))) - ((*1 *1 *2) (-12 (-5 *2 (-146)) (-4 *1 (-1163)))) - ((*1 *2 *3) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1068)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1187 *3 *4 *5)) - (-4 *3 (-1068)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1194 *3 *4 *5)) - (-4 *3 (-1068)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1255 *4 *3)) (-4 *3 (-1068)) (-14 *4 (-1196)) (-14 *5 *3) - (-5 *1 (-1194 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1195)))) - ((*1 *2 *1) (-12 (-5 *2 (-1208 (-1196) (-448))) (-5 *1 (-1200)))) - ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-875)) (-5 *1 (-1209 *3)) (-4 *3 (-1120)))) - ((*1 *2 *3) (-12 (-5 *2 (-1216)) (-5 *1 (-1217 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-1068)) (-5 *1 (-1229 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1229 *3)) (-4 *3 (-1068)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1246 *3 *4 *5)) - (-4 *3 (-1068)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1108 *3)) (-4 *3 (-1236)) (-5 *1 (-1253 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1276 *3 *4 *5)) - (-4 *3 (-1068)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1255 *4 *3)) (-4 *3 (-1068)) (-14 *4 (-1196)) (-14 *5 *3) - (-5 *1 (-1276 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1283 *3)) (-14 *3 *2))) - ((*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1289)) (-5 *1 (-1288)))) - ((*1 *2 *1) (-12 (-5 *2 (-875)) (-5 *1 (-1289)))) - ((*1 *1 *2) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1068)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1311 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-859)) - (-4 *4 (-175)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-859)) - (-4 *4 (-175)))) - ((*1 *1 *2) - (-12 (-5 *2 (-682 *3 *4)) (-4 *3 (-859)) (-4 *4 (-175)) - (-5 *1 (-1307 *3 *4))))) + (-599 + (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) + (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) + (|:| |dFinish| (-647 (-179)))))) + (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) + (|:| |tol| (-179)))) + (-5 *1 (-834)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-840 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-1041)) (-5 *1 (-840 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 (-840 *3))) (-4 *3 (-1041)) (-5 *1 (-843 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 (-840 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) + ((*1 *1 *2) (-12 (-5 *2 (-361 (-359 *3))) (-4 *3 (-261)) (-5 *1 (-852 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-361 *3)) (-5 *1 (-852 *3)) (-4 *3 (-261)))) + ((*1 *2 *3) + (-12 (-5 *3 (-431)) (-5 *2 (-268 *4)) (-5 *1 (-858 *4)) (-4 *4 (-510)))) + ((*1 *2 *3) (-12 (-5 *2 (-1213)) (-5 *1 (-973 *3)) (-4 *3 (-1157)))) + ((*1 *2 *3) (-12 (-5 *3 (-265)) (-5 *1 (-973 *2)) (-4 *2 (-1157)))) + ((*1 *1 *2) + (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *2 (-888 *3 *4 *5)) (-14 *6 (-599 *2)))) + ((*1 *2 *3) (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-980 *3)) (-4 *3 (-510)))) + ((*1 *1 *2) + (-12 (-4 *3 (-989)) (-4 *4 (-781)) (-5 *1 (-1066 *3 *4 *2)) + (-4 *2 (-888 *3 (-484 *4) *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-989)) (-4 *2 (-781)) (-5 *1 (-1066 *3 *2 *4)) + (-4 *4 (-888 *3 (-484 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-797)))) + ((*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1084)))) + ((*1 *2 *3) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-989)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1108 *3 *4 *5)) + (-4 *3 (-989)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1115 *3 *4 *5)) + (-4 *3 (-989)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1176 *4 *3)) (-4 *3 (-989)) (-14 *4 (-1117)) (-14 *5 *3) + (-5 *1 (-1115 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1116)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129 (-1117) (-390))) (-5 *1 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1130 *3)) (-4 *3 (-1041)))) + ((*1 *2 *3) (-12 (-5 *2 (-1137)) (-5 *1 (-1138 *3)) (-4 *3 (-1041)))) + ((*1 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-989)) (-5 *1 (-1150 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1150 *3)) (-4 *3 (-989)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1167 *3 *4 *5)) + (-4 *3 (-989)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1029 *3)) (-4 *3 (-1157)) (-5 *1 (-1174 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1197 *3 *4 *5)) + (-4 *3 (-989)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1176 *4 *3)) (-4 *3 (-989)) (-14 *4 (-1117)) (-14 *5 *3) + (-5 *1 (-1197 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1204 *3)) (-14 *3 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-422)) (-5 *2 (-1210)) (-5 *1 (-1209)))) + ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1210)))) + ((*1 *1 *2) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1232 *3 *4)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-781)) + (-4 *4 (-146)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1223 *3 *4)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-781)) + (-4 *4 (-146)))) + ((*1 *1 *2) + (-12 (-5 *2 (-622 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) + (-5 *1 (-1228 *3 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-1302 *3 *4)) (-4 *3 (-859)) (-4 *4 (-175)) - (-5 *1 (-682 *3 *4)))) + (|partial| -12 (-5 *2 (-1223 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) + (-5 *1 (-622 *3 *4)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-682 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-859)) - (-4 *4 (-175))))) + (|partial| -12 (-5 *2 (-622 *3 *4)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-781)) + (-4 *4 (-146))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-557)) (-14 *3 (-789)) (-4 *4 (-175)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) + (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *1 (-131 *4 *2)) (-4 *2 (-375 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1111 *2)) (-4 *2 (-433 *4)) (-4 *4 (-568)) - (-5 *1 (-160 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-162)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1196)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) + (-12 (-5 *3 (-1032 *2)) (-4 *2 (-375 *4)) (-4 *4 (-510)) + (-5 *1 (-131 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1032 *1)) (-4 *1 (-133)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1117)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-419 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-789)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-859)) (-4 *4 (-175))))) + (-12 (-5 *2 (-714)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146))))) (((*1 *1 *2) - (-12 (-5 *2 (-659 (-557))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) - (-14 *4 (-659 (-1196))))) + (-12 (-5 *2 (-599 (-499))) (-5 *1 (-50 *3 *4)) (-4 *3 (-989)) + (-14 *4 (-599 (-1117))))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *1 *1) (-4 *1 (-296))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) + ((*1 *1 *1) (-4 *1 (-238))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) - (-4 *4 (-401)))) + (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) + (-4 *4 (-343)))) ((*1 *1 *2) - (-12 (-5 *2 (-682 *3 *4)) (-4 *3 (-859)) - (-4 *4 (-13 (-175) (-735 (-419 (-557))))) (-5 *1 (-642 *3 *4 *5)) - (-14 *5 (-936)))) + (-12 (-5 *2 (-622 *3 *4)) (-4 *3 (-781)) + (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-5 *1 (-582 *3 *4 *5)) + (-14 *5 (-857)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-789)) (-4 *4 (-13 (-1068) (-735 (-419 (-557))))) (-4 *5 (-859)) - (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1309 *5 *4)))) + (-12 (-5 *3 (-714)) (-4 *4 (-13 (-989) (-675 (-361 (-499))))) (-4 *5 (-781)) + (-5 *1 (-1224 *4 *5 *2)) (-4 *2 (-1230 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-789)) (-5 *1 (-1307 *3 *4)) (-4 *4 (-735 (-419 (-557)))) - (-4 *3 (-859)) (-4 *4 (-175))))) + (-12 (-5 *2 (-714)) (-5 *1 (-1228 *3 *4)) (-4 *4 (-675 (-361 (-499)))) + (-4 *3 (-781)) (-4 *4 (-146))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *1 *1) (-4 *1 (-296))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) + ((*1 *1 *1) (-4 *1 (-238))) ((*1 *2 *3) - (-12 (-5 *3 (-417 *4)) (-4 *4 (-568)) - (-5 *2 (-659 (-2 (|:| -4382 (-789)) (|:| |logand| *4)))) (-5 *1 (-332 *4)))) + (-12 (-5 *3 (-359 *4)) (-4 *4 (-510)) + (-5 *2 (-599 (-2 (|:| -4104 (-714)) (|:| |logand| *4)))) (-5 *1 (-274 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) - (-4 *4 (-401)))) + (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) + (-4 *4 (-343)))) ((*1 *2 *1) - (-12 (-5 *2 (-682 *3 *4)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-859)) - (-4 *4 (-13 (-175) (-735 (-419 (-557))))) (-14 *5 (-936)))) + (-12 (-5 *2 (-622 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) + (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-789)) (-4 *4 (-13 (-1068) (-735 (-419 (-557))))) (-4 *5 (-859)) - (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1309 *5 *4)))) + (-12 (-5 *3 (-714)) (-4 *4 (-13 (-989) (-675 (-361 (-499))))) (-4 *5 (-781)) + (-5 *1 (-1224 *4 *5 *2)) (-4 *2 (-1230 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-789)) (-5 *1 (-1307 *3 *4)) (-4 *4 (-735 (-419 (-557)))) - (-4 *3 (-859)) (-4 *4 (-175))))) + (-12 (-5 *2 (-714)) (-5 *1 (-1228 *3 *4)) (-4 *4 (-675 (-361 (-499)))) + (-4 *3 (-781)) (-4 *4 (-146))))) (((*1 *2 *1) - (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)) - (-5 *2 (-2 (|:| |k| (-839 *3)) (|:| |c| *4)))))) + (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) + (-5 *2 (-2 (|:| |k| (-762 *3)) (|:| |c| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1311 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-859)) - (-4 *4 (-175)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-839 *2)) (-4 *2 (-859)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1068)))) + (-12 (-5 *2 (-1232 *3 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) + (-4 *4 (-146)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-1041)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-762 *2)) (-4 *2 (-781)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-839 *3)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1068))))) + (-12 (-5 *2 (-762 *3)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1311 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-859)) - (-4 *4 (-175)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-839 *2)) (-4 *2 (-859)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1068)))) + (-12 (-5 *2 (-1232 *3 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) + (-4 *4 (-146)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-1041)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-762 *2)) (-4 *2 (-781)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-839 *3)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1068))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1120)))) + (-12 (-5 *2 (-762 *3)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-339 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1041)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-557)) (-5 *2 (-1174 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1068)))) + (-12 (-5 *4 (-499)) (-5 *2 (-1095 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-989)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-839 *4)) (-4 *4 (-859)) (-4 *1 (-1306 *4 *3)) (-4 *3 (-1068))))) + (-12 (-5 *2 (-762 *4)) (-4 *4 (-781)) (-4 *1 (-1227 *4 *3)) (-4 *3 (-989))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812)) (-5 *2 (-114)))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1120)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-605 *3)) (-4 *3 (-1068)))) + (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-545 *3)) (-4 *3 (-989)))) ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-5 *2 (-114)) (-5 *1 (-638 *3 *4)) (-4 *4 (-1262 *3)))) + (-12 (-4 *3 (-510)) (-5 *2 (-85)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1183 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-753 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-744)))) + (-12 (-5 *2 (-85)) (-5 *1 (-693 *3 *4)) (-4 *3 (-989)) (-4 *4 (-684)))) ((*1 *2 *1) - (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)) (-5 *2 (-114))))) -(((*1 *1 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-859)) (-4 *3 (-175)))) + (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-85))))) +(((*1 *1 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-781)) (-4 *3 (-146)))) ((*1 *1 *1) - (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-859)) - (-4 *3 (-13 (-175) (-735 (-419 (-557))))) (-14 *4 (-936)))) - ((*1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-859)))) - ((*1 *1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-859)))) - ((*1 *1 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1068))))) + (-12 (-5 *1 (-582 *2 *3 *4)) (-4 *2 (-781)) + (-4 *3 (-13 (-146) (-675 (-361 (-499))))) (-14 *4 (-857)))) + ((*1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) + ((*1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-781)))) + ((*1 *1 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-789)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)) - (-4 *4 (-175)))) + (-12 (-5 *2 (-714)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) + (-4 *4 (-146)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1068)) (-4 *3 (-175))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-789)) (-5 *2 (-659 (-1196))) (-5 *1 (-213)) (-5 *3 (-1196)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-229))) (-5 *4 (-789)) (-5 *2 (-659 (-1196))) - (-5 *1 (-278)))) - ((*1 *2 *1) - (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-859)) (-4 *4 (-175)) (-5 *2 (-659 *3)))) + (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-781)) (-4 *3 (-989)) (-4 *3 (-146))))) +(((*1 *2 *1) + (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-781)) (-4 *4 (-146)) (-5 *2 (-599 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-659 *3)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-859)) - (-4 *4 (-13 (-175) (-735 (-419 (-557))))) (-14 *5 (-936)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-690 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-695 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-839 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-906 *3)) (-4 *3 (-859)))) + (-12 (-5 *2 (-599 *3)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) + (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-635 *3)) (-4 *3 (-781)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-762 *3)) (-4 *3 (-781)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-828 *3)) (-4 *3 (-781)))) ((*1 *2 *1) - (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1068)) (-5 *2 (-659 *3))))) + (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-781)) (-4 *4 (-989)) (-5 *2 (-599 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1231 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *3 (-859)) - (-4 *6 (-1084 *4 *5 *3)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1152 *4 *5 *3 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *3 (-781)) + (-4 *6 (-1005 *4 *5 *3)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-376)) (-5 *2 (-936)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) + (-12 (-4 *4 (-318)) (-5 *2 (-857)) (-5 *1 (-282 *3 *4)) (-4 *3 (-283 *4)))) ((*1 *2) - (-12 (-4 *4 (-376)) (-5 *2 (-843 (-936))) (-5 *1 (-340 *3 *4)) - (-4 *3 (-341 *4)))) - ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-936)))) - ((*1 *2) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-5 *2 (-843 (-936)))))) + (-12 (-4 *4 (-318)) (-5 *2 (-766 (-857))) (-5 *1 (-282 *3 *4)) + (-4 *3 (-283 *4)))) + ((*1 *2) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-5 *2 (-857)))) + ((*1 *2) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-766 (-857)))))) (((*1 *2) - (-12 (-4 *4 (-376)) (-5 *2 (-789)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) - ((*1 *2) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-5 *2 (-789))))) + (-12 (-4 *4 (-318)) (-5 *2 (-714)) (-5 *1 (-282 *3 *4)) (-4 *3 (-283 *4)))) + ((*1 *2) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-5 *2 (-714))))) (((*1 *2 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-341 *3)) (-4 *5 (-1262 *4)) - (-5 *1 (-795 *3 *4 *5 *2 *6)) (-4 *2 (-1262 *5)) (-14 *6 (-936)))) + (-12 (-4 *3 (-305)) (-4 *4 (-283 *3)) (-4 *5 (-1183 *4)) + (-5 *1 (-720 *3 *4 *5 *2 *6)) (-4 *2 (-1183 *5)) (-14 *6 (-857)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-789)) (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) - ((*1 *1 *1) (-12 (-4 *1 (-1305 *2)) (-4 *2 (-376)) (-4 *2 (-381))))) + (-12 (-5 *2 (-714)) (-4 *1 (-1226 *3)) (-4 *3 (-318)) (-4 *3 (-323)))) + ((*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-318)) (-4 *2 (-323))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-789)) (-4 *4 (-13 (-1068) (-735 (-419 (-557))))) (-4 *5 (-859)) - (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1309 *5 *4))))) + (-12 (-5 *3 (-714)) (-4 *4 (-13 (-989) (-675 (-361 (-499))))) (-4 *5 (-781)) + (-5 *1 (-1224 *4 *5 *2)) (-4 *2 (-1230 *5 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-1300 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) + (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-1221 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-659 *8)) (-5 *3 (-1 (-114) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-813)) - (-4 *7 (-859)) (-5 *1 (-1300 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-599 *8)) (-5 *3 (-1 (-85) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) + (-4 *7 (-781)) (-5 *1 (-1221 *5 *6 *7 *8))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-1300 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) + (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-1221 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-659 *8)) (-5 *3 (-1 (-114) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-813)) - (-4 *7 (-859)) (-5 *1 (-1300 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-599 *8)) (-5 *3 (-1 (-85) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) + (-4 *7 (-781)) (-5 *1 (-1221 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *2 (-659 (-1300 *4 *5 *6 *7))) - (-5 *1 (-1300 *4 *5 *6 *7)))) + (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-599 (-1221 *4 *5 *6 *7))) + (-5 *1 (-1221 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-659 *9)) (-5 *4 (-1 (-114) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-813)) (-4 *8 (-859)) - (-5 *2 (-659 (-1300 *6 *7 *8 *9))) (-5 *1 (-1300 *6 *7 *8 *9))))) + (-12 (-5 *3 (-599 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1005 *6 *7 *8)) (-4 *6 (-510)) (-4 *7 (-738)) (-4 *8 (-781)) + (-5 *2 (-599 (-1221 *6 *7 *8 *9))) (-5 *1 (-1221 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-789)) (-5 *2 (-1292)) (-5 *1 (-878 *4 *5 *6 *7)) - (-4 *4 (-1068)) (-14 *5 (-659 (-1196))) (-14 *6 (-659 *3)) (-14 *7 *3))) + (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-800 *4 *5 *6 *7)) (-4 *4 (-989)) + (-14 *5 (-599 (-1117))) (-14 *6 (-599 *3)) (-14 *7 *3))) ((*1 *2 *3) - (-12 (-5 *3 (-789)) (-4 *4 (-1068)) (-4 *5 (-859)) (-4 *6 (-813)) - (-14 *8 (-659 *5)) (-5 *2 (-1292)) (-5 *1 (-1299 *4 *5 *6 *7 *8 *9 *10)) - (-4 *7 (-967 *4 *6 *5)) (-14 *9 (-659 *3)) (-14 *10 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529)))) + (-12 (-5 *3 (-714)) (-4 *4 (-989)) (-4 *5 (-781)) (-4 *6 (-738)) + (-14 *8 (-599 *5)) (-5 *2 (-1213)) (-5 *1 (-1220 *4 *5 *6 *7 *8 *9 *10)) + (-4 *7 (-888 *4 *6 *5)) (-14 *9 (-599 *3)) (-14 *10 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-471)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1120) (-34))) (-5 *1 (-1159 *3 *2)) - (-4 *3 (-13 (-1120) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1298))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1297))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1297))))) + (-12 (-4 *2 (-13 (-1041) (-34))) (-5 *1 (-1080 *3 *2)) + (-4 *3 (-13 (-1041) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1219))))) +(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1218))))) +(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1218))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $))))) - (-4 *4 (-1262 *3)) + (-12 (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) + (-4 *4 (-1183 *3)) (-5 *2 - (-2 (|:| -2220 (-707 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-707 *3)))) - (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) + (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) + (-5 *1 (-306 *3 *4 *5)) (-4 *5 (-364 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-557)) (-4 *4 (-1262 *3)) + (-12 (-5 *3 (-499)) (-4 *4 (-1183 *3)) (-5 *2 - (-2 (|:| -2220 (-707 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-707 *3)))) - (-5 *1 (-786 *4 *5)) (-4 *5 (-422 *3 *4)))) + (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) + (-5 *1 (-711 *4 *5)) (-4 *5 (-364 *3 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 *3)) + (-12 (-4 *4 (-305)) (-4 *3 (-1183 *4)) (-4 *5 (-1183 *3)) (-5 *2 - (-2 (|:| -2220 (-707 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-707 *3)))) - (-5 *1 (-1004 *4 *3 *5 *6)) (-4 *6 (-742 *3 *5)))) + (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) + (-5 *1 (-925 *4 *3 *5 *6)) (-4 *6 (-682 *3 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 *3)) + (-12 (-4 *4 (-305)) (-4 *3 (-1183 *4)) (-4 *5 (-1183 *3)) (-5 *2 - (-2 (|:| -2220 (-707 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-707 *3)))) - (-5 *1 (-1296 *4 *3 *5 *6)) (-4 *6 (-422 *3 *5))))) + (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) + (-5 *1 (-1217 *4 *3 *5 *6)) (-4 *6 (-364 *3 *5))))) (((*1 *2) - (-12 (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) - (-5 *2 (-1286 *1)) (-4 *1 (-355 *3 *4 *5)))) + (-12 (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) + (-5 *2 (-1207 *1)) (-4 *1 (-297 *3 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $))))) - (-4 *4 (-1262 *3)) + (-12 (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) + (-4 *4 (-1183 *3)) (-5 *2 - (-2 (|:| -2220 (-707 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-707 *3)))) - (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) + (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) + (-5 *1 (-306 *3 *4 *5)) (-4 *5 (-364 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-1262 (-557))) + (-12 (-4 *3 (-1183 (-499))) (-5 *2 - (-2 (|:| -2220 (-707 (-557))) (|:| |basisDen| (-557)) - (|:| |basisInv| (-707 (-557))))) - (-5 *1 (-786 *3 *4)) (-4 *4 (-422 (-557) *3)))) + (-2 (|:| -2113 (-647 (-499))) (|:| |basisDen| (-499)) + (|:| |basisInv| (-647 (-499))))) + (-5 *1 (-711 *3 *4)) (-4 *4 (-364 (-499) *3)))) ((*1 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 *4)) + (-12 (-4 *3 (-305)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 *4)) (-5 *2 - (-2 (|:| -2220 (-707 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-707 *4)))) - (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-742 *4 *5)))) + (-2 (|:| -2113 (-647 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-647 *4)))) + (-5 *1 (-925 *3 *4 *5 *6)) (-4 *6 (-682 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 *4)) + (-12 (-4 *3 (-305)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 *4)) (-5 *2 - (-2 (|:| -2220 (-707 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-707 *4)))) - (-5 *1 (-1296 *3 *4 *5 *6)) (-4 *6 (-422 *4 *5))))) + (-2 (|:| -2113 (-647 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-647 *4)))) + (-5 *1 (-1217 *3 *4 *5 *6)) (-4 *6 (-364 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-789)) (-4 *6 (-376)) (-5 *4 (-1229 *6)) - (-5 *2 (-1 (-1174 *4) (-1174 *4))) (-5 *1 (-1295 *6)) (-5 *5 (-1174 *4))))) + (-12 (-5 *3 (-714)) (-4 *6 (-318)) (-5 *4 (-1150 *6)) + (-5 *2 (-1 (-1095 *4) (-1095 *4))) (-5 *1 (-1216 *6)) (-5 *5 (-1095 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-4 *5 (-376)) (-5 *2 (-659 (-1229 *5))) - (-5 *1 (-1295 *5)) (-5 *4 (-1229 *5))))) + (-12 (-5 *3 (-1117)) (-4 *5 (-318)) (-5 *2 (-599 (-1150 *5))) + (-5 *1 (-1216 *5)) (-5 *4 (-1150 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-1 (-1190 (-963 *4)) (-963 *4))) - (-5 *1 (-1295 *4)) (-4 *4 (-376))))) + (-12 (-5 *3 (-1117)) (-5 *2 (-1 (-1111 (-884 *4)) (-884 *4))) + (-5 *1 (-1216 *4)) (-4 *4 (-318))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-4 *5 (-376)) (-5 *2 (-1174 (-1174 (-963 *5)))) - (-5 *1 (-1295 *5)) (-5 *4 (-1174 (-963 *5)))))) + (-12 (-5 *3 (-1117)) (-4 *5 (-318)) (-5 *2 (-1095 (-1095 (-884 *5)))) + (-5 *1 (-1216 *5)) (-5 *4 (-1095 (-884 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-789)) (-5 *2 (-1 (-1174 (-963 *4)) (-1174 (-963 *4)))) - (-5 *1 (-1295 *4)) (-4 *4 (-376))))) + (-12 (-5 *3 (-714)) (-5 *2 (-1 (-1095 (-884 *4)) (-1095 (-884 *4)))) + (-5 *1 (-1216 *4)) (-4 *4 (-318))))) (((*1 *2 *3) - (-12 (-5 *3 (-789)) (-5 *2 (-1 (-1174 (-963 *4)) (-1174 (-963 *4)))) - (-5 *1 (-1295 *4)) (-4 *4 (-376))))) + (-12 (-5 *3 (-714)) (-5 *2 (-1 (-1095 (-884 *4)) (-1095 (-884 *4)))) + (-5 *1 (-1216 *4)) (-4 *4 (-318))))) (((*1 *2) - (-12 (-14 *4 (-789)) (-4 *5 (-1236)) (-5 *2 (-136)) (-5 *1 (-244 *3 *4 *5)) - (-4 *3 (-245 *4 *5)))) + (-12 (-14 *4 (-714)) (-4 *5 (-1157)) (-5 *2 (-107)) (-5 *1 (-194 *3 *4 *5)) + (-4 *3 (-195 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-376)) (-5 *2 (-136)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) + (-12 (-4 *4 (-318)) (-5 *2 (-107)) (-5 *1 (-282 *3 *4)) (-4 *3 (-283 *4)))) ((*1 *2) - (-12 (-5 *2 (-789)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-175)))) + (-12 (-5 *2 (-714)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-146)))) ((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-557)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) + (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-499)) + (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-659 *6)) (-4 *6 (-859)) (-4 *4 (-376)) (-4 *5 (-813)) - (-5 *2 (-557)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-967 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1068)) (-5 *2 (-936)))) - ((*1 *2) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-376)) (-5 *2 (-136))))) -(((*1 *1) (-5 *1 (-1292)))) -(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-1291)))) - ((*1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1291))))) -(((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1291)))) - ((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1291))))) -(((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1291))))) -(((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1291))))) -(((*1 *2) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-1291))))) -(((*1 *2) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-1291))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1291))))) -(((*1 *2) (-12 (-5 *2 (-659 (-936))) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-659 (-936))) (-5 *1 (-1291))))) -(((*1 *2) (-12 (-5 *2 (-659 (-789))) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-659 (-789))) (-5 *1 (-1291))))) -(((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1291))))) -(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1291))))) -(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1291))))) -(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1291))))) -(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1291))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1290)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1290))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1290)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1290))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1290)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1290))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1290)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1290))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1290)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1290))))) -(((*1 *1) (-5 *1 (-1290)))) + (-12 (-5 *3 (-599 *6)) (-4 *6 (-781)) (-4 *4 (-318)) (-4 *5 (-738)) + (-5 *2 (-499)) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-989)) (-5 *2 (-857)))) + ((*1 *2) (-12 (-4 *1 (-1215 *3)) (-4 *3 (-318)) (-5 *2 (-107))))) +(((*1 *1) (-5 *1 (-1213)))) +(((*1 *2 *3) (-12 (-5 *3 (-333)) (-5 *2 (-179)) (-5 *1 (-1212)))) + ((*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1212))))) +(((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) + ((*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212))))) +(((*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) + ((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212))))) +(((*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) + ((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212))))) +(((*1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1212))))) +(((*1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1212)))) + ((*1 *2 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1212))))) +(((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1212))))) +(((*1 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-1212)))) + ((*1 *2 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-1212))))) +(((*1 *2) (-12 (-5 *2 (-599 (-714))) (-5 *1 (-1212)))) + ((*1 *2 *2) (-12 (-5 *2 (-599 (-714))) (-5 *1 (-1212))))) +(((*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212)))) + ((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1212))))) +(((*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) + ((*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212))))) +(((*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) + ((*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212))))) +(((*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) + ((*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212))))) +(((*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212)))) + ((*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1212))))) +(((*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) + ((*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211))))) +(((*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) + ((*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211))))) +(((*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) + ((*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211))))) +(((*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) + ((*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211))))) +(((*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211)))) + ((*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-1211))))) +(((*1 *1) (-5 *1 (-1211)))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1152 (-229))) (-5 *3 (-659 (-270))) (-5 *1 (-1290)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1152 (-229))) (-5 *3 (-1178)) (-5 *1 (-1290)))) - ((*1 *1 *1) (-5 *1 (-1290)))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-1184 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1068)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1152 (-229))) (-5 *1 (-1290)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152 (-229))) (-5 *1 (-1290))))) + (-12 (-5 *2 (-1073 (-179))) (-5 *3 (-599 (-220))) (-5 *1 (-1211)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1073 (-179))) (-5 *3 (-1099)) (-5 *1 (-1211)))) + ((*1 *1 *1) (-5 *1 (-1211)))) +(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-1105 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1073 (-179))) (-5 *1 (-1211)))) + ((*1 *2 *1) (-12 (-5 *2 (-1073 (-179))) (-5 *1 (-1211))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-789)) (-5 *3 (-960 *4)) (-4 *1 (-1153 *4)) (-4 *4 (-1068)))) + (-12 (-5 *2 (-714)) (-5 *3 (-881 *4)) (-4 *1 (-1074 *4)) (-4 *4 (-989)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-789)) (-5 *4 (-960 (-229))) (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-659 (-270))) (-5 *1 (-1289)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 (-270))) (-5 *1 (-1289)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-659 (-270))) (-5 *1 (-1290)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 (-270))) (-5 *1 (-1290))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1292)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1292)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-659 (-270))) (-5 *1 (-271)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1290))))) + (-12 (-5 *3 (-714)) (-5 *4 (-881 (-179))) (-5 *2 (-1213)) (-5 *1 (-1211))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-220))) (-5 *1 (-1210)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 (-220))) (-5 *1 (-1210)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-220))) (-5 *1 (-1211)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 (-220))) (-5 *1 (-1211))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-1210)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-1211))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1213)) (-5 *1 (-1210)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1213)) (-5 *1 (-1211))))) +(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-220)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1099)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211))))) (((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-789)) (-5 *4 (-936)) (-5 *2 (-1292)) (-5 *1 (-1289)))) + (-12 (-5 *3 (-714)) (-5 *4 (-857)) (-5 *2 (-1213)) (-5 *1 (-1210)))) ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-789)) (-5 *4 (-936)) (-5 *2 (-1292)) (-5 *1 (-1290))))) + (-12 (-5 *3 (-714)) (-5 *4 (-857)) (-5 *2 (-1213)) (-5 *1 (-1211))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4275 (-229)) - (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) - (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) - (-5 *1 (-270)))) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) + (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) + (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) + (-5 *1 (-220)))) ((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4275 (-229)) - (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) - (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) - (-5 *3 (-659 (-270))) (-5 *1 (-271)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290)))) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) + (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) + (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) + (-5 *3 (-599 (-220))) (-5 *1 (-221)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-557)) (-5 *4 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290)))) + (-12 (-5 *3 (-499)) (-5 *4 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) ((*1 *2 *1 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4275 (-229)) - (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) - (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) - (-5 *2 (-1292)) (-5 *1 (-1290)))) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) + (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) + (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) + (-5 *2 (-1213)) (-5 *1 (-1211)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4275 (-229)) - (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) - (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) - (-5 *1 (-1290)))) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3997 (-179)) + (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) + (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) + (-5 *1 (-1211)))) ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1290))))) + (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-936)) (-5 *4 (-886)) (-5 *2 (-1292)) (-5 *1 (-1289)))) + (-12 (-5 *3 (-857)) (-5 *4 (-808)) (-5 *2 (-1213)) (-5 *1 (-1210)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-936)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-557)) (-5 *2 (-1292)) (-5 *1 (-1290)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1108 (-229))) (-5 *1 (-942)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1108 (-229))) (-5 *1 (-942)))) - ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1108 (-229))) (-5 *1 (-944)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1222))))) + (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-499)) (-5 *2 (-1213)) (-5 *1 (-1211)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-863)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-863)))) + ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-865)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-936)) (-5 *4 (-391)) (-5 *2 (-1292)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1289)))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-159)) (-5 *2 (-1292)) (-5 *1 (-1290))))) + (-12 (-5 *3 (-857)) (-5 *4 (-333)) (-5 *2 (-1213)) (-5 *1 (-1210)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1211))))) +(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1213)) (-5 *1 (-1211))))) +(((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1210)))) + ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1211))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1213)) (-5 *1 (-1211))))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-659 (-1178))) (-5 *2 (-1178)) (-5 *1 (-1289)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1289)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1289)))) + (-12 (-5 *3 (-599 (-1099))) (-5 *2 (-1099)) (-5 *1 (-1210)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1210)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1210)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-659 (-1178))) (-5 *2 (-1178)) (-5 *1 (-1290)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1290)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1290))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1289)))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-1289)))) - ((*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-1290))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-960 (-229)))) (-5 *1 (-1289))))) -(((*1 *1) (-5 *1 (-1289)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-659 (-270))) (-5 *1 (-1289)))) - ((*1 *1 *1) (-5 *1 (-1289)))) + (-12 (-5 *3 (-599 (-1099))) (-5 *2 (-1099)) (-5 *1 (-1211)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1211)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1211))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) + ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1210)))) + ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1211))))) +(((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-422)))) + ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1210)))) + ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1211))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-881 (-179)))) (-5 *1 (-1210))))) +(((*1 *1) (-5 *1 (-1210)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-422)) (-5 *3 (-599 (-220))) (-5 *1 (-1210)))) + ((*1 *1 *1) (-5 *1 (-1210)))) (((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-936)) (-5 *4 (-229)) (-5 *5 (-557)) (-5 *6 (-886)) - (-5 *2 (-1292)) (-5 *1 (-1289))))) + (-12 (-5 *3 (-857)) (-5 *4 (-179)) (-5 *5 (-499)) (-5 *6 (-808)) + (-5 *2 (-1213)) (-5 *1 (-1210))))) (((*1 *2 *1) (-12 (-5 *2 - (-1286 - (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) - (|:| |deltaY| (-229)) (|:| -4278 (-557)) (|:| -4276 (-557)) - (|:| |spline| (-557)) (|:| -4307 (-557)) (|:| |axesColor| (-886)) - (|:| -4279 (-557)) (|:| |unitsColor| (-886)) (|:| |showing| (-557))))) - (-5 *1 (-1289))))) -(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193)))) - ((*1 *2 *1) (-12 (-5 *2 (-1286 (-3 (-480) "undefined"))) (-5 *1 (-1289))))) + (-1207 + (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) + (|:| |deltaY| (-179)) (|:| -4000 (-499)) (|:| -3998 (-499)) + (|:| |spline| (-499)) (|:| -4029 (-499)) (|:| |axesColor| (-808)) + (|:| -4001 (-499)) (|:| |unitsColor| (-808)) (|:| |showing| (-499))))) + (-5 *1 (-1210))))) +(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) + ((*1 *2 *1) (-12 (-5 *2 (-1207 (-3 (-422) "undefined"))) (-5 *1 (-1210))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-480)) (-5 *4 (-936)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-936)) (-5 *2 (-480)) (-5 *1 (-1289))))) + (-12 (-5 *3 (-422)) (-5 *4 (-857)) (-5 *2 (-1213)) (-5 *1 (-1210))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-857)) (-5 *2 (-422)) (-5 *1 (-1210))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-659 (-391))) (-5 *3 (-659 (-270))) (-5 *1 (-271)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-659 (-391))) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 (-391))) (-5 *1 (-480)))) + (-12 (-5 *2 (-599 (-333))) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-599 (-333))) (-5 *1 (-422)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 (-333))) (-5 *1 (-422)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-936)) (-5 *4 (-886)) (-5 *2 (-1292)) (-5 *1 (-1289)))) + (-12 (-5 *3 (-857)) (-5 *4 (-808)) (-5 *2 (-1213)) (-5 *1 (-1210)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-936)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) + (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-936)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) + (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-936)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) + (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-936)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1222))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-736 *2)) (-4 *2 (-376)))) - ((*1 *1 *2) (-12 (-5 *1 (-736 *2)) (-4 *2 (-376)))) + (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) + ((*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-936)) (-5 *4 (-391)) (-5 *2 (-1292)) (-5 *1 (-1289))))) + (-12 (-5 *3 (-857)) (-5 *4 (-333)) (-5 *2 (-1213)) (-5 *1 (-1210))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-936)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) + (-12 (-5 *3 (-857)) (-5 *4 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1210))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-480)) (-5 *4 (-936)) (-5 *2 (-1292)) (-5 *1 (-1289))))) + (-12 (-5 *3 (-422)) (-5 *4 (-857)) (-5 *2 (-1213)) (-5 *1 (-1210))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-659 (-659 (-960 (-229))))) (-5 *4 (-886)) (-5 *5 (-936)) - (-5 *6 (-659 (-270))) (-5 *2 (-1289)) (-5 *1 (-1288)))) + (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *4 (-808)) (-5 *5 (-857)) + (-5 *6 (-599 (-220))) (-5 *2 (-1210)) (-5 *1 (-1209)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-659 (-960 (-229))))) (-5 *4 (-659 (-270))) - (-5 *2 (-1289)) (-5 *1 (-1288))))) + (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *4 (-599 (-220))) + (-5 *2 (-1210)) (-5 *1 (-1209))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-659 (-659 (-960 (-229))))) (-5 *4 (-886)) (-5 *5 (-936)) - (-5 *6 (-659 (-270))) (-5 *2 (-480)) (-5 *1 (-1288)))) + (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *4 (-808)) (-5 *5 (-857)) + (-5 *6 (-599 (-220))) (-5 *2 (-422)) (-5 *1 (-1209)))) ((*1 *2 *3) - (-12 (-5 *3 (-659 (-659 (-960 (-229))))) (-5 *2 (-480)) (-5 *1 (-1288)))) + (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *2 (-422)) (-5 *1 (-1209)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-659 (-960 (-229))))) (-5 *4 (-659 (-270))) (-5 *2 (-480)) - (-5 *1 (-1288))))) + (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *4 (-599 (-220))) (-5 *2 (-422)) + (-5 *1 (-1209))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1157)) (-4 *2 (-1157)) (-5 *1 (-59 *5 *2)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1120)) (|has| *1 (-6 -4423)) - (-4 *1 (-153 *2)) (-4 *2 (-1236)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1041)) (|has| *1 (-6 -4145)) + (-4 *1 (-124 *2)) (-4 *2 (-1157)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4423)) (-4 *1 (-153 *2)) - (-4 *2 (-1236)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4145)) (-4 *1 (-124 *2)) + (-4 *2 (-1157)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4423)) (-4 *1 (-153 *2)) - (-4 *2 (-1236)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4145)) (-4 *1 (-124 *2)) + (-4 *2 (-1157)))) ((*1 *2 *3) - (-12 (-4 *4 (-1068)) (-5 *2 (-2 (|:| -2212 (-1190 *4)) (|:| |deg| (-936)))) - (-5 *1 (-225 *4 *5)) (-5 *3 (-1190 *4)) (-4 *5 (-568)))) + (-12 (-4 *4 (-989)) (-5 *2 (-2 (|:| -2105 (-1111 *4)) (|:| |deg| (-857)))) + (-5 *1 (-175 *4 *5)) (-5 *3 (-1111 *4)) (-4 *5 (-510)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-789)) - (-4 *6 (-1236)) (-4 *2 (-1236)) (-5 *1 (-247 *5 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-196 *5 *6)) (-14 *5 (-714)) + (-4 *6 (-1157)) (-4 *2 (-1157)) (-5 *1 (-197 *5 *6 *2)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-175)) (-5 *1 (-301 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1262 *4)) + (-12 (-4 *4 (-146)) (-5 *1 (-243 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1183 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1120)))) + ((*1 *1 *1) (-12 (-5 *1 (-268 *2)) (-4 *2 (-510)) (-4 *2 (-1041)))) ((*1 *1 *1) - (-12 (-4 *1 (-349 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *3 (-1262 *2)) - (-4 *4 (-1262 (-419 *3))) (-4 *5 (-355 *2 *3 *4)))) + (-12 (-4 *1 (-291 *2 *3 *4 *5)) (-4 *2 (-318)) (-4 *3 (-1183 *2)) + (-4 *4 (-1183 (-361 *3))) (-4 *5 (-297 *2 *3 *4)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1236)) (-4 *2 (-1236)) - (-5 *1 (-386 *5 *4 *2 *6)) (-4 *4 (-385 *5)) (-4 *6 (-385 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1157)) (-4 *2 (-1157)) + (-5 *1 (-328 *5 *4 *2 *6)) (-4 *4 (-327 *5)) (-4 *6 (-327 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1120)) (-4 *2 (-1120)) - (-5 *1 (-439 *5 *4 *2 *6)) (-4 *4 (-438 *5)) (-4 *6 (-438 *2)))) - ((*1 *1 *1) (-5 *1 (-507))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1041)) (-4 *2 (-1041)) + (-5 *1 (-381 *5 *4 *2 *6)) (-4 *4 (-380 *5)) (-4 *6 (-380 *2)))) + ((*1 *1 *1) (-5 *1 (-449))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-659 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) - (-5 *1 (-660 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-599 *5)) (-4 *5 (-1157)) (-4 *2 (-1157)) + (-5 *1 (-600 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1068)) (-4 *2 (-1068)) (-4 *6 (-385 *5)) - (-4 *7 (-385 *5)) (-4 *8 (-385 *2)) (-4 *9 (-385 *2)) - (-5 *1 (-705 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-704 *5 *6 *7)) - (-4 *10 (-704 *2 *8 *9)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-989)) (-4 *2 (-989)) (-4 *6 (-327 *5)) + (-4 *7 (-327 *5)) (-4 *8 (-327 *2)) (-4 *9 (-327 *2)) + (-5 *1 (-645 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-644 *5 *6 *7)) + (-4 *10 (-644 *2 *8 *9)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-729 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) + (-12 (-5 *1 (-669 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-730 *3 *2)) (-4 *2 (-1262 *3)))) + ((*1 *1 *2) (-12 (-4 *3 (-989)) (-5 *1 (-670 *3 *2)) (-4 *2 (-1183 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) + (-12 (-5 *1 (-673 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-376)) - (-4 *3 (-175)) (-4 *1 (-742 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-742 *3 *2)) (-4 *2 (-1262 *3)))) + (|partial| -12 (-5 *2 (-361 *4)) (-4 *4 (-1183 *3)) (-4 *3 (-318)) + (-4 *3 (-146)) (-4 *1 (-682 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-682 *3 *2)) (-4 *2 (-1183 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-975 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) - (-5 *1 (-976 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-896 *5)) (-4 *5 (-1157)) (-4 *2 (-1157)) + (-5 *1 (-897 *5 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *1 (-1053 *3 *4 *5 *2 *6)) (-4 *2 (-967 *3 *4 *5)) (-14 *6 (-659 *2)))) + (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *2 (-888 *3 *4 *5)) (-14 *6 (-599 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1068)) (-4 *2 (-1068)) (-14 *5 (-789)) - (-14 *6 (-789)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) - (-4 *10 (-245 *6 *2)) (-4 *11 (-245 *5 *2)) - (-5 *1 (-1074 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1072 *5 *6 *7 *8 *9)) (-4 *12 (-1072 *5 *6 *2 *10 *11)))) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-989)) (-4 *2 (-989)) (-14 *5 (-714)) + (-14 *6 (-714)) (-4 *8 (-195 *6 *7)) (-4 *9 (-195 *5 *7)) + (-4 *10 (-195 *6 *2)) (-4 *11 (-195 *5 *2)) + (-5 *1 (-995 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-993 *5 *6 *7 *8 *9)) (-4 *12 (-993 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1174 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) - (-5 *1 (-1176 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1095 *5)) (-4 *5 (-1157)) (-4 *2 (-1157)) + (-5 *1 (-1097 *5 *2)))) ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-114) *2 *2)) - (-4 *1 (-1231 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-813)) (-4 *7 (-859)) - (-4 *2 (-1084 *5 *6 *7)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) + (-4 *1 (-1152 *5 *6 *7 *2)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) + (-4 *2 (-1005 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1286 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) - (-5 *1 (-1287 *5 *2))))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1207 *5)) (-4 *5 (-1157)) (-4 *2 (-1157)) + (-5 *1 (-1208 *5 *2))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1236)) (-4 *5 (-1236)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1157)) (-4 *5 (-1157)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-789)) - (-4 *7 (-1236)) (-4 *5 (-1236)) (-5 *2 (-246 *6 *5)) - (-5 *1 (-247 *6 *7 *5)))) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-196 *6 *7)) (-14 *6 (-714)) + (-4 *7 (-1157)) (-4 *5 (-1157)) (-5 *2 (-196 *6 *5)) + (-5 *1 (-197 *6 *7 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1236)) (-4 *5 (-1236)) (-4 *2 (-385 *5)) - (-5 *1 (-386 *6 *4 *5 *2)) (-4 *4 (-385 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1157)) (-4 *5 (-1157)) (-4 *2 (-327 *5)) + (-5 *1 (-328 *6 *4 *5 *2)) (-4 *4 (-327 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1120)) (-4 *5 (-1120)) (-4 *2 (-438 *5)) - (-5 *1 (-439 *6 *4 *5 *2)) (-4 *4 (-438 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1041)) (-4 *5 (-1041)) (-4 *2 (-380 *5)) + (-5 *1 (-381 *6 *4 *5 *2)) (-4 *4 (-380 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-659 *6)) (-4 *6 (-1236)) (-4 *5 (-1236)) - (-5 *2 (-659 *5)) (-5 *1 (-660 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-599 *6)) (-4 *6 (-1157)) (-4 *5 (-1157)) + (-5 *2 (-599 *5)) (-5 *1 (-600 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-975 *6)) (-4 *6 (-1236)) (-4 *5 (-1236)) - (-5 *2 (-975 *5)) (-5 *1 (-976 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-896 *6)) (-4 *6 (-1157)) (-4 *5 (-1157)) + (-5 *2 (-896 *5)) (-5 *1 (-897 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1174 *6)) (-4 *6 (-1236)) (-4 *3 (-1236)) - (-5 *2 (-1174 *3)) (-5 *1 (-1176 *6 *3)))) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1095 *6)) (-4 *6 (-1157)) (-4 *3 (-1157)) + (-5 *2 (-1095 *3)) (-5 *1 (-1097 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1286 *6)) (-4 *6 (-1236)) (-4 *5 (-1236)) - (-5 *2 (-1286 *5)) (-5 *1 (-1287 *6 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1236)) (-5 *1 (-1286 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-159))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1207 *6)) (-4 *6 (-1157)) (-4 *5 (-1157)) + (-5 *2 (-1207 *5)) (-5 *1 (-1208 *6 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-1207 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-130))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-217 *2)) + (-12 (-5 *1 (-167 *2)) (-4 *2 - (-13 (-859) - (-10 -8 (-15 -4228 ((-1178) $ (-1196))) (-15 -4045 ((-1292) $)) - (-15 -2173 ((-1292) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1236)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1236)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-133)))) + (-13 (-781) + (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 ((-1213) $)) + (-15 -2066 ((-1213) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-247 *2)) (-4 *2 (-25)) (-4 *2 (-1157)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-25)) (-4 *2 (-1157)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-104)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-376) (-149))) (-5 *1 (-411 *3 *2)) (-4 *2 (-1262 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) + (-12 (-4 *3 (-13 (-318) (-120))) (-5 *1 (-353 *3 *2)) (-4 *2 (-1183 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-376)) (-4 *3 (-813)) (-4 *4 (-859)) (-5 *1 (-516 *2 *3 *4 *5)) - (-4 *5 (-967 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-546))) + (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) + (-4 *5 (-888 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-488))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1120)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-960 (-229))) (-5 *1 (-1233)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1236)) (-4 *2 (-25))))) + (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) + (-4 *4 (-327 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-881 (-179))) (-5 *1 (-1154)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-25))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-789)) (-4 *3 (-1068)) (-4 *1 (-704 *3 *4 *5)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)))) + (-12 (-5 *2 (-714)) (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *5)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-789)) (-4 *1 (-1285 *3)) (-4 *3 (-23)) (-4 *3 (-1236))))) + (-12 (-5 *2 (-714)) (-4 *1 (-1206 *3)) (-4 *3 (-23)) (-4 *3 (-1157))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-136))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-107))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-217 *2)) + (-12 (-5 *1 (-167 *2)) (-4 *2 - (-13 (-859) - (-10 -8 (-15 -4228 ((-1178) $ (-1196))) (-15 -4045 ((-1292) $)) - (-15 -2173 ((-1292) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) + (-13 (-781) + (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 ((-1213) $)) + (-15 -2066 ((-1213) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-247 *2)) (-4 *2 (-21)) (-4 *2 (-1157)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-21)) (-4 *2 (-1157)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)))) + (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) + (-4 *4 (-327 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)))) - ((*1 *1 *1) (-5 *1 (-875))) ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-960 (-229))) (-5 *1 (-1233)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1236)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1236)) (-4 *2 (-21))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-245 *3 *2)) (-4 *2 (-1236)) (-4 *2 (-1068)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-875)))) - ((*1 *1 *1) (-5 *1 (-875))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-960 (-229))) (-5 *2 (-229)) (-5 *1 (-1233)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1236)) (-4 *2 (-1068))))) + (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) + (-4 *4 (-327 *2)))) + ((*1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-881 (-179))) (-5 *1 (-1154)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-21))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-195 *3 *2)) (-4 *2 (-1157)) (-4 *2 (-989)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-797)))) + ((*1 *1 *1) (-5 *1 (-797))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-881 (-179))) (-5 *2 (-179)) (-5 *1 (-1154)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-989))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1285 *3)) (-4 *3 (-1236)) (-4 *3 (-1068)) (-5 *2 (-707 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1068)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-960 (-229))) (-5 *1 (-1233)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1236)) (-4 *2 (-1068))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-376) (-1222) (-296))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) - ((*1 *1 *1) (-4 *1 (-556))) - ((*1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-690 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-695 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-839 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-906 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1236)) (-5 *2 (-789)))) - ((*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-1234 *3)) (-4 *3 (-1236)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1236)) (-4 *2 (-1021)) (-4 *2 (-1068))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1236)) (-4 *2 (-1021)) (-4 *2 (-1068))))) -(((*1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-859)))) + (-12 (-4 *1 (-1206 *3)) (-4 *3 (-1157)) (-4 *3 (-989)) (-5 *2 (-647 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-989)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-881 (-179))) (-5 *1 (-1154)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-989))))) +(((*1 *2 *3) + (-12 (-4 *4 (-989)) (-4 *2 (-13 (-358) (-978 *4) (-318) (-1143) (-238))) + (-5 *1 (-397 *4 *3 *2)) (-4 *3 (-1183 *4)))) + ((*1 *1 *1) (-4 *1 (-498))) + ((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) + ((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-635 *3)) (-4 *3 (-781)))) + ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-762 *3)) (-4 *3 (-781)))) + ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-828 *3)) (-4 *3 (-781)))) + ((*1 *2 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1157)) (-5 *2 (-714)))) + ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-1155 *3)) (-4 *3 (-1157)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-942)) (-4 *2 (-989))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1157)) (-4 *2 (-942)) (-4 *2 (-989))))) +(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-781)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-876 *3)) (-14 *3 (-659 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1008)))) + (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-798 *3)) (-14 *3 (-599 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-929)))) ((*1 *2 *1) - (-12 (-4 *4 (-1236)) (-5 *2 (-1196)) (-5 *1 (-1077 *3 *4)) - (-4 *3 (-1113 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1111 *3)) (-4 *3 (-1236)))) + (-12 (-4 *4 (-1157)) (-5 *2 (-1117)) (-5 *1 (-998 *3 *4)) + (-4 *3 (-1034 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1032 *3)) (-4 *3 (-1157)))) ((*1 *2 *1) - (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812)) (-5 *2 (-1196)))) - ((*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1283 *3)) (-14 *3 *2)))) + (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-1117)))) + ((*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1204 *3)) (-14 *3 *2)))) (((*1 *2 *3) - (-12 (-5 *3 (-419 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-568)) (-4 *4 (-1068)) - (-4 *2 (-1279 *4)) (-5 *1 (-1281 *4 *5 *6 *2)) (-4 *6 (-676 *5))))) + (-12 (-5 *3 (-361 *5)) (-4 *5 (-1183 *4)) (-4 *4 (-510)) (-4 *4 (-989)) + (-4 *2 (-1200 *4)) (-5 *1 (-1202 *4 *5 *6 *2)) (-4 *6 (-616 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1068)) (-4 *5 (-1262 *4)) (-5 *2 (-1 *6 (-659 *6))) - (-5 *1 (-1281 *4 *5 *3 *6)) (-4 *3 (-676 *5)) (-4 *6 (-1279 *4))))) + (-12 (-4 *4 (-989)) (-4 *5 (-1183 *4)) (-5 *2 (-1 *6 (-599 *6))) + (-5 *1 (-1202 *4 *5 *3 *6)) (-4 *3 (-616 *5)) (-4 *6 (-1200 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-789)) (-4 *5 (-1068)) (-4 *2 (-1262 *5)) - (-5 *1 (-1281 *5 *2 *6 *3)) (-4 *6 (-676 *2)) (-4 *3 (-1279 *5))))) + (-12 (-5 *4 (-714)) (-4 *5 (-989)) (-4 *2 (-1183 *5)) + (-5 *1 (-1202 *5 *2 *6 *3)) (-4 *6 (-616 *2)) (-4 *3 (-1200 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1068)) (-4 *3 (-1262 *4)) (-4 *2 (-1279 *4)) - (-5 *1 (-1281 *4 *3 *5 *2)) (-4 *5 (-676 *3))))) + (-12 (-4 *4 (-989)) (-4 *3 (-1183 *4)) (-4 *2 (-1200 *4)) + (-5 *1 (-1202 *4 *3 *5 *2)) (-4 *5 (-616 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *5)) (-5 *4 (-659 (-1 *6 (-659 *6)))) - (-4 *5 (-38 (-419 (-557)))) (-4 *6 (-1279 *5)) (-5 *2 (-659 *6)) - (-5 *1 (-1280 *5 *6))))) + (-12 (-5 *3 (-599 *5)) (-5 *4 (-599 (-1 *6 (-599 *6)))) + (-4 *5 (-38 (-361 (-499)))) (-4 *6 (-1200 *5)) (-5 *2 (-599 *6)) + (-5 *1 (-1201 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-659 *2))) (-5 *4 (-659 *5)) (-4 *5 (-38 (-419 (-557)))) - (-4 *2 (-1279 *5)) (-5 *1 (-1280 *5 *2))))) + (-12 (-5 *3 (-1 *2 (-599 *2))) (-5 *4 (-599 *5)) (-4 *5 (-38 (-361 (-499)))) + (-4 *2 (-1200 *5)) (-5 *1 (-1201 *5 *2))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1279 *4)) (-5 *1 (-1280 *4 *2)) - (-4 *4 (-38 (-419 (-557))))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-1201 *4 *2)) + (-4 *4 (-38 (-361 (-499))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1279 *4)) (-5 *1 (-1280 *4 *2)) - (-4 *4 (-38 (-419 (-557))))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-1201 *4 *2)) + (-4 *4 (-38 (-361 (-499))))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1280 *3 *2)) (-4 *2 (-1279 *3))))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1201 *3 *2)) (-4 *2 (-1200 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-659 *5))) (-4 *5 (-1279 *4)) (-4 *4 (-38 (-419 (-557)))) - (-5 *2 (-1 (-1174 *4) (-659 (-1174 *4)))) (-5 *1 (-1280 *4 *5))))) + (-12 (-5 *3 (-1 *5 (-599 *5))) (-4 *5 (-1200 *4)) (-4 *4 (-38 (-361 (-499)))) + (-5 *2 (-1 (-1095 *4) (-599 (-1095 *4)))) (-5 *1 (-1201 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1279 *4)) (-4 *4 (-38 (-419 (-557)))) - (-5 *2 (-1 (-1174 *4) (-1174 *4) (-1174 *4))) (-5 *1 (-1280 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-38 (-361 (-499)))) + (-5 *2 (-1 (-1095 *4) (-1095 *4) (-1095 *4))) (-5 *1 (-1201 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1279 *4)) (-4 *4 (-38 (-419 (-557)))) - (-5 *2 (-1 (-1174 *4) (-1174 *4))) (-5 *1 (-1280 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-38 (-361 (-499)))) + (-5 *2 (-1 (-1095 *4) (-1095 *4))) (-5 *1 (-1201 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) - (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-433 *4))))) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) + (-5 *2 (-51)) (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-27) (-1143) (-375 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *4))))) + (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-270 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-419 (-557))) (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) - (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5))))) + (-12 (-5 *4 (-361 (-499))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) + (-5 *2 (-51)) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5))) - (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-328 *5 *3)))) + (-12 (-5 *4 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))) + (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-270 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-305 *3)) (-5 *5 (-419 (-557))) - (-4 *3 (-13 (-27) (-1222) (-433 *6))) - (-4 *6 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-328 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-557))) (-5 *4 (-305 *6)) - (-4 *6 (-13 (-27) (-1222) (-433 *5))) - (-4 *5 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-471 *5 *6)))) + (-12 (-5 *4 (-247 *3)) (-5 *5 (-361 (-499))) + (-4 *3 (-13 (-27) (-1143) (-375 *6))) + (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-270 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-499))) (-5 *4 (-247 *6)) + (-4 *6 (-13 (-27) (-1143) (-375 *5))) + (-4 *5 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-413 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1196)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *6))) - (-4 *6 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-471 *6 *3)))) + (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) + (-4 *6 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-413 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-557))) (-5 *4 (-305 *7)) (-5 *5 (-1253 (-557))) - (-4 *7 (-13 (-27) (-1222) (-433 *6))) - (-4 *6 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-471 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-499))) (-5 *4 (-247 *7)) (-5 *5 (-1174 (-499))) + (-4 *7 (-13 (-27) (-1143) (-375 *6))) + (-4 *6 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-413 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1196)) (-5 *5 (-305 *3)) (-5 *6 (-1253 (-557))) - (-4 *3 (-13 (-27) (-1222) (-433 *7))) - (-4 *7 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-471 *7 *3)))) + (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-5 *6 (-1174 (-499))) + (-4 *3 (-13 (-27) (-1143) (-375 *7))) + (-4 *7 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-413 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-419 (-557)))) (-5 *4 (-305 *8)) - (-5 *5 (-1253 (-419 (-557)))) (-5 *6 (-419 (-557))) - (-4 *8 (-13 (-27) (-1222) (-433 *7))) - (-4 *7 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-471 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-361 (-499)))) (-5 *4 (-247 *8)) + (-5 *5 (-1174 (-361 (-499)))) (-5 *6 (-361 (-499))) + (-4 *8 (-13 (-27) (-1143) (-375 *7))) + (-4 *7 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-413 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1196)) (-5 *5 (-305 *3)) (-5 *6 (-1253 (-419 (-557)))) - (-5 *7 (-419 (-557))) (-4 *3 (-13 (-27) (-1222) (-433 *8))) - (-4 *8 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-471 *8 *3)))) + (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-5 *6 (-1174 (-361 (-499)))) + (-5 *7 (-361 (-499))) (-4 *3 (-13 (-27) (-1143) (-375 *8))) + (-4 *8 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-413 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1174 (-2 (|:| |k| (-557)) (|:| |c| *3)))) (-4 *3 (-1068)) - (-5 *1 (-605 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-606 *3)))) + (-12 (-5 *2 (-1095 (-2 (|:| |k| (-499)) (|:| |c| *3)))) (-4 *3 (-989)) + (-5 *1 (-545 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-546 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1174 (-2 (|:| |k| (-557)) (|:| |c| *3)))) (-4 *3 (-1068)) - (-4 *1 (-1248 *3)))) + (-12 (-5 *2 (-1095 (-2 (|:| |k| (-499)) (|:| |c| *3)))) (-4 *3 (-989)) + (-4 *1 (-1169 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-789)) (-5 *3 (-1174 (-2 (|:| |k| (-419 (-557))) (|:| |c| *4)))) - (-4 *4 (-1068)) (-4 *1 (-1269 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-4 *1 (-1279 *3)))) + (-12 (-5 *2 (-714)) (-5 *3 (-1095 (-2 (|:| |k| (-361 (-499))) (|:| |c| *4)))) + (-4 *4 (-989)) (-4 *1 (-1190 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-4 *1 (-1200 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1174 (-2 (|:| |k| (-789)) (|:| |c| *3)))) (-4 *3 (-1068)) - (-4 *1 (-1279 *3))))) + (-12 (-5 *2 (-1095 (-2 (|:| |k| (-714)) (|:| |c| *3)))) (-4 *3 (-989)) + (-4 *1 (-1200 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812)) (-5 *2 (-659 *3)))) + (-12 (-4 *1 (-280 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-599 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1120)) (-5 *2 (-659 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1068)))) + (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)) (-5 *2 (-599 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-546 *3)) (-4 *3 (-989)))) ((*1 *2 *1) - (-12 (-5 *2 (-659 *3)) (-5 *1 (-753 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-744)))) - ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-659 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1279 *3)) (-4 *3 (-1068)) (-5 *2 (-1174 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1068))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-557))) (-4 *3 (-1068)) (-5 *1 (-605 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-557))) (-4 *1 (-1248 *3)) (-4 *3 (-1068)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-557))) (-4 *1 (-1279 *3)) (-4 *3 (-1068))))) + (-12 (-5 *2 (-599 *3)) (-5 *1 (-693 *3 *4)) (-4 *3 (-989)) (-4 *4 (-684)))) + ((*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-989)) (-5 *2 (-599 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-989)) (-5 *2 (-1095 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-989))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-499))) (-4 *3 (-989)) (-5 *1 (-545 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-499))) (-4 *1 (-1169 *3)) (-4 *3 (-989)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-499))) (-4 *1 (-1200 *3)) (-4 *3 (-989))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-789)) (-4 *1 (-758 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-859)) - (-5 *2 (-963 *4)))) + (-12 (-5 *3 (-714)) (-4 *1 (-698 *4 *5)) (-4 *4 (-989)) (-4 *5 (-781)) + (-5 *2 (-884 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-789)) (-4 *1 (-758 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-859)) - (-5 *2 (-963 *4)))) + (-12 (-5 *3 (-714)) (-4 *1 (-698 *4 *5)) (-4 *4 (-989)) (-4 *5 (-781)) + (-5 *2 (-884 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-789)) (-4 *1 (-1279 *4)) (-4 *4 (-1068)) (-5 *2 (-963 *4)))) + (-12 (-5 *3 (-714)) (-4 *1 (-1200 *4)) (-4 *4 (-989)) (-5 *2 (-884 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-789)) (-4 *1 (-1279 *4)) (-4 *4 (-1068)) (-5 *2 (-963 *4))))) + (-12 (-5 *3 (-714)) (-4 *1 (-1200 *4)) (-4 *4 (-989)) (-5 *2 (-884 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-419 (-557))) (-4 *4 (-1057 (-557))) (-4 *4 (-568)) - (-5 *1 (-32 *4 *2)) (-4 *2 (-433 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-136))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-229))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-250)) (-5 *2 (-557)))) + (-12 (-5 *3 (-361 (-499))) (-4 *4 (-978 (-499))) (-4 *4 (-510)) + (-5 *1 (-32 *4 *2)) (-4 *2 (-375 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-107))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-179))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-200)) (-5 *2 (-499)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 (-557))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1279 *4)) - (-5 *1 (-289 *4 *5 *2)) (-4 *2 (-1250 *4 *5)))) + (-12 (-5 *3 (-361 (-499))) (-4 *4 (-318)) (-4 *4 (-38 *3)) (-4 *5 (-1200 *4)) + (-5 *1 (-231 *4 *5 *2)) (-4 *2 (-1171 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 (-557))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1248 *4)) - (-5 *1 (-290 *4 *5 *2 *6)) (-4 *2 (-1271 *4 *5)) (-4 *6 (-1002 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-296))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-557)) (-5 *1 (-374 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *1) (-5 *1 (-391))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-789)) (-4 *1 (-399 *2)) (-4 *2 (-1120)))) + (-12 (-5 *3 (-361 (-499))) (-4 *4 (-318)) (-4 *4 (-38 *3)) (-4 *5 (-1169 *4)) + (-5 *1 (-232 *4 *5 *2 *6)) (-4 *2 (-1192 *4 *5)) (-4 *6 (-923 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-238))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-316 *2)) (-4 *2 (-1041)))) + ((*1 *1 *1 *1) (-5 *1 (-333))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-341 *2)) (-4 *2 (-1041)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-789)) (-4 *1 (-433 *3)) (-4 *3 (-1120)) (-4 *3 (-1131)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-557)))) + (-12 (-5 *2 (-714)) (-4 *1 (-375 *3)) (-4 *3 (-1041)) (-4 *3 (-1052)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-427)) (-5 *2 (-499)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-789)) (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) + (-12 (-5 *2 (-714)) (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1286 *4)) (-5 *3 (-557)) (-4 *4 (-363)) (-5 *1 (-539 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-546)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-546)))) + (-12 (-5 *2 (-1207 *4)) (-5 *3 (-499)) (-4 *4 (-305)) (-5 *1 (-481 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-488)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-488)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-789)) (-4 *4 (-1120)) (-5 *1 (-700 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-714)) (-4 *4 (-1041)) (-5 *1 (-640 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-557)) (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-4 *3 (-376)))) + (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)) (-4 *3 (-318)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-789)) (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)))) + (-12 (-5 *2 (-714)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-707 *4)) (-5 *3 (-789)) (-4 *4 (-1068)) (-5 *1 (-708 *4)))) + (-12 (-5 *2 (-647 *4)) (-5 *3 (-714)) (-4 *4 (-989)) (-5 *1 (-648 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-557)) (-4 *3 (-1068)) (-5 *1 (-732 *3 *4)) (-4 *4 (-666 *3)))) + (-12 (-5 *2 (-499)) (-4 *3 (-989)) (-5 *1 (-672 *3 *4)) (-4 *4 (-606 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-557)) (-4 *4 (-1068)) (-5 *1 (-732 *4 *5)) - (-4 *5 (-666 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-936)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-789)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-789)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-845 *3)) (-4 *3 (-1068)))) + (-12 (-5 *2 (-86)) (-5 *3 (-499)) (-4 *4 (-989)) (-5 *1 (-672 *4 *5)) + (-4 *5 (-606 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-678)) (-5 *2 (-857)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-680)) (-5 *2 (-714)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-684)) (-5 *2 (-714)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-768 *3)) (-4 *3 (-989)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-557)) (-5 *1 (-845 *4)) (-4 *4 (-1068)))) - ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-419 (-557))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-936)))) + (-12 (-5 *2 (-86)) (-5 *3 (-499)) (-5 *1 (-768 *4)) (-4 *4 (-989)))) + ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-942)) (-5 *2 (-361 (-499))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-857)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-557)) (-4 *1 (-1142 *3 *4 *5 *6)) (-4 *4 (-1068)) - (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)) (-4 *4 (-376)))) + (-12 (-5 *2 (-499)) (-4 *1 (-1063 *3 *4 *5 *6)) (-4 *4 (-989)) + (-4 *5 (-195 *3 *4)) (-4 *6 (-195 *3 *4)) (-4 *4 (-318)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1068)) (-4 *2 (-376))))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1111 (-853 *3))) (-4 *3 (-13 (-1222) (-977) (-29 *5))) - (-4 *5 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) + (-12 (-5 *4 (-1032 (-775 *3))) (-4 *3 (-13 (-1143) (-898) (-29 *5))) + (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 - (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-659 (-853 *3))) + (-3 (|:| |f1| (-775 *3)) (|:| |f2| (-599 (-775 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) - (-5 *1 (-223 *5 *3)))) + (-5 *1 (-173 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1111 (-853 *3))) (-5 *5 (-1178)) - (-4 *3 (-13 (-1222) (-977) (-29 *6))) - (-4 *6 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) + (-12 (-5 *4 (-1032 (-775 *3))) (-5 *5 (-1099)) + (-4 *3 (-13 (-1143) (-898) (-29 *6))) + (-4 *6 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 - (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-659 (-853 *3))) (|:| |fail| #1#) + (-3 (|:| |f1| (-775 *3)) (|:| |f2| (-599 (-775 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) - (-5 *1 (-223 *6 *3)))) + (-5 *1 (-173 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-1111 (-853 (-326 *5)))) - (-4 *5 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) + (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1032 (-775 (-268 *5)))) + (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 - (-3 (|:| |f1| (-853 (-326 *5))) (|:| |f2| (-659 (-853 (-326 *5)))) + (-3 (|:| |f1| (-775 (-268 *5))) (|:| |f2| (-599 (-775 (-268 *5)))) (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole"))) - (-5 *1 (-224 *5)))) + (-5 *1 (-174 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-419 (-963 *6))) (-5 *4 (-1111 (-853 (-326 *6)))) - (-5 *5 (-1178)) (-4 *6 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) + (-12 (-5 *3 (-361 (-884 *6))) (-5 *4 (-1032 (-775 (-268 *6)))) + (-5 *5 (-1099)) (-4 *6 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 - (-3 (|:| |f1| (-853 (-326 *6))) (|:| |f2| (-659 (-853 (-326 *6)))) + (-3 (|:| |f1| (-775 (-268 *6))) (|:| |f2| (-599 (-775 (-268 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-224 *6)))) + (-5 *1 (-174 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1111 (-853 (-419 (-963 *5))))) (-5 *3 (-419 (-963 *5))) - (-4 *5 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) + (-12 (-5 *4 (-1032 (-775 (-361 (-884 *5))))) (-5 *3 (-361 (-884 *5))) + (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 - (-3 (|:| |f1| (-853 (-326 *5))) (|:| |f2| (-659 (-853 (-326 *5)))) + (-3 (|:| |f1| (-775 (-268 *5))) (|:| |f2| (-599 (-775 (-268 *5)))) (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-224 *5)))) + (-5 *1 (-174 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1111 (-853 (-419 (-963 *6))))) (-5 *5 (-1178)) - (-5 *3 (-419 (-963 *6))) - (-4 *6 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) + (-12 (-5 *4 (-1032 (-775 (-361 (-884 *6))))) (-5 *5 (-1099)) + (-5 *3 (-361 (-884 *6))) + (-4 *6 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 - (-3 (|:| |f1| (-853 (-326 *6))) (|:| |f2| (-659 (-853 (-326 *6)))) + (-3 (|:| |f1| (-775 (-268 *6))) (|:| |f2| (-599 (-775 (-268 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-224 *6)))) + (-5 *1 (-174 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) - (-5 *2 (-3 *3 (-659 *3))) (-5 *1 (-442 *5 *3)) - (-4 *3 (-13 (-1222) (-977) (-29 *5))))) + (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) + (-5 *2 (-3 *3 (-599 *3))) (-5 *1 (-384 *5 *3)) + (-4 *3 (-13 (-1143) (-898) (-29 *5))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-486 *3 *4 *5)) - (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1108 (-853 (-391)))) (-5 *5 (-391)) - (-5 *6 (-1082)) (-5 *2 (-1054)) (-5 *1 (-576)))) - ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1054)) (-5 *1 (-576)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1108 (-853 (-391)))) (-5 *5 (-391)) - (-5 *2 (-1054)) (-5 *1 (-576)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1108 (-853 (-391)))) (-5 *5 (-391)) - (-5 *2 (-1054)) (-5 *1 (-576)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1108 (-853 (-391)))) (-5 *2 (-1054)) - (-5 *1 (-576)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-659 (-1108 (-853 (-391))))) - (-5 *2 (-1054)) (-5 *1 (-576)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-659 (-1108 (-853 (-391))))) - (-5 *5 (-391)) (-5 *2 (-1054)) (-5 *1 (-576)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-659 (-1108 (-853 (-391))))) - (-5 *5 (-391)) (-5 *2 (-1054)) (-5 *1 (-576)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-659 (-1108 (-853 (-391))))) - (-5 *5 (-391)) (-5 *6 (-1082)) (-5 *2 (-1054)) (-5 *1 (-576)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1111 (-853 (-391)))) - (-5 *5 (-1178)) (-5 *2 (-1054)) (-5 *1 (-576)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1111 (-853 (-391)))) - (-5 *5 (-1196)) (-5 *2 (-1054)) (-5 *1 (-576)))) + (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-428 *3 *4 *5)) + (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-149) (-1057 (-557)))) (-4 *5 (-1262 *4)) - (-5 *2 (-594 (-419 *5))) (-5 *1 (-579 *4 *5)) (-5 *3 (-419 *5)))) + (-12 (-4 *4 (-13 (-318) (-120) (-978 (-499)))) (-4 *5 (-1183 *4)) + (-5 *2 (-534 (-361 *5))) (-5 *1 (-519 *4 *5)) (-5 *3 (-361 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-1196)) (-4 *5 (-149)) - (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) - (-5 *2 (-3 (-326 *5) (-659 (-326 *5)))) (-5 *1 (-600 *5)))) + (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-120)) + (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) + (-5 *2 (-3 (-268 *5) (-599 (-268 *5)))) (-5 *1 (-540 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068)))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-758 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-859)) - (-4 *3 (-38 (-419 (-557)))))) + (-12 (-4 *1 (-698 *3 *2)) (-4 *3 (-989)) (-4 *2 (-781)) + (-4 *3 (-38 (-361 (-499)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1196)) (-5 *1 (-963 *3)) (-4 *3 (-38 (-419 (-557)))) - (-4 *3 (-1068)))) + (-12 (-5 *2 (-1117)) (-5 *1 (-884 *3)) (-4 *3 (-38 (-361 (-499)))) + (-4 *3 (-989)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068)) (-4 *2 (-859)) - (-5 *1 (-1145 *3 *2 *4)) (-4 *4 (-967 *3 (-542 *2) *2)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-4 *2 (-781)) + (-5 *1 (-1066 *3 *2 *4)) (-4 *4 (-888 *3 (-484 *2) *2)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068)) - (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) + (-5 *1 (-1101 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1187 *3 *4 *5)) - (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068)) (-14 *5 *3))) + (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1108 *3 *4 *5)) + (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1193 *3 *4 *5)) - (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068)) (-14 *5 *3))) + (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1114 *3 *4 *5)) + (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1194 *3 *4 *5)) - (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068)) (-14 *5 *3))) + (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1115 *3 *4 *5)) + (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *1 (-1229 *3)) (-4 *3 (-38 (-419 (-557)))) - (-4 *3 (-1068)))) + (-12 (-5 *2 (-1117)) (-5 *1 (-1150 *3)) (-4 *3 (-38 (-361 (-499)))) + (-4 *3 (-989)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1246 *3 *4 *5)) - (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068)) (-14 *5 *3))) + (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1167 *3 *4 *5)) + (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-3955 - (-12 (-5 *2 (-1196)) (-4 *1 (-1248 *3)) (-4 *3 (-1068)) - (-12 (-4 *3 (-29 (-557))) (-4 *3 (-977)) (-4 *3 (-1222)) - (-4 *3 (-38 (-419 (-557)))))) - (-12 (-5 *2 (-1196)) (-4 *1 (-1248 *3)) (-4 *3 (-1068)) - (-12 (|has| *3 (-15 -3482 ((-659 *2) *3))) - (|has| *3 (-15 -4240 (*3 *3 *2))) (-4 *3 (-38 (-419 (-557)))))))) + (-3677 + (-12 (-5 *2 (-1117)) (-4 *1 (-1169 *3)) (-4 *3 (-989)) + (-12 (-4 *3 (-29 (-499))) (-4 *3 (-898)) (-4 *3 (-1143)) + (-4 *3 (-38 (-361 (-499)))))) + (-12 (-5 *2 (-1117)) (-4 *1 (-1169 *3)) (-4 *3 (-989)) + (-12 (|has| *3 (-15 -3204 ((-599 *2) *3))) + (|has| *3 (-15 -3962 (*3 *3 *2))) (-4 *3 (-38 (-361 (-499)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-557)))))) + (-12 (-4 *1 (-1169 *2)) (-4 *2 (-989)) (-4 *2 (-38 (-361 (-499)))))) ((*1 *1 *1) - (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-557)))))) + (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-38 (-361 (-499)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1267 *3 *4 *5)) - (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068)) (-14 *5 *3))) + (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1188 *3 *4 *5)) + (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-3955 - (-12 (-5 *2 (-1196)) (-4 *1 (-1269 *3)) (-4 *3 (-1068)) - (-12 (-4 *3 (-29 (-557))) (-4 *3 (-977)) (-4 *3 (-1222)) - (-4 *3 (-38 (-419 (-557)))))) - (-12 (-5 *2 (-1196)) (-4 *1 (-1269 *3)) (-4 *3 (-1068)) - (-12 (|has| *3 (-15 -3482 ((-659 *2) *3))) - (|has| *3 (-15 -4240 (*3 *3 *2))) (-4 *3 (-38 (-419 (-557)))))))) + (-3677 + (-12 (-5 *2 (-1117)) (-4 *1 (-1190 *3)) (-4 *3 (-989)) + (-12 (-4 *3 (-29 (-499))) (-4 *3 (-898)) (-4 *3 (-1143)) + (-4 *3 (-38 (-361 (-499)))))) + (-12 (-5 *2 (-1117)) (-4 *1 (-1190 *3)) (-4 *3 (-989)) + (-12 (|has| *3 (-15 -3204 ((-599 *2) *3))) + (|has| *3 (-15 -3962 (*3 *3 *2))) (-4 *3 (-38 (-361 (-499)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-557)))))) + (-12 (-4 *1 (-1190 *2)) (-4 *2 (-989)) (-4 *2 (-38 (-361 (-499)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1276 *3 *4 *5)) - (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068)) (-14 *5 *3))) + (-12 (-5 *2 (-1204 *4)) (-14 *4 (-1117)) (-5 *1 (-1197 *3 *4 *5)) + (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-3955 - (-12 (-5 *2 (-1196)) (-4 *1 (-1279 *3)) (-4 *3 (-1068)) - (-12 (-4 *3 (-29 (-557))) (-4 *3 (-977)) (-4 *3 (-1222)) - (-4 *3 (-38 (-419 (-557)))))) - (-12 (-5 *2 (-1196)) (-4 *1 (-1279 *3)) (-4 *3 (-1068)) - (-12 (|has| *3 (-15 -3482 ((-659 *2) *3))) - (|has| *3 (-15 -4240 (*3 *3 *2))) (-4 *3 (-38 (-419 (-557)))))))) + (-3677 + (-12 (-5 *2 (-1117)) (-4 *1 (-1200 *3)) (-4 *3 (-989)) + (-12 (-4 *3 (-29 (-499))) (-4 *3 (-898)) (-4 *3 (-1143)) + (-4 *3 (-38 (-361 (-499)))))) + (-12 (-5 *2 (-1117)) (-4 *1 (-1200 *3)) (-4 *3 (-989)) + (-12 (|has| *3 (-15 -3204 ((-599 *2) *3))) + (|has| *3 (-15 -3962 (*3 *3 *2))) (-4 *3 (-38 (-361 (-499)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-557))))))) + (-12 (-4 *1 (-1200 *2)) (-4 *2 (-989)) (-4 *2 (-38 (-361 (-499))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-789)) (-5 *2 (-1255 *5 *4)) (-5 *1 (-1194 *4 *5 *6)) - (-4 *4 (-1068)) (-14 *5 (-1196)) (-14 *6 *4))) + (-12 (-5 *3 (-714)) (-5 *2 (-1176 *5 *4)) (-5 *1 (-1115 *4 *5 *6)) + (-4 *4 (-989)) (-14 *5 (-1117)) (-14 *6 *4))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-789)) (-5 *2 (-1255 *5 *4)) (-5 *1 (-1276 *4 *5 *6)) - (-4 *4 (-1068)) (-14 *5 (-1196)) (-14 *6 *4)))) -(((*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) + (-12 (-5 *3 (-714)) (-5 *2 (-1176 *5 *4)) (-5 *1 (-1197 *4 *5 *6)) + (-4 *4 (-989)) (-14 *5 (-1117)) (-14 *6 *4)))) +(((*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) + (-12 (-5 *1 (-1197 *2 *3 *4)) (-4 *2 (-989)) (-14 *3 (-1117)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) + (-12 (-5 *1 (-1197 *2 *3 *4)) (-4 *2 (-989)) (-14 *3 (-1117)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) + (-12 (-5 *1 (-1197 *2 *3 *4)) (-4 *2 (-989)) (-14 *3 (-1117)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) (-14 *4 *2)))) + (-12 (-5 *1 (-1197 *2 *3 *4)) (-4 *2 (-989)) (-14 *3 (-1117)) (-14 *4 *2)))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1174 *4)) (-5 *3 (-557)) (-4 *4 (-1068)) (-5 *1 (-1180 *4)))) + (-12 (-5 *2 (-1095 *4)) (-5 *3 (-499)) (-4 *4 (-989)) (-5 *1 (-1101 *4)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-557)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1196)) + (-12 (-5 *2 (-499)) (-5 *1 (-1197 *3 *4 *5)) (-4 *3 (-989)) (-14 *4 (-1117)) (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) (-14 *4 *2)))) + (-12 (-5 *1 (-1197 *2 *3 *4)) (-4 *2 (-989)) (-14 *3 (-1117)) (-14 *4 *2)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1174 *4)) (-5 *3 (-557)) (-4 *4 (-1068)) (-5 *1 (-1180 *4)))) + (-12 (-5 *2 (-1095 *4)) (-5 *3 (-499)) (-4 *4 (-989)) (-5 *1 (-1101 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-557)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1196)) + (-12 (-5 *2 (-499)) (-5 *1 (-1197 *3 *4 *5)) (-4 *3 (-989)) (-14 *4 (-1117)) (-14 *5 *3)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1174 *4)) (-5 *3 (-557)) (-4 *4 (-1068)) (-5 *1 (-1180 *4)))) + (-12 (-5 *2 (-1095 *4)) (-5 *3 (-499)) (-4 *4 (-989)) (-5 *1 (-1101 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-557)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1196)) + (-12 (-5 *2 (-499)) (-5 *1 (-1197 *3 *4 *5)) (-4 *3 (-989)) (-14 *4 (-1117)) (-14 *5 *3)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1054)) (-5 *1 (-315)))) - ((*1 *2 *3) (-12 (-5 *3 (-659 (-1054))) (-5 *2 (-1054)) (-5 *1 (-315)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 *1)) (-4 *1 (-669 *3)) (-4 *3 (-1236)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1 *1) (-5 *1 (-1082))) - ((*1 *2 *3) - (-12 (-5 *3 (-1174 (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1175 *4)) - (-4 *4 (-1236)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) - (-12 (-4 *1 (-614 *3 *2)) (-4 *3 (-1120)) (-4 *3 (-859)) (-4 *2 (-1236)))) - ((*1 *2 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-859)))) - ((*1 *2 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-859)))) - ((*1 *2 *1) (-12 (-4 *2 (-1236)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1236)))) - ((*1 *2 *1) (-12 (-5 *2 (-690 *3)) (-5 *1 (-906 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-813)) - (-4 *5 (-859)) (-4 *2 (-1084 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-1275 *3)) (-4 *3 (-1236)))) - ((*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1236))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-975)) (-5 *1 (-257)))) + ((*1 *2 *3) (-12 (-5 *3 (-599 (-975))) (-5 *2 (-975)) (-5 *1 (-257)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1157)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1157)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1157)))) + ((*1 *1 *1 *1) (-5 *1 (-1003))) + ((*1 *2 *3) + (-12 (-5 *3 (-1095 (-1095 *4))) (-5 *2 (-1095 *4)) (-5 *1 (-1096 *4)) + (-4 *4 (-1157)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) + (-12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1041)) (-4 *3 (-781)) (-4 *2 (-1157)))) + ((*1 *2 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) + ((*1 *2 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-781)))) + ((*1 *2 *1) (-12 (-4 *2 (-1157)) (-5 *1 (-807 *2 *3)) (-4 *3 (-1157)))) + ((*1 *2 *1) (-12 (-5 *2 (-630 *3)) (-5 *1 (-828 *3)) (-4 *3 (-781)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) + (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1196 *3)) (-4 *3 (-1157)))) + ((*1 *2 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-557)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236)) (-4 *4 (-385 *2)) - (-4 *5 (-385 *2)))) + (-12 (-5 *3 (-499)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1157)) (-4 *4 (-327 *2)) + (-4 *5 (-327 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-557)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) - (-4 *5 (-385 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-121 *3)) (-4 *3 (-1236)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-121 *3)) (-4 *3 (-1236)))) + (-12 (-5 *3 (-499)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-327 *2)) + (-4 *5 (-327 *2)) (-4 *2 (-1157)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1157)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1157)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-659 (-557))) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 (-557)) (-14 *5 (-789)))) + (-12 (-5 *3 (-599 (-499))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) + (-14 *4 (-499)) (-14 *5 (-714)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-557)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-789)))) + (-12 (-5 *3 (-499)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-714)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-557)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-789)))) + (-12 (-5 *3 (-499)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-714)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-557)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-789)))) + (-12 (-5 *3 (-499)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-714)))) ((*1 *2 *1) - (-12 (-4 *2 (-175)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-557)) (-14 *4 (-789)))) + (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-499)) (-14 *4 (-714)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-252 (-1178))) (-5 *1 (-217 *4)) + (-12 (-5 *3 (-1117)) (-5 *2 (-202 (-1099))) (-5 *1 (-167 *4)) (-4 *4 - (-13 (-859) - (-10 -8 (-15 -4228 ((-1178) $ *3)) (-15 -4045 ((-1292) $)) - (-15 -2173 ((-1292) $))))))) + (-13 (-781) + (-10 -8 (-15 -3950 ((-1099) $ *3)) (-15 -3767 ((-1213) $)) + (-15 -2066 ((-1213) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1008)) (-5 *1 (-217 *3)) + (-12 (-5 *2 (-929)) (-5 *1 (-167 *3)) (-4 *3 - (-13 (-859) - (-10 -8 (-15 -4228 ((-1178) $ (-1196))) (-15 -4045 ((-1292) $)) - (-15 -2173 ((-1292) $))))))) + (-13 (-781) + (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 ((-1213) $)) + (-15 -2066 ((-1213) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-789)) (-5 *1 (-252 *4)) (-4 *4 (-859)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-252 *3)) (-4 *3 (-859)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-252 *3)) (-4 *3 (-859)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1236)) (-4 *2 (-1236)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1236)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-659 *1)) (-4 *1 (-310)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) + (-12 (-5 *3 "count") (-5 *2 (-714)) (-5 *1 (-202 *4)) (-4 *4 (-781)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-202 *3)) (-4 *3 (-781)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-202 *3)) (-4 *3 (-781)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-240 *3 *2)) (-4 *3 (-1157)) (-4 *2 (-1157)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-242 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1157)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-599 *1)) (-4 *1 (-252)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1241)) (-4 *3 (-1262 *2)) - (-4 *4 (-1262 (-419 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1178)) (-5 *1 (-514)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-789)) (-5 *1 (-693 *2)) (-4 *2 (-1120)))) + (-12 (-4 *1 (-297 *2 *3 *4)) (-4 *2 (-1162)) (-4 *3 (-1183 *2)) + (-4 *4 (-1183 (-361 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1099)) (-5 *1 (-456)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-714)) (-5 *1 (-633 *2)) (-4 *2 (-1041)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-659 (-557))) (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875)))) + (-12 (-5 *2 (-599 (-499))) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) + (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-659 (-903 *4))) (-5 *1 (-903 *4)) - (-4 *4 (-1120)))) + (-12 (-5 *2 (-86)) (-5 *3 (-599 (-825 *4))) (-5 *1 (-825 *4)) + (-4 *4 (-1041)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-789)) (-5 *2 (-919 *4)) (-5 *1 (-922 *4)) (-4 *4 (-1120)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1029 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1236)))) + (-12 (-5 *3 (-714)) (-5 *2 (-840 *4)) (-5 *1 (-843 *4)) (-4 *4 (-1041)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-950 *2)) (-4 *2 (-1157)))) + ((*1 *2 *1) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1157)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-557)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) (-4 *2 (-1068)) - (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)))) + (-12 (-5 *3 (-499)) (-4 *1 (-993 *4 *5 *2 *6 *7)) (-4 *2 (-989)) + (-4 *6 (-195 *5 *2)) (-4 *7 (-195 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-557)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) - (-4 *7 (-245 *4 *2)) (-4 *2 (-1068)))) + (-12 (-5 *3 (-499)) (-4 *1 (-993 *4 *5 *2 *6 *7)) (-4 *6 (-195 *5 *2)) + (-4 *7 (-195 *4 *2)) (-4 *2 (-989)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-936)) (-4 *4 (-1120)) - (-4 *5 (-13 (-1068) (-899 *4) (-629 (-903 *4)))) (-5 *1 (-1094 *4 *5 *2)) - (-4 *2 (-13 (-433 *5) (-899 *4) (-629 (-903 *4)))))) + (-12 (-5 *3 (-857)) (-4 *4 (-1041)) + (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-1015 *4 *5 *2)) + (-4 *2 (-13 (-375 *5) (-821 *4) (-569 (-825 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-936)) (-4 *4 (-1120)) - (-4 *5 (-13 (-1068) (-899 *4) (-629 (-903 *4)))) (-5 *1 (-1096 *4 *5 *2)) - (-4 *2 (-13 (-433 *5) (-899 *4) (-629 (-903 *4)))))) - ((*1 *1 *1 *1) (-4 *1 (-1163))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-1196)))) + (-12 (-5 *3 (-857)) (-4 *4 (-1041)) + (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-1017 *4 *5 *2)) + (-4 *2 (-13 (-375 *5) (-821 *4) (-569 (-825 *4)))))) + ((*1 *1 *1 *1) (-4 *1 (-1084))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-1117)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-419 *1)) (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-376)))) + (-12 (-5 *3 (-361 *1)) (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-419 *1)) (-4 *1 (-1262 *3)) (-4 *3 (-1068)) (-4 *3 (-568)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1275 *3)) (-4 *3 (-1236)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1275 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-859)))) - ((*1 *1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-859)))) - ((*1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-859)))) + (-12 (-5 *2 (-361 *1)) (-4 *1 (-1183 *3)) (-4 *3 (-989)) (-4 *3 (-510)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1196 *3)) (-4 *3 (-1157)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) +(((*1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) + ((*1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-781)))) + ((*1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-781)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1231 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-813)) - (-4 *4 (-859)) (-4 *5 (-1084 *2 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-1275 *3)) (-4 *3 (-1236)))) - ((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1115)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-813)) - (-4 *5 (-859)) (-4 *2 (-1084 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-1275 *3)) (-4 *3 (-1236)))) - ((*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1236)))) + (|partial| -12 (-4 *1 (-1152 *2 *3 *4 *5)) (-4 *2 (-510)) (-4 *3 (-738)) + (-4 *4 (-781)) (-4 *5 (-1005 *2 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1196 *3)) (-4 *3 (-1157)))) + ((*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-201 *2)) (-4 *2 (-1157)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1036)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) + (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1196 *3)) (-4 *3 (-1157)))) + ((*1 *2 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) +(((*1 *1 *1) (-12 (-4 *1 (-201 *2)) (-4 *2 (-1157)))) ((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)))) - ((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *2 (-1236)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1236)))) - ((*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-1236)) (-5 *2 (-789))))) -(((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-251 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-1275 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-1275 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-1275 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-1275 *2)) (-4 *2 (-1236))))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) + ((*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *2 (-1157)) (-5 *1 (-807 *3 *2)) (-4 *3 (-1157)))) + ((*1 *2 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) +(((*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-1157)) (-5 *2 (-714))))) +(((*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-201 *2)) (-4 *2 (-1157)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1157)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1157)))) + ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) +(((*1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-557)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236)) (-4 *4 (-385 *2)) - (-4 *5 (-385 *2)))) + (-12 (-5 *3 (-499)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1157)) (-4 *4 (-327 *2)) + (-4 *5 (-327 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4424)) (-4 *1 (-121 *3)) - (-4 *3 (-1236)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -4146)) (-4 *1 (-92 *3)) (-4 *3 (-1157)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4424)) (-4 *1 (-121 *3)) (-4 *3 (-1236)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -4146)) (-4 *1 (-92 *3)) (-4 *3 (-1157)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4424)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1120)) - (-4 *2 (-1236)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1196)) (-5 *1 (-647)))) + (-12 (|has| *1 (-6 -4146)) (-4 *1 (-242 *3 *2)) (-4 *3 (-1041)) + (-4 *2 (-1157)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1117)) (-5 *1 (-587)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1253 (-557))) (|has| *1 (-6 -4424)) (-4 *1 (-669 *2)) - (-4 *2 (-1236)))) + (-12 (-5 *3 (-1174 (-499))) (|has| *1 (-6 -4146)) (-4 *1 (-609 *2)) + (-4 *2 (-1157)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-659 (-557))) (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + (-12 (-5 *2 (-599 (-499))) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) + (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4424)) (-4 *1 (-1029 *2)) - (-4 *2 (-1236)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -4146)) (-4 *1 (-950 *2)) + (-4 *2 (-1157)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1157)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4424)) (-4 *1 (-1275 *2)) - (-4 *2 (-1236)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) + (-4 *2 (-1157)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4424)) (-4 *1 (-1275 *3)) - (-4 *3 (-1236)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4146)) (-4 *1 (-1196 *3)) + (-4 *3 (-1157)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4424)) (-4 *1 (-1275 *2)) - (-4 *2 (-1236))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-1174 *3)) (-4 *3 (-1236)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-1275 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-1275 *2)) (-4 *2 (-1236))))) + (-12 (-5 *3 "first") (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) + (-4 *2 (-1157))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1095 *3)) (-4 *3 (-1157)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-1196 *2)) (-4 *2 (-1157))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-557)) (|has| *1 (-6 -4424)) (-4 *1 (-1275 *3)) - (-4 *3 (-1236))))) + (-12 (-5 *2 (-499)) (|has| *1 (-6 -4146)) (-4 *1 (-1196 *3)) + (-4 *3 (-1157))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1057 (-557)) (-656 (-557)) (-464))) - (-5 *2 (-853 *4)) (-5 *1 (-325 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1222) (-433 *3))) (-14 *5 (-1196)) (-14 *6 *4))) + (|partial| -12 (-4 *3 (-13 (-978 (-499)) (-596 (-499)) (-406))) + (-5 *2 (-775 *4)) (-5 *1 (-267 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1143) (-375 *3))) (-14 *5 (-1117)) (-14 *6 *4))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1057 (-557)) (-656 (-557)) (-464))) - (-5 *2 (-853 *4)) (-5 *1 (-1273 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1222) (-433 *3))) (-14 *5 (-1196)) (-14 *6 *4)))) + (|partial| -12 (-4 *3 (-13 (-978 (-499)) (-596 (-499)) (-406))) + (-5 *2 (-775 *4)) (-5 *1 (-1194 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1143) (-375 *3))) (-14 *5 (-1117)) (-14 *6 *4)))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1057 (-557)) (-656 (-557)) (-464))) + (|partial| -12 (-4 *3 (-13 (-978 (-499)) (-596 (-499)) (-406))) (-5 *2 (-2 (|:| |%term| - (-2 (|:| |%coef| (-1267 *4 *5 *6)) (|:| |%expon| (-331 *4 *5 *6)) - (|:| |%expTerms| (-659 (-2 (|:| |k| (-419 (-557))) (|:| |c| *4)))))) - (|:| |%type| (-1178)))) - (-5 *1 (-1273 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-433 *3))) - (-14 *5 (-1196)) (-14 *6 *4)))) + (-2 (|:| |%coef| (-1188 *4 *5 *6)) (|:| |%expon| (-273 *4 *5 *6)) + (|:| |%expTerms| (-599 (-2 (|:| |k| (-361 (-499))) (|:| |c| *4)))))) + (|:| |%type| (-1099)))) + (-5 *1 (-1194 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1143) (-375 *3))) + (-14 *5 (-1117)) (-14 *6 *4)))) (((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) - (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-433 *4))))) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) + (-5 *2 (-51)) (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-27) (-1143) (-375 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *4))))) + (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-270 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-419 (-557))) (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) - (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5))))) + (-12 (-5 *4 (-361 (-499))) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) + (-5 *2 (-51)) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5))) - (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-328 *5 *3)))) + (-12 (-5 *4 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))) + (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-270 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-305 *3)) (-5 *5 (-419 (-557))) - (-4 *3 (-13 (-27) (-1222) (-433 *6))) - (-4 *6 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-328 *6 *3)))) + (-12 (-5 *4 (-247 *3)) (-5 *5 (-361 (-499))) + (-4 *3 (-13 (-27) (-1143) (-375 *6))) + (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-270 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-419 (-557)))) (-5 *4 (-305 *8)) - (-5 *5 (-1253 (-419 (-557)))) (-5 *6 (-419 (-557))) - (-4 *8 (-13 (-27) (-1222) (-433 *7))) - (-4 *7 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-471 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-361 (-499)))) (-5 *4 (-247 *8)) + (-5 *5 (-1174 (-361 (-499)))) (-5 *6 (-361 (-499))) + (-4 *8 (-13 (-27) (-1143) (-375 *7))) + (-4 *7 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-413 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1196)) (-5 *5 (-305 *3)) (-5 *6 (-1253 (-419 (-557)))) - (-5 *7 (-419 (-557))) (-4 *3 (-13 (-27) (-1222) (-433 *8))) - (-4 *8 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-471 *8 *3)))) + (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-5 *6 (-1174 (-361 (-499)))) + (-5 *7 (-361 (-499))) (-4 *3 (-13 (-27) (-1143) (-375 *8))) + (-4 *8 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-413 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-419 (-557))) (-4 *4 (-1068)) (-4 *1 (-1271 *4 *3)) - (-4 *3 (-1248 *4))))) + (-12 (-5 *2 (-361 (-499))) (-4 *4 (-989)) (-4 *1 (-1192 *4 *3)) + (-4 *3 (-1169 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1248 *3)) - (-5 *2 (-419 (-557)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1248 *3))))) + (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1169 *3)) + (-5 *2 (-361 (-499)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1192 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1169 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) - (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-433 *4))))) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) + (-5 *2 (-51)) (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-27) (-1143) (-375 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *4))))) + (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-270 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-557)) (-4 *5 (-13 (-464) (-1057 *4) (-656 *4))) (-5 *2 (-51)) - (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5))))) + (-12 (-5 *4 (-499)) (-4 *5 (-13 (-406) (-978 *4) (-596 *4))) (-5 *2 (-51)) + (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5))) - (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-328 *5 *3)))) + (-12 (-5 *4 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))) + (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-270 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *6))) - (-4 *6 (-13 (-464) (-1057 *5) (-656 *5))) (-5 *5 (-557)) (-5 *2 (-51)) - (-5 *1 (-328 *6 *3)))) + (-12 (-5 *4 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) + (-4 *6 (-13 (-406) (-978 *5) (-596 *5))) (-5 *5 (-499)) (-5 *2 (-51)) + (-5 *1 (-270 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-557))) (-5 *4 (-305 *7)) (-5 *5 (-1253 (-557))) - (-4 *7 (-13 (-27) (-1222) (-433 *6))) - (-4 *6 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-471 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-499))) (-5 *4 (-247 *7)) (-5 *5 (-1174 (-499))) + (-4 *7 (-13 (-27) (-1143) (-375 *6))) + (-4 *6 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-413 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1196)) (-5 *5 (-305 *3)) (-5 *6 (-1253 (-557))) - (-4 *3 (-13 (-27) (-1222) (-433 *7))) - (-4 *7 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-471 *7 *3)))) + (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-5 *6 (-1174 (-499))) + (-4 *3 (-13 (-27) (-1143) (-375 *7))) + (-4 *7 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-413 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-557)) (-4 *4 (-1068)) (-4 *1 (-1250 *4 *3)) - (-4 *3 (-1279 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1248 *3))))) + (-12 (-5 *2 (-499)) (-4 *4 (-989)) (-4 *1 (-1171 *4 *3)) (-4 *3 (-1200 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1192 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1169 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1248 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-1262 *3)) (-4 *3 (-1068)))) + (|partial| -12 (-4 *1 (-1192 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1169 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1183 *3)) (-4 *3 (-989)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-936)) (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-419 (-557))) (-4 *1 (-1269 *3)) (-4 *3 (-1068))))) + (-12 (-5 *2 (-857)) (-4 *1 (-1186 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-4 *1 (-1190 *3)) (-4 *3 (-989))))) (((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-557)))) - (-4 *4 (-13 (-1262 *3) (-568) (-10 -8 (-15 -3560 ($ $ $))))) (-4 *3 (-568)) - (-5 *1 (-1266 *3 *4))))) + (|:| |xpnt| (-499)))) + (-4 *4 (-13 (-1183 *3) (-510) (-10 -8 (-15 -3282 ($ $ $))))) (-4 *3 (-510)) + (-5 *1 (-1187 *3 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-967 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) - (-4 *2 (-464)))) + (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) + (-4 *2 (-406)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) - (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *1)))) - (-4 *1 (-1090 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1241))) + (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) + (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *1)))) + (-4 *1 (-1011 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1162))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-1266 *3 *2)) - (-4 *2 (-13 (-1262 *3) (-568) (-10 -8 (-15 -3560 ($ $ $)))))))) + (-12 (-4 *3 (-510)) (-5 *1 (-1187 *3 *2)) + (-4 *2 (-13 (-1183 *3) (-510) (-10 -8 (-15 -3282 ($ $ $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-133)) - (-5 *2 (-659 (-2 (|:| |gen| *3) (|:| -4371 *4)))))) + (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-104)) + (-5 *2 (-599 (-2 (|:| |gen| *3) (|:| -4093 *4)))))) ((*1 *2 *1) - (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-862)) - (-5 *2 (-659 (-885 *4 *3))))) + (-12 (-4 *1 (-463 *3 *4)) (-4 *3 (-73)) (-4 *4 (-784)) + (-5 *2 (-599 (-807 *4 *3))))) ((*1 *2 *1) - (-12 (-5 *2 (-659 (-2 (|:| -4382 *3) (|:| -4366 *4)))) (-5 *1 (-753 *3 *4)) - (-4 *3 (-1068)) (-4 *4 (-744)))) + (-12 (-5 *2 (-599 (-2 (|:| -4104 *3) (|:| -4088 *4)))) (-5 *1 (-693 *3 *4)) + (-4 *3 (-989)) (-4 *4 (-684)))) ((*1 *2 *1) - (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812)) - (-5 *2 (-1174 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-557)) (-5 *1 (-248)))) + (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) + (-5 *2 (-1095 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1099)) (-5 *3 (-499)) (-5 *1 (-198)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-659 (-1178))) (-5 *3 (-557)) (-5 *4 (-1178)) (-5 *1 (-248)))) - ((*1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-875)))) - ((*1 *2 *1) (-12 (-4 *1 (-1265 *2 *3)) (-4 *3 (-812)) (-4 *2 (-1068))))) + (-12 (-5 *2 (-599 (-1099))) (-5 *3 (-499)) (-5 *4 (-1099)) (-5 *1 (-198)))) + ((*1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) + ((*1 *2 *1) (-12 (-4 *1 (-1186 *2 *3)) (-4 *3 (-737)) (-4 *2 (-989))))) (((*1 *2 *1) - (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-859)) - (-4 *5 (-277 *4)) (-4 *6 (-813)) (-5 *2 (-789)))) + (-12 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-781)) + (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-714)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-859)) - (-4 *5 (-277 *3)) (-4 *6 (-813)) (-5 *2 (-789)))) - ((*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-859)) (-5 *2 (-789)))) - ((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-936)))) - ((*1 *2 *3) - (-12 (-5 *3 (-346 *4 *5 *6 *7)) (-4 *4 (-13 (-381) (-376))) - (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-4 *7 (-355 *4 *5 *6)) - (-5 *2 (-789)) (-5 *1 (-406 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-843 (-936))))) - ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-557)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-606 *3)) (-4 *3 (-1068)))) - ((*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-606 *3)) (-4 *3 (-1068)))) - ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-5 *2 (-557)) (-5 *1 (-638 *3 *4)) (-4 *4 (-1262 *3)))) + (-12 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-989)) (-4 *3 (-781)) + (-4 *5 (-227 *3)) (-4 *6 (-738)) (-5 *2 (-714)))) + ((*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-781)) (-5 *2 (-714)))) + ((*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-857)))) + ((*1 *2 *3) + (-12 (-5 *3 (-288 *4 *5 *6 *7)) (-4 *4 (-13 (-323) (-318))) + (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) (-4 *7 (-297 *4 *5 *6)) + (-5 *2 (-714)) (-5 *1 (-348 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-356)) (-5 *2 (-766 (-857))))) + ((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-499)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-546 *3)) (-4 *3 (-989)))) + ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-546 *3)) (-4 *3 (-989)))) + ((*1 *2 *1) + (-12 (-4 *3 (-510)) (-5 *2 (-499)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1183 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-789)) (-4 *1 (-758 *4 *3)) (-4 *4 (-1068)) (-4 *3 (-859)))) + (-12 (-5 *2 (-714)) (-4 *1 (-698 *4 *3)) (-4 *4 (-989)) (-4 *3 (-781)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-758 *4 *3)) (-4 *4 (-1068)) (-4 *3 (-859)) (-5 *2 (-789)))) - ((*1 *2 *1) (-12 (-4 *1 (-882 *3)) (-5 *2 (-789)))) - ((*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-919 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) - (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) - (-4 *4 (-13 (-568) (-1057 (-557)))) (-5 *2 (-789)) - (-5 *1 (-928 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-346 (-419 (-557)) *4 *5 *6)) - (-4 *4 (-1262 (-419 (-557)))) (-4 *5 (-1262 (-419 *4))) - (-4 *6 (-355 (-419 (-557)) *4 *5)) (-5 *2 (-789)) (-5 *1 (-929 *4 *5 *6)))) + (-12 (-4 *1 (-698 *4 *3)) (-4 *4 (-989)) (-4 *3 (-781)) (-5 *2 (-714)))) + ((*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-714)))) + ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) + ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-288 *5 *6 *7 *8)) (-4 *5 (-375 *4)) + (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) (-4 *8 (-297 *5 *6 *7)) + (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-714)) + (-5 *1 (-849 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-288 (-361 (-499)) *4 *5 *6)) + (-4 *4 (-1183 (-361 (-499)))) (-4 *5 (-1183 (-361 *4))) + (-4 *6 (-297 (-361 (-499)) *4 *5)) (-5 *2 (-714)) (-5 *1 (-850 *4 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-346 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-376)) - (-4 *7 (-1262 *6)) (-4 *4 (-1262 (-419 *7))) (-4 *8 (-355 *6 *7 *4)) - (-4 *9 (-13 (-381) (-376))) (-5 *2 (-789)) (-5 *1 (-1037 *6 *7 *4 *8 *9)))) + (-12 (-5 *3 (-288 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-318)) + (-4 *7 (-1183 *6)) (-4 *4 (-1183 (-361 *7))) (-4 *8 (-297 *6 *7 *4)) + (-4 *9 (-13 (-323) (-318))) (-5 *2 (-714)) (-5 *1 (-958 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1068)) (-4 *3 (-568)) (-5 *2 (-789)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-812)))) - ((*1 *2 *1) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-812))))) -(((*1 *1 *1) (-4 *1 (-1079))) - ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-812)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-812))))) + (-12 (-4 *1 (-1183 *3)) (-4 *3 (-989)) (-4 *3 (-510)) (-5 *2 (-714)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) + ((*1 *2 *1) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737))))) +(((*1 *1 *1) (-4 *1 (-1000))) + ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-419 (-557))) (-5 *1 (-119 *4)) (-14 *4 *3) (-5 *3 (-557)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-882 *3)) (-5 *2 (-557)))) + (-12 (-5 *2 (-361 (-499))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-499)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-499)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-419 (-557))) (-5 *1 (-883 *4)) (-14 *4 *3) (-5 *3 (-557)))) + (-12 (-5 *2 (-361 (-499))) (-5 *1 (-805 *4)) (-14 *4 *3) (-5 *3 (-499)))) ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-419 (-557))) (-5 *1 (-884 *4 *5)) (-5 *3 (-557)) - (-4 *5 (-882 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1031)) (-5 *2 (-419 (-557))))) + (-12 (-14 *4 *3) (-5 *2 (-361 (-499))) (-5 *1 (-806 *4 *5)) (-5 *3 (-499)) + (-4 *5 (-804 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-952)) (-5 *2 (-361 (-499))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1087 *2 *3)) (-4 *2 (-13 (-858) (-376))) (-4 *3 (-1262 *2)))) + (-12 (-4 *1 (-1008 *2 *3)) (-4 *2 (-13 (-780) (-318))) (-4 *3 (-1183 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1265 *2 *3)) (-4 *3 (-812)) (|has| *2 (-15 ** (*2 *2 *3))) - (|has| *2 (-15 -4374 (*2 (-1196)))) (-4 *2 (-1068))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-4 *1 (-692 *3)) (-4 *3 (-1236)))) + (-12 (-4 *1 (-1186 *2 *3)) (-4 *3 (-737)) (|has| *2 (-15 ** (*2 *2 *3))) + (|has| *2 (-15 -4096 (*2 (-1117)))) (-4 *2 (-989))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-148 *3)) (-4 *3 (-261)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-632 *3)) (-4 *3 (-1157)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-789)) (-4 *1 (-758 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-859)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-882 *3)) (-5 *2 (-557)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *1 (-999 *3)) (-4 *3 (-1068)))) + (-12 (-5 *2 (-714)) (-4 *1 (-698 *3 *4)) (-4 *3 (-989)) (-4 *4 (-781)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-499)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *1 (-920 *3)) (-4 *3 (-989)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-659 *1)) (-5 *3 (-659 *7)) (-4 *1 (-1090 *4 *5 *6 *7)) - (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)))) + (-12 (-5 *2 (-599 *1)) (-5 *3 (-599 *7)) (-4 *1 (-1011 *4 *5 *6 *7)) + (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *2 (-659 *1)) (-4 *1 (-1090 *4 *5 *6 *7)))) + (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-659 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)))) + (-12 (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) + (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) - (-5 *2 (-659 *1)) (-4 *1 (-1090 *4 *5 *6 *3)))) + (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) + (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *2 (-1084 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-812))))) + (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *2 (-1005 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-419 *5)) (-4 *4 (-1241)) (-4 *5 (-1262 *4)) - (-5 *1 (-150 *4 *5 *2)) (-4 *2 (-1262 *3)))) + (-12 (-5 *3 (-361 *5)) (-4 *4 (-1162)) (-4 *5 (-1183 *4)) + (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1183 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1198 (-419 (-557)))) (-5 *2 (-419 (-557))) (-5 *1 (-193)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-707 (-326 (-229)))) (-5 *3 (-659 (-1196))) - (-5 *4 (-1286 (-326 (-229)))) (-5 *1 (-208)))) + (-12 (-5 *3 (-1119 (-361 (-499)))) (-5 *2 (-361 (-499))) (-5 *1 (-164)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-659 (-305 *3))) (-4 *3 (-321 *3)) (-4 *3 (-1120)) - (-4 *3 (-1236)) (-5 *1 (-305 *3)))) + (-12 (-5 *2 (-599 (-247 *3))) (-4 *3 (-263 *3)) (-4 *3 (-1041)) + (-4 *3 (-1157)) (-5 *1 (-247 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-321 *2)) (-4 *2 (-1120)) (-4 *2 (-1236)) (-5 *1 (-305 *2)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) + (-12 (-4 *2 (-263 *2)) (-4 *2 (-1041)) (-4 *2 (-1157)) (-5 *1 (-247 *2)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-252)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-659 *1))) (-4 *1 (-310)))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-599 *1))) (-4 *1 (-252)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 (-115))) (-5 *3 (-659 (-1 *1 (-659 *1)))) (-4 *1 (-310)))) + (-12 (-5 *2 (-599 (-86))) (-5 *3 (-599 (-1 *1 (-599 *1)))) (-4 *1 (-252)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 (-115))) (-5 *3 (-659 (-1 *1 *1))) (-4 *1 (-310)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) + (-12 (-5 *2 (-599 (-86))) (-5 *3 (-599 (-1 *1 *1))) (-4 *1 (-252)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1 *1 *1)) (-4 *1 (-252)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1 *1 (-659 *1))) (-4 *1 (-310)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-1 *1 (-599 *1))) (-4 *1 (-252)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 (-1196))) (-5 *3 (-659 (-1 *1 (-659 *1)))) (-4 *1 (-310)))) + (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-599 (-1 *1 (-599 *1)))) (-4 *1 (-252)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 (-1196))) (-5 *3 (-659 (-1 *1 *1))) (-4 *1 (-310)))) + (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-599 (-1 *1 *1))) (-4 *1 (-252)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-659 (-305 *3))) (-4 *1 (-321 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-305 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-599 (-247 *3))) (-4 *1 (-263 *3)) (-4 *3 (-1041)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-247 *3)) (-4 *1 (-263 *3)) (-4 *3 (-1041)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-557))) (-5 *4 (-1198 (-419 (-557)))) (-5 *1 (-322 *2)) - (-4 *2 (-38 (-419 (-557)))))) + (-12 (-5 *3 (-1 *2 (-499))) (-5 *4 (-1119 (-361 (-499)))) (-5 *1 (-264 *2)) + (-4 *2 (-38 (-361 (-499)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 *4)) (-5 *3 (-659 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-859)) - (-4 *5 (-175)))) - ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-859)) (-4 *3 (-175)))) + (-12 (-5 *2 (-599 *4)) (-5 *3 (-599 *1)) (-4 *1 (-329 *4 *5)) (-4 *4 (-781)) + (-4 *5 (-146)))) + ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-781)) (-4 *3 (-146)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-789)) (-5 *4 (-1 *1 *1)) (-4 *1 (-433 *5)) - (-4 *5 (-1120)) (-4 *5 (-1068)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-714)) (-5 *4 (-1 *1 *1)) (-4 *1 (-375 *5)) + (-4 *5 (-1041)) (-4 *5 (-989)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-789)) (-5 *4 (-1 *1 (-659 *1))) - (-4 *1 (-433 *5)) (-4 *5 (-1120)) (-4 *5 (-1068)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-714)) (-5 *4 (-1 *1 (-599 *1))) + (-4 *1 (-375 *5)) (-4 *5 (-1041)) (-4 *5 (-989)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-659 (-1196))) (-5 *3 (-659 (-789))) - (-5 *4 (-659 (-1 *1 (-659 *1)))) (-4 *1 (-433 *5)) (-4 *5 (-1120)) - (-4 *5 (-1068)))) + (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-599 (-714))) + (-5 *4 (-599 (-1 *1 (-599 *1)))) (-4 *1 (-375 *5)) (-4 *5 (-1041)) + (-4 *5 (-989)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-659 (-1196))) (-5 *3 (-659 (-789))) (-5 *4 (-659 (-1 *1 *1))) - (-4 *1 (-433 *5)) (-4 *5 (-1120)) (-4 *5 (-1068)))) + (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-599 (-714))) (-5 *4 (-599 (-1 *1 *1))) + (-4 *1 (-375 *5)) (-4 *5 (-1041)) (-4 *5 (-989)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-659 (-115))) (-5 *3 (-659 *1)) (-5 *4 (-1196)) - (-4 *1 (-433 *5)) (-4 *5 (-1120)) (-4 *5 (-629 (-546))))) + (-12 (-5 *2 (-599 (-86))) (-5 *3 (-599 *1)) (-5 *4 (-1117)) (-4 *1 (-375 *5)) + (-4 *5 (-1041)) (-4 *5 (-569 (-488))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1196)) (-4 *1 (-433 *4)) (-4 *4 (-1120)) - (-4 *4 (-629 (-546))))) - ((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1120)) (-4 *2 (-629 (-546))))) + (-12 (-5 *2 (-86)) (-5 *3 (-1117)) (-4 *1 (-375 *4)) (-4 *4 (-1041)) + (-4 *4 (-569 (-488))))) + ((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1041)) (-4 *2 (-569 (-488))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-659 (-1196))) (-4 *1 (-433 *3)) (-4 *3 (-1120)) - (-4 *3 (-629 (-546))))) + (-12 (-5 *2 (-599 (-1117))) (-4 *1 (-375 *3)) (-4 *3 (-1041)) + (-4 *3 (-569 (-488))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1196)) (-4 *1 (-433 *3)) (-4 *3 (-1120)) - (-4 *3 (-629 (-546))))) - ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1236)))) + (-12 (-5 *2 (-1117)) (-4 *1 (-375 *3)) (-4 *3 (-1041)) + (-4 *3 (-569 (-488))))) + ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1157)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 *4)) (-5 *3 (-659 *5)) (-4 *1 (-526 *4 *5)) (-4 *4 (-1120)) - (-4 *5 (-1236)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-843 *3)) (-4 *3 (-376)) (-5 *1 (-736 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-736 *2)) (-4 *2 (-376)))) + (-12 (-5 *2 (-599 *4)) (-5 *3 (-599 *5)) (-4 *1 (-468 *4 *5)) (-4 *4 (-1041)) + (-4 *5 (-1157)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-766 *3)) (-4 *3 (-318)) (-5 *1 (-676 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-419 (-963 *4))) (-5 *3 (-1196)) (-4 *4 (-568)) - (-5 *1 (-1059 *4)))) + (-12 (-5 *2 (-361 (-884 *4))) (-5 *3 (-1117)) (-4 *4 (-510)) + (-5 *1 (-980 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-659 (-1196))) (-5 *4 (-659 (-419 (-963 *5)))) - (-5 *2 (-419 (-963 *5))) (-4 *5 (-568)) (-5 *1 (-1059 *5)))) + (-12 (-5 *3 (-599 (-1117))) (-5 *4 (-599 (-361 (-884 *5)))) + (-5 *2 (-361 (-884 *5))) (-4 *5 (-510)) (-5 *1 (-980 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-305 (-419 (-963 *4)))) (-5 *2 (-419 (-963 *4))) (-4 *4 (-568)) - (-5 *1 (-1059 *4)))) + (-12 (-5 *3 (-247 (-361 (-884 *4)))) (-5 *2 (-361 (-884 *4))) (-4 *4 (-510)) + (-5 *1 (-980 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-659 (-305 (-419 (-963 *4))))) (-5 *2 (-419 (-963 *4))) - (-4 *4 (-568)) (-5 *1 (-1059 *4)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) + (-12 (-5 *3 (-599 (-247 (-361 (-884 *4))))) (-5 *2 (-361 (-884 *4))) + (-4 *4 (-510)) (-5 *1 (-980 *4)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1174 *3))))) + (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1095 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-789)) (-4 *1 (-1262 *4)) (-4 *4 (-1068)) (-5 *2 (-1286 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1068)) (-5 *2 (-1190 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1190 *3)) (-4 *3 (-1068)) (-4 *1 (-1262 *3))))) + (-12 (-5 *3 (-714)) (-4 *1 (-1183 *4)) (-4 *4 (-989)) (-5 *2 (-1207 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-989)) (-5 *2 (-1111 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1111 *3)) (-4 *3 (-989)) (-4 *1 (-1183 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-789)) (-4 *1 (-1262 *3)) (-4 *3 (-1068))))) + (|partial| -12 (-5 *2 (-714)) (-4 *1 (-1183 *3)) (-4 *3 (-989))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *3 (-859)) - (-5 *2 (-2 (|:| -2182 *1) (|:| -3301 *1))) (-4 *1 (-967 *4 *5 *3)))) + (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) + (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-888 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1068)) (-5 *2 (-2 (|:| -2182 *1) (|:| -3301 *1))) - (-4 *1 (-1262 *3))))) + (-12 (-4 *3 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) + (-4 *1 (-1183 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-789)) (-4 *4 (-1068)) - (-5 *2 (-2 (|:| -2182 *1) (|:| -3301 *1))) (-4 *1 (-1262 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-1262 *3)) (-4 *3 (-1068))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-1262 *3)) (-4 *3 (-1068))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068))))) -(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-789)))) + (-12 (-5 *3 (-714)) (-4 *4 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) + (-4 *1 (-1183 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1183 *3)) (-4 *3 (-989))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1183 *3)) (-4 *3 (-989))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989))))) +(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1157)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-714)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-789)) (-4 *1 (-274 *4)) (-4 *4 (-1236)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1236)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-714)) (-4 *1 (-224 *4)) (-4 *4 (-1157)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-224 *3)) (-4 *3 (-1157)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) - (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) + (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-376)) (-4 *2 (-915 *3)) (-5 *1 (-594 *2)) (-5 *3 (-1196)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-594 *2)) (-4 *2 (-376)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-875)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1236)))) + (-12 (-4 *2 (-318)) (-4 *2 (-836 *3)) (-5 *1 (-534 *2)) (-5 *3 (-1117)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-534 *2)) (-4 *2 (-318)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-797)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-831 *2 *3)) (-4 *3 (-1157)) (-4 *2 (-1157)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 *4)) (-5 *3 (-659 (-789))) (-4 *1 (-917 *4)) - (-4 *4 (-1120)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-789)) (-4 *1 (-917 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *1 (-917 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1262 *3)) (-4 *3 (-1068))))) -(((*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-167 *3 *2)) (-4 *3 (-168 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-383 *2 *4)) (-4 *4 (-1262 *2)) - (-4 *2 (-175)))) + (-12 (-5 *2 (-599 *4)) (-5 *3 (-599 (-714))) (-4 *1 (-838 *4)) + (-4 *4 (-1041)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-838 *2)) (-4 *2 (-1041)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *1 (-838 *3)) (-4 *3 (-1041)))) + ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1183 *3)) (-4 *3 (-989))))) +(((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1207 *1)) (-4 *1 (-325 *2 *4)) (-4 *4 (-1183 *2)) + (-4 *2 (-146)))) ((*1 *2) - (-12 (-4 *4 (-1262 *2)) (-4 *2 (-175)) (-5 *1 (-421 *3 *2 *4)) - (-4 *3 (-422 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-422 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-175)))) + (-12 (-4 *4 (-1183 *2)) (-4 *2 (-146)) (-5 *1 (-363 *3 *2 *4)) + (-4 *3 (-364 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1183 *2)) (-4 *2 (-146)))) ((*1 *2) - (-12 (-4 *3 (-1262 *2)) (-5 *2 (-557)) (-5 *1 (-786 *3 *4)) - (-4 *4 (-422 *2 *3)))) + (-12 (-4 *3 (-1183 *2)) (-5 *2 (-499)) (-5 *1 (-711 *3 *4)) + (-4 *4 (-364 *2 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-967 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)) - (-4 *3 (-175)))) - ((*1 *2 *3) (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1262 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-175))))) + (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) + (-4 *3 (-146)))) + ((*1 *2 *3) (-12 (-4 *2 (-510)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1183 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-146))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-967 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)) - (-4 *3 (-175)))) - ((*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1262 *2)))) + (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) + (-4 *3 (-146)))) + ((*1 *2 *3 *3) (-12 (-4 *2 (-510)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1183 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) - (-4 *2 (-568)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-175))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1262 *3)))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) + (-4 *2 (-510)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-146))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-909 *3 *2)) (-4 *2 (-1183 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) - (-4 *2 (-568)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-568))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) + (-4 *2 (-510)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-510))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1262 *3)) (-4 *3 (-1068)) - (-4 *3 (-568)))) + (|partial| -12 (-5 *2 (-361 *1)) (-4 *1 (-1183 *3)) (-4 *3 (-989)) + (-4 *3 (-510)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-568))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-568))))) + (|partial| -12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-510))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-989)) (-4 *2 (-510))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -4382 *4) (|:| -2182 *3) (|:| -3301 *3))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) + (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| -4104 *4) (|:| -2075 *3) (|:| -3023 *3))) + (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-2 (|:| -2182 *1) (|:| -3301 *1))) (-4 *1 (-1084 *3 *4 *5)))) + (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-1005 *3 *4 *5)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1068)) - (-5 *2 (-2 (|:| -4382 *3) (|:| -2182 *1) (|:| -3301 *1))) - (-4 *1 (-1262 *3))))) + (-12 (-4 *3 (-510)) (-4 *3 (-989)) + (-5 *2 (-2 (|:| -4104 *3) (|:| -2075 *1) (|:| -3023 *1))) + (-4 *1 (-1183 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-376)) (-4 *4 (-568)) (-4 *5 (-1262 *4)) - (-5 *2 (-2 (|:| -1970 (-638 *4 *5)) (|:| -1969 (-419 *5)))) - (-5 *1 (-638 *4 *5)) (-5 *3 (-419 *5)))) + (-12 (-4 *4 (-318)) (-4 *4 (-510)) (-4 *5 (-1183 *4)) + (-5 *2 (-2 (|:| -1862 (-578 *4 *5)) (|:| -1861 (-361 *5)))) + (-5 *1 (-578 *4 *5)) (-5 *3 (-361 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-659 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) - (-4 *4 (-1068)))) + (-12 (-5 *2 (-599 (-1105 *3 *4))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) + (-4 *4 (-989)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-464)) (-4 *3 (-1068)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1262 *3))))) + (-12 (-4 *3 (-406)) (-4 *3 (-989)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1183 *3))))) (((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-789)) (-4 *4 (-1068)) (-5 *1 (-1260 *4 *2)) - (-4 *2 (-1262 *4))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1262 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1262 *3))))) + (-12 (-5 *3 (-714)) (-4 *4 (-989)) (-5 *1 (-1181 *4 *2)) (-4 *2 (-1183 *4))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-989)) (-5 *1 (-1181 *3 *2)) (-4 *2 (-1183 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-989)) (-5 *1 (-1181 *3 *2)) (-4 *2 (-1183 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2182 *3) (|:| -3301 *3))) - (-5 *1 (-1259 *4 *3)) (-4 *3 (-1262 *4))))) + (|partial| -12 (-4 *4 (-510)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) + (-5 *1 (-1180 *4 *3)) (-4 *3 (-1183 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-149))) (-5 *2 (-659 *3)) (-5 *1 (-1258 *4 *3)) - (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-13 (-510) (-120))) (-5 *2 (-599 *3)) (-5 *1 (-1179 *4 *3)) + (-4 *3 (-1183 *4))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-568) (-149))) - (-5 *2 (-2 (|:| -3538 *3) (|:| -3537 *3))) (-5 *1 (-1258 *4 *3)) - (-4 *3 (-1262 *4))))) + (|partial| -12 (-4 *4 (-13 (-510) (-120))) + (-5 *2 (-2 (|:| -3260 *3) (|:| -3259 *3))) (-5 *1 (-1179 *4 *3)) + (-4 *3 (-1183 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-568) (-149))) (-5 *1 (-1258 *3 *2)) - (-4 *2 (-1262 *3))))) + (|partial| -12 (-4 *3 (-13 (-510) (-120))) (-5 *1 (-1179 *3 *2)) + (-4 *2 (-1183 *3))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-789)) (-4 *4 (-13 (-568) (-149))) - (-5 *1 (-1258 *4 *2)) (-4 *2 (-1262 *4))))) + (|partial| -12 (-5 *3 (-714)) (-4 *4 (-13 (-510) (-120))) + (-5 *1 (-1179 *4 *2)) (-4 *2 (-1183 *4))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-789)) (-4 *4 (-13 (-568) (-149))) - (-5 *1 (-1258 *4 *2)) (-4 *2 (-1262 *4))))) + (|partial| -12 (-5 *3 (-714)) (-4 *4 (-13 (-510) (-120))) + (-5 *1 (-1179 *4 *2)) (-4 *2 (-1183 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-144 *4 *5 *3)) - (-4 *3 (-385 *5)))) + (-12 (-4 *4 (-510)) (-4 *5 (-931 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) + (-4 *3 (-327 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-515 *4 *5 *6 *3)) - (-4 *6 (-385 *4)) (-4 *3 (-385 *5)))) + (-12 (-4 *4 (-510)) (-4 *5 (-931 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-457 *4 *5 *6 *3)) + (-4 *6 (-327 *4)) (-4 *3 (-327 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-707 *5)) (-4 *5 (-1010 *4)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |num| (-707 *4)) (|:| |den| *4))) (-5 *1 (-711 *4 *5)))) + (-12 (-5 *3 (-647 *5)) (-4 *5 (-931 *4)) (-4 *4 (-510)) + (-5 *2 (-2 (|:| |num| (-647 *4)) (|:| |den| *4))) (-5 *1 (-651 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *6 (-1262 *5)) - (-5 *2 (-2 (|:| -3682 *7) (|:| |rh| (-659 (-419 *6))))) - (-5 *1 (-827 *5 *6 *7 *3)) (-5 *4 (-659 (-419 *6))) (-4 *7 (-676 *6)) - (-4 *3 (-676 (-419 *6))))) + (-12 (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) + (-5 *2 (-2 (|:| -3404 *7) (|:| |rh| (-599 (-361 *6))))) + (-5 *1 (-750 *5 *6 *7 *3)) (-5 *4 (-599 (-361 *6))) (-4 *7 (-616 *6)) + (-4 *3 (-616 (-361 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1257 *4 *5 *3)) - (-4 *3 (-1262 *5))))) + (-12 (-4 *4 (-510)) (-4 *5 (-931 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1178 *4 *5 *3)) + (-4 *3 (-1183 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-4 *4 (-1010 *3)) (-5 *1 (-144 *3 *4 *2)) - (-4 *2 (-385 *4)))) + (-12 (-4 *3 (-510)) (-4 *4 (-931 *3)) (-5 *1 (-115 *3 *4 *2)) + (-4 *2 (-327 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4)) (-4 *2 (-385 *4)) - (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-385 *5)))) + (-12 (-4 *4 (-510)) (-4 *5 (-931 *4)) (-4 *2 (-327 *4)) + (-5 *1 (-457 *4 *5 *2 *3)) (-4 *3 (-327 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-707 *5)) (-4 *5 (-1010 *4)) (-4 *4 (-568)) (-5 *2 (-707 *4)) - (-5 *1 (-711 *4 *5)))) + (-12 (-5 *3 (-647 *5)) (-4 *5 (-931 *4)) (-4 *4 (-510)) (-5 *2 (-647 *4)) + (-5 *1 (-651 *4 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-4 *4 (-1010 *3)) (-5 *1 (-1257 *3 *4 *2)) - (-4 *2 (-1262 *4))))) + (-12 (-4 *3 (-510)) (-4 *4 (-931 *3)) (-5 *1 (-1178 *3 *4 *2)) + (-4 *2 (-1183 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-1010 *2)) (-4 *2 (-568)) (-5 *1 (-144 *2 *4 *3)) - (-4 *3 (-385 *4)))) + (-12 (-4 *4 (-931 *2)) (-4 *2 (-510)) (-5 *1 (-115 *2 *4 *3)) + (-4 *3 (-327 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-1010 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) - (-4 *5 (-385 *2)) (-4 *3 (-385 *4)))) + (-12 (-4 *4 (-931 *2)) (-4 *2 (-510)) (-5 *1 (-457 *2 *4 *5 *3)) + (-4 *5 (-327 *2)) (-4 *3 (-327 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-707 *4)) (-4 *4 (-1010 *2)) (-4 *2 (-568)) - (-5 *1 (-711 *2 *4)))) + (-12 (-5 *3 (-647 *4)) (-4 *4 (-931 *2)) (-4 *2 (-510)) + (-5 *1 (-651 *2 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-1010 *2)) (-4 *2 (-568)) (-5 *1 (-1257 *2 *4 *3)) - (-4 *3 (-1262 *4))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-789)) (-5 *1 (-799 *3)) (-4 *3 (-1068)))) + (-12 (-4 *4 (-931 *2)) (-4 *2 (-510)) (-5 *1 (-1178 *2 *4 *3)) + (-4 *3 (-1183 *4))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-714)) (-5 *1 (-724 *3)) (-4 *3 (-989)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-973 *3 *2)) (-4 *2 (-133)) (-4 *3 (-568)) (-4 *3 (-1068)) - (-4 *2 (-812)))) - ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-789)) (-5 *1 (-1190 *3)) (-4 *3 (-1068)))) + (-12 (-5 *1 (-894 *3 *2)) (-4 *2 (-104)) (-4 *3 (-510)) (-4 *3 (-989)) + (-4 *2 (-737)))) + ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-714)) (-5 *1 (-1111 *3)) (-4 *3 (-989)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-990)) (-4 *2 (-133)) (-5 *1 (-1198 *3)) (-4 *3 (-568)) - (-4 *3 (-1068)))) + (-12 (-5 *2 (-911)) (-4 *2 (-104)) (-5 *1 (-1119 *3)) (-4 *3 (-510)) + (-4 *3 (-989)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-789)) (-5 *1 (-1255 *4 *3)) (-14 *4 (-1196)) (-4 *3 (-1068))))) -(((*1 *1 *1) (-5 *1 (-875))) ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2) (-12 (-5 *1 (-1253 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *2 (-1113 *3)) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1236)))) - ((*1 *2 *1) (-12 (-5 *2 (-1108 *3)) (-5 *1 (-1111 *3)) (-4 *3 (-1236)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2) (-12 (-5 *1 (-1253 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1253 *3)) (-4 *3 (-1236))))) + (-12 (-5 *2 (-714)) (-5 *1 (-1176 *4 *3)) (-14 *4 (-1117)) (-4 *3 (-989))))) +(((*1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157)))) + ((*1 *1 *2) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *2 (-1034 *3)) (-5 *1 (-998 *2 *3)) (-4 *3 (-1157)))) + ((*1 *2 *1) (-12 (-5 *2 (-1029 *3)) (-5 *1 (-1032 *3)) (-4 *3 (-1157)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157)))) + ((*1 *1 *2) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1174 *3)) (-4 *3 (-1157))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) + (-12 (-5 *4 (-85)) (-5 *2 - (-2 (|:| |contp| (-557)) - (|:| -1985 (-659 (-2 (|:| |irr| *3) (|:| -2624 (-557))))))) - (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) + (-2 (|:| |contp| (-499)) + (|:| -1877 (-599 (-2 (|:| |irr| *3) (|:| -2513 (-499))))))) + (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) + (-12 (-5 *4 (-85)) (-5 *2 - (-2 (|:| |contp| (-557)) - (|:| -1985 (-659 (-2 (|:| |irr| *3) (|:| -2624 (-557))))))) - (-5 *1 (-1252 *3)) (-4 *3 (-1262 (-557)))))) + (-2 (|:| |contp| (-499)) + (|:| -1877 (-599 (-2 (|:| |irr| *3) (|:| -2513 (-499))))))) + (-5 *1 (-1173 *3)) (-4 *3 (-1183 (-499)))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-417 *3)) (-5 *1 (-220 *4 *3)) - (-4 *3 (-1262 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) + (-12 (-4 *4 (-305)) (-5 *2 (-359 *3)) (-5 *1 (-170 *4 *3)) + (-4 *3 (-1183 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-789)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1262 (-557))))) + (-12 (-5 *4 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) + (-4 *3 (-1183 (-499))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-659 (-789))) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1262 (-557))))) + (-12 (-5 *4 (-599 (-714))) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) + (-4 *3 (-1183 (-499))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-659 (-789))) (-5 *5 (-789)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1262 (-557))))) + (-12 (-5 *4 (-599 (-714))) (-5 *5 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) + (-4 *3 (-1183 (-499))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-789)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1262 (-557))))) + (-12 (-5 *4 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) + (-4 *3 (-1183 (-499))))) ((*1 *2 *3) - (-12 (-5 *2 (-417 *3)) (-5 *1 (-1026 *3)) (-4 *3 (-1262 (-419 (-557)))))) - ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1252 *3)) (-4 *3 (-1262 (-557)))))) + (-12 (-5 *2 (-359 *3)) (-5 *1 (-947 *3)) (-4 *3 (-1183 (-361 (-499)))))) + ((*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-1173 *3)) (-4 *3 (-1183 (-499)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-659 (-48))) (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1262 (-48))))) - ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48))))) + (-12 (-5 *4 (-599 (-48))) (-5 *2 (-359 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1183 (-48))))) + ((*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1183 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-659 (-48))) (-4 *5 (-859)) (-4 *6 (-813)) (-5 *2 (-417 *3)) - (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-967 (-48) *6 *5)))) + (-12 (-5 *4 (-599 (-48))) (-4 *5 (-781)) (-4 *6 (-738)) (-5 *2 (-359 *3)) + (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-888 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-659 (-48))) (-4 *5 (-859)) (-4 *6 (-813)) - (-4 *7 (-967 (-48) *6 *5)) (-5 *2 (-417 (-1190 *7))) (-5 *1 (-42 *5 *6 *7)) - (-5 *3 (-1190 *7)))) + (-12 (-5 *4 (-599 (-48))) (-4 *5 (-781)) (-4 *6 (-738)) + (-4 *7 (-888 (-48) *6 *5)) (-5 *2 (-359 (-1111 *7))) (-5 *1 (-42 *5 *6 *7)) + (-5 *3 (-1111 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-169 *4 *3)) - (-4 *3 (-1262 (-171 *4))))) + (-12 (-4 *4 (-261)) (-5 *2 (-359 *3)) (-5 *1 (-140 *4 *3)) + (-4 *3 (-1183 (-142 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-858))) (-5 *2 (-417 *3)) - (-5 *1 (-184 *4 *3)) (-4 *3 (-1262 (-171 *4))))) + (-12 (-5 *5 (-85)) (-4 *4 (-13 (-318) (-780))) (-5 *2 (-359 *3)) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-376) (-858))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) - (-4 *3 (-1262 (-171 *4))))) + (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-359 *3)) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1183 (-142 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-858))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) - (-4 *3 (-1262 (-171 *4))))) + (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-359 *3)) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1183 (-142 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-417 *3)) (-5 *1 (-220 *4 *3)) - (-4 *3 (-1262 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) + (-12 (-4 *4 (-305)) (-5 *2 (-359 *3)) (-5 *1 (-170 *4 *3)) + (-4 *3 (-1183 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-789)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1262 (-557))))) + (-12 (-5 *4 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) + (-4 *3 (-1183 (-499))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-659 (-789))) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1262 (-557))))) + (-12 (-5 *4 (-599 (-714))) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) + (-4 *3 (-1183 (-499))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-659 (-789))) (-5 *5 (-789)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1262 (-557))))) + (-12 (-5 *4 (-599 (-714))) (-5 *5 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) + (-4 *3 (-1183 (-499))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-789)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1262 (-557))))) + (-12 (-5 *4 (-714)) (-5 *2 (-359 *3)) (-5 *1 (-396 *3)) + (-4 *3 (-1183 (-499))))) ((*1 *2 *3) - (-12 (-5 *2 (-417 (-171 (-557)))) (-5 *1 (-458)) (-5 *3 (-171 (-557))))) + (-12 (-5 *2 (-359 (-142 (-499)))) (-5 *1 (-400)) (-5 *3 (-142 (-499))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-859) - (-10 -8 (-15 -4400 ((-1196) $)) (-15 -4259 ((-3 $ "failed") (-1196)))))) - (-4 *5 (-813)) (-4 *7 (-568)) (-5 *2 (-417 *3)) - (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) (-4 *3 (-967 *7 *5 *4)))) + (-13 (-781) + (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ "failed") (-1117)))))) + (-4 *5 (-738)) (-4 *7 (-510)) (-5 *2 (-359 *3)) + (-5 *1 (-410 *4 *5 *6 *7 *3)) (-4 *6 (-510)) (-4 *3 (-888 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-319)) (-5 *2 (-417 (-1190 *4))) (-5 *1 (-470 *4)) - (-5 *3 (-1190 *4)))) + (-12 (-4 *4 (-261)) (-5 *2 (-359 (-1111 *4))) (-5 *1 (-412 *4)) + (-5 *3 (-1111 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-376)) - (-4 *7 (-13 (-376) (-149) (-742 *5 *6))) (-5 *2 (-417 *3)) - (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1262 *7)))) + (-12 (-5 *4 (-1 (-359 *6) *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) + (-4 *7 (-13 (-318) (-120) (-682 *5 *6))) (-5 *2 (-359 *3)) + (-5 *1 (-448 *5 *6 *7 *3)) (-4 *3 (-1183 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-417 (-1190 *7)) (-1190 *7))) (-4 *7 (-13 (-319) (-149))) - (-4 *5 (-859)) (-4 *6 (-813)) (-5 *2 (-417 *3)) (-5 *1 (-551 *5 *6 *7 *3)) - (-4 *3 (-967 *7 *6 *5)))) + (-12 (-5 *4 (-1 (-359 (-1111 *7)) (-1111 *7))) (-4 *7 (-13 (-261) (-120))) + (-4 *5 (-781)) (-4 *6 (-738)) (-5 *2 (-359 *3)) (-5 *1 (-493 *5 *6 *7 *3)) + (-4 *3 (-888 *7 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-417 (-1190 *7)) (-1190 *7))) (-4 *7 (-13 (-319) (-149))) - (-4 *5 (-859)) (-4 *6 (-813)) (-4 *8 (-967 *7 *6 *5)) - (-5 *2 (-417 (-1190 *8))) (-5 *1 (-551 *5 *6 *7 *8)) (-5 *3 (-1190 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-570 *3)) (-4 *3 (-556)))) + (-12 (-5 *4 (-1 (-359 (-1111 *7)) (-1111 *7))) (-4 *7 (-13 (-261) (-120))) + (-4 *5 (-781)) (-4 *6 (-738)) (-4 *8 (-888 *7 *6 *5)) + (-5 *2 (-359 (-1111 *8))) (-5 *1 (-493 *5 *6 *7 *8)) (-5 *3 (-1111 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-512 *3)) (-4 *3 (-498)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-659 *5) *6)) - (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) - (-4 *6 (-1262 *5)) (-5 *2 (-659 (-673 (-419 *6)))) (-5 *1 (-677 *5 *6)) - (-5 *3 (-673 (-419 *6))))) + (-12 (-5 *4 (-1 (-599 *5) *6)) + (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) + (-4 *6 (-1183 *5)) (-5 *2 (-599 (-613 (-361 *6)))) (-5 *1 (-617 *5 *6)) + (-5 *3 (-613 (-361 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) - (-4 *5 (-1262 *4)) (-5 *2 (-659 (-673 (-419 *5)))) (-5 *1 (-677 *4 *5)) - (-5 *3 (-673 (-419 *5))))) + (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) + (-4 *5 (-1183 *4)) (-5 *2 (-599 (-613 (-361 *5)))) (-5 *1 (-617 *4 *5)) + (-5 *3 (-613 (-361 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-839 *4)) (-4 *4 (-859)) (-5 *2 (-659 (-690 *4))) - (-5 *1 (-690 *4)))) + (-12 (-5 *3 (-762 *4)) (-4 *4 (-781)) (-5 *2 (-599 (-630 *4))) + (-5 *1 (-630 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-557)) (-5 *2 (-659 *3)) (-5 *1 (-714 *3)) (-4 *3 (-1262 *4)))) + (-12 (-5 *4 (-499)) (-5 *2 (-599 *3)) (-5 *1 (-654 *3)) (-4 *3 (-1183 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-859)) (-4 *5 (-813)) (-4 *6 (-363)) (-5 *2 (-417 *3)) - (-5 *1 (-716 *4 *5 *6 *3)) (-4 *3 (-967 *6 *5 *4)))) + (-12 (-4 *4 (-781)) (-4 *5 (-738)) (-4 *6 (-305)) (-5 *2 (-359 *3)) + (-5 *1 (-656 *4 *5 *6 *3)) (-4 *3 (-888 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-859)) (-4 *5 (-813)) (-4 *6 (-363)) (-4 *7 (-967 *6 *5 *4)) - (-5 *2 (-417 (-1190 *7))) (-5 *1 (-716 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) + (-12 (-4 *4 (-781)) (-4 *5 (-738)) (-4 *6 (-305)) (-4 *7 (-888 *6 *5 *4)) + (-5 *2 (-359 (-1111 *7))) (-5 *1 (-656 *4 *5 *6 *7)) (-5 *3 (-1111 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-813)) + (-12 (-4 *4 (-738)) (-4 *5 - (-13 (-859) - (-10 -8 (-15 -4400 ((-1196) $)) (-15 -4259 ((-3 $ "failed") (-1196)))))) - (-4 *6 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-748 *4 *5 *6 *3)) - (-4 *3 (-967 (-963 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-813)) (-4 *5 (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $))))) - (-4 *6 (-568)) (-5 *2 (-417 *3)) (-5 *1 (-750 *4 *5 *6 *3)) - (-4 *3 (-967 (-419 (-963 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-13 (-319) (-149))) - (-5 *2 (-417 *3)) (-5 *1 (-751 *4 *5 *6 *3)) - (-4 *3 (-967 (-419 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-859)) (-4 *5 (-813)) (-4 *6 (-13 (-319) (-149))) - (-5 *2 (-417 *3)) (-5 *1 (-759 *4 *5 *6 *3)) (-4 *3 (-967 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-859)) (-4 *5 (-813)) (-4 *6 (-13 (-319) (-149))) - (-4 *7 (-967 *6 *5 *4)) (-5 *2 (-417 (-1190 *7))) (-5 *1 (-759 *4 *5 *6 *7)) - (-5 *3 (-1190 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-417 *3)) (-5 *1 (-1026 *3)) (-4 *3 (-1262 (-419 (-557)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-417 *3)) (-5 *1 (-1061 *3)) - (-4 *3 (-1262 (-419 (-963 (-557))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1262 (-419 (-557)))) - (-4 *5 (-13 (-376) (-149) (-742 (-419 (-557)) *4))) (-5 *2 (-417 *3)) - (-5 *1 (-1099 *4 *5 *3)) (-4 *3 (-1262 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1262 (-419 (-963 (-557))))) - (-4 *5 (-13 (-376) (-149) (-742 (-419 (-963 (-557))) *4))) (-5 *2 (-417 *3)) - (-5 *1 (-1100 *4 *5 *3)) (-4 *3 (-1262 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-464)) (-4 *7 (-967 *6 *4 *5)) - (-5 *2 (-417 (-1190 (-419 *7)))) (-5 *1 (-1192 *4 *5 *6 *7)) - (-5 *3 (-1190 (-419 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1241)))) - ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1252 *3)) (-4 *3 (-1262 (-557)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1279 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-119 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-119 *2)) (-14 *2 (-557)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-883 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-14 *2 (-557)))) + (-13 (-781) + (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ "failed") (-1117)))))) + (-4 *6 (-261)) (-5 *2 (-359 *3)) (-5 *1 (-688 *4 *5 *6 *3)) + (-4 *3 (-888 (-884 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-738)) (-4 *5 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))) + (-4 *6 (-510)) (-5 *2 (-359 *3)) (-5 *1 (-690 *4 *5 *6 *3)) + (-4 *3 (-888 (-361 (-884 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-13 (-261) (-120))) + (-5 *2 (-359 *3)) (-5 *1 (-691 *4 *5 *6 *3)) + (-4 *3 (-888 (-361 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-781)) (-4 *5 (-738)) (-4 *6 (-13 (-261) (-120))) + (-5 *2 (-359 *3)) (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-888 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-781)) (-4 *5 (-738)) (-4 *6 (-13 (-261) (-120))) + (-4 *7 (-888 *6 *5 *4)) (-5 *2 (-359 (-1111 *7))) (-5 *1 (-699 *4 *5 *6 *7)) + (-5 *3 (-1111 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-359 *3)) (-5 *1 (-947 *3)) (-4 *3 (-1183 (-361 (-499)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-359 *3)) (-5 *1 (-982 *3)) + (-4 *3 (-1183 (-361 (-884 (-499))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1183 (-361 (-499)))) + (-4 *5 (-13 (-318) (-120) (-682 (-361 (-499)) *4))) (-5 *2 (-359 *3)) + (-5 *1 (-1020 *4 *5 *3)) (-4 *3 (-1183 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1183 (-361 (-884 (-499))))) + (-4 *5 (-13 (-318) (-120) (-682 (-361 (-884 (-499))) *4))) (-5 *2 (-359 *3)) + (-5 *1 (-1021 *4 *5 *3)) (-4 *3 (-1183 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-406)) (-4 *7 (-888 *6 *4 *5)) + (-5 *2 (-359 (-1111 (-361 *7)))) (-5 *1 (-1113 *4 *5 *6 *7)) + (-5 *3 (-1111 (-361 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-359 *1)) (-4 *1 (-1162)))) + ((*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-1173 *3)) (-4 *3 (-1183 (-499)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1200 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-90 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-499)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-805 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-805 *2)) (-14 *2 (-499)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-557)) (-14 *3 *2) (-5 *1 (-884 *3 *4)) (-4 *4 (-882 *3)))) - ((*1 *1 *1) (-12 (-14 *2 (-557)) (-5 *1 (-884 *2 *3)) (-4 *3 (-882 *2)))) + (-12 (-5 *2 (-499)) (-14 *3 *2) (-5 *1 (-806 *3 *4)) (-4 *4 (-804 *3)))) + ((*1 *1 *1) (-12 (-14 *2 (-499)) (-5 *1 (-806 *2 *3)) (-4 *3 (-804 *2)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-557)) (-4 *1 (-1250 *3 *4)) (-4 *3 (-1068)) - (-4 *4 (-1279 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-1250 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1279 *2))))) + (-12 (-5 *2 (-499)) (-4 *1 (-1171 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1200 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-989)) (-4 *3 (-1200 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) - (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-433 *4))))) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) + (-5 *2 (-51)) (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-27) (-1143) (-375 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *4))))) + (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-270 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-789)) (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) - (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5))))) + (-12 (-5 *4 (-714)) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) + (-5 *2 (-51)) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5))) - (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-328 *5 *3)))) + (-12 (-5 *4 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))) + (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-270 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-305 *3)) (-5 *5 (-789)) (-4 *3 (-13 (-27) (-1222) (-433 *6))) - (-4 *6 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-328 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-557))) (-5 *4 (-305 *6)) - (-4 *6 (-13 (-27) (-1222) (-433 *5))) - (-4 *5 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-471 *5 *6)))) + (-12 (-5 *4 (-247 *3)) (-5 *5 (-714)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) + (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-270 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-499))) (-5 *4 (-247 *6)) + (-4 *6 (-13 (-27) (-1143) (-375 *5))) + (-4 *5 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-413 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1196)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *6))) - (-4 *6 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-471 *6 *3)))) + (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *6))) + (-4 *6 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-413 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-557))) (-5 *4 (-305 *7)) (-5 *5 (-1253 (-789))) - (-4 *7 (-13 (-27) (-1222) (-433 *6))) - (-4 *6 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-471 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-499))) (-5 *4 (-247 *7)) (-5 *5 (-1174 (-714))) + (-4 *7 (-13 (-27) (-1143) (-375 *6))) + (-4 *6 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-413 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1196)) (-5 *5 (-305 *3)) (-5 *6 (-1253 (-789))) - (-4 *3 (-13 (-27) (-1222) (-433 *7))) - (-4 *7 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-51)) - (-5 *1 (-471 *7 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1279 *3))))) + (-12 (-5 *4 (-1117)) (-5 *5 (-247 *3)) (-5 *6 (-1174 (-714))) + (-4 *3 (-13 (-27) (-1143) (-375 *7))) + (-4 *7 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 (-51)) + (-5 *1 (-413 *7 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1200 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1279 *3))))) + (|partial| -12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1200 *3))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-557)) (-4 *1 (-1248 *4)) (-4 *4 (-1068)) (-4 *4 (-568)) - (-5 *2 (-419 (-963 *4))))) + (-12 (-5 *3 (-499)) (-4 *1 (-1169 *4)) (-4 *4 (-989)) (-4 *4 (-510)) + (-5 *2 (-361 (-884 *4))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-557)) (-4 *1 (-1248 *4)) (-4 *4 (-1068)) (-4 *4 (-568)) - (-5 *2 (-419 (-963 *4)))))) -(((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-936)))) - ((*1 *1 *1 *1) (-5 *1 (-1242))) ((*1 *1 *1 *1) (-5 *1 (-1243))) - ((*1 *1 *1 *1) (-5 *1 (-1244))) ((*1 *1 *1 *1) (-5 *1 (-1245)))) -(((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-936)))) - ((*1 *1 *1 *1) (-5 *1 (-1242))) ((*1 *1 *1 *1) (-5 *1 (-1243))) - ((*1 *1 *1 *1) (-5 *1 (-1244))) ((*1 *1 *1 *1) (-5 *1 (-1245)))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-130))) + (-12 (-5 *3 (-499)) (-4 *1 (-1169 *4)) (-4 *4 (-989)) (-4 *4 (-510)) + (-5 *2 (-361 (-884 *4)))))) +(((*1 *1 *1 *1) (-5 *1 (-101))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1124 *2)) (-14 *2 (-857)))) + ((*1 *1 *1 *1) (-5 *1 (-1163))) ((*1 *1 *1 *1) (-5 *1 (-1164))) + ((*1 *1 *1 *1) (-5 *1 (-1165))) ((*1 *1 *1 *1) (-5 *1 (-1166)))) +(((*1 *1 *1 *1) (-5 *1 (-101))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1124 *2)) (-14 *2 (-857)))) + ((*1 *1 *1 *1) (-5 *1 (-1163))) ((*1 *1 *1 *1) (-5 *1 (-1164))) + ((*1 *1 *1 *1) (-5 *1 (-1165))) ((*1 *1 *1 *1) (-5 *1 (-1166)))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-101))) ((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-557)) (-14 *3 (-789)) (-4 *4 (-175)))) - ((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-559))) ((*1 *1) (-5 *1 (-560))) - ((*1 *1) (-5 *1 (-561))) ((*1 *1) (-4 *1 (-744))) ((*1 *1) (-5 *1 (-1196))) - ((*1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-936)))) - ((*1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-936)))) ((*1 *1) (-5 *1 (-1242))) - ((*1 *1) (-5 *1 (-1243))) ((*1 *1) (-5 *1 (-1244))) ((*1 *1) (-5 *1 (-1245)))) -(((*1 *2 *3) (-12 (-5 *3 (-171 (-557))) (-5 *2 (-114)) (-5 *1 (-458)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146)))) + ((*1 *1) (-5 *1 (-500))) ((*1 *1) (-5 *1 (-501))) ((*1 *1) (-5 *1 (-502))) + ((*1 *1) (-5 *1 (-503))) ((*1 *1) (-4 *1 (-684))) ((*1 *1) (-5 *1 (-1117))) + ((*1 *1) (-12 (-5 *1 (-1123 *2)) (-14 *2 (-857)))) + ((*1 *1) (-12 (-5 *1 (-1124 *2)) (-14 *2 (-857)))) ((*1 *1) (-5 *1 (-1163))) + ((*1 *1) (-5 *1 (-1164))) ((*1 *1) (-5 *1 (-1165))) ((*1 *1) (-5 *1 (-1166)))) +(((*1 *2 *3) (-12 (-5 *3 (-142 (-499))) (-5 *2 (-85)) (-5 *1 (-400)))) ((*1 *2 *3) (-12 (-5 *3 - (-516 (-419 (-557)) (-246 *5 (-789)) (-876 *4) (-255 *4 (-419 (-557))))) - (-14 *4 (-659 (-1196))) (-14 *5 (-789)) (-5 *2 (-114)) - (-5 *1 (-517 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-979 *3)) (-4 *3 (-556)))) - ((*1 *2 *1) (-12 (-4 *1 (-1241)) (-5 *2 (-114))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1239))))) + (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499))))) + (-14 *4 (-599 (-1117))) (-14 *5 (-714)) (-5 *2 (-85)) (-5 *1 (-459 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-900 *3)) (-4 *3 (-498)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-85))))) +(((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1160))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3644 (-659 (-1196))) (|:| -3645 (-659 (-1196))))) - (-5 *1 (-1239))))) -(((*1 *2 *3) (-12 (-5 *3 (-659 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1239)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-659 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1239))))) + (-12 (-5 *2 (-2 (|:| -3366 (-599 (-1117))) (|:| -3367 (-599 (-1117))))) + (-5 *1 (-1160))))) +(((*1 *2 *3) (-12 (-5 *3 (-599 (-1117))) (-5 *2 (-1213)) (-5 *1 (-1160)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-599 (-1117))) (-5 *2 (-1213)) (-5 *1 (-1160))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-789)) (-4 *1 (-1169 *4)) (-4 *4 (-1236)) (-5 *2 (-114)))) + (-12 (-5 *3 (-714)) (-4 *1 (-1090 *4)) (-4 *4 (-1157)) (-5 *2 (-85)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-114)) (-5 *1 (-1238 *3)) (-4 *3 (-859)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1159 *3)) (-4 *3 (-781)) (-4 *3 (-1041))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *2)) (-5 *4 (-1 (-114) *2 *2)) (-5 *1 (-1238 *2)) - (-4 *2 (-1120)))) + (-12 (-5 *3 (-599 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1159 *2)) + (-4 *2 (-1041)))) ((*1 *2 *3) - (-12 (-5 *3 (-659 *2)) (-4 *2 (-1120)) (-4 *2 (-859)) (-5 *1 (-1238 *2))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1238 *3)) (-4 *3 (-1120))))) + (-12 (-5 *3 (-599 *2)) (-4 *2 (-1041)) (-4 *2 (-781)) (-5 *1 (-1159 *2))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1159 *3)) (-4 *3 (-1041))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-789)) (-4 *1 (-1169 *4)) (-4 *4 (-1236)) (-5 *2 (-114)))) + (-12 (-5 *3 (-714)) (-4 *1 (-1090 *4)) (-4 *4 (-1157)) (-5 *2 (-85)))) ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-114)) (-5 *1 (-1238 *3)) (-4 *3 (-1120)))) + (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1159 *3)) (-4 *3 (-1041)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *3 (-1120)) (-5 *2 (-114)) - (-5 *1 (-1238 *3))))) + (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1041)) (-5 *2 (-85)) + (-5 *1 (-1159 *3))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3645 (-659 *3)) (|:| -3644 (-659 *3)))) - (-5 *1 (-1238 *3)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-2 (|:| -3367 (-599 *3)) (|:| -3366 (-599 *3)))) + (-5 *1 (-1159 *3)) (-4 *3 (-1041))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 *4)) (-4 *4 (-1120)) (-5 *2 (-1292)) (-5 *1 (-1238 *4)))) + (-12 (-5 *3 (-599 *4)) (-4 *4 (-1041)) (-5 *2 (-1213)) (-5 *1 (-1159 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-659 *4)) (-4 *4 (-1120)) (-5 *2 (-1292)) (-5 *1 (-1238 *4))))) + (-12 (-5 *3 (-599 *4)) (-4 *4 (-1041)) (-5 *2 (-1213)) (-5 *1 (-1159 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-557)) (-4 *5 (-363)) (-5 *2 (-417 (-1190 (-1190 *5)))) - (-5 *1 (-1235 *5)) (-5 *3 (-1190 (-1190 *5)))))) + (-12 (-5 *4 (-499)) (-4 *5 (-305)) (-5 *2 (-359 (-1111 (-1111 *5)))) + (-5 *1 (-1156 *5)) (-5 *3 (-1111 (-1111 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-417 (-1190 (-1190 *4)))) (-5 *1 (-1235 *4)) - (-5 *3 (-1190 (-1190 *4)))))) + (-12 (-4 *4 (-305)) (-5 *2 (-359 (-1111 (-1111 *4)))) (-5 *1 (-1156 *4)) + (-5 *3 (-1111 (-1111 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-417 (-1190 (-1190 *4)))) (-5 *1 (-1235 *4)) - (-5 *3 (-1190 (-1190 *4)))))) + (-12 (-4 *4 (-305)) (-5 *2 (-359 (-1111 (-1111 *4)))) (-5 *1 (-1156 *4)) + (-5 *3 (-1111 (-1111 *4)))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4423)) (-4 *1 (-153 *3)) - (-4 *3 (-1236)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1236)) (-5 *1 (-611 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-692 *3)) (-4 *3 (-1236)))) + (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -4145)) (-4 *1 (-124 *3)) + (-4 *3 (-1157)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1157)) (-5 *1 (-551 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-632 *3)) (-4 *3 (-1157)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1231 *4 *5 *3 *2)) (-4 *4 (-568)) (-4 *5 (-813)) - (-4 *3 (-859)) (-4 *2 (-1084 *4 *5 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-5 *1 (-1234 *2)) (-4 *2 (-1236))))) + (|partial| -12 (-4 *1 (-1152 *4 *5 *3 *2)) (-4 *4 (-510)) (-4 *5 (-738)) + (-4 *3 (-781)) (-4 *2 (-1005 *4 *5 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *1 (-1155 *2)) (-4 *2 (-1157))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-659 (-659 (-229)))) (-5 *4 (-229)) (-5 *2 (-659 (-960 *4))) - (-5 *1 (-1233)) (-5 *3 (-960 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-557)) (-5 *2 (-659 (-659 (-229)))) (-5 *1 (-1233))))) + (-12 (-5 *5 (-599 (-599 (-179)))) (-5 *4 (-179)) (-5 *2 (-599 (-881 *4))) + (-5 *1 (-1154)) (-5 *3 (-881 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-499)) (-5 *2 (-599 (-599 (-179)))) (-5 *1 (-1154))))) (((*1 *1 *2) - (-12 (-5 *2 (-936)) (-4 *1 (-245 *3 *4)) (-4 *4 (-1068)) (-4 *4 (-1236)))) + (-12 (-5 *2 (-857)) (-4 *1 (-195 *3 *4)) (-4 *4 (-989)) (-4 *4 (-1157)))) ((*1 *1 *2) - (-12 (-14 *3 (-659 (-1196))) (-4 *4 (-175)) (-4 *5 (-245 (-4385 *3) (-789))) + (-12 (-14 *3 (-599 (-1117))) (-4 *4 (-146)) (-4 *5 (-195 (-4107 *3) (-714))) (-14 *6 - (-1 (-114) (-2 (|:| -2629 *2) (|:| -2630 *5)) - (-2 (|:| -2629 *2) (|:| -2630 *5)))) - (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-859)) - (-4 *7 (-967 *4 *5 (-876 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-960 (-229))) (-5 *1 (-1233))))) + (-1 (-85) (-2 (|:| -2518 *2) (|:| -2519 *5)) + (-2 (|:| -2518 *2) (|:| -2519 *5)))) + (-5 *1 (-415 *3 *4 *2 *5 *6 *7)) (-4 *2 (-781)) + (-4 *7 (-888 *4 *5 (-798 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-881 (-179))) (-5 *1 (-1154))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-960 (-229))) (-5 *4 (-886)) (-5 *2 (-1292)) (-5 *1 (-480)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1068)) (-4 *1 (-999 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-960 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-960 *3)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) + (-12 (-5 *3 (-881 (-179))) (-5 *4 (-808)) (-5 *2 (-1213)) (-5 *1 (-422)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-989)) (-4 *1 (-920 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-881 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-960 (-229))) (-5 *1 (-1233)) (-5 *3 (-229))))) + (-12 (-5 *2 (-881 (-179))) (-5 *1 (-1154)) (-5 *3 (-179))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-229)) (-5 *5 (-557)) (-5 *2 (-1232 *3)) (-5 *1 (-808 *3)) - (-4 *3 (-993)))) + (-12 (-5 *4 (-179)) (-5 *5 (-499)) (-5 *2 (-1153 *3)) (-5 *1 (-733 *3)) + (-4 *3 (-914)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-659 (-659 (-960 (-229))))) (-5 *4 (-114)) (-5 *1 (-1232 *2)) - (-4 *2 (-993))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1232 *3)) (-4 *3 (-993))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1232 *3)) (-4 *3 (-993))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1232 *3)) (-4 *3 (-993))))) -(((*1 *2 *1) - (-12 (-5 *2 (-659 (-659 (-960 (-229))))) (-5 *1 (-1232 *3)) (-4 *3 (-993))))) -(((*1 *2 *1) (-12 (-5 *1 (-1232 *2)) (-4 *2 (-993))))) + (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *4 (-85)) (-5 *1 (-1153 *2)) + (-4 *2 (-914))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1153 *3)) (-4 *3 (-914))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1153 *3)) (-4 *3 (-914))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1153 *3)) (-4 *3 (-914))))) +(((*1 *2 *1) + (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *1 (-1153 *3)) (-4 *3 (-914))))) +(((*1 *2 *1) (-12 (-5 *1 (-1153 *2)) (-4 *2 (-914))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) - (-4 *8 (-1090 *4 *5 *6 *7)))) + (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *8)) + (-4 *8 (-1011 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-114)))) + (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-85)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) - (-4 *8 (-1090 *4 *5 *6 *7)))) + (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *8)) + (-4 *8 (-1011 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-114) *9)) (-5 *5 (-1 (-114) *9 *9)) - (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-813)) (-4 *8 (-859)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3742 (-659 *9)))) (-5 *3 (-659 *9)) - (-4 *1 (-1231 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-114) *8 *8)) (-4 *8 (-1084 *5 *6 *7)) - (-4 *5 (-568)) (-4 *6 (-813)) (-4 *7 (-859)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3742 (-659 *8)))) (-5 *3 (-659 *8)) - (-4 *1 (-1231 *5 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-659 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *6 (-1084 *3 *4 *5)) - (-5 *2 (-2 (|:| -4289 (-659 *6)) (|:| -1903 (-659 *6))))))) + (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) + (-4 *9 (-1005 *6 *7 *8)) (-4 *6 (-510)) (-4 *7 (-738)) (-4 *8 (-781)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3464 (-599 *9)))) (-5 *3 (-599 *9)) + (-4 *1 (-1152 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-1005 *5 *6 *7)) + (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3464 (-599 *8)))) (-5 *3 (-599 *8)) + (-4 *1 (-1152 *5 *6 *7 *8))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-599 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *6 (-1005 *3 *4 *5)) + (-5 *2 (-2 (|:| -4011 (-599 *6)) (|:| -1795 (-599 *6))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-659 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) - (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)))) + (-12 (-5 *3 (-599 *1)) (-4 *1 (-1005 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-114)))) + (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1152 *4 *5 *6 *3)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-659 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) - (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)))) + (-12 (-5 *3 (-599 *1)) (-4 *1 (-1005 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-114)))) + (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-85)))) ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *1 (-1231 *5 *6 *7 *3)) (-4 *5 (-568)) - (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-114))))) + (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1152 *5 *6 *7 *3)) (-4 *5 (-510)) + (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1152 *4 *5 *6 *3)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-659 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) - (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)))) + (-12 (-5 *3 (-599 *1)) (-4 *1 (-1005 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-114)))) + (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1152 *4 *5 *6 *3)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-659 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) - (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)))) + (-12 (-5 *3 (-599 *1)) (-4 *1 (-1005 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-114)))) + (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1152 *4 *5 *6 *3)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-114) *7 (-659 *7))) (-4 *1 (-1231 *4 *5 *6 *7)) - (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) - (-5 *2 (-114))))) + (-12 (-5 *3 (-1 (-85) *7 (-599 *7))) (-4 *1 (-1152 *4 *5 *6 *7)) + (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) + (-5 *2 (-85))))) (((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-659 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-114) *8 *8)) - (-4 *1 (-1231 *5 *6 *7 *8)) (-4 *5 (-568)) (-4 *6 (-813)) (-4 *7 (-859)) - (-4 *8 (-1084 *5 *6 *7))))) + (-12 (-5 *2 (-599 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) + (-4 *1 (-1152 *5 *6 *7 *8)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) + (-4 *8 (-1005 *5 *6 *7))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *2 (-1084 *3 *4 *5))))) + (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *2 (-1005 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *2 (-1084 *3 *4 *5))))) + (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *2 (-1005 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *2 (-1084 *3 *4 *5))))) + (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *2 (-1005 *3 *4 *5))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *2 (-1084 *3 *4 *5))))) + (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *2 (-1005 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1231 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-813)) (-4 *4 (-859)) - (-4 *5 (-1084 *2 *3 *4))))) + (-12 (-4 *1 (-1152 *2 *3 *4 *5)) (-4 *2 (-510)) (-4 *3 (-738)) (-4 *4 (-781)) + (-4 *5 (-1005 *2 *3 *4))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *2 (-1084 *3 *4 *5))))) + (-12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *2 (-1005 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *8)) (-5 *4 (-114)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-659 *10)) - (-5 *1 (-639 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1090 *5 *6 *7 *8)) - (-4 *10 (-1128 *5 *6 *7 *8)))) + (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) + (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 *10)) + (-5 *1 (-579 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1011 *5 *6 *7 *8)) + (-4 *10 (-1049 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-798 *5 (-876 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) - (-14 *6 (-659 (-1196))) (-5 *2 (-659 (-1065 *5 *6))) (-5 *1 (-643 *5 *6)))) + (-12 (-5 *3 (-599 (-723 *5 (-798 *6)))) (-5 *4 (-85)) (-4 *5 (-406)) + (-14 *6 (-599 (-1117))) (-5 *2 (-599 (-986 *5 *6))) (-5 *1 (-583 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-798 *5 (-876 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) - (-14 *6 (-659 (-1196))) - (-5 *2 (-659 (-1165 *5 (-542 (-876 *6)) (-876 *6) (-798 *5 (-876 *6))))) - (-5 *1 (-643 *5 *6)))) + (-12 (-5 *3 (-599 (-723 *5 (-798 *6)))) (-5 *4 (-85)) (-4 *5 (-406)) + (-14 *6 (-599 (-1117))) + (-5 *2 (-599 (-1086 *5 (-484 (-798 *6)) (-798 *6) (-723 *5 (-798 *6))))) + (-5 *1 (-583 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-659 *8)) (-5 *4 (-114)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-659 (-1046 *5 *6 *7 *8))) - (-5 *1 (-1046 *5 *6 *7 *8)))) + (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) + (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-967 *5 *6 *7 *8))) + (-5 *1 (-967 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-659 *8)) (-5 *4 (-114)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-659 (-1046 *5 *6 *7 *8))) - (-5 *1 (-1046 *5 *6 *7 *8)))) + (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) + (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-967 *5 *6 *7 *8))) + (-5 *1 (-967 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-659 (-798 *5 (-876 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) - (-14 *6 (-659 (-1196))) (-5 *2 (-659 (-1065 *5 *6))) (-5 *1 (-1065 *5 *6)))) + (-12 (-5 *3 (-599 (-723 *5 (-798 *6)))) (-5 *4 (-85)) (-4 *5 (-406)) + (-14 *6 (-599 (-1117))) (-5 *2 (-599 (-986 *5 *6))) (-5 *1 (-986 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *8)) (-5 *4 (-114)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-659 *1)) - (-4 *1 (-1090 *5 *6 *7 *8)))) + (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) + (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 *1)) + (-4 *1 (-1011 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-659 *8)) (-5 *4 (-114)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-659 (-1165 *5 *6 *7 *8))) - (-5 *1 (-1165 *5 *6 *7 *8)))) + (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) + (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-1086 *5 *6 *7 *8))) + (-5 *1 (-1086 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-659 *8)) (-5 *4 (-114)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-659 (-1165 *5 *6 *7 *8))) - (-5 *1 (-1165 *5 *6 *7 *8)))) + (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) + (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-1086 *5 *6 *7 *8))) + (-5 *1 (-1086 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *2 (-659 *1)) (-4 *1 (-1231 *4 *5 *6 *7))))) + (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1152 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) - (-5 *2 (-659 (-2 (|:| -4289 *1) (|:| -1903 (-659 *7))))) (-5 *3 (-659 *7)) - (-4 *1 (-1231 *4 *5 *6 *7))))) + (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) + (-5 *2 (-599 (-2 (|:| -4011 *1) (|:| -1795 (-599 *7))))) (-5 *3 (-599 *7)) + (-4 *1 (-1152 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-659 *5))))) + (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-599 *5))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-813)) - (-4 *5 (-859)) (-4 *2 (-1084 *3 *4 *5))))) + (|partial| -12 (-4 *1 (-1152 *3 *4 *5 *2)) (-4 *3 (-510)) (-4 *4 (-738)) + (-4 *5 (-781)) (-4 *2 (-1005 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *6 (-1084 *3 *4 *5)) (-4 *5 (-381)) (-5 *2 (-789))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-812)) (-4 *2 (-1068)))) + (-12 (-4 *1 (-1152 *3 *4 *5 *6)) (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *6 (-1005 *3 *4 *5)) (-4 *5 (-323)) (-5 *2 (-714))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-737)) (-4 *2 (-989)))) ((*1 *2 *1 *1) - (-12 (-4 *2 (-1068)) (-5 *1 (-50 *2 *3)) (-14 *3 (-659 (-1196))))) + (-12 (-4 *2 (-989)) (-5 *1 (-50 *2 *3)) (-14 *3 (-599 (-1117))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-659 (-936))) (-4 *2 (-376)) (-5 *1 (-154 *4 *2 *5)) - (-14 *4 (-936)) (-14 *5 (-1012 *4 *2)))) + (-12 (-5 *3 (-599 (-857))) (-4 *2 (-318)) (-5 *1 (-125 *4 *2 *5)) + (-14 *4 (-857)) (-14 *5 (-933 *4 *2)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1068) (-859))) - (-14 *4 (-659 (-1196))))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-133)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1068)))) + (-12 (-5 *2 (-268 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) + (-14 *4 (-599 (-1117))))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-104)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-339 *2 *3)) (-4 *3 (-1041)) (-4 *2 (-989)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-557)) (-4 *2 (-568)) (-5 *1 (-638 *2 *4)) (-4 *4 (-1262 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-4 *1 (-726 *2)) (-4 *2 (-1068)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-1068)) (-5 *1 (-753 *2 *3)) (-4 *3 (-744)))) + (-12 (-5 *3 (-499)) (-4 *2 (-510)) (-5 *1 (-578 *2 *4)) (-4 *4 (-1183 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-666 *2)) (-4 *2 (-989)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-989)) (-5 *1 (-693 *2 *3)) (-4 *3 (-684)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 *5)) (-5 *3 (-659 (-789))) (-4 *1 (-758 *4 *5)) - (-4 *4 (-1068)) (-4 *5 (-859)))) + (-12 (-5 *2 (-599 *5)) (-5 *3 (-599 (-714))) (-4 *1 (-698 *4 *5)) + (-4 *4 (-989)) (-4 *5 (-781)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-789)) (-4 *1 (-758 *4 *2)) (-4 *4 (-1068)) (-4 *2 (-859)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-4 *1 (-864 *2)) (-4 *2 (-1068)))) + (-12 (-5 *3 (-714)) (-4 *1 (-698 *4 *2)) (-4 *4 (-989)) (-4 *2 (-781)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-786 *2)) (-4 *2 (-989)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 *6)) (-5 *3 (-659 (-789))) (-4 *1 (-967 *4 *5 *6)) - (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *6 (-859)))) + (-12 (-5 *2 (-599 *6)) (-5 *3 (-599 (-714))) (-4 *1 (-888 *4 *5 *6)) + (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-789)) (-4 *1 (-967 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-813)) - (-4 *2 (-859)))) + (-12 (-5 *3 (-714)) (-4 *1 (-888 *4 *5 *2)) (-4 *4 (-989)) (-4 *5 (-738)) + (-4 *2 (-781)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-789)) (-4 *2 (-967 *4 (-542 *5) *5)) (-5 *1 (-1145 *4 *5 *2)) - (-4 *4 (-1068)) (-4 *5 (-859)))) + (-12 (-5 *3 (-714)) (-4 *2 (-888 *4 (-484 *5) *5)) (-5 *1 (-1066 *4 *5 *2)) + (-4 *4 (-989)) (-4 *5 (-781)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-789)) (-5 *2 (-963 *4)) (-5 *1 (-1229 *4)) (-4 *4 (-1068))))) + (-12 (-5 *3 (-714)) (-5 *2 (-884 *4)) (-5 *1 (-1150 *4)) (-4 *4 (-989))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1145 *4 *3 *5))) (-4 *4 (-38 (-419 (-557)))) - (-4 *4 (-1068)) (-4 *3 (-859)) (-5 *1 (-1145 *4 *3 *5)) - (-4 *5 (-967 *4 (-542 *3) *3)))) + (-12 (-5 *2 (-1 (-1066 *4 *3 *5))) (-4 *4 (-38 (-361 (-499)))) (-4 *4 (-989)) + (-4 *3 (-781)) (-5 *1 (-1066 *4 *3 *5)) (-4 *5 (-888 *4 (-484 *3) *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1229 *4))) (-5 *3 (-1196)) (-5 *1 (-1229 *4)) - (-4 *4 (-38 (-419 (-557)))) (-4 *4 (-1068))))) + (-12 (-5 *2 (-1 (-1150 *4))) (-5 *3 (-1117)) (-5 *1 (-1150 *4)) + (-4 *4 (-38 (-361 (-499)))) (-4 *4 (-989))))) (((*1 *2 *2) - (-12 (-4 *3 (-629 (-903 *3))) (-4 *3 (-899 *3)) (-4 *3 (-464)) - (-5 *1 (-1228 *3 *2)) (-4 *2 (-629 (-903 *3))) (-4 *2 (-899 *3)) - (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-569 (-825 *3))) (-4 *3 (-821 *3)) (-4 *3 (-406)) + (-5 *1 (-1149 *3 *2)) (-4 *2 (-569 (-825 *3))) (-4 *2 (-821 *3)) + (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) -(((*1 *2 *2) (-12 (-5 *2 (-983 *3)) (-4 *3 (-1120)) (-5 *1 (-984 *3)))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) +(((*1 *2 *2) (-12 (-5 *2 (-904 *3)) (-4 *3 (-1041)) (-5 *1 (-905 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-149)) (-4 *2 (-319)) (-4 *2 (-464)) (-4 *3 (-859)) - (-4 *4 (-813)) (-5 *1 (-1005 *2 *3 *4 *5)) (-4 *5 (-967 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-557))) (-5 *1 (-1138)))) + (-12 (-4 *2 (-120)) (-4 *2 (-261)) (-4 *2 (-406)) (-4 *3 (-781)) + (-4 *4 (-738)) (-5 *1 (-926 *2 *3 *4 *5)) (-4 *5 (-888 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-268 (-499))) (-5 *1 (-1059)))) ((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-433 *3) (-1222)))))) + (-12 (-4 *3 (-406)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-375 *3) (-1143)))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-568)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-1227 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5))))) + (-12 (-4 *3 (-510)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) + (-5 *1 (-1148 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-568)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-1227 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5))))) + (-12 (-4 *3 (-510)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) + (-5 *1 (-1148 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1057 (-557)))) (-5 *2 (-171 (-326 *4))) - (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-433 (-171 *4)))))) + (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-142 (-268 *4))) + (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 (-142 *4)))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-171 *3)) - (-5 *1 (-1226 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *4)))))) + (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-142 *3)) + (-5 *1 (-1147 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1057 (-557)))) (-5 *2 (-114)) (-5 *1 (-191 *4 *3)) - (-4 *3 (-13 (-27) (-1222) (-433 (-171 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) + (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) + (-4 *3 (-13 (-27) (-1143) (-375 (-142 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-114)) - (-5 *1 (-1226 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) + (-12 (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-85)) + (-5 *1 (-1147 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1057 (-557)))) (-5 *2 (-326 *4)) - (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-433 (-171 *4)))))) + (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-268 *4)) + (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 (-142 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-1226 *3 *2)) - (-4 *2 (-13 (-27) (-1222) (-433 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) + (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *3 *2)) + (-4 *2 (-13 (-27) (-1143) (-375 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1057 (-557)))) (-5 *2 (-326 *4)) - (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-433 (-171 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)))) - ((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-175)))) + (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-268 *4)) + (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 (-142 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-1226 *3 *2)) - (-4 *2 (-13 (-27) (-1222) (-433 *3)))))) + (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *3 *2)) + (-4 *2 (-13 (-27) (-1143) (-375 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1057 (-557)))) (-5 *1 (-191 *3 *2)) - (-4 *2 (-13 (-27) (-1222) (-433 (-171 *3)))))) + (-12 (-4 *3 (-13 (-510) (-978 (-499)))) (-5 *1 (-162 *3 *2)) + (-4 *2 (-13 (-27) (-1143) (-375 (-142 *3)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-1226 *3 *2)) - (-4 *2 (-13 (-27) (-1222) (-433 *3)))))) + (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *3 *2)) + (-4 *2 (-13 (-27) (-1143) (-375 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1057 (-557)))) (-5 *1 (-191 *3 *2)) - (-4 *2 (-13 (-27) (-1222) (-433 (-171 *3)))))) + (-12 (-4 *3 (-13 (-510) (-978 (-499)))) (-5 *1 (-162 *3 *2)) + (-4 *2 (-13 (-27) (-1143) (-375 (-142 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-557)))) (-5 *1 (-191 *4 *2)) - (-4 *2 (-13 (-27) (-1222) (-433 (-171 *4)))))) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *1 (-162 *4 *2)) + (-4 *2 (-13 (-27) (-1143) (-375 (-142 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-1226 *3 *2)) - (-4 *2 (-13 (-27) (-1222) (-433 *3))))) + (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *3 *2)) + (-4 *2 (-13 (-27) (-1143) (-375 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) - (-5 *1 (-1226 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-433 *4)))))) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) + (-5 *1 (-1147 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1057 (-557)))) (-5 *1 (-191 *3 *2)) - (-4 *2 (-13 (-27) (-1222) (-433 (-171 *3)))))) + (-12 (-4 *3 (-13 (-510) (-978 (-499)))) (-5 *1 (-162 *3 *2)) + (-4 *2 (-13 (-27) (-1143) (-375 (-142 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-557)))) (-5 *1 (-191 *4 *2)) - (-4 *2 (-13 (-27) (-1222) (-433 (-171 *4)))))) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *1 (-162 *4 *2)) + (-4 *2 (-13 (-27) (-1143) (-375 (-142 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-1226 *3 *2)) - (-4 *2 (-13 (-27) (-1222) (-433 *3))))) + (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1147 *3 *2)) + (-4 *2 (-13 (-27) (-1143) (-375 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) - (-5 *1 (-1226 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-433 *4)))))) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) + (-5 *1 (-1147 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) - (-4 *4 (-401)))) + (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) + (-4 *4 (-343)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) - ((*1 *1 *1) (-4 *1 (-1225)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) + ((*1 *1 *1) (-4 *1 (-1146)))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-859)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-781)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) - (-4 *4 (-401)))) + (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) + (-4 *4 (-343)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) - ((*1 *1 *1) (-4 *1 (-1225)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) + ((*1 *1 *1) (-4 *1 (-1146)))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) - ((*1 *1 *1) (-4 *1 (-1225)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) + ((*1 *1 *1) (-4 *1 (-1146)))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) - ((*1 *1 *1) (-4 *1 (-1225)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) + ((*1 *1 *1) (-4 *1 (-1146)))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) - ((*1 *1 *1) (-4 *1 (-1225)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) + ((*1 *1 *1) (-4 *1 (-1146)))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-859)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-781)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) - (-4 *4 (-401)))) + (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) + (-4 *4 (-343)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3)))) - ((*1 *1 *1) (-4 *1 (-1225)))) -(((*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1223 *3)) (-4 *3 (-1120))))) -(((*1 *1 *2) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-5 *1 (-1223 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3)))) + ((*1 *1 *1) (-4 *1 (-1146)))) +(((*1 *2 *1) (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1144 *3)) (-4 *3 (-1041))))) +(((*1 *1 *2) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1041)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-1144 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-659 (-1223 *2))) (-5 *1 (-1223 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1120))))) + (-12 (-5 *3 (-599 (-1144 *2))) (-5 *1 (-1144 *2)) (-4 *2 (-1041))))) +(((*1 *1 *1) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1041))))) (((*1 *2 *1) - (-12 (-5 *2 (-659 (-1223 *3))) (-5 *1 (-1223 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1223 *3)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-599 (-1144 *3))) (-5 *1 (-1144 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1144 *3)) (-4 *3 (-1041))))) (((*1 *2 *1) - (-12 (-5 *2 (-659 (-1223 *3))) (-5 *1 (-1223 *3)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-599 (-1144 *3))) (-5 *1 (-1144 *3)) (-4 *3 (-1041))))) (((*1 *2) - (-12 (-4 *2 (-13 (-433 *3) (-1021))) (-5 *1 (-287 *3 *2)) (-4 *3 (-568)))) + (-12 (-4 *2 (-13 (-375 *3) (-942))) (-5 *1 (-229 *3 *2)) (-4 *3 (-510)))) ((*1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) - (-4 *4 (-401)))) - ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-1222)))) -(((*1 *2) (-12 (-5 *2 (-1152 (-229))) (-5 *1 (-1220))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1178)) (-5 *2 (-557)) (-5 *1 (-1219 *4)) (-4 *4 (-1068))))) -(((*1 *2 *3) (|partial| -12 (-5 *2 (-557)) (-5 *1 (-1219 *3)) (-4 *3 (-1068))))) -(((*1 *2 *1) (-12 (-4 *1 (-810)) (-5 *2 (-557)))) - ((*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-919 *3)) (-4 *3 (-1120)))) + (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) + (-4 *4 (-343)))) + ((*1 *1) (-5 *1 (-431))) ((*1 *1) (-4 *1 (-1143)))) +(((*1 *2) (-12 (-5 *2 (-1073 (-179))) (-5 *1 (-1141))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1099)) (-5 *2 (-499)) (-5 *1 (-1140 *4)) (-4 *4 (-989))))) +(((*1 *2 *3) (|partial| -12 (-5 *2 (-499)) (-5 *1 (-1140 *3)) (-4 *3 (-989))))) +(((*1 *2 *1) (-12 (-4 *1 (-735)) (-5 *2 (-499)))) + ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-858) (-376))) (-4 *3 (-1262 *4)) - (-5 *2 (-557)))) + (-12 (-4 *1 (-1008 *4 *3)) (-4 *4 (-13 (-780) (-318))) (-4 *3 (-1183 *4)) + (-5 *2 (-499)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-568) (-1057 *2) (-656 *2) (-464))) - (-5 *2 (-557)) (-5 *1 (-1136 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *4))))) + (|partial| -12 (-4 *4 (-13 (-510) (-978 *2) (-596 *2) (-406))) (-5 *2 (-499)) + (-5 *1 (-1057 *4 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *4))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-853 *3)) - (-4 *3 (-13 (-27) (-1222) (-433 *6))) - (-4 *6 (-13 (-568) (-1057 *2) (-656 *2) (-464))) (-5 *2 (-557)) - (-5 *1 (-1136 *6 *3)))) + (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-775 *3)) + (-4 *3 (-13 (-27) (-1143) (-375 *6))) + (-4 *6 (-13 (-510) (-978 *2) (-596 *2) (-406))) (-5 *2 (-499)) + (-5 *1 (-1057 *6 *3)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-1178)) - (-4 *6 (-13 (-568) (-1057 *2) (-656 *2) (-464))) (-5 *2 (-557)) - (-5 *1 (-1136 *6 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *6))))) + (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-1099)) + (-4 *6 (-13 (-510) (-978 *2) (-596 *2) (-406))) (-5 *2 (-499)) + (-5 *1 (-1057 *6 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *6))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-963 *4))) (-4 *4 (-464)) (-5 *2 (-557)) - (-5 *1 (-1137 *4)))) + (|partial| -12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-406)) (-5 *2 (-499)) + (-5 *1 (-1058 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-853 (-419 (-963 *6)))) - (-5 *3 (-419 (-963 *6))) (-4 *6 (-464)) (-5 *2 (-557)) (-5 *1 (-1137 *6)))) + (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-775 (-361 (-884 *6)))) + (-5 *3 (-361 (-884 *6))) (-4 *6 (-406)) (-5 *2 (-499)) (-5 *1 (-1058 *6)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-419 (-963 *6))) (-5 *4 (-1196)) (-5 *5 (-1178)) - (-4 *6 (-464)) (-5 *2 (-557)) (-5 *1 (-1137 *6)))) - ((*1 *2 *3) (|partial| -12 (-5 *2 (-557)) (-5 *1 (-1219 *3)) (-4 *3 (-1068))))) -(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1218)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1218))))) -(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1218))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-1218))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-1218))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1218))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-875) (-875))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-875) (-659 (-875)))) (-5 *1 (-115)))) - ((*1 *2 *1) (-12 (-5 *2 (-709 (-1 (-875) (-659 (-875))))) (-5 *1 (-115)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1292)) (-5 *1 (-217 *3)) + (|partial| -12 (-5 *3 (-361 (-884 *6))) (-5 *4 (-1117)) (-5 *5 (-1099)) + (-4 *6 (-406)) (-5 *2 (-499)) (-5 *1 (-1058 *6)))) + ((*1 *2 *3) (|partial| -12 (-5 *2 (-499)) (-5 *1 (-1140 *3)) (-4 *3 (-989))))) +(((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1139)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1139))))) +(((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1139))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-1139))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-319 *2)) (-4 *2 (-1041)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-1139))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1139))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-797) (-797))) (-5 *1 (-86)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-797) (-599 (-797)))) (-5 *1 (-86)))) + ((*1 *2 *1) (-12 (-5 *2 (-649 (-1 (-797) (-599 (-797))))) (-5 *1 (-86)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1213)) (-5 *1 (-167 *3)) (-4 *3 - (-13 (-859) - (-10 -8 (-15 -4228 ((-1178) $ (-1196))) (-15 -4045 (*2 $)) - (-15 -2173 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-514)))) - ((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-728)))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1216)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-557)) (-5 *2 (-1292)) (-5 *1 (-1216))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-1216))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-1216))))) + (-13 (-781) + (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 (*2 $)) + (-15 -2066 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-456)))) + ((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-668)))) + ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1137)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *2 (-1213)) (-5 *1 (-1137))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-789)) (-4 *3 (-1236)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)))) - ((*1 *1) (-5 *1 (-174))) - ((*1 *1) (-12 (-5 *1 (-216 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1120)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-403)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-789)) (-4 *1 (-669 *3)) (-4 *3 (-1236)))) + (-12 (-5 *2 (-714)) (-4 *3 (-1157)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)))) + ((*1 *1) (-5 *1 (-145))) + ((*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-857)) (-4 *3 (-1041)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1099)) (-4 *1 (-345)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-714)) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) ((*1 *1) - (-12 (-4 *3 (-1120)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1120)) - (-4 *4 (-684 *3)))) - ((*1 *1) (-12 (-5 *1 (-901 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) - ((*1 *1 *2) (-12 (-5 *1 (-1161 *3 *2)) (-14 *3 (-789)) (-4 *2 (-1068)))) - ((*1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1068)))) - ((*1 *1 *1) (-5 *1 (-1196))) ((*1 *1) (-5 *1 (-1196))) - ((*1 *1) (-5 *1 (-1216)))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-1216))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-1216))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-1216))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-1216))))) -(((*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1215))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-51)) (-5 *1 (-1215))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-859)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-859)))) - ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-557)) (-4 *1 (-294 *3)) (-4 *3 (-1236)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-557)) (-4 *1 (-294 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -4288 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) - (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) - (|:| |relerr| (-229)))) - (|:| -2284 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1174 (-229))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1636 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-571)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-789)) (-4 *1 (-713 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -4288 - (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) - (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) - (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (|:| -2284 - (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) - (|:| |expense| (-391)) (|:| |accuracy| (-391)) - (|:| |intermediateResults| (-391)))))) - (-5 *1 (-823)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1120)) (-5 *1 (-1214 *3 *2)) (-4 *3 (-1120))))) + (-12 (-4 *3 (-1041)) (-5 *1 (-820 *2 *3 *4)) (-4 *2 (-1041)) + (-4 *4 (-624 *3)))) + ((*1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041)))) + ((*1 *1 *2) (-12 (-5 *1 (-1082 *3 *2)) (-14 *3 (-714)) (-4 *2 (-989)))) + ((*1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989)))) + ((*1 *1 *1) (-5 *1 (-1117))) ((*1 *1) (-5 *1 (-1117))) + ((*1 *1) (-5 *1 (-1137)))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1137))))) +(((*1 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1136))))) +(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-51)) (-5 *1 (-1136))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-78 *2)) (-4 *2 (-1157)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-781)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-781)))) + ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-236 *3)) (-4 *3 (-1157)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-236 *2)) (-4 *2 (-1157)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-714)) (-4 *1 (-653 *2)) (-4 *2 (-1041)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1213)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1041)) (-5 *1 (-1135 *3 *2)) (-4 *3 (-1041))))) (((*1 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) (((*1 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) (((*1 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) (((*1 *2) - (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120))))) + (-12 (-5 *2 (-1213)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) (((*1 *2) - (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120))))) + (-12 (-5 *2 (-1213)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) (((*1 *2 *3) - (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1214 *4 *5)) (-4 *4 (-1120)) - (-4 *5 (-1120))))) + (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1135 *4 *5)) (-4 *4 (-1041)) + (-4 *5 (-1041))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1214 *4 *5)) (-4 *4 (-1120)) - (-4 *5 (-1120))))) + (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1135 *4 *5)) (-4 *4 (-1041)) + (-4 *5 (-1041))))) (((*1 *2) - (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120))))) + (-12 (-5 *2 (-1213)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) (((*1 *1 *2) - (-12 (-5 *2 (-659 (-2 (|:| -4288 *3) (|:| -2284 *4)))) (-4 *3 (-1120)) - (-4 *4 (-1120)) (-4 *1 (-1213 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1213 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-557)) (-5 *1 (-1211 *2)) (-4 *2 (-376))))) + (-12 (-5 *2 (-599 (-2 (|:| -4010 *3) (|:| |entry| *4)))) (-4 *3 (-1041)) + (-4 *4 (-1041)) (-4 *1 (-1134 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1134 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-1132 *2)) (-4 *2 (-318))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-936)) (-5 *2 (-1190 *3)) (-5 *1 (-1211 *3)) (-4 *3 (-376))))) -(((*1 *2 *3) (-12 (-5 *3 (-659 *2)) (-5 *1 (-1211 *2)) (-4 *2 (-376))))) + (-12 (-5 *4 (-857)) (-5 *2 (-1111 *3)) (-5 *1 (-1132 *3)) (-4 *3 (-318))))) +(((*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-5 *1 (-1132 *2)) (-4 *2 (-318))))) (((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) (-4 *4 (-433 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-55)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-789)) (-5 *1 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-115)))) + (-12 (-5 *2 (-86)) (-4 *3 (-510)) (-5 *1 (-32 *3 *4)) (-4 *4 (-375 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-55)) (-5 *1 (-86)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-714)) (-5 *1 (-86)))) + ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-86)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-160 *3 *4)) (-4 *4 (-433 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-115)) (-5 *1 (-165)))) + (-12 (-5 *2 (-86)) (-4 *3 (-510)) (-5 *1 (-131 *3 *4)) (-4 *4 (-375 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-86)) (-5 *1 (-136)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-287 *3 *4)) - (-4 *4 (-13 (-433 *3) (-1021))))) - ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310)))) - ((*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) + (-12 (-5 *2 (-86)) (-4 *3 (-510)) (-5 *1 (-229 *3 *4)) + (-4 *4 (-13 (-375 *3) (-942))))) + ((*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-251 *3)) (-4 *3 (-252)))) + ((*1 *2 *2) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *4 (-1120)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))) + (-12 (-5 *2 (-86)) (-4 *4 (-1041)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4)) (-4 *4 (-433 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-626 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-86)) (-4 *3 (-510)) (-5 *1 (-385 *3 *4)) (-4 *4 (-375 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-566 *3)) (-4 *3 (-1041)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-644 *3 *4)) - (-4 *4 (-13 (-433 *3) (-1021) (-1222))))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1038)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1210 *2)) (-4 *2 (-1120))))) + (-12 (-5 *2 (-86)) (-4 *3 (-510)) (-5 *1 (-584 *3 *4)) + (-4 *4 (-13 (-375 *3) (-942) (-1143))))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-959)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1131 *2)) (-4 *2 (-1041))))) (((*1 *2 *1) - (-12 (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-659 (-659 *3))))) + (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)) (-5 *2 (-599 (-599 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-5 *2 (-659 (-659 *5))))) - ((*1 *2 *1) (-12 (-5 *2 (-659 (-659 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1120))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 (-659 *3))) (-4 *3 (-1120)) (-5 *1 (-1209 *3))))) + (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) + (-4 *7 (-195 *3 *5)) (-5 *2 (-599 (-599 *5))))) + ((*1 *2 *1) (-12 (-5 *2 (-599 (-599 *3))) (-5 *1 (-1130 *3)) (-4 *3 (-1041))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-1041)) (-5 *1 (-1130 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-859)) + (-12 (-4 *4 (-781)) (-5 *2 - (-2 (|:| |f1| (-659 *4)) (|:| |f2| (-659 (-659 (-659 *4)))) - (|:| |f3| (-659 (-659 *4))) (|:| |f4| (-659 (-659 (-659 *4)))))) - (-5 *1 (-1207 *4)) (-5 *3 (-659 (-659 (-659 *4))))))) + (-2 (|:| |f1| (-599 *4)) (|:| |f2| (-599 (-599 (-599 *4)))) + (|:| |f3| (-599 (-599 *4))) (|:| |f4| (-599 (-599 (-599 *4)))))) + (-5 *1 (-1128 *4)) (-5 *3 (-599 (-599 (-599 *4))))))) (((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-859)) (-5 *3 (-659 *6)) (-5 *5 (-659 *3)) + (-12 (-4 *6 (-781)) (-5 *3 (-599 *6)) (-5 *5 (-599 *3)) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-659 *5)) (|:| |f3| *5) (|:| |f4| (-659 *5)))) - (-5 *1 (-1207 *6)) (-5 *4 (-659 *5))))) + (-2 (|:| |f1| *3) (|:| |f2| (-599 *5)) (|:| |f3| *5) (|:| |f4| (-599 *5)))) + (-5 *1 (-1128 *6)) (-5 *4 (-599 *5))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-532 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-318)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) + (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-568)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-4 *7 (-1010 *4)) (-4 *2 (-704 *7 *8 *9)) - (-5 *1 (-533 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-704 *4 *5 *6)) - (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) + (|partial| -12 (-4 *4 (-510)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) + (-4 *7 (-931 *4)) (-4 *2 (-644 *7 *8 *9)) + (-5 *1 (-475 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-644 *4 *5 *6)) + (-4 *8 (-327 *7)) (-4 *9 (-327 *7)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)) (-4 *2 (-376)))) + (|partial| -12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) + (-4 *4 (-327 *2)) (-4 *2 (-318)))) ((*1 *2 *2) - (|partial| -12 (-4 *3 (-376)) (-4 *3 (-175)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *1 (-706 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5)))) - ((*1 *1 *1) (|partial| -12 (-5 *1 (-707 *2)) (-4 *2 (-376)) (-4 *2 (-1068)))) + (|partial| -12 (-4 *3 (-318)) (-4 *3 (-146)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)) (-5 *1 (-646 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) + ((*1 *1 *1) (|partial| -12 (-5 *1 (-647 *2)) (-4 *2 (-318)) (-4 *2 (-989)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1142 *2 *3 *4 *5)) (-4 *3 (-1068)) - (-4 *4 (-245 *2 *3)) (-4 *5 (-245 *2 *3)) (-4 *3 (-376)))) - ((*1 *2 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-859)) (-5 *1 (-1207 *3))))) + (|partial| -12 (-4 *1 (-1063 *2 *3 *4 *5)) (-4 *3 (-989)) + (-4 *4 (-195 *2 *3)) (-4 *5 (-195 *2 *3)) (-4 *3 (-318)))) + ((*1 *2 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-1128 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-859)) (-5 *2 (-659 (-659 *4))) (-5 *1 (-1207 *4)) - (-5 *3 (-659 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-659 (-659 *3))) (-4 *3 (-859)) (-5 *1 (-1207 *3))))) + (-12 (-4 *4 (-781)) (-5 *2 (-599 (-599 *4))) (-5 *1 (-1128 *4)) + (-5 *3 (-599 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-781)) (-5 *1 (-1128 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-859)) (-5 *2 (-1209 (-659 *4))) (-5 *1 (-1207 *4)) - (-5 *3 (-659 *4))))) + (-12 (-4 *4 (-781)) (-5 *2 (-1130 (-599 *4))) (-5 *1 (-1128 *4)) + (-5 *3 (-599 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-859)) (-5 *2 (-659 (-659 (-659 *4)))) (-5 *1 (-1207 *4)) - (-5 *3 (-659 (-659 *4)))))) + (-12 (-4 *4 (-781)) (-5 *2 (-599 (-599 (-599 *4)))) (-5 *1 (-1128 *4)) + (-5 *3 (-599 (-599 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1209 (-659 *4))) (-4 *4 (-859)) (-5 *2 (-659 (-659 *4))) - (-5 *1 (-1207 *4))))) + (-12 (-5 *3 (-1130 (-599 *4))) (-4 *4 (-781)) (-5 *2 (-599 (-599 *4))) + (-5 *1 (-1128 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 (-659 (-659 *4)))) (-5 *2 (-659 (-659 *4))) - (-5 *1 (-1207 *4)) (-4 *4 (-859))))) + (-12 (-5 *3 (-599 (-599 (-599 *4)))) (-5 *2 (-599 (-599 *4))) + (-5 *1 (-1128 *4)) (-4 *4 (-781))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-659 (-659 (-659 *4)))) (-5 *2 (-659 (-659 *4))) (-4 *4 (-859)) - (-5 *1 (-1207 *4))))) + (-12 (-5 *3 (-599 (-599 (-599 *4)))) (-5 *2 (-599 (-599 *4))) (-4 *4 (-781)) + (-5 *1 (-1128 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-659 (-659 (-659 *4)))) (-5 *3 (-659 *4)) (-4 *4 (-859)) - (-5 *1 (-1207 *4))))) + (-12 (-5 *2 (-599 (-599 (-599 *4)))) (-5 *3 (-599 *4)) (-4 *4 (-781)) + (-5 *1 (-1128 *4))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-659 (-659 (-659 *5)))) (-5 *3 (-1 (-114) *5 *5)) - (-5 *4 (-659 *5)) (-4 *5 (-859)) (-5 *1 (-1207 *5))))) + (-12 (-5 *2 (-599 (-599 (-599 *5)))) (-5 *3 (-1 (-85) *5 *5)) + (-5 *4 (-599 *5)) (-4 *5 (-781)) (-5 *1 (-1128 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-114) *6 *6)) (-4 *6 (-859)) (-5 *4 (-659 *6)) - (-5 *2 (-2 (|:| |fs| (-114)) (|:| |sd| *4) (|:| |td| (-659 *4)))) - (-5 *1 (-1207 *6)) (-5 *5 (-659 *4))))) -(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206))))) -(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206))))) -(((*1 *2) (-12 (-5 *2 (-132)) (-5 *1 (-1206))))) -(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1206))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-419 (-963 *5)))) (-5 *4 (-659 (-1196))) (-4 *5 (-568)) - (-5 *2 (-659 (-659 (-963 *5)))) (-5 *1 (-1205 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-419 (-963 (-557))))) - (-5 *2 (-659 (-659 (-305 (-963 *4))))) (-5 *1 (-393 *4)) - (-4 *4 (-13 (-858) (-376))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-305 (-419 (-963 (-557)))))) - (-5 *2 (-659 (-659 (-305 (-963 *4))))) (-5 *1 (-393 *4)) - (-4 *4 (-13 (-858) (-376))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-963 (-557)))) (-5 *2 (-659 (-305 (-963 *4)))) - (-5 *1 (-393 *4)) (-4 *4 (-13 (-858) (-376))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-305 (-419 (-963 (-557))))) (-5 *2 (-659 (-305 (-963 *4)))) - (-5 *1 (-393 *4)) (-4 *4 (-13 (-858) (-376))))) + (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-781)) (-5 *4 (-599 *6)) + (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-599 *4)))) + (-5 *1 (-1128 *6)) (-5 *5 (-599 *4))))) +(((*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1127))))) +(((*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1127))))) +(((*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1127))))) +(((*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1127))))) +(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-1127))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-361 (-884 *5)))) (-5 *4 (-599 (-1117))) (-4 *5 (-510)) + (-5 *2 (-599 (-599 (-884 *5)))) (-5 *1 (-1126 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-361 (-884 (-499))))) + (-5 *2 (-599 (-599 (-247 (-884 *4))))) (-5 *1 (-335 *4)) + (-4 *4 (-13 (-780) (-318))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-247 (-361 (-884 (-499)))))) + (-5 *2 (-599 (-599 (-247 (-884 *4))))) (-5 *1 (-335 *4)) + (-4 *4 (-13 (-780) (-318))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-361 (-884 (-499)))) (-5 *2 (-599 (-247 (-884 *4)))) + (-5 *1 (-335 *4)) (-4 *4 (-13 (-780) (-318))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-247 (-361 (-884 (-499))))) (-5 *2 (-599 (-247 (-884 *4)))) + (-5 *1 (-335 *4)) (-4 *4 (-13 (-780) (-318))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1196)) - (-4 *6 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) - (-4 *4 (-13 (-29 *6) (-1222) (-977))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2220 (-659 *4)))) - (-5 *1 (-671 *6 *4 *3)) (-4 *3 (-676 *4)))) + (|partial| -12 (-5 *5 (-1117)) + (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) + (-4 *4 (-13 (-29 *6) (-1143) (-898))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2113 (-599 *4)))) + (-5 *1 (-611 *6 *4 *3)) (-4 *3 (-616 *4)))) ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-659 *2)) - (-4 *2 (-13 (-29 *6) (-1222) (-977))) - (-4 *6 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) - (-5 *1 (-671 *6 *2 *3)) (-4 *3 (-676 *2)))) + (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-599 *2)) + (-4 *2 (-13 (-29 *6) (-1143) (-898))) + (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) + (-5 *1 (-611 *6 *2 *3)) (-4 *3 (-616 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4424)))) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4424)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2220 (-659 *4)))) - (-5 *1 (-685 *5 *6 *4 *3)) (-4 *3 (-704 *5 *6 *4)))) + (-12 (-4 *5 (-318)) (-4 *6 (-13 (-327 *5) (-10 -7 (-6 -4146)))) + (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4146)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2113 (-599 *4)))) + (-5 *1 (-625 *5 *6 *4 *3)) (-4 *3 (-644 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4424)))) - (-4 *7 (-13 (-385 *5) (-10 -7 (-6 -4424)))) - (-5 *2 (-659 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2220 (-659 *7))))) - (-5 *1 (-685 *5 *6 *7 *3)) (-5 *4 (-659 *7)) (-4 *3 (-704 *5 *6 *7)))) + (-12 (-4 *5 (-318)) (-4 *6 (-13 (-327 *5) (-10 -7 (-6 -4146)))) + (-4 *7 (-13 (-327 *5) (-10 -7 (-6 -4146)))) + (-5 *2 (-599 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2113 (-599 *7))))) + (-5 *1 (-625 *5 *6 *7 *3)) (-5 *4 (-599 *7)) (-4 *3 (-644 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-707 *5)) (-4 *5 (-376)) + (-12 (-5 *3 (-647 *5)) (-4 *5 (-318)) (-5 *2 - (-2 (|:| |particular| (-3 (-1286 *5) #2="failed")) - (|:| -2220 (-659 (-1286 *5))))) - (-5 *1 (-686 *5)) (-5 *4 (-1286 *5)))) + (-2 (|:| |particular| (-3 (-1207 *5) #2="failed")) + (|:| -2113 (-599 (-1207 *5))))) + (-5 *1 (-626 *5)) (-5 *4 (-1207 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-659 *5))) (-4 *5 (-376)) + (-12 (-5 *3 (-599 (-599 *5))) (-4 *5 (-318)) (-5 *2 - (-2 (|:| |particular| (-3 (-1286 *5) #2#)) (|:| -2220 (-659 (-1286 *5))))) - (-5 *1 (-686 *5)) (-5 *4 (-1286 *5)))) + (-2 (|:| |particular| (-3 (-1207 *5) #2#)) (|:| -2113 (-599 (-1207 *5))))) + (-5 *1 (-626 *5)) (-5 *4 (-1207 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-707 *5)) (-4 *5 (-376)) + (-12 (-5 *3 (-647 *5)) (-4 *5 (-318)) (-5 *2 - (-659 - (-2 (|:| |particular| (-3 (-1286 *5) #2#)) - (|:| -2220 (-659 (-1286 *5)))))) - (-5 *1 (-686 *5)) (-5 *4 (-659 (-1286 *5))))) + (-599 + (-2 (|:| |particular| (-3 (-1207 *5) #2#)) + (|:| -2113 (-599 (-1207 *5)))))) + (-5 *1 (-626 *5)) (-5 *4 (-599 (-1207 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-659 *5))) (-4 *5 (-376)) + (-12 (-5 *3 (-599 (-599 *5))) (-4 *5 (-318)) (-5 *2 - (-659 - (-2 (|:| |particular| (-3 (-1286 *5) #2#)) - (|:| -2220 (-659 (-1286 *5)))))) - (-5 *1 (-686 *5)) (-5 *4 (-659 (-1286 *5))))) + (-599 + (-2 (|:| |particular| (-3 (-1207 *5) #2#)) + (|:| -2113 (-599 (-1207 *5)))))) + (-5 *1 (-626 *5)) (-5 *4 (-599 (-1207 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-963 *5))) (-5 *4 (-659 (-1196))) (-4 *5 (-568)) - (-5 *2 (-659 (-659 (-305 (-419 (-963 *5)))))) (-5 *1 (-788 *5)))) + (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-599 (-1117))) (-4 *5 (-510)) + (-5 *2 (-599 (-599 (-247 (-361 (-884 *5)))))) (-5 *1 (-713 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-659 (-963 *4))) (-4 *4 (-568)) - (-5 *2 (-659 (-659 (-305 (-419 (-963 *4)))))) (-5 *1 (-788 *4)))) + (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-510)) + (-5 *2 (-599 (-599 (-247 (-361 (-884 *4)))))) (-5 *1 (-713 *4)))) ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1196)) - (-4 *5 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) - (-5 *1 (-790 *5 *2)) (-4 *2 (-13 (-29 *5) (-1222) (-977))))) + (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1117)) + (-4 *5 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) (-5 *1 (-715 *5 *2)) + (-4 *2 (-13 (-29 *5) (-1143) (-898))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-707 *7)) (-5 *5 (-1196)) - (-4 *7 (-13 (-29 *6) (-1222) (-977))) - (-4 *6 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) - (-5 *2 (-2 (|:| |particular| (-1286 *7)) (|:| -2220 (-659 (-1286 *7))))) - (-5 *1 (-822 *6 *7)) (-5 *4 (-1286 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-707 *6)) (-5 *4 (-1196)) - (-4 *6 (-13 (-29 *5) (-1222) (-977))) - (-4 *5 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) - (-5 *2 (-659 (-1286 *6))) (-5 *1 (-822 *5 *6)))) + (|partial| -12 (-5 *3 (-647 *7)) (-5 *5 (-1117)) + (-4 *7 (-13 (-29 *6) (-1143) (-898))) + (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) + (-5 *2 (-2 (|:| |particular| (-1207 *7)) (|:| -2113 (-599 (-1207 *7))))) + (-5 *1 (-747 *6 *7)) (-5 *4 (-1207 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-647 *6)) (-5 *4 (-1117)) + (-4 *6 (-13 (-29 *5) (-1143) (-898))) + (-4 *5 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) + (-5 *2 (-599 (-1207 *6))) (-5 *1 (-747 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-659 (-305 *7))) (-5 *4 (-659 (-115))) (-5 *5 (-1196)) - (-4 *7 (-13 (-29 *6) (-1222) (-977))) - (-4 *6 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) - (-5 *2 (-2 (|:| |particular| (-1286 *7)) (|:| -2220 (-659 (-1286 *7))))) - (-5 *1 (-822 *6 *7)))) + (|partial| -12 (-5 *3 (-599 (-247 *7))) (-5 *4 (-599 (-86))) (-5 *5 (-1117)) + (-4 *7 (-13 (-29 *6) (-1143) (-898))) + (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) + (-5 *2 (-2 (|:| |particular| (-1207 *7)) (|:| -2113 (-599 (-1207 *7))))) + (-5 *1 (-747 *6 *7)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-659 *7)) (-5 *4 (-659 (-115))) (-5 *5 (-1196)) - (-4 *7 (-13 (-29 *6) (-1222) (-977))) - (-4 *6 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) - (-5 *2 (-2 (|:| |particular| (-1286 *7)) (|:| -2220 (-659 (-1286 *7))))) - (-5 *1 (-822 *6 *7)))) + (|partial| -12 (-5 *3 (-599 *7)) (-5 *4 (-599 (-86))) (-5 *5 (-1117)) + (-4 *7 (-13 (-29 *6) (-1143) (-898))) + (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) + (-5 *2 (-2 (|:| |particular| (-1207 *7)) (|:| -2113 (-599 (-1207 *7))))) + (-5 *1 (-747 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-1196)) - (-4 *7 (-13 (-29 *6) (-1222) (-977))) - (-4 *6 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) - (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2220 (-659 *7))) *7 #3="failed")) - (-5 *1 (-822 *6 *7)))) + (-12 (-5 *3 (-247 *7)) (-5 *4 (-86)) (-5 *5 (-1117)) + (-4 *7 (-13 (-29 *6) (-1143) (-898))) + (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) + (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2113 (-599 *7))) *7 #3="failed")) + (-5 *1 (-747 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-1196)) - (-4 *6 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) - (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2220 (-659 *3))) *3 #3#)) - (-5 *1 (-822 *6 *3)) (-4 *3 (-13 (-29 *6) (-1222) (-977))))) + (-12 (-5 *4 (-86)) (-5 *5 (-1117)) + (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) + (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2113 (-599 *3))) *3 #3#)) + (-5 *1 (-747 *6 *3)) (-4 *3 (-13 (-29 *6) (-1143) (-898))))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-305 *2)) (-5 *4 (-115)) (-5 *5 (-659 *2)) - (-4 *2 (-13 (-29 *6) (-1222) (-977))) (-5 *1 (-822 *6 *2)) - (-4 *6 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))))) + (|partial| -12 (-5 *3 (-247 *2)) (-5 *4 (-86)) (-5 *5 (-599 *2)) + (-4 *2 (-13 (-29 *6) (-1143) (-898))) (-5 *1 (-747 *6 *2)) + (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))))) ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-305 *2)) (-5 *5 (-659 *2)) - (-4 *2 (-13 (-29 *6) (-1222) (-977))) - (-4 *6 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) - (-5 *1 (-822 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-828)) (-5 *2 (-1054)) (-5 *1 (-825)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-828)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-825)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1286 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-659 *4)) - (-5 *2 (-1054)) (-5 *1 (-825)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1286 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-659 *4)) - (-5 *2 (-1054)) (-5 *1 (-825)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-659 (-391))) (-5 *6 (-326 (-391))) - (-5 *4 (-391)) (-5 *2 (-1054)) (-5 *1 (-825)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1286 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-659 *4)) - (-5 *2 (-1054)) (-5 *1 (-825)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-659 (-391))) (-5 *6 (-326 (-391))) - (-5 *4 (-391)) (-5 *2 (-1054)) (-5 *1 (-825)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-659 (-391))) (-5 *6 (-326 (-391))) - (-5 *4 (-391)) (-5 *2 (-1054)) (-5 *1 (-825)))) + (|partial| -12 (-5 *3 (-86)) (-5 *4 (-247 *2)) (-5 *5 (-599 *2)) + (-4 *2 (-13 (-29 *6) (-1143) (-898))) + (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) + (-5 *1 (-747 *6 *2)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 - (-1 (-3 (-2 (|:| |particular| *6) (|:| -2220 (-659 *6))) "failed") *7 *6)) - (-4 *6 (-376)) (-4 *7 (-676 *6)) - (-5 *2 (-2 (|:| |particular| (-1286 *6)) (|:| -2220 (-707 *6)))) - (-5 *1 (-833 *6 *7)) (-5 *3 (-707 *6)) (-5 *4 (-1286 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-1054)) (-5 *1 (-912)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-913)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-912)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-789)) (-5 *6 (-659 (-659 (-326 *3)))) (-5 *7 (-1178)) - (-5 *8 (-229)) (-5 *5 (-659 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1054)) - (-5 *1 (-912)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-789)) (-5 *6 (-659 (-659 (-326 *3)))) (-5 *7 (-1178)) - (-5 *5 (-659 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1054)) (-5 *1 (-912)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-963 (-419 (-557)))) (-5 *2 (-659 (-391))) (-5 *1 (-1042)) - (-5 *4 (-391)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-963 (-557))) (-5 *2 (-659 (-391))) (-5 *1 (-1042)) - (-5 *4 (-391)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) - (-5 *2 (-659 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1262 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) - (-5 *2 (-659 (-305 (-326 *4)))) (-5 *1 (-1150 *4)) (-5 *3 (-326 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) - (-5 *2 (-659 (-305 (-326 *4)))) (-5 *1 (-1150 *4)) - (-5 *3 (-305 (-326 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) - (-5 *2 (-659 (-305 (-326 *5)))) (-5 *1 (-1150 *5)) - (-5 *3 (-305 (-326 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) - (-5 *2 (-659 (-305 (-326 *5)))) (-5 *1 (-1150 *5)) (-5 *3 (-326 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-659 (-1196))) - (-4 *5 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) - (-5 *2 (-659 (-659 (-305 (-326 *5))))) (-5 *1 (-1150 *5)) - (-5 *3 (-659 (-305 (-326 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-419 (-963 *5)))) (-5 *4 (-659 (-1196))) (-4 *5 (-568)) - (-5 *2 (-659 (-659 (-305 (-419 (-963 *5)))))) (-5 *1 (-1205 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-659 (-1196))) (-4 *5 (-568)) - (-5 *2 (-659 (-659 (-305 (-419 (-963 *5)))))) (-5 *1 (-1205 *5)) - (-5 *3 (-659 (-305 (-419 (-963 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-659 (-419 (-963 *4)))) (-4 *4 (-568)) - (-5 *2 (-659 (-659 (-305 (-419 (-963 *4)))))) (-5 *1 (-1205 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-659 (-659 (-305 (-419 (-963 *4)))))) - (-5 *1 (-1205 *4)) (-5 *3 (-659 (-305 (-419 (-963 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-568)) (-5 *2 (-659 (-305 (-419 (-963 *5))))) - (-5 *1 (-1205 *5)) (-5 *3 (-419 (-963 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-568)) (-5 *2 (-659 (-305 (-419 (-963 *5))))) - (-5 *1 (-1205 *5)) (-5 *3 (-305 (-419 (-963 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-659 (-305 (-419 (-963 *4))))) (-5 *1 (-1205 *4)) - (-5 *3 (-419 (-963 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-659 (-305 (-419 (-963 *4))))) (-5 *1 (-1205 *4)) - (-5 *3 (-305 (-419 (-963 *4))))))) -(((*1 *2 *1) (-12 (-5 *1 (-709 *2)) (-4 *2 (-628 (-875))))) - ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-888)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-888)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-557)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1178)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-518)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-603)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-490)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-139)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-158)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1186)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-641)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1115)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1110)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1092)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-989)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-183)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1055)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-324)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-689)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-156)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1172)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-536)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1298)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1085)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-529)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-699)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1135)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-135)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-615)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-140)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1297)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-694)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-222)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-535)))) - ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-1201))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-659 (-1201))) (-5 *1 (-1201)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-659 (-1201))) (-5 *1 (-1201))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1201))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-291)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-557) (-229) (-518) (-1178) (-1201))) (-5 *1 (-1201))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-659 (-291))) (-5 *1 (-291)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 (-1201))) (-5 *1 (-1201))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1201))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3254)) (-5 *2 (-114)) (-5 *1 (-632)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2452)) (-5 *2 (-114)) (-5 *1 (-632)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3253)) (-5 *2 (-114)) (-5 *1 (-632)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2582)) (-5 *2 (-114)) (-5 *1 (-709 *4)) - (-4 *4 (-628 (-875))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-628 (-875))) (-5 *2 (-114)) - (-5 *1 (-709 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-114)) (-5 *1 (-888)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)) (-5 *1 (-888)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-557))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-603))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-158))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1186))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-641))) (-5 *2 (-114)))) + (-1 (-3 (-2 (|:| |particular| *6) (|:| -2113 (-599 *6))) "failed") *7 *6)) + (-4 *6 (-318)) (-4 *7 (-616 *6)) + (-5 *2 (-2 (|:| |particular| (-1207 *6)) (|:| -2113 (-647 *6)))) + (-5 *1 (-756 *6 *7)) (-5 *3 (-647 *6)) (-5 *4 (-1207 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-884 (-361 (-499)))) (-5 *2 (-599 (-333))) (-5 *1 (-963)) + (-5 *4 (-333)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-884 (-499))) (-5 *2 (-599 (-333))) (-5 *1 (-963)) + (-5 *4 (-333)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) + (-5 *2 (-599 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1183 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) + (-5 *2 (-599 (-247 (-268 *4)))) (-5 *1 (-1071 *4)) (-5 *3 (-268 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) + (-5 *2 (-599 (-247 (-268 *4)))) (-5 *1 (-1071 *4)) + (-5 *3 (-247 (-268 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) + (-5 *2 (-599 (-247 (-268 *5)))) (-5 *1 (-1071 *5)) + (-5 *3 (-247 (-268 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) + (-5 *2 (-599 (-247 (-268 *5)))) (-5 *1 (-1071 *5)) (-5 *3 (-268 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-599 (-1117))) + (-4 *5 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) + (-5 *2 (-599 (-599 (-247 (-268 *5))))) (-5 *1 (-1071 *5)) + (-5 *3 (-599 (-247 (-268 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-361 (-884 *5)))) (-5 *4 (-599 (-1117))) (-4 *5 (-510)) + (-5 *2 (-599 (-599 (-247 (-361 (-884 *5)))))) (-5 *1 (-1126 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-599 (-1117))) (-4 *5 (-510)) + (-5 *2 (-599 (-599 (-247 (-361 (-884 *5)))))) (-5 *1 (-1126 *5)) + (-5 *3 (-599 (-247 (-361 (-884 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-599 (-361 (-884 *4)))) (-4 *4 (-510)) + (-5 *2 (-599 (-599 (-247 (-361 (-884 *4)))))) (-5 *1 (-1126 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-510)) (-5 *2 (-599 (-599 (-247 (-361 (-884 *4)))))) + (-5 *1 (-1126 *4)) (-5 *3 (-599 (-247 (-361 (-884 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1117)) (-4 *5 (-510)) (-5 *2 (-599 (-247 (-361 (-884 *5))))) + (-5 *1 (-1126 *5)) (-5 *3 (-361 (-884 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1117)) (-4 *5 (-510)) (-5 *2 (-599 (-247 (-361 (-884 *5))))) + (-5 *1 (-1126 *5)) (-5 *3 (-247 (-361 (-884 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-510)) (-5 *2 (-599 (-247 (-361 (-884 *4))))) (-5 *1 (-1126 *4)) + (-5 *3 (-361 (-884 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-510)) (-5 *2 (-599 (-247 (-361 (-884 *4))))) (-5 *1 (-1126 *4)) + (-5 *3 (-247 (-361 (-884 *4))))))) +(((*1 *2 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-568 (-797))))) + ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-810)))) + ((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-810)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-499)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1099)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-460)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-543)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-432)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-110)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-129)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1107)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-581)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1036)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1031)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1013)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-910)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-154)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-976)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-266)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-629)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-127)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1093)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-478)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1219)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1006)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-471)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-639)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-67)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1056)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-106)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-555)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-1218)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-634)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-477)))) + ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1122))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-1122))) (-5 *1 (-1122)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-599 (-1122))) (-5 *1 (-1122))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1122))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-460)) (-5 *1 (-233)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-499) (-179) (-460) (-1099) (-1122))) (-5 *1 (-1122))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-599 (-233))) (-5 *1 (-233)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 (-1122))) (-5 *1 (-1122))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1122))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2976)) (-5 *2 (-85)) (-5 *1 (-572)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2341)) (-5 *2 (-85)) (-5 *1 (-572)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2975)) (-5 *2 (-85)) (-5 *1 (-572)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1115))) (-5 *2 (-114)))) + (-12 (-5 *3 (|[\|\|]| -2471)) (-5 *2 (-85)) (-5 *1 (-649 *4)) + (-4 *4 (-568 (-797))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1110))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1092))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-989))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-183))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1055))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-324))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-689))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1172))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1298))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-699))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1135))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-615))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-140))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1297))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-694))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-222))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-114)) (-5 *1 (-1201)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)) (-5 *1 (-1201)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-229))) (-5 *2 (-114)) (-5 *1 (-1201)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-557))) (-5 *2 (-114)) (-5 *1 (-1201))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-303))) ((*1 *1) (-5 *1 (-875))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-568 (-797))) (-5 *2 (-85)) + (-5 *1 (-649 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-85)) (-5 *1 (-810)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-460))) (-5 *2 (-85)) (-5 *1 (-810)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-499))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-460))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-543))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-432))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1107))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-581))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1036))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1031))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1013))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-910))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-976))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-266))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-629))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1093))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1219))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1006))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-471))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-639))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1056))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-555))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-1218))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-634))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1077)) (-5 *3 (|[\|\|]| (-477))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-85)) (-5 *1 (-1122)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-460))) (-5 *2 (-85)) (-5 *1 (-1122)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1122)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-499))) (-5 *2 (-85)) (-5 *1 (-1122))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-245))) ((*1 *1) (-5 *1 (-797))) ((*1 *1) - (-12 (-4 *2 (-464)) (-4 *3 (-859)) (-4 *4 (-813)) (-5 *1 (-1005 *2 *3 *4 *5)) - (-4 *5 (-967 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1104))) + (-12 (-4 *2 (-406)) (-4 *3 (-781)) (-4 *4 (-738)) (-5 *1 (-926 *2 *3 *4 *5)) + (-4 *5 (-888 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1025))) ((*1 *1) - (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1120) (-34))) - (-4 *3 (-13 (-1120) (-34))))) - ((*1 *1) (-5 *1 (-1199))) ((*1 *1) (-5 *1 (-1200)))) -(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1196)) (-5 *1 (-1199)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-448)) (-5 *3 (-1196)) (-5 *1 (-1199)))) + (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) + (-4 *3 (-13 (-1041) (-34))))) + ((*1 *1) (-5 *1 (-1120))) ((*1 *1) (-5 *1 (-1121)))) +(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-390)) (-5 *3 (-1117)) (-5 *1 (-1120)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1117)) (-5 *1 (-1120)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-448)) (-5 *3 (-659 (-1196))) (-5 *4 (-1196)) (-5 *1 (-1199)))) - ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1196)) (-5 *1 (-1199)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1196)) (-5 *1 (-1200)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-448)) (-5 *3 (-659 (-1196))) (-5 *1 (-1200))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-448)) (-5 *1 (-1200))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-1196))) (-5 *1 (-1200))))) + (-12 (-5 *2 (-390)) (-5 *3 (-599 (-1117))) (-5 *4 (-1117)) (-5 *1 (-1120)))) + ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-390)) (-5 *3 (-1117)) (-5 *1 (-1120)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-390)) (-5 *3 (-1117)) (-5 *1 (-1121)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-390)) (-5 *3 (-599 (-1117))) (-5 *1 (-1121))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-390)) (-5 *1 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-1121))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-446)) + (-12 (-5 *3 (-388)) (-5 *2 - (-659 - (-3 (|:| -3968 (-1196)) - (|:| -3641 (-659 (-3 (|:| S (-1196)) (|:| P (-963 (-557))))))))) - (-5 *1 (-1200))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-1196))) (-5 *1 (-1200))))) + (-599 + (-3 (|:| -3690 (-1117)) + (|:| -3363 (-599 (-3 (|:| S (-1117)) (|:| P (-884 (-499))))))))) + (-5 *1 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-1121))))) (((*1 *2 *1) (-12 (-5 *2 - (-659 - (-659 - (-3 (|:| -3968 (-1196)) - (|:| -3641 (-659 (-3 (|:| S (-1196)) (|:| P (-963 (-557)))))))))) - (-5 *1 (-1200))))) -(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1200))))) -(((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1200))))) + (-599 + (-599 + (-3 (|:| -3690 (-1117)) + (|:| -3363 (-599 (-3 (|:| S (-1117)) (|:| P (-884 (-499)))))))))) + (-5 *1 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-1121))))) +(((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) + ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1121))))) (((*1 *1 *2) - (-12 (-5 *2 (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 (-448))))) - (-5 *1 (-1200))))) -(((*1 *1) (-5 *1 (-1199)))) -(((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) - ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1199))))) -(((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199))))) -(((*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1199))))) -(((*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1199))))) -(((*1 *2 *3) (-12 (-5 *3 (-659 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1199)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-659 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) + (-12 (-5 *2 (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| (-390))))) + (-5 *1 (-1121))))) +(((*1 *1) (-5 *1 (-1120)))) +(((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) + ((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1120))))) +(((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120))))) +(((*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1120))))) +(((*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1120))))) +(((*1 *2 *3) (-12 (-5 *3 (-599 (-1117))) (-5 *2 (-1213)) (-5 *1 (-1120)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-599 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-659 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199))))) + (-12 (-5 *4 (-599 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -4338 #1="void"))) (-5 *2 (-1292)) - (-5 *1 (-1199)))) + (-12 (-5 *3 (-3 (|:| |fst| (-388)) (|:| -4060 #1="void"))) (-5 *2 (-1213)) + (-5 *1 (-1120)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) - (-5 *2 (-1292)) (-5 *1 (-1199)))) + (-12 (-5 *3 (-1117)) (-5 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) + (-5 *2 (-1213)) (-5 *1 (-1120)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1196)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) - (-5 *2 (-1292)) (-5 *1 (-1199))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1199)))) - ((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199))))) + (-12 (-5 *3 (-1117)) (-5 *4 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) + (-5 *2 (-1213)) (-5 *1 (-1120))))) +(((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1120)))) + ((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-1213)) (-5 *1 (-1120))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1196)) (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4338 "void"))) - (-5 *1 (-1199))))) -(((*1 *2 *3 *1) (-12 (-5 *2 (-659 (-1196))) (-5 *1 (-1199)) (-5 *3 (-1196))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-1200)) (-5 *1 (-1199))))) -(((*1 *2 *3) - (-12 (-5 *3 (-659 *4)) (-4 *4 (-1068)) (-5 *2 (-1286 *4)) - (-5 *1 (-1197 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-936)) (-5 *2 (-1286 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-1068))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1196))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-96)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1120)))) - ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-450 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) - ((*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-877)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-982)))) - ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1095 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1135)))) ((*1 *1 *1) (-5 *1 (-1196)))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1196))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875)))) + (-12 (-5 *3 (-1117)) (-5 *2 (-3 (|:| |fst| (-388)) (|:| -4060 "void"))) + (-5 *1 (-1120))))) +(((*1 *2 *3 *1) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-1120)) (-5 *3 (-1117))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-1121)) (-5 *1 (-1120))))) +(((*1 *2 *3) + (-12 (-5 *3 (-599 *4)) (-4 *4 (-989)) (-5 *2 (-1207 *4)) (-5 *1 (-1118 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-857)) (-5 *2 (-1207 *3)) (-5 *1 (-1118 *3)) (-4 *3 (-989))))) +(((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1117))))) +(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-67)))) + ((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-80)))) + ((*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-1041)) (-4 *2 (-1041)))) + ((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-392 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-437)))) + ((*1 *2 *1) (-12 (-4 *1 (-770 *2)) (-4 *2 (-1041)))) + ((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-799)))) + ((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-903)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1016 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-1056)))) ((*1 *1 *1) (-5 *1 (-1117)))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1117))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -2981 (-659 (-875))) (|:| -2871 (-659 (-875))) - (|:| |presup| (-659 (-875))) (|:| -2979 (-659 (-875))) - (|:| |args| (-659 (-875))))) - (-5 *1 (-1196))))) + (-2 (|:| -2703 (-599 (-797))) (|:| -2600 (-599 (-797))) + (|:| |presup| (-599 (-797))) (|:| -2701 (-599 (-797))) + (|:| |args| (-599 (-797))))) + (-5 *1 (-1117))))) (((*1 *1 *1 *2) (-12 (-5 *2 - (-2 (|:| -2981 (-659 (-875))) (|:| -2871 (-659 (-875))) - (|:| |presup| (-659 (-875))) (|:| -2979 (-659 (-875))) - (|:| |args| (-659 (-875))))) - (-5 *1 (-1196)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-659 (-659 (-875)))) (-5 *1 (-1196))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-1196))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-1196))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-1196))))) -(((*1 *1 *1) (-5 *1 (-875))) - ((*1 *2 *1) - (-12 (-4 *1 (-1123 *2 *3 *4 *5 *6)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120)))) - ((*1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-1178)))) - ((*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1178)))) - ((*1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1196))))) -(((*1 *1 *2) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 (-1196))) (-5 *1 (-1196))))) + (-2 (|:| -2703 (-599 (-797))) (|:| -2600 (-599 (-797))) + (|:| |presup| (-599 (-797))) (|:| -2701 (-599 (-797))) + (|:| |args| (-599 (-797))))) + (-5 *1 (-1117)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-599 (-797)))) (-5 *1 (-1117))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-1117))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-1117))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-1117))))) +(((*1 *1 *1) (-5 *1 (-797))) + ((*1 *2 *1) + (-12 (-4 *1 (-1044 *2 *3 *4 *5 *6)) (-4 *3 (-1041)) (-4 *4 (-1041)) + (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041)))) + ((*1 *1 *2) (-12 (-5 *2 (-460)) (-5 *1 (-1099)))) + ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1099)))) + ((*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1117))))) +(((*1 *1 *2) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1157)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-1117))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) + (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) + (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) + (-5 *1 (-1116))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) + (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) + (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) + (-5 *1 (-1116))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) + (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) + (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) + (-5 *1 (-1116))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) + (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) + (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) + (-5 *1 (-1116))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) + (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) + (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) + (-5 *1 (-1116))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) + (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) + (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) + (-5 *1 (-1116))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) -(((*1 *1 *1) (-5 *1 (-1195))) + (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) + (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) + (-5 *1 (-1116))))) +(((*1 *1 *1) (-5 *1 (-1116))) ((*1 *1 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-557))) (|:| -3493 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) + (-3 (|:| I (-268 (-499))) (|:| -3215 (-268 (-333))) + (|:| CF (-268 (-142 (-333)))) (|:| |switch| (-1116)))) + (-5 *1 (-1116))))) (((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-875) (-875) (-875))) (-5 *4 (-557)) (-5 *2 (-875)) - (-5 *1 (-667 *5 *6 *7)) (-4 *5 (-1120)) (-4 *6 (-23)) (-14 *7 *6))) + (-12 (-5 *3 (-1 (-797) (-797) (-797))) (-5 *4 (-499)) (-5 *2 (-797)) + (-5 *1 (-607 *5 *6 *7)) (-4 *5 (-1041)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-875)) (-5 *1 (-866 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-99 *3)) + (-12 (-5 *2 (-797)) (-5 *1 (-788 *3 *4 *5)) (-4 *3 (-989)) (-14 *4 (-70 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-875)))) - ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-875)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-875)))) - ((*1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-875)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1190 *3)) (-4 *3 (-1068))))) + ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-797)))) + ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-797)))) + ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-797)))) + ((*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1111 *3)) (-4 *3 (-989))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1108 *3)) (-4 *3 (-967 *7 *6 *4)) (-4 *6 (-813)) (-4 *4 (-859)) - (-4 *7 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-557)))) - (-5 *1 (-604 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-813)) (-4 *4 (-859)) (-4 *6 (-568)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-557)))) (-5 *1 (-604 *5 *4 *6 *3)) - (-4 *3 (-967 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-875))) ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *1) (-5 *1 (-875))) + (-12 (-5 *5 (-1029 *3)) (-4 *3 (-888 *7 *6 *4)) (-4 *6 (-738)) (-4 *4 (-781)) + (-4 *7 (-510)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-499)))) + (-5 *1 (-544 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-738)) (-4 *4 (-781)) (-4 *6 (-510)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-499)))) (-5 *1 (-544 *5 *4 *6 *3)) + (-4 *3 (-888 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1) (-5 *1 (-797))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-557)) (-656 (-557)))) - (-5 *1 (-1188 *4 *2)) (-4 *2 (-13 (-433 *4) (-162) (-27) (-1222))))) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) + (-5 *1 (-1109 *4 *2)) (-4 *2 (-13 (-375 *4) (-133) (-27) (-1143))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1111 *2)) (-4 *2 (-13 (-433 *4) (-162) (-27) (-1222))) - (-4 *4 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-1188 *4 *2)))) + (-12 (-5 *3 (-1032 *2)) (-4 *2 (-13 (-375 *4) (-133) (-27) (-1143))) + (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-1109 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-557)))) - (-5 *2 (-419 (-963 *5))) (-5 *1 (-1189 *5)) (-5 *3 (-963 *5)))) + (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-510) (-978 (-499)))) + (-5 *2 (-361 (-884 *5))) (-5 *1 (-1110 *5)) (-5 *3 (-884 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-557)))) - (-5 *2 (-3 (-419 (-963 *5)) (-326 *5))) (-5 *1 (-1189 *5)) - (-5 *3 (-419 (-963 *5))))) + (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-510) (-978 (-499)))) + (-5 *2 (-3 (-361 (-884 *5)) (-268 *5))) (-5 *1 (-1110 *5)) + (-5 *3 (-361 (-884 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1111 (-963 *5))) (-5 *3 (-963 *5)) - (-4 *5 (-13 (-568) (-1057 (-557)))) (-5 *2 (-419 *3)) (-5 *1 (-1189 *5)))) + (-12 (-5 *4 (-1032 (-884 *5))) (-5 *3 (-884 *5)) + (-4 *5 (-13 (-510) (-978 (-499)))) (-5 *2 (-361 *3)) (-5 *1 (-1110 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1111 (-419 (-963 *5)))) (-5 *3 (-419 (-963 *5))) - (-4 *5 (-13 (-568) (-1057 (-557)))) (-5 *2 (-3 *3 (-326 *5))) - (-5 *1 (-1189 *5))))) + (-12 (-5 *4 (-1032 (-361 (-884 *5)))) (-5 *3 (-361 (-884 *5))) + (-4 *5 (-13 (-510) (-978 (-499)))) (-5 *2 (-3 *3 (-268 *5))) + (-5 *1 (-1110 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-903 *4)) (-4 *4 (-1120)) (-5 *2 (-1 (-114) *5)) - (-5 *1 (-904 *4 *5)) (-4 *5 (-1236)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1186))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1236)) (-4 *1 (-153 *3)))) + (-12 (-5 *3 (-825 *4)) (-4 *4 (-1041)) (-5 *2 (-1 (-85) *5)) + (-5 *1 (-826 *4 *5)) (-4 *5 (-1157)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1107))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-4 *1 (-124 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-659 (-2 (|:| -2630 (-789)) (|:| -4201 *4) (|:| |num| *4)))) - (-4 *4 (-1262 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-411 *3 *4)))) + (-12 (-5 *2 (-599 (-2 (|:| -2519 (-714)) (|:| -3923 *4) (|:| |num| *4)))) + (-4 *4 (-1183 *3)) (-4 *3 (-13 (-318) (-120))) (-5 *1 (-353 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4338 #1="void"))) - (-5 *3 (-659 (-963 (-557)))) (-5 *4 (-114)) (-5 *1 (-448)))) + (-12 (-5 *2 (-3 (|:| |fst| (-388)) (|:| -4060 #1="void"))) + (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-85)) (-5 *1 (-390)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4338 #1#))) (-5 *3 (-659 (-1196))) - (-5 *4 (-114)) (-5 *1 (-448)))) - ((*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-611 *3)) (-4 *3 (-1236)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-175)))) + (-12 (-5 *2 (-3 (|:| |fst| (-388)) (|:| -4060 #1#))) (-5 *3 (-599 (-1117))) + (-5 *4 (-85)) (-5 *1 (-390)))) + ((*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1157)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-146)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-859)) (-5 *1 (-682 *3 *4)) (-4 *4 (-175)))) + (-12 (-5 *2 (-630 *3)) (-4 *3 (-781)) (-5 *1 (-622 *3 *4)) (-4 *4 (-146)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-859)) (-5 *1 (-682 *3 *4)) (-4 *4 (-175)))) + (-12 (-5 *2 (-630 *3)) (-4 *3 (-781)) (-5 *1 (-622 *3 *4)) (-4 *4 (-146)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-859)) (-5 *1 (-682 *3 *4)) (-4 *4 (-175)))) + (-12 (-5 *2 (-630 *3)) (-4 *3 (-781)) (-5 *1 (-622 *3 *4)) (-4 *4 (-146)))) ((*1 *1 *2) - (-12 (-5 *2 (-659 (-659 (-659 *3)))) (-4 *3 (-1120)) (-5 *1 (-693 *3)))) + (-12 (-5 *2 (-599 (-599 (-599 *3)))) (-4 *3 (-1041)) (-5 *1 (-633 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-731 *2 *3 *4)) (-4 *2 (-859)) (-4 *3 (-1120)) + (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-781)) (-4 *3 (-1041)) (-14 *4 - (-1 (-114) (-2 (|:| -2629 *2) (|:| -2630 *3)) - (-2 (|:| -2629 *2) (|:| -2630 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1134)) (-5 *1 (-849)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1236)) (-4 *3 (-1236)))) + (-1 (-85) (-2 (|:| -2518 *2) (|:| -2519 *3)) + (-2 (|:| -2518 *2) (|:| -2519 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-1055)) (-5 *1 (-772)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-807 *2 *3)) (-4 *2 (-1157)) (-4 *3 (-1157)))) ((*1 *1 *2) - (-12 (-5 *2 (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 *4)))) (-4 *4 (-1120)) - (-5 *1 (-901 *3 *4)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| *4)))) (-4 *4 (-1041)) + (-5 *1 (-823 *3 *4)) (-4 *3 (-1041)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-659 *5)) (-4 *5 (-13 (-1120) (-34))) - (-5 *2 (-659 (-1159 *3 *5))) (-5 *1 (-1159 *3 *5)) - (-4 *3 (-13 (-1120) (-34))))) + (-12 (-5 *4 (-599 *5)) (-4 *5 (-13 (-1041) (-34))) + (-5 *2 (-599 (-1080 *3 *5))) (-5 *1 (-1080 *3 *5)) + (-4 *3 (-13 (-1041) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-659 (-2 (|:| |val| *4) (|:| -1741 *5)))) - (-4 *4 (-13 (-1120) (-34))) (-4 *5 (-13 (-1120) (-34))) - (-5 *2 (-659 (-1159 *4 *5))) (-5 *1 (-1159 *4 *5)))) + (-12 (-5 *3 (-599 (-2 (|:| |val| *4) (|:| -1633 *5)))) + (-4 *4 (-13 (-1041) (-34))) (-4 *5 (-13 (-1041) (-34))) + (-5 *2 (-599 (-1080 *4 *5))) (-5 *1 (-1080 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1741 *4))) (-4 *3 (-13 (-1120) (-34))) - (-4 *4 (-13 (-1120) (-34))) (-5 *1 (-1159 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1633 *4))) (-4 *3 (-13 (-1041) (-34))) + (-4 *4 (-13 (-1041) (-34))) (-5 *1 (-1080 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1120) (-34))) - (-4 *3 (-13 (-1120) (-34))))) + (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) + (-4 *3 (-13 (-1041) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1120) (-34))) - (-4 *3 (-13 (-1120) (-34))))) + (-12 (-5 *4 (-85)) (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) + (-4 *3 (-13 (-1041) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-659 *3)) (-4 *3 (-13 (-1120) (-34))) (-5 *1 (-1160 *2 *3)) - (-4 *2 (-13 (-1120) (-34))))) + (-12 (-5 *4 (-599 *3)) (-4 *3 (-13 (-1041) (-34))) (-5 *1 (-1081 *2 *3)) + (-4 *2 (-13 (-1041) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-659 (-1159 *2 *3))) (-4 *2 (-13 (-1120) (-34))) - (-4 *3 (-13 (-1120) (-34))) (-5 *1 (-1160 *2 *3)))) + (-12 (-5 *4 (-599 (-1080 *2 *3))) (-4 *2 (-13 (-1041) (-34))) + (-4 *3 (-13 (-1041) (-34))) (-5 *1 (-1081 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-659 (-1160 *2 *3))) (-5 *1 (-1160 *2 *3)) - (-4 *2 (-13 (-1120) (-34))) (-4 *3 (-13 (-1120) (-34))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1120) (-34))) - (-4 *4 (-13 (-1120) (-34))) (-5 *1 (-1160 *3 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-1185 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-158)))) - ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-490)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-603)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-641)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1120)) (-4 *2 (-13 (-433 *4) (-899 *3) (-629 (-903 *3)))) - (-5 *1 (-1094 *3 *4 *2)) (-4 *4 (-13 (-1068) (-899 *3) (-629 (-903 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-1185 *2 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-158)))) - ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-490)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-603)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-641)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1120)) (-4 *2 (-13 (-433 *4) (-899 *3) (-629 (-903 *3)))) - (-5 *1 (-1094 *3 *4 *2)) (-4 *4 (-13 (-1068) (-899 *3) (-629 (-903 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-1185 *3 *2)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-5 *2 (-114)))) - ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068))))) -(((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068))))) -(((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068))))) -(((*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1068))))) + (-12 (-5 *4 (-599 (-1081 *2 *3))) (-5 *1 (-1081 *2 *3)) + (-4 *2 (-13 (-1041) (-34))) (-4 *3 (-13 (-1041) (-34))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) + (-4 *4 (-13 (-1041) (-34))) (-5 *1 (-1081 *3 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-110)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-129)))) + ((*1 *2 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1157)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-432)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-543)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-581)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1041)) (-4 *2 (-13 (-375 *4) (-821 *3) (-569 (-825 *3)))) + (-5 *1 (-1015 *3 *4 *2)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1041)) (-5 *1 (-1106 *2 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-110)))) + ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-129)))) + ((*1 *2 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1157)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-432)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-543)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-581)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1041)) (-4 *2 (-13 (-375 *4) (-821 *3) (-569 (-825 *3)))) + (-5 *1 (-1015 *3 *4 *2)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1041)) (-5 *1 (-1106 *3 *2)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-5 *2 (-85)))) + ((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) +(((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) +(((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) +(((*1 *1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-789)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068))))) -(((*1 *2 *1) (-12 (-4 *3 (-1236)) (-5 *2 (-659 *1)) (-4 *1 (-1029 *3)))) + (-12 (-5 *2 (-714)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) +(((*1 *2 *1) (-12 (-4 *3 (-1157)) (-5 *2 (-599 *1)) (-4 *1 (-950 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-659 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) - (-4 *4 (-1068))))) + (-12 (-5 *2 (-599 (-1105 *3 *4))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) + (-4 *4 (-989))))) (((*1 *2 *1) - (-12 (-5 *2 (-789)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068))))) -(((*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1068))))) -(((*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1068))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1236)) (-4 *2 (-859)))) + (-12 (-5 *2 (-714)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) +(((*1 *1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989))))) +(((*1 *1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-1157)) (-4 *2 (-781)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1236)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-859)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) - ((*1 *1 *2) - (-12 (-5 *2 (-659 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) - (-4 *4 (-1068)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1068))))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-327 *3)) (-4 *3 (-1157)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-781)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-989)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) + ((*1 *1 *2) + (-12 (-5 *2 (-599 (-1105 *3 *4))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) + (-4 *4 (-989)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-960 *5)) (-4 *5 (-1068)) (-5 *2 (-789)) (-5 *1 (-1184 *4 *5)) - (-14 *4 (-936)))) + (-12 (-5 *3 (-881 *5)) (-4 *5 (-989)) (-5 *2 (-714)) (-5 *1 (-1105 *4 *5)) + (-14 *4 (-857)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 (-789))) (-5 *3 (-789)) (-5 *1 (-1184 *4 *5)) - (-14 *4 (-936)) (-4 *5 (-1068)))) + (-12 (-5 *2 (-599 (-714))) (-5 *3 (-714)) (-5 *1 (-1105 *4 *5)) + (-14 *4 (-857)) (-4 *5 (-989)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 (-789))) (-5 *3 (-960 *5)) (-4 *5 (-1068)) - (-5 *1 (-1184 *4 *5)) (-14 *4 (-936))))) + (-12 (-5 *2 (-599 (-714))) (-5 *3 (-881 *5)) (-4 *5 (-989)) + (-5 *1 (-1105 *4 *5)) (-14 *4 (-857))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-960 *4)) (-4 *4 (-1068)) (-5 *1 (-1184 *3 *4)) - (-14 *3 (-936))))) + (-12 (-5 *2 (-881 *4)) (-4 *4 (-989)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-960 *5)) (-5 *3 (-789)) (-4 *5 (-1068)) (-5 *1 (-1184 *4 *5)) - (-14 *4 (-936))))) + (-12 (-5 *2 (-881 *5)) (-5 *3 (-714)) (-4 *5 (-989)) (-5 *1 (-1105 *4 *5)) + (-14 *4 (-857))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-789)) (-5 *3 (-960 *5)) (-4 *5 (-1068)) (-5 *1 (-1184 *4 *5)) - (-14 *4 (-936)))) + (-12 (-5 *2 (-714)) (-5 *3 (-881 *5)) (-4 *5 (-989)) (-5 *1 (-1105 *4 *5)) + (-14 *4 (-857)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 (-789))) (-5 *3 (-789)) (-5 *1 (-1184 *4 *5)) - (-14 *4 (-936)) (-4 *5 (-1068)))) + (-12 (-5 *2 (-599 (-714))) (-5 *3 (-714)) (-5 *1 (-1105 *4 *5)) + (-14 *4 (-857)) (-4 *5 (-989)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 (-789))) (-5 *3 (-960 *5)) (-4 *5 (-1068)) - (-5 *1 (-1184 *4 *5)) (-14 *4 (-936))))) + (-12 (-5 *2 (-599 (-714))) (-5 *3 (-881 *5)) (-4 *5 (-989)) + (-5 *1 (-1105 *4 *5)) (-14 *4 (-857))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 (-789))) (-5 *3 (-114)) (-5 *1 (-1184 *4 *5)) - (-14 *4 (-936)) (-4 *5 (-1068))))) + (-12 (-5 *2 (-599 (-714))) (-5 *3 (-85)) (-5 *1 (-1105 *4 *5)) + (-14 *4 (-857)) (-4 *5 (-989))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 (-789))) (-5 *3 (-174)) (-5 *1 (-1184 *4 *5)) - (-14 *4 (-936)) (-4 *5 (-1068))))) + (-12 (-5 *2 (-599 (-714))) (-5 *3 (-145)) (-5 *1 (-1105 *4 *5)) + (-14 *4 (-857)) (-4 *5 (-989))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-659 (-789))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) - (-4 *4 (-1068))))) + (-12 (-5 *2 (-599 (-714))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) + (-4 *4 (-989))))) (((*1 *2 *1) - (-12 (-5 *2 (-960 *4)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) - (-4 *4 (-1068))))) + (-12 (-5 *2 (-881 *4)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) (((*1 *2 *1) - (-12 (-5 *2 (-789)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068))))) + (-12 (-5 *2 (-714)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) (((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) (((*1 *2 *1) - (-12 (-5 *2 (-174)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068))))) -(((*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-324)))) + (-12 (-5 *2 (-145)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) +(((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-266)))) ((*1 *2 *1) - (-12 (-5 *2 (-789)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1068))))) -(((*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1068))))) + (-12 (-5 *2 (-714)) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) (-4 *4 (-989))))) +(((*1 *1 *1) (-12 (-5 *1 (-1105 *2 *3)) (-14 *2 (-857)) (-4 *3 (-989))))) (((*1 *2 *1) - (-12 (-5 *2 (-659 (-960 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-936)) - (-4 *4 (-1068))))) + (-12 (-5 *2 (-599 (-881 *4))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-857)) + (-4 *4 (-989))))) (((*1 *1 *1) - (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-812)) (-4 *2 (-464)))) + (-12 (-4 *1 (-280 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)) (-4 *2 (-406)))) ((*1 *1 *1) - (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1241)) (-4 *3 (-1262 *2)) - (-4 *4 (-1262 (-419 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-464)))) + (-12 (-4 *1 (-297 *2 *3 *4)) (-4 *2 (-1162)) (-4 *3 (-1183 *2)) + (-4 *4 (-1183 (-361 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-406)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-967 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)) - (-4 *3 (-464)))) + (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) + (-4 *3 (-406)))) ((*1 *1 *1) - (-12 (-4 *1 (-967 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) - (-4 *2 (-464)))) + (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) + (-4 *2 (-406)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-319)) (-4 *3 (-568)) (-5 *1 (-1183 *3 *2)) (-4 *2 (-1262 *3))))) + (-12 (-4 *3 (-261)) (-4 *3 (-510)) (-5 *1 (-1104 *3 *2)) (-4 *2 (-1183 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-975 *3)) (-5 *1 (-1183 *4 *3)) - (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-510)) (-5 *2 (-896 *3)) (-5 *1 (-1104 *4 *3)) + (-4 *3 (-1183 *4))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3))))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3))))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3))))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3))))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3))))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3))))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *1 *1) (-4 *1 (-505))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) + ((*1 *1 *1) (-4 *1 (-447))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3))))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *1 *1) (-4 *1 (-505))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) + ((*1 *1 *1) (-4 *1 (-447))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3))))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *1 *1) (-4 *1 (-505))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) + ((*1 *1 *1) (-4 *1 (-447))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3))))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) - (-4 *4 (-401)))) - ((*1 *1 *1) (-4 *1 (-505))) + (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) + (-4 *4 (-343)))) + ((*1 *1 *1) (-4 *1 (-447))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3))))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) - (-4 *4 (-401)))) - ((*1 *1 *1) (-4 *1 (-505))) + (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) + (-4 *4 (-343)))) + ((*1 *1 *1) (-4 *1 (-447))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3))))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) - (-4 *4 (-401)))) - ((*1 *1 *1) (-4 *1 (-505))) + (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) + (-4 *4 (-343)))) + ((*1 *1 *1) (-4 *1 (-447))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3))))) -(((*1 *1 *1) (-4 *1 (-95))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) +(((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3))))) -(((*1 *1 *1) (-4 *1 (-95))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) +(((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3))))) -(((*1 *1 *1) (-4 *1 (-95))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) +(((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3))))) -(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-229))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) +(((*1 *1 *1) (-4 *1 (-66))) ((*1 *1 *1 *1) (-5 *1 (-179))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) - (-4 *4 (-401)))) - ((*1 *1 *1 *1) (-5 *1 (-391))) + (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) + (-4 *4 (-343)))) + ((*1 *1 *1 *1) (-5 *1 (-333))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3))))) -(((*1 *1 *1) (-4 *1 (-95))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) +(((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) - (-4 *4 (-401)))) + (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) + (-4 *4 (-343)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3))))) -(((*1 *1 *1) (-4 *1 (-95))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) +(((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1279 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1200 *3)) (-5 *1 (-231 *3 *4 *2)) + (-4 *2 (-1171 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *4 (-1248 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1002 *4)))) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *4 (-1169 *3)) + (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1192 *3 *4)) (-4 *5 (-923 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) - (-4 *4 (-401)))) + (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) + (-4 *4 (-343)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-419 (-557)))) (-5 *1 (-1182 *3))))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-38 (-361 (-499)))) (-5 *1 (-1103 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-419 (-557)))) - (-5 *2 (-2 (|:| -3908 (-1174 *4)) (|:| -3909 (-1174 *4)))) - (-5 *1 (-1181 *4)) (-5 *3 (-1174 *4))))) + (-12 (-4 *4 (-38 (-361 (-499)))) + (-5 *2 (-2 (|:| -3630 (-1095 *4)) (|:| -3631 (-1095 *4)))) + (-5 *1 (-1102 *4)) (-5 *3 (-1095 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-419 (-557)))) - (-5 *2 (-2 (|:| -4066 (-1174 *4)) (|:| -4062 (-1174 *4)))) - (-5 *1 (-1181 *4)) (-5 *3 (-1174 *4))))) + (-12 (-4 *4 (-38 (-361 (-499)))) + (-5 *2 (-2 (|:| -3788 (-1095 *4)) (|:| -3784 (-1095 *4)))) + (-5 *1 (-1102 *4)) (-5 *3 (-1095 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-376)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-318)) (-4 *3 (-989)) (-5 *1 (-1101 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-557))) (-5 *5 (-1 (-1174 *4))) (-4 *4 (-376)) - (-4 *4 (-1068)) (-5 *2 (-1174 *4)) (-5 *1 (-1180 *4))))) + (-12 (-5 *3 (-1 *4 (-499))) (-5 *5 (-1 (-1095 *4))) (-4 *4 (-318)) + (-4 *4 (-989)) (-5 *2 (-1095 *4)) (-5 *1 (-1101 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-376)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-318)) (-4 *3 (-989)) (-5 *1 (-1101 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1174 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1068)) - (-5 *3 (-419 (-557))) (-5 *1 (-1180 *4))))) + (-12 (-5 *2 (-1095 *4)) (-4 *4 (-38 *3)) (-4 *4 (-989)) (-5 *3 (-361 (-499))) + (-5 *1 (-1101 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1174 (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1180 *4)) - (-4 *4 (-38 (-419 (-557)))) (-4 *4 (-1068))))) + (-12 (-5 *3 (-1095 (-1095 *4))) (-5 *2 (-1095 *4)) (-5 *1 (-1101 *4)) + (-4 *4 (-38 (-361 (-499)))) (-4 *4 (-989))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1174 *3))) (-5 *2 (-1174 *3)) (-5 *1 (-1180 *3)) - (-4 *3 (-38 (-419 (-557)))) (-4 *3 (-1068))))) + (-12 (-5 *4 (-1 (-1095 *3))) (-5 *2 (-1095 *3)) (-5 *1 (-1101 *3)) + (-4 *3 (-38 (-361 (-499)))) (-4 *3 (-989))))) (((*1 *2 *3) - (-12 (-5 *3 (-1174 (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1180 *4)) - (-4 *4 (-1068))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-907 *2 *3)) (-4 *2 (-1262 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))) + (-12 (-5 *3 (-1095 (-1095 *4))) (-5 *2 (-1095 *4)) (-5 *1 (-1101 *4)) + (-4 *4 (-989))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-989)) (-5 *1 (-829 *2 *3)) (-4 *2 (-1183 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1174 *4)) (-5 *3 (-1 *4 (-557))) (-4 *4 (-1068)) - (-5 *1 (-1180 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))) + (-12 (-5 *2 (-1095 *4)) (-5 *3 (-1 *4 (-499))) (-4 *4 (-989)) + (-5 *1 (-1101 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) - (-5 *1 (-824 *4 *2)) (-4 *2 (-13 (-29 *4) (-1222) (-977))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-875))) ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *1) (-5 *1 (-875))) - ((*1 *2 *3) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1068))))) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) + (-5 *1 (-748 *4 *2)) (-4 *2 (-13 (-29 *4) (-1143) (-898))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1) (-5 *1 (-797))) + ((*1 *2 *3) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-989))))) (((*1 *2 *3) - (-12 (-5 *2 (-1174 (-557))) (-5 *1 (-1180 *4)) (-4 *4 (-1068)) - (-5 *3 (-557))))) + (-12 (-5 *2 (-1095 (-499))) (-5 *1 (-1101 *4)) (-4 *4 (-989)) + (-5 *3 (-499))))) (((*1 *2 *3) - (-12 (-5 *2 (-1174 (-557))) (-5 *1 (-1180 *4)) (-4 *4 (-1068)) - (-5 *3 (-557))))) + (-12 (-5 *2 (-1095 (-499))) (-5 *1 (-1101 *4)) (-4 *4 (-989)) + (-5 *3 (-499))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-154 *2 *3 *4)) (-14 *2 (-936)) (-4 *3 (-376)) - (-14 *4 (-1012 *2 *3)))) + (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-857)) (-4 *3 (-318)) + (-14 *4 (-933 *2 *3)))) ((*1 *1 *1) - (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (|partial| -12 (-4 *2 (-146)) (-5 *1 (-243 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1183 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-568)))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-146)) (-4 *2 (-510)))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-673 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-736 *2)) (-4 *2 (-376)))) - ((*1 *1) (-12 (-5 *1 (-736 *2)) (-4 *2 (-376)))) - ((*1 *1 *1) (|partial| -4 *1 (-740))) ((*1 *1 *1) (|partial| -4 *1 (-744))) + ((*1 *1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) + ((*1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) + ((*1 *1 *1) (|partial| -4 *1 (-680))) ((*1 *1 *1) (|partial| -4 *1 (-684))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-794 *5 *6 *7 *3 *4)) - (-4 *4 (-1090 *5 *6 *7 *3)))) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-719 *5 *6 *7 *3 *4)) + (-4 *4 (-1011 *5 *6 *7 *3)))) ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-13 (-858) (-376))) - (-4 *2 (-1262 *3)))) + (|partial| -12 (-4 *1 (-1008 *3 *2)) (-4 *3 (-13 (-780) (-318))) + (-4 *2 (-1183 *3)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))) + (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-568)))) + (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-510)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-812)) - (-4 *2 (-568)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-568))) + (|partial| -12 (-4 *1 (-280 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)) + (-4 *2 (-510)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-510))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)) (-4 *2 (-568)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-789))) + (|partial| -12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) + (-4 *4 (-327 *2)) (-4 *2 (-510)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-714))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))) - ((*1 *1 *1 *1) (-5 *1 (-875))) + (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-510)))) + ((*1 *1 *1 *1) (-5 *1 (-797))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-568)) - (-5 *1 (-988 *3 *4)))) + (-12 (-5 *2 (-1207 *4)) (-4 *4 (-1183 *3)) (-4 *3 (-510)) + (-5 *1 (-909 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1072 *3 *4 *2 *5 *6)) (-4 *2 (-1068)) - (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-568)))) + (|partial| -12 (-4 *1 (-993 *3 *4 *2 *5 *6)) (-4 *2 (-989)) + (-4 *5 (-195 *4 *2)) (-4 *6 (-195 *3 *2)) (-4 *2 (-510)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1236)) (-5 *1 (-1174 *3))))) + (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-989)) (-5 *1 (-1101 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-1095 *3))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-659 *4)) (-4 *4 (-1120)) (-4 *4 (-1236)) (-5 *2 (-114)) - (-5 *1 (-1174 *4))))) + (-12 (-5 *3 (-599 *4)) (-4 *4 (-1041)) (-4 *4 (-1157)) (-5 *2 (-85)) + (-5 *1 (-1095 *4))))) (((*1 *2 *3 *1) (-12 - (-5 *2 (-2 (|:| |cycle?| (-114)) (|:| -2992 (-789)) (|:| |period| (-789)))) - (-5 *1 (-1174 *4)) (-4 *4 (-1236)) (-5 *3 (-789))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-1174 *3))) (-5 *1 (-1174 *3)) (-4 *3 (-1236))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-1236))))) -(((*1 *1) (-5 *1 (-589))) - ((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-871)))) - ((*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1292)) (-5 *1 (-871)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-875)) (-5 *2 (-1292)) (-5 *1 (-871)))) + (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2714 (-714)) (|:| |period| (-714)))) + (-5 *1 (-1095 *4)) (-4 *4 (-1157)) (-5 *3 (-714))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-1095 *3))) (-5 *1 (-1095 *3)) (-4 *3 (-1157))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1157)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1095 *2)) (-4 *2 (-1157))))) +(((*1 *1) (-5 *1 (-529))) + ((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-793)))) + ((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1213)) (-5 *1 (-793)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1099)) (-5 *4 (-797)) (-5 *2 (-1213)) (-5 *1 (-793)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-557)) (-5 *2 (-1292)) (-5 *1 (-1174 *4)) (-4 *4 (-1120)) - (-4 *4 (-1236))))) + (-12 (-5 *3 (-499)) (-5 *2 (-1213)) (-5 *1 (-1095 *4)) (-4 *4 (-1041)) + (-4 *4 (-1157))))) (((*1 *2 *1) - (-12 (-5 *2 (-875)) (-5 *1 (-1174 *3)) (-4 *3 (-1120)) (-4 *3 (-1236))))) + (-12 (-5 *2 (-797)) (-5 *1 (-1095 *3)) (-4 *3 (-1041)) (-4 *3 (-1157))))) (((*1 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-1174 *3)) (-4 *3 (-1120)) (-4 *3 (-1236))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1095 *3)) (-4 *3 (-1041)) (-4 *3 (-1157))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-789)) (-5 *2 (-1286 (-659 (-557)))) (-5 *1 (-492)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-611 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-1174 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1236)) (-5 *1 (-1174 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1236)) (-5 *1 (-611 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1236)) (-5 *1 (-1174 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1236)) (-5 *1 (-611 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1236)) (-5 *1 (-1174 *3))))) + (-12 (-5 *3 (-714)) (-5 *2 (-1207 (-599 (-499)))) (-5 *1 (-434)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1157)) (-5 *1 (-551 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1157)) (-5 *1 (-1095 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1157)) (-5 *1 (-1095 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1157)) (-5 *1 (-551 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1157)) (-5 *1 (-1095 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1157)) (-5 *1 (-551 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1157)) (-5 *1 (-1095 *3))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-557)) (-4 *4 (-13 (-568) (-149))) (-5 *1 (-548 *4 *2)) - (-4 *2 (-1279 *4)))) + (-12 (-5 *3 (-499)) (-4 *4 (-13 (-510) (-120))) (-5 *1 (-490 *4 *2)) + (-4 *2 (-1200 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-557)) (-4 *4 (-13 (-376) (-381) (-629 *3))) (-4 *5 (-1262 *4)) - (-4 *6 (-742 *4 *5)) (-5 *1 (-552 *4 *5 *6 *2)) (-4 *2 (-1279 *6)))) + (-12 (-5 *3 (-499)) (-4 *4 (-13 (-318) (-323) (-569 *3))) (-4 *5 (-1183 *4)) + (-4 *6 (-682 *4 *5)) (-5 *1 (-494 *4 *5 *6 *2)) (-4 *2 (-1200 *6)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-557)) (-4 *4 (-13 (-376) (-381) (-629 *3))) - (-5 *1 (-553 *4 *2)) (-4 *2 (-1279 *4)))) + (-12 (-5 *3 (-499)) (-4 *4 (-13 (-318) (-323) (-569 *3))) + (-5 *1 (-495 *4 *2)) (-4 *2 (-1200 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1174 *4)) (-5 *3 (-557)) (-4 *4 (-13 (-568) (-149))) - (-5 *1 (-1173 *4))))) + (-12 (-5 *2 (-1095 *4)) (-5 *3 (-499)) (-4 *4 (-13 (-510) (-120))) + (-5 *1 (-1094 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-149))) (-5 *1 (-548 *3 *2)) (-4 *2 (-1279 *3)))) + (-12 (-4 *3 (-13 (-510) (-120))) (-5 *1 (-490 *3 *2)) (-4 *2 (-1200 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-381) (-629 (-557)))) (-4 *4 (-1262 *3)) - (-4 *5 (-742 *3 *4)) (-5 *1 (-552 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) + (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-4 *4 (-1183 *3)) + (-4 *5 (-682 *3 *4)) (-5 *1 (-494 *3 *4 *5 *2)) (-4 *2 (-1200 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-381) (-629 (-557)))) (-5 *1 (-553 *3 *2)) - (-4 *2 (-1279 *3)))) + (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-5 *1 (-495 *3 *2)) + (-4 *2 (-1200 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-568) (-149))) (-5 *1 (-1173 *3))))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-13 (-510) (-120))) (-5 *1 (-1094 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-149))) (-5 *1 (-548 *3 *2)) (-4 *2 (-1279 *3)))) + (-12 (-4 *3 (-13 (-510) (-120))) (-5 *1 (-490 *3 *2)) (-4 *2 (-1200 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-381) (-629 (-557)))) (-4 *4 (-1262 *3)) - (-4 *5 (-742 *3 *4)) (-5 *1 (-552 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) + (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-4 *4 (-1183 *3)) + (-4 *5 (-682 *3 *4)) (-5 *1 (-494 *3 *4 *5 *2)) (-4 *2 (-1200 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-381) (-629 (-557)))) (-5 *1 (-553 *3 *2)) - (-4 *2 (-1279 *3)))) + (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-5 *1 (-495 *3 *2)) + (-4 *2 (-1200 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-568) (-149))) (-5 *1 (-1173 *3))))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-13 (-510) (-120))) (-5 *1 (-1094 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-149))) (-5 *1 (-548 *3 *2)) (-4 *2 (-1279 *3)))) + (-12 (-4 *3 (-13 (-510) (-120))) (-5 *1 (-490 *3 *2)) (-4 *2 (-1200 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-381) (-629 (-557)))) (-4 *4 (-1262 *3)) - (-4 *5 (-742 *3 *4)) (-5 *1 (-552 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) + (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-4 *4 (-1183 *3)) + (-4 *5 (-682 *3 *4)) (-5 *1 (-494 *3 *4 *5 *2)) (-4 *2 (-1200 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-381) (-629 (-557)))) (-5 *1 (-553 *3 *2)) - (-4 *2 (-1279 *3)))) + (-12 (-4 *3 (-13 (-318) (-323) (-569 (-499)))) (-5 *1 (-495 *3 *2)) + (-4 *2 (-1200 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-568) (-149))) (-5 *1 (-1173 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-536)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1172))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1172))))) -(((*1 *2 *1) (-12 (-5 *2 (-709 (-1154))) (-5 *1 (-1172))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1172))))) + (-12 (-5 *2 (-1095 *3)) (-4 *3 (-13 (-510) (-120))) (-5 *1 (-1094 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-478)))) + ((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-1093))))) +(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1093))))) +(((*1 *2 *1) (-12 (-5 *2 (-649 (-1075))) (-5 *1 (-1093))))) +(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1093))))) (((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)))) - ((*1 *1) (-4 *1 (-1171)))) -(((*1 *2 *1) (-12 (-5 *2 (-709 *1)) (-4 *1 (-1171))))) -(((*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1236)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1236)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)))) + ((*1 *1) (-4 *1 (-1092)))) +(((*1 *2 *1) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1092))))) +(((*1 *2 *1) (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1157)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1157)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-789)) (-4 *1 (-1169 *4)) (-4 *4 (-1236)) (-5 *2 (-114))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1236)) (-5 *1 (-1167 *3))))) + (-12 (-5 *3 (-714)) (-4 *1 (-1090 *4)) (-4 *4 (-1157)) (-5 *2 (-85))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-1088 *3))))) (((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) - (-5 *2 (-659 (-1046 *5 *6 *7 *3))) (-5 *1 (-1046 *5 *6 *7 *3)) - (-4 *3 (-1084 *5 *6 *7)))) + (-12 (-5 *4 (-85)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) + (-5 *2 (-599 (-967 *5 *6 *7 *3))) (-5 *1 (-967 *5 *6 *7 *3)) + (-4 *3 (-1005 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-659 *6)) (-4 *1 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)))) + (-12 (-5 *2 (-599 *6)) (-4 *1 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) + (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1090 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *2 (-1084 *3 *4 *5)))) + (-12 (-4 *1 (-1011 *3 *4 *5 *2)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *2 (-1005 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) - (-5 *2 (-659 (-1165 *5 *6 *7 *3))) (-5 *1 (-1165 *5 *6 *7 *3)) - (-4 *3 (-1084 *5 *6 *7))))) + (-12 (-5 *4 (-85)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) + (-5 *2 (-599 (-1086 *5 *6 *7 *3))) (-5 *1 (-1086 *5 *6 *7 *3)) + (-4 *3 (-1005 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-659 *8)) (-5 *4 (-114)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-659 (-1046 *5 *6 *7 *8))) - (-5 *1 (-1046 *5 *6 *7 *8)))) + (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) + (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-967 *5 *6 *7 *8))) + (-5 *1 (-967 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-659 *8)) (-5 *4 (-114)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-659 (-1165 *5 *6 *7 *8))) - (-5 *1 (-1165 *5 *6 *7 *8))))) + (-12 (-5 *3 (-599 *8)) (-5 *4 (-85)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-406)) + (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-599 (-1086 *5 *6 *7 *8))) + (-5 *1 (-1086 *5 *6 *7 *8))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) - (-4 *8 (-1084 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-659 *8)) (|:| |towers| (-659 (-1046 *5 *6 *7 *8))))) - (-5 *1 (-1046 *5 *6 *7 *8)) (-5 *3 (-659 *8)))) + (-12 (-5 *4 (-85)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) + (-4 *8 (-1005 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-599 *8)) (|:| |towers| (-599 (-967 *5 *6 *7 *8))))) + (-5 *1 (-967 *5 *6 *7 *8)) (-5 *3 (-599 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) - (-4 *8 (-1084 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-659 *8)) (|:| |towers| (-659 (-1165 *5 *6 *7 *8))))) - (-5 *1 (-1165 *5 *6 *7 *8)) (-5 *3 (-659 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-2 (|:| |val| (-659 *8)) (|:| -1741 *9)))) (-5 *4 (-789)) - (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-1292)) - (-5 *1 (-1088 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-2 (|:| |val| (-659 *8)) (|:| -1741 *9)))) (-5 *4 (-789)) - (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-1292)) - (-5 *1 (-1164 *5 *6 *7 *8 *9))))) + (-12 (-5 *4 (-85)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) + (-4 *8 (-1005 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-599 *8)) (|:| |towers| (-599 (-1086 *5 *6 *7 *8))))) + (-5 *1 (-1086 *5 *6 *7 *8)) (-5 *3 (-599 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-2 (|:| |val| (-599 *8)) (|:| -1633 *9)))) (-5 *4 (-714)) + (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) + (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-1213)) + (-5 *1 (-1009 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-2 (|:| |val| (-599 *8)) (|:| -1633 *9)))) (-5 *4 (-714)) + (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1049 *5 *6 *7 *8)) (-4 *5 (-406)) + (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-1213)) + (-5 *1 (-1085 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-659 *11)) - (|:| |todo| (-659 (-2 (|:| |val| *3) (|:| -1741 *11)))))) - (-5 *6 (-789)) (-5 *2 (-659 (-2 (|:| |val| (-659 *10)) (|:| -1741 *11)))) - (-5 *3 (-659 *10)) (-5 *4 (-659 *11)) (-4 *10 (-1084 *7 *8 *9)) - (-4 *11 (-1090 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-813)) (-4 *9 (-859)) - (-5 *1 (-1088 *7 *8 *9 *10 *11)))) + (-2 (|:| |done| (-599 *11)) + (|:| |todo| (-599 (-2 (|:| |val| *3) (|:| -1633 *11)))))) + (-5 *6 (-714)) (-5 *2 (-599 (-2 (|:| |val| (-599 *10)) (|:| -1633 *11)))) + (-5 *3 (-599 *10)) (-5 *4 (-599 *11)) (-4 *10 (-1005 *7 *8 *9)) + (-4 *11 (-1011 *7 *8 *9 *10)) (-4 *7 (-406)) (-4 *8 (-738)) (-4 *9 (-781)) + (-5 *1 (-1009 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-659 *11)) - (|:| |todo| (-659 (-2 (|:| |val| *3) (|:| -1741 *11)))))) - (-5 *6 (-789)) (-5 *2 (-659 (-2 (|:| |val| (-659 *10)) (|:| -1741 *11)))) - (-5 *3 (-659 *10)) (-5 *4 (-659 *11)) (-4 *10 (-1084 *7 *8 *9)) - (-4 *11 (-1128 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-813)) (-4 *9 (-859)) - (-5 *1 (-1164 *7 *8 *9 *10 *11))))) + (-2 (|:| |done| (-599 *11)) + (|:| |todo| (-599 (-2 (|:| |val| *3) (|:| -1633 *11)))))) + (-5 *6 (-714)) (-5 *2 (-599 (-2 (|:| |val| (-599 *10)) (|:| -1633 *11)))) + (-5 *3 (-599 *10)) (-5 *4 (-599 *11)) (-4 *10 (-1005 *7 *8 *9)) + (-4 *11 (-1049 *7 *8 *9 *10)) (-4 *7 (-406)) (-4 *8 (-738)) (-4 *9 (-781)) + (-5 *1 (-1085 *7 *8 *9 *10 *11))))) (((*1 *2 *1) - (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) + (-12 (-4 *1 (-291 *3 *4 *5 *6)) (-4 *3 (-318)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 *3 *4 *5)) (-5 *2 - (-2 (|:| -2553 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) + (-2 (|:| -2442 (-367 *4 (-361 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-376)) - (-5 *2 (-2 (|:| |poly| *6) (|:| -3490 (-419 *6)) (|:| |special| (-419 *6)))) - (-5 *1 (-745 *5 *6)) (-5 *3 (-419 *6)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) + (-5 *2 (-2 (|:| |poly| *6) (|:| -3212 (-361 *6)) (|:| |special| (-361 *6)))) + (-5 *1 (-685 *5 *6)) (-5 *3 (-361 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-376)) (-5 *2 (-659 *3)) (-5 *1 (-911 *3 *4)) - (-4 *3 (-1262 *4)))) + (-12 (-4 *4 (-318)) (-5 *2 (-599 *3)) (-5 *1 (-833 *3 *4)) + (-4 *3 (-1183 *4)))) ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-789)) (-4 *5 (-376)) - (-5 *2 (-2 (|:| -3538 *3) (|:| -3537 *3))) (-5 *1 (-911 *3 *5)) - (-4 *3 (-1262 *5)))) + (|partial| -12 (-5 *4 (-714)) (-4 *5 (-318)) + (-5 *2 (-2 (|:| -3260 *3) (|:| -3259 *3))) (-5 *1 (-833 *3 *5)) + (-4 *3 (-1183 *5)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-659 *9)) (-5 *3 (-659 *8)) (-5 *4 (-114)) - (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-813)) (-4 *7 (-859)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-599 *9)) (-5 *3 (-599 *8)) (-5 *4 (-85)) + (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) + (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-1009 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-659 *9)) (-5 *3 (-659 *8)) (-5 *4 (-114)) - (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-813)) (-4 *7 (-859)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-599 *9)) (-5 *3 (-599 *8)) (-5 *4 (-85)) + (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) + (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-1009 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-659 *9)) (-5 *3 (-659 *8)) (-5 *4 (-114)) - (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-813)) (-4 *7 (-859)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-599 *9)) (-5 *3 (-599 *8)) (-5 *4 (-85)) + (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1049 *5 *6 *7 *8)) (-4 *5 (-406)) + (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-659 *9)) (-5 *3 (-659 *8)) (-5 *4 (-114)) - (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-813)) (-4 *7 (-859)) (-5 *1 (-1164 *5 *6 *7 *8 *9))))) + (-12 (-5 *2 (-599 *9)) (-5 *3 (-599 *8)) (-5 *4 (-85)) + (-4 *8 (-1005 *5 *6 *7)) (-4 *9 (-1049 *5 *6 *7 *8)) (-4 *5 (-406)) + (-4 *6 (-738)) (-4 *7 (-781)) (-5 *1 (-1085 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-789)) (-5 *6 (-114)) (-4 *7 (-464)) (-4 *8 (-813)) - (-4 *9 (-859)) (-4 *3 (-1084 *7 *8 *9)) + (-12 (-5 *5 (-714)) (-5 *6 (-85)) (-4 *7 (-406)) (-4 *8 (-738)) + (-4 *9 (-781)) (-4 *3 (-1005 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-659 *4)) - (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) - (-5 *1 (-1088 *7 *8 *9 *3 *4)) (-4 *4 (-1090 *7 *8 *9 *3)))) + (-2 (|:| |done| (-599 *4)) + (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) + (-5 *1 (-1009 *7 *8 *9 *3 *4)) (-4 *4 (-1011 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-789)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) - (-4 *3 (-1084 *6 *7 *8)) + (-12 (-5 *5 (-714)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) + (-4 *3 (-1005 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-659 *4)) - (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) - (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) + (-2 (|:| |done| (-599 *4)) + (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) + (-5 *1 (-1009 *6 *7 *8 *3 *4)) (-4 *4 (-1011 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-659 *4)) - (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) - (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) + (-2 (|:| |done| (-599 *4)) + (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) + (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-789)) (-5 *6 (-114)) (-4 *7 (-464)) (-4 *8 (-813)) - (-4 *9 (-859)) (-4 *3 (-1084 *7 *8 *9)) + (-12 (-5 *5 (-714)) (-5 *6 (-85)) (-4 *7 (-406)) (-4 *8 (-738)) + (-4 *9 (-781)) (-4 *3 (-1005 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-659 *4)) - (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) - (-5 *1 (-1164 *7 *8 *9 *3 *4)) (-4 *4 (-1128 *7 *8 *9 *3)))) + (-2 (|:| |done| (-599 *4)) + (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) + (-5 *1 (-1085 *7 *8 *9 *3 *4)) (-4 *4 (-1049 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-789)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) - (-4 *3 (-1084 *6 *7 *8)) + (-12 (-5 *5 (-714)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) + (-4 *3 (-1005 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-659 *4)) - (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) - (-5 *1 (-1164 *6 *7 *8 *3 *4)) (-4 *4 (-1128 *6 *7 *8 *3)))) + (-2 (|:| |done| (-599 *4)) + (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) + (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1049 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-659 *4)) - (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) - (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3))))) + (-2 (|:| |done| (-599 *4)) + (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) + (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1049 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-789)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) - (-4 *3 (-1084 *6 *7 *8)) + (-12 (-5 *5 (-714)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) + (-4 *3 (-1005 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-659 *4)) - (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) - (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) + (-2 (|:| |done| (-599 *4)) + (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) + (-5 *1 (-1009 *6 *7 *8 *3 *4)) (-4 *4 (-1011 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-659 *4)) - (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) - (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) + (-2 (|:| |done| (-599 *4)) + (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) + (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-789)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) - (-4 *3 (-1084 *6 *7 *8)) + (-12 (-5 *5 (-714)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) + (-4 *3 (-1005 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-659 *4)) - (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) - (-5 *1 (-1164 *6 *7 *8 *3 *4)) (-4 *4 (-1128 *6 *7 *8 *3)))) + (-2 (|:| |done| (-599 *4)) + (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) + (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1049 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-659 *4)) - (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) - (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3))))) + (-2 (|:| |done| (-599 *4)) + (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) + (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1049 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) - (-4 *3 (-1084 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-659 *4)) - (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) - (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-659 *4)) - (|:| |todo| (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))))) - (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *8)) (-5 *4 (-659 *9)) (-4 *8 (-1084 *5 *6 *7)) - (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) - (-5 *2 (-789)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *8)) (-5 *4 (-659 *9)) (-4 *8 (-1084 *5 *6 *7)) - (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) - (-5 *2 (-789)) (-5 *1 (-1164 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *8)) (-5 *4 (-659 *9)) (-4 *8 (-1084 *5 *6 *7)) - (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) - (-5 *2 (-789)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *8)) (-5 *4 (-659 *9)) (-4 *8 (-1084 *5 *6 *7)) - (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) - (-5 *2 (-789)) (-5 *1 (-1164 *5 *6 *7 *8 *9))))) -(((*1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-5 *1 (-146))) - ((*1 *1 *1) (-4 *1 (-1163)))) -(((*1 *1 *1) (-4 *1 (-1163)))) -(((*1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-5 *1 (-146))) - ((*1 *1 *1) (-4 *1 (-1163)))) -(((*1 *1 *1) (-4 *1 (-1163)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-114))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-114))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-557)) (-5 *2 (-114))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *5)) (-5 *4 (-659 *6)) (-4 *5 (-1120)) (-4 *6 (-1236)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-661 *5 *6)))) + (-12 (-5 *5 (-85)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) + (-4 *3 (-1005 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-599 *4)) + (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) + (-5 *1 (-1009 *6 *7 *8 *3 *4)) (-4 *4 (-1011 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-599 *4)) + (|:| |todo| (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))))) + (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1049 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 *9)) (-4 *8 (-1005 *5 *6 *7)) + (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) + (-5 *2 (-714)) (-5 *1 (-1009 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 *9)) (-4 *8 (-1005 *5 *6 *7)) + (-4 *9 (-1049 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) + (-5 *2 (-714)) (-5 *1 (-1085 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 *9)) (-4 *8 (-1005 *5 *6 *7)) + (-4 *9 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) + (-5 *2 (-714)) (-5 *1 (-1009 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 *9)) (-4 *8 (-1005 *5 *6 *7)) + (-4 *9 (-1049 *5 *6 *7 *8)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) + (-5 *2 (-714)) (-5 *1 (-1085 *5 *6 *7 *8 *9))))) +(((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117))) + ((*1 *1 *1) (-4 *1 (-1084)))) +(((*1 *1 *1) (-4 *1 (-1084)))) +(((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117))) + ((*1 *1 *1) (-4 *1 (-1084)))) +(((*1 *1 *1) (-4 *1 (-1084)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1084)) (-5 *2 (-85))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1084)) (-5 *2 (-85))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1084)) (-5 *3 (-499)) (-5 *2 (-85))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-599 *5)) (-5 *4 (-599 *6)) (-4 *5 (-1041)) (-4 *6 (-1157)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-601 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-659 *5)) (-5 *4 (-659 *2)) (-4 *5 (-1120)) (-4 *2 (-1236)) - (-5 *1 (-661 *5 *2)))) + (-12 (-5 *3 (-599 *5)) (-5 *4 (-599 *2)) (-4 *5 (-1041)) (-4 *2 (-1157)) + (-5 *1 (-601 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-659 *6)) (-5 *4 (-659 *5)) (-4 *6 (-1120)) (-4 *5 (-1236)) - (-5 *2 (-1 *5 *6)) (-5 *1 (-661 *6 *5)))) + (-12 (-5 *3 (-599 *6)) (-5 *4 (-599 *5)) (-4 *6 (-1041)) (-4 *5 (-1157)) + (-5 *2 (-1 *5 *6)) (-5 *1 (-601 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-659 *5)) (-5 *4 (-659 *2)) (-4 *5 (-1120)) (-4 *2 (-1236)) - (-5 *1 (-661 *5 *2)))) + (-12 (-5 *3 (-599 *5)) (-5 *4 (-599 *2)) (-4 *5 (-1041)) (-4 *2 (-1157)) + (-5 *1 (-601 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-659 *5)) (-5 *4 (-659 *6)) (-4 *5 (-1120)) - (-4 *6 (-1236)) (-5 *1 (-661 *5 *6)))) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-599 *5)) (-5 *4 (-599 *6)) (-4 *5 (-1041)) + (-4 *6 (-1157)) (-5 *1 (-601 *5 *6)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-659 *5)) (-5 *4 (-659 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1120)) - (-4 *2 (-1236)) (-5 *1 (-661 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-146)) (-5 *2 (-789))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-146)) (-5 *2 (-114))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-1253 (-557)))))) -(((*1 *2 *1) (-12 (-4 *1 (-134)) (-5 *2 (-789)))) + (-12 (-5 *3 (-599 *5)) (-5 *4 (-599 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1041)) + (-4 *2 (-1157)) (-5 *1 (-601 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1084)) (-5 *3 (-117)) (-5 *2 (-714))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1084)) (-5 *3 (-117)) (-5 *2 (-85))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1084)) (-5 *2 (-1174 (-499)))))) +(((*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-714)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-557)) (-4 *1 (-385 *3)) (-4 *3 (-1236)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-499)) (-4 *1 (-327 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-385 *3)) (-4 *3 (-1236)) (-4 *3 (-1120)) (-5 *2 (-557)))) + (-12 (-4 *1 (-327 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)) (-5 *2 (-499)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-114) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1236)) - (-5 *2 (-557)))) - ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-540)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-557)) (-5 *3 (-143)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-557))))) -(((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48))))) + (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-327 *4)) (-4 *4 (-1157)) (-5 *2 (-499)))) + ((*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-482)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-499)) (-5 *3 (-114)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-499))))) +(((*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1183 (-48))))) ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-123 *3)) (|:| |greater| (-123 *3)))) - (-5 *1 (-123 *3)) (-4 *3 (-859)))) - ((*1 *2 *2) - (-12 (-5 *2 (-594 *4)) (-4 *4 (-13 (-29 *3) (-1222))) - (-4 *3 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-596 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-594 (-419 (-963 *3)))) - (-4 *3 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-600 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-376)) - (-5 *2 (-2 (|:| -3490 *3) (|:| |special| *3))) (-5 *1 (-745 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1286 *5)) (-4 *5 (-376)) (-4 *5 (-1068)) - (-5 *2 (-659 (-659 (-707 *5)))) (-5 *1 (-1049 *5)) - (-5 *3 (-659 (-707 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1286 (-1286 *5))) (-4 *5 (-376)) (-4 *5 (-1068)) - (-5 *2 (-659 (-659 (-707 *5)))) (-5 *1 (-1049 *5)) - (-5 *3 (-659 (-707 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-659 *1)) (-4 *1 (-1163)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-146)) (-5 *2 (-659 *1)) (-4 *1 (-1163))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-143)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-146))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-143)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-146))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-143)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-146))))) + (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) + (-5 *1 (-94 *3)) (-4 *3 (-781)))) + ((*1 *2 *2) + (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1143))) + (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-536 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-534 (-361 (-884 *3)))) + (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-540 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-318)) + (-5 *2 (-2 (|:| -3212 *3) (|:| |special| *3))) (-5 *1 (-685 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1207 *5)) (-4 *5 (-318)) (-4 *5 (-989)) + (-5 *2 (-599 (-599 (-647 *5)))) (-5 *1 (-970 *5)) (-5 *3 (-599 (-647 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1207 (-1207 *5))) (-4 *5 (-318)) (-4 *5 (-989)) + (-5 *2 (-599 (-599 (-647 *5)))) (-5 *1 (-970 *5)) (-5 *3 (-599 (-647 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-599 *1)) (-4 *1 (-1084)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-599 *1)) (-4 *1 (-1084))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-114)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-117))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-114)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-117))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-114)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1084)) (-5 *2 (-117))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-557)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-789)) - (-4 *5 (-175)))) + (-12 (-5 *2 (-499)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-714)) + (-4 *5 (-146)))) ((*1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-557)) (-14 *3 (-789)) (-4 *4 (-175)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146)))) ((*1 *1 *1) - (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)))) + (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) + (-4 *4 (-327 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-1068)) (-4 *1 (-704 *3 *2 *4)) (-4 *2 (-385 *3)) - (-4 *4 (-385 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-789)) (-4 *3 (-1068))))) + (-12 (-4 *3 (-989)) (-4 *1 (-644 *3 *2 *4)) (-4 *2 (-327 *3)) + (-4 *4 (-327 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-1082 *2 *3)) (-14 *2 (-714)) (-4 *3 (-989))))) (((*1 *1 *2) - (-12 (-5 *2 (-707 *4)) (-4 *4 (-1068)) (-5 *1 (-1161 *3 *4)) - (-14 *3 (-789))))) + (-12 (-5 *2 (-647 *4)) (-4 *4 (-989)) (-5 *1 (-1082 *3 *4)) (-14 *3 (-714))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1120) (-34))) - (-4 *3 (-13 (-1120) (-34)))))) + (|partial| -12 (-5 *1 (-1081 *2 *3)) (-4 *2 (-13 (-1041) (-34))) + (-4 *3 (-13 (-1041) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1120) (-34))) - (-4 *3 (-13 (-1120) (-34)))))) + (-12 (-5 *1 (-1081 *2 *3)) (-4 *2 (-13 (-1041) (-34))) + (-4 *3 (-13 (-1041) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-659 *4)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1120) (-34))) - (-4 *4 (-13 (-1120) (-34)))))) + (-12 (-5 *2 (-599 *4)) (-5 *1 (-1081 *3 *4)) (-4 *3 (-13 (-1041) (-34))) + (-4 *4 (-13 (-1041) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *4)))) (-5 *1 (-1160 *3 *4)) - (-4 *3 (-13 (-1120) (-34))) (-4 *4 (-13 (-1120) (-34)))))) + (-12 (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) (-5 *1 (-1081 *3 *4)) + (-4 *3 (-13 (-1041) (-34))) (-4 *4 (-13 (-1041) (-34)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1159 *4 *5)) (-4 *4 (-13 (-1120) (-34))) - (-4 *5 (-13 (-1120) (-34))) (-5 *2 (-114)) (-5 *1 (-1160 *4 *5))))) + (-12 (-5 *3 (-1080 *4 *5)) (-4 *4 (-13 (-1041) (-34))) + (-4 *5 (-13 (-1041) (-34))) (-5 *2 (-85)) (-5 *1 (-1081 *4 *5))))) (((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1159 *5 *6)) (-5 *4 (-1 (-114) *6 *6)) - (-4 *5 (-13 (-1120) (-34))) (-4 *6 (-13 (-1120) (-34))) (-5 *2 (-114)) - (-5 *1 (-1160 *5 *6))))) + (-12 (-5 *3 (-1080 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) + (-4 *5 (-13 (-1041) (-34))) (-4 *6 (-13 (-1041) (-34))) (-5 *2 (-85)) + (-5 *1 (-1081 *5 *6))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-153 *2)) (-4 *2 (-1236)) - (-4 *2 (-1120)))) + (-12 (|has| *1 (-6 -4145)) (-4 *1 (-124 *2)) (-4 *2 (-1157)) + (-4 *2 (-1041)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4423)) (-4 *1 (-153 *3)) - (-4 *3 (-1236)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-692 *3)) (-4 *3 (-1236)))) + (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -4145)) (-4 *1 (-124 *3)) + (-4 *3 (-1157)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-632 *3)) (-4 *3 (-1157)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-557)) (-4 *4 (-1120)) - (-5 *1 (-754 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-557)) (-5 *1 (-754 *2)) (-4 *2 (-1120)))) + (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-499)) (-4 *4 (-1041)) (-5 *1 (-694 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *1 (-694 *2)) (-4 *2 (-1041)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1120) (-34))) - (-4 *4 (-13 (-1120) (-34))) (-5 *1 (-1160 *3 *4))))) + (-12 (-5 *2 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) + (-4 *4 (-13 (-1041) (-34))) (-5 *1 (-1081 *3 *4))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4423)) (-4 *1 (-242 *3)) - (-4 *3 (-1120)))) - ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-242 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1236)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1236)))) + (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -4145)) (-4 *1 (-192 *3)) + (-4 *3 (-1041)))) + ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4145)) (-4 *1 (-192 *2)) (-4 *2 (-1041)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1157)) (-4 *2 (-1041)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-236 *3)) (-4 *3 (-1157)))) ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-625 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120)))) + (|partial| -12 (-4 *1 (-565 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-557)) (-4 *4 (-1120)) - (-5 *1 (-754 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-557)) (-5 *1 (-754 *2)) (-4 *2 (-1120)))) + (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-499)) (-4 *4 (-1041)) (-5 *1 (-694 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *1 (-694 *2)) (-4 *2 (-1041)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1120) (-34))) - (-4 *4 (-13 (-1120) (-34))) (-5 *1 (-1160 *3 *4))))) + (-12 (-5 *2 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) + (-4 *4 (-13 (-1041) (-34))) (-5 *1 (-1081 *3 *4))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 (-1159 *4 *5))) (-5 *3 (-1 (-114) *5 *5)) - (-4 *4 (-13 (-1120) (-34))) (-4 *5 (-13 (-1120) (-34))) - (-5 *1 (-1160 *4 *5)))) + (-12 (-5 *2 (-599 (-1080 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) + (-4 *4 (-13 (-1041) (-34))) (-4 *5 (-13 (-1041) (-34))) + (-5 *1 (-1081 *4 *5)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-659 (-1159 *3 *4))) (-4 *3 (-13 (-1120) (-34))) - (-4 *4 (-13 (-1120) (-34))) (-5 *1 (-1160 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114)))) - ((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *4 (-859)) (-4 *5 (-813)) (-5 *2 (-114)) - (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-967 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1120) (-34))) - (-4 *4 (-13 (-1120) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-870)))) - ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-982)))) - ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1008)))) - ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1120) (-34))) (-5 *1 (-1159 *2 *3)) - (-4 *3 (-13 (-1120) (-34)))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-464)) (-4 *4 (-859)) (-4 *5 (-813)) (-5 *2 (-114)) - (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-967 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1120) (-34))) - (-4 *4 (-13 (-1120) (-34)))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115))) - ((*1 *1 *1) (-5 *1 (-174))) ((*1 *1 *1) (-4 *1 (-556))) - ((*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) + (-12 (-5 *2 (-599 (-1080 *3 *4))) (-4 *3 (-13 (-1041) (-34))) + (-4 *4 (-13 (-1041) (-34))) (-5 *1 (-1081 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) + ((*1 *2 *1) + (-12 (-4 *3 (-406)) (-4 *4 (-781)) (-4 *5 (-738)) (-5 *2 (-85)) + (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) + (-4 *4 (-13 (-1041) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-792)))) + ((*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-903)))) + ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-929)))) + ((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1157)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1041) (-34))) (-5 *1 (-1080 *2 *3)) + (-4 *3 (-13 (-1041) (-34)))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-406)) (-4 *4 (-781)) (-4 *5 (-738)) (-5 *2 (-85)) + (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) + (-4 *4 (-13 (-1041) (-34)))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-86))) + ((*1 *1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-4 *1 (-498))) + ((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) + ((*1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-989)))) ((*1 *1 *1) - (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1120) (-34))) - (-4 *3 (-13 (-1120) (-34)))))) + (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) + (-4 *3 (-13 (-1041) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1120) (-34))) - (-4 *3 (-13 (-1120) (-34)))))) + (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) + (-4 *3 (-13 (-1041) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1159 *3 *2)) (-4 *3 (-13 (-1120) (-34))) - (-4 *2 (-13 (-1120) (-34)))))) + (-12 (-5 *1 (-1080 *3 *2)) (-4 *3 (-13 (-1041) (-34))) + (-4 *2 (-13 (-1041) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1120) (-34))) - (-4 *4 (-13 (-1120) (-34)))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-4 *3 (-13 (-1041) (-34))) + (-4 *4 (-13 (-1041) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1120) (-34))) - (-4 *3 (-13 (-1120) (-34)))))) + (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-13 (-1041) (-34))) + (-4 *3 (-13 (-1041) (-34)))))) (((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-114) *5 *5)) (-5 *4 (-1 (-114) *6 *6)) - (-4 *5 (-13 (-1120) (-34))) (-4 *6 (-13 (-1120) (-34))) (-5 *2 (-114)) - (-5 *1 (-1159 *5 *6))))) + (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) + (-4 *5 (-13 (-1041) (-34))) (-4 *6 (-13 (-1041) (-34))) (-5 *2 (-85)) + (-5 *1 (-1080 *5 *6))))) (((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-114) *5 *5)) (-4 *5 (-13 (-1120) (-34))) (-5 *2 (-114)) - (-5 *1 (-1159 *4 *5)) (-4 *4 (-13 (-1120) (-34)))))) -(((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) - ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1) (-4 *1 (-1158)))) -(((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) - ((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) - ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1) (-4 *1 (-1158)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1158)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1158)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1158)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1158)))) -(((*1 *1 *1) (-5 *1 (-229))) ((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) - ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1) (-4 *1 (-1158))) ((*1 *1 *1 *1) (-4 *1 (-1158)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-229)) (-5 *3 (-789)) (-5 *1 (-230)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-171 (-229))) (-5 *3 (-789)) (-5 *1 (-230)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1158)))) -(((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) - ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1) (-4 *1 (-1158)))) -(((*1 *1 *1 *1) (-5 *1 (-229))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1 (-391))) (-5 *1 (-1060)))) - ((*1 *1 *1 *1) (-4 *1 (-1158)))) -(((*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1079)))) + (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1041) (-34))) (-5 *2 (-85)) + (-5 *1 (-1080 *4 *5)) (-4 *4 (-13 (-1041) (-34)))))) +(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) + ((*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) + ((*1 *1 *1) (-4 *1 (-1079)))) +(((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) + ((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) + ((*1 *1 *1) (-4 *1 (-1079)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1079)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1079)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1079)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1079)))) +(((*1 *1 *1) (-5 *1 (-179))) ((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) + ((*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) + ((*1 *1 *1) (-4 *1 (-1079))) ((*1 *1 *1 *1) (-4 *1 (-1079)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-714)) (-5 *1 (-180)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-714)) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1079)))) +(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) + ((*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) + ((*1 *1 *1) (-4 *1 (-1079)))) +(((*1 *1 *1 *1) (-5 *1 (-179))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1 (-333))) (-5 *1 (-981)))) + ((*1 *1 *1 *1) (-4 *1 (-1079)))) +(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1000)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) - (-4 *4 (-401)))) - ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1) (-4 *1 (-810))) - ((*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)) (-4 *2 (-1079)))) - ((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-175)) (-4 *2 (-1079)))) - ((*1 *1 *1) (-4 *1 (-1158)))) -(((*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1292)) (-5 *1 (-1157)))) - ((*1 *2 *3) (-12 (-5 *3 (-659 (-875))) (-5 *2 (-1292)) (-5 *1 (-1157))))) -(((*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1292)) (-5 *1 (-1157)))) - ((*1 *2 *3) (-12 (-5 *3 (-659 (-875))) (-5 *2 (-1292)) (-5 *1 (-1157))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-63 *3)) (-14 *3 (-1196)))) - ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-69 *3)) (-14 *3 (-1196)))) - ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-72 *3)) (-14 *3 (-1196)))) - ((*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1292)) (-5 *1 (-407)))) - ((*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-1292)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-875)) (-5 *2 (-1292)) (-5 *1 (-1157)))) - ((*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1292)) (-5 *1 (-1157)))) - ((*1 *2 *3) (-12 (-5 *3 (-659 (-875))) (-5 *2 (-1292)) (-5 *1 (-1157))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-659 (-1201))) (-5 *1 (-1155))))) -(((*1 *1 *2) (-12 (-5 *2 (-1184 3 *3)) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) - ((*1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068))))) + (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) + (-4 *4 (-343)))) + ((*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3)))) + ((*1 *1 *1) (-4 *1 (-735))) + ((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)) (-4 *2 (-1000)))) + ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)) (-4 *2 (-1000)))) + ((*1 *1 *1) (-4 *1 (-1079)))) +(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1213)) (-5 *1 (-1078)))) + ((*1 *2 *3) (-12 (-5 *3 (-599 (-797))) (-5 *2 (-1213)) (-5 *1 (-1078))))) +(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1213)) (-5 *1 (-1078)))) + ((*1 *2 *3) (-12 (-5 *3 (-599 (-797))) (-5 *2 (-1213)) (-5 *1 (-1078))))) +(((*1 *2 *3) (-12 (-5 *3 (-344)) (-5 *2 (-1213)) (-5 *1 (-349)))) + ((*1 *2 *1) (-12 (-4 *1 (-350)) (-5 *2 (-1213)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1099)) (-5 *4 (-797)) (-5 *2 (-1213)) (-5 *1 (-1078)))) + ((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1213)) (-5 *1 (-1078)))) + ((*1 *2 *3) (-12 (-5 *3 (-599 (-797))) (-5 *2 (-1213)) (-5 *1 (-1078))))) +(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-599 (-1122))) (-5 *1 (-1076))))) +(((*1 *1 *2) (-12 (-5 *2 (-1105 3 *3)) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) + ((*1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-989))))) (((*1 *2) - (-12 (-4 *4 (-1241)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) - (-5 *2 (-789)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) + (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) + (-5 *2 (-714)) (-5 *1 (-296 *3 *4 *5 *6)) (-4 *3 (-297 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-789)))) - ((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-789))))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-789))))) -(((*1 *2 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-659 *1)) (-4 *1 (-1153 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-659 *1)) (-4 *1 (-1153 *3))))) + (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-5 *2 (-714)))) + ((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-714))))) +(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-714))))) +(((*1 *2 *1) (-12 (-4 *3 (-989)) (-5 *2 (-599 *1)) (-4 *1 (-1074 *3))))) +(((*1 *2 *1) (-12 (-4 *3 (-989)) (-5 *2 (-599 *1)) (-4 *1 (-1074 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-659 (-960 *4))) (-4 *1 (-1153 *4)) (-4 *4 (-1068)) - (-5 *2 (-789))))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-114))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-659 (-960 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) + (-12 (-5 *3 (-599 (-881 *4))) (-4 *1 (-1074 *4)) (-4 *4 (-989)) + (-5 *2 (-714))))) +(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-85))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1157)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1157)))) + ((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-881 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-599 (-881 *3))) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-659 (-659 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) + (-12 (-5 *2 (-599 (-599 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-659 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068))))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-659 (-960 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) + (-12 (-5 *2 (-599 (-881 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989))))) +(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-881 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-599 (-881 *3))) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-659 (-659 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) + (-12 (-5 *2 (-599 (-599 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-659 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068))))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-659 (-960 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) + (-12 (-5 *2 (-599 (-881 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989))))) +(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-881 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-599 (-881 *3))) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-659 (-659 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) + (-12 (-5 *2 (-599 (-599 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-659 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068))))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-114))))) + (-12 (-5 *2 (-599 (-881 *3))) (-4 *1 (-1074 *3)) (-4 *3 (-989))))) +(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-659 (-659 (-960 *3)))))) + (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-599 (-881 *3)))))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-659 (-659 (-960 *4)))) (-5 *3 (-114)) (-4 *4 (-1068)) - (-4 *1 (-1153 *4)))) + (-12 (-5 *2 (-599 (-599 (-881 *4)))) (-5 *3 (-85)) (-4 *4 (-989)) + (-4 *1 (-1074 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-659 (-659 (-960 *3)))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) + (-12 (-5 *2 (-599 (-599 (-881 *3)))) (-4 *3 (-989)) (-4 *1 (-1074 *3)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-659 (-659 (-659 *4)))) (-5 *3 (-114)) (-4 *1 (-1153 *4)) - (-4 *4 (-1068)))) + (-12 (-5 *2 (-599 (-599 (-599 *4)))) (-5 *3 (-85)) (-4 *1 (-1074 *4)) + (-4 *4 (-989)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-659 (-659 (-960 *4)))) (-5 *3 (-114)) (-4 *1 (-1153 *4)) - (-4 *4 (-1068)))) + (-12 (-5 *2 (-599 (-599 (-881 *4)))) (-5 *3 (-85)) (-4 *1 (-1074 *4)) + (-4 *4 (-989)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-659 (-659 (-659 *5)))) (-5 *3 (-659 (-174))) (-5 *4 (-174)) - (-4 *1 (-1153 *5)) (-4 *5 (-1068)))) + (-12 (-5 *2 (-599 (-599 (-599 *5)))) (-5 *3 (-599 (-145))) (-5 *4 (-145)) + (-4 *1 (-1074 *5)) (-4 *5 (-989)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-659 (-659 (-960 *5)))) (-5 *3 (-659 (-174))) (-5 *4 (-174)) - (-4 *1 (-1153 *5)) (-4 *5 (-1068))))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-659 (-960 *3)))))) + (-12 (-5 *2 (-599 (-599 (-881 *5)))) (-5 *3 (-599 (-145))) (-5 *4 (-145)) + (-4 *1 (-1074 *5)) (-4 *5 (-989))))) +(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-881 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-659 (-659 (-659 (-789)))))))) + (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-599 (-599 (-714)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) - (-5 *2 (-659 (-659 (-659 (-960 *3)))))))) + (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) + (-5 *2 (-599 (-599 (-599 (-881 *3)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-659 (-659 (-174))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-659 (-174)))))) + (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-599 (-145))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 (-599 (-145)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) + (-12 (-4 *1 (-1074 *3)) (-4 *3 (-989)) (-5 *2 - (-2 (|:| -4278 (-789)) (|:| |curves| (-789)) (|:| |polygons| (-789)) - (|:| |constructs| (-789))))))) + (-2 (|:| -4000 (-714)) (|:| |curves| (-714)) (|:| |polygons| (-714)) + (|:| |constructs| (-714))))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-659 (-2 (|:| -4160 (-1190 *6)) (|:| -2630 (-557))))) - (-4 *6 (-319)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-114)) - (-5 *1 (-760 *4 *5 *6 *7)) (-4 *7 (-967 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068))))) + (-12 (-5 *3 (-599 (-2 (|:| -3882 (-1111 *6)) (|:| -2519 (-499))))) + (-4 *6 (-261)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) + (-5 *1 (-700 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-989))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-1151 *4 *2)) - (-4 *2 (-13 (-614 (-557) *4) (-10 -7 (-6 -4423) (-6 -4424)))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1157)) (-5 *1 (-1072 *4 *2)) + (-4 *2 (-13 (-554 (-499) *4) (-10 -7 (-6 -4145) (-6 -4146)))))) ((*1 *2 *2) - (-12 (-4 *3 (-859)) (-4 *3 (-1236)) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-614 (-557) *3) (-10 -7 (-6 -4423) (-6 -4424))))))) + (-12 (-4 *3 (-781)) (-4 *3 (-1157)) (-5 *1 (-1072 *3 *2)) + (-4 *2 (-13 (-554 (-499) *3) (-10 -7 (-6 -4145) (-6 -4146))))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-1151 *4 *2)) - (-4 *2 (-13 (-614 (-557) *4) (-10 -7 (-6 -4423) (-6 -4424)))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1157)) (-5 *1 (-1072 *4 *2)) + (-4 *2 (-13 (-554 (-499) *4) (-10 -7 (-6 -4145) (-6 -4146)))))) ((*1 *2 *2) - (-12 (-4 *3 (-859)) (-4 *3 (-1236)) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-614 (-557) *3) (-10 -7 (-6 -4423) (-6 -4424))))))) + (-12 (-4 *3 (-781)) (-4 *3 (-1157)) (-5 *1 (-1072 *3 *2)) + (-4 *2 (-13 (-554 (-499) *3) (-10 -7 (-6 -4145) (-6 -4146))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1286 *4)) (-4 *4 (-1068)) (-4 *2 (-1262 *4)) - (-5 *1 (-456 *4 *2)))) + (-12 (-5 *3 (-1207 *4)) (-4 *4 (-989)) (-4 *2 (-1183 *4)) + (-5 *1 (-398 *4 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-419 (-1190 (-326 *5)))) (-5 *3 (-1286 (-326 *5))) - (-5 *4 (-557)) (-4 *5 (-568)) (-5 *1 (-1149 *5))))) + (-12 (-5 *2 (-361 (-1111 (-268 *5)))) (-5 *3 (-1207 (-268 *5))) + (-5 *4 (-499)) (-4 *5 (-510)) (-5 *1 (-1070 *5))))) (((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-419 (-1190 (-326 *3)))) (-4 *3 (-568)) (-5 *1 (-1149 *3))))) + (-12 (-5 *2 (-361 (-1111 (-268 *3)))) (-4 *3 (-510)) (-5 *1 (-1070 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-305 (-419 (-963 *5)))) (-5 *4 (-1196)) - (-4 *5 (-13 (-319) (-149))) - (-5 *2 (-1185 (-659 (-326 *5)) (-659 (-305 (-326 *5))))) - (-5 *1 (-1148 *5)))) + (-12 (-5 *3 (-247 (-361 (-884 *5)))) (-5 *4 (-1117)) + (-4 *5 (-13 (-261) (-120))) + (-5 *2 (-1106 (-599 (-268 *5)) (-599 (-247 (-268 *5))))) + (-5 *1 (-1069 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-1196)) (-4 *5 (-13 (-319) (-149))) - (-5 *2 (-1185 (-659 (-326 *5)) (-659 (-305 (-326 *5))))) - (-5 *1 (-1148 *5))))) + (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120))) + (-5 *2 (-1106 (-599 (-268 *5)) (-599 (-247 (-268 *5))))) + (-5 *1 (-1069 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-1196)) (-4 *5 (-13 (-319) (-149))) - (-5 *2 (-659 (-326 *5))) (-5 *1 (-1148 *5)))) + (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120))) + (-5 *2 (-599 (-268 *5))) (-5 *1 (-1069 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-419 (-963 *5)))) (-5 *4 (-659 (-1196))) - (-4 *5 (-13 (-319) (-149))) (-5 *2 (-659 (-659 (-326 *5)))) - (-5 *1 (-1148 *5))))) + (-12 (-5 *3 (-599 (-361 (-884 *5)))) (-5 *4 (-599 (-1117))) + (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-599 (-268 *5)))) + (-5 *1 (-1069 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-1196)) (-4 *5 (-13 (-319) (-149))) - (-5 *2 (-659 (-305 (-326 *5)))) (-5 *1 (-1148 *5)))) + (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120))) + (-5 *2 (-599 (-247 (-268 *5)))) (-5 *1 (-1069 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-963 *4))) (-4 *4 (-13 (-319) (-149))) - (-5 *2 (-659 (-305 (-326 *4)))) (-5 *1 (-1148 *4)))) + (-12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-13 (-261) (-120))) + (-5 *2 (-599 (-247 (-268 *4)))) (-5 *1 (-1069 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-305 (-419 (-963 *5)))) (-5 *4 (-1196)) - (-4 *5 (-13 (-319) (-149))) (-5 *2 (-659 (-305 (-326 *5)))) - (-5 *1 (-1148 *5)))) + (-12 (-5 *3 (-247 (-361 (-884 *5)))) (-5 *4 (-1117)) + (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-247 (-268 *5)))) + (-5 *1 (-1069 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-305 (-419 (-963 *4)))) (-4 *4 (-13 (-319) (-149))) - (-5 *2 (-659 (-305 (-326 *4)))) (-5 *1 (-1148 *4)))) + (-12 (-5 *3 (-247 (-361 (-884 *4)))) (-4 *4 (-13 (-261) (-120))) + (-5 *2 (-599 (-247 (-268 *4)))) (-5 *1 (-1069 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-419 (-963 *5)))) (-5 *4 (-659 (-1196))) - (-4 *5 (-13 (-319) (-149))) (-5 *2 (-659 (-659 (-305 (-326 *5))))) - (-5 *1 (-1148 *5)))) + (-12 (-5 *3 (-599 (-361 (-884 *5)))) (-5 *4 (-599 (-1117))) + (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-599 (-247 (-268 *5))))) + (-5 *1 (-1069 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-659 (-419 (-963 *4)))) (-4 *4 (-13 (-319) (-149))) - (-5 *2 (-659 (-659 (-305 (-326 *4))))) (-5 *1 (-1148 *4)))) + (-12 (-5 *3 (-599 (-361 (-884 *4)))) (-4 *4 (-13 (-261) (-120))) + (-5 *2 (-599 (-599 (-247 (-268 *4))))) (-5 *1 (-1069 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-305 (-419 (-963 *5))))) (-5 *4 (-659 (-1196))) - (-4 *5 (-13 (-319) (-149))) (-5 *2 (-659 (-659 (-305 (-326 *5))))) - (-5 *1 (-1148 *5)))) + (-12 (-5 *3 (-599 (-247 (-361 (-884 *5))))) (-5 *4 (-599 (-1117))) + (-4 *5 (-13 (-261) (-120))) (-5 *2 (-599 (-599 (-247 (-268 *5))))) + (-5 *1 (-1069 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-659 (-305 (-419 (-963 *4))))) (-4 *4 (-13 (-319) (-149))) - (-5 *2 (-659 (-659 (-305 (-326 *4))))) (-5 *1 (-1148 *4))))) + (-12 (-5 *3 (-599 (-247 (-361 (-884 *4))))) (-4 *4 (-13 (-261) (-120))) + (-5 *2 (-599 (-599 (-247 (-268 *4))))) (-5 *1 (-1069 *4))))) (((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) - (-5 *1 (-1147 *3 *2)) (-4 *3 (-1262 *2))))) + (-12 (-4 *2 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) + (-5 *1 (-1068 *3 *2)) (-4 *3 (-1183 *2))))) (((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) - (-5 *1 (-1147 *3 *2)) (-4 *3 (-1262 *2))))) + (-12 (-4 *2 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) + (-5 *1 (-1068 *3 *2)) (-4 *3 (-1183 *2))))) (((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) - (-5 *1 (-1147 *3 *2)) (-4 *3 (-1262 *2))))) + (-12 (-4 *2 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) + (-5 *1 (-1068 *3 *2)) (-4 *3 (-1183 *2))))) (((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) - (-5 *1 (-1147 *3 *2)) (-4 *3 (-1262 *2))))) + (-12 (-4 *2 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) + (-5 *1 (-1068 *3 *2)) (-4 *3 (-1183 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) - (-5 *2 (-659 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1262 *4)))) + (-12 (-4 *4 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) + (-5 *2 (-599 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1183 *4)))) ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) - (-5 *2 (-659 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1262 *3))))) + (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) + (-5 *2 (-599 *3)) (-5 *1 (-1068 *4 *3)) (-4 *4 (-1183 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) - (-5 *2 (-659 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1262 *4)))) + (-12 (-4 *4 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) + (-5 *2 (-599 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1183 *4)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) - (-5 *2 (-659 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1262 *3))))) + (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) + (-5 *2 (-599 *3)) (-5 *1 (-1068 *4 *3)) (-4 *4 (-1183 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) - (-5 *2 (-659 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1262 *4)))) + (-12 (-4 *4 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) + (-5 *2 (-599 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1183 *4)))) ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) - (-5 *2 (-659 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1262 *3))))) + (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) + (-5 *2 (-599 *3)) (-5 *1 (-1068 *4 *3)) (-4 *4 (-1183 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) - (-5 *2 (-659 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1262 *4)))) + (-12 (-4 *4 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) + (-5 *2 (-599 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1183 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) - (-5 *2 (-659 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1262 *3))))) + (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) + (-5 *2 (-599 *3)) (-5 *1 (-1068 *4 *3)) (-4 *4 (-1183 *3))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) + (-4 *5 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) (-5 *2 - (-2 (|:| |solns| (-659 *5)) - (|:| |maps| (-659 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1147 *3 *5)) (-4 *3 (-1262 *5))))) + (-2 (|:| |solns| (-599 *5)) + (|:| |maps| (-599 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1068 *3 *5)) (-4 *3 (-1183 *5))))) (((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-376)) (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4424)))) - (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4424)))) (-5 *1 (-685 *4 *5 *2 *3)) - (-4 *3 (-704 *4 *5 *2)))) + (|partial| -12 (-4 *4 (-318)) (-4 *5 (-13 (-327 *4) (-10 -7 (-6 -4146)))) + (-4 *2 (-13 (-327 *4) (-10 -7 (-6 -4146)))) (-5 *1 (-625 *4 *5 *2 *3)) + (-4 *3 (-644 *4 *5 *2)))) ((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1286 *4)) (-5 *3 (-707 *4)) (-4 *4 (-376)) - (-5 *1 (-686 *4)))) + (|partial| -12 (-5 *2 (-1207 *4)) (-5 *3 (-647 *4)) (-4 *4 (-318)) + (-5 *1 (-626 *4)))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-659 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-376)) - (-5 *1 (-834 *2 *3)) (-4 *3 (-676 *2)))) + (|partial| -12 (-5 *4 (-599 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-318)) + (-5 *1 (-757 *2 *3)) (-4 *3 (-616 *2)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-557))))))) - (-5 *1 (-1147 *3 *2)) (-4 *3 (-1262 *2))))) + (-12 (-4 *2 (-13 (-318) (-10 -8 (-15 ** ($ $ (-361 (-499))))))) + (-5 *1 (-1068 *3 *2)) (-4 *3 (-1183 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *6)) (-5 *4 (-659 (-1174 *7))) (-4 *6 (-859)) - (-4 *7 (-967 *5 (-542 *6) *6)) (-4 *5 (-1068)) (-5 *2 (-1 (-1174 *7) *7)) - (-5 *1 (-1145 *5 *6 *7))))) + (-12 (-5 *3 (-599 *6)) (-5 *4 (-599 (-1095 *7))) (-4 *6 (-781)) + (-4 *7 (-888 *5 (-484 *6) *6)) (-4 *5 (-989)) (-5 *2 (-1 (-1095 *7) *7)) + (-5 *1 (-1066 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-319)) (-4 *6 (-385 *5)) (-4 *4 (-385 *5)) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2220 (-659 *4)))) - (-5 *1 (-1143 *5 *6 *4 *3)) (-4 *3 (-704 *5 *6 *4))))) + (-12 (-4 *5 (-261)) (-4 *6 (-327 *5)) (-4 *4 (-327 *5)) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2113 (-599 *4)))) + (-5 *1 (-1064 *5 *6 *4 *3)) (-4 *3 (-644 *5 *6 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-12 (-4 *4 (-261)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1143 *4 *5 *6 *3)) (-4 *3 (-704 *4 *5 *6))))) + (-5 *1 (-1064 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-1143 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5))))) + (-12 (-4 *3 (-261)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) + (-5 *1 (-1064 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1143 *4 *5 *6 *3)) - (-4 *3 (-704 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-1190 (-557))) (-5 *1 (-959)) (-5 *3 (-557)))) + (-12 (-4 *4 (-261)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1064 *4 *5 *6 *3)) + (-4 *3 (-644 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-880)) (-5 *3 (-499)))) ((*1 *2 *2) - (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-1143 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5))))) + (-12 (-4 *3 (-261)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) + (-5 *1 (-1064 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-789)) (-4 *3 (-1068)) (-4 *1 (-704 *3 *4 *5)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)))) + (-12 (-5 *2 (-714)) (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *5)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)))) ((*1 *1 *2) - (-12 (-4 *2 (-1068)) (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) - (-4 *5 (-245 *3 *2))))) + (-12 (-4 *2 (-989)) (-4 *1 (-1063 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) + (-4 *5 (-195 *3 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-659 *1)) (-4 *3 (-1068)) (-4 *1 (-704 *3 *4 *5)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + (-12 (-5 *2 (-599 *1)) (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *5)) + (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-659 *3)) (-4 *3 (-1068)) (-4 *1 (-704 *3 *4 *5)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1068)) (-5 *1 (-707 *3)))) + (-12 (-5 *2 (-599 *3)) (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *5)) + (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-989)) (-5 *1 (-647 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-659 *4)) (-4 *4 (-1068)) (-4 *1 (-1142 *3 *4 *5 *6)) - (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4))))) + (-12 (-5 *2 (-599 *4)) (-4 *4 (-989)) (-4 *1 (-1063 *3 *4 *5 *6)) + (-4 *5 (-195 *3 *4)) (-4 *6 (-195 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1142 *3 *4 *2 *5)) (-4 *4 (-1068)) (-4 *5 (-245 *3 *4)) - (-4 *2 (-245 *3 *4))))) + (-12 (-4 *1 (-1063 *3 *4 *2 *5)) (-4 *4 (-989)) (-4 *5 (-195 *3 *4)) + (-4 *2 (-195 *3 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-936)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) - ((*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) - ((*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-175)))) + (-12 (-5 *2 (-857)) (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)))) + ((*1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-318)))) + ((*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-1183 *2)) (-4 *2 (-146)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1286 *4)) (-5 *3 (-936)) (-4 *4 (-363)) (-5 *1 (-539 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) - (-4 *2 (-1068))))) -(((*1 *2 *3) - (-12 (-5 *3 (-707 *2)) (-4 *4 (-1262 *2)) - (-4 *2 (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $))))) - (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-422 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) - (-4 *2 (-1068))))) -(((*1 *2 *3) - (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-376)) - (-5 *1 (-532 *2 *4 *5 *3)) (-4 *3 (-704 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) - (|has| *2 (-6 (-4425 "*"))) (-4 *2 (-1068)))) - ((*1 *2 *3) - (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175)) - (-5 *1 (-706 *2 *4 *5 *3)) (-4 *3 (-704 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) - (|has| *2 (-6 (-4425 "*"))) (-4 *2 (-1068))))) -(((*1 *2 *1) - (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) - (|has| *2 (-6 (-4425 "*"))) (-4 *2 (-1068)))) - ((*1 *2 *3) - (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175)) - (-5 *1 (-706 *2 *4 *5 *3)) (-4 *3 (-704 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) - (|has| *2 (-6 (-4425 "*"))) (-4 *2 (-1068))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1236)) (-5 *2 (-789))))) -(((*1 *1 *1 *1) (-5 *1 (-114))) ((*1 *1 *1 *1) (-4 *1 (-125))) - ((*1 *1 *1 *1) (-5 *1 (-1139)))) -(((*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-557)))) - ((*1 *1 *1) (-5 *1 (-1139)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-557)))) - ((*1 *1 *1 *1) (-5 *1 (-1139)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-557)))) - ((*1 *1 *1 *1) (-5 *1 (-1139)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1134)) (-5 *1 (-1135))))) -(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-222)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-451)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-849)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-659 (-1201))) (-5 *3 (-1201)) (-5 *1 (-1134)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1135))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-183)))) - ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-699)))) - ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-989)))) - ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1092)))) - ((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1134))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-1237))) (-5 *1 (-699)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 (-1201))) (-5 *1 (-1134))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1255 *5 *4)) (-4 *4 (-464)) (-4 *4 (-840)) (-14 *5 (-1196)) - (-5 *2 (-557)) (-5 *1 (-1133 *4 *5))))) + (-12 (-5 *2 (-1207 *4)) (-5 *3 (-857)) (-4 *4 (-305)) (-5 *1 (-481 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1063 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)) + (-4 *2 (-989))))) +(((*1 *2 *3) + (-12 (-5 *3 (-647 *2)) (-4 *4 (-1183 *2)) + (-4 *2 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) + (-5 *1 (-453 *2 *4 *5)) (-4 *5 (-364 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1063 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)) + (-4 *2 (-989))))) +(((*1 *2 *3) + (-12 (-4 *4 (-327 *2)) (-4 *5 (-327 *2)) (-4 *2 (-318)) + (-5 *1 (-474 *2 *4 *5 *3)) (-4 *3 (-644 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)) + (|has| *2 (-6 (-4147 "*"))) (-4 *2 (-989)))) + ((*1 *2 *3) + (-12 (-4 *4 (-327 *2)) (-4 *5 (-327 *2)) (-4 *2 (-146)) + (-5 *1 (-646 *2 *4 *5 *3)) (-4 *3 (-644 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1063 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)) + (|has| *2 (-6 (-4147 "*"))) (-4 *2 (-989))))) +(((*1 *2 *1) + (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *3 (-327 *2)) (-4 *4 (-327 *2)) + (|has| *2 (-6 (-4147 "*"))) (-4 *2 (-989)))) + ((*1 *2 *3) + (-12 (-4 *4 (-327 *2)) (-4 *5 (-327 *2)) (-4 *2 (-146)) + (-5 *1 (-646 *2 *4 *5 *3)) (-4 *3 (-644 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1063 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)) + (|has| *2 (-6 (-4147 "*"))) (-4 *2 (-989))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) + ((*1 *2 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1157)) (-5 *2 (-714))))) +(((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96))) + ((*1 *1 *1 *1) (-5 *1 (-1060)))) +(((*1 *1 *1) (-12 (-5 *1 (-454 *2)) (-14 *2 (-499)))) + ((*1 *1 *1) (-5 *1 (-1060)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-454 *2)) (-14 *2 (-499)))) + ((*1 *1 *1 *1) (-5 *1 (-1060)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-454 *2)) (-14 *2 (-499)))) + ((*1 *1 *1 *1) (-5 *1 (-1060)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-1055)) (-5 *1 (-1056))))) +(((*1 *2 *1) (-12 (-5 *2 (-1055)) (-5 *1 (-172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1055)) (-5 *1 (-393)))) + ((*1 *2 *1) (-12 (-5 *2 (-1055)) (-5 *1 (-772)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-599 (-1122))) (-5 *3 (-1122)) (-5 *1 (-1055)))) + ((*1 *2 *1) (-12 (-5 *2 (-1055)) (-5 *1 (-1056))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-639)))) + ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-910)))) + ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1013)))) + ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1055))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-1158))) (-5 *1 (-639)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 (-1122))) (-5 *1 (-1055))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1176 *5 *4)) (-4 *4 (-406)) (-4 *4 (-763)) (-14 *5 (-1117)) + (-5 *2 (-499)) (-5 *1 (-1054 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1255 *5 *4)) (-4 *4 (-464)) (-4 *4 (-840)) (-14 *5 (-1196)) - (-5 *2 (-557)) (-5 *1 (-1133 *4 *5))))) + (-12 (-5 *3 (-1176 *5 *4)) (-4 *4 (-406)) (-4 *4 (-763)) (-14 *5 (-1117)) + (-5 *2 (-499)) (-5 *1 (-1054 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1255 *5 *4)) (-4 *4 (-840)) (-14 *5 (-1196)) (-5 *2 (-557)) - (-5 *1 (-1133 *4 *5))))) + (-12 (-5 *3 (-1176 *5 *4)) (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-499)) + (-5 *1 (-1054 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1255 *5 *4)) (-4 *4 (-840)) (-14 *5 (-1196)) (-5 *2 (-557)) - (-5 *1 (-1133 *4 *5))))) + (-12 (-5 *3 (-1176 *5 *4)) (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-499)) + (-5 *1 (-1054 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1255 *5 *4)) (-4 *4 (-840)) (-14 *5 (-1196)) (-5 *2 (-659 *4)) - (-5 *1 (-1133 *4 *5))))) + (-12 (-5 *3 (-1176 *5 *4)) (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-599 *4)) + (-5 *1 (-1054 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-840)) (-14 *5 (-1196)) (-5 *2 (-659 (-1255 *5 *4))) - (-5 *1 (-1133 *4 *5)) (-5 *3 (-1255 *5 *4))))) + (-12 (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-599 (-1176 *5 *4))) + (-5 *1 (-1054 *4 *5)) (-5 *3 (-1176 *5 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-840)) (-14 *5 (-1196)) (-5 *2 (-659 (-1255 *5 *4))) - (-5 *1 (-1133 *4 *5)) (-5 *3 (-1255 *5 *4))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-1129)) (-5 *3 (-557))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-1129)) (-5 *3 (-557))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-1129)) (-5 *3 (-557))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-1129))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1286 (-557))) (-5 *3 (-557)) (-5 *1 (-1129)))) + (-12 (-4 *4 (-763)) (-14 *5 (-1117)) (-5 *2 (-599 (-1176 *5 *4))) + (-5 *1 (-1054 *4 *5)) (-5 *3 (-1176 *5 *4))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-1050)) (-5 *3 (-499))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-1050)) (-5 *3 (-499))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-1050)) (-5 *3 (-499))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-1050))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1207 (-499))) (-5 *3 (-499)) (-5 *1 (-1050)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1286 (-557))) (-5 *3 (-659 (-557))) (-5 *4 (-557)) - (-5 *1 (-1129))))) + (-12 (-5 *2 (-1207 (-499))) (-5 *3 (-599 (-499))) (-5 *4 (-499)) + (-5 *1 (-1050))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-659 (-557))) (-5 *3 (-659 (-936))) (-5 *4 (-114)) - (-5 *1 (-1129))))) + (-12 (-5 *2 (-599 (-499))) (-5 *3 (-599 (-857))) (-5 *4 (-85)) + (-5 *1 (-1050))))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-707 (-557))) (-5 *3 (-659 (-557))) (-5 *1 (-1129))))) + (-12 (-5 *2 (-647 (-499))) (-5 *3 (-599 (-499))) (-5 *1 (-1050))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-936))) (-5 *4 (-659 (-557))) (-5 *2 (-707 (-557))) - (-5 *1 (-1129))))) + (-12 (-5 *3 (-599 (-857))) (-5 *4 (-599 (-499))) (-5 *2 (-647 (-499))) + (-5 *1 (-1050))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 (-936))) (-5 *2 (-659 (-707 (-557)))) (-5 *1 (-1129))))) + (-12 (-5 *3 (-599 (-857))) (-5 *2 (-599 (-647 (-499)))) (-5 *1 (-1050))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-659 (-557))) (-5 *3 (-707 (-557))) (-5 *1 (-1129))))) + (-12 (-5 *2 (-599 (-499))) (-5 *3 (-647 (-499))) (-5 *1 (-1050))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-659 (-557))) (-5 *2 (-707 (-557))) (-5 *1 (-1129))))) + (-12 (-5 *3 (-599 (-499))) (-5 *2 (-647 (-499))) (-5 *1 (-1050))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *4)))) - (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) + (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-659 *4)) (-5 *1 (-1127 *5 *6 *7 *3 *4)) - (-4 *4 (-1090 *5 *6 *7 *3))))) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 (-599 *4)) (-5 *1 (-1048 *5 *6 *7 *3 *4)) + (-4 *4 (-1011 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-114)) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 (-85)) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-659 (-2 (|:| |val| (-114)) (|:| -1741 *4)))) - (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *4)))) + (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-659 *4)) (-5 *1 (-1127 *5 *6 *7 *3 *4)) - (-4 *4 (-1090 *5 *6 *7 *3))))) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 (-599 *4)) (-5 *1 (-1048 *5 *6 *7 *3 *4)) + (-4 *4 (-1011 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-659 (-2 (|:| |val| (-114)) (|:| -1741 *4)))) - (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *4)))) + (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-659 *4)) (-5 *1 (-1127 *5 *6 *7 *3 *4)) - (-4 *4 (-1090 *5 *6 *7 *3))))) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 (-599 *4)) (-5 *1 (-1048 *5 *6 *7 *3 *4)) + (-4 *4 (-1011 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-659 (-2 (|:| |val| (-114)) (|:| -1741 *4)))) - (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *4)))) + (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *4)))) - (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) + (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *4)))) - (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) + (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) - (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *4)))) - (-5 *1 (-1127 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) + (-12 (-5 *5 (-85)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) + (-4 *3 (-1005 *6 *7 *8)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) + (-5 *1 (-1048 *6 *7 *8 *3 *4)) (-4 *4 (-1011 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-659 (-2 (|:| |val| (-659 *8)) (|:| -1741 *9)))) (-5 *5 (-114)) - (-4 *8 (-1084 *6 *7 *4)) (-4 *9 (-1090 *6 *7 *4 *8)) (-4 *6 (-464)) - (-4 *7 (-813)) (-4 *4 (-859)) - (-5 *2 (-659 (-2 (|:| |val| *8) (|:| -1741 *9)))) - (-5 *1 (-1127 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-599 (-2 (|:| |val| (-599 *8)) (|:| -1633 *9)))) (-5 *5 (-85)) + (-4 *8 (-1005 *6 *7 *4)) (-4 *9 (-1011 *6 *7 *4 *8)) (-4 *6 (-406)) + (-4 *7 (-738)) (-4 *4 (-781)) + (-5 *2 (-599 (-2 (|:| |val| *8) (|:| -1633 *9)))) + (-5 *1 (-1048 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))) - (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))) + (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) (((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) - (-5 *2 (-1292)) (-5 *1 (-1091 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) + (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) + (-5 *2 (-1213)) (-5 *1 (-1012 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) - (-5 *2 (-1292)) (-5 *1 (-1127 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6))))) + (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) + (-5 *2 (-1213)) (-5 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1091 *4 *5 *6 *7 *8)) - (-4 *8 (-1090 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) + (-4 *8 (-1011 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) - (-4 *8 (-1090 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-1048 *4 *5 *6 *7 *8)) + (-4 *8 (-1011 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) - (-5 *2 (-1292)) (-5 *1 (-1091 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) + (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) + (-5 *2 (-1213)) (-5 *1 (-1012 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) - (-5 *2 (-1292)) (-5 *1 (-1127 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6))))) + (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) + (-5 *2 (-1213)) (-5 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1091 *4 *5 *6 *7 *8)) - (-4 *8 (-1090 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) + (-4 *8 (-1011 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) - (-4 *8 (-1090 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-1048 *4 *5 *6 *7 *8)) + (-4 *8 (-1011 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) - (-4 *9 (-1084 *6 *7 *8)) - (-5 *2 (-2 (|:| -3682 (-659 *9)) (|:| -1741 *4) (|:| |ineq| (-659 *9)))) - (-5 *1 (-1007 *6 *7 *8 *9 *4)) (-5 *3 (-659 *9)) - (-4 *4 (-1090 *6 *7 *8 *9)))) + (|partial| -12 (-5 *5 (-85)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) + (-4 *9 (-1005 *6 *7 *8)) + (-5 *2 (-2 (|:| -3404 (-599 *9)) (|:| -1633 *4) (|:| |ineq| (-599 *9)))) + (-5 *1 (-928 *6 *7 *8 *9 *4)) (-5 *3 (-599 *9)) + (-4 *4 (-1011 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) - (-4 *9 (-1084 *6 *7 *8)) - (-5 *2 (-2 (|:| -3682 (-659 *9)) (|:| -1741 *4) (|:| |ineq| (-659 *9)))) - (-5 *1 (-1126 *6 *7 *8 *9 *4)) (-5 *3 (-659 *9)) - (-4 *4 (-1090 *6 *7 *8 *9))))) + (|partial| -12 (-5 *5 (-85)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) + (-4 *9 (-1005 *6 *7 *8)) + (-5 *2 (-2 (|:| -3404 (-599 *9)) (|:| -1633 *4) (|:| |ineq| (-599 *9)))) + (-5 *1 (-1047 *6 *7 *8 *9 *4)) (-5 *3 (-599 *9)) + (-4 *4 (-1011 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-659 *10)) (-5 *5 (-114)) (-4 *10 (-1090 *6 *7 *8 *9)) - (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) (-4 *9 (-1084 *6 *7 *8)) + (-12 (-5 *4 (-599 *10)) (-5 *5 (-85)) (-4 *10 (-1011 *6 *7 *8 *9)) + (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *9 (-1005 *6 *7 *8)) (-5 *2 - (-659 (-2 (|:| -3682 (-659 *9)) (|:| -1741 *10) (|:| |ineq| (-659 *9))))) - (-5 *1 (-1007 *6 *7 *8 *9 *10)) (-5 *3 (-659 *9)))) + (-599 (-2 (|:| -3404 (-599 *9)) (|:| -1633 *10) (|:| |ineq| (-599 *9))))) + (-5 *1 (-928 *6 *7 *8 *9 *10)) (-5 *3 (-599 *9)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-659 *10)) (-5 *5 (-114)) (-4 *10 (-1090 *6 *7 *8 *9)) - (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) (-4 *9 (-1084 *6 *7 *8)) + (-12 (-5 *4 (-599 *10)) (-5 *5 (-85)) (-4 *10 (-1011 *6 *7 *8 *9)) + (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *9 (-1005 *6 *7 *8)) (-5 *2 - (-659 (-2 (|:| -3682 (-659 *9)) (|:| -1741 *10) (|:| |ineq| (-659 *9))))) - (-5 *1 (-1126 *6 *7 *8 *9 *10)) (-5 *3 (-659 *9))))) + (-599 (-2 (|:| -3404 (-599 *9)) (|:| -1633 *10) (|:| |ineq| (-599 *9))))) + (-5 *1 (-1047 *6 *7 *8 *9 *10)) (-5 *3 (-599 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-659 (-2 (|:| |val| (-659 *6)) (|:| -1741 *7)))) - (-4 *6 (-1084 *3 *4 *5)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-599 (-2 (|:| |val| (-599 *6)) (|:| -1633 *7)))) + (-4 *6 (-1005 *3 *4 *5)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) + (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-928 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-659 (-2 (|:| |val| (-659 *6)) (|:| -1741 *7)))) - (-4 *6 (-1084 *3 *4 *5)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-1126 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-599 (-2 (|:| |val| (-599 *6)) (|:| -1633 *7)))) + (-4 *6 (-1005 *3 *4 *5)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) + (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-1047 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-659 *7)) (|:| -1741 *8))) - (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) - (-5 *1 (-1007 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-2 (|:| |val| (-599 *7)) (|:| -1633 *8))) + (-4 *7 (-1005 *4 *5 *6)) (-4 *8 (-1011 *4 *5 *6 *7)) (-4 *4 (-406)) + (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-659 *7)) (|:| -1741 *8))) - (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) - (-5 *1 (-1126 *4 *5 *6 *7 *8))))) -(((*1 *2 *2) - (-12 (-5 *2 (-659 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) - (-5 *1 (-1007 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-659 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) - (-5 *1 (-1126 *3 *4 *5 *6 *7))))) + (-12 (-5 *3 (-2 (|:| |val| (-599 *7)) (|:| -1633 *8))) + (-4 *7 (-1005 *4 *5 *6)) (-4 *8 (-1011 *4 *5 *6 *7)) (-4 *4 (-406)) + (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *8))))) +(((*1 *2 *2) + (-12 (-5 *2 (-599 *7)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) + (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) + (-5 *1 (-928 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-599 *7)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) + (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) + (-5 *1 (-1047 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) + (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-659 *3)) (-4 *3 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-813)) (-4 *7 (-859)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-114)) - (-5 *1 (-1007 *5 *6 *7 *8 *3)))) + (-12 (-5 *4 (-599 *3)) (-4 *3 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) + (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-1005 *5 *6 *7)) (-5 *2 (-85)) + (-5 *1 (-928 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) + (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-659 *3)) (-4 *3 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-813)) (-4 *7 (-859)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-114)) - (-5 *1 (-1126 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-599 *3)) (-4 *3 (-1011 *5 *6 *7 *8)) (-4 *5 (-406)) + (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-1005 *5 *6 *7)) (-5 *2 (-85)) + (-5 *1 (-1047 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) - (-4 *3 (-1090 *4 *5 *6 *7)))) + (|partial| -12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *3)) + (-4 *3 (-1011 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) - (-4 *3 (-1090 *4 *5 *6 *7))))) + (|partial| -12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *3)) + (-4 *3 (-1011 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) - (-4 *8 (-1090 *4 *5 *6 *7)))) + (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *8)) + (-4 *8 (-1011 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) - (-4 *8 (-1090 *4 *5 *6 *7))))) + (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *8)) + (-4 *8 (-1011 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) - (-4 *8 (-1090 *4 *5 *6 *7)))) + (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *8)) + (-4 *8 (-1011 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) - (-4 *8 (-1090 *4 *5 *6 *7))))) + (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *8)) + (-4 *8 (-1011 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) - (-4 *8 (-1090 *4 *5 *6 *7)))) + (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *8)) + (-4 *8 (-1011 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) - (-4 *8 (-1090 *4 *5 *6 *7))))) + (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *8)) + (-4 *8 (-1011 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) + (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7))))) + (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) + (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7))))) + (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-659 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) - (-5 *1 (-1007 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-599 *7)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) + (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) + (-5 *1 (-928 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-659 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) - (-5 *1 (-1126 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-599 *7)) (-4 *7 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) + (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) + (-5 *1 (-1047 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) + (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7))))) + (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1047 *4 *5 *6 *7 *3)) (-4 *3 (-1011 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) - (-5 *2 (-1292)) (-5 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) + (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) + (-5 *2 (-1213)) (-5 *1 (-928 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) - (-5 *2 (-1292)) (-5 *1 (-1126 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6))))) + (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) + (-5 *2 (-1213)) (-5 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *7 (-1011 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) - (-4 *8 (-1090 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-928 *4 *5 *6 *7 *8)) + (-4 *8 (-1011 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) - (-4 *8 (-1090 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1099)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *7 (-1005 *4 *5 *6)) (-5 *2 (-1213)) (-5 *1 (-1047 *4 *5 *6 *7 *8)) + (-4 *8 (-1011 *4 *5 *6 *7))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-446)) (-4 *5 (-1120)) (-5 *1 (-1125 *5 *4)) - (-4 *4 (-433 *5))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1093)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-388)) (-4 *5 (-1041)) (-5 *1 (-1046 *5 *4)) + (-4 *4 (-375 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1014)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) + (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) + (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) + (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) + (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) + (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) + (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) + (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) ((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) - ((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-580 *3)) (-4 *3 (-1057 (-557))))) + (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) + (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388)))) + ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-520 *3)) (-4 *3 (-978 (-499))))) ((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) + (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *3 (-1041)) (-4 *4 (-1041)) + (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *7 (-1041)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-5 *2 (-659 (-2 (|:| -4288 (-1196)) (|:| -2284 *4)))) - (-5 *1 (-901 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))) + (-12 (-5 *2 (-599 (-2 (|:| -4010 (-1117)) (|:| |entry| *4)))) + (-5 *1 (-823 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)))) ((*1 *2 *1) - (-12 (-4 *3 (-1120)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-4 *7 (-1120)) (-5 *2 (-659 *1)) (-4 *1 (-1123 *3 *4 *5 *6 *7))))) + (-12 (-4 *3 (-1041)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) + (-4 *7 (-1041)) (-5 *2 (-599 *1)) (-4 *1 (-1044 *3 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *2 *4 *5 *6)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120))))) -(((*1 *2 *3) (-12 (-5 *2 (-557)) (-5 *1 (-580 *3)) (-4 *3 (-1057 *2)))) + (-12 (-4 *1 (-1044 *3 *2 *4 *5 *6)) (-4 *3 (-1041)) (-4 *4 (-1041)) + (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041))))) +(((*1 *2 *3) (-12 (-5 *2 (-499)) (-5 *1 (-520 *3)) (-4 *3 (-978 *2)))) ((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *2 *5 *6)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-557)) (-5 *3 (-936)) (-4 *1 (-416)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-557)) (-4 *1 (-416)))) + (-12 (-4 *1 (-1044 *3 *4 *2 *5 *6)) (-4 *3 (-1041)) (-4 *4 (-1041)) + (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-857)) (-4 *1 (-358)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-499)) (-4 *1 (-358)))) ((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *2 *6)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120))))) + (-12 (-4 *1 (-1044 *3 *4 *5 *2 *6)) (-4 *3 (-1041)) (-4 *4 (-1041)) + (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041))))) (((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6 *2)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-1120))))) + (-12 (-4 *1 (-1044 *3 *4 *5 *6 *2)) (-4 *3 (-1041)) (-4 *4 (-1041)) + (-4 *5 (-1041)) (-4 *6 (-1041)) (-4 *2 (-1041))))) (((*1 *1 *1) - (-12 (-4 *1 (-1123 *2 *3 *4 *5 *6)) (-4 *2 (-1120)) (-4 *3 (-1120)) - (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120))))) + (-12 (-4 *1 (-1044 *2 *3 *4 *5 *6)) (-4 *2 (-1041)) (-4 *3 (-1041)) + (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041))))) (((*1 *1 *1) - (-12 (-4 *1 (-1123 *2 *3 *4 *5 *6)) (-4 *2 (-1120)) (-4 *3 (-1120)) - (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120))))) + (-12 (-4 *1 (-1044 *2 *3 *4 *5 *6)) (-4 *2 (-1041)) (-4 *3 (-1041)) + (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-936)) (-5 *1 (-1121 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) + (|partial| -12 (-5 *2 (-857)) (-5 *1 (-1042 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) (((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-936)) (-5 *1 (-1121 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-1154))) (-5 *1 (-689)))) + (|partial| -12 (-5 *2 (-857)) (-5 *1 (-1042 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-629)))) ((*1 *2 *1) - (-12 (-5 *2 (-659 (-936))) (-5 *1 (-1121 *3 *4)) (-14 *3 (-936)) - (-14 *4 (-936))))) + (-12 (-5 *2 (-599 (-857))) (-5 *1 (-1042 *3 *4)) (-14 *3 (-857)) + (-14 *4 (-857))))) (((*1 *1 *2) - (-12 (-5 *2 (-659 (-936))) (-5 *1 (-1121 *3 *4)) (-14 *3 (-936)) - (-14 *4 (-936))))) + (-12 (-5 *2 (-599 (-857))) (-5 *1 (-1042 *3 *4)) (-14 *3 (-857)) + (-14 *4 (-857))))) (((*1 *2) - (-12 (-5 *2 (-1286 (-1121 *3 *4))) (-5 *1 (-1121 *3 *4)) (-14 *3 (-936)) - (-14 *4 (-936))))) + (-12 (-5 *2 (-1207 (-1042 *3 *4))) (-5 *1 (-1042 *3 *4)) (-14 *3 (-857)) + (-14 *4 (-857))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) (-4 *3 (-1120)) - (-5 *2 (-114)))) + (-12 (|has| *1 (-6 -4145)) (-4 *1 (-443 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)) + (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-919 *4)) (-4 *4 (-1120)) (-5 *2 (-114)) (-5 *1 (-922 *4)))) + (-12 (-5 *3 (-840 *4)) (-4 *4 (-1041)) (-5 *2 (-85)) (-5 *1 (-843 *4)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-936)) (-5 *2 (-114)) (-5 *1 (-1121 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-857)) (-5 *2 (-85)) (-5 *1 (-1042 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-936)) (-5 *2 (-789)) (-5 *1 (-1121 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-857)) (-5 *2 (-714)) (-5 *1 (-1042 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-1120)) (-5 *2 (-1139))))) -(((*1 *2 *1) (-12 (-4 *1 (-1120)) (-5 *2 (-1178))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1118 *3)) (-4 *3 (-1120)) (-5 *2 (-114))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875)))) - ((*1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-4 *1 (-1118 *3)))) - ((*1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-4 *1 (-1118 *3)))) - ((*1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120))))) +(((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1060))))) +(((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1099))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-1041)) (-5 *2 (-85))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) + ((*1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-4 *1 (-1039 *3)))) + ((*1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-4 *1 (-1039 *3)))) + ((*1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041))))) (((*1 *1 *2) - (-12 (-5 *2 (-659 (-516 *3 *4 *5 *6))) (-4 *3 (-376)) (-4 *4 (-813)) - (-4 *5 (-859)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) + (-12 (-5 *2 (-599 (-458 *3 *4 *5 *6))) (-4 *3 (-318)) (-4 *4 (-738)) + (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-376)) (-4 *3 (-813)) (-4 *4 (-859)) (-5 *1 (-516 *2 *3 *4 *5)) - (-4 *5 (-967 *2 *3 *4)))) + (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) + (-4 *5 (-888 *2 *3 *4)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-659 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)))) + (-12 (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) + (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-659 *1)) (-5 *3 (-659 *7)) (-4 *1 (-1090 *4 *5 *6 *7)) - (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)))) + (-12 (-5 *2 (-599 *1)) (-5 *3 (-599 *7)) (-4 *1 (-1011 *4 *5 *6 *7)) + (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *2 (-659 *1)) (-4 *1 (-1090 *4 *5 *6 *7)))) + (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *7)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) - (-5 *2 (-659 *1)) (-4 *1 (-1090 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1118 *3)) (-4 *3 (-1120)) (-5 *2 (-114))))) + (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) + (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-1041)) (-5 *2 (-85))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-659 (-626 *4))) (-4 *4 (-433 *3)) (-4 *3 (-1120)) - (-5 *1 (-584 *3 *4)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-901 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 (-1154))) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 (-1154))) (-5 *1 (-140)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 (-1154))) (-5 *1 (-164)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-222)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-694)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1038)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1085)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 (-1154))) (-5 *1 (-1115))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-4 *1 (-1113 *3)) (-4 *3 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1236)) (-5 *2 (-557))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1178)) (-5 *1 (-1008)))) + (-12 (-5 *2 (-599 (-566 *4))) (-4 *4 (-375 *3)) (-4 *3 (-1041)) + (-5 *1 (-524 *3 *4)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-106)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-127)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-634)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-959)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1006)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-1036))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-1034 *3)) (-4 *3 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-1157)) (-5 *2 (-499))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1157)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1099)) (-5 *1 (-929)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-4 *4 (-1236)) (-5 *1 (-1077 *3 *4)) - (-4 *3 (-1113 *4)))) + (-12 (-5 *2 (-1117)) (-4 *4 (-1157)) (-5 *1 (-998 *3 *4)) + (-4 *3 (-1034 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1108 *4)) (-4 *4 (-1236)) (-5 *1 (-1111 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-1154))) (-5 *1 (-1110))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-960 (-229)) (-960 (-229)))) (-5 *1 (-270)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-1029 *4)) (-4 *4 (-1157)) (-5 *1 (-1032 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-1031))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-881 (-179)) (-881 (-179)))) (-5 *1 (-220)))) ((*1 *2 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-341 *4)) (-4 *4 (-376)) (-5 *2 (-707 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1286 *3)))) + (-12 (-5 *3 (-1207 *1)) (-4 *1 (-283 *4)) (-4 *4 (-318)) (-5 *2 (-647 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-5 *2 (-1207 *3)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-707 *4)))) + (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-1286 *4)))) + (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-1207 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) - (-4 *5 (-1262 *4)) (-5 *2 (-707 *4)))) + (-12 (-5 *3 (-1207 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1183 *4)) (-5 *2 (-647 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) - (-4 *5 (-1262 *4)) (-5 *2 (-1286 *4)))) + (-12 (-5 *3 (-1207 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1183 *4)) (-5 *2 (-1207 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-422 *4 *5)) (-4 *4 (-175)) - (-4 *5 (-1262 *4)) (-5 *2 (-707 *4)))) + (-12 (-5 *3 (-1207 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1183 *4)) (-5 *2 (-647 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1262 *3)) - (-5 *2 (-1286 *3)))) + (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1183 *3)) + (-5 *2 (-1207 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-430 *4)) (-4 *4 (-175)) (-5 *2 (-707 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1286 *3)))) + (-12 (-5 *3 (-1207 *1)) (-4 *1 (-372 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-1207 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1286 *3)) (-5 *1 (-655 *3 *4)) (-4 *3 (-376)) - (-14 *4 (-659 (-1196))))) + (-12 (-5 *2 (-1207 *3)) (-5 *1 (-595 *3 *4)) (-4 *3 (-318)) + (-14 *4 (-599 (-1117))))) ((*1 *2 *1) - (-12 (-5 *2 (-1286 *3)) (-5 *1 (-657 *3 *4)) (-4 *3 (-376)) - (-14 *4 (-659 (-1196))))) + (-12 (-5 *2 (-1207 *3)) (-5 *1 (-597 *3 *4)) (-4 *3 (-318)) + (-14 *4 (-599 (-1117))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-659 (-707 *5))) (-5 *3 (-707 *5)) (-4 *5 (-376)) - (-5 *2 (-1286 *5)) (-5 *1 (-1105 *5))))) + (-12 (-5 *4 (-599 (-647 *5))) (-5 *3 (-647 *5)) (-4 *5 (-318)) + (-5 *2 (-1207 *5)) (-5 *1 (-1026 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) - (-5 *2 (-1286 (-707 *4))))) + (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) + (-5 *2 (-1207 (-647 *4))))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-1286 (-707 *4))) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) - ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1286 (-707 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-1196))) (-4 *5 (-376)) - (-5 *2 (-1286 (-707 (-419 (-963 *5))))) (-5 *1 (-1105 *5)) - (-5 *4 (-707 (-419 (-963 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-1196))) (-4 *5 (-376)) (-5 *2 (-1286 (-707 (-963 *5)))) - (-5 *1 (-1105 *5)) (-5 *4 (-707 (-963 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-659 (-707 *4))) (-4 *4 (-376)) (-5 *2 (-1286 (-707 *4))) - (-5 *1 (-1105 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-178))) (-5 *1 (-1104))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-709 (-109))) (-5 *1 (-178)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-709 (-109))) (-5 *1 (-1104))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1104))))) -(((*1 *1) (-5 *1 (-1104)))) -(((*1 *1) (-5 *1 (-1104)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *2)) (-4 *2 (-134)) (-5 *1 (-1103 *2)))) + (-12 (-4 *4 (-146)) (-5 *2 (-1207 (-647 *4))) (-5 *1 (-371 *3 *4)) + (-4 *3 (-372 *4)))) + ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-1207 (-647 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-1117))) (-4 *5 (-318)) + (-5 *2 (-1207 (-647 (-361 (-884 *5))))) (-5 *1 (-1026 *5)) + (-5 *4 (-647 (-361 (-884 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-1117))) (-4 *5 (-318)) (-5 *2 (-1207 (-647 (-884 *5)))) + (-5 *1 (-1026 *5)) (-5 *4 (-647 (-884 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-599 (-647 *4))) (-4 *4 (-318)) (-5 *2 (-1207 (-647 *4))) + (-5 *1 (-1026 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-149))) (-5 *1 (-1025))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-460)) (-5 *2 (-649 (-80))) (-5 *1 (-149)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-460)) (-5 *2 (-649 (-80))) (-5 *1 (-1025))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-80)) (-5 *1 (-1025))))) +(((*1 *1) (-5 *1 (-1025)))) +(((*1 *1) (-5 *1 (-1025)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-1024 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-557) *2 *2)) (-4 *2 (-134)) (-5 *1 (-1103 *2))))) -(((*1 *2) (-12 (-5 *2 (-659 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-134))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1103 *3)) (-4 *3 (-134))))) -(((*1 *1) (-5 *1 (-1101)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-813)) (-4 *7 (-859)) - (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-659 *3)) (-5 *1 (-602 *5 *6 *7 *8 *3)) - (-4 *3 (-1128 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) - (-5 *2 (-659 (-2 (|:| -1948 (-1190 *5)) (|:| -3640 (-659 (-963 *5)))))) - (-5 *1 (-1097 *5 *6)) (-5 *3 (-659 (-963 *5))) (-14 *6 (-659 (-1196))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-319) (-149))) - (-5 *2 (-659 (-2 (|:| -1948 (-1190 *4)) (|:| -3640 (-659 (-963 *4)))))) - (-5 *1 (-1097 *4 *5)) (-5 *3 (-659 (-963 *4))) (-14 *5 (-659 (-1196))))) + (-12 (-5 *3 (-1 (-499) *2 *2)) (-4 *2 (-105)) (-5 *1 (-1024 *2))))) +(((*1 *2) (-12 (-5 *2 (-599 *3)) (-5 *1 (-1024 *3)) (-4 *3 (-105))))) +(((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-1024 *3)) (-4 *3 (-105))))) +(((*1 *1) (-5 *1 (-1022)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-738)) (-4 *7 (-781)) + (-4 *8 (-1005 *5 *6 *7)) (-5 *2 (-599 *3)) (-5 *1 (-542 *5 *6 *7 *8 *3)) + (-4 *3 (-1049 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) + (-5 *2 (-599 (-2 (|:| -1840 (-1111 *5)) (|:| -3362 (-599 (-884 *5)))))) + (-5 *1 (-1018 *5 *6)) (-5 *3 (-599 (-884 *5))) (-14 *6 (-599 (-1117))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-261) (-120))) + (-5 *2 (-599 (-2 (|:| -1840 (-1111 *4)) (|:| -3362 (-599 (-884 *4)))))) + (-5 *1 (-1018 *4 *5)) (-5 *3 (-599 (-884 *4))) (-14 *5 (-599 (-1117))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) - (-5 *2 (-659 (-2 (|:| -1948 (-1190 *5)) (|:| -3640 (-659 (-963 *5)))))) - (-5 *1 (-1097 *5 *6)) (-5 *3 (-659 (-963 *5))) (-14 *6 (-659 (-1196)))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) + (-5 *2 (-599 (-2 (|:| -1840 (-1111 *5)) (|:| -3362 (-599 (-884 *5)))))) + (-5 *1 (-1018 *5 *6)) (-5 *3 (-599 (-884 *5))) (-14 *6 (-599 (-1117)))))) (((*1 *1 *2) - (-12 (-5 *2 (-659 (-1094 *3 *4 *5))) (-4 *3 (-1120)) - (-4 *4 (-13 (-1068) (-899 *3) (-629 (-903 *3)))) - (-4 *5 (-13 (-433 *4) (-899 *3) (-629 (-903 *3)))) - (-5 *1 (-1096 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1120)) (-4 *4 (-13 (-1068) (-899 *3) (-629 (-903 *3)))) - (-5 *2 (-659 (-1094 *3 *4 *5))) (-5 *1 (-1096 *3 *4 *5)) - (-4 *5 (-13 (-433 *4) (-899 *3) (-629 (-903 *3))))))) + (-12 (-5 *2 (-599 (-1015 *3 *4 *5))) (-4 *3 (-1041)) + (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))) + (-4 *5 (-13 (-375 *4) (-821 *3) (-569 (-825 *3)))) + (-5 *1 (-1017 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1041)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))) + (-5 *2 (-599 (-1015 *3 *4 *5))) (-5 *1 (-1017 *3 *4 *5)) + (-4 *5 (-13 (-375 *4) (-821 *3) (-569 (-825 *3))))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-659 (-1196))) (-4 *4 (-1120)) - (-4 *5 (-13 (-1068) (-899 *4) (-629 (-903 *4)))) (-5 *1 (-1094 *4 *5 *2)) - (-4 *2 (-13 (-433 *5) (-899 *4) (-629 (-903 *4)))))) + (-12 (-5 *3 (-599 (-1117))) (-4 *4 (-1041)) + (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-1015 *4 *5 *2)) + (-4 *2 (-13 (-375 *5) (-821 *4) (-569 (-825 *4)))))) ((*1 *1 *2 *2) - (-12 (-4 *3 (-1120)) (-4 *4 (-13 (-1068) (-899 *3) (-629 (-903 *3)))) - (-5 *1 (-1094 *3 *4 *2)) - (-4 *2 (-13 (-433 *4) (-899 *3) (-629 (-903 *3))))))) + (-12 (-4 *3 (-1041)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))) + (-5 *1 (-1015 *3 *4 *2)) + (-4 *2 (-13 (-375 *4) (-821 *3) (-569 (-825 *3))))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-903 *4)) (-5 *3 (-1 (-114) *5)) (-4 *4 (-1120)) (-4 *5 (-1236)) - (-5 *1 (-904 *4 *5)))) + (-12 (-5 *2 (-825 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1041)) (-4 *5 (-1157)) + (-5 *1 (-826 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-903 *4)) (-5 *3 (-659 (-1 (-114) *5))) (-4 *4 (-1120)) - (-4 *5 (-1236)) (-5 *1 (-904 *4 *5)))) + (-12 (-5 *2 (-825 *4)) (-5 *3 (-599 (-1 (-85) *5))) (-4 *4 (-1041)) + (-4 *5 (-1157)) (-5 *1 (-826 *4 *5)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-903 *5)) (-5 *3 (-659 (-1196))) (-5 *4 (-1 (-114) (-659 *6))) - (-4 *5 (-1120)) (-4 *6 (-1236)) (-5 *1 (-904 *5 *6)))) + (-12 (-5 *2 (-825 *5)) (-5 *3 (-599 (-1117))) (-5 *4 (-1 (-85) (-599 *6))) + (-4 *5 (-1041)) (-4 *6 (-1157)) (-5 *1 (-826 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-1 (-114) *5)) (-4 *5 (-1236)) - (-5 *2 (-326 (-557))) (-5 *1 (-954 *5)))) + (-12 (-5 *3 (-1117)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1157)) + (-5 *2 (-268 (-499))) (-5 *1 (-875 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-659 (-1 (-114) *5))) (-4 *5 (-1236)) - (-5 *2 (-326 (-557))) (-5 *1 (-954 *5)))) + (-12 (-5 *3 (-1117)) (-5 *4 (-599 (-1 (-85) *5))) (-4 *5 (-1157)) + (-5 *2 (-268 (-499))) (-5 *1 (-875 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-114) *5)) (-4 *5 (-1236)) (-4 *4 (-1120)) - (-5 *1 (-955 *4 *2 *5)) (-4 *2 (-433 *4)))) + (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1157)) (-4 *4 (-1041)) + (-5 *1 (-876 *4 *2 *5)) (-4 *2 (-375 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-659 (-1 (-114) *5))) (-4 *5 (-1236)) (-4 *4 (-1120)) - (-5 *1 (-955 *4 *2 *5)) (-4 *2 (-433 *4)))) + (-12 (-5 *3 (-599 (-1 (-85) *5))) (-4 *5 (-1157)) (-4 *4 (-1041)) + (-5 *1 (-876 *4 *2 *5)) (-4 *2 (-375 *4)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 (-1196))) (-5 *3 (-1 (-114) (-659 *6))) - (-4 *6 (-13 (-433 *5) (-899 *4) (-629 (-903 *4)))) (-4 *4 (-1120)) - (-4 *5 (-13 (-1068) (-899 *4) (-629 (-903 *4)))) (-5 *1 (-1094 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1120)) (-4 *4 (-13 (-1068) (-899 *3) (-629 *2))) - (-5 *2 (-903 *3)) (-5 *1 (-1094 *3 *4 *5)) - (-4 *5 (-13 (-433 *4) (-899 *3) (-629 *2)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1120)) (-4 *4 (-13 (-1068) (-899 *3) (-629 (-903 *3)))) - (-5 *2 (-659 (-1196))) (-5 *1 (-1094 *3 *4 *5)) - (-4 *5 (-13 (-433 *4) (-899 *3) (-629 (-903 *3))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-183)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-324)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-989)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1013)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1055)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1092))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *4)))) - (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-659 *4)) (-5 *1 (-1091 *5 *6 *7 *3 *4)) - (-4 *4 (-1090 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-114)) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-659 (-2 (|:| |val| (-114)) (|:| -1741 *4)))) - (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) + (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-1 (-85) (-599 *6))) + (-4 *6 (-13 (-375 *5) (-821 *4) (-569 (-825 *4)))) (-4 *4 (-1041)) + (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-1015 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1041)) (-4 *4 (-13 (-989) (-821 *3) (-569 *2))) + (-5 *2 (-825 *3)) (-5 *1 (-1015 *3 *4 *5)) + (-4 *5 (-13 (-375 *4) (-821 *3) (-569 *2)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1041)) (-4 *4 (-13 (-989) (-821 *3) (-569 (-825 *3)))) + (-5 *2 (-599 (-1117))) (-5 *1 (-1015 *3 *4 *5)) + (-4 *5 (-13 (-375 *4) (-821 *3) (-569 (-825 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-266)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-910)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-934)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-976)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1013))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) + (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 (-599 *4)) (-5 *1 (-1012 *5 *6 *7 *3 *4)) + (-4 *4 (-1011 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 (-85)) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *4)))) + (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *4)))) - (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) + (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *4)))) - (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) + (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) - (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *4)))) - (-5 *1 (-1091 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) + (-12 (-5 *5 (-85)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) + (-4 *3 (-1005 *6 *7 *8)) (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) + (-5 *1 (-1012 *6 *7 *8 *3 *4)) (-4 *4 (-1011 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-659 (-2 (|:| |val| (-659 *8)) (|:| -1741 *9)))) (-5 *5 (-114)) - (-4 *8 (-1084 *6 *7 *4)) (-4 *9 (-1090 *6 *7 *4 *8)) (-4 *6 (-464)) - (-4 *7 (-813)) (-4 *4 (-859)) - (-5 *2 (-659 (-2 (|:| |val| *8) (|:| -1741 *9)))) - (-5 *1 (-1091 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-599 (-2 (|:| |val| (-599 *8)) (|:| -1633 *9)))) (-5 *5 (-85)) + (-4 *8 (-1005 *6 *7 *4)) (-4 *9 (-1011 *6 *7 *4 *8)) (-4 *6 (-406)) + (-4 *7 (-738)) (-4 *4 (-781)) + (-5 *2 (-599 (-2 (|:| |val| *8) (|:| -1633 *9)))) + (-5 *1 (-1012 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-659 (-2 (|:| |val| (-659 *3)) (|:| -1741 *4)))) - (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 (-599 (-2 (|:| |val| (-599 *3)) (|:| -1633 *4)))) + (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1011 *3 *4 *5 *6)) (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) - (-5 *2 (-3 (-114) (-659 *1))) (-4 *1 (-1090 *4 *5 *6 *3))))) + (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) + (-5 *2 (-3 (-85) (-599 *1))) (-4 *1 (-1011 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *3 (-1005 *4 *5 *6)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) - (-5 *2 (-659 (-2 (|:| |val| (-114)) (|:| -1741 *1)))) - (-4 *1 (-1090 *4 *5 *6 *3))))) + (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) + (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *1)))) + (-4 *1 (-1011 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) - (-5 *2 (-659 *1)) (-4 *1 (-1090 *4 *5 *6 *3))))) + (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) + (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) - (-5 *2 (-3 *3 (-659 *1))) (-4 *1 (-1090 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-568)) (-4 *2 (-1068)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1262 *3)))) + (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) + (-5 *2 (-3 *3 (-599 *1))) (-4 *1 (-1011 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-510)) (-4 *2 (-989)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-909 *3 *2)) (-4 *2 (-1183 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) - (-4 *2 (-568)))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) + (-4 *2 (-510)))) ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) - (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *1)))) - (-4 *1 (-1090 *4 *5 *6 *3))))) + (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) + (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *1)))) + (-4 *1 (-1011 *4 *5 *6 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-659 *1)) (-5 *3 (-659 *7)) (-4 *1 (-1090 *4 *5 *6 *7)) - (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)))) + (-12 (-5 *2 (-599 *1)) (-5 *3 (-599 *7)) (-4 *1 (-1011 *4 *5 *6 *7)) + (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *2 (-659 *1)) (-4 *1 (-1090 *4 *5 *6 *7)))) + (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-659 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)))) + (-12 (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3)) (-4 *4 (-406)) + (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-1084 *4 *5 *6)) - (-5 *2 (-659 *1)) (-4 *1 (-1090 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55)))) + (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-1005 *4 *5 *6)) + (-5 *2 (-599 *1)) (-4 *1 (-1011 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-114)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) + (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) + (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-858) (-376))) (-4 *3 (-1262 *4)) - (-5 *2 (-114))))) + (-12 (-4 *1 (-1008 *4 *3)) (-4 *4 (-13 (-780) (-318))) (-4 *3 (-1183 *4)) + (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-4 *1 (-810)) (-5 *2 (-114)))) + (-12 (-4 *1 (-508 *3)) (-4 *3 (-13 (-358) (-1143))) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-735)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-858) (-376))) (-4 *3 (-1262 *4)) - (-5 *2 (-114))))) + (-12 (-4 *1 (-1008 *4 *3)) (-4 *4 (-13 (-780) (-318))) (-4 *3 (-1183 *4)) + (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-4 *1 (-812)) (-5 *2 (-114)))) + (-12 (-4 *1 (-508 *3)) (-4 *3 (-13 (-358) (-1143))) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-737)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-858) (-376))) (-4 *3 (-1262 *4)) - (-5 *2 (-114))))) + (-12 (-4 *1 (-1008 *4 *3)) (-4 *4 (-13 (-780) (-318))) (-4 *3 (-1183 *4)) + (-5 *2 (-85))))) (((*1 *2 *2) - (-12 (-4 *3 (-1057 (-557))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-433 *3)))) + (-12 (-4 *3 (-978 (-499))) (-4 *3 (-510)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-375 *3)))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-1190 *4)) (-5 *1 (-167 *3 *4)) - (-4 *3 (-168 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1068)) (-4 *1 (-310)))) - ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1190 *3)))) - ((*1 *2) (-12 (-4 *1 (-742 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1262 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-13 (-858) (-376))) (-4 *2 (-1262 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-963 (-557))) (-5 *2 (-659 *1)) (-4 *1 (-1031)))) - ((*1 *2 *3) - (-12 (-5 *3 (-963 (-419 (-557)))) (-5 *2 (-659 *1)) (-4 *1 (-1031)))) - ((*1 *2 *3) (-12 (-5 *3 (-963 *1)) (-4 *1 (-1031)) (-5 *2 (-659 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1190 (-557))) (-5 *2 (-659 *1)) (-4 *1 (-1031)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1190 (-419 (-557)))) (-5 *2 (-659 *1)) (-4 *1 (-1031)))) - ((*1 *2 *3) (-12 (-5 *3 (-1190 *1)) (-4 *1 (-1031)) (-5 *2 (-659 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-858) (-376))) (-4 *3 (-1262 *4)) (-5 *2 (-659 *1)) - (-4 *1 (-1087 *4 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1190 *1)) (-5 *3 (-1196)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-963 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1190 *2)) (-5 *4 (-1196)) (-4 *2 (-433 *5)) (-5 *1 (-32 *5 *2)) - (-4 *5 (-568)))) + (-12 (-4 *4 (-146)) (-5 *2 (-1111 *4)) (-5 *1 (-138 *3 *4)) + (-4 *3 (-139 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-989)) (-4 *1 (-252)))) + ((*1 *2) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-5 *2 (-1111 *3)))) + ((*1 *2) (-12 (-4 *1 (-682 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1183 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1008 *3 *2)) (-4 *3 (-13 (-780) (-318))) (-4 *2 (-1183 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-884 (-499))) (-5 *2 (-599 *1)) (-4 *1 (-952)))) + ((*1 *2 *3) + (-12 (-5 *3 (-884 (-361 (-499)))) (-5 *2 (-599 *1)) (-4 *1 (-952)))) + ((*1 *2 *3) (-12 (-5 *3 (-884 *1)) (-4 *1 (-952)) (-5 *2 (-599 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1111 (-499))) (-5 *2 (-599 *1)) (-4 *1 (-952)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1111 (-361 (-499)))) (-5 *2 (-599 *1)) (-4 *1 (-952)))) + ((*1 *2 *3) (-12 (-5 *3 (-1111 *1)) (-4 *1 (-952)) (-5 *2 (-599 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-780) (-318))) (-4 *3 (-1183 *4)) (-5 *2 (-599 *1)) + (-4 *1 (-1008 *4 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1111 *1)) (-5 *3 (-1117)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-884 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-4 *1 (-29 *3)) (-4 *3 (-510)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-510)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1111 *2)) (-5 *4 (-1117)) (-4 *2 (-375 *5)) (-5 *1 (-32 *5 *2)) + (-4 *5 (-510)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1190 *1)) (-5 *3 (-936)) (-4 *1 (-1031)))) + (|partial| -12 (-5 *2 (-1111 *1)) (-5 *3 (-857)) (-4 *1 (-952)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1190 *1)) (-5 *3 (-936)) (-5 *4 (-875)) - (-4 *1 (-1031)))) + (|partial| -12 (-5 *2 (-1111 *1)) (-5 *3 (-857)) (-5 *4 (-797)) + (-4 *1 (-952)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-936)) (-4 *4 (-13 (-858) (-376))) - (-4 *1 (-1087 *4 *2)) (-4 *2 (-1262 *4))))) + (|partial| -12 (-5 *3 (-857)) (-4 *4 (-13 (-780) (-318))) + (-4 *1 (-1008 *4 *2)) (-4 *2 (-1183 *4))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-557))) (-5 *1 (-1043 *3)) - (-4 *3 (-13 (-858) (-376) (-1039))))) + (-12 (-5 *2 (-361 (-499))) (-5 *1 (-964 *3)) + (-4 *3 (-13 (-780) (-318) (-960))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-858) (-376))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1262 *2)))) + (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2)))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1087 *2 *3)) (-4 *2 (-13 (-858) (-376))) (-4 *3 (-1262 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-1154))) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 (-1154))) (-5 *1 (-1085))))) + (-12 (-4 *1 (-1008 *2 *3)) (-4 *2 (-13 (-780) (-318))) (-4 *3 (-1183 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-127)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 (-1075))) (-5 *1 (-1006))))) (((*1 *2 *1) - (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) - (-4 *5 (-1084 *3 *4 *2)) (-4 *2 (-859)))) + (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-989)) (-4 *4 (-738)) + (-4 *5 (-1005 *3 *4 *2)) (-4 *2 (-781)))) ((*1 *2 *1) - (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859))))) + (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781))))) (((*1 *2 *1) - (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-789))))) -(((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-222)))) - ((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-694)))) + (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-714))))) +(((*1 *2 *1) (-12 (-5 *2 (-437)) (-5 *1 (-172)))) + ((*1 *1 *1) (-12 (-4 *1 (-201 *2)) (-4 *2 (-1157)))) + ((*1 *2 *1) (-12 (-5 *2 (-437)) (-5 *1 (-634)))) ((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859))))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781))))) (((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859))))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781))))) (((*1 *2 *1) - (-12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-659 *1)) - (-4 *1 (-1084 *3 *4 *5))))) + (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) + (-4 *1 (-1005 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-812)) (-4 *2 (-1068)))) - ((*1 *2 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-50 *2 *3)) (-14 *3 (-659 (-1196))))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-737)) (-4 *2 (-989)))) + ((*1 *2 *1) (-12 (-4 *2 (-989)) (-5 *1 (-50 *2 *3)) (-14 *3 (-599 (-1117))))) ((*1 *2 *1) - (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1068) (-859))) - (-14 *4 (-659 (-1196))))) - ((*1 *2 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1068)))) + (-12 (-5 *2 (-268 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) + (-14 *4 (-599 (-1117))))) + ((*1 *2 *1) (-12 (-4 *1 (-339 *2 *3)) (-4 *3 (-1041)) (-4 *2 (-989)))) ((*1 *2 *1) - (-12 (-14 *3 (-659 (-1196))) (-4 *5 (-245 (-4385 *3) (-789))) + (-12 (-14 *3 (-599 (-1117))) (-4 *5 (-195 (-4107 *3) (-714))) (-14 *6 - (-1 (-114) (-2 (|:| -2629 *4) (|:| -2630 *5)) - (-2 (|:| -2629 *4) (|:| -2630 *5)))) - (-4 *2 (-175)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-859)) - (-4 *7 (-967 *2 *5 (-876 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-862)) (-4 *2 (-102)))) - ((*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-638 *2 *3)) (-4 *3 (-1262 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-1068)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1068)) (-5 *1 (-753 *2 *3)) (-4 *3 (-859)) (-4 *3 (-744)))) - ((*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)))) - ((*1 *2 *1) - (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *3 (-812)) (-4 *4 (-859)) (-4 *2 (-1068)))) + (-1 (-85) (-2 (|:| -2518 *4) (|:| -2519 *5)) + (-2 (|:| -2518 *4) (|:| -2519 *5)))) + (-4 *2 (-146)) (-5 *1 (-415 *3 *2 *4 *5 *6 *7)) (-4 *4 (-781)) + (-4 *7 (-888 *2 *5 (-798 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *3 (-784)) (-4 *2 (-73)))) + ((*1 *2 *1) (-12 (-4 *2 (-510)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1183 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-989)))) + ((*1 *2 *1) + (-12 (-4 *2 (-989)) (-5 *1 (-693 *2 *3)) (-4 *3 (-781)) (-4 *3 (-684)))) + ((*1 *2 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)))) + ((*1 *2 *1) + (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *3 (-737)) (-4 *4 (-781)) (-4 *2 (-989)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859))))) + (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781))))) (((*1 *2 *3) - (-12 (-4 *4 (-1068)) (-5 *2 (-114)) (-5 *1 (-456 *4 *3)) (-4 *3 (-1262 *4)))) + (-12 (-4 *4 (-989)) (-5 *2 (-85)) (-5 *1 (-398 *4 *3)) (-4 *3 (-1183 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-114))))) + (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-114))))) + (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-85))))) (((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859))))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781))))) (((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859))))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781))))) (((*1 *2 *1) - (-12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-659 *1)) - (-4 *1 (-1084 *3 *4 *5))))) + (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) + (-4 *1 (-1005 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-659 *1)) - (-4 *1 (-1084 *3 *4 *5))))) + (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) + (-4 *1 (-1005 *3 *4 *5))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) - (-4 *5 (-859)) (-5 *2 (-114))))) + (|partial| -12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) + (-4 *5 (-781)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-114))))) + (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-85))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)))) + (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859))))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)))) + (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859))))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)))) + (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859))))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)))) + (-12 (-4 *1 (-1005 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859))))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *3 (-859)) - (-5 *2 (-2 (|:| -4382 *1) (|:| |gap| (-789)) (|:| -3301 *1))) - (-4 *1 (-1084 *4 *5 *3)))) + (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) + (-5 *2 (-2 (|:| -4104 *1) (|:| |gap| (-714)) (|:| -3023 *1))) + (-4 *1 (-1005 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-2 (|:| -4382 *1) (|:| |gap| (-789)) (|:| -3301 *1))) - (-4 *1 (-1084 *3 *4 *5))))) + (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-2 (|:| -4104 *1) (|:| |gap| (-714)) (|:| -3023 *1))) + (-4 *1 (-1005 *3 *4 *5))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -4382 *3) (|:| |gap| (-789)) (|:| -2182 (-799 *3)) - (|:| -3301 (-799 *3)))) - (-5 *1 (-799 *3)) (-4 *3 (-1068)))) + (-2 (|:| -4104 *3) (|:| |gap| (-714)) (|:| -2075 (-724 *3)) + (|:| -3023 (-724 *3)))) + (-5 *1 (-724 *3)) (-4 *3 (-989)))) ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *3 (-859)) - (-5 *2 (-2 (|:| -4382 *1) (|:| |gap| (-789)) (|:| -2182 *1) (|:| -3301 *1))) - (-4 *1 (-1084 *4 *5 *3)))) + (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) + (-5 *2 (-2 (|:| -4104 *1) (|:| |gap| (-714)) (|:| -2075 *1) (|:| -3023 *1))) + (-4 *1 (-1005 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-2 (|:| -4382 *1) (|:| |gap| (-789)) (|:| -2182 *1) (|:| -3301 *1))) - (-4 *1 (-1084 *3 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1068)))) + (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-2 (|:| -4104 *1) (|:| |gap| (-714)) (|:| -2075 *1) (|:| -3023 *1))) + (-4 *1 (-1005 *3 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-989)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859))))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| |polnum| (-799 *3)) (|:| |polden| *3) (|:| -3899 (-789)))) - (-5 *1 (-799 *3)) (-4 *3 (-1068)))) + (-5 *2 (-2 (|:| |polnum| (-724 *3)) (|:| |polden| *3) (|:| -3621 (-714)))) + (-5 *1 (-724 *3)) (-4 *3 (-989)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3899 (-789)))) - (-4 *1 (-1084 *3 *4 *5))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-963 (-391))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1057 (-391))) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) - (-4 *5 (-401)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-963 (-391)))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1057 (-391))) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) - (-4 *5 (-401)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1057 (-391))) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) - (-4 *5 (-401)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-963 (-557))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1057 (-557))) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) - (-4 *5 (-401)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-963 (-557)))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1057 (-557))) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) - (-4 *5 (-401)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-326 (-557))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1057 (-557))) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) - (-4 *5 (-401)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-659 *2)) - (-14 *4 (-659 *2)) (-4 *5 (-401)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) - (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-707 (-419 (-963 (-557))))) (-4 *1 (-398)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-707 (-419 (-963 (-391))))) (-4 *1 (-398)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-707 (-963 (-557)))) (-4 *1 (-398)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-707 (-963 (-391)))) (-4 *1 (-398)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-707 (-326 (-557)))) (-4 *1 (-398)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-707 (-326 (-391)))) (-4 *1 (-398)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-963 (-557)))) (-4 *1 (-409)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-963 (-391)))) (-4 *1 (-409)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-963 (-557))) (-4 *1 (-409)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-963 (-391))) (-4 *1 (-409)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-557))) (-4 *1 (-409)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-4 *1 (-409)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1286 (-419 (-963 (-557))))) (-4 *1 (-453)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1286 (-419 (-963 (-391))))) (-4 *1 (-453)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-963 (-557)))) (-4 *1 (-453)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-963 (-391)))) (-4 *1 (-453)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-326 (-557)))) (-4 *1 (-453)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-326 (-391)))) (-4 *1 (-453)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1262 *5)) - (-5 *2 (-1190 (-1190 *4))) (-5 *1 (-795 *4 *5 *6 *3 *7)) (-4 *3 (-1262 *6)) - (-14 *7 (-936)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-1068)) - (-4 *4 (-813)) (-4 *5 (-859)) (-4 *1 (-995 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1057 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2) - (|partial| -3955 - (-12 (-5 *2 (-963 *3)) - (-12 (-2957 (-4 *3 (-38 (-419 (-557))))) (-2957 (-4 *3 (-38 (-557)))) - (-4 *5 (-629 (-1196)))) - (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-813)) (-4 *5 (-859))) - (-12 (-5 *2 (-963 *3)) - (-12 (-2957 (-4 *3 (-556))) (-2957 (-4 *3 (-38 (-419 (-557))))) - (-4 *3 (-38 (-557))) (-4 *5 (-629 (-1196)))) - (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-813)) (-4 *5 (-859))) - (-12 (-5 *2 (-963 *3)) - (-12 (-2957 (-4 *3 (-1010 (-557)))) (-4 *3 (-38 (-419 (-557)))) - (-4 *5 (-629 (-1196)))) - (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-813)) (-4 *5 (-859))))) - ((*1 *1 *2) - (|partial| -3955 - (-12 (-5 *2 (-963 (-557))) (-4 *1 (-1084 *3 *4 *5)) - (-12 (-2957 (-4 *3 (-38 (-419 (-557))))) (-4 *3 (-38 (-557))) - (-4 *5 (-629 (-1196)))) - (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859))) - (-12 (-5 *2 (-963 (-557))) (-4 *1 (-1084 *3 *4 *5)) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *5 (-629 (-1196)))) (-4 *3 (-1068)) - (-4 *4 (-813)) (-4 *5 (-859))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-963 (-419 (-557)))) (-4 *1 (-1084 *3 *4 *5)) - (-4 *3 (-38 (-419 (-557)))) (-4 *5 (-629 (-1196))) (-4 *3 (-1068)) - (-4 *4 (-813)) (-4 *5 (-859))))) -(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2) - (-12 (-5 *2 (-963 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1057 (-391))) - (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) (-4 *5 (-401)))) - ((*1 *1 *2) - (-12 (-5 *2 (-419 (-963 (-391)))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1057 (-391))) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) - (-4 *5 (-401)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1057 (-391))) - (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) (-4 *5 (-401)))) - ((*1 *1 *2) - (-12 (-5 *2 (-963 (-557))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1057 (-557))) - (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) (-4 *5 (-401)))) - ((*1 *1 *2) - (-12 (-5 *2 (-419 (-963 (-557)))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1057 (-557))) (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) - (-4 *5 (-401)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 (-557))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1057 (-557))) - (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))) (-4 *5 (-401)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1196)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-659 *2)) - (-14 *4 (-659 *2)) (-4 *5 (-401)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) - (-14 *3 (-659 (-1196))) (-14 *4 (-659 (-1196))))) - ((*1 *1 *2) (-12 (-5 *2 (-707 (-419 (-963 (-557))))) (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-707 (-419 (-963 (-391))))) (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-707 (-963 (-557)))) (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-707 (-963 (-391)))) (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-707 (-326 (-557)))) (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-707 (-326 (-391)))) (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-963 (-557)))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-963 (-391)))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-963 (-557))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-963 (-391))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-557))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-1286 (-419 (-963 (-557))))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1286 (-419 (-963 (-391))))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1286 (-963 (-557)))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1286 (-963 (-391)))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1286 (-326 (-557)))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1286 (-326 (-391)))) (-4 *1 (-453)))) + (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3621 (-714)))) + (-4 *1 (-1005 *3 *4 *5))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1157)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-884 (-333))) (-5 *1 (-294 *3 *4 *5)) + (-4 *5 (-978 (-333))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) + (-4 *5 (-343)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-361 (-884 (-333)))) (-5 *1 (-294 *3 *4 *5)) + (-4 *5 (-978 (-333))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) + (-4 *5 (-343)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-268 (-333))) (-5 *1 (-294 *3 *4 *5)) + (-4 *5 (-978 (-333))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) + (-4 *5 (-343)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-884 (-499))) (-5 *1 (-294 *3 *4 *5)) + (-4 *5 (-978 (-499))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) + (-4 *5 (-343)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-361 (-884 (-499)))) (-5 *1 (-294 *3 *4 *5)) + (-4 *5 (-978 (-499))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) + (-4 *5 (-343)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-268 (-499))) (-5 *1 (-294 *3 *4 *5)) + (-4 *5 (-978 (-499))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) + (-4 *5 (-343)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 *2)) + (-14 *4 (-599 *2)) (-4 *5 (-343)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-268 *5)) (-4 *5 (-343)) (-5 *1 (-294 *3 *4 *5)) + (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-647 (-361 (-884 (-499))))) (-4 *1 (-340)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-647 (-361 (-884 (-333))))) (-4 *1 (-340)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-647 (-884 (-499)))) (-4 *1 (-340)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-647 (-884 (-333)))) (-4 *1 (-340)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-647 (-268 (-499)))) (-4 *1 (-340)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-647 (-268 (-333)))) (-4 *1 (-340)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-361 (-884 (-499)))) (-4 *1 (-351)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-361 (-884 (-333)))) (-4 *1 (-351)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-884 (-499))) (-4 *1 (-351)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-884 (-333))) (-4 *1 (-351)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-268 (-499))) (-4 *1 (-351)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-268 (-333))) (-4 *1 (-351)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1207 (-361 (-884 (-499))))) (-4 *1 (-395)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1207 (-361 (-884 (-333))))) (-4 *1 (-395)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1207 (-884 (-499)))) (-4 *1 (-395)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1207 (-884 (-333)))) (-4 *1 (-395)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1207 (-268 (-499)))) (-4 *1 (-395)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1207 (-268 (-333)))) (-4 *1 (-395)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-305)) (-4 *5 (-283 *4)) (-4 *6 (-1183 *5)) + (-5 *2 (-1111 (-1111 *4))) (-5 *1 (-720 *4 *5 *6 *3 *7)) (-4 *3 (-1183 *6)) + (-14 *7 (-857)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-989)) + (-4 *4 (-738)) (-4 *5 (-781)) (-4 *1 (-916 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1157)))) + ((*1 *1 *2) + (|partial| -3677 + (-12 (-5 *2 (-884 *3)) + (-12 (-2679 (-4 *3 (-38 (-361 (-499))))) (-2679 (-4 *3 (-38 (-499)))) + (-4 *5 (-569 (-1117)))) + (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))) + (-12 (-5 *2 (-884 *3)) + (-12 (-2679 (-4 *3 (-498))) (-2679 (-4 *3 (-38 (-361 (-499))))) + (-4 *3 (-38 (-499))) (-4 *5 (-569 (-1117)))) + (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))) + (-12 (-5 *2 (-884 *3)) + (-12 (-2679 (-4 *3 (-931 (-499)))) (-4 *3 (-38 (-361 (-499)))) + (-4 *5 (-569 (-1117)))) + (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))))) + ((*1 *1 *2) + (|partial| -3677 + (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) + (-12 (-2679 (-4 *3 (-38 (-361 (-499))))) (-4 *3 (-38 (-499))) + (-4 *5 (-569 (-1117)))) + (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781))) + (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) + (-4 *4 (-738)) (-4 *5 (-781))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-884 (-361 (-499)))) (-4 *1 (-1005 *3 *4 *5)) + (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117))) (-4 *3 (-989)) + (-4 *4 (-738)) (-4 *5 (-781))))) +(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1157)))) + ((*1 *1 *2) + (-12 (-5 *2 (-884 (-333))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-333))) + (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) + ((*1 *1 *2) + (-12 (-5 *2 (-361 (-884 (-333)))) (-5 *1 (-294 *3 *4 *5)) + (-4 *5 (-978 (-333))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) + (-4 *5 (-343)))) + ((*1 *1 *2) + (-12 (-5 *2 (-268 (-333))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-333))) + (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) + ((*1 *1 *2) + (-12 (-5 *2 (-884 (-499))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-499))) + (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) + ((*1 *1 *2) + (-12 (-5 *2 (-361 (-884 (-499)))) (-5 *1 (-294 *3 *4 *5)) + (-4 *5 (-978 (-499))) (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) + (-4 *5 (-343)))) + ((*1 *1 *2) + (-12 (-5 *2 (-268 (-499))) (-5 *1 (-294 *3 *4 *5)) (-4 *5 (-978 (-499))) + (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1117)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 *2)) + (-14 *4 (-599 *2)) (-4 *5 (-343)))) + ((*1 *1 *2) + (-12 (-5 *2 (-268 *5)) (-4 *5 (-343)) (-5 *1 (-294 *3 *4 *5)) + (-14 *3 (-599 (-1117))) (-14 *4 (-599 (-1117))))) + ((*1 *1 *2) (-12 (-5 *2 (-647 (-361 (-884 (-499))))) (-4 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-647 (-361 (-884 (-333))))) (-4 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-647 (-884 (-499)))) (-4 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-647 (-884 (-333)))) (-4 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-647 (-268 (-499)))) (-4 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-647 (-268 (-333)))) (-4 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-361 (-884 (-499)))) (-4 *1 (-351)))) + ((*1 *1 *2) (-12 (-5 *2 (-361 (-884 (-333)))) (-4 *1 (-351)))) + ((*1 *1 *2) (-12 (-5 *2 (-884 (-499))) (-4 *1 (-351)))) + ((*1 *1 *2) (-12 (-5 *2 (-884 (-333))) (-4 *1 (-351)))) + ((*1 *1 *2) (-12 (-5 *2 (-268 (-499))) (-4 *1 (-351)))) + ((*1 *1 *2) (-12 (-5 *2 (-268 (-333))) (-4 *1 (-351)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207 (-361 (-884 (-499))))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207 (-361 (-884 (-333))))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207 (-884 (-499)))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207 (-884 (-333)))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207 (-268 (-499)))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207 (-268 (-333)))) (-4 *1 (-395)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) - (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) - (|:| |relerr| (-229)))) + (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) + (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) + (|:| |relerr| (-179)))) (|:| |mdnia| - (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) - (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) - (-5 *1 (-787)))) + (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) + (|:| |abserr| (-179)) (|:| |relerr| (-179)))))) + (-5 *1 (-712)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) - (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) - (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *1 (-828)))) + (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) + (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) + (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) + (|:| |abserr| (-179)) (|:| |relerr| (-179)))) + (-5 *1 (-751)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) - (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) - (|:| |ub| (-659 (-853 (-229)))))) + (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) + (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) + (|:| |ub| (-599 (-775 (-179)))))) (|:| |lsa| - (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))))) - (-5 *1 (-852)))) + (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))))) + (-5 *1 (-774)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |pde| (-659 (-326 (-229)))) + (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| - (-659 - (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) - (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) - (|:| |dFinish| (-707 (-229)))))) - (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) - (|:| |tol| (-229)))) - (-5 *1 (-913)))) - ((*1 *1 *2) - (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-1068)) - (-4 *4 (-813)) (-4 *5 (-859)) (-4 *1 (-995 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2) - (-3955 - (-12 (-5 *2 (-963 *3)) - (-12 (-2957 (-4 *3 (-38 (-419 (-557))))) (-2957 (-4 *3 (-38 (-557)))) - (-4 *5 (-629 (-1196)))) - (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-813)) (-4 *5 (-859))) - (-12 (-5 *2 (-963 *3)) - (-12 (-2957 (-4 *3 (-556))) (-2957 (-4 *3 (-38 (-419 (-557))))) - (-4 *3 (-38 (-557))) (-4 *5 (-629 (-1196)))) - (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-813)) (-4 *5 (-859))) - (-12 (-5 *2 (-963 *3)) - (-12 (-2957 (-4 *3 (-1010 (-557)))) (-4 *3 (-38 (-419 (-557)))) - (-4 *5 (-629 (-1196)))) - (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-813)) (-4 *5 (-859))))) - ((*1 *1 *2) - (-3955 - (-12 (-5 *2 (-963 (-557))) (-4 *1 (-1084 *3 *4 *5)) - (-12 (-2957 (-4 *3 (-38 (-419 (-557))))) (-4 *3 (-38 (-557))) - (-4 *5 (-629 (-1196)))) - (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859))) - (-12 (-5 *2 (-963 (-557))) (-4 *1 (-1084 *3 *4 *5)) - (-12 (-4 *3 (-38 (-419 (-557)))) (-4 *5 (-629 (-1196)))) (-4 *3 (-1068)) - (-4 *4 (-813)) (-4 *5 (-859))))) - ((*1 *1 *2) - (-12 (-5 *2 (-963 (-419 (-557)))) (-4 *1 (-1084 *3 *4 *5)) - (-4 *3 (-38 (-419 (-557)))) (-4 *5 (-629 (-1196))) (-4 *3 (-1068)) - (-4 *4 (-813)) (-4 *5 (-859))))) + (-599 + (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) + (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) + (|:| |dFinish| (-647 (-179)))))) + (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) + (|:| |tol| (-179)))) + (-5 *1 (-834)))) + ((*1 *1 *2) + (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) + (-4 *5 (-781)) (-4 *1 (-916 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-1157)))) + ((*1 *1 *2) + (-3677 + (-12 (-5 *2 (-884 *3)) + (-12 (-2679 (-4 *3 (-38 (-361 (-499))))) (-2679 (-4 *3 (-38 (-499)))) + (-4 *5 (-569 (-1117)))) + (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))) + (-12 (-5 *2 (-884 *3)) + (-12 (-2679 (-4 *3 (-498))) (-2679 (-4 *3 (-38 (-361 (-499))))) + (-4 *3 (-38 (-499))) (-4 *5 (-569 (-1117)))) + (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))) + (-12 (-5 *2 (-884 *3)) + (-12 (-2679 (-4 *3 (-931 (-499)))) (-4 *3 (-38 (-361 (-499)))) + (-4 *5 (-569 (-1117)))) + (-4 *3 (-989)) (-4 *1 (-1005 *3 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781))))) + ((*1 *1 *2) + (-3677 + (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) + (-12 (-2679 (-4 *3 (-38 (-361 (-499))))) (-4 *3 (-38 (-499))) + (-4 *5 (-569 (-1117)))) + (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781))) + (-12 (-5 *2 (-884 (-499))) (-4 *1 (-1005 *3 *4 *5)) + (-12 (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117)))) (-4 *3 (-989)) + (-4 *4 (-738)) (-4 *5 (-781))))) + ((*1 *1 *2) + (-12 (-5 *2 (-884 (-361 (-499)))) (-4 *1 (-1005 *3 *4 *5)) + (-4 *3 (-38 (-361 (-499)))) (-4 *5 (-569 (-1117))) (-4 *3 (-989)) + (-4 *4 (-738)) (-4 *5 (-781))))) (((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) - (-4 *2 (-568))))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) + (-4 *2 (-510))))) (((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) - (-4 *2 (-568))))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) + (-4 *2 (-510))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) - (-4 *2 (-568)))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) + (-4 *2 (-510)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) - (-4 *2 (-568))))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) + (-4 *2 (-510))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) - (-4 *2 (-568)))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) + (-4 *2 (-510)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) - (-4 *2 (-568))))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) + (-4 *2 (-510))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3560 (-799 *3)) (|:| |coef1| (-799 *3)) (|:| |coef2| (-799 *3)))) - (-5 *1 (-799 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) + (-2 (|:| -3282 (-724 *3)) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3)))) + (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-2 (|:| -3560 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1084 *3 *4 *5))))) + (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-2 (|:| -3282 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1005 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3560 (-799 *3)) (|:| |coef1| (-799 *3)))) - (-5 *1 (-799 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) + (-12 (-5 *2 (-2 (|:| -3282 (-724 *3)) (|:| |coef1| (-724 *3)))) + (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-2 (|:| -3560 *1) (|:| |coef1| *1))) (-4 *1 (-1084 *3 *4 *5))))) + (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-2 (|:| -3282 *1) (|:| |coef1| *1))) (-4 *1 (-1005 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3560 (-799 *3)) (|:| |coef2| (-799 *3)))) - (-5 *1 (-799 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) + (-12 (-5 *2 (-2 (|:| -3282 (-724 *3)) (|:| |coef2| (-724 *3)))) + (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-2 (|:| -3560 *1) (|:| |coef2| *1))) (-4 *1 (-1084 *3 *4 *5))))) + (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-2 (|:| -3282 *1) (|:| |coef2| *1))) (-4 *1 (-1005 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-659 *1)) (-4 *1 (-1084 *3 *4 *5))))) + (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-599 *1)) (-4 *1 (-1005 *3 *4 *5))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-789)) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) - (-4 *5 (-859)) (-4 *3 (-568))))) + (-12 (-5 *2 (-714)) (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) + (-4 *5 (-781)) (-4 *3 (-510))))) (((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-789)) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) - (-4 *5 (-859)) (-4 *3 (-568))))) + (-12 (-5 *2 (-714)) (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) + (-4 *5 (-781)) (-4 *3 (-510))))) (((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) - (-4 *2 (-568))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *1)) (-4 *1 (-464)))) - ((*1 *1 *1 *1) (-4 *1 (-464))) - ((*1 *2 *3) (-12 (-5 *3 (-659 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1262 (-557))))) - ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-557)) (-5 *1 (-714 *2)) (-4 *2 (-1262 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-789))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) + (-4 *2 (-510))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-406)))) + ((*1 *1 *1 *1) (-4 *1 (-406))) + ((*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-5 *1 (-440 *2)) (-4 *2 (-1183 (-499))))) + ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-654 *2)) (-4 *2 (-1183 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-714))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-813)) (-4 *4 (-859)) (-4 *5 (-319)) (-5 *1 (-933 *3 *4 *5 *2)) - (-4 *2 (-967 *5 *3 *4)))) + (-12 (-4 *3 (-738)) (-4 *4 (-781)) (-4 *5 (-261)) (-5 *1 (-854 *3 *4 *5 *2)) + (-4 *2 (-888 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-659 *2)) (-4 *2 (-967 *6 *4 *5)) (-5 *1 (-933 *4 *5 *6 *2)) - (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-319)))) + (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *6 *4 *5)) (-5 *1 (-854 *4 *5 *6 *2)) + (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1190 *6)) (-4 *6 (-967 *5 *3 *4)) (-4 *3 (-813)) (-4 *4 (-859)) - (-4 *5 (-319)) (-5 *1 (-933 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1111 *6)) (-4 *6 (-888 *5 *3 *4)) (-4 *3 (-738)) (-4 *4 (-781)) + (-4 *5 (-261)) (-5 *1 (-854 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-659 (-1190 *7))) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-319)) - (-5 *2 (-1190 *7)) (-5 *1 (-933 *4 *5 *6 *7)) (-4 *7 (-967 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-936))) + (-12 (-5 *3 (-599 (-1111 *7))) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)) + (-5 *2 (-1111 *7)) (-5 *1 (-854 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-857))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1262 *3)))) + (-12 (-4 *3 (-406)) (-4 *3 (-510)) (-5 *1 (-909 *3 *2)) (-4 *2 (-1183 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) - (-4 *2 (-464))))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) + (-4 *2 (-406))))) (((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) - (-4 *2 (-464))))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) + (-4 *2 (-406))))) (((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) - (-4 *2 (-464))))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) + (-4 *2 (-406))))) (((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) - (-4 *2 (-464))))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) + (-4 *2 (-406))))) (((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-813)) (-4 *4 (-859)) - (-4 *2 (-464))))) -(((*1 *1) (-5 *1 (-1082)))) -(((*1 *1 *1) (-5 *1 (-1082)))) -(((*1 *1 *1) (-5 *1 (-1082)))) -(((*1 *1 *1) (-5 *1 (-1082)))) -(((*1 *1 *1) (-5 *1 (-1082)))) -(((*1 *1 *1) (-5 *1 (-1082)))) -(((*1 *1 *1) (-5 *1 (-1082)))) -(((*1 *1 *1) (-5 *1 (-1082)))) -(((*1 *1 *1) (-5 *1 (-1082)))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-391)) (-5 *1 (-1082))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-391)) (-5 *1 (-1082))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-391)) (-5 *1 (-1082))))) -(((*1 *2 *1 *3) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-1082)) (-5 *3 (-1178))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1082))))) -(((*1 *1) (-5 *1 (-1082)))) + (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-738)) (-4 *4 (-781)) + (-4 *2 (-406))))) +(((*1 *1) (-5 *1 (-1003)))) +(((*1 *1 *1) (-5 *1 (-1003)))) +(((*1 *1 *1) (-5 *1 (-1003)))) +(((*1 *1 *1) (-5 *1 (-1003)))) +(((*1 *1 *1) (-5 *1 (-1003)))) +(((*1 *1 *1) (-5 *1 (-1003)))) +(((*1 *1 *1) (-5 *1 (-1003)))) +(((*1 *1 *1) (-5 *1 (-1003)))) +(((*1 *1 *1) (-5 *1 (-1003)))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-333)) (-5 *1 (-1003))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-333)) (-5 *1 (-1003))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-333)) (-5 *1 (-1003))))) +(((*1 *2 *1 *3) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-1003)) (-5 *3 (-1099))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1003))))) +(((*1 *1) (-5 *1 (-1003)))) (((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1178)) (-5 *3 (-557)) (-5 *1 (-1082))))) -(((*1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-1081)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1081))))) -(((*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-859)))) - ((*1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-859)))) - ((*1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-875)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-858) (-376))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1262 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-859)))) - ((*1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-859)))) - ((*1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-875)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-858) (-376))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1262 *2))))) + (|partial| -12 (-5 *2 (-1099)) (-5 *3 (-499)) (-5 *1 (-1003))))) +(((*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-1002)))) + ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1002))))) +(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1157)))) + ((*1 *1 *1) (-12 (-5 *1 (-630 *2)) (-4 *2 (-781)))) + ((*1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) + ((*1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1157)))) + ((*1 *1 *1) (-12 (-5 *1 (-630 *2)) (-4 *2 (-781)))) + ((*1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-781)))) + ((*1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1236)) (-5 *2 (-789)) (-5 *1 (-244 *3 *4 *5)) - (-4 *3 (-245 *4 *5)))) + (-12 (-14 *4 *2) (-4 *5 (-1157)) (-5 *2 (-714)) (-5 *1 (-194 *3 *4 *5)) + (-4 *3 (-195 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-133)) (-5 *2 (-789)))) + (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-104)) (-5 *2 (-714)))) ((*1 *2) - (-12 (-4 *4 (-376)) (-5 *2 (-789)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-374 *3)) (-4 *3 (-1120)))) - ((*1 *2) (-12 (-4 *1 (-381)) (-5 *2 (-789)))) - ((*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1120)) (-5 *2 (-789)))) + (-12 (-4 *4 (-318)) (-5 *2 (-714)) (-5 *1 (-282 *3 *4)) (-4 *3 (-283 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-316 *3)) (-4 *3 (-1041)))) + ((*1 *2) (-12 (-4 *1 (-323)) (-5 *2 (-714)))) + ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-1041)) (-5 *2 (-714)))) ((*1 *2) - (-12 (-4 *4 (-1120)) (-5 *2 (-789)) (-5 *1 (-437 *3 *4)) (-4 *3 (-438 *4)))) + (-12 (-4 *4 (-1041)) (-5 *2 (-714)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-789)) (-5 *1 (-667 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-23)) + (-12 (-5 *2 (-714)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-1041)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-175)) (-4 *5 (-1262 *4)) (-5 *2 (-789)) (-5 *1 (-741 *3 *4 *5)) - (-4 *3 (-742 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-1025)))) + (-12 (-4 *4 (-146)) (-4 *5 (-1183 *4)) (-5 *2 (-714)) (-5 *1 (-681 *3 *4 *5)) + (-4 *3 (-682 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-946)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-858) (-376))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1262 *2))))) + (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-858) (-376))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1262 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-30)))) + (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-417 *4) *4)) (-4 *4 (-568)) (-5 *2 (-417 *4)) - (-5 *1 (-431 *4)))) - ((*1 *1 *1) (-5 *1 (-942))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1108 (-229))) (-5 *1 (-942)))) - ((*1 *1 *1) (-5 *1 (-944))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1108 (-229))) (-5 *1 (-944)))) + (-12 (-5 *3 (-1 (-359 *4) *4)) (-4 *4 (-510)) (-5 *2 (-359 *4)) + (-5 *1 (-373 *4)))) + ((*1 *1 *1) (-5 *1 (-863))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-863)))) + ((*1 *1 *1) (-5 *1 (-865))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-865)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) - (-5 *4 (-419 (-557))) (-5 *1 (-1040 *3)) (-4 *3 (-1262 (-557))))) + (-12 (-5 *2 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) + (-5 *4 (-361 (-499))) (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) - (-5 *1 (-1040 *3)) (-4 *3 (-1262 (-557))))) + (-5 *2 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) + (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) - (-5 *4 (-419 (-557))) (-5 *1 (-1041 *3)) (-4 *3 (-1262 *4)))) + (-12 (-5 *2 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) + (-5 *4 (-361 (-499))) (-5 *1 (-962 *3)) (-4 *3 (-1183 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) - (-5 *1 (-1041 *3)) (-4 *3 (-1262 (-419 (-557)))))) + (-5 *2 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) + (-5 *1 (-962 *3)) (-4 *3 (-1183 (-361 (-499)))))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-858) (-376))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1262 *2))))) + (-12 (-4 *2 (-13 (-780) (-318))) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1183 *2))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-858) (-376))) (-5 *2 (-114)) (-5 *1 (-1080 *4 *3)) - (-4 *3 (-1262 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-659 (-626 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-48))) (-5 *1 (-48)))) + (-12 (-4 *4 (-13 (-780) (-318))) (-5 *2 (-85)) (-5 *1 (-1001 *4 *3)) + (-4 *3 (-1183 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-566 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-566 (-48))) (-5 *1 (-48)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1190 (-48))) (-5 *3 (-659 (-626 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1190 (-48))) (-5 *3 (-626 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) + (-12 (-5 *2 (-1111 (-48))) (-5 *3 (-599 (-566 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1111 (-48))) (-5 *3 (-566 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-376) (-858))) (-5 *1 (-184 *2 *3)) - (-4 *3 (-1262 (-171 *2))))) + (-12 (-4 *2 (-13 (-318) (-780))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1183 (-142 *2))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-936)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) - ((*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) - ((*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-175)))) + (-12 (-5 *2 (-857)) (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)))) + ((*1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-318)))) + ((*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-1183 *2)) (-4 *2 (-146)))) ((*1 *2 *1) - (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1010 *3)) (-5 *1 (-425 *3 *2 *4 *5)) - (-4 *3 (-319)) (-4 *5 (-13 (-422 *2 *4) (-1057 *2))))) + (-12 (-4 *4 (-1183 *2)) (-4 *2 (-931 *3)) (-5 *1 (-367 *3 *2 *4 *5)) + (-4 *3 (-261)) (-4 *5 (-13 (-364 *2 *4) (-978 *2))))) ((*1 *2 *1) - (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1010 *3)) (-5 *1 (-427 *3 *2 *4 *5 *6)) - (-4 *3 (-319)) (-4 *5 (-422 *2 *4)) (-14 *6 (-1286 *5)))) + (-12 (-4 *4 (-1183 *2)) (-4 *2 (-931 *3)) (-5 *1 (-369 *3 *2 *4 *5 *6)) + (-4 *3 (-261)) (-4 *5 (-364 *2 *4)) (-14 *6 (-1207 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-936)) (-4 *5 (-1068)) - (-4 *2 (-13 (-416) (-1057 *5) (-376) (-1222) (-296))) - (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1262 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-659 (-626 (-507)))) (-5 *1 (-507)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-507))) (-5 *1 (-507)))) + (-12 (-5 *4 (-857)) (-4 *5 (-989)) + (-4 *2 (-13 (-358) (-978 *5) (-318) (-1143) (-238))) (-5 *1 (-397 *5 *3 *2)) + (-4 *3 (-1183 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-566 (-449)))) (-5 *1 (-449)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-566 (-449))) (-5 *1 (-449)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1190 (-507))) (-5 *3 (-659 (-626 (-507)))) (-5 *1 (-507)))) + (-12 (-5 *2 (-1111 (-449))) (-5 *3 (-599 (-566 (-449)))) (-5 *1 (-449)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1190 (-507))) (-5 *3 (-626 (-507))) (-5 *1 (-507)))) + (-12 (-5 *2 (-1111 (-449))) (-5 *3 (-566 (-449))) (-5 *1 (-449)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1286 *4)) (-5 *3 (-936)) (-4 *4 (-363)) (-5 *1 (-539 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-742 *4 *2)) (-4 *2 (-1262 *4)) - (-5 *1 (-793 *4 *2 *5 *3)) (-4 *3 (-1262 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)))) - ((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-175)))) - ((*1 *1 *1) (-4 *1 (-1079)))) -(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-556)))) - ((*1 *1 *1) (-4 *1 (-1079)))) -(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-556)))) - ((*1 *1 *1) (-4 *1 (-1079)))) -(((*1 *2 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) - ((*1 *2 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-319)))) - ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-319)))) - ((*1 *2 *1) (-12 (-4 *1 (-1079)) (-5 *2 (-557))))) -(((*1 *2 *1) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-221)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-499)))) - ((*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-319)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-1023 *3)) (-14 *3 (-557)))) - ((*1 *1 *1) (-4 *1 (-1079)))) -(((*1 *1 *1) (-4 *1 (-1079)))) + (-12 (-5 *2 (-1207 *4)) (-5 *3 (-857)) (-4 *4 (-305)) (-5 *1 (-481 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-406)) (-4 *5 (-682 *4 *2)) (-4 *2 (-1183 *4)) + (-5 *1 (-718 *4 *2 *5 *3)) (-4 *3 (-1183 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146)))) + ((*1 *1 *1) (-4 *1 (-1000)))) +(((*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)) (-4 *2 (-498)))) + ((*1 *1 *1) (-4 *1 (-1000)))) +(((*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)) (-4 *2 (-498)))) + ((*1 *1 *1) (-4 *1 (-1000)))) +(((*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-261)))) + ((*1 *2 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-261)))) + ((*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)) (-4 *2 (-261)))) + ((*1 *2 *1) (-12 (-4 *1 (-1000)) (-5 *2 (-499))))) +(((*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-79)))) + ((*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-441)))) + ((*1 *1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510)) (-4 *2 (-261)))) + ((*1 *2 *1) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499)))) + ((*1 *1 *1) (-4 *1 (-1000)))) +(((*1 *1 *1) (-4 *1 (-1000)))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-789)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-714)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1236)) (-5 *2 (-789)) (-5 *1 (-244 *3 *4 *5)) - (-4 *3 (-245 *4 *5)))) + (-12 (-14 *4 *2) (-4 *5 (-1157)) (-5 *2 (-714)) (-5 *1 (-194 *3 *4 *5)) + (-4 *3 (-195 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-1120)) (-5 *2 (-789)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))) - ((*1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-555 *3)) (-4 *3 (-556)))) - ((*1 *2) (-12 (-4 *1 (-781)) (-5 *2 (-789)))) + (-12 (-4 *4 (-1041)) (-5 *2 (-714)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) + ((*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-497 *3)) (-4 *3 (-498)))) + ((*1 *2) (-12 (-4 *1 (-706)) (-5 *2 (-714)))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-789)) (-5 *1 (-815 *3 *4)) (-4 *3 (-816 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-714)) (-5 *1 (-740 *3 *4)) (-4 *3 (-741 *4)))) ((*1 *2) - (-12 (-4 *4 (-568)) (-5 *2 (-789)) (-5 *1 (-1009 *3 *4)) (-4 *3 (-1010 *4)))) + (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-930 *3 *4)) (-4 *3 (-931 *4)))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-789)) (-5 *1 (-1016 *3 *4)) (-4 *3 (-1017 *4)))) - ((*1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-1030 *3)) (-4 *3 (-1031)))) - ((*1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-789)))) - ((*1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-1078 *3)) (-4 *3 (-1079))))) + (-12 (-4 *4 (-146)) (-5 *2 (-714)) (-5 *1 (-937 *3 *4)) (-4 *3 (-938 *4)))) + ((*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) + ((*1 *2) (-12 (-4 *1 (-989)) (-5 *2 (-714)))) + ((*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-999 *3)) (-4 *3 (-1000))))) (((*1 *1 *2) - (-12 (-5 *2 (-707 *5)) (-4 *5 (-1068)) (-5 *1 (-1073 *3 *4 *5)) - (-14 *3 (-789)) (-14 *4 (-789))))) + (-12 (-5 *2 (-647 *5)) (-4 *5 (-989)) (-5 *1 (-994 *3 *4 *5)) (-14 *3 (-714)) + (-14 *4 (-714))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-789)) (-5 *3 (-1 *4 (-557) (-557))) (-4 *4 (-1068)) - (-4 *1 (-704 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) + (-12 (-5 *2 (-714)) (-5 *3 (-1 *4 (-499) (-499))) (-4 *4 (-989)) + (-4 *1 (-644 *4 *5 *6)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-659 (-659 *3))) (-4 *3 (-1068)) (-4 *1 (-704 *3 *4 *5)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-659 (-875)))) (-5 *1 (-875)))) + (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-989)) (-4 *1 (-644 *3 *4 *5)) + (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 (-599 (-797)))) (-5 *1 (-797)))) ((*1 *2 *1) - (-12 (-5 *2 (-1161 *3 *4)) (-5 *1 (-1012 *3 *4)) (-14 *3 (-936)) - (-4 *4 (-376)))) + (-12 (-5 *2 (-1082 *3 *4)) (-5 *1 (-933 *3 *4)) (-14 *3 (-857)) + (-4 *4 (-318)))) ((*1 *1 *2) - (-12 (-5 *2 (-659 (-659 *5))) (-4 *5 (-1068)) (-4 *1 (-1072 *3 *4 *5 *6 *7)) - (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5))))) + (-12 (-5 *2 (-599 (-599 *5))) (-4 *5 (-989)) (-4 *1 (-993 *3 *4 *5 *6 *7)) + (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-114)))) + (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-5 *2 (-114))))) + (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) + (-4 *7 (-195 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-114)))) + (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-5 *2 (-114))))) + (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) + (-4 *7 (-195 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-114)))) + (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-5 *2 (-114))))) + (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) + (-4 *7 (-195 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-114)))) + (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-5 *2 (-114))))) + (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) + (-4 *7 (-195 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-557)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)) (-5 *2 (-499)))) ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-5 *2 (-557))))) + (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) + (-4 *7 (-195 *3 *5)) (-5 *2 (-499))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-557)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)) (-5 *2 (-499)))) ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-5 *2 (-557))))) + (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) + (-4 *7 (-195 *3 *5)) (-5 *2 (-499))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-557)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)) (-5 *2 (-499)))) ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-5 *2 (-557))))) + (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) + (-4 *7 (-195 *3 *5)) (-5 *2 (-499))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-557)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)) (-5 *2 (-499)))) ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-5 *2 (-557))))) + (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) + (-4 *7 (-195 *3 *5)) (-5 *2 (-499))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-789)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)) (-5 *2 (-714)))) ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-5 *2 (-789))))) + (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) + (-4 *7 (-195 *3 *5)) (-5 *2 (-714))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-789)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)) (-5 *2 (-714)))) ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-5 *2 (-789))))) + (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) + (-4 *7 (-195 *3 *5)) (-5 *2 (-714))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-557)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) - (-4 *5 (-385 *2)) (-4 *2 (-1236)))) + (-12 (-5 *3 (-499)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-327 *2)) + (-4 *5 (-327 *2)) (-4 *2 (-1157)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-789)) (-4 *2 (-1120)) (-5 *1 (-216 *4 *2)) (-14 *4 (-936)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1236)))) + (-12 (-5 *3 (-714)) (-4 *2 (-1041)) (-5 *1 (-166 *4 *2)) (-14 *4 (-857)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-242 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1157)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-557)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) - (-4 *7 (-245 *4 *2)) (-4 *2 (-1068))))) + (-12 (-5 *3 (-499)) (-4 *1 (-993 *4 *5 *2 *6 *7)) (-4 *6 (-195 *5 *2)) + (-4 *7 (-195 *4 *2)) (-4 *2 (-989))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-557)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1236)) (-4 *5 (-385 *4)) - (-4 *2 (-385 *4)))) + (-12 (-5 *3 (-499)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1157)) (-4 *5 (-327 *4)) + (-4 *2 (-327 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-557)) (-4 *1 (-1072 *4 *5 *6 *2 *7)) (-4 *6 (-1068)) - (-4 *7 (-245 *4 *6)) (-4 *2 (-245 *5 *6))))) + (-12 (-5 *3 (-499)) (-4 *1 (-993 *4 *5 *6 *2 *7)) (-4 *6 (-989)) + (-4 *7 (-195 *4 *6)) (-4 *2 (-195 *5 *6))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-557)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1236)) (-4 *5 (-385 *4)) - (-4 *2 (-385 *4)))) + (-12 (-5 *3 (-499)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1157)) (-4 *5 (-327 *4)) + (-4 *2 (-327 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-557)) (-4 *1 (-1072 *4 *5 *6 *7 *2)) (-4 *6 (-1068)) - (-4 *7 (-245 *5 *6)) (-4 *2 (-245 *4 *6))))) + (-12 (-5 *3 (-499)) (-4 *1 (-993 *4 *5 *6 *7 *2)) (-4 *6 (-989)) + (-4 *7 (-195 *5 *6)) (-4 *2 (-195 *4 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-532 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5)))) + (-12 (-4 *3 (-318)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) + (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1010 *4)) - (-4 *2 (-704 *7 *8 *9)) (-5 *1 (-533 *4 *5 *6 *3 *7 *8 *9 *2)) - (-4 *3 (-704 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) + (-12 (-4 *4 (-510)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-4 *7 (-931 *4)) + (-4 *2 (-644 *7 *8 *9)) (-5 *1 (-475 *4 *5 *6 *3 *7 *8 *9 *2)) + (-4 *3 (-644 *4 *5 *6)) (-4 *8 (-327 *7)) (-4 *9 (-327 *7)))) ((*1 *1 *1) - (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)) (-4 *2 (-319)))) + (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) + (-4 *4 (-327 *2)) (-4 *2 (-261)))) ((*1 *2 *2) - (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-706 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-707 *3)) (-4 *3 (-319)) (-5 *1 (-718 *3)))) + (-12 (-4 *3 (-261)) (-4 *3 (-146)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) + (-5 *1 (-646 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-647 *3)) (-4 *3 (-261)) (-5 *1 (-658 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-1072 *2 *3 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-245 *3 *4)) - (-4 *6 (-245 *2 *4)) (-4 *4 (-319))))) + (-12 (-4 *1 (-993 *2 *3 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-195 *3 *4)) + (-4 *6 (-195 *2 *4)) (-4 *4 (-261))))) (((*1 *2 *1) - (-12 (-5 *2 (-789)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-557)) (-14 *4 *2) - (-4 *5 (-175)))) + (-12 (-5 *2 (-714)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-499)) (-14 *4 *2) + (-4 *5 (-146)))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-936)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) - ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-936)))) + (-12 (-4 *4 (-146)) (-5 *2 (-857)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) + ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-857)))) ((*1 *2) - (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1262 *3)) (-5 *2 (-936)))) + (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1183 *3)) (-5 *2 (-857)))) ((*1 *2 *3) - (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-789)) - (-5 *1 (-532 *4 *5 *6 *3)) (-4 *3 (-704 *4 *5 *6)))) + (-12 (-4 *4 (-318)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-714)) + (-5 *1 (-474 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4424)))) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4424)))) (-5 *2 (-789)) - (-5 *1 (-685 *5 *6 *4 *3)) (-4 *3 (-704 *5 *6 *4)))) + (-12 (-4 *5 (-318)) (-4 *6 (-13 (-327 *5) (-10 -7 (-6 -4146)))) + (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4146)))) (-5 *2 (-714)) + (-5 *1 (-625 *5 *6 *4 *3)) (-4 *3 (-644 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-707 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-376)) (-5 *2 (-789)) - (-5 *1 (-686 *5)))) + (-12 (-5 *3 (-647 *5)) (-5 *4 (-1207 *5)) (-4 *5 (-318)) (-5 *2 (-714)) + (-5 *1 (-626 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-4 *3 (-568)) (-5 *2 (-789)))) + (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)) (-4 *3 (-510)) (-5 *2 (-714)))) ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-789)) (-5 *1 (-706 *4 *5 *6 *3)) (-4 *3 (-704 *4 *5 *6)))) + (-12 (-4 *4 (-510)) (-4 *4 (-146)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) + (-5 *2 (-714)) (-5 *1 (-646 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-4 *5 (-568)) (-5 *2 (-789))))) + (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) + (-4 *7 (-195 *3 *5)) (-4 *5 (-510)) (-5 *2 (-714))))) (((*1 *2 *3) - (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-789)) - (-5 *1 (-532 *4 *5 *6 *3)) (-4 *3 (-704 *4 *5 *6)))) + (-12 (-4 *4 (-318)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) (-5 *2 (-714)) + (-5 *1 (-474 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-4 *3 (-568)) (-5 *2 (-789)))) + (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)) (-4 *3 (-510)) (-5 *2 (-714)))) ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-789)) (-5 *1 (-706 *4 *5 *6 *3)) (-4 *3 (-704 *4 *5 *6)))) + (-12 (-4 *4 (-510)) (-4 *4 (-146)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) + (-5 *2 (-714)) (-5 *1 (-646 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-4 *5 (-568)) (-5 *2 (-789))))) + (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) + (-4 *7 (-195 *3 *5)) (-4 *5 (-510)) (-5 *2 (-714))))) (((*1 *2 *3) - (-12 (|has| *6 (-6 -4424)) (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-659 *6)) (-5 *1 (-532 *4 *5 *6 *3)) (-4 *3 (-704 *4 *5 *6)))) + (-12 (|has| *6 (-6 -4146)) (-4 *4 (-318)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) + (-5 *2 (-599 *6)) (-5 *1 (-474 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) ((*1 *2 *3) - (-12 (|has| *9 (-6 -4424)) (-4 *4 (-568)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-4 *7 (-1010 *4)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)) (-5 *2 (-659 *6)) - (-5 *1 (-533 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-704 *4 *5 *6)) - (-4 *10 (-704 *7 *8 *9)))) + (-12 (|has| *9 (-6 -4146)) (-4 *4 (-510)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) + (-4 *7 (-931 *4)) (-4 *8 (-327 *7)) (-4 *9 (-327 *7)) (-5 *2 (-599 *6)) + (-5 *1 (-475 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-644 *4 *5 *6)) + (-4 *10 (-644 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-4 *3 (-568)) (-5 *2 (-659 *5)))) + (-12 (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)) (-4 *3 (-510)) (-5 *2 (-599 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-659 *6)) (-5 *1 (-706 *4 *5 *6 *3)) (-4 *3 (-704 *4 *5 *6)))) + (-12 (-4 *4 (-510)) (-4 *4 (-146)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) + (-5 *2 (-599 *6)) (-5 *1 (-646 *4 *5 *6 *3)) (-4 *3 (-644 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-4 *5 (-568)) (-5 *2 (-659 *7))))) + (-12 (-4 *1 (-993 *3 *4 *5 *6 *7)) (-4 *5 (-989)) (-4 *6 (-195 *4 *5)) + (-4 *7 (-195 *3 *5)) (-4 *5 (-510)) (-5 *2 (-599 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1255 *4 *5)) (-5 *3 (-659 *5)) (-14 *4 (-1196)) (-4 *5 (-376)) - (-5 *1 (-939 *4 *5)))) + (-12 (-5 *2 (-1176 *4 *5)) (-5 *3 (-599 *5)) (-14 *4 (-1117)) (-4 *5 (-318)) + (-5 *1 (-860 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-659 *5)) (-4 *5 (-376)) (-5 *2 (-1190 *5)) (-5 *1 (-939 *4 *5)) - (-14 *4 (-1196)))) + (-12 (-5 *3 (-599 *5)) (-4 *5 (-318)) (-5 *2 (-1111 *5)) (-5 *1 (-860 *4 *5)) + (-14 *4 (-1117)))) ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-659 *6)) (-5 *4 (-789)) (-4 *6 (-376)) (-5 *2 (-419 (-963 *6))) - (-5 *1 (-1069 *5 *6)) (-14 *5 (-1196))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-1066))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-557))) (-5 *1 (-1066))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-557))) (-5 *1 (-1066))))) -(((*1 *1 *1 *1) (-4 *1 (-145))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-556)))) - ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-557))) (-5 *1 (-1066)) - (-5 *3 (-557))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1116 *4)) (-4 *4 (-1120)) (-5 *2 (-1 *4)) (-5 *1 (-1036 *4)))) - ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1060)) (-5 *3 (-391)))) - ((*1 *2 *3) (-12 (-5 *3 (-1108 (-557))) (-5 *2 (-1 (-557))) (-5 *1 (-1066))))) -(((*1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-159))) ((*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-159))) ((*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-159))) ((*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23))))) -(((*1 *2) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23))))) -(((*1 *2 *3) - (-12 (-5 *3 (-419 (-963 *4))) (-4 *4 (-319)) (-5 *2 (-419 (-417 (-963 *4)))) - (-5 *1 (-1062 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1 (-391))) (-5 *1 (-1060))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1 (-391))) (-5 *1 (-1060))))) -(((*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1 (-391))) (-5 *1 (-1060))))) + (-12 (-5 *3 (-599 *6)) (-5 *4 (-714)) (-4 *6 (-318)) (-5 *2 (-361 (-884 *6))) + (-5 *1 (-990 *5 *6)) (-14 *5 (-1117))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-987))))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-499))) (-5 *1 (-987))))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-499))) (-5 *1 (-987))))) +(((*1 *1 *1 *1) (-4 *1 (-116))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498)))) + ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-499))) (-5 *1 (-987)) + (-5 *3 (-499))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1037 *4)) (-4 *4 (-1041)) (-5 *2 (-1 *4)) (-5 *1 (-957 *4)))) + ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-333))) (-5 *1 (-981)) (-5 *3 (-333)))) + ((*1 *2 *3) (-12 (-5 *3 (-1029 (-499))) (-5 *2 (-1 (-499))) (-5 *1 (-987))))) +(((*1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-23))))) +(((*1 *2) (-12 (-4 *1 (-984 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) + (-12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-261)) (-5 *2 (-361 (-359 (-884 *4)))) + (-5 *1 (-983 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1 (-333))) (-5 *1 (-981))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1 (-333))) (-5 *1 (-981))))) +(((*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1 (-333))) (-5 *1 (-981))))) (((*1 *1 *2) - (-12 (-5 *2 (-1267 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1196)) (-14 *5 *3) - (-5 *1 (-331 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1060)) (-5 *3 (-391))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1060)) (-5 *3 (-391))))) -(((*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-391)) (-5 *1 (-1060))))) -(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1060))))) -(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1060))))) -(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1060))))) + (-12 (-5 *2 (-1188 *3 *4 *5)) (-4 *3 (-318)) (-14 *4 (-1117)) (-14 *5 *3) + (-5 *1 (-273 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-333))) (-5 *1 (-981)) (-5 *3 (-333))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-333))) (-5 *1 (-981)) (-5 *3 (-333))))) +(((*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-333)) (-5 *1 (-981))))) +(((*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-981))))) +(((*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-981))))) +(((*1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-981))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1190 (-419 (-1190 *2)))) (-5 *4 (-626 *2)) - (-4 *2 (-13 (-433 *5) (-27) (-1222))) - (-4 *5 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) - (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1120)))) + (-12 (-5 *3 (-1111 (-361 (-1111 *2)))) (-5 *4 (-566 *2)) + (-4 *2 (-13 (-375 *5) (-27) (-1143))) + (-4 *5 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) + (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1041)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190 *1)) (-4 *1 (-967 *4 *5 *3)) (-4 *4 (-1068)) - (-4 *5 (-813)) (-4 *3 (-859)))) + (-12 (-5 *2 (-1111 *1)) (-4 *1 (-888 *4 *5 *3)) (-4 *4 (-989)) (-4 *5 (-738)) + (-4 *3 (-781)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190 *4)) (-4 *4 (-1068)) (-4 *1 (-967 *4 *5 *3)) - (-4 *5 (-813)) (-4 *3 (-859)))) + (-12 (-5 *2 (-1111 *4)) (-4 *4 (-989)) (-4 *1 (-888 *4 *5 *3)) (-4 *5 (-738)) + (-4 *3 (-781)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-1190 *2))) (-4 *5 (-813)) (-4 *4 (-859)) (-4 *6 (-1068)) + (-12 (-5 *3 (-361 (-1111 *2))) (-4 *5 (-738)) (-4 *4 (-781)) (-4 *6 (-989)) (-4 *2 - (-13 (-376) - (-10 -8 (-15 -4374 ($ *7)) (-15 -3397 (*7 $)) (-15 -3396 (*7 $))))) - (-5 *1 (-968 *5 *4 *6 *7 *2)) (-4 *7 (-967 *6 *5 *4)))) + (-13 (-318) + (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))) + (-5 *1 (-889 *5 *4 *6 *7 *2)) (-4 *7 (-888 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-1190 (-419 (-963 *5))))) (-5 *4 (-1196)) - (-5 *2 (-419 (-963 *5))) (-5 *1 (-1059 *5)) (-4 *5 (-568))))) + (-12 (-5 *3 (-361 (-1111 (-361 (-884 *5))))) (-5 *4 (-1117)) + (-5 *2 (-361 (-884 *5))) (-5 *1 (-980 *5)) (-4 *5 (-510))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-626 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1120)) (-4 *4 (-568)) - (-5 *2 (-419 (-1190 *1))))) + (-12 (-5 *3 (-566 *1)) (-4 *1 (-375 *4)) (-4 *4 (-1041)) (-4 *4 (-510)) + (-5 *2 (-361 (-1111 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-626 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) - (-5 *2 (-1190 (-419 (-1190 *3)))) (-5 *1 (-572 *6 *3 *7)) (-5 *5 (-1190 *3)) - (-4 *7 (-1120)))) + (-12 (-5 *4 (-566 *3)) (-4 *3 (-13 (-375 *6) (-27) (-1143))) + (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) + (-5 *2 (-1111 (-361 (-1111 *3)))) (-5 *1 (-513 *6 *3 *7)) (-5 *5 (-1111 *3)) + (-4 *7 (-1041)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1283 *5)) (-14 *5 (-1196)) (-4 *6 (-1068)) - (-5 *2 (-1255 *5 (-963 *6))) (-5 *1 (-965 *5 *6)) (-5 *3 (-963 *6)))) + (-12 (-5 *4 (-1204 *5)) (-14 *5 (-1117)) (-4 *6 (-989)) + (-5 *2 (-1176 *5 (-884 *6))) (-5 *1 (-886 *5 *6)) (-5 *3 (-884 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-1190 *3)))) + (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-1111 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *3 (-859)) (-5 *2 (-1190 *1)) - (-4 *1 (-967 *4 *5 *3)))) + (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) (-5 *2 (-1111 *1)) + (-4 *1 (-888 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-813)) (-4 *4 (-859)) (-4 *6 (-1068)) (-4 *7 (-967 *6 *5 *4)) - (-5 *2 (-419 (-1190 *3))) (-5 *1 (-968 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-738)) (-4 *4 (-781)) (-4 *6 (-989)) (-4 *7 (-888 *6 *5 *4)) + (-5 *2 (-361 (-1111 *3))) (-5 *1 (-889 *5 *4 *6 *7 *3)) (-4 *3 - (-13 (-376) - (-10 -8 (-15 -4374 ($ *7)) (-15 -3397 (*7 $)) (-15 -3396 (*7 $))))))) + (-13 (-318) + (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1190 *3)) + (-12 (-5 *2 (-1111 *3)) (-4 *3 - (-13 (-376) - (-10 -8 (-15 -4374 ($ *7)) (-15 -3397 (*7 $)) (-15 -3396 (*7 $))))) - (-4 *7 (-967 *6 *5 *4)) (-4 *5 (-813)) (-4 *4 (-859)) (-4 *6 (-1068)) - (-5 *1 (-968 *5 *4 *6 *7 *3)))) + (-13 (-318) + (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))) + (-4 *7 (-888 *6 *5 *4)) (-4 *5 (-738)) (-4 *4 (-781)) (-4 *6 (-989)) + (-5 *1 (-889 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-568)) (-5 *2 (-419 (-1190 (-419 (-963 *5))))) - (-5 *1 (-1059 *5)) (-5 *3 (-419 (-963 *5)))))) + (-12 (-5 *4 (-1117)) (-4 *5 (-510)) (-5 *2 (-361 (-1111 (-361 (-884 *5))))) + (-5 *1 (-980 *5)) (-5 *3 (-361 (-884 *5)))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-967 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) - (-4 *2 (-859)))) + (|partial| -12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) + (-4 *2 (-781)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-813)) (-4 *5 (-1068)) (-4 *6 (-967 *5 *4 *2)) - (-4 *2 (-859)) (-5 *1 (-968 *4 *2 *5 *6 *3)) + (|partial| -12 (-4 *4 (-738)) (-4 *5 (-989)) (-4 *6 (-888 *5 *4 *2)) + (-4 *2 (-781)) (-5 *1 (-889 *4 *2 *5 *6 *3)) (-4 *3 - (-13 (-376) - (-10 -8 (-15 -4374 ($ *6)) (-15 -3397 (*6 $)) (-15 -3396 (*6 $))))))) + (-13 (-318) + (-10 -8 (-15 -4096 ($ *6)) (-15 -3119 (*6 $)) (-15 -3118 (*6 $))))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-963 *4))) (-4 *4 (-568)) (-5 *2 (-1196)) - (-5 *1 (-1059 *4))))) + (|partial| -12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-5 *2 (-1117)) + (-5 *1 (-980 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) - (-5 *2 (-659 (-1196))) (-5 *1 (-278)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1190 *7)) (-4 *7 (-967 *6 *4 *5)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *6 (-1068)) (-5 *2 (-659 *5)) (-5 *1 (-333 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1111 *7)) (-4 *7 (-888 *6 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *6 (-989)) (-5 *2 (-599 *5)) (-5 *1 (-275 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-5 *2 (-659 (-1196))) (-5 *1 (-352 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-401)))) - ((*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1120)) (-5 *2 (-659 (-1196))))) - ((*1 *2 *1) (-12 (-5 *2 (-659 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-294 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-343)))) + ((*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1041)) (-5 *2 (-599 (-1117))))) + ((*1 *2 *1) (-12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-659 *5)))) + (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-599 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1068)) (-4 *7 (-967 *6 *4 *5)) - (-5 *2 (-659 *5)) (-5 *1 (-968 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) (-4 *7 (-888 *6 *4 *5)) + (-5 *2 (-599 *5)) (-5 *1 (-889 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-376) - (-10 -8 (-15 -4374 ($ *7)) (-15 -3397 (*7 $)) (-15 -3396 (*7 $))))))) - ((*1 *2 *1) - (-12 (-4 *1 (-992 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-812)) (-4 *5 (-859)) - (-5 *2 (-659 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-659 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-419 (-963 *4))) (-4 *4 (-568)) (-5 *2 (-659 (-1196))) - (-5 *1 (-1059 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-963 *6))) (-5 *4 (-659 (-1196))) - (-4 *6 (-13 (-568) (-1057 *5))) (-4 *5 (-568)) - (-5 *2 (-659 (-659 (-305 (-419 (-963 *6)))))) (-5 *1 (-1058 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1054))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1054))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-626 *6)) (-4 *6 (-13 (-433 *5) (-27) (-1222))) - (-4 *5 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) - (-5 *2 (-1190 (-419 (-1190 *6)))) (-5 *1 (-572 *5 *6 *7)) (-5 *3 (-1190 *6)) - (-4 *7 (-1120)))) - ((*1 *2 *1) (-12 (-4 *2 (-1262 *3)) (-5 *1 (-730 *3 *2)) (-4 *3 (-1068)))) - ((*1 *2 *1) (-12 (-4 *1 (-742 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1262 *3)))) + (-13 (-318) + (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $))))))) + ((*1 *2 *1) + (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-737)) (-4 *5 (-781)) + (-5 *2 (-599 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-599 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-5 *2 (-599 (-1117))) + (-5 *1 (-980 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-884 *6))) (-5 *4 (-599 (-1117))) + (-4 *6 (-13 (-510) (-978 *5))) (-4 *5 (-510)) + (-5 *2 (-599 (-599 (-247 (-361 (-884 *6)))))) (-5 *1 (-979 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-975))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-975))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-566 *6)) (-4 *6 (-13 (-375 *5) (-27) (-1143))) + (-4 *5 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) + (-5 *2 (-1111 (-361 (-1111 *6)))) (-5 *1 (-513 *5 *6 *7)) (-5 *3 (-1111 *6)) + (-4 *7 (-1041)))) + ((*1 *2 *1) (-12 (-4 *2 (-1183 *3)) (-5 *1 (-670 *3 *2)) (-4 *3 (-989)))) + ((*1 *2 *1) (-12 (-4 *1 (-682 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1183 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1190 *11)) (-5 *6 (-659 *10)) (-5 *7 (-659 (-789))) - (-5 *8 (-659 *11)) (-4 *10 (-859)) (-4 *11 (-319)) (-4 *9 (-813)) - (-4 *5 (-967 *11 *9 *10)) (-5 *2 (-659 (-1190 *5))) - (-5 *1 (-760 *9 *10 *11 *5)) (-5 *3 (-1190 *5)))) + (|partial| -12 (-5 *4 (-1111 *11)) (-5 *6 (-599 *10)) (-5 *7 (-599 (-714))) + (-5 *8 (-599 *11)) (-4 *10 (-781)) (-4 *11 (-261)) (-4 *9 (-738)) + (-4 *5 (-888 *11 *9 *10)) (-5 *2 (-599 (-1111 *5))) + (-5 *1 (-700 *9 *10 *11 *5)) (-5 *3 (-1111 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-967 *3 *4 *5)) (-5 *1 (-1053 *3 *4 *5 *2 *6)) (-4 *3 (-376)) - (-4 *4 (-813)) (-4 *5 (-859)) (-14 *6 (-659 *2))))) + (-12 (-4 *2 (-888 *3 *4 *5)) (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *3 (-318)) + (-4 *4 (-738)) (-4 *5 (-781)) (-14 *6 (-599 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-936)) (-5 *1 (-1051 *2)) - (-4 *2 (-13 (-1120) (-10 -8 (-15 * ($ $ $)))))))) + (-12 (-5 *3 (-857)) (-5 *1 (-972 *2)) + (-4 *2 (-13 (-1041) (-10 -8 (-15 * ($ $ $)))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-936)) (-5 *1 (-1050 *2)) - (-4 *2 (-13 (-1120) (-10 -8 (-15 -4267 ($ $ $)))))))) + (-12 (-5 *3 (-857)) (-5 *1 (-971 *2)) + (-4 *2 (-13 (-1041) (-10 -8 (-15 -3989 ($ $ $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-1286 *5))) (-5 *4 (-557)) (-5 *2 (-1286 *5)) - (-5 *1 (-1049 *5)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1068))))) + (-12 (-5 *3 (-599 (-1207 *5))) (-5 *4 (-499)) (-5 *2 (-1207 *5)) + (-5 *1 (-970 *5)) (-4 *5 (-318)) (-4 *5 (-323)) (-4 *5 (-989))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-557)) (-4 *6 (-376)) (-4 *6 (-381)) - (-4 *6 (-1068)) (-5 *2 (-659 (-659 (-707 *6)))) (-5 *1 (-1049 *6)) - (-5 *3 (-659 (-707 *6))))) + (-12 (-5 *4 (-85)) (-5 *5 (-499)) (-4 *6 (-318)) (-4 *6 (-323)) + (-4 *6 (-989)) (-5 *2 (-599 (-599 (-647 *6)))) (-5 *1 (-970 *6)) + (-5 *3 (-599 (-647 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-376)) (-4 *4 (-381)) (-4 *4 (-1068)) - (-5 *2 (-659 (-659 (-707 *4)))) (-5 *1 (-1049 *4)) - (-5 *3 (-659 (-707 *4))))) + (-12 (-4 *4 (-318)) (-4 *4 (-323)) (-4 *4 (-989)) + (-5 *2 (-599 (-599 (-647 *4)))) (-5 *1 (-970 *4)) (-5 *3 (-599 (-647 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1068)) - (-5 *2 (-659 (-659 (-707 *5)))) (-5 *1 (-1049 *5)) - (-5 *3 (-659 (-707 *5))))) + (-12 (-5 *4 (-85)) (-4 *5 (-318)) (-4 *5 (-323)) (-4 *5 (-989)) + (-5 *2 (-599 (-599 (-647 *5)))) (-5 *1 (-970 *5)) (-5 *3 (-599 (-647 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-936)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1068)) - (-5 *2 (-659 (-659 (-707 *5)))) (-5 *1 (-1049 *5)) - (-5 *3 (-659 (-707 *5)))))) + (-12 (-5 *4 (-857)) (-4 *5 (-318)) (-4 *5 (-323)) (-4 *5 (-989)) + (-5 *2 (-599 (-599 (-647 *5)))) (-5 *1 (-970 *5)) (-5 *3 (-599 (-647 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-707 *5))) (-5 *4 (-557)) (-4 *5 (-376)) (-4 *5 (-1068)) - (-5 *2 (-114)) (-5 *1 (-1049 *5)))) + (-12 (-5 *3 (-599 (-647 *5))) (-5 *4 (-499)) (-4 *5 (-318)) (-4 *5 (-989)) + (-5 *2 (-85)) (-5 *1 (-970 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-659 (-707 *4))) (-4 *4 (-376)) (-4 *4 (-1068)) (-5 *2 (-114)) - (-5 *1 (-1049 *4))))) + (-12 (-5 *3 (-599 (-647 *4))) (-4 *4 (-318)) (-4 *4 (-989)) (-5 *2 (-85)) + (-5 *1 (-970 *4))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-659 (-707 *6))) (-5 *4 (-114)) (-5 *5 (-557)) (-5 *2 (-707 *6)) - (-5 *1 (-1049 *6)) (-4 *6 (-376)) (-4 *6 (-1068)))) + (-12 (-5 *3 (-599 (-647 *6))) (-5 *4 (-85)) (-5 *5 (-499)) (-5 *2 (-647 *6)) + (-5 *1 (-970 *6)) (-4 *6 (-318)) (-4 *6 (-989)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-659 (-707 *4))) (-5 *2 (-707 *4)) (-5 *1 (-1049 *4)) - (-4 *4 (-376)) (-4 *4 (-1068)))) + (-12 (-5 *3 (-599 (-647 *4))) (-5 *2 (-647 *4)) (-5 *1 (-970 *4)) + (-4 *4 (-318)) (-4 *4 (-989)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-659 (-707 *5))) (-5 *4 (-557)) (-5 *2 (-707 *5)) - (-5 *1 (-1049 *5)) (-4 *5 (-376)) (-4 *5 (-1068))))) + (-12 (-5 *3 (-599 (-647 *5))) (-5 *4 (-499)) (-5 *2 (-647 *5)) + (-5 *1 (-970 *5)) (-4 *5 (-318)) (-4 *5 (-989))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-707 *5))) (-5 *4 (-1286 *5)) (-4 *5 (-319)) - (-4 *5 (-1068)) (-5 *2 (-707 *5)) (-5 *1 (-1049 *5))))) + (-12 (-5 *3 (-599 (-647 *5))) (-5 *4 (-1207 *5)) (-4 *5 (-261)) + (-4 *5 (-989)) (-5 *2 (-647 *5)) (-5 *1 (-970 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-707 *5))) (-4 *5 (-319)) (-4 *5 (-1068)) - (-5 *2 (-1286 (-1286 *5))) (-5 *1 (-1049 *5)) (-5 *4 (-1286 *5))))) + (-12 (-5 *3 (-599 (-647 *5))) (-4 *5 (-261)) (-4 *5 (-989)) + (-5 *2 (-1207 (-1207 *5))) (-5 *1 (-970 *5)) (-5 *4 (-1207 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-659 (-707 *4))) (-5 *2 (-707 *4)) (-4 *4 (-1068)) - (-5 *1 (-1049 *4))))) + (-12 (-5 *3 (-599 (-647 *4))) (-5 *2 (-647 *4)) (-4 *4 (-989)) + (-5 *1 (-970 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1286 (-1286 *4))) (-4 *4 (-1068)) (-5 *2 (-707 *4)) - (-5 *1 (-1049 *4))))) + (-12 (-5 *3 (-1207 (-1207 *4))) (-4 *4 (-989)) (-5 *2 (-647 *4)) + (-5 *1 (-970 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-919 (-557))) (-5 *4 (-557)) (-5 *2 (-707 *4)) - (-5 *1 (-1048 *5)) (-4 *5 (-1068)))) + (-12 (-5 *3 (-840 (-499))) (-5 *4 (-499)) (-5 *2 (-647 *4)) (-5 *1 (-969 *5)) + (-4 *5 (-989)))) ((*1 *2 *3) - (-12 (-5 *3 (-659 (-557))) (-5 *2 (-707 (-557))) (-5 *1 (-1048 *4)) - (-4 *4 (-1068)))) + (-12 (-5 *3 (-599 (-499))) (-5 *2 (-647 (-499))) (-5 *1 (-969 *4)) + (-4 *4 (-989)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-919 (-557)))) (-5 *4 (-557)) (-5 *2 (-659 (-707 *4))) - (-5 *1 (-1048 *5)) (-4 *5 (-1068)))) + (-12 (-5 *3 (-599 (-840 (-499)))) (-5 *4 (-499)) (-5 *2 (-599 (-647 *4))) + (-5 *1 (-969 *5)) (-4 *5 (-989)))) ((*1 *2 *3) - (-12 (-5 *3 (-659 (-659 (-557)))) (-5 *2 (-659 (-707 (-557)))) - (-5 *1 (-1048 *4)) (-4 *4 (-1068))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-707 *3)) (-4 *3 (-1068)) (-5 *1 (-1048 *3)))) + (-12 (-5 *3 (-599 (-599 (-499)))) (-5 *2 (-599 (-647 (-499)))) + (-5 *1 (-969 *4)) (-4 *4 (-989))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-969 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-659 (-707 *3))) (-4 *3 (-1068)) (-5 *1 (-1048 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-707 *3)) (-4 *3 (-1068)) (-5 *1 (-1048 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-659 (-707 *3))) (-4 *3 (-1068)) (-5 *1 (-1048 *3))))) + (-12 (-5 *2 (-599 (-647 *3))) (-4 *3 (-989)) (-5 *1 (-969 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-969 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-599 (-647 *3))) (-4 *3 (-989)) (-5 *1 (-969 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-707 *4)) (-5 *3 (-936)) (-4 *4 (-1068)) (-5 *1 (-1048 *4)))) + (-12 (-5 *2 (-647 *4)) (-5 *3 (-857)) (-4 *4 (-989)) (-5 *1 (-969 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-659 (-707 *4))) (-5 *3 (-936)) (-4 *4 (-1068)) - (-5 *1 (-1048 *4))))) + (-12 (-5 *2 (-599 (-647 *4))) (-5 *3 (-857)) (-4 *4 (-989)) + (-5 *1 (-969 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-789)) (-5 *2 (-707 (-963 *4))) (-5 *1 (-1048 *4)) - (-4 *4 (-1068))))) + (-12 (-5 *3 (-714)) (-5 *2 (-647 (-884 *4))) (-5 *1 (-969 *4)) + (-4 *4 (-989))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-707 *4)) (-5 *3 (-936)) (|has| *4 (-6 (-4425 "*"))) - (-4 *4 (-1068)) (-5 *1 (-1048 *4)))) + (-12 (-5 *2 (-647 *4)) (-5 *3 (-857)) (|has| *4 (-6 (-4147 "*"))) + (-4 *4 (-989)) (-5 *1 (-969 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-659 (-707 *4))) (-5 *3 (-936)) (|has| *4 (-6 (-4425 "*"))) - (-4 *4 (-1068)) (-5 *1 (-1048 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-707 (-419 (-963 (-557))))) (-5 *2 (-659 (-707 (-326 (-557))))) - (-5 *1 (-1047))))) -(((*1 *2 *2) (-12 (-5 *2 (-659 (-707 (-326 (-557))))) (-5 *1 (-1047))))) -(((*1 *2 *2) (-12 (-5 *2 (-707 (-326 (-557)))) (-5 *1 (-1047))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-707 (-419 (-963 (-557))))) - (-5 *2 (-707 (-326 (-557)))) (-5 *1 (-1047))))) -(((*1 *2 *3) - (-12 (-5 *3 (-707 (-419 (-963 (-557))))) (-5 *2 (-659 (-326 (-557)))) - (-5 *1 (-1047))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-707 (-419 (-963 (-557))))) (-5 *2 (-659 (-707 (-326 (-557))))) - (-5 *1 (-1047)) (-5 *3 (-326 (-557)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-707 (-419 (-963 (-557))))) - (-5 *2 - (-659 - (-2 (|:| |radval| (-326 (-557))) (|:| |radmult| (-557)) - (|:| |radvect| (-659 (-707 (-326 (-557)))))))) - (-5 *1 (-1047))))) -(((*1 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) - ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1045 *3)) (-4 *3 (-1236))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-1044 *3 *2)) (-4 *2 (-676 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| -3682 *3) (|:| -2907 (-659 *5)))) - (-5 *1 (-1044 *5 *3)) (-5 *4 (-659 *5)) (-4 *3 (-676 *5))))) + (-12 (-5 *2 (-599 (-647 *4))) (-5 *3 (-857)) (|has| *4 (-6 (-4147 "*"))) + (-4 *4 (-989)) (-5 *1 (-969 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-647 (-361 (-884 (-499))))) (-5 *2 (-599 (-647 (-268 (-499))))) + (-5 *1 (-968))))) +(((*1 *2 *2) (-12 (-5 *2 (-599 (-647 (-268 (-499))))) (-5 *1 (-968))))) +(((*1 *2 *2) (-12 (-5 *2 (-647 (-268 (-499)))) (-5 *1 (-968))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-647 (-361 (-884 (-499))))) + (-5 *2 (-647 (-268 (-499)))) (-5 *1 (-968))))) +(((*1 *2 *3) + (-12 (-5 *3 (-647 (-361 (-884 (-499))))) (-5 *2 (-599 (-268 (-499)))) + (-5 *1 (-968))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-647 (-361 (-884 (-499))))) (-5 *2 (-599 (-647 (-268 (-499))))) + (-5 *1 (-968)) (-5 *3 (-268 (-499)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-647 (-361 (-884 (-499))))) + (-5 *2 + (-599 + (-2 (|:| |radval| (-268 (-499))) (|:| |radmult| (-499)) + (|:| |radvect| (-599 (-647 (-268 (-499)))))))) + (-5 *1 (-968))))) +(((*1 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-73)) (-5 *2 (-85)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1157)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388)))) + ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-966 *3)) (-4 *3 (-1157))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-965 *3 *2)) (-4 *2 (-616 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-318)) (-5 *2 (-2 (|:| -3404 *3) (|:| -2631 (-599 *5)))) + (-5 *1 (-965 *5 *3)) (-5 *4 (-599 *5)) (-4 *3 (-616 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1080 (-1043 *4) (-1190 (-1043 *4)))) (-5 *3 (-875)) - (-5 *1 (-1043 *4)) (-4 *4 (-13 (-858) (-376) (-1039)))))) + (-12 (-5 *2 (-1001 (-964 *4) (-1111 (-964 *4)))) (-5 *3 (-797)) + (-5 *1 (-964 *4)) (-4 *4 (-13 (-780) (-318) (-960)))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1080 (-1043 *3) (-1190 (-1043 *3)))) - (-5 *1 (-1043 *3)) (-4 *3 (-13 (-858) (-376) (-1039)))))) + (|partial| -12 (-5 *2 (-1001 (-964 *3) (-1111 (-964 *3)))) (-5 *1 (-964 *3)) + (-4 *3 (-13 (-780) (-318) (-960)))))) (((*1 *2 *3) - (-12 (-5 *2 (-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))))) - (-5 *1 (-1040 *3)) (-4 *3 (-1262 (-557))))) + (-12 (-5 *2 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) + (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))))) - (-5 *1 (-1040 *3)) (-4 *3 (-1262 (-557))) - (-5 *4 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))))) + (-12 (-5 *2 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) + (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))) + (-5 *4 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))))) - (-5 *1 (-1040 *3)) (-4 *3 (-1262 (-557))) (-5 *4 (-419 (-557))))) + (-12 (-5 *2 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) + (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))) (-5 *4 (-361 (-499))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-419 (-557))) (-5 *2 (-659 (-2 (|:| -3538 *5) (|:| -3537 *5)))) - (-5 *1 (-1040 *3)) (-4 *3 (-1262 (-557))) - (-5 *4 (-2 (|:| -3538 *5) (|:| -3537 *5))))) + (-12 (-5 *5 (-361 (-499))) (-5 *2 (-599 (-2 (|:| -3260 *5) (|:| -3259 *5)))) + (-5 *1 (-961 *3)) (-4 *3 (-1183 (-499))) + (-5 *4 (-2 (|:| -3260 *5) (|:| -3259 *5))))) ((*1 *2 *3) - (-12 (-5 *2 (-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))))) - (-5 *1 (-1041 *3)) (-4 *3 (-1262 (-419 (-557)))))) + (-12 (-5 *2 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) + (-5 *1 (-962 *3)) (-4 *3 (-1183 (-361 (-499)))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))))) - (-5 *1 (-1041 *3)) (-4 *3 (-1262 (-419 (-557)))) - (-5 *4 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))))) + (-12 (-5 *2 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) + (-5 *1 (-962 *3)) (-4 *3 (-1183 (-361 (-499)))) + (-5 *4 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-419 (-557))) (-5 *2 (-659 (-2 (|:| -3538 *4) (|:| -3537 *4)))) - (-5 *1 (-1041 *3)) (-4 *3 (-1262 *4)))) + (-12 (-5 *4 (-361 (-499))) (-5 *2 (-599 (-2 (|:| -3260 *4) (|:| -3259 *4)))) + (-5 *1 (-962 *3)) (-4 *3 (-1183 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-419 (-557))) (-5 *2 (-659 (-2 (|:| -3538 *5) (|:| -3537 *5)))) - (-5 *1 (-1041 *3)) (-4 *3 (-1262 *5)) - (-5 *4 (-2 (|:| -3538 *5) (|:| -3537 *5)))))) + (-12 (-5 *5 (-361 (-499))) (-5 *2 (-599 (-2 (|:| -3260 *5) (|:| -3259 *5)))) + (-5 *1 (-962 *3)) (-4 *3 (-1183 *5)) + (-5 *4 (-2 (|:| -3260 *5) (|:| -3259 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))))) - (-5 *2 (-659 (-419 (-557)))) (-5 *1 (-1040 *4)) (-4 *4 (-1262 (-557)))))) + (-12 (-5 *3 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) + (-5 *2 (-599 (-361 (-499)))) (-5 *1 (-961 *4)) (-4 *4 (-1183 (-499)))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557))))) - (-5 *2 (-419 (-557))) (-5 *1 (-1040 *4)) (-4 *4 (-1262 (-557)))))) + (-12 (-5 *3 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499))))) + (-5 *2 (-361 (-499))) (-5 *1 (-961 *4)) (-4 *4 (-1183 (-499)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1286 *6)) (-5 *4 (-1286 (-557))) (-5 *5 (-557)) (-4 *6 (-1120)) - (-5 *2 (-1 *6)) (-5 *1 (-1036 *6))))) + (-12 (-5 *3 (-1207 *6)) (-5 *4 (-1207 (-499))) (-5 *5 (-499)) (-4 *6 (-1041)) + (-5 *2 (-1 *6)) (-5 *1 (-957 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 (-2 (|:| -3820 *4) (|:| -1652 (-557))))) (-4 *4 (-1120)) - (-5 *2 (-1 *4)) (-5 *1 (-1036 *4))))) + (-12 (-5 *3 (-599 (-2 (|:| -3542 *4) (|:| -1555 (-499))))) (-4 *4 (-1041)) + (-5 *2 (-1 *4)) (-5 *1 (-957 *4))))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1057 (-557)))) (-4 *5 (-1262 *4)) - (-5 *2 (-659 (-419 *5))) (-5 *1 (-1035 *4 *5)) (-5 *3 (-419 *5))))) + (|partial| -12 (-4 *4 (-13 (-318) (-120) (-978 (-499)))) (-4 *5 (-1183 *4)) + (-5 *2 (-599 (-361 *5))) (-5 *1 (-956 *4 *5)) (-5 *3 (-361 *5))))) (((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) - (-4 *5 (-13 (-376) (-149) (-1057 (-557)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) + (-4 *5 (-13 (-318) (-120) (-978 (-499)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) (|:| |c1| (-419 *6)) - (|:| |c2| (-419 *6)) (|:| -3494 *6))) - (-5 *1 (-1035 *5 *6)) (-5 *3 (-419 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-361 *6)) (|:| |h| *6) (|:| |c1| (-361 *6)) + (|:| |c2| (-361 *6)) (|:| -3216 *6))) + (-5 *1 (-956 *5 *6)) (-5 *3 (-361 *6))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1262 *6)) - (-4 *6 (-13 (-376) (-149) (-1057 *4))) (-5 *4 (-557)) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1183 *6)) + (-4 *6 (-13 (-318) (-120) (-978 *4))) (-5 *4 (-499)) (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-114)))) - (|:| -3682 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) + (|:| -3404 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) - (-5 *1 (-1034 *6 *3))))) + (-5 *1 (-955 *6 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-376) (-149) (-1057 (-557)))) (-4 *5 (-1262 *4)) - (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-114)))) - (-5 *1 (-1034 *4 *5)) (-5 *3 (-419 *5))))) + (-12 (-4 *4 (-13 (-318) (-120) (-978 (-499)))) (-4 *5 (-1183 *4)) + (-5 *2 (-2 (|:| |ans| (-361 *5)) (|:| |nosol| (-85)))) (-5 *1 (-955 *4 *5)) + (-5 *3 (-361 *5))))) (((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) - (-4 *5 (-13 (-376) (-149) (-1057 (-557)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) + (-4 *5 (-13 (-318) (-120) (-978 (-499)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) (|:| -3494 *6))) - (-5 *1 (-1034 *5 *6)) (-5 *3 (-419 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-361 *6)) (|:| |c| (-361 *6)) (|:| -3216 *6))) + (-5 *1 (-955 *5 *6)) (-5 *3 (-361 *6))))) (((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1196)) + (|partial| -12 (-5 *5 (-1117)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-659 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2349 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1222) (-27) (-433 *8))) - (-4 *8 (-13 (-464) (-149) (-1057 *3) (-656 *3))) (-5 *3 (-557)) - (-5 *2 (-659 *4)) (-5 *1 (-1033 *8 *4))))) + *4 (-599 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2237 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1143) (-27) (-375 *8))) + (-4 *8 (-13 (-406) (-120) (-978 *3) (-596 *3))) (-5 *3 (-499)) + (-5 *2 (-599 *4)) (-5 *1 (-954 *8 *4))))) (((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1196)) + (-12 (-5 *5 (-1117)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-659 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2349 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1222) (-27) (-433 *8))) - (-4 *8 (-13 (-464) (-149) (-1057 *3) (-656 *3))) (-5 *3 (-557)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3537 *4) (|:| |sol?| (-114)))) - (-5 *1 (-1032 *8 *4))))) + *4 (-599 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2237 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1143) (-27) (-375 *8))) + (-4 *8 (-13 (-406) (-120) (-978 *3) (-596 *3))) (-5 *3 (-499)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3259 *4) (|:| |sol?| (-85)))) + (-5 *1 (-953 *8 *4))))) (((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) - (-4 *4 (-401)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-882 *3)) (-5 *2 (-557)))) - ((*1 *1 *1) (-4 *1 (-1021))) ((*1 *1 *2) (-12 (-5 *2 (-557)) (-4 *1 (-1031)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-557))) (-4 *1 (-1031)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-936)))) - ((*1 *1 *1) (-4 *1 (-1031)))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1031)) (-5 *2 (-875))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1190 *1)) (-4 *1 (-1031))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1190 *1)) (-4 *1 (-1031))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-875))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-875))))) -(((*1 *2 *1) (-12 (-4 *3 (-1236)) (-5 *2 (-659 *1)) (-4 *1 (-1029 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-5 *2 (-659 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-5 *2 (-557))))) + (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) + (-4 *4 (-343)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-499)))) + ((*1 *1 *1) (-4 *1 (-942))) ((*1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-952)))) + ((*1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-4 *1 (-952)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-952)) (-5 *2 (-857)))) + ((*1 *1 *1) (-4 *1 (-952)))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-952)) (-5 *2 (-797))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1111 *1)) (-4 *1 (-952))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1111 *1)) (-4 *1 (-952))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-952)) (-5 *2 (-797))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-952)) (-5 *2 (-797))))) +(((*1 *2 *1) (-12 (-4 *3 (-1157)) (-5 *2 (-599 *1)) (-4 *1 (-950 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-5 *2 (-599 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-5 *2 (-499))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-4 *3 (-1120)) (-5 *2 (-114))))) + (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-4 *3 (-1120)) (-5 *2 (-114))))) + (-12 (-4 *1 (-950 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)) (-5 *2 (-85))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-659 *1)) (|has| *1 (-6 -4424)) (-4 *1 (-1029 *3)) - (-4 *3 (-1236))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-1029 *2)) (-4 *2 (-1236))))) + (-12 (-5 *2 (-599 *1)) (|has| *1 (-6 -4146)) (-4 *1 (-950 *3)) + (-4 *3 (-1157))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-950 *2)) (-4 *2 (-1157))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-556)) - (-5 *2 (-419 (-557))))) + (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-498)) + (-5 *2 (-361 (-499))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-419 (-557))) (-5 *1 (-417 *3)) (-4 *3 (-556)) - (-4 *3 (-568)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-556)) (-5 *2 (-419 (-557))))) + (|partial| -12 (-5 *2 (-361 (-499))) (-5 *1 (-359 *3)) (-4 *3 (-498)) + (-4 *3 (-510)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-498)) (-5 *2 (-361 (-499))))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-816 *3)) (-4 *3 (-175)) (-4 *3 (-556)) - (-5 *2 (-419 (-557))))) + (|partial| -12 (-4 *1 (-741 *3)) (-4 *3 (-146)) (-4 *3 (-498)) + (-5 *2 (-361 (-499))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-419 (-557))) (-5 *1 (-843 *3)) (-4 *3 (-556)) - (-4 *3 (-1120)))) + (|partial| -12 (-5 *2 (-361 (-499))) (-5 *1 (-766 *3)) (-4 *3 (-498)) + (-4 *3 (-1041)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-419 (-557))) (-5 *1 (-853 *3)) (-4 *3 (-556)) - (-4 *3 (-1120)))) + (|partial| -12 (-5 *2 (-361 (-499))) (-5 *1 (-775 *3)) (-4 *3 (-498)) + (-4 *3 (-1041)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1017 *3)) (-4 *3 (-175)) (-4 *3 (-556)) - (-5 *2 (-419 (-557))))) + (|partial| -12 (-4 *1 (-938 *3)) (-4 *3 (-146)) (-4 *3 (-498)) + (-5 *2 (-361 (-499))))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-419 (-557))) (-5 *1 (-1027 *3)) (-4 *3 (-1057 *2))))) + (|partial| -12 (-5 *2 (-361 (-499))) (-5 *1 (-948 *3)) (-4 *3 (-978 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-556)) (-5 *2 (-114)))) + (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-417 *3)) (-4 *3 (-556)) (-4 *3 (-568)))) - ((*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-114)))) + (-12 (-5 *2 (-85)) (-5 *1 (-359 *3)) (-4 *3 (-498)) (-4 *3 (-510)))) + ((*1 *2 *1) (-12 (-4 *1 (-498)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-816 *3)) (-4 *3 (-175)) (-4 *3 (-556)) (-5 *2 (-114)))) + (-12 (-4 *1 (-741 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-843 *3)) (-4 *3 (-556)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-85)) (-5 *1 (-766 *3)) (-4 *3 (-498)) (-4 *3 (-1041)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-853 *3)) (-4 *3 (-556)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-85)) (-5 *1 (-775 *3)) (-4 *3 (-498)) (-4 *3 (-1041)))) ((*1 *2 *1) - (-12 (-4 *1 (-1017 *3)) (-4 *3 (-175)) (-4 *3 (-556)) (-5 *2 (-114)))) + (-12 (-4 *1 (-938 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *1 (-1027 *3)) (-4 *3 (-1057 (-419 (-557))))))) + (-12 (-5 *2 (-85)) (-5 *1 (-948 *3)) (-4 *3 (-978 (-361 (-499))))))) (((*1 *2 *1) - (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-556)) (-5 *2 (-419 (-557))))) + (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-361 (-499))))) ((*1 *2 *1) - (-12 (-5 *2 (-419 (-557))) (-5 *1 (-417 *3)) (-4 *3 (-556)) (-4 *3 (-568)))) - ((*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-419 (-557))))) + (-12 (-5 *2 (-361 (-499))) (-5 *1 (-359 *3)) (-4 *3 (-498)) (-4 *3 (-510)))) + ((*1 *2 *1) (-12 (-4 *1 (-498)) (-5 *2 (-361 (-499))))) ((*1 *2 *1) - (-12 (-4 *1 (-816 *3)) (-4 *3 (-175)) (-4 *3 (-556)) (-5 *2 (-419 (-557))))) + (-12 (-4 *1 (-741 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-361 (-499))))) ((*1 *2 *1) - (-12 (-5 *2 (-419 (-557))) (-5 *1 (-843 *3)) (-4 *3 (-556)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-361 (-499))) (-5 *1 (-766 *3)) (-4 *3 (-498)) (-4 *3 (-1041)))) ((*1 *2 *1) - (-12 (-5 *2 (-419 (-557))) (-5 *1 (-853 *3)) (-4 *3 (-556)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-361 (-499))) (-5 *1 (-775 *3)) (-4 *3 (-498)) (-4 *3 (-1041)))) ((*1 *2 *1) - (-12 (-4 *1 (-1017 *3)) (-4 *3 (-175)) (-4 *3 (-556)) (-5 *2 (-419 (-557))))) - ((*1 *2 *3) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-1027 *3)) (-4 *3 (-1057 *2))))) -(((*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-1025))))) -(((*1 *2 *3) (-12 (-5 *3 (-557)) (-5 *2 (-1292)) (-5 *1 (-1025))))) -(((*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-1025)))) - ((*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-1025))))) + (-12 (-4 *1 (-938 *3)) (-4 *3 (-146)) (-4 *3 (-498)) (-5 *2 (-361 (-499))))) + ((*1 *2 *3) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-948 *3)) (-4 *3 (-978 *2))))) +(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-946))))) +(((*1 *2 *3) (-12 (-5 *3 (-499)) (-5 *2 (-1213)) (-5 *1 (-946))))) +(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-946)))) + ((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-946))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-557))) (-5 *4 (-557)) (-5 *2 (-51)) (-5 *1 (-1024))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-1023 *3)) (-14 *3 (-557))))) -(((*1 *2 *1) (-12 (-5 *2 (-1174 (-557))) (-5 *1 (-1023 *3)) (-14 *3 (-557))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-1023 *3)) (-14 *3 (-557))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-1023 *3)) (-14 *3 (-557))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-1023 *3)) (-14 *3 (-557))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-1023 *3)) (-14 *3 (-557))))) + (-12 (-5 *3 (-361 (-499))) (-5 *4 (-499)) (-5 *2 (-51)) (-5 *1 (-945))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499))))) +(((*1 *2 *1) (-12 (-5 *2 (-1095 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-944 *3)) (-14 *3 (-499))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-417 *5)) (-4 *5 (-568)) - (-5 *2 (-2 (|:| -2630 (-789)) (|:| -4382 *5) (|:| |radicand| (-659 *5)))) - (-5 *1 (-332 *5)) (-5 *4 (-789)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-557))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-5 *1 (-1019 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) - ((*1 *1 *1 *1) (-4 *1 (-485))) - ((*1 *1 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)))) - ((*1 *2 *2) (-12 (-5 *2 (-659 (-936))) (-5 *1 (-896)))) - ((*1 *1 *1) (-5 *1 (-990))) - ((*1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)))) - ((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)))) - ((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)))) - ((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-175))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-175))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1236))))) + (-12 (-5 *3 (-359 *5)) (-4 *5 (-510)) + (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *5) (|:| |radicand| (-599 *5)))) + (-5 *1 (-274 *5)) (-5 *4 (-714)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-942)) (-5 *2 (-499))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-940 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) + ((*1 *1 *1 *1) (-4 *1 (-427))) + ((*1 *1 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) + ((*1 *2 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-818)))) + ((*1 *1 *1) (-5 *1 (-911))) + ((*1 *1 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-938 *2)) (-4 *2 (-146))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1157))))) +(((*1 *1 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1157))))) (((*1 *1 *2) - (-12 (-5 *2 (-1161 *3 *4)) (-14 *3 (-936)) (-4 *4 (-376)) - (-5 *1 (-1012 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1144 (-557) (-626 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1082 *3 *4)) (-14 *3 (-857)) (-4 *4 (-318)) + (-5 *1 (-933 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1065 (-499) (-566 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-319)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-1286 *6)) - (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1057 *4))))) + (-12 (-4 *3 (-261)) (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-5 *2 (-1207 *6)) + (-5 *1 (-367 *3 *4 *5 *6)) (-4 *6 (-13 (-364 *4 *5) (-978 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-1068)) (-4 *3 (-1120)) (-5 *2 (-1144 *3 (-626 *1))) - (-4 *1 (-433 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1144 (-557) (-626 (-507)))) (-5 *1 (-507)))) + (-12 (-4 *3 (-989)) (-4 *3 (-1041)) (-5 *2 (-1065 *3 (-566 *1))) + (-4 *1 (-375 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1065 (-499) (-566 (-449)))) (-5 *1 (-449)))) ((*1 *2 *1) - (-12 (-4 *3 (-175)) (-4 *2 (-38 *3)) (-5 *1 (-634 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-744) *3)))) + (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-574 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-684) *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-175)) (-4 *2 (-735 *3)) (-5 *1 (-670 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-744) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568))))) -(((*1 *2 *1) (-12 (-5 *2 (-1144 (-557) (-626 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *3 (-146)) (-4 *2 (-675 *3)) (-5 *1 (-610 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-684) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510))))) +(((*1 *2 *1) (-12 (-5 *2 (-1065 (-499) (-566 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-1010 *2)) (-4 *4 (-1262 *3)) (-4 *2 (-319)) - (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1057 *3))))) + (-12 (-4 *3 (-931 *2)) (-4 *4 (-1183 *3)) (-4 *2 (-261)) + (-5 *1 (-367 *2 *3 *4 *5)) (-4 *5 (-13 (-364 *3 *4) (-978 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1120)) (-5 *2 (-1144 *3 (-626 *1))) - (-4 *1 (-433 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1144 (-557) (-626 (-507)))) (-5 *1 (-507)))) + (-12 (-4 *3 (-510)) (-4 *3 (-1041)) (-5 *2 (-1065 *3 (-566 *1))) + (-4 *1 (-375 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1065 (-499) (-566 (-449)))) (-5 *1 (-449)))) ((*1 *2 *1) - (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-744) *4)) - (-5 *1 (-634 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-684) *4)) + (-5 *1 (-574 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-744) *4)) - (-5 *1 (-670 *3 *4 *2)) (-4 *3 (-735 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568))))) -(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1120)) (-4 *2 (-1068)))) - ((*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568))))) -(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1120)) (-4 *2 (-568)))) - ((*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568))))) + (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-684) *4)) + (-5 *1 (-610 *3 *4 *2)) (-4 *3 (-675 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510))))) +(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1041)) (-4 *2 (-989)))) + ((*1 *1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510))))) +(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1041)) (-4 *2 (-510)))) + ((*1 *1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-510))))) (((*1 *2 *3) - (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) + (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) - ((*1 *1) (-4 *1 (-381))) + (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305)))) + ((*1 *1) (-4 *1 (-323))) ((*1 *2 *3) - (-12 (-5 *3 (-936)) (-5 *2 (-1286 *4)) (-5 *1 (-539 *4)) (-4 *4 (-363)))) - ((*1 *1 *1) (-4 *1 (-556))) ((*1 *1) (-4 *1 (-556))) - ((*1 *1 *1) (-5 *1 (-789))) - ((*1 *2 *1) (-12 (-5 *2 (-919 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1120)))) + (-12 (-5 *3 (-857)) (-5 *2 (-1207 *4)) (-5 *1 (-481 *4)) (-4 *4 (-305)))) + ((*1 *1 *1) (-4 *1 (-498))) ((*1 *1) (-4 *1 (-498))) + ((*1 *1 *1) (-5 *1 (-714))) + ((*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1041)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-557)) (-5 *2 (-919 *4)) (-5 *1 (-922 *4)) (-4 *4 (-1120)))) - ((*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-556)) (-4 *2 (-568))))) + (-12 (-5 *3 (-499)) (-5 *2 (-840 *4)) (-5 *1 (-843 *4)) (-4 *4 (-1041)))) + ((*1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-498)) (-4 *2 (-510))))) (((*1 *2 *2) (-12 (-5 *2 - (-1005 (-419 (-557)) (-876 *3) (-246 *4 (-789)) (-255 *3 (-419 (-557))))) - (-14 *3 (-659 (-1196))) (-14 *4 (-789)) (-5 *1 (-1006 *3 *4))))) + (-926 (-361 (-499)) (-798 *3) (-196 *4 (-714)) (-205 *3 (-361 (-499))))) + (-14 *3 (-599 (-1117))) (-14 *4 (-714)) (-5 *1 (-927 *3 *4))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-659 *3)) (-4 *3 (-967 *4 *6 *5)) (-4 *4 (-464)) (-4 *5 (-859)) - (-4 *6 (-813)) (-5 *1 (-1005 *4 *5 *6 *3))))) + (-12 (-5 *2 (-599 *3)) (-4 *3 (-888 *4 *6 *5)) (-4 *4 (-406)) (-4 *5 (-781)) + (-4 *6 (-738)) (-5 *1 (-926 *4 *5 *6 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-114) "failed")) (-4 *3 (-464)) (-4 *4 (-859)) - (-4 *5 (-813)) (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-967 *3 *5 *4))))) + (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-406)) (-4 *4 (-781)) (-4 *5 (-738)) + (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *4 (-859)) (-4 *5 (-813)) (-5 *2 (-659 *6)) - (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-967 *3 *5 *4))))) + (-12 (-4 *3 (-406)) (-4 *4 (-781)) (-4 *5 (-738)) (-5 *2 (-599 *6)) + (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-967 *3 *5 *4)) (-5 *1 (-1005 *3 *4 *5 *2)) (-4 *3 (-464)) - (-4 *4 (-859)) (-4 *5 (-813))))) + (-12 (-4 *2 (-888 *3 *5 *4)) (-5 *1 (-926 *3 *4 *5 *2)) (-4 *3 (-406)) + (-4 *4 (-781)) (-4 *5 (-738))))) (((*1 *1 *1) - (-12 (-4 *2 (-464)) (-4 *3 (-859)) (-4 *4 (-813)) (-5 *1 (-1005 *2 *3 *4 *5)) - (-4 *5 (-967 *2 *4 *3))))) + (-12 (-4 *2 (-406)) (-4 *3 (-781)) (-4 *4 (-738)) (-5 *1 (-926 *2 *3 *4 *5)) + (-4 *5 (-888 *2 *4 *3))))) (((*1 *2 *3) - (-12 (-4 *3 (-1262 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-1004 *4 *2 *3 *5)) - (-4 *4 (-363)) (-4 *5 (-742 *2 *3))))) + (-12 (-4 *3 (-1183 *2)) (-4 *2 (-1183 *4)) (-5 *1 (-925 *4 *2 *3 *5)) + (-4 *4 (-305)) (-4 *5 (-682 *2 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-813)) (-4 *3 (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $))))) - (-4 *5 (-568)) (-5 *1 (-750 *4 *3 *5 *2)) - (-4 *2 (-967 (-419 (-963 *5)) *4 *3)))) + (-12 (-4 *4 (-738)) (-4 *3 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))) + (-4 *5 (-510)) (-5 *1 (-690 *4 *3 *5 *2)) + (-4 *2 (-888 (-361 (-884 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-1068)) (-4 *5 (-813)) + (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 - (-13 (-859) - (-10 -8 (-15 -4400 ((-1196) $)) - (-15 -4259 ((-3 $ #1="failed") (-1196)))))) - (-5 *1 (-1003 *4 *5 *3 *2)) (-4 *2 (-967 (-963 *4) *5 *3)))) + (-13 (-781) + (-10 -8 (-15 -4122 ((-1117) $)) + (-15 -3981 ((-3 $ #1="failed") (-1117)))))) + (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-888 (-884 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-659 *6)) + (-12 (-5 *3 (-599 *6)) (-4 *6 - (-13 (-859) - (-10 -8 (-15 -4400 ((-1196) $)) (-15 -4259 ((-3 $ #1#) (-1196)))))) - (-4 *4 (-1068)) (-4 *5 (-813)) (-5 *1 (-1003 *4 *5 *6 *2)) - (-4 *2 (-967 (-963 *4) *5 *6))))) + (-13 (-781) + (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ #1#) (-1117)))))) + (-4 *4 (-989)) (-4 *5 (-738)) (-5 *1 (-924 *4 *5 *6 *2)) + (-4 *2 (-888 (-884 *4) *5 *6))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-813)) (-4 *3 (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $))))) - (-4 *5 (-568)) (-5 *1 (-750 *4 *3 *5 *2)) - (-4 *2 (-967 (-419 (-963 *5)) *4 *3)))) + (-12 (-4 *4 (-738)) (-4 *3 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))) + (-4 *5 (-510)) (-5 *1 (-690 *4 *3 *5 *2)) + (-4 *2 (-888 (-361 (-884 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-1068)) (-4 *5 (-813)) + (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 - (-13 (-859) - (-10 -8 (-15 -4400 ((-1196) $)) - (-15 -4259 ((-3 $ #1="failed") (-1196)))))) - (-5 *1 (-1003 *4 *5 *3 *2)) (-4 *2 (-967 (-963 *4) *5 *3)))) + (-13 (-781) + (-10 -8 (-15 -4122 ((-1117) $)) + (-15 -3981 ((-3 $ #1="failed") (-1117)))))) + (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-888 (-884 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-659 *6)) + (-12 (-5 *3 (-599 *6)) (-4 *6 - (-13 (-859) - (-10 -8 (-15 -4400 ((-1196) $)) (-15 -4259 ((-3 $ #1#) (-1196)))))) - (-4 *4 (-1068)) (-4 *5 (-813)) (-5 *1 (-1003 *4 *5 *6 *2)) - (-4 *2 (-967 (-963 *4) *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) + (-13 (-781) + (-10 -8 (-15 -4122 ((-1117) $)) (-15 -3981 ((-3 $ #1#) (-1117)))))) + (-4 *4 (-989)) (-4 *5 (-738)) (-5 *1 (-924 *4 *5 *6 *2)) + (-4 *2 (-888 (-884 *4) *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1143))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-789)) (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-886)))) - ((*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) -(((*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-159)))) - ((*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-886)))) - ((*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) -(((*1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-159)))) - ((*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) -(((*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) -(((*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) -(((*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) -(((*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) -(((*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) -(((*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) - (-5 *2 (-659 (-2 (|:| C (-707 *5)) (|:| |g| (-1286 *5))))) (-5 *1 (-997 *5)) - (-5 *3 (-707 *5)) (-5 *4 (-1286 *5))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-557)) (-5 *3 (-936)) (-5 *1 (-717)))) + (|partial| -12 (-5 *3 (-714)) (-4 *1 (-923 *2)) (-4 *2 (-1143))))) +(((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-808)))) + ((*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989))))) +(((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-130)))) + ((*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-808)))) + ((*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989))))) +(((*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-130)))) + ((*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989))))) +(((*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989))))) +(((*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989))))) +(((*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989))))) +(((*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989))))) +(((*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989))))) +(((*1 *2 *3) (-12 (-5 *3 (-881 *2)) (-5 *1 (-922 *2)) (-4 *2 (-989))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-318)) + (-5 *2 (-599 (-2 (|:| C (-647 *5)) (|:| |g| (-1207 *5))))) (-5 *1 (-918 *5)) + (-5 *3 (-647 *5)) (-5 *4 (-1207 *5))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-857)) (-5 *1 (-657)))) ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-707 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) - (-5 *1 (-997 *5))))) + (-12 (-5 *2 (-647 *5)) (-5 *3 (-70 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-318)) + (-5 *1 (-918 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-659 *2)) (-4 *2 (-967 *4 *5 *6)) (-4 *4 (-376)) (-4 *4 (-464)) - (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-459 *4 *5 *6 *2)))) + (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-318)) (-4 *4 (-406)) + (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-401 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-376)) - (-5 *2 (-2 (|:| R (-707 *6)) (|:| A (-707 *6)) (|:| |Ainv| (-707 *6)))) - (-5 *1 (-997 *6)) (-5 *3 (-707 *6))))) + (-12 (-5 *4 (-70 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-318)) + (-5 *2 (-2 (|:| R (-647 *6)) (|:| A (-647 *6)) (|:| |Ainv| (-647 *6)))) + (-5 *1 (-918 *6)) (-5 *3 (-647 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) - (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6))))) + (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-261)) + (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) - (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6))))) + (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-261)) + (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) - (-4 *3 (-568)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6))))) + (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-261)) + (-4 *3 (-510)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) - (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6))))) + (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-406)) (-4 *3 (-510)) + (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) - (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6))))) + (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-406)) (-4 *3 (-510)) + (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) - (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6))))) + (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-406)) (-4 *3 (-510)) + (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) - (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6)))) + (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-406)) (-4 *3 (-510)) + (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-659 *7)) (-5 *3 (-114)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) - (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-996 *4 *5 *6 *7))))) + (-12 (-5 *2 (-599 *7)) (-5 *3 (-85)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-406)) + (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-917 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) - (-5 *2 (-659 *3)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6))))) + (-12 (-4 *4 (-406)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) + (-5 *2 (-599 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-659 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) - (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-813)) (-4 *7 (-859)) - (-5 *1 (-996 *5 *6 *7 *8))))) + (-12 (-5 *2 (-599 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) + (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) + (-5 *1 (-917 *5 *6 *7 *8))))) (((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-659 *9)) (-5 *3 (-1 (-114) *9)) (-5 *4 (-1 (-114) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-813)) - (-4 *8 (-859)) (-5 *1 (-996 *6 *7 *8 *9))))) + (-12 (-5 *2 (-599 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1005 *6 *7 *8)) (-4 *6 (-510)) (-4 *7 (-738)) + (-4 *8 (-781)) (-5 *1 (-917 *6 *7 *8 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-813)) - (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6))))) + (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) + (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *7 (-1084 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -3742 (-659 *7)))) - (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-659 *7))))) + (|partial| -12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *7 (-1005 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-430 *4 *5 *6 *7)) (|:| -3464 (-599 *7)))) + (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-599 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-813)) - (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6))))) + (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) + (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-659 *2)) (-4 *2 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *1 (-996 *4 *5 *6 *2))))) + (-12 (-5 *3 (-599 *2)) (-4 *2 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *1 (-917 *4 *5 *6 *2))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-813)) - (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6)))) + (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) + (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-659 *7)) (-5 *3 (-114)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-996 *4 *5 *6 *7))))) + (-12 (-5 *2 (-599 *7)) (-5 *3 (-85)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) + (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-917 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-659 *7)) (|:| |badPols| (-659 *7)))) - (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-659 *7))))) + (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-599 *7)) (|:| |badPols| (-599 *7)))) + (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-599 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) - (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6))))) + (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) + (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-659 *7)) (|:| |badPols| (-659 *7)))) - (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-659 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-659 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278)))) - ((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) - (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6))))) + (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-599 *7)) (|:| |badPols| (-599 *7)))) + (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-599 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-659 *7)) (|:| |badPols| (-659 *7)))) - (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-659 *7))))) + (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) + (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) - (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6))))) + (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-599 *7)) (|:| |badPols| (-599 *7)))) + (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-599 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-1084 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-659 *7)) (|:| |badPols| (-659 *7)))) - (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-659 *7))))) + (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) + (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-1005 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-599 *7)) (|:| |badPols| (-599 *7)))) + (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-599 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-1 (-114) *8))) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-813)) (-4 *7 (-859)) - (-5 *2 (-2 (|:| |goodPols| (-659 *8)) (|:| |badPols| (-659 *8)))) - (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-659 *8))))) + (-12 (-5 *3 (-599 (-1 (-85) *8))) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) + (-4 *6 (-738)) (-4 *7 (-781)) + (-5 *2 (-2 (|:| |goodPols| (-599 *8)) (|:| |badPols| (-599 *8)))) + (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-599 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-1 (-114) *8))) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-813)) (-4 *7 (-859)) - (-5 *2 (-2 (|:| |goodPols| (-659 *8)) (|:| |badPols| (-659 *8)))) - (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-659 *8))))) + (-12 (-5 *3 (-599 (-1 (-85) *8))) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) + (-4 *6 (-738)) (-4 *7 (-781)) + (-5 *2 (-2 (|:| |goodPols| (-599 *8)) (|:| |badPols| (-599 *8)))) + (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-599 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-114) *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-813)) (-4 *7 (-859)) - (-5 *2 (-2 (|:| |goodPols| (-659 *8)) (|:| |badPols| (-659 *8)))) - (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-659 *8))))) + (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-1005 *5 *6 *7)) (-4 *5 (-510)) + (-4 *6 (-738)) (-4 *7 (-781)) + (-5 *2 (-2 (|:| |goodPols| (-599 *8)) (|:| |badPols| (-599 *8)))) + (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-599 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-996 *4 *5 *6 *7))))) + (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-917 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-659 (-659 *8))) (-5 *3 (-659 *8)) (-4 *8 (-1084 *5 *6 *7)) - (-4 *5 (-568)) (-4 *6 (-813)) (-4 *7 (-859)) (-5 *2 (-114)) - (-5 *1 (-996 *5 *6 *7 *8))))) + (-12 (-5 *4 (-599 (-599 *8))) (-5 *3 (-599 *8)) (-4 *8 (-1005 *5 *6 *7)) + (-4 *5 (-510)) (-4 *6 (-738)) (-4 *7 (-781)) (-5 *2 (-85)) + (-5 *1 (-917 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-659 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *2 (-114)) (-5 *1 (-996 *4 *5 *6 *7))))) + (-12 (-5 *3 (-599 *7)) (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-85)) (-5 *1 (-917 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-813)) - (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6)))) + (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) + (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-659 *3)) - (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) + (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 *3)) + (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-659 *3)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *1 (-996 *4 *5 *6 *3)))) + (-12 (-5 *2 (-599 *3)) (-4 *3 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *1 (-917 *4 *5 *6 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-813)) - (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6)))) + (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) + (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-659 *7) (-659 *7))) (-5 *2 (-659 *7)) - (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) - (-5 *1 (-996 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1 (-599 *7) (-599 *7))) (-5 *2 (-599 *7)) + (-4 *7 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) + (-5 *1 (-917 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-659 *3)) - (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6))))) + (-12 (-4 *4 (-510)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-599 *3)) + (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-1005 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-659 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-813)) - (-4 *5 (-859)) (-5 *1 (-996 *3 *4 *5 *6))))) + (-12 (-5 *2 (-599 *6)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-4 *4 (-738)) + (-4 *5 (-781)) (-5 *1 (-917 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-659 *5))))) + (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-599 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-995 *4 *5 *3 *6)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *3 (-859)) - (-4 *6 (-1084 *4 *5 *3)) (-5 *2 (-114))))) + (-12 (-4 *1 (-916 *4 *5 *3 *6)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) + (-4 *6 (-1005 *4 *5 *3)) (-5 *2 (-85))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)) - (-4 *5 (-1084 *3 *4 *2))))) + (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) + (-4 *5 (-1005 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)) - (-4 *5 (-1084 *3 *4 *2))))) + (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) + (-4 *5 (-1005 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)) - (-4 *5 (-1084 *3 *4 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1236)) (-4 *2 (-859)))) + (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) + (-4 *5 (-1005 *3 *4 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-1157)) (-4 *2 (-781)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1236)))) - ((*1 *2 *2) (-12 (-5 *2 (-659 (-919 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-327 *3)) (-4 *3 (-1157)))) + ((*1 *2 *2) (-12 (-5 *2 (-599 (-840 *3))) (-5 *1 (-840 *3)) (-4 *3 (-1041)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *3 (-859)) (-4 *6 (-1084 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3530 *1) (|:| |upper| *1))) - (-4 *1 (-995 *4 *5 *3 *6))))) + (-12 (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) (-4 *6 (-1005 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3252 *1) (|:| |upper| *1))) + (-4 *1 (-916 *4 *5 *3 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-114))))) + (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *6 (-1005 *3 *4 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-114))))) + (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-114))))) + (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-114))))) + (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-114))))) + (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568)) + (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *3 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568)) + (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *3 (-1005 *4 *5 *6)) (-4 *4 (-510)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-659 *6)) (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) - (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568))))) + (-12 (-5 *2 (-599 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) + (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-659 *6)) (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) - (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568))))) -(((*1 *2 *1) - (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-659 (-659 (-960 (-229))))))) - ((*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-659 (-659 (-960 (-229)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1108 (-229))))) - ((*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1108 (-229)))))) -(((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1108 (-229))))) - ((*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1108 (-229)))))) -(((*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1108 (-229)))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-812)))) - ((*1 *2 *1) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1120)))) - ((*1 *2 *1) - (-12 (-14 *3 (-659 (-1196))) (-4 *4 (-175)) (-4 *6 (-245 (-4385 *3) (-789))) + (-12 (-5 *2 (-599 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) + (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510))))) +(((*1 *2 *1) + (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *6 (-1005 *3 *4 *5)) (-4 *3 (-510)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-599 (-599 (-881 (-179))))))) + ((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-599 (-599 (-881 (-179)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-1029 (-179))))) + ((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1029 (-179)))))) +(((*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-1029 (-179))))) + ((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1029 (-179)))))) +(((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1029 (-179)))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)))) + ((*1 *2 *1) (-12 (-4 *1 (-339 *3 *2)) (-4 *3 (-989)) (-4 *2 (-1041)))) + ((*1 *2 *1) + (-12 (-14 *3 (-599 (-1117))) (-4 *4 (-146)) (-4 *6 (-195 (-4107 *3) (-714))) (-14 *7 - (-1 (-114) (-2 (|:| -2629 *5) (|:| -2630 *6)) - (-2 (|:| -2629 *5) (|:| -2630 *6)))) - (-5 *2 (-731 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) (-4 *5 (-859)) - (-4 *8 (-967 *4 *6 (-876 *3))))) + (-1 (-85) (-2 (|:| -2518 *5) (|:| -2519 *6)) + (-2 (|:| -2518 *5) (|:| -2519 *6)))) + (-5 *2 (-671 *5 *6 *7)) (-5 *1 (-415 *3 *4 *5 *6 *7 *8)) (-4 *5 (-781)) + (-4 *8 (-888 *4 *6 (-798 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-744)) (-4 *2 (-859)) (-5 *1 (-753 *3 *2)) (-4 *3 (-1068)))) + (-12 (-4 *2 (-684)) (-4 *2 (-781)) (-5 *1 (-693 *3 *2)) (-4 *3 (-989)))) ((*1 *1 *1) - (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-812)) (-4 *4 (-859))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-812)))) + (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-737)) (-4 *4 (-781))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-659 (-936))) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-936)) - (-4 *2 (-376)) (-14 *5 (-1012 *4 *2)))) + (-12 (-5 *3 (-599 (-857))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-857)) + (-4 *2 (-318)) (-14 *5 (-933 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-731 *5 *6 *7)) (-4 *5 (-859)) (-4 *6 (-245 (-4385 *4) (-789))) + (-12 (-5 *3 (-671 *5 *6 *7)) (-4 *5 (-781)) (-4 *6 (-195 (-4107 *4) (-714))) (-14 *7 - (-1 (-114) (-2 (|:| -2629 *5) (|:| -2630 *6)) - (-2 (|:| -2629 *5) (|:| -2630 *6)))) - (-14 *4 (-659 (-1196))) (-4 *2 (-175)) (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) - (-4 *8 (-967 *2 *6 (-876 *4))))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-862)))) + (-1 (-85) (-2 (|:| -2518 *5) (|:| -2519 *6)) + (-2 (|:| -2518 *5) (|:| -2519 *6)))) + (-14 *4 (-599 (-1117))) (-4 *2 (-146)) (-5 *1 (-415 *4 *2 *5 *6 *7 *8)) + (-4 *8 (-888 *2 *6 (-798 *4))))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-73)) (-4 *3 (-784)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-557)) (-4 *2 (-568)) (-5 *1 (-638 *2 *4)) (-4 *4 (-1262 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-789)) (-4 *1 (-726 *2)) (-4 *2 (-1068)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-753 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-744)))) + (-12 (-5 *3 (-499)) (-4 *2 (-510)) (-5 *1 (-578 *2 *4)) (-4 *4 (-1183 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-666 *2)) (-4 *2 (-989)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-693 *2 *3)) (-4 *2 (-989)) (-4 *3 (-684)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 *5)) (-5 *3 (-659 (-789))) (-4 *1 (-758 *4 *5)) - (-4 *4 (-1068)) (-4 *5 (-859)))) + (-12 (-5 *2 (-599 *5)) (-5 *3 (-599 (-714))) (-4 *1 (-698 *4 *5)) + (-4 *4 (-989)) (-4 *5 (-781)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-789)) (-4 *1 (-758 *4 *2)) (-4 *4 (-1068)) (-4 *2 (-859)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-789)) (-4 *1 (-864 *2)) (-4 *2 (-1068)))) + (-12 (-5 *3 (-714)) (-4 *1 (-698 *4 *2)) (-4 *4 (-989)) (-4 *2 (-781)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-786 *2)) (-4 *2 (-989)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 *6)) (-5 *3 (-659 (-789))) (-4 *1 (-967 *4 *5 *6)) - (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *6 (-859)))) + (-12 (-5 *2 (-599 *6)) (-5 *3 (-599 (-714))) (-4 *1 (-888 *4 *5 *6)) + (-4 *4 (-989)) (-4 *5 (-738)) (-4 *6 (-781)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-789)) (-4 *1 (-967 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-813)) - (-4 *2 (-859)))) + (-12 (-5 *3 (-714)) (-4 *1 (-888 *4 *5 *2)) (-4 *4 (-989)) (-4 *5 (-738)) + (-4 *2 (-781)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 *6)) (-5 *3 (-659 *5)) (-4 *1 (-992 *4 *5 *6)) - (-4 *4 (-1068)) (-4 *5 (-812)) (-4 *6 (-859)))) + (-12 (-5 *2 (-599 *6)) (-5 *3 (-599 *5)) (-4 *1 (-913 *4 *5 *6)) + (-4 *4 (-989)) (-4 *5 (-737)) (-4 *6 (-781)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-992 *4 *3 *2)) (-4 *4 (-1068)) (-4 *3 (-812)) (-4 *2 (-859))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-606 *3)) (-4 *3 (-1068)))) - ((*1 *2 *1) - (-12 (-4 *1 (-992 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-812)) (-4 *5 (-859)) - (-5 *2 (-114))))) -(((*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) - ((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193)))) - ((*1 *1 *1) (-12 (-4 *1 (-692 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1) (-4 *1 (-882 *2))) + (-12 (-4 *1 (-913 *4 *3 *2)) (-4 *4 (-989)) (-4 *3 (-737)) (-4 *2 (-781))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-546 *3)) (-4 *3 (-989)))) + ((*1 *2 *1) + (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-737)) (-4 *5 (-781)) + (-5 *2 (-85))))) +(((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-261)))) + ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164)))) + ((*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1157)))) + ((*1 *1 *1) (-4 *1 (-804 *2))) ((*1 *1 *1) - (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-812)) (-4 *4 (-859))))) -(((*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-556)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-936))) (-5 *1 (-990))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-659 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) - (-5 *2 (-659 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 (-936))) (-5 *1 (-990))))) -(((*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1174 (-990))) (-5 *1 (-990))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-885 (-936) (-936)))) (-5 *1 (-990))))) -(((*1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-990))))) + (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-737)) (-4 *4 (-781))))) +(((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-911))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)) (-5 *2 (-599 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4145)) (-4 *1 (-443 *3)) (-4 *3 (-1157)) + (-5 *2 (-599 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 (-857))) (-5 *1 (-911))))) +(((*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1095 (-911))) (-5 *1 (-911))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-807 (-857) (-857)))) (-5 *1 (-911))))) +(((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-911))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4184 *4))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3906 *4))) + (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4184 *4))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) -(((*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1262 *2))))) + (-12 (-4 *4 (-510)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3906 *4))) + (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) +(((*1 *2 *3 *3) (-12 (-4 *2 (-510)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1183 *2))))) (((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1262 *3))))) + (-12 (-4 *3 (-510)) (-5 *1 (-909 *3 *2)) (-4 *2 (-1183 *3))))) (((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-789)) (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1262 *3))))) + (-12 (-5 *4 (-714)) (-4 *3 (-510)) (-5 *1 (-909 *3 *2)) (-4 *2 (-1183 *3))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-789)) (-4 *2 (-568)) (-5 *1 (-988 *2 *4)) (-4 *4 (-1262 *2))))) + (-12 (-5 *3 (-714)) (-4 *2 (-510)) (-5 *1 (-909 *2 *4)) (-4 *4 (-1183 *2))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2182 *1) (|:| -3301 *1))) (-4 *1 (-319)))) + (-12 (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) (-4 *1 (-261)))) ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1120)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) - (-4 *1 (-399 *3)))) + (|partial| -12 (-4 *3 (-1041)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) + (-4 *1 (-341 *3)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2182 (-789)) (|:| -3301 (-789)))) (-5 *1 (-789)))) + (-12 (-5 *2 (-2 (|:| -2075 (-714)) (|:| -3023 (-714)))) (-5 *1 (-714)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2182 *3) (|:| -3301 *3))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) + (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -3275 *4))) (-5 *1 (-988 *4 *3)) - (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-406)) (-4 *4 (-510)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -2997 *4))) (-5 *1 (-909 *4 *3)) + (-4 *3 (-1183 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3275 *4))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-406)) (-4 *4 (-510)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2997 *4))) + (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1262 *2))))) + (-12 (-4 *2 (-510)) (-4 *2 (-406)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1183 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-659 (-789))) (-5 *1 (-988 *4 *3)) - (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-510)) (-5 *2 (-599 (-714))) (-5 *1 (-909 *4 *3)) + (-4 *3 (-1183 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-659 *3)) (-5 *1 (-988 *4 *3)) - (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-510)) (-5 *2 (-599 *3)) (-5 *1 (-909 *4 *3)) + (-4 *3 (-1183 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4185 *4))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3907 *4))) + (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4185 *4))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-510)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3907 *4))) + (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3560 *3))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3282 *3))) + (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3560 *3))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3282 *3))) + (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3560 *3))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-510)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3282 *3))) + (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) + (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) + (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-789)) (-4 *5 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *5 *3)) - (-4 *3 (-1262 *5))))) + (-12 (-5 *4 (-714)) (-4 *5 (-510)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-909 *5 *3)) + (-4 *3 (-1183 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-789)) (-4 *5 (-568)) + (-12 (-5 *4 (-714)) (-4 *5 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-988 *5 *3)) (-4 *3 (-1262 *5))))) + (-5 *1 (-909 *5 *3)) (-4 *3 (-1183 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-789)) (-4 *4 (-568)) (-5 *1 (-988 *4 *2)) (-4 *2 (-1262 *4))))) + (-12 (-5 *3 (-714)) (-4 *4 (-510)) (-5 *1 (-909 *4 *2)) (-4 *2 (-1183 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-789)) (-4 *5 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *5 *3)) - (-4 *3 (-1262 *5))))) + (-12 (-5 *4 (-714)) (-4 *5 (-510)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-909 *5 *3)) + (-4 *3 (-1183 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-789)) (-4 *5 (-568)) + (-12 (-5 *4 (-714)) (-4 *5 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-988 *5 *3)) (-4 *3 (-1262 *5))))) + (-5 *1 (-909 *5 *3)) (-4 *3 (-1183 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-789)) (-4 *4 (-568)) (-5 *1 (-988 *4 *2)) (-4 *2 (-1262 *4))))) + (-12 (-5 *3 (-714)) (-4 *4 (-510)) (-5 *1 (-909 *4 *2)) (-4 *2 (-1183 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4184 *4))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3906 *4))) + (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4184 *4))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-510)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3906 *4))) + (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4184 *4))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-510)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3906 *4))) + (-5 *1 (-909 *4 *3)) (-4 *3 (-1183 *4))))) (((*1 *1) - (-12 (-4 *1 (-416)) (-2957 (|has| *1 (-6 -4414))) - (-2957 (|has| *1 (-6 -4406))))) - ((*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1120)) (-4 *2 (-859)))) - ((*1 *1) (-4 *1 (-855))) ((*1 *1 *1 *1) (-4 *1 (-862))) - ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-859))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1236)) (-4 *2 (-859)))) + (-12 (-4 *1 (-358)) (-2679 (|has| *1 (-6 -4136))) + (-2679 (|has| *1 (-6 -4128))))) + ((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1041)) (-4 *2 (-781)))) + ((*1 *1) (-4 *1 (-777))) ((*1 *1 *1 *1) (-4 *1 (-784))) + ((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-781))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1157)) (-4 *2 (-781)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-294 *3)) (-4 *3 (-1236)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-859))))) -(((*1 *1) (-4 *1 (-986)))) -(((*1 *1) (-4 *1 (-986)))) -(((*1 *1 *1 *1) (-4 *1 (-986)))) -(((*1 *1 *1 *1) (-4 *1 (-986)))) -(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-14 *3 (-659 (-1196))) (-5 *1 (-218 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-218 *3)) (-14 *3 (-659 (-1196))) (-5 *1 (-653 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-983 *3)) (-4 *3 (-1120)) (-5 *1 (-984 *3))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1120)) (-5 *2 (-901 *3 *4)) (-5 *1 (-898 *3 *4 *5)) - (-4 *3 (-1120)) (-4 *5 (-684 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-983 *4)) (-4 *4 (-1120)) (-5 *2 (-1116 *4)) (-5 *1 (-984 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-709 *3)) (-5 *1 (-983 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-709 (-983 *3))) (-5 *1 (-983 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) - (-12 (-5 *2 (-709 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) - (-4 *3 (-1120))))) -(((*1 *2 *1) - (-12 (-5 *2 (-709 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) - (-4 *3 (-1120))))) -(((*1 *2 *1) - (-12 (-5 *2 (-709 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) - (-4 *3 (-1120))))) -(((*1 *2 *1) - (-12 (-5 *2 (-709 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) - (-4 *3 (-1120))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-709 (-791))) (-5 *1 (-115)))) - ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1178)) (-5 *2 (-791)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1122)) (-5 *1 (-982))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-981 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-981 *3 *2)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-875)))) - ((*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1292)) (-5 *1 (-980))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-659 *3)) (-5 *1 (-979 *3)) (-4 *3 (-556))))) -(((*1 *2 *2) (-12 (-5 *1 (-979 *2)) (-4 *2 (-556))))) -(((*1 *2 *2) (-12 (-5 *1 (-979 *2)) (-4 *2 (-556))))) -(((*1 *1) (-4 *1 (-363))) - ((*1 *2 *3) - (-12 (-5 *3 (-659 *5)) (-4 *5 (-433 *4)) (-4 *4 (-13 (-568) (-149))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-659 (-1190 *5))) - (|:| |prim| (-1190 *5)))) - (-5 *1 (-444 *4 *5)))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-236 *3)) (-4 *3 (-1157)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-781))))) +(((*1 *1) (-4 *1 (-907)))) +(((*1 *1) (-4 *1 (-907)))) +(((*1 *1 *1 *1) (-4 *1 (-907)))) +(((*1 *1 *1 *1) (-4 *1 (-907)))) +(((*1 *1 *2) (-12 (-5 *2 (-593 *3)) (-14 *3 (-599 (-1117))) (-5 *1 (-168 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-599 (-1117))) (-5 *1 (-593 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-904 *3)) (-4 *3 (-1041)) (-5 *1 (-905 *3))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1041)) (-5 *2 (-823 *3 *4)) (-5 *1 (-820 *3 *4 *5)) + (-4 *3 (-1041)) (-4 *5 (-624 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-904 *4)) (-4 *4 (-1041)) (-5 *2 (-1037 *4)) (-5 *1 (-905 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-649 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) + (-12 (-5 *2 (-649 (-807 (-904 *3) (-904 *3)))) (-5 *1 (-904 *3)) + (-4 *3 (-1041))))) +(((*1 *2 *1) + (-12 (-5 *2 (-649 (-807 (-904 *3) (-904 *3)))) (-5 *1 (-904 *3)) + (-4 *3 (-1041))))) +(((*1 *2 *1) + (-12 (-5 *2 (-649 (-807 (-904 *3) (-904 *3)))) (-5 *1 (-904 *3)) + (-4 *3 (-1041))))) +(((*1 *2 *1) + (-12 (-5 *2 (-649 (-807 (-904 *3) (-904 *3)))) (-5 *1 (-904 *3)) + (-4 *3 (-1041))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1041))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1041))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-460)) (-5 *2 (-649 (-716))) (-5 *1 (-86)))) + ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-716)) (-5 *1 (-86)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-1043)) (-5 *1 (-903))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-4 *2 (-1041)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-4 *2 (-1041)) (-5 *1 (-902 *3 *2)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-797)))) + ((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1213)) (-5 *1 (-901))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-599 *3)) (-5 *1 (-900 *3)) (-4 *3 (-498))))) +(((*1 *2 *2) (-12 (-5 *1 (-900 *2)) (-4 *2 (-498))))) +(((*1 *2 *2) (-12 (-5 *1 (-900 *2)) (-4 *2 (-498))))) +(((*1 *1) (-4 *1 (-305))) + ((*1 *2 *3) + (-12 (-5 *3 (-599 *5)) (-4 *5 (-375 *4)) (-4 *4 (-13 (-510) (-120))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-599 (-1111 *5))) + (|:| |prim| (-1111 *5)))) + (-5 *1 (-386 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-568) (-149))) + (-12 (-4 *4 (-13 (-510) (-120))) (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1190 *3)) (|:| |pol2| (-1190 *3)) - (|:| |prim| (-1190 *3)))) - (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-433 *4)))) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1111 *3)) (|:| |pol2| (-1111 *3)) + (|:| |prim| (-1111 *3)))) + (-5 *1 (-386 *4 *3)) (-4 *3 (-27)) (-4 *3 (-375 *4)))) ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-963 *5)) (-5 *4 (-1196)) (-4 *5 (-13 (-376) (-149))) + (-12 (-5 *3 (-884 *5)) (-5 *4 (-1117)) (-4 *5 (-13 (-318) (-120))) (-5 *2 - (-2 (|:| |coef1| (-557)) (|:| |coef2| (-557)) (|:| |prim| (-1190 *5)))) - (-5 *1 (-978 *5)))) + (-2 (|:| |coef1| (-499)) (|:| |coef2| (-499)) (|:| |prim| (-1111 *5)))) + (-5 *1 (-899 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-963 *5))) (-5 *4 (-659 (-1196))) - (-4 *5 (-13 (-376) (-149))) + (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-599 (-1117))) + (-4 *5 (-13 (-318) (-120))) (-5 *2 - (-2 (|:| -4382 (-659 (-557))) (|:| |poly| (-659 (-1190 *5))) - (|:| |prim| (-1190 *5)))) - (-5 *1 (-978 *5)))) + (-2 (|:| -4104 (-599 (-499))) (|:| |poly| (-599 (-1111 *5))) + (|:| |prim| (-1111 *5)))) + (-5 *1 (-899 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-659 (-963 *6))) (-5 *4 (-659 (-1196))) (-5 *5 (-1196)) - (-4 *6 (-13 (-376) (-149))) + (-12 (-5 *3 (-599 (-884 *6))) (-5 *4 (-599 (-1117))) (-5 *5 (-1117)) + (-4 *6 (-13 (-318) (-120))) (-5 *2 - (-2 (|:| -4382 (-659 (-557))) (|:| |poly| (-659 (-1190 *6))) - (|:| |prim| (-1190 *6)))) - (-5 *1 (-978 *6))))) + (-2 (|:| -4104 (-599 (-499))) (|:| |poly| (-599 (-1111 *6))) + (|:| |prim| (-1111 *6)))) + (-5 *1 (-899 *6))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1196)) (-5 *1 (-594 *2)) (-4 *2 (-1057 *3)) (-4 *2 (-376)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-376)))) + (-12 (-5 *3 (-1117)) (-5 *1 (-534 *2)) (-4 *2 (-978 *3)) (-4 *2 (-318)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-318)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-644 *4 *2)) - (-4 *2 (-13 (-433 *4) (-1021) (-1222))))) + (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *1 (-584 *4 *2)) + (-4 *2 (-13 (-375 *4) (-942) (-1143))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1111 *2)) (-4 *2 (-13 (-433 *4) (-1021) (-1222))) - (-4 *4 (-568)) (-5 *1 (-644 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-977)) (-5 *2 (-1196)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-977))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-936)) (-4 *5 (-568)) (-5 *2 (-707 *5)) - (-5 *1 (-974 *5 *3)) (-4 *3 (-676 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-971))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-568)) (-4 *3 (-967 *7 *5 *6)) - (-5 *2 (-2 (|:| -2630 (-789)) (|:| -4382 *3) (|:| |radicand| (-659 *3)))) - (-5 *1 (-970 *5 *6 *7 *3 *8)) (-5 *4 (-789)) + (-12 (-5 *3 (-1032 *2)) (-4 *2 (-13 (-375 *4) (-942) (-1143))) (-4 *4 (-510)) + (-5 *1 (-584 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-898)) (-5 *2 (-1117)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1032 *1)) (-4 *1 (-898))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-857)) (-4 *5 (-510)) (-5 *2 (-647 *5)) + (-5 *1 (-895 *5 *3)) (-4 *3 (-616 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-892))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-510)) (-4 *3 (-888 *7 *5 *6)) + (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *3) (|:| |radicand| (-599 *3)))) + (-5 *1 (-891 *5 *6 *7 *3 *8)) (-5 *4 (-714)) (-4 *8 - (-13 (-376) - (-10 -8 (-15 -4374 ($ *3)) (-15 -3397 (*3 $)) (-15 -3396 (*3 $)))))))) + (-13 (-318) + (-10 -8 (-15 -4096 ($ *3)) (-15 -3119 (*3 $)) (-15 -3118 (*3 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-568)) - (-4 *8 (-967 *7 *5 *6)) - (-5 *2 (-2 (|:| -2630 (-789)) (|:| -4382 *3) (|:| |radicand| *3))) - (-5 *1 (-970 *5 *6 *7 *8 *3)) (-5 *4 (-789)) + (-12 (-4 *7 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-510)) + (-4 *8 (-888 *7 *5 *6)) + (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *3) (|:| |radicand| *3))) + (-5 *1 (-891 *5 *6 *7 *8 *3)) (-5 *4 (-714)) (-4 *3 - (-13 (-376) - (-10 -8 (-15 -4374 ($ *8)) (-15 -3397 (*8 $)) (-15 -3396 (*8 $)))))))) + (-13 (-318) + (-10 -8 (-15 -4096 ($ *8)) (-15 -3119 (*8 $)) (-15 -3118 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-557))) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-568)) - (-4 *8 (-967 *7 *5 *6)) - (-5 *2 (-2 (|:| -2630 (-789)) (|:| -4382 *9) (|:| |radicand| *9))) - (-5 *1 (-970 *5 *6 *7 *8 *9)) (-5 *4 (-789)) + (-12 (-5 *3 (-361 (-499))) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-510)) + (-4 *8 (-888 *7 *5 *6)) + (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *9) (|:| |radicand| *9))) + (-5 *1 (-891 *5 *6 *7 *8 *9)) (-5 *4 (-714)) (-4 *9 - (-13 (-376) - (-10 -8 (-15 -4374 ($ *8)) (-15 -3397 (*8 $)) (-15 -3396 (*8 $)))))))) + (-13 (-318) + (-10 -8 (-15 -4096 ($ *8)) (-15 -3119 (*8 $)) (-15 -3118 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-813)) (-4 *6 (-859)) (-4 *3 (-568)) (-4 *7 (-967 *3 *5 *6)) - (-5 *2 (-2 (|:| -2630 (-789)) (|:| -4382 *8) (|:| |radicand| *8))) - (-5 *1 (-970 *5 *6 *3 *7 *8)) (-5 *4 (-789)) + (-12 (-4 *5 (-738)) (-4 *6 (-781)) (-4 *3 (-510)) (-4 *7 (-888 *3 *5 *6)) + (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *8) (|:| |radicand| *8))) + (-5 *1 (-891 *5 *6 *3 *7 *8)) (-5 *4 (-714)) (-4 *8 - (-13 (-376) - (-10 -8 (-15 -4374 ($ *7)) (-15 -3397 (*7 $)) (-15 -3396 (*7 $)))))))) + (-13 (-318) + (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1068)) (-4 *3 (-1120)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2630 (-557)))) (-4 *1 (-433 *3)))) + (|partial| -12 (-4 *3 (-989)) (-4 *3 (-1041)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2519 (-499)))) (-4 *1 (-375 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -2630 (-903 *3)))) - (-5 *1 (-903 *3)) (-4 *3 (-1120)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-825 *3)) (|:| -2519 (-825 *3)))) + (-5 *1 (-825 *3)) (-4 *3 (-1041)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1068)) - (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2630 (-557)))) - (-5 *1 (-968 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) + (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2519 (-499)))) + (-5 *1 (-889 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-376) - (-10 -8 (-15 -4374 ($ *7)) (-15 -3397 (*7 $)) (-15 -3396 (*7 $)))))))) + (-13 (-318) + (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $)))))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1196)) (-4 *4 (-1068)) (-4 *4 (-1120)) - (-5 *2 (-2 (|:| |var| (-626 *1)) (|:| -2630 (-557)))) (-4 *1 (-433 *4)))) + (|partial| -12 (-5 *3 (-1117)) (-4 *4 (-989)) (-4 *4 (-1041)) + (-5 *2 (-2 (|:| |var| (-566 *1)) (|:| -2519 (-499)))) (-4 *1 (-375 *4)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1068)) (-4 *4 (-1120)) - (-5 *2 (-2 (|:| |var| (-626 *1)) (|:| -2630 (-557)))) (-4 *1 (-433 *4)))) + (|partial| -12 (-5 *3 (-86)) (-4 *4 (-989)) (-4 *4 (-1041)) + (-5 *2 (-2 (|:| |var| (-566 *1)) (|:| -2519 (-499)))) (-4 *1 (-375 *4)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1131)) (-4 *3 (-1120)) - (-5 *2 (-2 (|:| |var| (-626 *1)) (|:| -2630 (-557)))) (-4 *1 (-433 *3)))) + (|partial| -12 (-4 *3 (-1052)) (-4 *3 (-1041)) + (-5 *2 (-2 (|:| |var| (-566 *1)) (|:| -2519 (-499)))) (-4 *1 (-375 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -2630 (-789)))) - (-5 *1 (-903 *3)) (-4 *3 (-1120)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-825 *3)) (|:| -2519 (-714)))) + (-5 *1 (-825 *3)) (-4 *3 (-1041)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-967 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) - (-4 *5 (-859)) (-5 *2 (-2 (|:| |var| *5) (|:| -2630 (-789)))))) + (|partial| -12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) + (-4 *5 (-781)) (-5 *2 (-2 (|:| |var| *5) (|:| -2519 (-714)))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1068)) - (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2630 (-557)))) - (-5 *1 (-968 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) + (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2519 (-499)))) + (-5 *1 (-889 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-376) - (-10 -8 (-15 -4374 ($ *7)) (-15 -3397 (*7 $)) (-15 -3396 (*7 $)))))))) + (-13 (-318) + (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1131)) (-4 *3 (-1120)) (-5 *2 (-659 *1)) - (-4 *1 (-433 *3)))) + (|partial| -12 (-4 *3 (-1052)) (-4 *3 (-1041)) (-5 *2 (-599 *1)) + (-4 *1 (-375 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-659 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) + (|partial| -12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-659 *1)) (-4 *1 (-967 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) + (-4 *1 (-888 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1068)) - (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-659 *3)) (-5 *1 (-968 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) + (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-599 *3)) (-5 *1 (-889 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-376) - (-10 -8 (-15 -4374 ($ *7)) (-15 -3397 (*7 $)) (-15 -3396 (*7 $)))))))) + (-13 (-318) + (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1120)) (-5 *2 (-659 *1)) - (-4 *1 (-433 *3)))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1041)) (-5 *2 (-599 *1)) + (-4 *1 (-375 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-659 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) + (|partial| -12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-659 *1)) (-4 *1 (-967 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) + (-4 *1 (-888 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1068)) - (-4 *7 (-967 *6 *4 *5)) (-5 *2 (-659 *3)) (-5 *1 (-968 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-989)) + (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-599 *3)) (-5 *1 (-889 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-376) - (-10 -8 (-15 -4374 ($ *7)) (-15 -3397 (*7 $)) (-15 -3396 (*7 $)))))))) + (-13 (-318) + (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *3 (-1068)) (-4 *4 (-1120)) (-5 *2 (-659 *1)) (-4 *1 (-397 *3 *4)))) + (-12 (-4 *3 (-989)) (-4 *4 (-1041)) (-5 *2 (-599 *1)) (-4 *1 (-339 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-659 (-753 *3 *4))) (-5 *1 (-753 *3 *4)) (-4 *3 (-1068)) - (-4 *4 (-744)))) + (-12 (-5 *2 (-599 (-693 *3 *4))) (-5 *1 (-693 *3 *4)) (-4 *3 (-989)) + (-4 *4 (-684)))) ((*1 *2 *1) - (-12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-659 *1)) - (-4 *1 (-967 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-812)))) - ((*1 *2 *1) (-12 (-4 *1 (-726 *3)) (-4 *3 (-1068)) (-5 *2 (-789)))) - ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-789)))) + (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) + (-4 *1 (-888 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-280 *3 *2)) (-4 *3 (-989)) (-4 *2 (-737)))) + ((*1 *2 *1) (-12 (-4 *1 (-666 *3)) (-4 *3 (-989)) (-5 *2 (-714)))) + ((*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-989)) (-5 *2 (-714)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-659 *6)) (-4 *1 (-967 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *2 (-659 (-789))))) + (-12 (-5 *3 (-599 *6)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-599 (-714))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-967 *4 *5 *3)) (-4 *4 (-1068)) (-4 *5 (-813)) (-4 *3 (-859)) - (-5 *2 (-789))))) + (-12 (-4 *1 (-888 *4 *5 *3)) (-4 *4 (-989)) (-4 *5 (-738)) (-4 *3 (-781)) + (-5 *2 (-714))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-659 *6)) (-4 *1 (-967 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *2 (-789)))) + (-12 (-5 *3 (-599 *6)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-989)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-714)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-789))))) + (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-714))))) (((*1 *2 *1) - (-12 (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-659 *1)) - (-4 *1 (-967 *3 *4 *5))))) + (-12 (-4 *3 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *1)) + (-4 *1 (-888 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-812)) (-4 *2 (-1068)) (-4 *2 (-464)))) + (-12 (-4 *1 (-280 *2 *3)) (-4 *3 (-737)) (-4 *2 (-989)) (-4 *2 (-406)))) ((*1 *2 *3) - (-12 (-5 *3 (-659 *4)) (-4 *4 (-1262 (-557))) (-5 *2 (-659 (-557))) - (-5 *1 (-498 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-464)))) + (-12 (-5 *3 (-599 *4)) (-4 *4 (-1183 (-499))) (-5 *2 (-599 (-499))) + (-5 *1 (-440 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-406)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-967 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-813)) (-4 *2 (-859)) - (-4 *3 (-464))))) + (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-989)) (-4 *4 (-738)) (-4 *2 (-781)) + (-4 *3 (-406))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-659 *5)) (-5 *4 (-557)) (-4 *5 (-858)) (-4 *5 (-376)) - (-5 *2 (-789)) (-5 *1 (-962 *5 *6)) (-4 *6 (-1262 *5))))) + (-12 (-5 *3 (-599 *5)) (-5 *4 (-499)) (-4 *5 (-780)) (-4 *5 (-318)) + (-5 *2 (-714)) (-5 *1 (-883 *5 *6)) (-4 *6 (-1183 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 *4)) (-4 *4 (-858)) (-4 *4 (-376)) (-5 *2 (-789)) - (-5 *1 (-962 *4 *5)) (-4 *5 (-1262 *4))))) + (-12 (-5 *3 (-599 *4)) (-4 *4 (-780)) (-4 *4 (-318)) (-5 *2 (-714)) + (-5 *1 (-883 *4 *5)) (-4 *5 (-1183 *4))))) (((*1 *2 *3) - (-12 (-4 *2 (-376)) (-4 *2 (-858)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1262 *2))))) + (-12 (-4 *2 (-318)) (-4 *2 (-780)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1183 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-376)) (-5 *2 (-659 *3)) (-5 *1 (-962 *4 *3)) - (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-318)) (-5 *2 (-599 *3)) (-5 *1 (-883 *4 *3)) + (-4 *3 (-1183 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-376)) (-5 *2 (-659 *3)) (-5 *1 (-962 *4 *3)) - (-4 *3 (-1262 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-963 *5)) (-4 *5 (-1068)) (-5 *2 (-255 *4 *5)) - (-5 *1 (-961 *4 *5)) (-14 *4 (-659 (-1196)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-659 (-1196))) (-4 *5 (-1068)) - (-5 *2 (-963 *5)) (-5 *1 (-961 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-659 (-1196))) (-4 *5 (-1068)) - (-5 *2 (-963 *5)) (-5 *1 (-961 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-963 *5)) (-4 *5 (-1068)) (-5 *2 (-493 *4 *5)) - (-5 *1 (-961 *4 *5)) (-14 *4 (-659 (-1196)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-659 (-1196))) (-4 *5 (-1068)) - (-5 *2 (-255 *4 *5)) (-5 *1 (-961 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-659 (-1196))) (-4 *5 (-1068)) - (-5 *2 (-493 *4 *5)) (-5 *1 (-961 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-573)))) - ((*1 *2 *3) (-12 (-5 *2 (-1190 (-419 (-557)))) (-5 *1 (-959)) (-5 *3 (-557))))) -(((*1 *2 *3) (-12 (-5 *2 (-1190 (-557))) (-5 *1 (-959)) (-5 *3 (-557))))) -(((*1 *2 *3) (-12 (-5 *3 (-1190 (-557))) (-5 *2 (-557)) (-5 *1 (-959))))) -(((*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-573)))) - ((*1 *2 *3) (-12 (-5 *2 (-1190 (-419 (-557)))) (-5 *1 (-959)) (-5 *3 (-557))))) -(((*1 *2 *3) (-12 (-5 *2 (-1190 (-557))) (-5 *1 (-194)) (-5 *3 (-557)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-789)) (-5 *1 (-801 *2)) (-4 *2 (-175)))) - ((*1 *2 *3) (-12 (-5 *2 (-1190 (-557))) (-5 *1 (-959)) (-5 *3 (-557))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-789)) (-5 *1 (-868 *2)) (-4 *2 (-175)))) - ((*1 *2 *3) (-12 (-5 *2 (-1190 (-557))) (-5 *1 (-959)) (-5 *3 (-557))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-789)) (-5 *1 (-868 *2)) (-4 *2 (-175)))) - ((*1 *2 *3) (-12 (-5 *2 (-1190 (-557))) (-5 *1 (-959)) (-5 *3 (-557))))) -(((*1 *2 *3) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-573)) (-5 *3 (-557)))) - ((*1 *2 *3) (-12 (-5 *2 (-1190 (-419 (-557)))) (-5 *1 (-959)) (-5 *3 (-557))))) + (-12 (-4 *4 (-318)) (-5 *2 (-599 *3)) (-5 *1 (-883 *4 *3)) + (-4 *3 (-1183 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-884 *5)) (-4 *5 (-989)) (-5 *2 (-205 *4 *5)) + (-5 *1 (-882 *4 *5)) (-14 *4 (-599 (-1117)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-205 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-989)) + (-5 *2 (-884 *5)) (-5 *1 (-882 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-435 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-989)) + (-5 *2 (-884 *5)) (-5 *1 (-882 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-884 *5)) (-4 *5 (-989)) (-5 *2 (-435 *4 *5)) + (-5 *1 (-882 *4 *5)) (-14 *4 (-599 (-1117)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-435 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-989)) + (-5 *2 (-205 *4 *5)) (-5 *1 (-882 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-205 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-989)) + (-5 *2 (-435 *4 *5)) (-5 *1 (-882 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) + ((*1 *2 *3) (-12 (-5 *2 (-1111 (-361 (-499)))) (-5 *1 (-880)) (-5 *3 (-499))))) +(((*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-880)) (-5 *3 (-499))))) +(((*1 *2 *3) (-12 (-5 *3 (-1111 (-499))) (-5 *2 (-499)) (-5 *1 (-880))))) +(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514)))) + ((*1 *2 *3) (-12 (-5 *2 (-1111 (-361 (-499)))) (-5 *1 (-880)) (-5 *3 (-499))))) +(((*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-165)) (-5 *3 (-499)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-726 *2)) (-4 *2 (-146)))) + ((*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-880)) (-5 *3 (-499))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-146)))) + ((*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-880)) (-5 *3 (-499))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-146)))) + ((*1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *1 (-880)) (-5 *3 (-499))))) +(((*1 *2 *3) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-514)) (-5 *3 (-499)))) + ((*1 *2 *3) (-12 (-5 *2 (-1111 (-361 (-499)))) (-5 *1 (-880)) (-5 *3 (-499))))) (((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-659 *8)) (-5 *4 (-659 (-903 *6))) - (-5 *5 (-1 (-901 *6 *8) *8 (-903 *6) (-901 *6 *8))) (-4 *6 (-1120)) - (-4 *8 (-13 (-1068) (-629 (-903 *6)) (-1057 *7))) (-5 *2 (-901 *6 *8)) - (-4 *7 (-1068)) (-5 *1 (-958 *6 *7 *8))))) + (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 (-825 *6))) + (-5 *5 (-1 (-823 *6 *8) *8 (-825 *6) (-823 *6 *8))) (-4 *6 (-1041)) + (-4 *8 (-13 (-989) (-569 (-825 *6)) (-978 *7))) (-5 *2 (-823 *6 *8)) + (-4 *7 (-989)) (-5 *1 (-879 *6 *7 *8))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-901 *5 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1120)) (-4 *3 (-168 *6)) - (-4 (-963 *6) (-899 *5)) (-4 *6 (-13 (-899 *5) (-175))) - (-5 *1 (-181 *5 *6 *3)))) + (-12 (-5 *2 (-823 *5 *3)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-4 *3 (-139 *6)) + (-4 (-884 *6) (-821 *5)) (-4 *6 (-13 (-821 *5) (-146))) + (-5 *1 (-152 *5 *6 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-901 *4 *1)) (-5 *3 (-903 *4)) (-4 *1 (-899 *4)) - (-4 *4 (-1120)))) + (-12 (-5 *2 (-823 *4 *1)) (-5 *3 (-825 *4)) (-4 *1 (-821 *4)) + (-4 *4 (-1041)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-901 *5 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1120)) - (-4 *6 (-13 (-1120) (-1057 *3))) (-4 *3 (-899 *5)) (-5 *1 (-948 *5 *3 *6)))) + (-12 (-5 *2 (-823 *5 *6)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) + (-4 *6 (-13 (-1041) (-978 *3))) (-4 *3 (-821 *5)) (-5 *1 (-869 *5 *3 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-901 *5 *3)) (-4 *5 (-1120)) - (-4 *3 (-13 (-433 *6) (-629 *4) (-899 *5) (-1057 (-626 $)))) - (-5 *4 (-903 *5)) (-4 *6 (-13 (-568) (-899 *5))) (-5 *1 (-949 *5 *6 *3)))) + (-12 (-5 *2 (-823 *5 *3)) (-4 *5 (-1041)) + (-4 *3 (-13 (-375 *6) (-569 *4) (-821 *5) (-978 (-566 $)))) + (-5 *4 (-825 *5)) (-4 *6 (-13 (-510) (-821 *5))) (-5 *1 (-870 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-901 (-557) *3)) (-5 *4 (-903 (-557))) (-4 *3 (-556)) - (-5 *1 (-950 *3)))) + (-12 (-5 *2 (-823 (-499) *3)) (-5 *4 (-825 (-499))) (-4 *3 (-498)) + (-5 *1 (-871 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-901 *5 *6)) (-5 *3 (-626 *6)) (-4 *5 (-1120)) - (-4 *6 (-13 (-1120) (-1057 (-626 $)) (-629 *4) (-899 *5))) (-5 *4 (-903 *5)) - (-5 *1 (-951 *5 *6)))) + (-12 (-5 *2 (-823 *5 *6)) (-5 *3 (-566 *6)) (-4 *5 (-1041)) + (-4 *6 (-13 (-1041) (-978 (-566 $)) (-569 *4) (-821 *5))) (-5 *4 (-825 *5)) + (-5 *1 (-872 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-898 *5 *6 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1120)) - (-4 *6 (-899 *5)) (-4 *3 (-684 *6)) (-5 *1 (-952 *5 *6 *3)))) + (-12 (-5 *2 (-820 *5 *6 *3)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) + (-4 *6 (-821 *5)) (-4 *3 (-624 *6)) (-5 *1 (-873 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-901 *6 *3) *8 (-903 *6) (-901 *6 *3))) (-4 *8 (-859)) - (-5 *2 (-901 *6 *3)) (-5 *4 (-903 *6)) (-4 *6 (-1120)) - (-4 *3 (-13 (-967 *9 *7 *8) (-629 *4))) (-4 *7 (-813)) - (-4 *9 (-13 (-1068) (-899 *6))) (-5 *1 (-953 *6 *7 *8 *9 *3)))) + (-12 (-5 *5 (-1 (-823 *6 *3) *8 (-825 *6) (-823 *6 *3))) (-4 *8 (-781)) + (-5 *2 (-823 *6 *3)) (-5 *4 (-825 *6)) (-4 *6 (-1041)) + (-4 *3 (-13 (-888 *9 *7 *8) (-569 *4))) (-4 *7 (-738)) + (-4 *9 (-13 (-989) (-821 *6))) (-5 *1 (-874 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-901 *5 *3)) (-4 *5 (-1120)) - (-4 *3 (-13 (-967 *8 *6 *7) (-629 *4))) (-5 *4 (-903 *5)) (-4 *7 (-899 *5)) - (-4 *6 (-813)) (-4 *7 (-859)) (-4 *8 (-13 (-1068) (-899 *5))) - (-5 *1 (-953 *5 *6 *7 *8 *3)))) + (-12 (-5 *2 (-823 *5 *3)) (-4 *5 (-1041)) + (-4 *3 (-13 (-888 *8 *6 *7) (-569 *4))) (-5 *4 (-825 *5)) (-4 *7 (-821 *5)) + (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-13 (-989) (-821 *5))) + (-5 *1 (-874 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-901 *5 *3)) (-4 *5 (-1120)) (-4 *3 (-1010 *6)) - (-4 *6 (-13 (-568) (-899 *5) (-629 *4))) (-5 *4 (-903 *5)) - (-5 *1 (-956 *5 *6 *3)))) + (-12 (-5 *2 (-823 *5 *3)) (-4 *5 (-1041)) (-4 *3 (-931 *6)) + (-4 *6 (-13 (-510) (-821 *5) (-569 *4))) (-5 *4 (-825 *5)) + (-5 *1 (-877 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-901 *5 (-1196))) (-5 *3 (-1196)) (-5 *4 (-903 *5)) - (-4 *5 (-1120)) (-5 *1 (-957 *5)))) + (-12 (-5 *2 (-823 *5 (-1117))) (-5 *3 (-1117)) (-5 *4 (-825 *5)) + (-4 *5 (-1041)) (-5 *1 (-878 *5)))) ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-659 (-903 *7))) (-5 *5 (-1 *9 (-659 *9))) - (-5 *6 (-1 (-901 *7 *9) *9 (-903 *7) (-901 *7 *9))) (-4 *7 (-1120)) - (-4 *9 (-13 (-1068) (-629 (-903 *7)) (-1057 *8))) (-5 *2 (-901 *7 *9)) - (-5 *3 (-659 *9)) (-4 *8 (-1068)) (-5 *1 (-958 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-114) *6)) (-4 *6 (-13 (-1120) (-1057 *5))) - (-4 *5 (-899 *4)) (-4 *4 (-1120)) (-5 *2 (-1 (-114) *5)) - (-5 *1 (-948 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-557))) (-5 *1 (-946)))) - ((*1 *2 *2) (-12 (-4 *3 (-1120)) (-5 *1 (-947 *3 *2)) (-4 *2 (-433 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-557))) (-5 *1 (-946)))) - ((*1 *2 *2) (-12 (-4 *3 (-1120)) (-5 *1 (-947 *3 *2)) (-4 *2 (-433 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-518)) (-5 *2 (-326 (-557))) (-5 *1 (-946)))) + (-12 (-5 *4 (-599 (-825 *7))) (-5 *5 (-1 *9 (-599 *9))) + (-5 *6 (-1 (-823 *7 *9) *9 (-825 *7) (-823 *7 *9))) (-4 *7 (-1041)) + (-4 *9 (-13 (-989) (-569 (-825 *7)) (-978 *8))) (-5 *2 (-823 *7 *9)) + (-5 *3 (-599 *9)) (-4 *8 (-989)) (-5 *1 (-879 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1041) (-978 *5))) (-4 *5 (-821 *4)) + (-4 *4 (-1041)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-869 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-268 (-499))) (-5 *1 (-867)))) + ((*1 *2 *2) (-12 (-4 *3 (-1041)) (-5 *1 (-868 *3 *2)) (-4 *2 (-375 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-268 (-499))) (-5 *1 (-867)))) + ((*1 *2 *2) (-12 (-4 *3 (-1041)) (-5 *1 (-868 *3 *2)) (-4 *2 (-375 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-460)) (-5 *1 (-86)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1117)) (-5 *4 (-460)) (-5 *2 (-268 (-499))) (-5 *1 (-867)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-518)) (-4 *4 (-1120)) (-5 *1 (-947 *4 *2)) (-4 *2 (-433 *4))))) + (-12 (-5 *3 (-460)) (-4 *4 (-1041)) (-5 *1 (-868 *4 *2)) (-4 *2 (-375 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 (-659 (-960 (-229))))) (-5 *2 (-659 (-1108 (-229)))) - (-5 *1 (-945))))) + (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *2 (-599 (-1029 (-179)))) + (-5 *1 (-866))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-960 (-229)) (-229))) (-5 *3 (-1108 (-229))) - (-5 *1 (-942)))) + (-12 (-5 *2 (-1 (-881 (-179)) (-179))) (-5 *3 (-1029 (-179))) + (-5 *1 (-863)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-960 (-229)) (-229))) (-5 *3 (-1108 (-229))) - (-5 *1 (-942)))) + (-12 (-5 *2 (-1 (-881 (-179)) (-179))) (-5 *3 (-1029 (-179))) + (-5 *1 (-863)))) ((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-960 (-229)) (-229))) (-5 *3 (-1108 (-229))) - (-5 *1 (-944)))) + (-12 (-5 *2 (-1 (-881 (-179)) (-179))) (-5 *3 (-1029 (-179))) + (-5 *1 (-865)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-960 (-229)) (-229))) (-5 *3 (-1108 (-229))) - (-5 *1 (-944))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1108 (-229))) (-5 *1 (-942)))) + (-12 (-5 *2 (-1 (-881 (-179)) (-179))) (-5 *3 (-1029 (-179))) + (-5 *1 (-865))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-863)))) ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1108 (-229))) (-5 *1 (-942)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1108 (-229))) (-5 *1 (-942)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-659 (-1 (-229) (-229)))) (-5 *3 (-1108 (-229))) - (-5 *1 (-942)))) + (-12 (-5 *2 (-599 (-1 (-179) (-179)))) (-5 *3 (-1029 (-179))) + (-5 *1 (-863)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-659 (-1 (-229) (-229)))) (-5 *3 (-1108 (-229))) - (-5 *1 (-942)))) + (-12 (-5 *2 (-599 (-1 (-179) (-179)))) (-5 *3 (-1029 (-179))) + (-5 *1 (-863)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1108 (-229))) (-5 *1 (-942)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1108 (-229))) (-5 *1 (-942)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1196)) (-5 *5 (-1108 (-229))) (-5 *2 (-942)) (-5 *1 (-943 *3)) - (-4 *3 (-629 (-546))))) + (-12 (-5 *4 (-1117)) (-5 *5 (-1029 (-179))) (-5 *2 (-863)) (-5 *1 (-864 *3)) + (-4 *3 (-569 (-488))))) ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1196)) (-5 *5 (-1108 (-229))) (-5 *2 (-942)) (-5 *1 (-943 *3)) - (-4 *3 (-629 (-546))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1108 (-229))) (-5 *1 (-944)))) + (-12 (-5 *4 (-1117)) (-5 *5 (-1029 (-179))) (-5 *2 (-863)) (-5 *1 (-864 *3)) + (-4 *3 (-569 (-488))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-865)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1108 (-229))) (-5 *1 (-944)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-865)))) ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1108 (-229))) (-5 *1 (-944))))) -(((*1 *2 *1) (-12 (-5 *2 (-1108 (-229))) (-5 *1 (-942)))) - ((*1 *2 *1) (-12 (-5 *2 (-1108 (-229))) (-5 *1 (-944))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-659 (-229)))) (-5 *1 (-944))))) -(((*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-944))))) -(((*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-944))))) -(((*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-944))))) -(((*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-944))))) -(((*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-944))))) -(((*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-944))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-944))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-944))))) -(((*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-944))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-944))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-942)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-865))))) +(((*1 *2 *1) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-863)))) + ((*1 *2 *1) (-12 (-5 *2 (-1029 (-179))) (-5 *1 (-865))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-599 (-179)))) (-5 *1 (-865))))) +(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865))))) +(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865))))) +(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865))))) +(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865))))) +(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865))))) +(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-865))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-865))))) +(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-865))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-865))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-863)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1108 (-229))) (-5 *1 (-942)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1029 (-179))) (-5 *1 (-863)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1196)) (-5 *5 (-1108 (-229))) (-5 *2 (-942)) (-5 *1 (-943 *3)) - (-4 *3 (-629 (-546))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-5 *2 (-942)) (-5 *1 (-943 *3)) (-4 *3 (-629 (-546)))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-942))))) -(((*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-942))))) -(((*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-942))))) -(((*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-942))))) -(((*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-942))))) -(((*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-942))))) -(((*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-942))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-942))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-942))))) -(((*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-942))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-942))))) -(((*1 *2 *3) - (-12 (-5 *3 (-659 *7)) (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) (-5 *2 (-114)) - (-5 *1 (-941 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-659 (-963 *4))) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) (-5 *2 (-114)) - (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-967 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-859) (-629 (-1196)))) - (-4 *5 (-813)) (-5 *1 (-941 *3 *4 *5 *2)) (-4 *2 (-967 *3 *5 *4))))) + (-12 (-5 *4 (-1117)) (-5 *5 (-1029 (-179))) (-5 *2 (-863)) (-5 *1 (-864 *3)) + (-4 *3 (-569 (-488))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1117)) (-5 *2 (-863)) (-5 *1 (-864 *3)) (-4 *3 (-569 (-488)))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-863))))) +(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) + ((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) + ((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863))))) +(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863))))) +(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) + ((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) + ((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863))))) +(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863))))) +(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) + ((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-421)))) + ((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863))))) +(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-863))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-863))))) +(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-863))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-863))))) +(((*1 *2 *3) + (-12 (-5 *3 (-599 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) + (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-85)) + (-5 *1 (-862 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-13 (-261) (-120))) + (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-85)) + (-5 *1 (-862 *4 *5 *6 *7)) (-4 *7 (-888 *4 *6 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-261) (-120))) (-4 *4 (-13 (-781) (-569 (-1117)))) + (-4 *5 (-738)) (-5 *1 (-862 *3 *4 *5 *2)) (-4 *2 (-888 *3 *5 *4))))) (((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-659 (-557))) (|:| |cols| (-659 (-557))))) - (-5 *4 (-707 *12)) (-5 *5 (-659 (-419 (-963 *9)))) (-5 *6 (-659 (-659 *12))) - (-5 *7 (-789)) (-5 *8 (-557)) (-4 *9 (-13 (-319) (-149))) - (-4 *12 (-967 *9 *11 *10)) (-4 *10 (-13 (-859) (-629 (-1196)))) - (-4 *11 (-813)) - (-5 *2 - (-2 (|:| |eqzro| (-659 *12)) (|:| |neqzro| (-659 *12)) - (|:| |wcond| (-659 (-963 *9))) + (-2 (|:| |det| *12) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499))))) + (-5 *4 (-647 *12)) (-5 *5 (-599 (-361 (-884 *9)))) (-5 *6 (-599 (-599 *12))) + (-5 *7 (-714)) (-5 *8 (-499)) (-4 *9 (-13 (-261) (-120))) + (-4 *12 (-888 *9 *11 *10)) (-4 *10 (-13 (-781) (-569 (-1117)))) + (-4 *11 (-738)) + (-5 *2 + (-2 (|:| |eqzro| (-599 *12)) (|:| |neqzro| (-599 *12)) + (|:| |wcond| (-599 (-884 *9))) (|:| |bsoln| - (-2 (|:| |partsol| (-1286 (-419 (-963 *9)))) - (|:| -2220 (-659 (-1286 (-419 (-963 *9))))))))) - (-5 *1 (-941 *9 *10 *11 *12))))) + (-2 (|:| |partsol| (-1207 (-361 (-884 *9)))) + (|:| -2113 (-599 (-1207 (-361 (-884 *9))))))))) + (-5 *1 (-862 *9 *10 *11 *12))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-707 *7)) (-5 *3 (-659 *7)) (-4 *7 (-967 *4 *6 *5)) - (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-859) (-629 (-1196)))) - (-4 *6 (-813)) (-5 *1 (-941 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-707 *8)) (-5 *4 (-789)) (-4 *8 (-967 *5 *7 *6)) - (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-859) (-629 (-1196)))) - (-4 *7 (-813)) - (-5 *2 - (-659 - (-2 (|:| |det| *8) (|:| |rows| (-659 (-557))) - (|:| |cols| (-659 (-557)))))) - (-5 *1 (-941 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-659 (-659 *8))) (-5 *3 (-659 *8)) (-4 *8 (-967 *5 *7 *6)) - (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-859) (-629 (-1196)))) - (-4 *7 (-813)) (-5 *2 (-114)) (-5 *1 (-941 *5 *6 *7 *8))))) + (-12 (-5 *2 (-647 *7)) (-5 *3 (-599 *7)) (-4 *7 (-888 *4 *6 *5)) + (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) + (-4 *6 (-738)) (-5 *1 (-862 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-647 *8)) (-5 *4 (-714)) (-4 *8 (-888 *5 *7 *6)) + (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) + (-4 *7 (-738)) + (-5 *2 + (-599 + (-2 (|:| |det| *8) (|:| |rows| (-599 (-499))) + (|:| |cols| (-599 (-499)))))) + (-5 *1 (-862 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-599 (-599 *8))) (-5 *3 (-599 *8)) (-4 *8 (-888 *5 *7 *6)) + (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) + (-4 *7 (-738)) (-5 *2 (-85)) (-5 *1 (-862 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-859) (-629 (-1196)))) - (-4 *6 (-813)) (-5 *2 (-659 (-659 (-557)))) (-5 *1 (-941 *4 *5 *6 *7)) - (-5 *3 (-557)) (-4 *7 (-967 *4 *6 *5))))) + (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) + (-4 *6 (-738)) (-5 *2 (-599 (-599 (-499)))) (-5 *1 (-862 *4 *5 *6 *7)) + (-5 *3 (-499)) (-4 *7 (-888 *4 *6 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-659 (-659 *6))) (-4 *6 (-967 *3 *5 *4)) - (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-859) (-629 (-1196)))) - (-4 *5 (-813)) (-5 *1 (-941 *3 *4 *5 *6))))) + (-12 (-5 *2 (-599 (-599 *6))) (-4 *6 (-888 *3 *5 *4)) + (-4 *3 (-13 (-261) (-120))) (-4 *4 (-13 (-781) (-569 (-1117)))) + (-4 *5 (-738)) (-5 *1 (-862 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-659 - (-2 (|:| -3509 (-789)) + (-599 + (-2 (|:| -3231 (-714)) (|:| |eqns| - (-659 - (-2 (|:| |det| *7) (|:| |rows| (-659 (-557))) - (|:| |cols| (-659 (-557)))))) - (|:| |fgb| (-659 *7))))) - (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) (-5 *2 (-789)) - (-5 *1 (-941 *4 *5 *6 *7))))) + (-599 + (-2 (|:| |det| *7) (|:| |rows| (-599 (-499))) + (|:| |cols| (-599 (-499)))))) + (|:| |fgb| (-599 *7))))) + (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) + (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-714)) + (-5 *1 (-862 *4 *5 *6 *7))))) (((*1 *2 *3) (-12 (-5 *3 - (-659 - (-2 (|:| -3509 (-789)) + (-599 + (-2 (|:| -3231 (-714)) (|:| |eqns| - (-659 - (-2 (|:| |det| *7) (|:| |rows| (-659 (-557))) - (|:| |cols| (-659 (-557)))))) - (|:| |fgb| (-659 *7))))) - (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) (-5 *2 (-789)) - (-5 *1 (-941 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-859) (-629 (-1196)))) - (-4 *6 (-813)) (-5 *2 (-659 *3)) (-5 *1 (-941 *4 *5 *6 *3)) - (-4 *3 (-967 *4 *6 *5))))) + (-599 + (-2 (|:| |det| *7) (|:| |rows| (-599 (-499))) + (|:| |cols| (-599 (-499)))))) + (|:| |fgb| (-599 *7))))) + (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) + (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 (-714)) + (-5 *1 (-862 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) + (-4 *6 (-738)) (-5 *2 (-599 *3)) (-5 *1 (-862 *4 *5 *6 *3)) + (-4 *3 (-888 *4 *6 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -1781 (-707 (-419 (-963 *4)))) (|:| |vec| (-659 (-419 (-963 *4)))) - (|:| -3509 (-789)) (|:| |rows| (-659 (-557))) (|:| |cols| (-659 (-557))))) - (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-859) (-629 (-1196)))) - (-4 *6 (-813)) - (-5 *2 - (-2 (|:| |partsol| (-1286 (-419 (-963 *4)))) - (|:| -2220 (-659 (-1286 (-419 (-963 *4))))))) - (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-967 *4 *6 *5))))) + (-2 (|:| -1673 (-647 (-361 (-884 *4)))) (|:| |vec| (-599 (-361 (-884 *4)))) + (|:| -3231 (-714)) (|:| |rows| (-599 (-499))) (|:| |cols| (-599 (-499))))) + (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) + (-4 *6 (-738)) + (-5 *2 + (-2 (|:| |partsol| (-1207 (-361 (-884 *4)))) + (|:| -2113 (-599 (-1207 (-361 (-884 *4))))))) + (-5 *1 (-862 *4 *5 *6 *7)) (-4 *7 (-888 *4 *6 *5))))) (((*1 *2 *2 *3) (-12 (-5 *2 - (-2 (|:| |partsol| (-1286 (-419 (-963 *4)))) - (|:| -2220 (-659 (-1286 (-419 (-963 *4))))))) - (-5 *3 (-659 *7)) (-4 *4 (-13 (-319) (-149))) (-4 *7 (-967 *4 *6 *5)) - (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) - (-5 *1 (-941 *4 *5 *6 *7))))) + (-2 (|:| |partsol| (-1207 (-361 (-884 *4)))) + (|:| -2113 (-599 (-1207 (-361 (-884 *4))))))) + (-5 *3 (-599 *7)) (-4 *4 (-13 (-261) (-120))) (-4 *7 (-888 *4 *6 *5)) + (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) + (-5 *1 (-862 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-707 *8)) (-4 *8 (-967 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) - (-4 *6 (-13 (-859) (-629 (-1196)))) (-4 *7 (-813)) + (-12 (-5 *3 (-647 *8)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-261) (-120))) + (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) (-5 *2 - (-659 - (-2 (|:| -3509 (-789)) + (-599 + (-2 (|:| -3231 (-714)) (|:| |eqns| - (-659 - (-2 (|:| |det| *8) (|:| |rows| (-659 (-557))) - (|:| |cols| (-659 (-557)))))) - (|:| |fgb| (-659 *8))))) - (-5 *1 (-941 *5 *6 *7 *8)) (-5 *4 (-789))))) + (-599 + (-2 (|:| |det| *8) (|:| |rows| (-599 (-499))) + (|:| |cols| (-599 (-499)))))) + (|:| |fgb| (-599 *8))))) + (-5 *1 (-862 *5 *6 *7 *8)) (-5 *4 (-714))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-859) (-629 (-1196)))) - (-4 *6 (-813)) (-4 *7 (-967 *4 *6 *5)) - (-5 *2 (-2 (|:| |sysok| (-114)) (|:| |z0| (-659 *7)) (|:| |n0| (-659 *7)))) - (-5 *1 (-941 *4 *5 *6 *7)) (-5 *3 (-659 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-963 *4)) (-4 *4 (-13 (-319) (-149))) (-4 *2 (-967 *4 *6 *5)) - (-5 *1 (-941 *4 *5 *6 *2)) (-4 *5 (-13 (-859) (-629 (-1196)))) - (-4 *6 (-813))))) -(((*1 *2 *3) - (-12 (-5 *3 (-659 (-1196))) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) - (-5 *2 (-659 (-419 (-963 *4)))) (-5 *1 (-941 *4 *5 *6 *7)) - (-4 *7 (-967 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-859) (-629 (-1196)))) - (-4 *6 (-813)) (-5 *2 (-419 (-963 *4))) (-5 *1 (-941 *4 *5 *6 *3)) - (-4 *3 (-967 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-707 *7)) (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) - (-5 *2 (-707 (-419 (-963 *4)))) (-5 *1 (-941 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-659 *7)) (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) - (-5 *2 (-659 (-419 (-963 *4)))) (-5 *1 (-941 *4 *5 *6 *7))))) + (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) + (-4 *6 (-738)) (-4 *7 (-888 *4 *6 *5)) + (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-599 *7)) (|:| |n0| (-599 *7)))) + (-5 *1 (-862 *4 *5 *6 *7)) (-5 *3 (-599 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-884 *4)) (-4 *4 (-13 (-261) (-120))) (-4 *2 (-888 *4 *6 *5)) + (-5 *1 (-862 *4 *5 *6 *2)) (-4 *5 (-13 (-781) (-569 (-1117)))) + (-4 *6 (-738))))) +(((*1 *2 *3) + (-12 (-5 *3 (-599 (-1117))) (-4 *4 (-13 (-261) (-120))) + (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) + (-5 *2 (-599 (-361 (-884 *4)))) (-5 *1 (-862 *4 *5 *6 *7)) + (-4 *7 (-888 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-13 (-781) (-569 (-1117)))) + (-4 *6 (-738)) (-5 *2 (-361 (-884 *4))) (-5 *1 (-862 *4 *5 *6 *3)) + (-4 *3 (-888 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-647 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) + (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) + (-5 *2 (-647 (-361 (-884 *4)))) (-5 *1 (-862 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-599 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) + (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) + (-5 *2 (-599 (-361 (-884 *4)))) (-5 *1 (-862 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-707 *11)) (-5 *4 (-659 (-419 (-963 *8)))) (-5 *5 (-789)) - (-5 *6 (-1178)) (-4 *8 (-13 (-319) (-149))) (-4 *11 (-967 *8 *10 *9)) - (-4 *9 (-13 (-859) (-629 (-1196)))) (-4 *10 (-813)) + (-12 (-5 *3 (-647 *11)) (-5 *4 (-599 (-361 (-884 *8)))) (-5 *5 (-714)) + (-5 *6 (-1099)) (-4 *8 (-13 (-261) (-120))) (-4 *11 (-888 *8 *10 *9)) + (-4 *9 (-13 (-781) (-569 (-1117)))) (-4 *10 (-738)) (-5 *2 (-2 (|:| |rgl| - (-659 - (-2 (|:| |eqzro| (-659 *11)) (|:| |neqzro| (-659 *11)) - (|:| |wcond| (-659 (-963 *8))) + (-599 + (-2 (|:| |eqzro| (-599 *11)) (|:| |neqzro| (-599 *11)) + (|:| |wcond| (-599 (-884 *8))) (|:| |bsoln| - (-2 (|:| |partsol| (-1286 (-419 (-963 *8)))) - (|:| -2220 (-659 (-1286 (-419 (-963 *8)))))))))) - (|:| |rgsz| (-557)))) - (-5 *1 (-941 *8 *9 *10 *11)) (-5 *7 (-557))))) + (-2 (|:| |partsol| (-1207 (-361 (-884 *8)))) + (|:| -2113 (-599 (-1207 (-361 (-884 *8)))))))))) + (|:| |rgsz| (-499)))) + (-5 *1 (-862 *8 *9 *10 *11)) (-5 *7 (-499))))) (((*1 *2 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) + (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-261) (-120))) + (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 - (-659 - (-2 (|:| |eqzro| (-659 *7)) (|:| |neqzro| (-659 *7)) - (|:| |wcond| (-659 (-963 *4))) + (-599 + (-2 (|:| |eqzro| (-599 *7)) (|:| |neqzro| (-599 *7)) + (|:| |wcond| (-599 (-884 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1286 (-419 (-963 *4)))) - (|:| -2220 (-659 (-1286 (-419 (-963 *4)))))))))) - (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-967 *4 *6 *5))))) + (-2 (|:| |partsol| (-1207 (-361 (-884 *4)))) + (|:| -2113 (-599 (-1207 (-361 (-884 *4)))))))))) + (-5 *1 (-862 *4 *5 *6 *7)) (-4 *7 (-888 *4 *6 *5))))) (((*1 *2 *3 *4) (-12 (-5 *3 - (-659 - (-2 (|:| |eqzro| (-659 *8)) (|:| |neqzro| (-659 *8)) - (|:| |wcond| (-659 (-963 *5))) + (-599 + (-2 (|:| |eqzro| (-599 *8)) (|:| |neqzro| (-599 *8)) + (|:| |wcond| (-599 (-884 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1286 (-419 (-963 *5)))) - (|:| -2220 (-659 (-1286 (-419 (-963 *5)))))))))) - (-5 *4 (-1178)) (-4 *5 (-13 (-319) (-149))) (-4 *8 (-967 *5 *7 *6)) - (-4 *6 (-13 (-859) (-629 (-1196)))) (-4 *7 (-813)) (-5 *2 (-557)) - (-5 *1 (-941 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-707 *8)) (-4 *8 (-967 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) - (-4 *6 (-13 (-859) (-629 (-1196)))) (-4 *7 (-813)) - (-5 *2 - (-659 - (-2 (|:| |eqzro| (-659 *8)) (|:| |neqzro| (-659 *8)) - (|:| |wcond| (-659 (-963 *5))) + (-2 (|:| |partsol| (-1207 (-361 (-884 *5)))) + (|:| -2113 (-599 (-1207 (-361 (-884 *5)))))))))) + (-5 *4 (-1099)) (-4 *5 (-13 (-261) (-120))) (-4 *8 (-888 *5 *7 *6)) + (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) (-5 *2 (-499)) + (-5 *1 (-862 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-647 *8)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-261) (-120))) + (-4 *6 (-13 (-781) (-569 (-1117)))) (-4 *7 (-738)) + (-5 *2 + (-599 + (-2 (|:| |eqzro| (-599 *8)) (|:| |neqzro| (-599 *8)) + (|:| |wcond| (-599 (-884 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1286 (-419 (-963 *5)))) - (|:| -2220 (-659 (-1286 (-419 (-963 *5)))))))))) - (-5 *1 (-941 *5 *6 *7 *8)) (-5 *4 (-659 *8)))) + (-2 (|:| |partsol| (-1207 (-361 (-884 *5)))) + (|:| -2113 (-599 (-1207 (-361 (-884 *5)))))))))) + (-5 *1 (-862 *5 *6 *7 *8)) (-5 *4 (-599 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-707 *8)) (-5 *4 (-659 (-1196))) (-4 *8 (-967 *5 *7 *6)) - (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-859) (-629 (-1196)))) - (-4 *7 (-813)) + (-12 (-5 *3 (-647 *8)) (-5 *4 (-599 (-1117))) (-4 *8 (-888 *5 *7 *6)) + (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) + (-4 *7 (-738)) (-5 *2 - (-659 - (-2 (|:| |eqzro| (-659 *8)) (|:| |neqzro| (-659 *8)) - (|:| |wcond| (-659 (-963 *5))) + (-599 + (-2 (|:| |eqzro| (-599 *8)) (|:| |neqzro| (-599 *8)) + (|:| |wcond| (-599 (-884 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1286 (-419 (-963 *5)))) - (|:| -2220 (-659 (-1286 (-419 (-963 *5)))))))))) - (-5 *1 (-941 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1207 (-361 (-884 *5)))) + (|:| -2113 (-599 (-1207 (-361 (-884 *5)))))))))) + (-5 *1 (-862 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-707 *7)) (-4 *7 (-967 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-859) (-629 (-1196)))) (-4 *6 (-813)) + (-12 (-5 *3 (-647 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-261) (-120))) + (-4 *5 (-13 (-781) (-569 (-1117)))) (-4 *6 (-738)) (-5 *2 - (-659 - (-2 (|:| |eqzro| (-659 *7)) (|:| |neqzro| (-659 *7)) - (|:| |wcond| (-659 (-963 *4))) + (-599 + (-2 (|:| |eqzro| (-599 *7)) (|:| |neqzro| (-599 *7)) + (|:| |wcond| (-599 (-884 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1286 (-419 (-963 *4)))) - (|:| -2220 (-659 (-1286 (-419 (-963 *4)))))))))) - (-5 *1 (-941 *4 *5 *6 *7)))) + (-2 (|:| |partsol| (-1207 (-361 (-884 *4)))) + (|:| -2113 (-599 (-1207 (-361 (-884 *4)))))))))) + (-5 *1 (-862 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-707 *9)) (-5 *5 (-936)) (-4 *9 (-967 *6 *8 *7)) - (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-859) (-629 (-1196)))) - (-4 *8 (-813)) + (-12 (-5 *3 (-647 *9)) (-5 *5 (-857)) (-4 *9 (-888 *6 *8 *7)) + (-4 *6 (-13 (-261) (-120))) (-4 *7 (-13 (-781) (-569 (-1117)))) + (-4 *8 (-738)) (-5 *2 - (-659 - (-2 (|:| |eqzro| (-659 *9)) (|:| |neqzro| (-659 *9)) - (|:| |wcond| (-659 (-963 *6))) + (-599 + (-2 (|:| |eqzro| (-599 *9)) (|:| |neqzro| (-599 *9)) + (|:| |wcond| (-599 (-884 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1286 (-419 (-963 *6)))) - (|:| -2220 (-659 (-1286 (-419 (-963 *6)))))))))) - (-5 *1 (-941 *6 *7 *8 *9)) (-5 *4 (-659 *9)))) + (-2 (|:| |partsol| (-1207 (-361 (-884 *6)))) + (|:| -2113 (-599 (-1207 (-361 (-884 *6)))))))))) + (-5 *1 (-862 *6 *7 *8 *9)) (-5 *4 (-599 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-707 *9)) (-5 *4 (-659 (-1196))) (-5 *5 (-936)) - (-4 *9 (-967 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) - (-4 *7 (-13 (-859) (-629 (-1196)))) (-4 *8 (-813)) + (-12 (-5 *3 (-647 *9)) (-5 *4 (-599 (-1117))) (-5 *5 (-857)) + (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-261) (-120))) + (-4 *7 (-13 (-781) (-569 (-1117)))) (-4 *8 (-738)) (-5 *2 - (-659 - (-2 (|:| |eqzro| (-659 *9)) (|:| |neqzro| (-659 *9)) - (|:| |wcond| (-659 (-963 *6))) + (-599 + (-2 (|:| |eqzro| (-599 *9)) (|:| |neqzro| (-599 *9)) + (|:| |wcond| (-599 (-884 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1286 (-419 (-963 *6)))) - (|:| -2220 (-659 (-1286 (-419 (-963 *6)))))))))) - (-5 *1 (-941 *6 *7 *8 *9)))) + (-2 (|:| |partsol| (-1207 (-361 (-884 *6)))) + (|:| -2113 (-599 (-1207 (-361 (-884 *6)))))))))) + (-5 *1 (-862 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-707 *8)) (-5 *4 (-936)) (-4 *8 (-967 *5 *7 *6)) - (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-859) (-629 (-1196)))) - (-4 *7 (-813)) + (-12 (-5 *3 (-647 *8)) (-5 *4 (-857)) (-4 *8 (-888 *5 *7 *6)) + (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) + (-4 *7 (-738)) (-5 *2 - (-659 - (-2 (|:| |eqzro| (-659 *8)) (|:| |neqzro| (-659 *8)) - (|:| |wcond| (-659 (-963 *5))) + (-599 + (-2 (|:| |eqzro| (-599 *8)) (|:| |neqzro| (-599 *8)) + (|:| |wcond| (-599 (-884 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1286 (-419 (-963 *5)))) - (|:| -2220 (-659 (-1286 (-419 (-963 *5)))))))))) - (-5 *1 (-941 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1207 (-361 (-884 *5)))) + (|:| -2113 (-599 (-1207 (-361 (-884 *5)))))))))) + (-5 *1 (-862 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-707 *9)) (-5 *4 (-659 *9)) (-5 *5 (-1178)) - (-4 *9 (-967 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) - (-4 *7 (-13 (-859) (-629 (-1196)))) (-4 *8 (-813)) (-5 *2 (-557)) - (-5 *1 (-941 *6 *7 *8 *9)))) + (-12 (-5 *3 (-647 *9)) (-5 *4 (-599 *9)) (-5 *5 (-1099)) + (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-261) (-120))) + (-4 *7 (-13 (-781) (-569 (-1117)))) (-4 *8 (-738)) (-5 *2 (-499)) + (-5 *1 (-862 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-707 *9)) (-5 *4 (-659 (-1196))) (-5 *5 (-1178)) - (-4 *9 (-967 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) - (-4 *7 (-13 (-859) (-629 (-1196)))) (-4 *8 (-813)) (-5 *2 (-557)) - (-5 *1 (-941 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-707 *8)) (-5 *4 (-1178)) (-4 *8 (-967 *5 *7 *6)) - (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-859) (-629 (-1196)))) - (-4 *7 (-813)) (-5 *2 (-557)) (-5 *1 (-941 *5 *6 *7 *8)))) + (-12 (-5 *3 (-647 *9)) (-5 *4 (-599 (-1117))) (-5 *5 (-1099)) + (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-261) (-120))) + (-4 *7 (-13 (-781) (-569 (-1117)))) (-4 *8 (-738)) (-5 *2 (-499)) + (-5 *1 (-862 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-647 *8)) (-5 *4 (-1099)) (-4 *8 (-888 *5 *7 *6)) + (-4 *5 (-13 (-261) (-120))) (-4 *6 (-13 (-781) (-569 (-1117)))) + (-4 *7 (-738)) (-5 *2 (-499)) (-5 *1 (-862 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-707 *10)) (-5 *4 (-659 *10)) (-5 *5 (-936)) (-5 *6 (-1178)) - (-4 *10 (-967 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) - (-4 *8 (-13 (-859) (-629 (-1196)))) (-4 *9 (-813)) (-5 *2 (-557)) - (-5 *1 (-941 *7 *8 *9 *10)))) + (-12 (-5 *3 (-647 *10)) (-5 *4 (-599 *10)) (-5 *5 (-857)) (-5 *6 (-1099)) + (-4 *10 (-888 *7 *9 *8)) (-4 *7 (-13 (-261) (-120))) + (-4 *8 (-13 (-781) (-569 (-1117)))) (-4 *9 (-738)) (-5 *2 (-499)) + (-5 *1 (-862 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-707 *10)) (-5 *4 (-659 (-1196))) (-5 *5 (-936)) (-5 *6 (-1178)) - (-4 *10 (-967 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) - (-4 *8 (-13 (-859) (-629 (-1196)))) (-4 *9 (-813)) (-5 *2 (-557)) - (-5 *1 (-941 *7 *8 *9 *10)))) + (-12 (-5 *3 (-647 *10)) (-5 *4 (-599 (-1117))) (-5 *5 (-857)) (-5 *6 (-1099)) + (-4 *10 (-888 *7 *9 *8)) (-4 *7 (-13 (-261) (-120))) + (-4 *8 (-13 (-781) (-569 (-1117)))) (-4 *9 (-738)) (-5 *2 (-499)) + (-5 *1 (-862 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-707 *9)) (-5 *4 (-936)) (-5 *5 (-1178)) (-4 *9 (-967 *6 *8 *7)) - (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-859) (-629 (-1196)))) - (-4 *8 (-813)) (-5 *2 (-557)) (-5 *1 (-941 *6 *7 *8 *9))))) + (-12 (-5 *3 (-647 *9)) (-5 *4 (-857)) (-5 *5 (-1099)) (-4 *9 (-888 *6 *8 *7)) + (-4 *6 (-13 (-261) (-120))) (-4 *7 (-13 (-781) (-569 (-1117)))) + (-4 *8 (-738)) (-5 *2 (-499)) (-5 *1 (-862 *6 *7 *8 *9))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-659 *4)) (-4 *4 (-376)) (-4 *2 (-1262 *4)) - (-5 *1 (-940 *4 *2))))) + (-12 (-5 *3 (-599 *4)) (-4 *4 (-318)) (-4 *2 (-1183 *4)) + (-5 *1 (-861 *4 *2))))) (((*1 *2 *3) - (-12 (-4 *1 (-938)) (-5 *2 (-2 (|:| -4382 (-659 *1)) (|:| -2638 *1))) - (-5 *3 (-659 *1))))) + (-12 (-4 *1 (-859)) (-5 *2 (-2 (|:| -4104 (-599 *1)) (|:| -2527 *1))) + (-5 *3 (-599 *1))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-938)) (-5 *2 (-709 (-659 *1))) (-5 *3 (-659 *1))))) + (-12 (-4 *1 (-859)) (-5 *2 (-649 (-599 *1))) (-5 *3 (-599 *1))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-659 (-963 *4))) (-5 *3 (-659 (-1196))) (-4 *4 (-464)) - (-5 *1 (-935 *4))))) + (-12 (-5 *2 (-599 (-884 *4))) (-5 *3 (-599 (-1117))) (-4 *4 (-406)) + (-5 *1 (-856 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-659 (-963 *4))) (-5 *3 (-659 (-1196))) (-4 *4 (-464)) - (-5 *1 (-935 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) - ((*1 *2 *3) (-12 (-5 *3 (-990)) (-5 *2 (-922 (-557))) (-5 *1 (-934))))) -(((*1 *2) (-12 (-5 *2 (-922 (-557))) (-5 *1 (-934))))) -(((*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) - ((*1 *2) (-12 (-5 *2 (-922 (-557))) (-5 *1 (-934))))) -(((*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) - ((*1 *2) (-12 (-5 *2 (-922 (-557))) (-5 *1 (-934))))) -(((*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) - ((*1 *2) (-12 (-5 *2 (-922 (-557))) (-5 *1 (-934))))) -(((*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) - ((*1 *2) (-12 (-5 *2 (-922 (-557))) (-5 *1 (-934))))) -(((*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) - ((*1 *2) (-12 (-5 *2 (-922 (-557))) (-5 *1 (-934))))) -(((*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) - ((*1 *2) (-12 (-5 *2 (-922 (-557))) (-5 *1 (-934))))) -(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) - ((*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934))))) -(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) - ((*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934))))) -(((*1 *2 *3) (-12 (-5 *3 (-659 (-936))) (-5 *2 (-922 (-557))) (-5 *1 (-934))))) -(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) - ((*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934))))) -(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-922 (-557))) (-5 *1 (-934)))) - ((*1 *2 *3) (-12 (-5 *3 (-659 (-557))) (-5 *2 (-922 (-557))) (-5 *1 (-934))))) + (-12 (-5 *2 (-599 (-884 *4))) (-5 *3 (-599 (-1117))) (-4 *4 (-406)) + (-5 *1 (-856 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) + ((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-843 (-499))) (-5 *1 (-855))))) +(((*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855))))) +(((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) + ((*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855))))) +(((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) + ((*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855))))) +(((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) + ((*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855))))) +(((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) + ((*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855))))) +(((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) + ((*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855))))) +(((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) + ((*1 *2) (-12 (-5 *2 (-843 (-499))) (-5 *1 (-855))))) +(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) + ((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855))))) +(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) + ((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855))))) +(((*1 *2 *3) (-12 (-5 *3 (-599 (-857))) (-5 *2 (-843 (-499))) (-5 *1 (-855))))) +(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) + ((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855))))) +(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-843 (-499))) (-5 *1 (-855)))) + ((*1 *2 *3) (-12 (-5 *3 (-599 (-499))) (-5 *2 (-843 (-499))) (-5 *1 (-855))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-813)) (-4 *4 (-859)) (-4 *5 (-319)) (-5 *1 (-933 *3 *4 *5 *2)) - (-4 *2 (-967 *5 *3 *4)))) + (-12 (-4 *3 (-738)) (-4 *4 (-781)) (-4 *5 (-261)) (-5 *1 (-854 *3 *4 *5 *2)) + (-4 *2 (-888 *5 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1190 *6)) (-4 *6 (-967 *5 *3 *4)) (-4 *3 (-813)) (-4 *4 (-859)) - (-4 *5 (-319)) (-5 *1 (-933 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1111 *6)) (-4 *6 (-888 *5 *3 *4)) (-4 *3 (-738)) (-4 *4 (-781)) + (-4 *5 (-261)) (-5 *1 (-854 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-659 *2)) (-4 *2 (-967 *6 *4 *5)) (-5 *1 (-933 *4 *5 *6 *2)) - (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-319))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-417 *2)) (-4 *2 (-319)) (-5 *1 (-931 *2)))) + (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *6 *4 *5)) (-5 *1 (-854 *4 *5 *6 *2)) + (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-359 *2)) (-4 *2 (-261)) (-5 *1 (-852 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-1196)) (-4 *5 (-13 (-319) (-149))) - (-5 *2 (-51)) (-5 *1 (-932 *5)))) + (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120))) + (-5 *2 (-51)) (-5 *1 (-853 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-417 (-963 *6))) (-5 *5 (-1196)) (-5 *3 (-963 *6)) - (-4 *6 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-932 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-931 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-319))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-931 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-931 *3)) (-4 *3 (-319))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1190 *3)) (-5 *1 (-931 *3)) (-4 *3 (-319))))) -(((*1 *1 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-319))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1262 (-419 (-557)))) (-5 *1 (-930 *3 *2)) - (-4 *2 (-1262 (-419 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1262 (-419 *2))) (-5 *2 (-557)) (-5 *1 (-930 *4 *3)) - (-4 *3 (-1262 (-419 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-659 (-2 (|:| |den| (-557)) (|:| |gcdnum| (-557))))) - (-4 *4 (-1262 (-419 *2))) (-5 *2 (-557)) (-5 *1 (-930 *4 *5)) - (-4 *5 (-1262 (-419 *4)))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1262 (-419 (-557)))) - (-5 *2 (-2 (|:| |den| (-557)) (|:| |gcdnum| (-557)))) (-5 *1 (-930 *3 *4)) - (-4 *4 (-1262 (-419 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1262 (-419 *2))) (-5 *2 (-557)) (-5 *1 (-930 *4 *3)) - (-4 *3 (-1262 (-419 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-557)) (-4 *4 (-1262 (-419 *3))) (-5 *2 (-936)) - (-5 *1 (-930 *4 *5)) (-4 *5 (-1262 (-419 *4)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) - (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) - (-4 *4 (-13 (-568) (-1057 (-557)))) - (-5 *2 (-2 (|:| -4200 (-789)) (|:| -2612 *8))) - (-5 *1 (-928 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-346 (-419 (-557)) *4 *5 *6)) - (-4 *4 (-1262 (-419 (-557)))) (-4 *5 (-1262 (-419 *4))) - (-4 *6 (-355 (-419 (-557)) *4 *5)) - (-5 *2 (-2 (|:| -4200 (-789)) (|:| -2612 *6))) (-5 *1 (-929 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1262 *5)) - (-4 *7 (-1262 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) - (-4 *4 (-13 (-568) (-1057 (-557)))) (-5 *2 (-114)) - (-5 *1 (-928 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-346 (-419 (-557)) *4 *5 *6)) (-4 *4 (-1262 (-419 (-557)))) - (-4 *5 (-1262 (-419 *4))) (-4 *6 (-355 (-419 (-557)) *4 *5)) (-5 *2 (-114)) - (-5 *1 (-929 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-464)))) + (-12 (-5 *4 (-359 (-884 *6))) (-5 *5 (-1117)) (-5 *3 (-884 *6)) + (-4 *6 (-13 (-261) (-120))) (-5 *2 (-51)) (-5 *1 (-853 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-261))))) +(((*1 *2 *1) (-12 (-5 *2 (-359 *3)) (-5 *1 (-852 *3)) (-4 *3 (-261))))) +(((*1 *2 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-261))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-852 *3)) (-4 *3 (-261))))) +(((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-852 *3)) (-4 *3 (-261))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1111 *3)) (-5 *1 (-852 *3)) (-4 *3 (-261))))) +(((*1 *1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-261))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1183 (-361 (-499)))) (-5 *1 (-851 *3 *2)) + (-4 *2 (-1183 (-361 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1183 (-361 *2))) (-5 *2 (-499)) (-5 *1 (-851 *4 *3)) + (-4 *3 (-1183 (-361 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-599 (-2 (|:| |den| (-499)) (|:| |gcdnum| (-499))))) + (-4 *4 (-1183 (-361 *2))) (-5 *2 (-499)) (-5 *1 (-851 *4 *5)) + (-4 *5 (-1183 (-361 *4)))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1183 (-361 (-499)))) + (-5 *2 (-2 (|:| |den| (-499)) (|:| |gcdnum| (-499)))) (-5 *1 (-851 *3 *4)) + (-4 *4 (-1183 (-361 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1183 (-361 *2))) (-5 *2 (-499)) (-5 *1 (-851 *4 *3)) + (-4 *3 (-1183 (-361 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-499)) (-4 *4 (-1183 (-361 *3))) (-5 *2 (-857)) + (-5 *1 (-851 *4 *5)) (-4 *5 (-1183 (-361 *4)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-288 *5 *6 *7 *8)) (-4 *5 (-375 *4)) + (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) (-4 *8 (-297 *5 *6 *7)) + (-4 *4 (-13 (-510) (-978 (-499)))) + (-5 *2 (-2 (|:| -3922 (-714)) (|:| -2501 *8))) + (-5 *1 (-849 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-288 (-361 (-499)) *4 *5 *6)) + (-4 *4 (-1183 (-361 (-499)))) (-4 *5 (-1183 (-361 *4))) + (-4 *6 (-297 (-361 (-499)) *4 *5)) + (-5 *2 (-2 (|:| -3922 (-714)) (|:| -2501 *6))) (-5 *1 (-850 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-288 *5 *6 *7 *8)) (-4 *5 (-375 *4)) (-4 *6 (-1183 *5)) + (-4 *7 (-1183 (-361 *6))) (-4 *8 (-297 *5 *6 *7)) + (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-85)) + (-5 *1 (-849 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-288 (-361 (-499)) *4 *5 *6)) (-4 *4 (-1183 (-361 (-499)))) + (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 (-361 (-499)) *4 *5)) (-5 *2 (-85)) + (-5 *1 (-850 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-406)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1190 *6)) (-4 *6 (-967 *5 *3 *4)) (-4 *3 (-813)) (-4 *4 (-859)) - (-4 *5 (-927)) (-5 *1 (-469 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-927))))) -(((*1 *2 *3) - (-12 (-5 *2 (-417 (-1190 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1190 *1)) - (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1120)))) - ((*1 *2 *3) (-12 (-4 *1 (-927)) (-5 *2 (-417 (-1190 *1))) (-5 *3 (-1190 *1))))) -(((*1 *2 *3) - (-12 (-5 *2 (-417 (-1190 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1190 *1)) - (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1120)))) - ((*1 *2 *3) (-12 (-4 *1 (-927)) (-5 *2 (-417 (-1190 *1))) (-5 *3 (-1190 *1))))) -(((*1 *2 *3) (-12 (-4 *1 (-927)) (-5 *2 (-417 (-1190 *1))) (-5 *3 (-1190 *1))))) + (-12 (-5 *2 (-1111 *6)) (-4 *6 (-888 *5 *3 *4)) (-4 *3 (-738)) (-4 *4 (-781)) + (-4 *5 (-848)) (-5 *1 (-411 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-848))))) +(((*1 *2 *3) + (-12 (-5 *2 (-359 (-1111 *1))) (-5 *1 (-268 *4)) (-5 *3 (-1111 *1)) + (-4 *4 (-406)) (-4 *4 (-510)) (-4 *4 (-1041)))) + ((*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *2 (-359 (-1111 *1))) (-5 *3 (-1111 *1))))) +(((*1 *2 *3) + (-12 (-5 *2 (-359 (-1111 *1))) (-5 *1 (-268 *4)) (-5 *3 (-1111 *1)) + (-4 *4 (-406)) (-4 *4 (-510)) (-4 *4 (-1041)))) + ((*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *2 (-359 (-1111 *1))) (-5 *3 (-1111 *1))))) +(((*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *2 (-359 (-1111 *1))) (-5 *3 (-1111 *1))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-659 (-1190 *5))) (-5 *3 (-1190 *5)) (-4 *5 (-168 *4)) - (-4 *4 (-556)) (-5 *1 (-151 *4 *5)))) + (|partial| -12 (-5 *2 (-599 (-1111 *5))) (-5 *3 (-1111 *5)) (-4 *5 (-139 *4)) + (-4 *4 (-498)) (-5 *1 (-122 *4 *5)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-659 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-1262 *4)) - (-4 *4 (-363)) (-5 *1 (-371 *4 *5 *3)))) + (|partial| -12 (-5 *2 (-599 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-1183 *4)) + (-4 *4 (-305)) (-5 *1 (-313 *4 *5 *3)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-659 (-1190 (-557)))) (-5 *3 (-1190 (-557))) - (-5 *1 (-583)))) + (|partial| -12 (-5 *2 (-599 (-1111 (-499)))) (-5 *3 (-1111 (-499))) + (-5 *1 (-523)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-659 (-1190 *1))) (-5 *3 (-1190 *1)) (-4 *1 (-927))))) + (|partial| -12 (-5 *2 (-599 (-1111 *1))) (-5 *3 (-1111 *1)) (-4 *1 (-848))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-707 *1)) (-4 *1 (-363)) (-5 *2 (-1286 *1)))) + (|partial| -12 (-5 *3 (-647 *1)) (-4 *1 (-305)) (-5 *2 (-1207 *1)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-707 *1)) (-4 *1 (-147)) (-4 *1 (-927)) - (-5 *2 (-1286 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-709 *1)) (-4 *1 (-147)))) - ((*1 *1 *1) (-4 *1 (-363))) - ((*1 *2 *1) (-12 (-5 *2 (-709 *1)) (-4 *1 (-147)) (-4 *1 (-927))))) + (|partial| -12 (-5 *3 (-647 *1)) (-4 *1 (-118)) (-4 *1 (-848)) + (-5 *2 (-1207 *1))))) +(((*1 *2 *1) (-12 (-5 *2 (-649 *1)) (-4 *1 (-118)))) + ((*1 *1 *1) (-4 *1 (-305))) + ((*1 *2 *1) (-12 (-5 *2 (-649 *1)) (-4 *1 (-118)) (-4 *1 (-848))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *7)) (-4 *7 (-859)) (-4 *5 (-927)) (-4 *6 (-813)) - (-4 *8 (-967 *5 *6 *7)) (-5 *2 (-417 (-1190 *8))) (-5 *1 (-924 *5 *6 *7 *8)) - (-5 *4 (-1190 *8)))) + (-12 (-5 *3 (-599 *7)) (-4 *7 (-781)) (-4 *5 (-848)) (-4 *6 (-738)) + (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-359 (-1111 *8))) (-5 *1 (-845 *5 *6 *7 *8)) + (-5 *4 (-1111 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-927)) (-4 *5 (-1262 *4)) (-5 *2 (-417 (-1190 *5))) - (-5 *1 (-925 *4 *5)) (-5 *3 (-1190 *5))))) + (-12 (-4 *4 (-848)) (-4 *5 (-1183 *4)) (-5 *2 (-359 (-1111 *5))) + (-5 *1 (-846 *4 *5)) (-5 *3 (-1111 *5))))) (((*1 *2) - (-12 (-4 *3 (-813)) (-4 *4 (-859)) (-4 *2 (-927)) (-5 *1 (-469 *3 *4 *2 *5)) - (-4 *5 (-967 *2 *3 *4)))) + (-12 (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-848)) (-5 *1 (-411 *3 *4 *2 *5)) + (-4 *5 (-888 *2 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-813)) (-4 *4 (-859)) (-4 *2 (-927)) (-5 *1 (-924 *2 *3 *4 *5)) - (-4 *5 (-967 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-927)) (-5 *1 (-925 *2 *3)) (-4 *3 (-1262 *2))))) + (-12 (-4 *3 (-738)) (-4 *4 (-781)) (-4 *2 (-848)) (-5 *1 (-845 *2 *3 *4 *5)) + (-4 *5 (-888 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-848)) (-5 *1 (-846 *2 *3)) (-4 *3 (-1183 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-927)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-967 *4 *5 *6)) - (-5 *2 (-417 (-1190 *7))) (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) + (-12 (-4 *4 (-848)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-888 *4 *5 *6)) + (-5 *2 (-359 (-1111 *7))) (-5 *1 (-845 *4 *5 *6 *7)) (-5 *3 (-1111 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-927)) (-4 *5 (-1262 *4)) (-5 *2 (-417 (-1190 *5))) - (-5 *1 (-925 *4 *5)) (-5 *3 (-1190 *5))))) + (-12 (-4 *4 (-848)) (-4 *5 (-1183 *4)) (-5 *2 (-359 (-1111 *5))) + (-5 *1 (-846 *4 *5)) (-5 *3 (-1111 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-927)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-967 *4 *5 *6)) - (-5 *2 (-417 (-1190 *7))) (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) + (-12 (-4 *4 (-848)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-888 *4 *5 *6)) + (-5 *2 (-359 (-1111 *7))) (-5 *1 (-845 *4 *5 *6 *7)) (-5 *3 (-1111 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-927)) (-4 *5 (-1262 *4)) (-5 *2 (-417 (-1190 *5))) - (-5 *1 (-925 *4 *5)) (-5 *3 (-1190 *5))))) + (-12 (-4 *4 (-848)) (-4 *5 (-1183 *4)) (-5 *2 (-359 (-1111 *5))) + (-5 *1 (-846 *4 *5)) (-5 *3 (-1111 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-659 (-1190 *7))) (-5 *3 (-1190 *7)) - (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-927)) (-4 *5 (-813)) (-4 *6 (-859)) - (-5 *1 (-924 *4 *5 *6 *7)))) + (|partial| -12 (-5 *2 (-599 (-1111 *7))) (-5 *3 (-1111 *7)) + (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-848)) (-4 *5 (-738)) (-4 *6 (-781)) + (-5 *1 (-845 *4 *5 *6 *7)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-659 (-1190 *5))) (-5 *3 (-1190 *5)) - (-4 *5 (-1262 *4)) (-4 *4 (-927)) (-5 *1 (-925 *4 *5))))) + (|partial| -12 (-5 *2 (-599 (-1111 *5))) (-5 *3 (-1111 *5)) + (-4 *5 (-1183 *4)) (-4 *4 (-848)) (-5 *1 (-846 *4 *5))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-659 (-1190 *7))) (-5 *3 (-1190 *7)) - (-4 *7 (-967 *5 *6 *4)) (-4 *5 (-927)) (-4 *6 (-813)) (-4 *4 (-859)) - (-5 *1 (-924 *5 *6 *4 *7))))) -(((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-659 *6)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 (-919 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-936)))) ((*1 *1) (-4 *1 (-556))) - ((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-717)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-919 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) - (-12 (-5 *2 (-659 (-659 (-789)))) (-5 *1 (-922 *3)) (-4 *3 (-1120))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 (-919 *3))) (-4 *3 (-1120)) (-5 *1 (-922 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-921 *3)) (-4 *3 (-1120)) (-5 *2 (-1116 *3)))) + (|partial| -12 (-5 *2 (-599 (-1111 *7))) (-5 *3 (-1111 *7)) + (-4 *7 (-888 *5 *6 *4)) (-4 *5 (-848)) (-4 *6 (-738)) (-4 *4 (-781)) + (-5 *1 (-845 *5 *6 *4 *7))))) +(((*1 *2 *1) + (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-599 *6)) + (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 (-840 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-857)))) ((*1 *1) (-4 *1 (-498))) + ((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-657)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-840 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) + (-12 (-5 *2 (-599 (-599 (-714)))) (-5 *1 (-843 *3)) (-4 *3 (-1041))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-840 *3))) (-4 *3 (-1041)) (-5 *1 (-843 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-842 *3)) (-4 *3 (-1041)) (-5 *2 (-1037 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1120)) (-5 *2 (-1116 (-659 *4))) (-5 *1 (-922 *4)) - (-5 *3 (-659 *4)))) + (-12 (-4 *4 (-1041)) (-5 *2 (-1037 (-599 *4))) (-5 *1 (-843 *4)) + (-5 *3 (-599 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1120)) (-5 *2 (-1116 (-1116 *4))) (-5 *1 (-922 *4)) - (-5 *3 (-1116 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1120))))) + (-12 (-4 *4 (-1041)) (-5 *2 (-1037 (-1037 *4))) (-5 *1 (-843 *4)) + (-5 *3 (-1037 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *2 (-1037 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1041))))) (((*1 *2 *1) - (-12 (-5 *2 (-1116 (-1116 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-1037 (-1037 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1041))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-919 *4)) (-4 *4 (-1120)) (-5 *2 (-659 (-789))) - (-5 *1 (-922 *4))))) + (-12 (-5 *3 (-840 *4)) (-4 *4 (-1041)) (-5 *2 (-599 (-714))) + (-5 *1 (-843 *4))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-919 *4)) (-4 *4 (-1120)) (-5 *2 (-659 (-789))) - (-5 *1 (-922 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-921 *3)) (-4 *3 (-1120)) (-5 *2 (-1116 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-114)))) - ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-921 *3)) (-4 *3 (-1120)) (-5 *2 (-114)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-922 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-114)))) - ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-922 *3)) (-4 *3 (-1120))))) + (-12 (-5 *3 (-840 *4)) (-4 *4 (-1041)) (-5 *2 (-599 (-714))) + (-5 *1 (-843 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-842 *3)) (-4 *3 (-1041)) (-5 *2 (-1037 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1037 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-842 *3)) (-4 *3 (-1041)) (-5 *2 (-85)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-843 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-843 *3)) (-4 *3 (-1041))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-557)) (-5 *2 (-1292)) (-5 *1 (-922 *4)) (-4 *4 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-922 *3)) (-4 *3 (-1120))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-4 *1 (-921 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 (-659 *3))) (-4 *3 (-1120)) (-4 *1 (-921 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1161 *4 *2)) (-14 *4 (-936)) - (-4 *2 (-13 (-1068) (-10 -7 (-6 (-4425 "*"))))) (-5 *1 (-920 *4 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-659 *3)) (|:| |image| (-659 *3)))) - (-5 *1 (-919 *3)) (-4 *3 (-1120))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 (-659 *3))) (-4 *3 (-1120)) (-5 *1 (-919 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 (-659 *3))) (-4 *3 (-1120)) (-5 *1 (-919 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-990)) (-5 *1 (-919 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-919 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-1057 (-557))) (-4 *1 (-310)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-919 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-1057 (-557))) (-4 *1 (-310)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-919 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1116 *3)) (-5 *1 (-919 *3)) (-4 *3 (-381)) (-4 *3 (-1120))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-5 *1 (-919 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2) (-12 (-5 *1 (-918 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-789)))) + (-12 (-5 *3 (-499)) (-5 *2 (-1213)) (-5 *1 (-843 *4)) (-4 *4 (-1041)))) + ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-843 *3)) (-4 *3 (-1041))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-4 *1 (-842 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-1041)) (-4 *1 (-842 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1082 *4 *2)) (-14 *4 (-857)) + (-4 *2 (-13 (-989) (-10 -7 (-6 (-4147 "*"))))) (-5 *1 (-841 *4 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-599 *3)) (|:| |image| (-599 *3)))) + (-5 *1 (-840 *3)) (-4 *3 (-1041))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-1041)) (-5 *1 (-840 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-599 *3))) (-4 *3 (-1041)) (-5 *1 (-840 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-840 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-840 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-4 *1 (-978 (-499))) (-4 *1 (-252)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-498)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-840 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-4 *1 (-978 (-499))) (-4 *1 (-252)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-498)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-840 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1037 *3)) (-5 *1 (-840 *3)) (-4 *3 (-323)) (-4 *3 (-1041))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-840 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1041)))) + ((*1 *1 *2) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1041))))) +(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1157)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-714)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-789)) (-4 *1 (-274 *4)) (-4 *4 (-1236)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1236)))) - ((*1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1068)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1236)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-714)) (-4 *1 (-224 *4)) (-4 *4 (-1157)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-224 *3)) (-4 *3 (-1157)))) + ((*1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-989)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-831 *2 *3)) (-4 *3 (-1157)) (-4 *2 (-1157)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 *4)) (-5 *3 (-659 (-789))) (-4 *1 (-917 *4)) - (-4 *4 (-1120)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-789)) (-4 *1 (-917 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *1 (-917 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *3 (-787)) - (-5 *2 - (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) - (|:| |explanations| (-659 (-1178))) (|:| |extra| (-1054)))) - (-5 *1 (-576)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-787)) (-5 *4 (-1082)) - (-5 *2 - (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) - (|:| |explanations| (-659 (-1178))) (|:| |extra| (-1054)))) - (-5 *1 (-576)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-805)) (-5 *3 (-1082)) + (-12 (-5 *2 (-599 *4)) (-5 *3 (-599 (-714))) (-4 *1 (-838 *4)) + (-4 *4 (-1041)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-838 *2)) (-4 *2 (-1041)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *1 (-838 *3)) (-4 *3 (-1041))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-714)) (-4 *4 (-318)) (-5 *1 (-833 *2 *4)) (-4 *2 (-1183 *4))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-318)) (-5 *1 (-833 *2 *3)) (-4 *2 (-1183 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *1 (-730)) (-5 *3 (-1003)) (-5 *4 - (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) - (|:| |abserr| (-229)) (|:| |relerr| (-229)))) + (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) + (|:| |abserr| (-179)) (|:| |relerr| (-179)))) (-5 *2 - (-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) - (|:| |extra| (-1054)))))) + (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)) + (|:| |extra| (-975)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-805)) (-5 *3 (-1082)) + (-12 (-4 *1 (-730)) (-5 *3 (-1003)) (-5 *4 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) - (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) - (|:| |relerr| (-229)))) + (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) + (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) + (|:| |relerr| (-179)))) (-5 *2 - (-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)) - (|:| |extra| (-1054)))))) + (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)) + (|:| |extra| (-975)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-820)) (-5 *3 (-1082)) + (-12 (-4 *1 (-745)) (-5 *3 (-1003)) (-5 *4 - (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) - (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) - (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *2 (-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-828)) - (-5 *2 - (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) - (|:| |explanations| (-659 (-1178))))) - (-5 *1 (-825)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-828)) (-5 *4 (-1082)) - (-5 *2 - (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) - (|:| |explanations| (-659 (-1178))))) - (-5 *1 (-825)))) + (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) + (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) + (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) + (|:| |abserr| (-179)) (|:| |relerr| (-179)))) + (-5 *2 (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-850)) (-5 *3 (-1082)) - (-5 *4 (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) - (-5 *2 (-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)))))) + (-12 (-4 *1 (-773)) (-5 *3 (-1003)) + (-5 *4 (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))) + (-5 *2 (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-850)) (-5 *3 (-1082)) + (-12 (-4 *1 (-773)) (-5 *3 (-1003)) (-5 *4 - (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) - (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) - (|:| |ub| (-659 (-853 (-229)))))) - (-5 *2 (-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-852)) - (-5 *2 - (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) - (|:| |explanations| (-659 (-1178))))) - (-5 *1 (-851)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-852)) (-5 *4 (-1082)) - (-5 *2 - (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) - (|:| |explanations| (-659 (-1178))))) - (-5 *1 (-851)))) + (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) + (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) + (|:| |ub| (-599 (-775 (-179)))))) + (-5 *2 (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-910)) (-5 *3 (-1082)) + (-12 (-4 *1 (-832)) (-5 *3 (-1003)) (-5 *4 - (-2 (|:| |pde| (-659 (-326 (-229)))) + (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| - (-659 - (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) - (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) - (|:| |dFinish| (-707 (-229)))))) - (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) - (|:| |tol| (-229)))) - (-5 *2 (-2 (|:| -3067 (-391)) (|:| |explanations| (-1178)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-913)) - (-5 *2 - (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) - (|:| |explanations| (-659 (-1178))))) - (-5 *1 (-912)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-913)) (-5 *4 (-1082)) - (-5 *2 - (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) - (|:| |explanations| (-659 (-1178))))) - (-5 *1 (-912))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-789)) (-4 *4 (-376)) (-5 *1 (-911 *2 *4)) (-4 *2 (-1262 *4))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-376)) (-5 *1 (-911 *2 *3)) (-4 *2 (-1262 *3))))) -(((*1 *2 *3) - (-12 (-4 *1 (-910)) + (-599 + (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) + (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) + (|:| |dFinish| (-647 (-179)))))) + (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) + (|:| |tol| (-179)))) + (-5 *2 (-2 (|:| -2787 (-333)) (|:| |explanations| (-1099))))))) +(((*1 *2 *3) + (-12 (-4 *1 (-832)) (-5 *3 - (-2 (|:| |pde| (-659 (-326 (-229)))) + (-2 (|:| |pde| (-599 (-268 (-179)))) (|:| |constraints| - (-659 - (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) - (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) - (|:| |dFinish| (-707 (-229)))))) - (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) - (|:| |tol| (-229)))) - (-5 *2 (-1054))))) -(((*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-4 *1 (-740))) ((*1 *1) (-4 *1 (-744))) - ((*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1120)))) - ((*1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-859))))) -(((*1 *2 *1) - (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1120)) - (-5 *2 (-659 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-659 (-2 (|:| |k| (-906 *3)) (|:| |c| *4)))) - (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-859)) - (-4 *4 (-13 (-175) (-735 (-419 (-557))))) (-14 *5 (-936)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 (-690 *3))) (-5 *1 (-906 *3)) (-4 *3 (-859))))) -(((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) - (-14 *4 (-659 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-51)) (-5 *2 (-114)) (-5 *1 (-52 *4)) (-4 *4 (-1236)))) - ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1068) (-859))) - (-14 *4 (-659 (-1196))))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-690 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-695 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-906 *3)) (-4 *3 (-859))))) -(((*1 *2 *3) - (-12 (-5 *3 (-903 *4)) (-4 *4 (-1120)) (-5 *2 (-659 *5)) (-5 *1 (-904 *4 *5)) - (-4 *5 (-1236))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-903 *3)) (-4 *3 (-1120)))) + (-599 + (-2 (|:| |start| (-179)) (|:| |finish| (-179)) (|:| |grid| (-714)) + (|:| |boundaryType| (-499)) (|:| |dStart| (-647 (-179))) + (|:| |dFinish| (-647 (-179)))))) + (|:| |f| (-599 (-599 (-268 (-179))))) (|:| |st| (-1099)) + (|:| |tol| (-179)))) + (-5 *2 (-975))))) +(((*1 *1) (-12 (-4 *1 (-419 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-488))) ((*1 *1) (-4 *1 (-680))) ((*1 *1) (-4 *1 (-684))) + ((*1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041)))) + ((*1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-781))))) +(((*1 *2 *1) + (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)) + (-5 *2 (-599 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-599 (-2 (|:| |k| (-828 *3)) (|:| |c| *4)))) + (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) + (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 (-630 *3))) (-5 *1 (-828 *3)) (-4 *3 (-781))))) +(((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-989)) + (-14 *4 (-599 (-1117))))) + ((*1 *2 *3) + (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1157)))) + ((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) + (-14 *4 (-599 (-1117))))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-635 *3)) (-4 *3 (-781)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-828 *3)) (-4 *3 (-781))))) +(((*1 *2 *3) + (-12 (-5 *3 (-825 *4)) (-4 *4 (-1041)) (-5 *2 (-599 *5)) (-5 *1 (-826 *4 *5)) + (-4 *5 (-1157))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-825 *3)) (-4 *3 (-1041)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-903 *4)) (-4 *4 (-1120)) (-5 *1 (-904 *4 *3)) (-4 *3 (-1236))))) + (-12 (-5 *2 (-825 *4)) (-4 *4 (-1041)) (-5 *1 (-826 *4 *3)) (-4 *3 (-1157))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1120)) (-5 *2 (-114)) - (-5 *1 (-901 *4 *5)) (-4 *5 (-1120)))) + (|partial| -12 (-5 *3 (-825 *4)) (-4 *4 (-1041)) (-5 *2 (-85)) + (-5 *1 (-823 *4 *5)) (-4 *5 (-1041)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-903 *5)) (-4 *5 (-1120)) (-5 *2 (-114)) (-5 *1 (-904 *5 *3)) - (-4 *3 (-1236)))) + (-12 (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-5 *2 (-85)) (-5 *1 (-826 *5 *3)) + (-4 *3 (-1157)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1120)) (-4 *6 (-1236)) - (-5 *2 (-114)) (-5 *1 (-904 *5 *6))))) + (-12 (-5 *3 (-599 *6)) (-5 *4 (-825 *5)) (-4 *5 (-1041)) (-4 *6 (-1157)) + (-5 *2 (-85)) (-5 *1 (-826 *5 *6))))) (((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1120))))) + ((*1 *1) (-12 (-4 *1 (-424 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-488))) ((*1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| -2907 (-115)) (|:| |arg| (-659 (-903 *3))))) - (-5 *1 (-903 *3)) (-4 *3 (-1120)))) + (|partial| -12 (-5 *2 (-2 (|:| -2631 (-86)) (|:| |arg| (-599 (-825 *3))))) + (-5 *1 (-825 *3)) (-4 *3 (-1041)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-659 (-903 *4))) (-5 *1 (-903 *4)) - (-4 *4 (-1120))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-315)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |num| (-903 *3)) (|:| |den| (-903 *3)))) - (-5 *1 (-903 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-659 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-903 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-903 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-903 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-903 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-903 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-903 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-51))) (-5 *1 (-903 *3)) (-4 *3 (-1120))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-659 (-51))) (-5 *1 (-903 *3)) (-4 *3 (-1120))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-659 (-51))) (-5 *1 (-903 *3)) (-4 *3 (-1120))))) + (|partial| -12 (-5 *3 (-86)) (-5 *2 (-599 (-825 *4))) (-5 *1 (-825 *4)) + (-4 *4 (-1041))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-268 (-179))) (-5 *1 (-257)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |num| (-825 *3)) (|:| |den| (-825 *3)))) + (-5 *1 (-825 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-114)) (-5 *1 (-903 *4)) (-4 *4 (-1120))))) + (-12 (-5 *2 (-1117)) (-5 *3 (-85)) (-5 *1 (-825 *4)) (-4 *4 (-1041))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 (-1196))) (-5 *3 (-51)) (-5 *1 (-903 *4)) (-4 *4 (-1120))))) + (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-51)) (-5 *1 (-825 *4)) (-4 *4 (-1041))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-659 (-1196))) (|:| |pred| (-51)))) - (-5 *1 (-903 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-903 *3)) (-4 *3 (-1120))))) -(((*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-51))) (-5 *1 (-903 *3)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-2 (|:| |var| (-599 (-1117))) (|:| |pred| (-51)))) + (-5 *1 (-825 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) +(((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-659 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1120))))) + (|partial| -12 (-5 *2 (-599 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1041))))) (((*1 *2 *1) - (-12 (-4 *4 (-1120)) (-5 *2 (-114)) (-5 *1 (-898 *3 *4 *5)) (-4 *3 (-1120)) - (-4 *5 (-684 *4)))) + (-12 (-4 *4 (-1041)) (-5 *2 (-85)) (-5 *1 (-820 *3 *4 *5)) (-4 *3 (-1041)) + (-4 *5 (-624 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-901 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120))))) + (-12 (-5 *2 (-85)) (-5 *1 (-823 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) (((*1 *1) - (-12 (-4 *3 (-1120)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1120)) - (-4 *4 (-684 *3)))) - ((*1 *1) (-12 (-5 *1 (-901 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120))))) + (-12 (-4 *3 (-1041)) (-5 *1 (-820 *2 *3 *4)) (-4 *2 (-1041)) + (-4 *4 (-624 *3)))) + ((*1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1120)) (-4 *2 (-1120)) - (-5 *1 (-901 *4 *2))))) + (|partial| -12 (-5 *3 (-825 *4)) (-4 *4 (-1041)) (-4 *2 (-1041)) + (-5 *1 (-823 *4 *2))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-903 *4)) (-4 *4 (-1120)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-825 *4)) (-4 *4 (-1041)) (-5 *1 (-823 *4 *3)) (-4 *3 (-1041))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-903 *4)) (-4 *4 (-1120)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-825 *4)) (-4 *4 (-1041)) (-5 *1 (-823 *4 *3)) (-4 *3 (-1041))))) (((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-903 *4)) (-4 *4 (-1120)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-825 *4)) (-4 *4 (-1041)) (-5 *1 (-823 *4 *3)) (-4 *3 (-1041))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1120)) (-4 *6 (-899 *5)) (-5 *2 (-898 *5 *6 (-659 *6))) - (-5 *1 (-900 *5 *6 *4)) (-5 *3 (-659 *6)) (-4 *4 (-629 (-903 *5))))) + (-12 (-4 *5 (-1041)) (-4 *6 (-821 *5)) (-5 *2 (-820 *5 *6 (-599 *6))) + (-5 *1 (-822 *5 *6 *4)) (-5 *3 (-599 *6)) (-4 *4 (-569 (-825 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1120)) (-5 *2 (-659 (-305 *3))) (-5 *1 (-900 *5 *3 *4)) - (-4 *3 (-1057 (-1196))) (-4 *3 (-899 *5)) (-4 *4 (-629 (-903 *5))))) + (-12 (-4 *5 (-1041)) (-5 *2 (-599 (-247 *3))) (-5 *1 (-822 *5 *3 *4)) + (-4 *3 (-978 (-1117))) (-4 *3 (-821 *5)) (-4 *4 (-569 (-825 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1120)) (-5 *2 (-659 (-305 (-963 *3)))) (-5 *1 (-900 *5 *3 *4)) - (-4 *3 (-1068)) (-2957 (-4 *3 (-1057 (-1196)))) (-4 *3 (-899 *5)) - (-4 *4 (-629 (-903 *5))))) + (-12 (-4 *5 (-1041)) (-5 *2 (-599 (-247 (-884 *3)))) (-5 *1 (-822 *5 *3 *4)) + (-4 *3 (-989)) (-2679 (-4 *3 (-978 (-1117)))) (-4 *3 (-821 *5)) + (-4 *4 (-569 (-825 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1120)) (-5 *2 (-901 *5 *3)) (-5 *1 (-900 *5 *3 *4)) - (-2957 (-4 *3 (-1057 (-1196)))) (-2957 (-4 *3 (-1068))) (-4 *3 (-899 *5)) - (-4 *4 (-629 (-903 *5)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1196)) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114)))) + (-12 (-4 *5 (-1041)) (-5 *2 (-823 *5 *3)) (-5 *1 (-822 *5 *3 *4)) + (-2679 (-4 *3 (-978 (-1117)))) (-2679 (-4 *3 (-989))) (-4 *3 (-821 *5)) + (-4 *4 (-569 (-825 *5)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-252)) (-5 *3 (-1117)) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-252)) (-5 *3 (-86)) (-5 *2 (-85)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-114)) (-5 *1 (-626 *4)) (-4 *4 (-1120)))) + (-12 (-5 *3 (-1117)) (-5 *2 (-85)) (-5 *1 (-566 *4)) (-4 *4 (-1041)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-626 *4)) (-4 *4 (-1120)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1120)) (-5 *2 (-114)))) + (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-566 *4)) (-4 *4 (-1041)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-770 *3)) (-4 *3 (-1041)) (-5 *2 (-85)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1120)) (-5 *2 (-114)) (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-899 *5)) - (-4 *4 (-629 (-903 *5))))) + (-12 (-4 *5 (-1041)) (-5 *2 (-85)) (-5 *1 (-822 *5 *3 *4)) (-4 *3 (-821 *5)) + (-4 *4 (-569 (-825 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *6)) (-4 *6 (-899 *5)) (-4 *5 (-1120)) (-5 *2 (-114)) - (-5 *1 (-900 *5 *6 *4)) (-4 *4 (-629 (-903 *5)))))) + (-12 (-5 *3 (-599 *6)) (-4 *6 (-821 *5)) (-4 *5 (-1041)) (-5 *2 (-85)) + (-5 *1 (-822 *5 *6 *4)) (-4 *4 (-569 (-825 *5)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-901 *4 *5)) (-5 *3 (-901 *4 *6)) (-4 *4 (-1120)) - (-4 *5 (-1120)) (-4 *6 (-684 *5)) (-5 *1 (-898 *4 *5 *6))))) + (-12 (-5 *2 (-823 *4 *5)) (-5 *3 (-823 *4 *6)) (-4 *4 (-1041)) + (-4 *5 (-1041)) (-4 *6 (-624 *5)) (-5 *1 (-820 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *4 (-1120)) (-5 *2 (-901 *3 *5)) (-5 *1 (-898 *3 *4 *5)) - (-4 *3 (-1120)) (-4 *5 (-684 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-1174 (-659 (-557)))) (-5 *1 (-896)) (-5 *3 (-557))))) + (-12 (-4 *4 (-1041)) (-5 *2 (-823 *3 *5)) (-5 *1 (-820 *3 *4 *5)) + (-4 *3 (-1041)) (-4 *5 (-624 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-1095 (-599 (-499)))) (-5 *1 (-818)) (-5 *3 (-499))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1174 (-659 (-557)))) (-5 *1 (-896)) (-5 *3 (-659 (-557))))) + (-12 (-5 *2 (-1095 (-599 (-499)))) (-5 *1 (-818)) (-5 *3 (-599 (-499))))) ((*1 *2 *3) - (-12 (-5 *2 (-1174 (-659 (-557)))) (-5 *1 (-896)) (-5 *3 (-659 (-557)))))) + (-12 (-5 *2 (-1095 (-599 (-499)))) (-5 *1 (-818)) (-5 *3 (-599 (-499)))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1174 (-659 (-557)))) (-5 *3 (-659 (-557))) (-5 *1 (-896))))) + (-12 (-5 *2 (-1095 (-599 (-499)))) (-5 *3 (-599 (-499))) (-5 *1 (-818))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1174 (-659 (-557)))) (-5 *1 (-896)) (-5 *3 (-659 (-557)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1174 (-659 (-936)))) (-5 *1 (-896))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-5 *1 (-890 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-5 *1 (-892 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-5 *1 (-895 *2)) (-4 *2 (-1236))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-1236))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-659 (-1201))) (-5 *1 (-893))))) -(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-886))))) -(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-886))))) -(((*1 *2 *3) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-248)) (-5 *3 (-1178)))) - ((*1 *2 *2) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-248)))) - ((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-886))))) -(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-886))))) -(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-886))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1236)) (-4 *3 (-1236))))) -(((*1 *2 *1) - (-12 (-5 *2 (-177 (-419 (-557)))) (-5 *1 (-119 *3)) (-14 *3 (-557)))) - ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1174 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-319)) (-5 *1 (-177 *3)))) - ((*1 *2 *3) (-12 (-5 *2 (-177 (-557))) (-5 *1 (-783 *3)) (-4 *3 (-416)))) - ((*1 *2 *1) - (-12 (-5 *2 (-177 (-419 (-557)))) (-5 *1 (-883 *3)) (-14 *3 (-557)))) - ((*1 *2 *1) - (-12 (-14 *3 (-557)) (-5 *2 (-177 (-419 (-557)))) (-5 *1 (-884 *3 *4)) - (-4 *4 (-882 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) - ((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) - ((*1 *2 *2) (-12 (-5 *2 (-936)) (|has| *1 (-6 -4414)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-936)))) - ((*1 *2 *1) (-12 (-4 *1 (-882 *3)) (-5 *2 (-1174 (-557)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-175)) (-4 *2 (-23)) (-5 *1 (-301 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1262 *3)) (-14 *5 (-1 *4 *4 *2)) + (-12 (-5 *2 (-1095 (-599 (-499)))) (-5 *1 (-818)) (-5 *3 (-599 (-499)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1095 (-599 (-857)))) (-5 *1 (-818))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *1 (-812 *2)) (-4 *2 (-1157)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *1 (-814 *2)) (-4 *2 (-1157)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *1 (-817 *2)) (-4 *2 (-1157))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-1157))))) +(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-599 (-1122))) (-5 *1 (-815))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-808))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-808))))) +(((*1 *2 *3) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-198)) (-5 *3 (-1099)))) + ((*1 *2 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-198)))) + ((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-808))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-808))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-808))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-807 *2 *3)) (-4 *2 (-1157)) (-4 *3 (-1157))))) +(((*1 *2 *1) + (-12 (-5 *2 (-148 (-361 (-499)))) (-5 *1 (-90 *3)) (-14 *3 (-499)))) + ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-261)) (-5 *1 (-148 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-361 *3)) (-4 *3 (-261)) (-5 *1 (-148 *3)))) + ((*1 *2 *3) (-12 (-5 *2 (-148 (-499))) (-5 *1 (-708 *3)) (-4 *3 (-358)))) + ((*1 *2 *1) + (-12 (-5 *2 (-148 (-361 (-499)))) (-5 *1 (-805 *3)) (-14 *3 (-499)))) + ((*1 *2 *1) + (-12 (-14 *3 (-499)) (-5 *2 (-148 (-361 (-499)))) (-5 *1 (-806 *3 *4)) + (-4 *4 (-804 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-357 *3)) (-4 *3 (-358)))) + ((*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-357 *3)) (-4 *3 (-358)))) + ((*1 *2 *2) (-12 (-5 *2 (-857)) (|has| *1 (-6 -4136)) (-4 *1 (-358)))) + ((*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-857)))) + ((*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-1095 (-499)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-243 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1183 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-729 *3 *2 *4 *5 *6)) (-4 *3 (-175)) + (-12 (-4 *2 (-23)) (-5 *1 (-669 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1262 *3)) (-5 *1 (-730 *3 *2)) (-4 *3 (-1068)))) + ((*1 *2) (-12 (-4 *2 (-1183 *3)) (-5 *1 (-670 *3 *2)) (-4 *3 (-989)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-733 *3 *2 *4 *5 *6)) (-4 *3 (-175)) + (-12 (-4 *2 (-23)) (-5 *1 (-673 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-882 *3)) (-5 *2 (-557))))) -(((*1 *2 *1) (-12 (-4 *1 (-882 *3)) (-5 *2 (-557))))) -(((*1 *1 *1) (-4 *1 (-882 *2)))) -(((*1 *1 *1 *1) (-5 *1 (-875))) ((*1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1190 (-557))) (-5 *3 (-557)) (-4 *1 (-882 *4))))) + ((*1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-499))))) +(((*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-499))))) +(((*1 *1 *1) (-4 *1 (-804 *2)))) +(((*1 *1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1111 (-499))) (-5 *3 (-499)) (-4 *1 (-804 *4))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-789)) (-4 *5 (-376)) (-5 *2 (-419 *6)) - (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1279 *5)) (-4 *6 (-1262 *5)))) + (|partial| -12 (-5 *3 (-714)) (-4 *5 (-318)) (-5 *2 (-361 *6)) + (-5 *1 (-801 *5 *4 *6)) (-4 *4 (-1200 *5)) (-4 *6 (-1183 *5)))) ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-789)) (-5 *4 (-1276 *5 *6 *7)) (-4 *5 (-376)) - (-14 *6 (-1196)) (-14 *7 *5) (-5 *2 (-419 (-1255 *6 *5))) - (-5 *1 (-880 *5 *6 *7)))) + (|partial| -12 (-5 *3 (-714)) (-5 *4 (-1197 *5 *6 *7)) (-4 *5 (-318)) + (-14 *6 (-1117)) (-14 *7 *5) (-5 *2 (-361 (-1176 *6 *5))) + (-5 *1 (-802 *5 *6 *7)))) ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-789)) (-5 *4 (-1276 *5 *6 *7)) (-4 *5 (-376)) - (-14 *6 (-1196)) (-14 *7 *5) (-5 *2 (-419 (-1255 *6 *5))) - (-5 *1 (-880 *5 *6 *7))))) + (|partial| -12 (-5 *3 (-714)) (-5 *4 (-1197 *5 *6 *7)) (-4 *5 (-318)) + (-14 *6 (-1117)) (-14 *7 *5) (-5 *2 (-361 (-1176 *6 *5))) + (-5 *1 (-802 *5 *6 *7))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-789)) (-4 *5 (-376)) (-5 *2 (-177 *6)) - (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1279 *5)) (-4 *6 (-1262 *5))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) - (-5 *2 (-659 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-754 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 (-451))) (-5 *1 (-877))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-875))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-875))))) -(((*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-875))))) -(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) - ((*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-875)))) - ((*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-875))))) -(((*1 *2 *1) (-12 (-4 *1 (-263 *3)) (-4 *3 (-1236)) (-5 *2 (-789)))) - ((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-789)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-376) (-1222) (-296))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-626 *3)) (-4 *3 (-1120)))) - ((*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-875)))) - ((*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-875))))) -(((*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-875))))) -(((*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-875))))) -(((*1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-875))))) -(((*1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-875))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-875))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875)))) - ((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875)))) - ((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875))))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-875))))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *1)) (-4 *1 (-310)))) - ((*1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) + (|partial| -12 (-5 *3 (-714)) (-4 *5 (-318)) (-5 *2 (-148 *6)) + (-5 *1 (-801 *5 *4 *6)) (-4 *4 (-1200 *5)) (-4 *6 (-1183 *5))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4145)) (-4 *1 (-443 *3)) (-4 *3 (-1157)) + (-5 *2 (-599 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1041)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 (-393))) (-5 *1 (-799))))) +(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-797))))) +(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-797))))) +(((*1 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-797))))) +(((*1 *2 *1) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143))))) + ((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) + ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-797))))) +(((*1 *2 *1) (-12 (-4 *1 (-213 *3)) (-4 *3 (-1157)) (-5 *2 (-714)))) + ((*1 *2 *1) (-12 (-4 *1 (-252)) (-5 *2 (-714)))) + ((*1 *2 *3) + (-12 (-4 *4 (-989)) (-4 *2 (-13 (-358) (-978 *4) (-318) (-1143) (-238))) + (-5 *1 (-397 *4 *3 *2)) (-4 *3 (-1183 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-566 *3)) (-4 *3 (-1041)))) + ((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797)))) + ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-797))))) +(((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-797))))) +(((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-797))))) +(((*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797))))) +(((*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-797))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) + ((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) + ((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797))))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-797))))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-252)))) + ((*1 *1 *1) (-4 *1 (-252))) ((*1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-659 (-963 (-557)))) - (-5 *4 (-326 (-171 (-391)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) + (-5 *4 (-268 (-142 (-333)))) (-5 *1 (-284)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-659 (-963 (-557)))) (-5 *4 (-326 (-391))) - (-5 *1 (-342)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-333))) + (-5 *1 (-284)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-659 (-963 (-557)))) (-5 *4 (-326 (-557))) - (-5 *1 (-342)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-499))) + (-5 *1 (-284)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1286 (-326 (-171 (-391))))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-142 (-333))))) (-5 *1 (-284)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1286 (-326 (-391)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-333)))) (-5 *1 (-284)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1286 (-326 (-557)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-499)))) (-5 *1 (-284)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-707 (-326 (-171 (-391))))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-142 (-333))))) (-5 *1 (-284)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-707 (-326 (-391)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-333)))) (-5 *1 (-284)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-707 (-326 (-557)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-499)))) (-5 *1 (-284)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-171 (-391)))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-391))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-557))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-142 (-333)))) (-5 *1 (-284)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-333))) (-5 *1 (-284)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-499))) (-5 *1 (-284)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-659 (-963 (-557)))) (-5 *4 (-326 (-712))) - (-5 *1 (-342)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-652))) + (-5 *1 (-284)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-659 (-963 (-557)))) (-5 *4 (-326 (-717))) - (-5 *1 (-342)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-657))) + (-5 *1 (-284)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-659 (-963 (-557)))) (-5 *4 (-326 (-719))) - (-5 *1 (-342)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-884 (-499)))) (-5 *4 (-268 (-659))) + (-5 *1 (-284)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1286 (-326 (-712)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-652)))) (-5 *1 (-284)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1286 (-326 (-717)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-657)))) (-5 *1 (-284)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1286 (-326 (-719)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-268 (-659)))) (-5 *1 (-284)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-707 (-326 (-712)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-652)))) (-5 *1 (-284)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-707 (-326 (-717)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-657)))) (-5 *1 (-284)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-707 (-326 (-719)))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1286 (-712))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1286 (-717))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1286 (-719))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-707 (-712))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-707 (-717))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-707 (-719))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-712))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-717))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-719))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1178)) (-5 *1 (-342)))) - ((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875))))) -(((*1 *1) (-5 *1 (-146))) ((*1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-875)))) - ((*1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1 *1 *1) (-5 *1 (-875))) ((*1 *1 *1 *1) (-5 *1 (-875))) - ((*1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875)))) - ((*1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *1)) (-4 *1 (-310)))) - ((*1 *1 *1) (-4 *1 (-310))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875)))) - ((*1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875))))) -(((*1 *2 *3) (-12 (-5 *3 (-659 (-1178))) (-5 *2 (-1178)) (-5 *1 (-195)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-875))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))) - ((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-114)))) - ((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-114)))) - ((*1 *1 *1 *1) (-5 *1 (-875)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-268 (-659)))) (-5 *1 (-284)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-652))) (-5 *1 (-284)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-657))) (-5 *1 (-284)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-659))) (-5 *1 (-284)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-652))) (-5 *1 (-284)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-657))) (-5 *1 (-284)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-647 (-659))) (-5 *1 (-284)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-652))) (-5 *1 (-284)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-657))) (-5 *1 (-284)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-268 (-659))) (-5 *1 (-284)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1099)) (-5 *1 (-284)))) + ((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797))))) +(((*1 *1) (-5 *1 (-117))) ((*1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-797)))) + ((*1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) + ((*1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-252)))) + ((*1 *1 *1) (-4 *1 (-252))) + ((*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797)))) + ((*1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-797))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-73)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-797)))) (((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-839 *3)) (|:| |rm| (-839 *3)))) - (-5 *1 (-839 *3)) (-4 *3 (-859)))) - ((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1 *1) (-4 *1 (-319))) ((*1 *1 *1 *1) (-5 *1 (-789))) - ((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1 *1) (-4 *1 (-319))) ((*1 *1 *1 *1) (-5 *1 (-789))) - ((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-875)))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-874)))) - ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-874))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-540)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-588)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-874))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-873)) (-5 *2 (-709 (-130))) (-5 *3 (-130))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-873)) (-5 *2 (-709 (-561))) (-5 *3 (-561))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-873)) (-5 *2 (-709 (-1245))) (-5 *3 (-1245))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-873)) (-5 *3 (-131)) (-5 *2 (-789))))) -(((*1 *2 *3) (-12 (-5 *3 (-659 (-51))) (-5 *2 (-1292)) (-5 *1 (-871))))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-762 *3)) (|:| |rm| (-762 *3)))) + (-5 *1 (-762 *3)) (-4 *3 (-781)))) + ((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *1 *1) (-4 *1 (-261))) ((*1 *1 *1 *1) (-5 *1 (-714))) + ((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *1 *1) (-4 *1 (-261))) ((*1 *1 *1 *1) (-5 *1 (-714))) + ((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-796)))) + ((*1 *1 *2) (-12 (-5 *2 (-344)) (-5 *1 (-796))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-482)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-528)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-796))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-795)) (-5 *2 (-649 (-101))) (-5 *3 (-101))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-795)) (-5 *2 (-649 (-503))) (-5 *3 (-503))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-795)) (-5 *2 (-649 (-1166))) (-5 *3 (-1166))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-795)) (-5 *3 (-102)) (-5 *2 (-714))))) +(((*1 *2 *3) (-12 (-5 *3 (-599 (-51))) (-5 *2 (-1213)) (-5 *1 (-793))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-789)) (-5 *1 (-868 *2)) (-4 *2 (-38 (-419 (-557)))) - (-4 *2 (-175))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-789)) (-5 *1 (-868 *2)) (-4 *2 (-175)))) - ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-789)) (-5 *1 (-868 *2)) (-4 *2 (-175))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-789)) (-5 *1 (-868 *2)) (-4 *2 (-175))))) + (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-38 (-361 (-499)))) + (-4 *2 (-146))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-146)))) + ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-146))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-714)) (-5 *1 (-790 *2)) (-4 *2 (-146))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-376)) (-4 *3 (-1068)) - (-5 *2 (-2 (|:| -2182 *1) (|:| -3301 *1))) (-4 *1 (-864 *3)))) + (-12 (-4 *3 (-318)) (-4 *3 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) + (-4 *1 (-786 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1068)) - (-5 *2 (-2 (|:| -2182 *3) (|:| -3301 *3))) (-5 *1 (-865 *5 *3)) - (-4 *3 (-864 *5))))) + (-12 (-5 *4 (-70 *5)) (-4 *5 (-318)) (-4 *5 (-989)) + (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-787 *5 *3)) + (-4 *3 (-786 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-376)) (-5 *2 (-2 (|:| -2182 *3) (|:| -3301 *3))) - (-5 *1 (-784 *3 *4)) (-4 *3 (-726 *4)))) + (-12 (-4 *4 (-318)) (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) + (-5 *1 (-709 *3 *4)) (-4 *3 (-666 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-376)) (-4 *3 (-1068)) - (-5 *2 (-2 (|:| -2182 *1) (|:| -3301 *1))) (-4 *1 (-864 *3)))) + (-12 (-4 *3 (-318)) (-4 *3 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) + (-4 *1 (-786 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1068)) - (-5 *2 (-2 (|:| -2182 *3) (|:| -3301 *3))) (-5 *1 (-865 *5 *3)) - (-4 *3 (-864 *5))))) + (-12 (-5 *4 (-70 *5)) (-4 *5 (-318)) (-4 *5 (-989)) + (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-787 *5 *3)) + (-4 *3 (-786 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1068)) - (-5 *2 (-2 (|:| -2182 *1) (|:| -3301 *1))) (-4 *1 (-864 *3)))) + (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) + (-4 *1 (-786 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1068)) - (-5 *2 (-2 (|:| -2182 *3) (|:| -3301 *3))) (-5 *1 (-865 *5 *3)) - (-4 *3 (-864 *5))))) + (-12 (-5 *4 (-70 *5)) (-4 *5 (-510)) (-4 *5 (-989)) + (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-787 *5 *3)) + (-4 *3 (-786 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1068)) - (-5 *2 (-2 (|:| -2182 *1) (|:| -3301 *1))) (-4 *1 (-864 *3)))) + (-12 (-4 *3 (-510)) (-4 *3 (-989)) (-5 *2 (-2 (|:| -2075 *1) (|:| -3023 *1))) + (-4 *1 (-786 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1068)) - (-5 *2 (-2 (|:| -2182 *3) (|:| -3301 *3))) (-5 *1 (-865 *5 *3)) - (-4 *3 (-864 *5))))) + (-12 (-5 *4 (-70 *5)) (-4 *5 (-510)) (-4 *5 (-989)) + (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-787 *5 *3)) + (-4 *3 (-786 *5))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-666 *5)) (-4 *5 (-1068)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-864 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-707 *3)) (-4 *1 (-430 *3)) (-4 *3 (-175)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-606 *5)) (-4 *5 (-989)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-786 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-647 *3)) (-4 *1 (-372 *3)) (-4 *3 (-146)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1068)) (-5 *1 (-865 *2 *3)) - (-4 *3 (-864 *2))))) + (-12 (-5 *4 (-70 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-989)) (-5 *1 (-787 *2 *3)) + (-4 *3 (-786 *2))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1068)) (-5 *1 (-865 *5 *2)) - (-4 *2 (-864 *5))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-784 *2 *3)) (-4 *2 (-726 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-376))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-784 *2 *3)) (-4 *2 (-726 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-376))))) + (-12 (-5 *3 (-70 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-989)) (-5 *1 (-787 *5 *2)) + (-4 *2 (-786 *5))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-318)) (-5 *1 (-709 *2 *3)) (-4 *2 (-666 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-318)) (-5 *1 (-709 *2 *3)) (-4 *2 (-666 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-376)) (-5 *1 (-784 *2 *3)) (-4 *2 (-726 *3)))) + (|partial| -12 (-4 *3 (-318)) (-5 *1 (-709 *2 *3)) (-4 *2 (-666 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-376))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-784 *2 *3)) (-4 *2 (-726 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-376))))) + (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-318)) (-5 *1 (-709 *2 *3)) (-4 *2 (-666 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-376)) (-4 *3 (-1068)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2638 *1))) - (-4 *1 (-864 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-376))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-376))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-376))))) + (-12 (-4 *3 (-318)) (-4 *3 (-989)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2527 *1))) + (-4 *1 (-786 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-376))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-376))))) + (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-376)) (-4 *3 (-1068)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2638 *1))) - (-4 *1 (-864 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-784 *2 *3)) (-4 *2 (-726 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-376))))) + (-12 (-4 *3 (-318)) (-4 *3 (-989)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2527 *1))) + (-4 *1 (-786 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-318)) (-5 *1 (-709 *2 *3)) (-4 *2 (-666 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) (((*1 *1) - (-12 (-4 *1 (-416)) (-2957 (|has| *1 (-6 -4414))) - (-2957 (|has| *1 (-6 -4406))))) - ((*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1120)) (-4 *2 (-859)))) - ((*1 *2 *1) (-12 (-4 *1 (-842 *2)) (-4 *2 (-859)))) ((*1 *1) (-4 *1 (-855))) - ((*1 *1 *1 *1) (-4 *1 (-862)))) + (-12 (-4 *1 (-358)) (-2679 (|has| *1 (-6 -4136))) + (-2679 (|has| *1 (-6 -4128))))) + ((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1041)) (-4 *2 (-781)))) + ((*1 *2 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-781)))) ((*1 *1) (-4 *1 (-777))) + ((*1 *1 *1 *1) (-4 *1 (-784)))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1286 *5)) (-4 *5 (-812)) (-5 *2 (-114)) (-5 *1 (-856 *4 *5)) - (-14 *4 (-789))))) + (-12 (-5 *3 (-1207 *5)) (-4 *5 (-737)) (-5 *2 (-85)) (-5 *1 (-778 *4 *5)) + (-14 *4 (-714))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1286 *5)) (-4 *5 (-812)) (-5 *2 (-114)) (-5 *1 (-856 *4 *5)) - (-14 *4 (-789))))) + (-12 (-5 *3 (-1207 *5)) (-4 *5 (-737)) (-5 *2 (-85)) (-5 *1 (-778 *4 *5)) + (-14 *4 (-714))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1286 *5)) (-4 *5 (-812)) (-5 *2 (-114)) (-5 *1 (-856 *4 *5)) - (-14 *4 (-789))))) -(((*1 *2) (-12 (-5 *2 (-853 (-557))) (-5 *1 (-545)))) - ((*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1120))))) -(((*1 *2) (-12 (-5 *2 (-853 (-557))) (-5 *1 (-545)))) - ((*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-843 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-853 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-843 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-853 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-853 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1054)) (-5 *1 (-851)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-326 (-391)))) (-5 *4 (-659 (-391))) (-5 *2 (-1054)) - (-5 *1 (-851))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-852)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-851)))) - ((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1054)) (-5 *1 (-851)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-659 (-391))) (-5 *5 (-659 (-853 (-391)))) - (-5 *6 (-659 (-326 (-391)))) (-5 *3 (-326 (-391))) (-5 *2 (-1054)) - (-5 *1 (-851)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-659 (-391))) (-5 *5 (-659 (-853 (-391)))) - (-5 *2 (-1054)) (-5 *1 (-851)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-659 (-391))) (-5 *2 (-1054)) - (-5 *1 (-851)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-326 (-391)))) (-5 *4 (-659 (-391))) (-5 *2 (-1054)) - (-5 *1 (-851))))) -(((*1 *2 *3) - (-12 (-4 *1 (-850)) + (-12 (-5 *3 (-1207 *5)) (-4 *5 (-737)) (-5 *2 (-85)) (-5 *1 (-778 *4 *5)) + (-14 *4 (-714))))) +(((*1 *2) (-12 (-5 *2 (-775 (-499))) (-5 *1 (-487)))) + ((*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1041))))) +(((*1 *2) (-12 (-5 *2 (-775 (-499))) (-5 *1 (-487)))) + ((*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-766 *3)) (-4 *3 (-1041)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-775 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-766 *3)) (-4 *3 (-1041)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-775 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-775 *3)) (-4 *3 (-1041))))) +(((*1 *2 *3) + (-12 (-4 *1 (-773)) (-5 *3 - (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) - (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) - (|:| |ub| (-659 (-853 (-229)))))) - (-5 *2 (-1054)))) - ((*1 *2 *3) - (-12 (-4 *1 (-850)) - (-5 *3 (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) - (-5 *2 (-1054))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-217 (-514))) (-5 *1 (-848))))) -(((*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1120)) (-5 *2 (-55))))) -(((*1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1068)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-706 *4 *5 *6 *3)) - (-4 *3 (-704 *4 *5 *6)))) + (-2 (|:| |fn| (-268 (-179))) (|:| -3586 (-599 (-179))) + (|:| |lb| (-599 (-775 (-179)))) (|:| |cf| (-599 (-268 (-179)))) + (|:| |ub| (-599 (-775 (-179)))))) + (-5 *2 (-975)))) + ((*1 *2 *3) + (-12 (-4 *1 (-773)) + (-5 *3 (-2 (|:| |lfn| (-599 (-268 (-179)))) (|:| -3586 (-599 (-179))))) + (-5 *2 (-975))))) +(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-167 (-456))) (-5 *1 (-771))))) +(((*1 *2 *1) (-12 (-4 *1 (-770 *3)) (-4 *3 (-1041)) (-5 *2 (-55))))) +(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-989)))) + ((*1 *2 *3) + (-12 (-4 *4 (-510)) (-4 *4 (-146)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) + (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-646 *4 *5 *6 *3)) + (-4 *3 (-644 *4 *5 *6)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-175)) (-4 *2 (-1068)) (-5 *1 (-732 *2 *3)) (-4 *3 (-666 *2)))) + (-12 (-4 *2 (-146)) (-4 *2 (-989)) (-5 *1 (-672 *2 *3)) (-4 *3 (-606 *2)))) ((*1 *1 *1) - (-12 (-4 *2 (-175)) (-4 *2 (-1068)) (-5 *1 (-732 *2 *3)) (-4 *3 (-666 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-175)) (-4 *2 (-1068)))) - ((*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-175)) (-4 *2 (-1068))))) + (-12 (-4 *2 (-146)) (-4 *2 (-989)) (-5 *1 (-672 *2 *3)) (-4 *3 (-606 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-768 *2)) (-4 *2 (-146)) (-4 *2 (-989)))) + ((*1 *1 *1) (-12 (-5 *1 (-768 *2)) (-4 *2 (-146)) (-4 *2 (-989))))) (((*1 *2 *2) - (-12 (-4 *2 (-175)) (-4 *2 (-1068)) (-5 *1 (-732 *2 *3)) (-4 *3 (-666 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-845 *2)) (-4 *2 (-175)) (-4 *2 (-1068))))) + (-12 (-4 *2 (-146)) (-4 *2 (-989)) (-5 *1 (-672 *2 *3)) (-4 *3 (-606 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-768 *2)) (-4 *2 (-146)) (-4 *2 (-989))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-659 *2)) (-5 *1 (-116 *2)) - (-4 *2 (-1120)))) + (|partial| -12 (-5 *3 (-86)) (-5 *4 (-599 *2)) (-5 *1 (-87 *2)) + (-4 *2 (-1041)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-659 *4))) (-4 *4 (-1120)) - (-5 *1 (-116 *4)))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-599 *4))) (-4 *4 (-1041)) + (-5 *1 (-87 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1120)) (-5 *1 (-116 *4)))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1041)) (-5 *1 (-87 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-659 *4))) (-5 *1 (-116 *4)) - (-4 *4 (-1120)))) + (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-599 *4))) (-5 *1 (-87 *4)) + (-4 *4 (-1041)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-666 *3)) (-4 *3 (-1068)) - (-5 *1 (-732 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-845 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-606 *3)) (-4 *3 (-989)) + (-5 *1 (-672 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-768 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-666 *3)) (-4 *3 (-1068)) - (-5 *1 (-732 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-845 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-606 *3)) (-4 *3 (-989)) + (-5 *1 (-672 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-768 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-115)) (-4 *4 (-1068)) (-5 *1 (-732 *4 *2)) (-4 *2 (-666 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-845 *2)) (-4 *2 (-1068))))) + (-12 (-5 *3 (-86)) (-4 *4 (-989)) (-5 *1 (-672 *4 *2)) (-4 *2 (-606 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-768 *2)) (-4 *2 (-989))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-374 (-115))) (-4 *2 (-1068)) (-5 *1 (-732 *2 *4)) - (-4 *4 (-666 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-374 (-115))) (-5 *1 (-845 *2)) (-4 *2 (-1068))))) -(((*1 *2) (-12 (-5 *2 (-843 (-557))) (-5 *1 (-545)))) - ((*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1120))))) -(((*1 *1 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-841 *2 *3)) (-4 *2 (-726 *3))))) -(((*1 *2 *1) (-12 (-4 *2 (-726 *3)) (-5 *1 (-841 *2 *3)) (-4 *3 (-1068))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-690 *3)) (-4 *3 (-859)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-695 *3)) (-4 *3 (-859)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-839 *3)) (-4 *3 (-859))))) + (-12 (-5 *3 (-316 (-86))) (-4 *2 (-989)) (-5 *1 (-672 *2 *4)) + (-4 *4 (-606 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-316 (-86))) (-5 *1 (-768 *2)) (-4 *2 (-989))))) +(((*1 *2) (-12 (-5 *2 (-766 (-499))) (-5 *1 (-487)))) + ((*1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-1041))))) +(((*1 *1 *2) (-12 (-4 *3 (-989)) (-5 *1 (-764 *2 *3)) (-4 *2 (-666 *3))))) +(((*1 *2 *1) (-12 (-4 *2 (-666 *3)) (-5 *1 (-764 *2 *3)) (-4 *3 (-989))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-630 *3)) (-4 *3 (-781)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-635 *3)) (-4 *3 (-781)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-762 *3)) (-4 *3 (-781))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-659 *4)) (-4 *4 (-376)) (-5 *2 (-1286 *4)) - (-5 *1 (-834 *4 *3)) (-4 *3 (-676 *4))))) + (|partial| -12 (-5 *5 (-599 *4)) (-4 *4 (-318)) (-5 *2 (-1207 *4)) + (-5 *1 (-757 *4 *3)) (-4 *3 (-616 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 *4)) (-4 *4 (-376)) (-5 *2 (-707 *4)) (-5 *1 (-834 *4 *5)) - (-4 *5 (-676 *4)))) + (-12 (-5 *3 (-599 *4)) (-4 *4 (-318)) (-5 *2 (-647 *4)) (-5 *1 (-757 *4 *5)) + (-4 *5 (-616 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *5)) (-5 *4 (-789)) (-4 *5 (-376)) (-5 *2 (-707 *5)) - (-5 *1 (-834 *5 *6)) (-4 *6 (-676 *5))))) + (-12 (-5 *3 (-599 *5)) (-5 *4 (-714)) (-4 *5 (-318)) (-5 *2 (-647 *5)) + (-5 *1 (-757 *5 *6)) (-4 *6 (-616 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-963 *5))) (-5 *4 (-659 (-1196))) (-4 *5 (-568)) - (-5 *2 (-659 (-659 (-305 (-419 (-963 *5)))))) (-5 *1 (-788 *5)))) + (-12 (-5 *3 (-599 (-884 *5))) (-5 *4 (-599 (-1117))) (-4 *5 (-510)) + (-5 *2 (-599 (-599 (-247 (-361 (-884 *5)))))) (-5 *1 (-713 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-659 (-963 *4))) (-4 *4 (-568)) - (-5 *2 (-659 (-659 (-305 (-419 (-963 *4)))))) (-5 *1 (-788 *4)))) + (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-510)) + (-5 *2 (-599 (-599 (-247 (-361 (-884 *4)))))) (-5 *1 (-713 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-707 *7)) + (-12 (-5 *3 (-647 *7)) (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2220 (-659 *6))) *7 *6)) - (-4 *6 (-376)) (-4 *7 (-676 *6)) + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2113 (-599 *6))) *7 *6)) + (-4 *6 (-318)) (-4 *7 (-616 *6)) (-5 *2 - (-2 (|:| |particular| (-3 (-1286 *6) "failed")) - (|:| -2220 (-659 (-1286 *6))))) - (-5 *1 (-833 *6 *7)) (-5 *4 (-1286 *6))))) + (-2 (|:| |particular| (-3 (-1207 *6) "failed")) + (|:| -2113 (-599 (-1207 *6))))) + (-5 *1 (-756 *6 *7)) (-5 *4 (-1207 *6))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) + (-12 (-4 *5 (-318)) (-5 *2 - (-2 (|:| A (-707 *5)) + (-2 (|:| A (-647 *5)) (|:| |eqs| - (-659 - (-2 (|:| C (-707 *5)) (|:| |g| (-1286 *5)) (|:| -3682 *6) + (-599 + (-2 (|:| C (-647 *5)) (|:| |g| (-1207 *5)) (|:| -3404 *6) (|:| |rh| *5)))))) - (-5 *1 (-833 *5 *6)) (-5 *3 (-707 *5)) (-5 *4 (-1286 *5)) - (-4 *6 (-676 *5)))) + (-5 *1 (-756 *5 *6)) (-5 *3 (-647 *5)) (-5 *4 (-1207 *5)) + (-4 *6 (-616 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-4 *6 (-676 *5)) - (-5 *2 (-2 (|:| -1781 (-707 *6)) (|:| |vec| (-1286 *5)))) - (-5 *1 (-833 *5 *6)) (-5 *3 (-707 *6)) (-5 *4 (-1286 *5))))) + (-12 (-4 *5 (-318)) (-4 *6 (-616 *5)) + (-5 *2 (-2 (|:| -1673 (-647 *6)) (|:| |vec| (-1207 *5)))) + (-5 *1 (-756 *5 *6)) (-5 *3 (-647 *6)) (-5 *4 (-1207 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-673 (-419 *6))) (-5 *4 (-1 (-659 *5) *6)) - (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) - (-4 *6 (-1262 *5)) (-5 *2 (-659 (-419 *6))) (-5 *1 (-832 *5 *6)))) + (-12 (-5 *3 (-613 (-361 *6))) (-5 *4 (-1 (-599 *5) *6)) + (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) + (-4 *6 (-1183 *5)) (-5 *2 (-599 (-361 *6))) (-5 *1 (-755 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-673 (-419 *7))) (-5 *4 (-1 (-659 *6) *7)) - (-5 *5 (-1 (-417 *7) *7)) - (-4 *6 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) - (-4 *7 (-1262 *6)) (-5 *2 (-659 (-419 *7))) (-5 *1 (-832 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-674 *6 (-419 *6))) (-5 *4 (-1 (-659 *5) *6)) - (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) - (-4 *6 (-1262 *5)) (-5 *2 (-659 (-419 *6))) (-5 *1 (-832 *5 *6)))) + (-12 (-5 *3 (-613 (-361 *7))) (-5 *4 (-1 (-599 *6) *7)) + (-5 *5 (-1 (-359 *7) *7)) + (-4 *6 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) + (-4 *7 (-1183 *6)) (-5 *2 (-599 (-361 *7))) (-5 *1 (-755 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-614 *6 (-361 *6))) (-5 *4 (-1 (-599 *5) *6)) + (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) + (-4 *6 (-1183 *5)) (-5 *2 (-599 (-361 *6))) (-5 *1 (-755 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-674 *7 (-419 *7))) (-5 *4 (-1 (-659 *6) *7)) - (-5 *5 (-1 (-417 *7) *7)) - (-4 *6 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) - (-4 *7 (-1262 *6)) (-5 *2 (-659 (-419 *7))) (-5 *1 (-832 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-673 (-419 *5))) (-4 *5 (-1262 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) - (-5 *2 (-659 (-419 *5))) (-5 *1 (-832 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-673 (-419 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1262 *5)) - (-4 *5 (-27)) - (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) - (-5 *2 (-659 (-419 *6))) (-5 *1 (-832 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-674 *5 (-419 *5))) (-4 *5 (-1262 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) - (-5 *2 (-659 (-419 *5))) (-5 *1 (-832 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-674 *6 (-419 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1262 *5)) - (-4 *5 (-27)) - (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) - (-5 *2 (-659 (-419 *6))) (-5 *1 (-832 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-659 *5) *6)) - (-4 *5 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *6 (-1262 *5)) - (-5 *2 (-659 (-2 (|:| |poly| *6) (|:| -3682 *3)))) - (-5 *1 (-829 *5 *6 *3 *7)) (-4 *3 (-676 *6)) (-4 *7 (-676 (-419 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-659 *5) *6)) - (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) - (-4 *6 (-1262 *5)) - (-5 *2 (-659 (-2 (|:| |poly| *6) (|:| -3682 (-674 *6 (-419 *6)))))) - (-5 *1 (-832 *5 *6)) (-5 *3 (-674 *6 (-419 *6)))))) + (-12 (-5 *3 (-614 *7 (-361 *7))) (-5 *4 (-1 (-599 *6) *7)) + (-5 *5 (-1 (-359 *7) *7)) + (-4 *6 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) + (-4 *7 (-1183 *6)) (-5 *2 (-599 (-361 *7))) (-5 *1 (-755 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-613 (-361 *5))) (-4 *5 (-1183 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) + (-5 *2 (-599 (-361 *5))) (-5 *1 (-755 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-613 (-361 *6))) (-5 *4 (-1 (-359 *6) *6)) (-4 *6 (-1183 *5)) + (-4 *5 (-27)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) + (-5 *2 (-599 (-361 *6))) (-5 *1 (-755 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-614 *5 (-361 *5))) (-4 *5 (-1183 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) + (-5 *2 (-599 (-361 *5))) (-5 *1 (-755 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-614 *6 (-361 *6))) (-5 *4 (-1 (-359 *6) *6)) (-4 *6 (-1183 *5)) + (-4 *5 (-27)) (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) + (-5 *2 (-599 (-361 *6))) (-5 *1 (-755 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-599 *5) *6)) + (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) + (-5 *2 (-599 (-2 (|:| |poly| *6) (|:| -3404 *3)))) + (-5 *1 (-752 *5 *6 *3 *7)) (-4 *3 (-616 *6)) (-4 *7 (-616 (-361 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-599 *5) *6)) + (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) + (-4 *6 (-1183 *5)) + (-5 *2 (-599 (-2 (|:| |poly| *6) (|:| -3404 (-614 *6 (-361 *6)))))) + (-5 *1 (-755 *5 *6)) (-5 *3 (-614 *6 (-361 *6)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-659 *7) *7 (-1190 *7))) (-5 *5 (-1 (-417 *7) *7)) - (-4 *7 (-1262 *6)) (-4 *6 (-13 (-376) (-149) (-1057 (-419 (-557))))) - (-5 *2 (-659 (-2 (|:| |frac| (-419 *7)) (|:| -3682 *3)))) - (-5 *1 (-829 *6 *7 *3 *8)) (-4 *3 (-676 *7)) (-4 *8 (-676 (-419 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1262 *5)) - (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) - (-5 *2 (-659 (-2 (|:| |frac| (-419 *6)) (|:| -3682 (-674 *6 (-419 *6)))))) - (-5 *1 (-832 *5 *6)) (-5 *3 (-674 *6 (-419 *6)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-4 *7 (-1262 *5)) (-4 *4 (-742 *5 *7)) - (-5 *2 (-2 (|:| -1781 (-707 *6)) (|:| |vec| (-1286 *5)))) - (-5 *1 (-831 *5 *6 *7 *4 *3)) (-4 *6 (-676 *5)) (-4 *3 (-676 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-673 (-419 *2))) (-4 *2 (-1262 *4)) (-5 *1 (-830 *4 *2)) - (-4 *4 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-674 *2 (-419 *2))) (-4 *2 (-1262 *4)) (-5 *1 (-830 *4 *2)) - (-4 *4 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-673 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1262 *5)) - (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2220 (-659 *4)))) - (-5 *1 (-830 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-673 (-419 *6))) (-4 *6 (-1262 *5)) - (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) - (-5 *2 (-2 (|:| -2220 (-659 (-419 *6))) (|:| -1781 (-707 *5)))) - (-5 *1 (-830 *5 *6)) (-5 *4 (-659 (-419 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-674 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1262 *5)) - (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2220 (-659 *4)))) - (-5 *1 (-830 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-674 *6 (-419 *6))) (-4 *6 (-1262 *5)) - (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) - (-5 *2 (-2 (|:| -2220 (-659 (-419 *6))) (|:| -1781 (-707 *5)))) - (-5 *1 (-830 *5 *6)) (-5 *4 (-659 (-419 *6)))))) + (-12 (-5 *4 (-1 (-599 *7) *7 (-1111 *7))) (-5 *5 (-1 (-359 *7) *7)) + (-4 *7 (-1183 *6)) (-4 *6 (-13 (-318) (-120) (-978 (-361 (-499))))) + (-5 *2 (-599 (-2 (|:| |frac| (-361 *7)) (|:| -3404 *3)))) + (-5 *1 (-752 *6 *7 *3 *8)) (-4 *3 (-616 *7)) (-4 *8 (-616 (-361 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-359 *6) *6)) (-4 *6 (-1183 *5)) + (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) + (-5 *2 (-599 (-2 (|:| |frac| (-361 *6)) (|:| -3404 (-614 *6 (-361 *6)))))) + (-5 *1 (-755 *5 *6)) (-5 *3 (-614 *6 (-361 *6)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-318)) (-4 *7 (-1183 *5)) (-4 *4 (-682 *5 *7)) + (-5 *2 (-2 (|:| -1673 (-647 *6)) (|:| |vec| (-1207 *5)))) + (-5 *1 (-754 *5 *6 *7 *4 *3)) (-4 *6 (-616 *5)) (-4 *3 (-616 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-613 (-361 *2))) (-4 *2 (-1183 *4)) (-5 *1 (-753 *4 *2)) + (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-614 *2 (-361 *2))) (-4 *2 (-1183 *4)) (-5 *1 (-753 *4 *2)) + (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-613 (-361 *6))) (-5 *4 (-361 *6)) (-4 *6 (-1183 *5)) + (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2113 (-599 *4)))) + (-5 *1 (-753 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-613 (-361 *6))) (-4 *6 (-1183 *5)) + (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) + (-5 *2 (-2 (|:| -2113 (-599 (-361 *6))) (|:| -1673 (-647 *5)))) + (-5 *1 (-753 *5 *6)) (-5 *4 (-599 (-361 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-614 *6 (-361 *6))) (-5 *4 (-361 *6)) (-4 *6 (-1183 *5)) + (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2113 (-599 *4)))) + (-5 *1 (-753 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-614 *6 (-361 *6))) (-4 *6 (-1183 *5)) + (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) + (-5 *2 (-2 (|:| -2113 (-599 (-361 *6))) (|:| -1673 (-647 *5)))) + (-5 *1 (-753 *5 *6)) (-5 *4 (-599 (-361 *6)))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *3 (-1262 *4)) - (-5 *1 (-829 *4 *3 *2 *5)) (-4 *2 (-676 *3)) (-4 *5 (-676 (-419 *3))))) + (-12 (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *3 (-1183 *4)) + (-5 *1 (-752 *4 *3 *2 *5)) (-4 *2 (-616 *3)) (-4 *5 (-616 (-361 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 *5)) (-4 *4 (-13 (-376) (-149) (-1057 (-419 (-557))))) - (-4 *5 (-1262 *4)) (-5 *1 (-829 *4 *5 *2 *6)) (-4 *2 (-676 *5)) - (-4 *6 (-676 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-659 *5) *6)) - (-4 *5 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *6 (-1262 *5)) - (-5 *2 (-659 (-2 (|:| -4380 *5) (|:| -3682 *3)))) (-5 *1 (-829 *5 *6 *3 *7)) - (-4 *3 (-676 *6)) (-4 *7 (-676 (-419 *6)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *5 (-1262 *4)) - (-5 *2 (-659 (-2 (|:| |deg| (-789)) (|:| -3682 *5)))) - (-5 *1 (-829 *4 *5 *3 *6)) (-4 *3 (-676 *5)) (-4 *6 (-676 (-419 *5)))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1262 *4)) (-5 *1 (-829 *4 *2 *3 *5)) - (-4 *4 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *3 (-676 *2)) - (-4 *5 (-676 (-419 *2)))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1262 *4)) (-5 *1 (-827 *4 *2 *3 *5)) - (-4 *4 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *3 (-676 *2)) - (-4 *5 (-676 (-419 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1262 *4)) (-5 *1 (-827 *4 *2 *5 *3)) - (-4 *4 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *5 (-676 *2)) - (-4 *3 (-676 (-419 *2)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *5 (-1262 *4)) - (-5 *2 (-659 (-2 (|:| -4201 *5) (|:| -3642 *5)))) (-5 *1 (-827 *4 *5 *3 *6)) - (-4 *3 (-676 *5)) (-4 *6 (-676 (-419 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *4 (-1262 *5)) - (-5 *2 (-659 (-2 (|:| -4201 *4) (|:| -3642 *4)))) (-5 *1 (-827 *5 *4 *3 *6)) - (-4 *3 (-676 *4)) (-4 *6 (-676 (-419 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *5 (-1262 *4)) - (-5 *2 (-659 (-2 (|:| -4201 *5) (|:| -3642 *5)))) (-5 *1 (-827 *4 *5 *6 *3)) - (-4 *6 (-676 *5)) (-4 *3 (-676 (-419 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *4 (-1262 *5)) - (-5 *2 (-659 (-2 (|:| -4201 *4) (|:| -3642 *4)))) (-5 *1 (-827 *5 *4 *6 *3)) - (-4 *6 (-676 *4)) (-4 *3 (-676 (-419 *4)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1262 *5)) - (-5 *1 (-827 *5 *2 *3 *6)) (-4 *5 (-13 (-376) (-149) (-1057 (-419 (-557))))) - (-4 *3 (-676 *2)) (-4 *6 (-676 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-659 (-419 *2))) (-4 *2 (-1262 *5)) (-5 *1 (-827 *5 *2 *3 *6)) - (-4 *5 (-13 (-376) (-149) (-1057 (-419 (-557))))) (-4 *3 (-676 *2)) - (-4 *6 (-676 (-419 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-673 *4)) (-4 *4 (-355 *5 *6 *7)) - (-4 *5 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) - (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2220 (-659 *4)))) - (-5 *1 (-826 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-824 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1222) (-977)))))) + (-12 (-5 *3 (-361 *5)) (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) + (-4 *5 (-1183 *4)) (-5 *1 (-752 *4 *5 *2 *6)) (-4 *2 (-616 *5)) + (-4 *6 (-616 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-599 *5) *6)) + (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *6 (-1183 *5)) + (-5 *2 (-599 (-2 (|:| -4102 *5) (|:| -3404 *3)))) (-5 *1 (-752 *5 *6 *3 *7)) + (-4 *3 (-616 *6)) (-4 *7 (-616 (-361 *6)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *5 (-1183 *4)) + (-5 *2 (-599 (-2 (|:| |deg| (-714)) (|:| -3404 *5)))) + (-5 *1 (-752 *4 *5 *3 *6)) (-4 *3 (-616 *5)) (-4 *6 (-616 (-361 *5)))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1183 *4)) (-5 *1 (-752 *4 *2 *3 *5)) + (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *3 (-616 *2)) + (-4 *5 (-616 (-361 *2)))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1183 *4)) (-5 *1 (-750 *4 *2 *3 *5)) + (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *3 (-616 *2)) + (-4 *5 (-616 (-361 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1183 *4)) (-5 *1 (-750 *4 *2 *5 *3)) + (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *5 (-616 *2)) + (-4 *3 (-616 (-361 *2)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *5 (-1183 *4)) + (-5 *2 (-599 (-2 (|:| -3923 *5) (|:| -3364 *5)))) (-5 *1 (-750 *4 *5 *3 *6)) + (-4 *3 (-616 *5)) (-4 *6 (-616 (-361 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *4 (-1183 *5)) + (-5 *2 (-599 (-2 (|:| -3923 *4) (|:| -3364 *4)))) (-5 *1 (-750 *5 *4 *3 *6)) + (-4 *3 (-616 *4)) (-4 *6 (-616 (-361 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *5 (-1183 *4)) + (-5 *2 (-599 (-2 (|:| -3923 *5) (|:| -3364 *5)))) (-5 *1 (-750 *4 *5 *6 *3)) + (-4 *6 (-616 *5)) (-4 *3 (-616 (-361 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *4 (-1183 *5)) + (-5 *2 (-599 (-2 (|:| -3923 *4) (|:| -3364 *4)))) (-5 *1 (-750 *5 *4 *6 *3)) + (-4 *6 (-616 *4)) (-4 *3 (-616 (-361 *4)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-361 *2)) (-4 *2 (-1183 *5)) + (-5 *1 (-750 *5 *2 *3 *6)) (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) + (-4 *3 (-616 *2)) (-4 *6 (-616 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-599 (-361 *2))) (-4 *2 (-1183 *5)) (-5 *1 (-750 *5 *2 *3 *6)) + (-4 *5 (-13 (-318) (-120) (-978 (-361 (-499))))) (-4 *3 (-616 *2)) + (-4 *6 (-616 (-361 *2)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-613 *4)) (-4 *4 (-297 *5 *6 *7)) + (-4 *5 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) + (-4 *6 (-1183 *5)) (-4 *7 (-1183 (-361 *6))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2113 (-599 *4)))) + (-5 *1 (-749 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-748 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1143) (-898)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) - (-5 *1 (-824 *4 *2)) (-4 *2 (-13 (-29 *4) (-1222) (-977)))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) - (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) - (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *2 - (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) - (|:| |expense| (-391)) (|:| |accuracy| (-391)) - (|:| |intermediateResults| (-391)))) - (-5 *1 (-823))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-659 - (-2 - (|:| -4288 - (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) - (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) - (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (|:| -2284 - (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) - (|:| |expense| (-391)) (|:| |accuracy| (-391)) - (|:| |intermediateResults| (-391))))))) - (-5 *1 (-823))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-659 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) - (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) - (|:| |relerr| (-229))))) - (-5 *1 (-571)))) - ((*1 *2 *1) - (-12 (-4 *1 (-625 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-5 *2 (-659 *3)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-659 - (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) - (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) - (|:| |abserr| (-229)) (|:| |relerr| (-229))))) - (-5 *1 (-823))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-823))))) -(((*1 *1) (-5 *1 (-823)))) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) + (-5 *1 (-748 *4 *2)) (-4 *2 (-13 (-29 *4) (-1143) (-898)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1196)) (-4 *6 (-13 (-319) (-1057 (-557)) (-656 (-557)) (-149))) - (-4 *4 (-13 (-29 *6) (-1222) (-977))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2220 (-659 *4)))) - (-5 *1 (-821 *6 *4 *3)) (-4 *3 (-676 *4))))) + (-12 (-5 *5 (-1117)) (-4 *6 (-13 (-261) (-978 (-499)) (-596 (-499)) (-120))) + (-4 *4 (-13 (-29 *6) (-1143) (-898))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2113 (-599 *4)))) + (-5 *1 (-746 *6 *4 *3)) (-4 *3 (-616 *4))))) (((*1 *2 *3) - (-12 (-4 *1 (-820)) + (-12 (-4 *1 (-745)) (-5 *3 - (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) - (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) - (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *2 (-1054))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-1015 *3)) (-4 *3 (-175)) (-5 *1 (-818 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175))))) -(((*1 *1 *1) (-4 *1 (-250))) + (-2 (|:| |xinit| (-179)) (|:| |xend| (-179)) + (|:| |fn| (-1207 (-268 (-179)))) (|:| |yinit| (-599 (-179))) + (|:| |intvals| (-599 (-179))) (|:| |g| (-268 (-179))) + (|:| |abserr| (-179)) (|:| |relerr| (-179)))) + (-5 *2 (-975))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-146)) (-5 *1 (-743 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146))))) +(((*1 *1 *1) (-4 *1 (-200))) ((*1 *1 *1) - (-12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1262 *2)) + (-12 (-4 *2 (-146)) (-5 *1 (-243 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1183 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (-3955 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1236))) - (-12 (-5 *1 (-305 *2)) (-4 *2 (-485)) (-4 *2 (-1236))))) - ((*1 *1 *1) (-4 *1 (-485))) - ((*1 *2 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-363)) (-5 *1 (-539 *3)))) + (-3677 (-12 (-5 *1 (-247 *2)) (-4 *2 (-318)) (-4 *2 (-1157))) + (-12 (-5 *1 (-247 *2)) (-4 *2 (-427)) (-4 *2 (-1157))))) + ((*1 *1 *1) (-4 *1 (-427))) + ((*1 *2 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-305)) (-5 *1 (-481 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) + (-12 (-5 *1 (-673 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-175)) (-4 *2 (-376))))) -(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) - ((*1 *1 *1 *1) (-4 *1 (-813)))) + ((*1 *1 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-146)) (-4 *2 (-318))))) +(((*1 *2 *1) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143))))) + ((*1 *1 *1 *1) (-4 *1 (-738)))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 - (-2 (|:| -3820 *4) (|:| -1737 *4) (|:| |totalpts| (-557)) - (|:| |success| (-114)))) - (-5 *1 (-807)) (-5 *5 (-557))))) + (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) + (|:| |success| (-85)))) + (-5 *1 (-732)) (-5 *5 (-499))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 - (-2 (|:| -3820 *4) (|:| -1737 *4) (|:| |totalpts| (-557)) - (|:| |success| (-114)))) - (-5 *1 (-807)) (-5 *5 (-557))))) + (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) + (|:| |success| (-85)))) + (-5 *1 (-732)) (-5 *5 (-499))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 - (-2 (|:| -3820 *4) (|:| -1737 *4) (|:| |totalpts| (-557)) - (|:| |success| (-114)))) - (-5 *1 (-807)) (-5 *5 (-557))))) + (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) + (|:| |success| (-85)))) + (-5 *1 (-732)) (-5 *5 (-499))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 - (-2 (|:| -3820 *4) (|:| -1737 *4) (|:| |totalpts| (-557)) - (|:| |success| (-114)))) - (-5 *1 (-807)) (-5 *5 (-557))))) + (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) + (|:| |success| (-85)))) + (-5 *1 (-732)) (-5 *5 (-499))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 - (-2 (|:| -3820 *4) (|:| -1737 *4) (|:| |totalpts| (-557)) - (|:| |success| (-114)))) - (-5 *1 (-807)) (-5 *5 (-557))))) + (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) + (|:| |success| (-85)))) + (-5 *1 (-732)) (-5 *5 (-499))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 - (-2 (|:| -3820 *4) (|:| -1737 *4) (|:| |totalpts| (-557)) - (|:| |success| (-114)))) - (-5 *1 (-807)) (-5 *5 (-557))))) + (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) + (|:| |success| (-85)))) + (-5 *1 (-732)) (-5 *5 (-499))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 - (-2 (|:| -3820 *4) (|:| -1737 *4) (|:| |totalpts| (-557)) - (|:| |success| (-114)))) - (-5 *1 (-807)) (-5 *5 (-557))))) + (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) + (|:| |success| (-85)))) + (-5 *1 (-732)) (-5 *5 (-499))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 - (-2 (|:| -3820 *4) (|:| -1737 *4) (|:| |totalpts| (-557)) - (|:| |success| (-114)))) - (-5 *1 (-807)) (-5 *5 (-557))))) + (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) + (|:| |success| (-85)))) + (-5 *1 (-732)) (-5 *5 (-499))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-12 (-5 *3 (-1 (-333) (-333))) (-5 *4 (-333)) (-5 *2 - (-2 (|:| -3820 *4) (|:| -1737 *4) (|:| |totalpts| (-557)) - (|:| |success| (-114)))) - (-5 *1 (-807)) (-5 *5 (-557))))) + (-2 (|:| -3542 *4) (|:| -1629 *4) (|:| |totalpts| (-499)) + (|:| |success| (-85)))) + (-5 *1 (-732)) (-5 *5 (-499))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-557)) (-5 *6 (-1 (-1292) (-1286 *5) (-1286 *5) (-391))) - (-5 *3 (-1286 (-391))) (-5 *5 (-391)) (-5 *2 (-1292)) (-5 *1 (-806))))) + (-12 (-5 *4 (-499)) (-5 *6 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) + (-5 *3 (-1207 (-333))) (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731))))) (((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-557)) - (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1605 (-391)))) - (-5 *7 (-1 (-1292) (-1286 *5) (-1286 *5) (-391))) (-5 *3 (-1286 (-391))) - (-5 *5 (-391)) (-5 *2 (-1292)) (-5 *1 (-806)))) + (-12 (-5 *4 (-499)) + (-5 *6 (-2 (|:| |tryValue| (-333)) (|:| |did| (-333)) (|:| -1508 (-333)))) + (-5 *7 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) (-5 *3 (-1207 (-333))) + (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-557)) - (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1605 (-391)))) - (-5 *7 (-1 (-1292) (-1286 *5) (-1286 *5) (-391))) (-5 *3 (-1286 (-391))) - (-5 *5 (-391)) (-5 *2 (-1292)) (-5 *1 (-806))))) + (-12 (-5 *4 (-499)) + (-5 *6 (-2 (|:| |tryValue| (-333)) (|:| |did| (-333)) (|:| -1508 (-333)))) + (-5 *7 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) (-5 *3 (-1207 (-333))) + (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731))))) (((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-557)) (-5 *6 (-1 (-1292) (-1286 *5) (-1286 *5) (-391))) - (-5 *3 (-1286 (-391))) (-5 *5 (-391)) (-5 *2 (-1292)) (-5 *1 (-806))))) + (-12 (-5 *4 (-499)) (-5 *6 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) + (-5 *3 (-1207 (-333))) (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-557)) (-5 *6 (-1 (-1292) (-1286 *5) (-1286 *5) (-391))) - (-5 *3 (-1286 (-391))) (-5 *5 (-391)) (-5 *2 (-1292)) (-5 *1 (-806)))) + (-12 (-5 *4 (-499)) (-5 *6 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) + (-5 *3 (-1207 (-333))) (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-557)) (-5 *6 (-1 (-1292) (-1286 *5) (-1286 *5) (-391))) - (-5 *3 (-1286 (-391))) (-5 *5 (-391)) (-5 *2 (-1292)) (-5 *1 (-806))))) + (-12 (-5 *4 (-499)) (-5 *6 (-1 (-1213) (-1207 *5) (-1207 *5) (-333))) + (-5 *3 (-1207 (-333))) (-5 *5 (-333)) (-5 *2 (-1213)) (-5 *1 (-731))))) (((*1 *2 *3 *2) - (-12 (-4 *1 (-805)) (-5 *2 (-1054)) + (-12 (-4 *1 (-730)) (-5 *2 (-975)) (-5 *3 - (-2 (|:| |fn| (-326 (-229))) (|:| -1636 (-659 (-1108 (-853 (-229))))) - (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) + (-2 (|:| |fn| (-268 (-179))) (|:| -1539 (-599 (-1029 (-775 (-179))))) + (|:| |abserr| (-179)) (|:| |relerr| (-179)))))) ((*1 *2 *3 *2) - (-12 (-4 *1 (-805)) (-5 *2 (-1054)) + (-12 (-4 *1 (-730)) (-5 *2 (-975)) (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) - (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) - (|:| |relerr| (-229))))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1178)) (-5 *2 (-391)) (-5 *1 (-804))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-391)) (-5 *1 (-804))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-936)) (-5 *1 (-804))))) -(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1178)) (-5 *1 (-804))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-936)) (-5 *1 (-804))))) -(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1178)) (-5 *1 (-804))))) + (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) + (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) + (|:| |relerr| (-179))))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-729))))) +(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-729))))) +(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-857)) (-5 *1 (-729))))) +(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1099)) (-5 *1 (-729))))) +(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-857)) (-5 *1 (-729))))) +(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1099)) (-5 *1 (-729))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-963 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-629 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) + (|partial| -12 (-5 *3 (-884 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-569 (-333))) + (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-963 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-175)) - (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) + (|partial| -12 (-5 *3 (-884 (-142 *5))) (-5 *4 (-857)) (-4 *5 (-146)) + (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-963 *4)) (-4 *4 (-1068)) (-4 *4 (-629 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) + (|partial| -12 (-5 *3 (-884 *4)) (-4 *4 (-989)) (-4 *4 (-569 (-333))) + (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-963 *5)) (-5 *4 (-936)) (-4 *5 (-1068)) - (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) + (|partial| -12 (-5 *3 (-884 *5)) (-5 *4 (-857)) (-4 *5 (-989)) + (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-963 *4))) (-4 *4 (-568)) (-4 *4 (-629 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) + (|partial| -12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-4 *4 (-569 (-333))) + (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-936)) (-4 *5 (-568)) - (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) + (|partial| -12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-857)) (-4 *5 (-510)) + (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-963 (-171 *4)))) (-4 *4 (-568)) - (-4 *4 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) + (|partial| -12 (-5 *3 (-361 (-884 (-142 *4)))) (-4 *4 (-510)) + (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-963 (-171 *5)))) (-5 *4 (-936)) (-4 *5 (-568)) - (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) + (|partial| -12 (-5 *3 (-361 (-884 (-142 *5)))) (-5 *4 (-857)) (-4 *5 (-510)) + (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-859)) - (-4 *4 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) + (|partial| -12 (-5 *3 (-268 *4)) (-4 *4 (-510)) (-4 *4 (-781)) + (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-936)) (-4 *5 (-568)) (-4 *5 (-859)) - (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) + (|partial| -12 (-5 *3 (-268 *5)) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) + (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-859)) - (-4 *4 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) + (|partial| -12 (-5 *3 (-268 (-142 *4))) (-4 *4 (-510)) (-4 *4 (-781)) + (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-568)) - (-4 *5 (-859)) (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) - (-5 *1 (-803 *5))))) + (|partial| -12 (-5 *3 (-268 (-142 *5))) (-5 *4 (-857)) (-4 *5 (-510)) + (-4 *5 (-781)) (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) + (-5 *1 (-728 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-963 *4)) (-4 *4 (-1068)) (-4 *4 (-629 *2)) - (-5 *2 (-391)) (-5 *1 (-803 *4)))) + (|partial| -12 (-5 *3 (-884 *4)) (-4 *4 (-989)) (-4 *4 (-569 *2)) + (-5 *2 (-333)) (-5 *1 (-728 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-963 *5)) (-5 *4 (-936)) (-4 *5 (-1068)) - (-4 *5 (-629 *2)) (-5 *2 (-391)) (-5 *1 (-803 *5)))) + (|partial| -12 (-5 *3 (-884 *5)) (-5 *4 (-857)) (-4 *5 (-989)) + (-4 *5 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-963 *4))) (-4 *4 (-568)) (-4 *4 (-629 *2)) - (-5 *2 (-391)) (-5 *1 (-803 *4)))) + (|partial| -12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-4 *4 (-569 *2)) + (-5 *2 (-333)) (-5 *1 (-728 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-936)) (-4 *5 (-568)) - (-4 *5 (-629 *2)) (-5 *2 (-391)) (-5 *1 (-803 *5)))) + (|partial| -12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-857)) (-4 *5 (-510)) + (-4 *5 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-859)) - (-4 *4 (-629 *2)) (-5 *2 (-391)) (-5 *1 (-803 *4)))) + (|partial| -12 (-5 *3 (-268 *4)) (-4 *4 (-510)) (-4 *4 (-781)) + (-4 *4 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-936)) (-4 *5 (-568)) (-4 *5 (-859)) - (-4 *5 (-629 *2)) (-5 *2 (-391)) (-5 *1 (-803 *5))))) + (|partial| -12 (-5 *3 (-268 *5)) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) + (-4 *5 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-171 (-391))) (-5 *1 (-803 *3)) (-4 *3 (-629 (-391))))) + (-12 (-5 *2 (-142 (-333))) (-5 *1 (-728 *3)) (-4 *3 (-569 (-333))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-936)) (-5 *2 (-171 (-391))) (-5 *1 (-803 *3)) - (-4 *3 (-629 (-391))))) + (-12 (-5 *4 (-857)) (-5 *2 (-142 (-333))) (-5 *1 (-728 *3)) + (-4 *3 (-569 (-333))))) ((*1 *2 *3) - (-12 (-5 *3 (-171 *4)) (-4 *4 (-175)) (-4 *4 (-629 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) + (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-569 (-333))) + (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-171 *5)) (-5 *4 (-936)) (-4 *5 (-175)) (-4 *5 (-629 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) + (-12 (-5 *3 (-142 *5)) (-5 *4 (-857)) (-4 *5 (-146)) (-4 *5 (-569 (-333))) + (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-963 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-629 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) + (-12 (-5 *3 (-884 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-569 (-333))) + (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-963 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-175)) - (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) + (-12 (-5 *3 (-884 (-142 *5))) (-5 *4 (-857)) (-4 *5 (-146)) + (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-963 *4)) (-4 *4 (-1068)) (-4 *4 (-629 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) + (-12 (-5 *3 (-884 *4)) (-4 *4 (-989)) (-4 *4 (-569 (-333))) + (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-963 *5)) (-5 *4 (-936)) (-4 *5 (-1068)) (-4 *5 (-629 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) + (-12 (-5 *3 (-884 *5)) (-5 *4 (-857)) (-4 *5 (-989)) (-4 *5 (-569 (-333))) + (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-963 *4))) (-4 *4 (-568)) (-4 *4 (-629 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) + (-12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-4 *4 (-569 (-333))) + (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-936)) (-4 *5 (-568)) - (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) + (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-857)) (-4 *5 (-510)) + (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-963 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-629 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) + (-12 (-5 *3 (-361 (-884 (-142 *4)))) (-4 *4 (-510)) (-4 *4 (-569 (-333))) + (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-963 (-171 *5)))) (-5 *4 (-936)) (-4 *5 (-568)) - (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) + (-12 (-5 *3 (-361 (-884 (-142 *5)))) (-5 *4 (-857)) (-4 *5 (-510)) + (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-859)) (-4 *4 (-629 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) + (-12 (-5 *3 (-268 *4)) (-4 *4 (-510)) (-4 *4 (-781)) (-4 *4 (-569 (-333))) + (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-936)) (-4 *5 (-568)) (-4 *5 (-859)) - (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5)))) + (-12 (-5 *3 (-268 *5)) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) + (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-859)) - (-4 *4 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *4)))) + (-12 (-5 *3 (-268 (-142 *4))) (-4 *4 (-510)) (-4 *4 (-781)) + (-4 *4 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-568)) (-4 *5 (-859)) - (-4 *5 (-629 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-803 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-803 *3)) (-4 *3 (-629 *2)))) + (-12 (-5 *3 (-268 (-142 *5))) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) + (-4 *5 (-569 (-333))) (-5 *2 (-142 (-333))) (-5 *1 (-728 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-333)) (-5 *1 (-728 *3)) (-4 *3 (-569 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-936)) (-5 *2 (-391)) (-5 *1 (-803 *3)) (-4 *3 (-629 *2)))) + (-12 (-5 *4 (-857)) (-5 *2 (-333)) (-5 *1 (-728 *3)) (-4 *3 (-569 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-963 *4)) (-4 *4 (-1068)) (-4 *4 (-629 *2)) (-5 *2 (-391)) - (-5 *1 (-803 *4)))) + (-12 (-5 *3 (-884 *4)) (-4 *4 (-989)) (-4 *4 (-569 *2)) (-5 *2 (-333)) + (-5 *1 (-728 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-963 *5)) (-5 *4 (-936)) (-4 *5 (-1068)) (-4 *5 (-629 *2)) - (-5 *2 (-391)) (-5 *1 (-803 *5)))) + (-12 (-5 *3 (-884 *5)) (-5 *4 (-857)) (-4 *5 (-989)) (-4 *5 (-569 *2)) + (-5 *2 (-333)) (-5 *1 (-728 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-963 *4))) (-4 *4 (-568)) (-4 *4 (-629 *2)) (-5 *2 (-391)) - (-5 *1 (-803 *4)))) + (-12 (-5 *3 (-361 (-884 *4))) (-4 *4 (-510)) (-4 *4 (-569 *2)) (-5 *2 (-333)) + (-5 *1 (-728 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-936)) (-4 *5 (-568)) (-4 *5 (-629 *2)) - (-5 *2 (-391)) (-5 *1 (-803 *5)))) + (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-569 *2)) + (-5 *2 (-333)) (-5 *1 (-728 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-859)) (-4 *4 (-629 *2)) - (-5 *2 (-391)) (-5 *1 (-803 *4)))) + (-12 (-5 *3 (-268 *4)) (-4 *4 (-510)) (-4 *4 (-781)) (-4 *4 (-569 *2)) + (-5 *2 (-333)) (-5 *1 (-728 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-936)) (-4 *5 (-568)) (-4 *5 (-859)) - (-4 *5 (-629 *2)) (-5 *2 (-391)) (-5 *1 (-803 *5))))) + (-12 (-5 *3 (-268 *5)) (-5 *4 (-857)) (-4 *5 (-510)) (-4 *5 (-781)) + (-4 *5 (-569 *2)) (-5 *2 (-333)) (-5 *1 (-728 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-789)) (-5 *1 (-801 *2)) (-4 *2 (-38 (-419 (-557)))) - (-4 *2 (-175))))) + (-12 (-5 *3 (-714)) (-5 *1 (-726 *2)) (-4 *2 (-38 (-361 (-499)))) + (-4 *2 (-146))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-789)) (-5 *1 (-801 *2)) (-4 *2 (-38 (-419 (-557)))) - (-4 *2 (-175))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1068))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1068))))) + (-12 (-5 *3 (-714)) (-5 *1 (-726 *2)) (-4 *2 (-38 (-361 (-499)))) + (-4 *2 (-146))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-989))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-989))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-659 (-799 *3))) (-5 *1 (-799 *3)) (-4 *3 (-568)) - (-4 *3 (-1068))))) + (-12 (-5 *2 (-599 (-724 *3))) (-5 *1 (-724 *3)) (-4 *3 (-510)) + (-4 *3 (-989))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| -4184 *3) (|:| |coef1| (-799 *3)) (|:| |coef2| (-799 *3)))) - (-5 *1 (-799 *3)) (-4 *3 (-568)) (-4 *3 (-1068))))) + (-5 *2 (-2 (|:| -3906 *3) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3)))) + (-5 *1 (-724 *3)) (-4 *3 (-510)) (-4 *3 (-989))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4184 *3) (|:| |coef1| (-799 *3)))) (-5 *1 (-799 *3)) - (-4 *3 (-568)) (-4 *3 (-1068))))) + (-12 (-5 *2 (-2 (|:| -3906 *3) (|:| |coef1| (-724 *3)))) (-5 *1 (-724 *3)) + (-4 *3 (-510)) (-4 *3 (-989))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4184 *3) (|:| |coef2| (-799 *3)))) (-5 *1 (-799 *3)) - (-4 *3 (-568)) (-4 *3 (-1068))))) + (-12 (-5 *2 (-2 (|:| -3906 *3) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) + (-4 *3 (-510)) (-4 *3 (-989))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-707 (-419 (-557)))) + (-12 (-5 *3 (-647 (-361 (-499)))) (-5 *2 - (-659 - (-2 (|:| |outval| *4) (|:| |outmult| (-557)) - (|:| |outvect| (-659 (-707 *4)))))) - (-5 *1 (-797 *4)) (-4 *4 (-13 (-376) (-858)))))) + (-599 + (-2 (|:| |outval| *4) (|:| |outmult| (-499)) + (|:| |outvect| (-599 (-647 *4)))))) + (-5 *1 (-722 *4)) (-4 *4 (-13 (-318) (-780)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-707 (-419 (-557)))) (-5 *2 (-659 *4)) (-5 *1 (-797 *4)) - (-4 *4 (-13 (-376) (-858)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-707 *2)) (-4 *2 (-175)) (-5 *1 (-148 *2)))) + (-12 (-5 *3 (-647 (-361 (-499)))) (-5 *2 (-599 *4)) (-5 *1 (-722 *4)) + (-4 *4 (-13 (-318) (-780)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-647 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-175)) (-4 *2 (-1262 *4)) (-5 *1 (-180 *4 *2 *3)) - (-4 *3 (-742 *4 *2)))) + (-12 (-4 *4 (-146)) (-4 *2 (-1183 *4)) (-5 *1 (-151 *4 *2 *3)) + (-4 *3 (-682 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-707 (-419 (-963 *5)))) (-5 *4 (-1196)) (-5 *2 (-963 *5)) - (-5 *1 (-304 *5)) (-4 *5 (-464)))) + (-12 (-5 *3 (-647 (-361 (-884 *5)))) (-5 *4 (-1117)) (-5 *2 (-884 *5)) + (-5 *1 (-246 *5)) (-4 *5 (-406)))) ((*1 *2 *3) - (-12 (-5 *3 (-707 (-419 (-963 *4)))) (-5 *2 (-963 *4)) (-5 *1 (-304 *4)) - (-4 *4 (-464)))) - ((*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1262 *3)))) + (-12 (-5 *3 (-647 (-361 (-884 *4)))) (-5 *2 (-884 *4)) (-5 *1 (-246 *4)) + (-4 *4 (-406)))) + ((*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1183 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-707 (-171 (-419 (-557))))) (-5 *2 (-963 (-171 (-419 (-557))))) - (-5 *1 (-782 *4)) (-4 *4 (-13 (-376) (-858))))) + (-12 (-5 *3 (-647 (-142 (-361 (-499))))) (-5 *2 (-884 (-142 (-361 (-499))))) + (-5 *1 (-707 *4)) (-4 *4 (-13 (-318) (-780))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-707 (-171 (-419 (-557))))) (-5 *4 (-1196)) - (-5 *2 (-963 (-171 (-419 (-557))))) (-5 *1 (-782 *5)) - (-4 *5 (-13 (-376) (-858))))) + (-12 (-5 *3 (-647 (-142 (-361 (-499))))) (-5 *4 (-1117)) + (-5 *2 (-884 (-142 (-361 (-499))))) (-5 *1 (-707 *5)) + (-4 *5 (-13 (-318) (-780))))) ((*1 *2 *3) - (-12 (-5 *3 (-707 (-419 (-557)))) (-5 *2 (-963 (-419 (-557)))) - (-5 *1 (-797 *4)) (-4 *4 (-13 (-376) (-858))))) + (-12 (-5 *3 (-647 (-361 (-499)))) (-5 *2 (-884 (-361 (-499)))) + (-5 *1 (-722 *4)) (-4 *4 (-13 (-318) (-780))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-707 (-419 (-557)))) (-5 *4 (-1196)) - (-5 *2 (-963 (-419 (-557)))) (-5 *1 (-797 *5)) (-4 *5 (-13 (-376) (-858)))))) + (-12 (-5 *3 (-647 (-361 (-499)))) (-5 *4 (-1117)) + (-5 *2 (-884 (-361 (-499)))) (-5 *1 (-722 *5)) (-4 *5 (-13 (-318) (-780)))))) (((*1 *2 *3) - (-12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-319)) (-5 *2 (-659 (-789))) - (-5 *1 (-796 *3 *4 *5 *6 *7)) (-4 *3 (-1262 *6)) (-4 *7 (-967 *6 *4 *5))))) + (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)) (-5 *2 (-599 (-714))) + (-5 *1 (-721 *3 *4 *5 *6 *7)) (-4 *3 (-1183 *6)) (-4 *7 (-888 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1262 *9)) (-4 *7 (-813)) (-4 *8 (-859)) (-4 *9 (-319)) - (-4 *10 (-967 *9 *7 *8)) + (-12 (-4 *6 (-1183 *9)) (-4 *7 (-738)) (-4 *8 (-781)) (-4 *9 (-261)) + (-4 *10 (-888 *9 *7 *8)) (-5 *2 - (-2 (|:| |deter| (-659 (-1190 *10))) - (|:| |dterm| (-659 (-659 (-2 (|:| -3477 (-789)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-659 *6)) (|:| |nlead| (-659 *10)))) - (-5 *1 (-796 *6 *7 *8 *9 *10)) (-5 *3 (-1190 *10)) (-5 *4 (-659 *6)) - (-5 *5 (-659 *10))))) + (-2 (|:| |deter| (-599 (-1111 *10))) + (|:| |dterm| (-599 (-599 (-2 (|:| -3199 (-714)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-599 *6)) (|:| |nlead| (-599 *10)))) + (-5 *1 (-721 *6 *7 *8 *9 *10)) (-5 *3 (-1111 *10)) (-5 *4 (-599 *6)) + (-5 *5 (-599 *10))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1262 *5)) (-5 *2 (-659 *3)) - (-5 *1 (-795 *4 *5 *6 *3 *7)) (-4 *3 (-1262 *6)) (-14 *7 (-936))))) + (-12 (-4 *4 (-305)) (-4 *5 (-283 *4)) (-4 *6 (-1183 *5)) (-5 *2 (-599 *3)) + (-5 *1 (-720 *4 *5 *6 *3 *7)) (-4 *3 (-1183 *6)) (-14 *7 (-857))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-659 (-2 (|:| |val| (-114)) (|:| -1741 *4)))) - (-5 *1 (-794 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 (-599 (-2 (|:| |val| (-85)) (|:| -1633 *4)))) + (-5 *1 (-719 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1178)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) - (-4 *4 (-1084 *6 *7 *8)) (-5 *2 (-1292)) (-5 *1 (-794 *6 *7 *8 *4 *5)) - (-4 *5 (-1090 *6 *7 *8 *4))))) + (-12 (-5 *3 (-1099)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) + (-4 *4 (-1005 *6 *7 *8)) (-5 *2 (-1213)) (-5 *1 (-719 *6 *7 *8 *4 *5)) + (-4 *5 (-1011 *6 *7 *8 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-288 *3 *2)) - (-4 *2 (-13 (-27) (-1222) (-433 *3))))) + (-12 (-4 *3 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *3 *2)) + (-4 *2 (-13 (-27) (-1143) (-375 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-557)) (-656 (-557)))) - (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-433 *4))))) - ((*1 *1 *1) (-5 *1 (-391))) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) + (-5 *1 (-230 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4))))) + ((*1 *1 *1) (-5 *1 (-333))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-659 (-2 (|:| |val| *3) (|:| -1741 *4)))) - (-5 *1 (-794 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) + (-12 (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *3 (-1005 *5 *6 *7)) + (-5 *2 (-599 (-2 (|:| |val| *3) (|:| -1633 *4)))) + (-5 *1 (-719 *5 *6 *7 *3 *4)) (-4 *4 (-1011 *5 *6 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *2 (-1084 *4 *5 *6)) - (-5 *1 (-794 *4 *5 *6 *2 *3)) (-4 *3 (-1090 *4 *5 *6 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-391)))) - ((*1 *1 *1 *1) (-4 *1 (-556))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-736 *2)) (-4 *2 (-376)))) - ((*1 *1 *2) (-12 (-5 *1 (-736 *2)) (-4 *2 (-376)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-789))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-503)) (-5 *4 (-971)) (-5 *2 (-709 (-544))) (-5 *1 (-544)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-971)) (-4 *3 (-1120)) (-5 *2 (-709 *1)) (-4 *1 (-785 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-785 *3)) (-4 *3 (-1120)) (-5 *2 (-114))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-707 (-171 (-419 (-557))))) - (-5 *2 - (-659 - (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-557)) - (|:| |outvect| (-659 (-707 (-171 *4))))))) - (-5 *1 (-782 *4)) (-4 *4 (-13 (-376) (-858)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-707 (-171 (-419 (-557))))) (-5 *2 (-659 (-171 *4))) - (-5 *1 (-782 *4)) (-4 *4 (-13 (-376) (-858)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-779)))) -(((*1 *1 *1 *1) (-4 *1 (-485))) ((*1 *1 *1 *1) (-4 *1 (-779)))) -(((*1 *1 *1 *1) (-4 *1 (-779)))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-777))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-777))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-963 (-557)))) (-5 *1 (-448)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-707 (-229))) (-5 *2 (-1122)) (-5 *1 (-777)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-707 (-557))) (-5 *2 (-1122)) (-5 *1 (-777))))) -(((*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-777))))) -(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-777))))) -(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-777))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-229))) (-5 *5 (-557)) (-5 *6 (-1178)) (-5 *3 (-229)) - (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-229))) (-5 *5 (-557)) (-5 *6 (-1178)) (-5 *3 (-229)) - (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-557)) (-5 *5 (-171 (-229))) (-5 *6 (-1178)) (-5 *4 (-229)) - (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1178)) (-5 *4 (-171 (-229))) (-5 *5 (-557)) (-5 *2 (-1054)) - (-5 *1 (-776))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1178)) (-5 *4 (-171 (-229))) (-5 *5 (-557)) (-5 *2 (-1054)) - (-5 *1 (-776))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-229))) (-5 *5 (-557)) (-5 *6 (-1178)) (-5 *3 (-229)) - (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-229))) (-5 *5 (-557)) (-5 *6 (-1178)) (-5 *3 (-229)) - (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-171 (-229))) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-776))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1178)) (-5 *4 (-557)) (-5 *5 (-707 (-229))) (-5 *2 (-1054)) - (-5 *1 (-775))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1178)) (-5 *4 (-557)) (-5 *5 (-707 (-229))) (-5 *2 (-1054)) - (-5 *1 (-775))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1178)) (-5 *5 (-707 (-229))) (-5 *6 (-707 (-557))) - (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-775))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-775))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) (-5 *4 (-229)) - (-5 *2 (-1054)) (-5 *1 (-774))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-707 (-229))) (-5 *5 (-707 (-557))) (-5 *3 (-557)) - (-5 *2 (-1054)) (-5 *1 (-774))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) - (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1054)) - (-5 *1 (-774))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-707 (-229))) (-5 *5 (-707 (-557))) (-5 *3 (-557)) - (-5 *2 (-1054)) (-5 *1 (-774))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) (-5 *4 (-229)) (-5 *2 (-1054)) - (-5 *1 (-774))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-774))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-707 (-229))) (-5 *5 (-707 (-557))) (-5 *3 (-557)) - (-5 *2 (-1054)) (-5 *1 (-774))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-707 (-229))) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-774))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-774))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-774))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-171 (-229)))) (-5 *2 (-1054)) - (-5 *1 (-774))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-114)) (-5 *5 (-707 (-171 (-229)))) - (-5 *2 (-1054)) (-5 *1 (-773))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-114)) (-5 *5 (-707 (-229))) (-5 *2 (-1054)) - (-5 *1 (-773))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-229)) - (-5 *2 (-1054)) (-5 *1 (-773)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-402)) - (-5 *4 (-229)) (-5 *2 (-1054)) (-5 *1 (-773))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-557)) (-5 *5 (-114)) (-5 *6 (-707 (-229))) (-5 *4 (-229)) - (-5 *2 (-1054)) (-5 *1 (-773))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) (-5 *4 (-229)) (-5 *2 (-1054)) - (-5 *1 (-773))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-707 (-229))) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-773))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-773))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-773))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-773))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-773))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-773))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-773))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-773))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-707 (-229))) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-773))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-773))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-557)) (-5 *5 (-707 (-171 (-229)))) - (-5 *2 (-1054)) (-5 *1 (-772))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-557)) (-5 *5 (-707 (-171 (-229)))) - (-5 *2 (-1054)) (-5 *1 (-772))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-171 (-229)))) (-5 *2 (-1054)) - (-5 *1 (-772))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-557)) (-5 *5 (-707 (-229))) (-5 *2 (-1054)) - (-5 *1 (-772))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-557)) (-5 *5 (-707 (-229))) (-5 *2 (-1054)) - (-5 *1 (-772))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-772))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-707 (-229))) (-5 *5 (-707 (-557))) (-5 *3 (-557)) - (-5 *2 (-1054)) (-5 *1 (-772))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-659 (-114))) (-5 *5 (-707 (-229))) (-5 *6 (-707 (-557))) - (-5 *7 (-229)) (-5 *3 (-557)) (-5 *2 (-1054)) (-5 *1 (-772))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-707 (-557))) (-5 *5 (-114)) (-5 *7 (-707 (-229))) - (-5 *3 (-557)) (-5 *6 (-229)) (-5 *2 (-1054)) (-5 *1 (-772))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-659 (-114))) (-5 *7 (-707 (-229))) (-5 *8 (-707 (-557))) - (-5 *3 (-557)) (-5 *4 (-229)) (-5 *5 (-114)) (-5 *2 (-1054)) - (-5 *1 (-772))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) (-5 *4 (-229)) (-5 *2 (-1054)) - (-5 *1 (-771))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 - *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) - (-12 (-5 *4 (-707 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) - (-5 *7 (-707 (-557))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-557)) - (-5 *2 (-1054)) (-5 *1 (-771))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 - *8) - (-12 (-5 *5 (-707 (-229))) (-5 *6 (-114)) (-5 *7 (-707 (-557))) - (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-557)) - (-5 *4 (-229)) (-5 *2 (-1054)) (-5 *1 (-771))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-114)) (-5 *2 (-1054)) - (-5 *1 (-771))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1054)) - (-5 *1 (-771))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1054)) - (-5 *1 (-771))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1054)) - (-5 *1 (-771))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-557)) (-5 *5 (-114)) (-5 *6 (-707 (-229))) - (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-229)) - (-5 *2 (-1054)) (-5 *1 (-771))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) (-5 *4 (-229)) (-5 *2 (-1054)) - (-5 *1 (-770))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-557)) (-5 *5 (-707 (-229))) (-5 *6 (-229)) - (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1178)) (-5 *5 (-707 (-229))) (-5 *6 (-229)) - (-5 *7 (-707 (-557))) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-707 (-229))) (-5 *5 (-707 (-557))) (-5 *6 (-229)) - (-5 *3 (-557)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1178)) (-5 *5 (-707 (-229))) (-5 *6 (-229)) - (-5 *7 (-707 (-557))) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-229)) (-5 *2 (-1054)) - (-5 *1 (-770))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-229)) (-5 *2 (-1054)) - (-5 *1 (-770))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) (-5 *4 (-229)) (-5 *2 (-1054)) - (-5 *1 (-770))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) (-5 *4 (-229)) (-5 *2 (-1054)) - (-5 *1 (-770))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) (-5 *4 (-229)) (-5 *2 (-1054)) - (-5 *1 (-770))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-707 (-229))) (-5 *6 (-707 (-557))) (-5 *3 (-557)) - (-5 *4 (-229)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-229)) (-5 *2 (-1054)) - (-5 *1 (-770))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-229)) (-5 *2 (-1054)) - (-5 *1 (-769))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-229)) (-5 *2 (-1054)) - (-5 *1 (-769))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-707 (-229))) (-5 *5 (-707 (-557))) (-5 *6 (-229)) - (-5 *3 (-557)) (-5 *2 (-1054)) (-5 *1 (-769))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-769))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-769))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-229)) (-5 *2 (-1054)) - (-5 *1 (-769))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-769))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-769))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-769))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-769))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 - *4) - (-12 (-5 *4 (-557)) (-5 *5 (-707 (-229))) (-5 *6 (-693 (-229))) - (-5 *3 (-229)) (-5 *2 (-1054)) (-5 *1 (-768))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *5 (-1178)) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1054)) - (-5 *1 (-768))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) (-5 *4 (-229)) (-5 *2 (-1054)) - (-5 *1 (-768))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-557)) (-5 *5 (-707 (-229))) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP)))) - (-5 *4 (-229)) (-5 *2 (-1054)) (-5 *1 (-767))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-707 (-229))) (-5 *4 (-557)) (-5 *5 (-229)) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1054)) - (-5 *1 (-767)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-707 (-229))) (-5 *4 (-557)) (-5 *5 (-229)) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-402)) - (-5 *2 (-1054)) (-5 *1 (-767))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-557)) (-5 *5 (-707 (-229))) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-229)) - (-5 *2 (-1054)) (-5 *1 (-767))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-707 (-229))) (-5 *4 (-557)) (-5 *5 (-229)) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1054)) - (-5 *1 (-767))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-557)) (-5 *5 (-1178)) (-5 *6 (-707 (-229))) - (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) - (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) - (-5 *2 (-1054)) (-5 *1 (-767))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-557)) (-5 *5 (-1178)) (-5 *6 (-707 (-229))) - (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) - (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) - (-5 *2 (-1054)) (-5 *1 (-767))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-557)) (-5 *5 (-707 (-229))) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *3 (-229)) - (-5 *2 (-1054)) (-5 *1 (-767))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-557)) (-5 *5 (-707 (-229))) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) - (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) - (-5 *2 (-1054)) (-5 *1 (-767))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-229)) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1054)) - (-5 *1 (-766))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-707 (-229))) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-766))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-229)) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1054)) - (-5 *1 (-766))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) (-5 *2 (-1054)) (-5 *1 (-766))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1054)) - (-5 *1 (-766))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1054)) - (-5 *1 (-766))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1054)) - (-5 *1 (-766))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1054)) - (-5 *1 (-766))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3493)))) (-5 *2 (-1054)) - (-5 *1 (-766))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-557)) (-5 *5 (-707 (-229))) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3493)))) (-5 *3 (-229)) - (-5 *2 (-1054)) (-5 *1 (-766))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3493)))) (-5 *2 (-1054)) - (-5 *1 (-766))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3493)))) (-5 *2 (-1054)) - (-5 *1 (-766))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-765))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-765))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-765))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-765))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-1178)) (-5 *5 (-707 (-229))) (-5 *2 (-1054)) - (-5 *1 (-765))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-1178)) (-5 *5 (-707 (-229))) (-5 *2 (-1054)) - (-5 *1 (-765))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-1178)) (-5 *5 (-707 (-229))) (-5 *2 (-1054)) - (-5 *1 (-765))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-1178)) (-5 *5 (-707 (-229))) (-5 *2 (-1054)) - (-5 *1 (-765))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-765))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-765))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-765))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *2 (-1054)) (-5 *1 (-765))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-229)) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1054)) - (-5 *1 (-764))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-557)) (-5 *4 (-707 (-229))) (-5 *5 (-229)) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1054)) - (-5 *1 (-764))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-229)) (-5 *4 (-557)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3493)))) (-5 *2 (-1054)) - (-5 *1 (-764))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-707 (-229))) (-5 *4 (-557)) (-5 *5 (-114)) (-5 *2 (-1054)) - (-5 *1 (-763))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-707 (-229))) (-5 *4 (-557)) (-5 *5 (-114)) (-5 *2 (-1054)) - (-5 *1 (-763))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-762 *3)) (-4 *3 (-175))))) + (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *2 (-1005 *4 *5 *6)) + (-5 *1 (-719 *4 *5 *6 *2 *3)) (-4 *3 (-1011 *4 *5 *6 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-333)))) + ((*1 *1 *1 *1) (-4 *1 (-498))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) + ((*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-714))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-445)) (-5 *4 (-892)) (-5 *2 (-649 (-486))) (-5 *1 (-486)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-892)) (-4 *3 (-1041)) (-5 *2 (-649 *1)) (-4 *1 (-710 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-710 *3)) (-4 *3 (-1041)) (-5 *2 (-85))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-647 (-142 (-361 (-499))))) + (-5 *2 + (-599 + (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-499)) + (|:| |outvect| (-599 (-647 (-142 *4))))))) + (-5 *1 (-707 *4)) (-4 *4 (-13 (-318) (-780)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-647 (-142 (-361 (-499))))) (-5 *2 (-599 (-142 *4))) + (-5 *1 (-707 *4)) (-4 *4 (-13 (-318) (-780)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-704)))) +(((*1 *1 *1 *1) (-4 *1 (-427))) ((*1 *1 *1 *1) (-4 *1 (-704)))) +(((*1 *1 *1 *1) (-4 *1 (-704)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-857)) (-4 *1 (-702 *3)) (-4 *3 (-146))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1190 *6)) (-5 *3 (-557)) (-4 *6 (-319)) (-4 *4 (-813)) - (-4 *5 (-859)) (-5 *1 (-760 *4 *5 *6 *7)) (-4 *7 (-967 *6 *4 *5))))) + (-12 (-5 *2 (-1111 *6)) (-5 *3 (-499)) (-4 *6 (-261)) (-4 *4 (-738)) + (-4 *5 (-781)) (-5 *1 (-700 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1190 *9)) (-5 *4 (-659 *7)) (-4 *7 (-859)) - (-4 *9 (-967 *8 *6 *7)) (-4 *6 (-813)) (-4 *8 (-319)) (-5 *2 (-659 (-789))) - (-5 *1 (-760 *6 *7 *8 *9)) (-5 *5 (-789))))) + (-12 (-5 *3 (-1111 *9)) (-5 *4 (-599 *7)) (-4 *7 (-781)) + (-4 *9 (-888 *8 *6 *7)) (-4 *6 (-738)) (-4 *8 (-261)) (-5 *2 (-599 (-714))) + (-5 *1 (-700 *6 *7 *8 *9)) (-5 *5 (-714))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-557)) (-5 *4 (-417 *2)) (-4 *2 (-967 *7 *5 *6)) - (-5 *1 (-760 *5 *6 *7 *2)) (-4 *5 (-813)) (-4 *6 (-859)) (-4 *7 (-319))))) + (-12 (-5 *3 (-499)) (-5 *4 (-359 *2)) (-4 *2 (-888 *7 *5 *6)) + (-5 *1 (-700 *5 *6 *7 *2)) (-4 *5 (-738)) (-4 *6 (-781)) (-4 *7 (-261))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1190 *9)) (-5 *4 (-659 *7)) (-5 *5 (-659 (-659 *8))) - (-4 *7 (-859)) (-4 *8 (-319)) (-4 *9 (-967 *8 *6 *7)) (-4 *6 (-813)) + (-12 (-5 *3 (-1111 *9)) (-5 *4 (-599 *7)) (-5 *5 (-599 (-599 *8))) + (-4 *7 (-781)) (-4 *8 (-261)) (-4 *9 (-888 *8 *6 *7)) (-4 *6 (-738)) (-5 *2 - (-2 (|:| |upol| (-1190 *8)) (|:| |Lval| (-659 *8)) - (|:| |Lfact| (-659 (-2 (|:| -4160 (-1190 *8)) (|:| -2630 (-557))))) + (-2 (|:| |upol| (-1111 *8)) (|:| |Lval| (-599 *8)) + (|:| |Lfact| (-599 (-2 (|:| -3882 (-1111 *8)) (|:| -2519 (-499))))) (|:| |ctpol| *8))) - (-5 *1 (-760 *6 *7 *8 *9))))) + (-5 *1 (-700 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-659 *7)) (-5 *5 (-659 (-659 *8))) (-4 *7 (-859)) (-4 *8 (-319)) - (-4 *6 (-813)) (-4 *9 (-967 *8 *6 *7)) + (-12 (-5 *4 (-599 *7)) (-5 *5 (-599 (-599 *8))) (-4 *7 (-781)) (-4 *8 (-261)) + (-4 *6 (-738)) (-4 *9 (-888 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) - (|:| |suPart| (-659 (-2 (|:| -4160 (-1190 *9)) (|:| -2630 (-557))))))) - (-5 *1 (-760 *6 *7 *8 *9)) (-5 *3 (-1190 *9))))) + (|:| |suPart| (-599 (-2 (|:| -3882 (-1111 *9)) (|:| -2519 (-499))))))) + (-5 *1 (-700 *6 *7 *8 *9)) (-5 *3 (-1111 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-557)) (-4 *6 (-813)) (-4 *7 (-859)) (-4 *8 (-319)) - (-4 *9 (-967 *8 *6 *7)) - (-5 *2 (-2 (|:| -2212 (-1190 *9)) (|:| |polval| (-1190 *8)))) - (-5 *1 (-760 *6 *7 *8 *9)) (-5 *3 (-1190 *9)) (-5 *4 (-1190 *8))))) + (-12 (-5 *5 (-499)) (-4 *6 (-738)) (-4 *7 (-781)) (-4 *8 (-261)) + (-4 *9 (-888 *8 *6 *7)) + (-5 *2 (-2 (|:| -2105 (-1111 *9)) (|:| |polval| (-1111 *8)))) + (-5 *1 (-700 *6 *7 *8 *9)) (-5 *3 (-1111 *9)) (-5 *4 (-1111 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-813)) (-4 *4 (-859)) (-4 *6 (-319)) (-5 *2 (-417 *3)) - (-5 *1 (-760 *5 *4 *6 *3)) (-4 *3 (-967 *6 *5 *4))))) + (-12 (-4 *5 (-738)) (-4 *4 (-781)) (-4 *6 (-261)) (-5 *2 (-359 *3)) + (-5 *1 (-700 *5 *4 *6 *3)) (-4 *3 (-888 *6 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 (-2 (|:| -4160 (-1190 *6)) (|:| -2630 (-557))))) - (-4 *6 (-319)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-557)) - (-5 *1 (-760 *4 *5 *6 *7)) (-4 *7 (-967 *6 *4 *5))))) + (-12 (-5 *3 (-599 (-2 (|:| -3882 (-1111 *6)) (|:| -2519 (-499))))) + (-4 *6 (-261)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-499)) + (-5 *1 (-700 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-319)) (-5 *2 (-417 *3)) - (-5 *1 (-760 *4 *5 *6 *3)) (-4 *3 (-967 *6 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-859)) (-5 *1 (-757 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-756))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-5 *1 (-754 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-754 *2)) (-4 *2 (-1120)))) - ((*1 *1) (-12 (-5 *1 (-754 *2)) (-4 *2 (-1120))))) + (-12 (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-261)) (-5 *2 (-359 *3)) + (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-888 *6 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-697 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-696))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-694 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1041)))) + ((*1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1041))))) (((*1 *2 *1) - (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812)) (-5 *2 (-789)))) + (-12 (-4 *1 (-280 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-714)))) ((*1 *2 *1) - (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1120)) (-5 *2 (-789)))) + (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)) (-5 *2 (-714)))) ((*1 *2 *1) - (-12 (-5 *2 (-789)) (-5 *1 (-753 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-744))))) + (-12 (-5 *2 (-714)) (-5 *1 (-693 *3 *4)) (-4 *3 (-989)) (-4 *4 (-684))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-568)) (-4 *2 (-967 *3 *5 *4)) (-5 *1 (-750 *5 *4 *6 *2)) - (-5 *3 (-419 (-963 *6))) (-4 *5 (-813)) - (-4 *4 (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $)))))))) + (-12 (-4 *6 (-510)) (-4 *2 (-888 *3 *5 *4)) (-5 *1 (-690 *5 *4 *6 *2)) + (-5 *3 (-361 (-884 *6))) (-4 *5 (-738)) + (-4 *4 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1190 (-963 *6))) (-4 *6 (-568)) - (-4 *2 (-967 (-419 (-963 *6)) *5 *4)) (-5 *1 (-750 *5 *4 *6 *2)) - (-4 *5 (-813)) (-4 *4 (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $)))))))) + (-12 (-5 *3 (-1111 (-884 *6))) (-4 *6 (-510)) + (-4 *2 (-888 (-361 (-884 *6)) *5 *4)) (-5 *1 (-690 *5 *4 *6 *2)) + (-4 *5 (-738)) (-4 *4 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1190 *2)) (-4 *2 (-967 (-419 (-963 *6)) *5 *4)) - (-5 *1 (-750 *5 *4 *6 *2)) (-4 *5 (-813)) - (-4 *4 (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $))))) (-4 *6 (-568))))) + (-12 (-5 *3 (-1111 *2)) (-4 *2 (-888 (-361 (-884 *6)) *5 *4)) + (-5 *1 (-690 *5 *4 *6 *2)) (-4 *5 (-738)) + (-4 *4 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))) (-4 *6 (-510))))) (((*1 *2 *3) - (-12 (-4 *4 (-813)) (-4 *5 (-13 (-859) (-10 -8 (-15 -4400 ((-1196) $))))) - (-4 *6 (-568)) (-5 *2 (-2 (|:| -2871 (-963 *6)) (|:| -2266 (-963 *6)))) - (-5 *1 (-750 *4 *5 *6 *3)) (-4 *3 (-967 (-419 (-963 *6)) *4 *5))))) + (-12 (-4 *4 (-738)) (-4 *5 (-13 (-781) (-10 -8 (-15 -4122 ((-1117) $))))) + (-4 *6 (-510)) (-5 *2 (-2 (|:| -2600 (-884 *6)) (|:| -2159 (-884 *6)))) + (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-888 (-361 (-884 *6)) *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-557)) - (-14 *6 (-789)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) - (-5 *1 (-138 *5 *6 *7 *8)))) + (-12 (-5 *3 (-599 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-499)) + (-14 *6 (-714)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) + (-5 *1 (-109 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *9)) (-4 *9 (-1068)) (-4 *5 (-859)) (-4 *6 (-813)) - (-4 *8 (-1068)) (-4 *2 (-967 *9 *7 *5)) (-5 *1 (-746 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-813)) (-4 *4 (-967 *8 *6 *5))))) + (-12 (-5 *3 (-599 *9)) (-4 *9 (-989)) (-4 *5 (-781)) (-4 *6 (-738)) + (-4 *8 (-989)) (-4 *2 (-888 *9 *7 *5)) (-5 *1 (-686 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-738)) (-4 *4 (-888 *8 *6 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1262 *5)) - (-5 *1 (-745 *5 *2)) (-4 *5 (-376))))) + (-12 (-5 *3 (-361 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1183 *5)) + (-5 *1 (-685 *5 *2)) (-4 *5 (-318))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-376)) - (-5 *2 (-2 (|:| -3490 (-417 *3)) (|:| |special| (-417 *3)))) - (-5 *1 (-745 *5 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55)))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-318)) + (-5 *2 (-2 (|:| -3212 (-359 *3)) (|:| |special| (-359 *3)))) + (-5 *1 (-685 *5 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-114)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-740)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-4 *1 (-744)) (-5 *2 (-114))))) + (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) + (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-680)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-684)) (-5 *2 (-85))))) (((*1 *1 *2) - (-12 (-5 *2 (-789)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) - (-14 *4 (-659 (-1196))))) - ((*1 *1 *2) - (-12 (-5 *2 (-789)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1068) (-859))) - (-14 *4 (-659 (-1196))))) - ((*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-349 *3 *4 *5 *2)) (-4 *3 (-376)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-4 *2 (-355 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-789)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-175)))) - ((*1 *1) (-12 (-4 *2 (-175)) (-4 *1 (-742 *2 *3)) (-4 *3 (-1262 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1286 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) - (-4 *1 (-742 *5 *6)) (-4 *5 (-175)) (-4 *6 (-1262 *5)) (-5 *2 (-707 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-936)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-789))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-936)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-789))))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-568)))) - ((*1 *1 *1) (|partial| -4 *1 (-740)))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-568)))) - ((*1 *1 *1) (|partial| -4 *1 (-740)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-736 *2)) (-4 *2 (-376))))) + (-12 (-5 *2 (-714)) (-5 *1 (-50 *3 *4)) (-4 *3 (-989)) + (-14 *4 (-599 (-1117))))) + ((*1 *1 *2) + (-12 (-5 *2 (-714)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) + (-14 *4 (-599 (-1117))))) + ((*1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-323)) (-4 *2 (-318)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-291 *3 *4 *5 *2)) (-4 *3 (-318)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-4 *2 (-297 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-714)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-146)))) + ((*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-682 *2 *3)) (-4 *3 (-1183 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1207 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-318)) + (-4 *1 (-682 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1183 *5)) (-5 *2 (-647 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-678)) (-5 *2 (-857)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-680)) (-5 *2 (-714))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-678)) (-5 *2 (-857)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-680)) (-5 *2 (-714))))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-146)) (-4 *2 (-510)))) + ((*1 *1 *1) (|partial| -4 *1 (-680)))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-146)) (-4 *2 (-510)))) + ((*1 *1 *1) (|partial| -4 *1 (-680)))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-318))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (|partial| -12 (-4 *2 (-146)) (-5 *1 (-243 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1183 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-729 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-669 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-673 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-1267 *3 *4 *5)) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) - (-14 *4 (-1196)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-557)))) - ((*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-417 *3)) (-4 *3 (-568)))) - ((*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-717)))) + (-12 (-5 *2 (-1188 *3 *4 *5)) (-5 *1 (-273 *3 *4 *5)) (-4 *3 (-318)) + (-14 *4 (-1117)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-499)))) + ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-359 *3)) (-4 *3 (-510)))) + ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-657)))) ((*1 *2 *1) - (-12 (-4 *2 (-1120)) (-5 *1 (-731 *3 *2 *4)) (-4 *3 (-859)) + (-12 (-4 *2 (-1041)) (-5 *1 (-671 *3 *2 *4)) (-4 *3 (-781)) (-14 *4 - (-1 (-114) (-2 (|:| -2629 *3) (|:| -2630 *2)) - (-2 (|:| -2629 *3) (|:| -2630 *2))))))) -(((*1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-381)))) + (-1 (-85) (-2 (|:| -2518 *3) (|:| -2519 *2)) + (-2 (|:| -2518 *3) (|:| -2519 *2))))))) +(((*1 *1 *2) (-12 (-5 *2 (-857)) (-4 *1 (-323)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-936)) (-5 *2 (-1286 *4)) (-5 *1 (-539 *4)) (-4 *4 (-363)))) + (-12 (-5 *3 (-857)) (-5 *2 (-1207 *4)) (-5 *1 (-481 *4)) (-4 *4 (-305)))) ((*1 *2 *1) - (-12 (-4 *2 (-859)) (-5 *1 (-731 *2 *3 *4)) (-4 *3 (-1120)) + (-12 (-4 *2 (-781)) (-5 *1 (-671 *2 *3 *4)) (-4 *3 (-1041)) (-14 *4 - (-1 (-114) (-2 (|:| -2629 *2) (|:| -2630 *3)) - (-2 (|:| -2629 *2) (|:| -2630 *3))))))) -(((*1 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-730 *3 *2)) (-4 *2 (-1262 *3))))) + (-1 (-85) (-2 (|:| -2518 *2) (|:| -2519 *3)) + (-2 (|:| -2518 *2) (|:| -2519 *3))))))) +(((*1 *2 *2) (-12 (-4 *3 (-989)) (-5 *1 (-670 *3 *2)) (-4 *2 (-1183 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-1068)) (-5 *2 (-1286 *3)) (-5 *1 (-730 *3 *4)) - (-4 *4 (-1262 *3))))) + (-12 (-4 *3 (-989)) (-5 *2 (-1207 *3)) (-5 *1 (-670 *3 *4)) + (-4 *4 (-1183 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1068)) (-5 *1 (-730 *3 *4)) - (-4 *4 (-1262 *3))))) + (-12 (-5 *2 (-1207 *3)) (-4 *3 (-989)) (-5 *1 (-670 *3 *4)) + (-4 *4 (-1183 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-1068)) (-5 *2 (-1286 *3)) (-5 *1 (-730 *3 *4)) - (-4 *4 (-1262 *3))))) + (-12 (-4 *3 (-989)) (-5 *2 (-1207 *3)) (-5 *1 (-670 *3 *4)) + (-4 *4 (-1183 *3))))) (((*1 *2) - (-12 (-4 *3 (-1068)) (-5 *2 (-975 (-730 *3 *4))) (-5 *1 (-730 *3 *4)) - (-4 *4 (-1262 *3))))) + (-12 (-4 *3 (-989)) (-5 *2 (-896 (-670 *3 *4))) (-5 *1 (-670 *3 *4)) + (-4 *4 (-1183 *3))))) (((*1 *2) - (-12 (-4 *3 (-1068)) (-5 *2 (-975 (-730 *3 *4))) (-5 *1 (-730 *3 *4)) - (-4 *4 (-1262 *3))))) + (-12 (-4 *3 (-989)) (-5 *2 (-896 (-670 *3 *4))) (-5 *1 (-670 *3 *4)) + (-4 *4 (-1183 *3))))) (((*1 *1 *1) - (-12 (-4 *2 (-363)) (-4 *2 (-1068)) (-5 *1 (-730 *2 *3)) (-4 *3 (-1262 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1178)) (-5 *1 (-728))))) -(((*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1178)) (-5 *1 (-728))))) -(((*1 *2 *3) (-12 (-5 *3 (-875)) (-5 *2 (-1178)) (-5 *1 (-728))))) + (-12 (-4 *2 (-305)) (-4 *2 (-989)) (-5 *1 (-670 *2 *3)) (-4 *3 (-1183 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1099)) (-5 *1 (-668))))) +(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1099)) (-5 *1 (-668))))) +(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1099)) (-5 *1 (-668))))) (((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-659 (-1190 *13))) (-5 *3 (-1190 *13)) - (-5 *4 (-659 *12)) (-5 *5 (-659 *10)) (-5 *6 (-659 *13)) - (-5 *7 (-659 (-659 (-2 (|:| -3477 (-789)) (|:| |pcoef| *13))))) - (-5 *8 (-659 (-789))) (-5 *9 (-1286 (-659 (-1190 *10)))) (-4 *12 (-859)) - (-4 *10 (-319)) (-4 *13 (-967 *10 *11 *12)) (-4 *11 (-813)) - (-5 *1 (-725 *11 *12 *10 *13))))) + (|partial| -12 (-5 *2 (-599 (-1111 *13))) (-5 *3 (-1111 *13)) + (-5 *4 (-599 *12)) (-5 *5 (-599 *10)) (-5 *6 (-599 *13)) + (-5 *7 (-599 (-599 (-2 (|:| -3199 (-714)) (|:| |pcoef| *13))))) + (-5 *8 (-599 (-714))) (-5 *9 (-1207 (-599 (-1111 *10)))) (-4 *12 (-781)) + (-4 *10 (-261)) (-4 *13 (-888 *10 *11 *12)) (-4 *11 (-738)) + (-5 *1 (-665 *11 *12 *10 *13))))) (((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-659 *11)) (-5 *5 (-659 (-1190 *9))) (-5 *6 (-659 *9)) - (-5 *7 (-659 *12)) (-5 *8 (-659 (-789))) (-4 *11 (-859)) (-4 *9 (-319)) - (-4 *12 (-967 *9 *10 *11)) (-4 *10 (-813)) (-5 *2 (-659 (-1190 *12))) - (-5 *1 (-725 *10 *11 *9 *12)) (-5 *3 (-1190 *12))))) + (|partial| -12 (-5 *4 (-599 *11)) (-5 *5 (-599 (-1111 *9))) (-5 *6 (-599 *9)) + (-5 *7 (-599 *12)) (-5 *8 (-599 (-714))) (-4 *11 (-781)) (-4 *9 (-261)) + (-4 *12 (-888 *9 *10 *11)) (-4 *10 (-738)) (-5 *2 (-599 (-1111 *12))) + (-5 *1 (-665 *10 *11 *9 *12)) (-5 *3 (-1111 *12))))) (((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-659 (-1190 *11))) (-5 *3 (-1190 *11)) - (-5 *4 (-659 *10)) (-5 *5 (-659 *8)) (-5 *6 (-659 (-789))) - (-5 *7 (-1286 (-659 (-1190 *8)))) (-4 *10 (-859)) (-4 *8 (-319)) - (-4 *11 (-967 *8 *9 *10)) (-4 *9 (-813)) (-5 *1 (-725 *9 *10 *8 *11))))) + (|partial| -12 (-5 *2 (-599 (-1111 *11))) (-5 *3 (-1111 *11)) + (-5 *4 (-599 *10)) (-5 *5 (-599 *8)) (-5 *6 (-599 (-714))) + (-5 *7 (-1207 (-599 (-1111 *8)))) (-4 *10 (-781)) (-4 *8 (-261)) + (-4 *11 (-888 *8 *9 *10)) (-4 *9 (-738)) (-5 *1 (-665 *9 *10 *8 *11))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1196)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-720 *3 *5 *6 *7)) - (-4 *3 (-629 (-546))) (-4 *5 (-1236)) (-4 *6 (-1236)) (-4 *7 (-1236)))) + (-12 (-5 *4 (-1117)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-660 *3 *5 *6 *7)) + (-4 *3 (-569 (-488))) (-4 *5 (-1157)) (-4 *6 (-1157)) (-4 *7 (-1157)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-5 *2 (-1 *6 *5)) (-5 *1 (-724 *3 *5 *6)) - (-4 *3 (-629 (-546))) (-4 *5 (-1236)) (-4 *6 (-1236))))) + (-12 (-5 *4 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *3 *5 *6)) + (-4 *3 (-569 (-488))) (-4 *5 (-1157)) (-4 *6 (-1157))))) (((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-1 *6 *5)) (-5 *1 (-724 *4 *5 *6)) - (-4 *4 (-629 (-546))) (-4 *5 (-1236)) (-4 *6 (-1236))))) + (-12 (-5 *3 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *4 *5 *6)) + (-4 *4 (-569 (-488))) (-4 *5 (-1157)) (-4 *6 (-1157))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-723 *3 *4)) - (-4 *3 (-1236)) (-4 *4 (-1236))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-659 (-1196))) (-5 *3 (-1196)) (-5 *1 (-546)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-722 *3)) (-4 *3 (-629 (-546))))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-663 *3 *4)) + (-4 *3 (-1157)) (-4 *4 (-1157))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-599 (-1117))) (-5 *3 (-1117)) (-5 *1 (-488)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-662 *3)) (-4 *3 (-569 (-488))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1196)) (-5 *1 (-722 *3)) (-4 *3 (-629 (-546))))) + (-12 (-5 *2 (-1117)) (-5 *1 (-662 *3)) (-4 *3 (-569 (-488))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1196)) (-5 *1 (-722 *3)) (-4 *3 (-629 (-546))))) + (-12 (-5 *2 (-1117)) (-5 *1 (-662 *3)) (-4 *3 (-569 (-488))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-659 (-1196))) (-5 *2 (-1196)) (-5 *1 (-722 *3)) - (-4 *3 (-629 (-546)))))) + (-12 (-5 *4 (-599 (-1117))) (-5 *2 (-1117)) (-5 *1 (-662 *3)) + (-4 *3 (-569 (-488)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-5 *2 (-1 (-229) (-229))) (-5 *1 (-721 *3)) - (-4 *3 (-629 (-546))))) + (-12 (-5 *4 (-1117)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-661 *3)) + (-4 *3 (-569 (-488))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1196)) (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-721 *3)) - (-4 *3 (-629 (-546)))))) + (-12 (-5 *4 (-1117)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-661 *3)) + (-4 *3 (-569 (-488)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-720 *4 *5 *6 *7)) - (-4 *4 (-629 (-546))) (-4 *5 (-1236)) (-4 *6 (-1236)) (-4 *7 (-1236))))) -(((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-719)))) - ((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-719))))) + (-12 (-5 *3 (-1117)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-660 *4 *5 *6 *7)) + (-4 *4 (-569 (-488))) (-4 *5 (-1157)) (-4 *6 (-1157)) (-4 *7 (-1157))))) +(((*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-659)))) + ((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-659))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *2 (-2 (|:| -2182 *3) (|:| -3301 *3))) (-5 *1 (-706 *3 *4 *5 *6)) - (-4 *6 (-704 *3 *4 *5)))) + (-12 (-4 *3 (-261)) (-4 *3 (-146)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) + (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-646 *3 *4 *5 *6)) + (-4 *6 (-644 *3 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -2182 *3) (|:| -3301 *3))) (-5 *1 (-718 *3)) - (-4 *3 (-319))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-707 *3)) (-4 *3 (-319)) (-5 *1 (-718 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-707 *3)) (-4 *3 (-319)) (-5 *1 (-718 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-707 *3)) (-4 *3 (-319)) (-5 *1 (-718 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-557)))) - ((*1 *2 *1) (-12 (-5 *2 (-557)) (-5 *1 (-717))))) -(((*1 *2 *2) (-12 (-5 *2 (-936)) (|has| *1 (-6 -4414)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-936)))) - ((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-717)))) - ((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-717))))) -(((*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-717)))) - ((*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-717))))) -(((*1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-717)))) - ((*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-717))))) + (-12 (-5 *2 (-2 (|:| -2075 *3) (|:| -3023 *3))) (-5 *1 (-658 *3)) + (-4 *3 (-261))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-647 *3)) (-4 *3 (-261)) (-5 *1 (-658 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-647 *3)) (-4 *3 (-261)) (-5 *1 (-658 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-261)) (-5 *1 (-658 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-499)))) + ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-657))))) +(((*1 *2 *2) (-12 (-5 *2 (-857)) (|has| *1 (-6 -4136)) (-4 *1 (-358)))) + ((*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-857)))) + ((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-657)))) + ((*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-657))))) +(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-657)))) + ((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-657))))) +(((*1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-657)))) + ((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-657))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-229) (-229) (-229))) - (-5 *4 (-1 (-229) (-229) (-229) (-229))) - (-5 *2 (-1 (-960 (-229)) (-229) (-229))) (-5 *1 (-715))))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) + (-5 *4 (-1 (-179) (-179) (-179) (-179))) + (-5 *2 (-1 (-881 (-179)) (-179) (-179))) (-5 *1 (-655))))) (((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-326 (-557))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1108 (-229))) - (-5 *6 (-659 (-270))) (-5 *2 (-1152 (-229))) (-5 *1 (-715))))) + (-12 (-5 *3 (-268 (-499))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1029 (-179))) + (-5 *6 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-655))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-229) (-229) (-229))) - (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) "undefined")) - (-5 *5 (-1108 (-229))) (-5 *6 (-659 (-270))) (-5 *2 (-1152 (-229))) - (-5 *1 (-715))))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) + (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined")) + (-5 *5 (-1029 (-179))) (-5 *6 (-599 (-220))) (-5 *2 (-1073 (-179))) + (-5 *1 (-655))))) (((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-229) (-229) (-229))) - (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) "undefined")) - (-5 *5 (-1108 (-229))) (-5 *6 (-659 (-270))) (-5 *2 (-1152 (-229))) - (-5 *1 (-715)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) + (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined")) + (-5 *5 (-1029 (-179))) (-5 *6 (-599 (-220))) (-5 *2 (-1073 (-179))) + (-5 *1 (-655)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-960 (-229)) (-229) (-229))) (-5 *4 (-1108 (-229))) - (-5 *5 (-659 (-270))) (-5 *2 (-1152 (-229))) (-5 *1 (-715)))) + (-12 (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-179))) + (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-655)))) ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1152 (-229))) (-5 *3 (-1 (-960 (-229)) (-229) (-229))) - (-5 *4 (-1108 (-229))) (-5 *5 (-659 (-270))) (-5 *1 (-715))))) + (-12 (-5 *2 (-1073 (-179))) (-5 *3 (-1 (-881 (-179)) (-179) (-179))) + (-5 *4 (-1029 (-179))) (-5 *5 (-599 (-220))) (-5 *1 (-655))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-789)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1262 *4)))) + (-12 (-5 *3 (-714)) (-4 *4 (-305)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1183 *4)))) ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-557)) (-5 *1 (-714 *2)) (-4 *2 (-1262 *3))))) + (-12 (-5 *3 (-499)) (-5 *1 (-654 *2)) (-4 *2 (-1183 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 (-2 (|:| |deg| (-789)) (|:| -2972 *5)))) (-4 *5 (-1262 *4)) - (-4 *4 (-363)) (-5 *2 (-659 *5)) (-5 *1 (-220 *4 *5)))) + (-12 (-5 *3 (-599 (-2 (|:| |deg| (-714)) (|:| -2694 *5)))) (-4 *5 (-1183 *4)) + (-4 *4 (-305)) (-5 *2 (-599 *5)) (-5 *1 (-170 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-2 (|:| -4160 *5) (|:| -4376 (-557))))) (-5 *4 (-557)) - (-4 *5 (-1262 *4)) (-5 *2 (-659 *5)) (-5 *1 (-714 *5))))) + (-12 (-5 *3 (-599 (-2 (|:| -3882 *5) (|:| -4098 (-499))))) (-5 *4 (-499)) + (-4 *5 (-1183 *4)) (-5 *2 (-599 *5)) (-5 *1 (-654 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-557)) (-5 *2 (-659 (-2 (|:| -4160 *3) (|:| -4376 *4)))) - (-5 *1 (-714 *3)) (-4 *3 (-1262 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-557)) (-5 *1 (-714 *2)) (-4 *2 (-1262 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1236)) (-4 *2 (-1120)))) - ((*1 *1 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1120))))) + (-12 (-5 *4 (-499)) (-5 *2 (-599 (-2 (|:| -3882 *3) (|:| -4098 *4)))) + (-5 *1 (-654 *3)) (-4 *3 (-1183 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-654 *2)) (-4 *2 (-1183 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1157)) (-4 *2 (-1041)))) + ((*1 *1 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1041))))) (((*1 *2 *1) - (-12 (-4 *1 (-713 *3)) (-4 *3 (-1120)) - (-5 *2 (-659 (-2 (|:| -2284 *3) (|:| -2155 (-789)))))))) + (-12 (-4 *1 (-653 *3)) (-4 *3 (-1041)) + (-5 *2 (-599 (-2 (|:| |entry| *3) (|:| -2048 (-714)))))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-789)) (-4 *6 (-1120)) (-4 *7 (-915 *6)) (-5 *2 (-707 *7)) - (-5 *1 (-710 *6 *7 *3 *4)) (-4 *3 (-385 *7)) - (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4423))))))) + (-12 (-5 *5 (-714)) (-4 *6 (-1041)) (-4 *7 (-836 *6)) (-5 *2 (-647 *7)) + (-5 *1 (-650 *6 *7 *3 *4)) (-4 *3 (-327 *7)) + (-4 *4 (-13 (-327 *6) (-10 -7 (-6 -4145))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1286 (-326 (-229)))) (-5 *4 (-659 (-1196))) - (-5 *2 (-707 (-326 (-229)))) (-5 *1 (-208)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1120)) (-4 *6 (-915 *5)) (-5 *2 (-707 *6)) - (-5 *1 (-710 *5 *6 *3 *4)) (-4 *3 (-385 *6)) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4423))))))) + (-12 (-4 *5 (-1041)) (-4 *6 (-836 *5)) (-5 *2 (-647 *6)) + (-5 *1 (-650 *5 *6 *3 *4)) (-4 *3 (-327 *6)) + (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4145))))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-789)) (-4 *6 (-1120)) (-4 *3 (-915 *6)) (-5 *2 (-707 *3)) - (-5 *1 (-710 *6 *3 *7 *4)) (-4 *7 (-385 *3)) - (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4423))))))) + (-12 (-5 *5 (-714)) (-4 *6 (-1041)) (-4 *3 (-836 *6)) (-5 *2 (-647 *3)) + (-5 *1 (-650 *6 *3 *7 *4)) (-4 *7 (-327 *3)) + (-4 *4 (-13 (-327 *6) (-10 -7 (-6 -4145))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1120)) (-4 *3 (-915 *5)) (-5 *2 (-707 *3)) - (-5 *1 (-710 *5 *3 *6 *4)) (-4 *6 (-385 *3)) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4423))))))) + (-12 (-4 *5 (-1041)) (-4 *3 (-836 *5)) (-5 *2 (-647 *3)) + (-5 *1 (-650 *5 *3 *6 *4)) (-4 *6 (-327 *3)) + (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4145))))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-1120)) (-4 *2 (-915 *4)) (-5 *1 (-710 *4 *2 *5 *3)) - (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4423))))))) + (-12 (-4 *4 (-1041)) (-4 *2 (-836 *4)) (-5 *1 (-650 *4 *2 *5 *3)) + (-4 *5 (-327 *2)) (-4 *3 (-13 (-327 *4) (-10 -7 (-6 -4145))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1120)) (-4 *2 (-915 *5)) (-5 *1 (-710 *5 *2 *3 *4)) - (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4423))))))) + (-12 (-4 *5 (-1041)) (-4 *2 (-836 *5)) (-5 *1 (-650 *5 *2 *3 *4)) + (-4 *3 (-327 *2)) (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4145))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1120)) (-4 *3 (-915 *5)) (-5 *2 (-1286 *3)) - (-5 *1 (-710 *5 *3 *6 *4)) (-4 *6 (-385 *3)) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4423))))))) -(((*1 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-628 (-875)))))) -(((*1 *1) (-12 (-5 *1 (-709 *2)) (-4 *2 (-628 (-875)))))) + (-12 (-4 *5 (-1041)) (-4 *3 (-836 *5)) (-5 *2 (-1207 *3)) + (-5 *1 (-650 *5 *3 *6 *4)) (-4 *6 (-327 *3)) + (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4145))))))) +(((*1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-568 (-797)))))) +(((*1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-568 (-797)))))) (((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-707 *4)) (-5 *3 (-789)) (-4 *4 (-1068)) (-5 *1 (-708 *4))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-707 *3)) (-4 *3 (-1068)) (-5 *1 (-708 *3))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-707 *3)) (-4 *3 (-1068)) (-5 *1 (-708 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-707 *3)) (-4 *3 (-1068)) (-5 *1 (-708 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-707 *3)) (-4 *3 (-1068)) (-5 *1 (-708 *3)))) - ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-707 *3)) (-4 *3 (-1068)) (-5 *1 (-708 *3))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-707 *3)) (-4 *3 (-1068)) (-5 *1 (-708 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-707 *3)) (-4 *3 (-1068)) (-5 *1 (-708 *3))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-568)) (-4 *3 (-175)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *1 (-706 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-706 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5))))) + (-12 (-5 *2 (-647 *4)) (-5 *3 (-714)) (-4 *4 (-989)) (-5 *1 (-648 *4))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3)))) + ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-647 *3)) (-4 *3 (-989)) (-5 *1 (-648 *3))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-510)) (-4 *3 (-146)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3)) (-5 *1 (-646 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-510)) (-4 *3 (-146)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) + (-5 *1 (-646 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-557)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) - (-5 *1 (-706 *3 *5 *6 *2)) (-4 *2 (-704 *3 *5 *6))))) + (-12 (-5 *4 (-499)) (-4 *3 (-146)) (-4 *5 (-327 *3)) (-4 *6 (-327 *3)) + (-5 *1 (-646 *3 *5 *6 *2)) (-4 *2 (-644 *3 *5 *6))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-557)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) - (-5 *1 (-706 *3 *5 *6 *2)) (-4 *2 (-704 *3 *5 *6))))) + (-12 (-5 *4 (-499)) (-4 *3 (-146)) (-4 *5 (-327 *3)) (-4 *6 (-327 *3)) + (-5 *1 (-646 *3 *5 *6 *2)) (-4 *2 (-644 *3 *5 *6))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-557)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *1 (-706 *4 *5 *6 *2)) (-4 *2 (-704 *4 *5 *6))))) + (-12 (-5 *3 (-499)) (-4 *4 (-146)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4)) + (-5 *1 (-646 *4 *5 *6 *2)) (-4 *2 (-644 *4 *5 *6))))) (((*1 *1 *1) - (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2))))) + (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) + (-4 *4 (-327 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2))))) + (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) + (-4 *4 (-327 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-704 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2))))) + (-12 (-4 *1 (-644 *2 *3 *4)) (-4 *2 (-989)) (-4 *3 (-327 *2)) + (-4 *4 (-327 *2))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-557)) (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3))))) + (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-557)) (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3))))) + (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3))))) (((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-557)) (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3))))) + (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3))))) (((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-557)) (-4 *1 (-704 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3))))) + (-12 (-5 *2 (-499)) (-4 *1 (-644 *3 *4 *5)) (-4 *3 (-989)) (-4 *4 (-327 *3)) + (-4 *5 (-327 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-702 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) + (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-642 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-702 *4 *5 *6)) (-4 *4 (-1120))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-642 *4 *5 *6)) (-4 *4 (-1041))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-702 *4 *5 *6)) (-4 *5 (-1120))))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1041)) (-4 *6 (-1041)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-642 *4 *5 *6)) (-4 *5 (-1041))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-4 *6 (-1041)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1120)) (-4 *4 (-1120)) (-4 *6 (-1120)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *5 *4 *6))))) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1041)) (-4 *4 (-1041)) (-4 *6 (-1041)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *5 *4 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-701 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-641 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1120)) (-4 *5 (-1120)) (-5 *2 (-1 *5)) - (-5 *1 (-701 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1041)) (-4 *5 (-1041)) (-5 *2 (-1 *5)) + (-5 *1 (-641 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-701 *4 *3)) (-4 *4 (-1120)) - (-4 *3 (-1120))))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-641 *4 *3)) (-4 *4 (-1041)) + (-4 *3 (-1041))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-789) *2)) (-5 *4 (-789)) (-4 *2 (-1120)) - (-5 *1 (-696 *2)))) - ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-789) *3)) (-4 *3 (-1120)) (-5 *1 (-700 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-700 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-700 *2)) (-4 *2 (-1120)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-659 *5) (-659 *5))) (-5 *4 (-557)) (-5 *2 (-659 *5)) - (-5 *1 (-700 *5)) (-4 *5 (-1120))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-700 *3)) (-4 *3 (-1120))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-659 (-1237))) (-5 *3 (-1237)) (-5 *1 (-699))))) + (-12 (-5 *3 (-1 *2 (-714) *2)) (-5 *4 (-714)) (-4 *2 (-1041)) + (-5 *1 (-636 *2)))) + ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-714) *3)) (-4 *3 (-1041)) (-5 *1 (-640 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1041))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-640 *2)) (-4 *2 (-1041)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-599 *5) (-599 *5))) (-5 *4 (-499)) (-5 *2 (-599 *5)) + (-5 *1 (-640 *5)) (-4 *5 (-1041))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-640 *3)) (-4 *3 (-1041))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-599 (-1158))) (-5 *3 (-1158)) (-5 *1 (-639))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-4 *2 (-1120)) (-5 *1 (-698 *5 *6 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *1 (-697 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120))))) -(((*1 *2 *2 *3) (-12 (-5 *1 (-697 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1041)) (-4 *6 (-1041)) + (-4 *2 (-1041)) (-5 *1 (-638 *5 *6 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *1 (-637 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041))))) +(((*1 *2 *2 *3) (-12 (-5 *1 (-637 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-789)) (-4 *2 (-1120)) (-5 *1 (-696 *2))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-714)) (-4 *2 (-1041)) (-5 *1 (-636 *2))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-963 (-557))) (-5 *2 (-342)) (-5 *1 (-344)))) + (-12 (-5 *3 (-1117)) (-5 *4 (-884 (-499))) (-5 *2 (-284)) (-5 *1 (-286)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-1111 (-963 (-557)))) (-5 *2 (-342)) - (-5 *1 (-344)))) + (-12 (-5 *3 (-1117)) (-5 *4 (-1032 (-884 (-499)))) (-5 *2 (-284)) + (-5 *1 (-286)))) ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-789)) (-5 *1 (-693 *3)) (-4 *3 (-1068)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-714)) (-5 *1 (-633 *3)) (-4 *3 (-989)) (-4 *3 (-1041))))) (((*1 *1 *2) - (-12 (-5 *2 (-789)) (-5 *1 (-693 *3)) (-4 *3 (-1068)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-714)) (-5 *1 (-633 *3)) (-4 *3 (-989)) (-4 *3 (-1041))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-667 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3))) + (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-667 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-1068)) (-4 *2 (-1120))))) + (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-989)) (-4 *2 (-1041))))) (((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-789)) (-5 *1 (-693 *2)) (-4 *2 (-1120))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-693 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286 (-789))) (-5 *1 (-693 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-692 *3)) (-4 *3 (-1236)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-692 *3)) (-4 *3 (-1236)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-692 *3)) (-4 *3 (-1236)) (-5 *2 (-114))))) -(((*1 *1 *1) (-12 (-4 *1 (-692 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-692 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1) (-12 (-4 *1 (-692 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-692 *3)) (-4 *3 (-1236)) (-5 *2 (-789))))) -(((*1 *2 *3) - (-12 (-5 *3 (-839 *4)) (-4 *4 (-859)) (-5 *2 (-114)) (-5 *1 (-690 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-839 *3)) (-4 *3 (-859)) (-5 *1 (-690 *3))))) + (-12 (-5 *3 (-714)) (-5 *1 (-633 *2)) (-4 *2 (-1041))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-633 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-1207 (-714))) (-5 *1 (-633 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) (-12 (-4 *1 (-632 *3)) (-4 *3 (-1157)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-632 *3)) (-4 *3 (-1157)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-632 *3)) (-4 *3 (-1157)) (-5 *2 (-85))))) +(((*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1157))))) +(((*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-632 *3)) (-4 *3 (-1157)) (-5 *2 (-714))))) +(((*1 *2 *3) + (-12 (-5 *3 (-762 *4)) (-4 *4 (-781)) (-5 *2 (-85)) (-5 *1 (-630 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-762 *3)) (-4 *3 (-781)) (-5 *1 (-630 *3))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-839 *3)) (-4 *3 (-859)) (-5 *1 (-690 *3))))) + (|partial| -12 (-5 *2 (-762 *3)) (-4 *3 (-781)) (-5 *1 (-630 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *5)) (-5 *4 (-936)) (-4 *5 (-859)) - (-5 *2 (-58 (-659 (-690 *5)))) (-5 *1 (-690 *5))))) + (-12 (-5 *3 (-599 *5)) (-5 *4 (-857)) (-4 *5 (-781)) + (-5 *2 (-58 (-599 (-630 *5)))) (-5 *1 (-630 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *5)) (-5 *4 (-936)) (-4 *5 (-859)) (-5 *2 (-659 (-690 *5))) - (-5 *1 (-690 *5))))) + (-12 (-5 *3 (-599 *5)) (-5 *4 (-857)) (-4 *5 (-781)) (-5 *2 (-599 (-630 *5))) + (-5 *1 (-630 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *8)) (-5 *4 (-659 *7)) (-4 *7 (-859)) - (-4 *8 (-967 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-813)) + (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 *7)) (-4 *7 (-781)) + (-4 *8 (-888 *5 *6 *7)) (-4 *5 (-510)) (-4 *6 (-738)) (-5 *2 - (-2 (|:| |particular| (-3 (-1286 (-419 *8)) "failed")) - (|:| -2220 (-659 (-1286 (-419 *8)))))) - (-5 *1 (-687 *5 *6 *7 *8))))) + (-2 (|:| |particular| (-3 (-1207 (-361 *8)) "failed")) + (|:| -2113 (-599 (-1207 (-361 *8)))))) + (-5 *1 (-627 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4424)))) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4424)))) (-5 *2 (-114)) - (-5 *1 (-685 *5 *6 *4 *3)) (-4 *3 (-704 *5 *6 *4)))) + (-12 (-4 *5 (-318)) (-4 *6 (-13 (-327 *5) (-10 -7 (-6 -4146)))) + (-4 *4 (-13 (-327 *5) (-10 -7 (-6 -4146)))) (-5 *2 (-85)) + (-5 *1 (-625 *5 *6 *4 *3)) (-4 *3 (-644 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-707 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-376)) (-5 *2 (-114)) - (-5 *1 (-686 *5))))) + (-12 (-5 *3 (-647 *5)) (-5 *4 (-1207 *5)) (-4 *5 (-318)) (-5 *2 (-85)) + (-5 *1 (-626 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-659 (-1190 *4))) (-5 *3 (-1190 *4)) (-4 *4 (-927)) - (-5 *1 (-681 *4))))) -(((*1 *1 *1) (-4 *1 (-680)))) -(((*1 *1 *1 *1) (-4 *1 (-680)))) -(((*1 *1 *1 *1) (-4 *1 (-680)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1068)) (-4 *2 (-376)))) + (|partial| -12 (-5 *2 (-599 (-1111 *4))) (-5 *3 (-1111 *4)) (-4 *4 (-848)) + (-5 *1 (-621 *4))))) +(((*1 *1 *1) (-4 *1 (-620)))) +(((*1 *1 *1 *1) (-4 *1 (-620)))) +(((*1 *1 *1 *1) (-4 *1 (-620)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-678 *4 *2)) - (-4 *2 (-676 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-318)) (-5 *1 (-618 *4 *2)) + (-4 *2 (-616 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-789)) (-4 *1 (-676 *3)) (-4 *3 (-1068)) (-4 *3 (-376)))) + (-12 (-5 *2 (-714)) (-4 *1 (-616 *3)) (-4 *3 (-989)) (-4 *3 (-318)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-789)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-5 *1 (-678 *5 *2)) - (-4 *2 (-676 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1068)) (-4 *2 (-376)))) + (-12 (-5 *3 (-714)) (-5 *4 (-1 *5 *5)) (-4 *5 (-318)) (-5 *1 (-618 *5 *2)) + (-4 *2 (-616 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-989)) (-4 *2 (-318)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-678 *4 *2)) - (-4 *2 (-676 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-318)) (-5 *1 (-618 *4 *2)) + (-4 *2 (-616 *4))))) (((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-376) (-149) (-1057 (-557)) (-1057 (-419 (-557))))) - (-4 *5 (-1262 *4)) (-5 *2 (-659 (-673 (-419 *5)))) (-5 *1 (-677 *4 *5)) - (-5 *3 (-673 (-419 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1068)) (-4 *2 (-376))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1253 (-557))) (-4 *1 (-669 *3)) (-4 *3 (-1236)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-4 *1 (-669 *3)) (-4 *3 (-1236))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-557)) (-4 *1 (-669 *3)) (-4 *3 (-1236)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-557)) (-4 *1 (-669 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) - (-12 (-5 *2 (-659 (-2 (|:| |gen| *3) (|:| -4371 *4)))) - (-5 *1 (-667 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-23)) (-14 *5 *4)))) + (-4 *4 (-13 (-318) (-120) (-978 (-499)) (-978 (-361 (-499))))) + (-4 *5 (-1183 *4)) (-5 *2 (-599 (-613 (-361 *5)))) (-5 *1 (-617 *4 *5)) + (-5 *3 (-613 (-361 *5)))))) +(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-989)) (-4 *2 (-318))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1174 (-499))) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-609 *3)) (-4 *3 (-1157))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-609 *3)) (-4 *3 (-1157)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-609 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) + (-12 (-5 *2 (-599 (-2 (|:| |gen| *3) (|:| -4093 *4)))) + (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-1041)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-667 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2) - (-12 (-5 *2 (-659 (-2 (|:| |gen| *3) (|:| -4371 *4)))) (-4 *3 (-1120)) - (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-667 *3 *4 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-374 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-599 (-2 (|:| |gen| *3) (|:| -4093 *4)))) (-4 *3 (-1041)) + (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-607 *3 *4 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-316 *3)) (-4 *3 (-1041)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-557)) (-4 *1 (-399 *4)) (-4 *4 (-1120)) (-5 *2 (-789)))) + (-12 (-5 *3 (-499)) (-4 *1 (-341 *4)) (-4 *4 (-1041)) (-5 *2 (-714)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-557)) (-4 *2 (-23)) (-5 *1 (-667 *4 *2 *5)) (-4 *4 (-1120)) + (-12 (-5 *3 (-499)) (-4 *2 (-23)) (-5 *1 (-607 *4 *2 *5)) (-4 *4 (-1041)) (-14 *5 *2)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-557)) (-4 *1 (-335 *2 *4)) (-4 *4 (-133)) (-4 *2 (-1120)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-557)) (-5 *1 (-374 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-557)) (-4 *1 (-399 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-557)) (-5 *1 (-417 *2)) (-4 *2 (-568)))) + (-12 (-5 *3 (-499)) (-4 *1 (-277 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1041)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *1 (-316 *2)) (-4 *2 (-1041)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-4 *1 (-341 *2)) (-4 *2 (-1041)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-499)) (-5 *1 (-359 *2)) (-4 *2 (-510)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-557)) (-4 *2 (-1120)) (-5 *1 (-667 *2 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *3 (-499)) (-4 *2 (-1041)) (-5 *1 (-607 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1236)))) - ((*1 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-1157)))) + ((*1 *2 *2) (-12 (-4 *3 (-989)) (-5 *1 (-398 *3 *2)) (-4 *2 (-1183 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-667 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-385 *2)) (-4 *2 (-1236)))) + (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157)))) + ((*1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-327 *2)) (-4 *2 (-1157)))) ((*1 *1 *1) - (-12 (-5 *1 (-667 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1) - (-12 (-5 *1 (-667 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-667 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2 *1) - (-12 (-5 *1 (-667 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-1041)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-667 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-23)) + (-12 (-5 *2 (-85)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-1041)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-557) (-557))) (-5 *1 (-374 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-1 (-499) (-499))) (-5 *1 (-316 *3)) (-4 *3 (-1041)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-789) (-789))) (-4 *1 (-399 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-1 (-714) (-714))) (-4 *1 (-341 *3)) (-4 *3 (-1041)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-667 *3 *4 *5)) - (-4 *3 (-1120))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-607 *3 *4 *5)) + (-4 *3 (-1041))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-133)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-374 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-399 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-277 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-104)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1041)) (-5 *1 (-316 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-341 *3)) (-4 *3 (-1041)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-667 *3 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1041)) (-5 *1 (-607 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-665 *3)) (-4 *3 (-1120))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1120))))) -(((*1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-659 *3)) (-4 *3 (-1236))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1120)) (-4 *2 (-1236))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1120)) (-4 *2 (-1236))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1120)) (-4 *2 (-1236))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-605 *3)) (-4 *3 (-1041))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1041))))) +(((*1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-599 *3)) (-4 *3 (-1157))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1157))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1041)) (-4 *2 (-1157))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1041)) (-4 *2 (-1157))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1041)) (-4 *2 (-1157))))) (((*1 *1 *2) - (-12 (-5 *2 (-659 *3)) (-4 *3 (-376)) (-5 *1 (-657 *3 *4)) - (-14 *4 (-659 (-1196)))))) + (-12 (-5 *2 (-599 *3)) (-4 *3 (-318)) (-5 *1 (-597 *3 *4)) + (-14 *4 (-599 (-1117)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-656 *4)) (-4 *4 (-1068)) - (-5 *2 (-2 (|:| -1781 (-707 *4)) (|:| |vec| (-1286 *4)))))) + (-12 (-5 *3 (-1207 *1)) (-4 *1 (-596 *4)) (-4 *4 (-989)) + (-5 *2 (-2 (|:| -1673 (-647 *4)) (|:| |vec| (-1207 *4)))))) ((*1 *2 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-656 *4)) (-4 *4 (-1068)) (-5 *2 (-707 *4))))) + (-12 (-5 *3 (-1207 *1)) (-4 *1 (-596 *4)) (-4 *4 (-989)) (-5 *2 (-647 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-707 *1)) (-5 *4 (-1286 *1)) (-4 *1 (-656 *5)) (-4 *5 (-1068)) - (-5 *2 (-2 (|:| -1781 (-707 *5)) (|:| |vec| (-1286 *5)))))) + (-12 (-5 *3 (-647 *1)) (-5 *4 (-1207 *1)) (-4 *1 (-596 *5)) (-4 *5 (-989)) + (-5 *2 (-2 (|:| -1673 (-647 *5)) (|:| |vec| (-1207 *5)))))) ((*1 *2 *3) - (-12 (-5 *3 (-707 *1)) (-4 *1 (-656 *4)) (-4 *4 (-1068)) (-5 *2 (-707 *4))))) + (-12 (-5 *3 (-647 *1)) (-4 *1 (-596 *4)) (-4 *4 (-989)) (-5 *2 (-647 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-659 *3)) (-4 *3 (-376)) (-5 *1 (-655 *3 *4)) - (-14 *4 (-659 (-1196)))))) + (-12 (-5 *2 (-599 *3)) (-4 *3 (-318)) (-5 *1 (-595 *3 *4)) + (-14 *4 (-599 (-1117)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1068) (-656 *5))) - (-4 *5 (-376)) (-4 *5 (-568)) (-5 *2 (-1286 *5)) (-5 *1 (-654 *5 *4)))) + (|partial| -12 (-5 *3 (-1207 *4)) (-4 *4 (-13 (-989) (-596 *5))) + (-4 *5 (-318)) (-4 *5 (-510)) (-5 *2 (-1207 *5)) (-5 *1 (-594 *5 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1068) (-656 *5))) - (-2957 (-4 *5 (-376))) (-4 *5 (-568)) (-5 *2 (-1286 (-419 *5))) - (-5 *1 (-654 *5 *4))))) + (|partial| -12 (-5 *3 (-1207 *4)) (-4 *4 (-13 (-989) (-596 *5))) + (-2679 (-4 *5 (-318))) (-4 *5 (-510)) (-5 *2 (-1207 (-361 *5))) + (-5 *1 (-594 *5 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1286 *5)) (-4 *5 (-13 (-1068) (-656 *4))) - (-4 *4 (-568)) (-5 *2 (-1286 *4)) (-5 *1 (-654 *4 *5))))) + (|partial| -12 (-5 *3 (-1207 *5)) (-4 *5 (-13 (-989) (-596 *4))) + (-4 *4 (-510)) (-5 *2 (-1207 *4)) (-5 *1 (-594 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1286 *5)) (-4 *5 (-13 (-1068) (-656 *4))) (-4 *4 (-568)) - (-5 *2 (-114)) (-5 *1 (-654 *4 *5))))) + (-12 (-5 *3 (-1207 *5)) (-4 *5 (-13 (-989) (-596 *4))) (-4 *4 (-510)) + (-5 *2 (-85)) (-5 *1 (-594 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-853 *3))) (-4 *3 (-13 (-27) (-1222) (-433 *5))) - (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) + (-12 (-5 *4 (-247 (-775 *3))) (-4 *3 (-13 (-27) (-1143) (-375 *5))) + (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 - (-3 (-853 *3) - (-2 (|:| |leftHandLimit| (-3 (-853 *3) #1="failed")) - (|:| |rightHandLimit| (-3 (-853 *3) #1#))) + (-3 (-775 *3) + (-2 (|:| |leftHandLimit| (-3 (-775 *3) #1="failed")) + (|:| |rightHandLimit| (-3 (-775 *3) #1#))) "failed")) - (-5 *1 (-651 *5 *3)))) + (-5 *1 (-591 *5 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1178)) - (-4 *3 (-13 (-27) (-1222) (-433 *6))) - (-4 *6 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-853 *3)) - (-5 *1 (-651 *6 *3)))) + (|partial| -12 (-5 *4 (-247 *3)) (-5 *5 (-1099)) + (-4 *3 (-13 (-27) (-1143) (-375 *6))) + (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-775 *3)) + (-5 *1 (-591 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-853 (-963 *5)))) (-4 *5 (-464)) + (-12 (-5 *4 (-247 (-775 (-884 *5)))) (-4 *5 (-406)) (-5 *2 - (-3 (-853 (-419 (-963 *5))) - (-2 (|:| |leftHandLimit| (-3 (-853 (-419 (-963 *5))) #2="failed")) - (|:| |rightHandLimit| (-3 (-853 (-419 (-963 *5))) #2#))) + (-3 (-775 (-361 (-884 *5))) + (-2 (|:| |leftHandLimit| (-3 (-775 (-361 (-884 *5))) #2="failed")) + (|:| |rightHandLimit| (-3 (-775 (-361 (-884 *5))) #2#))) #3="failed")) - (-5 *1 (-652 *5)) (-5 *3 (-419 (-963 *5))))) + (-5 *1 (-592 *5)) (-5 *3 (-361 (-884 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-419 (-963 *5)))) (-5 *3 (-419 (-963 *5))) (-4 *5 (-464)) + (-12 (-5 *4 (-247 (-361 (-884 *5)))) (-5 *3 (-361 (-884 *5))) (-4 *5 (-406)) (-5 *2 - (-3 (-853 *3) - (-2 (|:| |leftHandLimit| (-3 (-853 *3) #2#)) - (|:| |rightHandLimit| (-3 (-853 *3) #2#))) + (-3 (-775 *3) + (-2 (|:| |leftHandLimit| (-3 (-775 *3) #2#)) + (|:| |rightHandLimit| (-3 (-775 *3) #2#))) #3#)) - (-5 *1 (-652 *5)))) + (-5 *1 (-592 *5)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-305 (-419 (-963 *6)))) (-5 *5 (-1178)) - (-5 *3 (-419 (-963 *6))) (-4 *6 (-464)) (-5 *2 (-853 *3)) - (-5 *1 (-652 *6))))) + (|partial| -12 (-5 *4 (-247 (-361 (-884 *6)))) (-5 *5 (-1099)) + (-5 *3 (-361 (-884 *6))) (-4 *6 (-406)) (-5 *2 (-775 *3)) + (-5 *1 (-592 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-305 (-843 *3))) - (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-843 *3)) - (-5 *1 (-651 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5))))) + (|partial| -12 (-5 *4 (-247 (-766 *3))) + (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-766 *3)) + (-5 *1 (-591 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-843 (-963 *5)))) (-4 *5 (-464)) - (-5 *2 (-843 (-419 (-963 *5)))) (-5 *1 (-652 *5)) (-5 *3 (-419 (-963 *5))))) + (-12 (-5 *4 (-247 (-766 (-884 *5)))) (-4 *5 (-406)) + (-5 *2 (-766 (-361 (-884 *5)))) (-5 *1 (-592 *5)) (-5 *3 (-361 (-884 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-419 (-963 *5)))) (-5 *3 (-419 (-963 *5))) (-4 *5 (-464)) - (-5 *2 (-843 *3)) (-5 *1 (-652 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-647))))) -(((*1 *1 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1) (-5 *1 (-647)))) + (-12 (-5 *4 (-247 (-361 (-884 *5)))) (-5 *3 (-361 (-884 *5))) (-4 *5 (-406)) + (-5 *2 (-766 *3)) (-5 *1 (-592 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-344)) (-5 *1 (-587))))) +(((*1 *1 *1) (-12 (-5 *1 (-563 *2)) (-4 *2 (-1041)))) + ((*1 *1 *1) (-5 *1 (-587)))) (((*1 *2 *3) - (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-659 (-1196))) (-4 *5 (-464)) - (-5 *2 (-493 *4 *5)) (-5 *1 (-646 *4 *5))))) + (-12 (-5 *3 (-205 *4 *5)) (-14 *4 (-599 (-1117))) (-4 *5 (-406)) + (-5 *2 (-435 *4 *5)) (-5 *1 (-586 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-659 (-255 *4 *5))) (-5 *2 (-255 *4 *5)) (-14 *4 (-659 (-1196))) - (-4 *5 (-464)) (-5 *1 (-646 *4 *5))))) + (-12 (-5 *3 (-599 (-205 *4 *5))) (-5 *2 (-205 *4 *5)) (-14 *4 (-599 (-1117))) + (-4 *5 (-406)) (-5 *1 (-586 *4 *5))))) (((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-659 (-493 *4 *5))) (-5 *3 (-876 *4)) (-14 *4 (-659 (-1196))) - (-4 *5 (-464)) (-5 *1 (-646 *4 *5))))) + (-12 (-5 *2 (-599 (-435 *4 *5))) (-5 *3 (-798 *4)) (-14 *4 (-599 (-1117))) + (-4 *5 (-406)) (-5 *1 (-586 *4 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-659 *6)) (-5 *4 (-659 (-255 *5 *6))) (-4 *6 (-464)) - (-5 *2 (-255 *5 *6)) (-14 *5 (-659 (-1196))) (-5 *1 (-646 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-960 (-229)) (-960 (-229)))) (-5 *1 (-270)))) + (-12 (-5 *3 (-599 *6)) (-5 *4 (-599 (-205 *5 *6))) (-4 *6 (-406)) + (-5 *2 (-205 *5 *6)) (-14 *5 (-599 (-1117))) (-5 *1 (-586 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-881 (-179)) (-881 (-179)))) (-5 *1 (-220)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-960 (-229)) (-960 (-229)))) (-5 *3 (-659 (-270))) - (-5 *1 (-271)))) + (-12 (-5 *2 (-1 (-881 (-179)) (-881 (-179)))) (-5 *3 (-599 (-220))) + (-5 *1 (-221)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-659 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) (-14 *5 (-659 (-1196))) - (-4 *6 (-464)) (-5 *2 (-1286 *6)) (-5 *1 (-646 *5 *6))))) + (-12 (-5 *4 (-599 (-435 *5 *6))) (-5 *3 (-435 *5 *6)) (-14 *5 (-599 (-1117))) + (-4 *6 (-406)) (-5 *2 (-1207 *6)) (-5 *1 (-586 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-659 (-493 *3 *4))) (-14 *3 (-659 (-1196))) (-4 *4 (-464)) - (-5 *1 (-646 *3 *4))))) + (-12 (-5 *2 (-599 (-435 *3 *4))) (-14 *3 (-599 (-1117))) (-4 *4 (-406)) + (-5 *1 (-586 *3 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-659 (-493 *5 *6))) (-5 *4 (-876 *5)) (-14 *5 (-659 (-1196))) - (-5 *2 (-493 *5 *6)) (-5 *1 (-646 *5 *6)) (-4 *6 (-464)))) + (-12 (-5 *3 (-599 (-435 *5 *6))) (-5 *4 (-798 *5)) (-14 *5 (-599 (-1117))) + (-5 *2 (-435 *5 *6)) (-5 *1 (-586 *5 *6)) (-4 *6 (-406)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-493 *5 *6))) (-5 *4 (-876 *5)) (-14 *5 (-659 (-1196))) - (-5 *2 (-493 *5 *6)) (-5 *1 (-646 *5 *6)) (-4 *6 (-464))))) + (-12 (-5 *3 (-599 (-435 *5 *6))) (-5 *4 (-798 *5)) (-14 *5 (-599 (-1117))) + (-5 *2 (-435 *5 *6)) (-5 *1 (-586 *5 *6)) (-4 *6 (-406))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 (-493 *4 *5))) (-14 *4 (-659 (-1196))) (-4 *5 (-464)) - (-5 *2 (-659 (-255 *4 *5))) (-5 *1 (-646 *4 *5))))) + (-12 (-5 *3 (-599 (-435 *4 *5))) (-14 *4 (-599 (-1117))) (-4 *5 (-406)) + (-5 *2 (-599 (-205 *4 *5))) (-5 *1 (-586 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-659 (-1196))) (-4 *5 (-464)) - (-5 *2 (-2 (|:| |glbase| (-659 (-255 *4 *5))) (|:| |glval| (-659 (-557))))) - (-5 *1 (-646 *4 *5)) (-5 *3 (-659 (-255 *4 *5)))))) + (-12 (-14 *4 (-599 (-1117))) (-4 *5 (-406)) + (-5 *2 (-2 (|:| |glbase| (-599 (-205 *4 *5))) (|:| |glval| (-599 (-499))))) + (-5 *1 (-586 *4 *5)) (-5 *3 (-599 (-205 *4 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 (-493 *4 *5))) (-14 *4 (-659 (-1196))) (-4 *5 (-464)) - (-5 *2 (-2 (|:| |gblist| (-659 (-255 *4 *5))) (|:| |gvlist| (-659 (-557))))) - (-5 *1 (-646 *4 *5))))) + (-12 (-5 *3 (-599 (-435 *4 *5))) (-14 *4 (-599 (-1117))) (-4 *5 (-406)) + (-5 *2 (-2 (|:| |gblist| (-599 (-205 *4 *5))) (|:| |gvlist| (-599 (-499))))) + (-5 *1 (-586 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-644 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1021) (-1222))))) - ((*1 *1 *1) (-4 *1 (-645)))) + (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) + (-4 *2 (-13 (-375 *3) (-942) (-1143))))) + ((*1 *1 *1) (-4 *1 (-585)))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-644 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1021) (-1222))))) - ((*1 *1 *1) (-4 *1 (-645)))) + (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) + (-4 *2 (-13 (-375 *3) (-942) (-1143))))) + ((*1 *1 *1) (-4 *1 (-585)))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-644 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1021) (-1222))))) - ((*1 *1 *1) (-4 *1 (-645)))) + (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) + (-4 *2 (-13 (-375 *3) (-942) (-1143))))) + ((*1 *1 *1) (-4 *1 (-585)))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-644 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1021) (-1222))))) - ((*1 *1 *1) (-4 *1 (-645)))) + (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) + (-4 *2 (-13 (-375 *3) (-942) (-1143))))) + ((*1 *1 *1) (-4 *1 (-585)))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-644 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1021) (-1222))))) - ((*1 *1 *1) (-4 *1 (-645)))) + (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) + (-4 *2 (-13 (-375 *3) (-942) (-1143))))) + ((*1 *1 *1) (-4 *1 (-585)))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-644 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1021) (-1222))))) - ((*1 *1 *1) (-4 *1 (-645)))) + (-12 (-4 *3 (-510)) (-5 *1 (-584 *3 *2)) + (-4 *2 (-13 (-375 *3) (-942) (-1143))))) + ((*1 *1 *1) (-4 *1 (-585)))) (((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-114)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-433 *4)))) + (-12 (-5 *3 (-86)) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-375 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-114)) (-5 *1 (-160 *4 *5)) - (-4 *5 (-433 *4)))) + (-12 (-5 *3 (-86)) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) + (-4 *5 (-375 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-114)) (-5 *1 (-287 *4 *5)) - (-4 *5 (-13 (-433 *4) (-1021))))) + (-12 (-5 *3 (-86)) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-229 *4 *5)) + (-4 *5 (-13 (-375 *4) (-942))))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-309 *4)) (-4 *4 (-310)))) - ((*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114)))) + (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-251 *4)) (-4 *4 (-252)))) + ((*1 *2 *3) (-12 (-4 *1 (-252)) (-5 *3 (-86)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *5 (-1120)) (-5 *2 (-114)) (-5 *1 (-432 *4 *5)) - (-4 *4 (-433 *5)))) + (-12 (-5 *3 (-86)) (-4 *5 (-1041)) (-5 *2 (-85)) (-5 *1 (-374 *4 *5)) + (-4 *4 (-375 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-114)) (-5 *1 (-443 *4 *5)) - (-4 *5 (-433 *4)))) + (-12 (-5 *3 (-86)) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-385 *4 *5)) + (-4 *5 (-375 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-114)) (-5 *1 (-644 *4 *5)) - (-4 *5 (-13 (-433 *4) (-1021) (-1222)))))) + (-12 (-5 *3 (-86)) (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-584 *4 *5)) + (-4 *5 (-13 (-375 *4) (-942) (-1143)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-798 *5 (-876 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) - (-14 *6 (-659 (-1196))) - (-5 *2 (-659 (-1165 *5 (-542 (-876 *6)) (-876 *6) (-798 *5 (-876 *6))))) - (-5 *1 (-643 *5 *6))))) + (-12 (-5 *3 (-599 (-723 *5 (-798 *6)))) (-5 *4 (-85)) (-4 *5 (-406)) + (-14 *6 (-599 (-1117))) + (-5 *2 (-599 (-1086 *5 (-484 (-798 *6)) (-798 *6) (-723 *5 (-798 *6))))) + (-5 *1 (-583 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-798 *5 (-876 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) - (-14 *6 (-659 (-1196))) (-5 *2 (-659 (-1065 *5 *6))) (-5 *1 (-643 *5 *6))))) + (-12 (-5 *3 (-599 (-723 *5 (-798 *6)))) (-5 *4 (-85)) (-4 *5 (-406)) + (-14 *6 (-599 (-1117))) (-5 *2 (-599 (-986 *5 *6))) (-5 *1 (-583 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-659 (-963 *3))) (-4 *3 (-464)) (-5 *1 (-373 *3 *4)) - (-14 *4 (-659 (-1196))))) + (-12 (-5 *2 (-599 (-884 *3))) (-4 *3 (-406)) (-5 *1 (-315 *3 *4)) + (-14 *4 (-599 (-1117))))) ((*1 *2 *2) - (-12 (-5 *2 (-659 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-813)) - (-4 *5 (-859)) (-5 *1 (-459 *3 *4 *5 *6)))) + (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-406)) (-4 *4 (-738)) + (-4 *5 (-781)) (-5 *1 (-401 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-659 *7)) (-5 *3 (-1178)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-459 *4 *5 *6 *7)))) + (-12 (-5 *2 (-599 *7)) (-5 *3 (-1099)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) + (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-401 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-659 *7)) (-5 *3 (-1178)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-459 *4 *5 *6 *7)))) + (-12 (-5 *2 (-599 *7)) (-5 *3 (-1099)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) + (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-401 *4 *5 *6 *7)))) ((*1 *1 *1) - (-12 (-4 *2 (-376)) (-4 *3 (-813)) (-4 *4 (-859)) (-5 *1 (-516 *2 *3 *4 *5)) - (-4 *5 (-967 *2 *3 *4)))) + (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) + (-4 *5 (-888 *2 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-659 (-798 *3 (-876 *4)))) (-4 *3 (-464)) - (-14 *4 (-659 (-1196))) (-5 *1 (-643 *3 *4))))) + (-12 (-5 *2 (-599 (-723 *3 (-798 *4)))) (-4 *3 (-406)) + (-14 *4 (-599 (-1117))) (-5 *1 (-583 *3 *4))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-659 (-963 *3))) (-4 *3 (-464)) (-5 *1 (-373 *3 *4)) - (-14 *4 (-659 (-1196))))) + (|partial| -12 (-5 *2 (-599 (-884 *3))) (-4 *3 (-406)) (-5 *1 (-315 *3 *4)) + (-14 *4 (-599 (-1117))))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-659 (-798 *3 (-876 *4)))) (-4 *3 (-464)) - (-14 *4 (-659 (-1196))) (-5 *1 (-643 *3 *4))))) + (|partial| -12 (-5 *2 (-599 (-723 *3 (-798 *4)))) (-4 *3 (-406)) + (-14 *4 (-599 (-1117))) (-5 *1 (-583 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 (-963 *4))) (-4 *4 (-464)) (-5 *2 (-114)) - (-5 *1 (-373 *4 *5)) (-14 *5 (-659 (-1196))))) + (-12 (-5 *3 (-599 (-884 *4))) (-4 *4 (-406)) (-5 *2 (-85)) + (-5 *1 (-315 *4 *5)) (-14 *5 (-599 (-1117))))) ((*1 *2 *3) - (-12 (-5 *3 (-659 (-798 *4 (-876 *5)))) (-4 *4 (-464)) - (-14 *5 (-659 (-1196))) (-5 *2 (-114)) (-5 *1 (-643 *4 *5))))) + (-12 (-5 *3 (-599 (-723 *4 (-798 *5)))) (-4 *4 (-406)) + (-14 *5 (-599 (-1117))) (-5 *2 (-85)) (-5 *1 (-583 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 *4)) (-4 *4 (-859)) (-5 *2 (-659 (-682 *4 *5))) - (-5 *1 (-642 *4 *5 *6)) (-4 *5 (-13 (-175) (-735 (-419 (-557))))) - (-14 *6 (-936))))) + (-12 (-5 *3 (-599 *4)) (-4 *4 (-781)) (-5 *2 (-599 (-622 *4 *5))) + (-5 *1 (-582 *4 *5 *6)) (-4 *5 (-13 (-146) (-675 (-361 (-499))))) + (-14 *6 (-857))))) (((*1 *2 *1) - (-12 (-5 *2 (-659 (-2 (|:| |k| (-690 *3)) (|:| |c| *4)))) - (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-859)) - (-4 *4 (-13 (-175) (-735 (-419 (-557))))) (-14 *5 (-936))))) + (-12 (-5 *2 (-599 (-2 (|:| |k| (-630 *3)) (|:| |c| *4)))) + (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) + (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-659 (-305 *4))) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-859)) - (-4 *4 (-13 (-175) (-735 (-419 (-557))))) (-14 *5 (-936))))) + (-12 (-5 *2 (-599 (-247 *4))) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-781)) + (-4 *4 (-13 (-146) (-675 (-361 (-499))))) (-14 *5 (-857))))) (((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) - (|:| -1985 (-659 (-2 (|:| |irr| *10) (|:| -2624 (-557))))))) - (-5 *6 (-659 *3)) (-5 *7 (-659 *8)) (-4 *8 (-859)) (-4 *3 (-319)) - (-4 *10 (-967 *3 *9 *8)) (-4 *9 (-813)) + (|:| -1877 (-599 (-2 (|:| |irr| *10) (|:| -2513 (-499))))))) + (-5 *6 (-599 *3)) (-5 *7 (-599 *8)) (-4 *8 (-781)) (-4 *3 (-261)) + (-4 *10 (-888 *3 *9 *8)) (-4 *9 (-738)) (-5 *2 - (-2 (|:| |polfac| (-659 *10)) (|:| |correct| *3) - (|:| |corrfact| (-659 (-1190 *3))))) - (-5 *1 (-640 *8 *9 *3 *10)) (-5 *4 (-659 (-1190 *3)))))) + (-2 (|:| |polfac| (-599 *10)) (|:| |correct| *3) + (|:| |corrfact| (-599 (-1111 *3))))) + (-5 *1 (-580 *8 *9 *3 *10)) (-5 *4 (-599 (-1111 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-789)) (-5 *5 (-659 *3)) (-4 *3 (-319)) (-4 *6 (-859)) - (-4 *7 (-813)) (-5 *2 (-114)) (-5 *1 (-640 *6 *7 *3 *8)) - (-4 *8 (-967 *3 *7 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *6 (-1084 *3 *4 *5)) - (-5 *1 (-639 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1090 *3 *4 *5 *6)) - (-4 *2 (-1128 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-638 *2 *3)) (-4 *3 (-1262 *2))))) + (-12 (-5 *4 (-714)) (-5 *5 (-599 *3)) (-4 *3 (-261)) (-4 *6 (-781)) + (-4 *7 (-738)) (-5 *2 (-85)) (-5 *1 (-580 *6 *7 *3 *8)) + (-4 *8 (-888 *3 *7 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *6 (-1005 *3 *4 *5)) + (-5 *1 (-579 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1011 *3 *4 *5 *6)) + (-4 *2 (-1049 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *2 (-510)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1183 *2))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) - (-5 *1 (-637 *4 *2)) (-4 *2 (-13 (-1222) (-977) (-29 *4)))))) -(((*1 *1) (-5 *1 (-632)))) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) + (-5 *1 (-577 *4 *2)) (-4 *2 (-13 (-1143) (-898) (-29 *4)))))) +(((*1 *1) (-5 *1 (-572)))) (((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-149) (-27) (-1057 (-557)) (-1057 (-419 (-557))))) - (-4 *5 (-1262 *4)) (-5 *2 (-1190 (-419 *5))) (-5 *1 (-630 *4 *5)) - (-5 *3 (-419 *5)))) + (|partial| -12 (-4 *4 (-13 (-120) (-27) (-978 (-499)) (-978 (-361 (-499))))) + (-4 *5 (-1183 *4)) (-5 *2 (-1111 (-361 *5))) (-5 *1 (-570 *4 *5)) + (-5 *3 (-361 *5)))) ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1262 *5)) - (-4 *5 (-13 (-149) (-27) (-1057 (-557)) (-1057 (-419 (-557))))) - (-5 *2 (-1190 (-419 *6))) (-5 *1 (-630 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-626 *4)) (-4 *4 (-1120)) (-4 *2 (-1120)) - (-5 *1 (-627 *2 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-626 *4)) (-5 *1 (-627 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1222)))) - ((*1 *2 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-626 *3)) (-4 *3 (-1120))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-659 *1)) (-4 *1 (-310)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-626 *3)) (-4 *3 (-1120)))) + (|partial| -12 (-5 *4 (-1 (-359 *6) *6)) (-4 *6 (-1183 *5)) + (-4 *5 (-13 (-120) (-27) (-978 (-499)) (-978 (-361 (-499))))) + (-5 *2 (-1111 (-361 *6))) (-5 *1 (-570 *5 *6)) (-5 *3 (-361 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-566 *4)) (-4 *4 (-1041)) (-4 *2 (-1041)) + (-5 *1 (-567 *2 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-566 *4)) (-5 *1 (-567 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) +(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1143)))) + ((*1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-781)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 *3)) (-5 *1 (-566 *3)) (-4 *3 (-1041))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-599 *1)) (-4 *1 (-252)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-252)) (-5 *2 (-86)))) + ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-566 *3)) (-4 *3 (-1041)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-115)) (-5 *3 (-659 *5)) (-5 *4 (-789)) (-4 *5 (-1120)) - (-5 *1 (-626 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-626 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-625 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-5 *2 (-114))))) + (-12 (-5 *2 (-86)) (-5 *3 (-599 *5)) (-5 *4 (-714)) (-4 *5 (-1041)) + (-5 *1 (-566 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-566 *3)) (-4 *3 (-1041))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-625 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120))))) -(((*1 *1) (-5 *1 (-618))) ((*1 *1) (-5 *1 (-620))) ((*1 *1) (-5 *1 (-621)))) -(((*1 *1) (-5 *1 (-620))) ((*1 *1) (-5 *1 (-621)))) -(((*1 *1) (-5 *1 (-620))) ((*1 *1) (-5 *1 (-621)))) -(((*1 *1) (-5 *1 (-620))) ((*1 *1) (-5 *1 (-621)))) -(((*1 *1) (-5 *1 (-618))) ((*1 *1) (-5 *1 (-620))) ((*1 *1) (-5 *1 (-621)))) -(((*1 *1) (-5 *1 (-621)))) -(((*1 *1) (-5 *1 (-621)))) -(((*1 *1) (-5 *1 (-618))) ((*1 *1) (-5 *1 (-621)))) -(((*1 *1) (-5 *1 (-621)))) -(((*1 *1) (-5 *1 (-620)))) -(((*1 *1) (-5 *1 (-620)))) -(((*1 *1) (-5 *1 (-619)))) -(((*1 *1) (-5 *1 (-619)))) -(((*1 *1) (-5 *1 (-619)))) -(((*1 *1) (-5 *1 (-619)))) -(((*1 *1) (-5 *1 (-619)))) -(((*1 *1) (-5 *1 (-619)))) -(((*1 *1) (-5 *1 (-619)))) -(((*1 *1) (-5 *1 (-619)))) -(((*1 *1) (-5 *1 (-619)))) -(((*1 *1) (-5 *1 (-619)))) -(((*1 *1) (-5 *1 (-619)))) -(((*1 *1) (-5 *1 (-618)))) -(((*1 *1) (-5 *1 (-618)))) -(((*1 *2 *1) (-12 (-5 *2 (-975 (-187 (-141)))) (-5 *1 (-345)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 (-1237))) (-5 *1 (-615))))) + (-12 (-4 *1 (-565 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-659 - (-2 - (|:| -4288 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) - (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) - (|:| |relerr| (-229)))) - (|:| -2284 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1174 (-229))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1636 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-571)))) - ((*1 *2 *1) - (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1236)) (-5 *2 (-659 *4))))) + (-12 (-4 *1 (-565 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-5 *2 (-599 *3))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-565 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041))))) +(((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561)))) +(((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561)))) +(((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561)))) +(((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561)))) +(((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561)))) +(((*1 *1) (-5 *1 (-561)))) +(((*1 *1) (-5 *1 (-561)))) +(((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-561)))) +(((*1 *1) (-5 *1 (-561)))) +(((*1 *1) (-5 *1 (-560)))) +(((*1 *1) (-5 *1 (-560)))) +(((*1 *1) (-5 *1 (-559)))) +(((*1 *1) (-5 *1 (-559)))) +(((*1 *1) (-5 *1 (-559)))) +(((*1 *1) (-5 *1 (-559)))) +(((*1 *1) (-5 *1 (-559)))) +(((*1 *1) (-5 *1 (-559)))) +(((*1 *1) (-5 *1 (-559)))) +(((*1 *1) (-5 *1 (-559)))) +(((*1 *1) (-5 *1 (-559)))) +(((*1 *1) (-5 *1 (-559)))) +(((*1 *1) (-5 *1 (-559)))) +(((*1 *1) (-5 *1 (-558)))) +(((*1 *1) (-5 *1 (-558)))) +(((*1 *2 *1) (-12 (-5 *2 (-896 (-158 (-112)))) (-5 *1 (-287)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 (-1158))) (-5 *1 (-555))))) +(((*1 *2 *1) + (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1157)) (-5 *2 (-599 *4))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1236)) (-5 *2 (-114))))) + (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1157)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1236)) (-5 *2 (-659 *3))))) + (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1157)) (-5 *2 (-599 *3))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-614 *4 *3)) (-4 *4 (-1120)) - (-4 *3 (-1236)) (-4 *3 (-1120)) (-5 *2 (-114))))) + (-12 (|has| *1 (-6 -4145)) (-4 *1 (-554 *4 *3)) (-4 *4 (-1041)) + (-4 *3 (-1157)) (-4 *3 (-1041)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1120)) (-4 *2 (-859))))) + (-12 (-4 *1 (-554 *2 *3)) (-4 *3 (-1157)) (-4 *2 (-1041)) (-4 *2 (-781))))) (((*1 *2 *1) - (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1120)) (-4 *2 (-859))))) + (-12 (-4 *1 (-554 *2 *3)) (-4 *3 (-1157)) (-4 *2 (-1041)) (-4 *2 (-781))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1236)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)))) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1157)) (-4 *3 (-327 *2)) + (-4 *4 (-327 *2)))) ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4424)) (-4 *1 (-614 *3 *2)) (-4 *3 (-1120)) - (-4 *2 (-1236))))) + (-12 (|has| *1 (-6 -4146)) (-4 *1 (-554 *3 *2)) (-4 *3 (-1041)) + (-4 *2 (-1157))))) (((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4424)) (-4 *1 (-614 *3 *4)) (-4 *3 (-1120)) - (-4 *4 (-1236)) (-5 *2 (-1292))))) + (-12 (|has| *1 (-6 -4146)) (-4 *1 (-554 *3 *4)) (-4 *3 (-1041)) + (-4 *4 (-1157)) (-5 *2 (-1213))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-659 (-626 *2))) (-5 *4 (-659 (-1196))) - (-4 *2 (-13 (-433 (-171 *5)) (-1021) (-1222))) (-4 *5 (-568)) - (-5 *1 (-610 *5 *6 *2)) (-4 *6 (-13 (-433 *5) (-1021) (-1222)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-610 *4 *5 *3)) - (-4 *5 (-13 (-433 *4) (-1021) (-1222))) - (-4 *3 (-13 (-433 (-171 *4)) (-1021) (-1222)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *2 (-13 (-433 (-171 *4)) (-1021) (-1222))) - (-5 *1 (-610 *4 *3 *2)) (-4 *3 (-13 (-433 *4) (-1021) (-1222)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *2 (-13 (-433 *4) (-1021) (-1222))) - (-5 *1 (-610 *4 *2 *3)) (-4 *3 (-13 (-433 (-171 *4)) (-1021) (-1222)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-433 *4) (-1021) (-1222))) (-4 *4 (-568)) - (-4 *2 (-13 (-433 (-171 *4)) (-1021) (-1222))) (-5 *1 (-610 *4 *5 *2))))) -(((*1 *1) (-5 *1 (-607)))) -(((*1 *1) (-5 *1 (-607)))) -(((*1 *1) (-5 *1 (-607)))) -(((*1 *1) (-5 *1 (-607)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-659 (-607))) (-5 *1 (-607))))) + (-12 (-5 *3 (-599 (-566 *2))) (-5 *4 (-599 (-1117))) + (-4 *2 (-13 (-375 (-142 *5)) (-942) (-1143))) (-4 *5 (-510)) + (-5 *1 (-550 *5 *6 *2)) (-4 *6 (-13 (-375 *5) (-942) (-1143)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-510)) (-5 *2 (-142 *5)) (-5 *1 (-550 *4 *5 *3)) + (-4 *5 (-13 (-375 *4) (-942) (-1143))) + (-4 *3 (-13 (-375 (-142 *4)) (-942) (-1143)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-510)) (-4 *2 (-13 (-375 (-142 *4)) (-942) (-1143))) + (-5 *1 (-550 *4 *3 *2)) (-4 *3 (-13 (-375 *4) (-942) (-1143)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-510)) (-4 *2 (-13 (-375 *4) (-942) (-1143))) + (-5 *1 (-550 *4 *2 *3)) (-4 *3 (-13 (-375 (-142 *4)) (-942) (-1143)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-375 *4) (-942) (-1143))) (-4 *4 (-510)) + (-4 *2 (-13 (-375 (-142 *4)) (-942) (-1143))) (-5 *1 (-550 *4 *5 *2))))) +(((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-547)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-547))) (-5 *1 (-547))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1045 (-853 (-557)))) - (-5 *3 (-1174 (-2 (|:| |k| (-557)) (|:| |c| *4)))) (-4 *4 (-1068)) - (-5 *1 (-605 *4))))) + (-12 (-5 *2 (-966 (-775 (-499)))) + (-5 *3 (-1095 (-2 (|:| |k| (-499)) (|:| |c| *4)))) (-4 *4 (-989)) + (-5 *1 (-545 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-1045 (-853 (-557)))) (-5 *1 (-605 *3)) (-4 *3 (-1068))))) + (-12 (-5 *2 (-966 (-775 (-499)))) (-5 *1 (-545 *3)) (-4 *3 (-989))))) (((*1 *2 *1) - (-12 (-5 *2 (-1174 (-2 (|:| |k| (-557)) (|:| |c| *3)))) (-5 *1 (-605 *3)) - (-4 *3 (-1068))))) + (-12 (-5 *2 (-1095 (-2 (|:| |k| (-499)) (|:| |c| *3)))) (-5 *1 (-545 *3)) + (-4 *3 (-989))))) (((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-114)) (-5 *1 (-605 *3)) (-4 *3 (-1068))))) -(((*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1068))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1068))))) + (|partial| -12 (-5 *2 (-85)) (-5 *1 (-545 *3)) (-4 *3 (-989))))) +(((*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-989))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-989))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1174 (-2 (|:| |k| (-557)) (|:| |c| *6)))) - (-5 *4 (-1045 (-853 (-557)))) (-5 *5 (-1196)) (-5 *7 (-419 (-557))) - (-4 *6 (-1068)) (-5 *2 (-875)) (-5 *1 (-605 *6))))) + (-12 (-5 *3 (-1095 (-2 (|:| |k| (-499)) (|:| |c| *6)))) + (-5 *4 (-966 (-775 (-499)))) (-5 *5 (-1117)) (-5 *7 (-361 (-499))) + (-4 *6 (-989)) (-5 *2 (-797)) (-5 *1 (-545 *6))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-419 (-557))) (-5 *1 (-605 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1068))))) + (-12 (-5 *2 (-361 (-499))) (-5 *1 (-545 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-419 (-557)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-545 *2)) (-4 *2 (-38 (-361 (-499)))) (-4 *2 (-989))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-659 *3)) (-4 *3 (-1128 *5 *6 *7 *8)) - (-4 *5 (-13 (-319) (-149))) (-4 *6 (-813)) (-4 *7 (-859)) - (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-602 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-599 *3)) (-4 *3 (-1049 *5 *6 *7 *8)) + (-4 *5 (-13 (-261) (-120))) (-4 *6 (-738)) (-4 *7 (-781)) + (-4 *8 (-1005 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-542 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-936))) (-5 *4 (-919 (-557))) (-5 *2 (-707 (-557))) - (-5 *1 (-601)))) + (-12 (-5 *3 (-599 (-857))) (-5 *4 (-840 (-499))) (-5 *2 (-647 (-499))) + (-5 *1 (-541)))) ((*1 *2 *3) - (-12 (-5 *3 (-659 (-936))) (-5 *2 (-659 (-707 (-557)))) (-5 *1 (-601)))) + (-12 (-5 *3 (-599 (-857))) (-5 *2 (-599 (-647 (-499)))) (-5 *1 (-541)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-936))) (-5 *4 (-659 (-919 (-557)))) - (-5 *2 (-659 (-707 (-557)))) (-5 *1 (-601))))) -(((*1 *2 *3) (-12 (-5 *3 (-659 (-936))) (-5 *2 (-789)) (-5 *1 (-601))))) + (-12 (-5 *3 (-599 (-857))) (-5 *4 (-599 (-840 (-499)))) + (-5 *2 (-599 (-647 (-499)))) (-5 *1 (-541))))) +(((*1 *2 *3) (-12 (-5 *3 (-599 (-857))) (-5 *2 (-714)) (-5 *1 (-541))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) - (-5 *1 (-440 *4 *2)) (-4 *2 (-13 (-1222) (-29 *4))))) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) + (-5 *1 (-382 *4 *2)) (-4 *2 (-13 (-1143) (-29 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-963 *5))) (-5 *4 (-1196)) (-4 *5 (-149)) - (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-326 *5)) - (-5 *1 (-600 *5))))) + (-12 (-5 *3 (-361 (-884 *5))) (-5 *4 (-1117)) (-4 *5 (-120)) + (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-268 *5)) + (-5 *1 (-540 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-594 *2)) (-4 *2 (-13 (-29 *4) (-1222))) (-5 *1 (-596 *4 *2)) - (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))))) + (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1143))) (-5 *1 (-536 *4 *2)) + (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))))) ((*1 *2 *3) - (-12 (-5 *3 (-594 (-419 (-963 *4)))) - (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *2 (-326 *4)) - (-5 *1 (-600 *4))))) + (-12 (-5 *3 (-534 (-361 (-884 *4)))) + (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 (-268 *4)) + (-5 *1 (-540 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-599 *4)) (-4 *4 (-363))))) -(((*1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-556))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-598 *2)) (-4 *2 (-556))))) -(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-598 *3)) (-4 *3 (-556))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-789)) (-5 *1 (-598 *2)) (-4 *2 (-556))))) + (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-539 *4)) (-4 *4 (-305))))) +(((*1 *2 *2) (-12 (-5 *1 (-538 *2)) (-4 *2 (-498))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-538 *2)) (-4 *2 (-498))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-538 *3)) (-4 *3 (-498))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-714)) (-5 *1 (-538 *2)) (-4 *2 (-498))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-789)) (-5 *1 (-598 *2)) (-4 *2 (-556)))) + (|partial| -12 (-5 *3 (-714)) (-5 *1 (-538 *2)) (-4 *2 (-498)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3093 *3) (|:| -2630 (-789)))) (-5 *1 (-598 *3)) - (-4 *3 (-556))))) + (-12 (-5 *2 (-2 (|:| -2815 *3) (|:| -2519 (-714)))) (-5 *1 (-538 *3)) + (-4 *3 (-498))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-789)) (-5 *2 (-114)) (-5 *1 (-598 *3)) (-4 *3 (-556))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-607)) (-5 *1 (-597))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-607)) (-5 *1 (-597))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-607)) (-5 *1 (-597))))) + (-12 (-5 *4 (-714)) (-5 *2 (-85)) (-5 *1 (-538 *3)) (-4 *3 (-498))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-547)) (-5 *1 (-537))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-547)) (-5 *1 (-537))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-460)) (-5 *3 (-547)) (-5 *1 (-537))))) (((*1 *1 *2 *3 *4) (-12 (-5 *3 - (-659 - (-2 (|:| |scalar| (-419 (-557))) (|:| |coeff| (-1190 *2)) - (|:| |logand| (-1190 *2))))) - (-5 *4 (-659 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-376)) - (-5 *1 (-594 *2))))) -(((*1 *2 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-376))))) + (-599 + (-2 (|:| |scalar| (-361 (-499))) (|:| |coeff| (-1111 *2)) + (|:| |logand| (-1111 *2))))) + (-5 *4 (-599 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-318)) + (-5 *1 (-534 *2))))) +(((*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-318))))) (((*1 *2 *1) (-12 (-5 *2 - (-659 - (-2 (|:| |scalar| (-419 (-557))) (|:| |coeff| (-1190 *3)) - (|:| |logand| (-1190 *3))))) - (-5 *1 (-594 *3)) (-4 *3 (-376))))) -(((*1 *2 *1) - (-12 (-5 *2 (-659 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-594 *3)) (-4 *3 (-376))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-594 *3)) (-4 *3 (-376))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-593))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-590))))) -(((*1 *2 *1) (-12 (-5 *2 (-216 4 (-130))) (-5 *1 (-590))))) -(((*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-709 (-590))) (-5 *1 (-590))))) -(((*1 *2 *1) (-12 (-5 *2 (-709 (-1 (-546) (-659 (-546))))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-546) (-659 (-546)))) (-5 *1 (-115)))) - ((*1 *1) (-5 *1 (-589)))) -(((*1 *1) (-5 *1 (-589)))) -(((*1 *1) (-5 *1 (-589)))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-588)))) - ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-588))))) + (-599 + (-2 (|:| |scalar| (-361 (-499))) (|:| |coeff| (-1111 *3)) + (|:| |logand| (-1111 *3))))) + (-5 *1 (-534 *3)) (-4 *3 (-318))))) +(((*1 *2 *1) + (-12 (-5 *2 (-599 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-534 *3)) (-4 *3 (-318))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-534 *3)) (-4 *3 (-318))))) +(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-533))))) +(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-530))))) +(((*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-530))))) +(((*1 *2 *3) (-12 (-5 *3 (-445)) (-5 *2 (-649 (-530))) (-5 *1 (-530))))) +(((*1 *2 *1) (-12 (-5 *2 (-649 (-1 (-488) (-599 (-488))))) (-5 *1 (-86)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-488) (-599 (-488)))) (-5 *1 (-86)))) + ((*1 *1) (-5 *1 (-529)))) +(((*1 *1) (-5 *1 (-529)))) +(((*1 *1) (-5 *1 (-529)))) +(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-528)))) + ((*1 *1 *2) (-12 (-5 *2 (-344)) (-5 *1 (-528))))) (((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1196)) - (-4 *4 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) - (-5 *1 (-586 *4 *2)) (-4 *2 (-13 (-1222) (-977) (-1158) (-29 *4)))))) + (|partial| -12 (-5 *3 (-1117)) + (-4 *4 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) (-5 *1 (-526 *4 *2)) + (-4 *2 (-13 (-1143) (-898) (-1079) (-29 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-376)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-585 *5 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-318)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-525 *5 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-376)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) (-5 *2 - (-2 (|:| |ir| (-594 (-419 *6))) (|:| |specpart| (-419 *6)) + (-2 (|:| |ir| (-534 (-361 *6))) (|:| |specpart| (-361 *6)) (|:| |polypart| *6))) - (-5 *1 (-585 *5 *6)) (-5 *3 (-419 *6))))) + (-5 *1 (-525 *5 *6)) (-5 *3 (-361 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-638 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3537 *4) (|:| |sol?| (-114))) (-557) *4)) - (-4 *4 (-376)) (-4 *5 (-1262 *4)) (-5 *1 (-585 *4 *5))))) + (|partial| -12 (-5 *2 (-578 *4 *5)) + (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3259 *4) (|:| |sol?| (-85))) (-499) *4)) + (-4 *4 (-318)) (-4 *5 (-1183 *4)) (-5 *1 (-525 *4 *5))))) (((*1 *2 *2 *3 *4) (|partial| -12 - (-5 *3 (-1 (-3 (-2 (|:| -2349 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-376)) (-5 *1 (-585 *4 *2)) (-4 *2 (-1262 *4))))) + (-5 *3 (-1 (-3 (-2 (|:| -2237 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-318)) (-5 *1 (-525 *4 *2)) (-4 *2 (-1183 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-659 (-419 *7))) (-4 *7 (-1262 *6)) - (-5 *3 (-419 *7)) (-4 *6 (-376)) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-599 (-361 *7))) (-4 *7 (-1183 *6)) + (-5 *3 (-361 *7)) (-4 *6 (-318)) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-585 *6 *7))))) + (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-525 *6 *7))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-376)) - (-5 *2 (-2 (|:| -2349 (-419 *6)) (|:| |coeff| (-419 *6)))) - (-5 *1 (-585 *5 *6)) (-5 *3 (-419 *6))))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) + (-5 *2 (-2 (|:| -2237 (-361 *6)) (|:| |coeff| (-361 *6)))) + (-5 *1 (-525 *5 *6)) (-5 *3 (-361 *6))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3537 *7) (|:| |sol?| (-114))) (-557) *7)) - (-5 *6 (-659 (-419 *8))) (-4 *7 (-376)) (-4 *8 (-1262 *7)) (-5 *3 (-419 *8)) + (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3259 *7) (|:| |sol?| (-85))) (-499) *7)) + (-5 *6 (-599 (-361 *8))) (-4 *7 (-318)) (-4 *8 (-1183 *7)) (-5 *3 (-361 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-585 *7 *8))))) + (-5 *1 (-525 *7 *8))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-3 (-2 (|:| -2349 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-659 (-419 *8))) (-4 *7 (-376)) (-4 *8 (-1262 *7)) (-5 *3 (-419 *8)) + (-5 *5 (-1 (-3 (-2 (|:| -2237 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-599 (-361 *8))) (-4 *7 (-318)) (-4 *8 (-1183 *7)) (-5 *3 (-361 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-585 *7 *8))))) + (-5 *1 (-525 *7 *8))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3537 *6) (|:| |sol?| (-114))) (-557) *6)) - (-4 *6 (-376)) (-4 *7 (-1262 *6)) + (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3259 *6) (|:| |sol?| (-85))) (-499) *6)) + (-4 *6 (-318)) (-4 *7 (-1183 *6)) (-5 *2 - (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) - (-2 (|:| -2349 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) - (-5 *1 (-585 *6 *7)) (-5 *3 (-419 *7))))) + (-3 (-2 (|:| |answer| (-361 *7)) (|:| |a0| *6)) + (-2 (|:| -2237 (-361 *7)) (|:| |coeff| (-361 *7))) "failed")) + (-5 *1 (-525 *6 *7)) (-5 *3 (-361 *7))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2349 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-376)) (-4 *7 (-1262 *6)) + (-5 *5 (-1 (-3 (-2 (|:| -2237 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-318)) (-4 *7 (-1183 *6)) (-5 *2 - (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) - (-2 (|:| -2349 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) - (-5 *1 (-585 *6 *7)) (-5 *3 (-419 *7))))) + (-3 (-2 (|:| |answer| (-361 *7)) (|:| |a0| *6)) + (-2 (|:| -2237 (-361 *7)) (|:| |coeff| (-361 *7))) "failed")) + (-5 *1 (-525 *6 *7)) (-5 *3 (-361 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-659 *6) "failed") (-557) *6 *6)) - (-4 *6 (-376)) (-4 *7 (-1262 *6)) - (-5 *2 (-2 (|:| |answer| (-594 (-419 *7))) (|:| |a0| *6))) - (-5 *1 (-585 *6 *7)) (-5 *3 (-419 *7))))) + (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-599 *6) "failed") (-499) *6 *6)) + (-4 *6 (-318)) (-4 *7 (-1183 *6)) + (-5 *2 (-2 (|:| |answer| (-534 (-361 *7))) (|:| |a0| *6))) + (-5 *1 (-525 *6 *7)) (-5 *3 (-361 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3537 *6) (|:| |sol?| (-114))) (-557) *6)) - (-4 *6 (-376)) (-4 *7 (-1262 *6)) - (-5 *2 (-2 (|:| |answer| (-594 (-419 *7))) (|:| |a0| *6))) - (-5 *1 (-585 *6 *7)) (-5 *3 (-419 *7))))) + (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3259 *6) (|:| |sol?| (-85))) (-499) *6)) + (-4 *6 (-318)) (-4 *7 (-1183 *6)) + (-5 *2 (-2 (|:| |answer| (-534 (-361 *7))) (|:| |a0| *6))) + (-5 *1 (-525 *6 *7)) (-5 *3 (-361 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2349 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-376)) (-4 *7 (-1262 *6)) - (-5 *2 (-2 (|:| |answer| (-594 (-419 *7))) (|:| |a0| *6))) - (-5 *1 (-585 *6 *7)) (-5 *3 (-419 *7))))) + (-5 *5 (-1 (-3 (-2 (|:| -2237 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-318)) (-4 *7 (-1183 *6)) + (-5 *2 (-2 (|:| |answer| (-534 (-361 *7))) (|:| |a0| *6))) + (-5 *1 (-525 *6 *7)) (-5 *3 (-361 *7))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-594 *3) *3 (-1196))) + (-12 (-5 *5 (-1 (-534 *3) *3 (-1117))) (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1196))) - (-4 *3 (-296)) (-4 *3 (-645)) (-4 *3 (-1057 *4)) (-4 *3 (-433 *7)) - (-5 *4 (-1196)) (-4 *7 (-629 (-903 (-557)))) (-4 *7 (-464)) - (-4 *7 (-899 (-557))) (-4 *7 (-1120)) (-5 *2 (-594 *3)) - (-5 *1 (-584 *7 *3))))) + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1117))) + (-4 *3 (-238)) (-4 *3 (-585)) (-4 *3 (-978 *4)) (-4 *3 (-375 *7)) + (-5 *4 (-1117)) (-4 *7 (-569 (-825 (-499)))) (-4 *7 (-406)) + (-4 *7 (-821 (-499))) (-4 *7 (-1041)) (-5 *2 (-534 *3)) + (-5 *1 (-524 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-464)) (-4 *4 (-1120)) (-5 *1 (-584 *4 *2)) - (-4 *2 (-296)) (-4 *2 (-433 *4))))) + (-12 (-5 *3 (-1117)) (-4 *4 (-406)) (-4 *4 (-1041)) (-5 *1 (-524 *4 *2)) + (-4 *2 (-238)) (-4 *2 (-375 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-4 *4 (-1120)) (-5 *1 (-584 *4 *2)) - (-4 *2 (-433 *4))))) + (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-4 *4 (-1041)) (-5 *1 (-524 *4 *2)) + (-4 *2 (-375 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *6)) (-5 *4 (-1196)) (-4 *6 (-433 *5)) (-4 *5 (-1120)) - (-5 *2 (-659 (-626 *6))) (-5 *1 (-584 *5 *6))))) + (-12 (-5 *3 (-599 *6)) (-5 *4 (-1117)) (-4 *6 (-375 *5)) (-4 *5 (-1041)) + (-5 *2 (-599 (-566 *6))) (-5 *1 (-524 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-659 (-626 *6))) (-5 *4 (-1196)) (-5 *2 (-626 *6)) - (-4 *6 (-433 *5)) (-4 *5 (-1120)) (-5 *1 (-584 *5 *6))))) + (-12 (-5 *3 (-599 (-566 *6))) (-5 *4 (-1117)) (-5 *2 (-566 *6)) + (-4 *6 (-375 *5)) (-4 *5 (-1041)) (-5 *1 (-524 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 (-626 *5))) (-4 *4 (-1120)) (-5 *2 (-626 *5)) - (-5 *1 (-584 *4 *5)) (-4 *5 (-433 *4))))) + (-12 (-5 *3 (-599 (-566 *5))) (-4 *4 (-1041)) (-5 *2 (-566 *5)) + (-5 *1 (-524 *4 *5)) (-4 *5 (-375 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-659 (-626 *5))) (-5 *3 (-1196)) (-4 *5 (-433 *4)) - (-4 *4 (-1120)) (-5 *1 (-584 *4 *5))))) + (-12 (-5 *2 (-599 (-566 *5))) (-5 *3 (-1117)) (-4 *5 (-375 *4)) + (-4 *4 (-1041)) (-5 *1 (-524 *4 *5))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-557)) (-149))) - (-5 *2 (-2 (|:| -2349 (-419 (-963 *5))) (|:| |coeff| (-419 (-963 *5))))) - (-5 *1 (-581 *5)) (-5 *3 (-419 (-963 *5)))))) + (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-13 (-510) (-978 (-499)) (-120))) + (-5 *2 (-2 (|:| -2237 (-361 (-884 *5))) (|:| |coeff| (-361 (-884 *5))))) + (-5 *1 (-521 *5)) (-5 *3 (-361 (-884 *5)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-659 (-419 (-963 *6)))) - (-5 *3 (-419 (-963 *6))) (-4 *6 (-13 (-568) (-1057 (-557)) (-149))) + (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-599 (-361 (-884 *6)))) + (-5 *3 (-361 (-884 *6))) (-4 *6 (-13 (-510) (-978 (-499)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-581 *6))))) + (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-521 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-419 (-963 *4))) (-5 *3 (-1196)) - (-4 *4 (-13 (-568) (-1057 (-557)) (-149))) (-5 *1 (-581 *4))))) + (|partial| -12 (-5 *2 (-361 (-884 *4))) (-5 *3 (-1117)) + (-4 *4 (-13 (-510) (-978 (-499)) (-120))) (-5 *1 (-521 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) - (-5 *2 (-594 *3)) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1222) (-29 *5))))) + (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) + (-5 *2 (-534 *3)) (-5 *1 (-382 *5 *3)) (-4 *3 (-13 (-1143) (-29 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-557)) (-149))) - (-5 *2 (-594 (-419 (-963 *5)))) (-5 *1 (-581 *5)) (-5 *3 (-419 (-963 *5)))))) + (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-510) (-978 (-499)) (-120))) + (-5 *2 (-534 (-361 (-884 *5)))) (-5 *1 (-521 *5)) (-5 *3 (-361 (-884 *5)))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-557)) (-5 *1 (-580 *3)) (-4 *3 (-1057 *2))))) + (|partial| -12 (-5 *2 (-499)) (-5 *1 (-520 *3)) (-4 *3 (-978 *2))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-659 (-419 *6))) (-5 *3 (-419 *6)) (-4 *6 (-1262 *5)) - (-4 *5 (-13 (-376) (-149) (-1057 (-557)))) + (|partial| -12 (-5 *4 (-599 (-361 *6))) (-5 *3 (-361 *6)) (-4 *6 (-1183 *5)) + (-4 *5 (-13 (-318) (-120) (-978 (-499)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-579 *5 *6))))) + (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-519 *5 *6))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1057 (-557)))) (-4 *5 (-1262 *4)) - (-5 *2 (-2 (|:| -2349 (-419 *5)) (|:| |coeff| (-419 *5)))) - (-5 *1 (-579 *4 *5)) (-5 *3 (-419 *5))))) + (|partial| -12 (-4 *4 (-13 (-318) (-120) (-978 (-499)))) (-4 *5 (-1183 *4)) + (-5 *2 (-2 (|:| -2237 (-361 *5)) (|:| |coeff| (-361 *5)))) + (-5 *1 (-519 *4 *5)) (-5 *3 (-361 *5))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) - (-4 *3 (-13 (-376) (-149) (-1057 (-557)))) (-5 *1 (-579 *3 *4))))) + (|partial| -12 (-5 *2 (-361 *4)) (-4 *4 (-1183 *3)) + (-4 *3 (-13 (-318) (-120) (-978 (-499)))) (-5 *1 (-519 *3 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-629 (-903 (-557)))) - (-4 *5 (-899 (-557))) (-4 *5 (-13 (-1057 (-557)) (-464) (-656 (-557)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-578 *5 *3)) - (-4 *3 (-645)) (-4 *3 (-13 (-27) (-1222) (-433 *5))))) + (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-569 (-825 (-499)))) + (-4 *5 (-821 (-499))) (-4 *5 (-13 (-978 (-499)) (-406) (-596 (-499)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-518 *5 *3)) + (-4 *3 (-585)) (-4 *3 (-13 (-27) (-1143) (-375 *5))))) ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1196)) (-5 *4 (-853 *2)) (-4 *2 (-1158)) - (-4 *2 (-13 (-27) (-1222) (-433 *5))) (-4 *5 (-629 (-903 (-557)))) - (-4 *5 (-899 (-557))) (-4 *5 (-13 (-1057 (-557)) (-464) (-656 (-557)))) - (-5 *1 (-578 *5 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-629 (-903 (-557)))) - (-4 *5 (-899 (-557))) (-4 *5 (-13 (-1057 (-557)) (-464) (-656 (-557)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-578 *5 *3)) - (-4 *3 (-645)) (-4 *3 (-13 (-27) (-1222) (-433 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-1057 (-557)) (-464) (-656 (-557)))) - (-5 *2 (-2 (|:| -2555 *3) (|:| |nconst| *3))) (-5 *1 (-578 *5 *3)) - (-4 *3 (-13 (-27) (-1222) (-433 *5)))))) + (|partial| -12 (-5 *3 (-1117)) (-5 *4 (-775 *2)) (-4 *2 (-1079)) + (-4 *2 (-13 (-27) (-1143) (-375 *5))) (-4 *5 (-569 (-825 (-499)))) + (-4 *5 (-821 (-499))) (-4 *5 (-13 (-978 (-499)) (-406) (-596 (-499)))) + (-5 *1 (-518 *5 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-569 (-825 (-499)))) + (-4 *5 (-821 (-499))) (-4 *5 (-13 (-978 (-499)) (-406) (-596 (-499)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-518 *5 *3)) + (-4 *3 (-585)) (-4 *3 (-13 (-27) (-1143) (-375 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-978 (-499)) (-406) (-596 (-499)))) + (-5 *2 (-2 (|:| -2444 *3) (|:| |nconst| *3))) (-5 *1 (-518 *5 *3)) + (-4 *3 (-13 (-27) (-1143) (-375 *5)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-626 *4)) (-5 *6 (-1196)) (-4 *4 (-13 (-433 *7) (-27) (-1222))) - (-4 *7 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2220 (-659 *4)))) - (-5 *1 (-577 *7 *4 *3)) (-4 *3 (-676 *4)) (-4 *3 (-1120))))) + (-12 (-5 *5 (-566 *4)) (-5 *6 (-1117)) (-4 *4 (-13 (-375 *7) (-27) (-1143))) + (-4 *7 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2113 (-599 *4)))) + (-5 *1 (-517 *7 *4 *3)) (-4 *3 (-616 *4)) (-4 *3 (-1041))))) (((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-626 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1196))) - (-4 *2 (-13 (-433 *5) (-27) (-1222))) - (-4 *5 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) - (-5 *1 (-577 *5 *2 *6)) (-4 *6 (-1120))))) + (|partial| -12 (-5 *3 (-566 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1117))) + (-4 *2 (-13 (-375 *5) (-27) (-1143))) + (-4 *5 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) + (-5 *1 (-517 *5 *2 *6)) (-4 *6 (-1041))))) (((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-626 *3)) (-5 *5 (-659 *3)) - (-4 *3 (-13 (-433 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) + (|partial| -12 (-5 *4 (-566 *3)) (-5 *5 (-599 *3)) + (-4 *3 (-13 (-375 *6) (-27) (-1143))) + (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-577 *6 *3 *7)) (-4 *7 (-1120))))) + (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1041))))) (((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-626 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1222))) - (-4 *5 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) - (-5 *2 (-2 (|:| -2349 *3) (|:| |coeff| *3))) (-5 *1 (-577 *5 *3 *6)) - (-4 *6 (-1120))))) + (|partial| -12 (-5 *4 (-566 *3)) (-4 *3 (-13 (-375 *5) (-27) (-1143))) + (-4 *5 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) + (-5 *2 (-2 (|:| -2237 *3) (|:| |coeff| *3))) (-5 *1 (-517 *5 *3 *6)) + (-4 *6 (-1041))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-626 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1222))) - (-4 *5 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) (-5 *2 (-594 *3)) - (-5 *1 (-577 *5 *3 *6)) (-4 *6 (-1120))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-376)) - (-4 *7 (-1262 (-419 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2348 *3))) - (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-355 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-376)) - (-5 *2 - (-2 (|:| |answer| (-419 *6)) (|:| -2348 (-419 *6)) - (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) - (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-557)) (-5 *3 (-789)) (-5 *1 (-573))))) -(((*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-573))))) -(((*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-573))))) -(((*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-573))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-573))))) -(((*1 *2 *3) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-573)) (-5 *3 (-557))))) -(((*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-573))))) -(((*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-573))))) -(((*1 *2 *3) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-573)) (-5 *3 (-557))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-659 *2)) (-5 *1 (-182 *2)) (-4 *2 (-319)))) + (-12 (-5 *4 (-566 *3)) (-4 *3 (-13 (-375 *5) (-27) (-1143))) + (-4 *5 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-534 *3)) + (-5 *1 (-517 *5 *3 *6)) (-4 *6 (-1041))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) + (-4 *7 (-1183 (-361 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2236 *3))) + (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-297 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-318)) + (-5 *2 + (-2 (|:| |answer| (-361 *6)) (|:| -2236 (-361 *6)) + (|:| |specpart| (-361 *6)) (|:| |polypart| *6))) + (-5 *1 (-516 *5 *6)) (-5 *3 (-361 *6))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-714)) (-5 *1 (-514))))) +(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514))))) +(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514))))) +(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514))))) +(((*1 *2 *3) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-514)) (-5 *3 (-499))))) +(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514))))) +(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514))))) +(((*1 *2 *3) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-514)) (-5 *3 (-499))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-599 *2)) (-5 *1 (-153 *2)) (-4 *2 (-261)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-659 (-659 *4))) (-5 *2 (-659 *4)) (-4 *4 (-319)) - (-5 *1 (-182 *4)))) + (-12 (-5 *3 (-599 (-599 *4))) (-5 *2 (-599 *4)) (-4 *4 (-261)) + (-5 *1 (-153 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-659 *8)) + (-12 (-5 *3 (-599 *8)) (-5 *4 - (-659 - (-2 (|:| -2220 (-707 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-707 *7))))) - (-5 *5 (-789)) (-4 *8 (-1262 *7)) (-4 *7 (-1262 *6)) (-4 *6 (-363)) - (-5 *2 - (-2 (|:| -2220 (-707 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-707 *7)))) - (-5 *1 (-510 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-573))))) + (-599 + (-2 (|:| -2113 (-647 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-647 *7))))) + (-5 *5 (-714)) (-4 *8 (-1183 *7)) (-4 *7 (-1183 *6)) (-4 *6 (-305)) + (-5 *2 + (-2 (|:| -2113 (-647 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-647 *7)))) + (-5 *1 (-452 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-514))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-626 *4)) (-5 *6 (-1190 *4)) - (-4 *4 (-13 (-433 *7) (-27) (-1222))) - (-4 *7 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2220 (-659 *4)))) - (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-676 *4)) (-4 *3 (-1120)))) + (-12 (-5 *5 (-566 *4)) (-5 *6 (-1111 *4)) + (-4 *4 (-13 (-375 *7) (-27) (-1143))) + (-4 *7 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2113 (-599 *4)))) + (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-616 *4)) (-4 *3 (-1041)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-626 *4)) (-5 *6 (-419 (-1190 *4))) - (-4 *4 (-13 (-433 *7) (-27) (-1222))) - (-4 *7 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2220 (-659 *4)))) - (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-676 *4)) (-4 *3 (-1120))))) + (-12 (-5 *5 (-566 *4)) (-5 *6 (-361 (-1111 *4))) + (-4 *4 (-13 (-375 *7) (-27) (-1143))) + (-4 *7 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2113 (-599 *4)))) + (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-616 *4)) (-4 *3 (-1041))))) (((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-626 *2)) - (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1196))) (-5 *5 (-1190 *2)) - (-4 *2 (-13 (-433 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) - (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1120)))) + (|partial| -12 (-5 *3 (-566 *2)) + (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1117))) (-5 *5 (-1111 *2)) + (-4 *2 (-13 (-375 *6) (-27) (-1143))) + (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) + (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1041)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-626 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1196))) - (-5 *5 (-419 (-1190 *2))) (-4 *2 (-13 (-433 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) - (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1120))))) + (|partial| -12 (-5 *3 (-566 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1117))) + (-5 *5 (-361 (-1111 *2))) (-4 *2 (-13 (-375 *6) (-27) (-1143))) + (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) + (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1041))))) (((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-626 *3)) (-5 *5 (-659 *3)) (-5 *6 (-1190 *3)) - (-4 *3 (-13 (-433 *7) (-27) (-1222))) - (-4 *7 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) + (|partial| -12 (-5 *4 (-566 *3)) (-5 *5 (-599 *3)) (-5 *6 (-1111 *3)) + (-4 *3 (-13 (-375 *7) (-27) (-1143))) + (-4 *7 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1120)))) + (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1041)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-626 *3)) (-5 *5 (-659 *3)) (-5 *6 (-419 (-1190 *3))) - (-4 *3 (-13 (-433 *7) (-27) (-1222))) - (-4 *7 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) + (|partial| -12 (-5 *4 (-566 *3)) (-5 *5 (-599 *3)) (-5 *6 (-361 (-1111 *3))) + (-4 *3 (-13 (-375 *7) (-27) (-1143))) + (-4 *7 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1120))))) + (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1041))))) (((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-626 *3)) (-5 *5 (-1190 *3)) - (-4 *3 (-13 (-433 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) - (-5 *2 (-2 (|:| -2349 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) - (-4 *7 (-1120)))) + (|partial| -12 (-5 *4 (-566 *3)) (-5 *5 (-1111 *3)) + (-4 *3 (-13 (-375 *6) (-27) (-1143))) + (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) + (-5 *2 (-2 (|:| -2237 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) + (-4 *7 (-1041)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-626 *3)) (-5 *5 (-419 (-1190 *3))) - (-4 *3 (-13 (-433 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) - (-5 *2 (-2 (|:| -2349 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) - (-4 *7 (-1120))))) + (|partial| -12 (-5 *4 (-566 *3)) (-5 *5 (-361 (-1111 *3))) + (-4 *3 (-13 (-375 *6) (-27) (-1143))) + (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) + (-5 *2 (-2 (|:| -2237 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) + (-4 *7 (-1041))))) (((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-626 *3)) (-5 *5 (-1190 *3)) - (-4 *3 (-13 (-433 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) (-5 *2 (-594 *3)) - (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1120)))) + (-12 (-5 *4 (-566 *3)) (-5 *5 (-1111 *3)) + (-4 *3 (-13 (-375 *6) (-27) (-1143))) + (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-534 *3)) + (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1041)))) ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-626 *3)) (-5 *5 (-419 (-1190 *3))) - (-4 *3 (-13 (-433 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1057 (-557)) (-149) (-656 (-557)))) (-5 *2 (-594 *3)) - (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1120))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) - (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) - (|:| |relerr| (-229)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1174 (-229))) - (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1636 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-571))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) - (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) - (|:| |relerr| (-229)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1174 (-229))) - (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1636 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-571))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-659 - (-2 - (|:| -4288 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) - (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) - (|:| |relerr| (-229)))) - (|:| -2284 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1174 (-229))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1636 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-571))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-571))))) -(((*1 *1) (-5 *1 (-571)))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-556))))) -(((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-570 *3)) (-4 *3 (-556))))) + (-12 (-5 *4 (-566 *3)) (-5 *5 (-361 (-1111 *3))) + (-4 *3 (-13 (-375 *6) (-27) (-1143))) + (-4 *6 (-13 (-406) (-978 (-499)) (-120) (-596 (-499)))) (-5 *2 (-534 *3)) + (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1041))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-512 *2)) (-4 *2 (-498))))) +(((*1 *2 *3) (-12 (-5 *2 (-359 *3)) (-5 *1 (-512 *3)) (-4 *3 (-498))))) (((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1196)) (-5 *6 (-659 (-626 *3))) (-5 *5 (-626 *3)) - (-4 *3 (-13 (-27) (-1222) (-433 *7))) - (-4 *7 (-13 (-464) (-149) (-1057 (-557)) (-656 (-557)))) - (-5 *2 (-2 (|:| -2349 *3) (|:| |coeff| *3))) (-5 *1 (-569 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-464) (-149) (-1057 (-557)) (-656 (-557)))) - (-5 *2 (-594 *3)) (-5 *1 (-569 *5 *3)) - (-4 *3 (-13 (-27) (-1222) (-433 *5)))))) + (|partial| -12 (-5 *4 (-1117)) (-5 *6 (-599 (-566 *3))) (-5 *5 (-566 *3)) + (-4 *3 (-13 (-27) (-1143) (-375 *7))) + (-4 *7 (-13 (-406) (-120) (-978 (-499)) (-596 (-499)))) + (-5 *2 (-2 (|:| -2237 *3) (|:| |coeff| *3))) (-5 *1 (-511 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-406) (-120) (-978 (-499)) (-596 (-499)))) + (-5 *2 (-534 *3)) (-5 *1 (-511 *5 *3)) + (-4 *3 (-13 (-27) (-1143) (-375 *5)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1196)) - (-4 *4 (-13 (-464) (-149) (-1057 (-557)) (-656 (-557)))) - (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-433 *4)))))) + (|partial| -12 (-5 *3 (-1117)) + (-4 *4 (-13 (-406) (-120) (-978 (-499)) (-596 (-499)))) (-5 *1 (-511 *4 *2)) + (-4 *2 (-13 (-27) (-1143) (-375 *4)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-659 *3)) - (-4 *3 (-13 (-27) (-1222) (-433 *6))) - (-4 *6 (-13 (-464) (-149) (-1057 (-557)) (-656 (-557)))) + (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-599 *3)) + (-4 *3 (-13 (-27) (-1143) (-375 *6))) + (-4 *6 (-13 (-406) (-120) (-978 (-499)) (-596 (-499)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-659 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-569 *6 *3))))) + (|:| |limitedlogs| (-599 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-511 *6 *3))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1196)) - (-4 *5 (-13 (-464) (-149) (-1057 (-557)) (-656 (-557)))) - (-5 *2 (-2 (|:| -2349 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) - (-4 *3 (-13 (-27) (-1222) (-433 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1978 *1) (|:| -4410 *1) (|:| |associate| *1))) - (-4 *1 (-568))))) -(((*1 *1 *1) (-4 *1 (-568)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-114))))) + (|partial| -12 (-5 *4 (-1117)) + (-4 *5 (-13 (-406) (-120) (-978 (-499)) (-596 (-499)))) + (-5 *2 (-2 (|:| -2237 *3) (|:| |coeff| *3))) (-5 *1 (-511 *5 *3)) + (-4 *3 (-13 (-27) (-1143) (-375 *5)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -1870 *1) (|:| -4132 *1) (|:| |associate| *1))) + (-4 *1 (-510))))) +(((*1 *1 *1) (-4 *1 (-510)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-510)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-85))))) (((*1 *1 *2) - (-12 (-5 *2 (-419 (-557))) (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))))) - ((*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222)))))) -(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222)))))) + (-12 (-5 *2 (-361 (-499))) (-4 *1 (-508 *3)) (-4 *3 (-13 (-358) (-1143))))) + ((*1 *1 *2) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143)))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143)))))) +(((*1 *2 *1) (-12 (-4 *1 (-508 *2)) (-4 *2 (-13 (-358) (-1143)))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-114))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-557)) (-5 *2 (-114)) (-5 *1 (-565))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-565))))) -(((*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-565))))) + (-12 (-4 *1 (-508 *3)) (-4 *3 (-13 (-358) (-1143))) (-5 *2 (-85))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-499)) (-5 *2 (-85)) (-5 *1 (-507))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-507))))) +(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-507))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1262 *5)) - (-4 *5 (-13 (-27) (-433 *4))) (-4 *4 (-13 (-568) (-1057 (-557)))) - (-4 *7 (-1262 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) - (-4 *2 (-355 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1262 *6)) (-4 *6 (-13 (-27) (-433 *5))) - (-4 *5 (-13 (-568) (-1057 (-557)))) (-4 *8 (-1262 (-419 *7))) - (-5 *2 (-594 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1262 *6)) (-4 *6 (-13 (-27) (-433 *5))) - (-4 *5 (-13 (-568) (-1057 (-557)))) (-4 *8 (-1262 (-419 *7))) - (-5 *2 (-594 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8))))) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1183 *5)) + (-4 *5 (-13 (-27) (-375 *4))) (-4 *4 (-13 (-510) (-978 (-499)))) + (-4 *7 (-1183 (-361 *6))) (-5 *1 (-506 *4 *5 *6 *7 *2)) + (-4 *2 (-297 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1183 *6)) (-4 *6 (-13 (-27) (-375 *5))) + (-4 *5 (-13 (-510) (-978 (-499)))) (-4 *8 (-1183 (-361 *7))) + (-5 *2 (-534 *3)) (-5 *1 (-506 *5 *6 *7 *8 *3)) (-4 *3 (-297 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1183 *6)) (-4 *6 (-13 (-27) (-375 *5))) + (-4 *5 (-13 (-510) (-978 (-499)))) (-4 *8 (-1183 (-361 *7))) + (-5 *2 (-534 *3)) (-5 *1 (-506 *5 *6 *7 *8 *3)) (-4 *3 (-297 *6 *7 *8))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-626 *3)) (-5 *5 (-1 (-1190 *3) (-1190 *3))) - (-4 *3 (-13 (-27) (-433 *6))) (-4 *6 (-568)) (-5 *2 (-594 *3)) - (-5 *1 (-563 *6 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-114))))) -(((*1 *1 *1 *1) (-4 *1 (-556)))) -(((*1 *1 *1 *1) (-4 *1 (-556)))) -(((*1 *1 *1) (-4 *1 (-556)))) -(((*1 *1 *1) (-4 *1 (-556)))) -(((*1 *1 *1) (-4 *1 (-556)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-556)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-556)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-556)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-556)))) -(((*1 *1 *1 *1) (-4 *1 (-556)))) + (-12 (-5 *4 (-566 *3)) (-5 *5 (-1 (-1111 *3) (-1111 *3))) + (-4 *3 (-13 (-27) (-375 *6))) (-4 *6 (-510)) (-5 *2 (-534 *3)) + (-5 *1 (-505 *6 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-498)) (-5 *2 (-85))))) +(((*1 *1 *1 *1) (-4 *1 (-498)))) +(((*1 *1 *1 *1) (-4 *1 (-498)))) +(((*1 *1 *1) (-4 *1 (-498)))) +(((*1 *1 *1) (-4 *1 (-498)))) +(((*1 *1 *1) (-4 *1 (-498)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-498)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-498)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-498)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-498)))) +(((*1 *1 *1 *1) (-4 *1 (-498)))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-557) #1="failed") *5)) (-4 *5 (-1068)) - (-5 *2 (-557)) (-5 *1 (-554 *5 *3)) (-4 *3 (-1262 *5)))) + (|partial| -12 (-5 *4 (-1 (-3 (-499) #1="failed") *5)) (-4 *5 (-989)) + (-5 *2 (-499)) (-5 *1 (-496 *5 *3)) (-4 *3 (-1183 *5)))) ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-557) #1#) *4)) (-4 *4 (-1068)) (-5 *2 (-557)) - (-5 *1 (-554 *4 *3)) (-4 *3 (-1262 *4)))) + (|partial| -12 (-5 *5 (-1 (-3 (-499) #1#) *4)) (-4 *4 (-989)) (-5 *2 (-499)) + (-5 *1 (-496 *4 *3)) (-4 *3 (-1183 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-557) #1#) *4)) (-4 *4 (-1068)) (-5 *2 (-557)) - (-5 *1 (-554 *4 *3)) (-4 *3 (-1262 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1262 *3)))) - ((*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1262 *3)))) + (|partial| -12 (-5 *5 (-1 (-3 (-499) #1#) *4)) (-4 *4 (-989)) (-5 *2 (-499)) + (-5 *1 (-496 *4 *3)) (-4 *3 (-1183 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-261)) (-5 *1 (-409 *3 *2)) (-4 *2 (-1183 *3)))) + ((*1 *2 *2 *3) (-12 (-4 *3 (-261)) (-5 *1 (-414 *3 *2)) (-4 *2 (-1183 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-319)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-789))) - (-5 *1 (-550 *3 *2 *4 *5)) (-4 *2 (-1262 *3))))) + (-12 (-4 *3 (-261)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-714))) + (-5 *1 (-492 *3 *2 *4 *5)) (-4 *2 (-1183 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-550 *4 *2 *5 *6)) - (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-789)))))) + (-12 (-5 *3 (-599 *2)) (-4 *2 (-1183 *4)) (-5 *1 (-492 *4 *2 *5 *6)) + (-4 *4 (-261)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-714)))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-550 *4 *2 *5 *6)) - (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-789)))))) + (-12 (-5 *3 (-599 *2)) (-4 *2 (-1183 *4)) (-5 *1 (-492 *4 *2 *5 *6)) + (-4 *4 (-261)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-714)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *6)) (-5 *4 (-659 (-1196))) (-4 *6 (-376)) - (-5 *2 (-659 (-305 (-963 *6)))) (-5 *1 (-549 *5 *6 *7)) (-4 *5 (-464)) - (-4 *7 (-13 (-376) (-858)))))) + (-12 (-5 *3 (-599 *6)) (-5 *4 (-599 (-1117))) (-4 *6 (-318)) + (-5 *2 (-599 (-247 (-884 *6)))) (-5 *1 (-491 *5 *6 *7)) (-4 *5 (-406)) + (-4 *7 (-13 (-318) (-780)))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-659 (-963 *6))) (-5 *4 (-659 (-1196))) (-4 *6 (-464)) - (-5 *2 (-659 (-659 *7))) (-5 *1 (-549 *6 *7 *5)) (-4 *7 (-376)) - (-4 *5 (-13 (-376) (-858)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1190 *5)) (-4 *5 (-464)) (-5 *2 (-659 *6)) - (-5 *1 (-549 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-858))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-963 *5)) (-4 *5 (-464)) (-5 *2 (-659 *6)) - (-5 *1 (-549 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-858)))))) -(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-546)))) - ((*1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-547 *2)) (-4 *2 (-1236))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-546)) (-5 *1 (-547 *4)) (-4 *4 (-1236))))) -(((*1 *1 *2) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-659 (-546))) (-5 *1 (-546))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-659 (-1196))) (-5 *1 (-546))))) -(((*1 *1 *1) (-5 *1 (-546)))) -(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-546))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-546))))) -(((*1 *2 *3) (-12 (-5 *3 (-659 (-546))) (-5 *2 (-1196)) (-5 *1 (-546))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-659 (-546))) (-5 *1 (-546))))) + (-12 (-5 *3 (-599 (-884 *6))) (-5 *4 (-599 (-1117))) (-4 *6 (-406)) + (-5 *2 (-599 (-599 *7))) (-5 *1 (-491 *6 *7 *5)) (-4 *7 (-318)) + (-4 *5 (-13 (-318) (-780)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1111 *5)) (-4 *5 (-406)) (-5 *2 (-599 *6)) + (-5 *1 (-491 *5 *6 *4)) (-4 *6 (-318)) (-4 *4 (-13 (-318) (-780))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-884 *5)) (-4 *5 (-406)) (-5 *2 (-599 *6)) + (-5 *1 (-491 *5 *6 *4)) (-4 *6 (-318)) (-4 *4 (-13 (-318) (-780)))))) +(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-488)))) + ((*1 *2 *3) (-12 (-5 *3 (-488)) (-5 *1 (-489 *2)) (-4 *2 (-1157))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1117)) (-5 *2 (-488)) (-5 *1 (-489 *4)) (-4 *4 (-1157))))) +(((*1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-79)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-488))) (-5 *1 (-488))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-488))))) +(((*1 *1 *1) (-5 *1 (-488)))) +(((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-488))))) +(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-488))))) +(((*1 *2 *3) (-12 (-5 *3 (-599 (-488))) (-5 *2 (-1117)) (-5 *1 (-488))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-599 (-488))) (-5 *1 (-488))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-707 *6)) (-5 *5 (-1 (-417 (-1190 *6)) (-1190 *6))) - (-4 *6 (-376)) + (-12 (-5 *3 (-647 *6)) (-5 *5 (-1 (-359 (-1111 *6)) (-1111 *6))) + (-4 *6 (-318)) (-5 *2 - (-659 - (-2 (|:| |outval| *7) (|:| |outmult| (-557)) - (|:| |outvect| (-659 (-707 *7)))))) - (-5 *1 (-543 *6 *7 *4)) (-4 *7 (-376)) (-4 *4 (-13 (-376) (-858)))))) + (-599 + (-2 (|:| |outval| *7) (|:| |outmult| (-499)) + (|:| |outvect| (-599 (-647 *7)))))) + (-5 *1 (-485 *6 *7 *4)) (-4 *7 (-318)) (-4 *4 (-13 (-318) (-780)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1190 *5)) (-4 *5 (-376)) (-5 *2 (-659 *6)) - (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-858)))))) + (-12 (-5 *3 (-1111 *5)) (-4 *5 (-318)) (-5 *2 (-599 *6)) + (-5 *1 (-485 *5 *6 *4)) (-4 *6 (-318)) (-4 *4 (-13 (-318) (-780)))))) (((*1 *2 *3) - (-12 (-5 *3 (-707 *4)) (-4 *4 (-376)) (-5 *2 (-1190 *4)) - (-5 *1 (-543 *4 *5 *6)) (-4 *5 (-376)) (-4 *6 (-13 (-376) (-858)))))) + (-12 (-5 *3 (-647 *4)) (-4 *4 (-318)) (-5 *2 (-1111 *4)) + (-5 *1 (-485 *4 *5 *6)) (-4 *5 (-318)) (-4 *6 (-13 (-318) (-780)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-541 *3)) (-4 *3 (-13 (-744) (-25)))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-483 *3)) (-4 *3 (-13 (-684) (-25)))))) (((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-541 *3)) (-4 *3 (-13 (-744) (-25)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-540)))) - ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-540))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-540))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-540))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-483 *3)) (-4 *3 (-13 (-684) (-25)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-482)))) + ((*1 *1 *2) (-12 (-5 *2 (-344)) (-5 *1 (-482))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-482))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-482))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-936)) (-4 *4 (-381)) (-4 *4 (-376)) (-5 *2 (-1190 *1)) - (-4 *1 (-341 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1190 *3)))) + (-12 (-5 *3 (-857)) (-4 *4 (-323)) (-4 *4 (-318)) (-5 *2 (-1111 *1)) + (-4 *1 (-283 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-5 *2 (-1111 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *3 (-376)) (-4 *2 (-1262 *3)))) + (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-146)) (-4 *3 (-318)) (-4 *2 (-1183 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1286 *4)) (-4 *4 (-363)) (-5 *2 (-1190 *4)) (-5 *1 (-539 *4))))) -(((*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) + (-12 (-5 *3 (-1207 *4)) (-4 *4 (-305)) (-5 *2 (-1111 *4)) (-5 *1 (-481 *4))))) +(((*1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-323)) (-4 *2 (-318)))) ((*1 *2 *3) - (-12 (-5 *3 (-936)) (-5 *2 (-1286 *4)) (-5 *1 (-539 *4)) (-4 *4 (-363))))) + (-12 (-5 *3 (-857)) (-5 *2 (-1207 *4)) (-5 *1 (-481 *4)) (-4 *4 (-305))))) (((*1 *2 *2) - (-12 (-5 *2 (-1286 *4)) (-4 *4 (-430 *3)) (-4 *3 (-319)) (-4 *3 (-568)) + (-12 (-5 *2 (-1207 *4)) (-4 *4 (-372 *3)) (-4 *3 (-261)) (-4 *3 (-510)) (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-936)) (-4 *4 (-376)) (-5 *2 (-1286 *1)) (-4 *1 (-341 *4)))) - ((*1 *2) (-12 (-4 *3 (-376)) (-5 *2 (-1286 *1)) (-4 *1 (-341 *3)))) + (-12 (-5 *3 (-857)) (-4 *4 (-318)) (-5 *2 (-1207 *1)) (-4 *1 (-283 *4)))) + ((*1 *2) (-12 (-4 *3 (-318)) (-5 *2 (-1207 *1)) (-4 *1 (-283 *3)))) ((*1 *2) - (-12 (-4 *3 (-175)) (-4 *4 (-1262 *3)) (-5 *2 (-1286 *1)) - (-4 *1 (-422 *3 *4)))) + (-12 (-4 *3 (-146)) (-4 *4 (-1183 *3)) (-5 *2 (-1207 *1)) + (-4 *1 (-364 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-319)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-1286 *6)) - (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1057 *4))))) + (-12 (-4 *3 (-261)) (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-5 *2 (-1207 *6)) + (-5 *1 (-367 *3 *4 *5 *6)) (-4 *6 (-13 (-364 *4 *5) (-978 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-319)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-1286 *6)) - (-5 *1 (-427 *3 *4 *5 *6 *7)) (-4 *6 (-422 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1286 *1)) (-4 *1 (-430 *3)))) + (-12 (-4 *3 (-261)) (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-5 *2 (-1207 *6)) + (-5 *1 (-369 *3 *4 *5 *6 *7)) (-4 *6 (-364 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1207 *1)) (-4 *1 (-372 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-936)) (-5 *2 (-1286 (-1286 *4))) (-5 *1 (-539 *4)) - (-4 *4 (-363))))) + (-12 (-5 *3 (-857)) (-5 *2 (-1207 (-1207 *4))) (-5 *1 (-481 *4)) + (-4 *4 (-305))))) (((*1 *2 *1) - (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-114)))) + (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *3 (-1190 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4)))) + (-12 (-5 *3 (-1111 *4)) (-4 *4 (-305)) (-5 *2 (-85)) (-5 *1 (-311 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1286 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-539 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-936)))) + (-12 (-5 *3 (-1207 *4)) (-4 *4 (-305)) (-5 *2 (-85)) (-5 *1 (-481 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-323)) (-5 *2 (-857)))) ((*1 *2 *3) - (-12 (-5 *3 (-1286 *4)) (-4 *4 (-363)) (-5 *2 (-936)) (-5 *1 (-539 *4))))) + (-12 (-5 *3 (-1207 *4)) (-4 *4 (-305)) (-5 *2 (-857)) (-5 *1 (-481 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1286 *4)) (-5 *3 (-557)) (-4 *4 (-363)) (-5 *1 (-539 *4))))) + (-12 (-5 *2 (-1207 *4)) (-5 *3 (-499)) (-4 *4 (-305)) (-5 *1 (-481 *4))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1139)) (-4 *4 (-363)) (-5 *1 (-539 *4))))) + (-12 (-5 *2 (-1207 *4)) (-5 *3 (-1060)) (-4 *4 (-305)) (-5 *1 (-481 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1286 *4)) (-5 *3 (-789)) (-4 *4 (-363)) (-5 *1 (-539 *4))))) + (-12 (-5 *2 (-1207 *4)) (-5 *3 (-714)) (-4 *4 (-305)) (-5 *1 (-481 *4))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1286 *5)) (-5 *3 (-789)) (-5 *4 (-1139)) (-4 *5 (-363)) - (-5 *1 (-539 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-789)) (-5 *2 (-1190 *4)) (-5 *1 (-539 *4)) (-4 *4 (-363))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1286 *4)) (-4 *4 (-363)) (-5 *2 (-1190 *4)) (-5 *1 (-539 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1286 (-659 (-2 (|:| -3820 *4) (|:| -2629 (-1139)))))) - (-4 *4 (-363)) (-5 *2 (-1292)) (-5 *1 (-539 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-709 (-130)))))) -(((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-709 (-561)))))) -(((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-709 (-1245)))))) -(((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-709 (-558)))))) -(((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-709 (-1242)))))) -(((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-709 (-559)))))) -(((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-709 (-1243)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-538)) (-5 *3 (-131)) (-5 *2 (-789))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-536))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-1237))) (-5 *1 (-535))))) -(((*1 *2 *2) - (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-532 *3 *4 *5 *2)) (-4 *2 (-704 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1236)) (-5 *1 (-339 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-659 *3)) (-4 *3 (-1236)) (-5 *1 (-528 *3 *4)) (-14 *4 (-557))))) -(((*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-339 *3)) (-4 *3 (-1236)))) - ((*1 *2 *1) - (-12 (-5 *2 (-789)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) (-14 *4 (-557))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-339 *3)) (-4 *3 (-1236)))) + (-12 (-5 *2 (-1207 *5)) (-5 *3 (-714)) (-5 *4 (-1060)) (-4 *5 (-305)) + (-5 *1 (-481 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-714)) (-5 *2 (-1111 *4)) (-5 *1 (-481 *4)) (-4 *4 (-305))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1207 *4)) (-4 *4 (-305)) (-5 *2 (-1111 *4)) (-5 *1 (-481 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060)))))) + (-4 *4 (-305)) (-5 *2 (-1213)) (-5 *1 (-481 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-101)))))) +(((*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-503)))))) +(((*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-1166)))))) +(((*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-500)))))) +(((*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-1163)))))) +(((*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-501)))))) +(((*1 *2 *1) (-12 (-4 *1 (-480)) (-5 *2 (-649 (-1164)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-480)) (-5 *3 (-102)) (-5 *2 (-714))))) +(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-478))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-1158))) (-5 *1 (-477))))) +(((*1 *2 *2) + (-12 (-4 *3 (-318)) (-4 *4 (-327 *3)) (-4 *5 (-327 *3)) + (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-644 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-471))))) +(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-471))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-281 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-470 *3 *4)) (-14 *4 (-499))))) +(((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-281 *3)) (-4 *3 (-1157)))) + ((*1 *2 *1) + (-12 (-5 *2 (-714)) (-5 *1 (-470 *3 *4)) (-4 *3 (-1157)) (-14 *4 (-499))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-281 *3)) (-4 *3 (-1157)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-557)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-339 *3)) (-4 *3 (-1236)))) + (-12 (-5 *2 (-499)) (-5 *1 (-470 *3 *4)) (-4 *3 (-1157)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-1157)))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) (-14 *4 (-557))))) -(((*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-102)) (-4 *2 (-862))))) -(((*1 *1) (-5 *1 (-518)))) + (-12 (-5 *2 (-85)) (-5 *1 (-470 *3 *4)) (-4 *3 (-1157)) (-14 *4 (-499))))) +(((*1 *2 *1) (-12 (-4 *1 (-463 *3 *2)) (-4 *3 (-73)) (-4 *2 (-784))))) +(((*1 *1) (-5 *1 (-460)))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-557)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-789)) - (-4 *5 (-175)))) + (-12 (-5 *2 (-499)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-714)) + (-4 *5 (-146)))) ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-557)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-789)) - (-4 *5 (-175)))) + (-12 (-5 *2 (-499)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-714)) + (-4 *5 (-146)))) ((*1 *2 *2 *3) (-12 (-5 *2 - (-516 (-419 (-557)) (-246 *5 (-789)) (-876 *4) (-255 *4 (-419 (-557))))) - (-5 *3 (-659 (-876 *4))) (-14 *4 (-659 (-1196))) (-14 *5 (-789)) - (-5 *1 (-517 *4 *5))))) + (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499))))) + (-5 *3 (-599 (-798 *4))) (-14 *4 (-599 (-1117))) (-14 *5 (-714)) + (-5 *1 (-459 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-659 (-1196))) (-14 *5 (-789)) + (-12 (-14 *4 (-599 (-1117))) (-14 *5 (-714)) (-5 *2 - (-659 - (-516 (-419 (-557)) (-246 *5 (-789)) (-876 *4) (-255 *4 (-419 (-557)))))) - (-5 *1 (-517 *4 *5)) + (-599 + (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499)))))) + (-5 *1 (-459 *4 *5)) (-5 *3 - (-516 (-419 (-557)) (-246 *5 (-789)) (-876 *4) (-255 *4 (-419 (-557)))))))) + (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499)))))))) (((*1 *2 *2) (-12 (-5 *2 - (-516 (-419 (-557)) (-246 *4 (-789)) (-876 *3) (-255 *3 (-419 (-557))))) - (-14 *3 (-659 (-1196))) (-14 *4 (-789)) (-5 *1 (-517 *3 *4))))) + (-458 (-361 (-499)) (-196 *4 (-714)) (-798 *3) (-205 *3 (-361 (-499))))) + (-14 *3 (-599 (-1117))) (-14 *4 (-714)) (-5 *1 (-459 *3 *4))))) (((*1 *2 *3) (-12 (-5 *3 - (-516 (-419 (-557)) (-246 *5 (-789)) (-876 *4) (-255 *4 (-419 (-557))))) - (-14 *4 (-659 (-1196))) (-14 *5 (-789)) (-5 *2 (-114)) - (-5 *1 (-517 *4 *5))))) + (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499))))) + (-14 *4 (-599 (-1117))) (-14 *5 (-714)) (-5 *2 (-85)) (-5 *1 (-459 *4 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-516 (-419 (-557)) (-246 *5 (-789)) (-876 *4) (-255 *4 (-419 (-557))))) - (-14 *4 (-659 (-1196))) (-14 *5 (-789)) (-5 *2 (-114)) - (-5 *1 (-517 *4 *5))))) + (-458 (-361 (-499)) (-196 *5 (-714)) (-798 *4) (-205 *4 (-361 (-499))))) + (-14 *4 (-599 (-1117))) (-14 *5 (-714)) (-5 *2 (-85)) (-5 *1 (-459 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-376)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) - (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-967 *4 *5 *6))))) + (-12 (-4 *4 (-318)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) + (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-314 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-179)) (-5 *2 (-85)) (-5 *1 (-256 *4 *5)) (-14 *4 *3) (-14 *5 *3))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1108 (-853 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) - (-5 *1 (-315)))) + (-12 (-5 *4 (-1029 (-775 (-179)))) (-5 *3 (-179)) (-5 *2 (-85)) + (-5 *1 (-257)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-114)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5))))) + (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) + (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-376)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-114)) - (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-967 *4 *5 *6))))) + (-12 (-4 *4 (-318)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-85)) + (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-114)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5)))) + (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) + (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-659 *6)) (-4 *6 (-859)) (-4 *4 (-376)) (-4 *5 (-813)) - (-5 *2 (-114)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-967 *4 *5 *6))))) + (-12 (-5 *3 (-599 *6)) (-4 *6 (-781)) (-4 *4 (-318)) (-4 *5 (-738)) + (-5 *2 (-85)) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6))))) (((*1 *1 *1 *2) - (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-516 *3 *4 *5 *2)) - (-4 *2 (-967 *3 *4 *5)))) + (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *2)) + (-4 *2 (-888 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-376)) (-4 *3 (-813)) (-4 *4 (-859)) (-5 *1 (-516 *2 *3 *4 *5)) - (-4 *5 (-967 *2 *3 *4))))) + (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) + (-4 *5 (-888 *2 *3 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-659 *6)) (-4 *6 (-859)) (-4 *4 (-376)) (-4 *5 (-813)) + (-12 (-5 *3 (-599 *6)) (-4 *6 (-781)) (-4 *4 (-318)) (-4 *5 (-738)) (-5 *2 - (-2 (|:| |mval| (-707 *4)) (|:| |invmval| (-707 *4)) - (|:| |genIdeal| (-516 *4 *5 *6 *7)))) - (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-967 *4 *5 *6))))) + (-2 (|:| |mval| (-647 *4)) (|:| |invmval| (-647 *4)) + (|:| |genIdeal| (-458 *4 *5 *6 *7)))) + (-5 *1 (-458 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |mval| (-707 *3)) (|:| |invmval| (-707 *3)) - (|:| |genIdeal| (-516 *3 *4 *5 *6)))) - (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-516 *3 *4 *5 *6)) - (-4 *6 (-967 *3 *4 *5))))) + (-2 (|:| |mval| (-647 *3)) (|:| |invmval| (-647 *3)) + (|:| |genIdeal| (-458 *3 *4 *5 *6)))) + (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6)) + (-4 *6 (-888 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *2 (-376)) (-4 *3 (-813)) (-4 *4 (-859)) (-5 *1 (-516 *2 *3 *4 *5)) - (-4 *5 (-967 *2 *3 *4))))) + (-12 (-4 *2 (-318)) (-4 *3 (-738)) (-4 *4 (-781)) (-5 *1 (-458 *2 *3 *4 *5)) + (-4 *5 (-888 *2 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) - (-5 *2 (-425 *4 (-419 *4) *5 *6)))) + (-12 (-4 *1 (-291 *3 *4 *5 *6)) (-4 *3 (-318)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 *3 *4 *5)) + (-5 *2 (-367 *4 (-361 *4) *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-1286 *6)) (-4 *6 (-13 (-422 *4 *5) (-1057 *4))) - (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-4 *3 (-319)) - (-5 *1 (-425 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1207 *6)) (-4 *6 (-13 (-364 *4 *5) (-978 *4))) + (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-4 *3 (-261)) + (-5 *1 (-367 *3 *4 *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-659 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-813)) - (-4 *5 (-859)) (-5 *1 (-516 *3 *4 *5 *6))))) + (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-318)) (-4 *4 (-738)) + (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-659 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-813)) - (-4 *5 (-859)) (-5 *1 (-516 *3 *4 *5 *6))))) + (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-318)) (-4 *4 (-738)) + (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *2 (-114)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-967 *3 *4 *5))))) + (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) + (-5 *1 (-458 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-659 *6)) (-4 *6 (-859)) (-4 *4 (-376)) (-4 *5 (-813)) - (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-967 *4 *5 *6)))) + (-12 (-5 *3 (-599 *6)) (-4 *6 (-781)) (-4 *4 (-318)) (-4 *5 (-738)) + (-5 *1 (-458 *4 *5 *6 *2)) (-4 *2 (-888 *4 *5 *6)))) ((*1 *1 *1 *2) - (-12 (-4 *3 (-376)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-516 *3 *4 *5 *2)) - (-4 *2 (-967 *3 *4 *5))))) + (-12 (-4 *3 (-318)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-458 *3 *4 *5 *2)) + (-4 *2 (-888 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 *7)) (-4 *7 (-967 *4 *5 *6)) (-4 *6 (-629 (-1196))) - (-4 *4 (-376)) (-4 *5 (-813)) (-4 *6 (-859)) - (-5 *2 (-1185 (-659 (-963 *4)) (-659 (-305 (-963 *4))))) - (-5 *1 (-516 *4 *5 *6 *7))))) + (-12 (-5 *3 (-599 *7)) (-4 *7 (-888 *4 *5 *6)) (-4 *6 (-569 (-1117))) + (-4 *4 (-318)) (-4 *5 (-738)) (-4 *6 (-781)) + (-5 *2 (-1106 (-599 (-884 *4)) (-599 (-247 (-884 *4))))) + (-5 *1 (-458 *4 *5 *6 *7))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-936)) (-5 *2 (-1292)) (-5 *1 (-217 *4)) + (-12 (-5 *3 (-857)) (-5 *2 (-1213)) (-5 *1 (-167 *4)) (-4 *4 - (-13 (-859) - (-10 -8 (-15 -4228 ((-1178) $ (-1196))) (-15 -4045 (*2 $)) - (-15 -2173 (*2 $))))))) + (-13 (-781) + (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 (*2 $)) + (-15 -2066 (*2 $))))))) ((*1 *2 *1) - (-12 (-5 *2 (-1292)) (-5 *1 (-217 *3)) + (-12 (-5 *2 (-1213)) (-5 *1 (-167 *3)) (-4 *3 - (-13 (-859) - (-10 -8 (-15 -4228 ((-1178) $ (-1196))) (-15 -4045 (*2 $)) - (-15 -2173 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-514))))) + (-13 (-781) + (-10 -8 (-15 -3950 ((-1099) $ (-1117))) (-15 -3767 (*2 $)) + (-15 -2066 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-456))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *6 (-1262 *5)) - (-5 *2 (-1190 (-1190 *7))) (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1262 *6))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-989)) (-4 *7 (-989)) (-4 *6 (-1183 *5)) + (-5 *2 (-1111 (-1111 *7))) (-5 *1 (-455 *5 *6 *4 *7)) (-4 *4 (-1183 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-707 (-1190 *8))) - (-4 *5 (-1068)) (-4 *8 (-1068)) (-4 *6 (-1262 *5)) (-5 *2 (-707 *6)) - (-5 *1 (-513 *5 *6 *7 *8)) (-4 *7 (-1262 *6))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-647 (-1111 *8))) + (-4 *5 (-989)) (-4 *8 (-989)) (-4 *6 (-1183 *5)) (-5 *2 (-647 *6)) + (-5 *1 (-455 *5 *6 *7 *8)) (-4 *7 (-1183 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1190 *7)) - (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *2 (-1262 *5)) - (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1262 *2))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1111 *7)) + (-4 *5 (-989)) (-4 *7 (-989)) (-4 *2 (-1183 *5)) (-5 *1 (-455 *5 *2 *6 *7)) + (-4 *6 (-1183 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1190 *7)) (-4 *5 (-1068)) (-4 *7 (-1068)) - (-4 *2 (-1262 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1262 *2)))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1111 *7)) (-4 *5 (-989)) (-4 *7 (-989)) + (-4 *2 (-1183 *5)) (-5 *1 (-455 *5 *2 *6 *7)) (-4 *6 (-1183 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *4 (-1262 *5)) - (-5 *2 (-1190 *7)) (-5 *1 (-513 *5 *4 *6 *7)) (-4 *6 (-1262 *4))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-989)) (-4 *7 (-989)) (-4 *4 (-1183 *5)) + (-5 *2 (-1111 *7)) (-5 *1 (-455 *5 *4 *6 *7)) (-4 *6 (-1183 *4))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-2 (|:| -2220 (-707 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-707 *3)))) - (-4 *3 (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $))))) (-4 *4 (-1262 *3)) - (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) + (-2 (|:| -2113 (-647 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-647 *3)))) + (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *4 (-1183 *3)) + (-5 *1 (-453 *3 *4 *5)) (-4 *5 (-364 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-707 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $))))) - (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) + (-12 (-5 *2 (-647 *3)) (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) + (-4 *4 (-1183 *3)) (-5 *1 (-453 *3 *4 *5)) (-4 *5 (-364 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-707 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $))))) - (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) + (-12 (-5 *2 (-647 *3)) (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) + (-4 *4 (-1183 *3)) (-5 *1 (-453 *3 *4 *5)) (-4 *5 (-364 *3 *4)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-707 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $))))) - (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) + (-12 (-5 *2 (-647 *3)) (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) + (-4 *4 (-1183 *3)) (-5 *1 (-453 *3 *4 *5)) (-4 *5 (-364 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-789)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $))))) - (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) + (-12 (-5 *2 (-714)) (-4 *3 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) + (-4 *4 (-1183 *3)) (-5 *1 (-453 *3 *4 *5)) (-4 *5 (-364 *3 *4))))) (((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-707 *2)) (-5 *4 (-557)) - (-4 *2 (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $))))) (-4 *5 (-1262 *2)) - (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-422 *2 *5))))) + (-12 (-5 *3 (-647 *2)) (-5 *4 (-499)) + (-4 *2 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *5 (-1183 *2)) + (-5 *1 (-453 *2 *5 *6)) (-4 *6 (-364 *2 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-707 *2)) (-5 *4 (-789)) - (-4 *2 (-13 (-319) (-10 -8 (-15 -4399 ((-417 $) $))))) (-4 *5 (-1262 *2)) - (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-422 *2 *5))))) + (-12 (-5 *3 (-647 *2)) (-5 *4 (-714)) + (-4 *2 (-13 (-261) (-10 -8 (-15 -4121 ((-359 $) $))))) (-4 *5 (-1183 *2)) + (-5 *1 (-453 *2 *5 *6)) (-4 *6 (-364 *2 *5))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-789)) (-4 *5 (-363)) (-4 *6 (-1262 *5)) + (-12 (-5 *4 (-714)) (-4 *5 (-305)) (-4 *6 (-1183 *5)) (-5 *2 - (-659 - (-2 (|:| -2220 (-707 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-707 *6))))) - (-5 *1 (-510 *5 *6 *7)) + (-599 + (-2 (|:| -2113 (-647 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-647 *6))))) + (-5 *1 (-452 *5 *6 *7)) (-5 *3 - (-2 (|:| -2220 (-707 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-707 *6)))) - (-4 *7 (-1262 *6))))) + (-2 (|:| -2113 (-647 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-647 *6)))) + (-4 *7 (-1183 *6))))) (((*1 *2 *1) (-12 (-5 *2 - (-659 + (-599 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-557))))) - (-5 *1 (-417 *3)) (-4 *3 (-568)))) + (|:| |xpnt| (-499))))) + (-5 *1 (-359 *3)) (-4 *3 (-510)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-789)) (-4 *3 (-363)) (-4 *5 (-1262 *3)) - (-5 *2 (-659 (-1190 *3))) (-5 *1 (-510 *3 *5 *6)) (-4 *6 (-1262 *5))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-507))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-503))))) + (-12 (-5 *4 (-714)) (-4 *3 (-305)) (-4 *5 (-1183 *3)) + (-5 *2 (-599 (-1111 *3))) (-5 *1 (-452 *3 *5 *6)) (-4 *6 (-1183 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-449))))) +(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-445))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1157)) + (-4 *4 (-327 *3)) (-4 *5 (-327 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4424)) (-4 *1 (-501 *3)) - (-4 *3 (-1236))))) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4146)) (-4 *1 (-443 *3)) + (-4 *3 (-1157))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4423)) (-4 *1 (-501 *4)) - (-4 *4 (-1236)) (-5 *2 (-114))))) + (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -4145)) (-4 *1 (-443 *4)) + (-4 *4 (-1157)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4423)) (-4 *1 (-501 *4)) - (-4 *4 (-1236)) (-5 *2 (-114))))) + (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -4145)) (-4 *1 (-443 *4)) + (-4 *4 (-1157)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) (-4 *3 (-1120)) - (-5 *2 (-789)))) + (-12 (|has| *1 (-6 -4145)) (-4 *1 (-443 *3)) (-4 *3 (-1157)) (-4 *3 (-1041)) + (-5 *2 (-714)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4423)) (-4 *1 (-501 *4)) - (-4 *4 (-1236)) (-5 *2 (-789))))) -(((*1 *1 *2) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-499))))) -(((*1 *2 *3) - (-12 (-5 *3 (-659 (-557))) (-5 *2 (-557)) (-5 *1 (-498 *4)) - (-4 *4 (-1262 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1262 (-557))) (-5 *1 (-498 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1262 (-557))) (-5 *1 (-498 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-659 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1262 (-557)))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-859)) (-5 *1 (-496 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-659 (-888))) (-5 *1 (-495))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-518))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 (-888))) (-5 *1 (-495))))) + (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -4145)) (-4 *1 (-443 *4)) + (-4 *4 (-1157)) (-5 *2 (-714))))) +(((*1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-441))))) +(((*1 *2 *3) + (-12 (-5 *3 (-599 (-499))) (-5 *2 (-499)) (-5 *1 (-440 *4)) + (-4 *4 (-1183 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1183 (-499))) (-5 *1 (-440 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1183 (-499))) (-5 *1 (-440 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-5 *1 (-440 *2)) (-4 *2 (-1183 (-499)))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-438 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-599 (-810))) (-5 *1 (-437))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-460))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 (-810))) (-5 *1 (-437))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-659 (-557))) (-5 *1 (-255 *3 *4)) (-14 *3 (-659 (-1196))) - (-4 *4 (-1068)))) + (-12 (-5 *2 (-599 (-499))) (-5 *1 (-205 *3 *4)) (-14 *3 (-599 (-1117))) + (-4 *4 (-989)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-659 (-557))) (-14 *3 (-659 (-1196))) (-5 *1 (-466 *3 *4 *5)) - (-4 *4 (-1068)) (-4 *5 (-245 (-4385 *3) (-789))))) + (-12 (-5 *2 (-599 (-499))) (-14 *3 (-599 (-1117))) (-5 *1 (-408 *3 *4 *5)) + (-4 *4 (-989)) (-4 *5 (-195 (-4107 *3) (-714))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-659 (-557))) (-5 *1 (-493 *3 *4)) (-14 *3 (-659 (-1196))) - (-4 *4 (-1068))))) -(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-557)) (-5 *2 (-114)) (-5 *1 (-492))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-492))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-659 (-876 *5))) (-14 *5 (-659 (-1196))) (-4 *6 (-464)) - (-5 *2 (-2 (|:| |dpolys| (-659 (-255 *5 *6))) (|:| |coords| (-659 (-557))))) - (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-659 (-255 *5 *6))) (-4 *7 (-464))))) + (-12 (-5 *2 (-599 (-499))) (-5 *1 (-435 *3 *4)) (-14 *3 (-599 (-1117))) + (-4 *4 (-989))))) +(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-499)) (-5 *2 (-85)) (-5 *1 (-434))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-434))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-599 (-798 *5))) (-14 *5 (-599 (-1117))) (-4 *6 (-406)) + (-5 *2 (-2 (|:| |dpolys| (-599 (-205 *5 *6))) (|:| |coords| (-599 (-499))))) + (-5 *1 (-425 *5 *6 *7)) (-5 *3 (-599 (-205 *5 *6))) (-4 *7 (-406))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-659 (-493 *4 *5))) (-5 *3 (-659 (-876 *4))) - (-14 *4 (-659 (-1196))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) - (-4 *6 (-464))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-659 (-876 *5))) (-14 *5 (-659 (-1196))) (-4 *6 (-464)) - (-5 *2 (-659 (-659 (-255 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) - (-5 *3 (-659 (-255 *5 *6))) (-4 *7 (-464))))) -(((*1 *1) (-5 *1 (-480)))) + (|partial| -12 (-5 *2 (-599 (-435 *4 *5))) (-5 *3 (-599 (-798 *4))) + (-14 *4 (-599 (-1117))) (-4 *5 (-406)) (-5 *1 (-425 *4 *5 *6)) + (-4 *6 (-406))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-599 (-798 *5))) (-14 *5 (-599 (-1117))) (-4 *6 (-406)) + (-5 *2 (-599 (-599 (-205 *5 *6)))) (-5 *1 (-425 *5 *6 *7)) + (-5 *3 (-599 (-205 *5 *6))) (-4 *7 (-406))))) +(((*1 *1) (-5 *1 (-422)))) (((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-659 (-659 (-960 (-229))))) (-5 *3 (-659 (-886))) - (-5 *4 (-659 (-936))) (-5 *5 (-659 (-270))) (-5 *1 (-480)))) + (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *3 (-599 (-808))) + (-5 *4 (-599 (-857))) (-5 *5 (-599 (-220))) (-5 *1 (-422)))) ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-659 (-659 (-960 (-229))))) (-5 *3 (-659 (-886))) - (-5 *4 (-659 (-936))) (-5 *1 (-480)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-659 (-960 (-229))))) (-5 *1 (-480)))) - ((*1 *1 *1) (-5 *1 (-480)))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-659 (-960 (-229))))) (-5 *1 (-480))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 (-1108 (-391)))) (-5 *1 (-270)))) + (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *3 (-599 (-808))) + (-5 *4 (-599 (-857))) (-5 *1 (-422)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *1 (-422)))) + ((*1 *1 *1) (-5 *1 (-422)))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *1 (-422))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *1 (-220)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-659 (-1108 (-391)))) (-5 *3 (-659 (-270))) (-5 *1 (-271)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-659 (-1108 (-391)))) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 (-1108 (-391)))) (-5 *1 (-480))))) + (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *1 (-422)))) + ((*1 *2 *1) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *1 (-422))))) (((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-960 (-229))) (-5 *4 (-886)) (-5 *5 (-936)) (-5 *2 (-1292)) - (-5 *1 (-480)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-960 (-229))) (-5 *2 (-1292)) (-5 *1 (-480)))) + (-12 (-5 *3 (-881 (-179))) (-5 *4 (-808)) (-5 *5 (-857)) (-5 *2 (-1213)) + (-5 *1 (-422)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-881 (-179))) (-5 *2 (-1213)) (-5 *1 (-422)))) ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-659 (-960 (-229)))) (-5 *4 (-886)) (-5 *5 (-936)) - (-5 *2 (-1292)) (-5 *1 (-480))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-960 (-229))) (-5 *2 (-1292)) (-5 *1 (-480))))) + (-12 (-5 *3 (-599 (-881 (-179)))) (-5 *4 (-808)) (-5 *5 (-857)) + (-5 *2 (-1213)) (-5 *1 (-422))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-881 (-179))) (-5 *2 (-1213)) (-5 *1 (-422))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-659 (-659 (-960 (-229))))) (-5 *3 (-659 (-886))) - (-5 *1 (-480))))) -(((*1 *2 *3) - (-12 (-5 *3 (-659 (-659 (-960 (-229))))) (-5 *2 (-659 (-229))) - (-5 *1 (-480))))) -(((*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-659 (-270))) (-5 *1 (-271)))) - ((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479))))) -(((*1 *2 *3) - (-12 (-5 *3 (-936)) (-5 *2 (-1286 (-1286 (-557)))) (-5 *1 (-478))))) + (-12 (-5 *2 (-599 (-599 (-881 (-179))))) (-5 *3 (-599 (-808))) + (-5 *1 (-422))))) +(((*1 *2 *3) + (-12 (-5 *3 (-599 (-599 (-881 (-179))))) (-5 *2 (-599 (-179))) + (-5 *1 (-422))))) +(((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-220)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-599 (-220))) (-5 *1 (-221)))) + ((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421)))) + ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421)))) + ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421)))) + ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-421))))) +(((*1 *2 *3) + (-12 (-5 *3 (-857)) (-5 *2 (-1207 (-1207 (-499)))) (-5 *1 (-420))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1286 (-1286 (-557)))) (-5 *3 (-936)) (-5 *1 (-478))))) + (-12 (-5 *2 (-1207 (-1207 (-499)))) (-5 *3 (-857)) (-5 *1 (-420))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-859)) (-4 *5 (-813)) (-4 *6 (-568)) - (-4 *7 (-967 *6 *5 *3)) (-5 *1 (-474 *5 *3 *6 *7 *2)) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-781)) (-4 *5 (-738)) (-4 *6 (-510)) + (-4 *7 (-888 *6 *5 *3)) (-5 *1 (-416 *5 *3 *6 *7 *2)) (-4 *2 - (-13 (-1057 (-419 (-557))) (-376) - (-10 -8 (-15 -4374 ($ *7)) (-15 -3397 (*7 $)) (-15 -3396 (*7 $)))))))) + (-13 (-978 (-361 (-499))) (-318) + (-10 -8 (-15 -4096 ($ *7)) (-15 -3119 (*7 $)) (-15 -3118 (*7 $)))))))) (((*1 *2 *1) - (-12 (-14 *3 (-659 (-1196))) (-4 *4 (-175)) + (-12 (-14 *3 (-599 (-1117))) (-4 *4 (-146)) (-14 *6 - (-1 (-114) (-2 (|:| -2629 *5) (|:| -2630 *2)) - (-2 (|:| -2629 *5) (|:| -2630 *2)))) - (-4 *2 (-245 (-4385 *3) (-789))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-859)) (-4 *7 (-967 *4 *2 (-876 *3)))))) + (-1 (-85) (-2 (|:| -2518 *5) (|:| -2519 *2)) + (-2 (|:| -2518 *5) (|:| -2519 *2)))) + (-4 *2 (-195 (-4107 *3) (-714))) (-5 *1 (-415 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-781)) (-4 *7 (-888 *4 *2 (-798 *3)))))) (((*1 *2 *1) - (-12 (-14 *3 (-659 (-1196))) (-4 *4 (-175)) (-4 *5 (-245 (-4385 *3) (-789))) + (-12 (-14 *3 (-599 (-1117))) (-4 *4 (-146)) (-4 *5 (-195 (-4107 *3) (-714))) (-14 *6 - (-1 (-114) (-2 (|:| -2629 *2) (|:| -2630 *5)) - (-2 (|:| -2629 *2) (|:| -2630 *5)))) - (-4 *2 (-859)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-967 *4 *5 (-876 *3)))))) + (-1 (-85) (-2 (|:| -2518 *2) (|:| -2519 *5)) + (-2 (|:| -2518 *2) (|:| -2519 *5)))) + (-4 *2 (-781)) (-5 *1 (-415 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-888 *4 *5 (-798 *3)))))) (((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-659 (-1196))) (-4 *2 (-175)) (-4 *4 (-245 (-4385 *5) (-789))) + (-12 (-14 *5 (-599 (-1117))) (-4 *2 (-146)) (-4 *4 (-195 (-4107 *5) (-714))) (-14 *6 - (-1 (-114) (-2 (|:| -2629 *3) (|:| -2630 *4)) - (-2 (|:| -2629 *3) (|:| -2630 *4)))) - (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-859)) - (-4 *7 (-967 *2 *4 (-876 *5)))))) + (-1 (-85) (-2 (|:| -2518 *3) (|:| -2519 *4)) + (-2 (|:| -2518 *3) (|:| -2519 *4)))) + (-5 *1 (-415 *5 *2 *3 *4 *6 *7)) (-4 *3 (-781)) + (-4 *7 (-888 *2 *4 (-798 *5)))))) (((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-659 (-1196))) (-4 *2 (-175)) (-4 *3 (-245 (-4385 *4) (-789))) + (-12 (-14 *4 (-599 (-1117))) (-4 *2 (-146)) (-4 *3 (-195 (-4107 *4) (-714))) (-14 *6 - (-1 (-114) (-2 (|:| -2629 *5) (|:| -2630 *3)) - (-2 (|:| -2629 *5) (|:| -2630 *3)))) - (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-859)) - (-4 *7 (-967 *2 *3 (-876 *4)))))) + (-1 (-85) (-2 (|:| -2518 *5) (|:| -2519 *3)) + (-2 (|:| -2518 *5) (|:| -2519 *3)))) + (-5 *1 (-415 *4 *2 *5 *3 *6 *7)) (-4 *5 (-781)) + (-4 *7 (-888 *2 *3 (-798 *4)))))) (((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-659 *3)) (-5 *5 (-936)) (-4 *3 (-1262 *4)) (-4 *4 (-319)) - (-5 *1 (-472 *4 *3))))) + (-12 (-5 *2 (-599 *3)) (-5 *5 (-857)) (-4 *3 (-1183 *4)) (-4 *4 (-261)) + (-5 *1 (-414 *4 *3))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-936)) (-4 *5 (-319)) (-4 *3 (-1262 *5)) - (-5 *2 (-2 (|:| |plist| (-659 *3)) (|:| |modulo| *5))) (-5 *1 (-472 *5 *3)) - (-5 *4 (-659 *3))))) + (-12 (-5 *6 (-857)) (-4 *5 (-261)) (-4 *3 (-1183 *5)) + (-5 *2 (-2 (|:| |plist| (-599 *3)) (|:| |modulo| *5))) (-5 *1 (-414 *5 *3)) + (-5 *4 (-599 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-659 *5)) (-4 *5 (-1262 *3)) (-4 *3 (-319)) (-5 *2 (-114)) - (-5 *1 (-467 *3 *5))))) + (-12 (-5 *4 (-599 *5)) (-4 *5 (-1183 *3)) (-4 *3 (-261)) (-5 *2 (-85)) + (-5 *1 (-409 *3 *5))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1286 (-659 *3))) (-4 *4 (-319)) (-5 *2 (-659 *3)) - (-5 *1 (-467 *4 *3)) (-4 *3 (-1262 *4))))) + (|partial| -12 (-5 *5 (-1207 (-599 *3))) (-4 *4 (-261)) (-5 *2 (-599 *3)) + (-5 *1 (-409 *4 *3)) (-4 *3 (-1183 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-789)) (-4 *4 (-319)) (-4 *6 (-1262 *4)) - (-5 *2 (-1286 (-659 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-659 *6))))) + (|partial| -12 (-5 *3 (-714)) (-4 *4 (-261)) (-4 *6 (-1183 *4)) + (-5 *2 (-1207 (-599 *6))) (-5 *1 (-409 *4 *6)) (-5 *5 (-599 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-659 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-319)) (-5 *2 (-789)) - (-5 *1 (-467 *5 *3))))) + (-12 (-5 *4 (-599 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-261)) (-5 *2 (-714)) + (-5 *1 (-409 *5 *3))))) (((*1 *2) - (|partial| -12 (-4 *3 (-568)) (-4 *3 (-175)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2220 (-659 *1)))) (-4 *1 (-380 *3)))) + (|partial| -12 (-4 *3 (-510)) (-4 *3 (-146)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2113 (-599 *1)))) (-4 *1 (-322 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-465 *3 *4 *5 *6)) - (|:| -2220 (-659 (-465 *3 *4 *5 *6))))) - (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-936)) - (-14 *5 (-659 (-1196))) (-14 *6 (-1286 (-707 *3)))))) + (-2 (|:| |particular| (-407 *3 *4 *5 *6)) + (|:| -2113 (-599 (-407 *3 *4 *5 *6))))) + (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-857)) + (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3)))))) (((*1 *2) - (|partial| -12 (-4 *3 (-568)) (-4 *3 (-175)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2220 (-659 *1)))) (-4 *1 (-380 *3)))) + (|partial| -12 (-4 *3 (-510)) (-4 *3 (-146)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2113 (-599 *1)))) (-4 *1 (-322 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-465 *3 *4 *5 *6)) - (|:| -2220 (-659 (-465 *3 *4 *5 *6))))) - (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-936)) - (-14 *5 (-659 (-1196))) (-14 *6 (-1286 (-707 *3)))))) + (-2 (|:| |particular| (-407 *3 *4 *5 *6)) + (|:| -2113 (-599 (-407 *3 *4 *5 *6))))) + (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-857)) + (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1286 (-1196))) (-5 *3 (-1286 (-465 *4 *5 *6 *7))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-936)) - (-14 *6 (-659 (-1196))) (-14 *7 (-1286 (-707 *4))))) + (-12 (-5 *2 (-1207 (-1117))) (-5 *3 (-1207 (-407 *4 *5 *6 *7))) + (-5 *1 (-407 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-857)) + (-14 *6 (-599 (-1117))) (-14 *7 (-1207 (-647 *4))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1286 (-465 *4 *5 *6 *7))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-936)) (-14 *6 (-659 *2)) - (-14 *7 (-1286 (-707 *4))))) + (-12 (-5 *2 (-1117)) (-5 *3 (-1207 (-407 *4 *5 *6 *7))) + (-5 *1 (-407 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-857)) (-14 *6 (-599 *2)) + (-14 *7 (-1207 (-647 *4))))) ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) - (-14 *6 (-1286 (-707 *3))))) + (-12 (-5 *2 (-1207 (-407 *3 *4 *5 *6))) (-5 *1 (-407 *3 *4 *5 *6)) + (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) + (-14 *6 (-1207 (-647 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-1196))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) - (-14 *4 (-936)) (-14 *5 (-659 (-1196))) (-14 *6 (-1286 (-707 *3))))) + (-12 (-5 *2 (-1207 (-1117))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-146)) + (-14 *4 (-857)) (-14 *5 (-599 (-1117))) (-14 *6 (-1207 (-647 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1196)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) - (-14 *4 (-936)) (-14 *5 (-659 *2)) (-14 *6 (-1286 (-707 *3))))) + (-12 (-5 *2 (-1117)) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-146)) + (-14 *4 (-857)) (-14 *5 (-599 *2)) (-14 *6 (-1207 (-647 *3))))) ((*1 *1) - (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-175)) (-14 *3 (-936)) - (-14 *4 (-659 (-1196))) (-14 *5 (-1286 (-707 *2)))))) + (-12 (-5 *1 (-407 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-857)) + (-14 *4 (-599 (-1117))) (-14 *5 (-1207 (-647 *2)))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-1190 (-963 *4))) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-1111 (-884 *4))) (-5 *1 (-371 *3 *4)) + (-4 *3 (-372 *4)))) ((*1 *2) - (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-4 *3 (-376)) - (-5 *2 (-1190 (-963 *3))))) + (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-4 *3 (-318)) + (-5 *2 (-1111 (-884 *3))))) ((*1 *2) - (-12 (-5 *2 (-1190 (-419 (-963 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) - (-14 *6 (-1286 (-707 *3)))))) + (-12 (-5 *2 (-1111 (-361 (-884 *3)))) (-5 *1 (-407 *3 *4 *5 *6)) + (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) + (-14 *6 (-1207 (-647 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1190 (-419 (-963 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) - (-14 *6 (-1286 (-707 *3)))))) + (-12 (-5 *2 (-1111 (-361 (-884 *3)))) (-5 *1 (-407 *3 *4 *5 *6)) + (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) + (-14 *6 (-1207 (-647 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-419 (-963 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) - (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) - (-14 *6 (-1286 (-707 *3)))))) + (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) + (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) + (-14 *6 (-1207 (-647 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-419 (-963 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) - (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) - (-14 *6 (-1286 (-707 *3)))))) + (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) + (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) + (-14 *6 (-1207 (-647 *3)))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-1190 (-963 *4))) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-1111 (-884 *4))) (-5 *1 (-371 *3 *4)) + (-4 *3 (-372 *4)))) ((*1 *2) - (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-4 *3 (-376)) - (-5 *2 (-1190 (-963 *3))))) + (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-4 *3 (-318)) + (-5 *2 (-1111 (-884 *3))))) ((*1 *2) - (-12 (-5 *2 (-1190 (-419 (-963 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) - (-14 *6 (-1286 (-707 *3)))))) + (-12 (-5 *2 (-1111 (-361 (-884 *3)))) (-5 *1 (-407 *3 *4 *5 *6)) + (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) + (-14 *6 (-1207 (-647 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1190 (-419 (-963 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) - (-14 *6 (-1286 (-707 *3)))))) + (-12 (-5 *2 (-1111 (-361 (-884 *3)))) (-5 *1 (-407 *3 *4 *5 *6)) + (-4 *3 (-510)) (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) + (-14 *6 (-1207 (-647 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-419 (-963 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) - (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) - (-14 *6 (-1286 (-707 *3)))))) + (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) + (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) + (-14 *6 (-1207 (-647 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-419 (-963 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) - (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) - (-14 *6 (-1286 (-707 *3)))))) + (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) + (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) + (-14 *6 (-1207 (-647 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-963 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) - (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) - (-14 *6 (-1286 (-707 *3)))))) + (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) + (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) + (-14 *6 (-1207 (-647 *3)))))) (((*1 *2) - (-12 (-5 *2 (-419 (-963 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) - (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) - (-14 *6 (-1286 (-707 *3)))))) + (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) + (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) + (-14 *6 (-1207 (-647 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-963 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) - (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) - (-14 *6 (-1286 (-707 *3)))))) + (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) + (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) + (-14 *6 (-1207 (-647 *3)))))) (((*1 *2) - (-12 (-5 *2 (-419 (-963 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) - (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) - (-14 *6 (-1286 (-707 *3)))))) + (-12 (-5 *2 (-361 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) + (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) + (-14 *6 (-1207 (-647 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) - (-5 *2 (-659 (-963 *4))))) + (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) + (-5 *2 (-599 (-884 *4))))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-659 (-963 *4))) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) - ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-659 (-963 *3))))) + (-12 (-4 *4 (-146)) (-5 *2 (-599 (-884 *4))) (-5 *1 (-371 *3 *4)) + (-4 *3 (-372 *4)))) + ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-599 (-884 *3))))) ((*1 *2) - (-12 (-5 *2 (-659 (-963 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) - (-4 *3 (-175)) (-14 *4 (-936)) (-14 *5 (-659 (-1196))) - (-14 *6 (-1286 (-707 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1286 (-465 *4 *5 *6 *7))) (-5 *2 (-659 (-963 *4))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-175)) (-14 *5 (-936)) - (-14 *6 (-659 (-1196))) (-14 *7 (-1286 (-707 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *1)) (-4 *1 (-464)))) - ((*1 *1 *1 *1) (-4 *1 (-464)))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-789)) - (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-967 *4 *5 *6))))) + (-12 (-5 *2 (-599 (-884 *3))) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *3 (-510)) + (-4 *3 (-146)) (-14 *4 (-857)) (-14 *5 (-599 (-1117))) + (-14 *6 (-1207 (-647 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1207 (-407 *4 *5 *6 *7))) (-5 *2 (-599 (-884 *4))) + (-5 *1 (-407 *4 *5 *6 *7)) (-4 *4 (-510)) (-4 *4 (-146)) (-14 *5 (-857)) + (-14 *6 (-599 (-1117))) (-14 *7 (-1207 (-647 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *1)) (-4 *1 (-406)))) + ((*1 *1 *1 *1) (-4 *1 (-406)))) +(((*1 *2 *3) + (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-714)) + (-5 *1 (-404 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-789)) (|:| -2212 *4))) (-5 *5 (-789)) - (-4 *4 (-967 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-813)) (-4 *8 (-859)) + (-12 (-5 *3 (-2 (|:| |totdeg| (-714)) (|:| -2105 *4))) (-5 *5 (-714)) + (-4 *4 (-888 *6 *7 *8)) (-4 *6 (-406)) (-4 *7 (-738)) (-4 *8 (-781)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) - (-5 *1 (-462 *6 *7 *8 *4))))) + (-5 *1 (-404 *6 *7 *8 *4))))) (((*1 *2 *3 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-789)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-714)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-813)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-859)) - (-5 *2 (-114)) (-5 *1 (-462 *4 *5 *6 *7))))) + (-4 *5 (-738)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *6 (-781)) + (-5 *2 (-85)) (-5 *1 (-404 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-557)) (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) - (-5 *2 (-1292)) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *7 (-967 *4 *5 *6))))) + (-12 (-5 *3 (-499)) (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) + (-5 *2 (-1213)) (-5 *1 (-404 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 *7)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *2 (-1292)) (-5 *1 (-462 *4 *5 *6 *7))))) + (-12 (-5 *3 (-599 *7)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *2 (-1213)) (-5 *1 (-404 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-557)) + (-12 (-5 *2 (-499)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-789)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-714)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-813)) (-4 *4 (-967 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-859)) - (-5 *1 (-462 *5 *6 *7 *4))))) + (-4 *6 (-738)) (-4 *4 (-888 *5 *6 *7)) (-4 *5 (-406)) (-4 *7 (-781)) + (-5 *1 (-404 *5 *6 *7 *4))))) (((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-557)) + (-12 (-5 *2 (-499)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-789)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-714)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-813)) (-4 *4 (-967 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-859)) - (-5 *1 (-462 *5 *6 *7 *4))))) + (-4 *6 (-738)) (-4 *4 (-888 *5 *6 *7)) (-4 *5 (-406)) (-4 *7 (-781)) + (-5 *1 (-404 *5 *6 *7 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-1292)) - (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-967 *4 *5 *6))))) + (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-1213)) + (-5 *1 (-404 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-813)) (-4 *6 (-859)) (-5 *2 (-557)) - (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-967 *4 *5 *6))))) + (-12 (-4 *4 (-406)) (-4 *5 (-738)) (-4 *6 (-781)) (-5 *2 (-499)) + (-5 *1 (-404 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-659 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-813)) - (-4 *5 (-859)) (-5 *1 (-462 *3 *4 *5 *6))))) + (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-406)) (-4 *4 (-738)) + (-4 *5 (-781)) (-5 *1 (-404 *3 *4 *5 *6))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-659 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-789)) (|:| |poli| *6) + (-599 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-714)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-813)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-859)) - (-5 *1 (-462 *3 *4 *5 *6))))) + (-4 *4 (-738)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-406)) (-4 *5 (-781)) + (-5 *1 (-404 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-789)) (|:| |poli| *2) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-714)) (|:| |poli| *2) (|:| |polj| *2))) - (-4 *5 (-813)) (-4 *2 (-967 *4 *5 *6)) (-5 *1 (-462 *4 *5 *6 *2)) - (-4 *4 (-464)) (-4 *6 (-859))))) + (-4 *5 (-738)) (-4 *2 (-888 *4 *5 *6)) (-5 *1 (-404 *4 *5 *6 *2)) + (-4 *4 (-406)) (-4 *6 (-781))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-659 (-2 (|:| |totdeg| (-789)) (|:| -2212 *3)))) (-5 *4 (-789)) - (-4 *3 (-967 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-813)) (-4 *7 (-859)) - (-5 *1 (-462 *5 *6 *7 *3))))) + (-12 (-5 *2 (-599 (-2 (|:| |totdeg| (-714)) (|:| -2105 *3)))) (-5 *4 (-714)) + (-4 *3 (-888 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) (-4 *7 (-781)) + (-5 *1 (-404 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-813)) (-4 *5 (-859)) (-5 *1 (-462 *3 *4 *5 *2)) - (-4 *2 (-967 *3 *4 *5))))) + (-12 (-4 *3 (-406)) (-4 *4 (-738)) (-4 *5 (-781)) (-5 *1 (-404 *3 *4 *5 *2)) + (-4 *2 (-888 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-659 *3)) (-4 *3 (-967 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-813)) - (-4 *7 (-859)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-462 *5 *6 *7 *3))))) + (-12 (-5 *4 (-599 *3)) (-4 *3 (-888 *5 *6 *7)) (-4 *5 (-406)) (-4 *6 (-738)) + (-4 *7 (-781)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-404 *5 *6 *7 *3))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-659 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-789)) (|:| |poli| *6) + (-599 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-714)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *3 (-813)) (-4 *6 (-967 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-859)) - (-5 *1 (-462 *4 *3 *5 *6))))) + (-4 *3 (-738)) (-4 *6 (-888 *4 *3 *5)) (-4 *4 (-406)) (-4 *5 (-781)) + (-5 *1 (-404 *4 *3 *5 *6))))) (((*1 *2 *2) (-12 (-5 *2 - (-659 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-789)) (|:| |poli| *6) + (-599 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-714)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-813)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-859)) - (-5 *1 (-462 *3 *4 *5 *6))))) + (-4 *4 (-738)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-406)) (-4 *5 (-781)) + (-5 *1 (-404 *3 *4 *5 *6))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-659 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-789)) (|:| |poli| *3) + (-599 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-714)) (|:| |poli| *3) (|:| |polj| *3)))) - (-4 *5 (-813)) (-4 *3 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-859)) - (-5 *1 (-462 *4 *5 *6 *3))))) + (-4 *5 (-738)) (-4 *3 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *6 (-781)) + (-5 *1 (-404 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-464)) (-4 *3 (-813)) (-4 *5 (-859)) (-5 *2 (-114)) - (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-967 *4 *3 *5))))) + (-12 (-4 *4 (-406)) (-4 *3 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) + (-5 *1 (-404 *4 *3 *5 *6)) (-4 *6 (-888 *4 *3 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *3 (-813)) (-4 *5 (-859)) (-5 *2 (-114)) - (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-967 *4 *3 *5))))) + (-12 (-4 *4 (-406)) (-4 *3 (-738)) (-4 *5 (-781)) (-5 *2 (-85)) + (-5 *1 (-404 *4 *3 *5 *6)) (-4 *6 (-888 *4 *3 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-789)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-714)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-813)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-859)) - (-5 *2 (-114)) (-5 *1 (-462 *4 *5 *6 *7))))) + (-4 *5 (-738)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *6 (-781)) + (-5 *2 (-85)) (-5 *1 (-404 *4 *5 *6 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-659 *7)) (-5 *3 (-557)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-462 *4 *5 *6 *7))))) + (-12 (-5 *2 (-599 *7)) (-5 *3 (-499)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-406)) + (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-404 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-659 *2)) (-4 *2 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *1 (-462 *4 *5 *6 *2))))) + (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *1 (-404 *4 *5 *6 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-659 *2)) (-4 *2 (-967 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *1 (-462 *4 *5 *6 *2))))) + (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-406)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *1 (-404 *4 *5 *6 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *7 (-967 *4 *5 *6)) (-5 *2 (-659 (-659 *7))) (-5 *1 (-461 *4 *5 *6 *7)) - (-5 *3 (-659 *7)))) + (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-599 (-599 *7))) (-5 *1 (-403 *4 *5 *6 *7)) + (-5 *3 (-599 *7)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-813)) (-4 *7 (-859)) - (-4 *8 (-967 *5 *6 *7)) (-5 *2 (-659 (-659 *8))) (-5 *1 (-461 *5 *6 *7 *8)) - (-5 *3 (-659 *8)))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-738)) (-4 *7 (-781)) + (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-599 (-599 *8))) (-5 *1 (-403 *5 *6 *7 *8)) + (-5 *3 (-599 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *7 (-967 *4 *5 *6)) (-5 *2 (-659 (-659 *7))) (-5 *1 (-461 *4 *5 *6 *7)) - (-5 *3 (-659 *7)))) + (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-599 (-599 *7))) (-5 *1 (-403 *4 *5 *6 *7)) + (-5 *3 (-599 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-813)) (-4 *7 (-859)) - (-4 *8 (-967 *5 *6 *7)) (-5 *2 (-659 (-659 *8))) (-5 *1 (-461 *5 *6 *7 *8)) - (-5 *3 (-659 *8))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-738)) (-4 *7 (-781)) + (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-599 (-599 *8))) (-5 *1 (-403 *5 *6 *7 *8)) + (-5 *3 (-599 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-813)) (-4 *6 (-859)) - (-4 *7 (-967 *4 *5 *6)) (-5 *2 (-659 (-659 *7))) (-5 *1 (-461 *4 *5 *6 *7)) - (-5 *3 (-659 *7)))) + (-12 (-4 *4 (-13 (-261) (-120))) (-4 *5 (-738)) (-4 *6 (-781)) + (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-599 (-599 *7))) (-5 *1 (-403 *4 *5 *6 *7)) + (-5 *3 (-599 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-813)) (-4 *7 (-859)) - (-4 *8 (-967 *5 *6 *7)) (-5 *2 (-659 (-659 *8))) (-5 *1 (-461 *5 *6 *7 *8)) - (-5 *3 (-659 *8))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-261) (-120))) (-4 *6 (-738)) (-4 *7 (-781)) + (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-599 (-599 *8))) (-5 *1 (-403 *5 *6 *7 *8)) + (-5 *3 (-599 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-659 *6)) (-4 *6 (-967 *3 *4 *5)) (-4 *3 (-319)) (-4 *4 (-813)) - (-4 *5 (-859)) (-5 *1 (-460 *3 *4 *5 *6)))) + (-12 (-5 *2 (-599 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-261)) (-4 *4 (-738)) + (-4 *5 (-781)) (-5 *1 (-402 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-659 *7)) (-5 *3 (-1178)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-319)) - (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-460 *4 *5 *6 *7)))) + (-12 (-5 *2 (-599 *7)) (-5 *3 (-1099)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-261)) + (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-402 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-659 *7)) (-5 *3 (-1178)) (-4 *7 (-967 *4 *5 *6)) (-4 *4 (-319)) - (-4 *5 (-813)) (-4 *6 (-859)) (-5 *1 (-460 *4 *5 *6 *7))))) + (-12 (-5 *2 (-599 *7)) (-5 *3 (-1099)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-261)) + (-4 *5 (-738)) (-4 *6 (-781)) (-5 *1 (-402 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-659 *2)) (-4 *2 (-967 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-813)) - (-4 *6 (-859)) (-5 *1 (-460 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-458)) (-5 *3 (-557))))) + (-12 (-5 *3 (-599 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-261)) (-4 *5 (-738)) + (-4 *6 (-781)) (-5 *1 (-402 *4 *5 *6 *2))))) +(((*1 *2 *3) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-400)) (-5 *3 (-499))))) (((*1 *2 *2) - (-12 (-5 *2 (-789)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))) - ((*1 *2) - (-12 (-5 *2 (-789)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068))))) + (-12 (-5 *2 (-714)) (-5 *1 (-399 *3)) (-4 *3 (-358)) (-4 *3 (-989)))) + ((*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-399 *3)) (-4 *3 (-358)) (-4 *3 (-989))))) (((*1 *2 *3) - (-12 (-5 *2 (-557)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068))))) + (-12 (-5 *2 (-499)) (-5 *1 (-399 *3)) (-4 *3 (-358)) (-4 *3 (-989))))) (((*1 *2 *3) - (-12 (-5 *2 (-557)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-457 *3)) (-4 *3 (-1068))))) -(((*1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-457 *3)) (-4 *3 (-1068))))) -(((*1 *2 *2) (-12 (-5 *2 (-789)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))) - ((*1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-457 *3)) (-4 *3 (-1068))))) + (-12 (-5 *2 (-499)) (-5 *1 (-399 *3)) (-4 *3 (-358)) (-4 *3 (-989))))) +(((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-399 *3)) (-4 *3 (-989))))) +(((*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-399 *3)) (-4 *3 (-989))))) +(((*1 *2 *2) (-12 (-5 *2 (-714)) (-5 *1 (-399 *3)) (-4 *3 (-989)))) + ((*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-399 *3)) (-4 *3 (-989))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-789)) (-5 *4 (-557)) (-5 *1 (-457 *2)) (-4 *2 (-1068))))) + (-12 (-5 *3 (-714)) (-5 *4 (-499)) (-5 *1 (-399 *2)) (-4 *2 (-989))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-936)) (-5 *4 (-417 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-1068)) - (-5 *2 (-659 *6)) (-5 *1 (-456 *5 *6))))) + (-12 (-5 *3 (-857)) (-5 *4 (-359 *6)) (-4 *6 (-1183 *5)) (-4 *5 (-989)) + (-5 *2 (-599 *6)) (-5 *1 (-398 *5 *6))))) (((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-936)) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-557))))) + (|partial| -12 (-5 *3 (-857)) (-5 *1 (-396 *2)) (-4 *2 (-1183 (-499))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-936)) (-5 *4 (-789)) (-5 *1 (-454 *2)) - (-4 *2 (-1262 (-557))))) + (|partial| -12 (-5 *3 (-857)) (-5 *4 (-714)) (-5 *1 (-396 *2)) + (-4 *2 (-1183 (-499))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-936)) (-5 *4 (-659 (-789))) (-5 *1 (-454 *2)) - (-4 *2 (-1262 (-557))))) + (|partial| -12 (-5 *3 (-857)) (-5 *4 (-599 (-714))) (-5 *1 (-396 *2)) + (-4 *2 (-1183 (-499))))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-936)) (-5 *4 (-659 (-789))) (-5 *5 (-789)) - (-5 *1 (-454 *2)) (-4 *2 (-1262 (-557))))) + (|partial| -12 (-5 *3 (-857)) (-5 *4 (-599 (-714))) (-5 *5 (-714)) + (-5 *1 (-396 *2)) (-4 *2 (-1183 (-499))))) ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-936)) (-5 *4 (-659 (-789))) (-5 *5 (-789)) - (-5 *6 (-114)) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-557))))) + (|partial| -12 (-5 *3 (-857)) (-5 *4 (-599 (-714))) (-5 *5 (-714)) + (-5 *6 (-85)) (-5 *1 (-396 *2)) (-4 *2 (-1183 (-499))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-936)) (-5 *4 (-417 *2)) (-4 *2 (-1262 *5)) (-5 *1 (-456 *5 *2)) - (-4 *5 (-1068))))) + (-12 (-5 *3 (-857)) (-5 *4 (-359 *2)) (-4 *2 (-1183 *5)) (-5 *1 (-398 *5 *2)) + (-4 *5 (-989))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 (-2 (|:| -4160 *4) (|:| -4376 (-557))))) - (-4 *4 (-1262 (-557))) (-5 *2 (-754 (-789))) (-5 *1 (-454 *4)))) + (-12 (-5 *3 (-599 (-2 (|:| -3882 *4) (|:| -4098 (-499))))) + (-4 *4 (-1183 (-499))) (-5 *2 (-694 (-714))) (-5 *1 (-396 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-417 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-1068)) - (-5 *2 (-754 (-789))) (-5 *1 (-456 *4 *5))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3))))) + (-12 (-5 *3 (-359 *5)) (-4 *5 (-1183 *4)) (-4 *4 (-989)) + (-5 *2 (-694 (-714))) (-5 *1 (-398 *4 *5))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-989)) (-5 *1 (-398 *3 *2)) (-4 *2 (-1183 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-989)) (-5 *1 (-398 *3 *2)) (-4 *2 (-1183 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-376) (-1222) (-296))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-989)) (-4 *2 (-13 (-358) (-978 *4) (-318) (-1143) (-238))) + (-5 *1 (-397 *4 *3 *2)) (-4 *3 (-1183 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-376) (-1222) (-296))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-989)) (-4 *2 (-13 (-358) (-978 *4) (-318) (-1143) (-238))) + (-5 *1 (-397 *4 *3 *2)) (-4 *3 (-1183 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-789)) (-4 *5 (-1068)) (-5 *2 (-557)) (-5 *1 (-455 *5 *3 *6)) - (-4 *3 (-1262 *5)) (-4 *6 (-13 (-416) (-1057 *5) (-376) (-1222) (-296))))) + (-12 (-5 *4 (-714)) (-4 *5 (-989)) (-5 *2 (-499)) (-5 *1 (-397 *5 *3 *6)) + (-4 *3 (-1183 *5)) (-4 *6 (-13 (-358) (-978 *5) (-318) (-1143) (-238))))) ((*1 *2 *3) - (-12 (-4 *4 (-1068)) (-5 *2 (-557)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1262 *4)) (-4 *5 (-13 (-416) (-1057 *4) (-376) (-1222) (-296)))))) + (-12 (-4 *4 (-989)) (-5 *2 (-499)) (-5 *1 (-397 *4 *3 *5)) (-4 *3 (-1183 *4)) + (-4 *5 (-13 (-358) (-978 *4) (-318) (-1143) (-238)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1068)) (-5 *2 (-557)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1262 *4)) (-4 *5 (-13 (-416) (-1057 *4) (-376) (-1222) (-296)))))) + (-12 (-4 *4 (-989)) (-5 *2 (-499)) (-5 *1 (-397 *4 *3 *5)) (-4 *3 (-1183 *4)) + (-4 *5 (-13 (-358) (-978 *4) (-318) (-1143) (-238)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-376) (-1222) (-296))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) + (-12 (-4 *4 (-989)) (-4 *2 (-13 (-358) (-978 *4) (-318) (-1143) (-238))) + (-5 *1 (-397 *4 *3 *2)) (-4 *3 (-1183 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-936)) (-4 *5 (-1068)) - (-4 *2 (-13 (-416) (-1057 *5) (-376) (-1222) (-296))) - (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1262 *5))))) + (-12 (-5 *4 (-857)) (-4 *5 (-989)) + (-4 *2 (-13 (-358) (-978 *5) (-318) (-1143) (-238))) (-5 *1 (-397 *5 *3 *2)) + (-4 *3 (-1183 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1068)) (-5 *2 (-557)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1262 *4)) (-4 *5 (-13 (-416) (-1057 *4) (-376) (-1222) (-296)))))) + (-12 (-4 *4 (-989)) (-5 *2 (-499)) (-5 *1 (-397 *4 *3 *5)) (-4 *3 (-1183 *4)) + (-4 *5 (-13 (-358) (-978 *4) (-318) (-1143) (-238)))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-114)) (-5 *5 (-1116 (-789))) (-5 *6 (-789)) - (-5 *2 - (-2 (|:| |contp| (-557)) - (|:| -1985 (-659 (-2 (|:| |irr| *3) (|:| -2624 (-557))))))) - (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557)))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557)))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557)))))) -(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557)))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557)))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557)))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557)))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2975 (-557)) (|:| -1985 (-659 *3)))) (-5 *1 (-454 *3)) - (-4 *3 (-1262 (-557)))))) -(((*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-417 *3)) (-4 *3 (-568)))) - ((*1 *2 *3) - (-12 (-5 *3 (-659 (-2 (|:| -4160 *4) (|:| -4376 (-557))))) - (-4 *4 (-1262 (-557))) (-5 *2 (-789)) (-5 *1 (-454 *4))))) -(((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) - ((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557)))))) -(((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557))))) - ((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-557)))))) + (-12 (-5 *4 (-85)) (-5 *5 (-1037 (-714))) (-5 *6 (-714)) + (-5 *2 + (-2 (|:| |contp| (-499)) + (|:| -1877 (-599 (-2 (|:| |irr| *3) (|:| -2513 (-499))))))) + (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499)))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499)))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499)))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499)))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499)))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499)))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499)))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2697 (-499)) (|:| -1877 (-599 *3)))) (-5 *1 (-396 *3)) + (-4 *3 (-1183 (-499)))))) +(((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-359 *3)) (-4 *3 (-510)))) + ((*1 *2 *3) + (-12 (-5 *3 (-599 (-2 (|:| -3882 *4) (|:| -4098 (-499))))) + (-4 *4 (-1183 (-499))) (-5 *2 (-714)) (-5 *1 (-396 *4))))) +(((*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) + ((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499)))))) +(((*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499))))) + ((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-396 *3)) (-4 *3 (-1183 (-499)))))) (((*1 *1 *2 *3) (-12 (-5 *3 - (-659 + (-599 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-557))))) - (-4 *2 (-568)) (-5 *1 (-417 *2)))) + (|:| |xpnt| (-499))))) + (-4 *2 (-510)) (-5 *1 (-359 *2)))) ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |contp| (-557)) - (|:| -1985 (-659 (-2 (|:| |irr| *4) (|:| -2624 (-557))))))) - (-4 *4 (-1262 (-557))) (-5 *2 (-417 *4)) (-5 *1 (-454 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-449)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-449))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-449))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-449))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-449))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4338 "void"))) (-5 *1 (-448))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448))))) -(((*1 *1) (-5 *1 (-448)))) -(((*1 *1) (-5 *1 (-448)))) -(((*1 *1) (-5 *1 (-448)))) -(((*1 *1) (-5 *1 (-448)))) -(((*1 *1) (-5 *1 (-448)))) -(((*1 *1) (-5 *1 (-448)))) -(((*1 *1) (-5 *1 (-448)))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1057 (-48))) (-4 *4 (-13 (-568) (-1057 (-557)))) - (-4 *5 (-433 *4)) (-5 *2 (-417 (-1190 (-48)))) (-5 *1 (-447 *4 *5 *3)) - (-4 *3 (-1262 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1057 (-557)))) (-4 *5 (-433 *4)) - (-5 *2 - (-3 (|:| |overq| (-1190 (-419 (-557)))) (|:| |overan| (-1190 (-48))) - (|:| -3036 (-114)))) - (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-568) (-1057 (-557)))) (-4 *5 (-433 *4)) - (-5 *2 (-417 (-1190 (-419 (-557))))) (-5 *1 (-447 *4 *5 *3)) - (-4 *3 (-1262 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1057 (-557)))) (-4 *5 (-433 *4)) (-5 *2 (-417 *3)) - (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446))))) + (-2 (|:| |contp| (-499)) + (|:| -1877 (-599 (-2 (|:| |irr| *4) (|:| -2513 (-499))))))) + (-4 *4 (-1183 (-499))) (-5 *2 (-359 *4)) (-5 *1 (-396 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-344)) (-5 *1 (-391)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-344)) (-5 *1 (-391))))) +(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-391))))) +(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-391))))) +(((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-391))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-388)) (|:| -4060 "void"))) (-5 *1 (-390))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-884 (-499)))) (-5 *1 (-390))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-390))))) +(((*1 *1) (-5 *1 (-390)))) +(((*1 *1) (-5 *1 (-390)))) +(((*1 *1) (-5 *1 (-390)))) +(((*1 *1) (-5 *1 (-390)))) +(((*1 *1) (-5 *1 (-390)))) +(((*1 *1) (-5 *1 (-390)))) +(((*1 *1) (-5 *1 (-390)))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-978 (-48))) (-4 *4 (-13 (-510) (-978 (-499)))) + (-4 *5 (-375 *4)) (-5 *2 (-359 (-1111 (-48)))) (-5 *1 (-389 *4 *5 *3)) + (-4 *3 (-1183 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-4 *5 (-375 *4)) + (-5 *2 + (-3 (|:| |overq| (-1111 (-361 (-499)))) (|:| |overan| (-1111 (-48))) + (|:| -2758 (-85)))) + (-5 *1 (-389 *4 *5 *3)) (-4 *3 (-1183 *5))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-510) (-978 (-499)))) (-4 *5 (-375 *4)) + (-5 *2 (-359 (-1111 (-361 (-499))))) (-5 *1 (-389 *4 *5 *3)) + (-4 *3 (-1183 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-4 *5 (-375 *4)) (-5 *2 (-359 *3)) + (-5 *1 (-389 *4 *5 *3)) (-4 *3 (-1183 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-388))))) (((*1 *2) - (-12 (-4 *3 (-13 (-568) (-1057 (-557)))) (-5 *2 (-1292)) (-5 *1 (-445 *3 *4)) - (-4 *4 (-433 *3))))) + (-12 (-4 *3 (-13 (-510) (-978 (-499)))) (-5 *2 (-1213)) (-5 *1 (-387 *3 *4)) + (-4 *4 (-375 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1057 (-557)))) (-5 *2 (-419 (-557))) - (-5 *1 (-445 *4 *3)) (-4 *3 (-433 *4)))) + (-12 (-4 *4 (-13 (-510) (-978 (-499)))) (-5 *2 (-361 (-499))) + (-5 *1 (-387 *4 *3)) (-4 *3 (-375 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-626 *3)) (-4 *3 (-433 *5)) (-4 *5 (-13 (-568) (-1057 (-557)))) - (-5 *2 (-1190 (-419 (-557)))) (-5 *1 (-445 *5 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3))))) + (-12 (-5 *4 (-566 *3)) (-4 *3 (-375 *5)) (-4 *5 (-13 (-510) (-978 (-499)))) + (-5 *2 (-1111 (-361 (-499)))) (-5 *1 (-387 *5 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-385 *3 *2)) (-4 *2 (-375 *3))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-441 *3 *2)) (-4 *3 (-13 (-175) (-38 (-419 (-557))))) - (-4 *2 (-13 (-859) (-21)))))) + (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-13 (-146) (-38 (-361 (-499))))) + (-4 *2 (-13 (-781) (-21)))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-441 *3 *2)) (-4 *3 (-13 (-175) (-38 (-419 (-557))))) - (-4 *2 (-13 (-859) (-21)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) - (-5 *2 (-594 *3)) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1222) (-29 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1120)) (-5 *2 (-789))))) -(((*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1120)) (-4 *2 (-381))))) -(((*1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-381)) (-4 *2 (-1120))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1057 (-557)) (-656 (-557)))) - (-5 *1 (-435 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1222) (-433 *3))) - (-14 *4 (-1196)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1057 (-557)) (-656 (-557)))) - (-4 *2 (-13 (-27) (-1222) (-433 *3) (-10 -8 (-15 -4374 ($ *4))))) - (-4 *4 (-858)) + (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-13 (-146) (-38 (-361 (-499))))) + (-4 *2 (-13 (-781) (-21)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) + (-5 *2 (-534 *3)) (-5 *1 (-382 *5 *3)) (-4 *3 (-13 (-1143) (-29 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-1041)) (-5 *2 (-714))))) +(((*1 *1 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1041)) (-4 *2 (-323))))) +(((*1 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-323)) (-4 *2 (-1041))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) + (-5 *1 (-377 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1143) (-375 *3))) + (-14 *4 (-1117)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-406) (-978 (-499)) (-596 (-499)))) + (-4 *2 (-13 (-27) (-1143) (-375 *3) (-10 -8 (-15 -4096 ($ *4))))) + (-4 *4 (-780)) (-4 *5 - (-13 (-1265 *2 *4) (-376) (-1222) - (-10 -8 (-15 -4186 ($ $)) (-15 -4240 ($ $))))) - (-5 *1 (-436 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1002 *5)) (-14 *7 (-1196))))) + (-13 (-1186 *2 *4) (-318) (-1143) + (-10 -8 (-15 -3908 ($ $)) (-15 -3962 ($ $))))) + (-5 *1 (-378 *3 *2 *4 *5 *6 *7)) (-4 *6 (-923 *5)) (-14 *7 (-1117))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-114)) (-4 *6 (-13 (-464) (-1057 (-557)) (-656 (-557)))) - (-4 *3 (-13 (-27) (-1222) (-433 *6) (-10 -8 (-15 -4374 ($ *7))))) - (-4 *7 (-858)) + (-12 (-5 *4 (-85)) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) + (-4 *3 (-13 (-27) (-1143) (-375 *6) (-10 -8 (-15 -4096 ($ *7))))) + (-4 *7 (-780)) (-4 *8 - (-13 (-1265 *3 *7) (-376) (-1222) - (-10 -8 (-15 -4186 ($ $)) (-15 -4240 ($ $))))) + (-13 (-1186 *3 *7) (-318) (-1143) + (-10 -8 (-15 -3908 ($ $)) (-15 -3962 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178)))))) - (-5 *1 (-436 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1178)) (-4 *9 (-1002 *8)) - (-14 *10 (-1196))))) + (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099)))))) + (-5 *1 (-378 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1099)) (-4 *9 (-923 *8)) + (-14 *10 (-1117))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-114)) (-4 *6 (-13 (-464) (-1057 (-557)) (-656 (-557)))) - (-4 *3 (-13 (-27) (-1222) (-433 *6) (-10 -8 (-15 -4374 ($ *7))))) - (-4 *7 (-858)) + (-12 (-5 *4 (-85)) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) + (-4 *3 (-13 (-27) (-1143) (-375 *6) (-10 -8 (-15 -4096 ($ *7))))) + (-4 *7 (-780)) (-4 *8 - (-13 (-1265 *3 *7) (-376) (-1222) - (-10 -8 (-15 -4186 ($ $)) (-15 -4240 ($ $))))) + (-13 (-1186 *3 *7) (-318) (-1143) + (-10 -8 (-15 -3908 ($ $)) (-15 -3962 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178)))))) - (-5 *1 (-436 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1178)) (-4 *9 (-1002 *8)) - (-14 *10 (-1196))))) + (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099)))))) + (-5 *1 (-378 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1099)) (-4 *9 (-923 *8)) + (-14 *10 (-1117))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *2 - (-3 (|:| |%expansion| (-325 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178)))))) - (-5 *1 (-435 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1222) (-433 *5))) - (-14 *6 (-1196)) (-14 *7 *3)))) + (-3 (|:| |%expansion| (-267 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1099)) (|:| |prob| (-1099)))))) + (-5 *1 (-377 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1143) (-375 *5))) + (-14 *6 (-1117)) (-14 *7 *3)))) (((*1 *2 *1) - (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1120)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-812)) (-4 *2 (-1068)))) - ((*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1120))))) + (-12 (-4 *1 (-280 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1041)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-280 *2 *3)) (-4 *3 (-737)) (-4 *2 (-989)))) + ((*1 *2 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1041))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-659 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1120)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-599 *1)) (-4 *1 (-375 *4)) (-4 *4 (-1041)))) ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1196)) (-4 *1 (-433 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1196)) (-4 *1 (-433 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1196)) (-4 *1 (-433 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-4 *1 (-433 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1120)) - (-5 *2 (-2 (|:| -4382 (-557)) (|:| |var| (-626 *1)))) (-4 *1 (-433 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-376)) (-4 *1 (-341 *3)))) + (-12 (-5 *2 (-1117)) (-4 *1 (-375 *3)) (-4 *3 (-1041)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-375 *3)) (-4 *3 (-1041)))) + ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-375 *3)) (-4 *3 (-1041)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-375 *3)) (-4 *3 (-1041))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1041)) + (-5 *2 (-2 (|:| -4104 (-499)) (|:| |var| (-566 *1)))) (-4 *1 (-375 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-359 *3)) (-4 *3 (-510)) (-5 *1 (-373 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-318)) (-4 *1 (-283 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1262 *4)) (-4 *4 (-1241)) - (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1262 (-419 *3))))) + (-12 (-5 *2 (-1207 *3)) (-4 *3 (-1183 *4)) (-4 *4 (-1162)) + (-4 *1 (-297 *4 *3 *5)) (-4 *5 (-1183 (-361 *3))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1286 *1)) (-4 *4 (-175)) (-4 *1 (-380 *4)))) + (-12 (-5 *2 (-1207 *4)) (-5 *3 (-1207 *1)) (-4 *4 (-146)) (-4 *1 (-322 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1286 *1)) (-4 *4 (-175)) - (-4 *1 (-383 *4 *5)) (-4 *5 (-1262 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1286 *3)) (-4 *3 (-175)) (-4 *1 (-422 *3 *4)) - (-4 *4 (-1262 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-175)) (-4 *1 (-430 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) - ((*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) - ((*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-175))))) -(((*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) - ((*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) - ((*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-175))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-707 *4)))) + (-12 (-5 *2 (-1207 *4)) (-5 *3 (-1207 *1)) (-4 *4 (-146)) + (-4 *1 (-325 *4 *5)) (-4 *5 (-1183 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1207 *3)) (-4 *3 (-146)) (-4 *1 (-364 *3 *4)) + (-4 *4 (-1183 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207 *3)) (-4 *3 (-146)) (-4 *1 (-372 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *2)) (-4 *2 (-146)))) + ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-371 *3 *2)) (-4 *3 (-372 *2)))) + ((*1 *2) (-12 (-4 *1 (-372 *2)) (-4 *2 (-146))))) +(((*1 *2 *3) (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *2)) (-4 *2 (-146)))) + ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-371 *3 *2)) (-4 *3 (-372 *2)))) + ((*1 *2) (-12 (-4 *1 (-372 *2)) (-4 *2 (-146))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-707 *4)) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) - ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-707 *3))))) + (-12 (-4 *4 (-146)) (-5 *2 (-647 *4)) (-5 *1 (-371 *3 *4)) + (-4 *3 (-372 *4)))) + ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-647 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-707 *4)))) + (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-707 *4)) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) - ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-707 *3))))) + (-12 (-4 *4 (-146)) (-5 *2 (-647 *4)) (-5 *1 (-371 *3 *4)) + (-4 *3 (-372 *4)))) + ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-647 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-707 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-707 *3))))) + (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-647 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-707 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-707 *3))))) + (-12 (-5 *3 (-1207 *1)) (-4 *1 (-322 *4)) (-4 *4 (-146)) (-5 *2 (-647 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-146)) (-5 *2 (-647 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1057 *4)) (-4 *3 (-319)) - (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-4 *6 (-422 *4 *5)) - (-14 *7 (-1286 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-367 *3 *4 *5 *6)) (-4 *6 (-978 *4)) (-4 *3 (-261)) + (-4 *4 (-931 *3)) (-4 *5 (-1183 *4)) (-4 *6 (-364 *4 *5)) + (-14 *7 (-1207 *6)) (-5 *1 (-369 *3 *4 *5 *6 *7)))) ((*1 *1 *2) - (-12 (-5 *2 (-1286 *6)) (-4 *6 (-422 *4 *5)) (-4 *4 (-1010 *3)) - (-4 *5 (-1262 *4)) (-4 *3 (-319)) (-5 *1 (-427 *3 *4 *5 *6 *7)) + (-12 (-5 *2 (-1207 *6)) (-4 *6 (-364 *4 *5)) (-4 *4 (-931 *3)) + (-4 *5 (-1183 *4)) (-4 *3 (-261)) (-5 *1 (-369 *3 *4 *5 *6 *7)) (-14 *7 *2)))) (((*1 *1 *1) - (-12 (-4 *2 (-319)) (-4 *3 (-1010 *2)) (-4 *4 (-1262 *3)) - (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1057 *3)))))) + (-12 (-4 *2 (-261)) (-4 *3 (-931 *2)) (-4 *4 (-1183 *3)) + (-5 *1 (-367 *2 *3 *4 *5)) (-4 *5 (-13 (-364 *3 *4) (-978 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-789)) (-5 *4 (-1286 *2)) (-4 *5 (-319)) (-4 *6 (-1010 *5)) - (-4 *2 (-13 (-422 *6 *7) (-1057 *6))) (-5 *1 (-425 *5 *6 *7 *2)) - (-4 *7 (-1262 *6))))) + (-12 (-5 *3 (-714)) (-5 *4 (-1207 *2)) (-4 *5 (-261)) (-4 *6 (-931 *5)) + (-4 *2 (-13 (-364 *6 *7) (-978 *6))) (-5 *1 (-367 *5 *6 *7 *2)) + (-4 *7 (-1183 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) - (-4 *5 (-1262 *4)) (-5 *2 (-707 *4)))) + (-12 (-5 *3 (-1207 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1183 *4)) (-5 *2 (-647 *4)))) ((*1 *2) - (-12 (-4 *4 (-175)) (-4 *5 (-1262 *4)) (-5 *2 (-707 *4)) - (-5 *1 (-421 *3 *4 *5)) (-4 *3 (-422 *4 *5)))) + (-12 (-4 *4 (-146)) (-4 *5 (-1183 *4)) (-5 *2 (-647 *4)) + (-5 *1 (-363 *3 *4 *5)) (-4 *3 (-364 *4 *5)))) ((*1 *2) - (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1262 *3)) - (-5 *2 (-707 *3))))) + (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1183 *3)) + (-5 *2 (-647 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) - (-4 *5 (-1262 *4)) (-5 *2 (-707 *4)))) + (-12 (-5 *3 (-1207 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1183 *4)) (-5 *2 (-647 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1262 *3)) - (-5 *2 (-707 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-557)) (-5 *1 (-417 *2)) (-4 *2 (-568))))) + (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1183 *3)) + (-5 *2 (-647 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-359 *2)) (-4 *2 (-510))))) (((*1 *2 *1) - (-12 (-5 *2 (-659 (-2 (|:| |gen| *3) (|:| -4371 (-557))))) (-5 *1 (-374 *3)) - (-4 *3 (-1120)))) + (-12 (-5 *2 (-599 (-2 (|:| |gen| *3) (|:| -4093 (-499))))) (-5 *1 (-316 *3)) + (-4 *3 (-1041)))) ((*1 *2 *1) - (-12 (-4 *1 (-399 *3)) (-4 *3 (-1120)) - (-5 *2 (-659 (-2 (|:| |gen| *3) (|:| -4371 (-789))))))) + (-12 (-4 *1 (-341 *3)) (-4 *3 (-1041)) + (-5 *2 (-599 (-2 (|:| |gen| *3) (|:| -4093 (-714))))))) ((*1 *2 *1) - (-12 (-5 *2 (-659 (-2 (|:| -4160 *3) (|:| -2630 (-557))))) (-5 *1 (-417 *3)) - (-4 *3 (-568))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-557)) (-5 *1 (-417 *2)) (-4 *2 (-568))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-417 *3)) (-4 *3 (-568))))) + (-12 (-5 *2 (-599 (-2 (|:| -3882 *3) (|:| -2519 (-499))))) (-5 *1 (-359 *3)) + (-4 *3 (-510))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-359 *2)) (-4 *2 (-510))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-359 *3)) (-4 *3 (-510))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-557)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-417 *4)) (-4 *4 (-568))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-557)) (-5 *1 (-417 *2)) (-4 *2 (-568))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-557)) (-5 *1 (-417 *2)) (-4 *2 (-568))))) + (-12 (-5 *3 (-499)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-359 *4)) (-4 *4 (-510))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-359 *2)) (-4 *2 (-510))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-359 *2)) (-4 *2 (-510))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-557)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-417 *2)) (-4 *2 (-568))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 (-391))) (-5 *1 (-270)))) - ((*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-568)) (-4 *2 (-175)))) - ((*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-568))))) -(((*1 *1 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-568))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-789)) (-5 *3 (-114)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-936)) (|has| *1 (-6 -4414)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-936))))) -(((*1 *2 *3) - (-12 (-5 *3 (-557)) (|has| *1 (-6 -4414)) (-4 *1 (-416)) (-5 *2 (-936))))) -(((*1 *2 *3) - (-12 (-5 *3 (-557)) (|has| *1 (-6 -4414)) (-4 *1 (-416)) (-5 *2 (-936))))) -(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-789)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-789))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-789)))) - ((*1 *1 *1) (-4 *1 (-414)))) + (-12 (-5 *3 (-499)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-359 *2)) (-4 *2 (-510))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-333))) (-5 *1 (-220)))) + ((*1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-510)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-5 *1 (-359 *2)) (-4 *2 (-510))))) +(((*1 *1 *1) (-12 (-5 *1 (-359 *2)) (-4 *2 (-510))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-714)) (-5 *3 (-85)) (-5 *1 (-81)))) + ((*1 *2 *2) (-12 (-5 *2 (-857)) (|has| *1 (-6 -4136)) (-4 *1 (-358)))) + ((*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-857))))) +(((*1 *2 *3) + (-12 (-5 *3 (-499)) (|has| *1 (-6 -4136)) (-4 *1 (-358)) (-5 *2 (-857))))) +(((*1 *2 *3) + (-12 (-5 *3 (-499)) (|has| *1 (-6 -4136)) (-4 *1 (-358)) (-5 *2 (-857))))) +(((*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-714)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-356)) (-5 *2 (-714))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-356)) (-5 *2 (-714)))) + ((*1 *1 *1) (-4 *1 (-356)))) (((*1 *1 *2) - (-12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-13 (-376) (-149))) - (-5 *1 (-411 *3 *4))))) + (-12 (-5 *2 (-361 *4)) (-4 *4 (-1183 *3)) (-4 *3 (-13 (-318) (-120))) + (-5 *1 (-353 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-1262 *3)) (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-376) (-149)))))) + (-12 (-4 *2 (-1183 *3)) (-5 *1 (-353 *3 *2)) (-4 *3 (-13 (-318) (-120)))))) (((*1 *2 *1) - (-12 (-4 *3 (-13 (-376) (-149))) - (-5 *2 (-659 (-2 (|:| -2630 (-789)) (|:| -4201 *4) (|:| |num| *4)))) - (-5 *1 (-411 *3 *4)) (-4 *4 (-1262 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-407))))) + (-12 (-4 *3 (-13 (-318) (-120))) + (-5 *2 (-599 (-2 (|:| -2519 (-714)) (|:| -3923 *4) (|:| |num| *4)))) + (-5 *1 (-353 *3 *4)) (-4 *4 (-1183 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-349))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-659 (-659 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-659 (-3 (|:| |array| (-659 *3)) (|:| |scalar| (-1196))))) - (-5 *6 (-659 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1122)) (-5 *1 (-407)))) + (-12 (-5 *5 (-599 (-599 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-599 (-3 (|:| |array| (-599 *3)) (|:| |scalar| (-1117))))) + (-5 *6 (-599 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1043)) (-5 *1 (-349)))) ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-659 (-659 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-659 (-3 (|:| |array| (-659 *3)) (|:| |scalar| (-1196))))) - (-5 *6 (-659 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1122)) (-5 *1 (-407)))) + (-12 (-5 *5 (-599 (-599 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-599 (-3 (|:| |array| (-599 *3)) (|:| |scalar| (-1117))))) + (-5 *6 (-599 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1043)) (-5 *1 (-349)))) ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-659 (-1196))) (-5 *5 (-1199)) (-5 *3 (-1196)) (-5 *2 (-1122)) - (-5 *1 (-407))))) -(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-405))))) -(((*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1292)) (-5 *1 (-405)))) - ((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-405))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-405))))) -(((*1 *2) (-12 (-5 *2 (-1167 (-1178))) (-5 *1 (-405))))) -(((*1 *2) (-12 (-5 *2 (-1167 (-1178))) (-5 *1 (-405))))) -(((*1 *2 *1) - (-12 (-5 *2 (-875)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-789)) (-14 *4 (-789)) - (-4 *5 (-175))))) -(((*1 *2 *1) - (-12 (-5 *2 (-875)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-789)) (-14 *4 (-789)) - (-4 *5 (-175))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-403))))) -(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1120))))) + (-12 (-5 *4 (-599 (-1117))) (-5 *5 (-1120)) (-5 *3 (-1117)) (-5 *2 (-1043)) + (-5 *1 (-349))))) +(((*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-347))))) +(((*1 *2 *3) (-12 (-5 *3 (-344)) (-5 *2 (-1213)) (-5 *1 (-347)))) + ((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-347))))) +(((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-347))))) +(((*1 *2) (-12 (-5 *2 (-1088 (-1099))) (-5 *1 (-347))))) +(((*1 *2) (-12 (-5 *2 (-1088 (-1099))) (-5 *1 (-347))))) +(((*1 *2 *1) + (-12 (-5 *2 (-797)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-714)) (-14 *4 (-714)) + (-4 *5 (-146))))) +(((*1 *2 *1) + (-12 (-5 *2 (-797)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-714)) (-14 *4 (-714)) + (-4 *5 (-146))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1099)) (-4 *1 (-345))))) +(((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-1099))))) +(((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-1099))))) +(((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-85))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-1041))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-1041))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-1120)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-399 *3))))) + (-12 (-4 *3 (-1041)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-341 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1120)) + (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-989)) (-4 *4 (-1041)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-659 (-419 (-963 (-557))))) (-5 *4 (-659 (-1196))) - (-5 *2 (-659 (-659 *5))) (-5 *1 (-393 *5)) (-4 *5 (-13 (-858) (-376))))) + (-12 (-5 *3 (-599 (-361 (-884 (-499))))) (-5 *4 (-599 (-1117))) + (-5 *2 (-599 (-599 *5))) (-5 *1 (-335 *5)) (-4 *5 (-13 (-780) (-318))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-963 (-557)))) (-5 *2 (-659 *4)) (-5 *1 (-393 *4)) - (-4 *4 (-13 (-858) (-376)))))) + (-12 (-5 *3 (-361 (-884 (-499)))) (-5 *2 (-599 *4)) (-5 *1 (-335 *4)) + (-4 *4 (-13 (-780) (-318)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-963 (-171 (-557))))) (-5 *2 (-659 (-171 *4))) - (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-858))))) + (-12 (-5 *3 (-361 (-884 (-142 (-499))))) (-5 *2 (-599 (-142 *4))) + (-5 *1 (-334 *4)) (-4 *4 (-13 (-318) (-780))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-659 (-419 (-963 (-171 (-557)))))) (-5 *4 (-659 (-1196))) - (-5 *2 (-659 (-659 (-171 *5)))) (-5 *1 (-392 *5)) - (-4 *5 (-13 (-376) (-858)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-419 (-963 (-171 (-557)))))) - (-5 *2 (-659 (-659 (-305 (-963 (-171 *4)))))) (-5 *1 (-392 *4)) - (-4 *4 (-13 (-376) (-858))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-305 (-419 (-963 (-171 (-557))))))) - (-5 *2 (-659 (-659 (-305 (-963 (-171 *4)))))) (-5 *1 (-392 *4)) - (-4 *4 (-13 (-376) (-858))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-963 (-171 (-557))))) - (-5 *2 (-659 (-305 (-963 (-171 *4))))) (-5 *1 (-392 *4)) - (-4 *4 (-13 (-376) (-858))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-305 (-419 (-963 (-171 (-557)))))) - (-5 *2 (-659 (-305 (-963 (-171 *4))))) (-5 *1 (-392 *4)) - (-4 *4 (-13 (-376) (-858)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-557)) (-5 *1 (-391))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-789)) (-5 *2 (-419 (-557))) (-5 *1 (-229)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-5 *2 (-419 (-557))) (-5 *1 (-229)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-789)) (-5 *2 (-419 (-557))) (-5 *1 (-391)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-789)) (-5 *2 (-419 (-557))) (-5 *1 (-391))))) -(((*1 *1 *1) (-5 *1 (-229))) ((*1 *1 *1) (-5 *1 (-391))) - ((*1 *1) (-5 *1 (-391)))) -(((*1 *1 *1) (-5 *1 (-229))) + (-12 (-5 *3 (-599 (-361 (-884 (-142 (-499)))))) (-5 *4 (-599 (-1117))) + (-5 *2 (-599 (-599 (-142 *5)))) (-5 *1 (-334 *5)) + (-4 *5 (-13 (-318) (-780)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-361 (-884 (-142 (-499)))))) + (-5 *2 (-599 (-599 (-247 (-884 (-142 *4)))))) (-5 *1 (-334 *4)) + (-4 *4 (-13 (-318) (-780))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-247 (-361 (-884 (-142 (-499))))))) + (-5 *2 (-599 (-599 (-247 (-884 (-142 *4)))))) (-5 *1 (-334 *4)) + (-4 *4 (-13 (-318) (-780))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-361 (-884 (-142 (-499))))) + (-5 *2 (-599 (-247 (-884 (-142 *4))))) (-5 *1 (-334 *4)) + (-4 *4 (-13 (-318) (-780))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-247 (-361 (-884 (-142 (-499)))))) + (-5 *2 (-599 (-247 (-884 (-142 *4))))) (-5 *1 (-334 *4)) + (-4 *4 (-13 (-318) (-780)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-499)) (-5 *1 (-333))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-361 (-499))) (-5 *1 (-179)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *2 (-361 (-499))) (-5 *1 (-179)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-714)) (-5 *2 (-361 (-499))) (-5 *1 (-333)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-714)) (-5 *2 (-361 (-499))) (-5 *1 (-333))))) +(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-333))) + ((*1 *1) (-5 *1 (-333)))) +(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-659 (-1196))) (-14 *3 (-659 (-1196))) - (-4 *4 (-401)))) - ((*1 *1 *1) (-5 *1 (-391))) ((*1 *1) (-5 *1 (-391)))) -(((*1 *1) (-5 *1 (-229))) ((*1 *1) (-5 *1 (-391)))) -(((*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1292)) (-5 *1 (-391)))) - ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-391))))) -(((*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1292)) (-5 *1 (-391)))) - ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-391))))) -(((*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1292)) (-5 *1 (-391)))) - ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-391))))) -(((*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1292)) (-5 *1 (-391))))) + (-12 (-5 *1 (-294 *2 *3 *4)) (-14 *2 (-599 (-1117))) (-14 *3 (-599 (-1117))) + (-4 *4 (-343)))) + ((*1 *1 *1) (-5 *1 (-333))) ((*1 *1) (-5 *1 (-333)))) +(((*1 *1) (-5 *1 (-179))) ((*1 *1) (-5 *1 (-333)))) +(((*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-333)))) + ((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-333))))) +(((*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-333)))) + ((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-333))))) +(((*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-333)))) + ((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-333))))) +(((*1 *2 *3) (-12 (-5 *3 (-714)) (-5 *2 (-1213)) (-5 *1 (-333))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-388 *4 *2)) - (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4424))))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1157)) (-5 *1 (-330 *4 *2)) + (-4 *2 (-13 (-327 *4) (-10 -7 (-6 -4146))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-388 *4 *2)) - (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4424))))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1157)) (-5 *1 (-330 *4 *2)) + (-4 *2 (-13 (-327 *4) (-10 -7 (-6 -4146))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-388 *4 *2)) - (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4424))))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1157)) (-5 *1 (-330 *4 *2)) + (-4 *2 (-13 (-327 *4) (-10 -7 (-6 -4146))))))) (((*1 *1 *2) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-859)) (-4 *1 (-387 *3 *4)) (-4 *4 (-175))))) + (-12 (-5 *2 (-630 *3)) (-4 *3 (-781)) (-4 *1 (-329 *3 *4)) (-4 *4 (-146))))) (((*1 *2 *1) - (-12 (-4 *1 (-385 *3)) (-4 *3 (-1236)) (-4 *3 (-859)) (-5 *2 (-114)))) + (-12 (-4 *1 (-327 *3)) (-4 *3 (-1157)) (-4 *3 (-781)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1236)) - (-5 *2 (-114))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-327 *4)) (-4 *4 (-1157)) + (-5 *2 (-85))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-557)) (|has| *1 (-6 -4424)) (-4 *1 (-385 *3)) (-4 *3 (-1236))))) + (-12 (-5 *2 (-499)) (|has| *1 (-6 -4146)) (-4 *1 (-327 *3)) (-4 *3 (-1157))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4424)) (-4 *1 (-385 *2)) (-4 *2 (-1236)) (-4 *2 (-859)))) + (-12 (|has| *1 (-6 -4146)) (-4 *1 (-327 *2)) (-4 *2 (-1157)) (-4 *2 (-781)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3 *3)) (|has| *1 (-6 -4424)) (-4 *1 (-385 *3)) - (-4 *3 (-1236))))) -(((*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1286 *1)) (-4 *1 (-380 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1190 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1190 *3))))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -4146)) (-4 *1 (-327 *3)) + (-4 *3 (-1157))))) +(((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1207 *1)) (-4 *1 (-322 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-1111 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-1111 *3))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) - ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) + ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) - ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) + ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) - ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) + ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) - ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) + ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) - ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) + ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) - ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) + ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) - ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) + ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) - ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114))))) -(((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) + ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) +(((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) - ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) + ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) - ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) + ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) - ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) + ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) - ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) + ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) - ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) + ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) - ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) + ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-659 (-1286 *4))) (-5 *1 (-379 *3 *4)) - (-4 *3 (-380 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-599 (-1207 *4))) (-5 *1 (-321 *3 *4)) + (-4 *3 (-322 *4)))) ((*1 *2) - (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-568)) - (-5 *2 (-659 (-1286 *3)))))) + (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-4 *3 (-510)) + (-5 *2 (-599 (-1207 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-568)) (-5 *2 (-1190 *3))))) + (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-4 *3 (-510)) (-5 *2 (-1111 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-568)) (-5 *2 (-1190 *3))))) -(((*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-568)) (-4 *2 (-175))))) -(((*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-568)) (-4 *2 (-175))))) + (-12 (-4 *1 (-322 *3)) (-4 *3 (-146)) (-4 *3 (-510)) (-5 *2 (-1111 *3))))) +(((*1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-510)) (-4 *2 (-146))))) +(((*1 *1) (|partial| -12 (-4 *1 (-322 *2)) (-4 *2 (-510)) (-4 *2 (-146))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1178)) (-4 *1 (-378 *2 *4)) (-4 *2 (-1120)) (-4 *4 (-1120)))) - ((*1 *1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120))))) + (-12 (-5 *3 (-1099)) (-4 *1 (-320 *2 *4)) (-4 *2 (-1041)) (-4 *4 (-1041)))) + ((*1 *1 *2) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1178)) (-4 *1 (-378 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120))))) -(((*1 *1 *1) (-4 *1 (-176))) - ((*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-1099)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041))))) +(((*1 *1 *1) (-4 *1 (-147))) + ((*1 *1 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-1041))))) (((*1 *2 *1) - (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)) (-5 *2 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1120)) (-4 *2 (-1120))))) + (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)) (-5 *2 (-1099))))) +(((*1 *2 *1) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-1041)) (-4 *2 (-1041))))) (((*1 *2 *3) - (-12 (-5 *3 (-1190 *4)) (-4 *4 (-363)) + (-12 (-5 *3 (-1111 *4)) (-4 *4 (-305)) (-4 *2 - (-13 (-414) - (-10 -7 (-15 -4374 (*2 *4)) (-15 -2218 ((-936) *2)) - (-15 -2220 ((-1286 *2) (-936))) (-15 -4356 (*2 *2))))) - (-5 *1 (-370 *2 *4))))) + (-13 (-356) + (-10 -7 (-15 -4096 (*2 *4)) (-15 -2111 ((-857) *2)) + (-15 -2113 ((-1207 *2) (-857))) (-15 -4078 (*2 *2))))) + (-5 *1 (-312 *2 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-975 (-1190 *4))) (-5 *1 (-369 *4)) - (-5 *3 (-1190 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1190 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) + (-12 (-4 *4 (-305)) (-5 *2 (-896 (-1111 *4))) (-5 *1 (-311 *4)) + (-5 *3 (-1111 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) + (|partial| -12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) + (|partial| -12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) + (|partial| -12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) + (|partial| -12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) + (|partial| -12 (-5 *2 (-1111 *3)) (-4 *3 (-305)) (-5 *1 (-311 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) + (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305))))) (((*1 *2 *3) - (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) + (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305))))) (((*1 *2 *3) - (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) + (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305))))) (((*1 *2 *3) - (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) + (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305))))) (((*1 *2 *3) - (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) -(((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-369 *3)) (-4 *3 (-363))))) -(((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-369 *3)) (-4 *3 (-363))))) -(((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-369 *3)) (-4 *3 (-363))))) -(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-114)))) + (-12 (-5 *3 (-857)) (-5 *2 (-1111 *4)) (-5 *1 (-311 *4)) (-4 *4 (-305))))) +(((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-311 *3)) (-4 *3 (-305))))) +(((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-311 *3)) (-4 *3 (-305))))) +(((*1 *2 *2) (-12 (-5 *2 (-857)) (-5 *1 (-311 *3)) (-4 *3 (-305))))) +(((*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *3 (-1190 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4))))) + (-12 (-5 *3 (-1111 *4)) (-4 *4 (-305)) (-5 *2 (-85)) (-5 *1 (-311 *4))))) (((*1 *2) - (-12 (-5 *2 (-1286 (-659 (-2 (|:| -3820 (-923 *3)) (|:| -2629 (-1139)))))) - (-5 *1 (-365 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936)))) + (-12 (-5 *2 (-1207 (-599 (-2 (|:| -3542 (-844 *3)) (|:| -2518 (-1060)))))) + (-5 *1 (-307 *3 *4)) (-14 *3 (-857)) (-14 *4 (-857)))) ((*1 *2) - (-12 (-5 *2 (-1286 (-659 (-2 (|:| -3820 *3) (|:| -2629 (-1139)))))) - (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1190 *3) *2)))) + (-12 (-5 *2 (-1207 (-599 (-2 (|:| -3542 *3) (|:| -2518 (-1060)))))) + (-5 *1 (-308 *3 *4)) (-4 *3 (-305)) (-14 *4 (-3 (-1111 *3) *2)))) ((*1 *2) - (-12 (-5 *2 (-1286 (-659 (-2 (|:| -3820 *3) (|:| -2629 (-1139)))))) - (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-936))))) + (-12 (-5 *2 (-1207 (-599 (-2 (|:| -3542 *3) (|:| -2518 (-1060)))))) + (-5 *1 (-309 *3 *4)) (-4 *3 (-305)) (-14 *4 (-857))))) (((*1 *2) - (-12 (-5 *2 (-707 (-923 *3))) (-5 *1 (-365 *3 *4)) (-14 *3 (-936)) - (-14 *4 (-936)))) + (-12 (-5 *2 (-647 (-844 *3))) (-5 *1 (-307 *3 *4)) (-14 *3 (-857)) + (-14 *4 (-857)))) ((*1 *2) - (-12 (-5 *2 (-707 *3)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) + (-12 (-5 *2 (-647 *3)) (-5 *1 (-308 *3 *4)) (-4 *3 (-305)) (-14 *4 - (-3 (-1190 *3) (-1286 (-659 (-2 (|:| -3820 *3) (|:| -2629 (-1139))))))))) + (-3 (-1111 *3) (-1207 (-599 (-2 (|:| -3542 *3) (|:| -2518 (-1060))))))))) ((*1 *2) - (-12 (-5 *2 (-707 *3)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-936))))) + (-12 (-5 *2 (-647 *3)) (-5 *1 (-309 *3 *4)) (-4 *3 (-305)) (-14 *4 (-857))))) (((*1 *2 *3) - (-12 (-5 *3 (-1286 (-659 (-2 (|:| -3820 *4) (|:| -2629 (-1139)))))) - (-4 *4 (-363)) (-5 *2 (-789)) (-5 *1 (-360 *4)))) + (-12 (-5 *3 (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060)))))) + (-4 *4 (-305)) (-5 *2 (-714)) (-5 *1 (-302 *4)))) ((*1 *2) - (-12 (-5 *2 (-789)) (-5 *1 (-365 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936)))) + (-12 (-5 *2 (-714)) (-5 *1 (-307 *3 *4)) (-14 *3 (-857)) (-14 *4 (-857)))) ((*1 *2) - (-12 (-5 *2 (-789)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) + (-12 (-5 *2 (-714)) (-5 *1 (-308 *3 *4)) (-4 *3 (-305)) (-14 *4 - (-3 (-1190 *3) (-1286 (-659 (-2 (|:| -3820 *3) (|:| -2629 (-1139))))))))) + (-3 (-1111 *3) (-1207 (-599 (-2 (|:| -3542 *3) (|:| -2518 (-1060))))))))) ((*1 *2) - (-12 (-5 *2 (-789)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-936))))) + (-12 (-5 *2 (-714)) (-5 *1 (-309 *3 *4)) (-4 *3 (-305)) (-14 *4 (-857))))) (((*1 *2) - (-12 (-4 *1 (-363)) - (-5 *2 (-659 (-2 (|:| -4160 (-557)) (|:| -2630 (-557)))))))) -(((*1 *2 *3) (-12 (-4 *1 (-363)) (-5 *3 (-557)) (-5 *2 (-1208 (-936) (-789)))))) -(((*1 *1) (-4 *1 (-363)))) + (-12 (-4 *1 (-305)) + (-5 *2 (-599 (-2 (|:| -3882 (-499)) (|:| -2519 (-499)))))))) +(((*1 *2 *3) (-12 (-4 *1 (-305)) (-5 *3 (-499)) (-5 *2 (-1129 (-857) (-714)))))) +(((*1 *1) (-4 *1 (-305)))) (((*1 *2) - (-12 (-4 *1 (-363)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) + (-12 (-4 *1 (-305)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) (((*1 *2 *3) - (-12 (-5 *3 (-936)) + (-12 (-5 *3 (-857)) (-5 *2 - (-3 (-1190 *4) (-1286 (-659 (-2 (|:| -3820 *4) (|:| -2629 (-1139))))))) - (-5 *1 (-360 *4)) (-4 *4 (-363))))) + (-3 (-1111 *4) (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060))))))) + (-5 *1 (-302 *4)) (-4 *4 (-305))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-936)) - (-5 *2 (-1286 (-659 (-2 (|:| -3820 *4) (|:| -2629 (-1139)))))) - (-5 *1 (-360 *4)) (-4 *4 (-363))))) + (|partial| -12 (-5 *3 (-857)) + (-5 *2 (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060)))))) + (-5 *1 (-302 *4)) (-4 *4 (-305))))) (((*1 *2 *3) - (-12 (-5 *3 (-1286 (-659 (-2 (|:| -3820 *4) (|:| -2629 (-1139)))))) - (-4 *4 (-363)) (-5 *2 (-707 *4)) (-5 *1 (-360 *4))))) + (-12 (-5 *3 (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060)))))) + (-4 *4 (-305)) (-5 *2 (-647 *4)) (-5 *1 (-302 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1190 *4)) (-4 *4 (-363)) - (-5 *2 (-1286 (-659 (-2 (|:| -3820 *4) (|:| -2629 (-1139)))))) - (-5 *1 (-360 *4))))) + (-12 (-5 *3 (-1111 *4)) (-4 *4 (-305)) + (-5 *2 (-1207 (-599 (-2 (|:| -3542 *4) (|:| -2518 (-1060)))))) + (-5 *1 (-302 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1190 *4)) (-4 *4 (-363)) (-5 *2 (-975 (-1139))) - (-5 *1 (-360 *4))))) + (-12 (-5 *3 (-1111 *4)) (-4 *4 (-305)) (-5 *2 (-896 (-1060))) + (-5 *1 (-302 *4))))) (((*1 *2) - (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-357 *3 *4)) (-14 *3 (-936)) - (-14 *4 (-936)))) + (-12 (-5 *2 (-896 (-1060))) (-5 *1 (-299 *3 *4)) (-14 *3 (-857)) + (-14 *4 (-857)))) ((*1 *2) - (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-358 *3 *4)) (-4 *3 (-363)) - (-14 *4 (-1190 *3)))) + (-12 (-5 *2 (-896 (-1060))) (-5 *1 (-300 *3 *4)) (-4 *3 (-305)) + (-14 *4 (-1111 *3)))) ((*1 *2) - (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-359 *3 *4)) (-4 *3 (-363)) - (-14 *4 (-936))))) + (-12 (-5 *2 (-896 (-1060))) (-5 *1 (-301 *3 *4)) (-4 *3 (-305)) + (-14 *4 (-857))))) (((*1 *2) - (-12 (-4 *4 (-1241)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) - (-5 *2 (-789)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) + (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) + (-5 *2 (-714)) (-5 *1 (-296 *3 *4 *5 *6)) (-4 *3 (-297 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-789))))) + (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-5 *2 (-714))))) (((*1 *2) - (-12 (-4 *4 (-1241)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) - (-5 *2 (-114)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) + (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) + (-5 *2 (-85)) (-5 *1 (-296 *3 *4 *5 *6)) (-4 *3 (-297 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-1241)) (-4 *5 (-1262 *3)) (-4 *6 (-1262 (-419 *5))) - (-5 *2 (-114)) (-5 *1 (-354 *4 *3 *5 *6)) (-4 *4 (-355 *3 *5 *6)))) + (-12 (-4 *3 (-1162)) (-4 *5 (-1183 *3)) (-4 *6 (-1183 (-361 *5))) + (-5 *2 (-85)) (-5 *1 (-296 *4 *3 *5 *6)) (-4 *4 (-297 *3 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1262 *4)) - (-4 *5 (-1262 (-419 *3))) (-5 *2 (-114)))) + (-12 (-4 *1 (-297 *4 *3 *5)) (-4 *4 (-1162)) (-4 *3 (-1183 *4)) + (-4 *5 (-1183 (-361 *3))) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1262 *4)) - (-4 *5 (-1262 (-419 *3))) (-5 *2 (-114)))) + (-12 (-4 *1 (-297 *4 *3 *5)) (-4 *4 (-1162)) (-4 *3 (-1183 *4)) + (-4 *5 (-1183 (-361 *3))) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1262 *4)) - (-4 *5 (-1262 (-419 *3))) (-5 *2 (-114)))) + (-12 (-4 *1 (-297 *4 *3 *5)) (-4 *4 (-1162)) (-4 *3 (-1183 *4)) + (-4 *5 (-1183 (-361 *3))) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *3 (-1241)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) - (-5 *2 (-1286 *1)) (-4 *1 (-355 *3 *4 *5))))) + (-12 (-4 *3 (-1162)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) + (-5 *2 (-1207 *1)) (-4 *1 (-297 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1262 *4)) - (-4 *5 (-1262 (-419 *3))) (-5 *2 (-114)))) + (-12 (-4 *1 (-297 *4 *3 *5)) (-4 *4 (-1162)) (-4 *3 (-1183 *4)) + (-4 *5 (-1183 (-361 *3))) (-5 *2 (-85)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114)))) + (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-5 *2 (-85))))) (((*1 *2 *2) - (-12 (-5 *2 (-1286 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) - (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4)))))) + (-12 (-5 *2 (-1207 *1)) (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) + (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1286 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) - (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4)))))) + (-12 (-5 *2 (-1207 *1)) (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) + (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1286 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) - (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4)))))) + (-12 (-5 *2 (-1207 *1)) (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) + (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4)))))) (((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-707 (-419 *4)))))) + (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-5 *2 (-647 (-361 *4)))))) (((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-707 (-419 *4)))))) + (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-5 *2 (-647 (-361 *4)))))) (((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-707 (-419 *4)))))) + (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-5 *2 (-647 (-361 *4)))))) (((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-707 (-419 *4)))))) + (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-5 *2 (-647 (-361 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) - (-5 *2 (-2 (|:| |num| (-1286 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) + (-5 *2 (-2 (|:| |num| (-1207 *4)) (|:| |den| *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) - (-5 *2 (-2 (|:| |num| (-1286 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) + (-5 *2 (-2 (|:| |num| (-1207 *4)) (|:| |den| *4)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1262 *4)) (-4 *4 (-1241)) - (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1262 (-419 *3)))))) + (-12 (-5 *2 (-1207 *3)) (-4 *3 (-1183 *4)) (-4 *4 (-1162)) + (-4 *1 (-297 *4 *3 *5)) (-4 *5 (-1183 (-361 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1241)) - (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) - (-5 *2 (-2 (|:| |num| (-707 *5)) (|:| |den| *5)))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-297 *4 *5 *6)) (-4 *4 (-1162)) + (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) + (-5 *2 (-2 (|:| |num| (-647 *5)) (|:| |den| *5)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1222) (-1021))))) + (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-318) (-1143) (-942))))) ((*1 *2) - (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1262 (-419 *2))) (-4 *2 (-1262 *4)) - (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) + (|partial| -12 (-4 *4 (-1162)) (-4 *5 (-1183 (-361 *2))) (-4 *2 (-1183 *4)) + (-5 *1 (-296 *3 *4 *2 *5)) (-4 *3 (-297 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1241)) - (-4 *4 (-1262 (-419 *2))) (-4 *2 (-1262 *3))))) + (|partial| -12 (-4 *1 (-297 *3 *2 *4)) (-4 *3 (-1162)) + (-4 *4 (-1183 (-361 *2))) (-4 *2 (-1183 *3))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1262 (-419 *2))) (-4 *2 (-1262 *4)) - (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) + (|partial| -12 (-4 *4 (-1162)) (-4 *5 (-1183 (-361 *2))) (-4 *2 (-1183 *4)) + (-5 *1 (-296 *3 *4 *2 *5)) (-4 *3 (-297 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1241)) - (-4 *4 (-1262 (-419 *2))) (-4 *2 (-1262 *3))))) + (|partial| -12 (-4 *1 (-297 *3 *2 *4)) (-4 *3 (-1162)) + (-4 *4 (-1183 (-361 *2))) (-4 *2 (-1183 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-1241)) - (-4 *6 (-1262 (-419 *5))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1183 *4)) (-4 *4 (-1162)) + (-4 *6 (-1183 (-361 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) - (-4 *1 (-355 *4 *5 *6))))) + (-4 *1 (-297 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *5 (-1241)) (-4 *6 (-1262 *5)) - (-4 *7 (-1262 (-419 *6))) (-5 *2 (-659 (-963 *5))) - (-5 *1 (-354 *4 *5 *6 *7)) (-4 *4 (-355 *5 *6 *7)))) + (-12 (-5 *3 (-1117)) (-4 *5 (-1162)) (-4 *6 (-1183 *5)) + (-4 *7 (-1183 (-361 *6))) (-5 *2 (-599 (-884 *5))) + (-5 *1 (-296 *4 *5 *6 *7)) (-4 *4 (-297 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1241)) - (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-4 *4 (-376)) - (-5 *2 (-659 (-963 *4)))))) + (-12 (-5 *3 (-1117)) (-4 *1 (-297 *4 *5 *6)) (-4 *4 (-1162)) + (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) (-4 *4 (-318)) + (-5 *2 (-599 (-884 *4)))))) (((*1 *2) - (-12 (-4 *4 (-1241)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) - (-5 *2 (-659 (-659 *4))) (-5 *1 (-354 *3 *4 *5 *6)) - (-4 *3 (-355 *4 *5 *6)))) + (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-4 *6 (-1183 (-361 *5))) + (-5 *2 (-599 (-599 *4))) (-5 *1 (-296 *3 *4 *5 *6)) + (-4 *3 (-297 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-4 *3 (-381)) (-5 *2 (-659 (-659 *3)))))) + (-12 (-4 *1 (-297 *3 *4 *5)) (-4 *3 (-1162)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-4 *3 (-323)) (-5 *2 (-599 (-599 *3)))))) (((*1 *2 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-659 (-1196))) - (-14 *4 (-659 (-1196))) (-4 *5 (-401)))) + (-12 (-5 *2 (-85)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 (-1117))) + (-14 *4 (-599 (-1117))) (-4 *5 (-343)))) ((*1 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-659 (-1196))) - (-14 *4 (-659 (-1196))) (-4 *5 (-401))))) + (-12 (-5 *2 (-85)) (-5 *1 (-294 *3 *4 *5)) (-14 *3 (-599 (-1117))) + (-14 *4 (-599 (-1117))) (-4 *5 (-343))))) (((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-376)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) - (-4 *1 (-349 *4 *3 *5 *2)) (-4 *2 (-355 *4 *3 *5)))) + (-12 (-4 *4 (-318)) (-4 *3 (-1183 *4)) (-4 *5 (-1183 (-361 *3))) + (-4 *1 (-291 *4 *3 *5 *2)) (-4 *2 (-297 *4 *3 *5)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-557)) (-4 *2 (-376)) (-4 *4 (-1262 *2)) - (-4 *5 (-1262 (-419 *4))) (-4 *1 (-349 *2 *4 *5 *6)) - (-4 *6 (-355 *2 *4 *5)))) + (-12 (-5 *3 (-499)) (-4 *2 (-318)) (-4 *4 (-1183 *2)) + (-4 *5 (-1183 (-361 *4))) (-4 *1 (-291 *2 *4 *5 *6)) + (-4 *6 (-297 *2 *4 *5)))) ((*1 *1 *2 *2) - (-12 (-4 *2 (-376)) (-4 *3 (-1262 *2)) (-4 *4 (-1262 (-419 *3))) - (-4 *1 (-349 *2 *3 *4 *5)) (-4 *5 (-355 *2 *3 *4)))) + (-12 (-4 *2 (-318)) (-4 *3 (-1183 *2)) (-4 *4 (-1183 (-361 *3))) + (-4 *1 (-291 *2 *3 *4 *5)) (-4 *5 (-297 *2 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-376)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) - (-4 *1 (-349 *3 *4 *5 *2)) (-4 *2 (-355 *3 *4 *5)))) + (-12 (-4 *3 (-318)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) + (-4 *1 (-291 *3 *4 *5 *2)) (-4 *2 (-297 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-4 *3 (-376)) - (-4 *1 (-349 *3 *4 *5 *6))))) + (-12 (-5 *2 (-367 *4 (-361 *4) *5 *6)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 *3 *4 *5)) (-4 *3 (-318)) + (-4 *1 (-291 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-114))))) + (-12 (-4 *1 (-291 *3 *4 *5 *6)) (-4 *3 (-318)) (-4 *4 (-1183 *3)) + (-4 *5 (-1183 (-361 *4))) (-4 *6 (-297 *3 *4 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) - (-5 *2 (-1286 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5))))) + (-12 (-4 *3 (-318)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) + (-5 *2 (-1207 *6)) (-5 *1 (-288 *3 *4 *5 *6)) (-4 *6 (-297 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) - (-5 *2 (-1286 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-258)) (-5 *1 (-345))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-885 (-1201) (-789)))) (-5 *1 (-345))))) -(((*1 *2 *1) (-12 (-5 *2 (-975 (-789))) (-5 *1 (-345))))) -(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-345))))) + (-12 (-4 *3 (-318)) (-4 *4 (-1183 *3)) (-4 *5 (-1183 (-361 *4))) + (-5 *2 (-1207 *6)) (-5 *1 (-288 *3 *4 *5 *6)) (-4 *6 (-297 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-287))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-807 (-1122) (-714)))) (-5 *1 (-287))))) +(((*1 *2 *1) (-12 (-5 *2 (-896 (-714))) (-5 *1 (-287))))) +(((*1 *2 *1) (-12 (-5 *2 (-460)) (-5 *1 (-287))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-963 (-557))) (-5 *2 (-342)) (-5 *1 (-344))))) + (-12 (-5 *3 (-1117)) (-5 *4 (-884 (-499))) (-5 *2 (-284)) (-5 *1 (-286))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-963 (-557))) (-5 *2 (-342)) (-5 *1 (-344))))) + (-12 (-5 *3 (-1117)) (-5 *4 (-884 (-499))) (-5 *2 (-284)) (-5 *1 (-286))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-963 (-557))) (-5 *2 (-342)) (-5 *1 (-344))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-343 *3)) (-4 *3 (-859))))) + (-12 (-5 *3 (-1117)) (-5 *4 (-884 (-499))) (-5 *2 (-284)) (-5 *1 (-286))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-285 *3)) (-4 *3 (-781))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1111 (-963 (-557)))) (-5 *3 (-963 (-557))) (-5 *1 (-342)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1111 (-963 (-557)))) (-5 *1 (-342))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-342))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-342))))) -(((*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-342))))) -(((*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-342))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 (-1178))) (-5 *1 (-342)))) - ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-342))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-342))))) -(((*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-342)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-557))) (-5 *1 (-342)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-342)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-712))) (-5 *1 (-342)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-719))) (-5 *1 (-342)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-717))) (-5 *1 (-342)))) - ((*1 *1) (-5 *1 (-342)))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-342)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-342))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 (-342))) (-5 *1 (-342))))) -(((*1 *1) (-5 *1 (-342)))) -(((*1 *1) (-5 *1 (-342)))) -(((*1 *1 *2) (-12 (-5 *2 (-659 (-875))) (-5 *1 (-342))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-659 (-1196))) (-5 *2 (-1196)) (-5 *1 (-342))))) + (-12 (-5 *2 (-1032 (-884 (-499)))) (-5 *3 (-884 (-499))) (-5 *1 (-284)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1032 (-884 (-499)))) (-5 *1 (-284))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-284))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-284))))) +(((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-284))))) +(((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-284))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-1099))) (-5 *1 (-284)))) + ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-284))))) +(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-284))))) +(((*1 *1 *2) (-12 (-5 *2 (-268 (-142 (-333)))) (-5 *1 (-284)))) + ((*1 *1 *2) (-12 (-5 *2 (-268 (-499))) (-5 *1 (-284)))) + ((*1 *1 *2) (-12 (-5 *2 (-268 (-333))) (-5 *1 (-284)))) + ((*1 *1 *2) (-12 (-5 *2 (-268 (-652))) (-5 *1 (-284)))) + ((*1 *1 *2) (-12 (-5 *2 (-268 (-659))) (-5 *1 (-284)))) + ((*1 *1 *2) (-12 (-5 *2 (-268 (-657))) (-5 *1 (-284)))) + ((*1 *1) (-5 *1 (-284)))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-284)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-284))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-284))) (-5 *1 (-284))))) +(((*1 *1) (-5 *1 (-284)))) +(((*1 *1) (-5 *1 (-284)))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-797))) (-5 *1 (-284))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-599 (-1117))) (-5 *2 (-1117)) (-5 *1 (-284))))) (((*1 *2 *1) (-12 (-5 *2 @@ -13925,155 +12993,154 @@ (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-342))))) + (-5 *1 (-284))))) (((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| - (-2 (|:| |var| (-1196)) (|:| |arrayIndex| (-659 (-963 (-557)))) - (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3669 (-875)))))) + (-2 (|:| |var| (-1117)) (|:| |arrayIndex| (-599 (-884 (-499)))) + (|:| |rand| (-2 (|:| |ints2Floats?| (-85)) (|:| -3391 (-797)))))) (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1196)) (|:| |rand| (-875)) - (|:| |ints2Floats?| (-114)))) + (-2 (|:| |var| (-1117)) (|:| |rand| (-797)) + (|:| |ints2Floats?| (-85)))) (|:| |conditionalBranch| - (-2 (|:| |switch| (-1195)) (|:| |thenClause| (-342)) - (|:| |elseClause| (-342)))) + (-2 (|:| |switch| (-1116)) (|:| |thenClause| (-284)) + (|:| |elseClause| (-284)))) (|:| |returnBranch| - (-2 (|:| -3821 (-114)) - (|:| -3820 (-2 (|:| |ints2Floats?| (-114)) (|:| -3669 (-875)))))) - (|:| |blockBranch| (-659 (-342))) (|:| |commentBranch| (-659 (-1178))) - (|:| |callBranch| (-1178)) + (-2 (|:| -3543 (-85)) + (|:| -3542 (-2 (|:| |ints2Floats?| (-85)) (|:| -3391 (-797)))))) + (|:| |blockBranch| (-599 (-284))) (|:| |commentBranch| (-599 (-1099))) + (|:| |callBranch| (-1099)) (|:| |forBranch| - (-2 (|:| -1636 (-1111 (-963 (-557)))) (|:| |span| (-963 (-557))) - (|:| -3649 (-342)))) - (|:| |labelBranch| (-1139)) - (|:| |loopBranch| (-2 (|:| |switch| (-1195)) (|:| -3649 (-342)))) + (-2 (|:| -1539 (-1032 (-884 (-499)))) (|:| |span| (-884 (-499))) + (|:| -3371 (-284)))) + (|:| |labelBranch| (-1060)) + (|:| |loopBranch| (-2 (|:| |switch| (-1116)) (|:| -3371 (-284)))) (|:| |commonBranch| - (-2 (|:| -3968 (-1196)) (|:| |contents| (-659 (-1196))))) - (|:| |printBranch| (-659 (-875))))) - (-5 *1 (-342))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-342))))) -(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-342))))) -(((*1 *2 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-342))))) -(((*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376))))) + (-2 (|:| -3690 (-1117)) (|:| |contents| (-599 (-1117))))) + (|:| |printBranch| (-599 (-797))))) + (-5 *1 (-284))))) +(((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-284))))) +(((*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-284))))) +(((*1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-284))))) +(((*1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-323)) (-4 *2 (-318))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1190 *3)) (-4 *3 (-381)) (-4 *1 (-341 *3)) (-4 *3 (-376))))) + (-12 (-5 *2 (-1111 *3)) (-4 *3 (-323)) (-4 *1 (-283 *3)) (-4 *3 (-318))))) (((*1 *2 *1) - (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1190 *3))))) + (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)) (-5 *2 (-1111 *3))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) - (-5 *2 (-1190 *3)))) + (|partial| -12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)) + (-5 *2 (-1111 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1190 *3))))) + (-12 (-4 *1 (-283 *3)) (-4 *3 (-318)) (-4 *3 (-323)) (-5 *2 (-1111 *3))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-812))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-280 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-280 *2 *3)) (-4 *2 (-989)) (-4 *3 (-737))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-789)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-812)) - (-4 *3 (-175))))) + (-12 (-5 *2 (-714)) (-4 *1 (-280 *3 *4)) (-4 *3 (-989)) (-4 *4 (-737)) + (-4 *3 (-146))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-557)) (-4 *1 (-335 *4 *2)) (-4 *4 (-1120)) (-4 *2 (-133))))) + (-12 (-5 *3 (-499)) (-4 *1 (-277 *4 *2)) (-4 *4 (-1041)) (-4 *2 (-104))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-133))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-104))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-133)) (-4 *3 (-812))))) + (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-1041)) (-4 *3 (-104)) (-4 *3 (-737))))) (((*1 *2 *3) - (-12 (-5 *3 (-557)) (-4 *4 (-813)) (-4 *5 (-859)) (-4 *2 (-1068)) - (-5 *1 (-333 *4 *5 *2 *6)) (-4 *6 (-967 *2 *4 *5))))) + (-12 (-5 *3 (-499)) (-4 *4 (-738)) (-4 *5 (-781)) (-4 *2 (-989)) + (-5 *1 (-275 *4 *5 *2 *6)) (-4 *6 (-888 *2 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1190 *7)) (-5 *3 (-557)) (-4 *7 (-967 *6 *4 *5)) (-4 *4 (-813)) - (-4 *5 (-859)) (-4 *6 (-1068)) (-5 *1 (-333 *4 *5 *6 *7))))) + (-12 (-5 *2 (-1111 *7)) (-5 *3 (-499)) (-4 *7 (-888 *6 *4 *5)) (-4 *4 (-738)) + (-4 *5 (-781)) (-4 *6 (-989)) (-5 *1 (-275 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1190 *6)) (-4 *6 (-1068)) (-4 *4 (-813)) (-4 *5 (-859)) - (-5 *2 (-1190 *7)) (-5 *1 (-333 *4 *5 *6 *7)) (-4 *7 (-967 *6 *4 *5))))) + (-12 (-5 *3 (-1111 *6)) (-4 *6 (-989)) (-4 *4 (-738)) (-4 *5 (-781)) + (-5 *2 (-1111 *7)) (-5 *1 (-275 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1190 *7)) (-4 *7 (-967 *6 *4 *5)) (-4 *4 (-813)) (-4 *5 (-859)) - (-4 *6 (-1068)) (-5 *2 (-1190 *6)) (-5 *1 (-333 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1111 *7)) (-4 *7 (-888 *6 *4 *5)) (-4 *4 (-738)) (-4 *5 (-781)) + (-4 *6 (-989)) (-5 *2 (-1111 *6)) (-5 *1 (-275 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1190 *9)) (-5 *4 (-659 *7)) (-5 *5 (-659 *8)) (-4 *7 (-859)) - (-4 *8 (-1068)) (-4 *9 (-967 *8 *6 *7)) (-4 *6 (-813)) (-5 *2 (-1190 *8)) - (-5 *1 (-333 *6 *7 *8 *9))))) + (-12 (-5 *3 (-1111 *9)) (-5 *4 (-599 *7)) (-5 *5 (-599 *8)) (-4 *7 (-781)) + (-4 *8 (-989)) (-4 *9 (-888 *8 *6 *7)) (-4 *6 (-738)) (-5 *2 (-1111 *8)) + (-5 *1 (-275 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-5 *2 (-419 (-557))) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) - (-14 *4 (-1196)) (-14 *5 *3)))) + (-12 (-5 *2 (-361 (-499))) (-5 *1 (-273 *3 *4 *5)) (-4 *3 (-318)) + (-14 *4 (-1117)) (-14 *5 *3)))) (((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-326 (-557))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1108 (-229))) - (-5 *6 (-557)) (-5 *2 (-1232 (-944))) (-5 *1 (-330)))) + (-12 (-5 *3 (-268 (-499))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1029 (-179))) + (-5 *6 (-499)) (-5 *2 (-1153 (-865))) (-5 *1 (-272)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-326 (-557))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1108 (-229))) - (-5 *6 (-557)) (-5 *7 (-1178)) (-5 *2 (-1232 (-944))) (-5 *1 (-330)))) + (-12 (-5 *3 (-268 (-499))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1029 (-179))) + (-5 *6 (-499)) (-5 *7 (-1099)) (-5 *2 (-1153 (-865))) (-5 *1 (-272)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-326 (-557))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1108 (-229))) - (-5 *6 (-229)) (-5 *7 (-557)) (-5 *2 (-1232 (-944))) (-5 *1 (-330)))) + (-12 (-5 *3 (-268 (-499))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1029 (-179))) + (-5 *6 (-179)) (-5 *7 (-499)) (-5 *2 (-1153 (-865))) (-5 *1 (-272)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-326 (-557))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1108 (-229))) - (-5 *6 (-229)) (-5 *7 (-557)) (-5 *8 (-1178)) (-5 *2 (-1232 (-944))) - (-5 *1 (-330))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-330)) (-5 *3 (-229))))) + (-12 (-5 *3 (-268 (-499))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1029 (-179))) + (-5 *6 (-179)) (-5 *7 (-499)) (-5 *8 (-1099)) (-5 *2 (-1153 (-865))) + (-5 *1 (-272))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-272)) (-5 *3 (-179))))) (((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-305 *6)) (-5 *4 (-115)) (-4 *6 (-433 *5)) - (-4 *5 (-13 (-568) (-629 (-546)))) (-5 *2 (-51)) (-5 *1 (-329 *5 *6)))) + (-12 (-5 *3 (-247 *6)) (-5 *4 (-86)) (-4 *6 (-375 *5)) + (-4 *5 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *5 *6)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-659 *7)) (-4 *7 (-433 *6)) - (-4 *6 (-13 (-568) (-629 (-546)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) + (-12 (-5 *3 (-247 *7)) (-5 *4 (-86)) (-5 *5 (-599 *7)) (-4 *7 (-375 *6)) + (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *6 *7)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-659 (-305 *7))) (-5 *4 (-659 (-115))) (-5 *5 (-305 *7)) - (-4 *7 (-433 *6)) (-4 *6 (-13 (-568) (-629 (-546)))) (-5 *2 (-51)) - (-5 *1 (-329 *6 *7)))) + (-12 (-5 *3 (-599 (-247 *7))) (-5 *4 (-599 (-86))) (-5 *5 (-247 *7)) + (-4 *7 (-375 *6)) (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) + (-5 *1 (-271 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-659 (-305 *8))) (-5 *4 (-659 (-115))) (-5 *5 (-305 *8)) - (-5 *6 (-659 *8)) (-4 *8 (-433 *7)) (-4 *7 (-13 (-568) (-629 (-546)))) - (-5 *2 (-51)) (-5 *1 (-329 *7 *8)))) + (-12 (-5 *3 (-599 (-247 *8))) (-5 *4 (-599 (-86))) (-5 *5 (-247 *8)) + (-5 *6 (-599 *8)) (-4 *8 (-375 *7)) (-4 *7 (-13 (-510) (-569 (-488)))) + (-5 *2 (-51)) (-5 *1 (-271 *7 *8)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-659 *7)) (-5 *4 (-659 (-115))) (-5 *5 (-305 *7)) - (-4 *7 (-433 *6)) (-4 *6 (-13 (-568) (-629 (-546)))) (-5 *2 (-51)) - (-5 *1 (-329 *6 *7)))) + (-12 (-5 *3 (-599 *7)) (-5 *4 (-599 (-86))) (-5 *5 (-247 *7)) + (-4 *7 (-375 *6)) (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) + (-5 *1 (-271 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-659 *8)) (-5 *4 (-659 (-115))) (-5 *6 (-659 (-305 *8))) - (-4 *8 (-433 *7)) (-5 *5 (-305 *8)) (-4 *7 (-13 (-568) (-629 (-546)))) - (-5 *2 (-51)) (-5 *1 (-329 *7 *8)))) + (-12 (-5 *3 (-599 *8)) (-5 *4 (-599 (-86))) (-5 *6 (-599 (-247 *8))) + (-4 *8 (-375 *7)) (-5 *5 (-247 *8)) (-4 *7 (-13 (-510) (-569 (-488)))) + (-5 *2 (-51)) (-5 *1 (-271 *7 *8)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-305 *5)) (-5 *4 (-115)) (-4 *5 (-433 *6)) - (-4 *6 (-13 (-568) (-629 (-546)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *5)))) + (-12 (-5 *3 (-247 *5)) (-5 *4 (-86)) (-4 *5 (-375 *6)) + (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *6 *5)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-433 *6)) - (-4 *6 (-13 (-568) (-629 (-546)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) + (-12 (-5 *4 (-86)) (-5 *5 (-247 *3)) (-4 *3 (-375 *6)) + (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *6 *3)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-433 *6)) - (-4 *6 (-13 (-568) (-629 (-546)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) + (-12 (-5 *4 (-86)) (-5 *5 (-247 *3)) (-4 *3 (-375 *6)) + (-4 *6 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-659 *3)) (-4 *3 (-433 *7)) - (-4 *7 (-13 (-568) (-629 (-546)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *3))))) + (-12 (-5 *4 (-86)) (-5 *5 (-247 *3)) (-5 *6 (-599 *3)) (-4 *3 (-375 *7)) + (-4 *7 (-13 (-510) (-569 (-488)))) (-5 *2 (-51)) (-5 *1 (-271 *7 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-85)) (-5 *1 (-268 *3)) (-4 *3 (-510)) (-4 *3 (-1041))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-557)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1120))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-319)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-789))))) + (-12 (-5 *2 (-499)) (-5 *1 (-268 *3)) (-4 *3 (-510)) (-4 *3 (-1041))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-261)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-261)) (-5 *2 (-714))))) (((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-319)))) + (-4 *1 (-261)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2638 *1))) - (-4 *1 (-319))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-659 *1)) (-4 *1 (-319))))) -(((*1 *2 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-858)) (-5 *1 (-316 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-229))) (-5 *4 (-789)) (-5 *2 (-707 (-229))) - (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-419 (-557))) (-5 *2 (-229)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-326 (-391))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-963 (-229))) (-5 *2 (-229)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-963 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315))))) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2527 *1))) + (-4 *1 (-261))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-599 *1)) (-4 *1 (-261))))) +(((*1 *2 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-780)) (-5 *1 (-258 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-179))) (-5 *4 (-714)) (-5 *2 (-647 (-179))) + (-5 *1 (-257))))) +(((*1 *2 *3) (-12 (-5 *3 (-361 (-499))) (-5 *2 (-179)) (-5 *1 (-257))))) +(((*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-268 (-333))) (-5 *1 (-257))))) +(((*1 *2 *3) (-12 (-5 *3 (-884 (-179))) (-5 *2 (-179)) (-5 *1 (-257))))) +(((*1 *2 *3) (-12 (-5 *3 (-884 (-179))) (-5 *2 (-268 (-333))) (-5 *1 (-257))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) - (|:| |expense| (-391)) (|:| |accuracy| (-391)) - (|:| |intermediateResults| (-391)))) - (-5 *2 (-1054)) (-5 *1 (-315))))) + (-2 (|:| |stiffness| (-333)) (|:| |stability| (-333)) + (|:| |expense| (-333)) (|:| |accuracy| (-333)) + (|:| |intermediateResults| (-333)))) + (-5 *2 (-975)) (-5 *1 (-257))))) (((*1 *2 *3) (-12 (-5 *3 @@ -14087,2144 +13154,1925 @@ (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1174 (-229))) + (-3 (|:| |str| (-1095 (-179))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1636 + (|:| -1539 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1054)) (-5 *1 (-315))))) + (-5 *2 (-975)) (-5 *1 (-257))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) - (|:| |explanations| (-659 (-1178))))) - (-5 *2 (-1054)) (-5 *1 (-315)))) + (-2 (|:| -2787 (-333)) (|:| -3690 (-1099)) + (|:| |explanations| (-599 (-1099))))) + (-5 *2 (-975)) (-5 *1 (-257)))) ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -3067 (-391)) (|:| -3968 (-1178)) - (|:| |explanations| (-659 (-1178))) (|:| |extra| (-1054)))) - (-5 *2 (-1054)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1178)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-1108 (-853 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) - ((*1 *2 *3) (-12 (-5 *3 (-1108 (-853 (-229)))) (-5 *2 (-229)) (-5 *1 (-313)))) - ((*1 *2 *3) (-12 (-5 *3 (-1108 (-853 (-229)))) (-5 *2 (-229)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-1108 (-853 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) - ((*1 *2 *3) (-12 (-5 *3 (-1108 (-853 (-229)))) (-5 *2 (-229)) (-5 *1 (-313)))) - ((*1 *2 *3) (-12 (-5 *3 (-1108 (-853 (-229)))) (-5 *2 (-229)) (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1174 (-229))) (-5 *2 (-659 (-1178))) (-5 *1 (-195)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1174 (-229))) (-5 *2 (-659 (-1178))) (-5 *1 (-313)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1174 (-229))) (-5 *2 (-659 (-1178))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-659 (-229))) (-5 *2 (-659 (-1178))) (-5 *1 (-195)))) - ((*1 *2 *3) (-12 (-5 *3 (-659 (-229))) (-5 *2 (-659 (-1178))) (-5 *1 (-313)))) - ((*1 *2 *3) (-12 (-5 *3 (-659 (-229))) (-5 *2 (-659 (-1178))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1178)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1178)) (-5 *1 (-195)))) - ((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1178)) (-5 *1 (-313)))) - ((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1178)) (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1286 (-326 (-229)))) (-5 *2 (-1286 (-326 (-391)))) - (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-659 (-229))) (-5 *2 (-1286 (-717))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-717)) (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 (-5 *3 (-659 (-2 (|:| -3538 (-419 (-557))) (|:| -3537 (-419 (-557)))))) - (-5 *2 (-659 (-229))) (-5 *1 (-315))))) -(((*1 *2 *2) (-12 (-5 *2 (-1108 (-853 (-229)))) (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-419 (-557)))) (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1286 (-326 (-229)))) - (-5 *2 - (-2 (|:| |additions| (-557)) (|:| |multiplications| (-557)) - (|:| |exponentiations| (-557)) (|:| |functionCalls| (-557)))) - (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))) - (-5 *2 (-391)) (-5 *1 (-278)))) - ((*1 *2 *3) (-12 (-5 *3 (-1286 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-229)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-419 (-557))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-419 (-557))) (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1108 (-853 (-391)))) (-5 *2 (-1108 (-853 (-229)))) - (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-853 (-391))) (-5 *2 (-853 (-229))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-326 (-391))) (-5 *2 (-326 (-229))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-315))))) + (-2 (|:| -2787 (-333)) (|:| -3690 (-1099)) + (|:| |explanations| (-599 (-1099))) (|:| |extra| (-975)))) + (-5 *2 (-975)) (-5 *1 (-257))))) +(((*1 *2 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1099)) (-5 *1 (-257))))) +(((*1 *2 *3) (-12 (-5 *3 (-1029 (-775 (-179)))) (-5 *2 (-179)) (-5 *1 (-255)))) + ((*1 *2 *3) (-12 (-5 *3 (-1029 (-775 (-179)))) (-5 *2 (-179)) (-5 *1 (-257))))) +(((*1 *2 *3) (-12 (-5 *3 (-1029 (-775 (-179)))) (-5 *2 (-179)) (-5 *1 (-255)))) + ((*1 *2 *3) (-12 (-5 *3 (-1029 (-775 (-179)))) (-5 *2 (-179)) (-5 *1 (-257))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1095 (-179))) (-5 *2 (-599 (-1099))) (-5 *1 (-255)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1095 (-179))) (-5 *2 (-599 (-1099))) (-5 *1 (-257))))) +(((*1 *2 *3) (-12 (-5 *3 (-599 (-179))) (-5 *2 (-599 (-1099))) (-5 *1 (-255)))) + ((*1 *2 *3) (-12 (-5 *3 (-599 (-179))) (-5 *2 (-599 (-1099))) (-5 *1 (-257))))) +(((*1 *2 *3) (-12 (-5 *3 (-333)) (-5 *2 (-1099)) (-5 *1 (-257))))) +(((*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-1099)) (-5 *1 (-255)))) + ((*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-1099)) (-5 *1 (-257))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1207 (-268 (-179)))) (-5 *2 (-1207 (-268 (-333)))) + (-5 *1 (-257))))) +(((*1 *2 *3) (-12 (-5 *3 (-268 (-179))) (-5 *2 (-268 (-333))) (-5 *1 (-257))))) +(((*1 *2 *3) (-12 (-5 *3 (-599 (-179))) (-5 *2 (-1207 (-657))) (-5 *1 (-257))))) +(((*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-657)) (-5 *1 (-257))))) +(((*1 *2 *3) + (-12 (-5 *3 (-599 (-2 (|:| -3260 (-361 (-499))) (|:| -3259 (-361 (-499)))))) + (-5 *2 (-599 (-179))) (-5 *1 (-257))))) +(((*1 *2 *2) (-12 (-5 *2 (-1029 (-775 (-179)))) (-5 *1 (-257))))) +(((*1 *2 *3) + (-12 (-5 *3 (-268 (-179))) (-5 *2 (-268 (-361 (-499)))) (-5 *1 (-257))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1207 (-268 (-179)))) + (-5 *2 + (-2 (|:| |additions| (-499)) (|:| |multiplications| (-499)) + (|:| |exponentiations| (-499)) (|:| |functionCalls| (-499)))) + (-5 *1 (-257))))) +(((*1 *2 *3) (-12 (-5 *3 (-1207 (-268 (-179)))) (-5 *2 (-333)) (-5 *1 (-257))))) +(((*1 *2 *3) (-12 (-5 *3 (-268 (-179))) (-5 *2 (-179)) (-5 *1 (-257))))) +(((*1 *2 *3) (-12 (-5 *3 (-268 (-179))) (-5 *2 (-361 (-499))) (-5 *1 (-257))))) +(((*1 *2 *3) (-12 (-5 *3 (-179)) (-5 *2 (-361 (-499))) (-5 *1 (-257))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1029 (-775 (-333)))) (-5 *2 (-1029 (-775 (-179)))) + (-5 *1 (-257))))) +(((*1 *2 *3) (-12 (-5 *3 (-775 (-333))) (-5 *2 (-775 (-179))) (-5 *1 (-257))))) +(((*1 *2 *3) (-12 (-5 *3 (-268 (-333))) (-5 *2 (-268 (-179))) (-5 *1 (-257))))) +(((*1 *2 *3) (-12 (-5 *3 (-333)) (-5 *2 (-179)) (-5 *1 (-257))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-963 (-419 (-557)))) (-5 *4 (-1196)) - (-5 *5 (-1108 (-853 (-229)))) (-5 *2 (-659 (-229))) (-5 *1 (-313))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) - (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) - (|:| |relerr| (-229)))) - (-5 *2 (-1174 (-229))) (-5 *1 (-195)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-229))) (-5 *4 (-659 (-1196))) - (-5 *5 (-1108 (-853 (-229)))) (-5 *2 (-1174 (-229))) (-5 *1 (-313)))) + (-12 (-5 *3 (-884 (-361 (-499)))) (-5 *4 (-1117)) + (-5 *5 (-1029 (-775 (-179)))) (-5 *2 (-599 (-179))) (-5 *1 (-255))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-268 (-179))) (-5 *4 (-599 (-1117))) + (-5 *5 (-1029 (-775 (-179)))) (-5 *2 (-1095 (-179))) (-5 *1 (-255)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1286 (-326 (-229)))) (-5 *4 (-659 (-1196))) - (-5 *5 (-1108 (-853 (-229)))) (-5 *2 (-1174 (-229))) (-5 *1 (-313))))) + (-12 (-5 *3 (-1207 (-268 (-179)))) (-5 *4 (-599 (-1117))) + (-5 *5 (-1029 (-775 (-179)))) (-5 *2 (-1095 (-179))) (-5 *1 (-255))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1190 *1)) (-5 *4 (-1196)) (-4 *1 (-27)) (-5 *2 (-659 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1190 *1)) (-4 *1 (-27)) (-5 *2 (-659 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-963 *1)) (-4 *1 (-27)) (-5 *2 (-659 *1)))) + (-12 (-5 *3 (-1111 *1)) (-5 *4 (-1117)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1111 *1)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-884 *1)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *2 (-659 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-659 *1)) (-4 *1 (-29 *3)))) + (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *2 (-599 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-510)) (-5 *2 (-599 *1)) (-4 *1 (-29 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-229))) (-5 *4 (-659 (-1196))) - (-5 *5 (-1108 (-853 (-229)))) (-5 *2 (-1174 (-229))) (-5 *1 (-313))))) + (-12 (-5 *3 (-268 (-179))) (-5 *4 (-599 (-1117))) + (-5 *5 (-1029 (-775 (-179)))) (-5 *2 (-1095 (-179))) (-5 *1 (-255))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1196)) (-5 *5 (-1108 (-853 (-229)))) - (-5 *2 (-659 (-229))) (-5 *1 (-195)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1196)) (-5 *5 (-1108 (-853 (-229)))) - (-5 *2 (-659 (-229))) (-5 *1 (-313))))) + (-12 (-5 *3 (-268 (-179))) (-5 *4 (-1117)) (-5 *5 (-1029 (-775 (-179)))) + (-5 *2 (-599 (-179))) (-5 *1 (-255))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) - (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) - (|:| |relerr| (-229)))) - (-5 *2 (-114)) (-5 *1 (-313))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-310)) (-4 *2 (-1236)))) + (-2 (|:| |var| (-1117)) (|:| |fn| (-268 (-179))) + (|:| -1539 (-1029 (-775 (-179)))) (|:| |abserr| (-179)) + (|:| |relerr| (-179)))) + (-5 *2 (-85)) (-5 *1 (-255))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-252)) (-4 *2 (-1157)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-659 (-626 *1))) (-5 *3 (-659 *1)) (-4 *1 (-310)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-659 (-305 *1))) (-4 *1 (-310)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-305 *1)) (-4 *1 (-310))))) -(((*1 *1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-4 *1 (-310)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-626 *1)) (-4 *1 (-310))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-626 *1))) (-4 *1 (-310))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-626 *1))) (-4 *1 (-310))))) -(((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-659 (-115)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1196)) (-5 *2 (-114)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-114))))) -(((*1 *2 *3) - (-12 (-5 *3 (-626 *5)) (-4 *5 (-433 *4)) (-4 *4 (-1057 (-557))) - (-4 *4 (-568)) (-5 *2 (-1190 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-626 *1)) (-4 *1 (-1068)) (-4 *1 (-310)) (-5 *2 (-1190 *1))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-323)) (-5 *1 (-308)))) - ((*1 *2 *3) (-12 (-5 *3 (-659 (-1178))) (-5 *2 (-323)) (-5 *1 (-308)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-323)) (-5 *1 (-308)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-659 (-1178))) (-5 *3 (-1178)) (-5 *2 (-323)) (-5 *1 (-308))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1068)) (-4 *4 (-1262 *3)) (-5 *1 (-166 *3 *4 *2)) - (-4 *2 (-1262 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1236))))) -(((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1236))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-744)) (-4 *2 (-1236))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-744)) (-4 *2 (-1236))))) -(((*1 *2 *1) - (-12 (-5 *2 (-659 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-568)) - (-4 *3 (-1236))))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) - (-5 *2 - (-659 - (-2 (|:| |eigval| (-3 (-419 (-963 *4)) (-1185 (-1196) (-963 *4)))) - (|:| |eigmult| (-789)) (|:| |eigvec| (-659 (-707 (-419 (-963 *4)))))))) - (-5 *1 (-304 *4)) (-5 *3 (-707 (-419 (-963 *4))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) - (-5 *2 - (-659 - (-2 (|:| |eigval| (-3 (-419 (-963 *4)) (-1185 (-1196) (-963 *4)))) - (|:| |geneigvec| (-659 (-707 (-419 (-963 *4)))))))) - (-5 *1 (-304 *4)) (-5 *3 (-707 (-419 (-963 *4))))))) + (-12 (-5 *2 (-599 (-566 *1))) (-5 *3 (-599 *1)) (-4 *1 (-252)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-247 *1))) (-4 *1 (-252)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-247 *1)) (-4 *1 (-252))))) +(((*1 *1 *1 *1) (-4 *1 (-252))) ((*1 *1 *1) (-4 *1 (-252)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-566 *1)) (-4 *1 (-252))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-566 *1))) (-4 *1 (-252))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-566 *1))) (-4 *1 (-252))))) +(((*1 *2 *1) (-12 (-4 *1 (-252)) (-5 *2 (-599 (-86)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-252)) (-5 *3 (-1117)) (-5 *2 (-85)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-252)) (-5 *2 (-85))))) +(((*1 *2 *3) + (-12 (-5 *3 (-566 *5)) (-4 *5 (-375 *4)) (-4 *4 (-978 (-499))) (-4 *4 (-510)) + (-5 *2 (-1111 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-566 *1)) (-4 *1 (-989)) (-4 *1 (-252)) (-5 *2 (-1111 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-265)) (-5 *1 (-250)))) + ((*1 *2 *3) (-12 (-5 *3 (-599 (-1099))) (-5 *2 (-265)) (-5 *1 (-250)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-265)) (-5 *1 (-250)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-599 (-1099))) (-5 *3 (-1099)) (-5 *2 (-265)) (-5 *1 (-250))))) +(((*1 *2 *2) + (-12 (-4 *3 (-989)) (-4 *4 (-1183 *3)) (-5 *1 (-137 *3 *4 *2)) + (-4 *2 (-1183 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-1157))))) +(((*1 *1 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-21)) (-4 *2 (-1157))))) +(((*1 *1 *1) (-12 (-5 *1 (-247 *2)) (-4 *2 (-21)) (-4 *2 (-1157))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-247 *2)) (-4 *2 (-684)) (-4 *2 (-1157))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-247 *2)) (-4 *2 (-684)) (-4 *2 (-1157))))) +(((*1 *2 *1) + (-12 (-5 *2 (-599 (-247 *3))) (-5 *1 (-247 *3)) (-4 *3 (-510)) + (-4 *3 (-1157))))) +(((*1 *2 *3) + (-12 (-4 *4 (-406)) + (-5 *2 + (-599 + (-2 (|:| |eigval| (-3 (-361 (-884 *4)) (-1106 (-1117) (-884 *4)))) + (|:| |eigmult| (-714)) (|:| |eigvec| (-599 (-647 (-361 (-884 *4)))))))) + (-5 *1 (-246 *4)) (-5 *3 (-647 (-361 (-884 *4))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-406)) + (-5 *2 + (-599 + (-2 (|:| |eigval| (-3 (-361 (-884 *4)) (-1106 (-1117) (-884 *4)))) + (|:| |geneigvec| (-599 (-647 (-361 (-884 *4)))))))) + (-5 *1 (-246 *4)) (-5 *3 (-647 (-361 (-884 *4))))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-419 (-963 *6)) (-1185 (-1196) (-963 *6)))) (-5 *5 (-789)) - (-4 *6 (-464)) (-5 *2 (-659 (-707 (-419 (-963 *6))))) (-5 *1 (-304 *6)) - (-5 *4 (-707 (-419 (-963 *6)))))) + (-12 (-5 *3 (-3 (-361 (-884 *6)) (-1106 (-1117) (-884 *6)))) (-5 *5 (-714)) + (-4 *6 (-406)) (-5 *2 (-599 (-647 (-361 (-884 *6))))) (-5 *1 (-246 *6)) + (-5 *4 (-647 (-361 (-884 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |eigval| (-3 (-419 (-963 *5)) (-1185 (-1196) (-963 *5)))) - (|:| |eigmult| (-789)) (|:| |eigvec| (-659 *4)))) - (-4 *5 (-464)) (-5 *2 (-659 (-707 (-419 (-963 *5))))) (-5 *1 (-304 *5)) - (-5 *4 (-707 (-419 (-963 *5))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-419 (-963 *5)) (-1185 (-1196) (-963 *5)))) (-4 *5 (-464)) - (-5 *2 (-659 (-707 (-419 (-963 *5))))) (-5 *1 (-304 *5)) - (-5 *4 (-707 (-419 (-963 *5))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-707 (-419 (-963 *4)))) (-4 *4 (-464)) - (-5 *2 (-659 (-3 (-419 (-963 *4)) (-1185 (-1196) (-963 *4))))) - (-5 *1 (-304 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-1104))) (-5 *1 (-303))))) -(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-709 (-1122))) (-5 *1 (-303))))) -(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-1122)) (-5 *1 (-303))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-659 (-982))) (-5 *1 (-303))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-659 (-982))) (-5 *1 (-303))))) -(((*1 *1) (-5 *1 (-303)))) -(((*1 *1) (-5 *1 (-303)))) -(((*1 *1) (-5 *1 (-303)))) + (-2 (|:| |eigval| (-3 (-361 (-884 *5)) (-1106 (-1117) (-884 *5)))) + (|:| |eigmult| (-714)) (|:| |eigvec| (-599 *4)))) + (-4 *5 (-406)) (-5 *2 (-599 (-647 (-361 (-884 *5))))) (-5 *1 (-246 *5)) + (-5 *4 (-647 (-361 (-884 *5))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-361 (-884 *5)) (-1106 (-1117) (-884 *5)))) (-4 *5 (-406)) + (-5 *2 (-599 (-647 (-361 (-884 *5))))) (-5 *1 (-246 *5)) + (-5 *4 (-647 (-361 (-884 *5))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-647 (-361 (-884 *4)))) (-4 *4 (-406)) + (-5 *2 (-599 (-3 (-361 (-884 *4)) (-1106 (-1117) (-884 *4))))) + (-5 *1 (-246 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-1025))) (-5 *1 (-245))))) +(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-460)) (-5 *2 (-649 (-1043))) (-5 *1 (-245))))) +(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-460)) (-5 *3 (-1043)) (-5 *1 (-245))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-460)) (-5 *2 (-599 (-903))) (-5 *1 (-245))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-460)) (-5 *3 (-599 (-903))) (-5 *1 (-245))))) +(((*1 *1) (-5 *1 (-245)))) +(((*1 *1) (-5 *1 (-245)))) +(((*1 *1) (-5 *1 (-245)))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-557)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236)) (-4 *4 (-385 *2)) - (-4 *5 (-385 *2)))) + (-12 (-5 *3 (-499)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1157)) (-4 *4 (-327 *2)) + (-4 *5 (-327 *2)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4424)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1120)) - (-4 *2 (-1236))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-376)) (-5 *2 (-659 (-1174 *4))) (-5 *1 (-297 *4 *5)) - (-5 *3 (-1174 *4)) (-4 *5 (-1279 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1279 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1279 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1279 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1253 (-557))) (-4 *1 (-294 *3)) (-4 *3 (-1236)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-557)) (-4 *1 (-294 *3)) (-4 *3 (-1236))))) + (-12 (|has| *1 (-6 -4146)) (-4 *1 (-242 *3 *2)) (-4 *3 (-1041)) + (-4 *2 (-1157))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-318)) (-5 *2 (-599 (-1095 *4))) (-5 *1 (-239 *4 *5)) + (-5 *3 (-1095 *4)) (-4 *5 (-1200 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-239 *3 *2)) (-4 *2 (-1200 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-239 *3 *2)) (-4 *2 (-1200 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-239 *3 *2)) (-4 *2 (-1200 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1174 (-499))) (-4 *1 (-236 *3)) (-4 *3 (-1157)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-499)) (-4 *1 (-236 *3)) (-4 *3 (-1157))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4423)) (-4 *1 (-242 *3)) - (-4 *3 (-1120)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1236))))) + (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -4145)) (-4 *1 (-192 *3)) + (-4 *3 (-1041)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-236 *3)) (-4 *3 (-1157))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-597)) (-5 *3 (-607)) (-5 *4 (-303)) (-5 *1 (-292))))) -(((*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-292))))) -(((*1 *2 *1) (-12 (-5 *2 (-607)) (-5 *1 (-292))))) -(((*1 *2 *1) (-12 (-5 *2 (-303)) (-5 *1 (-292))))) -(((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-291))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1122)) (-5 *1 (-291))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-291))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291))))) + (-12 (-5 *2 (-537)) (-5 *3 (-547)) (-5 *4 (-245)) (-5 *1 (-234))))) +(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-234))))) +(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-234))))) +(((*1 *2 *1) (-12 (-5 *2 (-245)) (-5 *1 (-234))))) +(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-233))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1043)) (-5 *1 (-233))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-233))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-460)) (-5 *1 (-233))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-233))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-419 (-557))) (-4 *4 (-13 (-568) (-1057 (-557)) (-656 (-557)))) - (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-433 *4)))))) + (-12 (-5 *3 (-361 (-499))) (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) + (-5 *1 (-230 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-626 *2)) (-4 *2 (-13 (-27) (-1222) (-433 *4))) - (-4 *4 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-288 *4 *2))))) + (-12 (-5 *3 (-566 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4))) + (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *4 *2))))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-659 (-626 *2))) (-5 *4 (-1196)) - (-4 *2 (-13 (-27) (-1222) (-433 *5))) - (-4 *5 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-288 *5 *2))))) + (|partial| -12 (-5 *3 (-599 (-566 *2))) (-5 *4 (-1117)) + (-4 *2 (-13 (-27) (-1143) (-375 *5))) + (-4 *5 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *5 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-288 *3 *2)) - (-4 *2 (-13 (-27) (-1222) (-433 *3))))) + (-12 (-4 *3 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *1 (-230 *3 *2)) + (-4 *2 (-13 (-27) (-1143) (-375 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-557)) (-656 (-557)))) - (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-433 *4)))))) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-510) (-978 (-499)) (-596 (-499)))) + (-5 *1 (-230 *4 *2)) (-4 *2 (-13 (-27) (-1143) (-375 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-557)) (-656 (-557)))) + (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-510) (-978 (-499)) (-596 (-499)))) (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-659 (-626 *3))) (|:| |vals| (-659 *3)))) - (-5 *1 (-288 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-433 *5)))))) + (-2 (|:| |func| *3) (|:| |kers| (-599 (-566 *3))) (|:| |vals| (-599 *3)))) + (-5 *1 (-230 *5 *3)) (-4 *3 (-13 (-27) (-1143) (-375 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-114)) (-5 *1 (-287 *4 *3)) - (-4 *3 (-13 (-433 *4) (-1021)))))) + (-12 (-4 *4 (-510)) (-5 *2 (-85)) (-5 *1 (-229 *4 *3)) + (-4 *3 (-13 (-375 *4) (-942)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-659 (-2 (|:| |func| *2) (|:| |pole| (-114))))) - (-4 *2 (-13 (-433 *4) (-1021))) (-4 *4 (-568)) (-5 *1 (-287 *4 *2))))) + (|partial| -12 (-5 *3 (-599 (-2 (|:| |func| *2) (|:| |pole| (-85))))) + (-4 *2 (-13 (-375 *4) (-942))) (-4 *4 (-510)) (-5 *1 (-229 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1021)))))) + (-12 (-4 *3 (-510)) (-5 *1 (-229 *3 *2)) (-4 *2 (-13 (-375 *3) (-942)))))) (((*1 *2) - (-12 (-4 *2 (-13 (-433 *3) (-1021))) (-5 *1 (-287 *3 *2)) (-4 *3 (-568))))) + (-12 (-4 *2 (-13 (-375 *3) (-942))) (-5 *1 (-229 *3 *2)) (-4 *3 (-510))))) (((*1 *2) - (-12 (-4 *2 (-13 (-433 *3) (-1021))) (-5 *1 (-287 *3 *2)) (-4 *3 (-568))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-557))) (-5 *1 (-286))))) -(((*1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-286))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) - (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) - (|:| |ub| (-659 (-853 (-229)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-659 (-326 (-229)))) (|:| -3864 (-659 (-229))))))) - (-5 *2 (-659 (-1178))) (-5 *1 (-278))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1054)) (-5 *3 (-1196)) (-5 *1 (-278))))) -(((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278))))) -(((*1 *2 *2) (-12 (-5 *2 (-659 (-326 (-229)))) (-5 *1 (-278))))) -(((*1 *2 *2) (-12 (-5 *2 (-659 (-326 (-229)))) (-5 *1 (-278))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-326 (-229)))) (-5 *4 (-789)) (-5 *2 (-707 (-229))) - (-5 *1 (-278))))) -(((*1 *2 *3) (-12 (-5 *3 (-659 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278))))) -(((*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-278))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-278))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-326 (-229))) (|:| -3864 (-659 (-229))) - (|:| |lb| (-659 (-853 (-229)))) (|:| |cf| (-659 (-326 (-229)))) - (|:| |ub| (-659 (-853 (-229)))))) - (-5 *1 (-278))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-853 (-229)))) (-5 *4 (-229)) (-5 *2 (-659 *4)) - (-5 *1 (-278))))) -(((*1 *2 *1) - (-12 (-4 *3 (-240)) (-4 *3 (-1068)) (-4 *4 (-859)) (-4 *5 (-277 *4)) - (-4 *6 (-813)) (-5 *2 (-1 *1 (-789))) (-4 *1 (-262 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1068)) (-4 *3 (-859)) (-4 *5 (-277 *3)) (-4 *6 (-813)) - (-5 *2 (-1 *1 (-789))) (-4 *1 (-262 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-789)) (-4 *1 (-277 *2)) (-4 *2 (-859))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-115)))) - ((*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-115)))) + (-12 (-4 *2 (-13 (-375 *3) (-942))) (-5 *1 (-229 *3 *2)) (-4 *3 (-510))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-499))) (-5 *1 (-228))))) +(((*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-228))))) +(((*1 *2 *1) + (-12 (-4 *3 (-190)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *5 (-227 *4)) + (-4 *6 (-738)) (-5 *2 (-1 *1 (-714))) (-4 *1 (-212 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-989)) (-4 *3 (-781)) (-4 *5 (-227 *3)) (-4 *6 (-738)) + (-5 *2 (-1 *1 (-714))) (-4 *1 (-212 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-714)) (-4 *1 (-227 *2)) (-4 *2 (-781))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-86)))) + ((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-86)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-859)) - (-4 *5 (-277 *3)) (-4 *6 (-813)) (-5 *2 (-789)))) - ((*1 *2 *1) - (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-859)) - (-4 *5 (-277 *4)) (-4 *6 (-813)) (-5 *2 (-789)))) - ((*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-859)) (-5 *2 (-789))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-659 (-270))) (-5 *4 (-1196)) (-5 *2 (-51)) - (-5 *1 (-270)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-659 (-270))) (-5 *4 (-1196)) (-5 *1 (-272 *2)) - (-4 *2 (-1236))))) -(((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-659 (-270))) (-5 *1 (-271))))) -(((*1 *1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-936)) (-5 *3 (-659 (-270))) (-5 *1 (-271))))) -(((*1 *1) (-5 *1 (-146))) - ((*1 *1 *2) (-12 (-5 *2 (-1152 (-229))) (-5 *1 (-270)))) - ((*1 *2 *3) (-12 (-5 *3 (-659 (-270))) (-5 *2 (-1152 (-229))) (-5 *1 (-271))))) -(((*1 *1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-936)) (-5 *3 (-659 (-270))) (-5 *1 (-271))))) -(((*1 *1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-936)) (-5 *3 (-659 (-270))) (-5 *1 (-271))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-886)) (-5 *3 (-659 (-270))) (-5 *1 (-271))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-886)) (-5 *3 (-659 (-270))) (-5 *1 (-271))))) -(((*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-659 (-270))) (-5 *1 (-271))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-659 (-270))) (-5 *1 (-271))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-659 (-270))) (-5 *1 (-271))))) -(((*1 *2 *3) - (-12 (-5 *3 (-942)) - (-5 *2 - (-2 (|:| |brans| (-659 (-659 (-960 (-229))))) - (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229))))) - (-5 *1 (-155)))) + (-12 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-989)) (-4 *3 (-781)) + (-4 *5 (-227 *3)) (-4 *6 (-738)) (-5 *2 (-714)))) + ((*1 *2 *1) + (-12 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-781)) + (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-714)))) + ((*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-781)) (-5 *2 (-714))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-599 (-220))) (-5 *4 (-1117)) (-5 *2 (-51)) + (-5 *1 (-220)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-599 (-220))) (-5 *4 (-1117)) (-5 *1 (-222 *2)) + (-4 *2 (-1157))))) +(((*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-220)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-333)) (-5 *3 (-599 (-220))) (-5 *1 (-221))))) +(((*1 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-220)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-857)) (-5 *3 (-599 (-220))) (-5 *1 (-221))))) +(((*1 *1) (-5 *1 (-117))) + ((*1 *1 *2) (-12 (-5 *2 (-1073 (-179))) (-5 *1 (-220)))) + ((*1 *2 *3) (-12 (-5 *3 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-221))))) +(((*1 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-220)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-857)) (-5 *3 (-599 (-220))) (-5 *1 (-221))))) +(((*1 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-220)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-857)) (-5 *3 (-599 (-220))) (-5 *1 (-221))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-808)) (-5 *3 (-599 (-220))) (-5 *1 (-221))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-808)) (-5 *3 (-599 (-220))) (-5 *1 (-221))))) +(((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-220)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-599 (-220))) (-5 *1 (-221))))) +(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-220)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1099)) (-5 *3 (-599 (-220))) (-5 *1 (-221))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-599 (-220))) (-5 *1 (-221))))) +(((*1 *2 *3) + (-12 (-5 *3 (-863)) + (-5 *2 + (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) + (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) + (-5 *1 (-126)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-942)) (-5 *4 (-419 (-557))) + (-12 (-5 *3 (-863)) (-5 *4 (-361 (-499))) (-5 *2 - (-2 (|:| |brans| (-659 (-659 (-960 (-229))))) - (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229))))) - (-5 *1 (-155)))) + (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) + (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) + (-5 *1 (-126)))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-659 (-659 (-960 (-229))))) - (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229))))) - (-5 *1 (-155)) (-5 *3 (-659 (-960 (-229)))))) + (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) + (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) + (-5 *1 (-126)) (-5 *3 (-599 (-881 (-179)))))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-659 (-659 (-960 (-229))))) - (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229))))) - (-5 *1 (-155)) (-5 *3 (-659 (-659 (-960 (-229))))))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-1108 (-391)))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270))))) -(((*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270))))) -(((*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-270))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 (-1108 (-419 (-557))))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 (-1108 (-391)))) (-5 *1 (-270))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-270))) (-5 *4 (-1196)) (-5 *2 (-114)) (-5 *1 (-270))))) + (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) + (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) + (-5 *1 (-126)) (-5 *3 (-599 (-599 (-881 (-179))))))) + ((*1 *1 *2) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *1 (-220)))) + ((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-220))))) +(((*1 *1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-220)))) + ((*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-220))))) +(((*1 *1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-220)))) + ((*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-220))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-220)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-220)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-220))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-1029 (-361 (-499))))) (-5 *1 (-220)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 (-1029 (-333)))) (-5 *1 (-220))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-220))) (-5 *4 (-1117)) (-5 *2 (-85)) (-5 *1 (-220))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1111 (-391))) (-5 *5 (-659 (-270))) (-5 *2 (-1289)) - (-5 *1 (-264 *3)) (-4 *3 (-13 (-629 (-546)) (-1120))))) + (-12 (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1210)) + (-5 *1 (-214 *3)) (-4 *3 (-13 (-569 (-488)) (-1041))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1111 (-391))) (-5 *2 (-1289)) (-5 *1 (-264 *3)) - (-4 *3 (-13 (-629 (-546)) (-1120))))) + (-12 (-5 *4 (-1032 (-333))) (-5 *2 (-1210)) (-5 *1 (-214 *3)) + (-4 *3 (-13 (-569 (-488)) (-1041))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-890 *6)) (-5 *4 (-1111 (-391))) (-5 *5 (-659 (-270))) - (-4 *6 (-13 (-629 (-546)) (-1120))) (-5 *2 (-1289)) (-5 *1 (-264 *6)))) + (-12 (-5 *3 (-812 *6)) (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) + (-4 *6 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1210)) (-5 *1 (-214 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-890 *5)) (-5 *4 (-1111 (-391))) - (-4 *5 (-13 (-629 (-546)) (-1120))) (-5 *2 (-1289)) (-5 *1 (-264 *5)))) + (-12 (-5 *3 (-812 *5)) (-5 *4 (-1032 (-333))) + (-4 *5 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1210)) (-5 *1 (-214 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-892 *6)) (-5 *4 (-1111 (-391))) (-5 *5 (-659 (-270))) - (-4 *6 (-13 (-629 (-546)) (-1120))) (-5 *2 (-1290)) (-5 *1 (-264 *6)))) + (-12 (-5 *3 (-814 *6)) (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) + (-4 *6 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1211)) (-5 *1 (-214 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-892 *5)) (-5 *4 (-1111 (-391))) - (-4 *5 (-13 (-629 (-546)) (-1120))) (-5 *2 (-1290)) (-5 *1 (-264 *5)))) + (-12 (-5 *3 (-814 *5)) (-5 *4 (-1032 (-333))) + (-4 *5 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1211)) (-5 *1 (-214 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1111 (-391))) (-5 *5 (-659 (-270))) (-5 *2 (-1290)) - (-5 *1 (-264 *3)) (-4 *3 (-13 (-629 (-546)) (-1120))))) + (-12 (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1211)) + (-5 *1 (-214 *3)) (-4 *3 (-13 (-569 (-488)) (-1041))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1111 (-391))) (-5 *2 (-1290)) (-5 *1 (-264 *3)) - (-4 *3 (-13 (-629 (-546)) (-1120))))) + (-12 (-5 *4 (-1032 (-333))) (-5 *2 (-1211)) (-5 *1 (-214 *3)) + (-4 *3 (-13 (-569 (-488)) (-1041))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-895 *6)) (-5 *4 (-1111 (-391))) (-5 *5 (-659 (-270))) - (-4 *6 (-13 (-629 (-546)) (-1120))) (-5 *2 (-1290)) (-5 *1 (-264 *6)))) + (-12 (-5 *3 (-817 *6)) (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) + (-4 *6 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1211)) (-5 *1 (-214 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-895 *5)) (-5 *4 (-1111 (-391))) - (-4 *5 (-13 (-629 (-546)) (-1120))) (-5 *2 (-1290)) (-5 *1 (-264 *5)))) + (-12 (-5 *3 (-817 *5)) (-5 *4 (-1032 (-333))) + (-4 *5 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1211)) (-5 *1 (-214 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1108 (-391))) (-5 *5 (-659 (-270))) - (-5 *2 (-1289)) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *5 (-599 (-220))) + (-5 *2 (-1210)) (-5 *1 (-215)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1108 (-391))) (-5 *2 (-1289)) - (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *2 (-1210)) + (-5 *1 (-215)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-890 (-1 (-229) (-229)))) (-5 *4 (-1108 (-391))) - (-5 *5 (-659 (-270))) (-5 *2 (-1289)) (-5 *1 (-265)))) + (-12 (-5 *3 (-812 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) + (-5 *5 (-599 (-220))) (-5 *2 (-1210)) (-5 *1 (-215)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-890 (-1 (-229) (-229)))) (-5 *4 (-1108 (-391))) (-5 *2 (-1289)) - (-5 *1 (-265)))) + (-12 (-5 *3 (-812 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *2 (-1210)) + (-5 *1 (-215)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-892 (-1 (-229) (-229)))) (-5 *4 (-1108 (-391))) - (-5 *5 (-659 (-270))) (-5 *2 (-1290)) (-5 *1 (-265)))) + (-12 (-5 *3 (-814 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) + (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-215)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-892 (-1 (-229) (-229)))) (-5 *4 (-1108 (-391))) (-5 *2 (-1290)) - (-5 *1 (-265)))) + (-12 (-5 *3 (-814 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) (-5 *2 (-1211)) + (-5 *1 (-215)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-960 (-229)) (-229))) (-5 *4 (-1108 (-391))) - (-5 *5 (-659 (-270))) (-5 *2 (-1290)) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-881 (-179)) (-179))) (-5 *4 (-1029 (-333))) + (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-215)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-960 (-229)) (-229))) (-5 *4 (-1108 (-391))) (-5 *2 (-1290)) - (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-881 (-179)) (-179))) (-5 *4 (-1029 (-333))) (-5 *2 (-1211)) + (-5 *1 (-215)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1108 (-391))) - (-5 *5 (-659 (-270))) (-5 *2 (-1290)) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1029 (-333))) + (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-215)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1108 (-391))) (-5 *2 (-1290)) - (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1029 (-333))) (-5 *2 (-1211)) + (-5 *1 (-215)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-960 (-229)) (-229) (-229))) (-5 *4 (-1108 (-391))) - (-5 *5 (-659 (-270))) (-5 *2 (-1290)) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-333))) + (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-215)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-960 (-229)) (-229) (-229))) (-5 *4 (-1108 (-391))) - (-5 *2 (-1290)) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-333))) + (-5 *2 (-1211)) (-5 *1 (-215)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-895 (-1 (-229) (-229) (-229)))) (-5 *4 (-1108 (-391))) - (-5 *5 (-659 (-270))) (-5 *2 (-1290)) (-5 *1 (-265)))) + (-12 (-5 *3 (-817 (-1 (-179) (-179) (-179)))) (-5 *4 (-1029 (-333))) + (-5 *5 (-599 (-220))) (-5 *2 (-1211)) (-5 *1 (-215)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-895 (-1 (-229) (-229) (-229)))) (-5 *4 (-1108 (-391))) - (-5 *2 (-1290)) (-5 *1 (-265)))) + (-12 (-5 *3 (-817 (-1 (-179) (-179) (-179)))) (-5 *4 (-1029 (-333))) + (-5 *2 (-1211)) (-5 *1 (-215)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-305 *7)) (-5 *4 (-1196)) (-5 *5 (-659 (-270))) - (-4 *7 (-433 *6)) (-4 *6 (-13 (-568) (-859) (-1057 (-557)))) (-5 *2 (-1289)) - (-5 *1 (-266 *6 *7)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-659 (-229))) (-5 *2 (-1289)) (-5 *1 (-269)))) + (-12 (-5 *3 (-247 *7)) (-5 *4 (-1117)) (-5 *5 (-599 (-220))) + (-4 *7 (-375 *6)) (-4 *6 (-13 (-510) (-781) (-978 (-499)))) (-5 *2 (-1210)) + (-5 *1 (-216 *6 *7)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-599 (-179))) (-5 *2 (-1210)) (-5 *1 (-219)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-659 (-229))) (-5 *4 (-659 (-270))) (-5 *2 (-1289)) - (-5 *1 (-269)))) - ((*1 *2 *3) (-12 (-5 *3 (-659 (-960 (-229)))) (-5 *2 (-1289)) (-5 *1 (-269)))) + (-12 (-5 *3 (-599 (-179))) (-5 *4 (-599 (-220))) (-5 *2 (-1210)) + (-5 *1 (-219)))) + ((*1 *2 *3) (-12 (-5 *3 (-599 (-881 (-179)))) (-5 *2 (-1210)) (-5 *1 (-219)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 (-960 (-229)))) (-5 *4 (-659 (-270))) (-5 *2 (-1289)) - (-5 *1 (-269)))) - ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-659 (-229))) (-5 *2 (-1290)) (-5 *1 (-269)))) + (-12 (-5 *3 (-599 (-881 (-179)))) (-5 *4 (-599 (-220))) (-5 *2 (-1210)) + (-5 *1 (-219)))) + ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-599 (-179))) (-5 *2 (-1211)) (-5 *1 (-219)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-659 (-229))) (-5 *4 (-659 (-270))) (-5 *2 (-1290)) - (-5 *1 (-269))))) -(((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-267))))) -(((*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-267))))) -(((*1 *2 *2) (-12 (-5 *2 (-557)) (-5 *1 (-267))))) + (-12 (-5 *3 (-599 (-179))) (-5 *4 (-599 (-220))) (-5 *2 (-1211)) + (-5 *1 (-219))))) +(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-217))))) +(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-217))))) +(((*1 *2 *2) (-12 (-5 *2 (-499)) (-5 *1 (-217))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1108 (-229))) - (-5 *2 (-1290)) (-5 *1 (-267))))) + (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1029 (-179))) + (-5 *2 (-1211)) (-5 *1 (-217))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1108 (-229))) - (-5 *5 (-114)) (-5 *2 (-1290)) (-5 *1 (-267))))) + (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1029 (-179))) + (-5 *5 (-85)) (-5 *2 (-1211)) (-5 *1 (-217))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-960 (-229)) (-229) (-229))) - (-5 *3 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-265))))) + (-12 (-5 *2 (-1 (-881 (-179)) (-179) (-179))) + (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-215))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-892 *6)) (-5 *4 (-1111 (-391))) (-5 *5 (-659 (-270))) - (-4 *6 (-13 (-629 (-546)) (-1120))) (-5 *2 (-1152 (-229))) - (-5 *1 (-264 *6)))) + (-12 (-5 *3 (-814 *6)) (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) + (-4 *6 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1073 (-179))) + (-5 *1 (-214 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-892 *5)) (-5 *4 (-1111 (-391))) - (-4 *5 (-13 (-629 (-546)) (-1120))) (-5 *2 (-1152 (-229))) - (-5 *1 (-264 *5)))) + (-12 (-5 *3 (-814 *5)) (-5 *4 (-1032 (-333))) + (-4 *5 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1073 (-179))) + (-5 *1 (-214 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1111 (-391))) (-5 *5 (-659 (-270))) (-5 *2 (-1152 (-229))) - (-5 *1 (-264 *3)) (-4 *3 (-13 (-629 (-546)) (-1120))))) + (-12 (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) + (-5 *1 (-214 *3)) (-4 *3 (-13 (-569 (-488)) (-1041))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1111 (-391))) (-5 *2 (-1152 (-229))) (-5 *1 (-264 *3)) - (-4 *3 (-13 (-629 (-546)) (-1120))))) + (-12 (-5 *4 (-1032 (-333))) (-5 *2 (-1073 (-179))) (-5 *1 (-214 *3)) + (-4 *3 (-13 (-569 (-488)) (-1041))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-895 *6)) (-5 *4 (-1111 (-391))) (-5 *5 (-659 (-270))) - (-4 *6 (-13 (-629 (-546)) (-1120))) (-5 *2 (-1152 (-229))) - (-5 *1 (-264 *6)))) + (-12 (-5 *3 (-817 *6)) (-5 *4 (-1032 (-333))) (-5 *5 (-599 (-220))) + (-4 *6 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1073 (-179))) + (-5 *1 (-214 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-895 *5)) (-5 *4 (-1111 (-391))) - (-4 *5 (-13 (-629 (-546)) (-1120))) (-5 *2 (-1152 (-229))) - (-5 *1 (-264 *5)))) + (-12 (-5 *3 (-817 *5)) (-5 *4 (-1032 (-333))) + (-4 *5 (-13 (-569 (-488)) (-1041))) (-5 *2 (-1073 (-179))) + (-5 *1 (-214 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-892 (-1 (-229) (-229)))) (-5 *4 (-1108 (-391))) - (-5 *5 (-659 (-270))) (-5 *2 (-1152 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-814 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) + (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-892 (-1 (-229) (-229)))) (-5 *4 (-1108 (-391))) - (-5 *2 (-1152 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-814 (-1 (-179) (-179)))) (-5 *4 (-1029 (-333))) + (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-960 (-229)) (-229))) (-5 *4 (-1108 (-391))) - (-5 *5 (-659 (-270))) (-5 *2 (-1152 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-881 (-179)) (-179))) (-5 *4 (-1029 (-333))) + (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-960 (-229)) (-229))) (-5 *4 (-1108 (-391))) - (-5 *2 (-1152 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-881 (-179)) (-179))) (-5 *4 (-1029 (-333))) + (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1108 (-391))) - (-5 *5 (-659 (-270))) (-5 *2 (-1152 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1029 (-333))) + (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1108 (-391))) - (-5 *2 (-1152 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1029 (-333))) + (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-960 (-229)) (-229) (-229))) (-5 *4 (-1108 (-391))) - (-5 *5 (-659 (-270))) (-5 *2 (-1152 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-333))) + (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-960 (-229)) (-229) (-229))) (-5 *4 (-1108 (-391))) - (-5 *2 (-1152 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-881 (-179)) (-179) (-179))) (-5 *4 (-1029 (-333))) + (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-895 (-1 (-229) (-229) (-229)))) (-5 *4 (-1108 (-391))) - (-5 *5 (-659 (-270))) (-5 *2 (-1152 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-817 (-1 (-179) (-179) (-179)))) (-5 *4 (-1029 (-333))) + (-5 *5 (-599 (-220))) (-5 *2 (-1073 (-179))) (-5 *1 (-215)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-895 (-1 (-229) (-229) (-229)))) (-5 *4 (-1108 (-391))) - (-5 *2 (-1152 (-229))) (-5 *1 (-265))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-5 *1 (-226 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1236)) (-4 *1 (-263 *3)))) - ((*1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1236))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1236))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) - (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-859)) - (-4 *5 (-277 *4)) (-4 *6 (-813)) (-5 *2 (-659 *4))))) + (-12 (-5 *3 (-817 (-1 (-179) (-179) (-179)))) (-5 *4 (-1029 (-333))) + (-5 *2 (-1073 (-179))) (-5 *1 (-215))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-176 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-4 *1 (-213 *3)))) + ((*1 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) + (-12 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-781)) + (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-599 *4))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-859)) - (-4 *5 (-277 *3)) (-4 *6 (-813)) (-5 *2 (-659 (-789))))) + (-12 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-989)) (-4 *3 (-781)) + (-4 *5 (-227 *3)) (-4 *6 (-738)) (-5 *2 (-599 (-714))))) ((*1 *2 *1) - (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-859)) - (-4 *5 (-277 *4)) (-4 *6 (-813)) (-5 *2 (-659 (-789)))))) + (-12 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-781)) + (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-599 (-714)))))) (((*1 *2 *1) - (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-859)) - (-4 *5 (-277 *4)) (-4 *6 (-813)) (-5 *2 (-114))))) + (-12 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-989)) (-4 *4 (-781)) + (-4 *5 (-227 *4)) (-4 *6 (-738)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-262 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-859)) (-4 *5 (-813)) - (-4 *2 (-277 *4))))) + (-12 (-4 *1 (-212 *3 *4 *2 *5)) (-4 *3 (-989)) (-4 *4 (-781)) (-4 *5 (-738)) + (-4 *2 (-227 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1068)) (-4 *3 (-859)) - (-4 *4 (-277 *3)) (-4 *5 (-813))))) + (-12 (-4 *1 (-212 *2 *3 *4 *5)) (-4 *2 (-989)) (-4 *3 (-781)) + (-4 *4 (-227 *3)) (-4 *5 (-738))))) (((*1 *1 *1) - (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1068)) (-4 *3 (-859)) - (-4 *4 (-277 *3)) (-4 *5 (-813))))) -(((*1 *2 *1) (-12 (-5 *2 (-345)) (-5 *1 (-257))))) -(((*1 *2 *1) (-12 (-5 *2 (-141)) (-5 *1 (-142)))) - ((*1 *2 *1) (-12 (-5 *1 (-187 *2)) (-4 *2 (-189)))) - ((*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-256))))) -(((*1 *2 *1) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256))))) -(((*1 *1 *2) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-256))))) + (-12 (-4 *1 (-212 *2 *3 *4 *5)) (-4 *2 (-989)) (-4 *3 (-781)) + (-4 *4 (-227 *3)) (-4 *5 (-738))))) +(((*1 *2 *1) (-12 (-5 *2 (-287)) (-5 *1 (-207))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) + ((*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) + ((*1 *2 *1) (-12 (-5 *2 (-207)) (-5 *1 (-206))))) +(((*1 *2 *1) (-12 (-5 *2 (-158 (-207))) (-5 *1 (-206))))) +(((*1 *1 *2) (-12 (-5 *2 (-158 (-207))) (-5 *1 (-206))))) +(((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-206))))) (((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-789)) - (-4 *3 (-13 (-744) (-381) (-10 -7 (-15 ** (*3 *3 (-557)))))) - (-5 *1 (-253 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-859)) (-5 *1 (-252 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-251 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-251 *2)) (-4 *2 (-1236))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-557)) (-5 *1 (-248)))) - ((*1 *2 *3) (-12 (-5 *3 (-659 (-1178))) (-5 *2 (-557)) (-5 *1 (-248))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-248)))) - ((*1 *2 *3) (-12 (-5 *3 (-659 (-1178))) (-5 *2 (-1292)) (-5 *1 (-248))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-557)) (-5 *1 (-248))))) -(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-248))))) -(((*1 *1 *2) (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1236)) (-4 *1 (-245 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-305 (-963 (-557)))) - (-5 *2 - (-2 (|:| |varOrder| (-659 (-1196))) - (|:| |inhom| (-3 (-659 (-1286 (-789))) "failed")) - (|:| |hom| (-659 (-1286 (-789)))))) - (-5 *1 (-243))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-4 *1 (-242 *3)))) - ((*1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1120))))) -(((*1 *1) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1222)))))) -(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1222)))))) -(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1222)))))) -(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1222)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))) -(((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-229))))) + (|partial| -12 (-5 *2 (-714)) + (-4 *3 (-13 (-684) (-323) (-10 -7 (-15 ** (*3 *3 (-499)))))) + (-5 *1 (-203 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-202 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-201 *2)) (-4 *2 (-1157))))) +(((*1 *1 *1) (-12 (-4 *1 (-201 *2)) (-4 *2 (-1157))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-201 *2)) (-4 *2 (-1157))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-201 *2)) (-4 *2 (-1157))))) +(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-499)) (-5 *1 (-198)))) + ((*1 *2 *3) (-12 (-5 *3 (-599 (-1099))) (-5 *2 (-499)) (-5 *1 (-198))))) +(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1213)) (-5 *1 (-198)))) + ((*1 *2 *3) (-12 (-5 *3 (-599 (-1099))) (-5 *2 (-1213)) (-5 *1 (-198))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1099)) (-5 *3 (-499)) (-5 *1 (-198))))) +(((*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-198))))) +(((*1 *1 *2) (-12 (-5 *2 (-1207 *4)) (-4 *4 (-1157)) (-4 *1 (-195 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-247 (-884 (-499)))) + (-5 *2 + (-2 (|:| |varOrder| (-599 (-1117))) + (|:| |inhom| (-3 (-599 (-1207 (-714))) "failed")) + (|:| |hom| (-599 (-1207 (-714)))))) + (-5 *1 (-193))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-4 *1 (-192 *3)))) + ((*1 *1) (-12 (-4 *1 (-192 *2)) (-4 *2 (-1041))))) +(((*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143)))))) +(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143)))))) +(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143)))))) +(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-318) (-1143)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))) +(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) + ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179))))) (((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-114)) (-5 *3 (-963 *6)) (-5 *4 (-1196)) - (-5 *5 (-853 *7)) (-4 *6 (-13 (-464) (-1057 (-557)) (-656 (-557)))) - (-4 *7 (-13 (-1222) (-29 *6))) (-5 *1 (-228 *6 *7)))) + (|partial| -12 (-5 *2 (-85)) (-5 *3 (-884 *6)) (-5 *4 (-1117)) + (-5 *5 (-775 *7)) (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) + (-4 *7 (-13 (-1143) (-29 *6))) (-5 *1 (-178 *6 *7)))) ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-114)) (-5 *3 (-1190 *6)) (-5 *4 (-853 *6)) - (-4 *6 (-13 (-1222) (-29 *5))) - (-4 *5 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-228 *5 *6))))) + (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1111 *6)) (-5 *4 (-775 *6)) + (-4 *6 (-13 (-1143) (-29 *5))) + (-4 *5 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-178 *5 *6))))) (((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-853 *4)) (-5 *3 (-626 *4)) (-5 *5 (-114)) - (-4 *4 (-13 (-1222) (-29 *6))) - (-4 *6 (-13 (-464) (-1057 (-557)) (-656 (-557)))) (-5 *1 (-228 *6 *4))))) + (|partial| -12 (-5 *2 (-775 *4)) (-5 *3 (-566 *4)) (-5 *5 (-85)) + (-4 *4 (-13 (-1143) (-29 *6))) + (-4 *6 (-13 (-406) (-978 (-499)) (-596 (-499)))) (-5 *1 (-178 *6 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-464) (-1057 (-557)) (-656 (-557)))) - (-5 *2 (-114)) (-5 *1 (-228 *4 *5)) (-4 *5 (-13 (-1222) (-29 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1068)) (-14 *3 (-659 (-1196))))) + (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-406) (-978 (-499)) (-596 (-499)))) + (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1143) (-29 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-989)) (-14 *3 (-599 (-1117))))) ((*1 *1 *1) - (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1068) (-859))) - (-14 *3 (-659 (-1196)))))) + (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-989) (-781))) + (-14 *3 (-599 (-1117)))))) (((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) - (-14 *4 (-659 (-1196))))) + (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-989)) + (-14 *4 (-599 (-1117))))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1068) (-859))) - (-14 *4 (-659 (-1196)))))) + (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-989) (-781))) + (-14 *4 (-599 (-1117)))))) (((*1 *1 *2) - (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1068) (-859))) (-5 *1 (-227 *3 *4)) - (-14 *4 (-659 (-1196)))))) + (-12 (-5 *2 (-268 *3)) (-4 *3 (-13 (-989) (-781))) (-5 *1 (-177 *3 *4)) + (-14 *4 (-599 (-1117)))))) (((*1 *1 *1) - (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1068) (-859))) - (-14 *3 (-659 (-1196)))))) + (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-989) (-781))) + (-14 *3 (-599 (-1117)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1196)) (-5 *6 (-114)) - (-4 *7 (-13 (-319) (-149) (-1057 (-557)) (-656 (-557)))) - (-4 *3 (-13 (-1222) (-977) (-29 *7))) + (-12 (-5 *4 (-1117)) (-5 *6 (-85)) + (-4 *7 (-13 (-261) (-120) (-978 (-499)) (-596 (-499)))) + (-4 *3 (-13 (-1143) (-898) (-29 *7))) (-5 *2 - (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-659 (-853 *3))) (|:| |fail| "failed") + (-3 (|:| |f1| (-775 *3)) (|:| |f2| (-599 (-775 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-223 *7 *3)) (-5 *5 (-853 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-419 (-557))) (-5 *1 (-221))))) + (-5 *1 (-173 *7 *3)) (-5 *5 (-775 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-361 (-499))) (-5 *1 (-171))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-305)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1183 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-789)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1262 *4))))) + (-12 (-5 *3 (-714)) (-4 *4 (-305)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1183 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-789)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1262 *4))))) + (-12 (-5 *3 (-714)) (-4 *4 (-305)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1183 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-659 (-2 (|:| |deg| (-789)) (|:| -2972 *3)))) - (-5 *1 (-220 *4 *3)) (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-305)) (-5 *2 (-599 (-2 (|:| |deg| (-714)) (|:| -2694 *3)))) + (-5 *1 (-170 *4 *3)) (-4 *3 (-1183 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-363)) + (-12 (-5 *4 (-85)) (-4 *5 (-305)) (-5 *2 (-2 (|:| |cont| *5) - (|:| -1985 (-659 (-2 (|:| |irr| *3) (|:| -2624 (-557))))))) - (-5 *1 (-220 *5 *3)) (-4 *3 (-1262 *5))))) + (|:| -1877 (-599 (-2 (|:| |irr| *3) (|:| -2513 (-499))))))) + (-5 *1 (-170 *5 *3)) (-4 *3 (-1183 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-376)) (-4 *6 (-1262 (-419 *2))) - (-4 *2 (-1262 *5)) (-5 *1 (-219 *5 *2 *6 *3)) (-4 *3 (-355 *5 *2 *6))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-318)) (-4 *6 (-1183 (-361 *2))) + (-4 *2 (-1183 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-297 *5 *2 *6))))) (((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-789)) (-5 *1 (-216 *4 *2)) (-14 *4 (-936)) (-4 *2 (-1120))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-659 (-326 (-229)))) - (|:| |constraints| - (-659 - (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-789)) - (|:| |boundaryType| (-557)) (|:| |dStart| (-707 (-229))) - (|:| |dFinish| (-707 (-229)))))) - (|:| |f| (-659 (-659 (-326 (-229))))) (|:| |st| (-1178)) - (|:| |tol| (-229)))) - (-5 *2 (-114)) (-5 *1 (-213))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-659 (-326 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) - (-5 *1 (-213))))) -(((*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-213))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) - (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) - (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *2 (-391)) (-5 *1 (-208))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) - (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) - (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *2 (-391)) (-5 *1 (-208))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) - (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) - (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *2 (-391)) (-5 *1 (-208))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) - (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) - (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *2 (-391)) (-5 *1 (-208))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1286 (-326 (-229)))) (|:| |yinit| (-659 (-229))) - (|:| |intvals| (-659 (-229))) (|:| |g| (-326 (-229))) - (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) - (-5 *1 (-208))))) -(((*1 *2 *3) - (-12 (-5 *3 (-707 (-326 (-229)))) - (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) - (-5 *1 (-208))))) -(((*1 *2 *3) (-12 (-5 *3 (-707 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-208))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-208)))) - ((*1 *2 *2 *3) (-12 (-5 *3 (-659 (-391))) (-5 *2 (-391)) (-5 *1 (-208))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) - (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) - (|:| |relerr| (-229)))) - (-5 *2 (-557)) (-5 *1 (-207))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) - (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) - (|:| |relerr| (-229)))) - (-5 *2 (-659 (-229))) (-5 *1 (-207))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) - (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) - (|:| |relerr| (-229)))) - (-5 *2 (-2 (|:| -2907 (-115)) (|:| |w| (-229)))) (-5 *1 (-207))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1054)) (-5 *3 (-1196)) (-5 *1 (-195))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) - (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) - (|:| |relerr| (-229)))) - (-5 *2 (-391)) (-5 *1 (-195))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) - (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) - (|:| |relerr| (-229)))) - (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| "There is a singularity at the lower end point") - (|:| |upperSingular| "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-195))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-229))) - (|:| -1636 (-1108 (-853 (-229)))) (|:| |abserr| (-229)) - (|:| |relerr| (-229)))) - (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-195))))) -(((*1 *2 *3) (-12 (-5 *2 (-417 (-1190 (-557)))) (-5 *1 (-194)) (-5 *3 (-557))))) -(((*1 *2 *3) (-12 (-5 *2 (-659 (-1190 (-557)))) (-5 *1 (-194)) (-5 *3 (-557))))) + (-12 (-5 *3 (-714)) (-5 *1 (-166 *4 *2)) (-14 *4 (-857)) (-4 *2 (-1041))))) +(((*1 *2 *3) (-12 (-5 *2 (-359 (-1111 (-499)))) (-5 *1 (-165)) (-5 *3 (-499))))) +(((*1 *2 *3) (-12 (-5 *2 (-599 (-1111 (-499)))) (-5 *1 (-165)) (-5 *3 (-499))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-659 (-557))) (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193))))) + (-12 (-5 *3 (-599 (-499))) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 (-936))) (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193))))) + (-12 (-5 *3 (-599 (-857))) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1198 (-419 (-557)))) (-5 *2 (-419 (-557))) (-5 *1 (-193))))) -(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193))))) -(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193))))) -(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193))))) -(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193))))) -(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1198 (-419 (-557)))) (-5 *1 (-193))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1286 (-707 *4))) (-4 *4 (-175)) - (-5 *2 (-1286 (-707 (-963 *4)))) (-5 *1 (-192 *4))))) -(((*1 *1) (-5 *1 (-190)))) -(((*1 *1) (-5 *1 (-190)))) -(((*1 *1) (-5 *1 (-190)))) -(((*1 *2 *1) (-12 (-5 *2 (-190)) (-5 *1 (-140)))) - ((*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-190))))) -(((*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-659 (-114)))))) -(((*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-659 (-877)))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-1201))) (-5 *1 (-187 *3)) (-4 *3 (-189))))) -(((*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-709 (-186))) (-5 *1 (-186))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1236)) (-5 *1 (-185 *3 *2)) (-4 *2 (-692 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1236)) (-5 *2 (-789)) (-5 *1 (-185 *4 *3)) (-4 *3 (-692 *4))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1236)) (-5 *1 (-185 *3 *2)) (-4 *2 (-692 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-858))) - (-5 *2 (-2 (|:| |start| *3) (|:| -1985 (-417 *3)))) (-5 *1 (-184 *4 *3)) - (-4 *3 (-1262 (-171 *4)))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-376) (-858))) (-5 *1 (-184 *2 *3)) - (-4 *3 (-1262 (-171 *2)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-171 *4)) (-5 *1 (-184 *4 *3)) (-4 *4 (-13 (-376) (-858))) - (-4 *3 (-1262 *2))))) + (-12 (-5 *3 (-1119 (-361 (-499)))) (-5 *2 (-361 (-499))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1119 (-361 (-499)))) (-5 *1 (-164))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1207 (-647 *4))) (-4 *4 (-146)) + (-5 *2 (-1207 (-647 (-884 *4)))) (-5 *1 (-163 *4))))) +(((*1 *1) (-5 *1 (-161)))) +(((*1 *1) (-5 *1 (-161)))) +(((*1 *1) (-5 *1 (-161)))) +(((*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161))))) +(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-599 (-85)))))) +(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-599 (-799)))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-1122))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) +(((*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-649 (-157))) (-5 *1 (-157))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1157)) (-5 *1 (-156 *3 *2)) (-4 *2 (-632 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1157)) (-5 *2 (-714)) (-5 *1 (-156 *4 *3)) (-4 *3 (-632 *4))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1157)) (-5 *1 (-156 *3 *2)) (-4 *2 (-632 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-318) (-780))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1877 (-359 *3)))) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1183 (-142 *4)))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-318) (-780))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1183 (-142 *2)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-318) (-780))) + (-4 *3 (-1183 *2))))) (((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-376) (-858))) (-5 *1 (-184 *2 *3)) - (-4 *3 (-1262 (-171 *2))))) + (-12 (-4 *2 (-13 (-318) (-780))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1183 (-142 *2))))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-376) (-858))) (-5 *1 (-184 *2 *3)) - (-4 *3 (-1262 (-171 *2)))))) + (-12 (-4 *2 (-13 (-318) (-780))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1183 (-142 *2)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-858))) (-5 *1 (-184 *3 *2)) - (-4 *2 (-1262 (-171 *3)))))) + (-12 (-4 *3 (-13 (-318) (-780))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-1183 (-142 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-858))) (-5 *2 (-417 *3)) - (-5 *1 (-184 *4 *3)) (-4 *3 (-1262 (-171 *4))))) + (-12 (-5 *5 (-85)) (-4 *4 (-13 (-318) (-780))) (-5 *2 (-359 *3)) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-376) (-858))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) - (-4 *3 (-1262 (-171 *4)))))) + (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-359 *3)) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1183 (-142 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-858))) (-5 *1 (-184 *3 *2)) - (-4 *2 (-1262 (-171 *3)))))) + (-12 (-4 *3 (-13 (-318) (-780))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-1183 (-142 *3)))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-376) (-858))) - (-5 *2 (-659 (-2 (|:| -1985 (-659 *3)) (|:| -1737 *5)))) - (-5 *1 (-184 *5 *3)) (-4 *3 (-1262 (-171 *5))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-318) (-780))) + (-5 *2 (-599 (-2 (|:| -1877 (-599 *3)) (|:| -1629 *5)))) + (-5 *1 (-155 *5 *3)) (-4 *3 (-1183 (-142 *5))))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-376) (-858))) - (-5 *2 (-659 (-2 (|:| -1985 (-659 *3)) (|:| -1737 *4)))) - (-5 *1 (-184 *4 *3)) (-4 *3 (-1262 (-171 *4)))))) + (-12 (-4 *4 (-13 (-318) (-780))) + (-5 *2 (-599 (-2 (|:| -1877 (-599 *3)) (|:| -1629 *4)))) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-659 (-171 *4))) (-5 *1 (-157 *3 *4)) - (-4 *3 (-1262 (-171 (-557)))) (-4 *4 (-13 (-376) (-858))))) + (-12 (-5 *2 (-599 (-142 *4))) (-5 *1 (-128 *3 *4)) + (-4 *3 (-1183 (-142 (-499)))) (-4 *4 (-13 (-318) (-780))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-858))) (-5 *2 (-659 (-171 *4))) - (-5 *1 (-184 *4 *3)) (-4 *3 (-1262 (-171 *4))))) + (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-599 (-142 *4))) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-376) (-858))) (-5 *2 (-659 (-171 *4))) - (-5 *1 (-184 *4 *3)) (-4 *3 (-1262 (-171 *4)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-659 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3))))) + (-12 (-4 *4 (-13 (-318) (-780))) (-5 *2 (-599 (-142 *4))) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1183 (-142 *4)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-599 *3)) (-4 *3 (-261)) (-5 *1 (-153 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-261)) (-5 *1 (-153 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1222) (-1021)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1222) (-1021)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1222) (-1021)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1222) (-1021)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1222) (-1021)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1222) (-1021)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1222) (-1021)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))) - (-5 *1 (-179 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))) - (-5 *1 (-179 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))) - (-5 *1 (-179 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))) - (-5 *1 (-179 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))) - (-5 *1 (-179 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))) - (-5 *1 (-179 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-376) (-1222) (-1021))) - (-5 *1 (-179 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-109))) (-5 *1 (-178))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-178))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1174 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) -(((*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-1174 (-419 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-1174 (-419 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-303)) (-5 *1 (-170))))) -(((*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-709 (-292))) (-5 *1 (-170))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-659 (-709 (-292)))) (-5 *1 (-170))))) -(((*1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) - (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-1079)) (-4 *3 (-1222)) + (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-318) (-1143) (-942)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-318) (-1143) (-942)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-318) (-1143) (-942)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-318) (-1143) (-942)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-318) (-1143) (-942)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-318) (-1143) (-942)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-881 *3) (-881 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-318) (-1143) (-942)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) + (-5 *1 (-150 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) + (-5 *1 (-150 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) + (-5 *1 (-150 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) + (-5 *1 (-150 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) + (-5 *1 (-150 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) + (-5 *1 (-150 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-881 *3)) (-4 *3 (-13 (-318) (-1143) (-942))) + (-5 *1 (-150 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-80))) (-5 *1 (-149))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-80)) (-5 *1 (-149))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-261)) (-5 *1 (-148 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-148 *3)) (-4 *3 (-261))))) +(((*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-148 *3)) (-4 *3 (-261))))) +(((*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-148 *3)) (-4 *3 (-261))))) +(((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-261))))) +(((*1 *2 *1) (-12 (-5 *2 (-1095 (-361 *3))) (-5 *1 (-148 *3)) (-4 *3 (-261))))) +(((*1 *2 *1) (-12 (-5 *2 (-1095 (-361 *3))) (-5 *1 (-148 *3)) (-4 *3 (-261))))) +(((*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-148 *3)) (-4 *3 (-261))))) +(((*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-148 *3)) (-4 *3 (-261))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-245)) (-5 *1 (-141))))) +(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-649 (-234))) (-5 *1 (-141))))) +(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-599 (-649 (-234)))) (-5 *1 (-141))))) +(((*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) + (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-1000)) (-4 *3 (-1143)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *1 *1 *1) (-5 *1 (-163))) - ((*1 *1 *2) (-12 (-5 *2 (-557)) (-5 *1 (-163))))) -(((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) +(((*1 *1 *1 *1) (-5 *1 (-134))) + ((*1 *1 *2) (-12 (-5 *2 (-499)) (-5 *1 (-134))))) +(((*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1196)))) - ((*1 *1 *1) (-4 *1 (-162)))) + (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *1 (-131 *4 *2)) (-4 *2 (-375 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1117)))) + ((*1 *1 *1) (-4 *1 (-133)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) + (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *1 (-131 *4 *2)) (-4 *2 (-375 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1111 *2)) (-4 *2 (-433 *4)) (-4 *4 (-568)) - (-5 *1 (-160 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-162)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1196))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-556))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-556))))) -(((*1 *1 *1 *1) (-4 *1 (-145))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-556))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-659 *2)) (-4 *2 (-556)) (-5 *1 (-161 *2))))) -(((*1 *1 *1) (-4 *1 (-145))) - ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-556))))) -(((*1 *2 *3) - (-12 (-5 *3 (-659 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *3) - (-12 (-5 *3 (-659 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *3) - (-12 (-5 *3 (-659 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *3) - (-12 (-5 *3 (-659 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *3) - (-12 (-5 *3 (-659 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *3) - (-12 (-5 *3 (-659 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3))))) -(((*1 *1) (-5 *1 (-159)))) -(((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-159))))) + (-12 (-5 *3 (-1032 *2)) (-4 *2 (-375 *4)) (-4 *4 (-510)) + (-5 *1 (-131 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1032 *1)) (-4 *1 (-133)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1117))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498))))) +(((*1 *1 *1 *1) (-4 *1 (-116))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-498)) (-5 *1 (-132 *2))))) +(((*1 *1 *1) (-4 *1 (-116))) + ((*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-498))))) +(((*1 *2 *3) + (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-510))))) +(((*1 *2 *3) + (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-510))))) +(((*1 *2 *3) + (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-510))))) +(((*1 *2 *3) + (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-510))))) +(((*1 *2 *3) + (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-510))))) +(((*1 *2 *3) + (-12 (-5 *3 (-599 *2)) (-4 *2 (-375 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-510))))) +(((*1 *2 *2) (-12 (-4 *3 (-510)) (-5 *1 (-131 *3 *2)) (-4 *2 (-375 *3))))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-130))))) (((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-229)) + (-12 (-5 *4 (-179)) (-5 *2 - (-2 (|:| |brans| (-659 (-659 (-960 *4)))) (|:| |xValues| (-1108 *4)) - (|:| |yValues| (-1108 *4)))) - (-5 *1 (-155)) (-5 *3 (-659 (-659 (-960 *4))))))) + (-2 (|:| |brans| (-599 (-599 (-881 *4)))) (|:| |xValues| (-1029 *4)) + (|:| |yValues| (-1029 *4)))) + (-5 *1 (-126)) (-5 *3 (-599 (-599 (-881 *4))))))) (((*1 *2 *3) - (-12 (-5 *3 (-942)) + (-12 (-5 *3 (-863)) (-5 *2 - (-2 (|:| |brans| (-659 (-659 (-960 (-229))))) - (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229))))) - (-5 *1 (-155)))) + (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) + (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) + (-5 *1 (-126)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-942)) (-5 *4 (-419 (-557))) + (-12 (-5 *3 (-863)) (-5 *4 (-361 (-499))) (-5 *2 - (-2 (|:| |brans| (-659 (-659 (-960 (-229))))) - (|:| |xValues| (-1108 (-229))) (|:| |yValues| (-1108 (-229))))) - (-5 *1 (-155))))) + (-2 (|:| |brans| (-599 (-599 (-881 (-179))))) + (|:| |xValues| (-1029 (-179))) (|:| |yValues| (-1029 (-179))))) + (-5 *1 (-126))))) (((*1 *1 *2) - (-12 (-5 *2 (-936)) (-5 *1 (-154 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-376)) - (-14 *5 (-1012 *3 *4))))) + (-12 (-5 *2 (-857)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-318)) + (-14 *5 (-933 *3 *4))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-114) *2)) (-4 *1 (-153 *2)) (-4 *2 (-1236))))) + (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1157))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-153 *2)) (-4 *2 (-1236)) - (-4 *2 (-1120))))) + (-12 (|has| *1 (-6 -4145)) (-4 *1 (-124 *2)) (-4 *2 (-1157)) + (-4 *2 (-1041))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1241)) (-4 *5 (-1262 *4)) + (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) - (|:| |c2| (-419 *5)) (|:| |deg| (-789)))) - (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1262 (-419 *5)))))) + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-361 *5)) + (|:| |c2| (-361 *5)) (|:| |deg| (-714)))) + (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1183 (-361 *5)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1241)) (-5 *1 (-150 *2 *4 *3)) - (-4 *3 (-1262 (-419 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 *6)) (-4 *5 (-1241)) (-4 *6 (-1262 *5)) - (-5 *2 (-2 (|:| -2630 (-789)) (|:| -4382 *3) (|:| |radicand| *6))) - (-5 *1 (-150 *5 *6 *7)) (-5 *4 (-789)) (-4 *7 (-1262 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1262 *4)) - (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-789)))) - (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1262 (-419 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1241)) (-4 *5 (-1262 *4)) - (-5 *2 (-2 (|:| -4382 (-419 *5)) (|:| |poly| *3))) (-5 *1 (-150 *4 *5 *3)) - (-4 *3 (-1262 (-419 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-146))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-146)))) - ((*1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-146))))) -(((*1 *1) (-5 *1 (-146)))) -(((*1 *1) (-5 *1 (-146)))) -(((*1 *1) (-5 *1 (-146)))) -(((*1 *1) (-5 *1 (-146)))) -(((*1 *1) (-5 *1 (-146)))) -(((*1 *1) (-5 *1 (-146)))) -(((*1 *1) (-5 *1 (-146)))) -(((*1 *1) (-5 *1 (-146)))) -(((*1 *1) (-5 *1 (-146)))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 (-146))) (-5 *1 (-143)))) - ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-143))))) -(((*1 *1) (-5 *1 (-143)))) -(((*1 *1) (-5 *1 (-143)))) -(((*1 *1) (-5 *1 (-143)))) -(((*1 *1) (-5 *1 (-143)))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-849))) (-5 *1 (-142))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-187 (-141)))) (-5 *1 (-142))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-187 (-141)))) (-5 *1 (-142))))) + (-12 (-4 *4 (-1183 *2)) (-4 *2 (-1162)) (-5 *1 (-121 *2 *4 *3)) + (-4 *3 (-1183 (-361 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-361 *6)) (-4 *5 (-1162)) (-4 *6 (-1183 *5)) + (-5 *2 (-2 (|:| -2519 (-714)) (|:| -4104 *3) (|:| |radicand| *6))) + (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-714)) (-4 *7 (-1183 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) + (-5 *2 (-2 (|:| |radicand| (-361 *5)) (|:| |deg| (-714)))) + (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1183 (-361 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1162)) (-4 *5 (-1183 *4)) + (-5 *2 (-2 (|:| -4104 (-361 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) + (-4 *3 (-1183 (-361 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-117))))) +(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-117)))) + ((*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-117))))) +(((*1 *1) (-5 *1 (-117)))) +(((*1 *1) (-5 *1 (-117)))) +(((*1 *1) (-5 *1 (-117)))) +(((*1 *1) (-5 *1 (-117)))) +(((*1 *1) (-5 *1 (-117)))) +(((*1 *1) (-5 *1 (-117)))) +(((*1 *1) (-5 *1 (-117)))) +(((*1 *1) (-5 *1 (-117)))) +(((*1 *1) (-5 *1 (-117)))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 (-117))) (-5 *1 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-114))))) +(((*1 *1) (-5 *1 (-114)))) +(((*1 *1) (-5 *1 (-114)))) +(((*1 *1) (-5 *1 (-114)))) +(((*1 *1) (-5 *1 (-114)))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-772))) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-158 (-112)))) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-158 (-112)))) (-5 *1 (-113))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-659 (-557))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-557)) - (-14 *4 (-789)) (-4 *5 (-175))))) + (-12 (-5 *2 (-599 (-499))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-499)) + (-14 *4 (-714)) (-4 *5 (-146))))) (((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-557)) (-14 *3 (-789)) (-4 *4 (-175))))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146))))) (((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-557)) (-14 *3 (-789)) (-4 *4 (-175))))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-499)) (-14 *3 (-714)) (-4 *4 (-146))))) (((*1 *2 *1) - (-12 (-5 *2 (-659 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-557)) - (-14 *4 (-789)) (-4 *5 (-175))))) + (-12 (-5 *2 (-599 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-499)) + (-14 *4 (-714)) (-4 *5 (-146))))) (((*1 *1 *2) - (-12 (-5 *2 (-659 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-557)) - (-14 *4 (-789))))) -(((*1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-136))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-134)) (-5 *3 (-789)) (-5 *2 (-1292))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-133)))) -(((*1 *1) (-5 *1 (-132)))) -(((*1 *1) (-5 *1 (-132)))) -(((*1 *1) (-5 *1 (-132)))) -(((*1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-131))))) -(((*1 *2 *1) (-12 (-5 *2 (-789)) (-5 *1 (-131))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-131))))) -(((*1 *1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-130))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1120))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-859)) (-5 *1 (-128 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-127 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1 *1) (-5 *1 (-114))) ((*1 *1 *1 *1) (-4 *1 (-125)))) -(((*1 *1 *1 *1) (-5 *1 (-114))) ((*1 *1 *1 *1) (-4 *1 (-125)))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-859)) (-5 *1 (-123 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-859))))) -(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1262 (-557)))))) -(((*1 *2) (-12 (-5 *2 (-789)) (-5 *1 (-122 *3)) (-4 *3 (-1262 (-557))))) - ((*1 *2 *2) (-12 (-5 *2 (-789)) (-5 *1 (-122 *3)) (-4 *3 (-1262 (-557)))))) -(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1262 (-557))))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1262 (-557)))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-121 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-121 *2)) (-4 *2 (-1236))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-1057 (-419 *2)))) (-5 *2 (-557)) - (-5 *1 (-117 *4 *3)) (-4 *3 (-1262 *4))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-116 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-116 *3)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-599 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-499)) + (-14 *4 (-714))))) +(((*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-107))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-714)) (-5 *2 (-1213))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-104)))) +(((*1 *1) (-5 *1 (-103)))) +(((*1 *1) (-5 *1 (-103)))) +(((*1 *1) (-5 *1 (-103)))) +(((*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-102))))) +(((*1 *2 *1) (-12 (-5 *2 (-714)) (-5 *1 (-102))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-102))))) +(((*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-101))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1041)))) + ((*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1041))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-99 *3))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1041))))) +(((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96)))) +(((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96)))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-781)) (-5 *1 (-94 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-781))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1183 (-499)))))) +(((*1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-93 *3)) (-4 *3 (-1183 (-499))))) + ((*1 *2 *2) (-12 (-5 *2 (-714)) (-5 *1 (-93 *3)) (-4 *3 (-1183 (-499)))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1183 (-499))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1183 (-499)))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-92 *2)) (-4 *2 (-1157))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4146)) (-4 *1 (-92 *2)) (-4 *2 (-1157))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-318) (-978 (-361 *2)))) (-5 *2 (-499)) (-5 *1 (-88 *4 *3)) + (-4 *3 (-1183 *4))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1041))))) +(((*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1041))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-659 (-1 *4 (-659 *4)))) (-4 *4 (-1120)) - (-5 *1 (-116 *4)))) + (-12 (-5 *2 (-86)) (-5 *3 (-599 (-1 *4 (-599 *4)))) (-4 *4 (-1041)) + (-5 *1 (-87 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1120)) (-5 *1 (-116 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-659 (-1 *4 (-659 *4)))) - (-5 *1 (-116 *4)) (-4 *4 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-659 (-982))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1178) (-791))) (-5 *1 (-115))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-114)) (-5 *1 (-115))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-115))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-791)) (-5 *1 (-115)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-791)) (-5 *1 (-115))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1178) (-791))) (-5 *1 (-115))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-659 (-982))) (-5 *1 (-109))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1236)) (-4 *1 (-107 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236))))) -(((*1 *2) (-12 (-5 *2 (-659 (-1196))) (-5 *1 (-105))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1196)) - (-5 *2 - (-2 (|:| |zeros| (-1174 (-229))) (|:| |ones| (-1174 (-229))) - (|:| |singularities| (-1174 (-229))))) - (-5 *1 (-105))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-4425 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) - (-4 *2 (-1068)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1262 *2)) - (-4 *4 (-704 *2 *5 *6))))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1041)) (-5 *1 (-87 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-86)) (-5 *2 (-599 (-1 *4 (-599 *4)))) + (-5 *1 (-87 *4)) (-4 *4 (-1041))))) +(((*1 *2 *1) (-12 (-5 *2 (-599 (-903))) (-5 *1 (-80)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1099) (-716))) (-5 *1 (-86))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-460)) (-5 *2 (-85)) (-5 *1 (-86))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-460)) (-5 *1 (-86)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-86))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-716)) (-5 *1 (-86)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-716)) (-5 *1 (-86))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1099) (-716))) (-5 *1 (-86))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-599 (-903))) (-5 *1 (-80))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-4 *1 (-78 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-78 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-78 *2)) (-4 *2 (-1157))))) +(((*1 *2) (-12 (-5 *2 (-599 (-1117))) (-5 *1 (-76))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1117)) + (-5 *2 + (-2 (|:| |zeros| (-1095 (-179))) (|:| |ones| (-1095 (-179))) + (|:| |singularities| (-1095 (-179))))) + (-5 *1 (-76))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4147 "*"))) (-4 *5 (-327 *2)) (-4 *6 (-327 *2)) + (-4 *2 (-989)) (-5 *1 (-75 *2 *3 *4 *5 *6)) (-4 *3 (-1183 *2)) + (-4 *4 (-644 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4425 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) - (-4 *2 (-1068)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1262 *2)) - (-4 *4 (-704 *2 *5 *6))))) + (-12 (|has| *2 (-6 (-4147 "*"))) (-4 *5 (-327 *2)) (-4 *6 (-327 *2)) + (-4 *2 (-989)) (-5 *1 (-75 *2 *3 *4 *5 *6)) (-4 *3 (-1183 *2)) + (-4 *4 (-644 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1068)) (-4 *2 (-704 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) - (-4 *3 (-1262 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))))) + (-12 (-4 *4 (-989)) (-4 *2 (-644 *4 *5 *6)) (-5 *1 (-75 *4 *3 *2 *5 *6)) + (-4 *3 (-1183 *4)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1068)) (-4 *2 (-704 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) - (-4 *3 (-1262 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-789)) (-5 *1 (-103 *3)) (-4 *3 (-1120))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-5 *1 (-103 *3))))) + (-12 (-4 *4 (-989)) (-4 *2 (-644 *4 *5 *6)) (-5 *1 (-75 *4 *3 *2 *5 *6)) + (-4 *3 (-1183 *4)) (-4 *5 (-327 *4)) (-4 *6 (-327 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-714)) (-5 *1 (-74 *3)) (-4 *3 (-1041))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-74 *3))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1120))))) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1041)) (-5 *1 (-74 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-74 *2)) (-4 *2 (-1041))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-659 *2) *2 *2 *2)) (-4 *2 (-1120)) (-5 *1 (-103 *2)))) + (-12 (-5 *3 (-1 (-599 *2) *2 *2 *2)) (-4 *2 (-1041)) (-5 *1 (-74 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1120)) (-5 *1 (-103 *2))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1041)) (-5 *1 (-74 *2))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-73)) (-5 *2 (-85))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-464) (-149))) (-5 *2 (-417 *3)) (-5 *1 (-100 *4 *3)) - (-4 *3 (-1262 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-659 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-13 (-464) (-149))) - (-5 *2 (-417 *3)) (-5 *1 (-100 *5 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-557))) (-4 *3 (-1068)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-99 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-391)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-391)) (-5 *1 (-97))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-391)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-391)) (-5 *1 (-97))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-391)) (-5 *1 (-97))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-97))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-97))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1178)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1178)) (-5 *1 (-97))))) -(((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1120)) (-5 *1 (-91 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-4 *5 (-568)) - (-5 *2 - (-2 (|:| |minor| (-659 (-936))) (|:| -3682 *3) - (|:| |minors| (-659 (-659 (-936)))) (|:| |ops| (-659 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-936)) (-4 *3 (-676 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-1286 (-707 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-707 *4)) (-4 *5 (-676 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-568)) - (-5 *2 (-2 (|:| -1781 (-707 *5)) (|:| |vec| (-1286 (-659 (-936)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-936)) (-4 *3 (-676 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-789)) (-5 *1 (-58 *3)) (-4 *3 (-1236)))) - ((*1 *1 *2) (-12 (-5 *2 (-659 *3)) (-4 *3 (-1236)) (-5 *1 (-58 *3))))) + (-12 (-4 *4 (-13 (-406) (-120))) (-5 *2 (-359 *3)) (-5 *1 (-71 *4 *3)) + (-4 *3 (-1183 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-599 *3)) (-4 *3 (-1183 *5)) (-4 *5 (-13 (-406) (-120))) + (-5 *2 (-359 *3)) (-5 *1 (-71 *5 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-499))) (-4 *3 (-989)) (-5 *1 (-70 *3)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-70 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-989)) (-5 *1 (-70 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-68)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-68))))) +(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-68)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-68))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-333)) (-5 *1 (-68))))) +(((*1 *2) (-12 (-5 *2 (-1213)) (-5 *1 (-68))))) +(((*1 *2 *2) (-12 (-5 *2 (-333)) (-5 *1 (-68))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-333)) (-5 *3 (-1099)) (-5 *1 (-68)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-333)) (-5 *3 (-1099)) (-5 *1 (-68))))) +(((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1041)) (-5 *1 (-62 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-318)) (-4 *5 (-510)) + (-5 *2 + (-2 (|:| |minor| (-599 (-857))) (|:| -3404 *3) + (|:| |minors| (-599 (-599 (-857)))) (|:| |ops| (-599 *3)))) + (-5 *1 (-61 *5 *3)) (-5 *4 (-857)) (-4 *3 (-616 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-510)) (-5 *2 (-1207 (-647 *4))) (-5 *1 (-61 *4 *5)) + (-5 *3 (-647 *4)) (-4 *5 (-616 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-510)) + (-5 *2 (-2 (|:| -1673 (-647 *5)) (|:| |vec| (-1207 (-599 (-857)))))) + (-5 *1 (-61 *5 *3)) (-5 *4 (-857)) (-4 *3 (-616 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-714)) (-5 *1 (-58 *3)) (-4 *3 (-1157)))) + ((*1 *1 *2) (-12 (-5 *2 (-599 *3)) (-4 *3 (-1157)) (-5 *1 (-58 *3))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-557)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1236)) (-4 *3 (-385 *4)) - (-4 *5 (-385 *4))))) + (-12 (-5 *2 (-499)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1157)) (-4 *3 (-327 *4)) + (-4 *5 (-327 *4))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-557)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1236)) (-4 *5 (-385 *4)) - (-4 *3 (-385 *4))))) + (-12 (-5 *2 (-499)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1157)) (-4 *5 (-327 *4)) + (-4 *3 (-327 *4))))) (((*1 *1) (-5 *1 (-55)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-659 (-1196))) (-4 *4 (-1120)) - (-4 *5 (-13 (-1068) (-899 *4) (-629 (-903 *4)))) (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-433 *5) (-899 *4) (-629 (-903 *4))))))) + (-12 (-5 *3 (-599 (-1117))) (-4 *4 (-1041)) + (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-375 *5) (-821 *4) (-569 (-825 *4))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-659 (-1094 *4 *5 *2))) (-4 *4 (-1120)) - (-4 *5 (-13 (-1068) (-899 *4) (-629 (-903 *4)))) - (-4 *2 (-13 (-433 *5) (-899 *4) (-629 (-903 *4)))) (-5 *1 (-54 *4 *5 *2)))) + (-12 (-5 *3 (-599 (-1015 *4 *5 *2))) (-4 *4 (-1041)) + (-4 *5 (-13 (-989) (-821 *4) (-569 (-825 *4)))) + (-4 *2 (-13 (-375 *5) (-821 *4) (-569 (-825 *4)))) (-5 *1 (-54 *4 *5 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-659 (-1094 *5 *6 *2))) (-5 *4 (-936)) (-4 *5 (-1120)) - (-4 *6 (-13 (-1068) (-899 *5) (-629 (-903 *5)))) - (-4 *2 (-13 (-433 *6) (-899 *5) (-629 (-903 *5)))) (-5 *1 (-54 *5 *6 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1122)) (-5 *3 (-791)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-51))))) + (-12 (-5 *3 (-599 (-1015 *5 *6 *2))) (-5 *4 (-857)) (-4 *5 (-1041)) + (-4 *6 (-13 (-989) (-821 *5) (-569 (-825 *5)))) + (-4 *2 (-13 (-375 *6) (-821 *5) (-569 (-825 *5)))) (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1043)) (-5 *3 (-716)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-1043)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-716)) (-5 *1 (-51))))) (((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-659 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) + (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3))))) (((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-659 (-707 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-430 *3))))) + (-12 (-4 *3 (-510)) (-5 *2 (-599 (-647 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-372 *3))))) (((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-659 (-707 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-430 *3))))) + (-12 (-4 *3 (-510)) (-5 *2 (-599 (-647 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-372 *3))))) (((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-659 (-707 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-430 *3))))) + (-12 (-4 *3 (-510)) (-5 *2 (-599 (-647 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-372 *3))))) (((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-659 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) + (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3))))) (((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-659 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) + (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3))))) (((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-659 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) + (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3))))) (((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-659 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) + (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3))))) (((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-659 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) + (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-659 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) + (-12 (-4 *4 (-510)) (-5 *2 (-599 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-659 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) + (-12 (-4 *4 (-510)) (-5 *2 (-599 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4))))) (((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-659 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) + (-12 (-4 *3 (-510)) (-5 *2 (-599 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-372 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-789)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) + (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-789)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) + (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-789)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) + (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-789)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) + (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-789)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) + (-12 (-4 *4 (-510)) (-5 *2 (-714)) (-5 *1 (-43 *4 *3)) (-4 *3 (-372 *4))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-115)) (-5 *4 (-789)) (-4 *5 (-13 (-464) (-1057 (-557)))) - (-4 *5 (-568)) (-5 *1 (-41 *5 *2)) (-4 *2 (-433 *5)) + (-12 (-5 *3 (-86)) (-5 *4 (-714)) (-4 *5 (-13 (-406) (-978 (-499)))) + (-4 *5 (-510)) (-5 *1 (-41 *5 *2)) (-4 *2 (-375 *5)) (-4 *2 - (-13 (-376) (-310) - (-10 -8 (-15 -3397 ((-1144 *5 (-626 $)) $)) - (-15 -3396 ((-1144 *5 (-626 $)) $)) - (-15 -4374 ($ (-1144 *5 (-626 $)))))))))) + (-13 (-318) (-252) + (-10 -8 (-15 -3119 ((-1065 *5 (-566 $)) $)) + (-15 -3118 ((-1065 *5 (-566 $)) $)) + (-15 -4096 ($ (-1065 *5 (-566 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1057 (-557)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-433 *3)) + (-12 (-4 *3 (-13 (-406) (-978 (-499)))) (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-375 *3)) (-4 *2 - (-13 (-376) (-310) - (-10 -8 (-15 -3397 ((-1144 *3 (-626 $)) $)) - (-15 -3396 ((-1144 *3 (-626 $)) $)) - (-15 -4374 ($ (-1144 *3 (-626 $)))))))))) + (-13 (-318) (-252) + (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) + (-15 -3118 ((-1065 *3 (-566 $)) $)) + (-15 -4096 ($ (-1065 *3 (-566 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1057 (-557)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-433 *3)) + (-12 (-4 *3 (-13 (-406) (-978 (-499)))) (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-375 *3)) (-4 *2 - (-13 (-376) (-310) - (-10 -8 (-15 -3397 ((-1144 *3 (-626 $)) $)) - (-15 -3396 ((-1144 *3 (-626 $)) $)) - (-15 -4374 ($ (-1144 *3 (-626 $)))))))))) + (-13 (-318) (-252) + (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) + (-15 -3118 ((-1065 *3 (-566 $)) $)) + (-15 -4096 ($ (-1065 *3 (-566 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1057 (-557)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-433 *3)) + (-12 (-4 *3 (-13 (-406) (-978 (-499)))) (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-375 *3)) (-4 *2 - (-13 (-376) (-310) - (-10 -8 (-15 -3397 ((-1144 *3 (-626 $)) $)) - (-15 -3396 ((-1144 *3 (-626 $)) $)) - (-15 -4374 ($ (-1144 *3 (-626 $)))))))))) + (-13 (-318) (-252) + (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) + (-15 -3118 ((-1065 *3 (-566 $)) $)) + (-15 -4096 ($ (-1065 *3 (-566 $)))))))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-1190 *3)) (-5 *1 (-41 *4 *3)) + (-12 (-4 *4 (-510)) (-5 *2 (-1111 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 - (-13 (-376) (-310) - (-10 -8 (-15 -3397 ((-1144 *4 (-626 $)) $)) - (-15 -3396 ((-1144 *4 (-626 $)) $)) - (-15 -4374 ($ (-1144 *4 (-626 $)))))))))) + (-13 (-318) (-252) + (-10 -8 (-15 -3119 ((-1065 *4 (-566 $)) $)) + (-15 -3118 ((-1065 *4 (-566 $)) $)) + (-15 -4096 ($ (-1065 *4 (-566 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-376) (-310) - (-10 -8 (-15 -3397 ((-1144 *3 (-626 $)) $)) - (-15 -3396 ((-1144 *3 (-626 $)) $)) - (-15 -4374 ($ (-1144 *3 (-626 $))))))))) + (-13 (-318) (-252) + (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) + (-15 -3118 ((-1065 *3 (-566 $)) $)) + (-15 -4096 ($ (-1065 *3 (-566 $))))))))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-376) (-310) - (-10 -8 (-15 -3397 ((-1144 *3 (-626 $)) $)) - (-15 -3396 ((-1144 *3 (-626 $)) $)) - (-15 -4374 ($ (-1144 *3 (-626 $))))))))) + (-13 (-318) (-252) + (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) + (-15 -3118 ((-1065 *3 (-566 $)) $)) + (-15 -4096 ($ (-1065 *3 (-566 $))))))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-659 *2)) + (-12 (-5 *3 (-599 *2)) (-4 *2 - (-13 (-376) (-310) - (-10 -8 (-15 -3397 ((-1144 *4 (-626 $)) $)) - (-15 -3396 ((-1144 *4 (-626 $)) $)) - (-15 -4374 ($ (-1144 *4 (-626 $))))))) - (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) + (-13 (-318) (-252) + (-10 -8 (-15 -3119 ((-1065 *4 (-566 $)) $)) + (-15 -3118 ((-1065 *4 (-566 $)) $)) + (-15 -4096 ($ (-1065 *4 (-566 $))))))) + (-4 *4 (-510)) (-5 *1 (-41 *4 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-659 (-626 *2))) + (-12 (-5 *3 (-599 (-566 *2))) (-4 *2 - (-13 (-376) (-310) - (-10 -8 (-15 -3397 ((-1144 *4 (-626 $)) $)) - (-15 -3396 ((-1144 *4 (-626 $)) $)) - (-15 -4374 ($ (-1144 *4 (-626 $))))))) - (-4 *4 (-568)) (-5 *1 (-41 *4 *2))))) + (-13 (-318) (-252) + (-10 -8 (-15 -3119 ((-1065 *4 (-566 $)) $)) + (-15 -3118 ((-1065 *4 (-566 $)) $)) + (-15 -4096 ($ (-1065 *4 (-566 $))))))) + (-4 *4 (-510)) (-5 *1 (-41 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-510)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-376) (-310) - (-10 -8 (-15 -3397 ((-1144 *3 (-626 $)) $)) - (-15 -3396 ((-1144 *3 (-626 $)) $)) - (-15 -4374 ($ (-1144 *3 (-626 $)))))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-789)) (-4 *4 (-376)) (-4 *5 (-1262 *4)) (-5 *2 (-1292)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1262 (-419 *5))) (-14 *7 *6)))) -(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48)))))) + (-13 (-318) (-252) + (-10 -8 (-15 -3119 ((-1065 *3 (-566 $)) $)) + (-15 -3118 ((-1065 *3 (-566 $)) $)) + (-15 -4096 ($ (-1065 *3 (-566 $)))))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-714)) (-4 *4 (-318)) (-4 *5 (-1183 *4)) (-5 *2 (-1213)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1183 (-361 *5))) (-14 *7 *6)))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1183 (-48)))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)) - (-5 *2 (-2 (|:| -4288 *3) (|:| -2284 *4)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114))))) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1041)) (-4 *4 (-1041)) + (-5 *2 (-2 (|:| -4010 *3) (|:| |entry| *4)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-557)) (-4 *2 (-433 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1057 *4)) - (-4 *3 (-568))))) + (-12 (-5 *4 (-499)) (-4 *2 (-375 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-978 *4)) + (-4 *3 (-510))))) (((*1 *2 *3) - (-12 (-5 *3 (-659 *5)) (-4 *5 (-433 *4)) (-4 *4 (-568)) (-5 *2 (-875)) + (-12 (-5 *3 (-599 *5)) (-4 *5 (-375 *4)) (-4 *4 (-510)) (-5 *2 (-797)) (-5 *1 (-32 *4 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1190 *2)) (-4 *2 (-433 *4)) (-4 *4 (-568)) + (-12 (-5 *3 (-1111 *2)) (-4 *2 (-375 *4)) (-4 *4 (-510)) (-5 *1 (-32 *4 *2))))) (((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-963 (-557))) (-5 *3 (-1196)) (-5 *4 (-1108 (-419 (-557)))) + (-12 (-5 *2 (-884 (-499))) (-5 *3 (-1117)) (-5 *4 (-1029 (-361 (-499)))) (-5 *1 (-30))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1190 *1)) (-5 *4 (-1196)) (-4 *1 (-27)) (-5 *2 (-659 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1190 *1)) (-4 *1 (-27)) (-5 *2 (-659 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-963 *1)) (-4 *1 (-27)) (-5 *2 (-659 *1)))) + (-12 (-5 *3 (-1111 *1)) (-5 *4 (-1117)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1111 *1)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-884 *1)) (-4 *1 (-27)) (-5 *2 (-599 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *2 (-659 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-659 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1190 *1)) (-5 *3 (-1196)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-963 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568))))) -((-1321 . 718389) (-1322 . 717993) (-1323 . 717872) (-1324 . 717770) - (-1325 . 717657) (-1326 . 717540) (-1327 . 717486) (-1328 . 717351) - (-1329 . 717275) (-1330 . 717119) (-1331 . 716891) (-1332 . 715927) - (-1333 . 715680) (-1334 . 715395) (-1335 . 715110) (-1336 . 714825) - (-1337 . 714504) (-1338 . 714412) (-1339 . 714320) (-1340 . 714228) - (-1341 . 714136) (-1342 . 714044) (-1343 . 713952) (-1344 . 713857) - (-1345 . 713762) (-1346 . 713670) (-1347 . 713578) (-1348 . 713486) - (-1349 . 713394) (-1350 . 713302) (-1351 . 713200) (-1352 . 713098) - (-1353 . 712996) (-1354 . 712904) (-1355 . 712853) (-1356 . 712801) - (-1357 . 712731) (-1358 . 712307) (-1359 . 712112) (-1360 . 712085) - (-1361 . 711962) (-1362 . 711839) (-1363 . 711695) (-1364 . 711525) - (-1365 . 711401) (-1366 . 711162) (-1367 . 711089) (-1368 . 710948) - (-1369 . 710897) (-1370 . 710848) (-1371 . 710778) (-1372 . 710643) - (-1373 . 710508) (-1374 . 710280) (-1375 . 710032) (-1376 . 709977) - (-1377 . 709797) (-1378 . 709626) (-1379 . 709549) (-1380 . 709475) - (-1381 . 709320) (-1382 . 709165) (-1383 . 708979) (-1384 . 708796) - (-1385 . 708619) (-1386 . 708562) (-1387 . 708506) (-1388 . 708450) - (-1389 . 708376) (-1390 . 708299) (-1391 . 708230) (-1392 . 708085) - (-1393 . 707976) (-1394 . 707906) (-1395 . 707832) (-1396 . 707758) - (-1397 . 707706) (-1398 . 707654) (-1399 . 707602) (-1400 . 707479) - (-1401 . 707157) (-1402 . 707086) (-1403 . 707005) (-1404 . 706884) - (-1405 . 706803) (-1406 . 706722) (-1407 . 706565) (-1408 . 706414) - (-1409 . 706336) (-1410 . 706278) (-1411 . 706205) (-1412 . 706140) - (-1413 . 706075) (-1414 . 706013) (-1415 . 705940) (-1416 . 705824) - (-1417 . 705772) (-1418 . 705717) (-1419 . 705665) (-1420 . 705613) - (-1421 . 705585) (-1422 . 705557) (-1423 . 705529) (-1424 . 705485) - (-1425 . 705414) (-1426 . 705362) (-1427 . 705313) (-1428 . 705261) - (-1429 . 705209) (-1430 . 705093) (-1431 . 704977) (-1432 . 704885) - (-1433 . 704793) (-1434 . 704670) (-1435 . 704604) (-1436 . 704538) - (-1437 . 704479) (-1438 . 704451) (-1439 . 704423) (-1440 . 704395) - (-1441 . 704367) (-1442 . 704257) (-1443 . 704205) (-1444 . 704153) - (-1445 . 704101) (-1446 . 704049) (-1447 . 703997) (-1448 . 703945) - (-1449 . 703917) (-1450 . 703889) (-1451 . 703861) (-1452 . 703833) - (-1453 . 703805) (-1454 . 703777) (-1455 . 703749) (-1456 . 703721) - (-1457 . 703693) (-1458 . 703590) (-1459 . 703538) (-1460 . 703372) - (-1461 . 703188) (-1462 . 702977) (-1463 . 702862) (-1464 . 702629) - (-1465 . 702530) (-1466 . 702436) (-1467 . 702320) (-1468 . 701922) - (-1469 . 701704) (-1470 . 701655) (-1471 . 701627) (-1472 . 701551) - (-1473 . 701452) (-1474 . 701353) (-1475 . 701254) (-1476 . 701155) - (-1477 . 701056) (-1478 . 700957) (-1479 . 700799) (-1480 . 700723) - (-1481 . 700556) (-1482 . 700498) (-1483 . 700440) (-1484 . 700131) - (-1485 . 699877) (-1486 . 699793) (-1487 . 699660) (-1488 . 699602) - (-1489 . 699550) (-1490 . 699468) (-1491 . 699393) (-1492 . 699322) - (-1493 . 699267) (-1494 . 699215) (-1495 . 699141) (-1496 . 699067) - (-1497 . 698986) (-1498 . 698905) (-1499 . 698850) (-1500 . 698776) - (-1501 . 698702) (-1502 . 698628) (-1503 . 698551) (-1504 . 698496) - (-1505 . 698437) (-1506 . 698337) (-1507 . 698237) (-1508 . 698137) - (-1509 . 698037) (-1510 . 697937) (-1511 . 697837) (-1512 . 697737) - (-1513 . 697622) (-1514 . 697507) (-1515 . 697392) (-1516 . 697277) - (-1517 . 697162) (-1518 . 697047) (-1519 . 696929) (-1520 . 696853) - (-1521 . 696777) (-1522 . 696390) (-1523 . 696044) (-1524 . 695942) - (-1525 . 695680) (-1526 . 695578) (-1527 . 695373) (-1528 . 695260) - (-1529 . 695158) (-1530 . 695001) (-1531 . 694912) (-1532 . 694818) - (-1533 . 694738) (-1534 . 694664) (-1535 . 694586) (-1536 . 694527) - (-1537 . 694468) (-1538 . 694366) (-7 . 694338) (-8 . 694310) (-9 . 694282) - (-1542 . 694163) (-1543 . 694081) (-1544 . 693999) (-1545 . 693917) - (-1546 . 693835) (-1547 . 693753) (-1548 . 693659) (-1549 . 693589) - (-1550 . 693519) (-1551 . 693428) (-1552 . 693334) (-1553 . 693252) - (-1554 . 693170) (-1555 . 692679) (-1556 . 692126) (-1557 . 691916) - (-1558 . 691841) (-1559 . 691587) (-1560 . 691360) (-1561 . 691150) - (-1562 . 691020) (-1563 . 690939) (-1564 . 690790) (-1565 . 690435) - (-1566 . 690143) (-1567 . 689851) (-1568 . 689559) (-1569 . 689267) - (-1570 . 689208) (-1571 . 689101) (-1572 . 688673) (-1573 . 688575) - (-1574 . 688415) (-1575 . 688216) (-1576 . 688080) (-1577 . 687980) - (-1578 . 687880) (-1579 . 687786) (-1580 . 687727) (-1581 . 687392) - (-1582 . 687291) (-1583 . 687172) (-1584 . 686956) (-1585 . 686775) - (-1586 . 686615) (-1587 . 686410) (-1588 . 685988) (-1589 . 685936) - (-1590 . 685827) (-1591 . 685712) (-1592 . 685643) (-1593 . 685574) - (-1594 . 685505) (-1595 . 685439) (-1596 . 685314) (-1597 . 685097) - (-1598 . 685019) (-1599 . 684969) (-1600 . 684898) (-1601 . 684755) - (-1602 . 684614) (-1603 . 684533) (-1604 . 684452) (-1605 . 684396) - (-1606 . 684340) (-1607 . 684267) (-1608 . 684127) (-1609 . 684074) - (-1610 . 684015) (-1611 . 683956) (-1612 . 683801) (-1613 . 683749) - (-1614 . 683631) (-1615 . 683513) (-1616 . 683395) (-1617 . 683262) - (-1618 . 682981) (-1619 . 682845) (-1620 . 682789) (-1621 . 682733) - (-1622 . 682674) (-1623 . 682615) (-1624 . 682559) (-1625 . 682503) - (-1626 . 682306) (-1627 . 679964) (-1628 . 679837) (-1629 . 679691) - (-1630 . 679563) (-1631 . 679511) (-1632 . 679459) (-1633 . 679407) - (-1634 . 675368) (-1635 . 675273) (-1636 . 675134) (-1637 . 674925) - (-1638 . 674823) (-1639 . 674721) (-1640 . 673805) (-1641 . 673728) - (-1642 . 673599) (-1643 . 673472) (-1644 . 673395) (-1645 . 673318) - (-1646 . 673191) (-1647 . 673064) (-1648 . 672898) (-1649 . 672771) - (-1650 . 672644) (-1651 . 672427) (-1652 . 671989) (-1653 . 671623) - (-1654 . 671516) (-1655 . 671297) (-1656 . 671228) (-1657 . 671169) - (-1658 . 671088) (-1659 . 670977) (-1660 . 670911) (-1661 . 670845) - (-1662 . 670771) (-1663 . 670699) (-1664 . 670322) (-1665 . 670270) - (-1666 . 670211) (-1667 . 670122) (-1668 . 670033) (-1669 . 669941) - (-1670 . 669849) (-1671 . 669757) (-1672 . 669665) (-1673 . 669573) - (-1674 . 669481) (-1675 . 669389) (-1676 . 669297) (-1677 . 669205) - (-1678 . 669113) (-1679 . 669021) (-1680 . 668929) (-1681 . 668837) - (-1682 . 668745) (-1683 . 668653) (-1684 . 668561) (-1685 . 668469) - (-1686 . 668377) (-1687 . 668285) (-1688 . 668193) (-1689 . 668101) - (-1690 . 668009) (-1691 . 667917) (-1692 . 667825) (-1693 . 667733) - (-1694 . 667641) (-1695 . 667477) (-1696 . 667367) (-1697 . 667123) - (-1698 . 666834) (-1699 . 666638) (-1700 . 666481) (-1701 . 666320) - (-1702 . 666268) (-1703 . 666206) (-1704 . 666154) (-1705 . 666091) - (-1706 . 666038) (-1707 . 665986) (-1708 . 665934) (-1709 . 665882) - (-1710 . 665792) (-1711 . 665603) (-1712 . 665449) (-1713 . 665369) - (-1714 . 665289) (-1715 . 665209) (-1716 . 665079) (-1717 . 664847) - (-1718 . 664819) (-1719 . 664791) (-1720 . 664763) (-1721 . 664683) - (-1722 . 664606) (-1723 . 664529) (-1724 . 664448) (-1725 . 664388) - (-1726 . 664230) (-1727 . 664037) (-1728 . 663552) (-1729 . 663310) - (-1730 . 663048) (-1731 . 662947) (-1732 . 662866) (-1733 . 662785) - (-1734 . 662715) (-1735 . 662645) (-1736 . 662486) (-1737 . 662182) - (-1738 . 661952) (-1739 . 661828) (-1740 . 661769) (-1741 . 661707) - (-1742 . 661645) (-1743 . 661580) (-1744 . 661518) (-1745 . 661239) - (-1746 . 661029) (-1747 . 660755) (-1748 . 660215) (-1749 . 659701) - (-1750 . 659556) (-1751 . 659489) (-1752 . 659408) (-1753 . 659327) - (-1754 . 659225) (-1755 . 659151) (-1756 . 659070) (-1757 . 658996) - (-1758 . 658787) (-1759 . 658574) (-1760 . 658484) (-1761 . 658417) - (-1762 . 658281) (-1763 . 658214) (-1764 . 658132) (-1765 . 658051) - (-1766 . 657949) (-1767 . 657749) (-1768 . 657681) (-1769 . 657439) - (-1770 . 657188) (-1771 . 656946) (-1772 . 656704) (-1773 . 656636) - (-1774 . 656300) (-1775 . 655299) (-1776 . 655079) (-1777 . 654998) - (-1778 . 654924) (-1779 . 654850) (-1780 . 654776) (-1781 . 654672) - (-1782 . 654599) (-1783 . 654531) (-1784 . 654321) (-1785 . 654269) - (-1786 . 654214) (-1787 . 654123) (-1788 . 654035) (-1789 . 652278) - (-1790 . 652199) (-1791 . 651454) (-1792 . 651337) (-1793 . 651130) - (-1794 . 650968) (-1795 . 650806) (-1796 . 650645) (-1797 . 650506) - (-1798 . 650412) (-1799 . 650314) (-1800 . 650220) (-1801 . 650105) - (-1802 . 650020) (-1803 . 649922) (-1804 . 649726) (-1805 . 649635) - (-1806 . 649541) (-1807 . 649474) (-1808 . 649421) (-1809 . 649368) - (-1810 . 649315) (-1811 . 648177) (-1812 . 647667) (-1813 . 647588) - (-1814 . 647529) (-1815 . 647501) (-1816 . 647473) (-1817 . 647414) - (-1818 . 647301) (-1819 . 646924) (-1820 . 646871) (-1821 . 646760) - (-1822 . 646707) (-1823 . 646654) (-1824 . 646598) (-1825 . 646542) - (-1826 . 646377) (-1827 . 646307) (-1828 . 646212) (-1829 . 646117) - (-1830 . 646022) (-1831 . 645970) (-1832 . 645911) (-1833 . 645837) - (-1834 . 645785) (-1835 . 645628) (-1836 . 645471) (-1837 . 645318) - (-1838 . 644560) (-1839 . 644307) (-1840 . 643996) (-1841 . 643644) - (-1842 . 643427) (-1843 . 643164) (-1844 . 642788) (-1845 . 642604) - (-1846 . 642470) (-1847 . 642304) (-1848 . 642138) (-1849 . 642004) - (-1850 . 641870) (-1851 . 641736) (-1852 . 641602) (-1853 . 641471) - (-1854 . 641340) (-1855 . 641209) (-1856 . 640826) (-1857 . 640699) - (-1858 . 640571) (-1859 . 640319) (-1860 . 640195) (-1861 . 639943) - (-1862 . 639819) (-1863 . 639567) (-1864 . 639443) (-1865 . 639158) - (-1866 . 638885) (-1867 . 638612) (-1868 . 638314) (-1869 . 638212) - (-1870 . 638067) (-1871 . 637926) (-1872 . 637775) (-1873 . 637614) - (-1874 . 637526) (-1875 . 637498) (-1876 . 637416) (-1877 . 637319) - (-1878 . 636851) (-1879 . 636500) (-1880 . 636067) (-1881 . 635926) - (-1882 . 635856) (-1883 . 635786) (-1884 . 635716) (-1885 . 635625) - (-1886 . 635534) (-1887 . 635443) (-1888 . 635352) (-1889 . 635261) - (-1890 . 635175) (-1891 . 635089) (-1892 . 635003) (-1893 . 634917) - (-1894 . 634831) (-1895 . 634757) (-1896 . 634652) (-1897 . 634426) - (-1898 . 634348) (-1899 . 634273) (-1900 . 634180) (-1901 . 634076) - (-1902 . 633980) (-1903 . 633811) (-1904 . 633734) (-1905 . 633657) - (-1906 . 633566) (-1907 . 633475) (-1908 . 633275) (-1909 . 633120) - (-1910 . 632965) (-1911 . 632810) (-1912 . 632655) (-1913 . 632500) - (-1914 . 632345) (-1915 . 632278) (-1916 . 632123) (-1917 . 631968) - (-1918 . 631813) (-1919 . 631658) (-1920 . 631503) (-1921 . 631348) - (-1922 . 631193) (-1923 . 631038) (-1924 . 630964) (-1925 . 630890) - (-1926 . 630835) (-1927 . 630780) (-1928 . 630725) (-1929 . 630670) - (-1930 . 630599) (-1931 . 630394) (-1932 . 630293) (-1933 . 630102) - (-1934 . 630009) (-1935 . 629872) (-1936 . 629735) (-1937 . 629598) - (-1938 . 629530) (-1939 . 629414) (-1940 . 629298) (-1941 . 629182) - (-1942 . 629129) (-1943 . 628932) (-1944 . 628847) (-1945 . 628539) - (-1946 . 628484) (-1947 . 627832) (-1948 . 627517) (-1949 . 627233) - (-1950 . 627114) (-1951 . 626995) (-1952 . 626936) (-1953 . 626877) - (-1954 . 626825) (-1955 . 626773) (-1956 . 626721) (-1957 . 626668) - (-1958 . 626615) (-1959 . 626556) (-1960 . 626443) (-1961 . 626330) - (-1962 . 626272) (-1963 . 626214) (-1964 . 626164) (-1965 . 626029) - (-1966 . 625979) (-1967 . 625382) (-1968 . 625322) (-1969 . 625155) - (-1970 . 625063) (-1971 . 624950) (-1972 . 624866) (-1973 . 624751) - (-1974 . 624660) (-1975 . 624569) (-1976 . 624380) (-1977 . 624325) - (-1978 . 624138) (-1979 . 624015) (-1980 . 623942) (-1981 . 623869) - (-1982 . 623749) (-1983 . 623676) (-1984 . 623603) (-1985 . 623263) - (-1986 . 623190) (-1987 . 622970) (-1988 . 622637) (-1989 . 622452) - (-1990 . 622307) (-1991 . 621944) (-1992 . 621776) (-1993 . 621608) - (-1994 . 621352) (-1995 . 621096) (-1996 . 620901) (-1997 . 620706) - (-1998 . 620112) (-1999 . 620036) (-2000 . 619897) (-2001 . 619490) - (-2002 . 619362) (-2003 . 619202) (-2004 . 618883) (-2005 . 618400) - (-2006 . 617917) (-2007 . 617412) (-2008 . 617344) (-2009 . 617273) - (-2010 . 617202) (-2011 . 617029) (-2012 . 616910) (-2013 . 616791) - (-2014 . 616715) (-2015 . 616639) (-2016 . 616364) (-2017 . 616249) - (-2018 . 616197) (-2019 . 616145) (-2020 . 616093) (-2021 . 616041) - (-2022 . 615989) (-2023 . 615847) (-2024 . 615673) (-2025 . 615440) - (-2026 . 615252) (-2027 . 615224) (-2028 . 615196) (-2029 . 615168) - (-2030 . 615140) (-2031 . 615112) (-2032 . 615084) (-2033 . 615056) - (-2034 . 615004) (-2035 . 614914) (-2036 . 614864) (-2037 . 614795) - (-2038 . 614726) (-2039 . 614621) (-2040 . 614250) (-2041 . 614099) - (-2042 . 613948) (-2043 . 613743) (-2044 . 613621) (-2045 . 613546) - (-2046 . 613468) (-2047 . 613393) (-2048 . 613315) (-2049 . 613237) - (-2050 . 613162) (-2051 . 613084) (-2052 . 612850) (-2053 . 612695) - (-2054 . 612396) (-2055 . 612241) (-2056 . 611915) (-2057 . 611775) - (-2058 . 611635) (-2059 . 611554) (-2060 . 611473) (-2061 . 611208) - (-2062 . 610475) (-2063 . 610338) (-2064 . 610247) (-2065 . 610110) - (-2066 . 610042) (-2067 . 609973) (-2068 . 609885) (-2069 . 609797) - (-2070 . 609626) (-2071 . 609552) (-2072 . 609408) (-2073 . 608948) - (-2074 . 608568) (-2075 . 607804) (-2076 . 607660) (-2077 . 607516) - (-2078 . 607354) (-2079 . 607116) (-2080 . 606975) (-2081 . 606828) - (-2082 . 606589) (-2083 . 606353) (-2084 . 606114) (-2085 . 605922) - (-2086 . 605799) (-2087 . 605595) (-2088 . 605372) (-2089 . 605133) - (-2090 . 604992) (-2091 . 604854) (-2092 . 604715) (-2093 . 604462) - (-2094 . 604206) (-2095 . 604049) (-2096 . 603895) (-2097 . 603654) - (-2098 . 603369) (-2099 . 603231) (-2100 . 603144) (-2101 . 602478) - (-2102 . 602302) (-2103 . 602120) (-2104 . 601944) (-2105 . 601762) - (-2106 . 601583) (-2107 . 601404) (-2108 . 601217) (-2109 . 600835) - (-2110 . 600656) (-2111 . 600477) (-2112 . 600290) (-2113 . 599908) - (-2114 . 598915) (-2115 . 598531) (-2116 . 598147) (-2117 . 598029) - (-2118 . 597872) (-2119 . 597730) (-2120 . 597612) (-2121 . 597430) - (-2122 . 597306) (-2123 . 597016) (-2124 . 596726) (-2125 . 596442) - (-2126 . 596158) (-2127 . 595879) (-2128 . 595791) (-2129 . 595706) - (-2130 . 595607) (-2131 . 595508) (-2132 . 595284) (-2133 . 595184) - (-2134 . 595081) (-2135 . 595003) (-2136 . 594678) (-2137 . 594386) - (-2138 . 594313) (-2139 . 593928) (-2140 . 593900) (-2141 . 593701) - (-2142 . 593527) (-2143 . 593286) (-2144 . 593231) (-2145 . 593155) - (-2146 . 592784) (-2147 . 592669) (-2148 . 592592) (-2149 . 592519) - (-2150 . 592438) (-2151 . 592357) (-2152 . 592276) (-2153 . 592175) - (-2154 . 592116) (-2155 . 591877) (-2156 . 591753) (-2157 . 591629) - (-2158 . 591402) (-2159 . 591349) (-2160 . 591294) (-2161 . 590962) - (-2162 . 590638) (-2163 . 590450) (-2164 . 590259) (-2165 . 590095) - (-2166 . 589760) (-2167 . 589593) (-2168 . 589352) (-2169 . 589024) - (-2170 . 588832) (-2171 . 588615) (-2172 . 588442) (-2173 . 588020) - (-2174 . 587793) (-2175 . 587522) (-2176 . 587384) (-2177 . 587243) - (-2178 . 586764) (-2179 . 586641) (-2180 . 586405) (-2181 . 586151) - (-2182 . 585901) (-2183 . 585606) (-2184 . 585465) (-2185 . 585121) - (-2186 . 584980) (-2187 . 584787) (-2188 . 584594) (-2189 . 584419) - (-2190 . 584145) (-2191 . 583710) (-2192 . 583682) (-2193 . 583609) - (-2194 . 583448) (-2195 . 583285) (-2196 . 583124) (-2197 . 582957) - (-2198 . 582904) (-2199 . 582851) (-2200 . 582722) (-2201 . 582662) - (-2202 . 582609) (-2203 . 582539) (-2204 . 582479) (-2205 . 582420) - (-2206 . 582360) (-2207 . 582301) (-2208 . 582241) (-2209 . 582182) - (-2210 . 582123) (-2211 . 581981) (-2212 . 581886) (-2213 . 581795) - (-2214 . 581679) (-2215 . 581585) (-2216 . 581487) (-2217 . 581393) - (-2218 . 581252) (-2219 . 580987) (-2220 . 580128) (-2221 . 579972) - (-2222 . 579603) (-2223 . 579547) (-2224 . 579495) (-2225 . 579392) - (-2226 . 579307) (-2227 . 579219) (-2228 . 579073) (-2229 . 578924) - (-2230 . 578634) (-2231 . 578556) (-2232 . 578481) (-2233 . 578428) - (-2234 . 578375) (-2235 . 578344) (-2236 . 578281) (-2237 . 578162) - (-2238 . 578073) (-2239 . 577953) (-2240 . 577658) (-2241 . 577464) - (-2242 . 577276) (-2243 . 577131) (-2244 . 576986) (-2245 . 576700) - (-2246 . 576255) (-2247 . 576221) (-2248 . 576184) (-2249 . 576147) - (-2250 . 576110) (-2251 . 576073) (-2252 . 576042) (-2253 . 576011) - (-2254 . 575980) (-2255 . 575946) (-2256 . 575912) (-2257 . 575857) - (-2258 . 575681) (-2259 . 575446) (-2260 . 575211) (-2261 . 574981) - (-2262 . 574929) (-2263 . 574874) (-2264 . 574804) (-2265 . 574715) - (-2266 . 574646) (-2267 . 574574) (-2268 . 574344) (-2269 . 574292) - (-2270 . 574237) (-2271 . 574206) (-2272 . 574100) (-2273 . 573874) - (-2274 . 573563) (-2275 . 573388) (-2276 . 573205) (-2277 . 572933) - (-2278 . 572860) (-2279 . 572795) (-2280 . 572767) (-2281 . 572717) - (-2282 . 571294) (-2283 . 570146) (-2284 . 569008) (-2285 . 568530) - (-2286 . 567966) (-2287 . 567238) (-2288 . 566675) (-2289 . 566045) - (-2290 . 565466) (-2291 . 565392) (-2292 . 565340) (-2293 . 565288) - (-2294 . 565214) (-2295 . 565159) (-2296 . 565107) (-2297 . 565055) - (-2298 . 565003) (-2299 . 564933) (-2300 . 564485) (-2301 . 564278) - (-2302 . 564028) (-2303 . 563693) (-2304 . 563438) (-2305 . 563135) - (-2306 . 562931) (-2307 . 562641) (-2308 . 562091) (-2309 . 561953) - (-2310 . 561750) (-2311 . 561469) (-2312 . 561383) (-2313 . 561048) - (-2314 . 560906) (-2315 . 560614) (-2316 . 560393) (-2317 . 560267) - (-2318 . 560142) (-2319 . 559995) (-2320 . 559851) (-2321 . 559735) - (-2322 . 559604) (-2323 . 559231) (-2324 . 558971) (-2325 . 558696) - (-2326 . 558456) (-2327 . 558126) (-2328 . 557781) (-2329 . 557373) - (-2330 . 556950) (-2331 . 556753) (-2332 . 556478) (-2333 . 556310) - (-2334 . 556109) (-2335 . 555887) (-2336 . 555732) (-2337 . 555546) - (-2338 . 555443) (-2339 . 555415) (-2340 . 555387) (-2341 . 555211) - (-2342 . 555137) (-2343 . 555076) (-2344 . 555023) (-2345 . 554954) - (-2346 . 554884) (-2347 . 554765) (-2348 . 554587) (-2349 . 554532) - (-2350 . 554286) (-2351 . 554213) (-2352 . 554143) (-2353 . 554073) - (-2354 . 553983) (-2355 . 553793) (-2356 . 553720) (-2357 . 553650) - (-2358 . 553585) (-2359 . 553530) (-2360 . 553439) (-2361 . 553146) - (-2362 . 552818) (-2363 . 552744) (-2364 . 552422) (-2365 . 552215) - (-2366 . 552129) (-2367 . 552043) (-2368 . 551957) (-2369 . 551871) - (-2370 . 551785) (-2371 . 551699) (-2372 . 551613) (-2373 . 551527) - (-2374 . 551441) (-2375 . 551355) (-2376 . 551269) (-2377 . 551183) - (-2378 . 551097) (-2379 . 551011) (-2380 . 550925) (-2381 . 550839) - (-2382 . 550753) (-2383 . 550667) (-2384 . 550581) (-2385 . 550495) - (-2386 . 550409) (-2387 . 550323) (-2388 . 550237) (-2389 . 550151) - (-2390 . 550065) (-2391 . 549979) (-2392 . 549876) (-2393 . 549787) - (-2394 . 549577) (-2395 . 549518) (-2396 . 549462) (-2397 . 549373) - (-2398 . 549261) (-2399 . 549173) (-2400 . 549025) (-2401 . 548963) - (-2402 . 548935) (-2403 . 548907) (-2404 . 548879) (-2405 . 548851) - (-2406 . 548680) (-2407 . 548527) (-2408 . 548374) (-2409 . 548200) - (-2410 . 547990) (-2411 . 547866) (-2412 . 547658) (-2413 . 547566) - (-2414 . 547474) (-2415 . 547338) (-2416 . 547243) (-2417 . 547148) - (-2418 . 545632) (-2419 . 545508) (-2420 . 545480) (-2421 . 545452) - (-2422 . 545424) (-2423 . 545396) (-2424 . 545368) (-2425 . 545340) - (-2426 . 545312) (-2427 . 545284) (-2428 . 545256) (-2429 . 545228) - (-2430 . 545200) (-2431 . 545172) (-2432 . 545144) (-2433 . 545116) - (-2434 . 545088) (-2435 . 545060) (-2436 . 545007) (-2437 . 544979) - (-2438 . 544951) (-2439 . 544873) (-2440 . 544820) (-2441 . 544767) - (-2442 . 544714) (-2443 . 544636) (-2444 . 544546) (-2445 . 544451) - (-2446 . 544369) (-2447 . 544060) (-2448 . 543864) (-2449 . 543769) - (-2450 . 543661) (-2451 . 543243) (-2452 . 543215) (-2453 . 543050) - (-2454 . 542973) (-2455 . 542784) (-2456 . 542604) (-2457 . 542180) - (-2458 . 542028) (-2459 . 541848) (-2460 . 541675) (-2461 . 541413) - (-2462 . 541161) (-2463 . 540350) (-2464 . 540181) (-2465 . 539962) - (-2466 . 539120) (-2467 . 538988) (-2468 . 538856) (-2469 . 538724) - (-2470 . 538592) (-2471 . 538460) (-2472 . 538328) (-2473 . 538133) - (-2474 . 537939) (-2475 . 537796) (-2476 . 537481) (-2477 . 537366) - (-2478 . 537026) (-2479 . 536866) (-2480 . 536727) (-2481 . 536588) - (-2482 . 536459) (-2483 . 536374) (-2484 . 536322) (-2485 . 535841) - (-2486 . 534577) (-2487 . 534448) (-2488 . 534305) (-2489 . 533967) - (-2490 . 533862) (-2491 . 533611) (-2492 . 533377) (-2493 . 533272) - (-2494 . 533197) (-2495 . 533122) (-2496 . 533047) (-2497 . 532988) - (-2498 . 532917) (-2499 . 532864) (-2500 . 532802) (-2501 . 532731) - (-2502 . 532368) (-2503 . 532081) (-2504 . 531970) (-2505 . 531877) - (-2506 . 531784) (-2507 . 531697) (-2508 . 531477) (-2509 . 531257) - (-2510 . 530839) (-2511 . 530567) (-2512 . 530424) (-2513 . 530331) - (-2514 . 530188) (-2515 . 530036) (-2516 . 529882) (-2517 . 529811) - (-2518 . 529602) (-2519 . 529424) (-2520 . 529214) (-2521 . 529036) - (-2522 . 529002) (-2523 . 528968) (-2524 . 528937) (-2525 . 528819) - (-2526 . 528504) (-2527 . 528226) (-2528 . 528105) (-2529 . 527978) - (-2530 . 527893) (-2531 . 527820) (-2532 . 527730) (-2533 . 527659) - (-2534 . 527603) (-2535 . 527547) (-2536 . 527491) (-2537 . 527420) - (-2538 . 527349) (-2539 . 527278) (-2540 . 527199) (-2541 . 527121) - (-2542 . 527036) (-2543 . 526776) (-2544 . 526687) (-2545 . 526389) - (-2546 . 526291) (-2547 . 526213) (-2548 . 526135) (-2549 . 525992) - (-2550 . 525913) (-2551 . 525841) (-2552 . 525638) (-2553 . 525582) - (-2554 . 525394) (-2555 . 525295) (-2556 . 525177) (-2557 . 525056) - (-2558 . 524913) (-2559 . 524770) (-2560 . 524630) (-2561 . 524490) - (-2562 . 524347) (-2563 . 524220) (-2564 . 524090) (-2565 . 523966) - (-2566 . 523842) (-2567 . 523736) (-2568 . 523630) (-2569 . 523527) - (-2570 . 523377) (-2571 . 523224) (-2572 . 523071) (-2573 . 522927) - (-2574 . 522773) (-2575 . 522696) (-2576 . 522616) (-2577 . 522461) - (-2578 . 522381) (-2579 . 522301) (-2580 . 522221) (-2581 . 522118) - (-2582 . 522059) (-2583 . 521997) (-2584 . 521822) (-2585 . 521669) - (-2586 . 521516) (-2587 . 521342) (-2588 . 521150) (-2589 . 520851) - (-2590 . 520656) (-2591 . 520541) (-2592 . 520415) (-2593 . 520338) - (-2594 . 520206) (-2595 . 519900) (-2596 . 519717) (-2597 . 519172) - (-2598 . 518952) (-2599 . 518778) (-2600 . 518608) (-2601 . 518509) - (-2602 . 518410) (-2603 . 518192) (-2604 . 518090) (-2605 . 518017) - (-2606 . 517941) (-2607 . 517862) (-2608 . 517565) (-2609 . 517466) - (-2610 . 517304) (-2611 . 517070) (-2612 . 516628) (-2613 . 516498) - (-2614 . 516358) (-2615 . 516049) (-2616 . 515747) (-2617 . 515431) - (-2618 . 515025) (-2619 . 514957) (-2620 . 514889) (-2621 . 514821) - (-2622 . 514726) (-2623 . 514618) (-2624 . 514510) (-2625 . 514408) - (-2626 . 514306) (-2627 . 514204) (-2628 . 514126) (-2629 . 513802) - (-2630 . 513334) (-2631 . 512707) (-2632 . 512643) (-2633 . 512524) - (-2634 . 512405) (-2635 . 512297) (-2636 . 512189) (-2637 . 512033) - (-2638 . 511431) (-2639 . 511144) (-2640 . 510976) (-2641 . 510854) - (-2642 . 510456) (-2643 . 510220) (-2644 . 510019) (-2645 . 509811) - (-2646 . 509618) (-2647 . 509348) (-2648 . 509169) (-2649 . 509100) - (-2650 . 509024) (-2651 . 508883) (-2652 . 508680) (-2653 . 508536) - (-2654 . 508286) (-2655 . 507978) (-2656 . 507622) (-2657 . 507463) - (-2658 . 507257) (-2659 . 507097) (-2660 . 507024) (-2661 . 506905) - (-2662 . 506786) (-2663 . 506626) (-2664 . 506446) (-2665 . 506263) - (-2666 . 506165) (-2667 . 506067) (-2668 . 505966) (-2669 . 505862) - (-2670 . 505736) (-2671 . 505610) (-2672 . 505481) (-2673 . 505349) - (-2674 . 505251) (-2675 . 505153) (-2676 . 505052) (-2677 . 504951) - (-2678 . 504785) (-2679 . 504619) (-2680 . 504425) (-2681 . 504259) - (-2682 . 504091) (-2683 . 503920) (-2684 . 503755) (-2685 . 503590) - (-2686 . 503490) (-2687 . 503298) (-2688 . 503197) (-2689 . 503002) - (-2690 . 502752) (-2691 . 502507) (-2692 . 502185) (-2693 . 501797) - (-2694 . 501596) (-2695 . 501332) (-2696 . 500789) (-2697 . 500495) - (-2698 . 500358) (-2699 . 500112) (-2700 . 499908) (-2701 . 499801) - (-2702 . 499700) (-2703 . 499590) (-2704 . 499480) (-2705 . 499352) - (-2706 . 499245) (-2707 . 499141) (-2708 . 498985) (-2709 . 498851) - (-2710 . 498717) (-2711 . 498607) (-2712 . 498488) (-2713 . 498311) - (-2714 . 498177) (-2715 . 498040) (-2716 . 497909) (-2717 . 497799) - (-2718 . 497677) (-2719 . 497552) (-2720 . 497451) (-2721 . 497267) - (-2722 . 497093) (-2723 . 496894) (-2724 . 496720) (-2725 . 496604) - (-2726 . 496479) (-2727 . 496351) (-2728 . 496232) (-2729 . 496007) - (-2730 . 495836) (-2731 . 495665) (-2732 . 495488) (-2733 . 495336) - (-2734 . 495059) (-2735 . 494667) (-2736 . 494536) (-2737 . 494331) - (-2738 . 494148) (-2739 . 493964) (-2740 . 493835) (-2741 . 493731) - (-2742 . 493590) (-2743 . 493458) (-2744 . 493344) (-2745 . 493196) - (-2746 . 493057) (-2747 . 492956) (-2748 . 492852) (-2749 . 492745) - (-2750 . 492635) (-2751 . 492534) (-2752 . 492427) (-2753 . 492320) - (-2754 . 492207) (-2755 . 492100) (-2756 . 491987) (-2757 . 491856) - (-2758 . 491707) (-2759 . 491169) (-2760 . 491026) (-2761 . 490876) - (-2762 . 490753) (-2763 . 490649) (-2764 . 490545) (-2765 . 490438) - (-2766 . 490300) (-2767 . 490193) (-2768 . 490062) (-2769 . 489906) - (-2770 . 489633) (-2771 . 489486) (-2772 . 489283) (-2773 . 489182) - (-2774 . 489028) (-2775 . 488908) (-2776 . 488779) (-2777 . 488684) - (-2778 . 488596) (-2779 . 488508) (-2780 . 488420) (-2781 . 488332) - (-2782 . 488244) (-2783 . 488150) (-2784 . 488062) (-2785 . 487974) - (-2786 . 487886) (-2787 . 487798) (-2788 . 487710) (-2789 . 487622) - (-2790 . 487534) (-2791 . 487446) (-2792 . 487358) (-2793 . 487270) - (-2794 . 487132) (-2795 . 486994) (-2796 . 486874) (-2797 . 486754) - (-2798 . 486613) (-2799 . 486525) (-2800 . 486437) (-2801 . 486349) - (-2802 . 486261) (-2803 . 486123) (-2804 . 485985) (-2805 . 485897) - (-2806 . 485809) (-2807 . 485721) (-2808 . 485633) (-2809 . 485545) - (-2810 . 485457) (-2811 . 485366) (-2812 . 485272) (-2813 . 485178) - (-2814 . 485081) (-2815 . 485031) (-2816 . 484981) (-2817 . 484928) - (-2818 . 484674) (-2819 . 484625) (-2820 . 484575) (-2821 . 484541) - (-2822 . 484476) (-2823 . 484439) (-2824 . 484302) (-2825 . 484064) - (-2826 . 483993) (-2827 . 483807) (-2828 . 483558) (-2829 . 483400) - (-2830 . 482873) (-2831 . 482674) (-2832 . 482459) (-2833 . 482297) - (-2834 . 481898) (-2835 . 481731) (-2836 . 480656) (-2837 . 480533) - (-2838 . 480316) (-2839 . 480185) (-2840 . 480054) (-2841 . 479896) - (-2842 . 479792) (-2843 . 479733) (-2844 . 479674) (-2845 . 479568) - (-2846 . 479462) (-2847 . 478544) (-2848 . 476415) (-2849 . 475599) - (-2850 . 473794) (-2851 . 473726) (-2852 . 473658) (-2853 . 473590) - (-2854 . 473522) (-2855 . 473454) (-2856 . 473376) (-2857 . 472974) - (-2858 . 472618) (-2859 . 472436) (-2860 . 471897) (-2861 . 471721) - (-2862 . 471499) (-2863 . 471277) (-2864 . 471055) (-2865 . 470836) - (-2866 . 470617) (-2867 . 470398) (-2868 . 470179) (-2869 . 469960) - (-2870 . 469741) (-2871 . 469640) (-2872 . 468907) (-2873 . 468852) - (-2874 . 468797) (-2875 . 468742) (-2876 . 468687) (-2877 . 468536) - (-2878 . 468243) (-2879 . 467994) (-2880 . 467966) (-2881 . 467916) - (-2882 . 467324) (-2883 . 466790) (-2884 . 466341) (-2885 . 466179) - (-2886 . 465998) (-2887 . 465709) (-2888 . 465321) (-2889 . 464445) - (-2890 . 464103) (-2891 . 463934) (-2892 . 463711) (-2893 . 463460) - (-2894 . 463110) (-2895 . 462092) (-2896 . 461777) (-2897 . 461565) - (-2898 . 460998) (-2899 . 460482) (-2900 . 458704) (-2901 . 458232) - (-2902 . 457633) (-2903 . 457383) (-2904 . 457249) (-2905 . 457034) - (-2906 . 456957) (-2907 . 456880) (-2908 . 456773) (-2909 . 456587) - (-2910 . 456418) (-2911 . 456238) (-2912 . 455647) (-2913 . 455484) - (-2914 . 454906) (-2915 . 454836) (-2916 . 454761) (-2917 . 454395) - (-2918 . 453716) (-2919 . 453538) (-2920 . 453466) (-2921 . 453326) - (-2922 . 453136) (-2923 . 453029) (-2924 . 452922) (-2925 . 452806) - (-2926 . 452690) (-2927 . 452574) (-2928 . 452296) (-2929 . 452145) - (-2930 . 452001) (-2931 . 451927) (-2932 . 451841) (-2933 . 451767) - (-2934 . 451693) (-2935 . 451619) (-2936 . 451475) (-2937 . 451324) - (-2938 . 451149) (-2939 . 450998) (-2940 . 450847) (-2941 . 450720) - (-2942 . 450331) (-2943 . 450045) (-2944 . 449759) (-2945 . 449348) - (-2946 . 449062) (-2947 . 448989) (-2948 . 448842) (-2949 . 448736) - (-2950 . 448662) (-2951 . 448592) (-2952 . 448513) (-2953 . 448436) - (-2954 . 448359) (-2955 . 448207) (-2956 . 448104) (-2957 . 448045) - (-2958 . 447980) (-2959 . 447915) (-2960 . 447818) (-2961 . 447721) - (-2962 . 447561) (-2963 . 447474) (-2964 . 447387) (-2965 . 447300) - (-2966 . 447241) (-2967 . 447182) (-2968 . 447049) (-2969 . 446990) - (-2970 . 446820) (-2971 . 446732) (-2972 . 446635) (-2973 . 446601) - (-2974 . 446570) (-2975 . 446486) (-2976 . 446430) (-2977 . 446368) - (-2978 . 446334) (-2979 . 446300) (-2980 . 446266) (-2981 . 446232) - (-2982 . 446198) (-2983 . 443445) (-2984 . 443411) (-2985 . 443377) - (-2986 . 443343) (-2987 . 443231) (-2988 . 443197) (-2989 . 443145) - (-2990 . 443111) (-2991 . 443014) (-2992 . 442952) (-2993 . 442861) - (-2994 . 442770) (-2995 . 442715) (-2996 . 442663) (-2997 . 442611) - (-2998 . 442559) (-2999 . 442507) (-3000 . 442082) (-3001 . 441916) - (-3002 . 441863) (-3003 . 441794) (-3004 . 441741) (-3005 . 441511) - (-3006 . 441355) (-3007 . 440834) (-3008 . 440693) (-3009 . 440659) - (-3010 . 440604) (-3011 . 439893) (-3012 . 439578) (-3013 . 439073) - (-3014 . 438995) (-3015 . 438943) (-3016 . 438891) (-3017 . 438707) - (-3018 . 438655) (-3019 . 438603) (-3020 . 438527) (-3021 . 438465) - (-3022 . 438247) (-3023 . 438180) (-3024 . 438086) (-3025 . 437992) - (-3026 . 437809) (-3027 . 437727) (-3028 . 437605) (-3029 . 437459) - (-3030 . 436799) (-3031 . 436092) (-3032 . 435988) (-3033 . 435887) - (-3034 . 435786) (-3035 . 435675) (-3036 . 435507) (-3037 . 435301) - (-3038 . 435208) (-3039 . 435131) (-3040 . 435075) (-3041 . 435004) - (-3042 . 434884) (-3043 . 434783) (-3044 . 434685) (-3045 . 434605) - (-3046 . 434525) (-3047 . 434448) (-3048 . 434377) (-3049 . 434306) - (-3050 . 434235) (-3051 . 434164) (-3052 . 434093) (-3053 . 434022) - (-3054 . 433929) (-3055 . 433734) (-3056 . 433490) (-3057 . 433320) - (-3058 . 432948) (-3059 . 432779) (-3060 . 432663) (-3061 . 432159) - (-3062 . 431777) (-3063 . 431531) (-3064 . 431102) (-3065 . 431010) - (-3066 . 430913) (-3067 . 427623) (-3068 . 426960) (-3069 . 426847) - (-3070 . 426773) (-3071 . 426681) (-3072 . 426487) (-3073 . 426293) - (-3074 . 426222) (-3075 . 426151) (-3076 . 426070) (-3077 . 425989) - (-3078 . 425864) (-3079 . 425730) (-3080 . 425649) (-3081 . 425575) - (-3082 . 425410) (-3083 . 425251) (-3084 . 425020) (-3085 . 424872) - (-3086 . 424768) (-3087 . 424664) (-3088 . 424579) (-3089 . 424211) - (-3090 . 424130) (-3091 . 424043) (-3092 . 423962) (-3093 . 423716) - (-3094 . 423496) (-3095 . 423309) (-3096 . 422987) (-3097 . 422694) - (-3098 . 422401) (-3099 . 422091) (-3100 . 421774) (-3101 . 421622) - (-3102 . 421434) (-3103 . 420961) (-3104 . 420879) (-3105 . 420663) - (-3106 . 420447) (-3107 . 420188) (-3108 . 419764) (-3109 . 419250) - (-3110 . 419120) (-3111 . 418846) (-3112 . 418667) (-3113 . 418552) - (-3114 . 418448) (-3115 . 418393) (-3116 . 418316) (-3117 . 418246) - (-3118 . 418173) (-3119 . 418118) (-3120 . 418045) (-3121 . 417990) - (-3122 . 417635) (-3123 . 417227) (-3124 . 417074) (-3125 . 416921) - (-3126 . 416840) (-3127 . 416687) (-3128 . 416534) (-3129 . 416399) - (-3130 . 416264) (-3131 . 416129) (-3132 . 415994) (-3133 . 415859) - (-3134 . 415724) (-3135 . 415668) (-3136 . 415515) (-3137 . 415404) - (-3138 . 415293) (-3139 . 415208) (-3140 . 415098) (-3141 . 414995) - (-3142 . 410844) (-3143 . 410396) (-3144 . 409969) (-3145 . 409352) - (-3146 . 408751) (-3147 . 408533) (-3148 . 408355) (-3149 . 408095) - (-3150 . 407684) (-3151 . 407390) (-3152 . 406947) (-3153 . 406769) - (-3154 . 406376) (-3155 . 405983) (-3156 . 405798) (-3157 . 405591) - (-3158 . 405370) (-3159 . 405064) (-3160 . 404865) (-3161 . 404236) - (-3162 . 404079) (-3163 . 403688) (-3164 . 403636) (-3165 . 403587) - (-3166 . 403535) (-3167 . 403486) (-3168 . 403434) (-3169 . 403288) - (-3170 . 403236) (-3171 . 403090) (-3172 . 403038) (-3173 . 402892) - (-3174 . 402840) (-3175 . 402465) (-3176 . 402413) (-3177 . 402364) - (-3178 . 402312) (-3179 . 402263) (-3180 . 402211) (-3181 . 402162) - (-3182 . 402110) (-3183 . 402061) (-3184 . 402009) (-3185 . 401960) - (-3186 . 401894) (-3187 . 401776) (-3188 . 400614) (-3189 . 400197) - (-3190 . 400089) (-3191 . 399846) (-3192 . 399696) (-3193 . 399546) - (-3194 . 399379) (-3195 . 397163) (-3196 . 396899) (-3197 . 396745) - (-3198 . 396599) (-3199 . 396453) (-3200 . 396234) (-3201 . 396102) - (-3202 . 396027) (-3203 . 395952) (-3204 . 395817) (-3205 . 395687) - (-3206 . 395557) (-3207 . 395430) (-3208 . 395303) (-3209 . 395176) - (-3210 . 395049) (-3211 . 394946) (-3212 . 394846) (-3213 . 394752) - (-3214 . 394622) (-3215 . 394471) (-3216 . 394092) (-3217 . 393977) - (-3218 . 393734) (-3219 . 393271) (-3220 . 392958) (-3221 . 392389) - (-3222 . 391818) (-3223 . 390803) (-3224 . 390259) (-3225 . 389946) - (-3226 . 389608) (-3227 . 389277) (-3228 . 388957) (-3229 . 388904) - (-3230 . 388777) (-3231 . 388272) (-3232 . 387129) (-3233 . 387074) - (-3234 . 387019) (-3235 . 386943) (-3236 . 386824) (-3237 . 386749) - (-3238 . 386674) (-3239 . 386596) (-3240 . 386371) (-3241 . 386312) - (-3242 . 386253) (-3243 . 386150) (-3244 . 386047) (-3245 . 385944) - (-3246 . 385841) (-3247 . 385760) (-3248 . 385686) (-3249 . 385471) - (-3250 . 385237) (-3251 . 385203) (-3252 . 385169) (-3253 . 385141) - (-3254 . 385113) (-3255 . 384895) (-3256 . 384617) (-3257 . 384467) - (-3258 . 384337) (-3259 . 384207) (-3260 . 384107) (-3261 . 383930) - (-3262 . 383770) (-3263 . 383670) (-3264 . 383493) (-3265 . 383333) - (-3266 . 383174) (-3267 . 383035) (-3268 . 382885) (-3269 . 382755) - (-3270 . 382625) (-3271 . 382478) (-3272 . 382351) (-3273 . 382248) - (-3274 . 382141) (-3275 . 382044) (-3276 . 381879) (-3277 . 381731) - (-3278 . 381316) (-3279 . 381216) (-3280 . 381113) (-3281 . 381025) - (-3282 . 380945) (-3283 . 380795) (-3284 . 380665) (-3285 . 380613) - (-3286 . 380540) (-3287 . 380465) (-3288 . 380189) (-3289 . 380077) - (-3290 . 379764) (-3291 . 379583) (-3292 . 377972) (-3293 . 377339) - (-3294 . 377279) (-3295 . 377161) (-3296 . 377043) (-3297 . 376899) - (-3298 . 376744) (-3299 . 376583) (-3300 . 376422) (-3301 . 376214) - (-3302 . 376025) (-3303 . 375870) (-3304 . 375712) (-3305 . 375554) - (-3306 . 375399) (-3307 . 375259) (-3308 . 374833) (-3309 . 374705) - (-3310 . 374577) (-3311 . 374449) (-3312 . 374306) (-3313 . 374163) - (-3314 . 374021) (-3315 . 373876) (-3316 . 373123) (-3317 . 372963) - (-3318 . 372775) (-3319 . 372618) (-3320 . 372378) (-3321 . 372131) - (-3322 . 371884) (-3323 . 371673) (-3324 . 371534) (-3325 . 371323) - (-3326 . 371033) (-3327 . 370822) (-3328 . 370683) (-3329 . 370472) - (-3330 . 370166) (-3331 . 370021) (-3332 . 369879) (-3333 . 369655) - (-3334 . 369513) (-3335 . 369288) (-3336 . 369089) (-3337 . 368932) - (-3338 . 368602) (-3339 . 368442) (-3340 . 368282) (-3341 . 368122) - (-3342 . 367950) (-3343 . 367778) (-3344 . 367603) (-3345 . 367251) - (-3346 . 367057) (-3347 . 366895) (-3348 . 366820) (-3349 . 366745) - (-3350 . 366670) (-3351 . 366595) (-3352 . 366520) (-3353 . 366445) - (-3354 . 366320) (-3355 . 366145) (-3356 . 366020) (-3357 . 365933) - (-3358 . 365866) (-3359 . 365799) (-3360 . 365732) (-3361 . 365665) - (-3362 . 365598) (-3363 . 365531) (-3364 . 365464) (-3365 . 365397) - (-3366 . 365330) (-3367 . 365263) (-3368 . 365196) (-3369 . 365129) - (-3370 . 365062) (-3371 . 364995) (-3372 . 364928) (-3373 . 364861) - (-3374 . 364794) (-3375 . 364727) (-3376 . 364660) (-3377 . 364593) - (-3378 . 364526) (-3379 . 364459) (-3380 . 364392) (-3381 . 364325) - (-3382 . 364258) (-3383 . 364191) (-3384 . 363540) (-3385 . 362889) - (-3386 . 362760) (-3387 . 362636) (-3388 . 362512) (-3389 . 362370) - (-3390 . 362214) (-3391 . 362069) (-3392 . 361892) (-3393 . 361281) - (-3394 . 361156) (-3395 . 361030) (-3396 . 360349) (-3397 . 359648) - (-3398 . 359546) (-3399 . 359489) (-3400 . 359432) (-3401 . 359375) - (-3402 . 359318) (-3403 . 359258) (-3404 . 359193) (-3405 . 359084) - (-3406 . 358975) (-3407 . 358866) (-3408 . 358586) (-3409 . 358511) - (-3410 . 358284) (-3411 . 358202) (-3412 . 358123) (-3413 . 358044) - (-3414 . 357965) (-3415 . 357885) (-3416 . 357806) (-3417 . 357712) - (-3418 . 357611) (-3419 . 357542) (-3420 . 357492) (-3421 . 356798) - (-3422 . 356147) (-3423 . 355353) (-3424 . 355271) (-3425 . 355166) - (-3426 . 355073) (-3427 . 354980) (-3428 . 354905) (-3429 . 354830) - (-3430 . 354755) (-3431 . 354699) (-3432 . 354643) (-3433 . 354576) - (-3434 . 354509) (-3435 . 354446) (-3436 . 354054) (-3437 . 353559) - (-3438 . 353099) (-3439 . 352844) (-3440 . 352653) (-3441 . 352309) - (-3442 . 352011) (-3443 . 351841) (-3444 . 351709) (-3445 . 351568) - (-3446 . 351412) (-3447 . 351242) (-3448 . 349848) (-3449 . 349710) - (-3450 . 349564) (-3451 . 349333) (-3452 . 349063) (-3453 . 349003) - (-3454 . 348946) (-3455 . 348889) (-3456 . 348676) (-3457 . 348536) - (-3458 . 348428) (-3459 . 348310) (-3460 . 348243) (-3461 . 348169) - (-3462 . 348054) (-3463 . 347797) (-3464 . 347695) (-3465 . 347497) - (-3466 . 347181) (-3467 . 346707) (-3468 . 346600) (-3469 . 346492) - (-3470 . 346341) (-3471 . 346199) (-3472 . 345780) (-3473 . 345530) - (-3474 . 344853) (-3475 . 344698) (-3476 . 344583) (-3477 . 344472) - (-3478 . 343649) (-3479 . 343596) (-3480 . 343543) (-3481 . 343347) - (-3482 . 342068) (-3483 . 341617) (-3484 . 340221) (-3485 . 339365) - (-3486 . 339315) (-3487 . 339265) (-3488 . 339215) (-3489 . 339147) - (-3490 . 339071) (-3491 . 338880) (-3492 . 338807) (-3493 . 338731) - (-3494 . 338658) (-3495 . 338540) (-3496 . 338488) (-3497 . 338408) - (-3498 . 338328) (-3499 . 338248) (-3500 . 338196) (-3501 . 337949) - (-3502 . 337646) (-3503 . 337561) (-3504 . 337476) (-3505 . 337414) - (-3506 . 337024) (-3507 . 336148) (-3508 . 335572) (-3509 . 334334) - (-3510 . 333523) (-3511 . 333271) (-3512 . 333019) (-3513 . 332592) - (-3514 . 332346) (-3515 . 332100) (-3516 . 331854) (-3517 . 331608) - (-3518 . 331362) (-3519 . 331116) (-3520 . 330869) (-3521 . 330622) - (-3522 . 330375) (-3523 . 330128) (-3524 . 329545) (-3525 . 329427) - (-3526 . 328576) (-3527 . 328544) (-3528 . 328195) (-3529 . 327967) - (-3530 . 327866) (-3531 . 327765) (-3532 . 325992) (-3533 . 325878) - (-3534 . 324823) (-3535 . 324730) (-3536 . 323806) (-3537 . 323471) - (-3538 . 323136) (-3539 . 323031) (-3540 . 322944) (-3541 . 322915) - (-3542 . 322858) (-3543 . 322778) (-3544 . 322706) (-3545 . 322631) - (-3546 . 322556) (-3547 . 322524) (-3548 . 322492) (-3549 . 322460) - (-3550 . 322428) (-3551 . 322396) (-3552 . 322364) (-3553 . 322332) - (-3554 . 322300) (-3555 . 322271) (-3556 . 322158) (-3557 . 322045) - (-3558 . 321932) (-3559 . 321819) (-3560 . 320730) (-3561 . 320608) - (-3562 . 320471) (-3563 . 320337) (-3564 . 320203) (-3565 . 319906) - (-3566 . 319609) (-3567 . 319261) (-3568 . 319031) (-3569 . 318801) - (-3570 . 318688) (-3571 . 318575) (-3572 . 313293) (-3573 . 308919) - (-3574 . 308607) (-3575 . 308452) (-3576 . 307924) (-3577 . 307591) - (-3578 . 307394) (-3579 . 307197) (-3580 . 307000) (-3581 . 306803) - (-3582 . 306687) (-3583 . 306561) (-3584 . 306445) (-3585 . 306329) - (-3586 . 306234) (-3587 . 306139) (-3588 . 306026) (-3589 . 305820) - (-3590 . 304664) (-3591 . 304569) (-3592 . 304453) (-3593 . 304358) - (-3594 . 304109) (-3595 . 303996) (-3596 . 303778) (-3597 . 303659) - (-3598 . 303358) (-3599 . 302627) (-3600 . 302044) (-3601 . 301563) - (-3602 . 301315) (-3603 . 301067) (-3604 . 300719) (-3605 . 300105) - (-3606 . 299657) (-3607 . 299500) (-3608 . 299354) (-3609 . 299028) - (-3610 . 298870) (-3611 . 298727) (-3612 . 298584) (-3613 . 298441) - (-3614 . 298160) (-3615 . 297938) (-3616 . 297411) (-3617 . 297196) - (-3618 . 296981) (-3619 . 296593) (-3620 . 296413) (-3621 . 296201) - (-3622 . 295890) (-3623 . 295696) (-3624 . 295521) (-3625 . 294375) - (-3626 . 294003) (-3627 . 293800) (-3628 . 293594) (-3629 . 292751) - (-3630 . 292722) (-3631 . 292653) (-3632 . 292582) (-3633 . 292415) - (-3634 . 292386) (-3635 . 292357) (-3636 . 292301) (-3637 . 292148) - (-3638 . 292088) (-3639 . 291392) (-3640 . 290006) (-3641 . 289945) - (-3642 . 289619) (-3643 . 289547) (-3644 . 289490) (-3645 . 289433) - (-3646 . 289376) (-3647 . 289319) (-3648 . 289244) (-3649 . 288652) - (-3650 . 288292) (-3651 . 288217) (-3652 . 288157) (-3653 . 288039) - (-3654 . 287088) (-3655 . 286961) (-3656 . 286748) (-3657 . 286673) - (-3658 . 286619) (-3659 . 286565) (-3660 . 286456) (-3661 . 286143) - (-3662 . 286035) (-3663 . 285932) (-3664 . 285771) (-3665 . 285670) - (-3666 . 285572) (-3667 . 285434) (-3668 . 285296) (-3669 . 285158) - (-3670 . 284896) (-3671 . 284686) (-3672 . 284548) (-3673 . 284259) - (-3674 . 284106) (-3675 . 283827) (-3676 . 283605) (-3677 . 283452) - (-3678 . 283299) (-3679 . 283146) (-3680 . 282993) (-3681 . 282840) - (-3682 . 282630) (-3683 . 282510) (-3684 . 282118) (-3685 . 281782) - (-3686 . 281436) (-3687 . 281084) (-3688 . 280738) (-3689 . 280392) - (-3690 . 280004) (-3691 . 279616) (-3692 . 279228) (-3693 . 278856) - (-3694 . 278124) (-3695 . 277772) (-3696 . 277314) (-3697 . 276884) - (-3698 . 276266) (-3699 . 275664) (-3700 . 275272) (-3701 . 274936) - (-3702 . 274544) (-3703 . 274208) (-3704 . 273986) (-3705 . 273459) - (-3706 . 273244) (-3707 . 273029) (-3708 . 272813) (-3709 . 272633) - (-3710 . 272417) (-3711 . 272237) (-3712 . 271849) (-3713 . 271669) - (-3714 . 271457) (-3715 . 271367) (-3716 . 271277) (-3717 . 271186) - (-3718 . 271074) (-3719 . 270984) (-3720 . 270876) (-3721 . 270687) - (-3722 . 270631) (-3723 . 270550) (-3724 . 270469) (-3725 . 270388) - (-3726 . 270253) (-3727 . 270118) (-3728 . 269994) (-3729 . 269873) - (-3730 . 269755) (-3731 . 269619) (-3732 . 269486) (-3733 . 269367) - (-3734 . 269108) (-3735 . 268823) (-3736 . 268751) (-3737 . 268659) - (-3738 . 268567) (-3739 . 268481) (-3740 . 268383) (-3741 . 268242) - (-3742 . 268185) (-3743 . 268128) (-3744 . 268068) (-3745 . 267671) - (-3746 . 267147) (-3747 . 266869) (-3748 . 266448) (-3749 . 266335) - (-3750 . 265893) (-3751 . 265661) (-3752 . 265458) (-3753 . 265276) - (-3754 . 265146) (-3755 . 264940) (-3756 . 264733) (-3757 . 264542) - (-3758 . 263977) (-3759 . 263721) (-3760 . 263430) (-3761 . 263136) - (-3762 . 262839) (-3763 . 262539) (-3764 . 262409) (-3765 . 262276) - (-3766 . 262140) (-3767 . 262001) (-3768 . 260784) (-3769 . 260476) - (-3770 . 260112) (-3771 . 260015) (-3772 . 259774) (-3773 . 259478) - (-3774 . 259182) (-3775 . 258921) (-3776 . 258746) (-3777 . 258667) - (-3778 . 258579) (-3779 . 258478) (-3780 . 258383) (-3781 . 258301) - (-3782 . 258229) (-3783 . 257428) (-3784 . 257356) (-3785 . 257024) - (-3786 . 256952) (-3787 . 256620) (-3788 . 256548) (-3789 . 256099) - (-3790 . 256027) (-3791 . 255922) (-3792 . 255847) (-3793 . 255772) - (-3794 . 255700) (-3795 . 255357) (-3796 . 255227) (-3797 . 255150) - (-3798 . 254601) (-3799 . 254458) (-3800 . 254315) (-3801 . 253860) - (-3802 . 253529) (-3803 . 253316) (-3804 . 253061) (-3805 . 252711) - (-3806 . 252486) (-3807 . 252261) (-3808 . 252036) (-3809 . 251811) - (-3810 . 251598) (-3811 . 251385) (-3812 . 251233) (-3813 . 251049) - (-3814 . 250944) (-3815 . 250821) (-3816 . 250713) (-3817 . 250605) - (-3818 . 250278) (-3819 . 250011) (-3820 . 249698) (-3821 . 249392) - (-3822 . 249082) (-3823 . 248347) (-3824 . 247752) (-3825 . 247575) - (-3826 . 247430) (-3827 . 247275) (-3828 . 247152) (-3829 . 247047) - (-3830 . 246932) (-3831 . 246833) (-3832 . 246349) (-3833 . 246239) - (-3834 . 246129) (-3835 . 246019) (-3836 . 244932) (-3837 . 244417) - (-3838 . 244350) (-3839 . 244276) (-3840 . 243403) (-3841 . 243329) - (-3842 . 243273) (-3843 . 243217) (-3844 . 243185) (-3845 . 243099) - (-3846 . 243067) (-3847 . 242981) (-3848 . 242557) (-3849 . 242133) - (-3850 . 241576) (-3851 . 240464) (-3852 . 238740) (-3853 . 237178) - (-3854 . 236382) (-3855 . 235878) (-3856 . 235386) (-3857 . 234978) - (-3858 . 234318) (-3859 . 234243) (-3860 . 234151) (-3861 . 234079) - (-3862 . 234007) (-3863 . 233951) (-3864 . 233829) (-3865 . 233775) - (-3866 . 233714) (-3867 . 233660) (-3868 . 233557) (-3869 . 233117) - (-3870 . 232677) (-3871 . 232237) (-3872 . 231715) (-3873 . 231550) - (-3874 . 231385) (-3875 . 231074) (-3876 . 230987) (-3877 . 230897) - (-3878 . 230539) (-3879 . 230422) (-3880 . 230341) (-3881 . 230182) - (-3882 . 230068) (-3883 . 229993) (-3884 . 229141) (-3885 . 227954) - (-3886 . 227854) (-3887 . 227754) (-3888 . 227423) (-3889 . 227344) - (-3890 . 227268) (-3891 . 227161) (-3892 . 227003) (-3893 . 226895) - (-3894 . 226759) (-3895 . 226623) (-3896 . 226500) (-3897 . 226404) - (-3898 . 226255) (-3899 . 226159) (-3900 . 226004) (-3901 . 225849) - (-3902 . 225183) (-3903 . 224517) (-3904 . 223788) (-3905 . 223234) - (-3906 . 222680) (-3907 . 222126) (-3908 . 221459) (-3909 . 220792) - (-3910 . 220125) (-3911 . 219570) (-3912 . 219015) (-3913 . 218460) - (-3914 . 217906) (-3915 . 217352) (-3916 . 216798) (-3917 . 216244) - (-3918 . 215690) (-3919 . 215136) (-3920 . 215032) (-3921 . 214443) - (-3922 . 214337) (-3923 . 214261) (-3924 . 214118) (-3925 . 214025) - (-3926 . 213932) (-3927 . 213839) (-3928 . 213740) (-3929 . 213634) - (-3930 . 213510) (-3931 . 213386) (-3932 . 213019) (-3933 . 212896) - (-3934 . 212794) (-3935 . 212430) (-3936 . 211896) (-3937 . 211820) - (-3938 . 211744) (-3939 . 211651) (-3940 . 211468) (-3941 . 211372) - (-3942 . 211296) (-3943 . 211203) (-3944 . 211110) (-3945 . 210947) - (-3946 . 210396) (-3947 . 209845) (-3948 . 207048) (-3949 . 206875) - (-3950 . 205459) (-3951 . 204897) (-3952 . 204698) (-12 . 204526) - (-3954 . 204354) (-3955 . 204182) (-3956 . 204010) (-3957 . 203838) - (-3958 . 203666) (-3959 . 203494) (-3960 . 203379) (-3961 . 203007) - (-3962 . 202944) (-3963 . 202881) (-3964 . 202818) (-3965 . 202540) - (-3966 . 202273) (-3967 . 202220) (-3968 . 201577) (-3969 . 201526) - (-3970 . 201333) (-3971 . 201260) (-3972 . 201180) (-3973 . 201067) - (-3974 . 200877) (-3975 . 200513) (-3976 . 200241) (-3977 . 200190) - (-3978 . 200139) (-3979 . 200069) (-3980 . 199950) (-3981 . 199921) - (-3982 . 199819) (-3983 . 199697) (-3984 . 199643) (-3985 . 199466) - (-3986 . 199405) (-3987 . 199224) (-3988 . 199163) (-3989 . 199091) - (-3990 . 198616) (-3991 . 198240) (-3992 . 194637) (-3993 . 194584) - (-3994 . 194456) (-3995 . 194306) (-3996 . 194253) (-3997 . 194112) - (-3998 . 192051) (-3999 . 182812) (-4000 . 182661) (-4001 . 182591) - (-4002 . 182540) (-4003 . 182490) (-4004 . 182439) (-4005 . 182388) - (-4006 . 182190) (-4007 . 182047) (-4008 . 181933) (-4009 . 181812) - (-4010 . 181694) (-4011 . 181582) (-4012 . 181464) (-4013 . 181359) - (-4014 . 181278) (-4015 . 181174) (-4016 . 180236) (-4017 . 180016) - (-4018 . 179779) (-4019 . 179697) (-4020 . 179350) (-4021 . 178195) - (-4022 . 178121) (-4023 . 178026) (-4024 . 177952) (-4025 . 177750) - (-4026 . 177659) (-4027 . 177543) (-4028 . 177430) (-4029 . 177339) - (-4030 . 177248) (-4031 . 177158) (-4032 . 177068) (-4033 . 176978) - (-4034 . 176890) (-4035 . 174528) (-4036 . 174460) (-4037 . 174406) - (-4038 . 174342) (-4039 . 174278) (-4040 . 174214) (-4041 . 174153) - (-4042 . 173411) (-4043 . 173350) (-4044 . 173289) (-4045 . 172660) - (-4046 . 172607) (-4047 . 172479) (-4048 . 172415) (-4049 . 172361) - (-4050 . 172252) (-4051 . 170950) (-4052 . 170868) (-4053 . 170778) - (-4054 . 170720) (-4055 . 170470) (-4056 . 170385) (-4057 . 170310) - (-4058 . 170225) (-4059 . 170168) (-4060 . 169952) (-4061 . 169810) - (-4062 . 169089) (-4063 . 168533) (-4064 . 167977) (-4065 . 167421) - (-4066 . 166700) (-4067 . 166032) (-4068 . 165468) (-4069 . 164904) - (-4070 . 164640) (-4071 . 164198) (-4072 . 163863) (-4073 . 163519) - (-4074 . 163212) (-4075 . 163079) (-4076 . 162946) (-4077 . 162557) - (-4078 . 162464) (-4079 . 162371) (-4080 . 162278) (-4081 . 162185) - (-4082 . 162092) (-4083 . 161999) (-4084 . 161906) (-4085 . 161813) - (-4086 . 161720) (-4087 . 161627) (-4088 . 161534) (-4089 . 161441) - (-4090 . 161348) (-4091 . 161255) (-4092 . 161162) (-4093 . 161069) - (-4094 . 160976) (-4095 . 160883) (-4096 . 160790) (-4097 . 160697) - (-4098 . 160604) (-4099 . 160511) (-4100 . 160418) (-4101 . 160325) - (-4102 . 160232) (-4103 . 160047) (-4104 . 159732) (-4105 . 158160) - (-4106 . 158005) (-4107 . 157867) (-4108 . 157724) (-4109 . 157521) - (-4110 . 155566) (-4111 . 155438) (-4112 . 155313) (-4113 . 155185) - (-4114 . 154961) (-4115 . 154737) (-4116 . 154609) (-4117 . 154406) - (-4118 . 154227) (-4119 . 153700) (-4120 . 153173) (-4121 . 152892) - (-4122 . 152474) (-4123 . 151947) (-4124 . 151762) (-4125 . 151619) - (-4126 . 151119) (-4127 . 150476) (-4128 . 150420) (-4129 . 150326) - (-4130 . 150205) (-4131 . 150134) (-4132 . 150060) (-4133 . 149829) - (-4134 . 149204) (-4135 . 148772) (-4136 . 148690) (-4137 . 148548) - (-4138 . 148070) (-4139 . 147948) (-4140 . 147826) (-4141 . 147686) - (-4142 . 147499) (-4143 . 147383) (-4144 . 147099) (-4145 . 147030) - (-4146 . 146831) (-4147 . 146649) (-4148 . 146494) (-4149 . 146387) - (-4150 . 146336) (-4151 . 145952) (-4152 . 145424) (-4153 . 145202) - (-4154 . 144980) (-4155 . 144739) (-4156 . 144648) (-4157 . 142896) - (-4158 . 142307) (-4159 . 142228) (-4160 . 136759) (-4161 . 135968) - (-4162 . 135589) (-4163 . 135517) (-4164 . 135251) (-4165 . 135076) - (-4166 . 134586) (-4167 . 134160) (-4168 . 133716) (-4169 . 132848) - (-4170 . 132724) (-4171 . 132597) (-4172 . 132488) (-4173 . 132336) - (-4174 . 132222) (-4175 . 132083) (-4176 . 132001) (-4177 . 131919) - (-4178 . 131811) (-4179 . 131391) (-4180 . 130967) (-4181 . 130892) - (-4182 . 130626) (-4183 . 130359) (-4184 . 129976) (-4185 . 129275) - (-4186 . 128231) (-4187 . 128171) (-4188 . 128096) (-4189 . 128021) - (-4190 . 127898) (-4191 . 127646) (-4192 . 127559) (-4193 . 127483) - (-4194 . 127407) (-4195 . 127311) (-4196 . 123392) (-4197 . 122210) - (-4198 . 121546) (-4199 . 121359) (-4200 . 119143) (-4201 . 118817) - (-4202 . 118332) (-4203 . 117888) (-4204 . 117653) (-4205 . 117405) - (-4206 . 117314) (-4207 . 115867) (-4208 . 115788) (-4209 . 115682) - (-4210 . 114198) (-4211 . 113792) (-4212 . 113389) (-4213 . 113287) - (-4214 . 113205) (-4215 . 113047) (-4216 . 111748) (-4217 . 111666) - (-4218 . 111587) (-4219 . 111232) (-4220 . 111175) (-4221 . 111103) - (-4222 . 111046) (-4223 . 110989) (-4224 . 110859) (-4225 . 110655) - (-4226 . 110286) (-4227 . 109864) (-4228 . 105900) (-4229 . 105297) - (-4230 . 104669) (-4231 . 104454) (-4232 . 104239) (-4233 . 104071) - (-4234 . 103856) (-4235 . 103688) (-4236 . 103520) (-4237 . 103352) - (-4238 . 103184) (-4239 . 102912) (-4240 . 96037) (** . 93070) (-4242 . 92650) - (-4243 . 92402) (-4244 . 92345) (-4245 . 91847) (-4246 . 89022) - (-4247 . 88872) (-4248 . 88708) (-4249 . 88544) (-4250 . 88448) - (-4251 . 88330) (-4252 . 88206) (-4253 . 88063) (-4254 . 87892) - (-4255 . 87765) (-4256 . 87620) (-4257 . 87467) (-4258 . 87307) - (-4259 . 86791) (-4260 . 86700) (-4261 . 86030) (-4262 . 85836) - (-4263 . 85740) (-4264 . 85430) (-4265 . 84254) (-4266 . 84047) - (-4267 . 82870) (-4268 . 82795) (-4269 . 81614) (-4270 . 78021) - (-4271 . 77657) (-4272 . 77380) (-4273 . 77288) (-4274 . 77195) - (-4275 . 76918) (-4276 . 76825) (-4277 . 76732) (-4278 . 76639) - (-4279 . 76255) (-4280 . 76184) (-4281 . 76092) (-4282 . 75934) - (-4283 . 75580) (-4284 . 75422) (-4285 . 75314) (-4286 . 75285) - (-4287 . 75218) (-4288 . 75064) (-4289 . 74905) (-4290 . 74511) - (-4291 . 74436) (-4292 . 74330) (-4293 . 74258) (-4294 . 74180) - (-4295 . 74107) (-4296 . 74034) (-4297 . 73961) (-4298 . 73889) - (-4299 . 73817) (-4300 . 73744) (-4301 . 73503) (-4302 . 73163) - (-4303 . 73015) (-4304 . 72942) (-4305 . 72869) (-4306 . 72796) - (-4307 . 72542) (-4308 . 72398) (-4309 . 71062) (-4310 . 70868) - (-4311 . 70597) (-4312 . 70449) (-4313 . 70301) (-4314 . 70061) - (-4315 . 69866) (-4316 . 69596) (-4317 . 69400) (-4318 . 69371) - (-4319 . 69270) (-4320 . 69169) (-4321 . 69068) (-4322 . 68967) - (-4323 . 68866) (-4324 . 68765) (-4325 . 68664) (-4326 . 68563) - (-4327 . 68462) (-4328 . 68361) (-4329 . 68246) (-4330 . 68131) - (-4331 . 68080) (-4332 . 67963) (-4333 . 67905) (-4334 . 67804) - (-4335 . 67703) (-4336 . 67602) (-4337 . 67486) (-4338 . 67457) - (-4339 . 66725) (-4340 . 66600) (-4341 . 66475) (-4342 . 66335) - (-4343 . 66217) (-4344 . 66092) (-4345 . 65937) (-4346 . 64953) - (-4347 . 64093) (-4348 . 64039) (-4349 . 63985) (-4350 . 63777) - (-4351 . 63403) (-4352 . 62989) (-4353 . 62628) (-4354 . 62267) - (-4355 . 62114) (-4356 . 61812) (-4357 . 61656) (-4358 . 61330) - (-4359 . 61259) (-4360 . 61188) (-4361 . 60976) (-4362 . 60169) - (-4363 . 59963) (-4364 . 59589) (-4365 . 59069) (-4366 . 58801) - (-4367 . 58317) (-4368 . 57833) (-4369 . 57707) (-4370 . 56492) - (-4371 . 55300) (-4372 . 54727) (-4373 . 54509) (-4374 . 36984) - (-4375 . 36798) (-4376 . 34698) (-4377 . 32521) (-4378 . 32373) - (-4379 . 32191) (-4380 . 31782) (-4381 . 31481) (-4382 . 31130) - (-4383 . 30962) (-4384 . 30794) (-4385 . 30380) (-4386 . 16301) - (-4387 . 15182) (* . 11115) (-4389 . 10859) (-4390 . 10673) (-4391 . 9711) - (-4392 . 9658) (-4393 . 9598) (-4394 . 9329) (-4395 . 8694) (-4396 . 7412) - (-4397 . 6153) (-4398 . 5273) (-4399 . 4007) (-4400 . 424) (-4401 . 308) - (-4402 . 174) (-4403 . 30))
\ No newline at end of file + (-12 (-5 *3 (-1117)) (-4 *4 (-510)) (-5 *2 (-599 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-510)) (-5 *2 (-599 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1111 *1)) (-5 *3 (-1117)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-884 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-4 *1 (-29 *3)) (-4 *3 (-510)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-510))))) +((-1242 . 669433) (-1243 . 669037) (-1244 . 668916) (-1245 . 668814) + (-1246 . 668701) (-1247 . 668585) (-1248 . 668532) (-1249 . 668395) + (-1250 . 668320) (-1251 . 668164) (-1252 . 667936) (-1253 . 666972) + (-1254 . 666725) (-1255 . 666441) (-1256 . 666157) (-1257 . 665873) + (-1258 . 665554) (-1259 . 665462) (-1260 . 665370) (-1261 . 665278) + (-1262 . 665186) (-1263 . 665094) (-1264 . 665002) (-1265 . 664907) + (-1266 . 664812) (-1267 . 664720) (-1268 . 664628) (-1269 . 664536) + (-1270 . 664444) (-1271 . 664352) (-1272 . 664250) (-1273 . 664148) + (-1274 . 664046) (-1275 . 663954) (-1276 . 663903) (-1277 . 663851) + (-1278 . 663781) (-1279 . 663359) (-1280 . 663165) (-1281 . 663138) + (-1282 . 663015) (-1283 . 662892) (-1284 . 662748) (-1285 . 662578) + (-1286 . 662454) (-1287 . 662215) (-1288 . 662142) (-1289 . 662001) + (-1290 . 661950) (-1291 . 661901) (-1292 . 661831) (-1293 . 661696) + (-1294 . 661561) (-1295 . 661336) (-1296 . 661090) (-1297 . 661037) + (-1298 . 660859) (-1299 . 660690) (-1300 . 660614) (-1301 . 660541) + (-1302 . 660388) (-1303 . 660235) (-1304 . 660051) (-1305 . 659870) + (-1306 . 659694) (-1307 . 659638) (-1308 . 659583) (-1309 . 659528) + (-1310 . 659455) (-1311 . 659379) (-1312 . 659311) (-1313 . 659168) + (-1314 . 659061) (-1315 . 658993) (-1316 . 658923) (-1317 . 658853) + (-1318 . 658803) (-1319 . 658753) (-1320 . 658703) (-1321 . 658582) + (-1322 . 658266) (-1323 . 658197) (-1324 . 658118) (-1325 . 657999) + (-1326 . 657919) (-1327 . 657839) (-1328 . 657686) (-1329 . 657537) + (-1330 . 657461) (-1331 . 657404) (-1332 . 657332) (-1333 . 657269) + (-1334 . 657206) (-1335 . 657145) (-1336 . 657073) (-1337 . 656957) + (-1338 . 656905) (-1339 . 656850) (-1340 . 656798) (-1341 . 656746) + (-1342 . 656718) (-1343 . 656690) (-1344 . 656662) (-1345 . 656618) + (-1346 . 656547) (-1347 . 656496) (-1348 . 656448) (-1349 . 656397) + (-1350 . 656345) (-1351 . 656229) (-1352 . 656113) (-1353 . 656021) + (-1354 . 655929) (-1355 . 655806) (-1356 . 655740) (-1357 . 655674) + (-1358 . 655615) (-1359 . 655587) (-1360 . 655559) (-1361 . 655531) + (-1362 . 655503) (-1363 . 655393) (-1364 . 655342) (-1365 . 655291) + (-1366 . 655240) (-1367 . 655189) (-1368 . 655138) (-1369 . 655087) + (-1370 . 655059) (-1371 . 655031) (-1372 . 655003) (-1373 . 654975) + (-1374 . 654947) (-1375 . 654919) (-1376 . 654891) (-1377 . 654863) + (-1378 . 654835) (-1379 . 654732) (-1380 . 654680) (-1381 . 654514) + (-1382 . 654330) (-1383 . 654119) (-1384 . 654004) (-1385 . 653771) + (-1386 . 653672) (-1387 . 653579) (-1388 . 653464) (-1389 . 653066) + (-1390 . 652848) (-1391 . 652799) (-1392 . 652771) (-1393 . 652695) + (-1394 . 652596) (-1395 . 652497) (-1396 . 652398) (-1397 . 652299) + (-1398 . 652200) (-1399 . 652101) (-1400 . 651943) (-1401 . 651867) + (-1402 . 651700) (-1403 . 651642) (-1404 . 651584) (-1405 . 651275) + (-1406 . 651021) (-1407 . 650937) (-1408 . 650804) (-1409 . 650746) + (-1410 . 650694) (-1411 . 650612) (-1412 . 650537) (-1413 . 650466) + (-1414 . 650412) (-1415 . 650361) (-1416 . 650287) (-1417 . 650213) + (-1418 . 650132) (-1419 . 650051) (-1420 . 649996) (-1421 . 649922) + (-1422 . 649848) (-1423 . 649774) (-1424 . 649697) (-1425 . 649643) + (-1426 . 649585) (-1427 . 649486) (-1428 . 649387) (-1429 . 649288) + (-1430 . 649189) (-1431 . 649090) (-1432 . 648991) (-1433 . 648892) + (-1434 . 648778) (-1435 . 648664) (-1436 . 648550) (-1437 . 648436) + (-1438 . 648322) (-1439 . 648208) (-1440 . 648091) (-1441 . 648015) + (-1442 . 647939) (-1443 . 647552) (-1444 . 647207) (-1445 . 647105) + (-1446 . 646844) (-1447 . 646742) (-1448 . 646537) (-1449 . 646424) + (-1450 . 646322) (-1451 . 646165) (-1452 . 646076) (-1453 . 645982) + (-1454 . 645902) (-1455 . 645828) (-1456 . 645750) (-1457 . 645691) + (-1458 . 645633) (-1459 . 645531) (-7 . 645503) (-8 . 645475) (-9 . 645447) + (-1463 . 645328) (-1464 . 645246) (-1465 . 645164) (-1466 . 645082) + (-1467 . 645000) (-1468 . 644918) (-1469 . 644824) (-1470 . 644754) + (-1471 . 644684) (-1472 . 644593) (-1473 . 644499) (-1474 . 644417) + (-1475 . 644335) (-1476 . 644237) (-1477 . 644077) (-1478 . 643879) + (-1479 . 643743) (-1480 . 643643) (-1481 . 643543) (-1482 . 643450) + (-1483 . 643391) (-1484 . 643058) (-1485 . 642958) (-1486 . 642840) + (-1487 . 642628) (-1488 . 642449) (-1489 . 642291) (-1490 . 642088) + (-1491 . 641670) (-1492 . 641619) (-1493 . 641510) (-1494 . 641395) + (-1495 . 641326) (-1496 . 641257) (-1497 . 641188) (-1498 . 641122) + (-1499 . 640997) (-1500 . 640780) (-1501 . 640702) (-1502 . 640652) + (-1503 . 640581) (-1504 . 640438) (-1505 . 640297) (-1506 . 640216) + (-1507 . 640135) (-1508 . 640079) (-1509 . 640023) (-1510 . 639950) + (-1511 . 639810) (-1512 . 639757) (-1513 . 639698) (-1514 . 639639) + (-1515 . 639484) (-1516 . 639432) (-1517 . 639315) (-1518 . 639198) + (-1519 . 639081) (-1520 . 638950) (-1521 . 638671) (-1522 . 638536) + (-1523 . 638480) (-1524 . 638424) (-1525 . 638365) (-1526 . 638306) + (-1527 . 638250) (-1528 . 638194) (-1529 . 637997) (-1530 . 635655) + (-1531 . 635528) (-1532 . 635383) (-1533 . 635255) (-1534 . 635203) + (-1535 . 635151) (-1536 . 635099) (-1537 . 631061) (-1538 . 630967) + (-1539 . 630828) (-1540 . 630619) (-1541 . 630517) (-1542 . 630415) + (-1543 . 629500) (-1544 . 629424) (-1545 . 629295) (-1546 . 629170) + (-1547 . 629093) (-1548 . 629016) (-1549 . 628889) (-1550 . 628762) + (-1551 . 628596) (-1552 . 628469) (-1553 . 628342) (-1554 . 628125) + (-1555 . 627691) (-1556 . 627327) (-1557 . 627275) (-1558 . 627216) + (-1559 . 627128) (-1560 . 627040) (-1561 . 626949) (-1562 . 626858) + (-1563 . 626767) (-1564 . 626676) (-1565 . 626585) (-1566 . 626494) + (-1567 . 626403) (-1568 . 626312) (-1569 . 626221) (-1570 . 626130) + (-1571 . 626039) (-1572 . 625948) (-1573 . 625857) (-1574 . 625766) + (-1575 . 625675) (-1576 . 625584) (-1577 . 625493) (-1578 . 625402) + (-1579 . 625311) (-1580 . 625220) (-1581 . 625129) (-1582 . 625038) + (-1583 . 624947) (-1584 . 624856) (-1585 . 624765) (-1586 . 624674) + (-1587 . 624512) (-1588 . 624404) (-1589 . 624161) (-1590 . 623874) + (-1591 . 623679) (-1592 . 623523) (-1593 . 623363) (-1594 . 623312) + (-1595 . 623250) (-1596 . 623199) (-1597 . 623136) (-1598 . 623083) + (-1599 . 623031) (-1600 . 622979) (-1601 . 622927) (-1602 . 622837) + (-1603 . 622650) (-1604 . 622496) (-1605 . 622416) (-1606 . 622336) + (-1607 . 622256) (-1608 . 622126) (-1609 . 621894) (-1610 . 621866) + (-1611 . 621838) (-1612 . 621810) (-1613 . 621730) (-1614 . 621653) + (-1615 . 621576) (-1616 . 621495) (-1617 . 621435) (-1618 . 621277) + (-1619 . 621084) (-1620 . 620599) (-1621 . 620357) (-1622 . 620095) + (-1623 . 619994) (-1624 . 619913) (-1625 . 619832) (-1626 . 619762) + (-1627 . 619692) (-1628 . 619534) (-1629 . 619230) (-1630 . 619002) + (-1631 . 618880) (-1632 . 618822) (-1633 . 618760) (-1634 . 618698) + (-1635 . 618633) (-1636 . 618571) (-1637 . 618292) (-1638 . 618083) + (-1639 . 617945) (-1640 . 617405) (-1641 . 617107) (-1642 . 616962) + (-1643 . 616895) (-1644 . 616814) (-1645 . 616733) (-1646 . 616631) + (-1647 . 616557) (-1648 . 616476) (-1649 . 616402) (-1650 . 616320) + (-1651 . 616107) (-1652 . 616017) (-1653 . 615950) (-1654 . 615814) + (-1655 . 615747) (-1656 . 615665) (-1657 . 615584) (-1658 . 615482) + (-1659 . 615348) (-1660 . 615280) (-1661 . 615118) (-1662 . 614950) + (-1663 . 614788) (-1664 . 614626) (-1665 . 614558) (-1666 . 614225) + (-1667 . 613225) (-1668 . 613006) (-1669 . 612925) (-1670 . 612851) + (-1671 . 612777) (-1672 . 612703) (-1673 . 612599) (-1674 . 612526) + (-1675 . 612458) (-1676 . 612248) (-1677 . 612196) (-1678 . 612142) + (-1679 . 612051) (-1680 . 611964) (-1681 . 610217) (-1682 . 610138) + (-1683 . 609393) (-1684 . 609276) (-1685 . 609070) (-1686 . 608909) + (-1687 . 608748) (-1688 . 608588) (-1689 . 608450) (-1690 . 608356) + (-1691 . 608258) (-1692 . 608164) (-1693 . 608050) (-1694 . 607968) + (-1695 . 607871) (-1696 . 607675) (-1697 . 607584) (-1698 . 607490) + (-1699 . 607423) (-1700 . 607370) (-1701 . 607317) (-1702 . 607264) + (-1703 . 606130) (-1704 . 605620) (-1705 . 605541) (-1706 . 605482) + (-1707 . 605454) (-1708 . 605426) (-1709 . 605367) (-1710 . 605254) + (-1711 . 604877) (-1712 . 604824) (-1713 . 604713) (-1714 . 604660) + (-1715 . 604607) (-1716 . 604551) (-1717 . 604495) (-1718 . 604330) + (-1719 . 604261) (-1720 . 604166) (-1721 . 604071) (-1722 . 603976) + (-1723 . 603924) (-1724 . 603865) (-1725 . 603791) (-1726 . 603739) + (-1727 . 603582) (-1728 . 603425) (-1729 . 603273) (-1730 . 602515) + (-1731 . 602264) (-1732 . 601953) (-1733 . 601601) (-1734 . 601384) + (-1735 . 601121) (-1736 . 600746) (-1737 . 600562) (-1738 . 600428) + (-1739 . 600262) (-1740 . 600096) (-1741 . 599962) (-1742 . 599828) + (-1743 . 599694) (-1744 . 599560) (-1745 . 599429) (-1746 . 599298) + (-1747 . 599167) (-1748 . 598787) (-1749 . 598661) (-1750 . 598533) + (-1751 . 598283) (-1752 . 598160) (-1753 . 597910) (-1754 . 597787) + (-1755 . 597537) (-1756 . 597414) (-1757 . 597131) (-1758 . 596860) + (-1759 . 596587) (-1760 . 596289) (-1761 . 596187) (-1762 . 596042) + (-1763 . 595901) (-1764 . 595750) (-1765 . 595589) (-1766 . 595501) + (-1767 . 595473) (-1768 . 595391) (-1769 . 595294) (-1770 . 594826) + (-1771 . 594475) (-1772 . 594042) (-1773 . 593903) (-1774 . 593833) + (-1775 . 593763) (-1776 . 593693) (-1777 . 593602) (-1778 . 593511) + (-1779 . 593420) (-1780 . 593329) (-1781 . 593238) (-1782 . 593152) + (-1783 . 593066) (-1784 . 592980) (-1785 . 592894) (-1786 . 592808) + (-1787 . 592734) (-1788 . 592629) (-1789 . 592403) (-1790 . 592325) + (-1791 . 592250) (-1792 . 592157) (-1793 . 592053) (-1794 . 591957) + (-1795 . 591788) (-1796 . 591711) (-1797 . 591634) (-1798 . 591543) + (-1799 . 591452) (-1800 . 591252) (-1801 . 591099) (-1802 . 590946) + (-1803 . 590793) (-1804 . 590640) (-1805 . 590487) (-1806 . 590334) + (-1807 . 590268) (-1808 . 590115) (-1809 . 589962) (-1810 . 589809) + (-1811 . 589656) (-1812 . 589503) (-1813 . 589350) (-1814 . 589197) + (-1815 . 589044) (-1816 . 588970) (-1817 . 588896) (-1818 . 588841) + (-1819 . 588786) (-1820 . 588731) (-1821 . 588676) (-1822 . 588605) + (-1823 . 588401) (-1824 . 588300) (-1825 . 588112) (-1826 . 588019) + (-1827 . 587883) (-1828 . 587747) (-1829 . 587611) (-1830 . 587543) + (-1831 . 587427) (-1832 . 587311) (-1833 . 587195) (-1834 . 587142) + (-1835 . 586945) (-1836 . 586860) (-1837 . 586552) (-1838 . 586497) + (-1839 . 585845) (-1840 . 585530) (-1841 . 585246) (-1842 . 585128) + (-1843 . 585009) (-1844 . 584950) (-1845 . 584891) (-1846 . 584840) + (-1847 . 584789) (-1848 . 584738) (-1849 . 584685) (-1850 . 584632) + (-1851 . 584573) (-1852 . 584460) (-1853 . 584347) (-1854 . 584289) + (-1855 . 584231) (-1856 . 584181) (-1857 . 584046) (-1858 . 583996) + (-1859 . 583399) (-1860 . 583339) (-1861 . 583172) (-1862 . 583080) + (-1863 . 582967) (-1864 . 582883) (-1865 . 582768) (-1866 . 582677) + (-1867 . 582586) (-1868 . 582399) (-1869 . 582344) (-1870 . 582157) + (-1871 . 582034) (-1872 . 581961) (-1873 . 581888) (-1874 . 581768) + (-1875 . 581695) (-1876 . 581622) (-1877 . 581282) (-1878 . 581209) + (-1879 . 580989) (-1880 . 580656) (-1881 . 580473) (-1882 . 580330) + (-1883 . 579970) (-1884 . 579802) (-1885 . 579634) (-1886 . 579378) + (-1887 . 579122) (-1888 . 578927) (-1889 . 578732) (-1890 . 578138) + (-1891 . 578062) (-1892 . 577923) (-1893 . 577516) (-1894 . 577389) + (-1895 . 577232) (-1896 . 576915) (-1897 . 576435) (-1898 . 575955) + (-1899 . 575453) (-1900 . 575385) (-1901 . 575314) (-1902 . 575243) + (-1903 . 575071) (-1904 . 574952) (-1905 . 574833) (-1906 . 574757) + (-1907 . 574681) (-1908 . 574408) (-1909 . 574294) (-1910 . 574243) + (-1911 . 574192) (-1912 . 574141) (-1913 . 574090) (-1914 . 574039) + (-1915 . 573898) (-1916 . 573725) (-1917 . 573494) (-1918 . 573308) + (-1919 . 573280) (-1920 . 573252) (-1921 . 573224) (-1922 . 573196) + (-1923 . 573168) (-1924 . 573140) (-1925 . 573112) (-1926 . 573061) + (-1927 . 572995) (-1928 . 572905) (-1929 . 572855) (-1930 . 572786) + (-1931 . 572717) (-1932 . 572612) (-1933 . 572241) (-1934 . 572090) + (-1935 . 571939) (-1936 . 571734) (-1937 . 571612) (-1938 . 571538) + (-1939 . 571461) (-1940 . 571387) (-1941 . 571310) (-1942 . 571233) + (-1943 . 571159) (-1944 . 571082) (-1945 . 570849) (-1946 . 570696) + (-1947 . 570401) (-1948 . 570248) (-1949 . 569926) (-1950 . 569788) + (-1951 . 569650) (-1952 . 569570) (-1953 . 569490) (-1954 . 569226) + (-1955 . 568495) (-1956 . 568359) (-1957 . 568269) (-1958 . 568134) + (-1959 . 568067) (-1960 . 567999) (-1961 . 567912) (-1962 . 567825) + (-1963 . 567658) (-1964 . 567584) (-1965 . 567440) (-1966 . 566980) + (-1967 . 566601) (-1968 . 565839) (-1969 . 565695) (-1970 . 565551) + (-1971 . 565389) (-1972 . 565152) (-1973 . 565012) (-1974 . 564866) + (-1975 . 564627) (-1976 . 564391) (-1977 . 564152) (-1978 . 563960) + (-1979 . 563837) (-1980 . 563633) (-1981 . 563410) (-1982 . 563171) + (-1983 . 563030) (-1984 . 562892) (-1985 . 562753) (-1986 . 562500) + (-1987 . 562244) (-1988 . 562087) (-1989 . 561933) (-1990 . 561693) + (-1991 . 561408) (-1992 . 561270) (-1993 . 561183) (-1994 . 560517) + (-1995 . 560341) (-1996 . 560159) (-1997 . 559983) (-1998 . 559801) + (-1999 . 559622) (-2000 . 559443) (-2001 . 559256) (-2002 . 558874) + (-2003 . 558695) (-2004 . 558516) (-2005 . 558329) (-2006 . 557947) + (-2007 . 556954) (-2008 . 556570) (-2009 . 556186) (-2010 . 556068) + (-2011 . 555911) (-2012 . 555769) (-2013 . 555652) (-2014 . 555470) + (-2015 . 555346) (-2016 . 555057) (-2017 . 554768) (-2018 . 554485) + (-2019 . 554202) (-2020 . 553924) (-2021 . 553836) (-2022 . 553751) + (-2023 . 553654) (-2024 . 553557) (-2025 . 553337) (-2026 . 553237) + (-2027 . 553134) (-2028 . 553056) (-2029 . 552731) (-2030 . 552439) + (-2031 . 552366) (-2032 . 551981) (-2033 . 551953) (-2034 . 551754) + (-2035 . 551580) (-2036 . 551339) (-2037 . 551284) (-2038 . 551209) + (-2039 . 550841) (-2040 . 550726) (-2041 . 550649) (-2042 . 550576) + (-2043 . 550495) (-2044 . 550414) (-2045 . 550333) (-2046 . 550232) + (-2047 . 550173) (-2048 . 549935) (-2049 . 549813) (-2050 . 549691) + (-2051 . 549464) (-2052 . 549411) (-2053 . 549357) (-2054 . 549025) + (-2055 . 548701) (-2056 . 548513) (-2057 . 548322) (-2058 . 548158) + (-2059 . 547823) (-2060 . 547656) (-2061 . 547415) (-2062 . 547091) + (-2063 . 546901) (-2064 . 546686) (-2065 . 546515) (-2066 . 546093) + (-2067 . 545866) (-2068 . 545595) (-2069 . 545458) (-2070 . 545317) + (-2071 . 544840) (-2072 . 544717) (-2073 . 544481) (-2074 . 544227) + (-2075 . 543977) (-2076 . 543684) (-2077 . 543544) (-2078 . 543203) + (-2079 . 543063) (-2080 . 542874) (-2081 . 542685) (-2082 . 542510) + (-2083 . 542236) (-2084 . 541801) (-2085 . 541773) (-2086 . 541701) + (-2087 . 541542) (-2088 . 541379) (-2089 . 541218) (-2090 . 541051) + (-2091 . 540998) (-2092 . 540945) (-2093 . 540816) (-2094 . 540756) + (-2095 . 540703) (-2096 . 540633) (-2097 . 540573) (-2098 . 540514) + (-2099 . 540454) (-2100 . 540395) (-2101 . 540335) (-2102 . 540276) + (-2103 . 540217) (-2104 . 540075) (-2105 . 539980) (-2106 . 539889) + (-2107 . 539773) (-2108 . 539679) (-2109 . 539581) (-2110 . 539487) + (-2111 . 539346) (-2112 . 539084) (-2113 . 538228) (-2114 . 538072) + (-2115 . 537703) (-2116 . 537647) (-2117 . 537596) (-2118 . 537493) + (-2119 . 537408) (-2120 . 537320) (-2121 . 537174) (-2122 . 537025) + (-2123 . 536735) (-2124 . 536657) (-2125 . 536582) (-2126 . 536529) + (-2127 . 536476) (-2128 . 536445) (-2129 . 536382) (-2130 . 536264) + (-2131 . 536175) (-2132 . 536055) (-2133 . 535760) (-2134 . 535566) + (-2135 . 535378) (-2136 . 535233) (-2137 . 535088) (-2138 . 534802) + (-2139 . 534360) (-2140 . 534326) (-2141 . 534289) (-2142 . 534252) + (-2143 . 534215) (-2144 . 534178) (-2145 . 534147) (-2146 . 534116) + (-2147 . 534085) (-2148 . 534051) (-2149 . 534017) (-2150 . 533963) + (-2151 . 533787) (-2152 . 533553) (-2153 . 533319) (-2154 . 533090) + (-2155 . 533038) (-2156 . 532983) (-2157 . 532914) (-2158 . 532826) + (-2159 . 532757) (-2160 . 532685) (-2161 . 532455) (-2162 . 532404) + (-2163 . 532350) (-2164 . 532319) (-2165 . 532213) (-2166 . 531988) + (-2167 . 531678) (-2168 . 531504) (-2169 . 531322) (-2170 . 531051) + (-2171 . 530978) (-2172 . 530913) (-2173 . 530437) (-2174 . 529875) + (-2175 . 529149) (-2176 . 528588) (-2177 . 527960) (-2178 . 527381) + (-2179 . 527307) (-2180 . 527255) (-2181 . 527203) (-2182 . 527129) + (-2183 . 527074) (-2184 . 527022) (-2185 . 526970) (-2186 . 526918) + (-2187 . 526848) (-2188 . 526400) (-2189 . 526194) (-2190 . 525945) + (-2191 . 525611) (-2192 . 525357) (-2193 . 525055) (-2194 . 524852) + (-2195 . 524563) (-2196 . 524015) (-2197 . 523878) (-2198 . 523676) + (-2199 . 523396) (-2200 . 523311) (-2201 . 522978) (-2202 . 522837) + (-2203 . 522546) (-2204 . 522326) (-2205 . 522200) (-2206 . 522075) + (-2207 . 521928) (-2208 . 521784) (-2209 . 521668) (-2210 . 521537) + (-2211 . 521165) (-2212 . 520905) (-2213 . 520635) (-2214 . 520395) + (-2215 . 520065) (-2216 . 519725) (-2217 . 519317) (-2218 . 518899) + (-2219 . 518702) (-2220 . 518427) (-2221 . 518259) (-2222 . 518063) + (-2223 . 517841) (-2224 . 517686) (-2225 . 517501) (-2226 . 517398) + (-2227 . 517370) (-2228 . 517342) (-2229 . 517168) (-2230 . 517094) + (-2231 . 517033) (-2232 . 516980) (-2233 . 516911) (-2234 . 516842) + (-2235 . 516723) (-2236 . 516545) (-2237 . 516490) (-2238 . 516244) + (-2239 . 516171) (-2240 . 516101) (-2241 . 516031) (-2242 . 515942) + (-2243 . 515752) (-2244 . 515679) (-2245 . 515610) (-2246 . 515545) + (-2247 . 515490) (-2248 . 515399) (-2249 . 515108) (-2250 . 514782) + (-2251 . 514708) (-2252 . 514386) (-2253 . 514180) (-2254 . 514095) + (-2255 . 514010) (-2256 . 513925) (-2257 . 513840) (-2258 . 513755) + (-2259 . 513670) (-2260 . 513585) (-2261 . 513500) (-2262 . 513415) + (-2263 . 513330) (-2264 . 513245) (-2265 . 513160) (-2266 . 513075) + (-2267 . 512990) (-2268 . 512905) (-2269 . 512820) (-2270 . 512735) + (-2271 . 512650) (-2272 . 512565) (-2273 . 512480) (-2274 . 512395) + (-2275 . 512310) (-2276 . 512225) (-2277 . 512140) (-2278 . 512055) + (-2279 . 511970) (-2280 . 511868) (-2281 . 511780) (-2282 . 511572) + (-2283 . 511514) (-2284 . 511459) (-2285 . 511372) (-2286 . 511261) + (-2287 . 511175) (-2288 . 511029) (-2289 . 510967) (-2290 . 510939) + (-2291 . 510911) (-2292 . 510883) (-2293 . 510855) (-2294 . 510686) + (-2295 . 510535) (-2296 . 510384) (-2297 . 510212) (-2298 . 510004) + (-2299 . 509880) (-2300 . 509672) (-2301 . 509580) (-2302 . 509488) + (-2303 . 509353) (-2304 . 509258) (-2305 . 509164) (-2306 . 509069) + (-2307 . 508945) (-2308 . 508917) (-2309 . 508889) (-2310 . 508861) + (-2311 . 508833) (-2312 . 508805) (-2313 . 508777) (-2314 . 508749) + (-2315 . 508721) (-2316 . 508693) (-2317 . 508665) (-2318 . 508637) + (-2319 . 508609) (-2320 . 508581) (-2321 . 508553) (-2322 . 508525) + (-2323 . 508497) (-2324 . 508444) (-2325 . 508416) (-2326 . 508388) + (-2327 . 508310) (-2328 . 508257) (-2329 . 508204) (-2330 . 508151) + (-2331 . 508073) (-2332 . 507983) (-2333 . 507888) (-2334 . 507794) + (-2335 . 507712) (-2336 . 507406) (-2337 . 507210) (-2338 . 507115) + (-2339 . 507007) (-2340 . 506596) (-2341 . 506568) (-2342 . 506404) + (-2343 . 506327) (-2344 . 506138) (-2345 . 505959) (-2346 . 505535) + (-2347 . 505383) (-2348 . 505203) (-2349 . 505030) (-2350 . 504770) + (-2351 . 504518) (-2352 . 503707) (-2353 . 503540) (-2354 . 503322) + (-2355 . 502498) (-2356 . 502367) (-2357 . 502236) (-2358 . 502105) + (-2359 . 501974) (-2360 . 501843) (-2361 . 501712) (-2362 . 501517) + (-2363 . 501323) (-2364 . 501180) (-2365 . 500865) (-2366 . 500750) + (-2367 . 500410) (-2368 . 500250) (-2369 . 500111) (-2370 . 499972) + (-2371 . 499843) (-2372 . 499758) (-2373 . 499706) (-2374 . 499226) + (-2375 . 497964) (-2376 . 497837) (-2377 . 497695) (-2378 . 497359) + (-2379 . 497254) (-2380 . 497005) (-2381 . 496773) (-2382 . 496668) + (-2383 . 496593) (-2384 . 496518) (-2385 . 496443) (-2386 . 496384) + (-2387 . 496314) (-2388 . 496261) (-2389 . 496199) (-2390 . 496129) + (-2391 . 495766) (-2392 . 495479) (-2393 . 495369) (-2394 . 495276) + (-2395 . 495183) (-2396 . 495096) (-2397 . 494876) (-2398 . 494657) + (-2399 . 494239) (-2400 . 493967) (-2401 . 493824) (-2402 . 493731) + (-2403 . 493588) (-2404 . 493436) (-2405 . 493282) (-2406 . 493212) + (-2407 . 493005) (-2408 . 492828) (-2409 . 492619) (-2410 . 492442) + (-2411 . 492408) (-2412 . 492374) (-2413 . 492343) (-2414 . 492225) + (-2415 . 491912) (-2416 . 491634) (-2417 . 491513) (-2418 . 491386) + (-2419 . 491301) (-2420 . 491228) (-2421 . 491139) (-2422 . 491068) + (-2423 . 491012) (-2424 . 490956) (-2425 . 490900) (-2426 . 490830) + (-2427 . 490760) (-2428 . 490690) (-2429 . 490611) (-2430 . 490533) + (-2431 . 490448) (-2432 . 490189) (-2433 . 490101) (-2434 . 489804) + (-2435 . 489706) (-2436 . 489628) (-2437 . 489550) (-2438 . 489407) + (-2439 . 489328) (-2440 . 489256) (-2441 . 489053) (-2442 . 488997) + (-2443 . 488809) (-2444 . 488710) (-2445 . 488592) (-2446 . 488471) + (-2447 . 488328) (-2448 . 488185) (-2449 . 488045) (-2450 . 487905) + (-2451 . 487762) (-2452 . 487636) (-2453 . 487507) (-2454 . 487384) + (-2455 . 487261) (-2456 . 487156) (-2457 . 487051) (-2458 . 486949) + (-2459 . 486799) (-2460 . 486646) (-2461 . 486493) (-2462 . 486349) + (-2463 . 486195) (-2464 . 486119) (-2465 . 486040) (-2466 . 485887) + (-2467 . 485808) (-2468 . 485729) (-2469 . 485650) (-2470 . 485548) + (-2471 . 485489) (-2472 . 485427) (-2473 . 485252) (-2474 . 485099) + (-2475 . 484946) (-2476 . 484772) (-2477 . 484580) (-2478 . 484406) + (-2479 . 484211) (-2480 . 484094) (-2481 . 483968) (-2482 . 483891) + (-2483 . 483759) (-2484 . 483453) (-2485 . 483270) (-2486 . 482725) + (-2487 . 482505) (-2488 . 482331) (-2489 . 482161) (-2490 . 482062) + (-2491 . 481963) (-2492 . 481745) (-2493 . 481643) (-2494 . 481570) + (-2495 . 481494) (-2496 . 481415) (-2497 . 481118) (-2498 . 481019) + (-2499 . 480857) (-2500 . 480623) (-2501 . 480181) (-2502 . 480051) + (-2503 . 479911) (-2504 . 479602) (-2505 . 479300) (-2506 . 478984) + (-2507 . 478578) (-2508 . 478510) (-2509 . 478442) (-2510 . 478374) + (-2511 . 478280) (-2512 . 478173) (-2513 . 478066) (-2514 . 477965) + (-2515 . 477864) (-2516 . 477763) (-2517 . 477686) (-2518 . 477363) + (-2519 . 476896) (-2520 . 476269) (-2521 . 476205) (-2522 . 476086) + (-2523 . 475967) (-2524 . 475859) (-2525 . 475751) (-2526 . 475595) + (-2527 . 474995) (-2528 . 474712) (-2529 . 474544) (-2530 . 474422) + (-2531 . 474026) (-2532 . 473790) (-2533 . 473589) (-2534 . 473381) + (-2535 . 473188) (-2536 . 472921) (-2537 . 472742) (-2538 . 472673) + (-2539 . 472597) (-2540 . 472456) (-2541 . 472253) (-2542 . 472109) + (-2543 . 471859) (-2544 . 471551) (-2545 . 471195) (-2546 . 471036) + (-2547 . 470830) (-2548 . 470670) (-2549 . 470597) (-2550 . 470563) + (-2551 . 470498) (-2552 . 470461) (-2553 . 470324) (-2554 . 470086) + (-2555 . 470016) (-2556 . 469830) (-2557 . 469581) (-2558 . 469423) + (-2559 . 468898) (-2560 . 468699) (-2561 . 468485) (-2562 . 468323) + (-2563 . 467924) (-2564 . 467757) (-2565 . 466682) (-2566 . 466559) + (-2567 . 466342) (-2568 . 466212) (-2569 . 466082) (-2570 . 465925) + (-2571 . 465822) (-2572 . 465764) (-2573 . 465706) (-2574 . 465600) + (-2575 . 465494) (-2576 . 464578) (-2577 . 462451) (-2578 . 461637) + (-2579 . 459834) (-2580 . 459766) (-2581 . 459698) (-2582 . 459630) + (-2583 . 459562) (-2584 . 459494) (-2585 . 459416) (-2586 . 459016) + (-2587 . 458660) (-2588 . 458478) (-2589 . 457939) (-2590 . 457763) + (-2591 . 457542) (-2592 . 457321) (-2593 . 457100) (-2594 . 456882) + (-2595 . 456664) (-2596 . 456446) (-2597 . 456228) (-2598 . 456010) + (-2599 . 455792) (-2600 . 455691) (-2601 . 454958) (-2602 . 454903) + (-2603 . 454848) (-2604 . 454793) (-2605 . 454738) (-2606 . 454588) + (-2607 . 454296) (-2608 . 454048) (-2609 . 453887) (-2610 . 453707) + (-2611 . 453420) (-2612 . 453034) (-2613 . 452162) (-2614 . 451822) + (-2615 . 451654) (-2616 . 451432) (-2617 . 451182) (-2618 . 450834) + (-2619 . 449824) (-2620 . 449513) (-2621 . 449301) (-2622 . 448737) + (-2623 . 448224) (-2624 . 446468) (-2625 . 445996) (-2626 . 445397) + (-2627 . 445147) (-2628 . 445013) (-2629 . 444801) (-2630 . 444725) + (-2631 . 444649) (-2632 . 444542) (-2633 . 444360) (-2634 . 444195) + (-2635 . 444017) (-2636 . 443436) (-2637 . 443275) (-2638 . 442702) + (-2639 . 442632) (-2640 . 442557) (-2641 . 442193) (-2642 . 442121) + (-2643 . 441983) (-2644 . 441796) (-2645 . 441689) (-2646 . 441582) + (-2647 . 441467) (-2648 . 441352) (-2649 . 441237) (-2650 . 440959) + (-2651 . 440809) (-2652 . 440666) (-2653 . 440593) (-2654 . 440508) + (-2655 . 440435) (-2656 . 440362) (-2657 . 440289) (-2658 . 440146) + (-2659 . 439996) (-2660 . 439822) (-2661 . 439672) (-2662 . 439522) + (-2663 . 439396) (-2664 . 439010) (-2665 . 438726) (-2666 . 438442) + (-2667 . 438033) (-2668 . 437749) (-2669 . 437676) (-2670 . 437529) + (-2671 . 437423) (-2672 . 437349) (-2673 . 437279) (-2674 . 437200) + (-2675 . 437123) (-2676 . 437046) (-2677 . 436897) (-2678 . 436794) + (-2679 . 436736) (-2680 . 436672) (-2681 . 436608) (-2682 . 436511) + (-2683 . 436414) (-2684 . 436254) (-2685 . 436168) (-2686 . 436082) + (-2687 . 435997) (-2688 . 435938) (-2689 . 435879) (-2690 . 435820) + (-2691 . 435761) (-2692 . 435591) (-2693 . 435503) (-2694 . 435406) + (-2695 . 435372) (-2696 . 435341) (-2697 . 435257) (-2698 . 435201) + (-2699 . 435139) (-2700 . 435105) (-2701 . 435071) (-2702 . 435037) + (-2703 . 435003) (-2704 . 434969) (-2705 . 432216) (-2706 . 432182) + (-2707 . 432148) (-2708 . 432114) (-2709 . 432002) (-2710 . 431968) + (-2711 . 431917) (-2712 . 431883) (-2713 . 431786) (-2714 . 431724) + (-2715 . 431633) (-2716 . 431542) (-2717 . 431487) (-2718 . 431435) + (-2719 . 431383) (-2720 . 431331) (-2721 . 431279) (-2722 . 430856) + (-2723 . 430690) (-2724 . 430637) (-2725 . 430568) (-2726 . 430515) + (-2727 . 430285) (-2728 . 430129) (-2729 . 429608) (-2730 . 429467) + (-2731 . 429433) (-2732 . 429378) (-2733 . 428668) (-2734 . 428353) + (-2735 . 427849) (-2736 . 427771) (-2737 . 427719) (-2738 . 427667) + (-2739 . 427483) (-2740 . 427431) (-2741 . 427379) (-2742 . 427303) + (-2743 . 427241) (-2744 . 427023) (-2745 . 426956) (-2746 . 426862) + (-2747 . 426768) (-2748 . 426585) (-2749 . 426503) (-2750 . 426381) + (-2751 . 426235) (-2752 . 425584) (-2753 . 424882) (-2754 . 424778) + (-2755 . 424677) (-2756 . 424576) (-2757 . 424465) (-2758 . 424297) + (-2759 . 424093) (-2760 . 424000) (-2761 . 423923) (-2762 . 423867) + (-2763 . 423797) (-2764 . 423677) (-2765 . 423576) (-2766 . 423479) + (-2767 . 423399) (-2768 . 423319) (-2769 . 423242) (-2770 . 423172) + (-2771 . 423102) (-2772 . 423032) (-2773 . 422962) (-2774 . 422892) + (-2775 . 422822) (-2776 . 422729) (-2777 . 422534) (-2778 . 422292) + (-2779 . 422122) (-2780 . 421753) (-2781 . 421584) (-2782 . 421468) + (-2783 . 420972) (-2784 . 420591) (-2785 . 420345) (-2786 . 419917) + (-2787 . 417989) (-2788 . 417897) (-2789 . 417800) (-2790 . 417138) + (-2791 . 417025) (-2792 . 416951) (-2793 . 416859) (-2794 . 416669) + (-2795 . 416479) (-2796 . 416408) (-2797 . 416337) (-2798 . 416256) + (-2799 . 416175) (-2800 . 416050) (-2801 . 415917) (-2802 . 415836) + (-2803 . 415762) (-2804 . 415597) (-2805 . 415440) (-2806 . 415212) + (-2807 . 415064) (-2808 . 414960) (-2809 . 414856) (-2810 . 414771) + (-2811 . 414403) (-2812 . 414322) (-2813 . 414235) (-2814 . 414154) + (-2815 . 413908) (-2816 . 413688) (-2817 . 413501) (-2818 . 413179) + (-2819 . 412886) (-2820 . 412593) (-2821 . 412283) (-2822 . 411966) + (-2823 . 411814) (-2824 . 411626) (-2825 . 411153) (-2826 . 411071) + (-2827 . 410855) (-2828 . 410639) (-2829 . 410380) (-2830 . 409959) + (-2831 . 409446) (-2832 . 409316) (-2833 . 409042) (-2834 . 408863) + (-2835 . 408748) (-2836 . 408644) (-2837 . 408589) (-2838 . 408512) + (-2839 . 408442) (-2840 . 408369) (-2841 . 408314) (-2842 . 408241) + (-2843 . 408186) (-2844 . 407831) (-2845 . 407423) (-2846 . 407270) + (-2847 . 407117) (-2848 . 407036) (-2849 . 406883) (-2850 . 406730) + (-2851 . 406595) (-2852 . 406460) (-2853 . 406325) (-2854 . 406190) + (-2855 . 406055) (-2856 . 405920) (-2857 . 405864) (-2858 . 405711) + (-2859 . 405600) (-2860 . 405489) (-2861 . 405404) (-2862 . 405294) + (-2863 . 405191) (-2864 . 401040) (-2865 . 400592) (-2866 . 400165) + (-2867 . 399548) (-2868 . 398947) (-2869 . 398729) (-2870 . 398551) + (-2871 . 398292) (-2872 . 397881) (-2873 . 397587) (-2874 . 397144) + (-2875 . 396966) (-2876 . 396573) (-2877 . 396180) (-2878 . 395995) + (-2879 . 395788) (-2880 . 395568) (-2881 . 395262) (-2882 . 395063) + (-2883 . 394434) (-2884 . 394277) (-2885 . 393888) (-2886 . 393837) + (-2887 . 393788) (-2888 . 393737) (-2889 . 393689) (-2890 . 393637) + (-2891 . 393491) (-2892 . 393439) (-2893 . 393293) (-2894 . 393241) + (-2895 . 393095) (-2896 . 393044) (-2897 . 392669) (-2898 . 392618) + (-2899 . 392569) (-2900 . 392518) (-2901 . 392470) (-2902 . 392418) + (-2903 . 392369) (-2904 . 392317) (-2905 . 392268) (-2906 . 392216) + (-2907 . 392167) (-2908 . 392101) (-2909 . 391983) (-2910 . 390821) + (-2911 . 390404) (-2912 . 390296) (-2913 . 390054) (-2914 . 389904) + (-2915 . 389754) (-2916 . 389593) (-2917 . 387386) (-2918 . 387125) + (-2919 . 386971) (-2920 . 386825) (-2921 . 386679) (-2922 . 386460) + (-2923 . 386328) (-2924 . 386253) (-2925 . 386178) (-2926 . 386043) + (-2927 . 385914) (-2928 . 385785) (-2929 . 385659) (-2930 . 385533) + (-2931 . 385407) (-2932 . 385281) (-2933 . 385178) (-2934 . 385078) + (-2935 . 384984) (-2936 . 384854) (-2937 . 384703) (-2938 . 384327) + (-2939 . 384213) (-2940 . 383972) (-2941 . 383514) (-2942 . 383204) + (-2943 . 382637) (-2944 . 382068) (-2945 . 381058) (-2946 . 380516) + (-2947 . 380203) (-2948 . 379865) (-2949 . 379534) (-2950 . 379214) + (-2951 . 379161) (-2952 . 379034) (-2953 . 378532) (-2954 . 377389) + (-2955 . 377334) (-2956 . 377279) (-2957 . 377203) (-2958 . 377084) + (-2959 . 377009) (-2960 . 376934) (-2961 . 376856) (-2962 . 376633) + (-2963 . 376574) (-2964 . 376515) (-2965 . 376412) (-2966 . 376309) + (-2967 . 376206) (-2968 . 376103) (-2969 . 376022) (-2970 . 375948) + (-2971 . 375733) (-2972 . 375499) (-2973 . 375465) (-2974 . 375431) + (-2975 . 375403) (-2976 . 375375) (-2977 . 375158) (-2978 . 374880) + (-2979 . 374730) (-2980 . 374600) (-2981 . 374470) (-2982 . 374370) + (-2983 . 374193) (-2984 . 374033) (-2985 . 373933) (-2986 . 373756) + (-2987 . 373596) (-2988 . 373437) (-2989 . 373298) (-2990 . 373148) + (-2991 . 373018) (-2992 . 372888) (-2993 . 372741) (-2994 . 372614) + (-2995 . 372511) (-2996 . 372404) (-2997 . 372307) (-2998 . 372142) + (-2999 . 371994) (-3000 . 371579) (-3001 . 371479) (-3002 . 371376) + (-3003 . 371288) (-3004 . 371208) (-3005 . 371058) (-3006 . 370928) + (-3007 . 370876) (-3008 . 370803) (-3009 . 370728) (-3010 . 370452) + (-3011 . 370340) (-3012 . 370028) (-3013 . 369851) (-3014 . 368253) + (-3015 . 367625) (-3016 . 367565) (-3017 . 367447) (-3018 . 367329) + (-3019 . 367185) (-3020 . 367032) (-3021 . 366872) (-3022 . 366712) + (-3023 . 366505) (-3024 . 366317) (-3025 . 366164) (-3026 . 366008) + (-3027 . 365852) (-3028 . 365699) (-3029 . 365561) (-3030 . 365137) + (-3031 . 365010) (-3032 . 364883) (-3033 . 364756) (-3034 . 364615) + (-3035 . 364473) (-3036 . 364331) (-3037 . 364186) (-3038 . 363433) + (-3039 . 363274) (-3040 . 363087) (-3041 . 362931) (-3042 . 362692) + (-3043 . 362446) (-3044 . 362200) (-3045 . 361989) (-3046 . 361851) + (-3047 . 361640) (-3048 . 361502) (-3049 . 361291) (-3050 . 361153) + (-3051 . 360942) (-3052 . 360637) (-3053 . 360492) (-3054 . 360350) + (-3055 . 360126) (-3056 . 359984) (-3057 . 359761) (-3058 . 359563) + (-3059 . 359406) (-3060 . 359077) (-3061 . 358917) (-3062 . 358757) + (-3063 . 358597) (-3064 . 358425) (-3065 . 358253) (-3066 . 358078) + (-3067 . 357726) (-3068 . 357532) (-3069 . 357370) (-3070 . 357297) + (-3071 . 357224) (-3072 . 357151) (-3073 . 357078) (-3074 . 357005) + (-3075 . 356932) (-3076 . 356809) (-3077 . 356636) (-3078 . 356513) + (-3079 . 356427) (-3080 . 356361) (-3081 . 356295) (-3082 . 356229) + (-3083 . 356163) (-3084 . 356097) (-3085 . 356031) (-3086 . 355965) + (-3087 . 355899) (-3088 . 355833) (-3089 . 355767) (-3090 . 355701) + (-3091 . 355635) (-3092 . 355569) (-3093 . 355503) (-3094 . 355437) + (-3095 . 355371) (-3096 . 355305) (-3097 . 355239) (-3098 . 355173) + (-3099 . 355107) (-3100 . 355041) (-3101 . 354975) (-3102 . 354909) + (-3103 . 354843) (-3104 . 354777) (-3105 . 354711) (-3106 . 354064) + (-3107 . 353417) (-3108 . 353289) (-3109 . 353166) (-3110 . 353043) + (-3111 . 352902) (-3112 . 352748) (-3113 . 352604) (-3114 . 352429) + (-3115 . 351819) (-3116 . 351695) (-3117 . 351571) (-3118 . 350893) + (-3119 . 350196) (-3120 . 350095) (-3121 . 350039) (-3122 . 349983) + (-3123 . 349927) (-3124 . 349871) (-3125 . 349812) (-3126 . 349748) + (-3127 . 349640) (-3128 . 349532) (-3129 . 349424) (-3130 . 349145) + (-3131 . 349071) (-3132 . 348845) (-3133 . 348764) (-3134 . 348686) + (-3135 . 348608) (-3136 . 348530) (-3137 . 348451) (-3138 . 348373) + (-3139 . 348280) (-3140 . 348181) (-3141 . 348113) (-3142 . 348064) + (-3143 . 347373) (-3144 . 346733) (-3145 . 345942) (-3146 . 345861) + (-3147 . 345757) (-3148 . 345666) (-3149 . 345575) (-3150 . 345501) + (-3151 . 345427) (-3152 . 345353) (-3153 . 345298) (-3154 . 345243) + (-3155 . 345177) (-3156 . 345111) (-3157 . 345049) (-3158 . 344662) + (-3159 . 344170) (-3160 . 343712) (-3161 . 343459) (-3162 . 343271) + (-3163 . 342930) (-3164 . 342634) (-3165 . 342466) (-3166 . 342335) + (-3167 . 342195) (-3168 . 342040) (-3169 . 341871) (-3170 . 340485) + (-3171 . 340351) (-3172 . 340209) (-3173 . 339980) (-3174 . 339715) + (-3175 . 339656) (-3176 . 339600) (-3177 . 339544) (-3178 . 339332) + (-3179 . 339193) (-3180 . 339086) (-3181 . 338969) (-3182 . 338903) + (-3183 . 338830) (-3184 . 338716) (-3185 . 338463) (-3186 . 338363) + (-3187 . 338169) (-3188 . 337861) (-3189 . 337395) (-3190 . 337290) + (-3191 . 337184) (-3192 . 337035) (-3193 . 336895) (-3194 . 336483) + (-3195 . 336239) (-3196 . 335581) (-3197 . 335428) (-3198 . 335314) + (-3199 . 335204) (-3200 . 334384) (-3201 . 334333) (-3202 . 334282) + (-3203 . 334088) (-3204 . 332950) (-3205 . 332502) (-3206 . 331113) + (-3207 . 330262) (-3208 . 330213) (-3209 . 330164) (-3210 . 330115) + (-3211 . 330048) (-3212 . 329973) (-3213 . 329783) (-3214 . 329711) + (-3215 . 329636) (-3216 . 329564) (-3217 . 329447) (-3218 . 329396) + (-3219 . 329317) (-3220 . 329238) (-3221 . 329159) (-3222 . 329108) + (-3223 . 328864) (-3224 . 328562) (-3225 . 328480) (-3226 . 328398) + (-3227 . 328337) (-3228 . 327948) (-3229 . 327076) (-3230 . 326503) + (-3231 . 325268) (-3232 . 324461) (-3233 . 324211) (-3234 . 323961) + (-3235 . 323536) (-3236 . 323292) (-3237 . 323048) (-3238 . 322804) + (-3239 . 322560) (-3240 . 322316) (-3241 . 322072) (-3242 . 321830) + (-3243 . 321588) (-3244 . 321346) (-3245 . 321104) (-3246 . 320526) + (-3247 . 320410) (-3248 . 319567) (-3249 . 319535) (-3250 . 319189) + (-3251 . 318962) (-3252 . 318862) (-3253 . 318762) (-3254 . 316995) + (-3255 . 316882) (-3256 . 315831) (-3257 . 315738) (-3258 . 314815) + (-3259 . 314481) (-3260 . 314147) (-3261 . 314042) (-3262 . 313955) + (-3263 . 313926) (-3264 . 313869) (-3265 . 313789) (-3266 . 313717) + (-3267 . 313642) (-3268 . 313567) (-3269 . 313535) (-3270 . 313503) + (-3271 . 313471) (-3272 . 313439) (-3273 . 313407) (-3274 . 313375) + (-3275 . 313343) (-3276 . 313311) (-3277 . 313282) (-3278 . 313170) + (-3279 . 313058) (-3280 . 312946) (-3281 . 312834) (-3282 . 311746) + (-3283 . 311625) (-3284 . 311489) (-3285 . 311356) (-3286 . 311223) + (-3287 . 310928) (-3288 . 310633) (-3289 . 310287) (-3290 . 310059) + (-3291 . 309831) (-3292 . 309719) (-3293 . 309607) (-3294 . 304340) + (-3295 . 299981) (-3296 . 299671) (-3297 . 299518) (-3298 . 298993) + (-3299 . 298662) (-3300 . 298467) (-3301 . 298272) (-3302 . 298077) + (-3303 . 297882) (-3304 . 297768) (-3305 . 297644) (-3306 . 297529) + (-3307 . 297414) (-3308 . 297320) (-3309 . 297226) (-3310 . 297115) + (-3311 . 296913) (-3312 . 295768) (-3313 . 295674) (-3314 . 295559) + (-3315 . 295465) (-3316 . 295217) (-3317 . 295105) (-3318 . 294889) + (-3319 . 294770) (-3320 . 294471) (-3321 . 293742) (-3322 . 293165) + (-3323 . 292686) (-3324 . 292441) (-3325 . 292196) (-3326 . 291852) + (-3327 . 291238) (-3328 . 290792) (-3329 . 290635) (-3330 . 290489) + (-3331 . 290165) (-3332 . 290008) (-3333 . 289866) (-3334 . 289724) + (-3335 . 289582) (-3336 . 289303) (-3337 . 289081) (-3338 . 288556) + (-3339 . 288341) (-3340 . 288126) (-3341 . 287740) (-3342 . 287560) + (-3343 . 287348) (-3344 . 287039) (-3345 . 286846) (-3346 . 286672) + (-3347 . 285535) (-3348 . 285165) (-3349 . 284963) (-3350 . 284758) + (-3351 . 283918) (-3352 . 283889) (-3353 . 283820) (-3354 . 283749) + (-3355 . 283583) (-3356 . 283554) (-3357 . 283525) (-3358 . 283470) + (-3359 . 283319) (-3360 . 283259) (-3361 . 282563) (-3362 . 281177) + (-3363 . 281116) (-3364 . 280792) (-3365 . 280720) (-3366 . 280663) + (-3367 . 280606) (-3368 . 280549) (-3369 . 280492) (-3370 . 280417) + (-3371 . 279826) (-3372 . 279466) (-3373 . 279392) (-3374 . 279332) + (-3375 . 279214) (-3376 . 278263) (-3377 . 278136) (-3378 . 277923) + (-3379 . 277849) (-3380 . 277795) (-3381 . 277741) (-3382 . 277632) + (-3383 . 277322) (-3384 . 277214) (-3385 . 277111) (-3386 . 276950) + (-3387 . 276849) (-3388 . 276751) (-3389 . 276613) (-3390 . 276475) + (-3391 . 276337) (-3392 . 276075) (-3393 . 275866) (-3394 . 275728) + (-3395 . 275437) (-3396 . 275285) (-3397 . 275010) (-3398 . 274790) + (-3399 . 274638) (-3400 . 274486) (-3401 . 274334) (-3402 . 274182) + (-3403 . 274030) (-3404 . 273822) (-3405 . 273702) (-3406 . 273311) + (-3407 . 272976) (-3408 . 272633) (-3409 . 272282) (-3410 . 271939) + (-3411 . 271596) (-3412 . 271211) (-3413 . 270826) (-3414 . 270441) + (-3415 . 270072) (-3416 . 269346) (-3417 . 268995) (-3418 . 268546) + (-3419 . 268117) (-3420 . 267502) (-3421 . 266903) (-3422 . 266511) + (-3423 . 266175) (-3424 . 265783) (-3425 . 265447) (-3426 . 265225) + (-3427 . 264700) (-3428 . 264485) (-3429 . 264270) (-3430 . 264055) + (-3431 . 263875) (-3432 . 263660) (-3433 . 263480) (-3434 . 263094) + (-3435 . 262914) (-3436 . 262702) (-3437 . 262612) (-3438 . 262522) + (-3439 . 262431) (-3440 . 262319) (-3441 . 262229) (-3442 . 262122) + (-3443 . 261933) (-3444 . 261877) (-3445 . 261796) (-3446 . 261715) + (-3447 . 261634) (-3448 . 261499) (-3449 . 261364) (-3450 . 261240) + (-3451 . 261119) (-3452 . 261001) (-3453 . 260865) (-3454 . 260732) + (-3455 . 260613) (-3456 . 260354) (-3457 . 260069) (-3458 . 259997) + (-3459 . 259905) (-3460 . 259813) (-3461 . 259727) (-3462 . 259631) + (-3463 . 259490) (-3464 . 259433) (-3465 . 259376) (-3466 . 259316) + (-3467 . 258921) (-3468 . 258399) (-3469 . 258122) (-3470 . 257702) + (-3471 . 257590) (-3472 . 257152) (-3473 . 256922) (-3474 . 256719) + (-3475 . 256537) (-3476 . 256407) (-3477 . 256201) (-3478 . 255994) + (-3479 . 255804) (-3480 . 255239) (-3481 . 254983) (-3482 . 254692) + (-3483 . 254398) (-3484 . 254101) (-3485 . 253801) (-3486 . 253671) + (-3487 . 253538) (-3488 . 253402) (-3489 . 253263) (-3490 . 252046) + (-3491 . 251738) (-3492 . 251374) (-3493 . 251277) (-3494 . 251037) + (-3495 . 250742) (-3496 . 250447) (-3497 . 250188) (-3498 . 250014) + (-3499 . 249936) (-3500 . 249849) (-3501 . 249749) (-3502 . 249655) + (-3503 . 249574) (-3504 . 249504) (-3505 . 248713) (-3506 . 248643) + (-3507 . 248315) (-3508 . 248245) (-3509 . 247917) (-3510 . 247847) + (-3511 . 247402) (-3512 . 247332) (-3513 . 247228) (-3514 . 247154) + (-3515 . 247080) (-3516 . 247009) (-3517 . 246667) (-3518 . 246539) + (-3519 . 246462) (-3520 . 246114) (-3521 . 245971) (-3522 . 245828) + (-3523 . 245374) (-3524 . 245044) (-3525 . 244831) (-3526 . 244576) + (-3527 . 244226) (-3528 . 244001) (-3529 . 243776) (-3530 . 243551) + (-3531 . 243326) (-3532 . 243113) (-3533 . 242900) (-3534 . 242750) + (-3535 . 242569) (-3536 . 242464) (-3537 . 242342) (-3538 . 242234) + (-3539 . 242126) (-3540 . 241801) (-3541 . 241537) (-3542 . 241226) + (-3543 . 240924) (-3544 . 240615) (-3545 . 239886) (-3546 . 239297) + (-3547 . 239122) (-3548 . 238978) (-3549 . 238823) (-3550 . 238700) + (-3551 . 238595) (-3552 . 238480) (-3553 . 238385) (-3554 . 237904) + (-3555 . 237794) (-3556 . 237684) (-3557 . 237574) (-3558 . 236502) + (-3559 . 235991) (-3560 . 235924) (-3561 . 235851) (-3562 . 234978) + (-3563 . 234905) (-3564 . 234850) (-3565 . 234795) (-3566 . 234763) + (-3567 . 234677) (-3568 . 234645) (-3569 . 234559) (-3570 . 234135) + (-3571 . 233711) (-3572 . 233155) (-3573 . 232043) (-3574 . 230321) + (-3575 . 228763) (-3576 . 227967) (-3577 . 227463) (-3578 . 226975) + (-3579 . 226571) (-3580 . 225915) (-3581 . 225840) (-3582 . 225749) + (-3583 . 225678) (-3584 . 225607) (-3585 . 225551) (-3586 . 225430) + (-3587 . 225376) (-3588 . 225315) (-3589 . 225261) (-3590 . 225158) + (-3591 . 224718) (-3592 . 224278) (-3593 . 223838) (-3594 . 223316) + (-3595 . 223155) (-3596 . 222994) (-3597 . 222683) (-3598 . 222597) + (-3599 . 222507) (-3600 . 222149) (-3601 . 222032) (-3602 . 221951) + (-3603 . 221793) (-3604 . 221680) (-3605 . 221605) (-3606 . 220759) + (-3607 . 219574) (-3608 . 219475) (-3609 . 219376) (-3610 . 219047) + (-3611 . 218969) (-3612 . 218894) (-3613 . 218788) (-3614 . 218632) + (-3615 . 218525) (-3616 . 218390) (-3617 . 218255) (-3618 . 218133) + (-3619 . 218038) (-3620 . 217890) (-3621 . 217795) (-3622 . 217640) + (-3623 . 217485) (-3624 . 216821) (-3625 . 216157) (-3626 . 215430) + (-3627 . 214878) (-3628 . 214326) (-3629 . 213774) (-3630 . 213109) + (-3631 . 212444) (-3632 . 211779) (-3633 . 211226) (-3634 . 210673) + (-3635 . 210120) (-3636 . 209568) (-3637 . 209016) (-3638 . 208464) + (-3639 . 207912) (-3640 . 207360) (-3641 . 206808) (-3642 . 206704) + (-3643 . 206119) (-3644 . 206014) (-3645 . 205939) (-3646 . 205797) + (-3647 . 205705) (-3648 . 205614) (-3649 . 205522) (-3650 . 205427) + (-3651 . 205322) (-3652 . 205199) (-3653 . 205077) (-3654 . 204713) + (-3655 . 204591) (-3656 . 204493) (-3657 . 204132) (-3658 . 203603) + (-3659 . 203528) (-3660 . 203453) (-3661 . 203361) (-3662 . 203180) + (-3663 . 203085) (-3664 . 203010) (-3665 . 202919) (-3666 . 202828) + (-3667 . 202669) (-3668 . 202119) (-3669 . 201569) (-3670 . 198774) + (-3671 . 198602) (-3672 . 197192) (-3673 . 196632) (-3674 . 196433) + (-12 . 196261) (-3676 . 196089) (-3677 . 195917) (-3678 . 195745) + (-3679 . 195573) (-3680 . 195401) (-3681 . 195229) (-3682 . 195114) + (-3683 . 194742) (-3684 . 194679) (-3685 . 194616) (-3686 . 194553) + (-3687 . 194275) (-3688 . 194008) (-3689 . 193956) (-3690 . 193314) + (-3691 . 193263) (-3692 . 193075) (-3693 . 193002) (-3694 . 192922) + (-3695 . 192809) (-3696 . 192619) (-3697 . 192255) (-3698 . 191983) + (-3699 . 191932) (-3700 . 191881) (-3701 . 191811) (-3702 . 191692) + (-3703 . 191663) (-3704 . 191559) (-3705 . 191437) (-3706 . 191383) + (-3707 . 191206) (-3708 . 191145) (-3709 . 190964) (-3710 . 190903) + (-3711 . 190831) (-3712 . 190356) (-3713 . 189981) (-3714 . 186447) + (-3715 . 186395) (-3716 . 186267) (-3717 . 186117) (-3718 . 186065) + (-3719 . 185924) (-3720 . 183864) (-3721 . 176221) (-3722 . 176070) + (-3723 . 176000) (-3724 . 175949) (-3725 . 175899) (-3726 . 175848) + (-3727 . 175797) (-3728 . 175601) (-3729 . 175459) (-3730 . 175345) + (-3731 . 175224) (-3732 . 175106) (-3733 . 174994) (-3734 . 174876) + (-3735 . 174771) (-3736 . 174690) (-3737 . 174586) (-3738 . 173652) + (-3739 . 173432) (-3740 . 173195) (-3741 . 173113) (-3742 . 172769) + (-3743 . 171630) (-3744 . 171556) (-3745 . 171461) (-3746 . 171387) + (-3747 . 171183) (-3748 . 171092) (-3749 . 170976) (-3750 . 170863) + (-3751 . 170772) (-3752 . 170681) (-3753 . 170592) (-3754 . 170503) + (-3755 . 170414) (-3756 . 170326) (-3757 . 169838) (-3758 . 169770) + (-3759 . 169716) (-3760 . 169652) (-3761 . 169588) (-3762 . 169524) + (-3763 . 169463) (-3764 . 168723) (-3765 . 168662) (-3766 . 168601) + (-3767 . 167975) (-3768 . 167923) (-3769 . 167795) (-3770 . 167731) + (-3771 . 167677) (-3772 . 167568) (-3773 . 166270) (-3774 . 166189) + (-3775 . 166100) (-3776 . 166042) (-3777 . 165793) (-3778 . 165708) + (-3779 . 165634) (-3780 . 165549) (-3781 . 165492) (-3782 . 165276) + (-3783 . 165137) (-3784 . 164418) (-3785 . 163864) (-3786 . 163310) + (-3787 . 162756) (-3788 . 162037) (-3789 . 161371) (-3790 . 160811) + (-3791 . 160251) (-3792 . 159989) (-3793 . 159550) (-3794 . 159217) + (-3795 . 158878) (-3796 . 158573) (-3797 . 158440) (-3798 . 158307) + (-3799 . 157919) (-3800 . 157826) (-3801 . 157733) (-3802 . 157640) + (-3803 . 157547) (-3804 . 157454) (-3805 . 157361) (-3806 . 157268) + (-3807 . 157175) (-3808 . 157082) (-3809 . 156989) (-3810 . 156896) + (-3811 . 156803) (-3812 . 156710) (-3813 . 156617) (-3814 . 156524) + (-3815 . 156431) (-3816 . 156338) (-3817 . 156245) (-3818 . 156152) + (-3819 . 156059) (-3820 . 155966) (-3821 . 155873) (-3822 . 155780) + (-3823 . 155687) (-3824 . 155594) (-3825 . 155409) (-3826 . 155099) + (-3827 . 153541) (-3828 . 153386) (-3829 . 153248) (-3830 . 153105) + (-3831 . 152902) (-3832 . 150963) (-3833 . 150835) (-3834 . 150710) + (-3835 . 150582) (-3836 . 150359) (-3837 . 150136) (-3838 . 150008) + (-3839 . 149806) (-3840 . 149629) (-3841 . 149108) (-3842 . 148587) + (-3843 . 148308) (-3844 . 147896) (-3845 . 147375) (-3846 . 147190) + (-3847 . 147047) (-3848 . 146550) (-3849 . 145913) (-3850 . 145857) + (-3851 . 145763) (-3852 . 145644) (-3853 . 145574) (-3854 . 145501) + (-3855 . 145271) (-3856 . 144652) (-3857 . 144222) (-3858 . 144140) + (-3859 . 143998) (-3860 . 143523) (-3861 . 143401) (-3862 . 143279) + (-3863 . 143139) (-3864 . 142952) (-3865 . 142836) (-3866 . 142556) + (-3867 . 142488) (-3868 . 142290) (-3869 . 142110) (-3870 . 141955) + (-3871 . 141848) (-3872 . 141797) (-3873 . 141420) (-3874 . 140892) + (-3875 . 140670) (-3876 . 140448) (-3877 . 140209) (-3878 . 140119) + (-3879 . 138377) (-3880 . 137795) (-3881 . 137717) (-3882 . 132255) + (-3883 . 131465) (-3884 . 131088) (-3885 . 131017) (-3886 . 130752) + (-3887 . 130577) (-3888 . 130092) (-3889 . 129670) (-3890 . 129230) + (-3891 . 128367) (-3892 . 128243) (-3893 . 128116) (-3894 . 128007) + (-3895 . 127855) (-3896 . 127741) (-3897 . 127602) (-3898 . 127521) + (-3899 . 127440) (-3900 . 127336) (-3901 . 126918) (-3902 . 126496) + (-3903 . 126422) (-3904 . 126159) (-3905 . 125894) (-3906 . 125514) + (-3907 . 124815) (-3908 . 123772) (-3909 . 123713) (-3910 . 123639) + (-3911 . 123565) (-3912 . 123443) (-3913 . 123193) (-3914 . 123107) + (-3915 . 123032) (-3916 . 122957) (-3917 . 122862) (-3918 . 119087) + (-3919 . 117908) (-3920 . 117247) (-3921 . 117062) (-3922 . 114857) + (-3923 . 114532) (-3924 . 114050) (-3925 . 113607) (-3926 . 113372) + (-3927 . 113127) (-3928 . 113037) (-3929 . 111602) (-3930 . 111524) + (-3931 . 111419) (-3932 . 109943) (-3933 . 109538) (-3934 . 109137) + (-3935 . 109035) (-3936 . 108953) (-3937 . 108795) (-3938 . 107504) + (-3939 . 107422) (-3940 . 107343) (-3941 . 106988) (-3942 . 106931) + (-3943 . 106859) (-3944 . 106802) (-3945 . 106745) (-3946 . 106615) + (-3947 . 106412) (-3948 . 106043) (-3949 . 105621) (-3950 . 101677) + (-3951 . 101074) (-3952 . 100449) (-3953 . 100236) (-3954 . 100023) + (-3955 . 99857) (-3956 . 99644) (-3957 . 99478) (-3958 . 99312) + (-3959 . 99146) (-3960 . 98980) (-3961 . 98710) (-3962 . 93287) (** . 90334) + (-3964 . 89918) (-3965 . 89677) (-3966 . 89621) (-3967 . 89129) + (-3968 . 86321) (-3969 . 86171) (-3970 . 86007) (-3971 . 85843) + (-3972 . 85747) (-3973 . 85629) (-3974 . 85505) (-3975 . 85362) + (-3976 . 85191) (-3977 . 85065) (-3978 . 84921) (-3979 . 84769) + (-3980 . 84610) (-3981 . 84097) (-3982 . 84008) (-3983 . 83343) + (-3984 . 83151) (-3985 . 83056) (-3986 . 82748) (-3987 . 81576) + (-3988 . 81370) (-3989 . 80195) (-3990 . 80120) (-3991 . 78939) + (-3992 . 75357) (-3993 . 74993) (-3994 . 74716) (-3995 . 74624) + (-3996 . 74531) (-3997 . 74254) (-3998 . 74161) (-3999 . 74068) + (-4000 . 73975) (-4001 . 73591) (-4002 . 73520) (-4003 . 73428) + (-4004 . 73270) (-4005 . 72916) (-4006 . 72758) (-4007 . 72650) + (-4008 . 72621) (-4009 . 72554) (-4010 . 72400) (-4011 . 72242) + (-4012 . 71848) (-4013 . 71773) (-4014 . 71667) (-4015 . 71595) + (-4016 . 71517) (-4017 . 71444) (-4018 . 71371) (-4019 . 71298) + (-4020 . 71226) (-4021 . 71154) (-4022 . 71081) (-4023 . 70840) + (-4024 . 70500) (-4025 . 70352) (-4026 . 70279) (-4027 . 70206) + (-4028 . 70133) (-4029 . 69879) (-4030 . 69735) (-4031 . 68399) + (-4032 . 68205) (-4033 . 67934) (-4034 . 67786) (-4035 . 67638) + (-4036 . 67398) (-4037 . 67204) (-4038 . 66936) (-4039 . 66740) + (-4040 . 66711) (-4041 . 66610) (-4042 . 66509) (-4043 . 66408) + (-4044 . 66307) (-4045 . 66206) (-4046 . 66105) (-4047 . 66004) + (-4048 . 65903) (-4049 . 65802) (-4050 . 65701) (-4051 . 65586) + (-4052 . 65471) (-4053 . 65420) (-4054 . 65303) (-4055 . 65245) + (-4056 . 65144) (-4057 . 65043) (-4058 . 64942) (-4059 . 64826) + (-4060 . 64797) (-4061 . 64066) (-4062 . 63941) (-4063 . 63816) + (-4064 . 63676) (-4065 . 63558) (-4066 . 63433) (-4067 . 63278) + (-4068 . 62295) (-4069 . 61436) (-4070 . 61382) (-4071 . 61328) + (-4072 . 61120) (-4073 . 60748) (-4074 . 60335) (-4075 . 59975) + (-4076 . 59615) (-4077 . 59463) (-4078 . 59161) (-4079 . 59005) + (-4080 . 58679) (-4081 . 58609) (-4082 . 58539) (-4083 . 58329) + (-4084 . 57720) (-4085 . 57516) (-4086 . 57143) (-4087 . 56634) + (-4088 . 56369) (-4089 . 55888) (-4090 . 55407) (-4091 . 55282) + (-4092 . 54070) (-4093 . 52882) (-4094 . 52309) (-4095 . 52091) + (-4096 . 36762) (-4097 . 36577) (-4098 . 34493) (-4099 . 32325) + (-4100 . 32179) (-4101 . 32001) (-4102 . 31594) (-4103 . 31299) + (-4104 . 30951) (-4105 . 30785) (-4106 . 30619) (-4107 . 30206) + (-4108 . 16198) (-4109 . 15090) (* . 11043) (-4111 . 10789) (-4112 . 10605) + (-4113 . 9648) (-4114 . 9595) (-4115 . 9535) (-4116 . 9266) (-4117 . 8639) + (-4118 . 7366) (-4119 . 6122) (-4120 . 5253) (-4121 . 3990) (-4122 . 420) + (-4123 . 306) (-4124 . 173) (-4125 . 30))
\ No newline at end of file |